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GENERAL INTRODUCTION 

In the age of photonics, mankind has witnessed a rapid spread of broadband 

network which changed the methods of communication. One of the most important 

factors that contribute to this bloom is the transmission capacity. Nowadays, a single bit 

rate of 10GB/s is deployed, allowing, for instance, fast internet response. However, this 

wide flourish of applications induces a serious problem of large power consumption. 

The need for ultrafast systems arises and the idea to use all-optical signal processing 

devices, which reduces to a minimum the conversions of optical to electric signals, 

becomes interesting.  

The importance of signal processing and transmission promotes new applications 

for nonlinear optical materials, such as frequency converters with generation of new 

optical frequencies by nonlinear processes, enabling devices used in electro-photonic 

systems. Single crystals are well known materials for these applications because of 

their strong optical nonlinear properties. However, they are costly to manufacture and 

are strongly dependant on crystal orientation. One way to circumvent this problem is to 

replace the single crystals with new materials. Inorganic materials like glass are 

possible candidates because they have many advantages, especially due to their 

optical properties and ease of fabrication. However, second-order nonlinearity does not 

exist in glass due to their centrosymmetric structure. Therefore, a composite of two 

components can present a favourable combination of ferroelectric crystals and glass 

matrix, combining the nonlinear properties of crystals and the ease of fabrication of 

glasses. In fact, several glass ceramic materials presenting second harmonic 

generation arising from LaBGeO5, LiNbO3 and KNbO3 crystals have been reported but 

their low transparency still limits commercial applications.  

One of our laboratories, Institut de Chimie de la Matiere Condensee de Bordeaux, 

has studied glass ceramics and their optical nonlinear effects for long time. On the other 

hand, another laboratory in Lisbon, Instituto Superior Tecnico, has solid experiences 

about tellurite-based glasses which are in focus nowadays due to their specific 

characteristics. The cooperation between the two laboratories with the financial aid from 
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International Doctoral School in Functional Materials (IDS FunMat – One of the 

Erasmus Mundus programs) has provided an opportunity to look for new materials for 

future electro-photonic devices based on the tellurite-based glass ceramics.   

Optical glass ceramics require high transparency and high second-order 

nonlinearity. To ensure the quality of the transmission in glass ceramics, two common 

solutions are envisaged: size restriction of ferroelectric crystals and/or reduction of the 

refractive index difference between the glass and the crystallized parts. The latter 

requirement can be fulfilled by a careful selection of glass matrix and crystal phase. 

Although several host-glass compositions have been characterized and tested, tellurite 

remains one of the most promising glass formers, because of its low melting 

temperature and the fact that the refractive indices of those glasses and many 

ferroelectric crystals are quite similar. This means that low scattering losses at the 

interface between glass and crystals can be obtained and therefore high transparency 

might be achieved. Another possibility is to control the time and temperature of 

annealing to obtain small crystals of sub-micron size and thus reduce the scattering of 

light. However, in order to control the crystal growth in the bulk, it is necessary to avoid 

dominant surface crystallization and promote bulk crystallization. Only a few reported 

works show elaboration and optical properties characterizations of transparent tellurite 

glass–ceramics containing a high crystalline volume fraction. This lack can be attributed 

to the difficulty of promoting controlled crystallization in TeO2 -based glasses because of 

preferential surface crystallization.  

Our research concentrates on elaboration and characterization of new glass 

ceramics, to fulfil the requirements of nonlinear optical materials with high transparency 

and strong nonlinear activity. Furthermore, a study on the correlation of the ceramics 

and optical nonlinearity will also be in the scope of this thesis.  

Based on the results we have obtained from this study, the manuscript is divided 

into four distinct parts corresponding to four chapters: 

The first chapter of this thesis introduces the literature review about different 

aspects related to the study. It consists of a brief review of glass and glass ceramics 



General Introduction 

 

3 
 

from elaboration to characterization as well as a theoretical section of nonlinear optics 

and its role in the studied materials. The end part of this chapter focuses on the 

progress of tellurite-based glass and glass ceramics, regarding optical nonlinear 

properties. The up-to-date studies on the properties of germanotellurite glass (70TeO2 – 

10GeO2 – 10Nb2O5 – 10K2O) will also be addressed in this chapter.  

In the first part of chapter 2, the characterization techniques and their experimental 

conditions to analyse the thermal, structural and optical properties of materials will be 

presented. Details of optical nonlinear measurements to detect the second harmonic 

signal generated from the materials, in macroscopic and microscopic scales will be also 

provided. In the second part of the chapter, we will introduce the development of a new 

methodology based on a mathematical model to correlate multi-scale characterizations. 

The model will be tested with two glass ceramic systems developed by my colleague 

Helene Vigouroux. Those are the LiNbO3/SiO2 and LaBGeO5 systems. The model will 

take into account the nonlinear properties of the corresponding crystal phases with 

some appropriate modifications to describe the complex sub-structure of separated 

spherulites.  

The third chapter will focus on the germanotellurite glass system with addition of 

silver oxide. It will start with the preparation and characterization of new glass and glass 

ceramic compositions. Tellurite-based glasses usually present surface crystallization; 

therefore, silver oxide was introduced as nucleating agent is order to promote bulk 

crystallization. The effect of silver ions on the thermal, optical and structural properties 

of the glass will be studied by using differential scanning calorimetry, X-ray diffraction, 

electron microscopy, UV-Visible and Raman spectroscopies. Finally, the results of glass 

ceramics relating to the optical linear and nonlinear properties will be presented. The 

evolution of the nonlinear intensity as a function of separated domains’ size will be 

discussed.  

The fourth chapter focusses on the origin of the observed optical nonlinearity, i.e. 

second harmonic generation activity, with respect to the organization of crystallites 

within the separated domains. The study is based on a unique correlative 

Raman/Second Harmonic Generation technique which is helpful to give an insight on 
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the structural changes and correlative optical nonlinear function of a sub-microscopic 

area. This chapter also reports the presence of a crystalline of sub-structure in the 

separated domains and the application of the mathematical model presented in chapter 

3, to correlate it to the global second harmonic generation responses.  

Based on this work, I presented an oral presentation in an international conference 

and did/will publish three articles. 

1. Volume precipitation in germanotellurite glass ceramics and its second harmonic 

generation properties, ESG2014: 12th European Society of Glass Conference 

held in Parma, Sep 21-24, (2014).  

2. Isotropic octupolar SHG response in La2O3 - B2O3 - GeO2 glass-ceramic with 

spherulitic precipitation of LaBGeO5, Applied Physics Letters, 106, 161901 

(2015)  

3. Second Harmonic Generation in transparent Germanotellurite bulk glass 

ceramics (to be submitted) 

4. Correlation between structural modification and Second Harmonic Generation in 

bulk precipitated Germanotellurite glass ceramics (to be submitted) 
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1.1 Introduction  

Glasses are amorphous materials that exhibit a glass transition which is a 

reversible transition from a hard and relatively brittle state into a molten or rubber-

like state [1, 2]. Mankind has found the way to make glasses for a long time, and 

till now, it is still a useful material for human life. Nevertheless, since last century, it 

is a choice for many advanced applications in vision devices and 

telecommunication.   

Scientists have firstly used the phrase “Glass ceramics” since 1960s to describe a 

new material [3]. Glass ceramics materials (sometimes known as vitro-cerams, 

pyrocerams, vitroceramics, vitroceramiques and sittals) [4] are polycrystalline 

solids embedded in a residual glass matrix. They are normally produced by 

devitrification of glasses. The first step of elaboration involves conventional 

techniques for glass production, followed by controlled crystallization; this process 

leads to separation of crystalline phase from the glassy parent phase in the form of 

tiny crystals, where the number of crystals, their growth rate and their final size are 

controlled by suitable heat treatment [5-8].  

The fact that glass ceramics can combine the properties of both two components 

of glasses and ceramics leads to the boom of researches and applications. 
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Glasses are well known because of low cost and ease of production. Besides, they 

are homogeneous and transparent materials with no porosity. Crystals, on the 

other hand, contain many interesting properties in the field of optics, mechanics 

and electronics [4, 8, 9]. When combining both of them, a trade-off could be paid 

forming new materials with associated properties of interest for engineers and 

researchers. Many interesting papers and patents related to glass ceramics have 

been published and granted from research institutes, universities and companies 

[4, 10].   

Nowadays, glass ceramics becomes a promising candidate for many applications 

in many different fields from technics to consumer [4, 11-13]. Trace back to the 

middle of 20th century, the first commercially viable glass ceramics was applied in 

aerospace industry to fabricate radomes which protect radar equipment in the 

noses of aircraft and rockets. Glass ceramics was used because it showed many 

advantages such as low dielectric constant, low coefficient of thermal expansion, 

low dielectric loss, high strength, and high abrasion resistance [4, 8, 14].  

Another application which can be listed here is the Magnetic Memory Disk 

Substrates [15, 16]. Four types of glass ceramics often used for these substrates 

to improve the mechanical property are spinel-enstatite, spinel, lithium disilicate 

and canasite. Enstatite, for instance, is an important accessory phase to increase 

the fracture toughness above 1MPa.m0.5. They prove a favourable high Young’s 

modulus of 100-165 GPa to prevent the flutter of the magnetic disk at high 

rotational speeds up to 10000 rpm [8].      

For the last three decades, we have observed a continuous and significant 

development of computer industry. Each new computer launched was soon 

replaced by a faster and more powerful one in just few months. Human demands 

require un-exhaustedly a new system in which all limits of usage could be 

challenged. The efforts to fabricate faster systems led to the photonic age which 

adapts the demands of manufacturers to replace electronic components by all 

optical-processing devices such as optical switching, amplification, sensors, 

transducers, actuators, etc [17]. Second order optical responses such as Second 
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Harmonic Generation (SHG), first observed in 1961 by Franken et al., is a key 

property for these applications [18].  

Single crystals with SHG properties are commonly used but their cost and 

difficulties in fabrication limited their commercial applications. In 1991, Komatsu et 

al. applied for the first time glass ceramics in which crystals were grown inside a 

host glass for nonlinear optics [19]. Furthermore, development of micro photonic 

devices nowadays also requires responses of nonlinear optical signals at the 

micro-scale. Hence, interest in materials with SHG properties again raised and 

further applications have been considered. [20]  

1.1.1 Fundamentals of inorganic glasses 

All kinds of glasses, including metallic glasses and organic glasses, have two 

common characteristics. The first one is the absence long-range structural order. 

This means that glasses are amorphous solid with short-range order, but no 

regularity in the arrangement of its molecular constituents. Secondly, glasses 

exhibit time-dependent glass transformation behaviour [1, 2]. The traditional 

method to produce non-crystalline materials is the melt-quenching process. This 

method is based on the fact that a slow cooling allows enough time for a viscous 

liquid to alter its local atomic arrangement to attain the minimum free energy at the 

corresponding temperature, whereas a rapid cooling causes an increase of 

viscosity that is too quick for the local atomic arrangement to follow [21]. The 

structure of a rapidly cooled glass is more open than that of a slowly cooled one 

because the freezing of the atomic arrangement occurs at a higher temperature. 

Nowadays there are other methods to produce glass such as sol-gel process and 

chemical vapour deposition [1], however, those processes are out of the scope of 

this thesis.  

Thermodynamic aspect of glass formation 

Based on the enthalpy-temperature diagram, presented in Figure 1.1, we can see 

the path going from melting liquid to glass. In literature, a volume-temperature 

diagram is sometimes used but because volume and enthalpy behave in a similar 
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way, we can completely use same explanation to study the mechanisms when 

cooling the melt depending on the time [1]. Above the melting point and if the 

temperature of the melt is decreased slowly, the atomic structure of the melt will be 

characteristic of the exact temperature at which the melt is held. Below the melting 

temperature, the conversion of the material to the crystalline state with long range, 

periodic atomic arrangement would happen if it is slow enough to reach the 

thermodynamic stable state which is crystal. We should notice that crystallization 

occurs if there are enough numbers of nuclei and sufficiently large crystal growth 

rate. In this case, the enthalpy will decrease abruptly at Tm (as shown on the 

diagram). After fully converting to crystal, continuous cooling will result in a further 

decrease in enthalpy due to the heat capacity of the crystal.  

If the temperature of the liquid is quickly decreased below the melting point, we 

can obtain a super-cooled state without any crystallization. The structure of the 

liquid continues to rearrange. This rearrangement is partially due to the decrease 

in the amplitude of atomic vibrations and partially the change in structure of the 

melting liquid which becomes more compact as the temperature falls. However, 

there is no abrupt decrease in enthalpy due to discontinuous structural 

rearrangement. As the liquid is cooled further, the viscosity increases due to the 

lower and lower mobility of molecules. This increase in viscosity becomes so great 

that the atoms can no longer completely rearrange to the equilibrium liquid 

structure. The straight line starts to change and follow a curve of gradually 

decreasing slope, until it eventually becomes determined by the heat capacity of 

the frozen liquid, i.e., the viscosity is so high that the structure of the liquid 

becomes fixed and is no longer temperature-dependent. The region between the 

limits where the enthalpy corresponds to the equilibrium liquid and to that of the 

frozen solid, is designated the glass transformation region. The liquid now 

becomes a glass.  

For a supercooled liquid, depending on the cooling rate, the relation between 

enthalpy and temperature can be modified correspondingly. Because the viscosity 

is controlled by the temperature of the liquid, a slower cooling rate will allow the 
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enthalpy to follow the supercooled curve to a lower temperature. The glass 

transformation temperature (Tg) is defined as the intersection of the extrapolated 

glass line and the super-cooled liquid line. The glass transformation temperature 

will, as a sequence, shift to lower temperature (lower curve in diagram) for slow 

cooled glasses. The glass obtained will have a lower enthalpy than the one 

obtained with a faster cooling rate (see Figure 1.1). The atomic arrangement will 

also retain the characteristics of a supercooled liquid just before the glass 

transformation temperature.  

However, it is useful to adopt the onset of the glass transformation region during 

reverse heating of a glass. As the glass transition temperature (Tg) for which the 

solid begins to behave as a viscoelastic solid on heating, this temperature 

depends on the thermal history of the glass elaboration [1, 21]. 

 

Figure 1.1: Enthalpy-temperature diagram for a glass-forming melt [1] 

Local structure in glasses [1] 

Unlike the crystalline materials with long range, periodic structure, glasses, or 

amorphous unstable materials, have different structure description. The most 
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popular model for glass structure description is based on the idea of Zachariasen 

and called random network theory [1]. Zachariasen’s rules for glass formation in 

oxides, which are summarized below, state the conditions for the formation of 

continuous 3-dimensional amorphous network.  

Zachariasen’s rules for glass formation in simple oxides 

a. Each oxygen atom is linked to no more than two cations  

b. The oxygen coordination number of the network cation is small 

c. Oxygen polyhedra share only corners and not the edges or faces 

d. At least 3 corners of each oxygen polyhedron must be shared in order to 

form a 3-dimensional network.  

Modified rules for complex glasses 

e. The sample must contain a high percentage of network cations which are 

surrounded by oxygen tetrahedral or triangles 

f. The tetrahedra or triangles share only corners with each other.   

g. Some oxygens are linked only to two network cations and do not form further 

bonds with any other cations.  

From the above list of rules, the first basic element for the network formation is the 

coordination of the cations as the building blocks which constitute the network. The 

building blocks exhibit order at the level of several associated atoms or ions. 

Because of this small range order, it is sometimes called short range order. 

Silicate glasses, for instance, usually contain tetrahedral coordination of Si 

whereas boron can potentially exist in either 3- or 4-fold coordination in borate 

glasses.  

Secondly, the understanding of glass structure often includes the number and 

arrangement of bridging and non-bridging bonds (NBO) consuming the network 

conectivity. These bonds connect each of the building block to their neighbours by 

sharing oxygen corner to form the network. NBO density appears as an indication 



Chapter 1 – Bibliography 

14 
 

of the network breakages and should be taken into account to evaluate the 

connectivity degree in the glass network.  

1.1.2 Phase separation in glasses 

There are two types of phase separation: stable and metastable immiscibility. The 

distinction between them is based on temperature. If the phase separation occurs 

at temperatures higher than the liquidus one, it is stable immiscibility phase 

separation. Metastable immiscibility occurs at lower temperatures than the liquidus 

one [7]. In this study, we concentrate on the metastable immiscibility.  

Figure 1.2 illustrates the existence of phase separation within a binary system 

(C)X – (1-C)Y.  

- If C < C1 or C > C4, phase separation is impossible to occur because the melt 

is stable. This region is called miscibility and the boundary separated with the 

inside regions is nominated immiscibility boundary.   

- C1 < C < C2 and C3 < C < C4: the formation of second phase occurs due to 

the change in energy. In this region, a droplet-type microstructure dispersed 

throughout the matrix can be found.  

- C2 < C < C3: the formation of inhomogeneity occurs and the microstructure 

tends to be continuously interconnected. The boundary as indicated on 

Figure 1.2 is nominated spinodal boundry.    
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Figure 1.2: Phase separation regions in a binary (C)X – (1-C)Y glass system [7]. Tc is critical 

temperature for phase separation.  

The two types of phase separation (droplets in matrix morphology and 

interconnected morphology) can be illustrated in Figure 1.3 for sodium silicate 

system [22].  
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Figure 1.3: An example of two main shapes of phase separation in sodium silicate system [22]. 

1.1.3 Glass ceramics  

Glass ceramics can be formed through heat treatment and proper control of the 

crystallization process. The development of crystals in a mother glass generally 

occurs in two stages, formation of nuclei (nucleation) and crystal growth. These 

two stages require a two-step heat treatment [9, 23, 24].  Marotta et al. developed 

a technique based on DSC method to define the temperature at which the 

maximum nucleation rate takes place [25, 26]. Then, Ray et al. showed that the 

DSC method can be applied to determine the temperature of maximum crystal 

growth as well [27]. In this section, we show the background of nucleation and 

crystal growth, including the effect of adding nucleating agents.   

Nucleation 
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Theoretically, there is a model for nucleation process based on the thermodynamic 

(W*) and kinetics (ΔGD) free energy barriers to nucleation [2, 7]. The nucleation 

rate (I) is described by the following expression: 

𝐼 = 𝐴𝑒𝑥𝑝[−(𝑊∗ + ∆𝐺𝐷)/𝑘𝑇]    (1.1) 

where k is Boltzmann constant and A is the exponential factor, which can be 

expressed as 

𝐴 = 2𝑛𝑉𝑉
1

3(
𝑘𝑇

ℎ
)(

𝜎

𝑘𝑇
)1/2     (1.2) 

Where nV is the number of atoms of the crystallizing component phase per unit 

volume of the liquid V, σ is the crystal-liquid interfacial free energy per unit area 

and h is Planck’s constant.  

However, practically, the process of nucleation is assumed to be influenced by two 

factors [8]: 

- Chemical composition of the base glass, with the possible addition of a 

nucleating agent.  

- Controlled heat treatment of the base glass as a function of time and 

temperature.  

Volmer (1939) defined nucleus as an entity that belongs to a new phase but its 

formation is unstable in the supersaturated mother phase. Further description for 

its formation is based on thermodynamics and kinetics. The thermodynamic driving 

force of the transition between glass and crystal is the variation of Gibbs free 

energy between the melt and the crystal. The reaction rate of nucleation must be 

inspected in regarding to the kinetics of nucleation [8, 29]. 

Nucleation can be separated into homogeneous and heterogeneous nucleation [8, 

28]. In case of homogeneous nucleation which occurs randomly throughout the 

system, a new phase develops without any foreign boundaries [2]. In 

heterogeneous nucleation, foreign boundaries such as substrates and grain 

boundaries are involved. This type of nucleation is the typical mechanism in the 
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development of glass - ceramics, as boundaries cannot be excluded. Surface 

crystallization is one of its consequences.  

For all types of glass ceramics, the nucleation process occurs much easier on the 

surface leading to heterogeneous nucleation in the early stage of heat treatment 

[30]. As a result, heterogeneous crystallization from the surface is preferable than 

homogeneously from interior volume. There are two major factors that may favour 

surface crystallization [30].  

(i) The crystal phase has higher density than the mother glass. Furthermore, the 

viscosity of the glass is too high to relax the stresses. Therefore, 

devitrification is influenced by tensile stresses in the crystallites and 

compressive stresses in the surrounding matrix. At the surface, those 

stresses will be partly reduced, so it is more favourable for surface 

crystallization to occur.  

(ii) In some cases, the difference in interfacial energies may favour surface 

crystallization because the crystals forming at the surface will have the 

crystal ambient interface instead of glass-ambient interface in comparing to 

the formation of new glass-crystal interface in the interior.  

Influences of nucleating agents  

Surface nucleation, however, is not interesting in many cases, especially due to 

the difficulty for shaping. Then there are two available options to exploit 

heterogeneous nucleation for making homogeneous bulk precipitated glass 

ceramics [30].  

(a) Selection of the glass composition can promote the nanoscale phase 

separation before the crystallization process begins. This separation would 

usually occur uniformly throughout the volume. When the phase separated 

structure provides sites for easier nucleation, the sample crystallizes 

homogenously.  
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(b) Another possibility is addition of a nucleating agent which is soluble in the 

melt of starting composition but create defects out during nucleation heat 

treatment.  

To illustrate the second possibility, the heterogeneous nucleation of the oxide 

phase has been induced by adding metallic nucleants such as Au, Ag, Cu, Pt and 

Pd or adding some oxide nucleating agents such as TiO2, ZrO2, P2O5, or Cr2O3 

[31]. During the devitrification, the metallic nucleating agents are precipitated at 

relatively low temperature as a result of a strong decrease in solubility and 

simultaneous reduction to the metallic form [31]. In case of oxide nucleating 

agents, the metastable separation will occur homogeneously inside the volume 

which leads to bulk crystallization. Therefore, the role of nucleating agents in 

initiating glass crystallization from randomly distributed centres was the major 

factor allowing the introduction of glass ceramics into industrial applications [32].  

Crystal growth 

When the nucleus approaches the critical size, the crystal growth will begin. 

Actually, as shown on Figure 1.4, both processes overlap together from glass 

transition temperature Tg. At higher temperature, especially in the Ostwald-Miers 

range, crystals will increase in size without creating more nucleuses.  
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Figure 1.4: Nucleation rate (I) and crystal growth rate (V) in respect to ratio of temperature T/Tl, where 

Tl is the liquid temperature. OM represents Ostwald-Miers range of metastable supercooling where 

only crystal growth process occurs [8] 

I and V are respectively the nucleation rate and crystal growth rate. The diagram 

illustrates both of the parameters as a function of reduced temperature (T/T l) in 

which Tl represents liquidus temperature. The grey region is the overlap 

temperature range in which both of the nucleation and crystal growth take place. 

OM represents for Ostward-Miers range of metastable supercooling. In this range, 

only crystal growth process occurs.     

1.2 Nonlinear optics in brief 

1.2.1 Interaction of light with dielectrics and nonlinear optical phenomenon  

The propagation of light in space or matter can be described by a time and space 

varying electric and magnetic fields. All materials interact with the electric field of 

the light through a collection of electric dipoles constituting the material. The 

positive poles will tend to move in the direction of the electric field (E) as negative 

poles constituted by electrons will tend to move on the opposite one. We should 

notice that the electrons with much lighter mass move more significantly 

(𝑚𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 ≈
1

1000
𝑚𝑝𝑟𝑜𝑡𝑜𝑛), along the electric field. In dielectric media, this oscillation 
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of the dipolar separation leads to oscillating dipole moments with the same 

frequency as the applied optical field. In general, the bulk optical oscillating 

response called induced polarization P results from summation of responses from 

all individual dipole moments [33].  

It is well-known that the electromagnetic radiation is described by Maxwell’s 

equations [34]:  

∇. �⃗⃗� = 𝜌            (1.3) 

∇ × �⃗⃗� =
𝜕�⃗⃗� 

𝜕𝑡
+ 𝐽       (1.4) 

∇ × �̅� = −
𝜕�⃗� 

𝜕𝑡
      (1.5) 

∇. �⃗� = 0             (1.6) 

Where   �⃗⃗�  Electric displacement (C/m2) 

   �⃗�  Electric field (V/m) 

   �⃗�  Magnetic field (T or V.s/m2) 

   �⃗⃗�  Magnetic field intensity (A/m) 

   𝜌 Volume charge intensity (C/m3) 

   𝐽  Current density (A/m2) 

In non-magnetic material, �⃗� = 𝜇𝑜�⃗⃗�  and if 𝜌 = 0, 𝑗 = 0 

Δ�⃗� = −
1

𝑐2

𝜕2�⃗� 

𝑑𝑡2
− 𝜇𝑜

𝜕2�⃗⃗� 

𝑑𝑡2
     (1.7) 

The electric displacement field �⃗⃗�  is given by 

�⃗⃗� = 𝜀𝑜�⃗� + �⃗�           (1.8) 
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Where �⃗�  is the electric field and �⃗�  is the polarization field generated from electric 

field and dipoles interactions within the medium, εo is free space permittivity. In 

general, the polarization is expanded in a Taylor series and the function of the 

electric field E(ω) is given by  

�⃗� = �⃗� (1) + �⃗� (2) + �⃗� (3) + ⋯ = 𝜀𝑜(𝜒
(1)�⃗� + 𝜒(2)�⃗� �⃗� + 𝜒(3)�⃗� �⃗� �⃗� + ⋯ ) (1.9) 

Where P(1) is linear, P(2) is quadratic, and P(3) is cubic as a function of the electric 

field, and so on.  

Normally, intensity of light is sufficiently low and this relation is limited to the first 

order rank, or linearity. The induced polarization of the whole medium is given by 

the following linear expression 

�⃗� (𝜔) = �⃗� (1) = 𝜀𝑜𝜒
(1)(𝜔)�⃗� (𝜔)    (1.10) 

Where χ(1)(ω) is the first-order susceptibility (or linear susceptibility). The equation 

(1.10) can be expressed as tensors of rank 2 with nine components 𝜒𝑖𝑗
(1)

, so the 

polarization becomes: 

𝑃𝑥(𝜔) = 𝜀𝑜[𝜒𝑥𝑥
(1)(𝜔)𝐸𝑥(𝜔) + 𝜒𝑥𝑦

(1)(𝜔)𝐸𝑦(𝜔) + 𝜒𝑥𝑧
(1)(𝜔)𝐸𝑧(𝜔)      

𝑃𝑦(𝜔) = 𝜀𝑜[𝜒𝑦𝑥
(1)(𝜔)𝐸𝑥(𝜔) + 𝜒𝑦𝑦

(1)(𝜔)𝐸𝑦(𝜔) + 𝜒𝑦𝑧
(1)(𝜔)𝐸𝑧(𝜔)  (1.11) 

𝑃𝑧(𝜔) = 𝜀𝑜[𝜒𝑧𝑥
(1)(𝜔)𝐸𝑥(𝜔) + 𝜒𝑧𝑦

(1)(𝜔)𝐸𝑦(𝜔) + 𝜒𝑧𝑧
(1)(𝜔)𝐸𝑧(𝜔)  (9) 

Or 

(

𝑃𝑥

𝑃𝑦

𝑃𝑧

) = 𝜀𝑜

(

 

𝜒𝑥𝑥
(1)

𝜒𝑥𝑦
(1)

𝜒𝑥𝑧
(1)

𝜒𝑦𝑥
(1)

𝜒𝑦𝑦
(1)

𝜒𝑦𝑧
(1)

𝜒𝑧𝑥
(1)

𝜒𝑧𝑦
(1)

𝜒𝑧𝑧
(1)

)

 (

𝐸𝑥

𝐸𝑦

𝐸𝑧

)    (1.12) 

In short, the linear polarization can be described as follow: 

𝑃𝑖 = 𝜀𝑜 ∑ 𝜒𝑖𝑗
(1)

𝐸𝑗𝑗  ; 𝑗 = 𝑥, 𝑦, 𝑧          (1.13) 
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However, since the laser was invented and its applications become popular, the 

interaction of materials with highly intense illumination has established an issue for 

engineering the nonlinear optical effects. The second and third-order ranks in 

Equation (1.9) have dramatically arisen. χ(2) and χ(3) are the second and third-order 

susceptibilities which characterize the nonlinear optical response of the medium 

[34-36].  

 

 

Figure 1.5: Linear and nonlinear responses of P against E (above) and mechanism of SHG (below) 

Considering the general case in nth order, nonlinear polarization can be generated 

at new frequencies 

�⃗� (𝑛)(−𝜔𝜎; 𝜔1, 𝜔2, … , 𝜔𝑛) = 𝜀𝑜𝜒
(𝑛)�⃗� (𝜔1)�⃗� (𝜔2)�⃗� (𝜔3)… �⃗� (𝜔𝑛)  (1.14) 
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Where χ(n) is a susceptibility tensor of order n+1 and 𝜔𝜎 = ±𝜔1 ± 𝜔2 ± 𝜔3 ± ⋯±

𝜔𝑛 is the resulting of frequency from nonlinear response of the material. Therefore, 

the second and third-order susceptibility can be formed like 

�⃗� (2)(−𝜔𝜎; 𝜔1, 𝜔2) = 𝜀𝑜𝜒
(2)�⃗� (𝜔1)�⃗� (𝜔2)     (1.15) 

𝜔𝜎 = ±𝜔1 ± 𝜔2 

�⃗� (3)(−𝜔𝜎; 𝜔1, 𝜔2, 𝜔3) = 𝜀𝑜𝜒
(3)�⃗� (𝜔1)�⃗� (𝜔2)�⃗� (𝜔3)           (1.16) 

𝜔𝜎 = ±𝜔1 ± 𝜔2 ± 𝜔3 

𝜒(2) and 𝜒(3) nonlinear optical susceptibilities are tensors of the third and the fourth 

rank containing 27 and 81 components, respectively. Both of them are responsible 

for many optical phenomena as mentioned in Table 1.1 

In the scope of this thesis, we will focus on the second-order polarization. If 𝜔1 =

𝜔2 = 𝜔, P(2) results from the combination of two photons with same frequency to 

make a new one with double energy and half of wavelength (Figure 1.5). This 

nonlinear process is called Second Harmonic Generation. Regarding to the 

Cartesian coordinates, the Equation (1.15) becomes 

𝑃𝑖
(2)(2𝜔) = 𝜀𝑜 ∑ 𝜒𝑖𝑗𝑘

(2)
𝐸𝑗(𝜔)𝐸𝑘𝑗,𝑘 (𝜔)    (1.17) 

Where i, j, and k can be related to the axis orientation x, y, z.  

Due to space orientation considerations, 𝜒(2) coefficients do not change through 

space referential permutatons, then 

𝜒𝑖𝑗𝑘
(2)

= 𝜒𝑘𝑖𝑗
(2)

= 𝜒𝑗𝑘𝑖
(2)

, ∀𝑖, 𝑗, 𝑘    (1.18) 

The more general symmetry requirement that is currently used in Equation 1.18, 

called the overall permutation symmetry, is an approximation which applies when 

all the optical fields involved in the susceptibility formulae (excitations and 

response) have frequencies far from resonant frequencies. It has been first 

formulated by Kleinman [37].  
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In SHG, the tensor dil is used instead of 𝜒𝑖𝑗𝑘
(2)

 (𝑑𝑖𝑙 =
1

2
𝜒𝑖𝑗𝑘

(2)
), if Kleinman symmetry 

holds, i.e. all the field frequencies are in the transparent spectral region, fa from 

resonances of the nonlinear medium), in which i=1, 2, 3 correspond to x,y,z axis 

and l is as below: 

jk xx Yy zz yz=zy xz=zx xy=yx 

l 1 2 3 4 5 6 

[

𝑃𝑥
(2)(2𝜔)

𝑃𝑦
(2)(2𝜔)

𝑃𝑧
(2)(2𝜔)

] = 𝜀𝑜 [

𝑑11 𝑑12 𝑑13

𝑑21 𝑑22 𝑑23

𝑑31 𝑑32 𝑑33

    

𝑑14 𝑑15 𝑑16

𝑑24 𝑑25 𝑑26

𝑑34 𝑑35 𝑑36

]

[
 
 
 
 
 
 

𝐸𝑥
2(𝜔)

𝐸𝑦
2(𝜔)

𝐸𝑧
2(𝜔)

2𝐸𝑦(𝜔)𝐸𝑧(𝜔)

2𝐸𝑥(𝜔)𝐸𝑧(𝜔)

2𝐸𝑥(𝜔)𝐸𝑦(𝜔)]
 
 
 
 
 
 

 (1.19) 

Table 1.1: Basic electro-optical and nonlinear-optical effects observed in dielectrics [33, 36] 

Order Tensor Effect Description of the effect 

2 𝜒(2)(−𝜔,𝜔, 0) Linear electro 

optical effect 

(Pokel’s effect) 

Under the action of an 

electric field, there is a 

change of refractive index 

of the NLO medium. It is 

observed only in non-

centrosymmetrical crystals 

2 𝜒(2)(0, 𝜔,−𝜔) Optical detecting The electric field appears 

in the NLO medium at 

illumination 

2 𝜒(2)(−2𝜔,𝜔,𝜔) Generation of the 

second Harmonic 

of laser emission 

The emission of light with a 

double frequency happens 

at illumination of the NLO 

medium 
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2 𝜒(2)(−𝜔3, ±𝜔2, 𝜔1) Generation of light 

with total 

frequency equal 

to the sum or the 

difference of 

frequencies of 

incident emissions 

It is observed at 

illumination of the NLO 

medium by two light 

sources with different 

frequency (wave length). 

The emission with the 

frequency equal to a sum 

or difference of 

frequencies of submitting 

emissions is observed  

3 𝜒(3)(−𝜔,𝜔, 0,0) Quadratic electro 

optical effect 

(Kerr’s effect) 

Because of the action of 

an electric field there is a 

change of the medium’s 

refractive index.  

3 𝜒(3)(−𝜔2, 𝜔1, −𝜔1, 𝜔2) Nonlinear 

refractive index 

The medium’s refractive 

index changes in 

dependence on emission’s 

intensity according to the 

formula: n=no+n2I, where 

n2=6χ(3)/4εono
2c. The self-

focusing and self-

defocusing of the laser 

beam are the special 

cases.  

3 𝜒(3)(−3𝜔,𝜔,𝜔,𝜔) Generation of the 

third harmonic 

There is an emission of 

light with the threefold 

frequency at illumination of 

the medium 
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3 𝜒(3)(−𝜔4, 𝜔1, 𝜔2, 𝜔3) Multiwave mixing At illumination of the 

medium by three light 

sources with different 

frequencies there is a 

generation of light with the 

frequency equal to the sum 

of the frequencies of 

incident emissions  

 

Symmetry plays an important role to define the optical behaviour of material and, 

therefore, its susceptibilities. It includes permutation symmetry, time-reversal 

symmetry and symmetry in space which are of fundamental importance in 

nonlinear optics. While the first two symmetries themselves are fundamental 

properties of the susceptibilities and have been taken into account before leading 

to independent coefficients, space symmetry, on the other hand, reflects the 

structural properties of the nonlinear medium [34]. A full list of Point Group 

symmetries and their un-vanishing tensors can be found in [34]. 

All tensors components χ(2)
ijk of centrosymmetric materials are zero [33-36]. As a 

result, second-order nonlinear optics effects (χ(2)(-2ω;ω,ω)) as well as first-order 

electro-optical effects (χ(2)(-ω;ω,0)) are not observed either in centrosymmetric 

crystals or in glasses.  

1.2.2 Transmitted SHG responses in nonlinear active material  

The intensity of the emitted SHG signal I2ω in transmission mode depends on 

several factors related to the intrinsic properties of the experimental sample and 

the path length through the sample. The intensity I2ω can be estimated as following 

[34, 38] 

𝐼2ω(𝐿) =
(2ω)2

8𝜀𝑜𝑐3

|𝜒(2)|
2

𝑛ω
2 .𝑛2ω

𝐼ω
2 . 𝐿2. 𝑠𝑖𝑛𝑐2 (

Δ𝑘.𝐿

2
)    (1.20) 
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Where L is the SHG active distance in the measured sample; nω and n2ω are 

refractive index of the material at frequency ω and 2ω, respectively; 𝜒(2) is 

second-order efficient susceptibility taking into account the polarizations of the 

incident and SHG transmitted beams; symmetry of the studied sample and then 

relative orientations between polarizations and symmetry axis of the studied 

material; sinc is the mathematical function f(x)=sinx/x; c is the speed of light; and 

Δk, expressed as ∆𝑘 = 2𝑘 − 𝑘2 = 2𝜔(𝑛2𝜔 − 𝑛𝜔)/𝑐, is called the wave-vector 

mismatch [34].  

The incident laser beam with frequency ω transmitted through the SHG-active 

material and the generated wave at frequency 2ω interfere as they propagate 

together in the medium. The intensity of the SHG then depends on the refractive 

indices nω and n2ω. It is maximum for phase matching condition. In practice, the 

phase matching occurs only in the case of suitably oriented crystals leading to nω 

= n2ω. In the case of oxide glasses and transmission in the UV-Vis-NIR window, in 

general: nω < n2ω. Therefore, a glass containing crystals randomly oriented will 

always be a system with no possibility of phase matching. Then, in these 

materials, the waves do not propagate at the same speed (𝑛𝜔 ≠ 𝑛2𝜔 → ∆𝑘 ≠ 0), 

and interferences induce variation of the SHG amplitude. If we define the 

coherence length (Lc) as the distance necessary to induce a phase shift π 

between the two waves: 𝐿𝑐 = 𝜋/|∆𝑘|, therefore, the intensity follows the sinc 

function of the ratio L/Lc given on Figure 1.6 [34, 38].  
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Figure 1.6: Typical curve shape of the f(L/Lc) function 

Therefore, the generated intensity (I2ω) has maxima for a length: L=(2n + 1)Lc with 

an integer n and it becomes zero for L=2nLc.  

1.3 Nonlinear optical crystals  

1.3.1 Nonlinear optical crystals in glass ceramics 

A Dmitriev and co-workers listed 77 popular ferroelectrics materials which are 

classified into 4 categories consisting of basic, frequently used, other inorganic 

and organic [39]. Besides that, some other studies reported several phases such 

as LiMX2 (M = Al, In, Ga, and X = S, Se, Te) as new nonlinear crystals [40].  

The list of popular ferroelectric materials consists of alkaline-earth titanate of 

perovskite family like BaTiO3 [41, 42], an alkali niobate like LiNbO3 or KNbO3, a 

mixed alkaline-earth niobate of the tungsten bronze family like Sr0.5Ba0.5Nb2O6 

(SBN), an alkali tantalate like LiTaO3, or more complex crystalline phase like 

LaBGeO5. Table 1.2 gives a non-exhaustive list of successful elaboration of optical 

glass ceramics with ferroelectric phase. Among the glass ceramic systems listed, 

the ferroelectric behaviour has not been demonstrated explicitly for some of them 

but was inferred from indirect observations of structure or optical properties [43, 

44].  
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Table 1.2: Materials systems from which transparent ferroelectric glass ceramics have been obtained 

[30, 39] 

 Glass system Ferroelectric phase 

1 Li2O-Nb2O5-SiO2 [45] 

LiNbO3-SiO2 [46] 

K2O-Li2O-Nb2O5-SiO2 [47] 

Li2O-Nb2O5-TeO2 [19] 

 (xNb2O5-(0.5-x)P2O5-0.5Li2O [48] 

K2O-Nb2O5-SiO2 [49] 

Na2B4O7-Nb2O5 [50] 

LiNbO3 

LiNbO3 

LiNbO3 

LiNbO3 

LiNbO3 

KNbO3 

NaNbO3 

2 BaO-TiO2-TeO2 [41, 42] 

BaO-TiO2-Al2O3-SiO2 [51] 

PbO-TiO2-Al2O3-SiO2 [52] 

BaTiO3 

BaTiO3 

PbTiO3 

3 SrO-BaO-Nb2O5-SiO2 [44] 

SrO-BaO-Nb2O5-GeO2 [53] 

SrO-BaO-Nb2O5-TeO2 [54] 

Sr0.5Ba0.5Nb2O6 

Sr0.5Ba0.5Nb2O6 

SrxBa1-xNb2O6 

4 LiO-Ta2O5-Al2O3-SiO2 [55] 

KTa0.65Nb0.35O3 [56] 

LiTaO3 

KTa0.65Nb0.35O3 

5 La2O3-B2O3-GeO2 [57, 58] LaBGeO5 

 

Among those crystal phases, niobate family has remained one of the most popular 

ferroelectric oxides not only for application using single crystal but also for active 

components within the glass ceramics which will be discussed in this thesis. 

1.3.2 Structure of some Niobate crystalline phases 

A list of ferroelectric phases containing niobium with an oxidation number +5 is 

shown in the Table 1.3. They show second-order nonlinearity. In all cases, niobium 
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is situated in octahedral NbO6 sites which are joined by common vertexes, forming 

three-dimensional structural frames. The role of octahedral asymmetry in creation 

of nonlinear optical properties has been proved by means of the theoretical 

calculations [59, 60].  

Table 1.3: Formulas and structures of some niobate crystals. [35, 67] 

Compound Space group Structural type 

LiNbO3 R3c Isotypic to corundum 
and ilmenite  [61] 

KNbO3 Cm2m Perovskite [62] 

NaNbO3 P21ma Perovskite [63] 

Ba2NaNb5O15 Pba2  Tetragonal tungsten 
bronzes (TTB) [64, 65] 

Li4K5Nb10O30 P4bm TTB [35] 

Ba0.5Sr0.5Nb2O6 P4bm TTB [35, 66] 

 

In comparison to potassium dihydrogen phosphate (KDP) which was the first 

crystal converted to commercial application, the susceptibility of niobates is much 

higher. For instance, KNbO3 which is among the most used second-order active 

crystals show susceptibility up to 20pm/V (d31=-11.9pm/V; d32=-13.7pm/V; d33=-

20.6pm/V)  [39, 68]. Therefore, studies on glass ceramics containing niobate 

crystals are of interest. 

1.4 TeO2-based glass system 

1.4.1 Tellurite based glass for optical glass ceramics 

Among the various oxides available as host matrices, TeO2 are of technical 

interest because of their typical properties such as low melting point and absence 

of hygroscopic properties [69-72]. This glass family also presents high density, low 

transition temperature, and some advantages in optical nonlinearity like wide 

infrared transparency and high third-order susceptibility [70, 73]. These points, for 

example, limit the applications of phosphate and borate glasses [20, 73]. However, 
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pure TeO2 glass is difficult to obtain and needs other ions to form bulk glasses 

[71]. Many studies characterized binary, ternary, and quaternary systems of TeO2 

– based glasses and consider that they are promising materials for optical 

applications [69]. TeO2 – based glasses have low phonon maxima and high 

refractive index [74-76]. The latter is quite important to produce glass ceramics 

with high SONL and good optical transparency.  

TeO2–based glass formation has been shown with systems of more than 90 mol% 

TeO2 and no other glass former presents [77, 78]. TeO2-based glass systems 

containing BaO, Na2O, Li2O, and B2O3 were least durable when exposed to an 

atmosphere saturated with water vapour at around 50 to 55°C [78]. Those glasses 

were slightly attacked by citric acid, and sodium carbonate solution. However, 

heavy attack of the alkali was shown by the binary TeO2 – PbO glasses, and the 

ternary lead tellurite glasses containing P2O5, ZnF2, BaO, Li2O and Na2O, as well 

as the TeO2 – BaO – As2O5 glasses. Glasses containing d-block oxides: MoO3, 

WO3 and Nb2O5 showed the best overall resistance to acid, alkali and water [78-

80]. 

Unlike silicate glasses, TeO2 – based glasses are composed of low-symmetry 

structural units such as TeO4 trigonal bipyramids and TeO3 trigonal pyramids [81, 

82]. A common representation of the TeO2 – based glass with structure of 

tellurium-oxygen sites is illustrated in Figure 1.7. The sites are interconnected by 

Te-O-Te bridges.  

 

Figure 1.7: Structure of the TeO4 tbp (a) and the TeO3+1/TeO3 tp (b) in tellurite based glasses  [81, 82] 
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In the TeO4 units one equatorial site of the Te sp3d hybrid orbitals is occupied by a 

lone pair electron and the two equatorial and axial sites are bonded to oxygen 

atoms while in the case of TeO3 units one of the Te sp3 orbitals is occupied by the 

lone pair electrons [82, 83]. The nearly pure TeO2 glass network is mainly 

constituted of TeO4 units. The addition of a modifier such as Al2O3 or K2O leads to 

depolymerization of the glass by conversion of TeO4 units into TeO3 units [78, 80, 

82]. 

Recently, interest has focused on laser and nonlinear applications. In 1976, TeO2 

was first recognized as a possible host for lasing ions [84]. Comparing with silicate 

glasses, tellurite is more favourable due to its spectroscopic factors such as 

fluorescence life-times. Latter in 1980s, Elzaidia et al. [85] noted the low 

absorption in the spectral region beyond 2.5μm and suggested the application for 

low loss mid infrared optical fibers. For the nonlinear applications, TeO2 – based 

glasses combined with nano ferroelectric crystals to overcome the difficulty of 

fabrication of single ferroelectric crystals [86].  

However, low glass transition temperature (Tg) and onset of crystallisation 

temperature (Tx), with values ranging from ~250–350°C and ~300–550°C, 

respectively, can be a drawback, especially for fiber drawing applications. In fact, 

to achieve a large range of working temperatures, it is desired that the glass host 

has ΔT = Tx − Tg ≥ 100oC to be considered stable against the crystallization during 

fiber drawing [87]. 

1.4.2 TeO2-(GeO2)-Nb2O5-K2O/Na2O system 

Before the 21st century, along with demands for useful applications in the military, 

security and construction, scientists concentrated on germanium oxide (GeO2) in 

an effort to produce high quality infrared transmission glasses. GeO2-based 

glasses are nowadays known as one of the best materials for long – wave infrared 

applications (LWIR), contain long transmission bandwidth up to 6μm in the infrared 

region. Tellurite (TeO2) was used as a modifier to reinforce mechanical ability and 

prevent chemical attack but still keep similar transmission cut-off [88]. Researchers 
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studied and characterized TeO2 – GeO2 system often with ratio GeO2/TeO2 > 1 

[88, 89].  

During the two last decades, photonic age has flourished and led to an urgent 

requirement for transparent and optically active materials for optical amplification, 

switching, sensors, transducers, actuators and so on [30]. Scientists have focused 

on other more promising candidate host glass, TeO2. As mentioned in previous 

section, TeO2 – based glasses show many interesting properties such as ease of 

fabrication, chemical resistance and high refractive index. Many papers now focus 

on how to improve TeO2 based glass by combining with other constituents. Binary 

and even more complex ternary and quaternary tellurite glasses have been 

investigated [90, 91].    

Many studies on TeO2 – GeO2 system demonstrated that the presence of GeO2 

can improve the TeO2 network. One of main drawback of TeO2 – based glasses is 

the low thermal stability because of weaker bonding Te-O due to larger size and 

heavier mass of tellurite [92]. This advantage is serious for fiber application. Fiber 

drawing itself needs annealing of a glass preform and the crystallization increases 

the scattering loss of fiber and decreases the optical properties. GeO2 has high 

viscosity which can enlarge the lower one of tellurite based host around the 

drawing temperature up to a limit to prevent the crystallization [91]. Moreover, it 

also helps to shift the minimum loss wavelength toward shorter wavelength and 

decrease fiber loss at 1.5μm [93].  

According to a study of the (80-x) TeO2 – x GeO2 – 10 Nb2O5 – 10 K2O system, 

Monteiro et al. has characterized this system and found the improvements in 

thermal stability from ΔT = Tx – Tp = 81oC to 193oC when adding GeO2 up to 60% 

[70]. Furthermore, optical and thermal properties of those glasses were tested and 

they showed that this system is a potential candidate for photonic applications 

after fiber processing [76, 94]. The progress mainly comes from the expansion of 

temperature working range of tellurite glass due to the introduction of GeO2. 

Blue laser for use in colour display, optics, biomedical diagnosis and optical 

communication is another interesting trend of research [95, 96]. This leads to the 
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need of up–conversion phenomenon for compact and efficient solid state. This 

effect is used to describe the absorption of 2 or more photons and then emission 

of a photon with higher energy. The study of Kishimoto and Hirao proved that 

although tellurite is a well-known material for rare-earth host but the glass matrix 

with high phonon energy usually has a low upconversion efficiency [97]. Some 

studies have confirmed this observation [98, 99]. Role of GeO2 and Nb2O5 in 

TeO2-based glasses on up–conversion efficiency was studied and some 

improvements were found [100, 101].  

In terms of nonlinear optical potential, TeO2 – GeO2 glass system was made and 

characterized. Second harmonic generation (SHG) in those glasses was observed 

by using bicolour optical poling or electrical poling. The optical nonlinear properties 

of the TeO2 – GeO2 system with a third constituent like Bi2O3 and PbO (maximally 

reported value up to 2.25 pm/V) were also discussed elsewhere [102, 103].     

1.5 TeO2 glass ceramics for optics 

1.5.1 General goals for optical glass ceramics 

So, for photonic applications, a transparent glass ceramic material should have [8, 

30, 104]:  

(a) High transparency 

(b) High optical nonlinearity, especially second harmonic generation, which 

requires high volume fraction of the non centrosymmetric crystallized phase.  

(c) Alignment of active crystallites so that the optical response can be controlled 

electrically.  

(d) Ability of the glass matrix to make films or fibres that can be subsequently 

transformed into desired glass nanocomposite. 

Concerning transparency, several host-glass compositions have been 

characterized and tested but tellurite is still one of the most interesting glass 

formers, because of its advantages as mentioned previously. This means that low 
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scattering losses at the interface between glass and crystals can be obtained and 

therefore high transparency. 

Relationship between the light scattering intensity, refractive indices and spherical 

shape of dielectric particle can be expressed in the following formula [35]:   

𝐼(𝜃) = 𝐼𝑜 (
1+𝑐𝑜𝑠2𝜃

𝑟2 )
8𝜋4

𝜆4 𝑑4 (
(
𝑛2
𝑛1

)
2
−1

(
𝑛2
𝑛1

)
2
+2

)

2

    (1.18) 

- θ is the angle formed by the incident and scattered direction.  

- Io and I(θ) are the intensities of incident and scattered emission, 

correspondingly.  

- r represents the distance from a scattering centre and a point of observation 

- λ is the wavelength of radiation.  

- d is the particle radius 

- n2 and n1 are refractive index of the particle and the matrix, repectively.  

Increasing the size of particles and the refractive index mismatch are expected to 

increase the scattering losses. It is noted that it is difficult to obtain a perfect match 

between refractive indices. Therefore, the grain size seems to be the critical factor 

to control the scattering intensity. Malakho et al. have claimed that in the 

transparent glass ceramics the size of crystal grains should not exceed 100 nm 

[30, 35].    

Glass ceramics can be obtained through a 2-step method during the first step. 

Nuclei are generated and the second step allows the controlled crystal growth. The 

key idea of this method is to obtain the trade-off between transparency and 

optically nonlinear activity. As we know, larger crystals embedded within the glass 

are favoured but the transmittance of the glass would decrease as a sequence. 

The elaboration process will have to take into account the control of volume 

number. For this purpose, Massera et al. [81] propose the following process of 

elaboration. A transparent glass is first produced by rapidly quenching. In the next 

step, the glass is heat treated at the temperature (Tn) at which nucleation rate is 
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the highest. This step will assure a wide distribution of nucleus. This Tn is often 

recognized slightly above the glass transition temperature (Tg) and Marotta’s 

method is usually used to define this point [26]. After a sufficiently large number of 

nuclei have formed, the glass (with nucleus) will be heated to higher temperature 

to promote the growth of the crystals (see Figure 1.4). The growth temperature 

and duration of thermal treatment should be chosen so that the crystallites reach a 

size that is consistent with sample transparency [81].  

Tellurite based glass ceramics can limit the scattering by reducing the difference 

between refractive indices of parent glass and crystal. Effectively, tellurite-based 

glasses show high refractive index which can be up to 2.2 [69] and it was 

demonstrated to be close to many kinds of ferroelectric crystal’s refractive indices 

such as KNbO3 (~2.28 at 0.633μm) or LiNbO3 (~2.21 at 0.6μm) [39, 105]. In 

previous studies, TeO2-based glasses containing LiNbO3, BaTiO3, and KNbO3 

crystals have been characterized and developed [42, 105, 106]. Furthermore, 

some other properties are appreciated as advantages such as low melting 

temperature which leads to ease of production, high dielectric constants, wide 

infrared transmittance and high third-order NLO susceptibilities. 

1.5.2 Tellurite glass ceramics for SHG  

Tellurite glass ceramics containing 60-90% of TeO2 possess special combined 

properties of the two components of glass and crystallites, especially nonlinear 

optical nature of the embedded ferroelectrics. Interest in glass ceramics for optical 

applications is connected with their benefits over both glasses and single crystals 

as new materials for SHG properties again raised [9, 107]. It makes them attractive 

materials for photonic applications. In 1991, Komatsu et al. applied for the first time 

glass ceramics based on TeO2 in which crystals of LiNbO3 were grown inside a 

host glass for nonlinear optics [19]. For recent years, beside some studies 

focusing on processing tellurite-based glass ceramics for solid state laser, most 

efforts have examined composition regions that exhibit low optical scattering loss 

and high second harmonic nature [43, 108, 109]. Tellurite-based glasses show 

high refractive index (n = 2.00 – 2.24 dependent on composition) which are 
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demonstrated to be close to many kinds of ferroelectric crystals such as LiNbO3, 

BaTiO3, or KNbO3 [30, 105]. Glass compositions such as Li2O-Nb2O5-TeO2, BaO-

TiO2-TeO2, or have been reported [41, 42, 90, 105, 110-112].  

1.5.3 TeO2 – Nb2O5 – (Na2O,K2O) system 

In this section, we collect all studies related to the TeO2 – Nb2O5 – (Na2O,K2O) 

glass systems because they are close to the TeO2 – GeO2 – Nb2O5 – K2O – Ag2O 

composition which will be the core of this thesis.   

TeO2-Nb2O5-R2O compositions (R=Li, Na, K) seem to be the most studied [43, 

106, 111-113]. Many research groups have reported studies about their 

mechanical, thermal and optical properties as well as rare-earth doping with Nd or 

Er for photo-luminescense applications [114-117]. However, the main drawback of 

these tellurite based glass ceramic is the preferable surface crystallization which 

can limit its application [9, 43].  

Shioya et al. [112] have obtained a metastable intermediate crystalline phase 

(phase P) when trying to elaborate glass ceramics based on TeO2-Nb2O5-K2O 

composition (which is known as KNbTe glass). They claim a cubic structure for 

lattice constant a = 0.554nm. 

From literature, the cubic structure phases are formed frequently as a first phase 

of crystallization on various glasses [105, 106, 112]. Some studies reported that 

the precipitation of cubic pyrochlore-type compounds were found in systems 

containing Nb2O5 such as K1.5[Ta0.65Nb0.35]2O5.75 with a lattice constant a = 

1.062nm [112]. Another phase with composition KNbTeO6 was recorded in ternary 

system K2O-Nb2O5-TeO2 [112, 114]. Its lattice parameter is a=1.0249nm. Both of 

them are different from phase P (a=2x0.554=1.108nm). This implies that the cubic 

phase P is not a pyrochlore type. Other crystals have been reported in literature 

including cubic face-centered non-stoichiometric tellurates of Y, La and 

lanthanides. Its lattice constant is around 0.549-0.570nm which is quite close to 

the crystal phase P. This closeness suggests that the phase P could contain K+ 

and Na+.    
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The unknown phase P was then determined as K[Nb1/3Te2/3]2O4.8 through energy 

dispersive X-ray spectroscopy by Komatsu and co-workers [106, 118]. 

Interestingly, they also recorded small the Second Harmonic Generation signal 

attributed to the nanocrystallites distributed with random orientation existing in the 

glass ceramics [106]. In xK2O – (14-x)Na2O – 14Nb2O5 – 72TeO2, x=0-12% glass 

ceramics, similar cubic phase P has been characterized from XRD. Crystalline 

chemical composition have been reported as (K,Na)[Nb1/3Te2/3]2O4.8 the ratio K/Na 

increasing with x and the glass ceramics show SHG except for x = 0 and 

precipitation of Na[Nb1/3Te2/3]2O4.8 [111, 119]. The lattice parameter a was also 

reported to vary from 5.544 Å to 5.566 Å for x varying from 0 to 10, according to 

the larger ionic radius of K+ compared to Na+. However, they could not explain how 

crystallites showing an inversion symmetry cubic structure in the structure could 

generate Second Harmonic signal.   

A study of Jeong et al. [106, 119, 120] focused on 10K2O – 4Na2O – 14Nb2O5 – 

72TeO2 glass ceramics has tempted to explain this contradiction provided some 

insight on its origin. They assumed a phase centered cubic phase in a fluorite-type 

structure for the phase P with chemical composition quantified as 

K7.41Na5.1Nb8.11Te18.79O60.59 by using energy dispersive X-ray spectroscopy. They 

claimed this composition close to (K0.59,Na0.41)(Nb1/3Te2/3]2O4.8. According to this 

hypothesis, K+ and Na+ ions occupy the eightfold site in the fluorite structure. The 

structure was then schematically described as shown in Figure 1.8.  
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Figure 1.8: Structure of 10K2O-4Na2O-14Nb2O5-72TeO2 glass ceramics [119] 

Hart and coworkers have proposed different distortion of the Face Centered Cubic 

(FCC) revealed by XRD patterns for the phase P which precipitates in the 15K2O – 

15Nb2O5 – 70TeO2 glass ceramics [121, 122]. The lattice cell parameter a was 

estimated 5.54 Å. At this point they discussed the inconsistency of the fluorite-type 

model proposed on Figure 1.8 [121]. In this structure, the mean M-O distance is 

2.4 Å, but typical M-O bond lengths in niobate and tellurite crystals are <2.2 Å. 

Furthermore, in the fluorite cell all the cations are coordinated by eight anions, in 

contradiction with 6 coordinated Nb5+ cation in most of niobate crystals and the 4 

or 3 nearest oxygen neighbors observed in tellurite crystals. Finally, they argued 

the large 1.6 oxygen atoms deficiency per cell to envisage distortions from the 

cubic cell.  

As the scattering cross-sections from oxygen are small relative to that of niobium 

and tellurium in XRD, they provide neutron diffraction characterizations to 

complete X-ray analysis. Additional broad Bragg peaks reflections were revealed 

from neutron diffraction data which do not fit a FCC cell. They concluded these 

reflection occurred form planes containing predominantly oxygen atoms with 

randomness in the distribution of positions. Thus this anion disorder model would 

help to explain the generation of SHG. Hart et al. proposed a first model of the 
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resulting distortion with an orthorhombic unit cell which could justify SHG [121]. 

Later, Hart et al. proposed another model for polymorph K2Te4O9 in space group 

P21/C with a tetragonal lattice [122]. This model has inversion symmetry and 

cannot explain SHG. Then, Jeong et al. went further with energy-dispersive X-ray 

spectroscopy characterization of the crystal composition definitively invalidated 

K2Te4O9 proposition as Nb was clearly evidenced to be included in the 

composition [119]. They suggested a tetragonal distortion c/a = 1.001 from the 

fluorite-type structure which could explain the origin of SHG [119]. The 

investigators [111, 120] also assumed that atomic size of K can affect the 

distortion because no SHG is observed after precipitation of Na[Nb1/3Te2/3]2O4.8.  
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2.1 Introduction 

This chapter is divided into 2 separated parts. Besides the first part concerning 

experimental techniques and conditions which were used to characterize the 

materials, the second part will develop a methodology to correlate the macroscopic 

SHG response of a glass ceramics with the micro-SHG signals and crystallite 

micro-organization. The model is based on the correlation between the nonlinear 

response and structural properties of two glass ceramic systems which are 

LiNbO3/SiO2 (LNS) and 25La2O – 25B2O3 – 50GeO2 (LBG). Those two glass 

ceramics compositions were developed by Vigouroux et al. [1-3].  

2.2 Experimental techniques 

2.2.1 Density and refractive index 

Density of all samples was obtained by using Archimedes method. Their mass was 

measured by a scale or balance while the volume was measured directly by 

dipping the sample in to a fluid (hereafter toluene, ρ=0.870 g/cm3). The 

quantification was carried out at room temperature (25oC).  
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A Spectroscopic Phase Modulated Ellipsometer (Horiba Jobin-Yvon, Uvisel) was 

used to determine the refractive indices of polished glass samples. Their thickness 

was kept at around 1 mm. The experiment was performed in the 200-1100 nm 

spectral range at an angle of 70o. The optical constants were defined by the 

minimization of the mean square deviation between the calculated and the 

experimental data using the DeltaPsi2 software package provided by Jobin-Yvon.   

2.2.2 Thermal analysis (DSC) 

Differential Scanning Calorimetry (DSC) scans were performed to determine their 

thermal characteristics of transition temperature Tg and onset crystallization 

temperature Tx. All glass samples were crushed into fine powder or small pieces 

with 1-2 mm size to analyse the behavior of surface and bulk crystallization, which 

is respectively due to high or low ratio of surface areas. The sample weight ranged 

from 30-40mg. The heating rate was 20oC/min. The accuracy is ±2𝐾.  

2.2.3 Structural characterizations (Raman, XRD) 

Local structure analysis of glasses was carried out by Raman spectroscopy. The 

Raman system, a LabRAM HR 800 Evolution from Horiba, consists of a diode 

laser (Ventus) working at 532 nm and a Peltier-cooled Horiba Symphony II CCD 

detector with 1024 x 256 pixels. The Raman spectra of those glasses with different 

amount of silver oxide were collected from 300cm-1 to 1000cm-1.  

Crystalline phase characterization was obtained from X-ray diffraction. X-ray 

diffraction was performed with a Philips X’PERT APD to analyse the crystalline 

phases of the heat-treated glass samples in air, at room temperature, using Cu Kα 

radiation. The step angle was fixed to 0.017o. Time per step is 59s for the case of 

normal scan and 699s for the one of long acquisition.  

2.2.4 Imaging (OM, SEM, TEM) 

Optical microscope labelled Leica was used to observe the surface and particles in 

the volume of samples. The digital image was captured by CCD camera (charge-

coupled device). There are two objective lenses with magnification of 10x and 50x.  
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CAMECA microprobe SX 100 has a 10 ppm detection limit (parts per million), from 

the sodium. The size of the probe is 1 μm³. The device allows making quantitative 

composition profiles, X maps or local composition measurements on all inorganic 

materials. WDS spectrometry has the advantage of a spectral resolution 5-10 

times better than that of EDS, usually used in scanning microscopy, which 

provides reliable results with an accuracy of about 1 to 2% (relative) of the basic 

chemical composition. 

Transmission electron microscopy test was carried out in CEMHTI (Orléans) with 

the help of Mathieu Allix, researcher in CNRS. The TEM data were collected on a 

Philips CM20 microscope fitted with an Oxford energy dispersive spectrometry 

(EDS) analyser. To avoid any evolution of the sample under the electron beam, 

the experiments were run at 80keV. 

2.2.5 Optical characterizations (UV-Vis and macro-SHG)  

Optical transmittance spectra (UV-Vis) were recorded on optically polished 1mm-

thick samples at room temperature using a double-beam spectrophotometer 

(CARY) in the wavelength range 200-800nm.  

In the thesis’ work, the macroscopic SHG measurements were done in the 

transmission mode. The experiment of Maker Fringes consists of the irradiation of 

a laser beam (frequency ω) to a sample and the record of the SHG signal (I2ω) 

generated by the sample as a function of the angle between the propagation 

vector and x-axis (θ) or the polarization angle of the electric field (Ψ). The principle 

of this measurement is illustrated in the general following Figure 2.1: 
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Figure 2.1: Scheme of principle in Maker Fringes experiment. In θ scans, the polarized beam and detector are 

fixed while the sample will rotate around the x-axis. In Ψ scans, the sample is fixed while the polarization of 

electric field is rotated around the z-axis. Normally, we use p and s to describe the parallel (with the plane of 

incidence) and perpendicular (with the plane of incidence) polarization. In Chapter 2, x and y will replace s 

and p to facilitate the modeling description. n is the normal vector of the sample’s surface. 

Transmission measurement mode that we call θ scans can be performed for 

different polarizations of incident and transmitted beams in function of rotating the 

sample of an angle θ. Usually, we measure θss, θsp, θpp, and θps which can be 

noted in function of lab referential orientation θxx, θxy, θyy, and θyx, respectively. In 

the notations, the first letter represents the polarized incident pump beam and the 

second letter is for the analysed polarization of the second harmonic beam. The 

sample would be rotated for θ variation from -80 degree to 80 degree.  

The transmission measurements that we call Ψ scans consist in continuous 

polarization scans of the input beam for a fixed incidence angle θ. For this 

purpose, the fundamental beam, initially polarized out of the plane of incidence (x 

direction) goes through a combination of a rotating half wave plate (Ψ/2 angle of 

continuous rotation) leading to Ψ rotation of the polarization and a fixed quarter 

wave plate (vertical fast axis inducing π/2 phase shift). All possible polarizations 

are then continuously addressed, from linear to elliptical and to circular 
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polarization. The incident beam is focused on the sample with a spot size of 

100μm and the transmitted second harmonic light is resolved into components 

polarized parallel (y or p polarization) and perpendicular (x or s polarization) to the 

horizontal plane of incidence leading to so-called Ψp (or Ψy) and Ψs (or Ψx) 

patterns. The excitation was performed using a spectra physics Nd:YAG laser 

1064nm, 20Hz, 20ns pulses with a typical energy of 250μJ. More details can be 

found elsewhere [1, 4].  

2.2.6 Micro-SHG/micro-Raman 

Correlation between local SHG signal and local structural symmetry of the 

crystalline phases in glass ceramics could be recognized by the combination of 

micro-Raman and micro-SHG analysis with respect to the positions and 

orientations of the crystals.  

The experiment set up was based on a modified micro-Raman (HR 800, 

Horiba/Jobin-Yvon) instrument equipped with two laser sources, (i) a picosecond 

laser at 1064nm for SHG measurement; (ii) a continuous 532 nm source for 

Raman. Confocal microscopy and motorized stages (X, Y, Z) allow the 3D imaging 

of both Raman and SHG signals. The micro-Raman spectra were recorded with a 

typical spectral resolution of 2.5 cm-1 in the backscattering geometry at room 

temperature [5]. The setup scheme is illustrated in Figure 2.2 below.  
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Figure 2.2: Scheme of micro-SHG /micro- Raman setup [6]. The red and green lines represent the laser beam 

with 1064nm and 532nm wavelength, respectively. The 1064nm laser beam is used for micro-SHG analysis 

and the 532nm one is used for Raman scattering analysis. The notch filter can be changed to collect the 

selective signal and eliminate the excitation beam.  

The polarized incident beam (direction y) is reflected from a notch filter and is then 

focussed on the sample surface by using a near infrared objective (50x or 100x). 

The reflected or scattered light (micro-SHG or micro-Raman, respectively) is 

collected by the same objective. Then, the micro-SHG or micro-Raman signal is 

redirected through the selective notch filter to eliminate the reflected excitation 

light. An analyser selects the polarization of analysis (vertical (y) or horizontal (x)). 

The polarized reflected analysed beam is directed to a blazed grating before 

transferring to a CCD camera. The reflection spectrum as a function of wavelength 

can be viewed from a display device. 

Figure 2.3 illustrates the surveyed terms depending on the crystal orientation. In 

this scheme, the polarization analysis (of the wave at 2ω), is given by the index i. 

The polarizations of the two incident photons ω are given by the indices j and k. 
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Depending on the orientation of crystallites, we could obtain the information of 

𝜒𝑦𝑦𝑦
(2)

, 𝜒𝑥𝑦𝑦
(2)

, 𝜒𝑥𝑥𝑥
(2)

, and 𝜒𝑦𝑥𝑥
(2)

.  

 

Figure 2.3: Illustration of the analyzed scheme where the detected micro-SHG results are dependent 

on the orientation of crystallites [6].  

2.3 Multiscale-approach to investigate the glass ceramics SHG 

responses  

2.3.1 Introduction 

Studies on functional glass ceramics with second order optical properties have 

been focused on the optimization of second harmonic generation responses and 

transparency [7, 8]. As an example, research efforts have been done to control 

precipitation of crystals in the niobate family like LiNbO3, KNbO3 or NaNbO3 in 

silicate glassy matrix [1, 9, 10]. Although the nonlinear optical properties of such 

crystalline phases are well known, glass ceramics usually contains poly-crystals 

randomly oriented which do not allow any optimization of the nonlinear optical 

properties.   

Therefore, the first issue can be to control organization and/or orientation of 

crystallites within glass ceramics. Laszlo et al. [11-14] have shown that the crystal 

growth can be induced inside phase separated spherulites. According to a first 

mechanism, the spherulite is formed via central isotropic multidirectional growth. A 

second mechanism has been suggested in which the formation of spherulite is due 



Chapter 2 – Experimental Techniques and Modeling of SHG Principles 

 

59 
 

to folded-chains of single crystal via unidirectional growth and low angle branching. 

Such approach can promote specific orientation of crystallites within a glass 

ceramic. Recently, Vigouroux et al. [1-3] have shown that the precipitation of 

LiNbO3 in silicate glass (LNS) and LaBGeO5 in borogermanate glass (LBG) with 

the same composition can be growth within phase separated spherulite domains. 

Correlative micro-Raman/micro-SHG characterizations have been used to 

determine crystallites organization and allowed to make the correlation with SHG 

properties. They evidenced the radial distribution of the elementary crystalline 

particles for both LNS and LBG. The non-linear optical signal was then related to 

coherent SH effects occurring inside each spherulite and linked to the spherulite 

size with respect to the wavelength and the coherent length avoiding cancellation 

effects expected in a spherical system [1]. Interestingly, second order optical 

properties have been found to be isotropic at the macro scale which is potentially 

interesting for applications.   

Vigouroux et al. [2] developed the crystallization of nonlinear LaBGeO5. In the LBG 

system, macro SHG induced by LaBGeO5 spherulites showed surprisingly 

different behavior when compared to LNS system. So it was necessary to develop 

a methodology allowing a complete correlation of multi-scale experimental 

characterizations. This would lean on a mathematical model which can simulate 

the global SHG response of a glass ceramic depending on (i) crystallite 

organization and (ii) single crystal properties. The next chapter details this 

approach for the two systems LiNbO3/SiO2 (LNS) and LaBGeO5 (LBG) glass 

ceramics previously studied by Vigouroux et al. [1-3].  

2.3.2 Mathematical description of macroscopic SHG Ψ-scan 

measurements 

We express the parallel and perpendicular component of the NLO polarization 

according to the lab frame depicted in Figure 2.1): 

𝑃𝑖
2𝜔(Ψ) = 𝜒𝑖;𝑥,𝑥

(2)
(𝐸𝑥

𝜔)2 + 𝜒𝑖;𝑦,𝑦
(2)

(𝐸𝑦
𝜔)2 + 2𝜒𝑖;𝑥,𝑦

(2)
𝐸𝑥

𝜔𝐸𝑦
𝜔   (2.1) 

with 𝑖 = 𝑥, 𝑦 
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The incident electric field components are given by 

𝐸y
𝜔 = 𝐸𝑜

𝜔 sin(Ψ) cos (𝜔𝑡 +
𝜋

2
)          (2.4)            

𝐸x
𝜔 = 𝐸𝑜

𝜔 cos(Ψ) cos(𝜔𝑡)     (2.2) 

Where Ψ/2 is the angle of the half wave plate and the phase shift 𝜋/2 is induced 

by the quarter wave plate and 𝐸𝑜 is the incident electric field amplitude. After 

combining Eq. 2.1 and 2.2 and time averaging the calculus, we obtain the final 

expression: 

𝐼Ψ𝑖
2𝜔 ∝ |𝑃𝑖

2𝜔(Ψ)|
2

= (𝐸𝑜
𝜔)4 8⁄ |(𝜒𝑖;𝑥,𝑥

(2)
)
2

𝑐𝑜𝑠4(Ψ) + (𝜒𝑖;𝑦,𝑦
(2)

)
2

𝑠𝑖𝑛4(Ψ) + 2 (2(𝜒𝑖;𝑥,𝑦
(2)

)
2

−

𝜒𝑖;𝑥,𝑥
(2)

. 𝜒𝑖;𝑦,𝑦
(2)

) sin2(Ψ) cos 2(Ψ)|       (2.3) 

This calculation is general for all glass ceramic systems to simulate their 

macroscopic SHG responses. Based on this equation, one could recognize that 

behavior of the responses belong to the relative ratio of coefficients of the three 

trigonometric terms, i.e. (𝜒𝑖;𝑥,𝑥
(2)

)
2

 (A),  (𝜒𝑖;𝑦,𝑦
(2)

)
2

 (B) and 2 (2(𝜒𝑖;𝑥,𝑦
(2)

)
2

− 𝜒𝑖;𝑥,𝑥
(2)

. 𝜒𝑖;𝑦,𝑦
(2)

) 

(C). There are several possibilities, among them: 

- If 2AB > C, the principal terms are in the main direction of incident and 

analysed polarization. The SHG response is mainly dipolar (Figure 2.4, red 

patterns). 

- If 2AB < C, the crossed term (two excitation with two different polarization) 

starts to be predominant. The SHG response is mainly octupolar  (Figure 2.4, 

green patterns).  
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Figure 2.4: SHG responses with dipolar property (2AB>C) and octupolar property (2AB<C) 

This calculation can be applied to the following LNS and LBG glass ceramic 

systems.  

2.3.3 Li2O – Nb2O5 – SiO2 (LNS) glass ceramics  

The LNS glass ceramic sample was elaborated from 2-step heat treatment. The 

heat process includes a first nucleation step done at 620oC during 1h and followed 

by a crystal growth step at 690oC (between Tg and Tx) during 75 min. The obtained 

LNS glass ceramic contains 25-35μm size spherulites. Figure 2.5 shows a typical 

spherulite within the silicate matrix. The transparency of the glass ceramics is very 

high which is close to the mother as pristine glass. Conditions of glass elaboration 

and its characteristics can be found elsewhere [1-3]. 
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Figure 2.5: Typical spherulite of LNS glass ceramics observed through (a) an optical microscope and 

(b) an SEM; (c) the polarized Raman spectra at different positions in (a).  

The precipitation of the unique crystalline phase LiNbO3 has been investigated 

with micro-Raman spectroscopy inside and outside the spherulite. Sharp peaks 

merge in the spectra obtained only inside the spherulite (area 1 and area 2 in the 

Figure 2.5c), which are attributed to LiNbO3 crystal phase.  

The orientation of the crystallites within the spherulite was further quantified by 

imaging the micro-Raman signal registered in the domain 230-300 cm-1 inside the 

spherulite where the LiNbO3 single crystal response is the most sensible to its 

orientation. The authors [1] have demonstrated radial c-axis orientation of LiNbO3 

crystallites within the spherulite (see Figure 2.5). More detail can be found in [1, 2].    

In terms of nonlinear properties, LiNbO3 is an SHG-active crystal with one 

dominant d33 nonlinear coefficient and dipolar behavior. The lithium niobate class 

symmetry is C3v and the nonlinear coefficients reported are: d33 = 34.4 pm/V, d31 = 

5.95 pm/V, and d22 = 2.76 pm/V [2, 15, 16].  
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𝐶3𝑣 ∶  (

0 0 0
𝑑22
̅̅ ̅̅̅ 𝑑22 0
𝑑31 𝑑31 𝑑33

    
0 𝑑31 𝑑22

̅̅ ̅̅̅

𝑑31 0 0
0 0 0

)   (2.4) 

The micro-SHG mapping has demonstrated the correlation with polarized micro-

Raman mapping characterizations where one can observe in both cases the 

rotation of maximum signal with the rotation of the excitation polarization (Figure 

2.6). Therefore, correlated micro-SHG and micro-Raman characterizations allow to 

conclude that d33 component of LiNbO3 crystallites within the spherulite domains is 

effectively predominant (dipolar behavior) to explain the microscopic SHG signal 

evolution inside the spherulite [1].  
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Figure 2.6: Probing the spherulite in Figure 2.5: micro-Raman (obtained at selected 250 cm-1 band, 

detection polarized y;y,y) and micro-SHG mapping for different angles of polarization of excitation and 

reflected signals [1, 2] 
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Macroscopic SHG Ψ response (Ψs-Exp.) obtained in transmission mode (see 

section 2.2.5) are depicted in Figure 2.7. Considering it is the sum of spherulites’ 

SHG responses in non-active glass, one can use information obtained from macro 

SHG data and LiNbO3 crystallite properties as inputs to equation (2.3). 

Experimentally, we observe from θ scans (see section 2.2.5) that 𝜃𝑝𝑝 = 𝛼𝜃𝑝𝑠  

𝐼𝑦𝑦
2𝜔 = 𝛼𝐼𝑦𝑥

2𝜔 and 𝜃𝑠𝑠 = 𝛼𝜃𝑠𝑝  𝐼𝑥𝑥
2𝜔 = 𝛼𝐼𝑥𝑦

2𝜔 [1, 3] (2.5).  

If we do not take into account the scattering loss, Equation 2.5 implies that 

|𝜒𝑦;𝑦,𝑦
(2)

| = √𝛼|𝜒𝑦;𝑥,𝑥
(2)

| and |𝜒𝑥;𝑥,𝑥
(2)

| = √𝛼|𝜒𝑥;𝑦,𝑦
(2)

| with estimation 𝛼 ≈ 2.35.  

Secondly, we observe from Ψ scans (see Section 2.2.5): 𝐼Ψ∥
2𝜔 = 𝐼Ψ⊥

2𝜔 modulo 90o, 

which implies by identification √𝛼|𝜒𝑦;𝑥,𝑥
(2)

| = √𝛼|𝜒𝑥;𝑦,𝑦
(2)

| = |𝜒𝑥;𝑥,𝑥
(2)

| = |𝜒𝑦;𝑦,𝑦
(2)

|.  

Furthermore, according to the LiNbO3 (2) components, we have d15 = d31. This 

implies that 𝜒𝑦;𝑦,𝑥
(2)

= 𝜒𝑥;𝑦,𝑦
(2)

 and 𝜒𝑥;𝑦,𝑥
(2)

= 𝜒𝑦;𝑥,𝑥
(2)

    

As a consequence, using equation (2.3), we obtain finally: 

𝐼Ψ𝑦
2𝜔 ∝ |𝑃𝑦

2𝜔(Ψ)|
2

= ((𝐸𝑜
𝜔)4 8⁄ )(𝜒𝑦;𝑦,𝑦

(2)
)
2

|1 𝛼⁄ 𝑐𝑜𝑠4(Ψ) + 𝑠𝑖𝑛4(Ψ) + 2 (2 𝛼⁄ −

1
√𝛼

⁄ ) sin2(Ψ) cos 2(Ψ)|       (2.6) 

𝐼𝛹𝑥
2𝜔 ∝ |𝑃𝑥

2𝜔(𝛹)|2 = ((𝐸𝑜
𝜔)4 8⁄ )(𝜒𝑥;𝑥,𝑥

(2)
)
2

|𝑐𝑜𝑠4(𝛹) + 1
𝛼⁄ 𝑠𝑖𝑛4(𝛹) + 2 (2 𝛼⁄ −

1
√𝛼

⁄ ) 𝑠𝑖𝑛2(𝛹) 𝑐𝑜𝑠 2(𝛹)|       (2.7) 

Then taking into account the estimation of α, one can estimate the identical 

responses modulo 90o:  

𝐼Ψ𝑦
2𝜔 ∝ |𝑃𝑦

2𝜔|
2

≅ [
(𝐸𝑜

𝜔)4

8
⁄ ] (𝜒(2))

2
|0.425𝑐𝑜𝑠4Ψ + 0.397𝑐𝑜𝑠2 Ψ𝑠𝑖𝑛2Ψ + 𝑠𝑖𝑛4Ψ| (2.8) 

𝐼Ψ𝑥
2𝜔 ∝ |𝑃𝑥

2𝜔|2 ≅ [
(𝐸𝑜

𝜔)4

8
⁄ ] (𝜒(2))

2
|𝑐𝑜𝑠4Ψ + 0.397𝑐𝑜𝑠2 Ψ𝑠𝑖𝑛2Ψ + 0.425𝑠𝑖𝑛4Ψ| (2.9) 
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Figure 2.7: Nonlinear optical measurement performed on the bulk of LNS glass-ceramic Ψ-scan (Ψs). 

The experiment response was obtained by rotating the polarization of the laser beam along the z-axis 

(Figure 2.1). The detector was polarized along x-axis (or s). The calculation is based on equation 2.9 

However, as illustrated on Figure 2.7, the calculation does not fit with the 

experimental patterns. The difference between them could be assigned to the 

assumption of scattering loss which could not be ruled out. Scattering loss is 

defined as SHG signal which is independent of the incident and analysed 

polarization. It are commonly observed for powder analysis [17]. In fact, this 

mismatch is supported by the dipolar nature of LiNbO3 which contains d33 >> d31 

and d22.  

Now, we take into account the scattering loss and recall the equation 2.6 and 2.7 

with some modifications 

𝐼Ψ𝑦
2𝜔 ∝ |𝑃𝑦

2𝜔(Ψ)|
2

= ((𝐸𝑜
𝜔)4 8⁄ )(𝜒𝑦;𝑦,𝑦

(2)
)
2

|1 𝛼1
⁄ 𝑐𝑜𝑠4(Ψ) + 𝑠𝑖𝑛4(Ψ) + 2 (2 𝛼1

⁄ −

1
√𝛼1

⁄ ) sin2(Ψ) cos 2(Ψ)| + 〈𝐵𝑆𝐿〉       (2.10) 
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𝐼𝛹𝑥
2𝜔 ∝ |𝑃𝑥

2𝜔(𝛹)|2 = ((𝐸𝑜
𝜔)4 8⁄ )(𝜒𝑥;𝑥,𝑥

(2)
)
2

|𝑐𝑜𝑠4(𝛹) + 1
𝛼1

⁄ 𝑠𝑖𝑛4(𝛹) + 2 (2 𝛼1
⁄ −

1
√𝛼1

⁄ ) 𝑠𝑖𝑛2(𝛹) 𝑐𝑜𝑠 2(𝛹)| + 〈𝐵𝑆𝐿〉       (2.11) 

Where α1 is the ratio of |𝜒𝑦;𝑦,𝑦
(2)

|
2

/|𝜒𝑦;𝑥,𝑥
(2)

|
2

 and 〈𝐵𝑆𝐿〉 is the scattering loss. Using the 

fitting function provided by Origin, we obtain 𝛼1 ≅ 5 and 〈𝐵𝑆𝐿〉 ≅ 0.23 or: 

 𝐼𝛹𝑥
2𝜔 ∝ 𝑐𝑜𝑠4(𝛹) + 0.2𝑠𝑖𝑛4(𝛹) + 0.094 𝑠𝑖𝑛2(𝛹) 𝑐𝑜𝑠 2(𝛹) + 0.23   (2.12) 

 

Figure 2.8: The experiment response (Ψs) in comparison with the calculated patterns which is based 

on equation 2.12 

As observed on Figure 2.8, the calculated curve extracted from Equation 2.12 fit 

well with the experimental result of Ψy. The scattering loss is around 23%. This 

result is in good agreement with a resulting macroscopic SHG signal being the 

sum of SHG-active domains producing dominant dipolar component (d33). 

However, the ratio α is effected by the orientation distribution of dipoles within the 

spherulites, so it should be lower than the proportion of d33 and other components.  
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2.3.4 La2O3 – B2O3 – GeO2 (LBG) glass ceramics  

The transparent glass ceramic sample is elaborated from the (25La2O3 – 25B2O3 – 

50GeO2) glass composition obtained by typical quenching method. Then the glass 

ceramic samples were prepared by 2-step heat treatment in which the first 

nucleation step was done at 680oC during 2h and followed by a crystal growth step 

at 775oC (between Tg and Tx) during 30min. Further conditions of elaboration of 

LBG glass and glass ceramics can be found elsewhere [2, 18]. The spherulites 

within the LBG glass network in around 30μm size have been obtained and 

characterized by XRD method. The only LaBGeO5 crystal phase has been proved 

to precipitate from this thermal process. The glass ceramics shows high 

transmission close to 80%. Some other properties such as thermal, structural and 

optical properties of the glass ceramics can be found in [2]. 

In order to investigate the microscopic nonlinear SHG optical response and make 

the appropriate correlation with the glass ceramics structuring, the combination of 

(i) micro-Raman backscattering spectroscopy and (ii) micro-SHG in the 

backscattering mode were utilized simutaneously. The detail for the technique can 

be found in the section 2.2.6 of this chapter. Those techniques employ the same 

setup to get a direct link between optical properties and local structure at the 

microscopic level. Micro SHG/Raman correlative analysis was performed around 

100 μm inside the bulk of a LBG glass ceramic at the equatorial plane of a 

spherulite. Figure 2.9 shows three typical Raman spectra measured either inside 

or outside the spherulite structure (location noted on the optical image). Raman 

measurements were carried out in y-y configuration with the vertical polarization 

oriented along the y-axis of the lab-framework (Figure 2.9(a)). 

Raman spectra measured within the glass matrix (area 1, Figure 2.9(b)) show 

three main large bands within the spectral ranges of 250–400, 450–650, and 700–

900 cm-1. The low frequency envelope is attributed to lanthanum vibrations and 

lattice modes from the glass matrix. The two other large massifs peaking at 800 

and 550 cm-1 correspond, respectively, to symmetric stretching vibration of BO4 

and GeO4 tetrahedra units and bending modes from the bridges forming 
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tetrahedral chains [19-22]. Inside the spherulite (Figures 2.9(c) and (d)), Raman 

sharp peaks appear in addition to the glass matrix background. A good 

correspondence can be done with the Raman signature of the stillwellite LaBGeO5 

crystalline phase [19, 20]. Raman spectra intensities of a peak at 390 cm-1 differ 

when measured at different places in the spherulite. According to Raman studies 

on single crystals [19, 20], the intensity of this low frequency peak is dependent of 

the crystal orientation and is maximum when the incident laser direction of 

polarization is parallel to the c axis of the LBG crystal. The Raman (yy) mapping 

presented in Figure 2.10(b) depicts the integration of the band peaking at 390 cm-

1. A stronger Raman signal is observed along the spherulite vertical axis, revealing 

a radial distribution of LaBGeO5 crystallites with their c-axis oriented along the 

spherulite radius. 

 

Figure 2.9: (a) Optical microscope image of a spherulite and three distinct spots where Raman spectra 

were recorded. Parts (b), (c) and (d) of the figure show the corresponding Raman spectra 

The micro-SHG mapping carried out at the same position in (y;y,y) polarization 

configuration is reported in Figure 2.10(a). One can notice large variations of the 
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SHG intensity within a range of three orders of magnitude. Locations of maximum 

SHG signal are mainly distributed along the horizontal axis of the figure. In Figure 

2.10(c), we have combined the two Raman and SHG images in order to point out 

the accurate orthogonality existing between the c-axis orientation of the crystallites 

revealed by Raman and their maximum SHG response. 

 

Figure 2.10: (a) micro-SHG mapping of a spherulite probed with the excitation and the collected 

harmonic polarized vertically (a similar image is obtained in crossed polarization (x;y,y)), (b) Raman 

mapping indicating the radial orientation of the c-axis of LBG crystallites, (c) combination of the SHG 

and Raman images each signal is depicted with two different color code (blue for SHG and brown for 

Raman). 

To interpret these observations, we will refer to the NLO properties reported for a 

LaBGeO5 single crystal. LaBGeO5 class symmetry is C3 and three nonlinear 

coefficients with similar magnitude have been reported: d11 = 0.76 pm/V, d33 = 0.57 

pm/V, and d31 = 0.68 pm/V [23]. If we consider that the a and b axes of the crystal 

could not be differentiated because the crystal structure is uniaxial, we assume d11 

= d22 and the single crystal tensor deriving from the C3 class symmetry. The 

nonlinear tensor is expressed as follow:  

𝐶3 ∶  (

𝑑11 𝑑11
̅̅ ̅̅ 0

𝑑11
̅̅ ̅̅ 𝑑11 0
𝑑31 𝑑31 𝑑33

    
0 𝑑31 𝑑11

̅̅ ̅̅

𝑑31 0 𝑑11
̅̅ ̅̅

0 0 0

)    (2.13) 

Micro-Raman analysis has shown a radial distribution of the LaBGeO5 crystallites 

along their c-axis within the spherulites. Then, in micro-SHG, we will probe the 
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terms d33 or d11 in (y;y,y) configuration if the c-axis is along y and d31 for (x;y,y) 

configuration when the c-axis is along the x. Finally, as a strict orthogonality is 

observed between c-axis orientation of the crystallites and their SHG response 

and the same SHG response observed for (y;y,y) and (x;y,y) polarization 

configurations, we can deduce that d11 >> d33. Comparable images are obtained 

for both configurations in accordance with two remaining d11 and d31 coefficients of 

comparable value. One hypothesis to explain the low value of d33 could be due to 

an anti-parallel ordering of the crystallites (like anti-ferroelectric domains) within 

the spherulite inducing a cancellation of the main dipolar component d33. 
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Figure 2.11: nonlinear optical measurement performed on the bulk of LBG1 glass-ceramic θ-scan (top) 

and Ψ-scan (bottom). 

From the formula (2.3) given in section 2.3.2, we can obtain: 

𝐼Ψ𝑖
2𝜔 ∝ |𝑃𝑖

2𝜔(Ψ)|
2

= (𝐸𝑜
𝜔)4 8⁄ |(𝜒𝑖;𝑥,𝑥

(2)
)
2

𝑐𝑜𝑠4(Ψ) + (𝜒𝑖;𝑦,𝑦
(2)

)
2

𝑠𝑖𝑛4(Ψ) + 2 (2(𝜒𝑖;𝑥,𝑦
(2)

)
2

−

𝜒𝑖;𝑥,𝑥
(2)

. 𝜒𝑖;𝑦,𝑦
(2)

) sin2(Ψ) cos 2(Ψ)|       (2.14) 

Experimentally, we observe from θ scans 𝐼𝑦𝑖
2𝜔 = 𝐼𝑥𝑖

2𝜔, which implies |𝜒𝑦;𝑥,𝑥
(2)

| =

|𝜒𝑦;𝑦,𝑦
(2)

| and |𝜒𝑥;𝑥,𝑥
(2)

| = |𝜒𝑥;𝑦,𝑦
(2)

| (Figure 2.11a or [2]). 

Then from Ψ scans 𝐼Ψ𝑦
2𝜔 = 𝐼Ψx

2𝜔 which implies by identification |𝜒𝑦;𝑥,𝑥
(2)

| = |𝜒𝑥;𝑦,𝑦
(2)

| and 

|𝜒𝑥;𝑥,𝑥
(2)

| = |𝜒𝑦;𝑦,𝑦
(2)

|. In other words all the components are equal in module.  

Furthermore, if we come back to the crystal nonlinear tensor and then consider the 

radial orientation of the crystallites inside the spherulite, we have d15 = d31 for each 

crystal. This implies that |𝜒𝑦;𝑦,𝑥
(2)

| = |𝜒𝑥;𝑦,𝑦
(2)

| = |𝜒𝑥;𝑦,𝑥
(2)

| = |𝜒𝑦;𝑥,𝑥
(2)

|. 

However, since we observe experimental maxima at 45° modulo 90° it is 

necessary that 𝜒𝑖;𝑥,𝑥
(2)

= −𝜒𝑖;𝑦,𝑦
(2)

 to verify this condition in the following expression.  

𝐼Ψ𝑖
2𝜔 ∝ |𝑃𝑖

2𝜔|
2

= [
(𝐸𝑜

𝜔)4

8
⁄ ] (𝜒(2))

2
|𝑐𝑜𝑠4Ψ + 6𝑐𝑜𝑠2 Ψ𝑠𝑖𝑛2Ψ + 𝑠𝑖𝑛4Ψ|  (2.15) 

In this particular case, a general expression of SHG intensity in scan 

measurement can be noticed as follow [4]:  

 〈𝐼𝜓𝑖
2𝜔〉 = 𝐺 [[|𝜒(2)|

2
𝐶Ψ𝑖

𝐶𝑜ℎ]
𝑆𝑝ℎ

+ 〈𝐵𝑆𝐿〉] . [𝐼𝜔]2    (2.16) 

With 𝑖 = 𝑥, 𝑦 orientations (Figure 2.1), G is a pre-factor, 𝜒(2) is a Cartesian 

component of the average efficient susceptibility and 〈𝐵𝑆𝐿〉 accounts for scattering 

losses, 𝐶Ψ𝑖
𝐶𝑜ℎ is the average coherent response of a spherulite.  

In short, the average coherent response of a LaBGeO5 spherulite can be given by 
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𝐶Ψ𝑖
𝐶𝑜ℎ = [𝑐𝑜𝑠4Ψ + 6𝑐𝑜𝑠2 Ψ𝑠𝑖𝑛2Ψ + 𝑠𝑖𝑛4Ψ]   (2.17) 

As reported in Figure 2.11b, a very good agreement between the data and Eq. 

(2.15) is observed, yielding scattering losses 〈BSL〉~17%. Therefore, SHG studies 

performed at different spatial scales are fully in agreement with the picture of a 

radial distribution of crystals inside the spherulite but with an octupolar response 

indicating thus that a local loss of the dipolar response occurs, which may be 

explained by an anti-ferroelectric arrangement of the crystallites.  

2.3.5 Conclusion 

In conclusion, the general mathematical model for the correlation between local 

structure of a spherulite and the macroscopic SHG patterns has been proposed 

and developed. Based on the model, the origin of the dipolar SHG response (LNS 

glass ceramics) and the octupolar SHG response (LBG glass ceramics) observed 

for LiNbO3 and LaBGeO5 crystallites precipitating in silicate or borogermanate 

glasses have been correlated to the organization of the crystallites within 

spherulite domains. The c-axis crystallites are radially distributed along the radius 

directions of the spherulites. 

In terms of LNS glass ceramics, the general equation describing the macro SHG 

patterns depends on the polarization of the detector. However, they are identical 

but rotated 90o.  

In the specific case of the LBG glass ceramics, an antiparallel orientation of 

crystallites domains is expected to explain the loss of the dipolar d33 component in 

the SHG response.  

The model shows good agreement with experimental results in both LNS and LBG 

glass ceramics containing radially oriented crystallites within the spherulite. 

However, the different behaviors (dipolar and octupolar) of SHG patterns is due to 

the different crystal symmetries and organization of crystallites. Therefore, this 

resulted model will be useful to be applied to the next glass ceramic system based 
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on germanotellurite composition with respect to its local crystal organization and 

symmetry.   
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3.1 Introduction 

For the last two decades, optical nonlinearity, especially Second-Order 

Nonlinearity (SON), has become a key property for many applications in the 

domain of photonics, notably for electro-optical effects and frequency conversion. 

Single crystals are well known materials for these applications because of their 

strong optical nonlinear property. However, they are complicated to manufacture 

and are strongly dependant on crystal orientation. One way to circumvent this 

problem is to replace the single crystals with new materials like glass ceramics 

which can present a favourable combination of ferroelectric crystals and glass 

matrix where SON does not exist due to centrosymmetric organization [1, 2]. 

Several glass ceramic materials presenting second harmonic generation (SHG) 

arising from LaBGeO5, LiNbO3 and KNbO3 crystals have been reported [3-5] but 

their low transparency still limits commercial applications. 

Optical glass ceramics require high transparency and high SON [2, 6]. To ensure 

the quality of the transmission in glass ceramics, two common solutions are 

envisaged: size restriction of crystals and/or reduction of the refractive index 

difference between the glass and the crystallized parts [7]. The latter requirement 
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can be fulfilled by a careful choice of glass matrix and crystal phase. Regarding 

the host-glass compositions, tellurite remains one of the most promising glass 

formers, because of its low melting temperature and the fact that refractive indices 

of those glasses and many ferroelectric crystals are quite similar [8]. This means 

that low scattering losses at the interface between glass and crystals can be 

obtained and therefore high transparency might be achieved. Another possibility is 

to control the time and temperature of annealing to obtain small crystals, of sub-

micron size, and thus reduce the scattering of light [2]. However, in order to control 

the crystal growth in the bulk, it is necessary to avoid dominant surface 

crystallization and promote bulk crystallization [9, 10]. Only a few reported works 

show elaboration and optical properties characterizations of transparent tellurite 

glass–ceramics containing a high crystal volume fraction [2, 11]. This can be 

attributed to preferential surface crystallization in TeO2 -based glasses [2, 10].  

Monteiro et al. has studied the TeO2 – GeO2 – Nb2O5 – K2O germanotellurite 

system [12, 13] where the combination of the TeO2 and GeO2 glass-forming 

constituents results in highly stable glasses, especially for the high germanate and 

high tellurite compositions [12]. The germanotellurite composition 70TeO2 – 

10GeO2 – 10Nb2O5 – 10K2O, with a higher refractive index [12], was chosen for 

further studies. In this work, we added different amounts of silver oxide as 

nucleating agent, aiming to control the bulk vs surface crystallization processes in 

order to obtain homogeneous glass ceramics. Optical transparency and second 

order optical properties are correlated to glass ceramics synthesis.   

3.2 Effect of silver oxide addition on the germanotellurite glasses 

3.2.1 Glass preparation 

Germanotellurite glasses with compositions (100-x) [70TeO2 – 10GeO2 – 10Nb2O5 

– 10K2O] – xAg2O (mol%) for x=0, 2, 4, 6 mol% (labeled 7T1G, 7T1G2Ag, 

7T1G4Ag, and 7T1G6Ag, respectively) were prepared by traditional melt-

quenching methods. A mixture of commercial powders of TeO2 (99.99%, Alfa 

Aesar), GeO2 (>99.99%, Aldrich), Nb2O5 (99.9985%, Alfa Aesar), K2CO3 
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(99.997%, Alfa Aesar) and corresponding amount of silver nitrate (AgNO3, 

99.995%, Alfa Aesar) was melted at 900oC for 30 minutes after a preheating step 

at 150oC to remove moisture. It was then poured on a 300oC pre-heated platinum 

plate before an annealing step at the same temperature (300oC, ~ Tg – 50oC [13]), 

for 6 hours. 

 

Figure 3.1: Elaborated (100-x) [70TeO2 – 10GeO2 – 10Nb2O5 – 10K2O] – xAg2O (mol%) glass samples.  

3.2.2 Elemental analysis, density and refractive index 

Nominal and experimental compositions determined by WDS analysis of all glass 

samples are presented in Table 3.1. The experimental results are quite close to 

nominal composition. Some differences occur, namely with light elements such as 

Ge and O which could not be detected precisely. Ag element, on the other hand, 

usually shows slightly lower quantity than theoretical one due to volatility of Ag2O 

during high temperature melting (900oC).  

The refractive index of each glass is higher than 2.00 as listed in Table 3.2. Due to 

the increase of Ag content (from 0 to 6%), the refractive index increases slightly 

from 2.021 to 2.043 (at 532nm).  

Due to the high density of Ag2O (molar mass of 231.77g/mol [14]), the density of 

7T1GxAg (x=0,2,4,6) shows  a monotonic increase  with increasingAg2O content 

from 4.858g/cm3 to 5.063g/cm3 (see Table 3.2).  

 

 



Chapter 3 – Ag2O Doped Germanotellurite Glass and Glass Ceramics 

 

83 
 

Table 3.1: WDS analysis (in at%) of 7T1GxAg glass compositions (x=0,2, and 6) in comparison with the 

starting calculated composition. 

 7T1G (at%) 7T1G2Ag (at%) 7T1G6Ag (at%) 

Cal. Exp. Cal. Exp. Cal. Exp. 

Te 20.59 20.96 20.22 20.82 19.50 19.26 

K 5.88 6.47 5.78 6.16 5.57 6.65 

Ge 2.94 2.78 2.89 2.70 2.79 3.74 

O 64.71 64.34 64.15 63.94 63.01 60.63 

Nb 5.88 5.44 5.78 5.31 5.57 6.44 

Ag 0 0 1.18 1.07 3.56 3.26 

 

 

3.2.3 Thermal analysis 

Characteristic temperatures (Tg, Tx1 and Tx2) of all glasses are listed in Table 3.2 

and DSC curves of all glasses heated at 20K/min are shown in Figure 3.2. Glass 

transition temperature decreases from 377oC to 339oC with the progressive 

insertion of silver oxide. Besides that, a second crystallization peak occurs, with 

increasing silver oxide addition which becomes well separated for the 7T1G6Ag 

composition. In order to study crystallization of these glasses, bulk and powder 

DSC measurements were performed. The bulk measurements were made in small 

pieces of glass with ~1-2 mm, while powder measurements were made in grinded 

samples with ~80-100 um in size. Figure 3.2 shows different crystallization 

behavior in bulk and powder silver doped glasses, in comparison with the 7T1G 



Chapter 3 – Ag2O Doped Germanotellurite Glass and Glass Ceramics 

84 
 

glass. In the silver-free composition, surface crystallization occurs at lower 

temperature than bulk crystallization (Tx comparisons, Table 3.2). Then, the gap 

between Tx1 and Tx2 rises when the silver oxide content increases. For the 

7T1G6Ag composition, the first onset crystallization temperature Tx1 is clearly 

observed around 420oC in both bulk and powder samples. For this composition, 

both bulk and powder forms show comparable thermal behavior.  

 

Figure 3.2: DSC curves of 7T1GxAg (x=0, 2, 4 and 6) glasses. Red and blue curves correspond to 

powder and bulk scans, respectively. 
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Table 3.2: Thermal characteristics of silver oxide doped germanotellurite glasses 

Sample Tg (oC) 

(±2) 

Tx1 (oC) (±2) Tx2 (oC) (±2) n (at 532nm) 

(±0.005) 

ρ (g/cm3) 

(±0.005) 

Thickness (mm) 

(±0.005) Powder  Bulk Powder Bulk 

7T1G 377 459 478 - - 2.021 4.858 0.903 

7T1G2Ag 360 436 455 - - 2.039 4.896 0.991 

7T1G4Ag 351 429 434 470 - 2.036 5.026 1.042 

7T1G6Ag 339 417 420 540 541 2.043 5.063 0.924 
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3.2.4 Structural analysis 

To illustrate the structural modification of glass samples in respect to silver oxide 

content, normalized (at 670 cm-1) Raman spectra of all glass samples are 

presented in Figure 3.3. All spectra exhibit two broad intense features which are 

similar to previous studies of tellurite glasses [12, 15-17]. The region at 400-550 

cm-1 is attributed to the bending vibrations of the Te-O-Te linkages. The high-

frequency region, which consists of a broad peak at 650-670 cm-1 and two 

shoulders at 720-750 cm-1 and 850-900 cm-1, is ascribed to the stretching mode of 

the TeO4 trigonal bipyramid (tbp) and TeO3+1 or TeO3 trigonal pyramid (tp), 

respectively, whereas the last one belongs to the stretching mode of Nb-O bonds 

[12, 18]. 

 

Figure 3.3: Normalized Raman spectra of germanotellurite glasses with different amount of silver 

oxide 

Raman spectra of germanotellurite glasses with 10 mol% of GeO2 mainly present 

specific features of the TeO2-based glasses, in which the glass network is built of 

TeO4 tbp and TeO3+1/TeO3 tp entities [19-21]. In such TeO2 rich glasses, the 
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vibration bands attributed to GeOx entities could be overlapped by strong TeOx 

bands, though Ge-O-X (X=Ge, Te) bridging bond vibration cannot be excluded in 

the region 400-550 cm-1 as a maximum is observed at 420 cm-1 in the GeO2 glass 

spectrum attributed to Ge-O-Ge symmetric stretching vibration [12]. By adding 

silver oxide, intensity decrease of the band attributed to Te-O-Te linkages (400-

550 cm-1 region), and intensity increase of the shoulder (at 770 cm-1) attributed to 

TeO3+1 or TeO3 tp vibrations are observed. This indicates that the interaction of Ag 

ions with the network leads to the disruption of TeO4 tbp units and its conversion to 

TeO3+1/TeO3 tp units. This effect is also consistent with previous studies [19, 22]. 
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3.2.5 Optical properties 

 

Figure 3.4: (a) Transparency window of the 7T1G glass from 400nm to 3μm and (b) Transmittance 

spectra of glass samples with compositions (100-x)[70TeO2 – 10GeO2 – 10K2O – 10Nb2O5] – xAg2O, 

where x = 0 – 6. 

The transmittance spectra in the Ultra Violet – Visible – Near Infrared region are 

presented in Figure 3.4 for all glass compositions. The UV edge is observed at 

around 400nm and they present a light yellowish color. Tellurite-based glasses 

have a long optical window up to 3 μm which is mentioned as an advantage [23, 
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24]. Kim et al. [8] measured the transmission window of pure TeO2 glass in the 

range of wavelength between 200nm and 2.5 μm, the absorption being limited in 

the near-infrared region by the absorption of H2O impurity. This could be improved 

if necessary by preliminar purification of reagents and fusion under controlled 

atmosphere. The transmission is stable close to 80% and then decreases beyond 

2500 nm.  

As other tellurite-based glasses, germanotellurite glasses also have high refractive 

index (n > 2.0, Table 3.2) which leads to high multireflection loss. The loss is 

estimated by Fresnel formula to more than 20% and is close to experimental 

results (absorption loss and Rayleigh diffusion loss were not taken into account). It 

is noticed that the reflectance losses occur at the interfaces between glass and air 

on both sides [25].The equation below shows that for the 7T1G6Ag composition, 

with n800=2.04, the reflectance will be estimated as 21% (R=1-T).  

𝑇 ≈
2𝑛

𝑛2+1
≈ 0.79     (3.1) 

The cut-off wavelength [26] on the UV side shows a red-shift with respect to 

pristine glass as a sequence of silver oxide insertion. The increase of NBO atoms 

with the addition of Ag2O as modifiers makes the glass structure become less 

ordered. As a result, it could induce more extension of the localized states within 

the gap according to Mott and Davies [27], leading to a decrease of the band gap. 

Furthermore, the formation of silver clusters observed previously in literature [28, 

29] could also be at the origin of a band-gap reduction. This hypothesis will be 

further studied through luminescence studies.  
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3.2.6 Phase separation and crystalline phase  

 

Figure 3.5: Transmission electron microscopy image of (a) 7T1G6Ag and (b) 7T1G glasses. 

Transmission electron microscopy observations of the glass samples reveal the 

presence of circular-shape droplets on the scale of 2-5nm, indicating the existence 

of nanoscopic liquid-liquid phase separation in the melts of 7T1G6Ag and 7T1G 

compositions (Figure 3.5a and 3.5b). This phase separation was also observed 

for fast quenching in which the crucible with the melt was put directly in cold water.  

To investigate the crystal phases precipitating in each kind of glass, heat treatment 

was performed. Specific heat treatment temperatures were chosen so that T ≥ Tx1 

for each composition. The glass is crushed, heated during 12h, and characterized 

by XRD diffraction. As observed in Figure 3.6, the main crystalline phase 

appearing among other phases, in 7T1G, is δ-TeO2. With increasing Ag2O content, 

this phase reduces in preponderance and other phases rise, such as  the 
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crystalline phase K[Nb1/3Te2/3]2O4.8. In fact, for 6 mol% Ag2O addition, the 

crystallization evidences only the K[Nb1/3Te2/3]2O4.8 phase if the temperature 𝑇 ≅

𝑇𝑥1. For T>Tx1, different phases appear, one of which could be assigned to γ-TeO2 

[30, 31].  

 

Figure 3.6: XRD patterns of heat treated7T1GxAg compositions. The heat treatment temperature was 

chosen, for each composition, to meet the condition (T>Tx1). In the figure, # is K[Nb1/3Te2/3]2O4.8, δ is δ-

TeO2 and * is an unknown phase [9, 13].  

3.2.7 Behavior of silver within the germanotellurite glass matrix 

The role of Ag2O is important but its role within the glass matrix is unclear. 

Therefore, a photoluminescence (PL) experiment was carried out for the glasses 

under investigation. Effectively, the concentration of silver in the glass (3.56 at%) 

is reasonably large in comparison to several previous studies [32, 33], and 

clustering could be expected. The PL experiments were performed by using a 485 

nm laser excitation which is at the wavelength cut-off of the transmission window 

of 7T1GxAg glass samples (Figure 3.4). Then the PL signals were detected in the 
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range 500-800 nm and are shown on Figure 3.7. The broad band observed 

between 500 and 800 nm, with maximum at ~650nm in 7T1G4Ag and 7T1G6Ag, 

and not present for 7T1G2Ag and 7T1G is due to presence of silver and not to 

glass matrix defects. Several studies of silver ion-doped soda-lime silicate glasses 

[32-34] have proved that an annealing step at 300oC leads to the decrease of 

isolated Ag+ and important modification of the photoluminescence behavior 

attributed to aggregation of 2 to 4 silver atoms during annealing [35]. Belharouak 

et al. [36] have studied phosphate glasses containing large concentrations of silver 

ions. In addition to the PL band observed between 300 and 450 nm for excitation 

at 280nm attributed to isolated Ag+ ions, a broad PL band observed in the 450-800 

nm range with maximum at 550 nm for excitation at 350 nm has been attributed to 

the formation of Ag+-Ag+ dimers. Considering our case, where excitation below 

480nm cannot be performed because these radiation would be totally absorbed by 

the glass matrix, one can only suggest the presence of Ag+-Ag+ dimers or small 

silver ions clusters within the glasses with the higher content of Ag2O (4-6%). They 

would be revealed by a maximum PL signal around 650 nm obtained from the tail 

of the excitation band. For lower Ag2O ratio germanotellurite glasses (0-2%), the 

results show that silver is mainly present as isolated Ag+. One has to notice that 

partially reduced silver clusters as well as isolated Ag+, cannot be detected by 

photoluminescence due to the high cut-off wavelength value. Complementary 

Paramagnetic Electronic Resonance analysis could bring answer to this question 

[33].  
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Figure 3.7: UV-Vis spectra of 7T1GxAg glasses (x=0,2,4,6). 

3.2.8 Effect of silver oxide addition in the crystallization of 7T1GxAg glasses 

The strong modification in thermal property has confirmed the role of Ag2O as 

nucleating agent. From Figure 3.2, it is obvious that the 7T1G glass has favorable 

surface crystallization since the onset crystallization of powder DSC scan starts at 

lower temperature than the one for bulk sample. Apart from the observed decrease 

in Tg, the difference between surface and bulk DSC analysis is reduced and 

becomes null in the case of 7T1G6Ag. This indicates that it is possible to promote 

both bulk and surface crystallization with the incorporation of nucleating silver 

agents at the early stage of crystallization.  

Furthermore, the main crystalline phase occurring in 7T1G glass was observed to 

be δ–TeO2 (Fig. 3.6) which is not favorable to obtain second order optical 

properties, while, for 7T1GxAg (x≠0) samples, a phase showing SHG activity 

(K[Nb1/3Te2/3]2O4.8) is obtained. In addition, it was the unique phase appearing for 

the 6 mol% silver-containing glass ceramics. This phase had already been 
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reported in previous studies of tellurite glass systems [10, 37]. The cubic, 

centrosymmetric, fluorite-type (Figure 1.8) structure is consistent with our XRD 

(Figure 3.6) and theoretically is not SHG active. However, a slight distortion of the 

cubic structure was proposed to explain the nonlinear optical activity of glass 

ceramics containing this crystal (see Chapter 1) [37, 38]. Electron diffraction 

pattern obtained from TEM (see section 3.4) also confirms FCC cubic lattice with a 

lattice constant estimated a=5.47 Å, which is comparable with previous reported 

result in the tellurite glass system [39]. Explanation on the cause of distortion is still 

unclear but Kim et al. [40] has claimed that the atomic size of potassium metal ions 

may play an important role because a similar cubic crystalline phase of 

Na[Nb1/3Te2/3]2O4.8, does not show any SHG property. More details about the 

crystal phase will be discussed in Chapter 4.  

3.3 Germanotellurite glass ceramics 

3.3.1 Study of nucleation and silver aggregation during nucleation 

To determine the temperature of maximum nucleation rate, a heat treatment based 

on Marotta’s method was used. The method includes an intermediate thermal hold 

to induce exothermic peak temperature shifts [41]. The thermal program consists 

of a first heating step at a constant heating rate (e.g. 20K/min), followed by a 15 

min nucleation heat treatment at a fixed temperature. After that, the samples are 

heated at the same heating rate (20K/min) to beyond the crystallization peak 

temperature. Figure 3.8 illustrates the crystallization peaks obtained at different 

fixed temperatures from 320oC to 370oC with a 10oC step.  
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Figure 3.8: Crystallization peak obtained for different nucleation temperature 

The analysis concentrates on the shifts of exothermic crystallization peak 

temperatures as illustrated in the equation below [42]: 

ln(𝐼𝑜) =
𝐸𝑐

𝑅
(

1

𝑇𝑝
−

1

𝑇𝑝
𝑜) + 𝑐𝑜𝑛𝑠𝑡    (3.2) 

Where Io is the steady-state nucleation rate; Tp and Tp
o are peak temperatures with 

and without the intermediate thermal hold.  

Based on the Equation 3.2, the maximum nucleation rate is expected to occur for 

the lowest Tp (Figure 3.8, blue arrow) obtained after the thermal hold at a fixed 

temperature. As observed in Figure 3.8 which 7T1G6Ag was determined as 340oC 

which is close to Tg (339oC). 

In order to study the behavior of silver within the glass matrix during the nucleation 

step, the 7T1G6Ag glass was heat treated at 340oC to promote nucleation. 
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Different treatment durations were performed from 30 min to 24 hours. Figure 3.9 

shows the UV/Vis transmission spectra of all heat treated sample with regard to 

the as-pristine 7T1G6Ag glass. In general, the transmittance decreases 

proportionally with the treatment duration. For the 24h heat treated sample, the 

transparency decreases ~25% in comparison to the original 7T1G6Ag glass 

sample. However, the TEM analysis could not exhibit any crystallization nor any 

evolution of the separated droplets in size.  

Furthermore, a hump occurs at around 500 nm for the 30 min treated sample. This 

hump is not witnessed for longer treatment times. Therefore, this hump could be 

assigned to the plasmonic band due to the presence of silver nanoparticles. In 

literature, the plasmonic effect of silver nanoparticles depends on the size and 

shape of the particles as well as the refractive index of the medium around [43-45]. 

Some studies [46, 47] announced that the plasmonic wavelength ranges from 400 

nm to 500 nm. However, the red shift of plasmonic wavelength was also observed 

in high refractive index medium. Rai et al. [43] refer that the wavelength can be 

illustrated by the following equation:  

𝜆𝑚 = 𝜆𝑝 [1 + (
2+𝐹

1−𝐹
) 𝑛𝑠

2]

1

2
     (3.3) 

where 𝜆𝑚 and 𝜆𝑝 are the localized surface plasmon resonance (LSPR) absorption 

maximum and the wavelength of the plasmon resonance peak of bulk metal, 

respectively; F is the volume fraction; ns is the refractive index of the effective 

medium surrounding.   

The appearance of plasmonic effects suggests the agglomeration of silver and 

reduction of silver ions during the nucleation step. The disappearance of the 

plasmonic hump after that could be assigned to the change of particle size. The 

size of the silver nanoparticles was observed to decrease in several studies upon 

heat treating the samples [48, 49]. The mechanism of this degradation is 

suggested to relate to the total Gibbs free energy. When the particle size exceeds 
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a critical limit size (rc), the silver particle will lose Ago in order to reduce the Gibbs 

free energy.   

 

Figure 3.9: Transmission spectra of 7T1G6Ag glass heat treated at 340oC. The hump occurs after 30 

min but disappear after that. 

3.3.2 Glass ceramics preparation 

Glass ceramics were elaborated from the 7T1G6Ag based glass using different 

heat treatments in order to promote nucleation and/or crystal growth. One should 

note that various nucleation and growth temperatures and durations were tested. 

In this study, we have focused our attention on the two most representative series 

of obtained samples: (i) samples labeled 1S05, 1S15, and 1S30 were prepared by 

one-step treatment at 440oC (>Tx1, see Table 3.2) during 5, 15, and 30 minutes 

respectively and (ii) samples based on a 2-step treatment consisting of a the first 

step at 340oC (as determined by the Marotta method – see section 3.3.1) during 3 

hours to promote the nucleation and second growth step at 400oC during 15 

minutes (2S15) and 30 minutes (2S30). All glass ceramic samples were finally 

polished again on both sides to remove possible surface crystallization (Figure 

3.10). Another sample 2S8h (3 hours at 340oC for nucleation and 8 hours at 400oC 
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for crystal growth) was prepared to exhibit a highly crystallized X-ray diffraction 

(XRD) pattern.  

 

Figure 3.10: Glass ceramic samples elaborated through 1-step and 2-step heat treatments. 

Optical microscopic images of 1S15, 1S30, 2S15 and 2S30 samples are shown in 

Figure 3.11. After different heat treatments, domains in microscopic scale can be 

observed at the early stage of crystallization. The domains within the 1-step heat-

treated samples have the shape of 6-pointed or 8-pointed star-like polygons and 

their size increases from less than 1μm in diameter (1S05) to around 8 μm (1S30). 

On the other hand, the 2-step heat-treated samples appear textured in its entire 

volume. The size of the domains forming this texture is too small to be determined 

by optical microscopy.  
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Figure 3.11: Optical microscopy images of phase separation domains which are labeled as follows: (a) 

1S15, (b) 1S30, (c) 2S15 and (d) 2S30. 

Figure 3.12 presents the X-ray patterns of heat treated glass samples 1S05, 

1S15, 1S30, 2S15, 2S30 and 2S8h. The 2S8h pattern shows the presence of a 

unique crystalline phase that have been assigned to the crystalline phase 

K[Nb1/3Te2/3]2O4.8 [50]. The most intense peaks characterizing this crystal phase 

are observed on other XRD patterns except 2S05, leading to the conclusion that 

crystal growth of K[Nb1/3Te2/3]2O4.8 already occurs for sufficient growing treatment 

duration. But crystallization rate in 1S and 2S glass ceramic series is still low.  
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Figure 3.12: XRD powder patterns of all heat treated samples and the fully crystalline 2S8h which was 

developed for a clear observation of a unique phase of K[Nb1/3Te2/3]2O4.8. 

3.3.3 Optical transparency 

The 7T1G6Ag glass ceramics fabricated by 1-step and 2-step (Figure 3.13) 

methods exhibit lower transparency than the original as-quenched 7T1G6Ag glass. 

This transmittance reduction is observed in both thermal processes. The loss of 

transparency observed in the visible range on Figure 3.13a and 3.13b is correlated 

to the optical microscopy imaging of Figure 3.11. The size and density of domains 

optically observed appears to be the main origin of transmittance reduction [7]. For 

the 1-step sample series, scattering losses seem to be related to the size of star 

polygon objects, as it coincides with the decrease of transmittance from 71.5% 

(800nm, 1S05) down to 15.2% (800nm, 1S30). For the 2-step annealed samples, 

the reduction rate is even more drastic. However, due to the combination of two 

steps (nucleation and crystal growth), the bulk density of these domains appears 

to increase making the glass ceramics to become translucent (2S15, 17.6%, 

800nm) and even opaque (2S30, <1%, 800nm). 
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Figure 3.13: (a) and (b) are transmittance spectra of glass ceramics elaborated via 1-step and 2-step 
thermal treatments, correspondingly. 

3.3.4 Nonlinear optical properties of germanotellurite glass ceramics 

Macroscopic SHG studies of 1S05, 1S15, 1S30, 2S15 and 2S30 were made and 

some of them are illustrated in Figure 3.14. For each sample, polarization scans of 

the incident beam (Ψ scan) were performed. On the first tread, we focus only on 

the signal intensity. The dependence of SHG responses (Ψ scan curves) on 
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polarization and their relation with Chapter 2 will be treated later in Chapter 4. The 

SHG intensities of both 1-step and 2-step samples change with heat treatment 

time. However, results are quite different, since for similar crystal growth duration, 

the 1S- series always show a much stronger intensity than the 2S- ones. The SHG 

intensity of the 1S30 sample, for instance, is one order of magnitude higher than 

the one of the 2S30 sample. A signal increase is also observed in the 2-step 

samples when increasing the growing duration (Figure 3.14). This indicates that 

the nonlinear optical (NLO) signal increases with crystal growth thermal treatment 

duration.  
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Figure 3.14: Macroscopic nonlinear optical (NLO) signal (Ψp scan) of 1-step and 2-step treated glass 

ceramics materials in respect to treatment duration. 
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3.4 Effects of 1-step and 2-step heat treatment to optical properties 

Optical images from Figure 3.11 show several phase separated domains within the 

volume. The dependence of phase separated domains’ number and size on the 

transparency and the optical nonlinearity of glass ceramics can be deduced from 

the results depicted in Figures 3.12, 3.13 and 3.14.  

Phase separation already occurs in the as-quenched glasses and is observed by 

TEM technique (Figure 3.5 a-b) as nanometric droplets. Some assumptions in the 

literature in comparable glass systems assigned them to TeO2, GeO2 and/or NbO6 

enriched regions [12, 51, 52]. Although there are some open questions about the 

nature of separated phase in the as-quenched glass and the correlation with the 

separation process observed in the Figure 3.11 with the crystal growing, TEM 

images don’t show any evolution of size and density of these small droplets after 

nucleation or crystallization. Nevertheless, the importance of the phase separation 

observed by optical microscopy in these glass ceramics should be carefully 

considered to explain the loss of transparency and evolution of SHG signal.  

Furthermore, it is noted that the XRD patterns of all the glass ceramic samples 

show the dominance of amorphous background with a low ratio of crystallization 

with nanometer scale crystallites. The size of crystallites is estimated around 20nm 

for 1S30 and around 60 nm for 2S15. This size has been confirmed by TEM 

imaging of the highly crystallized 7T1G6Ag glass ceramic sample (2S8h sample) 

(Figure 3.15).  
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Figure 3.15: TEM image of a crystal in a high crystallized 7T1G6Ag glass ceramics (2S8h). The size is 

around 70-80 nm. 

In order to investigate the position of nanometric crystallites in the glass ceramic, 

micro-SHG mapping was performed in the vicinity of a microscopic phase 

separated domain within the 1S30 sample. Figure 3.16 shows the micro-SHG 

map of a star-like domain within the 1S30 glass ceramics (~8μm in size). The map 

clearly indicates that the SHG responses fully localize within the star-like domain. 

 

Figure 3.16: Microscopic SHG map of a phase separated domain (inset) within the 1S30 glass ceramic. 

To correlate the origin of SHG signal with the size and distribution of the domains, 

the 2S15 and 1S30 samples are chosen for further studies because they have 
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quite identical transmission spectrum (Figure 3.13). Figure 3.17 (onset) also 

indicates that the ratio of crystallites in both samples is similar as observed by 

XRD. However, their SHG intensities are dramatically different from each other. 

The 1S30 sample shows a two-order of magnitude stronger signal than the 2S15 

one. Finally, as transmittance and XRD pattern of these two samples are similar, it 

is obvious that both scattering losses and volume of crystal fraction are not at the 

origin of the large SHG intensity difference observed.  
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Figure 3.17: Ψp scans of 1S30 and 2S15 glass ceramics. The one-step sample shows two-order 

stronger signal than two-step one even with higher dispersed concentration of phase separation 

domains. The onset show the XRD patterns of 

The above observation should be explained after successful correlation between 

the crystallites’ organization inside the star-like phase separated domains and the 

output macroscopic SHG signal. In fact, the origin of SHG signal from the ceramic 

part is still in debate mainly because of the misunderstanding of the crystal 
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arrangement and its evolution with the thermal treatment. Some recent studies 

support this hypothesis. Previous study has proved that LiNbO3 crystallites within a 

spherulite in silicate-based glass ceramics grow with their c-axis radially oriented  

whereas Truong et al. has indicated the existence of more complex local LaBGeO5 

crystal structuring within a spherulite in niobium borogermanate glass [6, 53]. It is 

important to emphasize that the 6-polygon star-like shape domains in 1S30 glass 

ceramics sample implies a complex organization of crystallites.     

A factor which can affect the SHG signal is the interference elimination from 

different parts of the crystallized domains which directly relates to the comparison 

between the domain size and the wavelength or coherence length [54]. Vigouroux 

et al. [6] has explained that a spherical phase-separated domain of 30μm in 

diameter (longer than coherence Lc and wavelength λ) containing LiNbO3 

crystallites in silica glass should be considered as two separated zones with 

opposite crystal orientation. Therefore, the SHG signals from these two zones can 

be combined in keeping the polarization information on emitted SHG signals. From 

Figure 3.11 and 3.17 it can be noted that the 1S30 sample with larger size 

domains (estimated coherence length 𝐿𝑐 ≈ 6𝜇𝑚) will have less impact by 

destructive interference than 2S15 and, therefore, shows more intense SHG 

signal. However, further studies should be performed to figure out the 

organization, namely the orientation, of crystallites within these separated 

domains. This point will be further discussed in Chapter 4.  

3.5 Conclusion 

In this chapter, we demonstrate the possibility to elaborate glass with different 

amounts of silver oxide content. The addition of silver oxide as a nucleation agent 

promotes bulk crystallization. The uniquely crystalline phase induced by heat 

treatment in those samples is K[Nb1/3Te2/3]2O4.8, which was demonstrated to 

contain optical nonlinearity. In order to favor a strong nucleation of this crystalline 

phase, 6 %mol of Ag2O was added to the nominal glass composition which was 

then heat-treated to foster the phase separation domain.  
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The results presented here show that, although a 2-step heat treatment can 

improve nucleation step, it also enhances phase separation and quickly decreases 

the transparency of glass ceramics. On the other hand, the 1-step heat treatment 

promotes the star-like domains, in which K[Nb1/3Te2/3]2O4.8 crystallites appear. 

Furthermore, this study suggests that the SHG intensity is strongly related to the 

size and the organization of the crystallized domains.  
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Introduction 

In chapter 3, we studied the thermal characteristics of germanotellurite glass in the 

composition of (100-x)(70TeO2 – 10GeO2 – 10Nb2O5 – 10K2O) – xAg2O (x=6 

mol%). The consequence of introduction of silver oxide in this glass system is the 

enhancement of bulk crystallization. This indicates that silver ions play the role of 

nucleating agents to promote bulk crystallization. This leads to the appearance of 

a unique crystal phase in the bulk under controlled 1-step or 2-step thermal 

annealing processes (1S and 2S series, respectively). The crystalline phase is 

then defined as K[Nb1/3Te2/3]2O4.8 by XRD patterns (Figure 3.12 in Chapter 3).  

Moreover, 1S and 2S series of SHG-active transparent glass ceramic samples 

with 6%Ag2O have been elaborated and analyzed. Optical microscopy revealed 

phase-separated star-like domains homogeneously distributed in the bulk. Their 

size was increasing with thermal treatment duration from submicroscopic size to 

15-20μm. Micro-SHG mapping of a star-like domain observed in 1S30 sample 

(Figure 3.16, Chapter 3) indicated that the SHG active crystallites are in the 

micron-size domains. However, XRD patterns of the same sample allowed 

estimating crystalline sizes around 20nm. So we conclude that they are embedded 
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in an amorphous state inside the star-like phase separated domains. Though the 

volume fraction of crystallization appears to be quite low in these domains, 

macroscopic SHG has been measured from the samples in transmission mode.  

However, we discovered a significant difference in comparing the macroscopic 

SHG responses delivered by two samples with similar transmission and 

crystallization rate but submitted to two different heat treatments (i.e. one-step 

crystallization (1S30) versus two-step nucleation plus crystallization (2S15)). The 

size and volume density of star-like separated domains was also shown to be 

clearly different. The conclusion leads to the necessity to further investigate the 

complex organization of K[Nb1/3Te2/3]2O4.8 nanocrystallites within the star-like 

domains.  

The role of such substructure has been evidenced in other glass ceramic systems 

as previously discussed in Chapter 2 (Part B). Vigouroux et al. have shown that, 

inside phase separated centro-symmetric spherulite in niobate silicate glass 

ceramics, the LiNbO3 nano-crystallites were radially aligned along their c axis. 

Spherulites have two separated opposite parts which produce SHG signal without 

interference elimination when the size of the spherulite overcomes the coherence 

length [1]. Another study carried out on LaBGeO5  glass ceramics showing 

precipitation of nano-crystallites inside microscopic size phase separated 

spherulite (Chapter 2, part B) has gone even further with an effort to simulate the 

macroscopic SHG patterns [2]. 

We will focus this chapter on characterization of the organization of nano-

crystallites inside the domains. For this purpose, we will have to take into account 

the lack of researches devoted to the K[Nb1/3Te2/3]2O4.8 crystal phase such as 

second- and third-order nonlinear optical coefficients [3-8]. The 1S60 sample (60 

min at 440oC) was used for this purpose throughout this chapter. The sample 

containing large star-like domains ranging around 15μm was selected in order to 

facilitate the structural analysis.   
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A. EXPERIMANTAL RESULTS 

4.1 Characterization of the phase separation 

4.1.1 X-ray diffraction 

Figure 4.1 shows the XRD patterns of the 1S60 and 2S8h samples for 

comparison. Both of them evidence a unique crystal phase which fits well with 

K[Nb1/3Te2/3]2O4.8 composition as reported in literature [5, 6, 9]. The XRD pattern 

consists of 4 main peaks at 28.2o, 32.7o, 46.9o and 55.6o which allows to estimate 

the lattice parameter a=5.47 Å considering the hypothesis of a FCC cubic phase 

[3]. The star-like domains embedded within the germanotellurite glass matrix can 

be observed in the inset of the figure. The phase separated domains in star-like 

shape have a size ranging from 15-17 μm and are homogeneously distributed. 

The crystallization occurs within these phase separated domains (Figure 3.16 and 

3.17, Chapter 3) with mean size crystallites estimated from Scherrer equation 

based on the FWHM. The crystallites are in nanoscopic scale which range around 

20nm (the 1S60 glass ceramic sample) and 45nm (the highly crystallized 2S8h 

sample). In contrast, the size of phase separated domains is around 103 larger 

than the size of the crystallites in 1S60. Despite of small evolution of the crystallite 

size, we can observe on Figure 4.1 a very low crystallization rate for 1S60 in the 

bulk when compared to 2S8h. Figure 4.1 inset allows considering phase 

separation occurring in few percent of the total volume of the bulk. From this 

consideration, we can deduce that the rate of crystallization occurring inside the 

phase separated domains is still very low; the domains are then mostly 

amorphous.   
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Figure 4.1: Optical microscopy images (inset) of phase separation domains which occurred during the 

heat treatment (60 min at 440oC, i.e. 1S60); XRD powder patterns of (a) 1S60 sample in comparison to 

(b) high crystallized samples (3h at 340oC plus 8h at 400oC, i.e. 2S8h). A clear observation of a unique 

phase of K[Nb1/3Te2/3]2O4.8 is obtained. 

4.1.2 WDS analysis of the phase separation  

In order to characterize the atomic rearrangement occurring in the two amorphous 

phases, e.g. the remaining glass matrix and the star-like domains, WDS 

quantitative element analysis was performed.  

The atomic% (at%) of each element is quantified within and outside a selected 

domain through WDS technique described in Chapter 2 (Part A). The results are 
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illustrated in Figure 4.2. Clear contrast can be observed and Table 4.1 illustrates 

the measured atomic percentages of all elements inside and outside the domain. 

The calculation of expected at% of elements in the as-quenched glass and in the 

crystal K[Nb1/3Te2/3]2O4.8 is also indicated for comparison. The glass matrix outside 

the domain shows a mean at% of elements which are very close to the expected 

values for the initial as-quenched glass, considering the % of error for this analysis 

technique. On the contrary, these values differ notably inside the domain. In 

comparison to the outside glass matrix, the ratio of germanium is very low. 

Besides that, while tellurium and oxygen at% seem to be unchanged, the decrease 

of potassium and increase of niobium and silver at% are significant. Furthermore, 

the proportions of elements within the domain do not fit well with what we expect in 

the crystal K[Nb1/3Te2/3]2O4.8. The potassium at% was effectively expected to 

increase inside the domain where precipitation of crystallites with larger 

concentrations of K is supposed to grow. The silver at%, on the contrary, seems to 

be gathered from the glass environment. According to a proposed hypothesis of 

silver and potassium exchange between the glass matrix and the studied 

separated domain, the crystal composition could take into account the presence of 

silver. Another hypothesis could be the decrease of potassium at% in the 

amorphous part of the domain due to the insertion of this element in the grown 

crystallites K[Nb1/3Te2/3]2O4.8 which is compensated by Ag diffusion from outside to 

the domain. In the absence of precise characterization of silver insertion in the 

crystal (crystallites are too small to be quantitatively analyzed by TEM), we will 

further use the following notation: (Ag,K)[Nb1/3Te2/3]2O4.8. 

This hypothesis can be comforted by the lattice parameter 𝑎 = 5.47 ± 0.01 Å 

measured in Chapter 4.1.2 from XRD, in comparison with the parameter obtained 

for K[Nb1/3Te2/3]2O4.8 crystal 𝑎 = 5.54 ± 0.01 Å [10]. Considering smaller ionic 

radius of silver cations in comparison with potassium cations, the decrease of the 

lattice parameter could be the consequence of exchanging potassium to silver 

cations in the crystal composition. The same decrease of this constant had 

effectively been previously observed by Jeong et al. in the 72TeO2 – 14Nb2O5 – 
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xK2O – (14-x)Na2O glass ceramics when potassium cations are progressively 

replaced by smaller sodium cation in the crystal structure [10]. 

 

Figure 4.2: WDS quantitative element analysis mapping of a star-like phase separated domain (a). The 

directly obtained maps of Te, K, Ge, O, Nb and Ag WDS signal correspond to figure from (b) to (g), 

respectively.    
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It is interesting to observe that normalized at% of Te in Table 4.1 is the same 

outside and inside the domain, although WDS signal mapping in Figure 4.2b 

clearly shows a lower raw signal in the domain. One can make the same remark 

for oxygen atoms. This decrease of Te and O signals in the domain means there is 

less Te-O bonds and could be the signature of lower density. Interesting 

discussion can be given also on the halo we observe for Ge and Nb outside the 

interface. Ge atoms seem to pile up from the interface to the glass matrix, while Nb 

concentration is decreased from the glass matrix to the surface of the domain. 

These halos could be diffusion layers at the interface indicating more rapid kinetics 

for going across the interface compared to the diffusion kinetics of Ge and Nb in 

the glass matrix. Thinner halos are observed for K and Ag and could be explained 

by better diffusion kinetics of these elements in the glass matrix.   

 

Table 4.1: Experimental quantitative analysis of elements outside (position 1 of Figure 4.2a or glass matrix) 

and inside (position 2 of Figure 4.2a or star-like object) the phase separated domain normalized for a total of 

100%. The calculated at% of glass matrix is based on the 94(70TeO2 – 10GeO2 – 10Nb2O5 – 10K2O) – 6Ag2O 

composition while the calculated at% of the domain indicates the crystal K[Nb1/3Te2/3]2O4.8 composition. 

 

 

From Table 4.1 where compositions are normalized to 100%, we observe little 

change in the composition of the remaining glass around the phase-separated 

domain despite the previous atomic migration to/from the separated domain 

previously described (e.g. the composition is a little bit rich in Ge and cations when 
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compared to the as-quenched glass). In the domain, the approximate mean 

composition 67TeO2 – 16.5Nb2O5 – 16.5K2O is measured. When compared to the 

composition of the crystal, the domain shows the same Te/Nb ratio but the 

proportion Te/(Ag+K) is lower.  

4.2 Matching macro-SHG responses with mathematical model 

The macro-SHG signal patterns of 1S60 were obtained in different measurement 

mode sets. The first one observed in Figure 4.3a shows the θ scans (θss: θxx, θsp: 

θxy). Despite of the same pattern shape with maxima at normal incidence for the 

two ϴ scans, we observe different maximum intensities (Figure 4.3a). Regarding to 

the Ψ scans (Ψp: Ψy;i,i and Ψs: Ψx,i,i, where i is rotating excitation polarization from 

angle Ψ=0 to Ψ=360o, see Chapter 2), they are identical modulo Ψ=90o (Figure 

4.3b) obtained from other glass ceramics in the same composition [1, 11]. It is 

worth to notice that the maxima of Ψ scans can be obtained when the incident 

polarization corresponds to analyzed harmonic signal. Moreover, the Ψ scans 

have the signature of a dipolar SHG behavior of the material (see Chapter 2). It 

was shown to be the consequence of the dipolar nature of the crystal nonlinear 

optical activity with a d33 predominant component.  
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Figure 4.3: Experimental SHG of (a) θss: θxx and θsp : θxy scans and (b) Ψp : Ψy;i,i and Ψs : Ψx;i,i scans in 

transmission mode through the 1S60 glass ceramic sample in comparison with simulated patterns 

(red an orange lines in (b)) extracted from Equations 4.6 and 4.7  

We remind the Equation 2.3 developed in Chapter 2 to describe generally the SHG 

patterns of glass ceramics performed by Ψ scans:  

𝐼Ψ𝑖
2𝜔 ∝ |𝑃𝑖

2𝜔(Ψ)|
2

= (𝐸𝑜
𝜔)4 8⁄ |(𝜒𝑖;𝑥,𝑥

(2)
)
2

𝑐𝑜𝑠4(Ψ) + (𝜒𝑖;𝑦,𝑦
(2)

)
2

𝑠𝑖𝑛4(Ψ) + 2 (2(𝜒𝑖;𝑦,𝑥
(2)

)
2

−

𝜒𝑖;𝑥,𝑥
(2)

. 𝜒𝑖;𝑦,𝑦
(2)

) sin2(Ψ) cos 2(Ψ)| (4.1) 

where i=x,y.  

It is notice that the macro-SHG results of the glass ceramics give some inputs for 

the mathematic expression. Experimentally, we observe from θ-scans (xx and xy 

in Figure 4.3a) and Ψ-scans (Ψp ans Ψs in Figure 4.3b) that firstly 𝐼𝑦𝑦
2𝜔 > 𝐼𝑦𝑥

2𝜔 and 

𝐼𝑥𝑥
2𝜔 > 𝐼𝑥𝑦

2𝜔 (4.2), which implies |𝜒𝑦;𝑦,𝑦
(2)

| > |𝜒𝑦;𝑥,𝑥
(2)

| and |𝜒𝑥;𝑥,𝑥
(2)

| > |𝜒𝑥;𝑦,𝑦
(2)

| (4.3), and 

secondly 𝐼Ψ𝑦
2𝜔 = 𝐼Ψx

2𝜔 but rotate 90o (Figure 4.3b), which implies by identification 

|𝜒𝑦;𝑥,𝑥
(2)

| = |𝜒𝑥;𝑦,𝑦
(2)

| and |𝜒𝑥;𝑥,𝑥
(2)

| = |𝜒𝑦;𝑦,𝑦
(2)

| (4.4). 

From the experimental θ scans and Ψ scans where Ipp = Iss = βIsp = βIps (or ϴpp = 

ϴss = βϴsp = βϴps, as observed in Figure 4.3), the existence of d31 and d33 

coefficients in the crystal ONL tensor is confirmed. The decrease of SHG signal 

observed on Figure 4.3a when changing the detection polarization indicates that 

d31<d33.  

Regarding to the hypothesis proposed by Vigouroux et al. [1], the summation of 

the signals delivered by all SHG-active domains containing crystals in the bulk of 

the glass ceramics (in respect to the coherence length) builds the macroscopic 

response of the sample. One can try to correlate the macro-SHG patterns with the 

mathematical model as performed for LNS and LBG glass ceramics in Chapter 2.  
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Now if we suppose that the Kleinman symmetry holds, we have d31 = d15 and for all 

these point groups d11 = d13 = 0. d31 is then the only remaining term involved in 

crossed polarization studies. 

After some developments, on the same model as we did for LiNbO3-SiO2 glass 

ceramics in Chapter 2 (equations 2.10 and 2.11 in Chapter 2), we obtain a correct 

simulation of Ψ scans for a value of β=2.1 representing the ratio between Ipp and 

Ips signal intensity and scattering loss 0.15 which lead to:  

𝐼Ψy
2𝜔 ∝ 0.48𝑐𝑜𝑠4Ψ + 0.52 𝑐𝑜𝑠2 Ψ𝑠𝑖𝑛2Ψ + 𝑠𝑖𝑛4Ψ + 0.15  (4.6) 

𝐼Ψx
2𝜔 ∝ 𝑐𝑜𝑠4Ψ + 0.52 𝑐𝑜𝑠2 Ψ𝑠𝑖𝑛2Ψ + 0.48𝑠𝑖𝑛4Ψ + 0.15  (4.7) 

According to literature, the crystalline (Ag,K)[Nb1/3Te2/3]2O4.8 phase would be 

monoaxial due to slight distortion of a fluorite-type structure [4, 8, 10]. Therefore, 

this phase would belong to the point groups of tetragonal crystal system which are 

C4, S4, C4v, D2h, and D4. However, D2h contains all zero scalars which should be 

ruled out. C4 and C4v point groups containing d33 and d31 components in the ONL 

tensor are then appropriate group symmetries for the crystal.  

Considering the highest level of symmetry C4v for simplification, then the dij 

components tensor would be:  

 𝐶4𝑣 (
0 0 0
0 0 0

𝑑31 𝑑31 𝑑33

    
0 𝑑31 0

𝑑31 0 0
0 0 0

)    (4.5) 

In comparison to the result obtained for LNS glass ceramic system, 𝛽 < 𝛼 which 

implies that the (Ag,K)[Nb1/3Te2/3]2O4.8 crystal phase and/or the crystallite 

arrangement within the star-like domain make it less dipolar than LiNbO3 

spherulite. This result means that we can propose the structural organization of 

crystallites within the star-like domain based on one dominant χ(2) coefficient.    
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4.3 Correlation between local structural modification and SHG inside 

a star-like domain 

4.3.1 Micro-Raman analysis 

Regarding to the structural modification induced during the heat treatment and 

local organization of crystallization in the glass ceramics, micro-Raman 

characterizations were performed (see Chapter 2.2.6 for technical principles of the 

experimental set-up). A star-like shape separated domain ~15 μm was selected in 

1S60. Then Raman spectra were registered in two different points outside (1) and 

inside (2) the domain (see the inset of Figure 4.4a). A general decrease of the 

Raman intensity all over the spectrum is observed within the phase separated 

domain. Though crystallization is occurring in this region, the corresponding 

Raman spectrum does not reveal any corresponding sharp peak. The decrease of 

the global signal could be explained from lower density of the material inside the 

domain and/or modifications of the atomic bonds. Furthermore, comparing with the 

surrounding glass matrix, the WDS signal of Te and O elements in the studied 

domain was shown to be lower (see Figure 4.2). As bonds between those two 

elements are at the origin of the stronger Raman active bonds in the 400-800cm-1 

region in the glass spectrum (see Chapter 3.2.4), one could justify the global 

decrease of the Raman signal by a lower volume number of Te-O bonds. One can 

also observe fluctuation of the integrated signal in full range 300-1000 cm-1 proving 

the existence of microscopic size non homogeneous zones inside the domain 

(Figure 4.4). One can also suggest a loss of the global intensity due to scattering 

in the heterogeneous domains.   
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Figure 4.4: (a) Raman spectra of the two positions inside and outside the domain and (b) micro-Raman 

map of a domain in 1S60 which illustrates the difference in full spectral range from 350 cm-1 to 1000 

cm-1. The polarizations of the measurement is yy (see Chapter 2, part A) 

A supplementary micro-Raman spectrum has been registered for the most 

crystallized 2S8h sample for comparison with spectra collected in Figure 4.4. The 

three spectra are normalized at their maximum and shown on Figure 4.5a. One 

can see from this figure the Raman spectra of the glass in region (1) is the same 

as observed for the as-quenched glass (Figure 3.3). This is in accordance with a 

very slight modification of the composition observed by WDS in Chapter 4.2.2. A 

shift to a lower wavenumber of the main 550-800 cm-1 band is observed inside the 
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studied domain (2). The small band around 850 cm-1 attributed to Nb-O bond 

vibrations remains small though an increase in Nb at% is observed in WDS 

analysis (see Table 4.1). But the peak appears interestingly sharper compared to 

the glass matrix. This could be an indication of the presence of K[Nb1/3Te2/3]2O4.8 

or (Ag,K)[Nb1/3Te2/3]2O4.8 crystalline phase though the ratio of crystallization was 

estimated to be very small (see Chapter 3.4). The increase of the crystallization 

rate for 2S8h induces a more important shift of the main band and more sharpness 

of the small band attributed to Nb-O bonds. The subtraction of the Raman 

spectrum inside the studied domain (spot (2) in Figure 4.4) in 1S60 with the 

reference to the glass matrix spectrum (spot (1) in Figure 4.4) was carried out 

(Figure 4.5b). As a sequence, the observed differences of signal will be discussed 

for 3 main bands (band 1 to 3). The first two bands (520-680 cm-1 and 680-825 cm-

1) related to the Te-O bonds (TeO4 trigonal bypyramid (tbp) asymmetric vibrations 

and TeO3/TeO3+1 trigonal pyramid (tp) vibrations, correspondingly) while the last 

small one belongs to Nb-O (850 – 900 cm-1). We observe the increase of TeO4 tbp 

band (1) whereas TeO3/TeO3+1 tp and Nb-O Raman active bands (2) and (3) 

decrease in global intensity, though sharpness of the Nb-O vibration peak inside 

the domain appears with positive difference at 825 cm-1 on the lower energy side 

of the Nb-O vibration band. In conclusion, a reorganization of distorted 

TeO3/TeO3+1 tp to form TeO4 tbp linked together with Te-O-Te bridges is observed 

[12]. This agrees fairly well with the observation and conclusion proposed by Hart 

et al. [13] in the potassium niobate tellurite glass ceramics with compositions 

similar to the phase separated domain. Sharpness of the 350-520 cm-1 vibration 

band observed in the domain is probably explained by the disappearance of Ge-O-

X bands vibrations consecutive the vanishing of Ge from the composition. This 

band is then purely attributed to Te-O-Te bridges. One can notice the positions of 

maxima for the bands attributed to TeO4 and Te-O-Te correspond to the maxima 

positions observed for the crystal phase δ–TeO2 [12].  

The shape of the band attributed to Nb-O bands shows two maxima around 825-

840 cm-1 and 900 cm-1 which correspond to the 1S60 sample and the highly 
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crystallized sample. This is characteristic spectrum for Nb highly distorted 

octahedral oxygenated sites in oxide glass with at least one non-bridging oxygen 

forming shorter Nb-O bond [14].  

 

Figure 4.5: (a) Normalized Raman spectra of 2 spots inside and outside the separated region (1) and 

(2) in 1S60 and a spot in the high crystallized 2S8h sample. Regarding the spot (1) as reference, the 

subtraction of two spectra gives the rise of three main bands (Band 1-3).  
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4.3.2 Micro-Raman/micro-SHG responses of crystallized domains  

Micro-SHG mapping of the same star-like domain in 1S60 clearly confirms the 

origin of the optical nonlinear signal inside the phase separated domain (Figure 

4.6a). The signal is clearly emitted by collection of K[Nb1/3Te2/3]2O4.8 or 

(Ag,K)[Nb1/3Te2/3]2O4.8 crystallites localized in this area. The SHG mappings for 

identical (y;y,y) and crossed (y;x,x) polarizations (Figure 4.6a and b, respectively) 

show overall intensity dramatically different from each other (one order of 

magnitude). However, both images of the studied 6-pointed star domain shows 4 

more-active corners, the other two branches being less-active (Figure 4.6). This 

SHG activity within the domain fits well with the more modified Raman broad 

bands (1, 2, 3) integrated intensities as shown on Figure 4.6c-e where the two 

less-SHG-active corners show less structural modification. Within the corners 

more-active in SHG, the tellurite and niobate network is more affected. This would 

be the signature of local structure reorganization highly correlated to the 

crystallization process. Moreover, if we compare to global Raman linked to density 

variations (Figure 4.4b), a good comparison can be done. It tends to prove that 

higher density within the domains corresponds to crystallized zones which are 

SHG active. 

However, some difference remains between micro-SHG and micro-Raman 

mapping (Figure 4.6). On micro-SHG mapping, one can see well-aligned crystal 

signal in the 4 active corners emitting comparable intensity. On micro-Raman 

mapping, the difference is more pronounced in the center of the domain and 

progressively reduced when going far from the center in the SHG active corners. 

This would be an indication of a progressive local structure rearrangement of the 

glass network from the center of the domain (beginning of the phase separation) 

with departure of Ge, income of Nb and exchange of K to Ag. But one can further 

take into account the volume of the probed zone by the usage of micro-Raman. At 

the center, the probed volume would be purely from the star-like domain whereas, 

at the corners where their size is limited at a few micrometers, either the domain or 

the glass matrix was probed.  
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More pronounced Raman and SHG activities in the 4 corners of the domain are 

confirmed throughout the sample as one can see in 3D mapping (probing the 

domain along z-axis, Figure 4.7).  

Coming back to Figure 4.6a and b, the intensities observed in y;y,y polarization are 

much higher than the one polarized along y;x,x. Therefore, the dipolar nature of 

the SHG crystallites response is supposed to be at the origin of this large decrease 

of the signal. In addition, a similar conclusion was deduced from macro-SHG 

patterns in Chapter 4.2.  

 

Figure 4.6: The map of SHG in (a) y;y,y and (b) y;x,x modes and their correlative Raman maps of (c) 

band 1 and (d) band 2 and (e) band 3 as described in Figure 4.4b.  
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Figure 4.7: SHG maps of 1S60 glass ceramic sample in Z-axis were performed to obtain full picture in 

3-dimensions. 

However, dipoles non-aligned with the excitation polarization surprisingly show 

SHG signal in contradiction with the hypothesis of dipoles radially oriented from 

the center described in other glass ceramics [1]. As observed on Figure 4.8. SHG 

signal remains constant when the angle between the excitation polarization and 

the crystallized domain varies. It means the dipolar behavior according to 

polarization studies is invariant to the rotation at the micrometer scale. Therefore, 

we have to consider a substructure of the crystals leading to the production of this 

original SHG response.  

 

Figure 4.8: SHG intensity mapping of a star-like separated domain of 1S60. The patterns are identical. 

Different angle of rotation of the sample towards fixed excitation of polarization (0o, 45o, 90o) are 

presented. A, B, C and D are the four corners which deliver the maximum SHG signal. 

B. DISCUSSION 

4.4 Model for crystal growing and local structure in the domain 

4.4.1 Preferable surface crystallization within phase separated domains 

From WDS analysis, one can suppose the creation of phase separated centers in 

the glass matrix. During the thermal treatment, they would grow progressively in 
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equivalent directions of the space thereby forming 3D star-like shape domains. 

From experimental at% measured in Table 4.1, one can estimate the composition 

of the domain to be ~ 67% TeO2 – 16.5% Nb2O5 – 16.5% (Ag,K)2O very close to 

the composition studied by Jeong et al. [7, 8] and Sakai et al. [6]. In 15K2O – 

15Nb2O5 – 70TeO2 glass composition, Sakai et al. obtained the precipitation of 

monocrystallites of the unique phase K[Nb1/3Te2/3]2O4.8 after thermal treatment. 

The Maker Fringes SHG macroscopic measurement of the glass ceramics showed 

typical pattern of the two ~50 μm crystallized surface layers of the sample [6, 9]. 

Optically active nanocrystals are precipitated in the surface layers with c axis 

perpendicular to the surface [9]. This allowed the authors to suppose preferential 

oriented surface crystallization in this glass composition (the SHG signal was 

equal to zero for θ=0 angle of incidence proving the bulk response was the noise 

level) [6, 9].  

From these previous studies and consideration of the remaining amorphous glass 

composition in the studied star-like domain, one can postulate preferential 

crystallization of (Ag,K)[Nb1/3Te2/3]2O4.8 at the interface between the corners of the 

separated domain and the glass matrix. c axis of the crystallites would be oriented 

perpendicularly to the interface. As the corners of the domain progressively extend 

with the thermal duration, the crystallization would follow the evolution of the 

interface and take place all along the branches of the star-like domain. 

Nevertheless, one cannot explain why the same favorable situation does not 

happen in all the corners of the domain but in only 4 of them (Figure 4.6 and 4.7).  

4.4.2 Local structure modifications 

Reorganization of the tellurite and niobate networks has been shown in Figure 

4.5b which seems to be in contradiction with cations enrichment of the separated 

domain observed from WDS (Table 4.1). However, one can find a possible 

explanation in the local modifications induced by the precipitation of crystallites. 

The crystal phase has an atomic ratio Te/Nb which is exactly the same as the one 

measured by WDS in the domain, but the ratio Te/(K+Ag) is lower in the crystal. 

So the precipitation of crystallites locally depletes the environment in K+/Ag+ 
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cations, which could induce local relinking of the tellurite network. On other side, 

Hart et al. [15] claimed a polymorph of K2Te4O9 structure known to have tetragonal 

lattice for the crystalline phase appearing in 15K2O – 15Nb2O5 – 70TeO2 glass 

composition. As discussed in Chapter 1, this hypothesis was rejected by Jeong et 

al. [7] after they proved the composition of the crystal included Nb cations, but the 

structure proposition of Hart et al. fitted quite perfectly with X-ray and neutron 

diffraction results. According to Hart et al., the crystal is described to be essentially 

long Te4O9
2- chains separated by K+ cations. If this structure is close to the 

structure of (K,Ag)[Nb1/3Te2/3]2O4.8, the tellurite network could be constituted with 

TeO4 sites connected by sharing alternatively a corner and an edge like in 

K2Te4O9. Both remarks lead to justify the TeO4 sites emergence in the crystalline 

branches of the domain showing SHG in contradiction with the ratio of cations in 

the domain. Finally, though homogeneous compositions were measured by WDS 

at the microscopic level all over the domain, sub-microscopic fluctuations of 

density are observed on Figure 4.4b occurring in the more crystallized branches. If 

we suppose the crystal denser compared to amorphous environment, then we can 

suppose the crystallization takes place when favorable density conditions are met. 

Growing crystalline particles attract K+/Ag+ cations from the amorphous 

environment and then induce relinking of the tellurite glass network. Local increase 

of the density in the crystalline particles should be compensated by local decrease 

of the amorphous material density around the particles explaining the sub-

microscopic density inhomogeneities observed on Figure 4.4b.  

4.4.3 Modelization for crystalline particle substructure 

Only few structural hypothesis have been proposed to explain the SHG activity of 

the (K,Na)[Nb1/3Te2/3]2O4.8 crystal. One hypothesis involves distortion of the lattice 

due to oxygen vacancy in the fluorite-type structure [7], meaning to keep the 

stoichiometry (1.6 vacancy/lattice unit). Another hypothesis involves the difference 

in size between K, Na and Nb, Te which would produce a slight distortion of the 

cubic structure along an axis [5]. At this point, another consideration concerning 

the distance Nb-O and Te-O in the crystal can be taken into account to explain this 
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distortion. In a perfect fluorite-type structure and a ≈ 5.47Å, this distance would be 

around 2.34 Å which is far from the usual shortest distances range usually found in 

tellurite and niobate oxide crystals: 1.8 – 2.2 Å [12, 14]. Considering the lattice 

parameter of K2O fluorite-type structure equal to 6.44 Å, one can suppose a global 

shift of oxygen positions to Nb and Te positions in the lattice. This is also expected 

to lead to a distortion of the lattice [15].  

In fact, Kim et al. [4] measured a very slight axial distortion c/a = 1.0018, that 

should be confirmed in our (Ag,K)[Nb1/3Te2/3]2O4.8 crystalline phase through further 

investigation.  

Then according to literature, (Ag,K)[Nb1/3Te2/3]2O4.8 crystalline phase is supposed 

to be monoaxial and is expected to show dipolar nonlinear optical behavior [3]. 

Following this assumption, the maximum SHG activity is expected when 

crystallites have c-axis oriented along the polarization of excitation. Obviously the 

model of the crystallization process proposed in Chapter 4.4.2 has to fit to the 

original SHG response presented on Figure 4.6a and b: design of crystal 

precipitation must show dipolar behavior unchanged with rotation around the laser 

polarization. A proposal of Ban et al. [16-18] provides a suggestion for the 

substructure of 6-pointed star-like TiO2 anatase in which the crystalline faces [100] 

grow in two directions making an angle of 45o between them. However, this 

hypothesis cannot be confirmed because germanotellurite based glass is 

destroyed under high energy electron beam. Therefore, it is impossible to 

investigate the crystal structure in atomic scale (by high resolution transmission 

electron microscope for instance). However, the SEM images indicate obviously 

that, in each corner, there are extra branches which make a 45o angle from the c-

axis (Figure 4.9a).  

According to the proposition of Ban et al., c axis of the nanocrystallites would be 

oriented as indicated on Figure 4.9a. This hypothesis agrees fairly well with the 

previous interface crystallization process proposed in 4.4.1.  
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Figure 4.9: (a) 6-corner domain inside the 1S60 sample imaged by scattering electron microscopy and 

predicted dipoles of (Ag,K)[Nb1/3Te2/3]2O4.8 crystallites within the phase separated domain (yellow 

arrows); (b) Crystalline structure proposed by Jeong et al. [7].   

The proposed sub-structure can be utilized to interpret the SHG behavior of the 

star-like domain (Figure 4.9a). The general output SHG signal is the summation of 

SHG from each oriented crystallite. The size of the corner in comparison to the 

coherence length (estimated around 6 μm, Chapter 3) and second harmonic 

wavelength (0.532 μm) should be taken into account. In this case, the size of 

corner range from 5-6 μm is quite close to the estimated coherence length of the 

materials and far from the second harmonic wavelength. So two separated 

opposite parts of the corner can be supposed to produce nondestructive 

summation [1, 2].  

Furthermore, although there is no information about the nonlinear optical activity of 

the crystal (Ag,K)[Nb1/3Te2/3]2O4.8, the clear dipolar macroscopic SHG behavior of 

the sample has been recognized in both the macro- and micro-SHG responses as 

described in Chapter 4.2 and 4.3.2. This allows to suspect a strong one-dimension 
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scalar d33 susceptibility when compared to other nonlinear components of the 

tensor as mentioned by Vigouroux et al. [1]. Figure 4.10 presents the SHG 

responses due to the dipolar term d33 of the corner containing crystallites 

according to the model of substructure presented on Figure 4.9a. On this Figure, 

one can observe that whatever orientation of the corner versus excitation, SHG 

signal due to d33 remains unchanged with polarization along the direction of the 

excitation. This model agrees with the observations made on Figure 4.8.  

 

Figure 4.10: Illustration of a corner when it is rotated around Ein direction. The response with tensor 

d33 is presented for simplification. This hypothesis allows explaining SHG behavior shown in Figure 

4.7.  

For polarization of SHG signal perpendicular to excitation, other tensor 

components of the crystal are involved.  

4.5 Conclusion 

In this chapter, we confirm that the star-like phase separated domains in 

germanotellurite glass ceramics are mainly amorphous potassium-niobate tellurite 

glass with low ratio of nanocrystallites (Ag,K)[Nb1/3Te2/3]2O4.8 where silver partly 

replaces potassium to form the crystals. The phenomenon was observed in other 

glass ceramic system where sodium and potassium exist together in the crystal 
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phase ((Na,K)[Nb1/3Te2/3]2O4.8). Further investigation has to be performed to 

confirm this hypothesis.  

The star-like domains contain all precursors for the crystallization though SHG 

mapping images show uneven inactivity of the different corners. The active 

corners with active-SHG response show reorganization of the amorphous glass 

network coinciding to local precipitation of nanocrystallites.  

Besides the demonstration of rotation independence microscopic SHG responses 

of the glass ceramics perpendicularly to the direction of propagation of the 

excitation, the dipolar behavior of the signal has been proved at macroscopic and 

microscopic scale (Ψp and Ψs modes for macro-SHG and y:x,x and y:y,y modes 

for micro-SHG). However, the organization of nanocrystallites inside the star-like 

domain differs from LiNbO3 nanocrystallites radially oriented inside the spherulites 

observed in LNS glass ceramics and developed in Chapter 2. The substructure is 

assumed to simile the microstructure of TiO2 anatase growth where the face [100] 

growth in two ways which makes an angle of 45o with the main direction. The SEM 

image of a domain has supported this assumption.  

The correlation between micro-SHG and macro-SHG has been simulated by 

applying the as-developed mathematic model in Chapter 3 and assuming the 

previously described substructure for (Ag,K)[Nb1/3Te2/3]2O4.8 nanocrystallites, the 

crystal phase belonging to the symmetry point group C4 or C4v.  
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GENERAL CONCLUSIONS 

Different approaches have been combined to elaborate glass and glass ceramics based 

on germanotellurite composition doped with silver oxides and to characterize local 

structure and SHG. The addition of silver cations was shown to promote the bulk 

crystallization of a unique crystalline phase which was already known to produce SHG. 

The best composition was chosen for further glass ceramics elaboration and 

characterization. Therefore, with the help of correlative micro-SHG/micro-Raman 

combined to WDS quantitative element analysis allowed to characterize the crystal 

growing process and organization inside star-like phase-separated domains. 

At the beginning of this thesis, a literature review to recall the background of our 

research from basic glass and glass ceramic knowledge to physical principle of 

nonlinear optics in respect to the symmetry of crystals has been done. We also provided 

a collection of SHG-active crystals as well as recent studies of several kinds of tellurite-

based glass ceramics. In order to understand the nature of the SHG-active crystallites 

precipitated within the tellurite glass matrix, the studies of K[Nb1/3Te2/3]2O4.8 were 

reviewed. Its crystal structure and the origin of SHG are still in debate. A more popular 

hypothesis of distorted fluorite-type structure was proposed since 1990s, mainly 

because of the typical XRD patterns of cubic structure. However, Hart et al. then 

rejected the hypothesis because it cannot be used to explain the unusual Te-O distance 

and neutron diffraction patterns. The authors themselves suggested a new model based 

on K2Te4O9 in which the oxygen anions would be distributed randomly around order 

cations. However, the new model did not interpret clearly the presence of Nb elements 

which was justified later by Jeong et al. At the end of the chapter, several studies 

consist on atomic exchange of K and Na in (K,Na)[Nb1/3Te2/3]2O4.8 composition have 

been shown. Furthermore, the distortion of the crystal cubic structure was proposed to 

partly depend on the ionic size difference between K and Na because 

Na[Nb1/3Te2/3]2O4.8 does not induce any SHG signal.  

Before investigating the germanotellurite glasses and glass ceramics, we developed a 

mathematical model for the correlation between local structure of a spherulite and the 
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macroscopic SHG patterns. The model has been proposed to have the general formula 

as follow: 

𝐼Ψ𝑖
2𝜔 ∝ |𝑃𝑖

2𝜔(Ψ)|
2

= (𝐸𝑜
𝜔)4 8⁄ |𝐴𝑐𝑜𝑠4(Ψ) + 𝐵𝑠𝑖𝑛4(Ψ) + 𝐶 sin2(Ψ) cos 2(Ψ)| + 𝐷 

According to the comparison among A, B, and C terms which relate to the χ(2) 

coefficients and the value of scattering loss D, the typical dipolar or octupolar shape of 

macroscopic SHG patterns can be simulated. The correlative macroscopic SHG 

measurement setup and operation to obtain different 𝜒(2) tensors would be helpful to 

derive all the terms. The model was then attempted to apply for two different glass 

ceramic systems that were previously studied by Vigouroux et al., LiNbO3/SiO2 (LNS) 

and LaBGeO5 (LBG) glass ceramics.  

Based on the correlative micro-Raman/micro-SHG characterization described in the first 

part of Chapter 2, both the LNS and LBG glass ceramic systems were proven to contain 

radially oriented crystallized spherulites. In both cases, the c-axis of spherulites 

corresponds with the SHG-active dominant orientation (d33) of LiNbO3 crystal and 

LaBGeO5 crystal. In LNS glass ceramics, the mathematical model describing the macro 

SHG patterns depends on the polarization of the detector (x or y in lab preferential 

frame). However, they are identical but rotated 90o. The dipolar dominant d33 is at the 

origin of dipolar macroscopic SHG signal. In the specific case of the LBG glass 

ceramics, an antiparallel orientation of crystallites domains along c-axis is expected to 

explain the loss of the dipolar d33 component in the SHG response. The macroscopic 

SHG equation is independent with the polarization of incoming laser beam and detector.  

The model shows good agreement with experimental results in both LNS and LBG 

glass ceramics, so this resulted model would be useful for the next glass ceramic 

system based on germanotellurite composition in respect to its local crystal organization 

and symmetry. 

Back to the tellurite-based glasses, we demonstrated the possibility to elaborate 

germanotellurite glass with different amounts of silver oxide content from 0 to 6 %mol. 

Then, the effect of the doping into glass properties was introduced. The promotion of 
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bulk crystallization by adding silver oxide as a nucleation agent has been demonstrated. 

We obtained a uniquely phase crystallization, i.e. K[Nb1/3Te2/3]2O4.8, induced by heat 

treatment in those samples. The crystals were then demonstrated to be SHG active. 

Besides that, the microstructure of germanotellurite glasses is influenced by the 

conversion from TeO4 tbp to TeO3/TeO3+1 tp as the content of Ag2O increases. Silver 

ions can break the TeO4 network and release the NBOs. This effect also leads to the 

slight red shift of their transmission spectra at the UV edge through the formation of 

localized states within the band gap. The behavior of silver within the germanotellurite 

glass was also discussed. For high silver oxide content (4 or 6 % mol), the presence of 

silver clusters due to annealing was observed through photoluminescence detection. 

However, the existence of clusters within the lower silver oxide contained glasses 

cannot be ruled out due to the high cut-off wavelength value of the materials.  

In order to favor the crystalline phase for glass ceramic study, 6 %mol of Ag2O was 

added to the nominal glass composition which was then heat-treated to foster the 

nucleation and crystallization. The optical properties were affected by the duration of 

heat treatment as well as the method of elaboration (1-step or 2-step). The results show 

that, although a 2-step heat treatment can improve the nucleation, it also enhances 

phase separation and quickly decreases the transparency of glass ceramics. On the 

other hand, the 1-step heat treatment promotes the star-like domains, in which 

K[Nb1/3Te2/3]2O4.8 crystallites appear. However, the SHG signals generated from 1-step 

heat treated samples are far higher than 2-step samples’, even with similar 

transparency and crystallite quantity. It leads to the suggestion that the SHG intensity is 

strongly related to the organization of crystallites within the star-like domains. 

To study further about the germanotellurite glass ceramics in respect of crystalline 

phase and substructure within the phase separated star-like domain, we used multi-

scale approaches based on correlative micro-Raman/micro-SHG characterizations. At 

first, we found that the crystal phase should be modified to (Ag,K)[Nb1/3Te2/3]2O4.8 where 

silver atoms will replace partly potassium to form the crystals. The star-like domain 

contains all precursors for the crystallization as observed in WDS elemental 

quantification map. However, the low quantity of potassium in comparison with the 
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nominal crystal phase and the existence of silver element support the idea of modified 

crystal phase with Ag constituent. In literature, the phenomenon was observed in other 

glass ceramic system where sodium and potassium exist together in the crystal phase 

((Na,K)[Nb1/3Te2/3]2O4.8). The crystal structure should be cubic but oxygen atoms will be 

oriented randomly around cations.   

The correlation between micro-SHG and the global responses has been also simulated 

by applying the as-developed mathematic model in Chapter 2. Furthermore, based on 

the assumption of slight distortion cubic structure of (Ag,K)[Nb1/3Te2/3]2O4.8, we can find 

out that the nonvanishing components in the symmetry point group of the crystal phase 

can match with C4 or C4v. It is noted that the slight distortion can be affected by the 

atomic size of silver and potassium, so the values of d33 and d31 could be different 

towards the ratio of Ag/K in the crystal phase. 

The micro-SHG mapping images confirm that the star-like objects in germanotellurite 

glass ceramics are mainly phase separated domains with partly distributed crystallites 

as assumption in Chapter 3. This is because of some relatively SHG-inactive corners. 

When we compare the obtained SHG maps of a star-like domain with its correlative 

micro-Raman map, the correlation between them can be found. The corners with active-

SHG response show the increase of TeO4 bonds and decrease of TeO3 and NbO6 than 

others. It means that some specific spots within the domain reorganize during the heat 

treatment and transform to crystallites.  

In addition to the demonstration of in-plane isotropic property of the glass ceramics, the 

dipolar property of the sample in macroscopic and microscopic scale is evidenced by 

using different measurement modes (pp/sp in macro-SHG and yy/yx in micro-SHG). 

Nevertheless, the substructure of the star-like domain differs from LiNbO3 spherulites in 

LNS glass ceramics which was proven to have radial distribution. The SHG-active spots 

in star-like domain stay quite stable when rotating the sample. The substructure is 

assumed to simile the microstructure of TiO2 anatase growth where the face [100] 

growth in two ways which makes an angle of 45o with the main direction. 
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These results show a potential of tellurite-based glass ceramics as a candidate for 

optical nonlinear applications in spite of the needs of further studies to obtain higher 

transparent glass ceramics with strong SHG activity. Thereby, the study provides 

several perspectives for further researches and applications.  

- More investigations are needed for several hypotheses and issues in this study 

such as the nature of phase separated droplets, the structure of crystal phase 

and the inactivity of some SHG-active branches within star-like domains. 

Furthermore, one can also optimize the heat treatment to obtain higher 

transparency as well as optical nonlinear behavior of the glass ceramics.  

- Because the works of this study focused only on glass ceramics with 6%mol 

Ag2O content, it could be interesting to investigate other doping amounts with 

appropriate heat treatment. It is worth to notice that the addition of silver oxides 

significantly modifies the properties of germanotellurite glass as observed in XRD 

patterns of heat treated 7T1GxAg samples.  

- Applications of thermal poling to generate SHG signal in germanotellurite glass 

and the effect of silver cations on the optical nonlinearity would be another 

research direction.  

- Other perspectives which can be listed out are the possibility of doping other 

nucleating agents like Au, Pt or ZrO2 and TiO2.   
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Titre : Deuxième génération d'harmoniques dans la céramique de verre 
Germanotellurite dopés avec l'oxyde d'argent. 

Résumé :  

L'importance du traitement du signal et la transmission favorise de nouvelles applications 

pour les matériaux optiques non linéaires, tels que des convertisseurs de fréquence. Les 

cristaux sont des matériaux pour ces applications bien connues en raison de leur 

comportement non linéaire optique forte. Cependant, ils sont coûteux à fabriquer et 

dépendent fortement de l'orientation cristalline. Les verres sont des candidats possibles à 

cause de leurs propriétés optiques et la facilité de fabrication, mais ils ne possèdent pas de 

second ordre non-linéarité en raison de leur structure centrosymétrique. Cependant, un 

matériau composite vitrocéramique avec des cristaux ferro-électriques noyées dans une 

matrice de verre peut combiner les propriétés de cristaux non linéaires avec la facilité de 

fabrication de lunettes. 

Germanotellurite verre et la céramique, verre dopés avec différentes quantités d'oxyde 

d'argent, dans la (100-x) (70TeO2 - 10GeO2 - 10Nb2O5 - 10 - K2O) xAg2O système (x = 0 

à 6% en mole), a été étudiée. L'étude se compose de l'élaboration et la caractérisation d'une 

céramique de verre qui peuvent répondre aux exigences de matériaux optiques non linéaires, 

avec une grande transparence et une activité non linéaire intense. Les caractéristiques des 

verres et de la céramique de verre ont été déterminées par analyse thermique, diffraction 

des rayons X, la microscopie électronique, UV-Vis et spectroscopie Raman. Cristallisation 

en vrac a été observé pour les verres d'argent dopé avec une phase cristalline unique (Ag, 

K) [Nb1 / 3Te2 / 3] 2O4.8, qui présente une activité seconde génération harmonique (SHG). 

Un seul traitement thermique a abouti transparence supérieure à un traitement thermique en 

2 étapes avec un premier chauffage à la température de nucléation et un second traitement 

pour la croissance cristalline. Pour les modes de transmission et XRD UV-Vis similaires, les 

échantillons de chaleur 1-étape traités ont montré une réponse SHG deux ordres supérieur 

à la 2-étape. 

Cette différence d'intensité provient de la taille des domaines à l'intérieur des deux 

céramiques de verre. Le traitement thermique une étape a été trouvé, de promouvoir micron 

de taille domaines cristallisés, alors que le traitement thermique en deux étapes a abouti à 

des tailles de sous-domaine de longueurs d'onde. La réponse macroscopique SHG global a 

été trouvé pour présenter le comportement dipolaire typique. Ce dipôle nature vient de 

chaque domaine agissant comme SHG émetteur. Une caractérisation basée sur une 

technique de micro-Raman / micro-SHG corrélative, qui peut fournir à la fois des informations 

structurelles et les réponses de SHG locales dans les mêmes régions sub-micron, a été 

réalisée, ce qui indique que l'organisation de cristallites dans les domaines rend leur réponse 

SHG indépendante de polarisation de la lumière. Un modèle structural a été proposé pour 

expliquer la propriété dipolaire général et l'indépendance de la polarisation de la lumière. 

Mots clés : céramique vitreuse ; génération harmonique 2 ; germanotellurite. 

  



Title : Second Harmonic Generation in Germanotellurite glass ceramics 
doped with silver oxide. 

Abstract :  

The importance of signal processing and transmission promotes new applications for 

nonlinear optical materials, such as frequency converters. Crystals are well known materials 

for these applications because of their strong optical nonlinear behaviour. However, they are 

costly to manufacture and are strongly dependant on crystal orientation. Glasses are possible 

candidates because of their optical properties and ease of fabrication but they possess no 

second-order nonlinearity due to their centrosymmetric structure. However, a glass-ceramic 

composite with ferroelectric crystals embedded in a glass matrix can combine the nonlinear 

properties of crystals with the easiness of fabrication of glasses.  

Germanotellurite glass and glass ceramics, doped with different amounts of silver oxide, in 

the (100-x)(70TeO2 – 10GeO2 – 10Nb2O5 – 10 K2O) – xAg2O (x=0-6 mol%) system, has 

been studied. The study consists of elaboration and characterization of a glass ceramic that 

can fulfil the requirements of nonlinear optical materials, with high transparency and intense 

nonlinear activity. The characteristics of the glasses and glass ceramics were determined by 

thermal analysis, X-ray diffraction, electron microscopy, UV-Vis and Raman spectroscopies. 

Bulk crystallization has been observed for the silver-doped glasses with a unique crystal 

phase, (Ag,K)[Nb1/3Te2/3]2O4.8, which presents second harmonic generation (SHG) activity. A 

single heat treatment yielded higher transparency than a 2-step heat treatment with a first 

heating at the nucleation temperature and a second treatment for crystal growth. For similar 

UV-Vis transmission and XRD patterns, the 1-step heat treated samples showed a two order 

higher SHG response than the 2-step one.  

This intensity difference comes from the size of domains within the two glass ceramics. The 

1-step heat treatment was found to promote micron sized crystallized domains, while the two 

step heat treatment yielded sub-wavelength domain sizes. The global SHG macroscopic 

response was found to present typical dipolar behaviour. This dipole nature comes from each 

domain acting as SHG emitter. A characterization based on a correlative micro-Raman/micro-

SHG technique, which can provide both structural information and local SHG responses 

within the same sub-micron areas, was performed, indicating that the organization of 

crystallites inside the domains makes their SHG response independent of light polarization. 

A structural model has been proposed to explain the general dipolar property and the light 

polarization independence. 

Keywords : glass ceramics; second harmonic generation; germanotellurite 
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