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THÈSE

pour obtenir le titre de

Docteur en Sciences
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Résumé : Cette thèse aborde la formulation par la théorie de l’information
des problèmes de traitement d’image. Cette formulation exprime la solution au
travers de la minimisation d’une énergie. Ces énergies appartiennent à la classe
non paramétrique au sens où elles ne font aucune hypothèse paramétrique sur la
distribution des données. Les énergies sont exprimées directement en fonction des
données considérées comme des variables aléatoires. Toutefois, l’estimation non
paramétrique classique repose sur des noyaux de taille fixe moins fiables lorsqu’il
s’agit de données de grande dimension. En particulier, des méthodes récentes dans
le traitement de l’image dépendent des données de type ”patch” correspondant
à des vecteurs de description de modèles locaux des images naturelles, par
exemple, les voisinages de pixels. Le cadre des k-plus proches voisins résout
ces difficultés en s’adaptant localement à la distribution des données dans ces
espaces de grande dimension. Sur la base de ces prémisses, nous développons
de nouveaux algorithmes qui s’attaquent principalement à deux problèmes du
traitement de l’image : la déconvolution et le débruitage. Le problème de la
restauration est développé dans les hypothèses d’un bruit blanc gaussien additif
puis successivement adaptés à domaines tels que la photographie numérique et le
débruitage d’image radar (SAR). Le schéma du débruitage est également modifié
pour définir un algorithme d’inpainting.

Mots clefs : restauration d’image, théorie de l’information, estimation non
paramétrique, entropie, mean-shift, déconvolution, patch, débruitage non local,
SAR, despeckling, inpainting d’image.

Abstract: This thesis addresses informational formulation of image processing
problems. This formulation expresses the solution through a minimization of an
information-based energy. These energies belong to the nonparametric class in that
they do not make any parametric assumption on the underlying data distribution.
Energies are expressed directly as a function of the data considered as random
variables. However, classical nonparametric estimation relies on fixed-size kernels
which becomes less reliable when dealing with high dimensional data. Actually,
recent trends in image processing rely on patch-based approaches which deal with
vectors describing local patterns of natural images, e. g., local pixel neighbor-
hoods. The k-Nearest Neighbors framework solves these difficulties by locally
adapting the data distribution in such high dimensional spaces. Based on these
premises, we develop new algorithms tackling mainly two problems of image
processing: deconvolution and denoising. The problem of denoising is developed
in the additive white Gaussian noise (AWGN) hypothesis and successively adapted
to no AWGN realm such as digital photography and SAR despeckling. The
denoising scheme is also modified to propose an inpainting algorithm.

Keywords: image restoration, information theory, nonparametric estimation, en-
tropy, mean-shift, deconvolution, patch, nonlocal denoising, SAR, despeckling, im-
age inpainting.
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image. Diamonds represent the conditional entropy, h(X̂|Ỹ ), after
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Chapter 1

Introduction

The general context of this thesis is the Image Restoration. Part of the work pre-
sented here has been developed at the Napoli University. Indeed, my Ph.D. pro-
gram has been developed between the University of Napoli “Federico II” (Italy)
and the University of Nice-Sophia Antipolis (France), in the framework of a co-
tutelle doctoral project. The topic I spent most of the time on, has been AWGN
image denoising, at the University of Nice, while my time at University of Napoli
was focused on application to SAR image denoising.

1.1 Context

Algorithms of image processing and computer vision can be classified in three
main categories: low-level, mid-level and high-level algorithms. Low-level algo-
rithms process basic operations on image pixels, e.g., some pixels are moving in the
image plane. Mid-level vision includes higher level processing like pixel group-
ing. High-level vision is the final stage which gives a semantic meaning to the
scene. This document deals with low-level image processing tasks that may rep-
resent building bricks for content analysis or understanding. Mainly two problems
will be studied: deconvolution and denoising. Image inpainting, will be briefly
mentioned.

A central notion in this kind of problems is the notion of similarity. Many
image and video processing problems can be solved by optimizing some cost func-
tions. The notion of similarity is often behind these functions. It can be a self-
similarity when a coherence is searched for within an object, or a cross-similarity
between two objects, images, or videos. Image restoration and segmentation typi-
cally call upon self-similarity and content-based indexing and retrieval depend on
the definition of a cross-similarity. Intermediately, tasks performed on video such
as restoration, segmentation, tracking, and optical flow computation rely upon a
similarity of an objet or a scene view with itself as observed on another frame.

1



2 Introduction

1.2 Contributions of the thesis

The main contribution of this thesis is a new statistical framework inspired from
Information Theory to address the problem of image restoration. Many problems
of image and video processing can be expressed as the minimization of a data con-
sistency residual and a term of mismatch with respect to a priori constraints. Tra-
ditionally, these functionals are based on penalization functions such as the ones
defined for robust estimation, sometimes referred to as φ-functions. From a statis-
tical point of view, recurring to these functions is equivalent to implicitly making
assumptions on the probability density functions (PDFs) of the residual and the
model mismatch, e.g., Gaussian, Laplacian, or other parametric laws for the square
function, the absolute value, or other φ-functions, respectively. Alternatively, it
is interesting to adapt to (an estimation of) the true PDF. This nonparametric ap-
proach implies to define functionals which take PDFs as input. Entropy has been
proposed in this context since, as a measure of dispersion of a PDF, its minimiza-
tion leads the residual or model mismatch values to concentrate around narrow
modes, the highest one normally corresponding to the annihilation of the residual
or mismatch, the others corresponding to inevitable outliers.

Based on this considerations, a novel method for image deconvolution based
on the minimization of the residual entropy has been proposed in the first part
of this thesis. The use of entropy turns out to be robust with respect to different
noise distributions applied to the observations. Indeed, the only hypothesis on the
noise is the spatial independency, i.e., noise samples in different spatial location
are statistical independent.

In the same spirit of this Information Theory-driven approach the denoising
problem has been tackled in the second part of the thesis. Here, we rely on the
notion of patch, i.e., a portion (usually a small square) of the image. Then the
patch conditional entropy, which carries the residual information of the central
pixel knowing its neighborhood, is considered. The denoising is performed in or-
der to reduce this conditional entropy which has been leveled up by the presence
of the noise. Developing this model leads to an information based interpretation
of state of the art patch based denoising algorithms. Indeed, the derivation of the
entropy criterion leads to a (weighted) average (or equivalently a filtering) of sim-
ilar patches. This step is the core of state-of-the-art algorithms such as NLmeans
and BM3D. Although the minimization of the conditional entropy has been intro-
duced in UINTA, we proposed a different minimization scheme in the space of
the patches coupled with the aggregation (or reprojection) step from the BM3D
strategy.

The third part of this thesis deals with specific application of the denoising
technique. In particular, in Chapter 5 we apply the denoising procedure developed
in Chapter 4 to professional real world camera image. In this kind of images the
noise can be considered still Gaussian, but signal dependent. Indeed the variance of
the noise can be modeled as an affine function of the signal intensity. Furthermore,
modern camera sensors produce RAW images which are mosaiced. This means
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that in each spatial position (or pixel), only one color information is available. To
have a complete RGB image a further step, called demosaicing, is required. This
step combines the outputs of neighbors pixel in order to reconstruct the R,G, and
B components in each spatial position. Denoising can be performed before or
after the demosaicing step. However, demosaicing introduces correlation among
neighborhood pixels and hence correlates the noise. The result is a “structured
noise” which is not Gaussian and not independent anymore. Removing this noise
is a harder task since algorithms usually rely on a hypothesis of independence.
Therefore, denoising is performed before demosaicing. The algorithm has been
then adapted in order to deal with the variable variance of the noise ant the complex
geometry of CFA matrix.

Chapter 6 presents a denoising scheme for Synthetic Aperture Radar (SAR)
images which adapts the BM3D algorithm to SAR images peculiarities such as the
multiplicative noise. This part of the work has been developed at the University of
Naples. Although not stated in the variational framework, this scheme belongs to
the general patch-based denoising context. The image self-similarity is exploited
in order to filter the noise while preserving textures and edges.

Finally, Chapter 7 deals with the problem of digital image inpainting, which
represents a growing area of image processing and computer vision research.
Briefly, we adapted the denoising AWGN method in order to fill the dam-
aged/missing regions in the image.





Chapter 2

ESTIMATION OF SOME
STATISTICAL MEASURES

2.1 Introduction

The solution to image and video processing problems can often be formulated as
follows

x̂ = arg min
x

φd(y −Hx) + λφr(∇x) (2.1)

where φd (usually the L
p-norm operator) and φr correspond to data fidelity and

regularization, respectively, and λ is the regularization parameter. Under some hy-
pothesis one can note that (2.1) corresponds to the Maximum A Posteriori solution
if the noise follows a generalized Gaussian law of shape parameter p and the a pri-
ori on the solution is given by a Gibbs PDF. These laws being defined by a small
number of parameters, (2.1) can only adapt to the data to a limited extent. More-
over, such parametric assumptions may not be flexible enough to efficiently deal
with outliers.

Even if one can pick functions proposed in robust estimation in order to reduce
the bias introduced by outliers, these functions are still sensitive to the values of
the outliers nonetheless. Moreover, they still represent an implicit assumption on
the underlying distribution of the data.

On the contrary entropy and other related statistical measures are less sensitive
to outliers because they deal with them in terms of frequency of occurrence as
opposed to value. In addition, if the PDF(s) is/are estimated nonparametrically,
then the measure makes no assumptions on the data or, otherwise stated, adapts to
them.

In this chapter we resume the basics of nonparametric estimation of some sta-
tistical measures focusing on the k-Nearest Neighbors (kNN) framework which
presents a lot of advantages in dealing with high dimensional spaces.

5
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2.2 Kernel density estimation (KDE)

Kernel-based methods make no assumption about the actual PDF. Consequently,
the estimated PDF cannot be described in terms of a small set of parameters, as
opposed to, e.g., a Gaussian PDF defined by its mean and variance. Such method
are then qualified as non-parametric. KDE is an important class of estimators since
virtually all nonparametric algorithms are asymptotically kernel methods [TS92].

Let {s1, s2, . . . , sn} be a set of n independent observations of a random vari-
able X with p(·) as PDF. The basic KDE may be written compactly as

p̂(s) =
1

nh

n�

i=1

K

�
s− si

h

�
=

1

n

n�

i=1

Kh(s− si), (2.2)

where Kh(t) = K(t/h)/h. Thus a kernel estimator is an equal mixture of n

kernels, centered at the n data points.
Choosing a good value for the bandwidth, h, is the most difficult task. The

choice of this parameter will be further discussed in Section 2.2.2

2.2.1 Multivariate KDE

The extension of the kernel estimator to the multivariate case where the samples are
vector-valued data, s ∈ R

d, is straightforward, The KDE p̂ uses the multivariate
d-dimensional kernels KH(·), where the bandwidth H is a d×d covariance matrix.
Therefore Eq.(2.2) writes

p̂(s) =
1

n

n�

i=1

KH(s− si), (2.3)

where, in the most general case, KH(s) = |H|−1/2
K(H−1/2

s), with H being
a d × d symmetric and positive definite bandwidth matrix, whose meaning will
be clarified later, and K(·) being a d-variate kernel function, bounded and with
compact support, satisfying the following set of conditions [WJ95]:

�

Rd
K(s)ds = 1, lim

||s||→∞
||s||dK(s) = 0,

�

Rd
sK(s)ds = 0,

�

Rd
ss

T
K(s)ds = cKI,

(2.4)

where cK is a constant and I is the identity matrix. It is convenient to separate
the size of H from the orientation of H . To that end, write H = h

2
A, where

detA = 1. Thus, the size of H is deth2A = h
2d. Commonly data are rotated

by the transformation A
−1/2, then a normal kernel or, more generally, a product

kernel, possibly with different smoothing parameter, hk, in the k-direction:

p̂(s) =
1

n

n�

i=1

�
d�

k=1

Khk
(s(k) − s

(k)
i

)

�
. (2.5)
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2.2.2 Bandwidth selection

As mentioned before, the critical parameter of KDE is the bandwidth h. In practice
as long as in theory, this parameter should tend to zero when the number of samples
tends to infinity. Larger bandwidth will capture overall structure while smaller
bandwidth will get finer structure.

The problem of an automatic, data-driven choice of the bandwidth has actually
more importance for the multivariate than for the univariate case. In one or two
dimensions one can choose an appropriate bandwidth interactively just by look-
ing at the plot of density estimates for different bandwidths. However, this task
becomes very hard, if not impossible, in dimensions higher than 3. Two of the
most frequently used methods of bandwidth selection are the plug-in method and
the method of cross-validation, which can make the selection of this parameter
automatic. Among the plug-in rules we recall here:

• a Parzen bandwidth selection is the Silverman’ rule-of -thumb [Sil86]

ĥ ≈ 1.06σ̂n−1/5
, (2.6)

where σ̂ is an estimation of the unknown density standard deviation.

σ̂ =

���� 1

n− 1

n�

i=1

(si − s̄)2. (2.7)

• In the multivariate case, it is not possible to derive the rule-of-thumb for
general H and Σ. However, if we consider H and Σ to be diagonal matrices,

ĥj =

�
4

d+ 2

�1/(d+4)

n
−1/(d+4)

σj . (2.8)

Note that this formula coincides with Silverman’s rule of thumb in the case
d = 1, see (2.6) and [Sil86]. Replacing the σjs with estimates and noting
that the first factor is always between 0.924 and 1.059, we arrive at Scott’s
rule [Sco92]:

ĥj = σ̂jn
−1/d+4

. (2.9)

Equation (2.8) shows that it might be a good idea to choose the bandwidth
matrix H proportional to Σ−1/2, where Σ is the covariance matrix of the
data. In this case we get as a generalization of Scott’s rule

Ĥ = n
−1/(d+4)Σ̂−1/2

. (2.10)

Using such a bandwidth corresponds to a transformation of the data, so that
they have an identity covariance matrix. As a consequence we can use band-
width matrices to adjust for correlation between the components of X .

Another method for automatic bandwidth selection is the double kernel esti-
mates, which estimates the density with two different kernels (e. g., Gaussian and
Epanechnikov) and tries to find the bandwidth which minimizes the distance be-
tween these two estimation.
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Figure 2.1: Kernel density estimation performance on a 1-D Gaussian
mixtures for different bandwidth. Actual distribution is in black, kernel
density estimate is in blue and kernels are in red. h is the plugin estimate
using rule of thumb, from left to right, top to bottom: actual PDF, PDF
estimated with 0.2h, PDF estimated with h, PDF estimated with 5h.
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Figure 2.2: Multivariate kernel density estimation performance on a 2-D
Gaussian mixtures for different bandwidth. h is the plugin estimate using
rule of thumb, from left to right, top to bottom: actual PDF, PDF estimated
with 0.2h, PDF estimated with h, PDF estimated with 5h.



10 CHAPTER 2. ESTIMATION OF SOME STATISTICAL MEASURES

2.3 Nonparametric entropy estimation

Entropy is a functional of the PDF and represents a measure of dispersion of a
random variable. The differential entropy H(pX), or equivalently H(X), of a
continuous random variable X of Rd with PDF p, writes

H(X) = −
�

Rd
p(α) log p(α)dα. (2.11)

2.3.1 Plug-in estimates

The plug-in estimates of entropy are based on a consistent density estimate pn of p
such that pn depends on X1, . . . , Xn.

Integral estimate

The integral estimator is of the form

Hn = −
�

An

pn(t) log pn(t)dt, (2.12)

where, with the set An one typically excludes the small or tail values of pn. This
estimator was first proposed by Dimitriev and Tarasenko [DT74], who proved the
strong consistency of Hn for d = 1. The evaluation of the integral in (2.12) how-
ever requires numerical integration and is not easy if pn is a KDE. Joe [Joe89]
considers estimating H(p) by (2.12) when p is a multivariate PDF, but he points
out that the calculation of (2.12) when pn is a KDE gets more difficult for d ≥ 2.

The resubstitution estimate

Ahmad and Lin [AL76] proposed estimating H(p) by

Hn = − 1

n

n�

i=1

log pn(Xi), (2.13)

where pn is a kernel density estimate. They showed the mean square consistency
of (2.13) for d = 1. Joe [Joe89] considered the estimation of H(f) for multivariate
PDF’s by an entropy estimate of the resubstitution type 2.13, also based on a KDE.
His analysis and simulations suggest that the sample size needed for good estimates
increases rapidly with the dimension d of the multivariate density.

2.3.2 The kNN framework

A consistent and unbiased entropy estimator was proposed for k = 1 [KL87]. This
work was extended to k ≥ 1 with a proof of consistency under weak conditions on
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the underlying PDF [GLMI05]

HkNN (U) = log(vd(|U |− 1))− ψ(k) +
d

|U |
�

s∈U
log ρk(U, s), (2.14)

where vd is the volume of the unit ball in R
d, |U | is the cardinality of the sample set

U , ψ is the digamma function Γ�
/Γ, and ρk(U, s) is the distance to the k-th nearest

neighbor of s in U excluding the sample located at s if any. Informally the main
term in estimate (2.14) is equal to the mean of the log-distances to the k-t nearest
neighbor of each sample. Note that (2.14) does not depend on the PDF pU .

While the kNN PDF estimator is competitive in high dimensions only, the en-
tropy estimator is accurate even in the univariate case [GLMI05] as shown in Fi-
gure 2.3.2 for several noise distribution. This might be explained by the smoothing
effect of the log-distance averaging in (2.14). Moreover, the kNN entropy esti-
mator also seems reasonably stable with respect to k until fairly high dimensions.
Therefore, the choice of k does not appear to be really crucial, as opposed to the
choice of h in the Parzen method. Actually, k must tend toward infinity when |U |
tends toward infinity, and such that k/|U | tends toward zero when |U | tends toward
infinity. An admissible choice is k =

�
|U |.

2.4 Entropy derivative and Mean Shift

As mentioned in Section 2.1, a lot of image processing problems can be formulated
as variational: a cost functional, often called energy, is minimized with respect to
the unknowns of the problem in order to find a best solution. The minimization
procedure often involves the calculus of the energy derivative. When the energy is
entropy-based, the gradient of a PDF over the PDF (sometimes called normalized
density gradient)

∇p

p
= ∇log p (2.15)

will be needed. PDFs have either a finite support or they tend toward zero at in-
finities, hence the question of stability or even existence of (2.15). Fortunately, this
term can be approximated by the Mean Shift vector.

Mean Shift was first introduced in 1975 by Fukunaga and Hoestler [FH75] as a
technique for the estimation of probability density gradients, but recently [CM02,
Che95, KF99, LK06] the advantages of such approach both in density estimation
and clustering have been newly recognized.

As for the non-parametric density estimation techniques, the main idea on
which this approach is based lies on the fact that samples in an arbitrary feature
space can be seen as an empirical probability density function, that is, local max-
ima of the probability should be observed in areas that have a dense concentration
of data points.

The basic approach in the Parzen Window technique lies on the observation
that, given a d-dimensional feature space and a set of n data points (s1, . . . , sn),



12 CHAPTER 2. ESTIMATION OF SOME STATISTICAL MEASURES

the probability density function p(s) can be estimated as

p̂H,K(s) =
1

n

n�

i=1

KH(s− si), (2.16)

In [CM02], the authors pointed out that a family of kernel functions satisfying
the conditions 2.4 and showing the sufficient property of radial symmetry can be
obtained in the following way:

K(s) = ck,dk(�s�2), (2.17)

with ck,d normalizing constant, that is to say defining a univariate kernel profile
k(x) for x ≥ 0 and rotating it in the space R

d. It is further observed in [WJ95]
that, in order to limit complexity in the density estimation procedure, a common
practical choice is to set the bandwidth matrix H as proportional to the identity
matrix, that is H = h

2
I , so that only one parameter should be provided in advance.

Under this assumption, the formula of the estimator given in (2.16) becomes

p̂h,K(s) =
ck,d

nhd

n�

i=1

k

�����
s− si

h

����
2
�

(2.18)

Applying the gradient operator to both sides of (2.18) yields to the form of the
density gradient estimator. Using g(x) = −k

�(x), we obtain

∇̂ph,K(s) =
2ck,d
nhd+2

n�

i=1

(si − s)g

�����
s− si

h

����
2
�

(2.19)

=
2ck,d
nhd+2

�
n�

i=1

g

�����
s− si

h

����
2
��


�

n

i=1 sig

��� s−si
h

��2
�

�
n

i=1 g

��� s−si
h

��2
� − s



 .

Observe that the density estimate p̂(s) evaluated using the function G(s) =
cg,dg(�s�2) as a kernel (also called the shadow of kernel K(s)) is given by

p̂h,G(s) =
cg,d

nhd

n�

i=1

g

�����
s− si

h

����
2
�
, (2.20)

Therefore it is possible to rewrite Eq. (2.19) as

∇̂ph,K(s) =
2ck,d
h2cg,d

p̂h,G(s)mh,G(s), (2.21)

with the term

mh,G(s) =

�
n

i=1 sig

��� s−si
h

��2
�

�
n

i=1 g

��� s−si
h

��2
� − s , (2.22)
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being called the mean shift (MS) vector. Combining (2.21) and (2.22) we obtain
an estimation of the normalized PDF gradient

∇p(s)

p(s)
∝

�
n

i=1 sig

��� s−si
h

��2
�

�
n

i=1 g

��� s−si
h

��2
� − s . (2.23)

2.5 Mean-Shift approximation

2.5.1 Based on fixed kernel size

As shown in eq. (2.22), the MS vector in the point s involves a weighted average
of samples si in the neighborhood of s. The size of the neighborhood depends
on the bandwidth parameter h while the weights are given by the shadow g(·). In
the Parzen Window approach (i.e., fixed bandwidth) it can be expressed, using an
Epanechnikov [Epa69] kernel k (and hence its shadow g(·) = rect(·)), as

∇p(s)

p(s)
=

d+ 2

h2

1

k(s, h)

�

sj∈Sh(s)

(sj − s), (2.24)

where d is the dimension of the feature space S, Sh(s) is the support of the Parzen
kernel centered at point s and of constant size h, k(s, h) being the number of
observation falling into Sh(s). The choice of the kernel window size h is criti-
cal [Sco92]. If h is too large, the estimate will suffer from too little resolution,
otherwise if h is too small, the estimate will suffer from too much statistical vari-
ability. As the dimension of the data space increases, the space sampling gets
sparser (problem known as the curse of dimensionality). Therefore, less samples
fall into the Parzen window centered on each sample, making the PDF estimation
less reliable. Dilating the Parzen window does not solve this problem since it leads
to over-smoothing the PDF. In a way, the limitations of the Parzen Method come
from the fixed window size: the method cannot adapt to the local sample density.
The k-th nearest neighbor (kNN) framework provides an advantageous alternative.

2.5.2 Based on variable kernel size

k-th Nearest Neighbors

Taking the kernel K(·) to be a uniform density on the unit sphere with H(s) =
ρk(s)Id where ρk(s) is the distance from s to the k-th nearest data point, one has
the k-nearest neighbor estimator [LQ65] (kNN). In the Parzen-window approach,
the PDF at sample s is related to the number of samples falling into a window
of fixed size centered on the sample. The kNN method is the dual approach: the
density is related to the size of the window necessary to include the k nearest
neighbors of the sample. Thus, this estimator tries to incorporate larger bandwidths
in the tails of the distributions, where data are scarce.
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In kNN framework, the MS vector is given by [FH75]

∇p(s)

p(s)
=

d+ 2

ρ
2
k







1

k

�

sj∈Sρk

sj



− s



 , (2.25)

where ρk is the distance of s to the k-th nearest neighbor.
The kNN estimator is not guaranteed to one (hence, the kernel is not a density)

and the discontinuous nature of the bandwidth function manifests directly into dis-
continuities in the resulting estimate. Furthermore, the estimator has severe bias
problems, particularly in the tails [Hal83, MR79] although it seems to perform well
in higher dimension [TS92].

Adaptive Weighted kNN Approach

The kNN method provides several advantages with respect to the Parzen Window
method. For example, the number of samples falling in the window is fixed and
known. Thus even if the sampling space gets sparser, we cannot have empty re-
gions, i.e., no samples inside. Moreover, the window size is locally adaptive. How-
ever, as near the distribution modes there is an high density of samples, the window
size associate to the k-th nearest neighbor could be too small. In this case the esti-
mate will be sensible to statistical variations in the distribution.

To avoid this problem we would increase the number of nearest neighbors,
to have an appropriate window size near the modes. However this choice would
produce a window too large in the tails of the distribution. Thus very far samples
would contribute to the estimation, producing severe bias problems.

We propose an alternative solution that keeps advantages from both Parzen and
kNN approaches. The samples contribution is weighted by formally making the
following substitution

1

k

�

sj∈Sρk

sj →
1

�
k

j=1wj

k�

j=1
sj∈Sρk

wjsj . (2.26)

Intuitively, the weights wj must be a function of distance between the actual sample
and the jth nearest neighbor, i.e., samples with smaller distance are weighted more
heavily than ones with larger distance.

2.6 Conclusion

In this chapter we resumed the basics of non parametric estimation. In particular
we pointed out that the normalized gradient of a PDF, which often needs to be
calculated in entropy-based variational problems, can be locally approximated by
means of a weighted average of samples falling in a local neighborhood. In addi-
tion we pointed out that the kNN framework easily adapts the neighborhood size
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Manifold Theoretical Hmanifold HkNN

Plane 2.0 2.0 -3.9
Circle 1.0 1.0 -5.0
Swiss roll 10.6 10.6 8.9
Ring torus 9.6 9.6 7.4
Sphere 5.7 5.2 1.0

Table 2.1: Estimation of Differential Entropy from 3D data embedded on
2D manifolds. Data are uniformely distributed on manifolds. Therefore
entropy is log2 S, where S is the manifold surface. Nsample = 5000,
Nc = 10 and k = 1.

to the local data density and provides more reliable results than a Parzen window
approach for high dimensional feature spaces.

Finally, we want to point out that even if standard non parametric estimation
tools provide very good estimates for ordinary distributions, they can fail if data
are complexly structured. This is the case of high dimensional data embedded on
lower dimensional manifolds. A novel technique for this kind of data has been
proposed in [NK07]. An illustrative example is given in Figure 2.6, where 3D data
are uniformly distributed on 2D manifold. The theoretical entropy of such a data is,
in bits, log2(S), where S is the surface of the manifold. Table 2.6 shows estimated
entropies with the method proposed in [NK07] and the kNN estimator.
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Figure 2.3: Entropy estimation of different PDF with relative errors. Cir-
cles represent Parzen, i.e. fixed bandwidth, estimation. Squares represent
kNN estimator (k = 10) and triangles represent the estimator presented
in [NK07].
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Figure 2.4: 3D data uniformely distributed on embedded 2D manifolds. In
lexicographic order: Plane, Spherical surface, Circle (intersection between
the Plane and a sphere), Ring torus and Swiss roll. Estimated entropies are
given in Table 2.6.





Part I

Deconvolution
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Chapter 3

ENTROPY-BASED
DECONVOLUTION

3.1 Introduction

Image restoration attempts to reconstruct or recover an image that has been de-
graded by using a priori knowledge of the degradation phenomenon. The problem
consists in the reconstruction of an original image x from an observed image y.
The simplest model connecting x to y is the linear degradation model

y = Hx+ n, (3.1)

where H is a linear operator and n is the observation noise. When the operator H
is space-invariant the model becomes

y = m ∗ x+ n, (3.2)

where degradations are modeled as being the result of convolution together with an
additive noise term, so the expression image deconvolution (or deblurring) is used
frequently to signify linear image restoration [GW02]. Here m represents a known
space-invariant blur kernel (point spread function, PSF), x is an ideal version of
the observed image y and n is (usually Gaussian) noise.

The objective of restoration is to obtain an estimate x̂ as close as possible to the
original image, by means of a certain criterion. We focus on variational methods,
that have an important role in modern image research. Classically, the solution
minimizes a certain functional, often called energy, which typically is the norm of
the residual with some regularization term,

x̂ = arg min
x

||y −Hx||2Σ� �� �
Data-fidelity

+ Jχ(x)� �� �
Regularization

, (3.3)

where Σ and χ represent two suitable functional spaces.
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The data-fidelity term measures a sort of distance between the observed and
the reconstructed image, while the regularization term describes some properties
(or constraints) of the image we are looking for. In stochastic based approaches, x,
y and n are considered as realizations of random fields.

In this chapter, we develop a new deconvolution algorithm which minimizes
the residual differential entropy.

3.2 State of the art

3.2.1 Deterministic approach

We consider a space-invariant imaging system, such that the model of image for-
mation is given by1

y(u) =

�
m(u− v)x0(v)dv + n(u). (3.4)

Inverse filter

Suppose for simplicity that the signal-to-noise ratio (SNR) is sufficiently large such
that we can reasonably neglect at first sight the noise term in eq.(3.4). If we use the
Fourier transform (FT), eq.(3.4) becomes rather trivial since we get

Y (f) = M(f)X0(f). (3.5)

It is clear from equation(3.5) that the support of M(f) plays an important role in
the solution of the problem. Indeed, the uniqueness of the solution is closely related
to the null space of the convolution operator, i.e. the solution of the equation

M(f)X(f) = 0. (3.6)

If the support of M(f) is the whole frequency space, then X(f) = 0. In this case
the solution of the restoration problem is unique and is given by

X(f) =
Y (f)

M(f)
. (3.7)

However if we are in the presence of noise we get

X(f) = X0(f) +
N(f)

M(f)
. (3.8)

The second term in equation(3.8) comes from the inversion of the noise contribu-
tion and it may be responsible for the non-existence of the solution. Indeed since
the noise is a process independent of the image formation, there may be division

1For notational compactness we use a single argument to indicate spatial location.
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by zero and X(f) has singularities at the zeros of M(f). Moreover, even if M(f)
is not zero for some values of f , it tends to be zero when |f | → ∞. Since the be-
havior of N(f) is not related to M(f), the ratio N(f)/M(f) may not tend to zero.
Hence, the solution may not exist or be not stable due to the noise amplification.

On the other hand, if the support of M(f) is a bounded subset of the frequency
space, the solution of the image deconvolution problem is not unique. In this case
we take as solution the least-squares (LS) solution.

Wiener filter

The inverse filter divides in the frequency domain by numbers that are very small,
which amplifies any observation noise in the image. A better approach is based
on the Wiener filter [Wie49]. The goal is to find a filter which gives an estimate
x̂ = g ∗ y such that it minimizes the mean square error. In the Fourier domain, the
Wiener filter is given by

G(f) =
M

∗(f)Sx(f)

|M(f)|2Sx(f) + Sn(f)
, (3.9)

where Sx(·) and Sn(·) are the mean power spectral density of the input signal x(·)
and the noise n(·) respectively.

The operation of the Wiener filter becomes apparent when the filter equation
above is rewritten:

G(f) =
1

M(f)

�
|M(f)|2

|M(f)|2 + SNR−1(f)

�
, (3.10)

where SNR(f) = Sx(f)/Sn(f) is the signal-to-noise ratio. When there is zero
noise (i.e. infinite signal-to-noise), the term inside the square brackets equals 1,
which means that the Wiener filter is simply the inverse of the system, as we might
expect. However, as the noise at certain frequencies increases, the signal-to-noise
ratio drops, so the term inside the square brackets also drops. This means that
the Wiener filter attenuates frequencies dependent on their signal-to-noise ratio.
The Wiener filter equation above requires us to know the spectral content of a
typical image, and also that of the noise. Often, we do not have access to these
exact quantities, but we may be in a situation where good estimates can be made.
For instance, in the case of photographic images, the signal (the original image)
typically has strong low frequencies and weak high frequencies, and in many cases
the noise content will be relatively flat with frequency.

3.2.2 Statistical methods

As opposed to deterministic approaches which do not take into account the random
nature of noise, in stochastic approaches y, x, and n are considered as realization
of random fields. If some statistical property of the noise, such as the expecta-
tion value or the correlation function or the probability distribution, is known,
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then one can develop methods where this information is used for image decon-
volution. In classical statistics, Maximum Likelihood (ML) is the most commonly
used method for parameter estimation. Its application to image restoration is based
on the knowledge of the random properties of noise so that the probability den-
sity pn(y|x) is known. Then the ML estimator looks for the image x which is
most likely to produce the detected image y, i. e. the image which maximize the
probability of observing y

max
x

p(y|x) (3.11)

with p(y|x) = p(y = Mx + n|x) = p(n = y − Mx). If the noise is white and
gaussian, pN (t) = 1

2πσ exp− ||t||2
2σ2 and

max
x

p(y|x) = max
x

1

2πσ
exp− ||y −Mx||2

2σ2
⇔ min

x
||y −Mx||2. (3.12)

Thus, in the case of additive Gaussian noise, the ML-method is equivalent to the
LS method.

3.2.3 Why using entropy?

As it is well known, LS estimation is sensitive to outliers, or deviations, from the
assumed statistical model. In the literature other more robust estimators have been
proposed, like M-estimators [BA93], involving non-quadratic and possibly non-
convex energy functions. However, these methods rely on parametric assumptions
on the noise statistics, which may be inappropriate in some applications due to the
contribution of multiple error source, such as radiometric noise (Poisson), readout
noise (Gaussian), quantization noise (Uniform) and ”geometric” noise, the latter
due to the non-exact knowledge of the PSF. Therefore density estimation using a
nonparametric approach is a promising technique.

We propose to minimize a functional of the residual distribution, in particu-
lar the differential entropy of the residual. We use entropy because it provides a
measure of the dispersion of the residual, in particular low entropy implies that the
random variable is confined to a small effective volume and high entropy indicates
that the random variable is widely dispersed [CT91]. Moreover, entropy criterion
is robust to the presence of outliers in the samples. Experimental results with non
gaussian distributions show the interest of such a nonparametric approach.

3.3 Proposed method: MRED

3.3.1 Minimizing the residual entropy

Image deblurring is an inverse problem, that can be formulated as a functional
minimization problem. Let Ω denote a rectangular domain in R2, on which the
image function x : u ∈ Ω → Rd is defined, d being the image dimensionality.
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Ideally, the recovered image x̂ satisfies

x̂ = argmin
x

�

Ω
ϕ(y −m ∗ x) du, (3.13)

where ϕ(·) is a metric representing data-fidelity. In the case of Gaussian noise,
a quadratic function is used. However, parametric assumptions on the underly-
ing noise density function are not always suitable, due to the multiple source of
noise. We define as energy to be minimized a continuous version of the Ahmad-
Lin [AL76] entropy estimator (HA−L(r)), defined as:

E(x) = |Ω| HA−L(r)

= −
�

Ω
log(px(r(u))) du . (3.14)

In order to solve the optimization problem a steepest descent method is used. The
energy derivative has been analytically calculated and it is shown in section 3.3.3.

3.3.2 Energy lower bound

In this section we provide a lower bound (LB) to the energy in eq.(3.14), in order to
check how our algorithm works on minimizing residual entropy (see Fig.3.1). The
residual can be viewed as the sum of two random variables, namely, R = N + X̃ .
The first one is the noise, and the second one is the projection of the error by means
of the operator m(·), i.e., x̃ = m ∗ (x0 − x).

Proposition 3.1. The residual entropy h(R) is lower bounded by the noise entropy
h(N).

Proof. Let us consider the mutual information between R and X̃ ,

I(R; X̃) = h(R)− h(R|X̃)

= h(R)− h(N |X̃) .

Since the noise N is independent from X̃ , h(N |X̃) = h(N), and by the non
negativity property of mutual information we obtain

h(R) ≥ h(N) . (3.15)

As it is well known, mutual information is a measure of the amount of infor-
mation that one random variable contains about another random variable [CT91].
The closer x is to the original image x0, the less information on X̃ is carried by the
residual. Therefore entropy minimization can be interpreted as the process which
uses the information carried by the residual to recover x0, until there is no more
information, i.e., the residual entropy reaches the lower bound.
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Figure 3.1: Residual Entropy as function of noise entropy.Initial residual
entropy (blue), Final residual entropy (green), Theoretical lower bound
(red).

3.3.3 Energy derivative

The residual pdf is estimate by using a nonparametric continuous version Parzen
estimator, with symmetric kernel K(·),

px(s) =
1

|Ω|

�

Ω
K(s− r(u)) du . (3.16)

Note that px(s) is the residual pdf associated to the current estimate image x.
Therefore changes in x provides changes in px(s), hence changes in the residual
entropy (energy). By taking the Gâteaux derivative of eq.( 3.14) it can be shown
(see the Appendix A for the demonstration.) that the gradient of E(x) at v ∈ Ω is
equal to

∇E(x)(v) =

�

Ω
m(v − w) k(w) dw, (3.17)

with

k(w) =
∇px(r(w))

px(r(w))
+ χ(w) (3.18)

and

χ(w) = − 1

|Ω|

�

Ω

∇K(r(u)− r(w))

px(r(u))
du . (3.19)

The first term in (3.18) is the normalized gradient of the residual pdf and it is pro-
portional to the local Mean-Shift (MS) [FH75]. In the following the MS estimation
is addressed as well as the computation of Eq. 3.19.
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Mean-Shift approximation

The first term in (3.18) is the normalized gradient of the residual pdf and it is
proportional to the local mean-shift [FH75]:

∇px(X)

px(X)
=

d+ 2

h2
Mh(X), (3.20)

where Mh(X) is the local MS vector. MS estimation can be dealt with either a
Parzen window or a k-th nearest neighbor (kNN) approach. Since the residual is
scalar, the Parzen approach is more suitable. Therefore the MS is

Mh(X) =
1

k

�

Xi∈Sh(X)

(Xi −X) (3.21)

i.e., the sample mean shift of the observations in the small region Sh(X) centered
at X (Sh(X) = {Y : �Y −X�2 ≤ h

2}).

Second order term χ

The integral in (3.19) is difficult to calculate in the general case and its computation
is developed in Appendix B. However, under some hypotheses, the residual pdf is
approximatively

px(α) ≈
N(α)

|D| , (3.22)

where N(α) is the number of samples such that r(w) = α. Note that, this approx-
imation does not make any assumption on the underlying residual pdf. χ(w) is the
sample mean of a function of the random variable R, i.e.,

1

|D|

�

D

∇Kσ(r(u)− r(w))

px(r(u))
du ≈

�

suppR

∇Kσ(α− r(w)) dα. (3.23)

This is function of r(w), if r(w) = 0 and the support of R is symmetric, the value
of χ(w) is 0 as long as it is an integral of an even function. By means of this
considerations, we could expect a negligible value of χ(w) if r(w) is small, and
higher values near the boundary of the support of R.

3.4 Experimental Results

In this section, some results from MRED (Minimum residual Entropy Deconvolu-
tion) algorithm are shown and compared to some state-of-the-art techniques: the
Wiener filter [Wie49], the Lucy-Richardson [Ric72, Luc74] algorithm, the regular-
ized inverse filter, the regularized Tikonoff filter and the Truncated SVD [HNO06]

In order to measure the performance of our algorithm we blurred the Lena
image (512x512 pixel) by convolving it with a 13x13 Gaussian PSF with stan-
dard deviation

√
3, and adding noise with different distributions, such as Gaussian,
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Uniform, Gaussian mixture, Gaussian-Uniform mixture and with different entropy
magnitudes. Residual entropy minimization is carried out via the gradient descent
algorithm described in section 3.3.3. At each iteration the mean-shift kernel size h

is proportional to the standard deviation of the residual, since this choice generally
assures a good compromise between robustness and accuracy [Com03].

Figure 3.1 shows in blue the initial residual entropy in green the value attained
when the algorithm converges and in red the theoretical LB. We considered Gaus-
sian noise in Figure 3.1a and Uniform noise in Figure 3.1b. In the gaussian case the
proposed algorithm achieves the lower bound of entropy. However, in the uniform
case as well the final entropy is quite close to the LB with a maximum relative
difference of 0.02%.

The performance is quantified by the Peak Signal-to-Noise Ratio,

PSNR = 10 log10
|x|2max

MSE
(3.24)

where |x|max is the maximum value admitted by the data format and the mean-
square error

MSE = �[x(n)− x̂(n)]2� (3.25)

is computed as a spatial average �·�, with x and x̂ being the original and restored
images, respectively. We also use a recent novel quality assessment measure: the
Structure Similarity (SSIM) index [WBSS04], which proved to be more consistent
with the human eye perception. The SSIM measure is calculated between small
windows (usually 8× 8) of an image, namely x and y, as follows,

SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)�

µ2
x + µ2

y + c1
�
(σ2

x + σ2
y + c2)

, (3.26)

where µ· and σ· represent respectively the image average and the variance in the
window and c1, c2 two constants to stabilize the division with weak denominator.

Figure 3.2 shows the PSNR and SSIM measures between the original image x0
and the degraded image y (blue) and the restored image x̂ (red) in function of the
noise entropy for Gaussian and Uniform distribution.

Figure (3.4) shows the restored images from different algorithms as Lucy-
Richardson [Ric72, Luc74] and Truncated SVD [HNO06], with uniform noise (en-
tropy 2 bits). The truncation parameter of TSVD is found with a generalized cross
validation [HNO06]. MRED has roughly the same PSNR of the TSVD restored
image, however the latter has a more pronounced grain effect. This is well catched
by the SSIM measure, for which our method is considered of higher quality. SSIM
indicates better results also in the experiment of Figure 3.7, where a gaussian mix-
ture noise has been used (see Fig. 3.6), even if the PSNR is lower than the one
provided by the TSVD restoration.

A full set of comparisons is shown in Tabb. 3.1 and 3.2 for different noise
distributions and entropy values. In particular, Tab. 3.2 reports results for the two
non canonical noise distributions shown in Figure 3.6. For the sake of clarity,
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Figure 3.2: Algorithm performances for gaussian noise (top) and uniform
noise (bottom) as function of noise entropy. (a) Initial (blue) and Final
(red) PSNR; (b) Initial (blue) and Final (red) SSIM.

the best PSNR and SSIM value is put in boldface. The MRED algorithm always
outperforms the other techniques except that in the two aforementioned cases for
the PSNR value.

3.5 Discussion and perspectives

In this chapter we presented a deconvolution method in the variational framework
based on the residual entropy minimization. We gave a theoretical meaning of the
minimization procedure in terms of mutual information between random variables.
The simulations indicated robust performance for different non-standard noise dis-
tribution probabilities. The robustness comes from the non parametric estimation
which makes no assumptions on the noise PDF. Experiments show in many cases
slightly better results w.r.t. some popular deblurring techniques. Results are even
more promising considering that, contrarily to what happens in other techniques
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Noise Algorithm PSNR SSIM
(dB) ∈ [0, 1]

Wiener Filter 25.41 0.825
Regularized Filter 25.42 0.828

Gaussian Lucy-Richardson 25.31 0.881
1 bit Regularized Tikonov 25.79 0.837

Truncated SVD 29.59 0.908
MRED 29.65 0.922
Wiener Filter 25.41 0.824
Regularized Filter 25.41 0.825

Gaussian Lucy-Richardson 25.29 0.880
2 bits Regularized Tikonov 25.60 0.804

Truncated SVD 29.15 0.890
MRED 29.16 0.895
Wiener Filter 25.41 0.824
Regularized Filter 25.41 0.825

Uniform Lucy-Richardson 25.31 0.881
1 bit Regularized Tikonov 25.79 0.832

Truncated SVD 29.53 0.906
MRED 29.59 0.918
Wiener Filter 25.41 0.824
Regularized Filter 25.41 0.825

Uniform Lucy-Richardson 25.28 0.878
2 bits Regularized Tikonov 25.39 0.786

Truncated SVD 29.04 0.882
MRED 29.03 0.900

Table 3.1: Image quality measures with different algorithm and different
noise statistics
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Figure 3.3: Left: Degraded image with a gaussian filter (σ2 = 3), and
zero mean Uniform noise of entropy 2 bits. Right: Residual entropy as
function of iterations.

like Truncated SVD, MRED algorithm makes no use of regularization parameters.
In most cases, iterative methods, converging to the ML-solutions, are used in such
a way that regularization can be obtained by early stopping of the iterations. In-
deed, these methods have the so-called semi-convergence property: the iterates
first approach the ”correct” solution and then go away. As future work, a possible
regularization method is being taken into account that makes use of the Kullback-
Leibler divergence between the residual distribution and the noise model, under
the hypothesis that some a priori knowledge is available on the noise. A further
remarkable property of MRED is its possible extension to the case of multispectral
images.
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a) Entropy based algorithm b) Wiener filter

c) Regularized inverse filter d) Lucy-Richardson

e) Tikonov FFT f) Truncated SVD

Figure 3.4: Deconvoluted images comparison, Uniform noise, entropy 2 bit.
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a) Entropy based algorithm b) Wiener filter

c) Regularized inverse filter d) Lucy-Richardson

e) Tikonov FFT f) Truncated SVD

Figure 3.5: Deconvoluted images comparison, Gaussian mixture noise,
entropy 1.85 bits
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Noise Algorithm PSNR SSIM
(dB) ∈ [0, 1]

Wiener Filter 25.43 0.824
Mixture Regularized Filter 25.41 0.824
Gaussian Lucy-Richardson 25.31 0.879
1.85 bits Regularized Tikonov 25.40 0.785

Truncated SVD 28.93 0.876
MRED 25.94 0.899
Wiener Filter 25.41 0.824

Mixture Regularized Filter 25.41 0.824
Gaussian Lucy-Richardson 25.32 0.881
Uniform Regularized Tikonov 25.63 0.837
0.7 bits Truncated SVD 29.66 0.913

MRED 29.80 0.926

Table 3.2: Comparison of different algorithms with different noise mixtures.
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Figure 3.6: Mixture noise. Left: Gaussian mixture pdf (entropy 1.85 bits).
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a) Entropy based algorithm b) Wiener filter

c) Regularized inverse filter d) Lucy-Richardson

e) Tikonov FFT f) Truncated SVD

Figure 3.7: Deconvoluted images comparison, Gaussian + Uniform mix-
ture noise, entropy 0.7 bits
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Chapter 4

PATCH-BASED DENOISING

4.1 Introduction

The ineffectiveness of many denoising techniques lies in the inadequacy of the
model assumed for the image. In fact, the strategy adopted by various algorithms,
is based on the assumption that the noise has a flat spectrum and the original image
has significant spectral components only at low frequencies. Following this reason-
ing, the noise can be suppressed by attenuating the high frequencies while leaving
the lower ones. The result produced is unsatisfactory, for several reasons. First, the
high frequency signal components are suppressed together with noise, since it is
no possible to distinguish them. It follows that the strong discontinuities or edges
of objects, being concentrated at high frequencies, are not correctly reconstructed.
In addition, the recovered image still contains a residual lowpass filtered noise.

Progress in denoising methods underwent a significant leap forward with non-
local, patch-based methods, even compared with wavelet-based denoising and
variational approaches calling upon sophisticated regularization. Based on dis-
tinct points of view, the methods UINTA [AW06] (Unsupervised, Information-
Theoretic, Adaptive Image Filtering) and NL-means [BCM05] (Non Local means)
pioneered this field in which BM3D [DFKE07a] (3D transform-domain collabora-
tive filtering) represents the latest, “still to be overcome” improvement, at least in
terms of the classical performance measure PSNR1 (Peak Signal-to-Noise Ratio).

The central idea of this technique is the notion of self-similarity: given a small
region of an image, a so-called patch, it is highly probable that other patches in the
image are very similar. All these similar patches are degraded by noise. Never-
theless, if the noise is independent and identically distributed, then the correlations
between them can be used to get rid of the noise.

In this chapter we develop a patch-based denoising algorithm following the
stochastic variational approach. The chosen energy is information theory oriented,
involving entropy measures on image patches.

1Although this measure is widely used, it is known that it does not always reflect accurately the
visual quality of the denoised (or, more generally, restored) image.

39
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4.2 Neighborhood Denoising: state of the art

Classical denoising techniques employ a local approach in that they operate only
in proximity of the pixel to be reconstructed. This strategy is unable to correctly
reconstruct the texture and characteristics of small image details. An innovative
idea came from some studies on the distribution of patches forming natural im-
ages [CIdSZ08, HM99, LPM03] which have motivated recent patch-based pro-
cessing methods, for example, for image and video denoising [BCM05, AW06,
DFKE07a, BKB07] or inpainting [CPT04]. Indeed, these studies showed that there
exist correlations among patches composing images. As a consequence, the prob-
ability is high that patches similar to a given image patch be encountered in the
image itself. It is reasonable to think that these correlations remain in the presence
of (some reasonable amount of) noise or after similar image degradations, offering
the opportunity to reduce noise or to recover missing information in a patch. As
a matter of fact, the nonlocal means algorithm (NL-means) [BCM05] and BM3D
(3D transform-domain collaborative filtering) [DFKE07a] proved to be successful
in image denoising.

In the following, we briefly describe three major techniques which represent
the state-of-the-art of patch-based denoising.

4.2.1 The UINTA algorithm

The unsupervised information-theoretic adaptive filter (UINTA) [AW06] restores
pixels by comparing pixel values with other pixels in the image that have similar
neighborhoods. The UINTA strategy is to reduce the entropy, h(X̃|Ỹ = ỹ), of
the conditional PDF for each pixel-neighborhood pair, by manipulating the value
of each center pixel. For this, UINTA employs an iterative gradient descent strat-
egy. At each step the PDF is estimated with a Parzen window approach using a
multivariate Gaussian kernel where the bandwidth parameter is estimated at each
step. Then the derivative of the entropy is calculated in each pixel and the descent
step is performed. Being an iterative method, the stopping criteria plays an impor-
tant role. Indeed, if entropy reduction counteracts the randomness introduced by
the noise it reduces, however, the inherent randomness in the signal. The authors
found empirically that UINTA can iterate until the root-mean-square (RMS) dif-
ference (residual) between input and the processed image equals the noise level,
when the latter is known.

4.2.2 Non-Local Means

The Non-Local Means algorithm filters the noisy image X̃(i) = X(i)+N(i) with
a weighted mean. Unlike classical spatial techniques, the processing of the pixel
X̃(i) involves an extended image portion Si called search window and centered at
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i
2. The pixels which fall into Si are weighted according to the similarity between

their neighborhood (usually, a square window N surrounding the pixel) and that of
X̃(i):.

NL

�
X̃

�
(i) =

�

j∈Si

w(i, j)X̃(j) (4.1)

where the weights are defined as:

w(i, j) =
1

Z(i)
exp

�
−
d
2
i,j

h2

�
, (4.2)

where Z(i) =
�

j∈Si
exp

�
−d

2
i,j
/h

2
�

is the normalizing factor and the parameter
h controls the decay of the exponential function and hence the level of filtering.
The term di,j represents the Gaussian weighted Euclidean distance between the
two neighborhoods of X̃(i) and X̃(j)

di,j = ||X̃ [Ni)]− X̃ [Nj)] ||a. (4.3)

In summary the Non-Local Means (NLM) algorithm [BCJ05] performs a weighted
mean of all the pixels in a certain neighborhood; the weight associated with each
given pixel, however, depends not on its geometrical distance from the target
pixel but on its similarity with it, measured by the mean square error between
the patches surrounding the selected pixel and the target. An evolution towards a
multipoint rather than pointwise filtering has been proposed in the Block-Matching
3D (BM3D) algorithm [DFKE07b] which will be discussed in the next Section.

4.2.3 Block Matching 3D (BM3D)

Under some restrictive conditions, the AWGN denoising problem has simple so-
lutions. For example, if the source is wide-sense stationary, with perfectly known
statistics, the optimum linear MMSE estimator is the well-known Wiener filter. Un-
fortunately, real-world images are never stationary (the information actually lies in
non-stationarities), and their statistics are not easily estimated from noisy sources,
which is why more sophisticated techniques are needed.

The wavelet transform (WT) represented a major step forward in this direction.
In fact, WT provides a sparse representation of images [Mal98] where large coeffi-
cients correspond region boundaries, while small coefficients contain mostly noise.
Therefore, some simple form of coefficient thresholding allows for a strong noise
rejection with a good preservation of image details.

Shortly after Donoho first introduced wavelet shrinkage [Don95], Baraniuk
et al. proposed [GSB97] a two-step filtering procedure in the wavelet domain,
which will be later reprised in BM3D. The first step is a hard thresholding which

2The search window could be the whole image, but it is limited in order to reduce the computa-
tional burden.
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Figure 4.1: Flowchart of BM3D algorithm [DFKE07b].

provides a basic estimate of the clean image; such an estimate, however, is used
only to compute the statistics for an empirical Wiener filtering operating in the
transform domain [GSB97] which performs the actual denoising of the original
image. Back to Wiener, then, but in the transform domain and with a preliminary
hard thresholding that provides the basis for better estimating the relevant statistics.

A further change of perspective came with the non-local filtering approach, re-
cently introduced by Buades et al. [BCJ05], inspired in turn by image inpainting
literature. The non-local approach relies on the observation that most images ex-
hibit clear self-similarities, as most patches repeat almost identically over and over
in the image. Once these similar patches are identified, one can carry out the filter-
ing along such patches, wherever they are, rather than in a local neighborhood of
the pixel, mimicking a true statistical, as opposed to spatial, filtering.

The BM3D algorithm [DFKE07b] operates a very effective synthesis of all
these ideas. Just like in [GSB97], it works in two steps: the first one uses hard
thresholding to build a relatively clean image for estimating statistics, while the
second one performs the actual denoising through empirical Wiener filtering in the
transform domain. Both steps, however, work not on local neighborhoods, but on
groups of blocks drawn from different image locations and collected on the basis
of their similarity, in the spirit of the non-local approach. Therefore, the resulting
3D groups are highly redundant allowing for a sparser WT representation and a
more effective separation between signal and noise through hard thresholding in
the first step; as a further consequence, statistics can be more reliably estimated,
and the Wiener filtering of the second step (always working on the 3D groups)
turns out to be extremely effective. We can now summarize, at a very high level,
the processing flow of BM3D also shown in Figure 4.1. The first step, operating
on the noisy image, comprises three stages

• grouping: for each reference block, the most similar blocks are located in
the image according to a minimum Euclidean distance criterion;

• collaborative filtering: each 3D group undergoes WT, hard thresholding and
inverse WT;

• aggregation: all filtered blocks are returned to their original location and
contribute with suitable weights to the basic estimate of the image.
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The second step comprises the same three stages, with the following differences

• grouping: blocks are located based on the basic estimate provided by the first
step;

• collaborative filtering: each 3D group (of noisy blocks) undergoes DCT/WT,
Wiener filtering and inverse transform;

• aggregation: like in step one.

At present, BM3D can be arguably [KFEA10] considered the state of the art for
AWGN denoising. The reader is referred to [DFKE07b] for more details.

4.3 Proposed method: PCkNN

4.3.1 Entropy-based formulation

The inverse problem of image restoration can be formulated as a minimization
problem. As mentioned in Section 4.2, natural images exhibit correlation among
the patches which compose them. This correlation should be accounted for in
deriving a restoration procedure.

We consider as in UINTA [AW06] the conditional entropy functional, i.e., the
uncertainty of the random pixel X when its neighborhood is given, as a suitable
measure for denoising applications. The use of conditional entropy is justified in
section 4.3.2.

Let us model an image as a random field X . Let T be the set of pixels of the
image and Nt be a neighborhood of pixel t ∈ T . We define a random vector Y (t) =
{X(τ)}τ∈Nt , corresponding to the set of (color) intensities at the neighbors of pixel
t. We also define a random vector Z(t) = (X(t), Y (t)) to denote image regions or
patches, i.e., pixels combined with their neighborhoods (see Figure 4.2).

The recovered image ideally satisfies

X̂ = argmin
X

h(X|Y = yi), (4.4)

where h represents the differential entropy. The minimization is carried out via a
gradient descent and the energy derivative is calculated in Section 4.3.3.

4.3.2 Energy lower bound

In this section we present motivations for use conditional entropy as suitable mea-
sure for denoising applications. To do this, we provide an information theoretic
result on conditional entropy in noisy images.

The conditional entropy of patches represents the uncertainty on the color X of
a pixel when its neighborhood Y is known. Due to the spatial correlation between
a pixel and its neighborhood, this conditional uncertainty is generally small in av-
erage. When adding noise to the image, some of the information carried by the
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Figure 4.2: Image patch illustration.

neighborhood is lost, so that the uncertainty of a pixel knowing its neighborhood
tends to be higher in average. This is formally stated by the following proposition.

Proposition 4.1. Let X be a random variable and Y a random vector representing
its neighborhood. Let X̃ be the sum of X with a white 3 noise N independent of
X . Similarly. let Ỹ be a noisy neighborhood vector. Then,

h(X̃|Ỹ ) ≥ h(X|Y ). (4.5)

Proof. By definition,
h(X̃|Ỹ ) = h(X̃)− I(X̃; Ỹ ) (4.6)

and
h(X|Y ) = h(X)− I(X;Y ), (4.7)

where I(·; ·) denote the mutual information. First note that h(X̃) is greater than
h(X) since the addition of two independent random variables increases the en-
tropy [CT91]. Than we have to prove that I(X;Y ) ≥ I(X̃; Ỹ ). Note that
X → Y → Ỹ forms a Markov chain, since Ỹ and X are conditionally independent
given Y . Thus, the data processing inequality [CT91] reads

I(X;Y ) ≥ I(X; Ỹ ). (4.8)

Now, since mutual information is symmetric and Ỹ → X → X̃ forms a Markov
chain itself (since the noise is white), than we obtain

I(Ỹ ;X) ≥ I(Ỹ ; X̃). (4.9)
3The samples are assumed to be statistically independent.



4.3. PROPOSED METHOD: PCKNN 45

By combining Eq. (4.8) and Eq. (4.9) we have

I(X;Y ) ≥ I(X̃; Ỹ ). (4.10)

Proposition 4.1 supports the intuition that the minimization of the conditional
entropy is an appropriate denoising approach. However, in practice, X must be
recovered while the noiseless neighborhood Y is also unknown. Ỹ can be inferred
from realizations of the observation X̃ , though. Hence, an inequality involving
h(X|Ỹ ) would better justify an algorithm based on conditional entropy.

Proposition 4.2. Let δX = X + δ with δ be independet from Y and N . Then

h(δX|Ỹ ) ≥ h(X|Ỹ ). (4.11)

Proof. The proof is the same as for prop. 4.1. Note that δX → X → Ỹ forms a
Markov chain.

As a consequence, the random variable X associated with the noiseless image
is also a minimizer of the conditional entropy when the noisy neighborhood Ỹ is
known.

Fig. 4.3 illustrates the behavior of the conditional entropy before and after de-
noising with respect to the lower bound h(X|Ỹ . As expected, the conditional en-
tropy h(X̃|Ỹ ) of the noisy image is greater than or equal to the conditional entropy
h(X̂|Ỹ ) of the denoised image for all noise levels.

Unlike UINTA, the lower bound provides a natural stopping criterion for an
iterative algorithm. Such a lower bound does not exist in UINTA because the con-
text Ỹ changes with iterations. However, the conditional entropy of the denoised
image is occasionally lower than the theoretic lower bound. This is explained by
the fact that rapidly varying textures are interpreted as noise and therefore partially
degraded by the denoising process. Therefore, iterations should be stopped before
the lower bound is attained.

4.3.3 Energy derivative

Classically, we propose to use a gradient descent procedure to solve the optimiza-
tion problem in (4.4). As a consequence, we need to determine the derivative of
the conditional entropy of the color of a pixel knowing its neighborhood.

Entropy, whether conditional or not, can be approximated by the Ahmad-Lin
estimator [AL76]

h(X|Y = yi) ≈ − 1

|T |
�

tj∈T
log p(xj |yi), (4.12)
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Figure 4.3: Behavior of the conditional entropy before and after denois-
ing. Squares represent the conditional entropy, h(X̃|Ỹ ), of the noisy im-
age. Diamonds represent the conditional entropy, h(X̂|Ỹ ), after denoising
with proposed method. Circles denote the lower bound h(X|Ỹ ). Left:
Lena. Right: Mandrill.

where the color xj is encountered at pixel tj , yi is the set of (noisy) colors in the
neighborhood of tj , and

p(s|yi) =
1

|Tyi |
�

tm∈Tyi

K(s− xm), (4.13)

is the kernel estimate of the probability density function (PDF), with Tyi the set of
pixels which have the same neighborhood yi, K(·) a symmetric kernel, amd xm

the color encountered at pixel tm.
The energy derivative of (4.12) is (see Appendix C for the demonstration)

∂h(X|Y = yi)

∂xi
≈ − 1

|T |
∇p(zi)

p(zi)

∂zi

∂xi
, (4.14)

where p(Z) is the joint PDF of the high dimensional random vector Z. The solution
to (4.4) can be computed by gradient descent
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Equation (4.14) shows the energy derivative is the product of a gradient vector on
the space of patches Z and a projection term which projects the gradient onto the
pixel space X . This means that we first calculate a patch of which we retain only
the central pixel in the update equation 4.15. In the next Section we extent this
pixel-based procedure to a full patch processing.
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4.3.4 Full patch denoising

Unlike denoising methods such as [AW06, BCM05] which actually implement
pixel-based iterative procedures relying on patches, as done by (4.15), we propose
to convert (4.15) into a patch-based iterative procedure. Discarding the projection
term ∂z

(n)
i

/∂xi, we get
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The normalized derivative in (4.16) can be approximated by a mean shift
term [FH75, CM02] on the high dimensional joint PDF of Z. The mean shift
gives an estimation of ∇log p(zi) [FH75]. In the k-th nearest neighbor (kNN)
framework, it can be expressed as [ADB08]

∇p(zi)

p(zi)
=

d+ 2

ρ
2
k
(zi)

1

k

�

zj∈kNN(zi)

(zj − zi) (4.17)

where d is the dimension of Z, kNN(z) denotes the set of the k closest patches of
z and ρk(zi) is the kNN patch distance.

By setting β = ρ
2
k
(zi)/(d + 2) and using (4.17), it is clear that the iterative

procedure of (4.16) is equivalent to

z
(n+1)
i

=
1

k

�

zj∈kNN(zi)

z
(n)
j

(4.18)

In practice, we have noticed that performing only one iteration is sufficient. There-
fore, for each patch zi, we have

z
∗
i =

1

k

�

zj∈kNN(zi)

zj . (4.19)

Furthermore, to account for the fact that, among the patches of kNN(zi), patches
farther away might not correspond as well to noisy versions of zi as do closer
patches (they may also be slightly structurally different), the average in (4.19) is
weighted as follows

z
∗
i =

1�
zj∈kNN(zi)

wj

�

zj∈kNN(zi)

wj zj (4.20)

where, similarly to NL-means [BCM05],

wj = exp(−|zi − zj |2/σ2
w), (4.21)
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Figure 4.4: Patch overlapping illustration.

σw being a parameter. To reduce the effect of noise, the distances between patches
are computed as in [Tas09] after a Principal Component Analysis (PCA): |zi −
zj | → |PCA(zi)− PCA(zj)|.

Dealing with full patch denoising leads to an estimation problem. In fact, a
single pixel in the restored image belongs to several denoised patches, each of
them carrying its own value. As an example, Figure 4.4 shows such a situation.
Therefore the question on how to combine these different estimates arises. The
next Section is devoted to the denoised patch combination.

4.3.5 Confidence-based patch combination

Denoised patches obtained in (4.20) overlap each other. In consequence, there is
some redundancy in the denoising process. Indeed, for a given pixel xi, we obtain
several estimators, one for each patch to which xi belongs (if the patch size is
Np ×Np, we have N

2
p estimators.). This is shown in Figure 4.4.

The simplest procedure to come back from patch space to pixel space is to re-
tain for each denoised patch only the central pixel. This is employed for example in
NLmeans [BCM05]. A further step is try to combine the different estimates coming
from denoised patches. Among a plethora of methods for combining estimators,
we used, as in [DFKE07a], a linear combination of denoised patches. Clearly,
among all the patches containing xi, some will lead to an accurate denoising at xi,
some might not while leading to an accurate denoising in other pixels. Therefore
we give to each denoised patch zi a weight ci which represents its reliability. We
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call ci the patch denoising confidence. For a given pixel i, the aggregation writes

xi =
1

�N2
p

q=1 ci,q

N
2
p�

q=1

ci,qx
∗
i,q, (4.22)

where ci,q is the confidence of patch q among the N
2
p patches which contain pixel

i.
We chose as patch denoising confidence

ci =

��
zj∈kNN(zi)

wj

�2

�
zj∈kNN(zi)

w
2
j

. (4.23)

In fact, since the noise is assumed to be uncorrelated, the synchronous summa-
tion (4.20) reduces the amount of noise (as characterized by its variance) by a
factor of 1/ci.

In summary, for each patch zi of the noisy image, we are able to compute with
the confidence ci (see (4.23)) a denoised patch z

∗
i

(see (4.20)). These patches are
then combined (or aggregated) according to their confidence term. In Figure 4.5
the patch combination procedure is sketched.

The denoised patches z
∗
i

are then aggregated as follows: starting from an ag-
gregation image of zeros and a confidence map of zeros, a denoised patch z

∗
i

is
added, after weighting by ci, to the aggregation image at its original location, and
a constant patch equal to ci is added to the confidence map at the same location.
After dealing with all the patches, the denoised image is defined as the pointwise
division between the aggregation image and the confidence map.

4.3.6 Summary of the algorithm

The Patch Confidence kNN denoising (PCkNN) algorithm tries to minimize the
conditional entropy of a pixel knowing its neighborhood. To do this, we estimate
the mean shift vector in the high dimensional feature space Z, which represents the
space of noisy patches. Estimation is carried out by searching the k nearest neigh-
bors in such a high dimensional space. Then for each pixel in the noisy image,
a denoised patch is estimated as a weighted summation of the k nearest patches
(see (4.20)). The weights depend on the distance between patches (see (4.21)) and
they contribute to the confidence ci (see (4.23)). Then denoised patches are aggre-
gated as in Section 4.3.5 (see (4.22)) to form the final denoised image. Figure 4.7
shows the pseudo code for the proposed algorithm and in Figure 4.6 a block dia-
gram of the proposed PCkNN algorithm is sketched.

4.4 Experiments

We compare the proposed technique with three state-of-the-art denoising
algorithms: the UINTA algorithm [AW06], the Non Local Means (NL-
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Figure 4.5: Patch combination step illustration.

Figure 4.6: Block diagram for PCkNN algorithm.
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Pseudo code

For each pixel x:

• A(x, r) (search Area);

• W (x, f), i.e., the patch of radius f surrounding x;

• For each pixel y ∈ A(x, r)− {x}:

– W
∗(·, f) = W (·, f). ∗Mask;

– d(x, y) = ||W ∗(x, f)−W
∗(y, f)||2;

– choose the first k nearest elements, such as 0 �= d(x, y1) ≤ d(x, y2) ≤
... ≤ d(x, yk);

– w(x, yi) = exp−d(x, yi)/σ2
w with σw = σ;

– then the denoised patch is

W
∗(x, f) =

1
�

k

i=1w(x, yi)

k�

i=1

w(x, yi)W (yi, f) (4.24)

– assign to each pixel of the denoised patch the confidence

c(x) =

��
k

i=1w(x, yi)
�2

�
k

i=1w(x, yi)
2

– replace the denoised patch in the image

U(x, f) ← c(x)W ∗(x, f) (4.25)
C(x, f) ← c(x) (4.26)

Then the final image is:

U ← U./C (4.27)

Figure 4.7: Pseudo code for the proposed PCkNN algorithm.
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Figure 4.8: PSNR for the image Elaine (left) and Lena (right).

means) [BCM05], and the Block Matching 3D (BM3D) algorithm [DFKE07a],
all briefly described in Section 4.2. Such techniques have been chosen because of
their competitive performance and (not least) for the availability of software code
to run the experiments. Experimental results have in fact been obtained by using
the Authors’ own code available online. For all these algorithms, if not stated oth-
erwise, the free parameters are set as suggested in the reference papers. However,
we will highlight the common parameters among the different methods.

We considered several images commonly used in the AWGN denoising and
shown in Figure D.1. Noisy images are obtained by adding a simulated white
Gaussian noise with standard deviation σ of 5, 10, 15, 20 and 25. We set BM3D
in normal profile with a patch size of 8 and a search window of 39, while UINTA
set the neighborhood size to 9. We chose for both PCkNN and NL-means a patch
radius of 7 and a search radius of 15. Furthermore, as suggested from authors, we
set h = σ, h being the filtering parameter of NL-means and σ the noise standard
deviation. The performance is quantified by the PSNR and SSIM measures de-
fined in Section 3.4. PSNR measure and the related mean square error (MSE) are
the simplest and most widely used quality metrics in image processing, with clear
physical meanings, but they are not very well matched to perceived visual qual-
ity [WBSS04]. Human visual system is highly adapted for extracting structural
information, and SSIM, which compares local patterns of pixel intensities, is more
suitable for image quality assessment.

As shown in Figure 4.84, PCkNN outperforms both UINTA and NL-means and
is very close to BM3D which provides consistently the best performance in terms
of PSNR. This is not surprising since BM3D is basically a two step algorithm,
where the second one performs a Wiener filtering. As it is well known, Wiener
filter minimizes the average squared distance between the filter output and the de-
sired signal, which, in the case of denoising, turns out to be the noisefree signal.
Since PSNR is equivalent to MSE (all images have the same dynamic), BM3D is
optimal in the sense that maximizes the PSNR. However, PSNR does not provide a

4A full set of comparison is reported in Appendix D.
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stand-alone measure for quality assessment. Indeed, the image quality of PCkNN
is definitely better than the other algorithms as shown in Figure 4.9 for the image
Elaine. In particular, the residual noise is quite natural and does not exhibit spu-
rious patterns, thus leading to a denoised image with a very natural appearance.
NL-means is clearly oversmoothed and BM3D presents many flattened regions in
smoothly varying areas (see Fig. 4.10), giving a somewhat unnatural, cartoon ef-
fect to the denoised image. This is the major drawback of this algorithm for high
noise levels that might be due to the thresholding in the wavelet domain.

To illustrate the cartoon effect, Figure 4.10 shows a close-up on the image
Elaine and the corresponding isolevel lines. The orientation and density of these
lines provide an indication on the direction and the norm of the gray level gradient.
PCkNN preserved very well the original isolevel line configuration while BM3D
created a “patchwork” of flattened regions. This behavior is very well known in
the data compression communities since 80’s and the same effect can be observed
also in Figures 4.11 and 4.12 for the images Lena and Barbara respectively.

In order to measure the flattening behavior, we rely on a Total Variation (TV)
based criterion that we call Normalized TV error (nTV). It is the integral of the
absolute relative error between the norm gradients of the denoised and the origi-
nal image respectively. Namely, if u and û are respectively the original and the
denoised image, nTV is given by

nTV(û) =
1

Ω

�

Ω

||∇û(x)|− |∇u(x)||
1

|N (x)|
�
N (x) |∇u(y)|dy

dx, (4.28)

where the average value in a neighborhood N (x) of x is used in order to avoid
division by zero. Lower values of nTV indicate a better reconstruction of image
gradient and hence fine details in the denoised image. Figure 4.13 shows the nTV
criterion for the image Elaine and Lena.

A further analysis can also be done in the Fourier domain. According to the
model

û = u ∗Gσ + � (4.29)

where the denoised image is modeled as a blurred version of the original image
plus some noise which represents the model noise, we can analyze the Fourier
Transform (FT) of the error image which comes out from the difference between
the algorithm output and a blurred version of the original image. Figure 4.14 shows
the modulus of the error FT for both BM3D and PCkNN corresponding to both the
image Elaine and Lena corrupted with noise with standard deviation σ = 25. The
figure clearly shows that the BM3D FT error has high energy in the low frequency
range. For the sake of clarity, we plotted the equivalent energy density distribution
in Figure 4.15. The curves of Figure 4.15 have been obtained by integrating over
growing rings the Energy Density Spectrum (ESD) (i.e., the square modulus of the
FT) of the error. We then normalized by the error total energy in order to have both
curves integrate to 1 (Parseval theorem). Finally, we showed the densities in the
log-scale (dB) in order to highlights the differences.
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Figure 4.9: In lexicographic order: Noisy, Original, BM3D, PCkNN, NL-
means, and UINTA.The image Elaine was corrupted with an additive white
Gaussian noise with standard deviation of σ = 25.
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Figure 4.10: A close-up on the image Elaine. From left to right: Original,
BM3D, and PCkNN. First row: image alone; second row: isolevel lines
superimposed on the image.

Figure 4.15 clearly shows that PCkNN error is more concentrated in high fre-
quencies. On the contrary, BM3D error presents higher energy at low frequencies.
At first sight, the human visual system (HVS) acts as a low-pass filter, hence, it is
more sensitive to low-frequency errors. Therefore, the perceived quality of PCkNN
is better than BM3D. This does not means that in general PCkNN removes more
noise than BM3D, but the residual noise of PCkNN appears more natural since it is
masked by the HVS. This is a well-known characteristic in speech audio processing
domain in which noise is masked near the speech formants. Thus, a good denoising
algortihm should masks the inevitable residual noise as much as possible.

4.5 Improving PCkNN with robust patch similarity

The key idea of patch-based denoising algorithm is image self similarity. On an
image, one can find several small areas or patches that are similar to each other.
Suppose that we have several noisy realizations of the same patch. Assuming an
additive zero mean noise, we can denoise such a patch by taking the average of



56 CHAPTER 4. PATCH-BASED DENOISING

Figure 4.11: A close-up on the image Lena. From left to right: Original,
BM3D, and PCkNN. First row: image alone; second row: isolevel lines
superimposed on the image.
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Figure 4.12: A close-up on the image Barbara. From left to right: Orig-
inal, BM3D, and PCkNN. First row: image alone; second row: isolevel
lines superimposed on the image.

Figure 4.13: Normalized Total Variation. Left: Elaine. Right: Lena.
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Figure 4.14: FT Amplitude of the error between the blurred original and
the denoised image. Left BM3D, right PCkNN. First row: Elaine, second
row: Lena.

Figure 4.15: Enery Spectrum Density (ESD) (dB) of the reconstruction
error. Left: Elaine. Right: Lena.
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the noisy patches. The (dis)similarity function between two patches plays an im-
portant role in choosing the best candidates (in our case the k nearest neighbors)
for the denoising task. The most popular choice is the L2-distance between the
patches. However, when the noise is high, such a distance becomes unreliable.
Moreover, two patches can be similar only up to some transformation such as ro-
tation. Therefore, we propose to define a patch similarity invariant to some patch
transformations and applied to polynomial approximations of the patches. This
represents an improvement over PCkNN.

4.5.1 Robustness to noise

Before trying to look for similar patches, the patches are modified in order to ensure
some level of robustness with respect to noise. Given a noisy patch considered as a
surface, a polynomial surface approximation is computed with independent degrees
in both directions. Each degree can range from 1 to 10. The best approximation has
been defined as the one producing a zero-mean noise between the noisy patch and
its approximation. The approximations of all the patches are then used, possibly
after geometrical transformations (see Section 4.5.2), to look for self similarities.

4.5.2 Transformation invariance

Standard patch-based denoising algorithms compute the L2-distance blockwise.
This means that the similar patch search is performed allowing only for patch trans-
lation. However, more similar patches can often be found if allowing for rotation or
symmetry of the patches [SPH09]. Building on this idea, we propose an extended
set of patch transformations:

• symmetries with respect to the horizontal and vertical axes and the diagonals;

• rotations by π/2, π, and 3π/2;

• rotations between −α and α with a step of dα.

Note that when comparing two patches, the rotations π/2, π, and 3π/2 are often not
the transformation leading to the best matching (contrary to the rotations between
−α and α with α around π/6). However, they are computed cheaply and exacly
(no interpolation required).

In summary, let S be the set of patches in the image and T the set of trans-
formations (symmetries and rotations), then the set in which we look for similar
patches is the augmented set S ∪ T (S).

4.5.3 Effect of the transformations: A toy example

A white Gaussian noise was added to a synthetic image of a disk. The PSNR of the
noisy image was 14.9. This image was denoised without and with transformation
invariant patch similarity (see Section 4.5.2). The positive effect of using patch
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Figure 4.16: Effect of the transformations: A toy example. In lexico-
graphic order: Original, Noisy, Denoised with no transformations, De-
noised with transformations.

transformations can be seen on Figure 4.16. Objectively, the denoised image ob-
tained with transformations has a PSNR of 29.1 while the image obtained without
transformations has a PSNR of 27.7.

We also tested this improved algorithm PDC-RS on the image elaine for sev-
eral level of noise. Figure 4.17 shows the Peak Signal to Nose Ratio (PSNR) as
function of the noise standard deviation for the compared algorithms. PDC-RS still
outperforms UINTA and NLmeans and despite a slightly lower score w.r.t. PCkNN
and BM3D has an improved image quality as highlighted in Figure 4.18.

4.6 Conclusion and perspectives

In this Chapter we proposed a novel algorithm for image denoising. The devel-
opment started from Information Theory concepts and we saw that entropy min-
imization leads to non-local filtering approaches. Thus, we also provided a new
variational interpretation of non-local filtering such as NL-means. However, key
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Figure 4.17: PSNR plot for the image Elaine.

Figure 4.18: A close-up on the image Elaine of Figure 4.9. From left to
right: Original, BM3D, PCkNN and PDC-RS. Top: image alone; bottom:
isolevel lines superimposed on the image.



62 CHAPTER 4. PATCH-BASED DENOISING

philosophical issues remain to be solved.
First, what is the optimal patch size? Classically, this size is a parameter. How-

ever, it is clear that the number and quality of patches similar (with some tolerance)
to a patch centered on a given pixel vary with the patch size: (a) as the patch gets
smaller, more similar patches are found but they are less and less useful for denois-
ing; (b) for some range of patch size, the number of similar patches appropriate for
denoising should be sufficient; (c) as the patch gets larger, less patches are found
and they are less and less useful for denoising.

The second key issue is the definition of a good measure of similarity between
patches. Normally, the L2-norm is used. Besides the fact that the patches are de-
graded by noise, this measure does not, as one can expect, correspond to a reliable
hint of visual similarity. Which alternatives can help solving these questions? Con-
cerning the patch size, one can think of using the local information scale such as the
one provided by keypoint detectors (SIFT (Scale-invariant feature transform). . . ).
However, how many times some local pattern is repeated in the image is what
counts for denoising and such a scale is not linked to this repetition. Yet, a mul-
tiscale decomposition of the whole image can be used to infer the local degree of
repetition at the appropriate scale.

Concerning the measure of similarity between patches, without pretending to
find a measure expressing visual similarity (something virtually impossible for this
notion being subjective), a measure based on the decomposition of patches on some
basis is a possible direction of research. A truncated PCA (Principal component
analysis) and SVD (Singular value decomposition) have been proposed for that
purpose [Tas09, OEW08], although with moderate success. Another option would
be to really exploit a coarse-to-fine decomposition to define a similarity measure.

The method will be further developed to deal with color images. Although
it would be straightforward to simply apply the method to each channel indepen-
dently, it is clear that a joint processing would be more appropriate. It appears to
us that the proposed method can achieve this goal since (1) the mean shift princi-
ple applies to any dimension and (2) the kNN framework allows to deal with high
dimensional data efficiently.

Another aspect that will be tackled is the definition of a data fidelity term.
Referring to the proposed method as an operator on an image, one can note that
this operator is not idempotent. Applying it again and again will produce images
less and less noisy but also, eventually, degraded. In such an iterative scenario, the
denoising operator should therefore be balanced with data fidelity. This latter term
should probably follow the same information theoretic inspiration as the former
one.
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Chapter 5

DIGITAL PHOTOGRAPHY

5.1 Introduction

This chapter and the next two chapters deal with application of denoising to digital
photography, synthetic aperture radar (SAR) images and to digital image inpaint-
ing (which can be viewed as a high-level denoising task). The growth of compact
digital cameras and the use of satellite applications as well as implementation of
inpainting algorithm in prosumer softwares show how denoising is still an hot topic
in the image processing and computer vision communities. These real world ap-
plications point out that the noise is not only AWGN. Indeed, in modern digital
cameras the noise can be approximated by an additive random variable with the
variance depending on the signal intensity. In SAR images the noise is still signal
dependent but it is also a multiplicative noise and not Gaussian. Finally, in digital
inpainting the “noise” has no statistical characterization but only spatial, let say we
know where it is but we do not know what it is.

This chapter is devoted to the digital photography. In the next Sections the
noise model of modern cameras is introduced. Then, an adapted version of our
PCkNN algorithm is presented.

5.2 Noise and sensor

5.2.1 Sensor and image acquisition

The heart of any digital camera is the sensor which acquires the images. It consists
of a great number of small photo detectors, which are often realized with a CCD
technology. The image acquisition converts the light in a 2-dimensional signal
which measures the light intensity in each spatial position. This task is performed
by the image sensor, a M × N matrix of photo detectors. A photo detector is an
electronic device which stores an electrical charge proportional to the energy of the
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Figure 5.1: Physical properties of Silicon. The images above come
from [Nak05].

incident light, with the following relation [HK94]:

I = T

�

Λ
B(λ)η(λ)dλ, (5.1)

where T is the exposition time, B is the incident light energy, η is the charge
density per energy unit and Λ is the visible wavelength spectrum. The parameter
η depends on the number of photons that the silicon is able to absorb [Nak05].
Figure 5.1a shows the silicon sensibility as function of the wavelength. The graph
points out that a photo detector presents a monochromatic behavior. Figure 5.1b
shows the penetration ability of a photon in the silicon. As we can expect, the
higher is the incident radiation wavelength the higher is the penetration depth. This
two properties of the silicon allows two different type of sensors:

1. Color Filter Arrays (CFA). The photo detectors are installed on the silicon
surface following a bi-dimensional grid. In order to separate the colors, each
photosite is covered by a color filter. The most used mask is the so-called
Bayer grid where each 2 × 2 block receive 1 red pixel, 2 green pixel and 1
blue pixel (see Figure 5.2 left). To have a complete RGB image a further
step, called demosaicing, is required. This step combines the outputs of
neighbors pixel in order to reconstruct the R,G, and B components in each
spatial position;

2. Layered sensors. The photo-detectors are installed in the silicon at three
different depth (see Figure 5.2 right). The key point is the penetration ability
of photons. In fact, the first layer catches all visible spectral components.
The second one, receives the red and green, but not the blue, which is filtered
by the silicon itself. The the last layer receives only the red light. A linear
combination of the three outputs give the color information in each spatial
position.
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Figure 5.2: c�Foveon. Two different image sensor. Left Conventional
CFA sensor. Right The layered Foveon X3 R� sensor.

Figure 5.3: Optical system.

5.2.2 Noise model

The image acquisition starts when the external light hits the optical system. This
latter is composed by an external lens, which filters infra-red wavelengths, an by
a grid of micro-lenses on the photodiode which guide the light through its photo-
site. These lenses produce geometric distortions and color aberrations. However,
these effects do not enter in the noise model. The incident light pass trough the
optical system and reaches the CFA, a filter which allows only one color to pass.
Although the CFA does not introduce any distortion, the CFA image requires an
additional color interpolation step, called demosaicing. Once filtered by the CFA,
the light beams reach the photo-detectors. Each photo-detector generates a current
proportional to the number of incident photons [HK94] following approximatively
the law in Eq. (5.1). The ideal response of the photo-detector is altered by several
disturbs which give a noisy response modeled as:

IN = (1 +K) · I +NDC +NI , (5.2)

where K, NDC and NI are random variables which represent, respectively, the
following noisy components [HK94]:
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1. photo response non-uniformity. The manufacturing process is subject
to small precision errors. These errors lead to small physical variations
which change the photosite response. Therefore, if the sensor is uniformly
illuminated, the charges stored in each photo-detector will be slightly
different. This non uniformity is called PRNU. The variation of charge with
respect to its nominal value I is modeled as a random variable K with zero
mean and variance σ

2
K

(equal for all photo-detectors);

2. dark current. The silicon thermal energy produces free electrons which
increase the photosite stored charge. This flux of free electrons is called dark
current. The name recall the fact that in dark condition a photo-detector
stores only electrons generated by thermal excitation.

3. photonic noise. The quantized nature of light leads to a certain degree of
uncertainty on the stored charge in each photo-detector. The number of elec-
trons actually received follows a Poisson distribution. The photonic noise is
then modeled as a random variable with zero mean and variance equal to the
ideal number of electrons that a photo-detector should receive (included the
dark current). This yields to a signal-dependent noise NI .

In order to obtain the RAW image, the sensor output is converted in tension by
the output amplifier and then is quantized by the A/D converter. These operations
introduce other disturbs [HK94], following the relation

D = A · IN +NA +NQ, (5.3)

where A is the amplifier gain, NA and NQ are random variables with zero mean
(independent from IN ) which represent, respectively, the amplification and quan-
tization noise.

By the way, the PRNU is constant in time, since it depends on the sensor phys-
ical properties. Therefore, K can be considered deterministic, hence the noise
model becomes

D = IA +K · IA + EDC� �� �
µ

+

N� �� �
NS +NT +NA +NQ� �� �

NG

(5.4)

where IA is the amplified value of the light intensity, EDC = A · E[NDC ] is the
expected value of the (amplified) dark current, NT = A·NDC−EDC is the thermal
noise and NS = A ·NI is the amplified photonic noise.

This model points out that the observed pixel D can be divided into a deter-
ministic component µ, linearly dependent on the scene luminance, and a random
component N with zero mean which account for the noise. This latter is the sum
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Figure 5.4: Properties of noise components. The pictures above are taken
from [HK94].

of a Poisson random variable NS and of a combination NG which can be mod-
eled as a Gaussian random variable [FTKE08]. Since NS and NG are statistical
independent the overall variance of the additive noise is σ2

N
= σ

2
S
+ σ

2
G

, where

σ
2
S = A

2 · σ2
I , with σ

2
I = (1 +K)I + E[NDC ] (5.5)

σ
2
G = σ

2
T + σ

2
A +

q
2

12
(5.6)

Equations (5.5) and (5.6) show that the additive noise N is signal-dependent, as
shown in Figure 5.4 (left). Moreover, Figure 5.4 (right) show that the overall noise
is dominated by K · I in region of strong intensity (I � 0), with a variance σ

2 =
I
2
σ
2
K

, while is dominated by the Gaussian noise NG in dark regions [HK94].

5.2.3 Parameters estimation

The parameters of the noise model can be found through a calibration proce-
dure [HK94]. Under the hypothesis that D is linearly dependent on IA, the cal-
ibration gives a good estimate of the dark current and of the PRNU. These can be
used to subtract the deterministic components of the noise (flat-fielding)

DC =
D − �EDC

1 + �K
≈ IA +

NS +NG

1 + �K
(5.7)

The new image DC is dominated by the photonic noise instead of K · I , while the
Gaussian noise still dominates dark regions. However, flat-fielding can be applied
only on RAW images, since D is linearly dependent on IA.

Flat-fielding is usually performed on astronomic images, where the PRNU is
remarkable due to the long exposition time. Digital cameras simply removes dark
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Figure 5.5: Linear noise model.

current [LFG06], which can be easily estimated capturing a completely dark frame.
The final model is

DC = D − �EDC = (1 +K) · IA� �� �
IK

+NS +NG� �� �
N

σ
2
N = a · IA + b (5.8)

where a, b ∈ R represent the degree of dependence between signal and noise.

5.2.4 Demosaicing

The acquisition process ends with the post-processing step. This first removes
the dark-frame. Then the RAW image is demosaiced in order to reconstruct the
image R, G and B channels. However, here we want to point out that demosaicing
introduces correlation into the noise model because of the interpolation between
neighboring pixels. Indeed let us consider the bilinear interpolation, the simplest
demosaicing approach. When using patches of white noise as input data for a
CFA sensor the PSD of the demosaiced noise is shown in Figure 5.6 [AGPP09],
resulting in a “colored”, i.e. correlated, noise. Since the red (or blue) data is
more subsampled, the demosaicing treats both color planes differently, explaining
the difference in PSD bandwidth. Figure 5.6 also shows that the noise energy is
concentrated at low frequencies. This explains the tendency to favor smooth color
patches in demosaiced images.

There exist a wide range of techniques for reconstructing the full color image
from mosaiced image data. However, since all these techniques perform interpola-
tion in some way, similar conclusion can be drawn for all demosaicing algorithms.

After demosaicing, color and gamma correction are usually performed [GN04,
LSK+08]. Finally, the image is compressed.

5.3 Adapting PCkNN to CFA images

The image acquisition process introduces a noise component, as discussed in Sec-
tion 5.2.2, which is very well approximated with an independent Gaussian stochas-
tic process. However, contrary to the classical additive white Gaussian noise model
with constant variance (used in Section 4.4 for comparison purposes), the variance
of the digital camera noise can be modeled as an affine function of the signal in-
tensity x:

σ
2(x) = γx+ δ. (5.9)
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Figure 5.6: PSD of the green channel (left) and a red/blue channel
(right) from the demosaiced white noise patch using bilinear demosaic-
ing [AGPP09].

Therefore a denoising step should be included in the image acquisition pipeline.
Moreover, most digital cameras acquire images using a single image sensor over-
laid with a color filter array (CFA) which produces images with a single red, blue,
or green component per pixel. The process of computing the missing 2 color com-
ponents at each pixel is called demosaicing. Denoising can be performed before or
after the demosaicing step. However, as explained in Section 5.2.4, demosaicing
introduces correlation among neighborhood pixels and hence correlates the noise.
The result is a “structured noise” which is not Gaussian and not independent any-
more. Removing this noise is a harder task since algorithms usually rely on a
hypothesis of independence. Therefore, we perform denoising before demosaic-
ing.

In this Section we will focus on two main adaptation of the PCkNN algorithm
presented in Chapter 4.

5.3.1 Intra-channel denoising

A naive and straightforward extension of PCkNN to color images is to treat the
color image as the superposition of grayscale images, each of them representing
the intensity in a color channel. We then applied the PCkNN algorithm to each
color channel of the raw image, i.e., before demosaicing as sketched in Figure 5.7.
Each channel acts as a down-sampled grey level image. Furthermore, we adapted
our denoising algorithm to the varying variance model by making σ

2
w in (4.21)

equal to γx̄+ δ, x̄ being the average patch intensity. After denoising the image has
been demosaiced.

We tested our algorithm on the 4416x3312-DxO Labs professional benchmark
image of Figure 5.8 which is taken with a Canon G10 at ISO 1600. In this kind
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Noisy
PCkNN

PCkNN

PCkNN

PCkNN

Demosaicing
Demosaiced

Denoised

Figure 5.7: Intra-channel denoising scheme. Each color channel of the
RAW image is denoised separately. The two Green of the Bayer grid are
tread separately as well.

of experiments, given the lack of the original noiseless image, performance as-
sessment is quite a challenging task. Furthermore, the comparison with other al-
gorithms make no sense, since they rely on a constant noise variance hypothesis.
However, a detailed and extensive comparison between PCkNN and the state-of-
the-art has been developed in Chapter 4.

We set for all experiments a patch radius of 4 and a search radius of 20. The
filtering parameter h follows the affine law of Eq.(5.9) with γ = 116.49 and
δ = 618483. Figures 5.9 to 5.13 show results on several images cropped out of the
DxO image. Again, the denoised images have a very natural appearance without
flattened regions. It is clear that strong noise reduction comes at the price, in gen-
eral, of some loss of details. PCkNN seems to offer a good compromise between
these contrasting needs.

However, PCkNN applied separately to each channel has a major drawback:
it exploits only intra-channel correlation discarding any inter-channel dependency.
This fact sometimes may cause a color mystification as shown in Figure 5.15 (left).
To avoid this drawback, we deal with all channels jointly as discussed in the next
section.

5.3.2 Inter-channel denoising

The processing presented in the previous Section treats each color channel inde-
pendently. However, this might no be the best choice for several reasons. First of
all, we process 4 down-sampled images and we do no consider the inter-channel
correlation. This sometimes causes an evident preponderance of a color w.r.t. the
others, with a next worsening of denoised image quality. In order to solve this
problem, we process the RAW image taking into account all the color information.
To do this, we have to modify the block-matching step (i.e. the k n.n. search).
Indeed, when we look for similar patches in the search window, we have to keep in
mind that each pixel carries an information on a specific color. Therefore, only a
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Figure 5.8: Professional benchmark image (Courtesy of DxO Labs) used for test.

subset of patches within the search window can be considered, in particular, those
which have a coherent neighborhood with the reference patch (see Figure 5.14).
The PCkNN algorithm is then modified as follows:

• search for the kNN among the coherent (PCA reduced) patches within the
search window;

• weights calculation as in Equation 4.21 but with the distance of the j-th
patch from the reference patch with no PCA applied;

• coherent aggregation: the aggregation step is modified according to the co-
herence using only coherent patches in the search window.

These changes improve the denoised image quality removing colors artifacts.
Such an enhancement is clearly visible in Figures 5.15 and 5.16 where the green
color artifacts around the eyes has been reduced.



74 CHAPTER 5. DIGITAL PHOTOGRAPHY

Figure 5.9: Professional benchmark image (Courtesy of DxO Labs).
RAW image (left) and denoised image (right).

Figure 5.10: Professional benchmark image (Courtesy of DxO Labs).
RAW image (left) and denoised image (right).
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Figure 5.11: Professional benchmark image (Courtesy of DxO Labs).
RAW image (left) and denoised image (right).

Figure 5.12: Professional benchmark image (Courtesy of DxO Labs).
RAW image (left) and denoised image (right).
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Figure 5.13: Comparison between RAW demosaiced imgages with no de-
noising (left) and with denoising (right). Particular of the image in Fig. 5.8.
(Courtesy of DxO Labs).
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Reference patch

COHERENT

Kind of patches

PATCH

Figure 5.14: Inter-channel denoising. The block matching step is modified
in order to catch only coherent patches within the search window.

Figure 5.15: Comparison between intra-channel (left) and coherent (right)
block matching.



78 CHAPTER 5. DIGITAL PHOTOGRAPHY

Figure 5.16: Comparison between intra-channel block-matching (left) and
coherent block-matching (right). Particular of the eyes. (Courtesy of DxO
Labs).
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Chapter 6

SAR despeckling

6.1 Introduction

Synthetic Aperture Radar (SAR) images are inherently affected by multiplicative
speckle noise, which is due to the coherent nature of the scattering phenomena.
Even though speckle carries itself information about the illuminated area, it de-
grades the appearance of images and affects the performance of scene analysis
tasks carried out by computer programs (e.g., segmentation and classification) or
even by human interpreters [OQ04]. To counter this problem, users resort often to
the multilook technique, which amounts to incoherently averaging a certain num-
ber (defined by the number of Looks) of independent images, thus reducing noise
intensity, but often at the cost of a clear loss in image resolution. Therefore, it
is certainly preferable to develop suitable filtering techniques, which reduce noise
significantly but, at the same time, preserve all the relevant scene features, such as
radiometric and textural information.

6.2 State of the art

6.2.1 Spatial domain techniques

Some of the early speckle reduction techniques, e.g. [AL84, YC86], use the so-
called homomorphic approach, taking the log of the data, so as to obtain a more
tractable additive model, and then applying some well-known method drawn from
the AWGN (additive white Gaussian Noise) denoising literature. Such a “lazy” ap-
proach has the undeniable merit of simplicity but turns out to be largely suboptimal
as it neglects some basic properties of speckle. In fact, the log-transformed speckle
is definitely non-Gaussian, except for the case of a large number of looks [AA76],
and has non-zero mean, in general, a bias to be corrected before any other process-
ing. More important, the logarithm changes radically the data dynamics, leading
to unavoidable radiometric distortions during the denoising process.

In the same period, more ambitious techniques are proposed [Lee80] [Lee81]
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[FSSH82] [KSSC85] [TLB88] [LTN90] which tackle despeckling in the original
domain (non log-transformed), as a statistical estimation problem, based on the
multiplicative speckle model. All such techniques operate in the spatial domain
with linear filters developed under a MMSE (minimum mean-square error) ap-
proach and simplifying the multiplicative noise model in various ways, e.g. through
its linear approximation [Lee80] or recasting it as a signal-dependent additive noise
model [KSSC85]. These early papers make already clear that some form of local
adaptivity is necessary to account for the non-stationarity of the image: the intense
smoothing required to reduce speckle in homogeneous areas cannot be applied in
edge and textured regions lest important structural information gets lost. Contex-
tual information is hence taken into account, in various ways [Lee81] [TLB88]
[LTN90] to adapt the filters to local image behavior.

In [KSSC87] [LNTH90] [NLT91] the simple MMSE estimation is replaced by
the more sophisticated and promising Bayesian MAP approach which, however,
brings with it the problem of providing an accurate statistical description of the
SAR image. Several competing models have been proposed in the literature, e.g.,
the Gamma distribution considered in [LNTH90] which lead to the GMAP algo-
rithm. As a matter of fact, this is a challenging and still open problem, and no
parametric model, to date, seems able to account for the variety of situations en-
countered in SAR images [Gao10]. In addition, parameter estimation is by itself a
tricky problem, being especially sensitive to the volume of available data (think of
local estimation windows), with all inaccuracies translating in artifacts and artifi-
cial biases in the reconstructed scene [Tou02].

6.2.2 Wavelet based techniques

The diffusion of wavelets in the signal processing community, in the early 90’s,
opens the way to a new generation of despeckling techniques operating in the
transform domain. Indeed, wavelet shrinkage image denoising, based on AWGN
hypothesis, has been one of the first and most successful applications of this trans-
form.Wavelet shrinkage can be readily applied to SAR despeckling after an homo-
morphic transformation which leads to an additive (though non-Gaussian) noise
model. This approach is followed in [HJM+94], and again in [GJ97], where
both hard and soft thresholding are tested. Despite the empirical selection of the
threshold and the intrinsic limits of the homomorphic approach experiments on
both synthetic and real SAR images show already a clear performance gain w.r.t.
spatial-domain adaptive filters, especially in the absence of multilook. Further
improvements are obtained by optimizing the shrinkage parameter through a sta-
tistical Bayesian approach. Again, if a MAP approach is chosen, an appropriate
model of the log-transformed reflectance in the wavelet domain is needed, like the
alpha-stable distribution proposed in [ATB03], the normal inverse Gaussian used
in [SE04], or the simpler Cauchy distribution adopted in [BAS07] which leads
to the derivation of both a MAP and a MMAE (minimum mean absolute error)
Bayesian estimators, the latter proving superior in most experiments.
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In order to overcome the drawbacks of the homomorphic approach several
researchers resort to the additive signal-dependent speckle model in the wavelet
domain. In [HLF02], inspired by [OE99], a low complexity MMSE estimation
procedure is proposed to derive the shrinkage factor for each wavelet coefficient.
In [FA02] a multiscale local coefficient of variation is defined to handle non-
stationarities, while [DPCL04] proposes a modified ratio edge detector to the same
end. Also in this setting, of course, a MAP estimation approach can be considered
as in [SGJ01] where a Gamma distribution is used for the underlying radar reflec-
tivity, or [FTA06] where a generalized Gaussian with spatially-varying parameters
is considered. This latter work is further improved in [FTA08] where wavelet co-
efficients are classified based on their level of heterogeneity, so as to incorporate
this information in the filtering procedure.

Although hardly accountable in such a short survey, all the wavelet-domain
techniques, just as it happened for spatial-domain techniques, try to embody some
forms of spatial adaptivity in the filtering process in order to better preserve im-
age boundaries and textures. Therefore, the suitable use of contextual information
keeps being a topic of central importance.

6.2.3 Non-local techniques

Given these premises, the “non-local” approach, recently proposed in [BCJ05] for
AWGN denoising, looks like a potential breakthrough. The basic idea is to take
advantage of the self-similarity commonly present in natural as well as SAR im-
ages: certain image patches tend to repeat over and over, with minor modifica-
tions, throughout the scene, a circumstance to be exploited in view of the boundary
preservation goal. In the Non-Local Means (NLM) algorithm [BCJ05] filtering
is carried out, as usual, through the weighted mean of all the pixels in a certain
neighborhood; the weight associated with each given pixel, however, depends not
on its geometrical distance from the target pixel but on its similarity with it, mea-
sured by the mean square error between the patches surrounding the selected pixel
and the target. This principle has inspired several extensions, among which the
evolution towards a multipoint rather than pointwise filtering, as proposed in the
Block-Matching 3D (BM3D) algorithm [DFKE07b] where the non-local approach
is combined with wavelet shrinkage and Wiener filtering in a two-step process.
At present, BM3D can be arguably [KFEA10] considered the state of the art for
AWGN denoising.

The NLM algorithm has been readily extended to SAR despeckling [CHKB08,
HJL09, CLF09] with suitable modifications aimed at taking into account the prob-
lem peculiarities. The Probabilistic Patch-Based (PPB) algorithm [CLF09] is es-
pecially interesting, both for its theoretical contribution, with the development of a
similarity measure well suited to SAR images, and for the excellent performance
on test images.

Based on the conceptual path described above, and the related experimental ev-
idence, in this chapter we go one step further and propose a SAR-oriented version
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of BM3D, with the obvious goal of replicating the competitive advantage it enjoys
in the AWGN context. By taking into account the peculiar features of SAR images
in the original domain we derive a new despeckling algorithm, called SAR-BM3D,
which exhibits an objective performance comparable or superior to all competing
techniques on simulated speckled images, and guarantees a very good subjective
quality on actual SAR images.

6.3 The BM3D algorithm and its SAR-oriented version

The despeckling algorithm we propose here can be seen as a SAR-oriented version
of BM3D, since we use the same algorithmic structure as the original BM3D but
modify most of the individual processing steps in order to take into account the
peculiarities of SAR data. Therefore, ideas and tools come from both the AWGN
denoising and the SAR despeckling fields. In the following of this Section, we
justify and briefly outline the major modifications that lead to its SAR-oriented
version, leaving for the next Section all detailed developments.

BM3D was developed in AWGN hypotheses, and using it with SAR images,
characterized by multiplicative noise, makes little or non sense. Of course, one can
always resort to the homomorphic approach, converting the multiplicative noise
to additive, and using BM3D on the transformed data, before going back to the
original domain. Indeed, this simple approach provides sometimes surprisingly
good results. Nonetheless, the log-transform modifies the dynamics of the data,
introducing unwanted artifacts, and the noise remains markedly non-Gaussian (es-
pecially for the single-look case) with a sure loss of performance. Therefore, in
this work we decided to use the BM3D filtering structure because of its compelling
rationale, but also to adapt it to the specific characteristics of the data, modifying
the various processing steps so as to take into account the actual statistics of SAR
noise. To this end we introduce two major modifications.

First of all, we adapt the criterion used to collect blocks in the 3D groups to the
actual data statistics. For each reference block, BM3D looks (in a suitable search
area) for those blocks which are closest to the reference in terms of Euclidean dis-
tance. In the AWGN setting this makes perfect sense because a smaller Euclidean
distance corresponds to a higher likelihood that the two signal blocks (without
noise) be equal, which is what the collaborative filtering needs. However, once the
noise statistics change, as happens with SAR images, the Euclidean distance loses
its significance and we need a different ad hoc similarity measure in order to keep
identifying the signal blocks that are more likely to be equal to the reference one.

Our second modification stems from the same line of reasoning and concerns
the collaborative filtering itself. In fact, hard thresholding is a reasonable choice
in AWGN, since it is the minimax estimator of the uncorrupted group [Don95],
but this is no longer true with multiplicative noise where a more suitable wavelet
shrinkage strategy can be devised. In this work, in particular, we adopt the lo-
cal linear minimum mean-square error (LLMMSE) solution, discussed in depth in
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next Section. Together with this “compelling” modification, we introduce a further
change consisting in the use of the undecimated WT (UDWT), aimed at obtaining
more reliable estimates in the first step, especially needed in the presence of such
intense noise. UDWT is not without drawbacks: it is computationally intensive,
gives rise to correlated coefficients, and is not unitary, thus uncoupling optimality
in the original and transform domain. Nonetheless, it has been shown experimen-
tally [LGO96], and justified theoretically [Ela06], to provide better results than
nonredundant WT, and has already been successfully applied to LLMMSE shrink-
age in the case of speckle [FA02, ZBW05].

6.4 Proposed SAR-oriented modifications in detail

In this section we analyze in some depth the modifications adopted in BM3D in
order to deal effectively with speckled SAR images. Under the hypothesis of fully
developed speckle, the observed backscattered signal, z(n)1, can be expressed as

z(n) = x(n)u(n) (6.1)

where x(n) is the noise-free reflectance and u(n) the speckle, characterized by a
unitary mean and independent of x. Equation (6.1) can be rewritten in terms of
signal plus signal-dependent additive noise v(n),

z(n) = x(n) + [u(n)− 1]x(n) = x(n) + u
�(n)x(n) = x(n) + v(n), (6.2)

It is worth noting that, due to the independence of x and u, and the fact that u� has
zero mean, the additive noise v is zero-mean and appears to be uncorrelated with x.
In the following, starting from the above model, and with the further assumptions
that both signal and noise are spatially uncorrelated, we will first introduce the new
similarity measure, and then the LLMMSE shrinkage in the transform domain for
the two steps of the algorithm.

6.4.1 Block similarity measure

The non-local approach can be regarded as an attempt (limited by complexity and
data scarcity) to carry out truly statistic, as opposed to spatial, averages. Assuming
one is able to collect an arbitrary number of blocks with the same signal component
and differing only in the noise realization, one can easily remove most noise (all
of it in the limit) with simple filtering operations. Therefore, the block matching
phase of BM3D aims at locating the blocks most likely to have the same signal
component as the reference which, in AWGN hypotheses, coincide with those hav-
ing the smallest Euclidean distance from the reference in the data space.

Outside of the AWGN realm, the Euclidean distance is not optimal anymore,
but one can follow the same probabilistic principle to devise a new similarity mea-
sure based on the actual noise distribution. This is done for example in [ML07]

1For notational compactness we use a single argument to indicate spatial location.
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and in [CLF09] where a function of the intensity fluctuations in the image is used,
which represents the likelihood that two intensity observations correspond to the
same noise-free scene radiance. Mathematically, given two observed values z(s)
and z(t), it results

p[z(s), z(t)|x(s) = x(t)] =

�

D

p[z(s)|x(s) = α] p[z(t)|x(t) = α] p(α) dα (6.3)

where x(s) and x(t) are the corresponding values of the noise-free signal, defined
over the domain D, p(·) indicates a probability density function, and we have as-
sumed z(s) and z(t) to be conditionally independent given x. This expression
further simplifies to

p[z(s), z(t)|x(s) = x(t)] ∝
�

D

p[z(s)|x(s) = α] p[z(t)|x(t) = α] dα (6.4)

if we assume, lacking any prior knowledge, p(·) to be uniform over D.
Considering that for an L-look amplitude SAR image speckle can be mod-

eled [OQ04] [XPU02] by a square-root gamma distribution with order L

p(z|x) = 2

Γ(L)

�
L

x

�L

z
2L−1 exp

�
−L

z
2

x

�
z ≥ 0 (6.5)

equation (6.4) reads as

p[z(s), z(t)|x(s) = x(t)] ∝
� ∞

0

4L2L

Γ2(L)α2L
[z(s)z(t)]2L−1 exp

�
−L

α

�
z
2(s) + z

2(t)
��

dα

(6.6)
with the integral equal to [CLF09],

4L
Γ (2L− 1)

Γ2(L)

�
z(s)z(t)

z2(s) + z2(t)

�2L−1

(6.7)

To translate this result into a manageable block similarity measure we must rewrite
equation (6.3) with vectors drawn from the blocks Bs and Bt in place of scalars,
and assume again the conditional independency of the observed values given the
noise-free signal. Then we define the block similarity measure as

d[z(Bs), z(Bt)] = − log

�
�

k

p[z(s+ k), z(t+ k)|x(s+ k) = x(t+ k)]

�

= − log

�
�

k

4L
Γ(2L− 1)

Γ2(L)

�
z(s+ k)z(t+ k)

z2(s+ k) + z2(t+ k)

�2L−1
�

(6.8)

where z(Bs) is the vector of observed values drawn from block Bs, s is the refer-
ence pixel of the block and k is used to scan the whole block. Finally, discarding
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the constant term, the block similarity measure reduces to [CLF09]

d1[z(Bs), z(Bt)] = (2L− 1)
�

k

log

�
z(s+ k)

z(t+ k)
+

z(t+ k)

z(s+ k)

�
(6.9)

where the subscript 1 indicates that this measure is used in the first step.
In the second step, in fact, the similarity measure must take into account the

additional information provided by the first step, that is a coarse estimate of the
noiseless signal x̂. Therefore, following [CLF09], where this approach is used for
iterative denoising in a Bayesian framework, we define the similarity measure in
the second step as:

d2[z(Bs), z(Bt)] =
�

k

�
(2L− 1) log

�
z(s+ k)

z(t+ k)
+

z(t+ k)

z(s+ k)

�
+ L

|x̂(s+ k)− x̂(t+ k)|2

x̂(s+ k)x̂(t+ k)

�

(6.10)

6.4.2 Group shrinkage

The hard thresholding used by BM3D in the first step is a reasonable choice in the
AWGN context, but not anymore in the presence of SAR speckle. Therefore, we
address the shrinkage problem in the framework of statistical estimation, with the
noise model of (6.2), and look for the optimum linear estimator in the minimum
MSE sense. It is worth emphasizing that WT and shrinkage take place on each 3D
group individually, and hence, in this subsection, the group will be our basic data
unit. After the linear wavelet transform, we obtain

Z = X+V (6.11)

where we have used capital letters for the transformed data, and boldface to indicate
the vectors formed by all the coefficients of the group. Under the constraint of
linearity, the optimal MMSE estimator is [Kay93]

X̂ = E[X] + (CXZ)(CZ)
−1(Z− E[Z]) (6.12)

where CZ is the covariance matrix of Z, and CXZ the cross-covariance matrix of
X and Z. Since signal and noise are uncorrelated in the spatial domain they re-
main uncorrelated also after the linear transform, with noise still zero-mean, there-
fore (6.12) simplifies to [Kay93]

X̂ = E[X] + (CX)(CX +CV )
−1(Z− E[Z]) (6.13)

If we further assume that the covariance matrices are diagonal, the estimation acts
separately on each coefficient of the group

X̂(i) = E[X(i)] +
σ
2
X
(i)

σ
2
X
(i) + σ

2
V
(i)

(Z(i)− E[Z(i)]) (6.14)
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and we obtain a local LMMSE filter, which is indeed an adaptive Wiener filter in
the transform domain [HLF02] [OE99].

The hypothesis that both signal and noise coefficients are uncorrelated is quite
reasonable when a wavelet transform is used, since it tends to decorrelate the data,
and in fact the local Wiener filter has been used extensively in the AWGN con-
text [GSB97] [MKR99] [JFWJ03] [Kaz03] providing a performance typically su-
perior to that of classical thresholding. Of course, such hypothesis does not hold
anymore with the UDWT, which is non-orthogonal and introduces some redun-
dancy among the coefficients. Nonetheless, even in this case such an assumption is
typically convenient, as the cost for the imperfect modeling is more than compen-
sated by the opportunity to use a local estimator and by the significant reduction in
complexity.

Since the shrinkage is applied only to the coefficients of the detail subbands,
which can be reasonably considered to have zero mean, (6.14) becomes eventually

X̂(i) =
E[X2(i)]

E[X2(i)] + E[V 2(i)]
Z(i) (6.15)

or equivalently

X̂(i) =
E[Z2(i)]− E[V 2(i)]

E[Z2(i)]
Z(i) (6.16)

The problem now comes down to the estimation of the second order moments in the
above formulas. In the literature, working with large images, these quantities are
typically computed by means of sliding-window averages running on the various
detail subbands of the wavelet transform. In our case, however, we deal with rather
small groups (e.g., 8× 8× 16 coefficients) which, after an ordinary WT, would be
decomposed in tiny detail subbands, making any such estimate totally unreliable.
This is why we turn to UDWT for the first shrinkage step, as it provides us with
subbands large enough to carry out reliable estimates.

First step

to carry out the estimates required in (6.16), we assume that the second order statis-
tics of the observed signal, given the limited size of the 3D group, are constant over
the whole group in the spatial domain, and over each subband in the transform do-
main. Therefore, we have

E[Z2(i)] = �Z2�SB(i) =
1

|SB(i)|
�

j∈SB(i)

Z
2(j) (6.17)

where �·�SB(i) indicates average over the subband comprising the i-th coefficient.
As for the noise, this problem was addressed in [FA02] with reference to the

UDWT case, obtaining

E[V 2(i)] =
σ
2
u

(1 + σ2
u)

�

k

h
2(k)E[z2(i− k)] (6.18)
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where h is the subband equivalent filter, σ
2
u a known parameter depending on

speckle format and number of looks [XPU02], and k spans a 7 × 7 local window.
Adapting the formula to our case we readily obtain

E[V 2(i)] =
σ
2
u

(1 + σ2
u)
�z2�G (6.19)

where �·�G indicates the average over the whole group. It is worth observing that
the increase in complexity due to the use of an undecimated transform is compen-
sated by the use of subband-wise and group-wise, as opposed to sliding-window,
averages.

Eventually we have

X̂1(i) = max



0,
�Z2�SB(i) −

σ
2
u

(1+σ2
u)
�z2�G

�Z2�SB(i)



Z(i) (6.20)

where the subscript indicates first step, and the max operator accounts for a possi-
ble sign inversion due to estimation errors.

Second step

the collaborative filtering in the second step has also a LLMMSE nature with the
major difference that now an estimate of the noiseless signal coefficient is al-
ready available. As a first consequence, we can use simpler non redundant trans-
forms, thus reducing complexity. In addition, with reference to (6.15), we estimate
E[X2(i)] simply as X̂2

1 (i) where X̂1(i) is the coefficient computed from the par-
tially denoised signal x̂1(n) provided by the first step. This amounts to using the
empirical Wiener filtering, proposed in [GSB97] for the AWGN context and also
used in the original BM3D [DFKE07b]. Finally, to estimate E[V 2(i)] we assume
it is constant over the group, and exploit again the first-step estimate X̂

2
1 (i) car-

rying out an average over the whole group of the difference between the observed
coefficient and its noiseless estimate as

E[V 2(i)] = �V 2�G =
1

|G|
�

i∈G
[Z(i)− X̂1(i)]

2 (6.21)

In conclusion the second-step estimate reads

X̂2(i) =
X̂

2
1 (i)

X̂
2
1 (i) + �V 2�G

Z(i) (6.22)

6.4.3 Aggregation

To conclude the description of our algorithm let us focus on the aggregation phase.
Since a given pixel can be included in more than one group, and hence estimated
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several times, each time with a possibly different value, such values must be av-
eraged using suitable weights. We follow here the approach of [DFKE07b] where
the various estimates are weighted according to their presumed reliability, related
in turn to the average noise power of the group after shrinkage. In formulas, the
weight wG associated with the estimate provided from group G is

wG ∝ 1

�V 2�G�S2(i)�G
(6.23)

where S(i) is the shrinkage factor for the i-th coefficient of the group. The same
formula is used in both steps, while the expressions for �V 2�G and for the shrinkage
factors are obviously different.

6.5 Experimental results

In SAR image denoising, given the lack of the original noiseless signal, perfor-
mance assessment is quite a challenging task. Different indicators have been pro-
posed to measure smoothness of smooth areas as well as sharpness of edges and de-
tails, but they are largely empirical, and provide little insight about how to balance
image cleanness and preservation of diagnostic information. Therefore, follow-
ing an approach widespread in the literature [BAS07], [FA02], [FTA06], [CLF09],
we start with experiments carried out on optical images corrupted by simulated
speckle, obtaining objective performance figures which allow a sound comparison
among different denoising algorithms. Then, in the last part of the Section, we
discuss experiments concerning actual SAR images.

6.5.1 Gold standards and parameter setting

We compare the proposed technique with three state-of-the-art despeckling al-
gorithms: the spatially adaptive wavelet homomorphic shrinkage algorithm
(SA-WBMMAE) [BAS07], the wavelet-based MAP filtering algorithm (MAP-
S) [FTA08], and the Probabilistic Patch Based (PPB) nonlocal filter [CLF09], all
briefly described in Section I. Such techniques have been chosen because of their
competitive performance and (not least) for the availability of software code to
run the experiments. Experimental results have in fact been obtained by using
the Authors’ own code available online, or run by the Authors themselves on our
test images. We also include in the comparison two state-of-the-art AWGN tech-
niques used in a homomorphic setting, the AWGN versions of PPB (H-PPB) and
BM3D (H-BM3D), which are especially interesting for images with a large number
of looks. Finally, we consider also the well-known Frost filter [FSSH82] which,
although pretty aged, is a de-facto standard, included in many image processing
software packages, and used routinely by photo-interpreters of military and civil
space agencies.

For all these algorithms, if not stated otherwise, the free parameters are set as
suggested in the reference papers. As for the proposed SAR-BM3D algorithm,
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Lena Boat
L=1 L=2 L=4 L=16 L=1 L=2 L=4 L=16

Noisy 12.11 14.90 17.84 23.79 11.76 14.52 17.47 23.45
Frost 19.72 23.06 26.03 30.48 19.18 22.21 24.81 28.08
SA-WBMMAE 25.10 27.33 29.04 32.47 23.36 25.11 26.76 29.98
MAP-S 26.40 28.08 29.72 33.16 23.93 25.40 27.06 30.51
PPB 26.68 28.45 29.88 32.70 23.97 25.51 26.95 29.83
SAR-BM3D 27.91 29.61 31.22 34.18 25.49 26.86 28.41 31.45
H-PPB 25.31 27.85 29.75 32.82 23.40 25.37 26.98 29.98
H-BM3D 26.46 29.21 31.26 34.52 24.49 26.67 28.56 31.76

Table 6.1: PSNR results for Lena and Boat.

in the first step we use a Daubechies-8 UDWT transform with a maximum-level
decomposition, and fixed groups of dimension 8× 8× 16. Just like in BM3D, the
computational burden is reduced by using a relatively small search area, 39 × 39,
and by selecting reference blocks only on every third row and column. Similar
choices apply to the second step except for the transform, which is a spatial DCT
followed by a Haar DWT along the blocks with a maximum-level decomposition,
and for the group dimensions that grow to 8× 8× 32.

6.5.2 Results with simulated speckle

In order to obtain reliable results, we considered a variety of sources, including
some general-purpose images commonly used in the AWGN denoising literature,
some aerial photographs which better resemble SAR images in terms of scene
structure, and a synthetic image, first introduced by Lee in [LJDaA94], in order
to test structure preservation. SAR-like images are obtained by multiplying opti-
cal images by simulated white speckle in amplitude format (square root intensity
model) [XPU02] with pdf’s corresponding to the cases of 1, 2, 4 and 16 looks.

In Tab. 6.1 we report results for twogeneral-purpose 512×512-pixel images,
Lena and Boat (Fig. 6.1), widely used as benchmark in the denoising commu-
nity, for L=1, 2, 4, and 16 looks. The best PSNR for each case is put in boldface
for the sake of clarity. Although the Frost filter does already a good job, with
an improvement of several dBs w.r.t. the noisy image, more sophisticated tech-
niques prove definitely superior, especially for the most critical case of L = 1
(no multilook), where an additional gain of 6-8 dB is achieved. SAR-BM3D pro-
vides consistently the best performance, gaining from 1 to 1.5 dB w.r.t. PPB which
looks as the second best. The only exception to this rule is represented by the ho-
momorphic version of BM3D (H-BM3D) which, for large L, is slightly superior
even to the proposed dedicated technique. As a matter of fact, the two algorithms
based on the homomorphic approach exhibit quite a similar behavior, becoming
more and more competitive with increasing L. This is not surprising, however,
since the noise in the log image tends to become Gaussian as L increases, in which
case a general-purpose AWGN denoising algorithm in the homomorphic setting
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(a) Lena (b) Boat (c) Napoli

Figure 6.1: Original images used in the experiments.

L=1 L=2 L=4 L=16
Noisy 14.28 17.05 19.99 25.98
Frost 20.81 23.08 24.64 26.03
SA-WBMMAE 22.05 23.41 24.78 27.74
MAP-S 22.09 23.45 25.03 29.11
PPB 21.33 22.58 24.38 28.17
SAR-BM3D 23.57 25.02 26.64 30.14
H-PPB 19.63 22.09 24.50 28.50
H-BM3D 22.89 24.68 26.36 29.98

Table 6.2: PSNR results for Napoli.

becomes a perfectly sensible choice. In the absence of multilook, instead, the pro-
posed SAR-dedicated algorithm provides a clear advantage over the homomorphic
approach. Fig. 6.2 shows the zoom of the denoised images provided by all algo-
rithms for Lena with L = 1. It is clear that strong noise reduction comes at the
price, in general, of some loss of details, most notable in the PPB image. SAR-
BM3D seems to offer the best compromise between these contrasting needs.

Tab. 6.2 gives results for a 512×512-pixel section of an aerial photo showing a
prevalently urban scene in the city of Naples (Italy) (Fig. 6.1). The general behav-
ior of the PSNR is quite similar to that of the previous experiments, except for the
gap between SAR-BM3D and the reference techniques which grows slightly larger.
It is worth taking a closer look, instead, at the zoom of denoised images shown in
Fig. 6.3. Here, given the wealth of fine details in the original, the smoothing pro-
vided by some filtering techniques is particularly annoying, with many individual
objects, both cars and boats, merged together or even lost in the background. SAR-
BM3D instead, and to a lesser extend H-BM3D and PPB (with a modified setting
proposed by the Authors) provide an acceptable balance between smoothing and
detail preservation.

Tab. 6.3 finally presents results for the synthetic 256×256-pixel Target image,
reported for the first time in [LJDaA94], which contains points and strips of in-
creasing dimensions. The point targets have size of 1×1, 3×3, and 5×5 pixels,
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(a) Noisy image (b) Frost (c) SA-WBMMAE

(d) MAP-S (e) Original image (f) PPB

(g) H-PPB (h) SAR-BM3D (i) H-BM3D

Figure 6.2: Zoom of filtered images with the various techniques for Lena
corrupted by one-look speckle.

while the strip width goes from 1 to 13 pixels in 2-pixel increments. All target pix-
els have value 120, while the background pixels have value 60. In terms of PSNR,
the most significant difference w.r.t. previous experiments is the larger gain of the
BM3D-based techniques over the others. This is probably due to the block-wise
processing used in BM3D, which allows to treat coherently neighboring pixels.
Filtered images are shown in Fig. 6.4. To test feature preservation, we decided
to process them with a simple detector (a gaussian filter followed by a threshold
operator), declaring the detection of a target whenever an above-threshold region
superimposed the target. Results, in terms of number of detected features, are re-



94 CHAPTER 6. SAR DESPECKLING

(a) Noisy image (b) Frost (c) SA-WBMMAE

(d) MAP-S (e) Original image (f) PPB

(g) H-PPB (h) SAR-BM3D (i) H-BM3D

Figure 6.3: Zoom of filtered images with the various techniques for Napoli
corrupted by one-look speckle.

ported again in Tab. 6.3, and confirm what visual inspection also suggests, namely,
that all filters behave about equally well on point targets (lost) and bars (saved),
but only SAR-BM3D and Frost save all 5×5 and most 3×3 targets, with the latter
generating however an inordinate amount of false alarms (F.A.).

6.5.3 Results with actual SAR images

For this set of experiments we considered five single-look and one 6-look
TerraSAR-X images in amplitude format taken over Rosenheim (Germany) and



6.5. EXPERIMENTAL RESULTS 95

L=1 L=2 L=4 L=16 bars 5×5 3×3 1×1 F.A.
Noisy 17.66 20.45 23.41 29.39 – – – – –
Frost 24.78 27.62 29.85 32.23 7 7 7 2 ∼ 100
SA-WBMMAE 28.02 29.78 31.28 35.17 6 7 1 0 ∼ 10
MAP-S 28.84 30.28 31.98 36.91 7 7 5 0 ∼ 10
PPB 29.78 32.56 35.46 40.70 6 5 0 0 0
SAR-BM3D 31.93 35.80 39.80 45.75 6 7 5 0 0
H-PPB 27.71 31.33 34.57 40.16 5 4 0 0 0
H-BM3D 30.45 34.76 38.73 45.05 6 5 2 0 ∼ 10

Table 6.3: PSNR and detection results in terms of number of identified
features for Target.

Toronto. Fig. 6.6 shows 512×512-pixel sections drawn from such images covering
heterogeneous sceneries: urban areas, fields, woods, a lake. For these images we
computed the ENL (Equivalent Number of Looks), a standard parameter widely
used in the remote sensing community which measures the speckle reduction in
homogeneous areas. Once selected an apparently homogeneous region in the im-
age, like those in the red boxes in Fig. 6.6, the ENL is computed as

ENL = µ
2
x/σ

2
x (6.24)

with µ
2
x the average intensity of the selected area and σ

2
x its variance. Larger ENL

values indicate stronger speckle rejection and, consequently, an improved ability to
tell apart different gray levels. Tab. 6.4 reports the ENL values for the proposed and
reference algorithms (we discard PPB and BM3D in the homomorphic context, by
now). Results are quite consistent, indicating PPB2 by far as the technique with the
strongest speckle rejection ability, followed by MAP-S, SAR-BM3D and the oth-
ers. On the other hand, this is immediately obvious by visual inspection of results,
like those for the Rosen3 image, whose filtered versions are shown in Fig. 6.7. The
PPB image looks more pleasant than the others and is probably more helpful to
gain a quick insight of the scene. On the downside, it presents widespread artifacts
resembling watercolor strokes but, with neither the noiseless image nor an expert
interpreter, it is difficult to decide whether this implies any loss of details. Some
help comes from the analysis of ratio images obtained, as proposed in [OQ04], as
the pointwise ratio between the SAR original z and denoised x̂ images

R = z/x̂ (6.25)

Given a perfect denoising, that is x̂ = x, the ratio image should contain only
speckle. On the contrary, the presence of geometric structures or details correlated
to the original image indicates that the algorithm has removed not only noise but

2In the case L = 6 (low-resolution images) the parameter setting is the same used for Naples as
indicated by the authors.
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(a) Noisy image (b) Frost (c) SA-WBMMAE

(d) MAP-S (e) Original image (h) PPB

(g) H-PPB (f) SAR-BM3D (i) H-BM3D

Figure 6.4: Filtered images with the various techniques for target.

also some information of interest. Fig. 6.8 shows the enhanced ratio images corre-
sponding to the denoised images of Fig. 6.7. The Frost ratio image presents visible
traces of the man-made structures, denouncing an unwanted smoothing of sharp
boundaries. Similar traces, although weaker, are also present for SA-WBMMAE
and MAP-S. The PPB ratio image, differently from SAR-BM3D, exhibits different
patterns depending on the different areas of the scene, though not marked by linear
structures, showing again a dependence on the original SAR image.
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(a) Noisy image (b) Frost (c) SA-WBMMAE

(d) MAP-S (e) Original image (h) PPB

(g) H-PPB (f) SAR-BM3D (i) H-BM3D

Figure 6.5: False alarms (FA) images with the various techniques for target.

6.6 Conclusion and future work

In this chapter we have proposed a novel and very promising algorithm for SAR
image despeckling. We have drawn concepts and tools from the non-local filtering
approach, adapting them to the specificities of SAR imagery. Major innovations re-
gard the choice of the similarity measure, which takes into account the probabilistic
noise distribution of speckle, and the wavelet shrinkage in the 3D domain, which
is derived from the additive signal-dependent model following a linear minimum-
MSE estimation approach.

Results on simulated speckled images are quite satisfactory, with a consistent
PSNR gain of 1-2 dB over the best reference algorithms to date. Similar improve-
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(a) Rosen1 (b) Rosen2 (c) Rosen3

(d) Rosen4 (e) Toronto, L = 1 (f) Toronto, L = 6

Figure 6.6: Test SAR-X images ( c�Infoterra GmbH) with selected areas
for ENL computation (white rectangle).
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Rosen1 Rosen2 Rosen3 Rosen4 Toronto L1 Toronto L6
Noisy 0.95 0.98 0.90 0.94 0.91 7.43
Frost 3.84 4.08 3.20 4.03 3.61 12.42
SA-WBMMAE 3.08 3.05 2.36 2.29 2.79 9.63
MAP-S 14.55 18.56 5.73 18.56 6.70 12.86
PPB 43.01 47.04 19.79 51.24 66.59 15.35
SAR-BM3D 6.75 8.03 4.84 7.78 7.76 11.99

Table 6.4: ENL for real SAR images.

(a) Original SAR image (b) Frost (c) SA-WBMMAE

(d) MAP-S (e) PPB (f) SAR-BM3D

Figure 6.7: Filtered images with the various techniques for Rosen3.

ments are observed in a simple automatic detection task on a synthetic image. Ex-
periments on actual SAR images are likewise encouraging, as the proposed tech-
nique seems to have a better capacity to preserve relevant details while smoothing
homogeneous areas.

There are several aspects of the proposed algorithm that can be improved.
In particular, the speckle statistics of actual SAR images, especially at high-
resolution, often deviate from the simplified model used in this work, as well as
in most of the literature. Adapting the algorithm to the case of correlated speckle
will be certainly the object of future work.

Another sore point is the lack of objective quality measure for SAR images
which weakens all experimental analyses. We are therefore set to carry out a more
thorough and reliable analysis of SAR despeckling algorithms, based on ad hoc
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(a) Original SAR image (b) Frost (c) SA-WBMMAE

(d) MAP-S (e) PPB (f) SAR-BM3D

Figure 6.8: A zoom of enhanced ratio between the noisy and denoised
images for the various techniques.
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simulated SAR images and indicators, as well as on the measurable performance
of algorithms and human interpreters on a large set of denoised images.





Chapter 7

Digital Image Inpainting

7.1 Introduction

Image inpainting is an increasingly popular area of image restoration research.
The goal of inpainting is to reconstruct missing regions within an image in such
a way that it is visually plausible to an observer. The application field of such a
technique moves from the restoration of damaged paintings and/or photographs to
the removal/replacement of selected objects.

The origins of inpainting date back to many centuries ago. Indeed, medieval
works began to be restored since the beginning of the Renaissance, and the motiva-
tions that drove the restoration were manifold, ranging from simple reporting to the
splendor of old paintings (Figure 7.1), the frescoes, or more generally any work, to
repair or fill damaged areas in a way which does not become aware of handling an
observer unaware of the features of the original (or deteriorated) version.

With the advent of photography, the need to adjust an image in a manner not
detectable spread naturally from paintings to photos, the objectives of the restora-
tion itself, such as the elimination of deterioration due to the time (e.g. staining) or
poor conservation (e.g. cracks or burns), joined other objectives, such as the elim-
ination of entire objects or people in the photo. This capability has often made of

Figure 7.1: The Last Supper (Italian: Il Cenacolo or L’Ultima Cena),
Leonardo Da Vinci, 15th century.
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Figure 7.2: An early example of inpainting. From “The commissar van-
ishes”, D. King, 1997.

inpainting a useful technique for purposes of forgery also politically motivated: for
example, Stalin used it to remove from the documents evidence of political figures
become awkward (see Figure 7.2).

Pictures often capture special moments in the life of an individual, or depict
important people to whom one was particularly attached. The photo itself, for
decades, was the only way to preserve these memories imprinted on some sup-
port. Therefore, it is clear how great is the need to keep them in the best way and
always in good conditions. But if time and wear had already made their contribu-
tion in the deterioration, here comes the need for a technique to restore these old
photographs (Figure 7.3).

The advent of digital photography brought a great improvement to the conser-
vation of photographs. In fact, they are no longer subject to the ravages of time
and bad storage. It’s in digital photography that inpainting has a large scope: from
the restoration of old photos digitized, often characterized by “old” faults to digital
photo retouching, such as the adjustment of the famous ”Red Eye”, the elimination
of overlapping captions and text to images (Figure 7.4), e.g., the date that digital
cameras often imprint on pictures.

The inpainting, going beyond the simple need of editing, is also used in the
transmission of compressed images [RSB03]. In fact, for example, in the trans-
mission of images in JPEG format, it can happen that not all blocks containing
information are transmitted correctly, and then there is the need to reconstruct the
lost block, or you can choose to not send all blocks for higher transmission rates,
downstream and reconstruct the missing blocks, again through inpainting tech-
niques. The inpaintig also extends to the video signal [KAPB05, PSB07]. In fact it
could happen that some frames of a film can be damaged or even lost. These por-
tions can be reconstructed through the use of special techniques for inpainting, who
obtained such information from the frames immediately preceding and following
the lost or damaged. Always remaining in the field of video, it could happen that
during a shoot in front of the camera an object of the set, like the end of a micro-
phone or an operator “careless”. In this case reshoot the scene could cost too much
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Figure 7.3: Application of inpainting to restoration of an old photography.

Figure 7.4: An example of text removing. From Bertalmio [BSCB00].
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Figure 7.5: Application to cinema post production.

time and money while using inpainting can easily remove these intruders from the
scene (Figure 7.5).

7.2 State of the art

Algorithms for digital image inpainting are essentially of two kind:

1. variational methods based on partial differential equation (PDE). In this
kind of methods the holes in images are filled by propagating linear struc-
tures (called isophotes) into the target region via a diffusion process. These
algorithms are good at filling-in small/narrow gaps in piecewise smooth im-
ages (like cartoon images). However, the diffusion process introduces blur,
which becomes noticeable when filling larger regions. Furthermore, textures
cannot be restored;

2. exemplar-based texture synthesis. These methods rely on the Efros-Leung
texture synthesis algorithm [EL99]. They are cheap and effective in repli-
cating consistent textures. Moreover, no blur or other degradations affect the
inpainted images. However, they present difficulty to preserve linear struc-
tures and composite textures in real world scenes.
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7.2.1 PDE based algorithms

The reconstruction of missing or damaged portions of images is an ancient practice,
used extensively in the restoration of works of art. Recently, some models have
been proposed for digital inpainting based on the solution of partial differential
equations (PDE).

Bertalmio et al [BSCB00] were the pioneers of the algorithms of digital image
inpainting model based on partial differential equations (PDE). A mask-defined
specific portions of the input image to be retouched. The algorithm treats the input
image as three separate channels (Red Green & Blue). For each channel, the al-
gorithm fills the areas to be retouched by propagating information from the edges
of the masked region along the contour, these isophote. The isophote directions
are obtained by calculating for each pixel, a gradient vector discretized along the
edge (this gives the direction of large spatial changes), and rotating the resulting
vector by π/2. This is to propagate information while preserving the edges. A
two-dimensional Laplacian [GV97] is used to estimate the local variation in the
linearity of the image and that change is propagated along the direction of the
isophote. At every step of the inpainting process, the algorithm makes a series of
iterations of spreading to rebuild the area to be retouched. Anisotropic diffusion is
used to preserve the edges in the target region.

Inspired by the work of Bertalmio et al [BSCB00], Chan and Shen proposed
two algorithms for image inpainting. The Total Variational inpainting model
(TV) [CS02], which employs a simple anisotropic diffusion based on the contrast
of the isophote. This model was designed for inpainting small regions, and while
it works well in removing the noise, does not connect the broken edges (single
lines embedded in a uniform background). The model Curvature Diffusion Driver
(CCD) [CS01] extends the algorithm to take into account TV geometrical informa-
tion of isophote defining the strength of the diffusion process, and allowing you to
proceed with this type of inpainting in larger areas, but even able to connect some
lines cut, the resulting interpolated segments appear blurred.

Although the PDE-based algorithms have the potential to systematically pre-
serve the edges, their structure leads them to be too expensive from a computational
point of view, for this reason were chosen faster algorithms that can adapt well to
the kind of problem, providing results comparable with those obtained by PDE-
based algorithms. In general, although some information about the context of the
area to be retouched are available, one can hope to have a plausible reproduction,
as close to the original, but not perfect. Therefore, any strategy that is able to re-
produce the inpainting region selected with reasonable success for a large class of
images, the region to be rebuilt must be locally small. Over this region becomes
smaller, and simpler diffusion models can be used with good performance.
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7.2.2 Exemplar-based texture synthesis

The definition of texture from a technical point of view is not as simple as his visual
perception. This could be described as a repetition, according to different rules,
of basic elements, called texels, which in turn may consist of multiple pixels. In
computer graphics, a texel (contraction of texture element) is the smallest graphical
element in a two-dimensional texture mapping. This definition, however, is not
the only possible because you can also define a texture based on its spectral or
statistical properties. For example, as regards the statistical properties, a texture
can be well represented by a linear stationary stochastic process.

The synthesis of texture has a variety of applications in computer vision, graph-
ics and image processing. A major motivation for the synthesis of texture comes
from the texture mapping. Often, the photographs available may be too small to
cover all surfaces with texture. In this situation, simply cover the desired area
with ”tiles” texture introduce unacceptable artifacts in the form of repetition and
discontinuity effect in the joints. The synthesis of texture solves this problem by
generating texture. The problem of texture synthesis can be formulated as follows:
given a finite sample of a certain texture, the goal is to generate another sample
of that texture of different sizes (obviously larger). To formulate the problem cor-
rectly, you also need to assume that the sample is large enough to capture somehow
the stationarity of the texture, and it is known, at least an approximate scale of the
texel [EL99].

The textures are traditionally classified as regular (consisting of repeated tex-
els) or stochastic (without explicit texel). However, almost all of the real texture
lie in intermediate positions between these two extremes, and can be defined by
an individual model. As opposed to texture synthesis, the problem of inpainting
is, rather than the generation of additional samples of a texture from a seed, to fill
the area selected by the mask so that the viewer become unaware of the manipu-
lation. We must therefore try to take into account the degree of repetitiveness and
the stationarity of the texture to fill.

The approach of Zhu et al [ZWM98] model as a texture using MRF and Gibbs
sampling for synthesis. Unfortunately, Gibbs sampling is notoriously slow, and it
is not possible to tell when it converges. De Bonet [DB97] uses an approach based
on a multi-resolution filter, in which a patch of texture on a scale more “fine” is
conditioned by corresponding patch in a more “raw” scale. The algorithm works
by taking the input sample texture and making random, in order to preserve these
“inter-scale” dependencies. This method can successfully synthesize a wide range
of textures, although the parameter of randomness seems to offer good perfor-
mances only on texture with largely stochastic behavior. Another drawback of this
method is the manner in which images are generated texture larger than the orig-
inal. The sample input texture is simply replicated to the desired size, implicitly
assuming that all textures are replicable such as “tiles”, which is clearly not cor-
rect. The work of Efros and Leung [EL99] provides a new and simple way of
looking at the problem of texture synthesis by growing a texture with a pixel at
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a time starting from an initial seed. The color of the pixel data is determined by
analyzing square patch of the sample texture that are similar to the patch on the
texture to be generated. A patch in the random sample is selected by trying to sat-
isfy the criterion of similarity. The similarity is measured by a particular rule (sum
of squared differences) on the RGB colors weighted by a Gaussian kernel. Given
the slowness of the original algorithm of Efros and Leung [EL99] and subsequent
extensions have sought to improve its performance, in particular the work of Wei
and Levoy [WL00], which uses a raster scan ordering ”to transform the pixel noise
in the desired texture. The work of Ashikhmin [Ash01] instead, improve the tech-
nique of Wei and Levoy introducing two new contributions to the original paper:
first, the algorithm improves the synthesis of natural textures, which often failed
in the algorithm of Wei and raised. It also introduces a new image called target.
The final synthesis combines pixels from both the sample and the target, producing
effects such as writing letters on textures.

7.3 Proposed algorithm and results

Image inpainting can be viewed as a denoising task, since noise can be any un-
wanted signal such as, in image context, objects, text, scratches etc... Recent
inpainting techniques have focused on the concept of exemplar-based synthe-
sis [WR06, CPT04]. In these techniques, a best match sample from the source
region is found and copied directly into the target region. However, as images usu-
ally contain redundant contents, several samples could be used to estimate missing
information. We adapted our algorithm based on the kNN framework to image
inpainting. The apriori information about the inpainting zone is given by a noise
mask M . For each pixel in the mask we search for the k-nearest neighbors patches
within a search zone1, then we replace the pixel in the mask with the center pixel of
a patch chosen within the k candidates. Another way is to replace the pixel in the
mask with an average of center pixels. However, we found that this solution leads
to more flattened zones (due to averaging) in the inpainted image. The pseudocode
in Figure 7.3 resumes the algorithm fundamental steps.

In all our experiments we set the patch radius r equal to 2, i.e., a patch of 5× 5
pixel. The search window radius w was set equal to 15, and the neighboring or-
der k equal to 5. Figure 7.7 shows the restoration of an old photo of the sixteenth
president of the United States of America Abraham Lincoln taken by Alexander
Gardner on February 5, 1865 few months before his assassination. In shooting
the image, Gardner used a large glass negative, which broke before it could be
processed. Nevertheless, he managed to make one print (some have interpreted
the crack running through the image as a portent of Lincoln’s impending assas-
sination). Figure 7.8 shows the results of the proposed method in application to
filling-in small regions. Inpainted images look naturals and no processing is no-
ticeable. In Figure 7.9 large objects have been removed from pictures. In these

1We exclude patches which contain pixel of the noise mask
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Inpainting Pseudo code

For each pixel s ∈ M :

• Let zs be the patch of radius r formed by the pixel color xs and the neigh-
borhood ys = {xt, t ∈ Cs} where Cs is the neighborhood of radius r of the
pixel s;

• Let A(s) be the search area of radius w centered at s

• For each pixel t ∈ A(s)

ρ(s, t) ← |zs − zt| (7.1)

• Select randomly one z
t̃

among the k nearest patches zt

• Then
xs ← x

t̃
(7.2)

Figure 7.6: Pseudocode for the proposed inpainting algorithm.

experiments some processing becomes noticeable to an attentive observer.

7.4 Conclusion and perspectives

In this chapter a simple inpainting algorithm has been derived from the general de-
noising framework proposed in this thesis. The key idea rely on the self-similarity
commonly present in images: certain image patches tend to repeat over and over,
with minor modifications, throughout the scene. This property allows to recover
the missing information within the inpainting mask by looking for similar patches
which carry the same neighborhood information and copying the remaining color
information while reducing the zone to be inpainted. Results on several images
are encouraging. Inpainted areas seem very natural and they are not noticeable to
an observer unaware of the original image. A further modification is to adopt a
priority filling scheme as in [CPT04] in order to better preserve image structures.
Furthermore, allowing an overlapping of inpainted patches an aggregation proce-
dure can be adopted, improving the estimation of inpainted regions.
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Figure 7.7: Photo of Abraham Lincoln taken by Alexander Gardner on
February 5. 1865. Original image (left) and inpainted image (right).
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Figure 7.8: Results on inpainting 2
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Figure 7.9: Application to object removal.





Conclusions

The work of this thesis has concerned the study and development of new infor-
mation theory-based algorithms for image restoration. In particular, three major
problems have been treated in this work: deconvolution, denoising and inpainting.

The first part of this thesis deals with deconvolution. The deconvolution prob-
lem is set in the context of variational methods. Given the observation, the solution
minimizes a functional or energy of the residual, i.e. the difference between the
observation and the solution. We chose as energy functional the differential en-
tropy of the residual image, which turns out to be robust with respect to outliers.
Furthermore, no model is imposed to the noise which can be Gaussian, Uniform, a
mixture, etc. Results show the robustness of the algorithm with respect to different
noise distributions. We showed that the residual entropy is lower bounded by the
noise entropy. We also showed that the minimization algorithm can be interpreted
as the process which use the information carried by the residual to recover the orig-
inal image, until there is no more information, i.e., the residual entropy reaches the
lower bound.

The second part of this work deals with the denoising problem. The patch-
based methods for texture preserving denoising have been taken into account, with
application to the domain of digital photography and remotely sensed SAR images.
We proposed a full patch denoising algorithm PCkNN which tries to minimize the
entropy of patches which was first proposed in [AW06]. However, the use of en-
tropy has been objectively motivated since Information Theory allows to provide a
lower bound for this quantity. Starting from this Information Theoretic context we
showed that entropy minimization leads to non-local filtering approaches, giving
also a variational interpretation of such methods.

Experimental results show that this technique better preserves texture and the
natural appearing of the images. Indeed the residual noise is quite natural and does
not exhibit spurious patterns, thus leading to a denoised image with a very natural
appearance while other algorithms create flattened regions. The residual noise is a
relevant method for quality assessment. Indeed if the reconstruction error spectrum
is mostly located into the high frequencies it is not noticeable to the Human Visual
System which acts, at first sight, as a low-pass filter.

The PCkNN has also be adapted to Color Filter Array (CFA) RAW images.
In modern digital cameras the light is acquired by collecting for each pixel only
one color information. Therefore, to have a complete RBG image a further step,
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called demosaicing, is needed. Image denoising is still an hot topic also for high
quality sensors especially in low-light exposure images. A naive approach treats
each color channel separately focusing only on intra-channel correlation. We went
one step further adapting the PCkNN algorithm to deal with CFA images exploiting
the inter-channel dependencies by adapting the block-matching step. Results show
the good compromise between noise reduction and edge/texture preservation.

We also developed a SAR oriented version of the BM3D algorithm which rep-
resents the state-of-the-art of AWGN denoising techniques. We have drawn con-
cepts and tools from the non-local filtering approach, adapting them to the speci-
ficities of SAR imagery. Major innovations regard the choice of the similarity mea-
sure, which takes into account the probabilistic noise distribution of speckle, and
the wavelet shrinkage in the 3D domain, which is derived from the additive signal-
dependent model following a linear minimum-MSE estimation approach. Results
on simulated speckled images are quite satisfactory, with a consistent PSNR gain
of 1-2 dB over the best reference algorithms to date. Similar improvements are ob-
served in a simple automatic detection task on a synthetic image. Experiments on
actual SAR images are likewise encouraging, as the proposed technique seems to
have a better capacity to preserve relevant details while smoothing homogeneous
areas.Experimental results show this algorithm outperforms all of state-of-the-art
despeckling algorithms.

The last part of this thesis is devoted to the digital image inpainting, which is a
growing research area. We adapted our denoising algorithm in order to fill selected
areas in the image in an undetectable manner. Experimental results are encour-
aging. Indeed the algorithm despite its simplicity performs well in filling small
regions. However, when the regions become very large some algorithm artifacts
become noticeable.
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Appendix A

Derivative of the residual entropy
E

In this Section we tackle the derivative of the deconvolution energy E(x) presented
in Section 3.3.1. Let us remind that

E(x) = |Ω| HA−L(r)

= −
�

Ω
log(px(r(u))) du . (A.1)

is the continuous version of the Ahmad-Lin [AL76] entropy estimator (HA−L(r))
and px(·) is the KDE of the residual PDF,

px : s ∈ Rd → 1

|Ω|

�

Ω
Kσ(s− r(u)) du, (A.2)

where Kσ is a smoothing kernel (from Rd to R) of bandwidth σ such that
Kσ(−r) = Kσ(r) , r ∈ Rd.

A.1 Definitions and notations

Let us first introduce a bit of notations and definitions used throughout this Section.
With x, y, r and h we indicate vector-valued images, i.e., functions

f : u ∈ Ω ⊂ R2 → (f1(u) f2(u) . . . fd(u)) ∈ Rd (A.3)
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The PSF is m : R2 → R such that m(−u) = m(u). Note that m(·) blurs each
image component (or channel) in the same way, i.e.,

y(u) = (m � x)(u) (A.4)

=

�

R2
m(u− v) x(v) dv (A.5)

=





�

R2
m(u− v) x1(v) dv

. . .

�

R2
m(u− v) xd(v) dv




. (A.6)

The symbol � denotes the convolution operator.
Note that in general images are non-continuous functions, i.e., x /∈ C

0(Ω),
but they are bounded functions, x ∈ L

∞(Ω), which is a normed vector space.
Therefore,

E : x ∈ L
∞(Ω) → E(x) ∈ R (A.7)

is a non-linear functional of x and

P : x ∈ L
∞(Ω) → px ∈ L(Ω) . (A.8)

In the following we proceed in the calculus of the Gateaux derivative.

A.2 Derivative of p

We first deal with the Gateaux derivative of the function P . We want to calculate

lim
θ→0

P (x+ θh)− P (x)

θ
. (A.9)

Let us consider the following notation





qx = |Ω| px
δs = s− r(u)
h̃ = m � h

. (A.10)

Then consider,

qx+θh(s)− qx(s) =

�

Ω
[Kσ(δs+ θ(m � h)(u))−Kσ(δs)] du (A.11)

=

�

Ω

� 1

0

d
dτ

[Kσ(δs+ τθh̃(u))](τ) dτdu (A.12)

=

�

Ω

� 1

0
∇Kσ(δs+ τθh̃(u)) · θh̃(u) dτdu (A.13)

= θ

�

Ω

�� 1

0
∇Kσ(δs+ τθh̃(u)) dτ

�
h̃(u) du (A.14)
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and take the limit for θ → 0

lim
θ→0

�

Ω

�� 1

0
∇Kσ(δs+ τθh̃(u)) dτ

�
h̃(u) du (A.15)

=

�

Ω
∇Kσ(δs) · (m � h)(u) du (A.16)

=

�

Ω
∇Kσ(δs)

��

R2
m(u− v) h(v) dv

�
du (A.17)

=

�

Ω

�

R2
∇Kσ(δs)[m(u− v) h(v)] dvdu (A.18)

=

�

Ω

�

R2
h(v)[m(u− v) ∇Kσ(δs)] dvdu (A.19)

=

�

R2

�

Ω
h(v)[m(u− v) ∇Kσ(δs)] dudv (A.20)

=

�

R2
h(v)

��

Ω
m(u− v) ∇Kσ(s− r(u)) du

�
dv (A.21)

=

�

R2
h(v)

��

Ω
m(v − u) ∇Kσ(s− r(u)) du

�
dv (A.22)

=

�

R2
h(v)[m �Ω ∇Kσ(s− r)](v) dv (A.23)

= �h , m �Ω ∇Kσ(s− r)� . (A.24)

A.3 Derivative of E

E(x+ θh)− E(x) = (A.25)

= −
�

D

�
log(px+θh(r(u)− θh̃(u)))− log(px(r(u)))

�
du (A.26)

= −
�

D

�� 1

0

d
dτ

[log(px+τθh(r(u)− τθh̃(u)))](τ) dτ
�

du (A.27)

= −
�

D

�� 1

0

1

px+τθh(r(u)− τθh̃(u))

d
dτ

[px+τθh(r(u)− τθh̃(u))](τ) dτ
�

du .

(A.28)

Notations





X=x+ τθh

R=r − τθh̃

H=θh

H̃=θh̃

. (A.29)
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d
dτ

[px+τθh(r(u)− τθh̃(u))](τ) = (A.30)

= lim
�→0

px+(τ+�)θh(r(u)− (τ + �)θh̃(u))− px+τθh(r(u)− τθh̃(u))

�

(A.31)

= lim
�→0

pX+�H(R(u)− �H̃(u))− pX(R(u))

�
(A.32)

=
d
d�

[pX+�H(R(u)− �H̃(u))]

����
�=0

(A.33)

=
d
d�

[pX+�H(R(u))]

����
�=0

+
d
d�

[pX(R(u)− �H̃(u))]

����
�=0

(A.34)

=
1

|D|
d
d�

[qX+�H(R(u))]

����
�=0

−∇pX(R(u)) · H̃(u) (A.35)

=
1

|D|�θh , m �D ∇Kσ(r(u)− r − τθh̃)�

− ∇px+τθh(r(u)− τθh̃(u)) · θh̃(u) . (A.36)

Therefore,

E(x+ θh)− E(x) = − θ

|D|

�

D

�� 1

0

1

px+τθh(r(u)− τθh̃(u))
×

×
�
�h , m �D ∇Kσ(r(u)− r − τθh̃)�

−|D| ∇px+τθh(r(u)− τθh̃(u)) · h̃(u)
�

dτ
�

du (A.37)

and

dE(x, h) = − 1

|D|

�

D

1

px(r(u))

�
�h , m �D ∇Kσ(r(u)− r)� − |D| ∇px(r(u)) · h̃(u)

�
du

(A.38)

=

�

D

∇px(r(u))

px(r(u))
· h̃(u) du− 1

|D|

�

D

�

R2
h(v) · [m �D ∇Kσ(r(u)− r)](v)

px(r(u))
dvdu

(A.39)
= A−B . (A.40)
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A =

�

D

∇px(r(u))

px(r(u))
·
��

R2
m(u− v) h(v) dv

�
du (A.41)

=

�

D

�

R2
h(v) ·

�
m(u− v)

∇px(r(u))

px(r(u))

�
dvdu (A.42)

=

�

R2
h(v) ·

��

D

m(u− v)
∇px(r(u))

px(r(u))
du

�
dv (A.43)

=

�

R2
h(v) ·

�
m �D

∇px(r)

px(r)

�
(v)dv (A.44)

= �h, m �D
∇px(r)

px(r)
� . (A.45)

B =
1

|D|

�

R2

�

D

h(v) · [m �D ∇Kσ(r(u)− r)](v)

px(r(u))
dudv (A.46)

=
1

|D|

�

R2
h(v) ·

�

D

[m �D ∇Kσ(r(u)− r)](v)

px(r(u))
dudv (A.47)

=
1

|D|�h ,

�

D

m �D ∇Kσ(r(u)− r)

px(r(u))
du� . (A.48)

Finally, the gradient of E associated with the inner product � , � is equal to

∇E(x) = m �D
∇px(r)

px(r)
− 1

|D|

�

D

m �D ∇Kσ(r(u)− r)

px(r(u))
du (A.49)

= m �D
∇px(r)

px(r)
− 1

|D| m �D

�

D

∇Kσ(r(u)− r)

px(r(u))
du (A.50)

= m �D

�
∇px(r)

px(r)
− 1

|D|

�

D

∇Kσ(r(u)− r)

px(r(u))
du

�
(A.51)





Appendix B

Computation of the second order
term χ(w) of the entropy
derivation

To compute k(w) we have to calculate the second term of (3.18), as the first one is
simply proportional to the local mean shift vector.

χ(w) =
1

|D|

�

D

∇Kσ(r(u)− r(w))

px(r(u))
du. (B.1)

Analytic computation of eq.(B.1) is a difficult task in the general case. However,
hypothesis and approximation on the residual pdf can be assumed to make it easier.

B.1 Gaussian Residual PDF

As long as the noise is gaussian the residual pdf can be assumed to be gaussian
with mean µ̄ and standard deviation σ̄,

px(α) =
1

(2πσ̄2)d/2
exp−�α− µ̄�2

2σ̄2
. (B.2)

B.1.1 Gaussian Kernel

Assuming a simmetric Gaussian Kernel Kσ(x), with mean µ and standard devia-
tion σ.

Kσ(x) =
1

(2πσ2)d/2
exp

�
−�x�2

2σ2

�
, (B.3)

⇒ ∇Kσ(x) = − x

(2πσ2)d/2σ2
exp

�
−�x�2

2σ2

�
. (B.4)
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Thus by substituting

χ(w) = − 1

|D|

�

D

r(u)−r(w)
(2π)d/2σd+2 exp−

�r(u)−r(w)�2
2σ2

1
(2π)d/2σ̄d exp−

�r(u)−µ̄�2
2σ̄2

du (B.5)

= − 1

|D|
σ̄
d

σd+2

�

D

(r(u)− r(w)) exp−1

2

�
�r(u)− r(w)�2

σ2
− �r(u)− µ̄�2

σ̄2

�
du

with some algebra we obtain

χ(w) = K

�

D

(r(u)−r(w)) exp

�
− 1

2σ2σ̄2
�r(u), σ̄2(r(u)− 2r(w))− σ

2(r(u)− 2µ̄)�
�

du.

(B.6)
with

K = − 1

|D|
σ̄
d

σd+2
exp−

�
�r(w)�2

2σ2
− µ̄

2

2σ̄2

�
. (B.7)

If σ = σ̄ and µ̄ = 0, simplifications are allowed:

χ(w) = − 1

|D|σ2
exp−�r(w)�2

2σ2

�

D

[r(u)− r(w)] exp
�r(u), r(w)�

σ2
du. (B.8)

B.1.2 Epanechnikov Kernel

Let us now suppose as kernel

Kσ(x) =






d+2
2

Γ(d/2+1)
πd/2σd

�
1−

��x

σ

��2
�
, �x� ≤ σ

0, otherwise
(B.9)

⇒ ∇Kσ(x) =






−(d+ 2) Γ(d/2+1)
πd/2σd

x

σ2 , �x� < σ

0, �x� > σ

(B.10)

Thus

χ(w) = − d+ 2

|D|σ2

�
σ̄√
2σ

�d

Γ(d/2+1)

�

D

[r(u)−r(w)] exp
�r(u)− µ̄�2

2σ̄2
rect

�r(u)− r(w)�
2σ

du.

(B.11)

B.2 Histogram Residual pdf

In Kernel Estimation Methods (KDE), as Parzen method, the value of the pdf at the
estimation point α is, roughly speaking, a superposition of the sample occurrences
in a neighborhood of α, related to the bandwidth of the kernel. However if the
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kernel has a narrow bandwidth (asymptotically a δ-function ), only samples very
close to the actual estimation point α will contribute to the pdf.
Under this assumption the residual pdf is approximatively

px(α) ≈
N(α)

|D| , (B.12)

where N(α) is the number of samples such r(w) = α. Note that, this approxi-
mation does not make any assumption on the underlying residual pdf. χ(w) is the
sample mean of a function of the random variable R, i.e.,

1

|D|

�

D

∇Kσ(r(u)− r(w))

px(r(u))
du ≈

�

suppR

∇Kσ(α− r(w)) dα. (B.13)

This is function of r(w), if r(w) = 0 and the support of R is symmetric, the value
of χ(w) is 0 as long as it is an integral of an even function. By means of this
considerations, we could expect a negligible value of χ(w) if r(w) is small, and
higher values near the boundary of the support of R.

In grayscale images (d = 1), the residual R ∈ [m,M ] and the integral can be
easily analytically calculated.

B.2.1 Gaussian Kernel

We consider a Gaussian Narrowband Kernel, so:

∇Kσ(x) = − x√
2πσ3

exp− x
2

2σ2
. (B.14)

Thus

χ(w) =

�
M

m

−α− r(w)√
2πσ3

exp−(α− r(w))2

2σ2
dα. (B.15)

By letting α− r(w) = λ and solving the integral, we obtain

χ(w) =
1√
2πσ

�
exp

�
−(M − r(w))2

2σ2

�
− exp

�
−(m− r(w))2

2σ2

��
. (B.16)

Actually, pointing out three values

r(w) = m ⇒ χ(w) = − 1√
2πσ

�
1− exp−(M −m))2

2σ2

�
< 0, (B.17)

r(w) = 0 ⇒ χ(w) = 0, if M = |m| (B.18)

r(w) = M ⇒ χ(w) =
1√
2πσ

�
1− exp−(M −m)2

2σ2

�
> 0. (B.19)
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Figure B.1: χ(w) for a Gaussian and Epanechnikov Kernel, both with
σ = std(R)

B.2.2 Epanechnikov Kernel

∇Kσ(x) =






− 3
2σ3 x, |x| < σ

0, |x| > σ

(B.20)

Thus

χ(w) =

�
M

m

− 3

2σ3
(α− r(w)) rect

�
|α− r(w)|

2σ

�
dα. (B.21)

Here, we suppose σ < min {|m|,M}, a situation always verified in practice. Thus

χ(w) =

� min{M,r(w)+σ}

max{m,r(w)−σ}
− 3

2σ3
(α−r(w)) dα = − 3

4σ3
(α− r(w))2

����
min{M,r(w)+σ}

max{m,r(w)−σ}
(B.22)

So χ(w) takes the following expression

χ(w) =






− 3
4σ3

�
σ
2 − (m− r(w))2

�
, m < r(w) < m+ σ

0, m+ σ < r(w) < M − σ

− 3
4σ3

�
(M − r(w))2 − σ

2
�
, M − σ < r(w) < M

(B.23)



Appendix C

Derivative of Conditional entropy

In this section the calculus of the derivative of the conditional entropy of Eq. (4.12)
is performed. Let us remind that

h(X|Y = yi) ≈ − 1

|T |
�

tj∈T
log p(xj |yi) (C.1)

and
p(α|yi) =

1

|Tyi |
�

tm∈Tyi

K(α− xm), (C.2)

where Tyi is the set of index pixels which have the same neighborhood yi. Thus
we have

h(X|Y = yi) = − 1

|T |
�

tj∈T
log



 1

|Tyi |
�

tm∈Tyi

K(xj − xm)



. (C.3)

By taking the derivative of (C.3) with respect to the current pixel xi, we obtain

∂h(X|Y = yi)

∂xi
= − 1

T

�

tj∈T

1

p(xj |yi)
1

Tyi

�

tm∈Tyi

∂K(xj − xm)

∂xi
. (C.4)

Note that the PDF, being estimated from the data, is also a function of the N data
points xm. Thus, as xi changes, p(xi|yi) changes both from its argument and from
the behavior of p(·) itself. The last term in (C.4) is equal to

∂K(xj − xm)

∂xi
=

�
−∇K(xj − xm)δm−i j �= i

(1− δm−i)∇K(xj − xm) j = i
(C.5)

where

δm−i =

�
1 m = i

0 otherwise (C.6)
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Thus by substituting (C.5) into (C.4) we have

∂h(X|Y = yi)

∂xi
= − 1

|T |
∇p(xi|yi)
p(xi|yi)

+
1

|T |
1

|Tyi |
�

tj∈T

∇K(xj − xi)

p(xj |yi)
.

(C.7)

By multiplying numerator and denominator of the first term in (C.7) with p(yi)

∇p(xi|yi)
p(xi|yi)

· p(yi)
p(yi)

=
∇p(zi)

p(zi)
· ∂zi
∂xi

, (C.8)

where the projection operator ∂zi/∂xi is because we change from xi to zi. Finally,
the derivative of (4.12) is

∂h(X|Y = yi)

∂xi
= − 1

|T |
∇p(zi)

p(zi)

∂zi

∂xi
+ χ(xi), (C.9)

with
χ(xi) =

1

|T |
1

|Tyi |
�

tj∈T

∇K(xj − xi)

p(xj |yi)
. (C.10)

The term χ(·) of Eq. (C.10) can be expressed in a closed form when the kernel K(·)
has a narrow window size. Indeed, in this case, only samples very close to each
estimation point will contribute to the pdf. Under this assumption the conditional
pdf is p(s|yi) ≈ Ns/|Tyi |, where Ns is the number of pixels equal to s. Thus by
substituting we have

χ(xi) ≈ 1

|T |
�

tj∈T

∇K(xj − xi)

Nxj

≈ 1

|T |

�

X(T )
∇K(α− xi)dα, (C.11)

where X(T ) is the set of the image values.
Since ∇K(·) is an odd function, χ(·) is zero if xi is such that the support of

∇K(α− xi) is contained by the support of X(·) and assumes nonzero values in a
ring near the boundary of the latter. Therefore, we observe that χ(xi) is negligible
for almost every value assumed by xi.



Appendix D

PCkNN: comparative tables

In this appendix we report for completeness the PSNR and SSIM tables for all
experiments of Chapter 3. We considered several images commonly used in
the AWGN denoising and shown in Figure D.1. Noisy images are obtained by
adding a simulated white Gaussian noise with standard deviation σ of 5, 10, 15,
20 and 25. We recall here that we compared PCkNN with three state-of-the-
art denoising algorithms: the UINTA algorithm [AW06], the Non Local Means
(NLmeans) [BCM05], and the Block Matching 3D (BM3D) algorithm [DFKE07a],
all briefly described in Section 4.2. For all these algorithms, the free parameters
are set as described in Section 4.4 and reported for PCkNN in Table D.1.

In Tabb. D.2 to D.5, we report results for the whole database of images for
noise σ = 5,10,15, 20 and 25. The best two PSNR for each case is put in boldface
for the sake of clarity. Also, in Figure D.2 PSNR and SSIM curves averaged over
the 13 test images are plotted.

patch radius 7
search radius 15
# of neighbors 20
filtering parameter σw σ

PCA dimension 50

Table D.1: Parameters setting for the PCkNN algorithm
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Airplane Barbara Boat

Couple Fingerprint Goldhill

Lena Man Mandrill

Peppers Stream Zelda

Figure D.1: Image dataset used for algorithm comparison
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Figure D.2: Averaged PSNR and SSIM measures for the different algorithms.

↓ Image / σ → 5 10 15 20 25
PCkNN 37.42 34.67 32.50 30.80 29.37

Airplane NLmeans 36.43 34.13 32.04 30.29 28.74
UINTA 27.84 31.64 29.48 27.67 26.13
BM3D 39.35 35.96 34.01 32.63 31.42
PCkNN 35.81 33.17 31.33 29.84 28.61

Barbara NLmeans 35.75 33.39 31.02 29.03 27.36
UINTA 34.19 32.56 29.83 27.68 25.98
BM3D 38.28 34.92 33.03 31.64 30.44
PCkNN 35.37 32.77 30.80 29.17 27.94

Boat NLmeans 34.67 31.94 29.70 27.98 26.62
UINTA 34.87 32.00 29.53 27.60 25.99
BM3D 37.27 33.89 32.07 30.75 29.67
PCkNN 35.48 32.85 30.79 29.14 27.84

Couple NLmeans 34.55 31.92 29.35 27.35 25.93
UINTA 34.85 31.93 29.408 27.45 25.79
BM3D 37.49 34.00 32.04 30.63 29.48
PCkNN 35.37 33.25 32.07 31.12 30.24

Elaine NLmeans 34.36 32.31 31.09 30.03 29.04
UINTA 35.09 32.58 29.97 27.92 26.23
BM3D 36.75 33.36 32.16 31.43 30.79
PCkNN 33.74 31.07 29.10 27.53 26.14

Fingerprint NLmeans 33.07 30.89 28.42 26.53 25.09
UINTA 32.94 30.67 28.49 26.64 25.18
BM3D 36.49 32.44 30.28 28.79 27.62

Table D.2: PSNR (dB) results for the test images.
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↓ Image/σ → 5 10 15 20 25
PCkNN 35.55 32.70 30.81 29.49 28.45

Goldhill NLmeans 34.83 31.73 29.58 28.01 26.83
UINTA 34.54 32.24 29.67 27.61 26.00
BM3D 37.17 33.65 31.89 30.69 29.71
PCkNN 37.62 35.16 33.27 31.74 30.46

Lena NLmeans 36.98 34.45 32.26 30.58 29.28
UINTA 31.75 33.12 30.29 28.10 26.36
BM3D 38.70 35.89 34.25 33.02 31.98
PCkNN 34.36 31.58 29.41 27.78 26.59

Man NLmeans 33.72 30.87 28.57 26.89 25.58
UINTA 32.86 31.50 29.18 27.31 25.71
BM3D 37.20 33.07 30.73 29.12 27.87
PCkNN 30.36 28.55 26.87 25.35 23.96

Mandrill NLmeans 29.01 27.71 25.78 23.93 22.71
UINTA 23.11 27.43 26.69 25.37 24.17
BM3D 35.24 30.57 28.17 26.60 25.42
PCkNN 36.24 34.05 32.31 30.85 29.58

Peppers NLmeans 35.70 33.72 31.89 30.24 28.78
UINTA 31.16 31.93 29.80 27.84 26.15
BM3D 37.62 34.91 33.40 32.18 31.08
PCkNN 31.40 29.28 27.38 25.77 24.71

Stream NLmeans 30.34 28.26 26.04 24.57 23.55
UINTA 30.57 29.05 27.50 26.06 24.74
BM3D 35.73 31.12 28.69 27.11 25.97
PCkNN 39.08 36.43 34.46 32.81 31.40

Zelda NLmeans 38.49 35.37 32.93 31.15 29.75
UINTA 17.98 20.98 22.37 26.87 26.35
BM3D 39.41 36.90 35.23 33.84 32.58

Table D.3: Tab. D.2 (continued). PSNR (dB) results for the test images.
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↓ Image / σ → 5 10 15 20 25
PCkNN 0.982 0.964 0.943 0.923 0.901

Airplane NLmeans 0.973 0.949 0.925 0.902 0.879
UINTA 0.934 0.839 0.727 0.623 0.535
BM3D 0.984 0.970 0.956 0.943 0.931
PCkNN 0.985 0.969 0.953 0.933 0.912

Barbara NLmeans 0.982 0.962 0.934 0.901 0.866
UINTA 0.952 0.888 0.803 0.715 0.639
BM3D 0.989 0.977 0.964 0.952 0.937
PCkNN 0.982 0.955 0.923 0.888 0.856

Boat NLmeans 0.973 0.925 0.873 0.825 0.784
UINTA 0.925 0.850 0.755 0.663 0.580
BM3D 0.986 0.967 0.946 0.924 0.903
PCkNN 0.983 0.959 0.930 0.898 0.865

Couple NLmeans 0.972 0.929 0.876 0.819 0.766
UINTA 0.935 0.863 0.772 0.683 0.596
BM3D 0.986 0.967 0.947 0.926 0.905
PCkNN 0.969 0.947 0.929 0.911 0.893

Elaine NLmeans 0.963 0.930 0.903 0.877 0.853
UINTA 0.905 0.815 0.708 0.606 0.515
BM3D 0.979 0.954 0.935 0.920 0.905
PCkNN 0.994 0.987 0.976 0.959 0.936

Fingerprint NLmeans 0.993 0.983 0.958 0.926 0.890
UINTA 0.971 0.952 0.923 0.889 0.850
BM3D 0.997 0.990 0.982 0.971 0.959

Table D.4: SSIM (∈ [0, 1]) results for the test images.
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↓ Image / σ → 5 10 15 20 25
PCkNN 0.979 0.944 0.906 0.872 0.841

Goldhill NLmeans 0.967 0.911 0.856 0.805 0.757
UINTA 0.928 0.846 0.747 0.648 0.563
BM3D 0.984 0.957 0.931 0.907 0.884
PCkNN 0.982 0.964 0.946 0.926 0.904

Lena NLmeans 0.975 0.948 0.920 0.893 0.868
UINTA 0.928 0.837 0.726 0.617 0.524
BM3D 0.984 0.969 0.955 0.940 0.925
PCkNN 0.978 0.943 0.899 0.855 0.817

Man NLmeans 0.969 0.911 0.848 0.793 0.744
UINTA 0.929 0.854 0.763 0.674 0.592
BM3D 0.983 0.953 0.920 0.888 0.856
PCkNN 0.977 0.948 0.909 0.859 0.797

Mandrill NLmeans 0.964 0.917 0.847 0.766 0.691
UINTA 0.913 0.862 0.802 0.741 0.677
BM3D 0.987 0.963 0.934 0.904 0.872
PCkNN 0.978 0.959 0.940 0.920 0.899

Peppers NLmeans 0.970 0.947 0.921 0.895 0.870
UINTA 0.922 0.828 0.720 0.616 0.523
BM3D 0.981 0.963 0.948 0.933 0.918
PCkNN 0.983 0.957 0.915 0.857 0.807

Stream NLmeans 0.974 0.923 0.843 0.769 0.705
UINTA 0.906 0.860 0.801 0.735 0.667
BM3D 0.990 0.969 0.941 0.908 0.874
PCkNN 0.985 0.968 0.948 0.927 0.905

Zelda NLmeans 0.980 0.953 0.921 0.890 0.862
UINTA 0.875 0.770 0.645 0.567 0.483
BM3D 0.985 0.971 0.955 0.939 0.922

Table D.5: Tab. D.4 (continued). SSIM (∈ [0, 1]) results for the test images.
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