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Towards a large scale 3D computational model of physiological hemodynamics, remark-
able progress has been made in simulating blood flow in realistic anatomical models
constructed from three-dimensional medical imaging data in the past few decades. When
accurate anatomic models are of primary importance in simulating blood flow, realistic
boundary conditions are equally important in computing velocity and pressure fields.
Thus, the first target of this thesis was to investigate the convergence analysis of the
unknown fields for various types of boundary conditions allowing for a flexible framework
with respect to the type of input data (velocity, pressure, flow rate, ...). In order to deal
with the associated large computational cost, requiring high performance computing,
we were interested in comparing the performance of three block preconditioners; the
least-squared commutator preconditioner, the SIMPLE preconditioner and the pressure
convection diffusion preconditioner. We implemented the later, in the context of this
thesis, in the Feel++ library. With the purpose of handling the fluid-structure interaction,
we focused of the approximation of the force exerted by the fluid on the structure, a field
that is essential while setting the continuity condition to ensure the coupling of the fluid
model with the structure model. Finally, in order to reduce the computational cost of a
closed 3D circulatory computational model, we were interested in a variational reduction
of the Navier-Stokes equation and the coupling of a reduced model with a 3D model.
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Ce qui mérite d’être fait, mérite d’être bien fait.

Nicolas POUSSIN
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À toi papa
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Notations

The fluid and flow related quantities

Symbol Description

Re : the Reynolds number Re = ⇢DU
µ

D : the characteristic length
µ : the viscosity of the fluid
⇢ : the density of the fluid
u, p : the velocity and pressure of the fluid
uh, ph : the discrete versions of the velocity and pressure
v, q : the velocity and the pressure test functions of the fluid
�(u, p) : the stress tensor �(u, p) = �pI+ 2µD(u)

D(u) : the strain tensor: D(u) =

1
2(ru+ru

T
))

� : Lagrange multiplier insuring the inextensibility of the membrane
h : the mesh size
�t : the time step
d : the space dimension, in this work, d = 2 or 3

Domains and spaces

Symbol Description

⌦ : the whole domain
@⌦ : the boundary of ⌦
�in : the inlet of the domain in the case of an inflow/outflow problem
�out : the outlet of the domain in the case of an inflow/outflow problem
�w : the wall of the domain in the case of an inflow/outflow problem
�D : the part of the domain boundary where a Dirichlet boundary condition

is set
�N : the part of the domain boundary where a Neumann boundary condition

is set
�b : the bottom part of a rectangular domain
L2

(⌦) : the square-integrable functions space, whose norm is:

kvkL2(⌦) =

 

R

⌦ v2

!1/2

L2
0(⌦) : the square-integrable functions space with null mean pressure

[L2
(⌦)]

d : the square-integrable scalar functions space of dimension d
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H1
(⌦) : the Sobolev scalar functions space, whose norm is:

kvkH1(⌦) =

 

kvk2L2(⌦) + krvk2L2(⌦)

!1/2

H1
0 (⌦) : the Sobolev functions space with vanishing value at boundary

[H1
(⌦)]

d : the Sobolev functions space of dimension d
H

1

2

(@⌦) : {u 2 L2
(@⌦)|9ũ 2 H1

(⌦),u = tr(ũ)}
V� : a generic discrete velocity functions space
Q� : a generic discrete pressure functions space
NV

�

: number of velocity degrees of freedom
NQ

�

: number of pressure degrees of freedom
'i,i=1,...,N

V

�

: the velocity basis functions
 i, i=1,...,N

Q

�

: the pressure basis functions
⇠i, i=1,...,N

Q

�

: the Lagrange multiplier basis functions

Finite elements symbols

Symbol Description

K : a finite element
ˆK : the reference element
PN(K) : a vectorial space of polynomials with a total degree less or equal to N
(K, PN , ⌃) : the Lagrange finite elements triplet
⌃ = {�i, i = 1, ..., TN} : defined as follows:

�i : PN(K) �! R
p 7�! p (ai)

ai : the interpolation points on K
ˆ

�

N
i : the basis functions of a finite element (K, PN , ⌃) such that

�̂j
⇣

ˆ

�

N
i

⌘

= �ij, 1  i, j  ˆTN , with
ˆ

�

N
i (x) =

PT̂
N

j=1 ↵ij j (x) , i = 1, ..., ˆTN ,  j being the basis functions
of the primal basis

'

geo
K : the geometric application that transforms ˆK into K

('

geo
K )

�1 : the geometric application that transforms K into ˆK
'

geo
K :

ˆK 2 Rd ! K 2 Rd and ('

geo
K )

�1
: K 2 Rd ! ˆK 2 Rd

ˆ

x 7! x x 7! ˆ

x

a(u,v) : the bilinear form defined as follows: a(u,v) = 2µ

Z

⌦

D(u) : D(v)

b(v, p) : the bilinear form defined as follows: b(v, p) = �
Z

⌦

p div(v)

c(w,u,v) : the trilinear form defined as follows: c(w,u,v) = ⇢

Z

⌦

(w ·ru) · v

Matrices and operators
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Symbol Description

A : the Stokes or Navier-Stokes matrix
A

u

: the stiffness matrix defined on the velocity space
Ap : the stiffness matrix defined on the pressure space
B : the divergence matrix
B

T : the transpose divergence matrix
C : the matrix arising from the explicit treatment of the convective term
Q

u

: the velocity mass matrix
Qp : the pressure mass matrix
F

u

: matrix that coincides with:
A

u

: in the case of a Stokes problem
1

�t
Q

u

+A

u

: in case of an explicit treatment of the convective term
Q

u

�t
+A

u

+C: in the case of a semi-implicit or an implicit treatment.
S : BF

u

�1
B

T , the Schur complement
S

⇤ : the Schur complement approximation S

⇤
= Q

p

F

�1

p

A

p

L : the convection-diffusion operator: L = �⌫r2
+ !h ·r

E : convection-diffusion operators with the divergence commutator defined
as: E = r · (�⌫r2

+ !h ·r)� (�⌫r2
+ !h ·r)pr

Fp : the pressure convection diffusion matrix associated to the operator L

Abreviations

Abreviation Description

ALE : Arbitrary Lagrangian Eulerian method
AMG : Algebraic MultiGrid methods
ASM : Additive Schwarz methods methods
bvq : boundary value problem
BDF : Backward Differential Formula
bJacobi : Block Jacobi method
CEMRACS : Centre d’Été Mathématique de Recherche Avancée en Calcul Scien-

tifique
CFD : Computational Fluid Dynamics
CRB : Certified Reduced Basis methods
CG : Continuous Galerkin
DD : Domain Decomposition method
DG : Disontinuous Galerkin
DOF : Degrees of Freedom
FD : Finite difference method
FDA : Food and Drugs Administration
FE : Finite elements method
Feel++ : Finite Elements Embedded Library in C++
FV : Finite volumes method
GAMG : Geometric Agglomeration MultiGrid methods
GASM : Generalized Additive Schwarz Method
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CG : Conjugate Gradient
GCR : Generalized Conjugate Residual method
GMRES : Generalised Minimal RESidual method
GPU : Graphics Processing Unit
LSC : Least Square Commutator preconditioner
ML : Multi-Levels algorithm of the Multigrid preconditioning
MINRES : Minimal RESidual method
PCD : Pressure Convection Diffusion preconditioner
PDE : Partial Differential Equations
PETSc : Portable, Extensible Toolkit for Scientific Computation
PMM : Pressure Mass Matrix preconditioner
SEM : Spectral Elements Methods
SIMPLE: : Semi-Implicit Method for Pressure Linked Equations
SOR : Successive Over Relaxation method
VIVABRAIN : VIrtual angiography simulation from 3D and 3D+t BRAIN VAscular

models
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Introduction

Selon l’Organisation Mondiale de la Santé (OMS), avec plus de 17.5 millions de décès
par an, les cardiopathies ischémiques, ou maladies coronariennes, et les maladies cérébro-
vasculaires sont la cause majeure de morbidité et de mortalité dans le monde (voir Figure
1). Ceci a motivé, il y a plusieurs années, la communauté mathématique à pousser ses
recherches dans le domaine bio-médical afin de mettre à la disposition du monde de la
santé des outils automatiques de simulation basés sur la reconstruction de la géométrie
vasculaire à partir d’imagerie médicale [61]. Pendant longtemps, ces simulations n’étaient
pas envisageables parce qu’elles nécessitaient des ressources de calcul très importantes. Il
a fallu attendre les dernières décennies pour que l’application de modèles mathématiques
pour les écoulements sanguins devienne monnaie courante au sein de la bio-ingénierie et
de la communauté de recherche médicale. Les principales raisons de ce progrès ne sont
pas seulement l’augmentation de la puissance des ordinateurs modernes, les progrès de
l’imagerie et des techniques d’extraction de la géométrie, mais également le développe-
ment de meilleurs algorithmes numériques.

Figure 1: Taux global de mortalité dans le monde en 2012. (https://heartnewslink.com)

Les domaines d’application de la CFD sont multiples. Elle a été d’abord adap-
tée pour des études physiologiques et physiopathologiques du système cardio-vasculaire
[140, 58, 62] mais aussi pour établir des modalités d’intervention médicales dans le cadre
d’opérations de maladies vasculaires [72, 151, 97]. Cette technique a été également
utilisée dans l’industrie d’outils médicaux pour prouver l’efficacité, développer et/ou
améliorer les performances des prothèses de valves [101], des stents [7, 102], des filtres
de sang [54], des outils d’assistance ventriculaires [154]. En outre, récemment, les méth-
odes de simulations sanguines ont été développées pour calculer les niveaux d’hémolyse
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[110, 69, 25, 41, 155, 10, 15] et de thrombose [153, 67, 131, 53, 137].
L’atout principal des simulations sanguines est qu’elles peuvent être vues comme un lab-
oratoire virtuel. Elles permettent en effet de tester différentes hypothèses, de faire varier
plusieurs paramètres et tester plusieurs modèles de manière non-invasive et ceci en faisant
des expérimentations "in silico". Elles peuvent fournir des informations et un aperçu
sur la performance d’un certain dispositif médical en complément des protocoles coûteux
sur des animaux ou des tests cliniques. Elles peuvent également fournir des informa-
tions dans des régions où les données expérimentales seraient difficiles voire impossible à
obtenir. Elles sont même capables de calculer des quantités physiques qu’on ne peut pas
mesurer à l’aide d’appareils médicaux tels que le wall shear stress (WSS), grandeur qui
donne une information sur la détérioration de la paroi vasculaire à l’origine d’anévrismes
lorsqu’elle est élevée et le risque d’athérosclérose lorsqu’elle est faible.
Mon doctorat, financé par un contrat doctoral du Ministère de l’Enseignement Supérieur
et de la Recherche, s’inscrit dans le cadre du projet ANR VIVABRAIN dont je suis
membre (Virtual angiography simulation from 3D and 3D+t brain vascular models) [1].
L’objectif final de ce projet est la génération d’angiographies virtuelles par résonance mag-
nétique du cerveau humain à partir de modèles anatomiques (3D) et hémodynamiques
(3D + t), permettant ainsi à la communauté médicale de mener des expérimentations
in silico et d’apporter des informations complémentaires, voire impossibles à obtenir, sur
des patients (voir Figure 2). Ainsi, ma thèse se situe au niveau de l’étape de simulation
numérique d’écoulements sanguins dans les géométries reconstruites à partir de volumes
vasculaires extraits de ces images médicales. En particulier, nous cherchons à développer
des méthodes pour la simulation de fluide couplées à des méthodes de réduction d’ordre
afin d’obtenir des résultats physiologiques tout en gardant un coût de calcul raisonnable.
Plusieurs niveaux de complexité rentrent en jeu dans le cadre de la fiabilité de l’approche
numérique pour la modélisation des écoulements sanguins. En effet, il ne s’agit pas seule-
ment de vérifier les méthodes numériques utilisées et de valider le modèle mathématique
sur des cas tests académiques, il faut surtout faire une validation sur des géométries réal-
istes, dans notre cas obtenues par imagerie médicale. Pour arriver à cette fin, il faut que le
modèle i) gère le cadre multiphysique de l’écoulement, ii) se confronte au caractère multi-
échelles, iii) prenne en compte la variabilité cérébro-vasculaire inter-individuelle pour la
génération de modèle anatomique.

Cadre multi-echelles

• En temps:
Dans le cadre de la modélisation de phénomènes biologiques, une simulation peut
aller d’une seconde (un battement cardiaque) à quelques minutes (temps d’acquisition
d’une IRM) jusqu’à quelques années (rupture d’un anévrisme).

• En espace:
Le système circulatoire sanguin est un circuit fermé qui assure le transport du sang
du coeur vers les extrémités et les divers organes, et en retour de ceux-ci vers le coeur.
Trois types de vaisseaux assurent le transport du sang : les artères, les capillaires
et les veines. Les artères sont des gros vaisseaux sanguins (4 à 25 mm) qui assurent
le transport du sang du coeur vers les organes. Les veines (5 à 30 mm) assurent
le transport du sang des organes vers le coeur et les capillaires sont des vaisseaux
sanguins de très petit diamètre (5 µm), constituant une véritable surface d’échange
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Figure 2: Les différentes tâches du projet ANR VIVABRAIN.

au sein des organes. On parle également d’artériole et de veinule pour désigner
les minuscules vaisseaux qui permettent le raccordement entre les capillaires et les
artères ou les veines, (voir la table 6).
Par conséquent, pour pouvoir modéliser l’écoulement sanguin dans tout le système
circulatoire, il faut considérer toute l’arborescence de vaisseaux sanguins, de la plus
grosse (30 mm) jusqu’à la plus fine (5 µm), ce qui rend le domaine de calcul grand
et à échelles variées. Pour remédier à cela, nous proposons dans cette thèse, dans
la suite des travaux de N. Poussineau [111], de tronquer le domaine de calcul et de
coupler une zone de calcul 3D d’intérêt (e.g., présentant une pathologie) avec des
modèles réduits 1D dont le coût de simulation associé est accessible, (voir Figure
3).

Figure 3: Domaine de calcul partagé en
3 sous-domaines dont les latéraux com-
prennent chacune une sténose et sont
donc traités en 3D, et un domaine in-
termédiaire droit qui sera traité grâce à
un modèle réduit 1D [111].
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Vaisseau Diamètre moyen Epaisseur de la paroi

Aorte 25 2

Artere 4 1

Arteriole 3 · 10�2
2 · 10�2

capillaire 5 · 10�3
1 · 10�3

veinule 2 · 10�2
2 · 10�3

Veine 5 5

VeineCave 30 1.5

Table 6: Tailles charactéristiques des différents types de vaisseaux sanguins
(mm).http://collettemathieu.blog.lemonde.fr/category/cours-sur-la-rigidite-arterielle/

Cadre multi-physique Plusieurs types d’interaction rentrent en jeu dans le cadre de
la modélisation des écoulements sanguins:

• Interaction particules-particules et fluide-particule:
Le sang, est un fluide complexe constitué à 55% de plasma, liquide visqueux de
couleur jaunâtre et qui est constitué à 90% d’eau, dans lequel baignent les cellules
sanguines : les globules rouges (45%), les globules blancs et les plaquettes (moins
de 1%). Pour pouvoir modéliser un comportement physiologique du sang il est alors

(a) Vue d’artiste
(image issue de http://sciencejunior.fr/).

(b) Composition quantitative
(image issue de http://www.pennmedicine.org).

Figure 4: Schémas représentant la composition du sang.

impossible de négliger sa rhéologie et par conséquent les interactions particules-
particules et fluide-particule provenant de la constitution même du sang.

Dans le cadre de cette thèse, nous nous sommes intéressés à l’écoulement d’un point
de vue macroscopique, la rhéologie constituant à elle seule un domaine de recherche
assez vaste.
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• Interaction fluide-structure:
La paroi des vaisseaux sanguins (artères, capillaires et veines) est composée de trois
tuniques (ou couches) : l’intima, la média et l’adventice. On distingue trois consti-
tuants principaux qui sont : les fibres d’élastine, les fibres de collagène et les fibres
musculaires lisses. Une description détaillée des constituants des parois vasculaires

(a) Artère (b) Veine

Figure 5: Schéma d’une artère et d’une veine. (image issue de
http://www.fedecardio.org/).

(artères et veines) est donnée dans les schémas de la Figure 5. Les propriétés élas-
tiques des différentes couches constituant les vaisseaux dépendent principalement du
rapport entre leur quantité de fibre d’élastine et de fibre de collagène. Ce rapport
varie avec le diamètre du vaisseau.
Un autre facteur à prendre en compte dans le comportement mécanique est l’organi-
sation tridimensionnelle complexe de ces fibres dans le tissu vasculaire. Chaque type
de vaisseau est conçu de telle manière à pouvoir supporter la pression du flux san-
guin en se déformant en conséquence.
Une des propriétés fondamentales des grosses artères élastiques, et notamment de
l’aorte, est de pouvoir amortir les importantes élévations de pression lors de la péri-
ode de contraction cardiaque (systole ventriculaire) puis le retour élastique de cette
même paroi pendant la période de repos cardiaque (diastole ventriculaire). Cette
seconde phase permet de conserver dans le réseau artériel une pression minimale
(ou pression diastolique).

On ne peut donc pas négliger le rôle que joue la paroi sur l’écoulement sanguin. Par
conséquent, un autre type d’interaction à prendre en compte est l’interaction entre
le fluide et la structure. Dans ce contexte, nous nous sommes intéressés dans ce
manuscrit à l’évaluation des contraintes qu’exerce le fluide sur la paroi pour évaluer
d’un point de vue numérique et théorique la précision de l’approximation de cette
quantité. L’importance d’une bonne approximation du tenseur de déformation vient
du fait que cette quantité intervient au moment du couplage entre le modèle pour le
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fluide et le modèle pour la structure. À l’interface entre le fluide et la structure, une
continuité des contraintes s’impose, assurant ainsi, avec la contrainte de la continuité
géométrique, un couplage numérique entre les deux modèles mathématiques.

Variabilité géométrique La géométrie d’un vaisseau a une forte influence sur l’hémod-
ynamique [135], par consequent, dans le cadre d’une application clinique on ne peut pas
envisager de travailler sur une arborescence modèle de la zone vasculaire concernée. Afin
d’avoir une description plus précise de l’écoulement, il faut partir de l’imagerie médicale
du patient en question pour pouvoir générer le maillage volumique correspondant. Des
atlas vasculaires statistiques [45] peuvent aider à l’identification d’anormalités vasculaires
et à l’étiquetage de veines.

Malgré ces difficultés numériques, physiologiques et mécaniques la modélisation des
écoulements sanguins s’est imposée comme un outil de simulation de phénomènes bi-
ologiques, de pronostique et parfois de diagnostic. Les modèles mathématiques pour la
simulation d’écoulements sanguins sont présentés dans le paragraphe suivant.

Modèle mathématique pour le écoulements sanguins Puisque la recherche scien-
tifique est avant tout un travail congruent d’enrichissement et de reflexion contemporaine
sur des connaissances et des théories de nos prédécesseurs, il est indispensable, en homage
à ces gens, et pour la continuité de l’histoire, de faire un brève aperçu historique sur la
genèse des équations de Navier-Stokes — le modèle mathématique reproduisant le com-
portement d’un fluide Newtonien incompressible.
L’histoire de la mécanique des fluides a commencé en 1738 lorsque Daniel Bernoulli
s’intéressa sur l’étude les fluides non visqueux, fondant son analyse sur la conservation
de l’énergie. La révolution de la compréhension mathématique du mouvement des corps,
solides et liquides se poursuivi avec le développement de la théorie du calcul différen-
tiel avec d’abord Leibniz, mais aussi Clairaut, Jean, Jacques et Nicolas Bernoulli puis
Newton. Mais il fallait attendre jusqu’en 1750 pour que Jean d’Alembert soumette un
manuscrit de 137 pages à l’Académie des sciences de Berlin proposant une nouvelle vision
de l’hydrodynamique basée sur l’introduction des notions suivantes: les dérivées partielles,
un champ de vitesses et la pression interne d’un fluide. L’analyse amenée par d’Alembert
sur ce dernier point n’était pas complète, c’est ainsi qu’à Euler que l’on doit l’écriture
finale des équations de la dynamique des fluides incompressibles en 1755. Soit u et p le
champ de vitesse et la pression d’un fluide, respectivement, on peut écrire:

@u

@t
+ u ·ru = �rp,

r · u = 0

Euler parvient à dégager la notion de gradient de pression, notion qui avait échappé
à d’Alembert. Cependant les équations d’Euler ne permettaient pas de comprendre
pourquoi un solide plongé dans un liquide va subir en général une force de résistance,
tendant à le freiner. D’Alembert s’en était aperçu mais il fallait Navier en 1820 pour
comprendre que, lors de son évolution, un fluide va en effet avoir tendance à dissiper
de l’énergie, sous forme de chaleur, et ce simplement par le frottement d’une couche de
fluide sur l’autre. Il introduisit ainsi avec Stokes en 1845 un terme qui permet la dissi-
pation d’énergie sous forme de chaleur, proposant ainsi le modèle de Navier-Stokes pour
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l’évolution d’un fluide Newtonien incompressible (voir chapitre 2).

⇢
@u

@t
� 2div(µD(u)) + ⇢(u ·r)u+rp = 0, in ⌦⇥ I (1)

r · u = 0, in ⌦⇥ I (2)

Un modèle simplifié des équations de Navier-Stokes, qui s’applique lorsque les effets
visqueux dominent sur les effets inertiels est le système d’équations de Stokes qui s’écrit:

�2µdiv(D(u)) +rp = 0, sur ⌦ (3)
r · u = 0, sur ⌦ (4)

où u et p correspondent à la vitesse et la pression du fluide, respectivement. µ représente
la viscosité dynamique du fluide et D(u) le tenseur linéaire de déformation, donné par
l’expression 1

2(ru+ru

T
). Ces notations permettent de définir le tenseur des contraintes

�(u, p) = �pI+ 2µD(u), où I est le tenseur identité. Le system (3)-(4) est ensuite com-
plété par des conditions aux limites appropriées.
Dans ce contexte je me suis également intéressée dans ma thèse au couplage des équations
de Stokes à différentes conditions aux limites permettant de couvrir un cadre flexible ten-
ant compte du type de données en entrée (vitesse, pression, débit...) [26]. Nous avons
étudié trois manières d’imposer les conditions aux limites pour les sections d’entrée et de
sortie: i) la condition aux limites la plus classique, le cas où nous connaissons le profil de
vitesse en entrèe et à la sortie ii) le cas où nous connaissons le profil de vitesse en entrée
et la pression en sortie (condition de sortie libre) iii) le cas où l’on connait l’expression
du tenseur des contraintes en entrée et en sortie. Nous avons montré numériquement
que les différentes formulations discrètes associées aux différentes conditions aux limites
convergent avec l’ordre prédit par la théorie, non seulement en contrôlant l’erreur de dis-
crétisation par rapport à la vitesse et à la pression mais aussi par rapport à la géométrie,
ce dernier point n’étant pas classique et présentant des ouvertures pour de nouveaux ré-
sultats théoriques.

La présence de termes non linéaires dans les équations de Navier-Stokes les rend diffi-
ciles à résoudre analytiquement . Il est donc nécessaire d’utiliser des méthodes numériques
telles que les éléments finis [27, 107, 128, 35, 24], les volumes finis [147], ou encore les
différences finies [6] pour trouver des solutions. L’utilisation de telles méthodes nécessite
un conditionnement précis du problème afin d’éviter les instabilités numériques dues à la
propagation d’erreurs. Dans cette thèse la méthode numérique utilisée est la méthode des
éléments finis.

Librairie Feel++

Les simulations dans le cadre de cette thèse ont été faites en utilisant Feel++, Finite
Elements Embedded Library in C++. Cette dernière appartenant à la classe des DSEL,
Domain Specific Embedded Language, le langage hôte ici enfoui étant le C++. Les DSEL
permettent à chaque utilisateur de pouvoir s’exprimer dans un langage très proche de son
langage technique de tous les jours, ici les mathématiques associées à la discrétisation et
la résolution des EDPs et ils permettent également à chaque contributeur aux différents
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niveaux du logiciel de contribuer sur des aspects spécifiques sans se soucier des éventuelles
interactions avec les autres niveaux. La figure 6 illustre ces derniers points.

Meilleure

expressivité

en utilisant

un langage de

haut niveau

Meilleure

performance

avec un langage

de bas niveau

Compléxité des

codes de calcul

Modèles
Physiques

Méthodes
Algébriques

Design
Logiciel

Méthodes
Numériques

Langage
spécifique
pour des
méthodes

de Galerkin

Exprimer

Générer

Figure 6: Les langages spécifiques permettent de réduire la complexité.

Feel++ permet la résolution d’EDP en 1d, 2d, 3d par des méthodes de Galerkin
(fem, sem, cg, dg, crb) d’ordre arbitraire (y compris en géométrie) en formulation
continue ou discontinue sur des maillages de simplexes ou d’hypercubes. Les ingrédients
de base de cette librairie sont l’adaptation de maillage, l’interpolation et le parallélisme,
outils transparents dans un langage informatique expressif, proche des mathématiques.
Les domaines d’utilisation de cette librairie sont multiples, en partant du développement
et/ou vérification de (nouvelles) méthodes numériques mathématiques, au développement
d’applications multi-physiques à grandes échelles, jusqu’à l’intérêt académique et péda-
gogique.

Feel++ profite des avantages de la version la plus récente de C++ (C++14) tels que
l’interférence de type et s’appuie sur diverses librairies et logiciels telles que

• Boost [91], un ensemble de librairies C++ avancée dont Feel++ utilise un nombre
important dont Boost.Parameter, Boost.Fusion ou Boost.MPL et autres;

• Gmsh [64] pour la génération et l’adaptation de maillage, et la visualisation;

• PETSc[11, 12] pour les structures de données de matrices et vecteurs ainsi que les
solveurs (non)-linéaires et les préconditionneurs;

• SLEPc [74] pour la résolution de problèmes aux valeurs propres standards et général-
isés;

• Eigen [52] une librairie d’algèbre linéaire en C++;

• GiNaC, pour le calcul symbolique et formel [14];
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• Paraview [73] et Ensight [2] pour la visualisation et le post processing.

Ces différentes bibliothèques ainsi que les améliorations de langage ont permis d’écrire des
codes C ++ très concis, robustes et expressifs permettant d’implémenter et de dévelop-
per des méthodes numériques avancées dont voici une liste non exhaustive ainsi que des
publications associées:

• Interaction fluide-structure: formulation ALE ordre élévé [31], formulation lev-
elset [43], formulation ALE-méthode frontières élargies [18];

• Méthodes des domaines fictifs, méthodes frontières élargies [19, 20], pénalisation
[112];

• Méthodes de décomposition de domaines: méthodes de Schwartz avec et sans re-
couvrement, méthodes des joints [124, 123];

• Méthodes des bases réduites [126, 40].

qui ont été appliquées à différents domaines, tels que l’ingénierie mécanique classique,
les écoulements sanguins et rhéologie sanguine, la simulation d’électro-aimants à hauts
champs (> 24T ), la tomographie optique, et l’aérothermie.

La dernière version de Feel++ (v 0.100.0) fournit, parmi d’autres fonctionnalités, la
possibilité d’utiliser des éléments Hdiv et Hcurl, ainsi qu’une stratégie de précondition-
nement "faite maison" basée sur un framework d’opérateurs et de preconditionneurs par
blocs pour des problèmes d’écoulement fluide ou de magnétostatique. Ça repose essen-
tiellement sur trois couches principales: (i) use interface d’opérateur , (ii) une inter-
face d’extraction de blocs de matrices qui dépend de Fieldsplit couplé à bJacobi ainsi
qu’une (iii) interface PETSc pour l’appel de solveurs et préconditionneurs pour les sous-
problèmes qui surgissent d’une méthode de préconditionnement par blocs [29]. Plusieurs
choix peuvent alors être faits à ce niveau. Feel++ gère par conséquent cette variété de
choix et d’options à travers un système de fichiers de configuration où c’est possible de:
(i) définir la géométrie et des paramètres géométriques, (ii) assigner des valeurs à des
paramètres, (iii) choisir la méthode numérique, les solveurs, préconditioneurs et les op-
tions pour chaque backend, (iv) définir le type de conditions aux limites, la partie du
domaine où elles seront appliquées ainsi que leurs expressions, etc.

Pour illustrer le tout, j’ai choisi de présenter l’exemple le plus connu en mathématiques
appliquées, le fameux problème Laplacien. Le script suivant est le code complet Feel++
pour résoudre un problème de Stokes en 3D dans une géométrie d’ordre 2 téléchargée par
l’utilisateur pour des éléments finis P2P1.

Listing 1: Code Stokes.
int main(int argc , char**argv )
{

Environment env( _argc=argc , _argv=argv);

auto mesh = loadMesh(_mesh=new Mesh <Simplex < Dim ,GeoDim ,Dim > > );
auto Vh = THchP <U_order >( mesh );
auto U = Vh ->element ();
auto u = U.element <0>();
auto p = U.element <1>();
auto v = U.element <0>();

xxvii



auto q = U.element <1>();

auto g = expr <3,1>( soption(_name="functions.g"), "g" );

auto a = form2( _trial=Vh , _test=Vh );
a = integrate(_range=elements(mesh),_expr=trace(gradt(u)*trans(grad(

,! v))) );
a+= integrate(_range=elements(mesh),_expr=-div(v)*idt(p)-divt(u)*id(

,! q));
auto l = form1( _test=Vh );
l = integrate(_range=elements(mesh),_expr=trans(f)*id(u));
// setting boundary conditions
a+=on(_range=boundaryfaces(mesh), _rhs=l,_element=u,_expr=g);
//solve
a.solve(_rhs=l,_solution=U);

}

Ci-dessous quelques remarques concernant le code:

• L’implémentation C++ est très proche de la formulation variationnelle;

• Les détails d’implémentations concernant la parallélisation et la représentation al-
gébrique sont cachés à l’utilisateur, en particulier le code peut être executé de
manière transparente aussi bien sur un coeur de calcul que des milliers de coeurs de
calcul1;

• Les formules de quadrature sont déduites automatiquement des expressions, cepen-
dant l’utilisateur peut les adapter si nécessaire à travers l’interface d’integrate(.).

• Le code est générique. On peut facilement passer du 2D au 3D, monter en ordre
géométrique et en ordre éléments finis.

D’autres exemples ainsi que la documentation de la librairie et du langage sont disponibles
dans [37].
Dans ce qui suit, les simulations on été réalisée sur (i) Curie au TGCC France grâce à
des allocations Prace et Genci qui ont mis à nos dispositions 80.000 coeurs de calcul et
des performances de 3Pflop · s�1, ainsi qu’un (ii) cluster local avec 96 coeurs de calcul
d’une performance de 0.44Tflop · s�1 mis à notre disposition par Cemosis [3], et (iii) sur
mesocentre de Strasbourg2;.

Plan de la thèse

Ce manuscrit est organisé en trois parties.
La première constitue le cadre théorique de mes travaux de thèse et comprend cinq

chapitres. Nous commençons dans le Chapitre 1 par introduire quelques notions prélimi-
naires sur les espaces de fonctions qui constitueront le cadre mathématique de la méthode
des éléments finis. Nous présenterons les ingrédients de base de cette méthode ainsi que
les notations correspondantes. Nous finissons ce chapitre par une définition de la notion
de scalabilité faible et forte et des métriques d’évaluation de scalabilité. Dans le deuxième
chapitre, nous introduisons le système d’équations de Navier-Stokes pour la simulation

1Feel++ est au coeur de projets PRACE HP-Feel++ (supermuc@lrz) et HP-PDE (curie@tgcc) et a
été lauréat des meso-challenges de Strasbourg et Grenoble.

2https://hpc.unistra.fr/
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de l’écoulement d’un fluide Newtonien incompressible dans un domaine fixe. Nous nous
attarderons sur les différents types de conditions aux limites qui pourraient compléter ce
système ainsi que sur la discrétisation en espace et les multiples techniques de discréti-
sation en temps. Un panorama sur les méthodes de résolution (directes et itératives) est
présenté dans le Chapitre 3. Dans le Chapitre 4 nous faisons un aperçu sur les méthodes
de préconditionnement par blocs. Nous finissons cette partie par une description de la
méthode de réduction variationnelle du modèle fluide dans le Chapitre 5.

La seconde partie est dédiée aux applications et cas tests expérimentaux et est con-
stituée de même de cinq chapitres. Dans le Chapitre 6 nous montrons les résultats de
tests de convergence pour les équations de Stokes, pour les différents types de conditions
aux limites détaillées dans la deuxième section du Chapitre 2 ainsi que des résultats de
scalabilité pour différents préconditionneurs, travail réalisé pendant le CEMRACS 2012.
Les résultats d’une étude de convergence pour deux approches différentes pour le calcul
du tenseur des contraintes sont présentés dans la deuxième partie du Chapitre 6. Dans le
Chapitre 7, nous décrirons, dans un premier temps, le cas test de la marche dont le but
est la validation du préconditionneur PCD à travers une étude de scalabilité et dans un
second temps, un cas test proposé par la FDA, Food ans Drugs Administration, dont le
but est la validation de la CFD et ceci en mettant en ligne, à la disposition de la com-
munauté scientifique, des résultats d’expériences hydrodynamiques effectuées dans des
dispositifs qui reproduisent le comportement de dispositifs médicaux. Dans le Chapitre 8,
nous décrivons, dans le cadre du projet ANR VIVABRAIN, une chaine logiciel complète
qui commence par l’acquisition d’IRM jusqu’à la simulation d’IRM via des simulations
d’écoulements sanguins, travail effectué pendant le CEMRACS 2015.

La troisième partie de ce manuscrit est consacrée aux details de l’implémentation du
préconditionneur PCD dans le Chapitre 9.
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Chapter 1

Preliminaries

For the resolution of the Navier-Stokes equations for fluid flow, several
numerical methods have been studied, such as i) the finite volume method
(FVM) [147] which has an advantage in memory usage and solution speed, es-
pecially for large problems, high Reynolds number turbulent flows, and source
term dominated flows. It is based on “physical” conservation properties and
hence is widely used in the numerical solution of conservation laws, ii) the fi-
nite elements method (FEM), wildly used is the cardiovascular community and
well suited to elliptic or parabolic i.e. diffusive problems. A combination of the
FEM and the FVM in computational fluid dynamics was used in [103, 104],
iii) the finite difference methods (FDM) [6], which are easy to implement, but
have difficulties when it comes to curved boundaries, mesh adaptation.

In the context of this thesis, we chose the FE discretisation method. By this
approach the discretization inherits most of the rich structure of the continu-
ous problem, which, on the one hand provides a high computational flexibility
and on the other hand facilitates a rigorous mathematical error analysis. This
chapter provides some preliminary notions on functional analysis, and explains
the fundamentals of the FE method and the high order geometry approxima-
tion. Some preliminaries on scalability analysis are also introduced in the last
section of this chapter.
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2.2 Geometric transformation . . . . . . . . . . . . . . . . . . . . . 7
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CHAPTER 1. PRELIMINARIES

1 Function spaces

Let us note ⌦ a regular bounded domain in Rd (pour d = 1, ..., 3) and @⌦ its local Lipschitz
boundary.

1.1 Lebesgue function spaces
Let us denote L2

(⌦) the space of square-integrable functions for which the integral of the
square of the absolute value is finite in ⌦, we have

L2
(⌦) =

n

v : ⌦! R such that kvkL2(⌦) < 1
o

, (1.1)

where

kvkL2(⌦) =

 

Z

⌦

v2
!1/2

. (1.2)

The corresponding L2
(⌦) inner product of two functions f and g, which we denote (f, g)

takes the integral of the pointwise product of the two functions over the entire domain ⌦:

(f, g) :=

Z

⌦

f(x)g(x)dx.

It measures the degree to which the two functions overlap. For instance, in Figure 1.1,
the top two functions have a large inner product; the bottom two have a smaller inner
product (as indicated by the dark blue regions).

Figure 1.1: L2
(⌦) scalar product of two functions illustrated with respect to the overlap

of the two functions area. (http://brickisland.net/cs177/?p=309)

More generally, a Lebesgue space Lp
(⌦) , with p � 1, is defined as follows:

Lp
(⌦) =

n

v : ⌦! R such that kvkLp(⌦) < 1
o

, (1.3)

with

kvkLp(⌦) =

 

Z

⌦

�

�v
�

�

p

!1/p

, 1  p  1 et kvkL1(⌦) = ess sup
x2⌦

�

�v(x)
�

�. (1.4)
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1.2 Hilbert function space
We denote Hk

(⌦), with k 2 N+, the Hilbert function spaces. We have

Hk
(⌦) =

n

v : ⌦! R such that D↵v 2 L2
(⌦) , 8↵ such that |↵|  k

o

, (1.5)

where D↵v is the general distributional partial derivative of v. For all the indices ↵ =

(↵1, ...,↵l
) such that ↵i � 0 for i = 1, ..., l, and for all x = (x1, ..., xl

) 2 ⌦, we have

D↵ ⌘ @↵

@↵
1

x1

...@↵
l

xl

, and |↵| =
d
X

i=1

↵i. (1.6)

Let us denote
�

u, v
�

Hk(⌦)
the scalar product associated to Hk

(⌦) . It is defined as follows,

�

u, v
�

Hk(⌦)
=

X

|↵|k

Z

⌦

D↵u D↵v, (1.7)

and the induced norm,

kukHk(⌦) =

0

@

X

|↵|k

Z

⌦

�

�D↵u
�

�

2

1

A

1/2

. (1.8)

We can notice that the L2
(⌦) space, which corresponds to H0

(⌦), is the only Lebesgue
space that is an Hilbert space too.

1.3 Sobolev spaces
Let us now introduce the spaces that we need to define the variational formulation of the
partial differential equations, PDEs. This formulation, also called weak formulation, is
the basis of the finite elements method. Let W k,p

(⌦), with k � 0 and p � 1, denote the
Sobolev space defined as follows,

W k,p
(⌦) =

n

v : ⌦! R such that D↵v 2 Lp
(⌦) , 8↵ such that |↵|  k

o

. (1.9)

The Sobolev spaces are Banach spaces for the following norm:

�

�

�

�v
�

�

�

�

Wk,p(⌦)
=

0

@

X

|↵|k

Z

⌦

�

�D↵v
�

�

p

1

A

1/p

, for 1  p < 1, (1.10)

and
�

�

�

�v
�

�

�

�

Wk,1(⌦)
= max

|↵|k
ess sup

x2⌦

�

�D↵v(x)
�

�. (1.11)

The case p = 2 is particularly interesting. In fact, the spaces W k,2
(⌦), with k � 0,

have a Hilbert space structure. Let us also note that when we set k = 0, the spaces
W 0,p

(⌦) are the Lp
(⌦) spaces. Thus, it is clear that the Lebesgue spaces are particular

cases of the Sobolev spaces.
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2 Finite elements approximation

In this section, we will first start by describing the finite elements method. We explain the
construction of this method for arbitrary polynomial approximation order in space, but
also for an arbitrary polynomial approximation order of the geometry. This description
is taken from [107, 28]. The reader may refer to these two theses for more details. In
this thesis, the elementary elements used in the meshes are mainly simplexes segments
(1D), triangles (2D) or tetrahedrons (3D). In the following, the descriptions are done using
simplexes, but it is also possible to use hypercubes quadrangles (2D) or hexahedrons (3D)
with a similar treatment. A complete description may be found in [27, 107, 128, 35, 24].

2.1 Finite elements notations
In the context of finite elements methods and spectral elements, we will rely on the
definition of Ciarlet [35]. This formalism introduces the notion of finite elements, an
elementary brick in functions interpolation. To construct a finite element, we need to
define the triplet (K, P , ⌃ ), with :

• K 2 Rd, a compact geometrical element, connected with nonempty interior (
�
K 6= ?)

with Lipschitz boundary;

• P , a finite-dimensional vector space of functions p : K ! Rµ with µ a positive
integer;

• ⌃, a set of TN linear forms �i defined on P such that the linear application:

P 3 p 7�! (�1 (p) , ..., �T
N

(p))T 2 RT
N

is bijective. The linear forms (�1, ..., �T
N

) are called the degrees of freedom of the
finite element.

There are many finite elements, we can cite, for example, the Lagrange finite elements,
the Raviart-Thomas finite elements, the Crouzeix-Raviart finite elements, the Nedelec
finite elements, ... A complete description of those elements is done in [35, 50, 88]. In the
following, we will use the simplest and commonly used finite element, the Lagrange finite
elements described as follows: (K, PN , ⌃). The set of linear forms ⌃ = {�i, i = 1, ..., TN}
is defined as follows:

�i : PN(K) �! R
p 7�! p (ai)

where the ai are the interpolation points on K and PN(K) is a vectorial space of polyno-
mials with a total degree less or equal to N . The vectorial space is defined on the element
K and has a value in R. To construct the vectorial space PN(K), we will have to choose
a basis of this space called the primal basis. An illustration of a 2D and a 3D P1 and P2

representation of a finite element is shown in figure 1.2.

Definition 1. Let (K,PN ,⌃) be a Lagrange finite element, {⌃i, i = 1, ..., TN} the linear
forms associated to ⌃, and TN the dimension of ˆPN(K). The basis functions of a finite

6 2. FINITE ELEMENTS APPROXIMATION
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(a) 2D representation of P1 (left) and P2
(right) elements.

(b) 3D representation of P1 (left) and P2 (right)
elements.

Figure 1.2: Element representation in 2D and 3D. [49]

element (K,PN ,⌃) see figure 1.3, are the functions
�

�

N
i 2 PN(K), i = 1, ..., TN

 

such
that:

⌃j

�

�

N
i

�

= �ij, 1  i, j  TN (1.12)

With this choice of finite element construction, the primal basis is only constructed on
the reference element K. We denote B = { j}TN

j=1 the set of basis functions of the primal
basis. Recalling the Lagrange finite elements example, each of the basis functions �N

i is
determined by the T 2

N coefficients ↵ij such that:

�

N
i (x) =

T 2

N

X

j=1

↵ij j (x) , i = 1, ..., T 2
N (1.13)

2.2 Geometric transformation
There are two techniques in order to define a finite element K. We can either apply the
previously defined formalism on K, or we can bring back all the calculus to the reference
element. In the following, we will use the latter for it has many advantages explained in
the sequel. Let us recall the basis functions

�

�

N
i

 T
N

i=1
associated to the Lagrange finite

element (K,PN ,⌃). In order to define those basis functions, we will first define the ˆ

�

N
i

basis functions defined on the reference element ˆK and then obtain the basis functions
defined on the real element K, via a geometric transformation that we denote '

geo
K .

Thus, many elementary calculus will be done on the element ˆK, such as the evaluation
or the derivative of the basis functions on the quadrature points.

The geometric transformation is an invertible application from ˆK to K, whenever the
element is not degenerate. We thus define '

geo
K and its inverse ('

geo
K )

�1 :

'

geo
K :

ˆK 2 Rd ! K 2 Rd and ('

geo
K )

�1
: K 2 Rd ! ˆK 2 Rd

ˆ

x 7! x x 7! ˆ

x

(1.14)

2. FINITE ELEMENTS APPROXIMATION 7
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(a) P1 basis function (b) P2 basis function

Figure 1.3: First and second order basis function representation. [49]

The reference element ˆK may be freely chosen as long as it respects:

• the element type (segment, triangle, quadrangle, tetrahedron, ...);

• the number of geometric nodes (order of the geometric transformation);

• the compatibility of the nodes numbering in K and ˆK, in order to guarantee the
C1-diffeomorphism property of 'geo

K .

However, its choice may be motivated by the domain definition of the primal basis.

We will now use the Lagrange finite element to define the geometric transformation
'

geo
K . This formalism allows us to generalise the geometric transformation definition for

an arbitrary approximation order. In figure 1.4, we show two types of geometric transfor-
mation.

Definition 2. We say that ( ˆK, ˆPgeo
k , ˆ⌃geo

) is the geometric finite element of order k. We
set Ng = card(ˆ⌃geo

). We denote
�

ˆ

g1, ..., ˆgN
g

 

the set of geometric nodes of ˆK. The later
are the equidistributed points on this element. The set of basis functions of this element
is denoted by

�

 1, ..., N
g

 

.

The element K is composed of Ng geometric nodes
n

g

K
1 , ..., gK

N
g

o

. Each point g

K
i is

characterised by its coordinates (gKi,x, gKi,y, gKi,z) in the cartesian coordinate system. We can
write '

geo
K as a linear combination of basis functions  i, i = 1, ..., Ng:

'

geo
K (

ˆx) =
N

g

X

i=1

g

K
i  i (ˆx) (1.15)

8 2. FINITE ELEMENTS APPROXIMATION
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x̂

ŷ

•̂
g1

•̂
g2

•ˆg3

ˆK

x

y

•
g

K
1

•
g

K
2

•g
K
3

K

'

geo
K (

ˆx)

('

geo
K )

�1
(x)

(a) Linear transformation on a triangle.

x̂

ŷ

•̂
g1

•̂
g2

•ˆg3

•̂
g4

• ˆg5•
ˆ

g6
ˆK

x

y

•
g

K
1

•
g

K
2

•g
K
3

•
g

K
4

•g
K
5•

g

K
6 K

'

geo
K (

ˆx)

('

geo
K )

�1
(x)

(b) Quadratic transformation on a triangle.

Figure 1.4: Geometric transformations of order 1 et 2 on a triangle. [28]

We will also need to define the Jacobian matrix of 'geo
K , that we will denote J(ˆx) =

r
x̂

'

geo
K (

ˆx), its determinant |J(ˆx)| = det (J(ˆx)), and the transpose of the inverse of J(ˆx)
that we will denote J(ˆx)�T . Those expressions are essential when we need to do a substi-
tution '

geo
K in the integral on K or on a face of K. That is, instead of doing an integral

over an element K we will bring the integral on the reference element ˆK.
Let f : K ! R be a function. The following substitution formulas intervene in the

integral calculus over an element:
Z

K

f(x) dx =

Z

K̂

f('geo
K (

ˆx)) |J(ˆx)| dˆx
Z

K

r
x

f(x) dx =

Z

K̂

r
x̂

f('geo
K (

ˆx)) J(ˆx)�T |J(ˆx)| dˆx
Z

K

r
x

f(x) ·r
x

g(x) dx =

Z

K̂

r
x̂

f('geo
K (

ˆx)) (J(ˆx)�T J(ˆx)�1
)r

x̂

g('geo
K (

ˆx)) |J(ˆx)| dˆx

Remark 1.

3 Scalability Analysis

In the context of High-Performance Computing (HPC), the scalability expresses the ability
of a given parallel algorithm to best exploit a parallel computer architecture. The notion

3. SCALABILITY ANALYSIS 9
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of scalability is related to the notions of speedup and efficiency. We introduce below the
notion of strong scalability (speedup) and the weak scalability (efficiency).

Definition 3. Let T1 be the sequential run time of a problem of size n on one processor
and Tp be the parallel run time of the same problem on p processors. Let us denote Sp the
speedup of an application, it is given by the relation:

Sp = T1/Tp.

The measure of speedup is used to determine the quality of parallel algorithm running on
a parallel computational platform.

Definition 4. The strong scalability determines how the computational time varies with
the number of cores for a fixed overall problem size. An application is said to be strongly
scalable if the time to solution would decrease in inverse proportion to the number of cores
employed (so-called linear speedup).

Definition 5. The weak scalability study consists of increasing the problem size n and
the number of processing units p such as the problem size per processing unit n/p remains
constant throughout all computations. Let Tp be the time to solution of a problem of size
p ⇥ n on p processors, and Tq be the time to solution of a problem of size q ⇥ n on q
processors. An application is said to be weakly scalable if Tp ⇡ Tq.

Definition 6. The efficiency is defined by

Ep = Sp/p.

The best possible efficiency is Ep = 1. It is reached when the speedup is linear, i.e.
Sp = p. Note that in efficiency analysis, the problem size assigned to each core remains
constant and additional processing units are used for solving a larger problem. Thus, the
efficiency is directly related to the weak scalability.

The performance of a parallel computer depends on a wide number of factors [81]
affecting the scalability of a parallel algorithm.

From [81], some basic metrics affecting the scalability of a parallel computer for a
parallel algorithm are given by:

• Machine size — the number of processing units employed in a parallel computer.
The computational power is a function of machine size.

• Clock rate — the clock rate refers to the frequency of a CPU.

• Problem size — the amount of computational workload used for solving a given
problem. The problem size is directly proportional to the sequential execution time.

• CPU time — the elapsed CPU time (in seconds) while running a given program on
a parallel computer with n processing units. It is the parallel execution time.

• I/O demand — the input/output demands when running the program.

• Memory capacity — the amount of main memory (in bytes) used in the execution
of a program. The memory demand is affected by the problem size, the algorithms
and the data structures used.

10 3. SCALABILITY ANALYSIS
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• Communication overhead — the amount of time elapsed in interprocess communi-
cations, synchronization and remote memory access.

• Computer cost — the total cost of hardware and software resources required to carry
out the execution of a program.

3. SCALABILITY ANALYSIS 11





Chapter 2

Fluid model

This chapter is dedicated to the mathematical model devoted for the simu-
lation of a Newtonian, incompressible fluid flow, the Navier-Stokes equations
system. We are interested in particular, in the Galerkin finite element method
for the numerical resolution. In this chapter, we explicit the different vari-
ational formulations retrieved by applying i) different time discretisations,
and ii) different boundary conditions.We study the stability of the scheme, and
give the corresponding error estimates. The numerical convergence analysis
with respect to the various variational formulation presented in this chapter is
reported in chapter 6.
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CHAPTER 2. FLUID MODEL

1 Introduction

In order to perform a rigorous hemodynamics modelling, since blood is not just a fluid
but a suspension of particles in a fluid mainly made of water, the plasma, we can not
but mention the two models depending on the blood flow behaviour. On one side the
Newtonian model which neglects shear thinning and viscoelastic effects and is suitable
in larger vessels or when we are not interested in the finer details of the flow, as non-
Newtonian behaviour may affect. On the other side, in vessels of diameter, say, less than
1 mm, the use of Newtonian models is hardly justifiable. The small velocities and shear
stress here involved call for the use of one of the non-Newtonian models.
In this thesis, we focus our investigations on flow in large and medium sized vessels. The
flow is hence governed by the unsteady incompressible Navier-Stokes equations.

2 The Navier-Stokes equations

Let ⌦ ⇢ R

d, d � 1, denote the bounded connected domain under investigation, fixed in
time. The Navier-Stokes equations can be written as:

⇢
@u

@t
� 2div(µD(u)) + ⇢(u ·r)u+rp = 0, in ⌦⇥ I (2.1)

div(u) = 0, in ⌦⇥ I (2.2)

where I = (0, T ] is the time interval, u and p are the velocity and pressure of the fluid,
respectively, ⇢ and µ are the density and the dynamic viscosity of the fluid, respectively,
and D(u) is the linear fluid deformation tensor (given by the expression 1

2(ru+ru

T
)).

These notations allow us to define the stress tensor �(u, p) = �pI+2µD(u), where I is the
identity tensor. System (2.1) - (2.2) is completed with appropriate initial and boundary
conditions that will be detailed later. The first equation expresses the conservation of
linear momentum. It is a vector equation formed by three scalar equations, one for each
component of the velocity. The second equation expresses the conservation of mass.

The flow is characterised by the Reynolds number:

Re =
⇢DU

µ
, (2.3)

a dimensionless number that identifies the transition of the flow to turbulence. It depends
on the diameter of the vessel D (or radius R), the mean blood velocity U , the density
and viscosity of the blood. The higher the Reynolds number gets, the more turbulent the
flow becomes, and vice-versa.

2.1 Variational form of the Navier-Stokes equations
To write formally a variational formulation of the problem (2.1) - (2.2), let us denote by
V and M the functional spaces for the velocity and pressure fields, respectively. These
spaces will be set later on according to the specific choices of boundary conditions. We
will take, for the moment, V = [H1

(⌦)]

d
= [{f 2 L2

(⌦)/8i = 1 . . . n, @f
@x

i

2 L2
(⌦)}]d and

M = L2
(⌦).

14 1. INTRODUCTION
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Taking the scalar product of equation (2.1) by a test function v 2 V, multiplying
equation (2.2) by a test function q 2 M and integrating the resulting equalities over ⌦,
we are led to the following weak formulation: for every t>0, find (u(t), p(t)) 2 V ⇥ M
such that 8v 2 V, 8q 2 M,
Z

⌦

⇢
@u(t)

@t
v +

Z

⌦

⇢(u(t) ·ru(t)) · v � 2µ

Z

⌦

div(D(u(t))) · v dx+

Z

⌦

rp(t) · v dx = 0,(2.4)
Z

⌦

q div(u(t)) dx = 0,(2.5)

Remark 2. In the following we will use u and p instead of u(t) and p(t), for simplicity
reasons.

We integrate by parts the third and forth integrals of equation (2.4). We obtain
Z

⌦

⇢
@u

@t
v +

Z

⌦

⇢(u ·ru) · v + 2µ

Z

⌦

D(u) : rv dx� 2µ

Z

@⌦

D(u)n · v ds

+

Z

@⌦

p v · n ds�
Z

⌦

p div(v) dx = 0.

Note that, for symmetry reasons, the equality D(u) : rv = D(u) : D(v) holds. Thus,
the variational formulation of (2.1) - (2.2) can be written as: find (u, p) 2 V ⇥ M such
that 8v 2 V , 8q 2 M we have:

Z

⌦

⇢
@u

@t
v +

Z

⌦

⇢(u ·ru) · v + 2µ

Z

⌦

D(u) : D(v) dx� 2µ

Z

@⌦

D(u)n · v ds

+

Z

@⌦

p v · n ds�
Z

⌦

p div(v) dx = 0

Z

⌦

q div(u) dx = 0

or, equivalently: find (u, p) 2 V⇥M such that 8v 2 V, 8q 2 M
Z

⌦

⇢
@u

@t
v +

Z

⌦

⇢(u ·ru) · v + 2µ

Z

⌦

D(u) : D(v) dx�
Z

@⌦

�(u, p)n · v ds

�
Z

⌦

p div(v) dx = 0 (2.6)
Z

⌦

q div(u) dx = 0 (2.7)

We have not yet incorporated the boundary conditions in the weak formulation. To
do so, let us start with denoting @⌦ = �in [ �out [ �w the local Lipschitz boundary
of the domain ⌦ where �w is the wall where we will consider an adherence boundary
condition, �in the inlet and �out outlet of a chanel. Note that inlet and outlet can have
several locally connected components (from the topological point of view). The common
boundary condition to all our following simulations which is the no slip condition on �w:

u = 0 on �w.

2. THE NAVIER-STOKES EQUATIONS 15
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The standard manner to deal with this essential boundary condition is to choose the
functional space V as

V = {v 2 [H1
(⌦)]

d | v = 0 on �w}. (2.8)

Within this functional setting for the velocity field, equations (2.6) - (2.7) are rewritten
as: find (u, p) 2 V⇥M such that 8v 2 V, 8q 2 M,

Z

⌦

⇢
@u

@t
v +

Z

⌦

⇢(u ·ru) · v + 2µ

Z

⌦

D(u) : D(v) dx

�
Z

�
in

[�
out

�(u, p)n · v ds�
Z

⌦

p div(v) dx = 0, (2.9)
Z

⌦

q div(u) dx = 0, (2.10)

In the weak formulation (2.9) - (2.10), we have to take into account the boundary
conditions on the inlet and outlet parts of the boundary. Recall that in this thesis we are
interested in simulating fluid flows in straight and curved pipes and in realistic geometries
of blood vessels. In all these cases, the computational domain is only a part of the
physical one. Therefore, inlets and outlets are in fact artificial sections that separate the
computational and physical domains.

Consequently, in order not to change the physics of the problem, special attention
needs to be given on the boundary conditions imposed at the inlets or outlets.

In the following, let us consider different types of boundary conditions for the inlet
and outlet sections. We start by the most classical boundary condition, the case where
we know the velocity profiles at inlet and outlet (for example, Poiseuille profiles). The
second case we consider is the free outlet condition. Finally, we focus on less classical
boundary conditions that correspond to the case where we know only the pressure at
the inlet and outlet sections. These nonstandard boundary conditions are very useful if
we want to make a comparison between the simulations performed and the experimental
data. Indeed, in physical experiments, it is easier to impose pressure than velocity on
both inlet and outlet.

2.2 Boundary conditions

2.2.1 Dirichlet-Dirichlet boundary conditions

Let us suppose that we know the velocity profiles at the inlets and outlets and that they
are described by two functions uin 2 [H

1

2

(�in)]
d and uout 2 [H

1

2

(�out)]
d such that

u = uin on �in, (2.11)
u = uout on �out. (2.12)

In this case, in order to have a well posed problem, it is sufficient to choose

V = {v 2 [H1
(⌦)]

d | v = 0 on �w, v = uin on �in, v = uout on �out} (2.13)

and M = L2
0(⌦), where L2

0(⌦) denotes the set of functions in L2
(⌦) with zero mean value.
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With this choice of functional spaces, problem (2.9) - (2.10) becomes: find (u, p) 2
V⇥M such that 8v 2 [H1

0 (⌦)]
d, 8q 2 L2

0(⌦)

Z

⌦

⇢
u

@t
v +

Z

⌦

⇢(u ·ru) · v + 2µ

Z

⌦

D(u) : D(v) dx�
Z

⌦

p div(v) dx = 0, (2.14)
Z

⌦

q div(u) dx = 0, (2.15)

The additional restriction of zero mean value to L2
(⌦) function allows to uniquely define

the pressure in M and may be integrated in the variational formulation (2.14) - (2.15)
by adding a suitable Lagrange multiplier. The final variational formulation, with the
Lagrange multiplier, reads as: find (u, p, ⇣) 2 V ⇥ M ⇥ R such that 8v 2 [H1

0 (⌦)]
d,

8q 2 M, 8⇠ 2 R
Z

⌦

⇢
@u

@t
v +

Z

⌦

⇢(u ·ru) · v + 2µ

Z

⌦

D(u) : D(v) dx�
Z

⌦

p div(v) dx = 0, (2.16)
Z

⌦

(q div(u) + ⇠q) dx = 0, (2.17)
Z

⌦

p⇠ dx = 0. (2.18)

Remark 3. In the last formulation, the Dirichlet boundary conditions were set strongly.
There are various strategies for this operation. The most coherent approach with the
theory consists of eliminating the rows and columns that belong to the nodes associated to
the Dirichlet boundary, by setting them to zero except on the diagonal which will be set
to 1, the corresponding entry in the right-hand side will be set to u

in

. Notice that this
operation keeps the symmetric aspect of the matrix but changes its pattern. To avoid this
inconvenient, we can act on only the corresponding row by annihilating the extra-diagonal
row elements and setting the diagonal one to 1 without modifying the column elements.
In the following we will denote the first operation by "elimination_symmetric".
Note that the value on the diagonal element corresponding to a Dirichlet node can be left
unchanged in some cases. We will refer to this option by the suffix "keep-diagonal" e.g.
–on.type=elimination_symmetric_keep_diagonal".

Remark 4. Another way of setting the Dirichlet boundary conditions is using a weak
treatment. It consists of writing the equations in the conservative form, adding terms to
ensure consistency, symetrizing to ensure adjoint consistency and adding a penalization
term with factor �(u� u

in

)/h that ensures that the solution will be set to the proper value
sat the boundary.
The main advantages of this treatment are that first, it is uniform for all boundary con-
ditions type, and second if the boundary conditions are time independent the terms are
assembled once for all unlike the strong treatment that have to be reapplied on the matrix
each time we have a term that is time dependent. The main disadvantage is that we will
be introducing the penalization parameter � that needs to be tweaked so that the coercivity
property is still satisfied.

2.2.2 Dirichlet-Neumann boundary conditions

The previous Dirichlet-Dirichlet boundary conditions do not correspond to the most com-
mon real situation because, in general, we do not know exactly the velocity profile at
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the outlet sections, even if we assume that we know it at the inlets. Indeed, it is diffi-
cult to predict the velocity profile at outlets since it depends on the channel geometry
or the number of outlets sections in a vessel network, for example. Therefore, we can
consider the so-called non-homogenous Neumann boundary conditions. These boundary
conditions can be formalized as

u = uin on �in, (2.19)
�(u, p)n = g on �out. (2.20)

In this case, we retrieve the following variational formulation: find (u, p) 2 V ⇥M such
that 8v 2 {v 2 [H1

(⌦)]

d | v = 0 on �w [ �in}, 8q 2 M

Z

⌦

⇢
@u

@t
v +

Z

⌦

⇢(u ·ru) · v + 2µ

Z

⌦

D(u) : D(v) dx�
Z

�
out

gn · v ds

�
Z

⌦

p div(v) dx = 0 (2.21)
Z

⌦

q div(u) dx = 0 (2.22)

with:

V = {v 2 [H1
(⌦)]

d | v = 0 on �w, v = uin on �in} and M = L2
0(⌦). (2.23)

It appears that this choice of boundary conditions is not in agreement with our problem
since the velocity field is not necessarily orthogonal to the outlet section. See [98] for some
studies on these boundary conditions in the framework of human lung modeling and some
numerical experiments showing this defect or [122] for some numerical examples in the
case of blood flow simulation.

2.2.3 Neumann-Neumann boundary conditions

Boundary conditions involving the pressure and the stress tensor To overcome
the difficulties related to the free outlet boundary conditions, we assume now that
we know the exact value of the normal stress tensor at inlets and outlets. Due to
the definition of the stress tensor, it is sufficient to know both the pressure and the
velocity at inlets and outlets to enforce such boundary conditions. They read as

�(u, p)n = �inn = �pinn+ 2µD(u

in

)n, on �in, (2.24)
�(u, p)n = �outn = �poutn+ 2µD(u

out

)n, on �out. (2.25)

The corresponding variational formulation is then written as: find (u, p) 2 V ⇥M
such that

Z

⌦

⇢
@u

@t
v +

Z

⌦

⇢(u ·ru) · v + 2µ

Z

⌦

D(u) : D(v) dx�
Z

⌦

p div(v) dx =

Z

�
in

�inn · v ds+

Z

�
out

�outn · v ds, 8v 2 V (2.26)
Z

⌦

q div(u) dx = 0, 8q 2 M (2.27)
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where
M = L2

(⌦) and V = {v 2 [H1
(⌦)]

d | v = 0 on �w} (2.28)

Boundary conditions involving the pressure without the stress tensor It is ob-
vious that in the most common situations, the normal stress tensor is not known
at the inlets or outlets. Nevertheless, in some physical experiments, we have direct
access to the pressure at inlets and outlets because it is imposed by the experi-
ence. Therefore, we suppose the existence of two functions pin 2 H� 1

2

(�in) and
pout 2 H� 1

2

(�out) such that

�(u, p)n = �pinn on �in (2.29)
�(u, p)n = �poutn on �out (2.30)

The corresponding variational formulation is: find (u, p) 2 V⇥M such that 8v 2 V,
8q 2 M,

Z

⌦

⇢
@u

@t
v +

Z

⌦

⇢(u ·ru) · v + 2µ

Z

⌦

D(u) : D(v) dx�
Z

⌦

p div(v) dx =

�
Z

�
in

pinn · v ds�
Z

�
out

poutn · v ds (2.31)
Z

⌦

q div(u) dx = 0, (2.32)

where M = L2
(⌦) and V = {v 2 [H1

(⌦)]

d | v = 0 on �w}.
The latest variational formulation gives an appropriate framework for imposing
boundary conditions on the pressure. However, this option may only make sense if
the stress tensor is diagonal at inlets and outlets, meaning that the computational
domain ⌦ is separated by inlets and outlets from a perfect gas-like media at pres-
sure pin and pout respectively. However, this is obviously not the case for blood flow
simulations, where ⌦ is the computational domain, corresponding to a part of the
circulatory system and this is why this formulation cannot be used in our case. For
example, the formulation (2.31) - (2.32) cannot even recover the Poiseuille flow in
a straight pipe.

Remark 5. We must mention that the weak formulation of a Stokes problem with the
same type of boundary conditions is retrieved in the same way as described above for the
Navier-Stokes problem.

2.2.4 Other types of boundary conditions

In the following, we do a brief overview on other types of boundary conditions for hemo-
dynamic flow that we did not use in the context of this thesis.
Significant progress has been made in terms of physiological boundary conditions. For
instance, Stergiopulos et al., in 1992, used a lumped parameter model of the vascula-
ture downstream of each branch in his numerical model [133]. When zero mean pressure
or equal pressures or tractions are the common choice of the pressure boundary at the
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outlets, the resulting flow split will be dictated solely by the resistance to flow in the
branches of the domain of interest, neglecting the dominant effect of the resistance of the
downstream vascular beds. An alternative approach is to use 3D models for the major
arteries where high-fidelity information is needed, and reduced order models for the rest
of the system. While closed-loop models are optimal, a simpler approach is to directly
represent the vasculature of the small arteries and arterioles using 0D or 1D models. Sev-
eral groups [138, 133, 57, 150, 39, 127, 129, 113, 93, 115] have successfully coupled 3D
models to either resistances or more sophisticated 0D models (lumped models), first intro-
duced by Formaggia et al. in [55, 56]. Another method, well suited for handling complex
geometries and boundary conditions inherent in modeling blood flow was introduced in
[139] and extended in [148]. It is based on the Dirichlet-to-Neumann (DtN) [66] and the
variational multiscale [80] methods and is an extension of the 1D coupled multidomain
approach and can be applied with a variety of models of the downstream domain. In
[36, 68] a natural normal velocity boundary condition formulation was introduced. These
boundary conditions force the velocity to be normal to the outlet since a zero Dirichlet
velocity is imposed for the tangential directions. It has the disadvantage of directly mod-
ify the local flow fields, in particular when there are eddies which cross the boundary. For
more information the reader may refer to [148, 60].

2.3 Space discretization

Remark 6. We must mention that, although the existence of a unique 3D strong solution
on (0, T ) is proven for sufficiently small data, e.g., kru0kL2(⌦) small enough (global-in-
time unique solution), or on sufficiently short intervals of time, 0  t  T because of a
good energy balance due to the conservation property of the nonlinear term, the uniqueness
of a weak solution on (0, T ) is still an open problem. For 2D problems with essential
boundary conditions, the control of the inertial term guarantees the uniqueness of a weak
solution on any time interval (0, T ). Besides, it is also a strong solution if the data of the
problem are sufficiently smooth. For more details the reader may refer to [94, 96, 141].

Remark 7. In the following, we will consider the Dirichlet-Neuman formulation (2.21)
- (2.22) in order to show the treatment of all the terms that appear in thess equations.
We denote by �D = �w [ �in the portions of the boundary where the Dirichlet condition
are applied and �N = �out the portions of the boundary where the Neumann condition are
applied.

Remark 8. Let us denote:

a(u,v) = 2µ

Z

⌦

D(u) : D(v), (2.33)

c(w,u,v) = ⇢

Z

⌦

(w ·ru) · v, (2.34)

b(v, p) = �
Z

⌦

p div(v) (2.35)

The weak formulation (2.21) - (2.22) can be written as: find (u, p) 2 V ⇥ M such that
8v 2 {v 2 [H1

(⌦)]

d | v = 0 on �w [ �in}, 8q 2 M
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⇢(
@u

@t
,v) + c(u,u,v) + a(u,v) + b(v, p) =

Z

�
N

g · v (2.36)

b(u, q) = 0 (2.37)

with:

V = {v 2 [H1
(⌦)]

d | v = 0 on �w, v = uin on �in} and M = L2
0(⌦). (2.38)

We introduce in the sequel the discretisation strategy, following the framework pre-
sented in [30]. Let � be a discretization parameter. We define ˆK ⇢ Rd

(d = 1, 2, 3) a
reference elementary convex, e.g. a simplex or a hypercube. We denote by T� a finite col-
lection of nonempty, disjoint open simplices or hypercubes T� ⌘ T(h,k) = {K = '

geo
K,k(

ˆK)},
forming a partition of ⌦ such that h = maxK2T

�

hK , with hK denoting the diameter of
the element K 2 T� and '

geo
K,k is the polynomial of degree k that maps ˆK to K which is

also called the geometric transformation. The partition T� induces a discretization of ⌦,
denoted ⌦�, defined as the union of the closure of all elements in this partition. Note that
if ⌦ is a polyhedral domain, then ⌦� = ⌦. Following these notations, we denote �in,�,
�out,�, �w,� the discretization of �in,�out,�w, respectively.

We say that a hyperplanar closed subset F of ⌦� is a mesh face if it has positive (d�1)-
dimensional measure and if either there exist K1, K2 2 T� such that F = @K1 \ @K2 (in
this case F is called an internal face) or there exists K 2 T� such that F = @K\@⌦� (and
F is called a boundary face). Internal faces are collected in the set F i

�, boundary faces in
F b

� and we let F� : =F i
� [ F b

� . For all F 2 F�, we define TF : ={K 2 T� | F ⇢ @K}. For
every interface F 2 F i

� we introduce two associated normals to the elements in TF and we
have nK

1

,F = �nK
2

,F , where nK
i

,F , i 2 {1, 2}, denotes the unit normal to F pointing out
of Ki 2 TF . On a boundary face F 2 F b

� , nF = nK,F denotes the unit normal pointing
out of ⌦�.

Without loss of generality we suppose from now on that we work with simplicial
elements. Given a positive integer N , we denote by PN

(

ˆK) and PN
(K) the spaces of

polynomials of total degree  N defined in ˆK and K, respectively. We define PN
c (⌦� ⌘

⌦(h,k)) and [PN
c (⌦� ⌘ ⌦(h,k))]

d with k > 1:

PN
c (⌦�) = {v 2 C0

(⌦�) | v�'geo
K,k 2 PN

(

ˆK) 8K 2 T�}, [PN
c (⌦�)]

d
=

d
Y

1

PN
c (⌦�). (2.39)

Let us denote:

H1
(g

D

,�
D,�

) = {f 2 H1
(⌦�)/f |�

D,�

= gD}
V� = {v 2 H1

(g
D

,�
D,�

)(⌦�) \ [PM
c (⌦�)]

d}
V�,0 = {v 2 H1

(0,�
D,�

)(⌦�) \ [PM
c (⌦�)]

d}
Q� = {v 2 PN

c (⌦�)}

the discrete spaces associated to the velocity and the pressure, respectively.
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Remark 9. In the case of a Stokes problem, in order to ensure the existence, uniqueness
and the stability of a solution of the abstract saddle point problem, the spaces V� and Q�

must satisfy the so called inf-sup condition:

9�� > 0 | inf

q
�

2Q
�

sup

v

�

2V
�

R

⌦
�

q�r · v�

kq�k0,⌦
�

kv�k1,⌦
�

� �� (2.40)

Besides, we have the following error estimations:

ku� u�k1,⌦  c1� inf

v

�

2V
�

ku� v�k1,⌦ + c2� inf

q
�

2Q
�

kp� q�k0,⌦

kp� p�k0,⌦  c3� inf

v

�

2V
�

ku� v�k1,⌦ + c4� inf

q
�

2Q
�

kp� q�k0,⌦
with

c1� = (1 +

kakV
�

,V
�

↵
)(1 +

kbkV
�

,Q
�

��
),↵ being the coercivity constant for a

c2� =

kbkV
�

,Q
�

↵

c3� = c1�
kakV

�

,V
�

��

c4� = 1 +

kbkV
�

,Q
�

��
+ c2�

kakV
�

,V
�

��

When the inf-sup condition is violated, for example when M = N , the spaces are said
to be unstable or incompatible. There are many ways to resolve this issue; one of them
is to add stabilization terms by SUPG Streamline Upwind Petrov Galerkin or GLS Gen-
eralized Least Squares techniques. For general discussion on stabilization techniques, the
reader can refer e.g. to [24].

We will consider, in the following, the stable generalized Taylor-Hood finite ele-
ments for the velocity-pressure discretisation, that is to say, we look for the velocity
in [PN+1

c (⌦(h,k
geo

))]
d and the pressure in PN

c (⌦(h,k
geo

)) [132]. We shall use from now on
the notation PN+1PNGk

geo

to specify exactly the discretisation spaces used for the veloc-
ity, pressure and geometry, respectively. The resulting approximate velocity and pressure
fields are denoted by u� and p�, respectively.

Remark 10. In the case of a discrete Stokes problem, for N � 2, the PNPN�1G1 finite
elements (PN for velocity and PN�1 for pressure) as well as the QN/QN�1 finite elements
(QN for velocity and QN�1 for pressure) are compatible in two and three dimensions.
When the exact solution is smooth enough, these elements yield the errors estimates in
the case of a Stokes problem:

ku� u�k0,⌦ + ku� u�k1,⌦ + kp� p�k0,⌦  hN+1
(kukN+1,⌦ + kpkN,⌦) (2.41)

Proofs and further insight can be found in A. Ern and J.-L. Guermond [[50], Chapter
4], and F. Brezzi and M. Fortin [[24], Chapter 4] or V. Girault and P.A. Raviart [[145],
Chapter 2].
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Let us return to the Navier-Stokes discrete problem, the weak formulation then reads
to: find (u�, p�) 2 V� ⇥Q� such that 8v� 2 {v 2 [H1

(⌦�)]
d \ [PM

c (⌦�)]
d | v = 0 on �D,�},

8q� 2 Q�

Z

⌦
�

⇢
@u�

@t
v� +

Z

⌦
�

⇢(u� ·ru�) · v� + 2µ

Z

⌦
�

D(u�) : D(v�) dx

�
Z

�
N,�

�(u�, p�)n� · v� ds�
Z

⌦
�

p� div(v�) dx = 0

Z

⌦
�

q� div(u�) dx = 0

2.4 Time discretization
The simulation will run up to a time T and so will cover the I = [0, T ] interval which we
subdivide into N sub-intervals Ik = (tk, tk+1

) with k = 1, ..., N and where tk+1 � tk = �t
the time step assumed constant over time.
We denote by (u

k
� , p

k
� ) the approximate solution at time tk. Then the weak formula-

tion can be written as: find (u

k+1
� , pk+1

� ) 2 V� ⇥ Q� such that 8v� 2 {v 2 [H1
(⌦�)]

d \
[PM

c (⌦�)]
d | v = 0 on �D,�}, 8q� 2 Q�

Z

⌦
�

⇢
@uk+1

�

@t
v� +

Z

⌦
�

⇢(u⇤
� ·ru

⇤⇤
� ) · v� + 2µ

Z

⌦
�

D(u

k+1

� ) : D(v�) dx

�
Z

�
N,�

�(u

k+1
� , pk+1

� )n� · v� ds�
Z

⌦
�

pk+1
� div(v�) dx = 0

R

⌦
�

q� div(uk+1
� ) dx = 0

(2.42)

We first start by discretizing the time derivative of the velocity by choosing an implicit
scheme, the so-called backward differentiation formulation (BDF) [116]. The choice of this
scheme is motivated by the fact that the BDF discretisation methods are zero-stable and
the regions of absolute stability are unbounded (see Figure 2.1).

Figure 2.1: BDF absolute stability contours.[116]

These schemes can be written up to an arbitrary order q, thus we can denote them by
BDFq.
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q ��1 �0 �1 �2 �3
1 1 1
2 3/2 2 -1/2
3 11/6 3 -3/2 1/3
4 25/12 4 -3 4/3 -1/4

Table 2.1: BDFq coefficients up to q = 4.

The following formula describe the approximation of the time derivative of the velocity
for an arbitrary order q using the �j coefficients of table 2.1:

@uk+1
�

@t
⇡ ��1

�t
u

k+1
� �

q�1
X

j=0

�j
�t

u

k�j
� (2.43)

As for the expression of u

⇤
� and u

⇤⇤
� in the non-linear convective term, they can be

chosen as follows:

u

⇤
� ·ru

⇤⇤
� =

8

>

<

>

:

u

k
� ·ru

K
� , fully explicit treatment

u

k
� ·ru

k+1
� , standard semi-implicit treatment

u

k+1
� ·ru

k+1
� , fully implicit treatment (non-linear system)

(2.44)

Remark 11. In the following, we will use the first order BDF for simplicity reasons, to
reduce the length of the equations.

2.4.1 Fully explicit treatment

the weak formulation corresponding to the fully explicit treatment with homogeneous
Dirichlet boundary condition, it reads to: find (u

k+1
� , pk+1

� ) 2 V� ⇥ Q� such that 8v� 2
{v 2 [H1

0 (⌦�)]
d \ [PN

c (⌦�)]
d}, 8q� 2 Q�

⇢

Z

⌦
�

u

k+1
�

�t
v� dx = �⇢

Z

⌦
�

(u

k
� ·ru

k
� ) · v� dx� 2µ

Z

⌦
�

D(u

k

� ) : D(v�) dx

+

Z

⌦
�

pk� div(v�) dx+ ⇢

Z

⌦
�

u

k
�

�t
· v� dx+

Z

⌦
�

f

k
� · v� dx (2.45)

Z

⌦
�

q�div(uk+1
� ) dx = 0 (2.46)

The equation can be trivially solved for uk+1
� , however, the fundamental problem with this

approach is that the new velocity u

k+1
� does not, in general, satisfy the mass conservation

equation. Moreover, there is no natural computation of pk+1
� . A possible remedy is to

replace the pressure pk� with pk+1
� , in the conservation of the momentum equation, which

leaves two unknowns, uk+1
� and pk+1

� , and hence requires a simultaneous solution of the
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two equations.

⇢

Z

⌦
�

u

k+1
�

�t
v� dx�

Z

⌦
�

pk+1
� div(v�) dx = �⇢

Z

⌦
�

(u

k
� ·ru

k
� ) · v� dx

� 2µ

Z

⌦
�

D(u

k

� ) : D(v�) dx+ ⇢

Z

⌦
�

u

k
�

�t
· v� dx+

Z

⌦
�

f

k
� · v� dx (2.47)

Z

⌦
�

q�div(uk+1
� ) dx = 0

We can eliminate u

k+1
� by taking the divergence of (2.47) to obtain a Poisson equation for

the pressure. This method corresponds to the semi-explicit time discretisation. However,
there are no natural boundary conditions for pk� . Hence, solving the so obtained Poisson
equation for the pressure, and then finding u

k+1
� trivially from (2.47) is therefore not in

itself a sufficient solution strategy. This new scheme is temporally stable provided the
time step satisfies the following limitation:

�t  Cmin(
h2

µ
,

h

max
x2⌦|uk

(x)|)

2.4.2 Fully implicit treatment

Rewriting the weak formulation corresponding to the fully implicit treatment with homo-
geneous Dirichlet boundary condition, it reads to: find (u

k+1
� , pk+1

� ) 2 V� ⇥ Q� such that
8v� 2 {v 2 [H1

0 (⌦�)]
d \ [PN

c (⌦�)]
d}, 8q� 2 Q�

⇢

Z

⌦
�

u

k+1
�

�t
v� + ⇢

Z

⌦
�

(u

k+1
� ·ru

k+1
� ) · v� + 2µ

Z

⌦
�

D(u

k+1

� ) : D(v�) dx

�
Z

⌦
�

pk+1
� div(v�) dx =

Z

⌦
�

f

k+1
� · v� + ⇢

Z

⌦
�

u

k
�

�t
· v� (2.48)

Z

⌦
�

q�div(uk+1
� ) dx =0 (2.49)

Two methods can be used in order to solve this type of non linear system; either a Newton-
type method based on the computation of the Jacobian matrix, or a Picard-type method
based on a fixed-point strategy.

Newton method for non-linear system solve A natural approach for solving such
a non-linear algebraic system can be achieved by using the Newton-Krylov technique, that
is by using a Krylov method (e.g. GMRES or BiCGStab) for solving the linear system
that is obtained at each Newton iteration step. This approach entails three nested cycles:

• temporal iteration: tk �! tk+1

• Newton iteration: Xk+1
n �! Xk+1

n+1

DF (Xk+1
n )(Xk+1

n+1 �Xk+1
n ) = �F(Xk+1

n )
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With: F(Xk+1
n ) the residual resulting from (2.48), Xk+1

n =

 

(ui)
k+1
i=1..N

V

�

(pj)
k+1
j=1..N

Q

�

!

and

DF (X) =

@F

@Xi

• Krylov iteration [Xk+1
n ]j �! [Xk+1

n ]j+1

We recall that, when using the Newton method, a full linearisation of the convective
term is done.
In its algebraic form the problem would be written as follows:

✓

F

u

B

T

B 0

◆

| {z }

A

✓

˜

U

˜

P

◆

=

✓

˜

G

0

◆

(2.50)

where F

u

is a function of the unknown velocity, and has the form F

u

=

Qu

�t
+ A + C,

where Q

u

is the mass matrix, A the stiffness matrix and C the matrix arising from the
explicit treatment of the convective term.

Remark 12. Note that during at the first Newton iteration (n = 0), the unknown that
we are seeking to evaluate is (�Uk+1, �P k+1

) = (U

k+1
n+1 � U

k+1
n , P k+1

n+1 � P k+1
n ). Since

(u

k+1
� , pk+1

� ) 2 V� ⇥ Q�, then (�Uk+1, �P k+1
) 2 V�,0 ⇥ Q�. Thus the contribution of the

Dirichlet boundary condition on the Dirichlet nodes is vanished. So, in order to take into
consideration the Dirichlet boundary condition, we have to carefully choose the "initial
guess". Ideally, the initial iterate is obtained by solving the corresponding discrete Stokes
problem with the same initial Dirichlet conditions.

Picard method for non-linear system solve: At each time step k + 1, a Picard
iteration for the nonlinear system is derived by lagging the convection coefficient in the
quadratic term (u

k+1 ·r)u

k+1. For the steady-state problem, this lagging procedure starts
with some initial guess u

k
(0) (satisfying the discrete incompressibility constraint) for the

velocities and then constructs a sequence of approximate solutions (uk+1
(n) , p

k+1
) by solving

the corresponding linear Oseen problem:

�µ�u

k+1
(n+1) + (u

k+1
(n) ·r)u

k+1
(n+1)) +rpk+1

= f in ⌦, (2.51)

r · uk+1
(n+1) = 0 in ⌦ (2.52)

If we use u

0
= 0, the first iteration corresponds to the Stokes problem.

The solution u

k+1
(n+1) at time k + 1 is chosen when k�uk+1kL2

= kuk+1
(n+1) � u

k+1
(n) kL2 reaches

a certain given tolerance.

The main disadvantage of Newton’s method is that its convergence depends on the
viscosity parameter. For high Reynolds number, the initial guess needs to be carefully
chosen, unlike the Picard method where the radius of the ball of convergence is higher.
Another advantage of the Picard method is that it is easier to settle compared to the
Newton method. However, the number of iterations needed to achieve a certain accuracy
is lower in the case of the Newton method, a plus that can play for this method.
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2.4.3 Semi-implicit treatment

The semi-implicit treatment is retrieved when choosing u

⇤
� ·ru

⇤⇤
� = u

k
� ·ru

k+1
� in (2.42).

The weak formulation then reads: find (u

k+1
� , pk+1

� ) 2 V� ⇥ Q� such that 8v� 2 {v 2
[H1

(⌦�)]
d \ [PM

c (⌦�)]
d | v = 0 on �D,�}, 8q� 2 Q�

⇢

Z

⌦
�

u

k+1
�

�t
v� +

Z

⌦
�

⇢(uk
� ·ru

k+1
� ) · v� + 2µ

Z

⌦
�

D(u

k+1

� ) : D(v�) dx�
Z

⌦
�

pk+1
� div(v�) dx

�
Z

�
N,�

�(u

k+1
� , pk+1

� )n� · v� ds =

Z

⌦
�

f

k+1
� · v� + ⇢

Z

⌦
�

u

k
�

�t
· v�

(2.53)
Z

⌦
�

q� div(uk+1
� ) dx =0

(2.54)

This is the standard semi-implicit treatment of the convective term. A more general semi-
implicit treatment is the so called Oseen scheme where the convective term is extrapolated
usually by choosing an extrapolation order equal to the BDF order to guarantee a proper
convergence order.
In the following, let us consider a second order backward differential formula for the
time derivative, and an Oseen scheme of second order for the convective term treatment.
The weak formulation then reads: find (u

k+1
� , pk+1

� ) 2 V� ⇥ Q� such that 8v� 2 {v 2
[H1

(⌦�)]
d \ [PM

c (⌦�)]
d | v = 0 on �D,�}, 8q� 2 Q�

⇢

Z

⌦
�

u

k+1
�

�t
v� + ⇢

Z

⌦
�

((2u

k
� � u

k�1
� ) ·ru

k+1
� ) · v� + 2µ

Z

⌦
�

D(u

k+1

� ) : D(v�) dx

�
Z

�
N,�

�(u

k+1
� , pk+1

� )n� · v� ds�
Z

⌦
�

pk+1
� div(v�) dx =

Z

⌦
�

f

k+1
� · v� + ⇢

Z

⌦
�

u

k
�

�t
· v�

Z

⌦
�

q� div(uk+1
� ) dx =0

While the fully implicit scheme is unconditionally stable, the semi-implicit scheme has
a stability restriction on the time step:

�t  C
h

max
x2⌦|un

(x)|

2.4.4 Characteristics method

This method [27] is not implemented in Feel++, library that we use to perform our
simulations in the context of this thesis. However, it was used in the context of the
CEMRACS 2015 when we compared Feel++ CFD outputs to the Freefem++ CFD
outputs (see Chapter 8).
In the previous section we have applied an implicit finite difference scheme in order to
discretise the velocity time derivative term of the momentum equation of the Navier-
Stokes problem. In this section, we will apply the same finite difference scheme but to
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the so-called material derivative or the Lagrangian derivative of the velocity vector field
✓

Du

Dt
=

@u

@t
+ (u ·r)u

◆

.

The backward Euler formula of the above quantity is given by:

Du

Dt
(x) ⇡ u

k+1
(x)� u

k
(xp)

�t

where xp = x�u

k
(x)�t+O(�t2) is the foot at time tk of the characteristic issuing from

x at time tk+1.
The momentum equation then reads:

⇢
u

k+1
(x)� u

k
(xp)

�t
� 2div(µD(u

k+1
(x))) +rpk+1

(x) = f

k+1
(x).

To follow backwards the trajectory X (or characteristics) under the action of the flow u(t)
of a particle of fluid which is at a point x at time s, we will be led to solve, for s = tk+1,
the following system of ordinary differential equations:

dX

dt
(t; s,x) = u(t,X(t; s,x)), t 2 [tk, tk+1

]

X(t; s,x) = x

The momentum equation retrieved from the previous discretisation of the material deriva-
tive becomes:

u

k+1
(x)� u

k
(xp)

�t
� µ�u

k+1
(x) +rpk+1

(x) = f

k+1
(x)

That gives:
✓

@u

@t
+ (u.r)u

◆

(tn, x) ⇠ u(tn+1, x)� u(tn, Xn
(x))

�t
(2.55)

with Xn
(x) = x� u(tn, x)�t+O(�t2).

We finally have:
⇢

�t
(u

n+1 � u

n �Xn
)� µ�u

n+1
+rpn+1

= 0 (2.56a)

div(un+1
) = 0 (2.56b)

The weak formulation can be written as: find (u

n+1
� , pn+1

� ) 2 V� ⇥Q� such that 8v� 2
{v 2 [H1

(⌦�)]
d \ [PN+1

c (⌦�)]
d | v = 0 on �D,�}, 8q� 2 Q�

Z

⌦
�

⇢

�t
u

k+1
� v� +

Z

⌦
�

⇢

�t
(u

k
� �Xk

� ) · v� + 2µ

Z

⌦
�

D(u

k+1
� ) : D(v�)

�
Z

�
N,�

�(u

k+1
� , pk+1

� )n� · v� ds�
Z

⌦
�

pk+1
� div(v�) = 0 (2.57)

Z

⌦
�

q� div(uk+1
� ) = 0 (2.58)

This scheme is inconditionnally stable. Moreover, for a positive constant C indepen-
dant of �t , it satisfies the error estimate

ku(tk)� u

kkL2(⌦)  C(h+�t+
h2

�t
) 8k � 1
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For more information about the characteristic-based time discretisation strategies for
spectral methods, the reader can refer to [27].

Conclusion

Through this chapter, we reminded the governing equations of an incompressible fluid flow
in a general setting, and explained in more details the difficulties related to the treatment of
the boundary conditions. We explicitly wrote the different weak formulations corresponding
to the different boundary conditions and different time discretisation schemes. We gave the
pros and the cons of each of the schemes. The numerical convergence analysis with respect
to the various variational formulation presented in this chapter is reported in chapter 6.
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Chapter 3

An overview of the resolution methods

In this chapter, in order to fix terminology and notations, we provide a
brief review of the resolution methods of linear systems of equations that are
of generic form Ax = b . For more details, the reader may refer to the
standard textbooks [49, 95, 119]. Our discussion is restricted to the methods
we used in our numerical computational simulations, and mainly available in
PETSc, such as i) the direct solver LU, ii) the relaxation iterative methods,
iii) the Krylov methods, in particular the conjugate gradient method, the GM-
RES method and its variants, the GCR method, iv) the Multigrid methods, and
v) the domain decomposition methods.We introduce, at the end of this chapter,
some definitions and preliminaries on the preconditioning principle.
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1 Resolution methods

Let us point out that the algebraic system obtained in each of the previous time dis-
cretization treatment can be written as follows,

✓

F

u

B

T

B 0

◆

| {z }

A

✓

U

P

◆

=

✓

G

0

◆

(3.1)

where F

u

coincides with the stiffness matrix A in the case of a Stokes problem, with
1
�t
Q

u

+A in case of an explicit treatment of the convective term, and with Qu

�t
+A+C

in the case of a semi-implicit or an implicit treatment.
In this chapter, we review different classes of solution methods that can be used to solve
the linear system (3.1).

1.1 Direct method

Direct methods [44] are based on the factorization of the coefficient matrix A into easily
invertible matrices. They are widely used and are the solver of choice in many industrial
codes, especially where reliability is the primary concern. The idea behind these methods
started from the fact that each non singular matrix A can be written as an LU product
with proper row and/or column orderings or permutations, where L is a lower triangular
matrix ans U is an upper triangular matrix.
We recall theorem 6.2.1 in [5]:

Theorem 1. Let A = (ai,j)1i,jn be a matrix of order n all of whose diagonal submatrices
of order k are nonsingular. There exists a unique pair of matrices (L,U), with U upper
triangular and L lower triangular with a unit diagonal (i.e., li,i = 1), such that A = LU .

Direct methods make use of Gaussian elimination to construct L and U matrices.
Once constructed, solving the system Ax = b, equivalently LUx = b, involves two logical
steps:

1. Solve the equation Ly = b for y;

2. Solve the equation Ux = y for x;

This process is called the forward and backward substitution, and requires O(N2
)flops,

where N is the number of unknowns. The cost of the Gaussian elimination algorithm is
O(N3

).
A direct method is usually used when the matrix is dense because it leads to a more
accurate solution with a fixed number of work compared to iterative methods and for
systems with thousands of degrees of freedom.
Although they are very robust, they tend to require a predictable amount of resources in
terms of time and storage [63], and scale poorly with problem size in terms of operation
counts and memory requirements, especially on problems arising from the discretization
of PDEs in 3D.
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1.2 Iterative method
Let us suppose we need to solve a linear system Ax = b.
We assume that A is a non singular sparse matrix, and b is a given vector. An iterative
method is based on the construction of a sequence of vectors (x)k,k=0,1,... with (x0 given),
which is expected to converge towards x, when k ! 1.
The advantages of iterative methods are i) the matrix A is not modified, no fill-in is
generated and there is no need for additional space for more elements, ii) for large prob-
lems, iterative methods are faster then direct methods, iii) iterative methods are easy to
implement. However, the convergence of iterative methods is not guaranteed for general
matrices and they may require a lot of time if we are seeking a high accuracy.
There are four big families of iterative methods: i) the classical methods (SOR, Gauss Sei-
del, Jacobi) ii) the Krylov subspace methods (CG, Bi-CGSTAB, GMRES etc.), iii) multi-
grid method, and iv) domain decomposition methods.

1.2.1 Classical iterative methods: Relaxation methods

The relaxation methods are based on a splitting of the matrix A into a sum of three
matrices: A = L + D + U , where L the lower triangular part of the matrix A, D the
diagonal component of A, and U the upper part of the matrix A. The solution is then
obtained iteratively via:

x

(k+1)
= x

(k)
+ P�1

(b�Ax

(k)
) (3.2)

where P�1 is equal to D�1 in the case of the Jacobi method, and to (D+L)�1 in the case
of Gauss-Seidel method.
The element-wise formula for the Gauss–Seidel method is extremely similar to that of
the Jacobi method. An advantage of the Gauss-Seidel method is that, unlike the Jacobi
method, only one storage vector is required as elements can be overwritten as they are
computed. However, also unlike the Jacobi method, the computations for each element
cannot be done in parallel. Furthermore, the values at each iteration are dependent on
the order of the original equations.
As for the SOR (Successive Over Relaxation) method, the linear system may be rewritten
as:

(D + !L)x = !b� [!U + (! � 1)D]x

for a constant ! > 1, called the relaxation factor.
Analytically, this may be written as:

x

(k+1)
= (D + !L)�1

�

!b� [!U + (! � 1)D]x

(k)
�

= Lwx
(k)

+ c

where x(k) is the kth approximation or iteration of x and x

(k+1) is the next or k+1 iteration
of x.
We can notice that this method is a variant of the Gauss–Seidel method for ! = 1.
However it performs a faster convergence than the latter.
Iterative methods based on relaxation are generally used as smoothers in the multigrid
method to damp high frequencies error.

1.2.2 Krylov subspace

We now turn to the most frequent iterative methods, the Krylov subspace methods.
Let us recall the iterative method (3.2), and denote r

k

= b�Ax

k

the residual. If we start
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with x

0

, the next steps can be written such as:

x

1

= x

0

+ P�1
r

0

,

x

2

= x

1

+ P�1
r

1

...

Substituting x

1

from the previous step and using r

1

= b�Ax

1

, leads to:

x

2

= x

0

+ 2P�1
r

0

� P�1AP�1
r

0

This is equivalent to :

x

k

2 x

0

+ span{P�1
r

0

, P�1A(P�1
r

0

), ..., (P�1A)

k�1
(P�1

r

0

)}
The Krylov subspace of dimension k, corresponding to the matrix A and initial residual
r0 is therefore defined asKk(A; r0) := span{r0,Ar0, ...,Ak�1r0} .

Conjugate gradient method One of the most popular and academic Krylov methods
is the conjugate gradient (CG) method, developed by Hestenes and Stiefel [79] for systems
that are symmetric positive definite or Hermitian positive definite.

Definition 7. Two non-zero vectors u and v are conjugate (with respect to A) if

u

TAv = 0.

Since A is symmetric and positive definite, the left-hand side defines an inner product
hu,viA := hAu,vi = hu,AT

vi = hu,Avi = u

TAv. Two vectors are conjugate if and only
if they are orthogonal with respect to this inner product.

Let x

⇤ be the solution of the system Ax = b, the CG method is an orthogonal
projection method that satisfies a minimality condition: the error is minimal in the so-
called energy norm or A-norm defined by:

kdkA =

p
d

TAd.

where d := x � x

⇤ is the error vector. Note that the initial problem Ax = b can be
recasted as a minimization of a quadratic function:

f(x) :=
1

2

x

TAx� x

T
b

with a symmetric positive definite matrix A. f is convex and has a unique minimum. Its
gradient is

rf(x) = Ax� b = �r

where r is the residual corresponding to x. Hence,

x minimizer of f () rf(x) = 0 () Ax = b

This means we are looking at the minimizer x

⇤ of the energy norm of the error vector of
the linear system Ax = b, that is the solution of the system Ax = b. The idea is to find
this minimiser by descending on the surface representing f by following the direction of
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steepest descent. Let us take the first basis vector p

0

to be the negative of the gradient
of f at x = x

0

. Starting with a "guessed solution" x

0

, this means we take p

0

= b�Ax

0

.
The other vectors in the basis will be conjugate to the gradient, hence the name conjugate
gradient method. Let rk be the residual at the kth step: rk = rk�1�Axk. Note that rk is
the negative gradient of f at x = x

k

, so the gradient descent method would be to move in
the direction rk. Here, we insist that the directions pk be conjugate to each other. This
gives the following expression:

pk = rk�1 + �kpk�1

Following this direction, the next optimal location is given by

xk+1 = xk + ↵k+1pk+1

with

↵k =
r

T
k�1rk�1

p

T
kApk

.

The conjugate gradient algorithm can thus be written as follows:

Algorithm 1 Conjugate gradient method
Input k = 0, x0 = 0, r0 = b�Ax0, p0 = r0

while rk 6= 0 do
↵k =

r

T

k

r

k

p

T

k

Ap

k

xk+1 = xk + ↵kpk

rk+1 = rk � ↵kApk

if rk+1 is sufficiently small then
exit

else
�k =

r

T

k+1

r

k+1

r

T

k

r

k

pk+1 = rk+1 + �kpk k = k + 1

end
end

The CG method can theoretically be viewed as a direct method, as it produces the
exact solution after a finite number of iterations, which is not larger than n, the size of
the matrix, in the absence of round-off error. However, the CG method is unstable with
respect to even small perturbations, e.g., most directions are not in practice conjugate,
and the exact solution is never obtained. Fortunately, the CG method can be used as an
iterative method as it provides monotonically improving approximations xk to the exact
solution, which may reach the required tolerance after a relatively small (compared to the
problem size) number of iterations. For this we recall the convergence property of the CG
method from [5] (th. 9.4.1 and remark 9.4.1).

Theorem 2. Let A be a symmetric positive definite matrix. There exists indeed a unique
vector xk+1 2 [x0 + Kk]. Furthermore, this algorithm converges to the solution of the
linear system Ax = b in at most n iterations.
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Remark 13. The conjugate gradient algorithm that we have devised as an iterative method
is in fact a direct method, since it converges in a finite number of iterations (precisely
k0 + 1, where k0 is the critical Krylov dimension defined in Lemma 9.3.2). However, in
practice, we use it like an iterative method that (hopefully) converges numerically in fewer
than k0 + 1  n iterations.

The biconjugate gradient (biCG) method provides a generalization to non-symmetric
matrices.

Generalised Minimal RESidual (GMRES) method: When no indication is given
about the system’s matrix, a classical choice of solver is the GMRES methods. The gener-
alized minimal residual algorithm, developed by Saad and Schultz [121], is a Krylov sub-
space method based on long recurrences. It computes an approximation of the minimal
of the residual and thus satisfies an optimality property. This method is used for non-
symmetric (non)singular matrices. Despite being stable, an inconvenient, of this method
is that the work per iteration and memory requirements increases for an increasing num-
ber of iterations. In order to avoid the problem of excessive storage requirements and
computational costs for the orthogonalization, GMRES is usually restarted after m iter-
ations, which uses the last iteration as starting vector for the next restart. The restarted
GMRES is denoted as GMRES(m). Consequently, another problem seems to arise when
using this method, namely that the convergence depends on the choice of m.The property
of superlinear convergence is lost by throwing away all the previous information of the
Krylov subspace. If no restart is used, GMRES (like any orthogonalizing Krylov subspace
method) will converge in no more than N steps.
There are few variants of the GMRES method such as the FGMRES and GMRESR.
The Flexible GMRES, (FGMRES) method, proposed by Saad [120], is a generalization
of GMRES that allows greater flexibility in the choice of solution subspace than GM-
RES specially for ill-posed problems. This method provides a unified approach to include
user-specified vectors in the solution subspace that may determine approximate solutions
of higher quality than commonly applied iterative methods. It has also a considerable
impact on the choice of the preconditioner that can vary from one Krylov iteration to
another.

GMRESR is developed by Vuik and van der Vorst in [146]. The idea is that the
GMRES method can be effectively combined with other iterative schemes. The outer
iteration steps are performed by GCR, an iterative method explained thereafter, while
the inner iteration steps can be performed by GMRES or with any other iterative method.

Generalized Conjugate Residual (GCR) method: The GCR is a Krylov method
dedicated to non-symmetric matrices [46]. With the Conjugate Residual method (CR) it
is a variant of the (CG) method. In the Conjugate Gradient algorithm, the pi’s are A-
orthogonal, i.e., conjugate, while in the CR method the residual vectors are A-orthogonal,
i.e., conjugate. In addition, the vectors Api’s i = 0, 1, ..., are orthogonal, i.e., the pi’s are
A

T
A-orthogonal. The difference in the GCR method is that the next basis vector pi+1

is computed as a linear combination of the current residual ri+1 and all previous pj’s,
j = 1..i.
An advantage of the GCR method is that, unlike GMRES and FGMRES, when using
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GCR, the solution and residual vector can be directly accessed at any iterate, with zero
computational cost.

1.2.3 Multigrid method

The multigrid approach is initially specifically designed for the solution of discretized
elliptic PDEs and exploiting more information on the problem. The idea behind the
multigrid solver is to approximate the original PDE problem of interest on a hierarchy of
grids and use solutions from coarse grids to accelerate the convergence on the finest grid.
This principle is based on a combination of two processes. First, we apply a smoother such
as the classical iterative method like a Jacobi or a Gauss Seidel scheme to reduce the high
frequency components of the error. Next, low frequency error components are reduced by
a coarse grid correction procedure. The smooth error components are represented as a
solution of an appropriate coarser system. After solving the coarser problem, the solution
is interpolated back to the fine grid to correct the fine grid approximation for its low
frequency errors.

Let P be an interpolation (prolongation) operator that transfers solutions from coarse
grids to finer grids, and R be a restriction operator that transfers solutions from fine grids
to the coarse grid, the following algorithm 2 describes briefly the different basic steps of
the multigrid method.

Algorithm 2 2-grid cycle:
1: Subscript h is used for the fine grid and H for the coarse grid.
2: Perform smoothing by using k iterations of an iterative method (Jacobi, Gauss Seidel,

etc) on the problem Ahuh = bh

3: Compute the residual rh = bh �Ahuh

4: Restrict the residual rH = Rrh

5: Solve for the coarse grid correction, AHeH = rH

6: Prolongate and update uh = uh + PeH

7: Perform smoothing by using iterations of an iterative method (Jacobi, Gauss Seidel,
etc) on the problem Ahuh = bh

The solve for the coarse grid correction can be optimised by employing recursive calls
carried out in a loop, allowing different numbers of iterative sweeps on different coarse
grids. Thus we obtain the different V, W and F cycles.

We distinguish two multigrid approaches: the geometric multigrid methods, where
the restriction and prolongation operators, and coarse grids are chosen based on the
geometric information [144] and the algebraic multigrid (AMG) methods that construct
their hierarchy of operators directly from the system matrix in the construction of the
next coarse grid space without any geometrical problem background or interpretation
[23, 118, 117, 4]. In the following, we will describe the outlines of algebraic treatment.

In order to solve the PDE on a coarser grid we need to perform a smooth aggregation.
The matrix graph is first coarsened (actually vertices are aggregated together) and then
a grid transfer operator is constructed.

To generate the matrix graph for the coarsened grid, the idea is to associate a vertex
with each equation and add an edge between two vertices i and j if there is a nonzero in the
(i, j)th or (j, i)th entry. It is this matrix graph whose vertices are aggregated together that
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effectively determines the next coarser mesh. The aggregation process can be achieved
in two ways. First, a block matrix graph can be constructed instead of a point matrix
graph. In particular, all the DOFs at a grid point can be collapsed into a single vertex
of the matrix graph. The resulting block matrix graph is significantly smaller than the
point matrix graph, and hence all unknowns at a grid point are kept together. This
usually results in better convergence rates, and the coarsening is actually less expensive
to compute. The second way is to omit the small values, i.e. ignoring weak coupling
during coarsening. In general, a drop tolerance, ✏, can be set such that an individual
matrix entry A(i, j) is dropped in the coarsening phase if |A(i, j)|  ✏

p|A(i, i)A(j, j)|.
This drop tolerance ✏ (whose default value is zero) is also called threshold.

A significant inconvenient of the multigrid methods is that they may require implemen-
tations that are specific to the physical problem at hand, in contrast with preconditioned
Krylov subspace methods which attempt to be general-purpose, using no other informa-
tion than the problem matrix and the corresponding right-hand side vector.

The algebraic multigrid techniques, although applicable to a wider range of linear
systems, are often less robust, more complex to implement, and less efficient than the
geometric counterpart. The geometric multigrid methods, on the other hand, are well
suited for applications with simple geometry that are large enough in size to justify the
added complexity.

1.2.4 Domain decomposition method

In this section, the methods of concern are based on a physical decomposition of a global
solution domain. The global solution to a PDE is then sought by solving the smaller
subdomain problems collaboratively and “patching together” the subdomain solutions.
These numerical methods are therefore termed as domain decomposition (DD) methods.
The DD methods have established themselves as very efficient PDE solution methods
(FEM, FV, FD, SEM). Although sequential DD methods already have superior efficiency
compared with many other numerical methods, their most distinguished advantage is
the straightforward applicability for parallel computing. Other advantages include easy
handling of global solution domains of irregular shape and the possibility of using different
numerical techniques in different subdomains, e.g., special treatment of singularities.

The DD methods allow the reformulation of a boundary-value problem (BVP) on a
partition of the computational domain into subdomains. Thus, it is a very convenient
framework for the solution of heterogeneous or multiphysics problems, i.e. those that are
governed by differential equations of different kinds in different subregions of the compu-
tational domain.

There are two ways of subdividing the computational domain: i) with disjoint subdo-
mains, ii) with overlapping subdomains. Correspondingly, different DD algorithms will be
set up such as Jacobi Schwarz Method (JSM), Additive Schwarz Method (ASM), Multi-
plicative Schwarz Methods (MSM), and Restricted Additive Schwarz (RAS) which is the
default parallel solver in PETSc, Neumann-Neumann/FETI and Optimized Schwarz.
In the case of overlapping subdomains, we will use the following notations. @⌦1 and
@⌦2 will denote the boundary of ⌦1 and ⌦2, respectivelyy. � will denote the over-
lapping region of ⌦1 and ⌦2, � = ⌦1 \ ⌦2. The boundary of � will be denoted by
@� = @�1[@�2[ (@⌦1\@⌦2), where @�1 and @�1 are the parts of �’s boundary included
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(a) Original domain

(b) Domain decomposition without overlap. (c) Domain decomposition with overlap.

Figure 3.1: Decomposition of a 2D domain.

strictly in ⌦1 and ⌦2, respectively.
Consider the model problem: find u : ⌦ �! R such that:

Lu = f in ⌦
u = 0 on @⌦

where L is a generic second order elliptic operator. The weak formulation reads:

find u 2 V = H1
0 (⌦) such that a(u,v) = (f ,v) 8v 2 V

where a(., .) is the bilinear form associated to L.

Case with overlapping sub-domains: Let us now consider the case where the domain
⌦ is decomposed into two sub-domains ⌦1 and ⌦2 that overlap. The iterative Schwarz
method reads: given u0

2 on @�1, for k � 1,
solve:

Lu

k
1 = f in ⌦1

u

k
1 = u

k�1
2 on @�1

u

k
1 = 0 on @⌦1\@�2
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solve:

Lu

k
2 = f in ⌦2

u

k
2 =

(

u

k
1

u

k�1
1

on @�2 (3.3)

u

k
2 = 0 on @⌦2\@�1

We have two elliptic boundary-values problems with Dirichlet conditions in ⌦1 and ⌦2,
and we wish the two sequences u(k)

1 and u

(k)
2 to converge to the restrictions of the solution u

of the original problem: limk!1 u

(k)
1 = u|

⌦

1

and limk!1 u

(k)
2 = u|

⌦

2

The Schwarz method
applied to the model problem always converges, with a rate that increases as the measure
|�| of the overlapping region � increases.

In system (3.3), uk
2 = u

k
1 stands for the additive Schwarz method while u

k
2 = u

k�1
1

stands for the multiplicative Schwarz method. It is worth pointing out that, although the
additive Schwarz method suits well for parallel computing, its convergence property is
inferior to that of the multiplicative Schwarz method. The additive Schwarz method uses
roughly twice as many iterations as that of the standard multiplicative Schwarz method,
in case of convergence. This is not surprising when the Schwarz methods are compared
with their linear system solver analogues; multiplicative Schwarz is a block Gauss-Seidel
approach, whereas additive Schwarz is a block Jacobi approach.

Case with non-overlapping sub-domains: We partition now the domain ⌦ in two
disjoint subdomains. The following equivalence result holds.

Theorem 3. The solution u of the model problem is such that u|
⌦

i

= ui for i = 1, 2,
where ui is the solution to the problem:

Lui = f in ⌦i

ui = 0 on @⌦i\�
u1 = u2 on @�

@u1

@n
=

@u2

@n
on �

For more information about the boundary conditions, the reader can refer to [114].
To solve each of the subdomain, a direct or an iterative solver can be called.

1.3 Preconditioning
For solving very large sparse linear systems, direct methods or iterative methods can be
used. Although direct methods are robust and accurate for general nonsingular problems,
they scale poorly when the problem size increases, in terms of time and memory com-
plexity, especially for problems resulting from the discretization of PDEs in 3D space. On
the other hand, iterative methods require less storage and fewer operations than direct
methods. However, their performance depends strongly on the spectral properties of the
linear system. The preconditioning techniques can improve the efficiency and the robust-
ness of these methods. The term preconditioning refers to a transformation of the original
linear system Ax = b into another linear system with the same solution, but with more
favourable properties for iterative solver.
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Definition 8. A condition number (A) associated to the linear equation Ax = b is a
constant that gives a bound on how inaccurate the solution x will be after approximation.
The condition number relative to a subordinate matrix norm kk is defined by

(A) = kAkkA�1k.
Note that we always have (A) � 1, since 1 = kIk = kAA�1k  kAkkA�1k.
In practice, the most frequently used conditionings are p(A) = kAkpkA�1kp for p =

1, 2,+1.

Proposition 1. Consider a matrix A 2 Mn(C), we have:

• (A) = (A�1
) and (↵A) = (A)8↵ 6= 0.

• For any matrix A,

2(A) =

�max(A)

�min(A)

where �min(A) and �max(A) are respectively the smallest and the largest singular
values of A.

• For a normal matrix A,

2(A) =

|�max(A)|
|�min(A)|

where �min(A) and �max(A) are respectively the modulus of the smallest and largest
eigenvalues of A.

• For any unitary matrix U, 2(U) = 1.

• For any unitary matrix U, 2(AU) = 2(UA) = 2(A).

Definition 9. A problem with a low condition number is said to be well-conditioned, while
a problem with a high condition number is said to be ill-conditioned.

Definition 10. A preconditioner P of a matrix A is a matrix that aims at improving the
spectral properties of the matrix A associated with the linear system such that P�1A has
a smaller condition number than A.

The idea of the preconditioning method is that, instead of solving the original linear
system Ax = b, one may solve, either the right preconditioned system:

AP�1Px = b

via solving AP�1
y = b for y and Px = y for x; or the left preconditioned system:

P�1
(Ax� b) = 0

or a symmetric preconditionning:

P�1
L AP�1

R = P�1
L b

with x = P�1
R y.
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When Krylov subspace methods are used, it is not necessary to form the preconditioned
matrices P�1A or AP�1 explicitly (this would be too expensive, and we would loose
sparsity). Instead, matrix-vector products with A and solutions of linear systems of the
form Pz = r are performed (or matrix-vector products with P�1 if this is explicitly
known). Besides, split preconditioning is also possible, i.e., P�1

1 AP�1
2 y = P�1

1 b, x =

P�1
2 y, where the preconditioner is now P = P1P2. The choice of the preconditioning type

depends on the choice of the iterative method, problem characteristics, and so forth. For
instance, with residual minimizing methods, like GMRES, right preconditioning is often
used. In exact arithmetic, the residuals for the right-preconditioned system are identical
to the true residuals rk = b�Axk.

To illustrate the action of a preconditioner, let us take, for sake of simplicity, the
example of the conjugate gradient algorithm. The following algorithm is the corresponding
preconditioned algorithm.

Algorithm 3 Preconditioned conjugate gradient method
Input k = 0

x0 = 0

r0 = b�Ax0

z0 = P

�1
r

0

p0 = z0

while rk 6= 0 do
↵k =

r

T

k

r

k

p

T

k

Ap

k

xk+1 = xk + ↵kpk

rk+1 = rk � ↵kApk

if rk+1 is sufficiently small then
exit

else
zk+1 = P�1

rk+1

�k =
z

T

k+1

r

k+1

z

T

k

r

k

pk+1 = zk+1 + �kpk

k = k + 1

end
end

In general, a good preconditioner P should verify the following requirements. First,
the preconditioned system must be easy to solve, and second, the preconditioner should be
easy to construct and apply. The first property means that the preconditioned iteration
should converge rapidly, while the second ensures that each iteration is not too expensive.
It is necessary to strike a balance between the two needs. What constitutes an acceptable
cost of constructing the preconditioner, or setup time, will typically depend on whether
the preconditioner can be reused or not. In the common situation where a sequence of
linear systems with the same coefficient matrix (or a slowly varying one) and different
right-hand sides has to be solved, it may pay to spend some time computing a powerful
preconditioner, since its cost can be amortized over repeated solves. This is can be the
case, for instance, when solving nonlinear problems by some variant of Newton’s method.

We must distinguish at this level, two approaches for constructing a preconditioner.
The first one is the application-specific approach which can be very successful, but it may
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require complete knowledge of the problem at hand, including the original (continuous)
equations, the domain of integration, the boundary conditions, details of the discretiza-
tion, and so forth. The geometric multigrid methods, previously mentioned, are often of
this kind. The second approach is the purely algebraic methods that use only informa-
tion contained in the coefficient matrix A. These techniques, while not optimal for any
particular problem, achieve reasonable efficiency on a wide range of problems.

In order to solve problem (3.1), we developed in the sequel, a preconditioning strat-
egy based on the first approach, where the knowledge we have about the fluid flow is
incorporated in the construction of the preconditioner.

Remark 14. The convergence of preconditioned Krylov subspace methods for solving lin-
ear systems arising from discretized PDE tends to slow down considerably as these systems
become larger and deteriorate the efficiency. Multigrid methods are however a class of
methods capable of achieving convergence rates independently of the mesh size. The main
difference with the preconditioned Krylov subspace approach is being initially specifically
designed for the solution of discretized elliptic PDEs and exploiting more information on
the problem.

Feel++ relies on the PETSc library that provides a wide range of solvers and
preconditioners. Let us do a quick enumeration on some solvers and preconditoners that
we will use un the sequel. We will first start with i) LU preconditioner provided by
the library MUMPS accessible from PETSc. With this preconditioner, a Krylov method
is no longer necessary since it can be seen as a direct solver. This preconditioner is the
most competitive for 2D problems, however, for 3D problems or when the size of the
problem becomes considerably important, it scales less due to the computational cost
and memory consumption. ii) Additive Schwarz methods which belong to the class of
domain decomposition methods such as Block Jacobi (b-Jacobi) which is an additive
Schwarz algorithm without overlapping, ASM preconditioner, which is also an additive
Schwarz method with algebraic overlapping. The classical additive Schwarz preconditioner
P applied on p subdomains is written as follows:

P =

p
X

i=1

RT
i A�1

i Ri (3.4)

with Ri the restriction operator and Ai = RiART
i the restriction of A on the ith sub-

domain. Again, the A�1
i are not explicitly calculated, a Krylov method is however used

with a preconditioner. Hence, for each subdomain problem, different sequential solvers
and preconditioners can be used, such as LU, ILU (Incomplete LU), Cholesky, ICC ( In-
complete Cholesky ), Jacobi, ML (algebric multigrid). PETSc also provides the GASM

preconditioner which is a variant of ASM method extended for a high number of sub-
domains. The latter will be the most used domain decomposition method in this thesis.
iii) Fieldsplit is also a preconditioner class for block-matrices provided by PETSc. It
includes b-Jacobi, Gauss-Seidel and symmetric block Gauss-Seidel. The blocks can
be bounded by the lines and columns indices. In the following, we will make use of this
family of preconditioners for block-preconditioners. Finally, PETSc provides the access
to ML, hyper and GAMG multigrid preconditioners. The latter is designed to be modular,
extensible, and to accept small contributions from users as easily as possible, which made
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it our Multgrid preconditioner choice in the sequel. locality.

While separately Krylov subspace and Multigrid methods are widely used to develop
fast solvers, a new trend consists in designing hybrid methods gathering both these strate-
gies. It aims to join, in a unified framework, the main features of these methods, that
are the easy computation, the parameter free, the high possibility of vectorization and
parallelization for the Krylov subspace methods, the grid size independent convergence
rates for the multigrid method. The efficiency of the multigrid method is due to the fact
that the spectral radius of the iteration matrix is uniformly bounded by a constant smaller
than one. However, for difficult model problems, the poor convergence rate is due to the
slow convergence of some eigenmodes of the iteration matrix. One idea is to use Krylov
subspace methods to capture these eigenmodes and therefore to improve the convergence
properties. The multigrid is then seen as a preconditioner in a Krylov subspace method.
It is found that multigrid preconditioning involves a favourable spectrum and speeds up
the convergence rate also in the case of good convergence properties. We must mention
that the iteration matrix of a general multigrid method is nonsymmetric. Moreover, the
smoothing step is also nonsymmetric. Therefore, the preconditioning matrix is nonsym-
metric, which requires a Krylov subspace method adapted to non-symmetric problems.
Domain decomposition schemes used as preconditioners are also an efficient strategy,
specially for high number of domains, they require less tuning when they are employed
as a preconditioner to accelerate the convergence of a Krylov method. Since Schwarz
methods represent fixed point iterations applied to preconditioned global problems, and
consequently do not provide the fastest convergence, it is natural to apply Krylov meth-
ods instead. This provides the justification of using Schwarz methods as preconditioners
rather than solvers.

Conclusion

Through this chapter, we have briefly explained the main resolutions and preconditioning
strategies towards a high precision computing (HPC) simulations of problem like Ax =

b. We also gave the pros and cons of each strategy depending on our observations and
experiments. Besides, we have introduced the preconditioners that we will use in Chapter
?? for our benchmarks..
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Chapter 4

An overview of block preconditioners

In this chapter, we give a survey of the most efficient block-preconditioner
for the incompressible Navier-Stokes equations. We enter into the details of
three block-preconditioners, the physics-based SIMPLE preconditioner, first in-
troduced in [106], the pressure convection-diffusion preconditioner (PCD) pro-
posed in [90, 130] and the least squares commutator (LSC) [47]. The latters
are obtained using a purely algebraic manipulation of the matrix blocks while
SIMPLE can be written as an approximate factorization of the system’s ma-
trix. The efficiency of the three aforementioned preconditioners is evaluated
in Section 1 of Chapter 7. For a more global overview on preconditioning
technics, the reader may refer to [16].
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1 Introduction

We start by observing that the matrix of discrete system that we denote by A, can be
written as a LDU product:

A =

✓

I 0

BF

u

�1
I

◆

| {z }

L

✓

F

u

0

0 �S

◆

| {z }

D

✓

I F

u

�1BT

0 �S

◆

| {z }

U

(4.1)

where S = BF

u

�1
B

T is the Schur complement matrix. Most block-type preconditioners
are based on a combination of those three matrices and a suitable approximation of the
Schur complement matrix. We distinguish two main categories of block preconditioners,
left preconditioners, based on the LD product, such as the SIMPLE preconditioner family,
and right preconditioners, based on the DU product, such as the PCD preconditioner,
the LSC preconditioner and the augmented Lagrange preconditioner. The latter is not
discussed in this thesis.

Remark 15. The choice of the global iterative method is crucial for applying each of the
above preconditioners. A Krylov method should be suitable with the type of the precondi-
tioner, either right or left. For example the GCR and fGMRESR methods are appropriate
for right preconditioner while GMRES is appropriate for left preconditioners.

2 LSC preconditioner

The least squares preconditioner (LSC) [47] makes use of the following approximation of
S

ˆ

SLSC = (BQ

�1

u

B

T

)(BQ

�1

u

F

p

Q

�1

u

B

T

)

�1

(BQ

�1

u

B

T

) (4.2)

In practice, the mass matrix Q

u

may be approximated by its diagonal diag(Q
u

) to avoid
the dense inverse. The convergence rate of the method is improved since this matrix acts

like a scaling matrix. Let us denote S

p

r1 = BQ

�1

u

B

T, solving PLSCz = r with z =

✓

z

u

zp

◆

and r =

✓

r

u

rp

◆

then reads:

Algorithm 4 LSC algorithm
1: Solve Spzp = r

p

2: Update r
p

= BQ�1
u FpQ�1

u BTz
p

3: Solve Spzp = �r
p

4: Update ru = ru �BTz
p

5: Solve Fuzu = ru

Applying this algorithm involves two Poisson-type solves for the pressure subsystem
and one velocity solve. These subproblems need to be supplemented with appropriate
boundary conditions in order to be homogeneous with the initial boundary conditions
applied on the global problem. A new choice of boundary conditions was proposed in [49],
but in the following, we will be testing the old version of this preconditioner introduced
in [130].
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3 SIMPLE preconditioner

Another LU factorisation of A,

A =

✓

F

u

0

B �R

◆

| {z }

L

✓

I F

u

�1
B

T

0 I

◆

| {z }

U

(4.3)

stands at the base of the so-called SIMPLE preconditioner [106], obtained by replacing
F

u

�1 in both the factors L and U by a triangular matrix D

�1 (for instance, D could be
the diagonal of F

u

). More precisely,

PSIMPLE =

✓

F

u

0

B � ˆ

R

◆✓

I D

�1

B

T

0 I

◆

=

ˆL ˆU, (4.4)

with ˆR = BD�1BT . Note that when the mesh size h decreases and/or the Reynolds num-
ber increases, the convergence of the preconditioned iterative methods deteriorates. Many
generalisations of the SIMPLE preconditioner have been proposed such as SIMPLZE,
h� SIMPLE and MSIMPLER.
The PSIMPLE uses an ˆL ˆU factorisation that can be regarded as a special case of a more
general family of inexact or algebraic factorisations that read as follows:

ˆA =

ˆL ˆU =

✓

F

u

0

B �BLBT

◆✓

I UBT

0 I

◆

(4.5)

where L and U are two approximations of F

u

�1. If the time dependent Navier-Stokes
equations are discretized in time by high-order (� 2) temporal scheme, inexact factors
are chosen so that the time discretization order is maintained. When used in connection
with time-dependent (either Stokes or Navier-Stokes) problem e.g. (2.53), two different
possibilities stand out:

• L = U = (

1
�t
Q

u

)

�1 : Chorin-Temam algebraic approximation,

• L = (

1
�t
Q

u

)

�1 and U = F

u

�1: Yosida approximation as it can be interpreted as a
Yosida regularisation of the Schur complement.

The fact that the Yosida approximation does not require any special care about boundary
conditions which are implicitly accounted for the algebraic formulation, is an advantage
of this strategy.

4 The Pressure Convection Diffusion (PCD)

Let us recall the weak formulation corresponding to the fully implicit treatment with
homogeneous Dirichlet boundary conditions on �D and a stress free condition on �N ,
with @⌦ = �D [ �N . It reads to: find (u

k+1
� , pk+1

� ) 2 V� ⇥ Q� such that 8v� 2 {v 2
[H1

0 (⌦�)]
d \ [PM

c (⌦�)]
d}, 8q� 2 Q�
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⇢

Z

⌦
�

u

k+1
�

�t
v� + ⇢

Z

⌦
�

(u

k+1
� ·ru

k+1
� ) · v� + 2µ

Z

⌦
�

D(u

k+1

� ) : D(v�) dx

�
Z

⌦
�

pk+1
� div(v�) dx =

Z

⌦
�

f

k+1
� · v� + ⇢

Z

⌦
�

u

k
�

�t
· v�

Z

⌦
�

q� div(uk+1
� ) dx =0

In its algebraic form, the problem using Picard linearisation method is written as
follows:

✓

F

u

B

T

B 0

◆

| {z }

A

✓

U

n+1

P

n+1

◆

=

✓

G

0

◆

(4.6)

where F

u

is a function of the unknown velocity,

(F

u

)i,j = ⇢
1

�t
< 'i,'j >
| {z }

Qu
i,j

+ a('i, j)
| {z }

A
i,j

+ c(uk+1,'j, i)
| {z }

C
i,j

(4.7)

where Q

u

is the fluid mass matrix, D the stiffness matrix, and C the convection terms
of the momentum equation. B and B

T are the discretized counterparts of the divergence
operator and the gradient operator, respectively. U

n+1 is the vector of the velocity un-
knowns at time t = tn+1 and P

n+1the one of the pressure unknowns. G is a known vector
depending on the discretized source force, on U

n , and on f , g
N

, and g

D

, the boundary
condition expressions on the Dirichlet and the Neumann boundaries, respectively.

The PCD preconditioned, proposed in [90, 130], is based on the following factorization of
the matrix A:

A =

✓

I 0

BF

�1

u

I

◆✓

F

u

B

T

0 �S

◆

| {z }

P
PCD

(4.8)

where S = BF

�1

u

B

T is the so-called Schur complement. However getting the inverse of
the Schur complement written this way is a costly operation. We will consequently replace
the Schur complement S by an appropriate approximation.
For that purpose, let us consider the convection-diffusion operator:

F = �⌫r2
+ !h ·r

where the Rd vector field !h denotes the approximation of the discrete velocity at the
previous nonlinear iteration.
Let us also consider the analogous convection-diffusion operator Fp defined on the pres-
sure space and the following commutator of the convection-diffusion operators with the
divergence operator,

E = r · (�⌫r2
+ !h ·r)� (�⌫r2

+ !h ·r)pr, (4.9)
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The matrix representation of the discrete divergence operator is Q

�1

p

B, where Q

p

is the
mass matrix associated to the pressure space, and the one associated to the discrete
gradient operator is Q

�1

p

B

T. Thus the discrete commutator leads to:

Eh = (Q

�1

p

B)(Q

�1

u

F

u

)� (Q

�1

p

F

p

)(Q

�1

p

B). (4.10)

Under the assumption that the commutator is small, we have:

(Q

�1

p

B)(Q

�1

u

F

u

) = (Q

�1

p

F

p

)(Q

�1

B). (4.11)

Let us premultiply by Q

p

F

�1

p

Q

p

and post-multiply by F

�1

u

B

T, we obtain:

Q

p

F

�1

p

Q

p

(Q

�1

p

B)(Q

�1

u

F

u

)F

�1

u

B

T ⇡ Q

p

F

�1

p

Q

p

(Q

�1

p

F

p

)(Q

�1

p

B)F

�1

u

B

T

Q

p

F

�1

p

BQ

�1

u

B

T

| {z }

Ap

⇡ BF

�1

u

B

T

| {z }

S

In the following, we will consequently replace the Schur complement S by S

⇤
= Q

p

F

�1

p

A

p

,
F

p

is the convection-diffusion operator defined on the discrete pressure space of the op-
erator F (i.e., the discretized version of the operator Dt � ⌫� + u · r for the pressure
space with Dt being the contribution of the time discretization), and A

p

= BQ

�1

u

B

T is
a discrete weighted Laplacian operator for the pressure space.
In order to have a sparse discrete Laplacian, a more direct way is to replace Q

u

by its
diagonal approximation T = diag(Q

u

).
A clear advantage of defining A

p

as a discrete Laplacian assembled matrix is that it is
easily adapted to handle stabilised elements, and thus is a more general option. As for
the choice of BT

�1
B

T it is more appropriate for evolutionary problems
Having all the ingredients of the preconditioner well defined, then solving solving

PPCDz = r with z =

✓

z

u

zp

◆

and r =

✓

r

u

rp

◆

requires the following steps:

1. Solve S

⇤
zp = rp

2. Update r

u

= r

u

�B

T

zp

3. Solve F

u

z

u

= r

u

Let us note that the preconditioning strategy requires the action of S⇤�1
= A

�1

p

F

p

Q

�1

p

thus, in order to approximate the inverse of the Schur complement, we will need to do
a Poisson solve, a mass matrix solve and a matrix-vector product. These subproblems
need to be completed with appropriate boundary conditions in order to be homogeneous
with the initial boundary conditions applied on the global problem. The details are in
section 4.1. Note that to do the inverse A

�1

p

and Q

�1

p

, any iterative or direct solver may
be choose. The details about our numerical choices for solvers and sub-solvers for the
different sub-problems are reported and discussed in Chapter 7.

Remark 16. If the Schur complement was applied exactly, the resulting GMRES method
would converge in at most two iterations, while the convergence rate when using M

p

F

�1

A

p

depends on the boundary conditions used to form F

p

.
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Remark 17. In the previous version of the preconditioner, the commutator was defined
using the gradient operator rather than the divergence operator, giving (�⌫r2

+!h ·r)r�
r(⌫r2

+!h ·r)p. The latest approach was designed so that boundary conditions are incor-
porated more effectively in the construction of the preconditioner. Actually, the divergence
operator operates on the velocity space, where boundary conditions are defined, whereas
the gradient operator operates on the pressure space, where no boundary conditions are
specified [48].

Remark 18. In the case of a Stokes problem, a more appropriate preconditioned is the
pressure mass matrix (PMM) preconditioner. In this case the Schur complement is ap-
proximated by the pressure mass matrix scaled with the inverse of the viscosity S

⇤
=

1

⌫
Q

p

.
It is obvious that with this choice of preconditioner, the solve of the pressure step is cheaper
than having to do a Poisson solve, a mass matrix solve and two matrix-vector products.

4.1 Boundary conditions for the subproblems
Boundary condition for the Laplacian operator Ap

• On �D: Let us rewrite the weak form of the Laplacian operator:

[App]i = ⌃

n
p

j=1[Ap]ijpj = ⌃

n
p

j=1(

Z

⌦

r'i ·r'j)pj =

Z

⌦

rph ·r'i

=

Z

⌦

(�r2ph) · 'i �
Z

@⌦

(rph · n)'i

In order to have a consistent approximation of the Laplacian, the boundary integral
in the construction of the corresponding matrix operator must vanish. Since 'i 6= 0

on @⌦, ph has to satisfy an homogeneous Neumann condition on @⌦D.

• On �N : Let us consider a velocity test function vh = �l, and let G denote a discrete
gradient operator. Then its weak form leads to:

[Gp]l =

Z

⌦

rph · �l

= �
Z

⌦

phr · �l +

Z

@⌦
N

ph(�l · n)

= ⌃

n
p

m=1(�
Z

⌦

'mr · �l)pm + ⌃

n
p

m=1(

Z

@⌦
N

'm(�l · n)pm

= [BT
p]l + [Rp]l

Thus, we we have the following system
✓

A G
B 0

◆✓

u

p

◆

=

✓

f

g

◆

, where G = BT
+R.

In order to have an homogeneous system with the one corresponding to a Poisson
problem, R must be replaced with the zero matrix, that is we will have to force
the discrete pressure to satisfy an homogeneous Dirichlet condition on the outflow
boundary @⌦N .
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Boundary condition for the convection diffusion operator Fp Let us first consider
the 1D version of the commutator E applied on the interval ⌦1 = (0, 1) with the following
operators,

F = Fp := �⌫ d2

dx2
+ !

d

dx
, B =

d

dx
(4.12)

In order to be uniquely defined, the operator must be coupled with appropriate boundary
conditions. It leads to:

BF = FpB = �⌫ d3

dx3
+ !

d2

dx2
(4.13)

Let us denote v = Fu, u defined on ⌦1, we then have,

v = Fu = (�⌫ d

dx
+ !)

du

dx
= (�⌫ d

dx
+ !)p = �⌫p0 + !p with p =

du

dx
(4.14)

Rewriting (4.13) using the expression below, we obtain Bv = BFu = FpBu. We can
notice that, in order for v to be appropriate as an argument of B, we require v(0) = 0. So
recalling (4.14) that depends on p, a Dirichlet condition v(0) = 0 for B leads to a Robin
boundary condition for Fp, �⌫p0+!p = 0 at the inflow boundary. Note that on the wall,
where u⇥n = 0, a Robin boundary condition reverts to a Neumann condition. To extend
this discussn on higher dimension, the reader may refer to [48].

To sum up, when we have Dirichlet (cf.Neumann) boundary conditions for the main
problem, it leads to a Neumann (cf. Dirichlet) boundary conditions on the Ap problem.
While for the Fp problem, a Dirichlet boundary condition on the main problem leads to
a Robin boundary condition.

Remark 19. In the case of a Stokes problem, a more appropriate preconditioned is the
pressure mass matrix (PMM) preconditioner. In this case the Schur complement is ap-
proximated by the pressure mass matrix scaled with the inverse of the viscosity S

⇤
=

1
⌫
Qp.

It is obvious that with this choice of preconditioner, the solve of the pressure step is cheaper
than having to do a Poisson solve, a mass matrix solve and two matrix-vector products.

4.2 Sub-problems solve
To solve the different sub-problems arising from the use of the PCD preconditioner, we
will apply the following strategy.
For the Laplacian problem, Multigrid is the most appropriate choice, for it provides a good
efficiency and strong scalability results. For the mass-matrix-problem inverse, different
strategies may be used. We can either choose to replace Q

�1
p by the inverse of the lumped

diagonal of Qp, or use a Chebychev polynomial preconditioner that converges faster with
a minimal cost. The advantage of the first method is that the approximation is fast to
build, and applying it is a embarrassingly parallel task. Actually we will not exactly
inverse the Qp matrix, instead we can use the preonly option and apply B-Jacobi as a
preconditioner to extract the diagonal. A default choice also could be to use the Multigrid
which also gives a fast approximation of the inverse of this matrix. For the inverse of the
convection-diffusion matrix Fu, we have chosen to extract the diagonal components block
of this matrix using B-Jacobi and apply a new solving strategy for each block. Depending
on the problem size, an accurate but heavy choice could be to use of GASM with LU
in the subdomains. An alternative could be to use Multigrid. However, as we will see
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in Chapter 7, GAMG does not converges for high Reynolds number, which plays in the
advantage of GASM with LU in the sub-domains.

Conclusion

In this chapter, we did a review over the most popular block-preconditiones for the Navier-
Stokes equations system. For the evaluation of the performance of the LSC and PCD
preconditioners we rely on the PETSc version of the first preconditioner, and we imple-
mented the latter in Feel++ library. The details about the implementation are explained
in Chapter 9. The efficiency of the LSC preconditioner and in-house PCD preconditioner
is shown in Section 1 of Chapter 7. The PCD preconditioner was then applied to the FDA
benchmark Section 2 of Chapter 7, but also in the context of another thesis in our team
on aerothermal simulations.
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Chapter 5

Dimensional reduction

The aim of this chapter is to introduce a reduction method for the 3D
Navier-Stokes equations, proposed in [111]. A full 3D simulation of the circu-
latory system that takes into account the interaction between the fluid and the
structure is a trending research challenge. The main difficulties are specially
the heavy cost in terms of memory and run time due to the big size of the
problem.
The idea behind the reduction method detailed in this chapter is that, instead
of performing a 3D simulation in all the computational domain, one may trun-
cate the computational domain and couple a 3D region of interest (presenting
a pathology) with a reduced model whose computational cost is accessible.

Contents
1 Introduction example . . . . . . . . . . . . . . . . . . . . . . . . 54

2 Variational reduction . . . . . . . . . . . . . . . . . . . . . . . . 55
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Figure 5.1: The 3D domain is trunked
so that in the narrowing region a 3D
simulation will be performed while a
1D monodimentional simulation will be
performed in the straight tube. [111]

1 Introduction example

The purpose of this chapter is to provide a method for obtaining different monodimen-
sional models 1D from the three-dimensional 3D model. The level of simplification can be
easily selected. This method uses the variational formulation, thus the reduction concerns
both unknown and test functions. We apply it here to the Navier-Stokes equations. In
this chapter, we reduce the whole domain, the coupling between 3D part and a small part
will be addressed in the next chapter.
Given the geometry of an artery, we can hope that the variations in the direction of the
flow would be greater than in the radial direction. For this, consider a coordinate system
whose first components are in the direction of a radial section orthogonal to the axis of
the artery and the third component would be following this same axis. (See Figure 5.2).

Figure 5.2: The coordinate system adjusted with respect to the centreline.[111]

Reducing the fluid model is assuming that the velocity and the pressure on each
section S(z) follow known profiles. Thus, the variational space of the unknowns and the
test functions will be reduced.
For instance, let us assume that the fluid follows a Poiseuille flow. On each of the radial
sections the velocity could then be written as:

u(x, y, z) = u1(z)�1(x, y, z) + u2(z)�2(x, y, z)

with �1(x, y, z) =

0

@

x
R
y
R

0

1

A and �2(x, y, z) =

0

@

0

0

1� x2+y2

R2

1

A.
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Let us also consider that the pressure could be written as p(x, y, z) = p1(z)⌘1(x, y, z) with
⌘1(x, y, z) = 1. We will then be led to search for two scalar unknowns for the velocity and
for one scalar unknown for the pressure on each section. The number of sections will be de-
fined afterwards, according to the choice of discretization for the velocity and the pressure.

2 Variational reduction

Following the idea of the previous example, we may have to choose our velocity in V =

Xn⌦H1
(0, L) (L being the length of the domain) and the pressure in W = Ym⌦L2

(0, L).
In the previous example, Xn = X2 = V ect(�

1

,�
2

) and W = Y1 = V ect(⌘1).
It is clear that the spaces Xn and Ym have small dimensions and can be generated by
additional profiles to enrich the reduced model. We just have to make sure to enrich
enough the velocity space compared to the pressure space in order to have a well posed
problem.
Let us consider (�

i

)1in and (⌘k)1km the basis functions of Xn et Ym, respectively. We
can write:

u(x, y, z) =
n
X

i=1

ui(z)�i(x, y) , v(x, y, z) =
n
X

i=1

vi(z)�i(x, y) (5.1)

and

p(x, y, z) =
m
X

j=1

pj(z)⌘j(x, y) , q(x, y, z) =
m
X

j=1

qj(z)⌘j(x, y) (5.2)

Let us recall the variational formulation of the Navier-Stokes equations with Dirichlet
boundary condition at the inlet (u = uin on �in) and a stress free boundary condition
at the outlet (�(u, p)n = 0 on �out): find (u, p) 2 V ⇥ M such that 8v 2 {v 2
[H1

(⌦)]

d | v = 0 on �w [ �in}, 8q 2 M

Z

⌦

⇢
@u

@t
v +

Z

⌦

⇢(u ·ru) · v + 2µ

Z

⌦

D(u) : D(v) dx

Z

⌦

p div(v) dx = 0 (5.3)
Z

⌦

q div(u) dx = 0 (5.4)

with:

V = {v 2 [H1
(⌦)]

d | v = 0 on �w, v = uin on �in} and M = L2
0(⌦). (5.5)

Let us write u, v, p and q following equations (5.1) and (5.2) in the variational for-
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mulation (5.3) - (5.4), the monodimensional problem can be written as follows:
n
X

i=1

n
X

j=1

Z

z

↵i,j
1 (z, t)vi

@ui

@t

+

Z

z

↵i,j
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ui +
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z
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@ui

@z
+

Z

z
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@vj
@z

@ui
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+
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X

i=1

n
X

j=1
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X
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Z

z
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5 (z, t)uiukvj +
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+
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j=1

m
X

k=1

Z

z

↵k,j
7 (z, t)pkvj +

Z

z

↵k,j
8 (z, t)pk

@vj
@z

= 0

+

n
X

i=1

m
X

k=1

Z

z

↵k,i
7 (z, t)qkui +

Z

z

↵k,i
8 (z, t)qk

@ui

@z
= 0 (5.6)

Let us denote �
i

= (�i,x,�i,y,�i,z)
T , the (↵l)1l8 are given by the following formulas:

↵i,j
1 = ⇢f

Z

S(z)

�i,x�j,x + �i,y�j,y + �i,z�j,z (5.7)
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(5.8)
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+
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4 = 2µ
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7 =
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(5.13)

56 2. VARIATIONAL REDUCTION



CHAPTER 5. DIMENSIONAL REDUCTION

↵i,j
8 =

Z

S(z)

⌘k�j,z (5.14)

Those (↵i)i=1..8 are calculated with respect to the chosen profiles. When we have an
analytical expression of the profiles, we have an analytical expression of the coefficients.

When the centreline is straight and S(z) is a constant circular section over z, the
coefficients are constant and can be pre-calculated. When the centreline is straight and
the section is circular but the radius of S(z) changes over z, (see figure 5.3), the coefficients
can be easily calculated. However, two problems arise when trying to handle the case of
curved geometries or more generally all non-rectilinear geometries. On one hand, we lose
the axisymmetric character of the solution since the deformations of the section are no
longer symmetrical relative to the axis. On the other hand, if we are on the centerline,
the coordinate system is not Cartesian anymore.

Figure 5.3: Straight tube domain with variant radius.

If the curvature is well known, it is possible to fix one or more profiles linked to this
curvature, such as the one presented in figure 5.3. A study over the steady flow was
carried in [109]. The effect of the curvature is analysed with respect to the Dean number,
proportional to the Reynolds number and to the square root of the curvature. Also in
this paper, an asymptotic study is described for high and low Dean numbers. Numerical
solutions are suggested for intermediate Dean number values.

More profiles are also suggested in [59] in order to have a good velocity-pressure profile
compatibility for the problem to be well posed. If the curvature is complex, non planar
for instance, it is harder to retrieve suitable analytical profiles. A first solution can be,
as suggested in the thesis [111], to do 3D preliminary simulations to predict the velocity-
pressure profiles in the radial section. However, if the 3D simulation is possible, what is
the purpose of doing a reduction? It is clear that, if the main target is to study the effect
of changing many physiological parameter on a patient blood flow, then it makes sense
to resolve once the full three-dimensional model and many times the dimensional scale
model.
What we suggest in this thesis, in complement to the idea proposed in [111], is solving the
full three-dimensional model by using the reduced basis method to predict the profiles on
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Figure 5.4: Axial velocity profile inside a curved domain. The magnitude is higher close
to the internal curvature.[111]

the radial section, and then perform the mono-dimensional model using the so retrieved
profiles to enrich the velocity and pressure basis of the reduced problem.

3 Discretisation

For the one-dimensional problem (5.6), two finite elements strategies can be used for the
space discretisation. We can either use a P2P1 elements for the velocity-pressure couple,
or, in the spirit of the P1bP1, choose a P1 elements for the velocity and the pressure spaces
and we use different mesh size for those two components. We choose a 2h mesh size for
the pressure and a 1h mesh size for the velocity, thus we have more unknowns for the
velocity with respect to the pressure. As for the coefficients (↵i)i=1..11 we will choose P0
elements on the 2h meshes.
With those discretisation choices, the discrete problem verifies the inf-sup condition start-
ing from a certain h⇤. For more details the reader can refer to [111].

Figure 5.5: Velocity mesh of length h and pressure mesh of length 2h.

Assuming that we are looking for a velocity in V� = X2�⌦H1
(0, L�) and the pressure in

W� = Y1⌦L2
(0, L�), with X2� = V ect(�

1

,�
2

) and W� = Y1� = V ect(⌘1), and �1(x, y, z) =
0

@

x
R
y
R

0

1

A and �2(x, y, z) =

0

@

0

0

1� x2+y2

R2

1

A, and ⌘1 = 1, the 3D velocity field can thus be
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written as:

u(x, y, z) = u

1�(z)�1(x, y) + u

2�(z)�2(x, y) (5.15)

=

N
X

i=1

(u1i⇠i(z)�1(x, y) + u2i⇠i(z)�2(x, y)) (5.16)

with N the number of degrees of freedom and ⇠i(z)i=1..N the 1D basis functions. Let
us write explicitly, for sake of simplicity, the 1D variational formulation of the Stokes

equations in a straight tube. It reads: find u� =

✓

u

1�

u

2�

◆

in V� \ [PN
c (⌦�)]

d, find p1� in

Y1� \ [PM
c (⌦�)]

d such that 8v� 2 X2� ⌦H1
0 (0, L�), 8q1� 2 Y1� \ [PM

c (⌦�)]
d, we have:
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(5.17)

4 Implementation

The following listing 5.1 is the 1D code that corresponds to the formulation (5.17). In this
example the ↵i were strongly set in the variational formulation. A more generic code was
also implemented to automatically handle the ↵i computation depending on the geometry
definition.

Listing 5.1: Feel++ 1D Stokes code.
//Load 3D mesh
auto mesh3d=loadMesh(_mesh=new Mesh <Simplex <3,1,3»,_filename=file3d);
// Create the 3D function space
auto Xh3 = THch <order_p >( mesh3d );
// Define test and trial functions
auto U3 = Xh3 ->element ();
auto u3 = U3.element <0>();
auto p3 = U3.element <1>();
auto V3 = Xh3 ->element ();
auto v3 = V3.element <0>();
auto q3 = V3.element <1>();

//Load 1D mesh
auto mesh1d=loadMesh(_mesh=new Mesh <Simplex <1,1,3»,_filename=file1d);
// Create the 1D function space living in a 3D topological space
typedef FunctionSpace <Mesh <Simplex <1,1,3», bases <Lagrange <2, Scalar >,

Lagrange <2, Scalar >, Lagrange <1, Scalar > > > space_type;
auto Xh1 = space_type ::New( mesh1d );
// Define test and trial functions
auto U = Xh1 ->element ();
auto V = Xh1 ->element ();
auto u1 = U.element <0>();
auto u2 = U.element <1>();
auto p = U.element <2>();
auto q = V.element <2>();
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auto v1 = V.element <0>();
auto v2 = V.element <1>();

// Assemble bilinear and linear forms
auto l = form1( _test=Xh1 );
auto a = form2( _trial=Xh1 , _test=Xh1);

a+= integrate(_range=elements(mesh1d),_expr =4*Pi*mu*inner(idt(u1),id(v1))
,! + 2*Pi*mu*inner(idt(u2)*id(v2)));

a+= integrate(_range=elements(mesh1d),_expr=-Pi*R*mu*inner(idt(u2),dz(v1)
,! ) -Pi*R*mu*inner(id(v2),dzt(u1)));

a+= integrate(_range=elements(mesh1d),_expr =0.5*Pi*mu*R*R*inner(dzt(u1),
,! dz(v1)) + (2/3)*Pi*mu*R*R*inner(dzt(u2),dz(v2)));

a += integrate(_range=elements( mesh1d ),_expr=-2*Pi*R*idt(p)*id(v1)- (Pi
,! *R*R/2)*idt(p)*dz(v2) );

a += integrate(_range=elements( mesh1d ),_expr =2*Pi*R*id(q)*idt(u1) + (Pi
,! *R*R/2)*id(q)*dzt(u2) );

//Dirichlet -Neumann BC
a+=on(_range=markedfaces(mesh1d ,"inlet"),_rhs=l,_element=u1,_expr=cst

,! (0.));
a+=on(_range=markedfaces(mesh1d ,"inlet"),_rhs=l,_element=u2,_expr=cst

,! (1.));
a.solve(_solution=U,_rhs=l.vectorPtr () );

The listing 5.2 is a functor that aims to reconstruct the 3D velocity field from the
computed scalar fields u

1�, u2�, and the Poiseuille basis functions �1(x, y) and �2(x, y).

Listing 5.2: Define the functor.
template <typename ElementType1 , typename ElementType2 >
struct f_evaluate
{
static const size_type context = vm:: JACOBIAN|vm:: POINT;
typedef double value_type;
typedef value_type evaluate_type;
typedef Feel:: uint16_type uint16_type;
static const uint16_type rank = 1;
static const uint16_type imorder = 1;
static const bool imIsPoly = true;
using element1_type = decay_type <ElementType1 >;
using element2_type = decay_type <ElementType2 >;
using node_t = boost:: numeric ::ublas ::vector <double >;
f_evaluate( element1_type& u1 , element2_type& u2, double R ) : M_u1(u1),

,! M_u2(u2), M_R(R), M_z (3)
{

M_z [0]=0;
M_z [1]=0;

}
double operator ()( uint16_type c1 , uint16_type c2 , boost :: numeric :: ublas

,! ::vector <double > const& x, boost:: numeric ::ublas ::vector <double >
,! const& ) const

{
M_z [2]=x[2];
return M_u1(M_z)(0,0,0)*((c1==0)*x[0]/ M_R+(c1==1)*x[1]/ M_R)+M_u2(M_z

,! )(0,0,0)*((c1==2) *(1-(x[0]*x[0]+x[1]*x[1])/(M_R*M_R)));
}
element1_type& M_u1;
element2_type& M_u2;
mutable node_t M_z;
double M_R;
};

In listing 5.3 we show the exporter call.
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Listing 5.3: Exporter call for the reconstructed 3D field of the exact Poiseuille velocity.
// exporter call
auto e3 = exporter( _mesh=mesh3d );
u1.on(_range=elements(mesh1d), _expr=cst (0.));
u2.on(_range=elements(mesh1d), _expr=cst (1.));
v3.on(_range=elements(mesh3d), _expr=idf(f_evaluate <decltype(u1),

,! decltype(u2)>( u1, u2,R)));
e3 ->step (0) ->add( "u3_exact", v3 );
e3 ->save();

Figure 5.6: Reconstructed 3D velocity field of the exact Poiseuille velocity.

5 Coupling

The idea in this section is to be able to solve a Stokes problem in the geometry of a curved
cylinder showed in Figure 5. The simulation will consist of two 1D solve in the upper and
the lower straight cylinder, and a full 3D simulation in the curved section of the domain.

Figure 5.7: 3D test geometry for 3D-1D coupling.

We denote �in, respectively �out the sections of the domain where the flow enters and
exits, respectively. We denote �1D�3D the section of the domain at the intersection of
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the upper straight cylinder, where we will do the Stokes reduction, and the 3D curved
domain where we will t a 3D Stokes simulation. We equivalently denote �3D�1D the
surface that delimits the curved cylinder and the lower straight cylinder. We finally
denote �in,1D,upper, �out,1D,upper, respectively �in,1D,lower, �out,1D,lower the 1D inlets and
outlets for the 1D models in the upper and lower cylinders, respectively.

We choose to impose a Poiseuille profile at the inlets of the two 1D models. For the
inlet of the 3D model, we will reconstructt the 3D velocity field from the 1D solution of
the reduced model in the upper cylinder, and use it as a Dirichlet boundary condition
at the inlet of the 3D model. As for the outlets, we will also impose Dirichlet boundary
conditions on the outlet of the 1D upper reduced model and 3D full model. At the outlet
of the 1D lower reduced model we will however use a Neumann boundary condition. With
this choice of boundray conditions we ensure the continuity of the velocity at the interface
�1D�3D and the interface �3D�1D.
Table 5.1 sums up the previous choices of boundary conditions.

Boundary Condition Expression

�in,1D,upper Dirichlet Poiseuille
�in,1D,lower Dirichlet Poiseuille
�out,1D,upper Dirichlet Poiseuille
�out,1D,lower Neumann Stress free
�1D�3D Dirichlet Reconstructed 3D field of the 1D computed velocity
�3D�1D Dirichlet Poisuille

Table 5.1: Boundary conditions types

To get a good coupling between the different parts of the domain, it is necessary that
the conditions at the interface are checked by the computed solutions. We have to iterate
between the resolution of the 1D problems and the resolution of the 3D problem to obtain
a correct solution in all the subdomains. We first solve the problems in the 1D domains,
use the computed velocity at �out,1D,upper to reconstruct the 3D velocity field and impose
an inlet condition for the 3D problem, then we solve the 3D problem. The so-computed
3D velocity will help imposing the new inlet condition for the lower 1D reduced model
at �out,1D,lower. Finally, we need to iterate between the two models until convergence.
However, it is too expensive to solve the 3D model several times each time, only to have
a good coupling condition. The simplest solution is to explicite the coupling between
the domains, and use the dimensional data of the previous time, to calculate the output
condition of the 3D model.
The results for this part are on going.

Conclusion

In this chapter, we have seen a preliminary study of the 1D-variational reduction of the
Navier-Stokes model, and we have explicitly written the variational formulation of the
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Stokes model in a straight cylinder. In order to validate our model, the reconstruction
of the 3D velocity field was a must towards a comparison with the exact Poiseuille. The
main objective of this part was to be able to solve a 1D-3D-1D problem with appropriate
coupling conditions. Due to the lake of time, we couldn’t concretise our ideas and obtain
numerical results. We are still working on this part, and we hope to get the desired results
before the thesis defence.
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Chapter 6

Convergence analysis of the Stokes

formulations and stress tensor

computation

The results presented in this chapter are a joint work with V. Chabannes
and C.Caldini, M. Ismail, G. Pena, M. Szopos and C. Prud’homme, in the
context of the CEMRACS 2012, published in [26]. In the first part of this chap-
ter, we focus on the simulation step, using for now the standard Newtonian
incompressible Navier-Stokes equations, and we are interested in particular in
i) handling various boundary conditions settings allowing for a flexible frame-
work with respect to the type of input data (velocity, pressure, flow rate, ...);
ii) handling of the discretization errors not only with respect to the physical
fields (velocity and pressure) but also with respect to the geometry. We em-
phasize that the accuracy with which the boundary of the physical domain is
approximated has a considerable impact on the quality of the numerical ap-
proximation, see for instance [108]. In particular, in the context of blood flow
approximation, this takes particular relevance since the boundary might also
be an unknown of the problem and needs to be accurately approximated.The
aim of the second part is to present and compare two different methods for
the computation of the stress tensor for low and high order finite element and
geometry approximation on a straight and curve boundary.
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CHAPTER 6. CONVERGENCE ANALYSIS OF THE STOKES FORMULATIONS AND
STRESS TENSOR COMPUTATION

1 Convergence analysis of the Stokes formulations

1.1 Benchmark setup
Our goal is to impose different kinds of boundary conditions (for both velocity and pres-
sure) to the Navier-Stokes system (2.1)-(2.2). Since these considerations are independent
of the presence of a convective term or a time derivative, in the following we focus only
on the Stokes equations.

The differential problem is then written as: find (u, p) such that

�2µdiv(D(u)) +rp = 0 in ⌦, (6.1)
div(u) = 0 in ⌦, (6.2)

Equations (6.1) (6.2) will be supplemented with boundary conditions like those detailed
in Section 2.2, and the corresponding variational formulations are retrieved following the
same steps as described in Section 2.1.

In order to verify that the various formulations converge with the theoretically ex-
pected rates (see error estimates (2.41)), we consider the following benchmark that con-
sists of the simulation of a 3D Poiseuille flow in a cylinder with a base of radius r = 1 and
length L = 5 centered at (2.5, 0, 0), see Figure 6.1. The exact solution for this benchmark
is

uex(x, y, z) =

✓

(pin � pout)r2

4µL

✓

1� y2 + z2

r2

◆

, 0, 0

◆

, (6.3)

pex(x, y, z) =

pout � pin
L

x+ pin. (6.4)

�

in

�

o
u
t

�w x

y

z

Figure 6.1: Geometry for convergence rates verification ⌦

We note that the discrete geometry, ⌦�, will be different from the exact one, ⌦. Hence,
the geometry approximation will play a crucial role in the verification process. To measure
the geometric approximation error, not only we measure the error in the standard L2

(⌦�)

and H1
(⌦�) norms, but also the applied forces by integrating the stress tensor on one of

the domain boundaries, here �in. That is to say, we compute

F� =

Z

�
in,�

�(u, p)n ds. (6.5)

Thanks to (6.3), we can compute by hand the exact counterpart Fex =

R

�
in

�(u

ex

, pex)n ds
and hence kFex�F�k2 is evaluated. This is the simplest way to take properly into account
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the error in the geometry as well as in velocity and pressure. Indeed we have otherwise only
access to L2

(⌦�) and H1
(⌦�) norms and not L2

(⌦) and H1
(⌦). We remark that a similar

test case was used in [108] to check for the dependence of the geometry approximation in
the numerical convergence verification process.

1.2 Convergence analysis results
We first start with the standard finite element approximations using first order geom-
etry, namely P2P1G1 and P3P2G1, applied to the Dirichlet-Dirichlet (see Section 2.2.1),
Dirichlet-Neumann (see Section 2.2.2) and Neumann-Neumann (see Section 2.2.3) bound-
ary conditions. The results are displayed in Table 6.1 and are quite interesting: even
though the geometry is not properly approximated, velocity and pressure error norms are
0 up to machine precision in all cases. This can be explained by the facts that (i) the
exact velocity is quadratic and the exact pressure linear, see (6.3), (ii) the geometric
transformation is first order and all volume and surface numerical integrals are computed
exactly thanks to Feel++, hence the only possible solution in the velocity and pressure
spaces are the exact velocity and exact pressure, respectively, which we see in the L2

(⌦�)

and H1
(⌦�) error norms. These results are however somewhat deceptive as they are not

taking into account the geometrical approximation as mentioned above. Indeed, if we now
look at the error in kFex �F�k, it displays only an order 2 convergence rate with respect
to h — as expected when using order 1 geometry — not withstanding the polynomial
order of the velocity and pressure, see Table 6.1 and Figure 6.2.
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(c) Neumann-Neumann

Figure 6.2: Output convergence using PN+1PNG1 approximation spaces, N = 1, 2.

In order to improve the approximation properties of F�, we now turn to the second
order geometry approximation. The results are displayed in Table 6.2. Again the results
are interesting: even though the exact velocity and pressure are quadratic and linear,
respectively, the finite element approximations are not exact. First recall that, see (2.39),
it is not the finite element approximations in the real element that are polynomials of
degree N , but the finite element approximations in the reference element ˆK, and second
that the geometric transformation is no longer linear. Hence the numerical integrations
are not exact as the integrands are no longer polynomial when derivatives are involved —
thanks to the chain rule — . We recover however very good convergence rates and in fact
we have super convergence — one order more than expected — . This is due to the sym-
metries of the cylinder. Finally, we plot the F� convergence in Figure 6.3 for PN+1PNGN ,
N = 1, 2 as well as P2P1G2. The later case shows that increasing just the geometrical
approximation improves already F� tremendously. To summarize, to handle non linear
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(a) Dirichlet-Dirichlet: P2P1G1

h ku� u�k0,⌦
�

kp� p�k0,⌦
�

ku� u�k1,⌦
�

||Fex � F�|| Slope

0.5 2.0 · 10�16
2.1 · 10�15

4.9 · 10�16
1.4 · 10�1 –

0.3 1.2 · 10�16
3.6 · 10�15

5.5 · 10�16
5.1 · 10�2

1.98
0.2 3.3 · 10�16

1.3 · 10�14
8.4 · 10�16

2.6 · 10�2
1.65

0.1 1.3 · 10�16
1.5 · 10�14

1.7 · 10�15
5.7 · 10�3

2.2

(b) Dirichlet-Dirichlet: P3P2G1

h ku� u�k0,⌦
�

kp� p�k0,⌦
�

ku� u�k1,⌦
�

||Fex � F�|| Slope

0.5 1.5 · 10�16
8.4 · 10�15

1.1 · 10�15
1.4 · 10�1 –

0.3 1.8 · 10�16
4.9 · 10�15

1.2 · 10�15
5.1 · 10�2

1.98
0.2 1.9 · 10�16

9.2 · 10�15
1.8 · 10�15

2.6 · 10�2
1.65

0.1 2.1 · 10�15
4.6 · 10�14

4.3 · 10�15
5.7 · 10�3

2.2

(c) Dirichlet-Neumann: P2P1G1

h ku� u�k0,⌦
�

kp� p�k0,⌦
�

ku� u�k1,⌦
�

||Fex � F�|| Slope

0.5 8.1 · 10�17
2.3 · 10�15

3.9 · 10�16
1.4 · 10�1 –

0.3 8.4 · 10�17
1.4 · 10�15

5.1 · 10�16
5.1 · 10�2

1.98
0.2 1.7 · 10�16

2.0 · 10�15
8.5 · 10�16

2.6 · 10�2
1.65

0.1 1.6 · 10�16
3.9 · 10�15

1.7 · 10�15
5.7 · 10�3

2.2

(d) Dirichlet-Neumann: P3P2G1

h ku� u�k0,⌦
�

kp� p�k0,⌦
�

ku� u�k1,⌦
�

||Fex � F�|| Slope

0.5 2.0 · 10�16
5.4 · 10�15

1.1 · 10�15
1.4 · 10�1 –

0.3 2.1 · 10�16
6.7 · 10�15

1.4 · 10�15
5.1 · 10�2

1.98
0.2 2.1 · 10�16

7.1 · 10�15
1.9 · 10�15

2.6 · 10�2
1.65

0.1 4.9 · 10�16
1.3 · 10�14

4.2 · 10�15
5.7 · 10�3

2.2

(e) Neumann-Neumann: P2P1G1

h ku� u�k0,⌦
�

kp� p�k0,⌦
�

ku� u�k1,⌦
�

||Fex � F�|| Slope

0.5 2.3 · 10�16
3.2 · 10�15

4.6 · 10�16
1.4 · 10�1 –

0.3 1.8 · 10�16
3.1 · 10�15

5.5 · 10�16
5.1 · 10�2

1.98
0.2 1.9 · 10�16

2.7 · 10�15
8.3 · 10�16

2.6 · 10�2
1.65

0.1 1.7 · 10�16
3.6 · 10�15

1.5 · 10�15
5.7 · 10�3

2.2

(f) Neumann-Neumann: P3P2G1

h ku� u�k0,⌦
�

kp� p�k0,⌦
�

ku� u�k1,⌦
�

||Fex � F�|| Slope

0.5 2.2 · 10�16
4.2 · 10�15

1.0 · 10�15
1.4 · 10�1 –

0.3 1.8 · 10�16
4.5 · 10�15

1.3 · 10�15
5.1 · 10�2

1.98
0.2 2.0 · 10�16

6.3 · 10�15
1.8 · 10�15

2.6 · 10�2
1.65

0.1 8.0 · 10�16
1.8 · 10�14

3.9 · 10�15
5.7 · 10�3

2.2

Table 6.1: Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann formulations
using first order geometry approximation.
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geometries, i.e. ⌦� 6= ⌦, we not only need to increase the order of approximations in
velocity and pressure if we want to improve the accuracy of our simulations, but we need
also to increase the order of approximation of the geometry. This, of course, comes at
a cost which the Feel++ framework allows to alleviate to find a good balance between
h,N and kgeo.

(a) Dirichlet-Dirichlet P3P2G2

h ku� u�k0,⌦
�

kp� p�k0,⌦
�

SlopeP ku� u�k1,⌦
�

SlopeU ||Fex � F�|| Slope

0.5 6.3 · 10�6
5.8 · 10�5 – 2.2 · 10�5 – 4.6 · 10�4 –

0.3 6.2 · 10�7
8.5 · 10�6

3.76 2.5 · 10�6
4.28 5.7 · 10�5

4.1
0.2 1.2 · 10�7

2.1 · 10�6
3.48 8.9 · 10�7

2.52 1.5 · 10�5
3.31

0.1 6.4 · 10�9
1.4 · 10�7

3.88 7.0 · 10�8
3.67 6.2 · 10�7

4.59

(b) Dirichlet-Neumann P3P2G2

h ku� u�k0,⌦
�

kp� p�k0,⌦
�

SlopeP ku� u�k1,⌦
�

SlopeU ||Fex � F�|| Slope

0.5 6.3 · 10�6
1.0 · 10�4 – 2.2 · 10�5 – 4.0 · 10�4 –

0.3 6.4 · 10�7
1.7 · 10�5

3.55 2.3 · 10�6
4.36 4.6 · 10�5

4.23
0.2 1.3 · 10�7

3.9 · 10�6
3.6 8.8 · 10�7

2.4 1.2 · 10�5
3.21

0.1 6.8 · 10�9
2.6 · 10�7

3.91 7.1 · 10�8
3.62 4.6 · 10�7

4.77

(c) Neumann-Neumann P3P2G2

h ku� u�k0,⌦
�

kp� p�k0,⌦
�

SlopeP ku� u�k1,⌦
�

SlopeU ||Fex � F�|| Slope

0.5 8.9 · 10�6
5.2 · 10�5 – 2.3 · 10�5 – 5.1 · 10�4 –

0.3 1.1 · 10�6
4.3 · 10�6

4.85 2.4 · 10�6
4.45 6.7 · 10�5

3.98
0.2 2.3 · 10�7

1.3 · 10�6
2.92 8.9 · 10�7

2.45 1.8 · 10�5
3.29

0.1 1.2 · 10�8
7.0 · 10�8

4.25 7.1 · 10�8
3.65 8.4 · 10�7

4.4

Table 6.2: Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann formulations
using second order geometry approximation.

1.3 Flow simulation on cerebrovenous system
To exercise our full fledged framework, we perfom now a (incompressible) Navier-Stokes
simulation in a realistic geometry, the cerebrovenous system. This geometry represented
by Figure ?? has 29 inlets and 2 outlets. The boundary conditions imposed in this
application are not physiological but only used for testing purposes: on each inlet, we
impose �(u, p)n = ginn with

gin = �0.5 · 105
✓

1� cos

✓

⇡t

0.0015

◆◆

, (6.6)

and at the outlets, we set: �(u, p)n = 0 which corresponds to the Neumann-Neumann
formulation described in Section 2.2.3. Regarding the physical parameters, we take the
density ⇢ equal to 1kg/m3 and the dynamic viscosity µ equal 0.003N · s/m2. The time
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Figure 6.3: F� convergence using PN+1PNGN , N = 1, 2 approximations and P2P1G2 ap-
proximation.

step is �t = 10

�5
s and we perform a simulation up to t = 0.003s. The approximation

used is P2P1G1. Table 6.3 shows the number of tetrahedrons in the mesh as well as the
number of degrees of freedom associated to the P2P1G1 approximation.

Tetrahedrons Dof(u�) Dof(p�) Dof(Total)

237,438 1,119,411 54,183 1,173,594

Table 6.3: Number of elements and degrees of freedom using P2P1G1 approximations.

The Figure 1.3 displays two screenshots of a solution at time t = 0.00151s computed
with 32 processors.

(a) Pressure field (b) Streamlines colored with pressure

Figure 6.4: Numerical solution on the cerebrovenous system at time t = 0.00151s.

The simulations were carried out on the IRMA-cluster, the HPC cluster of Aix-
Marseille University.
More recently, an analysis of the boundary conditions was performed in [32], and the au-
thors found that the effect of setting the inflow boundary condition on the forces created
by blood flow, is likely greater than for other modeling assumptions, the other important
factor being the blood viscosity model, especially in wall shear stress computations.
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Conclusion: In this paper we have proposed a flexible framework to answer some mod-
eling and computational issues in order to perform large-scale three-dimensional blood
flow simulations in realistic geometries. In particular, we have presented different strate-
gies to handle boundary conditions appropriate to blood flow simulation as well as their
variational formulation. We have also displayed initial numerical results on a realistic
geometry which now need to be backed up by further mathematical and bio-mechanical
modeling.

2 Stress tensor computation

2.1 Computational methods
Many investigations have been done in the context of the computation of the drag and the
lift, see, for instance, Gresho and Sani [68] in 1998, and Tezduyar et al. in[142]. Recently,
some error estimates in stationary flows have been obtained for the drag and the lift, see
for instance John, Tabata, and Tobiska in[149], Larson in [65], and Tabata and Itakura
in [136]. Drag and lift coefficients of a 2D flow around a cylinder are computed very
accurately in [99, 85] and for a 3D flow in [83]. In [84], a numerical study of a time-
dependent 2D flow through a channel around a cylinder was carried. In the following,
we present a slightly different context, namely the computation of the force exerted by a
fluid on a boundary surface �bottom with two different methods.
The first method consists of explicitly applying the definition of this force, given by the
following formula:

F =

Z

�
b

�(u, p)n (6.7)

where �(u, p) = �pI+ µru.
This integral is on the surface thus, we will denote "surface method" the surface integral
computation of this force. We will also denote

Fex =

Z

�
b,ex

�(u

ex

, pex)n,

the exact expression of the force, which can be exactly calculated via a symbolic calcula-
tion when the geometry is analytically well know. Finally, we will denote

F� =

Z

�
b�

�(u, p)n,

the computed force on the approximated boundary, and

F�,ex =

Z

�
b�

�(u

ex

, pex)n,

the computed exact expression of the force on the approximated boundary.

The second way of obtaining this force is by applying the following steps when retriev-
ing the variational formulation of the following Stokes problem.
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Let us recall the Stokes problem: find (u,p) such that

�⌫�u+rp = f ⌦ (6.8)
r · u = 0 ⌦ (6.9)

u = u

exact

�bottom (6.10)
u = 0 @⌦ \ �bottom (6.11)

The standard variational formulation for the stokes problem is retrieved by following
the same steps as for the Navier-Stokes problem. It reads as: find (u, p) in [H1

0 (⌦)]
d⇥L2

0(⌦)

such that for all v 2 [H1
0 (⌦)]

d, and q 2 L2
0(⌦) we have

⌫

Z

⌦

ru : rv �
Z

⌦

pdiv(v) dx = 0, (6.12)
Z

⌦

q div(u) dx = 0. (6.13)

The additional restriction of zero mean value to L2
(⌦) function allows to uniquely define

the pressure in M = L2
(⌦) and may be integrated in the variational formulation (6.12)-

(6.13) by adding a suitable Lagrange multiplier. The final variational formulation, with
the Lagrange multiplier, reads as: find (u, p, ⇣) 2 [H1

0 (⌦)]
d ⇥ L2

(⌦)⇥ R such that

⌫

Z

⌦

ru : rv dx�
Z

⌦

p div(v) dx = 0, 8v 2 [H1
0 (⌦)]

d, (6.14)
Z

⌦

(q div(u) + ⇣q) dx = 0, 8q 2 L2
(⌦), (6.15)

Z

⌦

p⇠ dx = 0, 8⇠ 2 R. (6.16)

Let us now, instead of choosing v 2 [H1
0 (⌦)]

d, choose v 2 W = [H1
(⌦)]

d. The problem
(6.8)-(6.9) leads to: find (u, p, ⇣) 2 W⇥ L2

0(⌦)⇥R such that 8(v, q, ⇠) 2 W⇥M⇥R we
have:

⌫

Z

⌦

ru : rv dx�
Z

@⌦

�(u, p)n · v ds�
Z

⌦

p div(v) dx =

Z

⌦

f · vdx (6.17)
Z

⌦

q div(u) + ⇣q dx = 0 (6.18)
Z

⌦

p⇠ dx = 0 (6.19)

Rewriting 6.17 with v = 1 over �bottom and 0 elsewhere we obtain:
Z

�
b

�(u, p)n·v ds = �
Z

⌦

f ·v+⌫
Z

⌦

ru : rv dx�
Z

⌦

p div(v) dx�
Z

�
in

S
�
out

�(u, p)n · v ds

Let us denote

R = �
Z

⌦

f · v + ⌫

Z

⌦

ru : rv dx�
Z

⌦

p div(v) dx�
Z

�
w

S
�
out

�(u, p)n · v ds (6.20)

This is a computation on all the domain, thus we will denote this method the "volume
computation".

74 2. STRESS TENSOR COMPUTATION



CHAPTER 6. CONVERGENCE ANALYSIS OF THE STOKES FORMULATIONS AND
STRESS TENSOR COMPUTATION

Remark 20. The fact that
Z

�
�

in

S
�

out

�(u, p)n · v ds has not vanished despite having

v = 0 on @⌦ \ �bottom is due to the fact that, when computing
Z

�
bottom

�(u, p)n · v ds, the

stress tensor must be evaluated on the elements having a common edge with the boundary
�bottom (blue triangles in Figure 6.5), the red vertexes included. However, since we have
taken v = 0 on �in

S

�out

S

�top, the red vertexes of the green triangles of the same Figure

6.5, are no longer considered when replacing
Z

@⌦

�(u, p)n ·v ds by
Z

�
bottom

�(u, p)n ·v ds,

while they should. Hence, the contribution of the integral
Z

�
�

in

S
�

out

�(u, p)n · v ds needs

to be taken into account in (6.20).

Figure 6.5: Maillage 2D

2.2 Benchmark setup

The aim of this section is to evaluate and compare the accuracy of the two aforementioned
methods with respect to the exact solution for high order finite elements and high order
approximation of the geometry. For that end, let us consider two computational domains:
(i) a 2D rectangular domain ⌦ = (�0.5, 1) ⇥ (�0.5, 1.5), and (ii) the same domain for
whom we deform the @⌦b edge according to the law:

�(Y) = [Y, 0.08(Y + 0.5)(Y � 1)(Y

2 � 1)]

T , Y 2 (�0.5, 1)

by solving the Laplacian problem:

��µ = 0 in ⌦, (6.21)
µ = � in �b, (6.22)
µ = 0 in @⌦� �b (6.23)

2. STRESS TENSOR COMPUTATION 75



CHAPTER 6. CONVERGENCE ANALYSIS OF THE STOKES FORMULATIONS AND
STRESS TENSOR COMPUTATION

Then we affect this displacement to the initial mesh using the meshMove function of
Feel++.

Let us also consider the non-polynomial Kovaznay solution [92] of the Stokes problem:

u(x, y) = [1� e�xcos(2⇡y),
�

2⇡
e�xsin(2⇡y)]T (6.24)

p(x, y) = �e2�x

2

(6.25)

with

� =

1

2⌫
�
r

1

4⌫2
+ 4⇡2 (6.26)

⌫ = 0.035 (6.27)

and f(x, y) = [e�x
��

�2 � 4⇡2
�

⌫cos(2⇡y)� �e�x
�

,
�

2⇡
e�x⌫sin(2⇡y)(��2 + 4⇡2

)]

T .

The importance of the Kovaznay solution comes from the fact that it is not polynomial,
therefore the impact of the high order finite elements approximation will be enhanced.
We recall that in the previous chapter, the analytical solution was polynomial of degree
2, thus, a P2P1 finite elements choice was already sufficiently accurate.

Choosing a curved domain aims to show the importance of the high-order geometry
approximation. We expect, as we increase the order of the geometry approximation, that,
when it reaches 4, the order of the polynomial displacement defining the curved bound-
ary, the error produced by the geometry approximation will vanish and the only error
remaining will be the one of the finite element approximation.
Thanks to (6.24) and (6.25), we can analytically compute the exact counterpart Fex =

R

�
b,ex

�(u

ex

, pex)n ds and hence evaluate the error of the two aforementioned methods with
respect to the exact value. In the following notation kFex � stressk2 , stress will refer
to either the surface method which we denote S or the volume method which we denote V .

2.2.1 Convergence analysis results on a straight boundary

Figure 6.6 shows the convergence plots for the volume and surface methods of computing
the force applied by the fluid on the bottom boundary. The error are evaluated with
respect to the Kovasnay solution on the straight boundary, for the PN+1PNG1. The results
show that the volume method gives more accurate results than the surface method and a
higher convergence order for all the finite elements, at least half an order is gained with
volume method.

We shall mention that, since the boundary where we are evaluating the force on is
straight, a G1 geometric transformation order approximates exactly the boundary of the
geometry, and the results of figure 6.7 confirm this. Keeping the same finite element order
and increasing the geometry transformation order didn’t improve the results for the two
methods.
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Figure 6.6: Convergence analysis for the PN+1PNG1 configuration on s straight boundary.
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Figure 6.7: Convergence analysis for the P2P1GN configuration on a straight boundary.
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2.2.2 Convergence analysis results on a curved boundary

The plot of the domain’s shape, the velocity magnitude and pressure profile is depicted
in Figure 6.8.

(a) Pressure profile (b) Velocity magnitude profile

Figure 6.8: Velocity magnitude and pressure profile of the Kovaznay solution on the
curved domain for a P2P1G1 element on a curved boundary.

The results of Figure 6.9 show that, for the P2P1GN configuration, for the same
method, all the plots overlap. This means that the finite element approximation takes
over the geometry approximation. For a low order finite element approximation, here
P2P1, increasing the geometric transformation order is not improving the convergence nor
decreasing the error. The results of the P6P5GN configuration show a more interesting
behaviour. The convergence plots of the two methods, for the same geometric transfor-
mation order overlap up to N = 3, however, for N = 4, which is polynomial order of
the boundary curve, the volume method gives better convergence results than the surface
method. Which first means that, when the finite element error vanishes due to a high
order finite element approximation the geometry approximation takes over the accuracy
of the two methods, and it is when the geometry is exactly approximated that we can see
the difference between the accuracy of the two methods.

The results in Figure 6.10 show that for all the three configurations, PN+1PNGN ,
PN+1PNGN+1 and PN+1PNGN�1, the volume method is always more accurate than the
surface method and gives better convergence order, the iso-parametric configuration .
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Figure 6.9: Convergence analysis for the P2P1GN and P6P5GN configurations on a curved
boundary.

Conclusion

In the first section of this chapter, we did a convergence analysis for the different weak
formulations presented in Chapter 2. In particular, we were interested in discretization
errors, not only with respect to the physical fields (velocity and pressure), but also with
respect to high order geometry approximations for various boundary conditions settings
allowing for a flexible framework with respect to the type of input data (velocity, pressure,
flow rate, ...). In the second part, we presented and compared two different methods for
the computation of the stress tensor for low and high order finite element and geometry
approximations on a straight and curve boundary. We showed that the volume method
is more accurate than the surface method in all the above cited cases, a conclusion that
deserves to be investigated in a theoretical point of view.
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80 2. STRESS TENSOR COMPUTATION



Chapter 7

Verification and validation of the

numerical solution of the Navier Stokes

system

The aim of this chapter is to access to efficiency of the block preconditioner
framework for the 3D steady and unsteady Navier-Stokes equations presented
in Chapter 4. In particular, we are interested in preconditioners based on an
algebraic factorization of the system’s matrix which exploit its block structure,
such as the Pressure Convection-Diffusion (PCD) preconditioner, the SIMPLE
preconditioner or the LSC preconditioner. A comparison between the efficiency
of these preconditioners is ascertain by testing them over the 3D backward fac-
ing step benchmark described in the first section of this chapter. In the second
section we describe a framework for the solution of flow problems relevant
to biomechanics strongly supported by the aforementioned solving strategies.
We assess the efficiency of this framework through experimental data for fluid
flow in a nozzle model with rigid boundaries, a device designed to reproduce
acceleration, deceleration and recirculation, features commonly encountered in
medical devices. The flow rates were chosen to cover laminar, transient and
turbulent regimes.
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CHAPTER 7. VERIFICATION AND VALIDATION OF THE NUMERICAL SOLUTION
OF THE NAVIER STOKES SYSTEM

1 The backward facing step benchmark

1.1 Introduction

The backward-facing step (BFS) flow in a channel has been extensively studied in the last
two decades, both numerically and experimentally. Despite its simple geometry, flow over
the BFS shows some features of more complex geometry flows (i.e. separation, recircu-
lation, reattachment), depending on Reynolds number and some geometrical parameters.
Due to this fact, and also because the results of the numerical computations can be
usefully compared with experimental data, it represents a good test case for any new
numerical methodology. One of the first experimental investigations on this subject was
published by Armaly et al. (1983) [8], providing experimental and numerical results for
a backward-facing step flow being bounded in a nominally two-dimensional channel. The
investigations covered a wide Reynolds number range of 70  Re  8000, Up to Re = 400,
good agreement between experimental and numerical results was found. For higher Re,
the primary separation length was systematically under-predicted compared with the ex-
periment. The authors explained this discrepancy by the occurrence of three-dimensional
effects that could not be covered by their two-dimensional computations. Williams &
Baker (1997) [152] have studied internal backward-facing step flows, they found that a
transverse flow occurs immediately behind the step that flows from the sidewalls of the
channel to its centre. This transverse flow increases in strength with increase in Reynolds
number. These kinds of wall jets were confirmed by Chiang & Sheu (1999) [34], Nie
& Armaly (2002) [100, 9] and Biswas, Breuer & Durst (2004) [21]. Instabilities of the
step flow were investigated numerically by Kaiktsis, Karniadakis & Orszag (1991, 1996)
[86, 87], using the same expansion ratio as Armaly et al. (1983). A three-dimensional sta-
bility analysis without sidewalls at an expansion ratio of r = 2 was performed by Barkley,
Gomes & Henderson (2002) [13]. Recently, Blackburn, Barkley & Sherwin (2008) [22]
carried out a detailed investigation of the convective instability and transient growth in
flows over a backward facing step in the Reynolds number range 0 � 500 (based on the
step height and the peak inflow velocity). In the literature it is also possible to find stud-
ies that investigate the numerical stability of the flow over a backward facing step. For
example, Fortin et al. and Barkley et al. [13] showed that their two-dimensional compu-
tational stability analysis show that the flow over a backward facing step is temporally
stable at high Reynolds numbers, that is to say there exist steady solutions of the flow
over a backward-facing step at high Reynolds numbers. Cruchaga et al. (1998) [38] solved
the steady backwardf acing step flow using finite element method and obtained steady
numerical solutions up to Re = 5500.
A thorough recent review on the investigations on the BFS flow may be found in the work
of Erturk (2008) [51] or Schafer et al. (2009) [125].

1.2 Numerical benchmark setup

This section is dedicated to assess the performance of the block-type preconditioners,
described in Chapter 4, by presenting the results of some computational experiments and
convergence analysis over the backward facing step benchmark problem. Our main target
is to show the non-dependance of the convergence on the mesh size, the Reynolds number
and the polynomial order of the finite elements. We will also highlight the efficiency of
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the iterative methods used to handle the Poisson equations and the convection-diffusion
equations that arise as subproblems. In these tests we used the boundary conditions
adjustments presented in [49], the old version of these preconditioners being presented in
[47].

Let us consider the backward-facing step geometry illustrated in Figure 1.2, which is
an example of an inflow/outflow problem. The relative contribution of the convection and
diffusion are defined by the Reynolds number:

Re =
UD

⌫
(7.1)

where U is the mean of the velocity at the inflow, D is the characteristic length scale of
the domain, here the width of the step (D = 2) and ⌫ the kinematic viscosity.
The inflow is at x = �1 and the outflow is at x = 5 for Re = 10 and Re = 100, at x = 10

for Re = 200, and at x = 20 for Re = 400

(a) Computational domain. (b) Velocity profile with streamlines colored
with pressure

Figure 7.1: Computational domain and velocity profile with streamlines.

A Poiseuille flow profile is imposed on the inflow boundary, a no-flow condition is
imposed on the wall and a Neumann condition is applied at the outflow boundary. The
2D Poiseuille profiles are respectively defined as follows:

ux = 6y(1� y)

uy = 0

ux = 24y(1� y)z(1� z)

uy = 0

uz = 0

We deal with the nonlinear system arising from the discrete Navier-Stokes equations by
using Picard iterations. The initial iterate (u0, p0) is obtained by solving the corresponding
discrete Stokes problem.
The stopping criterion of the nonlinear iteration is when the vector Euclidean norm of
the nonlinear residual has a relative error of 10�5, that is

k
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F(u

m
)u

(m)
+BTp(m)

�

g � Bu

(m)

◆

k  10

�5k
✓

f

g

◆

k (7.2)

As for the starting vector for the linearized iteration it is set to zero and the stopping
criterion is

kr(k)k  10

�6ks(m)k, (7.3)
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where r

(k) is the residual of the linear system and s

(m) is the left-hand side residual in
(7.2) associated with the final nonlinear system.

2D L = 5 L = 10

h P2P1 P3P2 P4P3 P2P1 P3P2 P4P3

0.125 7,739 18,775 34,737 14,716 35,529 65,804
0.0625 30,172 73,209 135,932 57,617 139,959 260,017
0.03125 119,120 290,097 539,673 227,011 553,155 1,028,595
0.015625 472,615 1,152,829 2,146,860 900,446 2,197,573 4,092,058

2D L = 20

h P2P1 P3P2 P4P3

0.125 28,706 69,389 128,594
0.0625 112,084 272,249 506,260
0.03125 441,902 1,077,093 2,004,430
0.015625 1,756,774 4,912,653 9,149,642

Table 7.1: Total number of DOF for the 2D step geometry for L = 5 , L = 10 and L = 20

with P2P1, P3P2 and a P4P3 configurations.

3D L = 5 L = 10

h P2P1 P3P2 P4P3 P2P1 P3P2 P4P3

0.125 121,562 411,494 984,705 231,786 787,645 1,889,149
0.09375 281,943 966,615 2,329,328 535,256 1,841,941 4,447,255
0.0625 844,291 2,996,831 7,130,915 1,685,670 5,882,155 14,305,517

3D L = 20

h P2P1 P3P2 P4P3

0.125 454,492 1,548,313 3,718,399
0.09375 1,034,805 3,564,749 8,611,636
0.0625 3,281,688 11,459,239 27,879,297

Table 7.2: Total number of DOF for the 3D step geometry for

To solve the linear problem associated to each Picard iteration, we use the GCR
algorithm described in Chapter 4, with restart = 100, a Krylov method which supports
non-symmetric matrices and permits the use of a preconditioner which may vary from
one iteration to the next [46].

1.3 Numerical results
The analyses presented in the sequel were partly performed on Curie at TGCC France
thanks to a Prace and Genci allocations, which provide 80.000 cores and a peak per-
formance of 3Pflop · s�1, as well as a local cluster offering 96 cores with 0.44Tflop · s�1
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as peak performance respectively. The computations, including post-processing analysis,
were distributed from 32 to 2048 cores depending on the cost of the study.

Re10 Re100
h P2P1 P3P2 P4P3 P2P1 P3P2 P4P3

0.125 14[5] 13[5] 13[5] 17[14] 17[15] 16[15]
0.0625 13[5] 12[5] 12[5] 16[15] 15[15] 15[15]
0.03125 12[5] 11[5] 11[5] 15[15] 14[15] 13[15]
0.015625 11[5] 10[5] 9[5] 13[15] 12[15] 12[15]

Re200 Re400
h P2P1 P3P2 P4P3 P2P1 P3P2 P4P3

0.125 21[26] 20[26] 19[26] 44[57] 23[57] 22[57]
0.0625 19[26] 18[26] 17[26] 22[57] 21[57] 20[57]
0.03125 17[26] 16[26] 15[26] 20[58] 19[57] 18[57]
0.015625 16[26] 14[26] 13[26] 19[57] 17[57] 16[58]

Table 7.3: Number of GCR linear iterations at the last nonlinear iteration of the Picard
algorithm and [the total number of nonlinear iterations] for the 2D step geometry for
Re = 10, 100, 200 and Re = 400.

Re10 Re100

h P2P1 P3P2 P4P3 P2P1 P3P2 P4P3

0.125 22[4] 20[4] 18[4] 16[9] 14[9] 13[9]
0.09375 21[4] 18[4] 17[4] 15[9] 13[9] 12[9]
0.0625 19[4] 17[4] 16[4] 13[9] 12[9] 11[9]

Re200 Re400

h P2P1 P3P2 P4P3 P2P1 P3P2 P4P3

0.125 17[11] 15[11] 13[12] 21[14] 16[15] 15[15]
0.09375 16[11] 14[11] 12[11] 17[14] 15[15] –
0.0625 14[12] 12[11] – 16[15] 14[15] –

Table 7.4: Number of GCR linear iterations at the last nonlinear iteration of the Picard
algorithm and [the total number of nonlinear iterations] for the 3D step geometry for
Re = 10, 100, 200 and Re = 400, non symmetric formulation.

In the following, we have chosen the Multigrid methods [70, 143] for each of the sub-
problems arising from the PCD block-partitioning. This choice is motivated by the fact
that Multigrid methods provides good efficiency and strong scalability results for the
Laplacian problem on one hand, and on another hand they optimize work/memory com-
plexity. They also explicitly decouples the problem into two parts: the coarse grid space
for scaling and an iterative solver (the smoother) to solve the physics.
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Re10 Re100 Re200 Re400

h P2P1 P3P2 P2P1 P3P2 P2P1 P3P2 P2P1 P3P2

0.125 19[4] 18[4] 18[9] 17[9] 19[11] 17[11] 20[14] 18[16]
0.09375 18[4] 17[4] 17[9] 15[9] 18[11] 16[11] 19[14] 17[16]
0.0625 17[4] 15[-] 16[9] 14[9] 16[11] 14[11] 17[16] 15[16]

Table 7.5: Number of GCR linear iterations at the last nonlinear iteration of the Picard
algorithm and [the total number of nonlinear iterations] for the 3D step geometry for
Re = 10, 100, 200 and Re = 400, symmetric formulation

A special treatment was applied on the convection-diffusion F

u

sub-matrix. Since the
main features are in the diagonal blocks, and the extra diagonal blocks contain only the
coupling between the velocity derivatives from the diffusion term, we choose to extract the
block diagonal part of the F

u

sub-matrix and construct a one big block diagonal matrix.
To our best knowledge this technique was never used for the velocity block matrix. In
[42] F

u

was replaced by its diagonal in the first and third blocks.
We choose the use of additive Fieldsplit (bJacobi) with a relative tolerance of 10

�9 to
extract the diagonal blocks of F

u

, and we apply a geometric algebraic Multigrid pre-
conditioner on each block with a relative threshold of 10�6 to drop the edges from the
aggregation graph and one smoothing step.

h Re = 10 Re = 100 Re = 200 Re = 400

0.125 33[5] 43[11] 50[13] 79[17]
0.09375 37[5] 50[11] 59[14] 84[17]
0.0625 39[5] 47[11] 57[14] 95[17]

Table 7.6: LSC: P2P1 elements using (GCR) GASM+LU for the sub-problems and a
tolerance of 10�6

A standard choice for the approximation of Ap is using Multigrid, for it provides a
good efficiency and strong scalability results for pseudo-laplacian algebraic operators. For
our simulations we used, for both Ap and Qp operators, the multiplicative GAMG with
one level of pre smoothing performed by a local symmetric SOR and a LU factorization
for the solve on the coarse level with a tolerance of 10�5.

In order to evaluate the performance of the preconditioner and its sensitivity with
respect to the Reynolds number and to the mesh size h, we will compare the number
of GCR iterations required to solve the linear system arising from the last step of the
nonlinear iteration. In the literature, this study was only done for P2P1 and Q2Q1 finite
elements. In the following, we extend this study to high order Taylor-Hood finite elements
P3P2 and P4P3.

In Tables 7.1 and 7.2, we show the size of our 2D and 3D problems in term of degrees
of freedom for different i) levels of refinement, ii) lengths of the step and iii) polynomial
finite elements order.

Remark 21. The absence of values in some cases of table 7.5 is due to the memory issues
for a large size problem. The simulations were run on the IRMA-cluster on 96 processor
units.
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The number of the GCR linear iterations at the last nonlinear iteration of the Picard
algorithm and the total number of nonlinear iterations required to solve the Navier-Stokes
problem are presented in Tables 7.3 and 7.5. As expected, it is independent on the varia-
tion of the mesh size and mildly dependent on the variation for the Reynolds number for
2D and 3D computational domain. We can also see that, for high order finite elements
approximation, the number of GCR iterations, for the 2D and 3D problem, slightly varies,
which allows to extend the independence of the convergence to high order finite elements
too.
A comparison with the results of the LSC preconditioner, reported in Table 7.6, shows
that the latter has the same behaviour as the PCD preconditioner but takes few more
iterations to converge.

We must mention in this context that the LSC preconditioner here used is the PETSc
version of this preconditioner that does not include yet the boundary conditions improve-
ments of [49]. It is based on the the first version of this preconditioner introduced in [130].
However, the PCD preconditioner here used is the in-house implemented preconditioner,
and we took into consideration, while coding this preconditioner, the latest improvements
brought in [49]. This difference may explain the difference between the performance of
the two preconditioners, the literature predicts a mildly better performance for LSC for
QNQN�1 finite elements type, for both inclosed or inflow-outflow problems [49].

Remark 22. We are not showing results for SIMPLE preconditioner for the backward
facing step problem for it doesn’t give good convergence results for steady state problems.

2 The FDA benchmark

2.1 Benchmark description
In the previous section, we focused on the verification of our numerical choices, looking
only at the preconditioner performance in term of number of iterations required to achieve
a certain relative tolerance without taking care of the precision of the retrieved solution. In
this section, the reliability of CFD simulation and the validation of our numerical choices
are now assessed by evaluating the precision of the computed solution regarding experi-
mental data outputs available online to the scientific community for the FDA benchmark 1.

The goal of the FDA challenge is to assess the reliability of CFD simulation by com-
paring their output with experimental data available online to the scientific community.
The benchmark consists of performing flow visualisation experiments of an incompress-
ible Newtonian fluid with prescribed density and viscosity (⇢f = 1056kg/m3 and µf =

0.0035Pa ·s) for three flow rates spanning laminar, transitional and turbulent regimes in a
rigid domain representative of a medical device shaped like a nozzle. This idealised device
was designed to feature accelerating, decelerating and recirculating flow, all of commonly
encountered in real medical devices. Its geometry consists of a cylindrical channel with a
diameter of 0.0012m, a conical collector leading to a throat section of 0.004m of diameter
ending with a sudden expansion in a cylindrical channel with the same diameter of the
first one (see Figure 7.2). To validate the computational fluid dynamics simulations, three

1https://fdacfd.nci.nih.gov/interlab_study_1_nozzle/data
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Figure 7.2: Geometry description.

laboratories have made, separately, data acquisitions on fabricated physical models using
particle image velocimetry technique over a range of Reynolds numbers (see Table 7.7) on
different sections carefully chosen in the geometry so that all the fluid’s behavior can be
detected. For comparison and analysis purposes, participants were requested to provide
simulation data along the model centerline, at various radial cuts (defined in figure 7.3),
and along the wall. Flow variables requested along the centerline and radial cuts were the
velocity components, pressures (centerline only).

Participants were free to choose the solver, mesh density, element shape, inlet/outlet
lengths, inlet/outlet boundary conditions, turbulence model (if needed), and all other
parameters of their simulations, according to their individual preference and experience.
Participants were free to perform simulations on as many grids as they thought necessary,
and the production grid used for the other flow rates could be any one of the grids. More
then 28 laboratories have accepted the challenge and have submitted their CFD results.
Some were rejected because their simulations give a mass conservation error greater than
10% [71, 134].
The aim of the following work is to reproduce the nozzle benchmark and compare our
numerical results to the experimental data for the validation of CFD simulations.
In this section, we provide a detailed report on the methodology we used for our work to be
reproducible, and the validation metrics that allow the comparison with the experimental
data.

Rei Ret Flow rate

167 500 5.21 · 10�6

667 2,000 2.08 · 10�5

1,167 3,500 3.64 · 10�5

Table 7.7: Reynolds number in the throat section Ret, Reynolds number at the inlet
section Rei and flow rate for the flow regimes under consideration.

2.2 Validation metrics
First, we compare the numerical wall pressures difference with respect to the pressure at
z = 0 to experimental data measurements.
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�pnorm =

pz � pz=0
1
2⇢fu

2
t

(7.4) II where u2
t =

4Q

⇡D2
t

This pressure difference is normalized with respect to the average velocity at the throat
ut, where Q is the volumetric flow rate retrieved from the Reynolds number at the throat.
Then we will compare the normalized axial velocity along i)the centerline (z axis) and ii)
at the various radial sections shown in Figure 7.3.

II unorm
z =

uz

ui

(7.5) II where ui =
4Q

⇡D2
i

Figure 7.3: Radial sections at which the numerical results are compared with experimental
data.

One of the fundamental laws that the simulations must obey to is the conservation of
mass law. Since blood is an incompressible fluid, the volumetric flow rate should remain
constant as a function of axial position. Which leads to the following conservation of mass
error metric proposed in [71]:

EQ =

QCFD �Qtheory

Qtheory

.100%, (7.6)

where QCFD is the volumetric flow rate locally evaluated at each of the axial sections
shown in Fig 7.3, by integrating the axial velocities along the radius. Qtheory is the theo-
retical volumetric flow rate calculated from the throat Reynolds number. High values of
this metric indicate a problem with the numerical model performance. Note that simula-
tions with conservation of mass errors > 10% were discarded fro the initial comparison [71].

A generic validation metric Ez was also defined on each of the radial sections to quan-
tify the ability of fit between a simulation and the averaged experimental measurements:

Ez,✓ =
1

n

N
X

i=1

|ue,i � uc,i

ue,i

| (7.7)

where Ez,✓ is the validation metric with respect to the set of experimental and CFD
data located on the line that forms a ✓ angle with the x axis. ue,i is the average of the
experimental velocity data at one discrete point i along the radial cuts, uc,i is the CFD
data at the same point i, and n is number of discrete points. In fact, three experimental
velocity profiles are provided by each of the laboratories for a given z, for an angle ✓ equal
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to 0

�, 45� and 90

� respectively. Each velocity profile is presented like a set of couples,
where the first component represent the radius of the point and the second component
represents the corresponding uz. Consequently, to evaluate the Ez metric, the mesh size
parameter h will separate our discretization points i, and each couple of experimental
data, with a radius between i + h and i � h is considered as a neighbor of i, and its
corresponding velocity component uz is taken into consideration while evaluating the ue,i

quantity. For example, in Figure 7.16, in order to evaluate Ez,45� we considered two
discrete points (green dots), i and i + 1, separated by a space step h. We assume that
the red and blue points represent two sets of experimental data. The experimental data
points considered as neighbours of the discrete point i are those located at a distance
smaller than h from i.

Figure 7.4: Ez metric computation illustration.

2.3 Numerical strategy
The geometry and the mesh were carried out using Gmsh [64], and the partitioning was
done using Metis [89]. The volume was obtained by, first constructing the 2D longitu-
dinal cut across the centreline of the 3D geometry on which we applied four consecutive
rotations of ⇡/4.
A special characteristic length was attributed to each of the points defining the 2D longi-
tudinal cut in order to have the desired spacial refinement on the regions of interests in the
geometry. An "hmin" value was applied on the points which belong to the throat regions,
and for Ret = 2000, and Ret = 3500, on the points which belong to the radial sections
where the metrics are calculated. An "hmax" value was set at the inlet and outlet sections.
And finally, an "havg" value was prescribed on the points belonging to the convergent re-
gion. For Ret = 500 we consider four meshes with different refinement levels: M0, M1, M2
and M3. As for Ret = 2000 and Ret = 3500 we only took one mesh sufficiently fine, see
Table 7.8 for the characteristic lengths of each mesh.The same meshing strategy was used
in [105]. Table 7.9 shows the characteristics of the performed simulations in terms of time
step used, the total simulation run time and the final time, the total number of degrees of
freedom, the number of CPU units used, and the machine where the simulations were run.

For the following simulations we choose a non-symmetric formulation of the deforma-
tion tensor. At the inlet we subscribed a smoothed Poiseuille velocity profile so that it
transits from a fluid at rest to the desired regime flow rate reported in Table (7.7). There-
fore, we start our simulations with p0 = 0 and u

0

= 0. At the outlet we prescribed a
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(a) Computational domain (b) Axial velocity isosurface colored by the
pressure and the cross section by the veloc-
ity magnitude

Figure 7.5: Computational domain and velocity profile view.

stress-free boundary condition. For the resolution of our unsteady Navier-Stokes problem
we chose the previously detailed PCD preconditioner coupled with the GCR global solver
with a relative tolerance of 10�8. For the Ap, Mp sub-problems we used the Multigrid
method with a relative tolerance of 10�6. As for the F

u

sub problem we used the Fieldsplit
method, bJacobi coupled the Multigrid method on the spacial components of F

u

with a
relative tolerance of 10�6, except for Ret = 3500 where the Multigrid was replaced by the
GASM domain decomposition method with LU on the sub-domains.

Geometry hmin hmax havrg Nodes Tetrahedrons

M0-P2P1G2 1.7 · 10�4
3.18 · 10�3

8.9 · 10�4
787,204 496,129

M0-P2P1G1 1.9 · 10�4
2.9 · 10�3

1.3 · 10�3
108,051 412,575

M0-P3P2G1 1.9 · 10�4
2.9 · 10�3

1.3 · 10�3
108,051 412,575

M1 1.6 · 10�4
1.8 · 10�3

7.6 · 10�4
170,000 830,000

M2 1.4 · 10�4
1.96 · 10�3

6 · 10�4
630,000 3,400,000

M3 8.5 · 10�5
1.7 · 10�3

3.5 · 10�4
1,300,000 7,000,000

M2000 2.04 · 10�4
5.4 · 10�3

5.4 · 10�4
460,000 2,500,000

M2000-bis 2.07 · 10�3
5.84 · 10�4

6.3 · 10�5
557,536 2,879,365

M3500 1.45 · 10�4
2.6 · 10�3

4.1 · 10�4
560,000 3,200,000

Table 7.8: Characteristic lengths of the different meshes.

2.4 Results

In the sequel we show respecttively the results for Ret = 500, Ret = 2000 and Ret = 3500.
The velocity profiles were obtained using Paraview. Physical surfaces, corresponding to
each of the internal radial sections, were included inside the mesh so that the evaluation
of the velocity profiles on the radial sections is more accurate.
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Geometry TimeStep Tf DOF CPU Time Machine

M0-P2P1G2 1 · 10�3 3s 2.25 · 106 96 27:31:44 Atlas
M0-P2P1G1 1 · 10�3 3s 1.89 · 106 256 11:46:36 Curie
M0-P3P2G1 1 · 10�3 3s 6.54 · 106 256 2-19:26:58 Curie
M1 1 · 10�3 3s 3.93 · 106 32 2-10:03:36 Atlas
M2 1 · 10�3 3s 1.54 · 107 128 3-00:43:38 Curie
M3 1 · 10�3 3s 2.88 · 107 1,024 1-14:43:52 Curie
M2000 1 · 10�4 0.45s 1.23 · 107 72 7-20:52:48 Atlas
M2000-bis 1 · 10�4 0.45s 1.24 · 107 96 7-09:05:00 Atlas
M3500 1 · 10�4 0.4s 1.39 · 107 1,024 6-09:36:00 Curie

Table 7.9: Simulations characteristics. �t being the time step, Tf being the right bound
of the time interval I, DOF being the number of degrees of freedom, CPU being the
number of processors, Time being the simulation run time and MACHINE being the
cluster where we run the simulations.

Remark 23. Since Paraview does a P1 visualisation of a P2 field and does not support a
high order geometry approximation, and in order to improve the accuracy of the exported
solution, we run the final time step of each of the performed simulations on the Lagrange
P1 interpolantion of the initial mesh.

A script was also implemented to evaluate the Ez metric.

Remark 24. In the following, remarkable differences between the experimental data may
be observed. It is due to the fact that the accuracy of the PIV technique depends on
the quality of the images, the spatial and temporal image resolutions, and the number of
images used, as well as the particle size, particle seeding density, particle displacement,
and the ability of the particles to follow the flow. Differences in the PIV algorithms can
also significantly influence the accuracy of the predicted flow quantities. Furthermore, the
accuracy and reproducibility of PIV experiments are affected not only by the algorithms
used, but also by experimental factors such as fluctuations in the flow conditions and fluid
properties, as well as uncertainties associated with measurements of fluid properties, all of
which can vary from one laboratory to another. Controlling these variables to accurately
generate the desired flow field is absolutely critical to obtaining accurate estimates of the
velocity and stress fields [71].

Results for Ret = 500

The simulation at Ret = 500 was carried out until t = 3s, time reasonably close to
the steady state, and we set the time step to �t = 10

�3. Figure 7.6 shows the results
at Ret = 500 for the normalized axial velocity along the z axis and the normalized
pressure difference along the same axis for the M1, M2 and M3 levels of refinements.
The magnitude of the velocity is in a perfect agreement with the experimental data (left
panel). A very satisfactory agreement is also obtained for the pressure difference (right
panel) . Similar conclusions can be made when comparing at the computated P2 velocity
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profiles at sections z = �0.064,�0.008, 0.016 and z = 0.06 compared with the five sets
of experimental data at the same sections, for the same mesh refinement levels, shown in
figure 7.7.
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Figure 7.6: (a) Comparison between experimental data and numerical results for the
normalized axial velocity along z (Eq 7.5) and (b) the normalized pressure difference
along z (Eq 7.4), for Ret = 500.

We next focus on the comparison between CFD profiles for P2P1 and P3P2 finite el-
ements configurations. To our best knowledge, there are no high order finite elements
results for the FDA benchmark in the literature, neither a high order approximation of
the geometry. Figure 7.8 shows the results of the CFD profiles for P2P1G1, P3P2G1, and
P2P1G2 elements over the M0 mesh. We also comprare those results to the one corre-
sponding to the P2P1G1 on the finest mesh M3. The results for the P2P1G1 and P3P2G1

configurations over the M0 mesh are quite similar to those for the P2P1G1 configuration
over the mesh M3. However, although the results of the P2P1G2 elements over the M0
mesh capture well the profiles shape, they under estimate the normalized pressure differ-
ence along the centerline with respect to the finest mesh at the inlet of the flow. The
results for the P3P2G2 configuration over the M0 mesh are on going. We expect them to
be the closest to the results on the finest mesh M3.

Results for Ret = 2000

The simulation at Ret = 2000 was carried out until t = 0.45s, time when the regime
was fully developed, and we set the time step to �t = 10

�4. It is worth stressing that
farther the downstream of the sudden expansion, the experimental velocity profiles are
significantly different from one another. The jet breakdown point captured by laboratories
vary remarkably.

Numerically the results were very sensitive to the mesh refinement and to the time
step. Figure 7.9 shows that the simulated pressure difference matches very well with the
experimental data, while a numerical jet breakdown point was captured much farther
downstream than the experimental observed breakdown point. A possible explanation
of this mismatch may be the accuracy of the numerical integration. It is worth testing
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Figure 7.7: Comparison between experimental data profiles of the normalized axial
velocity (Eq 7.5), for Ret = 500.
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Figure 7.8: Comparison between CFD profiles for P2P1 elements on the M1 mesh and
P2P1 and P3P2 on the coarser mesh M0.
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Figure 7.9: (a) Comparison between experimental data and numerical results for the
normalized axial velocity along z (Eq 7.5) and (b) the normalized pressure difference
along z (Eq 7.4) for Ret = 2000.
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increasing the quadrature formulas order. This led us to do more investigations. The
meshing strategy was readapted so that a special refinement was prescribed at the exit
of the throat to better handle the recirculations, see Figure 7.10. Besides, we tested a
symmetric formulation of the stress tensor. With that choice, the preconditioner, specially
when solving the F

u

subproblem, with the component block split strategy, must give
more accurate results. Doing this operation we expect, for a symmetric formulation of
the deformation tensor, that as the Reynolds number increases, that the convergence will
improve. In fact, the extra diagonal blocks that we have left will tend to be null when the
viscosity decreases. The new results after those adjustments are shown in figure 7.11.

Figure 7.10: A torus of refinement around the throat exit.
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Figure 7.11: (a) Comparison between experimental data and numerical results for the
normalized axial velocity along z (Eq 7.5) and (b) the normalized pressure difference
along z (Eq 7.4) for Ret = 2000.

We can clearly see the difference between the old strategy (CFD) and the new strategy
(CDF2) in Figure 7.11, where the jet breakdown point of the new strategy fit with the
experimental jet breakdown point.

In figure 7.12, a very good agreement between the numerical data and the experimental
data was observed at z = �0.064,�0.008 and z = 0.016, while a small mismatch was
noticed at z = 0.06, section close to the jet breakdown point. The retrieved numerical
profile over this section is the same as the one reported in [105] at this same section.
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Figure 7.12: Experimental data profiles vs CFD data profiles of the normalized axial
velocity (Eq 7.5), for Ret = 2000.
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Figure 2.3(b) shows the axial velocity isosurface coloured by the pressure and the cross
section coloured by the velocity magnitude at t = 0.45s for Ret = 500.

Results for Ret = 3500

The simulation at Ret = 3500 was carried out until t = 0.4s, and the time step was set to
�t = 10

�4. The normalized velocity profile along the centerline and the pressure difference
shown in Figure 7.13 show a good matching with the experimental data whereas the CFD
results presented in [134] failed all to catch the jet breakdown point; the DNS results over
predicted the jet length while the turbulence models predicted a shorter jet. The results
of the normalized axial velocity profiles presented in Figure 7.14 are in a good agreement
with the experimental data. They mildly underestimate the experimental velocity at
z = �0.008, and pass the jet breakpoint, at z = 0.06 where the velocity is much reduced,
the profile and the magnitude of the velocity were still respected.
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Figure 7.13: (a) Experimental data vs numerical results for the normalized axial velocity
along z (Eq 7.5) and (b) the normalized pressure difference along z (Eq 7.4) for Ret =
3500.

Figure 7.15 shows the velocity profiles at the last time step for the different flow regimes
coloured with the velocity magnitude. A laminar behaviour is clearly distinguished at
Ret = 500 while we can observe the fluctuations at Ret = 2000 and Ret = 3500, and a
pulsatile jet behaviour at the expansion for Ret = 3500.

Remark 25. Recently in [17] turbulent flow simulations for Ret = 3500 and Ret = 5000

were performed using the Leray turbulent model — a Large Eddy Simulation (LES) tech-
nique — to average in space the Navier-Stokes equations and handle the strong convective
fields compared with viscous forces that may trigger flow disturbances up to turbulence.
The same model was also used in [82] for Ret = 6500. In [134] a comparison between the
shear stress transport (SST) models the k � ! (KO) models and the k � ✏ models were
done for Ret = 500, 2000, 3500, 5000 and Ret = 6500.
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Figure 7.14: Comparison between CFD data and experimental data profiles of the
normalized axial velocity (Eq 7.5), for Ret = 3500.
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(a) Re500

(b) Re2000

(c) Re3500

Figure 7.15: Velocity profiles at the last time step.

Results for Ez and EQ metrics

The results of the Ez and EQ metrics of all the simulations are presented in Figures 7.16
and 7.17, respectively for Ret = 500, 2000 and Ret = 3500, and in Figure 7.18 for the
different mesh refinements and high order finite element approximation at Ret = 500. In
Figure 7.16 we show a comparison with the values of the Ez metrics reported in [105]
and in [134] (simulation for the laminar model). We can notice the same behaviour at
Ret = 500 and Ret = 2000 with respect to the Passerini et al. results, we are close to
the error they reported, except in the throat where we suppose we have a coarser mesh
with respect to theirs. The same error profile is however retrieved for Ret = 3500. In
figure 7.18(a) we plot the Ez metric for the different mesh refinements at Re = 500. The
convergent behaviour is not clear since the refinement strategy isn’t homogeneous in all
parts of the geometry.

Remark 26. It is worth pointing out on the fact that, since the Ez metric is a sum of
normalized absolute values, a large value of Ez doesn’t necessarily implies a disagreement
between the experimental and computational data. In particular, small values of ue,i,
specially close to the wall, increase the contribution of the error.

As for the conservation of mass metric, Figure 7.17 show a comparison with the values
of the Ez metrics reported in [105] and in [134] for the laminar model. (Note that the
computational data for [134] are only available for Re = 3500), while Figure 7.18(b) show
the Eq metric for the different mesh refinements at Re = 500. We can see that the error
doesn’t exceed the ⇠ 2% except for the coarser mesh M0 where, for two sections, the error
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increases up to ⇠ 10%. The mesh is clearly not enough fine in this case.
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Figure 7.16: (a) Comparison of the Ez metrics (Eq (7.7)) with respect to Passerini et al.
and Stewart et al. data in semi-logarithmic scale for Re = 500, (b,c) Comparison of the
Ez metrics with respect to Passerini et al. and Stewart et al. data in semi-logarithmic
scale for Re = 2000 and Re = 3500, respectively.

In Table 7.10, we report the number of iteration needed until achieving the desired
accuracy for the global linearized Navier-Stokes problem, for the F

u

, Ap and Qp sub-
problems. The number of iterations for the global problem, for the Laplacian problem
and the mass matrix problem is quasi constant with respect to the mesh refinement and
the increasing of the Reynolds number, while the number of iteration for the F

u

problem
varies with the simulations. We recall that for Ret = 2000 and Ret = 3500 we used GASM
method with a LU solver in the subdomains for the convection-diffusion problem F

u

.

Surprisingly, the simulation at Ret = 2000 was the most difficult, not the one at
Ret = 3500 . Retrieving a jet point comparable to the experimental data was not an
easy task. We had to try several meshing strategies and different simulation final steps
to detect when the regime was fully developed.
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Figure 7.17: Comparison of mass error metric EQ (Eq 7.6) as a function of the position
along the z axis with respect to Passerini et al. CFD data for (a) Ret = 500, (b) Ret =
2000 and (c) Ret = 3500.
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Figure 7.18: Validation metrics Ez (Eq (7.7)) and Eq ((7.6)) for Re = 500 for the different
mesh refinements
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Re NS Fu Ap Qp
M0-P2P1 2 50 28 4

M0-P3P2 2 53 75 12

M1 2 121 10 3

M3 2 7 82 4

M2000 10 37 88 3

M3500 7 115 89 3

Table 7.10: PCD: Global number of iteration/sub-problem, rtol = 10

�6 for the subprob-
lems and rtol = 10

�8 for Navier-Stokes iteration.

Conclusion

Through this chapter, we have, in a first part, shown the scalability of the in-house imple-
mented PCD preconditioner in terms of number of GCR iterations to achieve a certain
tolerance. We have also validated the independency of the PCD preconditioner with respect
to the mesh size, the Reynolds number. Moreover we have extended this independency to
high order finite elements approximation, study that was never carried out before.
In the second part of this chapter, we used the so-validated in-house PCD preconditioner
perform the FDA benchmark. The importance of this benchmark rely on the fact that
i) it covers different flow regimes, ii) the used device features phenomena that could be
encountered in real medical devices, iii) experimental data from 5 difference laboratories
are available online. We have thus validated and verified our numerical choices through
a perfect agreement between our CFD output data and the experimental data for all the
flow regimes. High order finite elements and high order geometry approximation were
firstly used in our work for this benchmark, none of the numerical teams that have taken
the FDA challenge have done this investigation before. We also compared our numerical
results to the results of Passerini et al. [105] and Stewart et al. [134].
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Chapter 8

A pipeline from medical images to

simulated MRI

Angiographic imaging is a crucial domain of medical imaging. In par-
ticular, Magnetic Resonance Angiography (MRA) is used for both clinical and
research purposes. This chapter presents the first framework geared toward the
design of virtual MRA images from real MRA images. It relies on a pipeline
that involves image processing, vascular modeling, computational fluid dynam-
ics and MR image simulation, with several purposes. It aims to provide to the
whole scientific community (1) software tools for MRA analysis and blood flow
simulation; and (2) data (computational meshes, virtual MRAs with associ-
ated ground truth), in an open-source / open-data paradigm. Beyond these
purposes, it constitutes a versatile tool for progressing in the understanding of
vascular networks, especially in the brain, and the associated imaging technolo-
gies. The results shown in this chapter, are a joint work with PhD students
from the VIVABRAIN ANR project, and were obtained during the CEMRACS
2015.
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1 Introduction

In the context of the CEMRACS 2015 (Centre d’Été Mathématique de Recherche Avancée
en Calcul Scientifique), devoted in its twentieth edition to the simulation of (coupled)
multi-physics models involving fluids, I have participated as a member of the project
"Phantom" — A pipeline from medical images to simulated MRI images of phantoms.
The CEMRACS is a scientific event of the SMAI (the French Society of Applied and
Industrial Mathematics), whose goal is to bring together scientists from both the academic
and industrial communities and discuss over a specific topic. It is located in the CIRM
(Centre International de Recherche Mathématique) in Marseille and is organised into
a 6 weeks event, where, during the first week, a classical summer school is proposed.
It consists of several lectures given by leading scientists and related to the topics of
the research projects. The remaining 5 weeks are dedicated to working on the research
projects, possibly after a morning seminar.

The purpose of the "Phantom" project is to develop a multidisciplinary pipeline for
the generation of virtual (i.e., simulated) angiographic images (more precisely, Magnetic
Resonance Angiographies, MRA) of the human brain, associated to their anatomical (3D)
and hemodynamic (3D+t) models (providing ground-truths). These angiographic images
have progressively proved their usefulness in various clinical applications, in particular
for cerebrovascular issues (e.g., neurosurgery planning; stenoses, aneurysm or thrombo-
sis quantification; arteriovenous malformation detection and follow-up, etc.), thanks to
the progress in 3D medical imaging (such as Magnetic Resonance Imaging, MRI, and
X-ray Computed Tomography, CT) that has led to the development of modalities de-
voted to visualise vascular structures. However, these cerebral angiographic data are
generally complex to process and analyse due to their size and low amount of relevant
(vascular) information versus noise, artifacts and other anatomical structures. This has
motivated, since the mid 90’s, the proposal of several image processing tools for vessel fil-
tering, segmentation and quantification. Unfortunately, contrary to morphological brain
image analysis, for which synthetic (i.e., virtual) images and associated ground-truths
(segmented data) are now widely available (e.g., BrainWeb), there is no such data in the
case of cerebrovascular images.

Simulated MRA and ground-truths are currently not available for complex vascular
networks (and in particular cerebral ones). This results in a lack of common development,
validation and comparison framework in the research fields related to vessel analysis.
Making these data and ground-truths fully available for the whole medical image analysis
community constitutes the very goal of the ANR project VIVABRAIN.

2 Scientific program of VIVABRAIN ANR project

The interdisciplinary program starts from real MR angiographic data to finally lead to
the generation of virtual MR angiographic data. During this process, which shall lead to
these simulated data, realistic 3D (anatomical) and 3D+t (hemodynamic) models –pro-
viding ground-truths for the virtual MRA images– are obtained. In order to do so, these
successive steps are considered:

• Task 1: Data acquisition: it consists of planning the acquisition slots on the MRI
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platform, acquiring and collecting MR images under the medical control of an hos-
pital practitioner of the HUS, Hôpital Universitaire de Strasbourg.

• Task 2: Extraction of vascular volumes from real MRA images: this step mainly
deals with image processing and analysis. This requires the development of method-
ological and applicative techniques, in the fields of filtering, segmentation and in-
teractive correction, in particular in the context of mathematical morphology and
discrete topology.

• Task 3: Generation of 3D vascular models from these data. This requires the devel-
opment of methodological and applicative techniques in the fields of sparse image
registration and knowledge fusion, in particular in the context of atlas generation
and geometric/topological modelling.

• Task 4: 3D+t simulation of blood flow in complex (arterial and venous) models.
First, this requires proper computational meshes which is currently a challenge.
Then, it requires not only state of the art, but also novel numerical methods to pro-
cess these problems that are large scale, coupled, highly non-linear, multi-physics
and multi-scale models (in particular with respect to blood modelling and rheol-
ogy). Finally, it requires validation steps allowing for calibration and uncertainty
quantification.

• Task 5: Simulation of MR acquisition of angiographic data from these 3D+t mod-
els. This requires the modelling of physical phenomena related to the specific MR
sequences devoted to visualise moving structures, in order to reproduce the signal
and noise finally leading to the formation of MRA data, on the basis of the 3D and
3D+t models previously generated.
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3 The CEMRACS project goals

Our target during the CEMRACS 2015 was to access the reliability and accuracy of the
output data of tasks 3, 4 and 5. For that reason, we considered a physical phantom so
that we have an exact description of its geometry. The validation process steps are the
following:

• Access the reliability of the segmentation techniques: compare the realistic geometry,
knowing exactly its shape, with MRI segmentations, obtained by a simple threshold
and by the classical method of snake.

• Access the reliability of the CFD simulation: (i) compare the outputs of two identical
simulations using Feel++ in the first and Freefem++ in the second, (ii) Compare
the outputs of the Feel++ and Freefem++ simulations to the MRI measurements.

• Access the reliability of the MRI simulation: compare the simulated phase and
magnitude images to (i) the realistic geometry and (ii) the MRI acquisitions.

In the context of CFD simulation, we also considered two different ways of imposing the
boundary conditions at the inlet, the first by setting a constant academic Poiseuille flow,
the second by imposing a pulsatile retrieved from velocity MRI measurements. Our study
was also extended to the realistic geometry of the brain venous network. We compared
the area and flow calculation at the different inlets and outlets sections.
Another accomplished task during the CEMRACS was to ensure the transmission of the
data from one task to another. This was done by converting the format of the output of a
task to the format of the input of the following task. The AngioTK software, developed in
the context of the VIVABRAIN project was tested on the physical phantom and performed
according to the required data formats.
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Abstract. The aim of this project is to validate the Vivabrain pipeline with a physical phantom from

real MRI acquisition to MRI simulations through image segmentation and computational fluid dynamics

(CFD) simulations. For that purpose, we set up three comparison benchmarks. The first benchmark

compares dimensions of the reconstructed geometry from real MRI acquisition to the physical phantom

dimensions. The second aims to validate the CFD simulations by comparing the outputs of two

simulations, one carried out Feel++ and the other using FreeFem++. The CFD outputs are also

compared to MRI flow measurement data. The goal of the last comparison benchmark is to compare

the MRI simulations outputs to the numerical fluid simulations.

Introduction

In the last 20 years, progress in medical imaging has led to the development of modalities devoted to visu-
alizing vascular structures. These angiography images progressively proved their usefulness in various clinical
applications, in particular for cerebrovascular issues. This project is within the context of the ANR project
Vivabrain [2]. The goal of this project is to develop a pipeline for the generation of virtual Magnetic Resonance
Angiography (MRA) of the human brain, associated to their anatomical (3D) and hemodynamic (3D+t) models
(providing a ground-truth). The interdisciplinary program follows four steps, see Fig. 1. We first start from real
MRA data from which we extract the vascular volumes. We then generate the 3D vascular mesh. We perform
3D+t simulations of blood flow in the complex (arterial and venous) mesh. Finally, we run the simulations of
MR acquisition of angiography data from these 3D+t models.

AngioTK [1] is a software framework developed in this context, using open source softwares. This framework
takes MRI data as input and produces virtual angiographies as output. AngioTK proceeds in several steps, see
also Fig. 1:

(1) Filtering: Filter the initial MRI data, to ease the extraction of arterial/venous data;
(2) Segmentation: Separate the veins/arteries from the background;
(3) Mesh processing: Process the segmented data to prepare it for numerical simulations. This task involves

several subtasks using centerlines notably;
(4) Numerical simulations: simulations of blood flow in the processed mesh (Feel++/FreeFem++);
(5) Particles tracing: Generates particles for virtual angiographies;
(6) Virtual angiography: Uses JEMRIS to simulate virtual angiographies.

1 University of Strasbourg, IRMA / UMR 7501, Strasbourg, France
2 University of Reims Champagne-Ardenne, LMR, Reims, France
3 University of Picardie Jules Verne, BioFlowImage Laboratory, Amiens, France
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MRA
Medical teams

Blood flow simulation
Mathematics teams

(5) Particles tracing and 
(6) Virtual images simulation

Physics teams Computer science teams

(1) Filtering and 
(2) Segmentation

(3)(4)

Figure 1. The Vivabrain project task loop.

In this paper, our purpose is to evaluate the accuracy of the image segmentation, the (3D+t) blood flow
simulations and the MRI simulations. To this end, we started from a physical phantom, see Fig. 2, so that we
have an exact description of its geometry that can be used to evaluate the error made when extracting the 3D
volume from the MRI segmentation. For the computational fluid dynamic validation, we have chosen to run
simulations using two finite elements libraries, Feel++ [13] and FreeFem++ [10]. A first level of validation
of the computational fluid dynamics (CFD) simulations is to compare the numerical outputs obtained by using
Feel++ and FreeFem++ libraries, running equivalent simulations on the same mesh. The second level of
comparison is to compare the Feel++ and FreeFem++ numerical output data to the experimental MRI
measurements. Lastly, the validation of the MRI simulations will be performed by comparing their outputs to
the MRI acquisition and to the exact geometry dimensions.

The first part of this paper is dedicated to the description of the image segmentation, the numerical model and
methods for the simulations of blood flow and MRI simulations. In the second part, we describe the benchmark
setup used for the previously mentioned comparisons. The third part of this paper is dedicated to the image
segmentation evaluation. Finally, we present the blood flow and MRI simulations results on the phantom. In
particular, we run a cross-validation between the Feel++ and FreeFem++ libraries to estimate the precision
of the step of blood flow simulations in the phantom and the complex cerebral venous network, which is studied
in the Vivabrain project.

1. Numerical methods

1.1. Image segmentation

In the first part of the pipeline, we need to extract the vascular volumes from the MRA images. Here, to
segment the phantom, we use an active contour model called “snake” whose principle is to evolve a curve to
detect the objects boundaries in a given image. Let ⌦ be a bounded open set of R2, with @⌦ its boundary. Let
I : ⌦̄ ! R2 be a given image of bounded variation and C(s) : [0, 1] ! R2 be a parameterized curve, at least of
class C2. The classical snake model consists of minimizing the energy functional J1(C) given by:

J1(C) = ↵

Z 1

0

|C0(s)|2ds+ �

Z 1

0

|C00(s)|ds� �

Z 1

0

|rI(C(s))|2ds (1)
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Figure 2. The physical phantom.

where ↵, � and � are positive parameters. The first two terms control the smoothness of the contour (the
internal energy), while the third term attracts the contour towards the object (the external energy). The snake
minimizes the energy J1(C) by trying to locate the curve at the points of maxima |rI(C(s))|, acting as an
edge-detector. In general, �|rI| can be replaced by g(|rI|) where g is a positive and decreasing function such
as lim

x!1 = 0 (e.g. g(x) = 1
1+|x| or g(x) = exp(�x)). ITK-SNAP 1 implements the 3D geodesic active contour

method developed by Caselles et al. [7], which allows topological changes of the curve, contrary to the classical
snake. The new energy J2(C) to be minimized is given by:

J2(C) = 2

Z 1

0

|C0(s)| · g(|rI(C(s))|)ds (2)

This is a problem of geodesic computation in a Riemannian space, according to a metric induced by the
image I. This minimization problem is solved by a gradient descent which follows an evolution equation and
the curve changes over time as it can be seen in Fig. 3

Figure 3. Evolution of the snake on the phantom at iterations n = 0, n = 500, n = 1000, n = 1500.

1.2. Fluid simulations

In this section, we introduce the equations of the fluid dynamics and the numerical methods used to compute
the blood flow in the extracted volumes. Let ⌦ ⇢ R3 denote the bounded connected domain under investigation
and let @⌦ = �

D

S

�
N

be its boundary, where �
D

and �
N

are the sections of the boundary where we will
respectively impose a Dirichlet condition and a Neumann condition. In the context of blood flow, it is assumed

1http://www.itksnap.org
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that the unsteady incompressible Navier-Stokes equations Eq. (3,4) hold. They read as:

⇢
@u

@t
+ ⇢(u.r)u+rp� µ�u = f in ⌦ (3)

div(u) = 0 in ⌦ (4)

where u and p are respectively the velocity and pressure of the fluid, ⇢ and µ are the density and the dynamic
viscosity of the fluid, and f is an external force taken here equal to zero (gravity is neglected).

Let us consider a Dirichlet boundary condition at the inflow and a Neumann boundary condition at the
outflow:

u = u
in

on �
D

(5)

�(u, p)n = 0 on �
N

(6)

with the stress tensor that writes for a Newtonian fluid:

�(u, p) = µru� pI (7)

1.3. Numerical algorithms

Space discretization Let � be a discretization parameter. We define K̂ ⇢ Rd (d = 1, 2, 3) a reference
elementary convex, e.g. a simplex or a hypercube. We denote by T

�

a finite collection of nonempty, disjoint open
simplices or hypercubes T

�

= {K = '

geo
K,k

(K̂)} forming a partition of ⌦, where 'geo
K,k

is the polynomial of degree

k that maps K̂ to K, which is also called the geometric transformation. We denote by PN (K̂) and PN (K) the
spaces of polynomials of total degree less or equal than N defined on K̂ and K respectively. We denote ⌦

�

the discrete domain, and �
D,�

and �
N,�

the discrete sections of the boundary where we set a Dirichlet and a
Neumann boundary condition, respectively. Following these notations we can define PN

c

(⌦
�

) and [PN

c

(⌦
�

)]d:

PN

c

(⌦
�

) = {v 2 C0(⌦
�

) | v �'geo
K,k

2 PN (K̂) 8K 2 T
�

}, [PN

c

(⌦
�

)]d =
d

Y

1

PN

c

(⌦
�

). (8)

In the following, we introduce the discrete spaces associated to the velocity and the pressure respectively:

H1
(uin,�D,�)

(⌦
�

) = {f 2 H1(⌦
�

)/f |�D,� = uin}
V
�

= {v 2 H1
(uin,�D,�)

(⌦
�

) \ [PM

c

(⌦
�

)]d}
V
�,0 = {v 2 H1

(0,�D,�)
(⌦

�

) \ [PM

c

(⌦
�

)]d}
Q

�

= {v 2 PN

c

(⌦
�

)}

In order to ensure the existence, the uniqueness and the stability of the solution of the discrete problem, the
spaces V

�

and Q
�

must satisfy the so called Inf-Sup condition:

9�
�

> 0 | inf
q�2Q�

sup
v�2V�

R

⌦�
q
�

div(v
�

)

kq
�

k0,⌦�kv�

k1,⌦�

� �
�

(9)

We will consider the generalized Taylor-Hood finite element for the velocity-pressure discretization, that is
to say we look for the velocity in [PN+1

c

(⌦
h

)]d, N � 1 and the pressure in PN

c

(⌦
h

) which satisfy the inf-sup
condition. The resulting approximate velocity and pressure fields are respectively denoted by u

�

and p
�

. Typi-
cally the Taylor-Hood finite element (N = 1) is considered to solve this problem.
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Time discretization Let T , be the timerun of the simulations and I = [0, T ], be the time interval. We
subdivide I into N sub-intervals In = (tn, tn+1) with n = 1, ...,N and where tn+1 � tn = �t, the time step
assumed constant over time.

1.3.1. Feel++

We denote (un

�

, pn
�

) the approximate discrete solution at time tn. We first start by discretizing the time
derivative of the velocity by choosing an implicit scheme, the so-called backward di↵erentiation formulation

(BDF) of order two. We then choose a semi-implicit scheme with a second order extrapolation in order to
manage the non-linear term u ·ru. The weak formulation then reads: find (un+1

�

, pn+1
�

) 2 V
�

⇥ Q
�

such that
8v

�

2 {v 2 [H1(⌦
�

)]3 \ [PM

c

(⌦
�

)]3 | v = 0 on �
D,�

}, 8q
�

2 Q
�

⇢

Z

⌦�

3
2u

n+1
�

� 2un

�

� 1
2u

n�1
�

�t
v
�

+ ⇢

Z

⌦�

((2un

�

� un�1
�

) ·run+1
�

) · v
�

+ µ

Z

⌦�

run+1
�

: rv
�

�
Z

⌦�

pn+1
�

div(v
�

) = 0

Z

⌦�

q
�

div(un+1
�

) = 0

The choice of this discretisation is motivated by the fact that BDF schemes with extrapolation yield to stable
time discretizations of the Navier-Stokes equations at the continuous level. The notation A : B corresponds
to the inner product of two tensor fields, it can be explicitly written as:

A : B = Tr(ATB)

1.3.2. FreeFem++

In this section, we describe the numerical method used in FreeFem++ to solve the Navier-Stokes equations:
the method of characteristics [6].

In order to manage the non-linearity, we consider the term @u
@t

+ (u.r)u as a particular derivative, so for
every particle we can write:

dX

�t
(x, s; t) = u(t,X(x, s; t)) (10)

X(x, s; s) = x (11)

where X(x, s; t) is the particle position at time t, which was in x at time s.
That gives:

✓

@u

@t
+ (u.r)u

◆

(tn, x) ⇠ u(tn+1, x)� u(tn, Xn(x))

�t
(12)

with Xn(x) = x� u(tn, x)�t+O(�t2).
We finally have:

⇢

�t
(un+1 � un �Xn)� µ�un+1 +rpn+1 = 0 (13a)

div(un+1) = 0 (13b)
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The weak formulation can be written as: find (un+1
�

, pn+1
�

) 2 V
�

⇥ Q
�

such that 8v
�

2 {v 2 [H1(⌦
�

)]3 \
[PN+1

c

(⌦
�

)]3 | v = 0 on �
D,�

}, 8q
�

2 Q
�

Z

⌦�

⇢

�t
un+1
�

v
�

+

Z

⌦�

⇢

�t
(un

�

�Xn

�

) · v
�

+ µ

Z

⌦�

run+1
�

: rv
�

�
Z

⌦�

pn+1
�

div(v
�

) = 0 (14)

Z

⌦�

q
�

div(un+1
�

) = 0 (15)

This method is implemented using the convect operator of FreeFem++.

The method of characteristics is unconditionally stable [?].

1.4. MRI simulations

MRI simulations was initially developed to optimize and test the MRI sequences. This method allows to
predict easily, quickly and at a low cost the result of any complex experiment, with any physical parameters.
Another motivation is educational, for basic understanding of MRI physics. Finally, this can be used for physical
model validation, as it is the case in the Vivabrain project, where we test our Computational Fluid Dynamics
models in the last part of the pipeline.

1.4.1. JEMRIS MRI simulator

JEMRIS is an advanced MRI simulator software written in C++, open-source and freely modifiable [16].
Several optional Matlab GUIs o↵er great freedom to design original sequences, including arbitrary pulse shapes
and gradients, as well as management of various physical parameters. Many o↵-resonance factors are taken into
account, such as chemical shift, concomitant gradient fields, magnetic susceptibility, etc., and possibly other
phenomena accompanying the imaging process (molecular di↵usion, Gaussian noise, patient move, ...).

1.4.2. Principle: Isochromat summation

In MRI, the signal collected over time is generated by the temporal variations of the macroscopic magneti-
zation of tissues. This signal contains all the information needed to reconstruct the final image.

The most popular technique for MRI simulations is isochromat summation. The sample to be imaged is
divided into equal subvolumes called isochromats (see Fig. 4). Those subvolumes are supposed to possess
uniform physical properties: spin relaxation times T1, T2, T2*2, equilibrium magnetization M0 and magnetic
susceptibility �.

The measurable signal emitted by one isochromat is obtained by numerically solving Bloch equations. The
whole MR signal is then obtained by summing the contribution of each isochromat over the entire sample.

1.4.3. Bloch equations: Temporal evolution of magnetization

Bloch equation gives the temporal evolution of tissue magnetization for one isochromat:

dM

dt
= �M⇥B� R̂(M�M0) (16)

where M is the magnetization vector of the tissue, � is the gyromagnetic ratio of hydrogen, B is the external
magnetic field and R̂ the relaxation matrix containing T1 and T2.

The magnetic field term B(r, t) contains all the MR sequence elements (gradients and radio frequency pulses).
Its expression is given by:

B(r, t) = [G(t).r+�B(r, t)].ez +B1(r, t) (17)

2T2* time is due to local magnetic field inhomogeneities. It results in a shorter transversal relaxation time.
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Figure 4. Cutting the sample into isochromats. A magnetization vector is associated to each
isochromat and its evolution is monitored during the acquisition sequence. The collected MR
signal corresponds to the transverse component of the magnetization.

where G(t) is the gradients sequence, r is the isochromat position, �B(r, t) corresponds to the field inhomo-
geneities due to o↵-resonance and non-uniform gradients, and B1(r, t) the radio frequency pulses sequence.

In the Lagrangian version presented here, Bloch equations are a simple ordinary di↵erential equation (ODE)
system. The software we use for our simulations, JEMRIS, solves those equations with the ODE solver CVODE,
which is part of the SUNDIALS 3 libraries. Numerical solving is based on Adams-Moulton linear multistep
method.

1.4.4. Flow motion simulations

Natively, Bloch equation solving in JEMRIS is only dedicated to simulate static tissues. So, we provide
an extension to the software in order to simulate fluid travelling [8]. Movements are taken into account with
a Lagrangian approach, which requires to determine each individual spin trajectory. While solving Bloch
equations, this approach avoids the need to use a di↵erent treatment for static tissues and flowing particles. We
simply vary the position of the spin over time, which changes the field value seen by the particle:

r = r(t) ) B(r, t) = [G(t).r(t) +�B(r, t)].ez +B1(r, t)

By default, JEMRIS only allows to specify one trajectory for all spins, in order to simulate movement of a
rigid sample. So we added a specific class to the C++ code to allow users to specify a di↵erent trajectory for
each spin. A simple example of MRI simulations performed with our modified version of JEMRIS is shown on
Fig. 5. As it appears on that image, we used four spins with specific individual behaviors: two static spins (at
the top of the image), and two moving spins with diagonal trajectories (at the bottom).

With this new version, it thus becomes possible to describe flow phenomena, after converting flow data to
the proper format (Fig. 6).

2. Benchmark setup

The aim of this benchmark is to validate the CFD simulations by comparing the numerical outputs with
experimental data. For that purpose, a physical phantom was designed as a double bifurcation fluid circuit
so that it can reproduce acceleration, deceleration and recirculation all of which can be encountered in real
vascular networks. The characteristics dimensions of the model were carefully chosen so that it mimics human
cerebral little vessels, like lingual emissary veins.

The inlet branch, the left channel, has a diameter of 5 mm and a length of 40 mm, the lower left and lower
right branches have a diameter of 2 mm and a length of 30 mm each, the upper left and upper right branches
have a diameter of 3 mm and a length of 30 mm, and finally the outlet branch, the right channel, has a diameter

3https://computation.llnl.gov/casc/sundials/main.html
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Figure 5. Our modifications allow JEMRIS to simulate individual trajectories for each spin.
Here, an example of simple gradient echo MRI sequence with two static spins at the top and
two moving spins at the bottom.

Figure 6. The Lagrangian approach we used to simulate flow motion requires to convert the
velocity field determined with Navier-Stokes equations into individual particles trajectories,
with a path tracer code.

Figure 7. The physical phantom.

of 4 mm and a length of 40 mm. The angle between the two branches of the bifurcation is 10� (see Fig. 7).
The physical phantom is machining in a rectangular block of Plexiglas that we consider as a non deformable
material.

The fluid should have been chosen so that it satisfies isothermal and incompressible Newtonian blood prop-
erties, but instead, for the sake of simplicity, we used water to perform our experiments. The constant density
and the dynamic viscosity are then 0.001g/mm3 and 0.001Pa · s, respectively.

For the MRI measurements, we considered the following setup. We used a Masterflex roller pump at a flow
rate of 100 mL/min to inject fluid into the phantom, which is in the MRI. The fluid then goes to a reservoir
crossing a heart rate getting which is used for the PC-MRI acquisition, see Fig. 8.

We used a 3T Philips Achieva dStream MRI machine for all acquisitions at the University Hospital of Amiens,
Picardie.

Morphological MRI

In order to obtain the geometry of the phantom, we performed a morphological MRI.
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Figure 8. MRI benchmark.

The sequence used is a 3D phase contrast angiography with a flip angle of 12� for a pixel size of 0.5 mm ⇥
0.5 mm and a slice thickness of 0.6 mm. The microscopic coils used for the MRI flow measurements have an
inner diameter of 47 mm.

Flow MRI

To obtain the flow measurements in the di↵erent branches of the phantom, we performed a phase contrast
MRI (PC-MRI). We used 2D QFlow sequences with an echo time of 11 ms, a repetition time of 18 ms, a flip
angle of 30�, a slice thickness of 1 mm and finally a pixel size of 0.35 mm ⇥ 0.35 mm. The field of view is
30 mm ⇥ 30 mm, the number of slices by cycle is 32 and the acquisition time is around 2 minutes. Encoding
velocities are summarized in Tab. 1. The microscopic coils used for the MRI flow measurements have an inner
diameter of 47 mm.

Slice Encoding velocity
Inlet 400mm/s
Outlet 600mm/s
Other 550mm/s

Table 1. The characteristics of the flow MRI.

MR images were processed at the BioFlowImage laboratory with the home-made software Flow Analysis [3].

3. Segmentation results

3.1. Comparison MRI geometry – realistic geometry

First, we compare the exact geometry with the MRI geometry to assess the accuracy of the MRI measure-
ments. For this purpose, we need to segment the MRI images and we use two methods: the first is a simple
thresholding (Fig. 9(a)) while the second is a snake included in the software ITK-SNAP and detailed in sub-
section 1.1 (Fig. 9(b)). To estimate the di↵erences between the realistic geometry and the MRI geometry, we
measure diameters at the radial slices given on Fig. 13 and we list results in Tab. 2.
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We can notice that the thresholded MRI is thinner than the segmented MRI, while the segmented MRI is
larger. This last issue is due to the snake which evolves outside the boundary of the desired object. In fact,
the MRI geometry can not be larger than the realistic geometry, so the thresholded MRI is closer to the reality.
Nevertheless a lot of information is lost, certainly because of the smoothness. Another issue is the di�culty to
match the two geometries. Indeed, the plane of the MRI acquisition is slightly inclined to the horizontal plane
and as a result, we have to perform a transformation to align the two geometries.

In both cases, the input of the MRI does not correspond to the exact input, as well as the output. Indeed,
the MRI tends to smooth the straight forms. These di↵erences can skew the results of the MRI measurements
in the next parts and the MRI acquisition should be improved in the future.

(a) Thresholded MRI

(b) Segmented MRI

Figure 9. Comparison of the realistic geometry with MRI segmentations, the first is obtained
by a simple threshold while the second by the classical snake approach.

Radial Slices IN UL LL UC LC UR LR OUT
Realistic mesh 5.00 3.00 2.00 3.00 2.00 3.00 2.00 4.00
Thresholded MRI 3.36 2.70 1.97 2.45 1.73 2.70 1.97 3.12
Segmented MRI 5.10 5.78 3.60 2.30 5.27 4.45

Table 2. Comparison of the diameters (mm) at the radial slices : IN=inlet, UP=uppper
left, LL=lower left, UC=upper center, UL=upper left, UR=upper right, LR=lower right and
OUT=outlet. As the UL and LL parts and the UR and LR parts respectively are sticked
together in the segmented IRM, we compute the diameters on the entire left slice and on the
entire right slice respectively which are theorically equal to 5.11mm.

3.2. Comparison AngioTK geometry – realistic geometry

We used AngioTK up until the numerical simulations step as a tool to compare ground truth geometries
built from real measurements and geometries extracted from MRI. In Fig. 10, we illustrate the di↵erent steps
of mesh processing that lead to a mesh suitable for numerical simulations.

From left to right and from top to bottom, we have:

• The original MRI data visualized as a block (a) and with volume rendering (b);
• The initial mesh extracted from MRI data (c). This extraction is performed based on the level-set
method;

• We then build centerlines (d) with additional information, like the radius of the larger inscribed sphere
at each centerline point;

• Based on the centerlines, we generate a new volume of data (e) and extract a proper mesh (f); this
mesh is then opened in (g);
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(a) Raw MRI input data (b) Volume rendering of MRI data (c) Extraction of surface from MRI

(d) Creation of the centerlines (e) Image reconstruction (f) Surface extraction

(g) Mesh opening (h) Tetrahedralization/partitioning

Figure 10. A sample execution of the AngioTK pipeline on the phantom dataset.

• We generate a volumic mesh using tetrahedra and partition the mesh for numerical simulations in (h)
(here on 16 processors).

Let us first have a look at the di↵erence between the original MRI data and the final mesh generated with
AngioTK in Fig. 11

Fig. 11 (a) and (b) show that the MRI did not capture the entire Phantom during the acquisition. We are
indeed losing a part of inlet and outlet tubes through which the water flowed. Fig. 11 (d) shows that we correctly
reconstructed the shape of the Phantom through MRI processing and mesh generation. However, AngioTK did
not accurately capture the very beginning of the inlet and the end of the outlet parts. This is mainly due to
the parametrization of the algorithms we used. Thus capturing the required parts would require a finer tuning
of the whole process. A second issue is located at the two bifurcations of the tube. In the real phantom, the
tubes are cut though plexiglas, so as they converge/diverge, the separation is sharp. We can however notice
with the reconstruction that the tubes are joined together for a certain distance between diverging/converging.
This is due to the reconstruction of the phantom using spheres, as AngioTK is designed to be used with veins
and arteries.

To measure the accuracy of the reconstruction, we illustrate in Tab. 3 the di↵erences between real data (cf.
Fig. 7) and measured data in term of tube width. We compare the tube width of internal section to avoid
the parts influenced by the use of AngioTK as previously mentioned. The sections of the mesh from which we
extract the data are described in Fig. 12.
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(a) Phantom measures (b) Volume rendering of the MRI of the Phantom

(c) Mesh generated by AngioTK (d) Superimposition of volume rendering and mesh

Figure 11. Comparison between the original MRI data and the final mesh generated by AngioTK.

Figure 12. Sections on which we compute the minimal and maximal inscribed sphere radius.
The di↵erent sections are the following: the inlet in red, the upper branch section 1 in green,
the upper branch section 2 in purple, the lower branch section 1 in blue, the lower branch
section 2 in yellow and the outlet in cyan.

For the size to be comparable, we decided to compute a ratio between the real phantom tube size and the
size of the biggest inscribed sphere in the created mesh. Note that the largest inscribed sphere information is
computed at each centerline point. If the reconstruction is performed correctly, we should get a similar ratio
between the di↵erent section sizes.

As it can be seen in Tab. 3, the ratio are close to 2 for the di↵erent sections, so we get a good match of the
original size. The only problematic case is at the inlet, where is strongly di↵ers from the other ratios. This is
again due to the fact that we were not able to grasp the real shape of the inlet.

4. Simulations Results

The fluid flow simulations were performed using Feel++ and FreeFem++. The finite element spaces used
to discretize the velocity and the pressure are the Inf-Sup stable Taylor-Hood finite elements P2P1.

For the FreeFem++ simulations, we used the method of characteristics [4] described in section (1.2.2).
In order to speed-up the resolution, this method is coupled with an iterative Uzawa Conjuguate Gradient
algorithm [14] with a Cahouet-Chabart preconditionner [5]. As for the Feel++ simulations, we used a second
order finite di↵erence scheme to approximate the time derivative and a second order extrapolation of the no-
linear convective term [17], described in section (1.2.1). The resolution in the latter is made using the LU solver.
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Section
Original size

(mm)
Number of

sample points
Size of inscribed sphere

(no unit, min-max values)

Ratio
(original size /

inscribed sphere size)
Inlet branch

(Fig. 12 in red)
5 2 [1.634, 1.770] 3.060, 2.824

Upper branch
(Fig. 12 in green)

3 90 [1.489, 1.553] 2.014, 1.931

Upper branch
(Fig. 12 in purple)

3 83 [1.552, 1.593] 1.932, 1.883

Lower branch
(Fig. 12 in blue)

2 93 [0.985, 1.056] 2.03, 1.893

Lower branch
(Fig. 12 in yellow)

2 83 [1.023, 1.079] 1.955, 1.853

Outlet branch
(Fig. 12 in cyan

4 97 [1.981, 2.024] 2.019, 1.976

Table 3. Size comparisons between the size of the real phantom and the data extracted from
MRI data.

The discretized Navier-Stokes equations were supplemented for both Feel++ and FreeFem++ simulations
by a no-slip boundary conditions on the lateral surface of the computational domain, since we are dealing with
viscous fluid. At the inflow and the outflow we imposed a Dirichlet and a Neumann boundary conditions,
respectively. Although the choice of a Neumann-type boundary conditions at the outflow in physiological flows
may lead to possible instabilities with recirculations because of the loss of energy estimates, we did not use
stability technics and did not observe any instability at the chanel exit because the exit is su�ciently far, and
the Reynolds number is in the lower laminar range. For the Dirichlet boundary conditions two flow profiles
were implemented at the inlet of the channel: i) a Poiseuille profile with constant flow and ii) a pulsatile flow
retrieved by using the experimental measurements of the flow at the inlet during a 5s MRI acquisition.

We start our simulations with a fluid at rest, that is, p = 0 and u = 0 everywhere in ⌦. In this part, in order
to avoid additional geometric errors, the geometry was constructed using real dimensions described in Section
(2). The meshing of the geometry was carried out using Gmsh 2.8.3 [9] and the partitioning using Metis [11].
An adapted mesh size was chosen depending on the diameter of the channel. A “h

max

” was prescribed in the
inlet and outlet channels, a “h

average

” was prescribed on the upper channel of the bifurcation and a “h
min

”
was set in the lower channel of the bifurcation. Three levels of refinements were performed in order to make a
mesh convergence study. The corresponding mesh characteristics are reported in Tab. 4.

Geometry h
min

h
max

h
average

Tetrahedra DOF
M1 0.2 0.5 0.3 157245 769662
M2 0.25 0.625 0.375 93655 469008
M3 0.3 0.75 0.45 60349 307510

Table 4. The characteristics of the three types of geometries.

The comparison is made in terms of axial component of the velocity and pressure along the centerline and
at various radial sections (see Fig. 13) and normalized wall pressure di↵erence along the length of the domain.

4.1. Comparison Feel++– FreeFem++ in the phantom

The numerical fluid simulations performed in the phantom geometry using Feel++ and FreeFem++ are
quantitatively of the same order of Fig. 14. But in order to carry out a cross validation of these two finite
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Figure 13. Radial slices where the velocity profiles are plotted.

elements method libraries, we compared pressure and velocity profiles at six di↵erent radial sections previously
defined, and along the centerline.

A constant velocity of 41mm/s (corresponding to the lowest velocity of the MRI measurements that we
describe later) is imposed at the inlet for one second. The results are shown for the final time step.

Figure 14. Velocity magnitude, M3 mesh, constant flow.

Pressure and velocity along the centerline are shown in Fig. 15 for Feel++ and FreeFem++ with a mesh
convergence. We can see that FreeFem++ gives a slightly higher pressure gradient than Feel++, for the
tree levels of refinement. However, velocity profiles are very similar.
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Figure 15. Comparison Feel++ vs FreeFem++ for a constant flow (V
min

), P2P1: Velocity
and pressure profiles along z axis.

At the inlet section, the profiles overlap, retrieving the Poiseuille profile boundary condition imposed at the
inlet. As for the outlet, the velocity profiles show also a good agreement.

Velocity profiles at the lower and upper channels, left and right sections are shown in Fig. 17. Some di↵erences
can be observed with the coarse mesh M3, but the mesh convergence shows that the results tend towards the
same solution.
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Figure 16. Comparison Feel++ vs FreeFem++ for a constant flow (V
min

), P2P1: Velocity
at the inlet and outlet sections.
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Figure 17. Comparison Feel++ vs FreeFem++ for a constant flow (V
min

), P2P1: Velocity
profile at the right and left sections in the upper and lower channels.

Most of the results are equivalent in this Feel++–FreeFem++ comparison. We believe that the observed
di↵erences can be due to the choice of algorithms for the two FEM libraries; one uses a second order time
discretization while the other uses a first order one. Feel++ algorithm equally uses a domain decomposition
method that can impact the computed solutions. Even if these di↵erences exist, they are quite small and we
can see a large correspondence of the results for the two libraries.

The Reynolds number in the constant and pulsatile flow cases varies between 200 and 700, thus the inertial
terms could not be neglected. However, no recirculation or instabilities have been observed.
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4.2. Comparison Numerical simulations – MRI measurements in the phantom

Now a pulsatile flow, obtained by PC-MRI measurement, is used to impose the velocity at the inlet of the
phantom.

Comparison between Feel++ and FreeFem++ simulations and PC-MRI measurement is shown in Fig. 18
for the input and the output, and in Fig. 19 for the two branches.
The input and output flows are very similar, both between the two simulations and between simulations and
experiment. Branches flow are equally similar for the two simulations but MRI measurements are slightly
higher. These di↵erences can be explained by the fact that PC-MRI images have to be manually segmented to
obtain velocity and flow informations, a process that usually overestimates the real conditions of the experiment:
operator dependent, manually segmented on a screen and dependent of the slice angle during the MRI sequence.
At the inlet and the outlet, the pipe is quite large and the segmentation is very accurate, but in the two small
branches greater errors may occur.
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Figure 18. Comparison Feel++ vs FreeFem++ on the M3 mesh with a pulsatile flow, flow
profile at the inlet and outlet sections during time.
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Figure 19. Comparison Feel++ vs FreeFem++ on the M3 mesh with a pulsatile flow, flow
profile at the left sections in the upper and lower channels during time.

4.3. Comparison Feel++– FreeFem++ in the cerebral venous network

The final goal of the Vivabrain project is to compute virtual cerebral angiography images. It is still too early
to perform MR acquisition of complete angiographic images, but we have already reached the stage of blood
flow simulations in the complex cerebral venous network. In this type of realistic geometry, a main issue remains
the experimental validation of the results. If the physical phantom can reach that goal in the case of simple
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bifurcations, such approaches are hardly tractable for complex network. Therefore, finding a way to validate
this key step is essential. In this part, we run a cross-validation between the Feel++ and FreeFem++ results
in this realistic geometry.

First, we describe briefly an appropriate model for flow in the cerebral venous network (see [12] for more
details). At the macroscopic scale, the brain venous network (see Fig. 20) is composed by – input – veins
(7)–(11) draining the blood into the superior sagittal sinus (2) and the straight sinus (3), until their confluence
(4). The blood then passes into the transverse (5) and sigmoid parts (6) of the lateral sinuses, and reaches an
extracranial area, composed of the – output – internal jugular veins (1).

Figure 20. Cerebral venous network.

Concerning the flow in these vessels, we adopt standard assumptions: (i) the blood density is constant; (ii)
the flow is assumed to be incompressible and isothermal; (iii) blood is supposed to be Newtonian. Another
important issue is the relevance of using either a complex fluid-structure interaction model or a fluid model
(hence neglecting the interaction with the vessel wall). Intracranial veins are quite constrained in the brain,
thus they are considered as rigid.

The boundary conditions are: (i) inflow: a steady profile (constant velocity of small magnitude, due to
microcirculation exit); (ii) outflow: homogeneous natural conditions; (iii) lateral boundary: no-slip condition,
since walls are assumed to be rigid.

Taking into account all the previous hypotheses leads to consider the Navier-Stokes equations for modeling
the blood flow dynamics. As a first approximation, we solve instead the corresponding steady Stokes problem
with the same boundary conditions as those considered in the Navier-Stokes equations with a dynamic viscosity
of 3.5Kg.mm�3.
Concerning the Dirichlet boundary conditions on the inlet and the wall, there are two ways to impose them
(see Fig. 21). The first way is to first impose a constant velocity at the inlet and then a no-slip condition
(zero velocity) on the wall. In this case, the velocity is null on the wall and on the elements which are at the
intersection between the inlet and the wall sections of the boundary. The second way is to first impose the
no-slip condition on the wall and then to impose the constant velocity at the inlet, therefore the velocity is zero
on the wall, except for the elements which are at the intersection between the inlet and the wall sections of the
boundary where it is equal to the constant velocity imposed on the inlet section.

We run the Stokes problem on the realistic geometry and we take an initial inflow of 6000 mm3/s which
corresponds to an initial velocity of 28 mm/s. The areas of the input and output veins calculated by the two
libraries are identical, contrary to the flows. These data are described in Tab. 5 and are given in percentage
of the total area and total flow. On the one hand, we can notice for the two libraries that the total inflow
is preserved in the Inlet/Wall case but is significantly lower than the initial flow (respectively 5164 mm3/s
in FreeFem++ and 5406 mm3/s in Feel++). On the other hand, the total inflow is no longer preserved
in the Wall/Inlet but the inflow (�5985 mm3/s and �5987 mm3/s) and the outflow (6227 mm3/s and 6175
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Zero velocity
Constant velocity

INLET/WALL WALL/INLET

Figure 21. Di↵erent ways to impose the boundary conditions.

mm3/s) are closer than the initial flow. Finally, the inflows and outflows are very close in FreeFem++ and
Feel++ and regarding in percentage of the total flow, they are substantially equal. This would ensure a correct
simulations.

4.4. Comparison MRI simulation – Numerical simulations

MRI simulations were performed using JEMRIS [16] with constant flow computed from numerical simulations.
The input required in order to perform the simulations are the trajectories of a fixed number of particles, that
are the positions along the flow at each time step, for the whole MRI sequence duration. For constant and
pulsatile flow, a VTK [15] script was implemented to save the particle tracer of a sphere of point sources with
its corresponding computed velocity field.

We show below a simulated phase contrast image of constant flow obtained with JEMRIS (Fig. 22). About 19
000 spins trajectories were calculated on a time interval of 5s (700 MB of data) from numerical data calculated in
amount for constant flow with Feel++ and FreeFem++. We used a phase contrast sequence with resolution
128, matrix 180⇥30, TE of 8 ms, TR of 100 ms, Venc of 400 mm/s and Nex=1. Calculations took only 15
minutes with 20 CPU on Romeo supercomputer from Reims4.

This velocity image was then filtered with its corresponding signal magnitude image (Fig. 23). To do this,
we applied a mask to set to zero the pixels of the velocity map when the corresponding signal intensity in that
pixel was inferior to a fixed threshold value. Thus, only the significant values of velocity present in the phantom
geometry appear on the final image. We can notice an important lack of spins in the lower branch because of
the low number of flow particles traveling along that path.

The velocities measured in each branch give right order of magnitude compared to initial data calculated
with Feel++ and FreeFem++ (Tab. 6 and Fig. 24). However, the low resolution used for MRI simulation
lead to an averaging of the velocities in the voxels5 (partial volume e↵ect). This phenomenon lead to an
underestimation of the peak value in each branch of the phantom, as the values measured are averaged on
a wide range of velocities. This e↵ect is particularly severe in the thinnest branch, where the gradients of
velocities are very high inside a voxel, leading to an important underestimation, even more increased by the
lack of particles.

Those problems should be solved, in the future, by increasing the total number of particles (to increase
the number of spins in the lower branch) and by enhancing image resolution (in order to limit partial volume
e↵ects). This will lead, on the other hand, to an increase of data files volume and of total computation time.
Simulations of pulsatile flow will also be performed in short term works, but it will probably need to reuse the
same trajectories of a few number of cardiac cycles translated in time, in order to cover the whole MRI sequence
duration. Otherwise, the trajectories data volume could rapidly become prohibitive. Another step to improve
our simulations in the future will be to check the e↵ect of spatial and temporal spins density variations on the
quality of the velocity measured.

4https://romeo.univ-reims.fr/
5Voxel: 3D pixel.
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Flow Inlet/Wall Flow Wall/Inlet
Label Area (%) FreeFem++ (%) Feel++ (%) FreeFem++ (%) Feel++ (%)
Input

1 5.9 5.12 5.11 5.09 5.09
2 1.98 1.96 1.97 1.98 1.98
3 1.85 1.83 1.84 1.86 1.86
4 1.26 1.23 1.24 1.26 1.26
5 1.45 1.43 1.44 1.42 1.45
6 4.94 4.98 4.97 4.94 4.94
8 1.25 1.23 1.24 1.25 1.25
9 2.52 2.52 2.52 2.52 2.52
10 6.05 6.09 6.07 6.05 6.05
11 5.23 5.24 5.24 5.21 5.22
12 6.22 6.28 6.26 6.22 6.22
13 1.56 1.54 1.55 1.56 1.56
14 0.85 0.83 0.84 0.85 0.847
15 6.42 6.41 6.41 6.42 6.42
16 7.28 7.29 7.29 7.28 7.28
17 1.70 1.68 1.68 1.70 1.70
18 1.89 1.87 1.88 1.90 1.90
19 0.96 0.93 0.94 0.96 0.96
20 2.43 2.40 2.41 2.43 2.43
21 0.52 0.51 0.51 0.52 0.52
22 2.64 2.61 2.62 2.64 2.64
23 6.30 6.34 6.33 6.30 6.31
25 3.54 3.54 3.54 3.54 3.54
26 5.43 5.46 5.45 5.43 5.43
27 3.92 3.92 3.92 3.93 3.92
28 5.78 5.83 5.81 5.78 5.78
29 6.34 6.36 6.35 6.34 6.34
30 1.18 1.16 1.17 1.18 1.18
31 3.40 3.39 3.39 3.40 3.40

Total 214.85 �5163.93 �5405.517 �5984.6 �5987.07
mm2 mm3/s mm3/s mm3/s mm3/s

Output
7 45.08 69.18 69.1 69.19 69.2
24 54.92 30.82 30.9 30.81 30.8

Total 37.64 5163.78 5405.51 6227.29 6175.05
mm2 mm3/s mm3/s mm3/s mm3/s

Table 5. Comparison between flows in cerebral veins, calculated by FreeFem++ and Feel++.
These flows are given in percentage of total inflow and outflow.

5. Conclusion

The MRI–realistic geometry comparison shows qualitative di↵erences between real and MRI-measured diam-
eters of each part of the phantom. This study emphasizes the necessity of segmentation or threshold procedure
improvement for a physiological use.
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Figure 22. Above: Velocity map simulated with phase contrast sequence in JEMRIS. Below:
Superimposition of the simulated image with the phantom geometry. The remainder of the
image is noise due to air.

Figure 23. Above: Same image as Fig. 22, filtered with its corresponding magnitude image.
Below: The filtered velocity map matches well with the initial phantom geometry, but we can
notice a lack of particles in the lower branch.

Branch Feel++/ FreeFem++ JEMRIS
Inlet 80mm/s 70mm/s
Outlet 140mm/s 110mm/s

Upper branch 170mm/s 150mm/s
Lower branch 110mm/s 60mm/s

Table 6. Comparison of velocity peaks measured in the center of each branch with JEMRIS
vs Numerical simulations. In each branch, the low resolution used for MRI simulations lead to
an averaging and an underestimation of the peak velocity (type of partial volume e↵ect), par-
ticularly severe in the thinnest branch. This could be corrected with more particles trajectories
and higher resolution.
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Figure 24. Velocity profiles at the inlet and outlet sections measured with JEMRIS. Velocities
measured give a good order of magnitude compared to initial numerical simulations data but
we can observe an underestimation of velocity peak, due to low resolution and partial volume
e↵ects.

The Feel++–FreeFem++ comparison in the phantom shows a huge correlation between the computed
solutions. These kinds of comparison allow us to confirm the good agreement of the solution regarding to a
physiological use. The Feel++–FreeFem++–PC-MRI comparison shows qualitative agreement of the flow
in all the phantom. In the realistic geometry of the cerebral venous network, a good agreement of the solutions
is equally found between Feel++ and FreeFem++ results. However, geometrical errors shown in the first
part of the pipeline should not be neglected. For example, if a lower section is used to perform simulations, a
higher pressure will be calculated than the physiological one.

The JEMRIS – Feel++ FreeFem++ comparison with constant flow showed a good qualitative agreement
for the velocity profiles, but an underestimation of peak velocities. This should easily be corrected with more
particles trajectories and higher image resolution in the virtual MRI simulations.

To conclude, all the steps of the pipeline are developed and now, we have to adapt them for a realistic
geometry.
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Chapter 9

PCD preconditioner implementation

This chapter presents the implementation details of the pressure convection
diffusion preconditioner introduced in Section 4 of Chapter 4 in the Feel++
library. An operator framework was set up to handle the operations that we
can apply on the different operators retrieved from the block-structure of this
preconditioner. The call of the preconditioner as well as an example of a con-
figuration file are presented in the last section of this chapter.
The fundamental motivation of this implementation is that the PCD precon-
ditioner is not implemented in PETSc, and the only LSC version provided
by PETSc does not support the latest improvements of this preconditioners
in terms of boundary conditions brought in [49].
Feel++ relies on the PETSc, Portable, Extensible Toolkit for Scientific
Computation [11]. It is a large suite of data structures and routines for the
scalable (parallel) solution of scientific applications modeled by partial differen-
tial equations. It employs the MPI standard for parallelism. All of its features
are directly usable with the programming language C. The PETSc package is
designed around two main concepts, namely data encapsulation and software
layering. Feel++ supports the PETSc framework, the Environment takes care
of initializing the associated PETSc environment.
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1 Agebraic context

Our purpose is to solve the Navier-Stokes system (2.9), (2.10) preconditioned by the
PCD block preconditioner presented in chapter 4. Let us recall the algebraic form of the
problem written as follows:
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(9.1)

The preconditioned system to solve is AP�1Px = b, or equivalently

AP�1
y = b (9.2)

Px = y (9.3)

where
P = PPCD =
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, with A
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a discrete weighted Laplacian operator for the pressure space.

The action of the preconditioner PPCD on x =
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in equation (9.3) requires:

Algorithm 5 Application of the preconditioner
1: Solve Q
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3: Solve F
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4: return
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The solve in the first step of Algorithm 5 requires (i) the inverse of the mass matrix
Q

p

, (ii) he product of the retrieved vector with the matrix F

p

, (iii) applying the inverse
of the stiffness A

p

to the vector retrieved from the previous step.
This led us to develop an operator framework to handle the different operators involved

in the structure of the PCD preconditioner. We henceforth are able to (i) define an
operator, (ii) create the inverse operator, (iii) create a transpose operator, and (iv) to
be able to compose operators. Hence, the approximation of the Shur complement can be
easily written as: S = compose( Ap, compose(inv(op(G,"Fp")),Qp) );

2 Implementation

2.1 Backend
The Algebraic representations are handled in Feel++ using a so-called backend which
is a wrapper class that encapsulates several algorithms as well as data structures like
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vectors and matrices. It provides all the algebraic data structures behind function spaces,
operators and forms. In the case of linear functionals, the representation is a vector and,
in the case of linear operators and bilinear forms, the representation is a matrix. The
backend abstraction allows to write code that is independent of the libraries used in the
assembly process or to solve the linear systems involved, thus hiding all the details of that
algebraic part under the hood of the backend. Once a backend is set, the user can create
in a transparent way vectors and matrices to be used during the assembly process, as is
it shown is the following listing.

// allocates a sparse matrix based on the degrees of freedom of the
// trial functions space X

h

and the test functions space V
h

auto A = backend ->newMatrix( _trial=Xh, _test=Vh );

// allocates a vector based on the degrees of freedom of the
// test functions space V

h

auto b = backend ->newVector( _test=Vh );

There are two available backends that provide an interface to PETSc/SLEPc, see [11,
12, 74], and Trilinos, see [76, 77, 78, 75]. The user can choose any of them, bearing in
mind the tools and features available in each, such as parallelism, direct or iterative linear
system solvers or preconditioners for these systems. Once a backend is defined, say Backend
,! <Trilinos>, the user is free to manipulate objects such as vectors and matrices (from
the Epetra class, in this case), using most of the algebraic operations attainable from the
original library. The backend also provides interfaces to linear system solvers (direct or
iterative, with or without a preconditioner). The syntax for this function is illustrated in
the next listing. Similar interfaces exist for non-linear and standard/generalized eigenvalue
solvers.

// solve the linear system Au = F
backend -> solve( _matrix=A , _solution=u , _rhs=F );

2.2 Operator framework

The main ingredient of the operator framework is the OperatorMatrix class explained in
Listing 9.2. This class inherits from the OperatorBase parent class. In the following Listing
9.1, we show a reduced version of this class, only the public interface. Feel++ provide
a interface for the creation of new operators. The principle consists of loading a parent
class (here OperatorBase ) that contains a certain number of pure virtual methods that we
will define in the child class.

Listing 9.1: Define the base operators class.
template <typename T>
class OperatorBase
{

public:
typedef T value_type;
typedef typename Backend <value_type >:: solve_return_type

,! solve_return_type;
typedef DataMap datamap_type;
typedef boost:: shared_ptr <DataMap > datamap_ptrtype;
typedef boost:: shared_ptr <Preconditioner <T» pc_ptrtype;
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OperatorBase( datamap_ptrtype const& map , std:: string label ,
,! bool use_transpose , bool has_norminf )

:
M_domain_map( map ),
M_image_map( map ),
M_label( label ),
M_use_transpose( use_transpose ) ,
M_has_norminf( has_norminf )
{}
virtual ~OperatorBase () {};

//other constructors are also available
virtual void setUseTranspose(bool UseTranspose) { M_use_transpose =

,! UseTranspose; }

virtual int apply(const vector_type& X, vector_type& Y) const = 0;
virtual int applyInverse(const vector_type& X, vector_type& Y) const

,! = 0;

// \return true is transposed should be used , false otherwise

virtual bool useTranspose () const { return M_use_transpose; }

// more methods are also available in this class , we restrict the
,! list to those used in the sequel

};

Let us first start by describing the OperatorMatrix class that allows to define an oper-
ator, as seen in the constructor in Listing 9.3. This class (see Listing 9.2) inherits from
an OperatorBase class definedpreviously in Feel++, and is defined as follows:

Listing 9.2: Define the class of operators associated to matrix.
template <typename T>
class OperatorMatrix : public OperatorBase <T>
{
public:

// Create operator
OperatorMatrix(sparse_matrix_ptrtype const& F,std:: string _label ,

bool transpose = 0 )
:
OperatorBase <T>( F->mapColPtr (), F->mapRowPtr (), _label ,

transpose , true ),
M_F( F ),
M_xx(backend(_name=this ->label ())->newVector(F->mapRowPtr ())),
M_yy(backend(_name=this ->label ())->newVector(F->mapColPtr ()) ,
M_hasInverse( 1 ),
M_hasApply( 1 ),
M_closeMatrixRhs( true )

{
auto b = backend(_name=this ->label(),_rebuild=boption(

_name="backend.rebuild_op",_prefix=this ->label()));
}

//apply(X,Y)
int apply( const vector_type& X, vector_type& Y ) const
{

M_F ->multVector( X, Y );
Y.close();
return !hasApply ();

}
// apply the inverse of an
int applyInverse ( const vector_type& X, vector_type& Y ) const
{

*M_xx = X;
M_xx ->close ();
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bool cv;
if(!this ->M_pc)
{

this ->M_return = backend(_name=this ->label ())->solve(
_matrix=M_F , _rhs=M_xx , _solution=M_yy ,
_close=M_closeMatrixRhs );

cv = this ->M_return.isConverged ();
}
else
{

this ->M_return = backend(_name=this ->label ())->solve(
_matrix=M_F ,_rhs=M_xx , _solution=M_yy ,_prec=this ->M_pc ,
_close=M_closeMatrixRhs );

cv = this ->M_return.isConverged ();
}
Y=*M_yy;
Y.close();
return cv;

}
};

The following constructor allows to create an operator associated to a given matrix.
The Boolean passed in the arguments define whether we want to create the operator
associated to the matrix or to its transpose.

Listing 9.3: Create an operator.
template <typename MatrixType >
boost:: shared_ptr <OperatorMatrix <typename MatrixType ::value_type > >
op( boost:: shared_ptr <MatrixType > M, std:: string label ,

bool transpose = false )
{

return boost:: make_shared <OperatorMatrix <typename
MatrixType ::value_type > >(M,label ,transpose) ;

}

The following Listing 9.4 defines the OperatorCompose class and its constructor. As
its name indicates, this class allows to define the (F � G) operator from the F and G
operators.

Listing 9.4: Operator class to model the (F �G) operator.
template < typename op1_type , typename op2_type >
class OperatorCompose : public OperatorBase <typename op1_type ::

,! value_type >
{

typedef OperatorBase <typename op1_type :: value_type > super;
public:

typedef boost:: shared_ptr <op1_type > op1_ptrtype;
typedef boost:: shared_ptr <op2_type > op2_ptrtype;
typedef typename op2_type :: value_type value_type;

// This constructor implements the (F o G) operator
OperatorCompose( op1_ptrtype F, op2_ptrtype G )

:
super(G->domainMapPtr (),F->imageMapPtr (), F->label(),

F->useTranspose (),false),
M_F( F ),
M_G( G ),
M_ZG ( backend ()->newVector( M_G ->imageMapPtr () ) ),
M_ZF ( backend ()->newVector( M_F ->domainMapPtr () ) )

{
std:: string t( F->label() );
std:: string u( G->label() );
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t.append( "*" );
t.append( u );
this ->setLabel(t);
LOG(INFO) << "Create operator " << this ->label () << " ...\n";

}

template <typename Op1Type , typename Op2Type >
boost:: shared_ptr <OperatorCompose <Op1Type ,Op2Type > >
compose( boost:: shared_ptr <Op1Type > op1 , boost:: shared_ptr <Op2Type >

,! op2 )
{
return boost:: make_shared <OperatorCompose <Op1Type ,Op2Type > >(op1 ,op2);

}

Finally, Listing 9.8 corresponds to the OperatorInverse class that inherits from the
OperatorBase mother class. This class allows the creation of an inverse operator.

Listing 9.5: Operator class to model an inverse operato.r
template < typename operator_type >
class OperatorInverse : public OperatorBase <typename operator_type ::

,! value_type >
{

typedef OperatorBase <typename operator_type ::value_type > super;
public:

typedef boost:: shared_ptr <operator_type > operator_ptrtype;
typedef typename operator_type :: value_type value_type;

// This constructor implements the F^-1 operator
OperatorInverse( operator_ptrtype& F )

:
super( F->imageMapPtr (), F->domainMapPtr (), F->label (),

F->useTranspose (), false ),
M_F( F )

{
this ->setName ();

}

OperatorInverse( const OperatorInverse& tc )
:
super(tc),
Copy inverse operator
M_F( tc.M_F )

{}

bool hasInverse () const { return M_F ->hasApply (); }

bool hasApply () const
{

return M_F ->hasInverse ();
}

int apply( const vector_type & X, vector_type & Y ) const
{

CHECK(hasApply ())<<"Operator"<<this ->label ()<<"not applied";
M_F ->applyInverse( X,Y );
return !hasApply ();

}
//apply Inverse matrix
int applyInverse ( const vector_type& X, vector_type& Y ) const
{

CHECK(hasInverse ())<<"Operator"<<this ->label ()<<"not inverted";
CHECK(M_F)<<"Invalid operator "<< this ->label()<<"to inverse";
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M_F ->apply( X,Y );

return !hasInverse ();
}

private:

operator_ptrtype M_F;

void setName ()
{

std:: string L = M_F ->label ();
L.append( ")" );
std:: string temp( "inv(" );
temp.append( L );
this ->setLabel(temp);

}
};

2.3 Sub-matrix extraction
Now that we have all the operator ingredients well defined, we can start with extract-
ing the matrix blocks B

T and F

u

from the global matrix A needed in Steps 2. and
3. of Algorithm 5, respectively. Then define the corresponding operators in a second
time. These submatrices are extracted by using the Feel++ function, the so-called
createSubmatrix, an interface for the MatCreateSubMatrix function of PETSc. The
input parameters required for this function include the index sets for rows and columns
corresponding to the submatrices in the initial matrix. The Listing 9.6 illustrates the
examples of submatrices extraction in Feel++.

Listing 9.6: Extraction of submatrices.
// create submatrices Fu and BT from the global matrix A
M_F = this ->matrix ()->createSubMatrix(M_Vh_indices ,M_Vh_indices ,true );
M_F ->mapRowPtr ()->setIndexSplit( M_Vh ->dof()->indexSplit () );
M_Bt = this ->matrix ()->createSubMatrix( M_Vh_indices , M_Qh_indices );
// define the corresponding operators
helmOp = op( M_F , "Fu" );
divOp = op( M_Bt , "Bt");

Remark 27. Note that we chose to have a special treatment to the F

u

, that is extracting
the x, y and z components of the matrix and apply a special preconditioner for each
component-block, that is why we can see the IF block in the previous listing.

2.4 Block preconditioners framework
Listing 9.7 is the constructor of the class PreconditionerBlockNS. The first argument defines
the block preconditioner type we want to use. Note that this framework handles the PCD
preconditioner, the PMM preconditioner as well as the SIMPLE preconditioner. The
constructor also needs to initialise the function spaces, the boundary conditions of the
global problem in order to associate the corresponding boundary conditions for the Ap

and F

u

sub-problems (see section 4.1). It also requires the global matrix from which we
are going to extract the F

u

and B

T blocks, and the density and viscosity of the fluid.
The alpha parameter is a Boolean that defines whether the problem is time dependent or
independent, or in other terms if there is or not a mass matrix.
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Listing 9.7: PreconditionerBlockNS constructor.
template <typename MuExprT , typename RhoExprT , typename AlphaExprT >
PreconditionerBlockNS( std:: string t, //PCD , PMM , SIMPLE

space_ptrtype Xh,
properties_space_ptrtype Ph,
BoundaryConditions bcFlags ,
std:: string const& s,
sparse_matrix_ptrtype A,
MuExprT mu,
RhoExprT rho ,
AlphaExprT alpha );

The following Listing 9.8 shows the update function of the PreconditionerBlockNS class.
Besides setting the mu, rho and alpha parameter values, the main ingredients of this
function are the call of the createSubMatrices function and the update of the PCD operator.
The later is detailed in Listing 9.9.

Listing 9.8: The preconditioner update function.
template < typename SpaceType , typename PropertiesSpaceType >
template < typename Expr_convection , typename Expr_bc ,

typename MuExprT , typename RhoExprT ,
typename AlphaExprT >

void PreconditionerBlockNS <SpaceType ,PropertiesSpaceType >::
update( sparse_matrix_ptrtype A, Expr_convection const& expr_b ,

Expr_bc const& g,
MuExprT mu,
RhoExprT rho ,
AlphaExprT alpha ,
bool hasConvection ,
double tn, double tn1 )

{
this ->setMatrix( A );
this ->createSubMatrices ();

this ->setMu(mu);
this ->setRho(rho);
this ->setAlpha(alpha);

pcdOp ->update( expr_b , g, hasConvection , tn, tn1 );

}

Listing 9.9 is the update PCD operator function. In this function we update the bilinear
form associated to the F

p

problem and we set the appropriate boundary conditions for
this sub-problem depending on which boundary conditions are set for the global problem
(see section 4.1).
The PCD operator is then updated using the compose, and inv features of the operator
framework.
Note that for setting the boundary conditions for the F

p

problem we chose to act directly
on the matrix (strong Dirichlet conditions). We made the choice of doing a symmetric
elimination and keeping the value on the diagonal instead of replacing it with 1 so that
the spectrum of the matrix doesn’t change.

Listing 9.9: The update function of a PCD type operator.
template < typename space_type , typename PropertiesSpaceType >
template < typename ExprConvection , typename ExprBC >
void
OperatorPCD <space_type , PropertiesSpaceType >::

update( ExprConvection const& expr_b , ExprBC const& ebc ,
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bool hasConvection , double tn ,double tn1 )
{

double time_step = M_accel?tn1 -tn:1; // if time adaptation
// OperatorPCD :: update apply diffusion
form2_conv = integrate( _range=elements(M_Qh ->mesh()),

_expr=idv(*M_mu)*gradt(p)*trans(grad(q)));
// OperatorPCD :: update apply convection
form2_conv += integrate( _range=elements(M_Qh ->mesh()),

_expr=( trans(expr_b)*trans(gradt(p)))*id(q));
// Setting Robin condition at the inlet
for( auto dir : M_bcFlags[M_prefix ]["Dirichlet"])

if ( ebc.find( dir.marker () ) != ebc.end() )
form2_conv += integrate(

_range=markedfaces(M_Qh ->mesh(), dir.meshMarkers ()),
_expr=-idv(*M_rho)*trans(ebc.find(dir.marker ())->

second)*N()*idt(p)*id(q));

// if neumann bc for velocity problem at the outlet , then apply
// Dirichlet condition for pressure problem at the outlet
if ( soption("blockns.pcd.outflow") == "Dirichlet" )

for( auto cond : M_bcFlags[M_prefix ]["Neumann"])
{

form2_conv += on( markedfaces(M_Qh ->mesh(),
cond.meshMarkers ()), _element=p, _rhs=rhs , _expr=cst (0.),
_type="elimination_keep_diagonal" );

}
this ->applyBC(G);
static bool init_G = false;
// setting pcd operator
if ( !init_G )
{ // Ap Fp^-1 Qp

precOp = compose( diffOp , compose(inv(op(G,"Fp")),massOp) );
init_G = true;

}
}

The diffOp and massOp are defined in Listings 9.10 and 9.11, respectively. Note that for the
diffusion operator construction, we can either choose the explicit definition A

p

= BQ

�1

u

B

T

(blockns.pcd.diffusion == "BTBt" option) or consider it as a discrete weighted Laplacian
operator on the pressure space, and hence assemble the matrix (blockns.pcd.diffusion ==
,! "Laplacian") option.

Listing 9.10: Assemble diffusion function.
template < typename space_type , typename PropertiesSpaceType >
void
OperatorPCD <space_type , PropertiesSpaceType >:: assembleDiffusion ()
{

if ( soption("blockns.pcd.diffusion") == "Laplacian" )
{

auto d = form2( _test=M_Qh , _trial=M_Qh , _matrix=M_diff );
d = integrate( _range=elements(M_Qh ->mesh()), _expr=gradt(p)*

,! trans(grad(q)));
for( auto cond : M_bcFlags[M_prefix ]["Neumann"])
{

d += on( markedfaces(M_Qh ->mesh(),cond.meshMarkers ()),
,! _element=p, _rhs=rhs ,

_expr=cst (0.), _type="elimination_keep_diagonal
,! " );

}
M_diff ->close ();

}
if ( soption("blockns.pcd.diffusion") == "BTBt" )
{
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std::vector <size_type >M_Vh_indices(M_Vh ->nLocalDofWithGhost ());
std::vector <size_type >M_Qh_indices(M_Qh ->nLocalDofWithGhost ());
std::iota( M_Vh_indices.begin (), M_Vh_indices.end(), 0 );
auto m = form2( _test=M_Vh , _trial=M_Vh );
m = integrate( elements(M_Vh ->mesh()), trans(idt(u))*id(v) );
m.matrixPtr ()->close ();
auto d = M_b ->newVector( M_Vh );
M_b ->diag( m.matrixPtr (), d );
d->reciprocal ();
M_b ->diag( d, M_massv_inv );
M_massv_inv ->close();
M_b ->PtAP( M_massv_inv , M_Bt , M_diff );
M_diff ->close ();
if ( Environment :: numberOfProcessors () == 1 )

M_diff ->printMatlab( "BTBt.m" );
}

diffOp = op( M_diff , "Ap" );
}

Listing 9.11: Assemble diffusion function.
template < typename space_type , typename PropertiesSpaceType >
void
OperatorPCD <space_type , PropertiesSpaceType >:: assembleMass ()
{

auto m = form2( _test=M_Qh , _trial=M_Qh , _matrix=M_mass );
m = integrate( elements(M_Qh ->mesh()), idt(p)*id(q) );
M_mass ->close ();
massOp = op( M_mass , "Mp" );

}

The application of the so-constructed preconditioner is done during the call of the
applyInverse function of the PreconditionerBlockNS class detailed in Listing 9.12. We first
apply the inverse of the Schur complement, (Step 1 of Algorithm 1), the retrieved pressure
is stored in vector Mpout. We then apply the divergence operator B

T on the computed
pressure Mpout, the resulted vector Mvout is stored in an auxiliary vector Maux (Step 2 of
Algorithm 1). We finally apply the inverse of the F

u

matrix-operator on the Maux vector
to retrieve the velocity unknown vector stored in Mvout. We end up with updating the
velocity and pressure elements.

Listing 9.12: ApplyInverse function.
template < typename SpaceType , typename PropertiesSpaceType >
int PreconditionerBlockNS <SpaceType ,PropertiesSpaceType >::

applyInverse ( const vector_type& X, vector_type& Y ) const
{

U = X;
U.close();
*M_vin = U.template element <0>();
M_vin ->close();
*M_pin = U.template element <1>();
M_pin ->close();
*M_aux = *M_vin;
M_aux ->close();

// Apply S*^-1
pcdOp ->applyInverse( *M_pin , *M_pout );
M_pout ->scale (-1);
M_pout ->close ();

// Apply B^T
divOp ->apply( *M_pout , *M_vout );
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M_aux ->add( -1.0, *M_vout );
M_aux ->close();

// Apply Fu^-1
helmOp ->applyInverse (*M_aux , *M_vout);

// Update output velocity/pressure
U.template element <0>() = *M_vout;
U.template element <1>() = *M_pout;
U.close();
Y=U;
Y.close();
return 0;

}

In the following listing 9.13, we show an example of the PCD preconditioner call. The
blockns constructor is called after assembling the bilinear and the linear form and is given
during the call of the solve function under the argument _prec.

Listing 9.13: Example of a call for the PCD preconditioner.
constexpr int dim = FEELPP_DIM;
constexpr int order_p= FEELPP_ORDER_P;
auto mesh = loadMesh(_mesh=new Mesh <Simplex <dim > >);
auto Vh = THch <order_p >( mesh );
auto U = Vh ->element ();
auto V = Vh ->element ();
auto u = U.element <0>();
auto v = V.element <0>();
auto p = U.element <1>();
auto q = V.element <1>();
BoundaryConditions bcs;
// define a map for the boundary condition
map_vector_field <dim ,1,2> m_dirichlet {

bcs.getVectorFields <dim > ( "velocity", "Dirichlet" ) };
// define the bilinear form
auto at = form2( _trial=Vh , _test=Vh);

// Assemble the bilinear and the linear forms and set BC
...

// define the linear form
auto l = form1( _test=Vh );
// setting up preconditioner Blockns
auto a_blockns = blockns( _space=Vh ,

_properties_space=Pdh <0>(Vh->mesh()),
_type=soption("PCD"),
_bc=bcs , _matrix= at.matrixPtr (),
_prefix="velocity" );

a_blockns ->update( at.matrixPtr (), zero <dim ,1>(), m_dirichlet );
//solve
at.solveb(_rhs=l,_solution=U,_backend=backend(_name="stokes"),

_prec=a_blockns);

2.5 Definition of the problem and configuration file
The problem physical parameters, the backends options as well as the geometry details,
and the boundary conditions are handled and set in a configuration file. Listing 9.14 shows
an example of a configuration file for a 2D Navier-Stokes problem using the Feel++ in-
house PCD preconditioner. The Navier-Stokes problem is initialised by doing a Stokes
solve, hence the Stokes backend. For this problem, a suitable preconditioner is the PMM
preconditioner. As for the Navier-Stokes solve (ns backend) we again used the in-house
PCD preconditioner that have the advantage of handling the new boundary conditions
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improvements [49] with respect to the PETSc version of the PCD preconditioner. In this
example, we used the multigrid GAMG for the A

p

and Q

p

subproblems. As for F

u

we
used Fieldsplit coupled with BJacobi (additive option) to extract the component of the F

u

matrix and be able to apply a special treatment on each component problem. Here again
we used GAMG. We chose a 1 level of smoothing and set to off the gamg-set-sym-graph
option because sometimes not having a symmetric graph can accelerate the convergence.
As for the pc-gamg-threshold option, it determines the amount of edges that are going to
be dropped when constructing the aggregation graph. If it is set to 0, no edge is dropped.
The higher the value of this option gets, the more edges are going to be dropped, the
coarser the graph is going to be. Hence, the construction of the graph will be faster but
the convergence may deteriorate.

Listing 9.14: Example of a configuration file.
mu=1
rho=1
alpha=1

bc -file=bcFile.bc

[functions]
g={y*(1-y) ,0}:y
h={0,0}

[blockns.pcd]
//CL at inflow of pressure
inflow=Robin
//CL at outflow of pressure
outflow=Dirichlet

[Ap] // diffusion operator
reuse -prec=true
pc -type=gamg
ksp -monitor =1
pc -gamg -type=agg
pc -gamg -agg -nsmooths =1
pc -gamg -threshold =1e-4
pc -gamg -set -sym -graph=false
ksp -rtol=1e-9
ksp -maxit =300

[Fu] // velocity convection diffusion operator
pc -type=fieldsplit
ksp -rtol=1e-9
ksp -monitor =1
fieldsplit -use -components =1
fieldsplit -type=additive

[Fu.fieldsplit -0] //x component
pc -type=gamg
ksp -type=preonly
pc -gamg -type=agg
pc -gamg -agg -nsmooths =1
pc -gamg -threshold =1e-4
pc -gamg -set -sym -graph=false
ksp -rtol=1e-9

[Fu.fieldsplit -1] //y component
pc -type=gamg
ksp -type=preonly
pc -gamg -type=agg
pc -gamg -agg -nsmooths =1
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pc -gamg -threshold =1e-4
pc -gamg -set -sym -graph=false
ksp -rtol=1e-9

[Mp] // pressure mass matrix
reuse -prec=true
pc -type=gamg
ksp -monitor =1
pc -gamg -type=agg
pc -gamg -agg -nsmooths =1
pc -gamg -threshold =1e-4
pc -gamg -set -sym -graph=false
ksp -rtol=1e-9
ksp -maxit =300

[stokes] // stokes problem backend
preconditioner=PMM
ksp -rtol=1e-6#1e-10
ksp -monitor =1
ksp -type=gcr
ksp -use -initial -guess -nonzero=false
gcr -restart =100

[ns] //NAvier -Stokes problem backend
preconditioner=PCD
ksp -rtol=1e-6#1e-10
ksp -monitor =1
ksp -type=gcr
ksp -use -initial -guess -nonzero=false
gcr -restart =100

[gmsh]
hsize =0.1
filename=file.geo

Finally, the boundary conditions are handled in a json (JavaScript Object Notation)
file described in Listing 9.15. json is an open-standard format that uses human-readable
text to transmit data objects consisting of attribute–value pairs.

Listing 9.15: Example of a json file defining boundary conditions.
{

"velocity":
{

"Dirichlet":
{

"inlet":
{

"expr":"{3*16*y*(1-y)*z*(1-z)/2,0,0}:y:z"
},
"wall":
{

"expr":"{0,0,0}"
}

},
"Neumann":
{

"outlet":
{}

}
}

}
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As we can see, the use of the configuration files and json files makes it easy for a user to
change the problem dimension, i) the finite elements order, ii) the geometry approxima-
tion order, iii) the geometry, iv) the boundary conditions expressions, as well as v) the
physical parameters values, and vi) the backends options without having to modify the
code and thus recompiling it. Hence, the code can be generic and easily adapted to any
kind of problem. Besides, the parallelism is hidden, the user have only to precise the
CPU units needed while lunching the application, and it will run on the desired number
of processors.

Conclusion

As seen in Chapter 7, the Pressure Convection Diffusion preconditioner is one of the best
suited block-preconditioners for the Navier-Stokes equations. As it is not implemented in
PETSc on which Feel++ relies for the systems resolution, we have implemented this
preconditioner in Feel++. In this chapter we have seen the implementation details of
this preconditioner, and how it can be easily called by the user. We described the operator
framework implementation, the matrix extraction feature, and the block-preconditioners
framework. We also emphasized the seamless parallelism, the code genericity via an ex-
ample of a configuration file handling all the options, parameters and linked files.
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At the beginning of this thesis, the main objective was to develop a reduction method
for the 3D Navier-Stokes equations in order to decrease the heavy cost that usually arise
when trying to perform a 3D simulation of the circulatory system that takes into account
the interaction between the fluid and the structure. To reach this end, we needed to vali-
date and verify our numerical model first, in terms of i) convergence analysis with respect
to different kinds of boundary conditions, and ii) comparison with respect to experimental
data.
The FDA benchmark provided a well detailed test case, and experimental data were avail-
able online for CFD validation. This benchmark was however very challenging to perform.
It required a high accuracy and hence a heavy cost in terms memory and run time due
to the increasing size of the problem with higher Reynolds numbers. The basic iterative
solvers were no longer suitable, for they do not scale with such big problems. This pushed
us to investigate on a suitable preconditioning strategy that takes into consideration the
physiology of the flow and can scale with a HPC.
Block-preconditioners such as PCD, LSC and SIMPLE were therefore our choice of precon-
ditioning strategy. They were tested over the backward facing step as shown in Chapter
8. While SIMPLE did not converge because of the steady state of the problem, LSC and
PCD showed an independence to the mesh size and the Reynolds number. We therefore
implemented the PCD preconditioner in the Feel++ library because it is not provided
by PETSc. We also made use of the high order finite element approximation — feature
available in Feel++— to also prove the independency of LSC and the in-house imple-
mented PCD preconditioners from the increase of the finite elements order, point that
was never studied before in the literature. The in-house PCD preconditioner was then
used to perform the transitional and turbulent regimes of the FDA benchmark. A perfect
agreement was shown between the experimental data and the CFD output data as shown
in the second section of Chapter 8. This work on the scalability analysis of the PCD and
LSC preconditioner and its application to the FDA benchmark was presented during the
SIMRACE 2015 conference in Paris [33]. It is the object of a soon submitted publication.

Interesting ideas about improving the PCD preconditioner could be tested in the fu-
ture.
Instead of replacing the exact Schur complement S = BF

�1

u

B

T in PCD preconditioner
by its approximation S

⇤
= QpF

�1
p Ap to reduce the cost of inverting F

u

, an idea could be
to keep the exact Schur complement S and invert using S

⇤ as a preconditioner. Another
idea could be to precondition S

⇤ using another approximation of the Schur complement
approximation S

⇤⇤
= approx(Qp)F

�1
p approx(Ap). This second method could accelerate

the convergence of the preconditioner.The advantage of this two new approaches could
be to use a low order approximations S

⇤ or S

⇤⇤ to precondition a high order exact Schur
complement.

As for the convergence analysis with respect to different kind of boundary conditions,
the results shown in Chapter 6 were published in the proceeding of the CEMRACS 2012
[30]. More physiological boundary conditions needs to be also studied in the future, es-
pecially the 3D-1D or 3D-0D coupling [55, 56, 138, 133, 57, 150, 39, 127, 129, 113, 93, 115].

Concerning the approximation of the stress tensor, to the best of our knowledge, no
estimates on the high order geometry approximation are available in the literature. A
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theoretical investigation must be carried on to confirm or reject the numerical results
presented in Chapter 7. A natural outlook is to test the volumic method on the coupling
of the fluid and the structure problems in a FSI simulation.

In a different context, I participated during the CEMRACS 2015, with my colleagues
in the ANR project VIVABRAIN, to the validation of a pipeline that goes from real MRI
data acquisition to simulated MRI. The validation process rely on i) accessing the reli-
ability of the segmentation techniques: compare the realistic geometry, knowing exactly
its shape, with MRI segmentations, obtained by a simple threshold and by the classical
method of snake, ii) accessing the reliability of the CFD simulation by first comparing
the outputs of two identical simulations using Feel++ in the first and Freefem++ in the
second, then comparing the outputs of the Feel++ and Freefem++ simulations to the
MRI measurements on an idealised device (the phantom device) and on the cerebrovenous
network, iii) accessing the reliability of the MRI simulation by comparing the simulated
phase and magnitude images to the realistic geometry on one hand and to the MRI ac-
quisitions on the other hand.
The MRI–realistic geometry comparison shows qualitative differences between real and
MRI-measured diameters of each part of the phantom. This study emphasizes the neces-
sity of segmentation or threshold procedure improvement for a physiological use.
The Feel++/ FreeFem++ comparison in the phantom shows a good agreement be-
tween the numerical libraries outputs. Such a comparison allows us to confirm the good
correlation between the solution regarding to a physiological use. While a Feel++/
FreeFem++/ PC-MRI comparison shows a sufficiently fair agreement in all the phan-
tom, a dissimilar distribution between the two libraries of the flow in the branches is how-
ever observed and deserves to be investigated. In the realistic geometry of the cerebral
venous network, a good agreement is equally found between Feel++ and FreeFem++
results. We are however conscious that the boundary conditions used, although the closer
to the physiological reality, don’t reproduce the desired flow behaviour, the mismatch
with the experimental flow rate being an argument in this direction.
As for the JEMRIS / Feel++ FreeFem++ comparison with constant flow showed a
good qualitative agreement for the velocity profiles, but an underestimation of peak ve-
locities. This can be easily corrected with more particles trajectories and higher image
resolution in the virtual MRI simulations.
Few more points need to be checked in order to complete all the validation process. A
comparison of the output data of the CFD simulation in the exact geometry need to be
compared with the output of the CFD simulation in the 3D mesh retrieved from the seg-
mented geometry obtained from the MRI acquisition of the physical phantom. Another
track that can be interesting to investigate on is the accuracy of the MRI acquisition,
task that was not studied in our validation process. In fact, in order for our work to be
relevant, it is important to establish an uncertainty quantification of our pipeline frame-
work. This point is particularly relevant to the physical phantom since in this case we
possess exact data in terms of geometry details and physical flow magnitudes. A special
care needs to be given while acquiring experimental data

Going back to the main objective of this thesis, we had a lot of ideas that we didn’t
have the time to check due to lack of time. The previously detailed issues took more
time than expected. After reproducing the results of [111], the idea was to use a reduce
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basis framework to predict offline the velocity and pressure profiles on the radial section,
and then perform the mono-dimensional model using the so retrieved profiles to enrich
the velocity and pressure basis of the reduced problem. With this strategy more complex
geometries could be used in the framework introduced in [111] whose limitations were
that in complex geometries it is difficult to predict the velocity profile.
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