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Improving Student Model for Individualized Learning
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Computer-based educational environments, like Intelligent Tutoring Systems (ITSs), have been used to enhance human learning. These environments aim at increasing student achievement by providing individualized instructions. It has been recognized that individualized learning is more effective than the conventional learning. Student models which are used to capture student knowledge underlie the individualized learning. In recent decades, various competing student models have been proposed. However, some diagnostic information in student behaviors is usually ignored by these models. Furthermore, to individualize student learning paths, student models should capture prerequisite structures of fine-grained skills. However, acquiring skill structures requires much knowledge engineering effort. We improve student models for individualized learning with respect to the two aspects.

On one hand, in order to improve the diagnostic ability of a student model, we introduce the diagnostic feature-student error patterns, in order to more precisely distinguish student behaviors. Student erroneous responses to multiple choice items are recognized. To deal with the noise in student performance data, we extend a sound probabilistic model to incorporate the erroneous responses. The results of our experiments show that the diagnostic feature improves the prediction accuracy of student models.

On the other hand, we target on discovering prerequisite structures of skills from student performance data. It is a challenging task, since student knowledge of a skill is a latent variable. We propose a two-phase method to discover skill structure from noisy observations. In the first phase, we infer student knowledge from performance data. Due to the noise in student behaviors, student knowledge states are probabilistic. In the second phase, we extract the skill structure from the estimated probabilistic knowledge states by using the probabilistic association rules mining technique. Our method is validated on simulated data and real data.

In addition, we verify that prerequisite structures of skills can improve the accuracy of a student model.

Résumé

Les Environnements Informatiques pour l'Apprentissage Humain (EIAH) ont été utilisés pour améliorer l'apprentissage humain. Ces environnements visent à accroître la performance des élèves en fournissant un enseignement individualisé. Il a été reconnu que l'apprentissage individualisé est plus efficace que l'apprentissage classique. L'utilisation de modèles d'étudiants pour capturer les connaissances des élèves sous-tend l'apprentissage individualisé.

Au cours des dernières décennies, différents modèles d'étudiants concurrents ont été proposés.

Toutefois, une partie des informations de diagnostic issues du comportement des élèves est généralement ignorée par ces modèles. En outre, pour individualiser les parcours d'apprentissage des élèves, les modèles d'étudiants devraient capturer les structures préalables de compétences. Toutefois, l'acquisition de structures de compétences nécessite beaucoup d'efforts d'ingénierie de la connaissance. Nous améliorons les modèles d'étudiants pour l'apprentissage individualisé selon deux aspects. D'une part, afin d'améliorer la capacité de diagnostic d'un modèle de l'élève, nous introduisons une fonction de diagnostic, les motifs d'erreur d'étudiants, qui permettent de distinguer plus précisément le comportement des élèves. Les réponses erronées des élèves aux questions à choix multiples sont reconnues. Pour traiter le bruit dans les données de performance des élèves, nous étendons un modèle probabiliste robuste en y intégrant les réponses erronées. Les résultats de nos expériences montrent que la fonction de diagnostic permet d'améliorer la précision de la prédiction des modèles d'étudiant. D'autre part, nous cherchons à découvrir des structures de compétences préalables à partir des données de performance de l'élève. C'est une tâche difficile, car les connaissances des élèves constituent une variable latente. Nous proposons une méthode en deux phases pour découvrir la structure des compétences à partir d'observations bruitées. Dans la première phase, nous déduisons les connaissances des élèves à partir des données de performance. En raison du bruit dans les comportements des étudiants, les états de connaissance de l'étudiant sont probabilistes. Dans la deuxième phase, nous découvrons la structure des qualifications à partir des états de connaissance probabilistes, estimés en utilisant la technique de l'extraction de règles d'association probabilistes. Notre procédé est validé en l'appliquant à des données simulées et des données réelles. En outre, nous vérifions que les structures préalables de compétences permettent d'améliorer la précision d'un modèle d'étudiant.
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Besides ITSs, some other computer-based learning environments also receive much interest.

Educational games or serious game is another kind of environments, which is based on the psychological needs of learning by providing enjoyment, motivation, emotion etc. They are the games designed to teach users or help users to learn specific subjects and skills. A recently emerging educational environment is the Massive Open Online Courses (MOOCs), which are the online courses aiming at unlimited participation and open access via web. The MOOCs integrate the traditional course materials such as filmed lectures, readings and problem sets and interactive user forums into a web platform.

No matter in which educational environments, the instructors and researchers tends to know whether students learn these contents, which fine-grained skills students have learned or not, the difficulties for each student. Besides the knowledge information, some researchers are also interested in student behavioral characteristics, e.g. emotion. All the information is provided by a student model, which underlies individualized learning/instructions and adaptive assessments. It is believed that the best way to improve the efficiency and achievement of learning is the individualized learning [START_REF] Brusilovsky | Adaptive and intelligent web-based educational systems[END_REF][START_REF] Desmarais | A review of recent advances in learner and skill modeling in intelligent learning environments[END_REF]). Students do not waste time to deal with too difficult problems or repeat to learn the content that has been learned. To realize the individualized learning, an accurate student model is required.

Individualized Learning

Individualized learning, or individualized instruction, is a tutoring method where learning contents, instructional strategies and paces of learning are selected based on the abilities and preferences of each individual student. As mentioned above, the individualized learning is regarded as an efficient way to improve learning achievement. It is also the general goal for a lot of educational environments, like ITSs. The individualization can be in many different aspects, such as student knowledge, learning characteristics, affective states, etc. Student knowledge is most commonly used for individualization. Students with different knowledge levels should be recommended to different learning contents. If the uniform learning contents are provided for all the students, expert students might waste time to repeat to learn the content too easy for them, whereas novice students might feel frustrated to advance their learning as the contents are too difficult for them.

Besides student knowledge, some other kinds of student characteristics for individualization receive a lot of interest. One commonly investigated characteristic is the learning style, which are the modes of perception and cognition with which individuals prefer to learn. Some students are visual learners, in other words, they learn best through images, colors, maps to organize learning activities; some are auditory learners; and others are tactile learners. Some tutoring systems [START_REF] Parvez | A pedagogical framework for integrating individual learning style into an intelligent tutoring system[END_REF]) integrated individual learning styles to be more adapted by presenting activities in the form best suited to student needs. Other common characteristics are student affective states and engagement levels. Some tutoring systems [START_REF] Lehman | What Are You Feeling? Investigating Student Affective States During Expert Human Tutoring Sessions[END_REF][START_REF] Robison | Evaluating the consequences of affective feedback in intelligent tutoring systems[END_REF]) provide the adapted feedback in response to an individual student's affective state and engagement level. In this thesis, we only focus on the issues with respect to student knowledge.

A principle issue for individualized learning is what kind of learning contents should be recommended to a specific student. Intuitively, the learning contents should be neither too difficult nor too easy for the student. In fact, this is supported by the psychological theory of the zone of proximal development [START_REF] Vygotsky | Mind in society: The development of higher psychological processes[END_REF]. Vygotsky stated that a child gradually develops the ability to do certain tasks without help. The learning objectives or tasks are categorized into three levels. The first level contains the learning tasks that a student can do without assistance. The second level contains those that a student can do with assistance or guidance, which is exactly the zone of proximal development. The third level contains those that a student cannot do. And students should be given the experiences that are within their zones of proximal development, thereby encouraging and advancing their individual learning.

By complying with this theory, some strategies for individualization can be designed.

Individualized learning relies on a student model. The more precisely a student model distinguishes students the better the individualization can be designed. The ideal case is that each individual student is identified and the recommended contents can be matched exactly to the needs of the student. The accuracy of a student model affects the efficiency of individualized learning. The accuracy reflects how close a student's knowledge estimated by a model to his/her real knowledge (see more detailed in section 1.3). The more accurate a student model is, the better the recommended contents match to the needs of students. In an ITS, student modeling and individualization are used alternately during student learning. The individualized activities are selected for a student according to his/her knowledge estimated by a student model. The student performs on the learning activities. Then the student model is used to update student knowledge according to their performance on the activities. Again, the new activities can be individualized based on the updated knowledge.

Distinct strategies of individualization are used for distinct student models. Various student models will be introduced in Chapter 2. No matter which model is used, the underlying idea behind individualization is consistent with the theory of zone of proximal development. It is also in accordance with the Computerized Adaptive Testing (CAT) [START_REF] Wainer | Computerized adaptive testing: A primer[END_REF] which is based on a sound psychometric theory-Item Response Theory (IRT) [START_REF] Lord | Applications of item response theory to practical testing problems[END_REF].

It tailors the difficulty of test items to students' ability. Both the item difficulty and student ability are represented by a continuous variable (see more details in Chapter 2). Even though the IRT is proposed for the CATs, it can be equivalently used for learning. For individualized learning, we can select an activity with a difficulty level suitable for the student ability.

To more precisely distinguish students, the erroneous behaviors provide diagnostic information. Different erroneous behaviors reflect different knowledge biases. If the tutoring systems can recognize the knowledge biases for each individual student, the targeted instructions and activities can be provided to repair student knowledge. The diagnostic feedback is very useful to enhance student learning. This is supported by a cognitive science theory-Repair Theory [START_REF] Brown | Repair theory: A generative theory of bugs in procedural skills[END_REF], which explains how people learn procedural skills as well as how and why they make mistakes. The systematic errors are what reoccur regularly in a particular student's learning. They are different from the "slips" or random mistakes. The systematic errors can be recognized and predicted. The Repair Theory assumes that students primarily learn procedural tasks by induction and that systematic errors occur because of biases that are introduced in the examples provided or the feedback received during practice. Let us look into an example from [START_REF] Vanlehn | Mind bugs: The origins of procedural misconceptions[END_REF]. If a student learns subtraction with two digit numbers, and then the following problem is given to the student: 365-109=?. They are likely to generate a new rule for borrowing from the left column. Unlike a two digit problem, the left adjacent and the left most column are different. To resolve this bias, the students need to repair their current rule "Always-Borrow-Left" by making it as "Always-Borrow-Left-Adjacent". Eliminating knowledge biases has an important implication for individual learning. Recognizing student erroneous behaviors for individualization requires much knowledge engineering effort. And a student model is required to transfer student erroneous behaviors to knowledge biases. Moreover, the instructions or activities for eliminating a specific knowledge bias should be designed. If all of them have been done, when a systematic error is detected during a student's learning, the individualized feedback can help the student repair knowledge.

The techniques of recommendation systems have been used for individualized learning.

Recommendation systems attempt to help users to identify interesting items. For example, the common tasks for recommendation systems are to predict users' ratings for items and to recommend top-N relevant items to users. These techniques have been used for educational systems to recommend learning contents [START_REF] Shani | EduRank: A Collaborative Filtering Approach to Personalization in E-learning[END_REF], learning goals [START_REF] Tobias | Scaffolding Self-directed Learning with Personalized Learning Goal Recommendations[END_REF], and forum threads in MOOCs [START_REF] Yang | Forum thread recommendation for massive open online courses[END_REF].

Learning Sequence

Learning sequence is also an important characteristic of human learning. Learning contents are always instructed in a certain sequence since there is an inherent cognitive order in human knowledge acquisition. Intuitively, learning some difficult and complex skills requires the knowledge of some easy and preliminary skills. Hence, student learning goes forward following the inherent sequence. Although in real scenarios, not all the learners comply with the learning sequence, it is still applicable for most students. The learning sequence is supported by the theory of the zone of proximal development [START_REF] Vygotsky | Mind in society: The development of higher psychological processes[END_REF], which has been introduced in section 1.1. This theory stratifies learning activities, and student should take the learning activities in the zone of proximal development firstly instead of arbitrary activities. It implies the relatively not too difficult activities (in the zone of proximal development) should be learned prior to difficult ones (outer of the zone of proximal development).

Learning sequence is also discussed by the well-known Knowledge Space Theory (KST) [START_REF] Falmagne | The assessment of knowledge, in theory and in practice[END_REF]) and its extension-Competence-Based Knowledge Space Theory (CB-KST) [START_REF] Heller | Competence-based knowledge structures for personalised learning[END_REF]. Knowledge Space Theory states that prerequisite relationships exist in problems. Students have to be capable to solve some simple problems prior to solve the difficult ones. The Competence-Based Knowledge Space Theory extends the prerequisite relationships on competences (or skills). That is, some preliminary skills should be mastered prior to learn complex ones. The successful assessment and learning system-ALEKS is developed based on the Knowledge Space Theory [START_REF] Falmagne | The assessment of knowledge, in theory and in practice[END_REF]. ALEKS provides individualized learning. By using the prerequisite structures, ALEKS can determine whether an individual student is ready to learn a topic. In other words, if a student has mastered all the prerequisites, the topic can provides for learning. Otherwise, the prerequisites should be learned beforehand.

Prerequisite (or called precondition) relationships underlie the learning sequence. Due to the latent learning sequence, student behaviors should also comply with the prerequisite relationships. Intuitively, a student model incorporating prerequisite structures can interpret better student behaviors. Moreover, prerequisite structures are the basis for determining whether a student is ready to learn a topic. Hence, it is also very important for individualized learning. Prerequisite structures are mostly studied by human experts. Nowadays, some approaches are proposed to learn prerequisite structures from data. In this thesis, we also attempt to learn prerequisite structures from data, which will be introduced in Chapter 4.

Student Modeling

In recent decades, student modeling has been investigated by a large number of researchers in the domains of education, cognitive science, psychology, and computer science. Student modeling is to interpret student behaviors and then distinguish students. It involves two kinds of variables. One is to measure student behaviors, and the other one is to measure student knowledge (or other latent characteristics). Student behaviors can be measured in different grains. They can be the correctness of responses to problem steps, or the success or failure on a unit or topic. The behavior variables can be binary, multinomial, or continuous. The binary data are most commonly used. Student behaviors are measured as right or wrong. The multinomial variables are usually used to categorize student behaviors into discrete groups, like the partial credits-correct, partially correct and incorrect. The partial credits can also be the continuous values, like the scores, which can be represented by a continuous variable.

Similarly, student knowledge also can be measured in different grains, like the knowledge on a fine-grained skill or the overall ability on a topic. Likewise, knowledge variables can also be binary, multinomial or continuous. Student knowledge on a fine-grained skill is usually measured by a binary variable, that is, mastered or not. Student knowledge also can be categorized into several levels, like "novice, medium, expert". Student overall ability on a topic is measured by a continuous variable in the IRT model [START_REF] Lord | Applications of item response theory to practical testing problems[END_REF]) (see more detail in section 2.1.2.1). The values of the continuous variable can be interpreted as the degrees of student proficiency on a topic. The variables used in a student model depend on the data that can be obtained and the specific purpose to distinguish students.

A crucial issue for student modeling is to deal with the uncertainty in transferring student behaviors to knowledge. Noise exists in student behaviors: students might make mistakes by slipping even though they mastered the required skills, or they might perform correctly by guessing even though they do not master the required skills. To deal with the uncertainty in student modeling, various probabilistic models have been used, like Bayesian network models and latent variable models which will be introduced in chapter 2. These probabilistic models provide a sound formulism to deal with the uncertainty in student modeling. Moreover, there are two types of student performance data: one is static data, like student behaviors in an assessment; the other is sequence data or longitudinal data, like student behaviors on the activities of long-term learning in a tutoring system. Student modeling is different for dealing with the two types of student performance data. The time-factor should be taken into account for sequence data.

To evaluate a student model, it usually involves the accuracy in two aspects-the knowledge estimation and the performance prediction. A student model is used to distinguish students according to their knowledge. The accuracy of knowledge estimation reflects the quality of a student model. The accuracy of knowledge estimation indicates how close the predicted knowledge to the real knowledge. However, student knowledge is a latent variable, and its value cannot be observed. Instead, to evaluate a student model, we usually estimate the accuracy of performance prediction. That is, a student model is used to predict the unseen student behaviors. And the accuracy of performance prediction indicates how close the predicted behaviors to the observed behaviors. The evaluation methods are also used in our work in chapters 3 and 4.

Issues and Challenges

Student modeling have been widely investigated for several decades. The accuracy of student models is improved year by year, which provides the more reliable basis for individualization.

To make student models better for individualized learning, some issues and challenges in student modeling have to be dealt with. The first issue is that some diagnostic information in student performance data is overlooked. As discussed above, diagnostic information can improve the accuracy of student model and the individualized feedback to students. Most student models work on the binary student performance data, that is, student behaviors are labeled as success or failure. Some researchers (Khajah et al. 2014a) pointed out that "a sensible research strategy is to determine the best model base on the primary success/failure data, and then to determine how to incorporate secondary data". The secondary data indicate the data like student errors, the utilization of attempts, hints, response time, characteristics of a specific problem, etc. We agree with their point, but some sound models have been proposed and few studies integrate the diagnostic information in student performance data into these models. There are two challenges to incorporate the diagnostic information into a student model. One challenge is to identify the different types of errors. Constructing a bug library is expensive and time-consuming, which requires a large amount of knowledge engineering effort. Some works have attempted to automatically generate bug libraries and identify the error patterns [START_REF] Vanlehn | Mind bugs: The origins of procedural misconceptions[END_REF][START_REF] Paquette | Automating the Modeling of Learners' Erroneous Behaviors in Model-Tracing Tutors[END_REF][START_REF] Guzmán | A Data-Driven Technique for Misconception Elicitation[END_REF]), but they are not widely and empirically validated. The other challenge is how to represent and measure the diagnostic information and associate them with student knowledge estimation. To measure the diagnostic information, the observable variables cannot be the simplest binary variable.

The relationships between student knowledge and observations become more complicated.

Accordingly, the complexity of student models is increased.

The second issue is that constructing the relationships within human cognitive skills or knowledge components requires a lot of knowledge engineering effort. As mentioned above, incorporating the prerequisite relationships of knowledge components can make student models better interpret student behaviors. And the prerequisite structures are the basis to determine the individual learning path. However, deriving the relationships from human expertise is expensive and time-consuming. Nowadays, a lot of student performance data are available from online educational environments. And some prevalent data mining and machine learning techniques have been applied in student modeling. But few researches have investigated to extract the prerequisite relationships of skills or knowledge components from data. Student knowledge is a latent variable, and the observed student performance data are noisy, e.g. slipping and guessing. Therefore, deriving the relationships of skills or knowledge components from student performance data is a challenge.

The third issue is that the methods to improve student models should be adaptable to various types of student performance data. Benefiting from the development of ITSs, various types of student data can be obtained from online educational environments. There are two main types of data: the static data and the sequence data (or called longitudinal data). The static data might be from tests during learning, such as a quiz after student finish a section or a unit. The sequence data are student behaviors acquired during the process of interacting with tutoring systems. The time factor should be considered when using the sequence data.

Contribution of This Thesis

In this thesis, we make efforts to improve student models for individualized learning. We target on improving student models in two aspects-the diagnostic ability and the expressive ability. As discussed above, the diagnostic information can be used to more precisely distinguish students, which leads to improve the accuracy of a student model, and enrich the individual feedback. Incorporating the prerequisite structure of knowledge components makes student models capable to express the process of human knowledge acquisition, and thereby better interpret student behaviors. The prerequisite structures also provide the basis to determine individual learning paths.

We incorporate student erroneous responses into a student model. To simplify the collection of student erroneous responses, we use diagnostic items-multiple choice questions to capture student erroneous responses, which are the distractors of the questions. The distractors are recognized by human experts, and labeled by the corresponding knowledge biases. In this way, student behaviors on each question are distinguished in multiple groups instead of two groups. We extend a sound latent class model-the NIDA model to incorporate the erroneous responses and to transfer student responses to their knowledge. We implement our diagnostic model in the paradigm of Bayesian network models. We evaluate the accuracy of our model on knowledge estimation and performance prediction with a set of metrics. We compare our model with other two diagnostic models-the MC-DINA model (De La Torre 2009) and the diagnostic Bayesian network model. And our model has a competing performance on prediction accuracy. We also compare the three diagnostic models with the binary models.

The results show that the diagnostic models outperform the binary models. This demonstrates that incorporating the erroneous responses into a student model improves the model accuracy.

In addition, we present our preliminary work to introduce the item difficulty into a probabilistic graphical model. Using real data, we find that the probability of slipping/guessing on an item very likely has a linear relationship with the difficulty of the item. This issue can be further studied.

Prerequisite structures of skills are commonly given by human experts. In this thesis, we propose a two-phase method to extract prerequisite structures of skills from student performance data. Since student knowledge is a latent variable, learning the structure of latent variables from noisy observations is very challenging. In the first phase of our method, an evidence model is used to transfer student performance data to the probabilistic knowledge states. In the second phase, we learn the prerequisite structure of skills from the probabilistic knowledge states. We use one simulated data set and two real data sets to validate our method. We also adapt our method to different types of data-the testing data and the log data. Our method performs well to discover the skill structure from the testing data, but not well for the log data. Applying our method in the log data needs to be improved. We compare our method with the log-likelihood method [START_REF] Brunskill | Estimating Prerequisite Structure From Noisy Data[END_REF]) and the POKS algorithm (Desmarais et al. 2006). The log-likelihood method is adapted to use the DINA model as the evidence model. The POKS algorithm learns skill structures from deterministic knowledge states. The POKS algorithm has a good performance on the testing data, whereas the likelihood method does not. The "strength" parameter (i.e. pc) in the POKS algorithm affects the discovered structures, which is similar to the confidence threshold in our method.

Structure of This Thesis

An overview of the subsequent chapters in the thesis is as follows. In chapter 2, we review the literature on student modeling in recent years. According to the layers in a student model [START_REF] Desmarais | A review of recent advances in learner and skill modeling in intelligent learning environments[END_REF], we divide a student model into two parts-the evidence model and the skill model. Evidence models are also called transfer models, and we introduce the popular probabilistic graphical models, latent variable models and the recent integrated models for student modeling. For the skill models, we introduce two common relationships in a student model.

In chapter 3, firstly we introduce the diagnostic features that can be obtained during student learning. And we review the existing models to incorporate the diagnostic features into a student model. Then, we introduce a probabilistic graphical model, which is equivalent to the latent class models. We extend the graphical model to incorporate the erroneous responses.

We evaluate our model, and compare it with other diagnostic models and binary models.

Finally, we present our preliminary work of analyzing the relationship between item difficulty and the probability of slipping/guessing.

In chapter 4, we review the existing methods of extracting prerequisite structures from data, and explain the challenges to learn skill structures. We present our two-phase method to learn prerequisite structures of skills from student performance data. We use one simulated data set and two real data sets to validate our method. We adapt our method to the testing data and the log data. We compare our method with existing methods. And at last, we verify the improvement of a student model by incorporating prerequisite structures of skills.

In chapter 5, we conclude our work in this thesis. In addition, we indicate the limitations of our methods in the two aspects for improving a student model. Moreover, we discuss some ideas to improve our methods and some possible directions for the further work.

Chapter 2: Review of Literature

In this chapter, we will review the popular student models in recent years. A student model can contain multiple layers according to the graph of "learner modeling layers" in [START_REF] Desmarais | A review of recent advances in learner and skill modeling in intelligent learning environments[END_REF]. Different issues are treated among or within different layers. According to the layers, we divide a student model into two parts. In the terminology of this thesis, the two parts are called the evidence model and the skill model. The evidence model involves the layer of observable nodes and the first layer of the hidden nodes. The Evidence model is also called the transfer model. They are used to transfer observed performance data to the values of latent knowledge variables. The skill model involves one or multiple layers of latent knowledge variables and the relationships between them. It is used to describe human cognitive ability. The two models can be investigated independently, and they also can be easily integrated into a student model.

Evidence Models

In this section, we introduce the currently prevalent evidence models that transfer the observed student performance data to latent knowledge variables. These models deal with the uncertainty caused by the noise in student performance, such as slipping and guessing. Each model incorporates the observable variables to measure student behavior patterns (e.g. right or wrong) and the latent variables to measure student knowledge (e.g. mastered or not mastered a skill). And the mapping from observable behavior variables to the latent knowledge variables is called Q-matrix. For example, to give a correct response the fraction subtraction problem 3 4 ⁄ -3 8 ⁄ , students should master two skills: finding a common denominator and subtracting numerators. An observable variable might represent the correctness of student answers to this problem. Two latent variables might represent the student mastery of the two skills. The Q-matrix is used to indicate that the two skills are required for correctly solving this problem. The Q-matrix is usually given by human experts. Among current student models, some rely on the Q-matrix, whereas some others do not require a Q-matrix.

Two classes of evidence models are introduced in the following sections. They are the probabilistic graphical models and the latent variable models. The probabilistic graphical models are mostly proposed by ITS and AIED (Artificial Intelligence in Education) communities, while the latent variable models are originally proposed by psychometrics and psychology communities. And both of them have been applied in many tutoring systems. In recent years, some integrated models are proposed.

Probabilistic Graphical Models

Some probabilistic graphical models are used to deal with the uncertainty in transferring student performance to latent knowledge. In this section, the Bayesian network models for static performance data, the dynamic Bayesian network models and the hidden Markov model-Bayesian Knowledge Tracing for sequence data are introduced.

Bayesian Networks

Bayesian networks (also called Bayesian belief networks) have been investigated and widely applied in student modeling for several decades. The Bayesian network student models are capable to assess student knowledge and predict student actions. A Bayesian network is a directed acyclic graph, in which nodes represent variables and edges represent probabilistic dependencies among variables [START_REF] Jensen | Bayesian Networks and Decision Graphs[END_REF]. It provides a mathematically sound formulism to handle uncertainty. Bayesian networks are causal networks, where the strength of causal links is represented as conditional probabilities. For instance, if there is a link from X to Y, we say X is a parent of Y, and Y is a child of X. X has an influence on Y, and evidence about X will influence the certainty of Y. To quantify the strength of the influence, it is natural to use the conditional probability P(Y|X). However, if Z is also a parent of Y, the two conditional probabilities P(Y|X) and P(Y|Z) alone do not give any clue about the impact when X and Z interact. They may cooperate or counteract, so we need a joint conditional probability P(Y|X,Z). Therefore, to define a Bayesian network, we have to specify:

 A set of variables, each of which represents a sample space, also called chance variable.

 A set of directed edges between variables.

 To each variable Yi with parents X 1 ,⋯,X n , the conditional probability table

P(Y i |X 1 ,⋯,X n )
Student knowledge has a causal impact on student performance in learning activities. Suppose an activity requires two skills for the correct response, then a student's knowledge on each of the skills will influence the student's response in this activity. To represent this influence with a Bayesian network, we suppose the activity and skills are the nodes in the network. Then there should be two edges with the direction from each skill node to the activity node. To be general, the edges in a Bayesian network for student modeling come from the mapping between the indicator (e.g. activities) and latent cognitive skills, i.e. Q-matrix. Given the Qmatrix of a set of activities {A1,⋯,Am} and a set of skills {S1, ⋯,Sn}, the Bayesian network modeling the relations between activities and skills can be constructed as Figure 2.1.

Figure 2.1 A Bayesian network for student modeling

In the Bayesian network, a skill node is usually related to a random variable with a Bernoulli distribution, which takes value 1 (that student mastered the skill) with probability p and takes value 0 (that student not mastered the skill) with probability 1-p, i.e. P(S i =x)=p x (1-p) 1-x .

Student mastery of a skill is a latent variable and we never know its "real" value. But we can say the probability that student "A" mastered the skill is 0.95. This probability can be interpreted as a degree of belief. An activity node in the network is an observable node and usually related to a discrete variable. If the activity is measured as right or wrong, the variable is a binary. It can also have additional values, like partially correct. As mentioned above, uncertainty exists in the causal relations between skills and activities. Although some students master all the required skills, they still make mistakes due to slipping. On the contrary, some students guess the correct answer despite not mastering all the required skills. Conditional probabilities can represent this uncertainty. For example, if an activity Ak requires the two skills Si and Sj, the conditional probability distribution of Ak is the probabilities given all the possible samples of its parents Si and Sj (see equation 2.1). We can find that the conditional probability distribution of Ak is a multinomial distribution, and it has a number of parameters that is exponential in the number of parents. And we have to specify the values for all the parameters. When all the conditional probabilities are specified and the prior value for a student's mastery on each skill is given (0.5 if no other information), given the evidence about the student's performance on some activities, the probabilities of the skills mastered by the student can be inferred by some algorithms. 

                1 ) 1 , 1 1 ( ) 1 , 0 1 ( ) 0 , 1 1 ( ) 0 , 0 1 ( 3 2 1 2.1
where Pg1, Pg2, Pg3 denote the probabilities of guessing given various types of the lack of knowledge, and Ps denotes the probability of slipping; Ak=1 denotes a correct response to activity Ak, and 1 and 0 for Si and Sj denote the corresponding skill mastered or not mastered.

As mentioned above, the number of parameters for a node in a Bayesian network is the exponential in the number of its parents. If many nodes in a Bayesian network have more than three or four parents, the total number of parameters for the whole network will be too large.

In this case, obtaining the values for the parameters no matter from expertise or data is very expensive. There are some models simplifying the specification of conditional probabilities in Bayesian network. The common models are the ICI models [START_REF] Díez | Canonical probabilistic models for knowledge engineering[END_REF][START_REF] Heckerman | Causal independence for knowledge acquisition and inference[END_REF], which are a particular family of Bayesian network models based on the assumption of independence of causal influence. They are the approximations of the probabilistic relationships in the network, and they allow to specify conditional probability distributions using only a number of parameters, which is linear in the number of parents. The common ICI models are Noisy-AND/OR and Leaky-AND/OR models. Let us take the Noisy-AND model as an example. If an activity requires three skills for a correct response, there are eight parameters to be specified for the conditional probability distribution of this activity node. If using the Noisy-AND model, the influence of the mastery of each skill on the response to the activity is independent. To each skill, we specify the slip and guess parameters, each of which has an intuitive meaning. Please note that the model here is an extension of conventional Noisy-AND models: the conventional models only specify one parameter for each parent, that is, the slip and guess parameters have the same value. Thereby the conditional probability distribution of an activity node is as equation 2.2, where Psi and Pgi are the probabilities of slipping and guessing on skill Si.
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The Noisy-AND/OR models have been used by [START_REF] Millán | Bayesian student modeling and the problem of parameter specification[END_REF] for student modeling. The slip and guess parameters for a concept in their model are estimated by experts in consideration of the difficulty of applying the concept to a problem. They supposed that it is easier to slip when using concepts that involve difficult calculations and easier to guess when requiring simple concepts. There are also some other successful models to reduce the number of parameters of Bayesian networks for student modeling. We will introduce another approach proposed by [START_REF] Millán | A Bayesian Diagnostic Algorithm for Student Modeling and Its Evaluation[END_REF] [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF][START_REF] Borman | An extension of the differential approach for Bayesian network inference to dynamic Bayesian networks[END_REF] is the most commonly used method. The EM algorithm is an efficient iterative procedure to compute the maximum likelihood estimate in the presence of missing and hidden data. In the maximum likelihood estimation, the model parameters with which the observed data are most likely are estimated. Each iteration of the EM algorithm consists of two processes: the E-step and the M-step. In the E-step, the missing data are estimated given the observed data and the current estimate of model parameters. It is also called the conditional expectation. In the M-step, the likelihood function is maximized under the assumption that the missing data are known. The estimate of the missing data from the E-step is used in place of the actual missing data.

The EM algorithm has been used by [START_REF] Ferguson | Improving Intelligent Tutoring Systems: Using Expectation Maximization to Learn Student Skill Levels[END_REF] to learn the parameters of their Bayesian network from the data of two tests (pre-test and post-test of a two days learning) collected via Wayang Outpost, an ITS for SAT-math preparation. Their Bayesian network is to infer student knowledge of 12 geometry skills (hidden nodes) from their performance on 28 test problems (observable nodes), each of which is related to one, two or three skills (links).

Bayesian networks have been applied in plenty of researches for student modeling. The earlier applications of Bayesian networks in student modeling are the two projects: OLAE (On-Line/Off-Line Assessment of Expertise) [START_REF] Martin | Student assessment using Bayesian nets[END_REF][START_REF] Vanlehn | Evaluation of an assessment system based on Bayesian student modeling[END_REF] and POLA (Probabilistic On-Line Assessment) [START_REF] Conati | POLA: A student modeling framework for probabilistic on-line assessment of problem solving performance[END_REF] Another similar Bayesian network student model is the one used in ANDES [START_REF] Conati | On-line student modeling for coached problem solving using Bayesian networks[END_REF][START_REF] Conati | Using Bayesian networks to manage uncertainty in student modeling[END_REF], an ITS instructing Newtonian physics via coached problem solving, which evolves from POLA. They improved the student model of POLA with some additional kinds of nodes. In their Bayesian Network, a context-rule node is considered for each rule application node to represent the information of different difficulty levels in applying the rule.

The probability of a context-rule node being 1 denotes the probability that a student knows how to apply the rule to every problem in the corresponding context. The goal nodes and strategies nodes are used in their network to predict a student's goals and to infer the most likely strategy among possible alternatives a student is following. The three models discussed above applied Bayesian networks to simulate the complex problem solving process, which incorporate the observable nodes (i.e. actions) and some other latent nodes (e.g. rules). These models require a large knowledge engineering effort to construct the problem-solving graph for each problem.

A recent application of Bayesian networks in student modeling incorporates the misconceptions in a student model [START_REF] Goguadze | Evaluating a Bayesian Student Model of Decimal Misconceptions[END_REF] Their network contains 12 misconception nodes, where 7 nodes represent the most typical decimal misconception and 5 nodes serve as higher level reasons for their occurrence. The misconception nodes are connected to 126 problem nodes. They used the log data of 255 students collected by the MathTutor web-based system [START_REF] Aleven | Scaling up programming by demonstration for intelligent tutoring systems development: An open-access web site for middle school mathematics learning[END_REF] to train the parameters and to test the predictive accuracy of their Bayesian network student model.

Dynamic Bayesian Networks

The Bayesian network student models introduced in section 2. DBNs have been applied in many student models. [START_REF] Reye | A belief net backbone for student modelling[END_REF][START_REF] Reye | Two-phase updating of student models based on dynamic belief networks[END_REF] described the process of using a DBN student model to update student knowledge. Their model assumed that a student's knowledge state after the n th interaction with the system relies on the student knowledge state after (n-1) th interaction and the outcome of the n th interaction. The idea is to model a student's mastery of a knowledge component over time. The outcome of a student's n th attempt to apply the knowledge component depends on the previous belief of his knowledge state. And the probability of mastering a skill P(Si) depends on the previous belief of the student's knowledge state and the outcome of his n th attempt. However, in a time slice of their network, each interaction is related to only one knowledge component (in his application it is a production rule). which is common in learning scenarios. In Figure 2.2, we show a modified example of the figure in their paper for an easier explanation. The (j-1) th time slice in the model is the same with the static Bayesian network (i.e. Figure 2.1). Each skill node has two states in each time slice, i.e. the prior and posterior probability distributions. For example, in the j th time slice, before the observations (certain values for activity nodes) are given, the prior probability distribution of the skill nodes S1 j ,⋯,Sn j are the posterior of the skill nodes in the (j-1) th time slice, i.e. S1 j-1 ,⋯,Sn j-1 . After the observations given, the information is backward propagated.

Then the skills nodes S1 j ,⋯,Sn j in the j th time slice is updated. The posterior probability distributions of the skills nodes will be transitioned as the prior values for the skill nodes in the next time slice. Consequently, the parameters for the transmission links in their model are defined as equation 2.3. This model is also a hidden Markov model, a special category of dynamic Bayesian network models. The hidden Markov model assumes that the past has no influence on the future given the present. This model complies with this Markov property.
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DBNs involve a dynamic process: each time some observations are given, a new time slice is added to the existing network. In principle, the inference algorithms for static Bayesian networks can be used for each time slice of a DBN. However, when there are too many nodes in a time slice and there are too many time slices, the dynamic nature places heavy demands on computation time and memory [START_REF] Borman | An extension of the differential approach for Bayesian network inference to dynamic Bayesian networks[END_REF]. Some student models applied roll-up procedures that cut-off old time slices without eliminating their influence on the new time slices. In section 2.1.1.1, we introduced the student model of [START_REF] Conati | On-line student modeling for coached problem solving using Bayesian networks[END_REF][START_REF] Conati | Using Bayesian networks to manage uncertainty in student modeling[END_REF], which are the fine-grained model for complex physics problem-solving.

To track a student's knowledge state, they used a DBN model. They indicated that their network contains from 200 nodes for a simple problem to 1000 nodes for a complex one.

Since their network is vast even in only one slice, they used a roll-up mechanism allowing periodically summarizing the constraints imposed by older data, and then prune away the network that interpreted that data. In other words, they keep the domain-general part of the network and prune away the task-specific part. The posterior probability of each rule node in the last time slice is kept to be the prior probability of the node in the current time slice. But they also pointed out that using this simple roll-up procedure leads to lose dependencies among rules encoded in task-specific part in their network. They also proposed to add some new nodes to contain these dependencies. [START_REF] Millán | Dynamic versus static student models based on Bayesian networks: An empirical study[END_REF] investigated whether the model accuracy would significantly decrease when dependencies are lost. Their experiments are based on a DBN similar to Figure 2.2. They compare the "static" model (updating the network with keeping the older observations) and the "dynamic" model (using roll-up procedure that prunes away the older observations). The results of their experiments showed that the accuracy of the "static" model is not significantly better than that of the "dynamic" model. DBN student models have been applied in the ITS-ANDES [START_REF] Conati | On-line student modeling for coached problem solving using Bayesian networks[END_REF][START_REF] Conati | Using Bayesian networks to manage uncertainty in student modeling[END_REF]) which is discussed above, and the educational games-Crystal Island [START_REF] Rowe | Modeling User Knowledge with Dynamic Bayesian Networks in Interactive Narrative Environments[END_REF][START_REF] Lee | Modeling Narrative-Centered Tutorial Decision Making in Guided Discovery Learning[END_REF] and Prime Climb [START_REF] Davoodi | Degeneracy in Student Modeling with Dynamic Bayesian Networks in Intelligent Edu-Games[END_REF]. The issue of degeneracy in a DBN student model is also discussed in the latter application, i.e. Prime Climb. The degeneracy of a student model is that the estimated parameters violate the assumption behind student modeling, like the value of 1-Ps should greater than that of Pg. They proposed an approach which bounds the parameters of their DBN to avoid model degeneracy. [START_REF] Ting | Conceptual change modeling using dynamic bayesian network[END_REF] used a DBN student model to estimate student knowledge in an intelligent scientific inquiry exploratory learning environment, named INQPRO. [START_REF] Green | Learning a Skill-Teaching Curriculum with Dynamic Bayes Nets[END_REF] provided a template for building a multi-layered DBN to model domain knowledge with dependencies (e.g. prerequisite relations between skills). They provided the method to learn the parameters of the model from data.

Bayesian Knowledge Tracing

Bayesian knowledge tracing (BKT) [START_REF] Corbett | Knowledge tracing: Modeling the acquisition of procedural knowledge[END_REF] is a well-known technique to track the dynamic knowledge of students during learning. It is a hidden Markov model since it assumes that a student's past knowledge state has no influence on the future knowledge state given the current knowledge state. The classic BKT model evaluates student knowledge of a single knowledge component each time, with one latent variable and one observable variable per time slice. The observations are usually fine-grained, like scaffolding questions or steps, each of which is only related to one knowledge component. BKT models are based on the learning assumption [START_REF] Corbett | Knowledge tracing: Modeling the acquisition of procedural knowledge[END_REF]: with practice, student knowledge is strengthened in memory and student performance grows more reliable and rapid. This assumption is supported by the empirical results, like learning curves which will be introduced in section 2.1.2.3.

The BKT model is actually a special dynamic Bayesian network model. We discuss it at the same section level with the DBN models because it is the most commonly used student model in ITSs. And it is different from the other DBN student models, as it takes into account a particular transition parameter. In the BKT model, a student's mastery of a knowledge component could be two states, the learned and unlearned state. A student's mastery of a knowledge component can transition from the unlearned to the learned state at each opportunity of learning the knowledge component or applying the knowledge component in problem-solving. In the classic BKT, there is no forgetting, that is, a student's knowledge state cannot transition in the other direction. As mentioned above, student performance is noisy. Students might make mistakes due to slipping though they know the related knowledge component, or might response correctly by guessing though they do not know that knowledge component. Hence, two learning parameters and two performance parameters are specified in the classic BKT model. Figure 2.3 shows the structure of the classic BKT model and the parameters for the corresponding links. ) (
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A classic BKT model is a skill-specific model, where all the parameters are specified for skills. In other words, the values of the parameters vary across skills (or knowledge components). At each opportunity of applying a knowledge component, a student's knowledge state will be updated in terms of the correctness of his/her action and the prior knowledge. The prior probability of his/her knowledge is the posterior probability at the last opportunity of applying the knowledge component transitioned in terms of the learning parameter. The formulas that are used to update the probability of a student mastering a knowledge component [START_REF] Baker | More Accurate Student Modeling through Contextual Estimation of Slip and Guess Probabilities in Bayesian Knowledge Tracing[END_REF]) are shown in equation 2.4.
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where P(Ki n-1 ) is actually the posterior probability of student knowledge in the (n-1) th time slice, i.e. 𝑃(𝐾𝑖 𝑛-1 |𝑂 𝑛-1 ), which is also the prior probability of student knowledge in the n th time slice; the posterior probability of student knowledge in the n th time slice, i.e. 𝑃(𝐾𝑖 𝑛 |𝑂 𝑛 ), is computed with the impact of observation On (i.e. 𝑃(𝐾𝑖 𝑛-1 |𝑂 𝑛 )) and the probability of transitioning from the unlearned to learning state (i.e. P(T)).

The parameters of a BKT model are commonly estimated by the EM algorithm, which has been introduced in section 2.1.1.1. The performance of the EM algorithm on a BKT model have been investigated by [START_REF] Gu | Investigate Performance of Expected Maximization on the Knowledge Tracing Model[END_REF]. Another learning algorithm-Brute Force has been applied for the parameter estimation of a BKT model by Gong et al. (2010a). They also compared the Brute Force algorithm with the EM algorithm for fitting a BKT model, and their experiments demonstrated that the EM algorithm achieved the significantly higher predictive accuracy than the Bruce Force algorithm did.

Based on the classic BKT model, many variants have been proposed with respect to the issues in a specific application. [START_REF] Beck | Using knowledge tracing to measure student reading proficiencies[END_REF] applied the BKT model for assessing a student's reading proficiency during the student's learning with the Project LISTEN's Reading Tutor [START_REF] Mostow | Evaluating tutors that listen: An overview of Project LISTEN[END_REF]. They extended a classic BKT model with respect to a new kind of noise, i.e. the noise from automated speech recognizer (ASR), like the False Alarm (FA) and the Miscue Detection (MD). Figure 2.4 shows their extension of a BKT model for assessing reading proficiency. An additional level of nodes and probabilistic links are used to handle this kind of uncertainty. The FA parameter is the probability that a student reads a word correctly but the word is rejected by the ASR. The MD parameter is the probability that a student misreads a word and it is scored as incorrect by the ASR.

Figure 2.4 The BKT model for assessing reading proficiency [START_REF] Beck | Using knowledge tracing to measure student reading proficiencies[END_REF] In common learning scenarios, a single correct action usually requires multiple knowledge components. However, in the classic knowledge tracing, each observation is modeled to link to a single skill. Sometimes a skill can be decomposed to several subskills. A simple approach is to blame all the knowledge components equally when an error is observed. However, the error might be caused by only one or a part of subskills not mastered. [START_REF] Koedinger | Avoiding Problem Selection Thrashing with Conjunctive Knowledge Tracing[END_REF] extended the BKT model to allow an observation to be related to multiple knowledge components. They proposed a conjunctive BKT model, where the noisy parameters are specified similarly to the Noisy-AND model [START_REF] Millán | Bayesian student modeling and the problem of parameter specification[END_REF]. Their conjunctive BKT model fairs the blame assignment.

Besides the BKT variants for a specific application, many variants are proposed to improve the prediction accuracy. These variants can be categorized into two groups: one group is to improve the parameter estimation; the other group is to incorporate other valuable information besides student binary performance. Firstly, we introduce the former group of variants. [START_REF] Beck | Identifiability: A fundamental problem of student modeling[END_REF] indicated that the same performance data can be fitted equally well by different sets of parameter values, which yield to different estimates of a student's knowledge.

Regarding this issue, they used Dirichlet priors to initialize the values of the parameters, which results in more plausible estimates of the parameters and an improvement in predictive accuracy. Another issue of the parameter estimation for a BKT model is that some estimates of parameters violate the assumption behind student modeling, such as a student being more likely to get a correct answer if he/she does not know a skill than if he/she does, i.e. Pg is greater than 1-Ps. As mentioned in section 2.1.1.2, it is the degeneracy of a student model. [START_REF] Baker | More Accurate Student Modeling through Contextual Estimation of Slip and Guess Probabilities in Bayesian Knowledge Tracing[END_REF] proposed a method to make the contextual estimation of the slip and guess parameters of the BKT model. And their experiments showed that their contextual guess and slip model is less degenerate as well as higher prediction accuracy than the classic BKT model, the Dirichlet prior model and the bounded parameter model. Their further work (Baker et al. 2010a) investigated the prediction performance of their variant on the post-test after using an ITS, but they showed their variant did not perform well on the post-test data.

Next, we will introduce the variants that account for other valuable information during student learning besides student binary performance. [START_REF] Pardos | Modeling Individualization in a Bayesian Networks Implementation of Knowledge Tracing[END_REF] individualized the parameters of prior knowledge in the BKT model by identifying each student with an additional node. The structure of this variant is shown in Figure 2.5. They proposed three different strategies for setting the initial values for the individualized prior knowledge parameters, and showed no matter which strategy is used, their individualized BKT models improved the predictive accuracy. And the best strategy is that a single prior is learned per student which is the same across skills, and the initial value is computed by the average percent of correct responses to a set of problems. 2010) on the predictive accuracy, and they showed that the two models perform similarly in general, yet under certain circumstances the two models perform quite differently. To address the issue of the high cost of the Student Skill model, [START_REF] Wang | Class vs. Student in a Bayesian Network Student Model[END_REF] extended the Student Skill model with respect to the class information.

They indicated that students in a class share the common teacher, curriculum and assigned homework problems, thus the similarity of their performance is expected. They learned four class-specific parameters to replace some or all student-specific parameters, and combined them with the four skill-specific parameters to generate a set of the four parameters for the classic BKT model. They showed that modeling the class-level information improved the predictive accuracy and required much less estimated parameters. [START_REF] Yudelson | Individualized Bayesian Knowledge Tracing Models[END_REF] introduced the individualized prior knowledge and learning parameters into the BKT model. They estimated the parameters by a conjugate gradient descent method.

They tested four different models with different student-specific parameters. Their results showed that student-specific parameters lead to an improvement in predictive accuracy, and especially using the student-specific learning parameter is more beneficial than using the student-specific prior knowledge parameter.

Another variant is the Item Difficulty Effect Model (KT-IDEM) proposed by [START_REF] Pardos | KT-IDEM: Introducing Item Difficulty to the Knowledge Tracing Model[END_REF], which introduces the item difficulty into the BKT model. Instead of introducing a difficulty measure like Item Response Theory (which will be introduced in section 2.1.2.1), they estimated the probabilities of slipping and guessing conditioned by each item, in other words, these parameters are item-specific, which is different from the skillspecific parameters in the classic BKT model. Using the data from ASSISTments, an ITS for mathematics learning, they showed their model had a higher predictive accuracy than the classic BKT model. But the problem to apply their model is that learning the item-specific parameters requires a large amount of data, otherwise the erroneous guess and slip parameter values are likely to be learned.

To improve the prediction accuracy, Pardos et al. (2012a) proposed to combine a data mining technique-clustering with the BKT model. Their idea comes from the intuition that different groups of students can be better fitted with separate models. For example, higher performing students might be better modeled with a higher learning parameter, whereas lower performing students might be better modeled with a lower learning parameter. They used a bagging method that explores clustering at different values for K (the number of clusters). And the results in the clusters showed an improvement on the prediction accuracy in most cases.

The diagnostic information-partial credits of the correctness of student behaviors is introduced into the BKT model by [START_REF] Wang | Extending Knowledge Tracing to Allow Partial Credit: Using Continuous versus Binary Nodes[END_REF]. Student behaviors are represented by continuous variables in their model, instead of binary variables in the classic BKT model. They proposed an algorithm to compute the partial credits for each student by penalizing the behaviors of hints, attempts and scaffolding help requests during student learning. And they assume the slip and guess parameters to be the two Gaussian distribution variables. They used the data from ASSISTments, and their experimental results showed that their model outperformed the classic BKT model on the predictive accuracy.

Since the BKT model lacks the ability to describe the hierarchy and relationships between skills, [START_REF] Käser | Beyond Knowledge Tracing: Modeling Skill Topologies with Bayesian Networks[END_REF] 

Latent Variable Models

A Latent variable model is a statistical model that relates a set of observable (or called manifest) variables to a set of latent variables. It is assumed that the responses on the indicators or observable variables are the result of an individual's position on the latent variables. The latent variable models can be applied for student modeling, since it can be used to relate student performance variables (observable variables) to student knowledge variables (latent variables). According to the types of the observable and latent variables, the latent variable models can be categorized as Table 2.1. In recent decades, some latent variable models have been applied for student modeling. In this section, we will introduce some wellknown latent variable models for student modeling, including the Item Response Theory (IRT) model which is a latent trait model, the DINA (Deterministic Input Noisy AND) and NIDA (Noisy Input Deterministic AND) models which are two latent class models, and two factor analysis models-Learning Factor Analysis (LFA) and Performance Factor Analysis (PFA). 

Item Response Theory

Item Response Theory (IRT) [START_REF] Lord | Applications of item response theory to practical testing problems[END_REF]) is a well-known psychometric theory modeling the response of a learner with a given ability to a test item. It has been investigated for several decades and widely used in Computerized Adaptive Testing [START_REF] Wainer | Computerized adaptive testing: A primer[END_REF]. IRT is based on the assumption that the probability of a correct response to an item is a mathematical function of the learner's ability and item characteristics. It is assumed that the knowledge level, ability or proficiency of a student is measured by a continuous variable, usually denoted by θ, which is called the trait. IRT models are considered as latent trait models, since the discrete responses to items are the observable manifestations of the latent traits. The item characteristics are described by the parameters in the IRT models. The commonly used is the 1PL (1 parameter logistic) -IRT model, also called the Rasch model, which only incorporates one item parameter, that is the difficulty level. The difficulty level describes how difficult a question is. The other IRT models include the 2PL-IRT and 3PL-IRT models, which involve two and three item parameters respectively. Besides the difficulty level, the 2PL-IRT model incorporates an additional item parameter-the discrimination power. The 3PL-IRT model incorporates the third item parameter-the guess factor. The discrimination power describes how well an item can discriminate students with different ability levels. The guess factor is the probability that a student can answer an item correctly by guessing.

The item response function is used to calculate the probability of answering item i correctly given a student's ability θ and the item parameters. The item response function of the 3PL-IRT model is described as equation 2.5 [START_REF] Baker | The basics of item response theory[END_REF].

    ) ( 1 1 1 i i b a i i i i e c c Q P P            2.5
where Pi(θ) denotes the probability of answering item i correctly given a student's ability θ.

For the dichotomous data, the response to an item Qi is either correct (1) or incorrect (0). The probability of giving a correct response to item Qi is an increasing monotonous function of student ability θ. To be particular, it is a logistic regression function, which involves three item characteristics: the difficulty parameter bi, the discrimination power ai, and the guess factor ci. The function is also called the Item Characteristic Curve (ICC). Figure 2.6 shows the ICCs with different values of the discrimination power (ai) and difficulty parameter (bi), given the guess factor ci=0.2. The x-axis represents the scale of ability θ, while y-axis represents the probability of a correct response, i.e. Pi(θ). Let us examine the meaning of the three parameters in the curve:

 ai defines the slope of the curve at its inflection point. In Figure 2.6, the blue curves are steeper than the red ones, thus they have a higher value of ai.

 bi defines the location (i.e. x-coordinate) of the curve's inflection point. The higher the x-coordinate of the inflection point is, the higher the value of bi is, then the more difficult the item is.

 i c defines the bottom asymptote of the curve. The probability of answering a question correctly for a student with a very low ability level is close to i c . In the equation 2.5, when ci=0, it is the 2PL-IRT model; when ci=0 and ai=1, it is the 1PL-IRT model. The three models introduced above are the models for dichotomous data. There are also some other IRT models for polytomous data, like some partial credit models, graded response models, etc. The Expectation Maximization algorithm can be used to estimate the parameters of the IRT models [START_REF] Johnson | Marginal maximum likelihood estimation of item response models in R[END_REF]. The R package "ltm" [START_REF] Rizopoulos | ltm: An R package for latent variable modeling and item response theory analyses[END_REF] contains a large number of functions for estimation and inference for the IRT models. The parameter estimation of an IRT model is called the item calibration in computerized adaptive tests.

Some IRT models have been applied in student modeling. [START_REF] Millán | Adaptive Bayesian Networks for Multilevel Student Modelling[END_REF] and The intuition behind their idea is that the student mastering more required skills has a higher probability to guess the correct answer than the student mastering less required skills. They assumed that the probability of giving a correct response to a multi-skill test item relies on the number of skills that are mastered and on the importance of these concepts. In this way, they ordered the knowledge states and scattered them on the scale of overall ability (i.e. x-axis) in terms of equal intervals. Then according to the item response function, they can calculate the probability of giving a correct answer for each knowledge state. Consequently, the conditional probabilities in the Bayesian network model can be specified.

In Figure 2.7, we can see that when a student knows none of the skills related to a test item, he/she has the probability of g to guess the correct answer, where g is the guess factor in the IRT model. And when a student knows all the skills related to a test item, the probability that he/she give a correct answer is 1-s, where s is the probability of slipping and it determines the upper asymptote of the curve. The 3PL-IRT model does not account for this parameter, but )) ( exp( 1
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Let θ* be such that G(θ*)=1-s. Thus student knowledge is measured on the scaled of 0 to θ*.

Assuming that the test item requires k skills for a correct answer (every skill is equivalently important), the possible knowledge states are ordered according to the number of skills that are mastered. According to the item response function, the conditional probabilities are calculated as equation 2.7.
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SIETTE [START_REF] Guzmán | Simultaneous Evaluation of Multiple Topics in SIETTE[END_REF][START_REF] Conejo | SIETTE: A Web-Based Tool for Adaptive Testing[END_REF]) is a web-based implementation for the computerized adaptive testing on the basis of an IRT model. They also used the 3PL-IRT model to evaluate student knowledge. They used a discrete variable to represent the levels of student knowledge, like the integers in [0, K-1] instead of a continuous value. And a confidence factor is associated with student knowledge to indicate the probability of student knowledge level is higher than or equal to a fixed level. According to the item response function, they calculated the probability of a correct response given a knowledge level. And based on the probabilities, they applied the Bayes' Theorem to calculate the posterior distribution of a student's knowledge level given his/her responses to a set of items. Their method applying the IRT model in student modeling is substantially similar to [START_REF] Millán | A Bayesian Diagnostic Algorithm for Student Modeling and Its Evaluation[END_REF]. They indicated that their adaptive tests can be integrated into an ITS, in order to make initial estimation of student knowledge, or to update the student model after a period of learning. Their further works [START_REF] Guzmán | A Model for Student Knowledge Diagnosis Through Adaptive Testing[END_REF]) applied a polytomous IRT model to evaluate student knowledge, where student responses are given partial credits.

Some distractors of an item might be very likely to be chosen by the students at a certain knowledge level. In their polytomous IRT model, a characteristic curve is specified for each choice of an item. They make the constraints in CBM equivalent to the items in an IRT model, and then they estimated the constraint characteristic curve for each constraint.

DINA and NIDA

DINA (Deterministic Input Noisy AND) [START_REF] Junker | Cognitive assessment models with few assumptions, and connections with nonparametric item response theory[END_REF] and NIDA (Noisy Input Deterministic AND) [START_REF] Maris | Estimating multiple classification latent class models[END_REF]) are two latent variable models developed in psychometrics, which are proposed to model the conjunctive relationship between a set of cognitive attributes to be assessed and student performance on particular items or tasks in the assessment. They are nonparametric models, which only require the specification of an item-by-attribute association matrix. Since no statistical parameter estimation is required, the models can be used on a sample size as small as 1. It can be noted that in the terminology of psychometrics, a knowledge component or a skill is called an attribute. In the two models, both of the latent cognitive attributes and the observations of student performance are represented by discrete variables, thus they are also the latent class models, which aim to estimate the class membership of a student's knowledge. The latent classes are the complete profile of skills which have been mastered and which have not. An accurate Q-matrix which representing the mapping from items to attributes is required for the two models, whereas in an IRT model, the mapping between items and a coarse-level subject is required.

Suppose that there are K cognitive attributes to be assessed. The attribute profile of a student (i.e. the knowledge state) is a K-dimensional vector, denoted by vector 𝜶. Each entry k, denoted by 𝛼 𝑘 , where k=1,⋯,K , indicates student knowledge on attribute k with two alternatives, i.e. mastered or not mastered. Hence, there are 2 K alternatives for 𝜶, which are the latent classes for which the classification is desired. To model the relationship between tasks and attributes, they use the additional variables-latent response variables in both models but with distinct meanings. The formal definitions of the two models are as follows:

Given a set of items, a set of attributes, and the Q-matrix for them, let  X ij =1 or 0 denotes whether or not student i performs item j correctly;

 Q jk =1 or 0 denotes whether or not attribute k is relevant to item j;

 α ik =1 or 0 denotes whether or not student i possesses attribute k.

DINA. The latent response variables are defined as equation 2.8.
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where ij  is also called "ideal response pattern", since it represents a deterministic prediction of item performance according to student knowledge. And the deterministic prediction is similar to a conjunctive function-logic "and" gate. In other words, only when a student mastered all the required attributes of an item, the "ideal response" is certainly correct, i.e.

ξ ij =1; otherwise, the "ideal response" is certainly incorrect, i.e. ξ ij =0. The latent response variable ξ ij is associated with the noisy observation X ij according to the conditional probabilities

s j =P(X ij =0 | ξ ij =1) and g j =P(X ij =1 | ξ ij =0).
Then, the item response function for a single item is defined as equation 2.9.
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where α denotes one of the latent classes; s and g are the noise vectors; sj and gj indicate the noise parameters for each item j.

NIDA. The latent response variables are defined as follows:

η ijk =1 or 0 denotes whether or not student i's performance in the context of item j is consistent with possessing attribute k.

The latent response variable η ijk is associated with student i's knowledge on the attribute k, i.e.

α ik , according to the conditional probabilities

s k =P(η ijk =0 | α ik =1, Q jk =1) and g k =P(η ijk =1 | α ik =0, Q jk =1) .
The observation X ij is associated with latent response variables via

X ij = ∏ η ijk = ∏ η ijk K k=1 k:Q jk =1
. It is a deterministic function, which is similar to the conjunctive function-logic "and". Then, the item response function is defined as equation 2.10.
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The DINA model associates the noise parameters with each item, i.e. sj and gj for each item j, while the NIDA model associates the noise parameters with each attribute, i.e. sk and gk for each attribute k. In the two models, the latent class vector 𝜶 plays the role of the latent variable θ in IRT models, and the noise parameters sj/sk and gj/gk play the role of the item parameters in IRT models. It should be noted that the noise parameter sj/sk and gj/gk in the models are the error probabilities-the false negative and false positive rates. The symbols are chosen here to be mnemonic thinking of students' slips and guesses, but genuine slipping and guessing behaviors may be just two possible reasons. There are many other possible reasons, like the poor wording of the task description for students, inadequate specification of the Qmatrix. The NIDA model is somewhat more restrictive than the DINA model, since it implies that item response functions must be the same for all items sharing the same attributes. It seems unrealistic that this could apply to many datasets, because it implies that item difficulty levels would be exactly the same for many items, which is not something one expects to observe in practice [START_REF] Chiu | A Nonparametric Approach to Cognitive Diagnosis by Proximity to Ideal Response Patterns[END_REF].

Factor Analysis

The IRT models and latent class models assess a student's knowledge from the current performance of the student. The prior knowledge of the student used in these models might only be the result from the last evaluation. Student historical performance and the improvement of performance during learning are not considered in these models. But this kind of information is also an important clue for interpreting student learning. A psychological theory-the power law of practice [START_REF] Newell | Mechanisms of skill acquisition and the law of practice[END_REF] describes student performance improvement by a power law function between the error rate of performance and the amount of practice, which is formulized from a variety of data sets. The function is depicted as equation 2.11, which shows that the error rate decreases according to a power function of the increasing amount of practice.
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where Y is the error rate (some studies used performance time as the measure [START_REF] Delaney | The strategy-specific nature of improvement: The power law applies by strategy within task[END_REF])); X is the number of opportunities to practice a skill; a is the error rate on the first trial, reflecting the intrinsic difficulty of a skill; b is the learning rate, reflecting how easy a skill is to be learned. The curve depicting the equation is called a learning curve. Figure 2.8 depicts the learning curve given a=0.4 and b=0.7. In the figure, if parameter a has a higher value, the first point will has a higher y-coordinate; if parameter b has a higher value, the curve will decrease more rapidly.

Figure 2.8 A power law learning curve However, the power law relationship is not apparent in some complex skills [START_REF] Corbett | Knowledge tracing: Modeling the acquisition of procedural knowledge[END_REF]. But it is found that the relationship holds if the complex skills can be divided into subskills. Based on this phenomenon, the Learning Factor Analysis (LFA) [START_REF] Cen | Learning Factors Analysis -A General Method for Cognitive Model Evaluation and Improvement[END_REF]) is proposed to automatically determine when one skill may be better defined as two, or when two skills may be better combined into one. 
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where m is a logit value representing the accumulated learning for student i practicing the knowledge components required for an item; p(m) denotes the probability of answering the item correctly, which converts the logit value m to the prediction of observations; αi denotes the initial knowledge of student i, i.e. the student intercept; βj denotes the easiness of knowledge component j, i.e. the skill intercept; and the benefit of the prior practice for each knowledge component is a function of the count n of prior practice opportunities for student i on knowledge component j; γj is the skill slope. If giving γj as 0 and only a single βj value, this model is equivalent to the Rasch (i.e. 1PL-IRT) model.

This regression model has a significant implication to improve the cognitive model and to guide the instruction for each skill. For example, a skill is estimated to be mastered by a high proportion of students. But when this skill is decomposed into two subskills, one of its subskill might be estimated not be mastered so well by all the students. More practice should be provided. In this case, the two subskill estimation is better than a combined skill. When a skill has a high intercept and a low slope, and a high initial knowledge for students, less practice on this skill should be provided to students for saving their learning time. The space of models can be defined by domain experts to allow different possible skill levels. A heuristic algorithm, like A* search, can be used to do model selection across the space of models, guided by two metrics-AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion).

The LFA model differentiates student knowledge acquisition of distinct skills. However, it is not applicable for individualized or adaptive learning, since it ignores the correctness of student performance at each practice opportunity. To make the model sensitive to individual learning, Pavlik Jr et al. (2009a) modified the LFA model by introducing individual performance, which is called the Performance Factor Analysis (PFA). The PFA model is sensitive not only to the practice frequency of the skills, but also to the individual correctness of each practice opportunity. And there are two versions of the PFA model according to whether the difficulty parameter specified for each skill or for each item, The two versions are called PFA-skill and PFA-item respectively (Gong and Beck 2011). The PFA model is depicted as equation 2.13.
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where sij and fij denote the counts of prior successes and prior failures for student i on KC j.

The parameters γj and ρj scale the effect of the observation counts on KC j. The difference is that βj denotes the easiness of KC j, whereas βk denotes the easiness of item k. Comparing the two versions of the PFA model, Gong and Beck (2011) found that the model with the item difficulty parameter is slightly better on predictive accuracy than the model with the skill difficulty parameter.

Both the PFA model and the BKT model are proposed to deal with the longitudinal performance data collected during student learning. The two models have been compared with each other on the predictive accuracy and parameters plausibility (Pavlik Jr et al. 2009b;Gong et al. 2010a). They showed that the PFA model is comparable to and in some cases better than the BKT model on predictive accuracy, and the parameters of the PFA model are more plausible than those of the BKT model in some cases. Some further works have investigated to improve the predictive accuracy of the PFA model. Gong et al. (2011) improved the standard PFA by taking into account the performance order.

The intuition behind their idea is that the more recent the practice is, the more it impacts the current problem. They introduced a decay factor to update the success and failure counts by decreasing the weight of prior performance. To reduce the error rate of the prediction, [START_REF] Gong | Modeling Multiple Distributions of Student Performances to Improve Predictive Accuracy[END_REF] proposed to learn multiple distributions from student performance data instead of a single distribution on overall data. They used k-means to partition students into clusters using the confusion matrices as the feature for clustering. They used the PFA model as the basic predictive model. A separated PFA model is learned for each cluster. They showed that the multiple distribution approach improve the predictive accuracy of the PFA model. And the multiple distribution modeling is a general idea to improve model performance. The clustered knowledge tracing (Pardos et al. 2012a) introduced in section 2.1.1.3 is based on the same idea, using the BKT model instead of the PFA model as the basic model. [START_REF] Pavlik | Using Contextual Factors Analysis to Explain Transfer of Least Common Multiple Skills[END_REF], 2015) proposed a contextual PFA model to measure learning progress of related skills at a fine granularity. Their contextual PFA model accounts for both the individual correctness of the prior practice and the contexts of practice. It uses the mix-effect logistic regression to incorporate the context factors. The contextual model allows determining the best order of practice and the appropriate amount of repetition.

Integrated models

Since many competing models have been proposed, [START_REF] Baker | Ensembling predictions of student knowledge within intelligent tutoring systems[END_REF] [START_REF] Khajah | Integrating knowledge tracing and item response theory: A tale of two frameworks[END_REF]) and [START_REF] Klingler | On the Performance Characteristics of Latent-Factor and Knowledge Tracing Models[END_REF].
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To sum up, we compare the existing student models according to some features in principle.

The comparison shown in Table 2.2 is inspired by the presentation of the EDM conference paper [START_REF] González-Brenes | General features in knowledge tracing: Applications to multiple subskills, temporal item response theory, and expert knowledge[END_REF], and involves most of the models that we have introduced in this chapter. The models are ordered chronologically, and the recently emerging models-LFKT and FAST incorporate all the general features of a student model. 

Q-matrix

A Q-matrix is used to represent the mapping from items (observable variables) to skills (latent variables), and also called the measurement model [START_REF] Scheines | Discovering Prerequisite Relationships among Knowledge Components[END_REF]. Most of the student models introduced above rely on an accurate Q-matrix. A Q-matrix is usually studied by the domain or cognitive experts. However, the human-specified Q-matrix usually contains the subjective bias. In recent years, some researchers investigated to automatically extract the Q-matrix from data. In this section, we will introduce the currently well-known approaches of extracting the Q-matrix from data. [START_REF] Barnes | Experimental analysis of the q-matrix method in knowledge discovery[END_REF] proposed a method to extract an optimal Q-matrix from student response data. Their method evaluates the fit of a Q-matrix to data by calculating the total error using the Q-matrix. The total error is the sum of the errors over all data records. For each data record, the error is the Hamming distance between the nearest ideal response vector and the observation vector. To find an optimal Q-matrix, they used a heuristic hill climbing method which varies Q-matrix values to minimize the fitting error. Their Q-matrix method has better error rates on fourteen experimental data sets than factor analysis, but has worse error rates than k-means cluster analysis. [START_REF] Barnes | The Q-matrix method: Mining student response data for knowledge[END_REF] studied the effectiveness of the Q-matrix method in understanding and directing student learning. The extracted Q-matrix and the expert defined Q-matrix differ, but student responses are understandable based on extracted Qmatrix. They also found that the Q-matrix method often predicts the same questions for further review as those the self-guided students chose for themselves. And students who chose differently from the Q-matrix method could have benefited from reviewing a Q-matrix selected concept. 

Skill Models

A skill model referred here only involves the hidden layers in the graph of "learner modeling layers" in [START_REF] Desmarais | A review of recent advances in learner and skill modeling in intelligent learning environments[END_REF]). We will introduce the issues of interest for the skill models, and the prevalent methods to deal with these issues.

Granularity

Granularity hierarchy is a common representation of a student model. It describes how a domain is decomposed into components [START_REF] Millán | Bayesian networks for student model engineering[END_REF]. Knowledge components in a domain model are commonly described at different grained levels. A granularity hierarchy captures different levels of details in a type of semantic network. Aggregation relationships are used to describe the relationships between knowledge components at different grained levels. Aggregation relationships can be used to split a composite knowledge component into multiple knowledge components at a finer-grain size. The observers are usually related to knowledge components at the finest-grained level. The observed information is propagated through the aggregation links to knowledge components at the coarser-grained levels. The AND-OR clustering scheme are proposed by [START_REF] Collins | Adaptive Assessment Using Granularity Hierarchies and Bayesian Nets[END_REF] to capture the aggregation relationships and the equivalent groups in their granularity hierarchy.

Figure 2.9 Two alternatives to model aggregation relationships [START_REF] Millán | Adaptive Bayesian Networks for Multilevel Student Modelling[END_REF]) [START_REF] Millán | Adaptive Bayesian Networks for Multilevel Student Modelling[END_REF] and [START_REF] Millán | A Bayesian Diagnostic Algorithm for Student Modeling and Its Evaluation[END_REF] measured student knowledge at three levels of granularity, that is, concepts, topics and subjects. They analyzed two alternatives (see Figure 2.9) to model the aggregation relationships between knowledge components at two different levels of granularity, where knowledge component KC can be divided in a finite set of finer knowledge components KC 1 ,⋯,KC n . In alternative 1, the structure means that KC 1 ,⋯,KC n are mutually independent a priori. Regarding the probability propagation, positive evidence of mastering KCi increases the probability of mastering KC, and positive evidence of mastering KC increases the probability of mastering every KCi. In alternative 2, the structure means that KC 1 ,⋯,KC n are mutually independent given KC.

Positive evidence of mastering KCi increases the probability of mastering KC, which in turn increases the probability of every other KCi, and positive evidence of mastering KC increases the probability of every KCi. Alternative 1 implies the fact that students learn in an incremental way. That is, in order to learn about a topic, a student must learn all the concepts that form part of it. The underlying assumption in alternative 2 is the same with IRT models:

there is a single value that explains a student's behavior. Assuming binary nodes, knowing KC means every part of it known. They chose alternative 1 in their model. To quantitatively represent the aggregation relationships in a BN, they proposed the following law to assign the condition probabilities:

 Condition distribution of node T given the corresponding concepts C 1 ,⋯,C n , is defined as equation 2.14.
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 Condition distribution of node A given the corresponding topics T 1 ,⋯,T m , is defined as equation 2.15.
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where i w and j  are the normalized weight vector that measures the relative importance of each concept in a topic or each topic in a subject to which it belongs. [START_REF] Tchétagni | Hierarchical representation and evaluation of the student in an intelligent tutoring system[END_REF] proposed to assess student knowledge on propositional logic at several levels of granularity. They used the alternative 2 model in Figure 2.9 to represent aggregation relationships in their hierarchy. They pointed out that in this architecture there are restrictions on the way evidence propagates throughout the network. This is due to the fact that two child nodes may influence their parent, without influencing each other: they are dseparate. [START_REF] Carmona | A Learner Model in a Distributed Environment[END_REF] ASSISTment, as well as in a state standardized test. Their results showed that the finer the granularity of the skill model, the better the prediction of student performance.

Prerequisite Relationships

Prerequisite relationships commonly exist among the knowledge components of some domains. [START_REF] Reye | Student Modelling Based on Belief Networks[END_REF] analyzed how to use Bayesian networks to model prerequisite relationships. They stated that the conditional probabilities in a Bayesian network should meet some conditions. For example, if knowledge component A is a prerequisite of knowledge component B, equation 2.17 should be satisfied. However, they also stated the prerequisite relationship is not always strict, so they allow the uncertainty for the conditional probabilities.

The uncertainty values for these conditional probabilities are specified by experts in their method. 
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Chapter 3: Towards Improving Evidence Model

We have reviewed the student modeling techniques in chapter 2 according to the two parts of a student model-the evidence model and the skill model. We also attempt to improve the two parts of a student model. In this chapter, we introduce our work towards improving the evidence model, while in the next chapter we introduce our work towards improving the skill models. The two parts of a student model are improved for providing a better foundation for individualized learning.

Various kinds of information can be obtained during student learning. We refer to the information as the features in this thesis. The most commonly used feature is the correctness of student behaviors. Most of the existing models are proposed to use this feature. However, the correctness simply categorizes student behaviors into two groups, that is, the correct ones and the incorrect ones. Many diagnostic features during student learning are ignored by existing models. In this chapter, we attempt to improve the accuracy of the evidence models by making use of the diagnostic features.

The organization of this chapter is as follows. In section 3.1, we introduce the common diagnostic features which can be obtained during learning. We also discuss the existing methods which incorporate these diagnostic features. In section 3.2, we introduce two wellknown conjunctive models to deal with the noise in student behaviors. The two conjunctive models are the latent class models. We propose a general graphical model which can be equivalent to the latent class models. In section 3.3, we extend the graphical model which is equivalent to the NIDA model to incorporate the diagnostic feature-student erroneous responses. We evaluate our model on knowledge estimation and performance prediction using a set of metrics. We compare our model with other two diagnostic models. Moreover, the three diagnostic models are compared with the binary models to verify whether the diagnostic feature improves the accuracy of student models. In section 3.4, we compare the performance of two common student models. And we investigate the potential relationship between the two parameters in the two models. A possible direction for future work is discussed. In section 3.5, we summarize our work towards improving evidence model. Our work in this chapter have been published in the proceedings of the ITS conference (Chen, Wuillemin and Labat 2014).

Diagnostic Features

Most of existing models only deal with the student response data characterized by a common feature-correctness. Student responses are categorized into two groups, that is, correct and incorrect. This categorization is too simply and coarse-grained, and much information in students' behaviors are ignored. Some features can be obtained during student learning and can be used for the more precise categorization of student behaviors. In student learning with an ITS, some features besides the correctness, like the number of attempts, the number of hints and the response time also provided information about student knowledge. [START_REF] Wang | Extending Knowledge Tracing to Allow Partial Credit: Using Continuous versus Binary Nodes[END_REF] used a partial credit method to introduce these features into the BKT model. They measured student behaviors with a continuous variable, and proposed an award and penalty algorithm to score student behaviors. The prediction accuracy of the BKT model is improved by using the partial credit values. In this chapter, we attempt to improve the accuracy of the evidence model by introducing the diagnostic feature-error patterns.

A General Graphical Model

In many educational scenarios, a correct response to a problem step or a task requires multiple skills. And uncertainty exists in transferring student performance to knowledge. To deal with the two issues simultaneously, some probabilistic conjunctive models have been proposed. At present, the well-known models are the DINA model and the NIDA model. It should be noticed that the original BKT model is not a conjunctive model, where each observation is only related to one skill. Its variant is proposed to model multiple subskills [START_REF] Xu | Comparison of Methods to Trace Multiple Subskills: Is LR-DBN Best[END_REF]. In this section, we focus on the DINA model and the NIDA model.

The DINA and NIDA model are the latent class models, which have been introduced in section 2.1.2.2. They can deal with the uncertainty in student modeling. And they are also conjunctive models, which can represent the relationship between an item and the multiple related skills. Although the models are described in different theoretical frameworks and terms, the latent class models are substantially similar to some Bayesian network models. The graphical models which are equivalent to the DINA and NIDA models are depicted in Figure 3.1. We use a general framework to describe these graphical models. There are three levels of nodes in the models corresponding to the variables used in the latent class models. One level involves the attribute (i.e. skill) nodes; the second level involves the nodes representing the latent response variables; the third level involves the observation nodes. An attribute node describes student knowledge of an attribute. An observation node denotes student performance to an item. Latent response variable nodes are the auxiliary nodes. In the DINA and NIDA models, all the nodes are binary. The structure of the three levels of nodes can be described by the internal structure of an ICI (independence of causal influence) model [START_REF] Díez | Canonical probabilistic models for knowledge engineering[END_REF].

According to Figure 3.1, the DINA model is equivalent to a simple "AND" model [START_REF] Díez | Canonical probabilistic models for knowledge engineering[END_REF]. In the simple "AND" model, there is only one latent response node, which represents the ideal response in the DINA model. The conditional function between the attributes nodes and the latent response node is the logic "AND" gate. That is, only when all the attribute nodes are in the state of 1, the latent response node is in the state of 1; otherwise, the latent response node is in the state of 0. In the simple "AND" model, the conditional probabilities of the observation node given the states of the latent response node are specified by two noise parameters-the slip and guess parameters. That is, Psj=P(Xj=0 | ξj=1) and Pgj=P(Xj=1 | ξj=0). According to Figure 3.1, the NIDA model is equivalent to the noisy-AND model (see section 2.1.1.1). In the noisy-AND model, the parents have the independent influence to the child. That is, the distributions of the attribute nodes affect the distribution of the observation node independently. In the noisy-AND model, each attribute node is related to one latent response node. And the conditional probabilities of a latent response variable node given the states of the linked attribute node are specified by a pair of noise parameters-the slip and guess parameters. That is, Psi=P(ηji=0 | αi=1) and Pgi=P(ηji=1 | αi=0). In the noisy-AND model, the conditional function between the latent response nodes and the observation node is logic "AND" gate.

Figure 3.1 A general graphical conjunctive model

According to the equivalent graphical models, the slip and guess parameters are specified for each item in the DINA model, whereas they are specified for each skill in the NIDA model.

Please note that the original NIDA model assume the noise parameters for each skill in different items are the same. As mentioned in section 2.1.2.2, this assumption is not expected in practice, since under this assumption the items share the same skills have the same item response function according to the NIDA model. Thus, in our equivalent graphical model, we assume the noise parameters are specified per skill per item. The cost of this specification is that more parameters are required. According to the equivalent graphical model, the NIDA model seems more precise than the DINA model, since the NIDA model assumes that there is a monotonous increasing relationship between the number of mastered skills and the probability to achieve the correct answer. For example, if there are three skills required to solve a problem, in the NIDA model, the student who mastered two required skills has a higher probability than the student who mastered one required skill to achieve the correct answer, i.e. (1-s 1 )•(1-s 2 )•g 3 >(1-s 1 )•g 2 •g 3 (in real scenarios the slip and guess parameters should satisfy 1-sj > gj). But in the DINA model, the two students have the same probability (i.e. gj) to guess the correct answer.

We are interested in improving the graphical conjunctive model by introducing the diagnostic features. The graphical models are more commonly used in student modeling, because they can be easily extended to a hierarchical model, like incorporating the coarser-grained learning objects in the network. The learning objects and the relationships between them can be easily represented by a graphical model.

Improving Student Model with Diagnostic Items

In this section, we aim to introduce a diagnostic feature to improve the graphical conjunctive model which has been discussed in section 3.2. The straight-forward diagnostic feature is the error pattern. As mentioned above, the correctness of a response categorizes student behaviors into two groups. The error patterns can categorize student behaviors into multiple groups. To use the error patterns, firstly, the errors need to be recognized. According to the Repair Theory [START_REF] Brown | Repair theory: A generative theory of bugs in procedural skills[END_REF] introduced in section 1.1, there are two kinds of errorsthe random mistakes (e.g. "slips") and the systematic errors. The systematic errors reoccur regularly during student learning and imply student knowledge biases. According to the knowledge biases, student erroneous behaviors in a specific task can be predicted. As a result, these erroneous behaviors can be recognized.

Recognizing student systematic errors requires a large amount of knowledge engineering effort. The general procedure is that: firstly, for each learning task or item, the common errors should be collected; then the errors should be analyzed by experts, and the patterns of the errors should be extracted; finally, the mapping from each error pattern to the knowledge bias should be constructed. For example, to the fraction addition item 2 3 ⁄ + 1 8 ⁄ , a common erroneous response is 3 11 ⁄ . The error pattern can be described as "adding/subtracting both the numerators and denominators", which corresponds to the knowledge bias of "believing that fractions' numerators and denominators can be treated as separate whole numbers".

Students with the knowledge biases need to repair their current knowledge on the skill of "adding fractions with unlike denominators". And to a multi-skill item, student error patterns might be caused by the knowledge bias or lack on different skills. For example, to the item 3-5*4, a common erroneous response is -8, which is caused by the knowledge bias on the skill "following the order of operations". Another common erroneous response is 17, which is caused by the knowledge bias on the skill "subtraction". To a multi-skill item, some erroneous responses are not "fully" wrong. Besides the skills with knowledge biases, some other skills might be correctly used. For example, students who give the erroneous response 17 still correctly "follow the order of operations" and "multiplication".

Recognizing student error patterns is a tough and time-consuming task, especially for the open-ended problems. The amount of student erroneous responses to open-ended items can be infinite. And it is also difficult to find the causes for the various errors. Multiple choice questions are a common type of items to assess student knowledge. The multiple choice items restrict a student's response to be one of its options, which make it easier to recognize student erroneous behaviors. Moreover, some distractors can be designed by experts to be the common errors, and at the same time, the types of knowledge bias or lack can be associated with the distractors. Hence, analyzing student responses to multiple choice items is an easy way to recognize student erroneous behaviors. In this section, we target on analyzing student response data to the multiple choice items. We extend the graphical conjunctive model introduced in section 3.2 to model student behaviors including the erroneous responses. We evaluate whether the diagnostic feature-error pattern improves the accuracy of the evidence model by comparing the diagnostic model with the original (binary) model. We also compare our diagnostic model with other diagnostic models. A simulated data set and a real data set are used for the evaluation.

A Diagnostic Model

To analyze student responses to a multi-skill item using the conjunctive graphical model, an accurate Q-matrix is required. To interpret the error patterns of an item, the mapping from the errors to the knowledge biases is also required. Thus, for a multiple choice item, the Q-matrix should indicate the mapping from the correct option to the required skills, and the mapping from the distractors to the types of knowledge lack. To represent these mappings, we use the binary codes for the correct options and the distractors. For a multiple choice item, a binary model use the correctness feature to identify student behaviors, that is, correct option (1) and the other options (0). In our diagnostic model, for a multiple choice item requiring three skills, the correct option is coded as 111. And the distractors are also coded in the same way. For example, a distractor coded as 101 indicates the second skill is incorrectly used. Figure 3.2

shows an example of multiple choice items with coded options. When an option is not identified, it is coded as x. According to the options, student behaviors are categorized into multiple groups. And each group is associated with the latent knowledge state. It should be noted that in this thesis, we are interested in which skill the student has a bias, instead of the knowledge bias itself, i.e. the misconception. In fact, if the misconceptions are defined, they can be easily incorporated in a graphical model. In this thesis, we focus on diagnosing the skills that students have biases according to their erroneous responses. The difference is that the observable node is multinomial. In the example in Figure 3 , where Kj is the number of the options of item Xj; Nj is the number of the item node's parents (i.e. required skills); M is the number of items. It can be found that the number of model parameters exponentially increases with the number of the parents (the related skill nodes) of each item node. If many item nodes in a Bayesian network have more than three parents, the number of parameters is very large, which leads to an expensive acquisition of parameter values from data. , where M is the number of items; Kj is the number of the options of item Xj; Kj * is the number of the coded options (incorporating the correct option and the distractors) for item Xj. Here we use Kj * instead of Kj, since some erroneous options cannot be interpreted and the reason cannot be recognized. The number of the parameters in the MC-DINA model does not increase with the number of the parents of each item, and instead it is only related to the number of the options and the coded options.

Thus compared with the diagnostic Bayesian network model, the number of parameters in the MC-DINA model is reduced, especially for the item nodes with multiple parents. In the example shown in Figure 3.3, the number of the parameters in the diagnostic BN model is 27, whereas in the MC-DINA model it is 15. It can be noticed that the number of parameters for the root nodes is also added. Similarly, the item nodes are multinomial variables, with the values denoting the options. The skill nodes and the latent response variable nodes are binary. The values of the latent response variables ηji can be interpreted as the correctness of the related skills used in the items, that is, 1 denotes that a skill is correctly used, while 0 denotes that a skill is incorrectly used. The latent response variables in our model are called the used skills in this thesis. The noise parameters between the skill nodes and the latent response nodes are specified per skill per item, that is, the slip and guess parameters as equation 3.2.
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In our model, the conditional probabilities of an item node given the states of the latent response variable nodes can be specified in two ways. One is absolutely deterministic, and the other is partially deterministic. The two ways of the specification for the conditional probabilities P(Xj=Ok | ηj1, ηj2, ηj3) are shown in Table 3.1. When a student correctly uses all the relevant concepts for answering a question, his/her answer is certainly the right option.

When some concepts are not correctly used by the student, his/her answer is certainly the coded wrong option which corresponds to his/her performance. When the student's performance does not correspond to any coded option of the questions, he/she might select any of the options. In the deterministic specification, the joint states of the used skills which do not correspond to the correct answer or any distractor are supposed as the behaviors unrecognized. They are associated with the erroneous options without codes. If all the options of an item are coded (i.e. each option is either a correct option or a distractor), we suppose an additional option which is associated with other alternative states of used skills. Using the deterministic specification, the number of parameters is largely reduced. The number of conditional parameters in our model is 2×

∑ N j M j=1
, where M is the number of items and Nj is the number of skills required for a correct response to item Xj. In the partially deterministic specification, when the states of the used skills do not correspond to any coded option, we suppose that any option can be selected. We assign noise parameters to each option given one of these states of the used skills. The initial value to the noise parameters are the same, that is, 0.25 for each of the four options. These noise parameters can be learned from data. In this specification, the number of conditional parameters to be estimated is ∑ (2×N j M j=1

+(K j -1)×(2 N j -𝐷 𝑗 )), where M is the number of items;

Nj is the number of the skills required for a correct response to item Xj; Kj is the number of the options of item Xj; Dj is the number of coded options. As a result, using the deterministic specification, our model only requires 9 parameters in the example of 3.1).
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In this section, we have introduced our diagnostic model-a modified NIDA model to interpret student erroneous behaviors. We also introduce the diagnostic Bayesian network model-a general Bayesian network model modified to incorporate student erroneous behaviors. Additionally, we also introduce the MC-DINA model-a modified DINA model to interpret student errors. We have compared the three diagnostic models in principle. In section 3.3.3, we will evaluate our diagnostic model as well as the other two diagnostic models. We will compare the three models using a simulated data set and a real data set.

Before that, we will introduce the common metrics for evaluating student models.

Metrics for Student Model Evaluation

Many different metrics are used to evaluate and compare the performance of student models.

A good choice of metrics is important for the comparison of student models. The common metrics for the evaluation of student models have been discusses by [START_REF] Pelánek | Metrics for evaluation of student models[END_REF]. We will introduce some metrics which can be used to evaluate the models discussed in this thesis.

Confusion Table Metrics. Confusion Table is widely used and underlies a set of metrics for

analyzing the correctness of a classification model [START_REF] Pardos | Towards Moment of Learning Accuracy[END_REF]. Metrics Based on Log-likelihood. The likelihood function describes how likely the data are observed given the parameters of a model. Since the likelihood tends to be an incredibly small number, so it is generally easier to work with the logarithm of the likelihood. The loglikelihood of a sample of data given the parameters of a model is calculated as equation 3.5a,

where n is the sample size; oi is the observations (actual class) and pi is the predictions.

Besides the log-likelihood itself, there are several metrics which are based on the loglikelihood. AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion) are most commonly used for student models. These metrics penalize the number of model parameters and the number of data points in order to avoid overfitting. The AIC value of a model is computed as equation 3.5b, while the BIC value is computed as equation 3.5c, where the k is the number of model parameters and N is the number of data points. For the log likelihood, the higher value is better. For the AIC and BIC, the lower value is better.
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3.5c RSME (Root Mean Square Error) is a common error metric for the evaluation of student models. It accounts for the squared differences between the predictions and the observations, which is depicted as equation 3.6, where n is the sample size; oi is an observation (actual class)

and pi is a prediction. In educational data mining, especially for the evaluation of skill mastery models (e.g. the BKT models), the RSME metric is commonly used, though the resulting numbers is hard to interpret in the context of student modeling. For the RSME, the lower value is better.
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The log-likelihood and RSME are the metrics of probabilistic understanding of the errors [START_REF] Pelánek | Metrics for evaluation of student models[END_REF], both of which has the form of "sum of penalties for individual errors". The confusion table metrics are based on qualitative understanding of errors, either the prediction is correct or incorrect. Various metrics for the evaluation of student models have been investigated by [START_REF] Pardos | Towards Moment of Learning Accuracy[END_REF]. They found that the three confusion table metrics-recall, F-measure and accuracy are the best metrics for predicting the moment of learning (i.e. knowledge estimation). And the RMSE and likelihood based metrics are the best metrics to recover the ground truth parameters. The models discussed in this thesis are evaluated by one or several of these metrics.

Evaluation

In this section, we evaluate our model using a simulated data (or called synthetic data) set and a real data set. We explain how we generate the simulated data, and the basic information of the real data. Using the two data sets, we evaluate our diagnostic model as well as the other two models (i.e. the diagnostic Bayesian network model and the MC-DINA model (De La Torre 2009)) based on a set of metrics. We compare the performance of the three diagnostic models. Moreover, we evaluate the binary models which have the same graphical structures with the three diagnostic models using the same data sets. We compare the diagnostic models with the binary models, in order to verify whether the introduced error patterns can improve the accuracy of student models.

Data Sets

A simulated data set. It is difficult to know the real distribution of the responses to the multiple choice items for students with different knowledge states. To make the simulated data more comparable to the real data, we generate the data based on the diagnostic Bayesian network model using the parameter values from the real data set. This data generation method is also used by [START_REF] Beheshti | Goodness of fit of skills assessment approaches: Insights from patterns of real vs. synthetic data sets[END_REF]. We use the general Bayesian network structure instead of the other two models, since the other two models simplify the noisy parameters under some assumptions. We implement the Bayesian network model via the Bayes Nets Toolbox (BNT) [START_REF] Murphy | The bayes net toolbox for matlab[END_REF], which is an open-source Matlab package for directed graphical models. This package is widely used in the applications of probabilistic graphical models, since it supports many kinds of nodes (i.e. variables with different probability distributions, such as multinomial nodes, multinomial logit nodes, Gaussian nodes etc.), static and dynamic BNs, many different exact and approximate inference algorithms, parameters and structure learning. We generate the data of 1000 students with a Bayesian network model, which contains 20 item nodes and 5 skill nodes. Each item requires two or three skills for a correct response. In the Bayesian network, the skill nodes are the binary variables, i.e. mastered and not mastered. Please note that the values of a binary variable are denoted as 1 (false) and 2 (true) in the BNT package. The prior probability for each skill node is given as 0.5. The items are the four-option questions, each of which contains a correct option and one or two distractors coded to indicate the skills lacked. The item nodes are the multinomial variables with four discrete values representing the options. For each multiple choice item, the Q-matrix is required to incorporate the mapping from the correct option to the skills, as well as the mapping from the distractors to the skills. As mentioned above, to make the simulated data more comparable to the real data, the mapping of each item to the skills is selected from the real data. And the conditional parameters for each item are specified by the parameter values which are estimated from the real data introduced below. According to the specified Bayesian network, we randomly generate student response data. The function "sample_bnet" in the BNT package can be used. And for each simulated student, the knowledge state is generated simultaneously with the response data according to the Bayesian network.

A real data set. A real data set about student response data to multiple choice items is available via the R package CDM [START_REF] Robitzsch | Package 'CDM[END_REF]. The data set named "data.cdm01" is used in our experiment, which incorporates the response data of 5003 students on 17 multiple choice items. Three skills are assessed in the data set. The Q-matrix is made by experts, which indicates the mapping from correct option and distractors to skills. Please note that the options which are neither the correct option nor the distractors are coded as 000 in the Q-matrix. There are eight items related to one skill and other eight items related to two skills and one item related to three skills. Among the items, nine of them contain four options and others contain two options. Among the items with four options, two items have no coded distractors, that is, the options are coded correct or incorrect; one item has two correct options.

Since our diagnostic model targets on assessing student knowledge on the multiple choice items with one or more distractors, student response data on six of the items are select for our experiment. The selected items, i.e. {I1, I2, I3, I6, I7, I8}, have four options, among which there is one or more coded distractors, and only one correct option. And only one item is related to three skills, all the other items are related to the first two skills.

Comparison of Three Diagnostic Models

We evaluate our diagnostic model as well as other two diagnostic models with a set of metrics, and compare the performance of them. Since the differences among the three models are the model complexity (the number of parameters) and the assumptions of the noise assigned for observations, we should evaluate the fit of the three models to the data. Moreover, to account for the model complexity, we compare the AIC and BIC values of the three models. The three models are proposed to diagnose student knowledge, thus we also evaluate the prediction accuracy of the three models. We use the commonly used metrics-RSME and accuracy (based on confusion table) for evaluating and comparing the three models.

Bayesian network construction.

We implement all the three models in the paradigm of Bayesian networks. And the Bayesian networks are constructed by using the BNT package [START_REF] Murphy | The bayes net toolbox for matlab[END_REF]. The R package CDM [START_REF] Robitzsch | Package 'CDM[END_REF]) also provides a function named "mcdina" to implement the MC-DINA model in the paradigm of latent variable models. In our experiments, we use the BNT package to implement the MC-DINA model as a graphical model. The Bayesian network for each of the three models is constructed according to Figure 3.3 and the given Q-matrix. For the simulated data, the Q-matrix is predetermined; for the real data, it is made by human experts. In our model and the MC-DINA model, besides the skill and item nodes, the related latent response variable nodes are added in the networks. In our model, for each skill, a binary latent response variable node is added. In the MC-DINA model, for each item, a multinomial latent response variable node is added.

Parameters initialization.

Before learning the parameters from data, we have to initialize the parameters. In the diagnostic BN model, if the joint state of the skill nodes corresponds to a coded option, the probability of selecting that coded option is initialized to 0.85 and other three options with a probability of 0.05 respectively. If the joint skill state does not correspond to any coded option, the probability for every option is initialized with the equal value, i.e. 0.25. In the MC-DINA model, as mentioned above, the conditional function between the skill nodes and the latent response variable nodes is logic "AND", i.e.

deterministic. The noise parameters between a latent response variable node and an item node have to be initialized. The latent response variable node and the item node are the multinomial nodes. The values of the latent response variable node denote the groups of the ideal responses. The values of the item node are the same with the other two models and denote the options. When the group of the latent response variable node corresponds to an option, the probability for that option is initialized to 0.85, and other three options are initialized to a probability of 0.05. When the group does not correspond to any option, all the options are initialized to an equal probability, i.e. 0.25. In our model, the slip and guess parameters between the skill nodes and the latent response nodes are initialized to be 0.1 and 0.2. As discussed above, the conditional parameters of the item nodes given the values of latent response nodes can be specified in two ways-deterministically and the partially deterministically. Using the deterministic specification, no additional noise parameter needs to be specified. Using the partially deterministic specification, the conditional probabilities are initialized with the same value (i.e. 0.25) given the joint states of the latent response variable nodes which do not correspond to any coded option. We implement our diagnostic model using the two parameter specifications.

Parameters Learning. Since there are some latent nodes (i.e. the skill nodes and the latent response variable nodes) in each Bayesian network, the parameters are learned from the incomplete data. The commonly used algorithm to learn the parameters of a Bayesian network from incomplete data is the Expectation Maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF][START_REF] Borman | An extension of the differential approach for Bayesian network inference to dynamic Bayesian networks[END_REF], which is introduced in section 2.1.1.1. The BNT package provides a function named "learn_params_em" for directly implementing the EM algorithm to learn the parameters from incomplete data. This function requires three input arguments-the Bayesian network with initialized parameters, the data table and the iteration conditions. We set the maximum number of the iterations is 50 and the minimum variance of the likelihood is 0.0001. The EM algorithm learns the parameter values which maximize the likelihood of data.

Results-Model fit and complexity.

To compare the fit to data and the complexity of the three diagnostic models, we input the whole data set (both in the simulated data experiment and in the real data experiment) for the EM algorithm to learn the parameters of the best fit.

The resulting maximum log-likelihood for each of the three models is shown in Table 3.3.

The maximum log-likelihood of a model demonstrates the fit of the model to data. The higher the maximum log-likelihood, the better the model fits data. According to Table 3.3, for both the data sets, the diagnostic BN model fits best. Our model using the partially deterministic specification fits the simulated data better than the MC-DINA model, while the opposite result is got on the real data. Using the partially deterministic specification, our model fits both the simulated data and the real data much better than using the deterministic specification.

As mentioned above, one of the differences among the three diagnostic models is the model complexity. Thus we also compare the number of parameters the three models. And the formulas to calculate the number of parameters for each model have been provided in section 3.3.1. The resulting number of parameters for each model in the experiments using the simulated data and using the real data is shown in Table 3.3. We can find that our model using the deterministic specification needs the least parameters. Our model using the partially deterministic specification requires more parameters than the MC-DINA model in the simulated data, but requires less parameter in the real data, since there are more nodes with three parents in the simulated data. According to the formulas in section 3.3.1, our model using partially deterministic specification will requires more parameters than the MC-DINA model if there are many item nodes with three or more parents. As discussed in section 3.3.2, the AIC and BIC metrics make a trade-off between the model fit and the model complexity by rewarding log-likelihood and penalizing the number of parameters and the number of data points. Thus, we also compare the AIC and BIC values of the three models. We calculate the AIC and BIC values for each model according to the equations 3.5b and 3.5c. The resulting AIC and BIC values for each model is shown in Table 3.3. As mention above, the lower the AIC or BIC value is, the better the model is. According to Table 3. Besides the model fit and complexity, we are also interested to compare the prediction accuracy of the three diagnostic models. The prediction accuracy of a student model involves the percentage of correctly forecasting student knowledge or student future performance.

Since student knowledge is latent and cannot be observed, the knowledge estimation is usually replaced by the performance prediction. Fortunately, we use a simulated data set, where the knowledge states of each student is known beforehand. Thus, in the experiment using the simulated data, we evaluate both the accuracy of knowledge estimation and performance prediction of the three models.

K-fold cross-validation.

To evaluate the prediction accuracy, we have to partition the data into the training data and the testing data. We can simply divide a data set into two subsets, like 70% of data as the training data and 30% of data as the testing data. This method is called the holdout method. However, the evaluation using this data partitioning method can have a high variance. The evaluation results may heavily rely on which data points are for training and which for testing. K-fold cross-validation is one way to reduce the variance. In the k-fold cross-validation [START_REF] Kohavi | A study of cross-validation and bootstrap for accuracy estimation and model selection[END_REF][START_REF] Han | Data Mining: Concepts and Techniques[END_REF], the initial data are randomly partitioned into k mutually exclusive "folds" (i.e. subsets), each of approximately equal size. And the training and testing are performed for k times. For each iteration, one fold is used for testing, and the remaining k-1 folds are used to train the model. Thus, all the data points are used for both training and testing, and each data point is used for testing exactly once. The accuracy of the model is computed based on all the predictions in the k iterations.

Results-prediction accuracy. We use 10-fold cross-validation to estimate the prediction accuracy of the three diagnostic models. In our experiment, the real data are partitioned into 10 subsets at student level. That is, in each iteration, the data of 90% of students are used for training and 10% are used for testing. It should be distinguished from the data partition at item level. That is, the data on 90% items are used for training and 10% for testing. The model parameters are learned from the training data by using the EM algorithm. After the parameters of the model are learned, we predict student performance in the testing data.

For the simulated data, we evaluate two kinds of predictions-the knowledge estimation and the performance prediction. For the real data, since the real knowledge state of a student cannot be known, we only evaluate the performance prediction. In the knowledge estimation, using the learned parameters, we estimate the knowledge state of each student in the testing data given student response data. We input the response record of a student in the testing data as the evidence in the Bayesian network. Then the inference engine will propagate the information backward through the Bayesian network to the skill nodes. The posterior probabilities of the skill nodes are calculated. These probabilities are rounded. That is, when the posterior probability of a skill node is higher than 0.5, we suppose the skill is mastered by the student; otherwise, the skill is not mastered by the student. In this way, the knowledge state of each student is predicted. We compare the predicted knowledge state of each student with the actual knowledge state in the simulated data. The four counts (i.e. TP, TN, FP, FN)

in the confusion table can be obtained. According to equation 3.4a, the accuracy can be computed.

In the performance prediction, for each student record in testing data, all the observations except one are given as the evidence to the Bayesian network. That is, the observation of one item node is unseen. And a student's response to the unseen item will be predicted by the models. The process of predicting a student's response to an unseen item is as follows: when the evidence is given to the model, the Bayesian network inference algorithm (the junction tree engine is used via the BNT package) estimates student knowledge on each skill as well as predicts the probability distribution of student performance on the unseen item node. Since each of our diagnostic items (i.e. a multiple choice item) has four options, the predicted probability distribution incorporates the probabilities for the four options. In other words, there are four classes for prediction. In our experiment, the option with the highest probability is considered as the response of the student. For example, if the predicted probability distribution of the hidden item is {0.03, 0.17, 0.68, 0.12}, the student's response is supposed to be the third option. Each item is iteratively selected as the unseen item, and a student's response to the unseen item is predicted. This process is similar to the leave-one-out crossvalidation. The leave-one-out cross-validation is a special case of the k-fold cross-validation,

where k is the size of the initial data. Here, k is the number of item nodes. It is not the real cross-validation, since the "training" data (the observations except the hidden one) are used as the evidence in the Bayesian network instead of training parameters.

Since the performance is a multinomial variable, the prediction is a multi-class prediction.

Thereby in our experiments, the confusion table is a 4×4 matrix. Comparing the predictions with the observations in the testing data, the counts in the confusion table can be obtained.

And the accuracy values of the models can be calculated by an equation similar to equation 3.4a. To calculate the RSME value of multi-class prediction, we use a binary code to represent the performance. For example, if the response is predicted to be the third response, the prediction is represented as 0010. Accordingly, observations are coded in the same way.

As a result, the difference between a prediction and an observation can be calculated as the half of the Hamming distance. In our experiments, we predict two kinds of student performance. We predict which option is selected by a student (i.e. multinomial prediction), as well as whether the student response's is correct or not (i.e. binary prediction).We evaluate the two kinds of performance prediction of the three models using both the simulated data and the real data. The knowledge estimation is only implemented for the simulated data. We insist to use the accuracy metric since the values are interpretable for a student model. We also use the most commonly used error metric-RSME which has been introduced in section 3.3.2. The resulting accuracy and RSME values of the three models on the simulated data and the real data are shown in Table 3.4. It can be found that the accuracy and the RSME values are correlated. The higher the accuracy value is, the lower RSME value is, and the better the model is. All the models have a low accuracy value for multinomial performance predictions.

But they are still much higher than the probability of a random prediction (i.e. 0.25 as there are four options). According to Table 3.4, using the simulated data, the diagnostic BN model has the highest accuracy values on both the knowledge estimation and the performance prediction. And our model using the partially deterministic specification has the higher accuracy values than the MC-DINA model on the performance predictions, but lower accuracy values on the knowledge estimation. Using the real data, our model outperforms the other two diagnostic models on the binary performance prediction. Therefore, according to the results, our model is competing on the performance prediction among the three diagnostic models.

Diagnostic models vs. binary models

We have compared our model with other two diagnostic models above. In this section, we are interested to verify whether the error patterns introduced in the diagnostic models improve the model accuracy. We compare the three diagnostic models with three binary models, which have the same graphical structures with the diagnostic models. To start with, we discuss an example to show how the probabilities of skills update using our diagnostic model and using the binary NIDA model. Suppose item 1 requires skill S1 and S2

for a correct response, and item 2 requires S2 and S3. The observations on each item are erroneous options. The observations are identified as the distractors in our diagnostic model, while in the binary NIDA model they are measured as wrong answers. Figure 3.4 shows the probabilities of skills updated given the observations one by one. The parameter values learned from the real data are used. To learn the parameters of a binary NIDA model, we need to convert the polytomous data to the binary data, that is, the correct option is denoted as 1 and all the other options are denoted as 0. It should be noted that the noise parameters in the binary NIDA model in this experiment are learned per skill per item, like our diagnostic model. It is different from the original NIDA model, whose noise parameters are learned per skill. In this example, for the sake of comparison, the probability of each skill is initialized as 0.5 instead of using the learned parameters. According to Figure 3.4, when a student selects a distractor which is coded as 01, our diagnostic model increases the probability of skill S2 and decreases that of S1, whereas the binary model identifies the distractor as wrong, and decrease the probabilities of both the skills. Given an observation on item 2, the two models perform in the same way. According to the updating process of skill probabilities, it seems that our diagnostic model more precisely distinguishes student behaviors, which might lead to the better estimation of student knowledge.

The binary models used for the comparison are the binary BN model, the binary DINA model and the binary NIDA model. We use the 4-fold cross validation to evaluate the prediction accuracy of the three binary models. As mentioned above, the polytomous data should be transformed into the binary data. That is, the correct option is coded as 1 and the other three options are coded as 0. In these experiments, the partially deterministic specification is used for our model. In the binary DINA model, the latent response variable nodes are binary. The noise parameters between the latent response nodes and an item node are a pair of the slip and guess parameters. These experiments are also implemented via the BNT package [START_REF] Murphy | The bayes net toolbox for matlab[END_REF]. The Bayesian networks for the binary models are unchanged from the diagnostic models. Only the item nodes and the latent response variable nodes become binary variables accordingly. The parameters are learned from the training data by the EM algorithm. Using the learned parameters, student knowledge and student performance on unseen items can be predicted. Comparing the predictions with observations, the accuracy and RSME values of knowledge estimation and performance prediction for each model can be calculated. Since in the binary models, the item nodes are binary, all the performance predictions of these models are binary (i.e. whether a student's response is correct or incorrect).

The resulting RSME values of the three diagnostic models and the three binary models using the simulated data and the real data are shown in Figure 3.5. In both the knowledge estimation and the performance prediction, the diagnostic models have better RSME values than the binary models on the simulated data and the real data. Therefore, the error patterns improve the accuracy of student models. In addition, we see that the RSME values of the diagnostic models are significantly lower than those of the binary models on the knowledge estimation, but slightly lower on the performance prediction. The interval values in each figure indicate the smallest and largest RSME improvement values. Using the simulated data, compared with the binary models, the largest RSME improvement of the diagnostic models on the knowledge estimation is 0.1793 and the smallest is 0.1653. The largest RSME improvement of the diagnostic models on the performance prediction is roughly 0.0197 and the smallest is roughly 0.0139. And using the real data, the RSME improvement values of the diagnostic models are between 0.0037 and 0.0044. The small improvements on the performance prediction might be caused by the high probability of guessing for the multiple choice items. We are also interested in how the prediction accuracy changes given an increasing number of observations. We estimate the accuracy of the knowledge estimation by giving different number of observations. The accuracy values of the diagnostic models and the binary models are shown in Figure 3.6. The three diagnostic models have a significantly higher accuracy values than the binary models given any number of observations. The observations selected for every model are the same at each time. And the prediction accuracy of the diagnostic models increases more sharply than the binary models with the increasing number of observations. This demonstrates that the diagnostic items are more discriminative than the binary items for classifying student knowledge. The result is reasonable, since the coded distractors of the diagnostic items distinguish student behaviors more precisely. Therefore, the diagnostic models outperform the binary models. And the performances of the three diagnostic models are closed to each other, while the performances of the three binary models are also close to each other. At the starting point, we analyze and compare the DINA model and the IRT model. We evaluate the two models using two real data sets named "data.ecpe" and "data.fraction1" in the CDM package [START_REF] Robitzsch | Package 'CDM[END_REF]. The ECPE data incorporate the responses of 2922 students to 28 items, while the Fraction data incorporate 536 students' responses to 15 items.

In both the data sets, the response data are binary, 1 (correct) and 0 (incorrect). We use the 4fold cross-validation to evaluate the prediction accuracy of the two models. We implement the commonly used Rasch (1PL-IRT) model in our experiment. That is, each item is only characterized by the difficulty, and the discrimination and guess parameters are restricted to be constants, i.e. 1 and 0 respectively. Student ability is measured by a continuous variable θ, and the probability of student j with the ability θj giving a correct response to item Qi with difficulty bi can be computed as equation 3.6.
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The Rasch model is implemented via the R package 'ltm' [START_REF] Rizopoulos | ltm: An R package for latent variable modeling and item response theory analyses[END_REF]). This package is developed for the analysis of dichotomous and polytomous data using latent trait models, including the Rasch model, 2PL model, 3PL model, etc. The function named "rasch" in the package is used to fit the model to data. The two arguments of this function are the training data and a constraint to specify the discrimination parameter for each item with 1. The difficulty parameter for each item is learned by this function. Using the learned parameters, we can evaluate the accuracy of predicting student performance on unseen items. For each test record, all of the observations except one are given as evidence to the model with the learned Intuitively, if an item is more difficult, it seems that students are more likely to slip and less likely to guess.

We still use the real data set "data.ecpe" (i.e. ECPE data) via the R package "CDM" [START_REF] Robitzsch | Package 'CDM[END_REF] to investigate the relationship between the parameters of the DINA model and the difficulty parameter of the IRT model. We use the whole data set to train the parameters of the DINA model. Likewise, the parameters of the DINA model are learned via the "din" function in the package. Using the same data set, we train the parameters of the Rasch model via the "ltm" package. After the slip/guess parameters and item difficulty are learned by the two models respectively, we investigate the relationship between the guess and item difficulty parameters as well as the relationship between slip and difficulty parameter respectively. We plot each item in the data set using the probability of guessing and its difficulty value as the coordinates in Figure 3.6 (left). Each item is also plotted with the probability of slipping and its difficulty value as the coordinates in Figure 3.6 (right).

Figure 3.6 Probabilities of guessing and slipping varying with the difficulty values According to Figure 3.6, it is plausible that the probability of guessing monotonically decreases with the difficulty value, and the probability of slipping value monotonically increases with the difficulty value. In fact, the paper of Khajah et al. (2014a) at the EDM (Educational Data Mining) conference stated that the probability of slipping and guessing for an item satisfy a logistic regression function of the item difficulty and student ability. This paper has been discussed in section 2.1.3 and the logistic regression function is described as equation 2.14, which is the integration of the BKT model and the IRT model (called the LFKT model). To verify this logistic regression function between the parameters, we calculate the log odds of the slipping and guessing as equation 3.7. The log odds of an event A are logit(P(A))=ln(P(A)/P(┐A)). Then equation 2.14 can be transformed as equation 3.7.

That is, the log odds of slipping and guessing are a linear function of the item difficulty.
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We look into whether there is a linear relationship between the log odds logit(Pgij)/logit(Psij) and the item difficulty dj. We calculate the log odds of guessing and slipping, i.e. logit(Pgij) and logit(Psij), for each item in terms of the slip and guess parameter values. And we plot each item using the log odds and its difficulty value as the coordinates in Figure 3.7.

According to this figure, all the points seem to follow a line with a slope of 1 or -1 (the dashed lines). Thus the log odds of guessing and slipping are likely to follow the linear function of the item difficulty. And the log odds of guessing linearly decrease with the increasing difficulty values, while the log odds of the slipping linearly increase with the increasing difficulty values. The result looks consistent with the equation 3.7, i.e. the findings of the LFKT model (Khajah et al. 2014a). Human knowledge acquisition usually complies with some characteristics or laws. Learning sequence is an important characteristic inherent in student learning. Student learning begins with basic concepts and simple tasks, and move to more complex concepts and challenging tasks. Learning sequence is supported by the psychological theory of the zone of proximal development [START_REF] Vygotsky | Mind in society: The development of higher psychological processes[END_REF]. Students should be given the experiences that are within their zones of proximal development, thereby encouraging and advancing their individual learning.

This theory stratifies the learning objectives. In the sequence perspective, some skills should be learned before others. The learning sequence is usually expressed by the prerequisite relationships between problems and between skills. Prerequisite structures of fine-grained skills are the basis for designing individual learning sequence.

In this chapter, we attempt to improve the skill model by incorporating prerequisite structures of skills, and we focus on learning skill structures from student performance data. In section 4.1, we discuss the prerequisite relationships in student models, and introduce the related work on extracting prerequisite structures from student response data. In section 4.2, we present our two-phase method to discover prerequisite structures of skills from data. In section 4.3, we evaluate our method using the simulated data and the real data. In section 4.4, we compare our method with the other two methods. In section 4.5, we verify whether the accuracy of a student model is improved by introducing the prerequisite structure of skills.

Section 4.6 is a summary of this chapter.

Prerequisite Relationships

Prerequisite relationships between problems and skills have been investigated by many educators and researchers. The prerequisite structures express the latent cognitive order.

Students should be capable of solving the easier problems before the difficult ones are presented to them, and likewise, some preliminary skills should be learned prior to the learning of the complex skills. The prerequisite relationships underlie the strategies for individualized learning. Furthermore, improving the accuracy of a student model with the prerequisite structure of skills has been exemplified by [START_REF] Chen | Bayesian Student Modeling Improved by Diagnostic Items[END_REF] and [START_REF] Käser | Beyond Knowledge Tracing: Modeling Skill Topologies with Bayesian Networks[END_REF]. We introduced the prerequisite relationships of skills into a student model [START_REF] Chen | Bayesian Student Modeling Improved by Diagnostic Items[END_REF]. The results of our experiments (which will be discussed in section 4.5) show that the model accuracy is improved. Prerequisite relationships have also been introduced into the BKT model [START_REF] Käser | Beyond Knowledge Tracing: Modeling Skill Topologies with Bayesian Networks[END_REF]. Their experiments on five real data sets demonstrate that the predictive accuracy of the BKT model is significantly improved.

The prerequisite structures of problems and skills are in accordance with Knowledge Space Theory [START_REF] Falmagne | The assessment of knowledge, in theory and in practice[END_REF] and Competence-based Knowledge Space Theory [START_REF] Heller | Competence-based knowledge structures for personalised learning[END_REF]. A student's knowledge state should comply with the prerequisite structure of skills. If a skill is mastered by a student, all the prerequisites of the skill should also be mastered by the student. If any prerequisite of a skill is not mastered by a student, it seems difficult for the student to learn the skill. Therefore, according to the knowledge states of students, we can uncover the prerequisite structure of skills. Most prerequisite structures of skills reported in the student modeling literature are studied by domain or cognition experts. It is a tough and time-consuming task since it is quite likely that the prerequisite structures from different experts on the same set of skills are difficult to come to an agreement. Moreover, the prerequisite structures from domain experts are seldom tested empirically. Nowadays, some prevalent data mining and machine learning techniques have been applied in cognition models, benefiting from large educational data available from online educational systems. Deriving the prerequisite structures of observable variables (e.g. problems) from data has been investigated by some researchers. However, discovering prerequisite structures of skills is still challenging since a student's knowledge of a skill is a latent variable. Uncertainty exists in inferring student knowledge of skills from performance data. Our work aims to discover the prerequisite structures of skills from student performance data.

With the emerging educational data mining techniques, many works have investigated the discovery of prerequisite structures within domain models from data. One of the most famous approaches is the Partial Order Knowledge Structures (POKS) learning algorithm, which is proposed by Desmarais and his colleagues (Desmarais et al. 2006;Desmarais and Gagnon 2006;[START_REF] Desmarais | User-expertise modeling with empirically derived probabilistic implication networks[END_REF]. The POKS algorithm learns the item to item knowledge structures (i.e. the prerequisite structure of problems) that are solely composed of the observable nodes, like answers to test questions. The results of their experiments over three data sets show that the POKS algorithm outperforms the classic BN structure learning algorithms (i.e. K2, PC) on the predictive ability and the computational efficiency. [START_REF] Pavlik | Using Item-Type Performance Covariance to Improve the Skill Model of an Existing Tutor[END_REF] used the POKS algorithm to analyze the relationships between the observable item-sets of attributes. Two measures are commonly used for discovering the strong or interesting association rules: the support of rule X⇒Y denoted by Sup(X⇒Y), which is the percentage of records in D that contain X∪Y, i.e. P(X∪Y); the confidence denoted by Conf(X⇒Y), which is the percentage of records in D containing X that also contains Y, i.e. P(Y|X). The rule X⇒Y is considered strong or interesting if it satisfies the following condition:

) ) ( ( ) ) ( ( minconf Y X Conf minsup Y X Sup      4.1
where minsup and minconf denote the minimum support threshold and the minimum confidence threshold. The support threshold is used to discover frequent patterns in a database, and the confidence threshold is used to discover the association rules within the frequent patterns. The support condition makes sure the coverage of the rule, that is, there are adequate records in the database to which the rule applies. The confidence condition guarantees the accuracy of applying the rule. The rules which do not satisfy the support threshold or the confidence threshold are discarded in consideration of the reliability. Consequently, the strong association rules could be selected by the two thresholds.

Discovering Skill Structure from Knowledge States

To discover the skill structure, a database of students' knowledge states is required. The knowledge state of a student is a record in the database. And the mastery of a skill is a binary attribute with the values mastered (1) and non-mastered (0). If skill Si is a prerequisite of skill Sj, it is most likely that Si is mastered given that Sj is mastered, and that skill Sj is not mastered given that Si is not mastered. Thus this prerequisite relation corresponds with the two association rules: Sj=1⇒Si=1and Si=0⇒Sj=0. If both the association rules exist in a database, Si is deemed a prerequisite of Sj. To examine if both the association rules exist in a database, according to condition 4.1, the following conditions could be used:
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When condition 4.2 is satisfied, the association rule Sj=1⇒Si=1 is deemed to exist in the database, and when the condition 4.3 is satisfied, the association rule Si=0⇒Sj=0 is deemed to exist in the database. Theoretically, if skill Si is a prerequisite of Sj, all the records in the database should comply with the two association rules. To be exact, the knowledge state {Si=0, Sj=1} should be impossible, thereby σ(Si=0, Sj=1) should be 0. According to the equations 4.4 and 4.5, the confidences of the rules in the equations should be 1.0. Since noise always exists in real situations, when the confidence of an association rule is greater than a threshold, the rule is considered to exist if the support condition is also satisfied. We cannot conclude that the prerequisite relation exists if one rule exists but the other not. For instance, the high confidence of the rule Sj=1⇒Si=1 might be caused by the high proportion P(Si=1) in the data.
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The discovery of the association rules within a database depends on the support and confidence thresholds. When the support threshold is given a relatively low value, more skill pairs will be considered as frequent patterns. When the confidence threshold is given a relatively low value, the weak association rules within frequent patterns will be deemed to exist. As a result, the weak prerequisite relations will be discovered. It is reasonable that the confidence threshold should be higher than 0.5. The selection of the two thresholds requires human expertise. Given the data about the knowledge states of a sample of students, the frequent association rules mining can be used to discover the prerequisite relations between skills.

Discovering Skill Structure from Performance Data

In the former section, we discussed that the skill structure can be discovered by mining frequent association rules in a database of knowledge states. In this section, we attempt to mining association rules from student performance data which are naturally observed in education settings. In fact, a student's knowledge state cannot be directly obtained since student knowledge of a skill is a latent variable. In common scenarios, we collect the performance data of students in assessments or tutoring systems and estimate their knowledge states with the noisy observations. The evidence models that transfer the performance data of students to their knowledge states have been investigated for several decades. The psychometric models-the DINA and NIDA models (which have been discussed in chapter 3) are used to infer the knowledge states of students from their response data on the multi-skill test items. The well-known Bayesian Knowledge Tracing (BKT) model [START_REF] Corbett | Knowledge tracing: Modeling the acquisition of procedural knowledge[END_REF] (which have has been introduced in section 2.1.1.3) is used to update students' knowledge states according to the log files of their learning in a tutoring system. A Q-matrix which represents the items to skills mapping is required in these models. The Qmatrix is usually created by domain experts, but recently some researchers [START_REF] Barnes | The Q-matrix method: Mining student response data for knowledge[END_REF][START_REF] Desmarais | A Matrix Factorization Method for Mapping Items to Skills and for Enhancing Expert-Based Q-Matrices[END_REF][START_REF] González-Brenes | Modeling Skill Acquisition Over Time with Sequence and Topic Modeling[END_REF] investigated to extract an optimal Qmatrix from data. Our method assumes that an accurate Q-matrix is known, like the method in [START_REF] Scheines | Discovering Prerequisite Relationships among Knowledge Components[END_REF]. Since the noise (e.g. slipping and guessing) is considered in the evidence models, the probability that a skill is mastered by a student can be estimated. The estimated knowledge state of a student is probabilistic, which incorporates the probability of each skill mastered by the student. Table 4.1 shows an example of the database consisting of probabilistic knowledge states. In the table, each record is a student's knowledge state, and attributes are skills. For example, the first record is the knowledge state of student "st1", incorporating the probabilities that skills S1, S2 and S3 are mastered by student, that is, 0.9, 0.8 and 0.9 respectively. There are three types of uncertain data, that is, attribute uncertainty-each uncertain attribute in a tuple is subject to its own independent probability distribution, correlated uncertaintymultiple attributes are described by a joint probability distribution, and tuple uncertainty-all the attributes of a tuple are subject to a joint probability distribution. Probabilistic knowledge states are the data of attribute uncertainty, since each skill in a probabilistic knowledge state is associated to a probability.

We discover prerequisite relations between skills from the probabilistic knowledge states of students that are estimated by an evidence model. The frequent association rules mining can no longer be used to discover the prerequisite relations between skills within a probabilistic database, since a pattern in a probabilistic database is associated with a probability. A probabilistic database can be interpreted as a set of deterministic instances (named possible worlds) [START_REF] Bernecker | Probabilistic frequent itemset mining in uncertain databases[END_REF]. We assume that the noise (e.g. slipping, guessing) causing the uncertainty for different skills is mutually independent. In addition, we assume that the knowledge states of different students are observed independently. Under these assumptions, the probability of a possible world in our database is the product of the probabilities of the attribute values over all the records in the possible world [START_REF] Bernecker | Probabilistic frequent itemset mining in uncertain databases[END_REF][START_REF] Chui | Mining frequent itemsets from uncertain data[END_REF][START_REF] Sun | Mining uncertain data with probabilistic guarantees[END_REF]). ). The support count of a pattern in a probabilistic database should be computed with all the possible worlds. Thus the support count is no longer a deterministic counted number but a discrete random variable. Figure 4.1 depicts the support count probability mass function (pmf) of the pattern {S1=1, S2=1} in the database of Table 4.1. In the figure, for instance, the probability of σ (S1=1, S2=1) equal to 1 is about 0.7112, which is the sum of the probabilities of all the possible worlds in which only one record contains the pattern {S1=1, S2=1}. Since there are an exponential number of possible worlds for a probabilistic database (e.g. 2 6 possible worlds for the database of Table 4.1), computing the support count of a pattern is expensive. The Dynamic-Programming algorithm (Table 4.3)

proposed by [START_REF] Sun | Mining uncertain data with probabilistic guarantees[END_REF] is used to efficiently compute the support count pmf of a pattern. The support count pmf X f of pattern X is initialized to {1,0,…, 0} in step 2 (i.e. σ (X)

is zero before PDB is visited). Each ] [k f X is updated when a tuple i T is visited (step 3 to 7), where ) ) ( ( ] [ k X Sup P k f X  
, and X i p is the probability that pattern X occurs in tuple i T .

Table 4.3 Dynamic-Programming algorithm [START_REF] Sun | Mining uncertain data with probabilistic guarantees[END_REF])

Input: probabilistic database PDB, pattern X Output: support pmf XY f 1 begin 2 Initialize   0 , , 0 , 1   X f 3 for each tuple i T in PDB do 4       0 1 0 ' X X i X f p f    5 for 1  k to n do 6         k f p k f p k f X X i X X i X       1 1 ' 7 ' X X f f  8 return X f

end

To discover the prerequisite relations between skills from the probabilistic knowledge states of students, the probabilistic association rules mining technique [START_REF] Sun | Mining uncertain data with probabilistic guarantees[END_REF]) is used, which is an extension of the frequent association rules mining to discover association rules from uncertain data. Since the support count of a pattern in a probabilistic database is a random variable, the conditions 4.2 and 4.3 are satisfied with a probability. Hence the association rules derived from a probabilistic database are also probabilistic. We use the formula proposed by [START_REF] Sun | Mining uncertain data with probabilistic guarantees[END_REF] to compute the probability of an association rule satisfying the two thresholds. It can be also interpreted as the probability of a rule existing in a probabilistic database. For instance, the probability of the association rule Sj=1⇒Si=1 existing in a probabilistic database is the probability that the condition 4.2 is satisfied in the database:
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where N is the number of records in the database and 𝑓 𝑋 denotes the support count pmf of pattern X, and f X [k]=P(σ(X)=k).

The probability of the rule related to condition 4.3 is computed similarly. The algorithm [START_REF] Sun | Mining uncertain data with probabilistic guarantees[END_REF] implementing the computation of this formula is used. The algorithm is described as Table 4.4.

According to formula 4.6, the probability of an association rule changes with the values of the support and confidence thresholds. Given the two thresholds, the probability of an association rule existing in a probabilistic database can be computed. And if the probability is very close to 1.0, the association rule is considered to exist in the database. If both the association rules related to a prerequisite relation are considered to exist, the prerequisite relation is considered to exist. We can use another threshold, the minimum probability threshold denoted by minprob, to select the most possible association rules. Thus, if both P(Sj=1⇒Si=1)≥minprob and P(Si=0⇒Sj=0)≥minprob are satisfied, Si is deemed a prerequisite of Sj. When two skills are estimated to be the prerequisite of each other, the relation between them is symmetric. It means that the two skills are mastered or not mastered simultaneously. The skill models might be improved by merging the two skills with the symmetric relation between them. Table 4.4 The algorithm of computing the probability of an association rule [START_REF] Sun | Mining uncertain data with probabilistic guarantees[END_REF])
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Evaluation of Our Method

We use one simulated data set and two real data sets to validate our method. The procedure of our method that discovers prerequisite structures of skills from student performance data is shown in Figure 4.2. Firstly, student performance data are preprocessed by an evidence model.

We adapt our method to the testing data and the log data. The testing data are static data,

which are obtained at one point in time. The log data are sequence data or longitudinal data, which are obtained by tracking the same sample at different points in time. Testing data are usually from a traditional or online assessment, while the log data are provided by an ITS or online learning system. Different evidence models are used to preprocess the two types of data to get the probabilistic knowledge states of students. In our experiments, the DINA model is used for the testing data, whereas the BKT model is used for the log data. Then the probabilistic knowledge states of students estimated by the evidence model are used by the probabilistic association rules mining to discover the strong association rules. Finally, the prerequisite relations are determined in terms of the discovered association rules. To validate our result, a straightforward method is to compare the results with the "true structure". For the simulated data, the discovered prerequisite structure is compared with the presupposed structure that is used to generate the data. The presupposed structure is the "true structure".

However, for the real data, the "true structure" is commonly difficult to be obtained. Thus in our experiments, the prerequisite structure derived from the real data is compared with the structure investigated by another research on the same dataset or the structure from human expertise. We also evaluate whether the learned skill structures better explain student performance data and whether they have the stronger predictive power than the flat models. The confidence threshold is given as a constant 0.76, and five association rules in each figure satisfy this threshold. Only on these rules, the effect of different support thresholds can be observed. In each figure, the probabilities of the rules decrease in two intervals of threshold value. For example, in Figure 4.3 (c), to select the rules corresponding to r3, r5 and r6, the highest value for the support threshold is roughly 0.17, while for the other two rules, it is 0.49.

If both the confidence threshold and the support threshold are appropriately selected, the most possible association rules will be distinguished from others. As a result, the five prerequisite relations can be discovered in this experiment. noted that the arc representing the relation that S1 is a prerequisite of S4 is not present in Consequently, the strong prerequisite relations can be discovered. Our discovered prerequisite structure totally agrees with their findings. We use the sections in the units "equivalent fractions" and "fraction operations" as the skills.

The sections corresponding to the skills are shown in Table 4.6. There are 560 students in the data set performing to learn one or several of the item-type skills in these units. The five skills discussed in our experiment are instructed in the given order in Table 4.6. A student's knowledge of the prior skills has the potential to affect his learning of the new skill. Hence, it makes sense to estimate whether a skill trained prior to the new skill is a prerequisite of it. If the prior skill Si is a prerequisite of skill Sj, students who have mastered skill Sj quite likely have previously mastered skill Si, and students not mastering the skill Si quite likely learn the skill Sj with great difficulty. Thus if both the rules Sj=1⇒Si=1 and Si=0⇒Sj=0 exist in the data, the prior skill Si is deemed a prerequisite of skill Sj. To discover the prerequisite relations between skills, firstly we need to estimate the outcomes of student learning according to the log data. A student learns a skill by solving a set of problems that requires applying that skill. At each opportunity, student knowledge of a skill probably transitions from the unlearned to learned state. Thus their knowledge should be updated each time they go through a problem. The BKT model has been widely used to track the dynamic knowledge states of students according to their activities on ITSs. In the standard BKT, four parameters are specified for each skill [START_REF] Corbett | Knowledge tracing: Modeling the acquisition of procedural knowledge[END_REF]: P(L0) denoting the initial probability of knowing the skill a priori, P(T) denoting the probability of student's knowledge of the skill transitioning from the unlearned to the learned state, P(S) and P(G) denoting the probabilities of slipping and guessing when applying the skill. We implemented the BKT model by using the Bayes Net Toolbox for Student Modeling [START_REF] Chang | A bayes net toolkit for student modeling in intelligent tutoring systems[END_REF], which facilitates training and evaluating DBNs. The parameter P(L0) is initialized to 0.5 while the other three parameters are initialized to 0.1. The four parameters are estimated according to the log data of students, and the probability of a skill to be mastered by a student is estimated each time the student performs to solve a problem on that skill. In the log data, students learned the section skills one by one and no student relearned a prior section skill. If a prior skill Si is a prerequisite of skill Sj, the knowledge state of Si after the last opportunity of learning it has an impact on learning Sj. We use the probabilities about Sj=1⇒Si=1 are more reliable than Si=0⇒Sj=0 since most of the former can satisfy a higher support threshold than the latter (see Figure 4.8 (c) and (d)). In addition, the log data is very likely to contain much noise. It is possible that some skills could be learned if students take sufficient training, even though some prerequisites are not previously mastered. In this case, the support count σ(Si=0, Sj=1) would increase. Or perhaps students learned the prerequisite skills by solving the scaffolding questions in the process of learning new skills, even though they performed not mastering the prerequisite skills before. In this case, the observed values of σ(Si=0, Sj=1) would be higher than the real values. According to the equations 4.4 and 4.5, if σ(Si=0, Sj=1) increases, the confidence of the rules will decrease. And when the noise appears in the data, the confidences of the association rules which are supported by a small proportion of sample will be affected much more than those supported by a large proportion of sample. We have discussed the effect of one threshold on the probability of association rules while eliminating the effect of the other one in the three experiments. To determine the values for the thresholds, we investigate how the two thresholds simultaneously affect the probability of an association rule. Suppose that a rule satisfies the thresholds if its probability is higher than 0.95, i.e. minprob=0.95. When we change the values of the confidence and support thresholds from 0.0 to 1.0, for each rule, we can find a point whose coordinates consist of the maximum values of the confidence and support thresholds that the rule can satisfy. Finding the optimal point is hard and there are probably several feasible points. To simplify the computation, the thresholds are given by a sequence of discrete values from 0.0 to 1.0. We find the maximum value for each threshold when only one threshold affects the probability of the rule given the other as 0.0. And for each threshold, minprob is given as 0.97, roughly the square root of the original value. The found maximum values for the two thresholds are the coordinates of the point. The found point is actually an approximately optimal point. For convenience, the point is named maximum threshold point in this thesis. The points for all the rules in the three data sets are found by our method as well as plotted in Figure 4.11 (some points overlap). When 
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Comparison with Existing Methods

In this chapter, we investigate whether the prerequisite structures discovered by the existing methods from our data sets are consistent with our results. The likelihood method [START_REF] Brunskill | Estimating Prerequisite Structure From Noisy Data[END_REF]) and the POKS algorithm (Desmarais et al. 2006) are examined using our data sets. Both the two methods are adapted to our data in the experiments. Firstly, we will discuss how to use the likelihood method to discover the prerequisite structure of skills from student performance data. Then we will adapt the POKS algorithm to discover the prerequisite structure of skills, which was proposed to discover prerequisite structures of observable variables (i.e. items). [START_REF] Brunskill | Estimating Prerequisite Structure From Noisy Data[END_REF] proposed a method to determine prerequisite relations of skills by comparing the maximum likelihood of the prerequisite model with that of the flat model (the skills are independent). The model with the higher likelihood given the parameter values of the best fit is preferred. That is, if the prerequisite model on a pair of skills has a higher maximum likelihood, the prerequisite relation is deemed to exist. Conversely, if the flat model has a higher maximum likelihood, the skills are considered independent. The author took into account the uncertainty in measuring student knowledge from the noisy observations. In her context, a question is related to only one skill. The BKT model is used as the evidence model.

Application of the likelihood method

And in her preliminary experiment, the noise parameters for observations are given by human experts instead of learning from data. The parameters for skills are learned by the EM algorithm to maximize the log-likelihood of data.

In our context, each question is related to multiple skills. For our testing data sets, we still use the DINA model as the evidence model. We also use the pairwise evaluation. The likelihood values of the prerequisite model and the flat model are computed under the formulism of Bayesian networks in our experiments. Our experiment is implemented via the BNT package [START_REF] Murphy | The bayes net toolbox for matlab[END_REF]. We construct the Bayesian network of the evidence model in terms of the Qmatrix. For each pair of skills, the flat model is that no direct link is created between the skills, while the prerequisite model is that a prerequisite link is created between the skills. Two prerequisite models with different directions are tested for each pair of skills. And each prerequisite model can be represented by two links in the Bayesian network. For example, suppose skill Si is a prerequisite of skill Sj. When the direction of the link is from Si to Sj, the parameters for the prerequisite link should be initialized as P(Sj=1 | Si=0)=0 and P(Sj=1 | Si=1)=0.5. In the other case, when the direction of the link is from Sj to Si, the parameters for the link should be initialized as P(Si=1 | Sj=0)=0.5 and P(Si=1 | Sj=1)=1. These parameters specifications ensure the prerequisite relationship between the two skill nodes. For each prerequisite model, we verified the two links with different directions. We use the EM algorithm to learn the parameters that maximize the log-likelihood of the data. The parameters P(Sj=1 | Si=1) and P(Si=1 | Sj=0) for the prerequisite links can be updated by the EM algorithm, whereas the parameters P(Sj=1 | Si=0) and P(Si=1 | Sj=1) is deterministic and cannot be changed. All the parameters for the observations are also updated by the EM algorithm. As a result, the parameters of the best fit can be learned, and the maximum likelihood of each model is computed. 

Improvement of a Student Model via Prerequisite Structures

In this section, we evaluate whether the prerequisite structures of skills discovered by our method improve the performance of student models. We compare the model incorporating the prerequisite structure of skills with the original model on the fit to data and the prediction accuracy. The simulated testing data and the real testing data (used in section 4.3) are used for the evaluation. The evidence model for the two data sets is the DINA model. For each data set, two experiments are implemented. In the first experiment, there is no link between the skills. In the second experiment, the discovered prerequisite structure of the skills is used.

The experiments are implemented via the BNT package [START_REF] Murphy | The bayes net toolbox for matlab[END_REF]. A Bayesian network for each experiment is created. The parameters of the Bayesian network are learned by the EM algorithm. In the second experiment, the prerequisite relations between skills are represented by the links between the skill nodes, and the directions are from the prerequisites to the other skills. That is, if Si is a prerequisite of Sj, the link between the two skills in the Bayesian network is 𝑆 𝑖 → 𝑆 𝑗 . And the parameters is initialized as P(Sj=1 | Si=0)=0 and P(Sj=1 | Si=1)=0.5. Thus the prerequisite relations are regarded as deterministic relations in the giving the response record of a student in the test data as the evidence, the probability that the student mastered each skill can be inferred by the Bayesian network. When the probability of mastering a skill is higher than 0.5, we suppose that the student mastered that skill; otherwise, the student has not mastered that skill. The estimated knowledge state of each student is compared with the "true" knowledge state. And the accuracy is the percentage of the correct predictions of student knowledge states in the data set.

In the ECPE data, the "true" knowledge states of students are unknown. Thus we estimate the accuracy of predicting student performance on unseen items. For each pair of training and testing data, the process is similar to the performance prediction used in chapter 3. For each student in the test data, the response to one of the items is hidden, and the responses to the remaining items are used as the evidence. Then, the probability of the student giving the correct answer to the unseen item is predicted by the Bayesian network. When the probability is higher than 0.5, we suppose that the student will give a correct answer to the unseen item; otherwise, the student will response incorrectly. We iteratively hide each item in the test data, and use the observations on the remaining items to predict student performance on the unseen item. And we compare the predictions with the "real" observations, and the prediction accuracy is computed as the percentage of the correct predictions in the total number of predictions. The accuracy values of the two models on the performance prediction are shown in Table 4.8. We also calculate the RSME values of the two models, which are also shown in Table 4.8. We see that the model with the prerequisite structure have the better accuracy and RSME values than the original model on both of the data sets. Therefore, prerequisite structures can improve the prediction accuracy of a student model. We estimate the knowledge estimation accuracy of the two models on the simulated data with different numbers of observations (i.e. items). The resulting accuracy values of the two models given different numbers of observations are depicted in Figure 4.14. We can find that the accuracy of the model with the prerequisite structure is significantly higher than that of the original model. Therefore, the prerequisite structure improves the accuracy of the student model. This finding also makes sense in principle. That is, when a student's response to an item is observed, student knowledge of the skills related to the item will be updated. The observation also gives some implicit information about student knowledge of the prerequisite skills, although no direct observation is given on them. For example, if a student gives a correct answer to an item, the probabilities that the student mastered the related skills should be increased. The belief of the student mastering the prerequisite skills should also be increased. The model with the prerequisite structure of skills can propagate the information of observations to the skills not directly related through the prerequisite links. 

Summary

The prerequisite structures of fine-grained skills are the basis for determining the individual learning sequence. Constructing the prerequisite structures requires much knowledge engineering effort. Discovering prerequisite structures of skills from student performance data is challenging, since student knowledge of skills are latent variables. In this chapter, firstly we review the existing methods of extracting prerequisite structures from data. The existing methods to learn skill structures from data have not been reliably and empirically evaluated.

Then we propose a novel method to learn prerequisite structures of skills from student performance data. Since a prerequisite link corresponds to two association rules, we learn the skill structures by discovering association rules from data. However, we cannot directly observed student knowledge of skills. Thus we use a two-phase method. In the first phase, student performance data is preprocessed by an evidence model. In the second phase, the probabilistic knowledge states of students estimated by the evidence model are used as the input data of probabilistic association rules mining. Prerequisite links between skills are determined by discovering association rules from student probabilistic knowledge states. We use one simulated data set and two real data sets to evaluate our method. We adapt our method to two common types of data, the testing data and the log data, which are preprocessed by different evidence models, the DINA model and the BKT model. The structures discovered by our method are compared with presupposed structure in the simulated data, or the structure found by another research or that from expertise. The results

show that our method "correctly" discovered the structures in the testing data and partially discovered the structure in the log data. Applying our method in the log data needs to be improved. Determining the appropriate confidence and support thresholds is a crucial issue in our method. The maximum threshold points of the probabilistic association rules are used for determining the thresholds. However, selecting the association rules is still a problem, which can be further studied. The prerequisite structures of skills discovered by our method can be applied to assist human experts on skill modeling or to validate the prerequisite structures of skills from human expertise. We also compare our method with other existing methods. We apply the likelihood method proposed by [START_REF] Brunskill | Estimating Prerequisite Structure From Noisy Data[END_REF] and the POKS algorithm proposed by Desmarais et al. (2006) to learn skill structures from the testing data. The POKS algorithm performs well on extracting skill structures from data, whereas the likelihood method does not. Determining the "strength" parameter (i.e. pc) in the POKS algorithm is also a problem as giving the values to the thresholds in our method. Finally, we verify that the prediction accuracy of a student model can be improved by incorporating the prerequisite structure of skills.

Chapter 5: Conclusion

We have presented our work towards improving different layers of a student model for individualized learning. Individualized learning is recognized more effective than the conventional learning [START_REF] Desmarais | A review of recent advances in learner and skill modeling in intelligent learning environments[END_REF]. It is the main goal of computer-based learning systems. Student models are the foundation for individualized learning. Improving student models is an active issue for the ITS and AIED communities. A good student model should precisely distinguish student knowledge by recognizing student behaviors. The more precisely a student model distinguish students, the better the individualized feedback can be designed. In addition, a good student model should be able to interpret the latent characteristics of student learning, like the learning sequence. Our work presented in chapters 3 and 4 improves a student model in the two aspects. In this chapter, we summarize our work from several perspectives. Moreover, we discuss the limitations of our work in this thesis and some ideas for the future research.

Summary of This Thesis

Individualized learning improves the learning achievement by providing learning contents which are adaptive to student current knowledge. A student model is the basis for individualized learning. The accuracy of a student model affects the individualized learning.

A student model is used to distinguish student knowledge by recognizing student behaviors.

Since noise exists in student behaviors, a student model should be capable to handle the uncertainty when transferring student behaviors to knowledge. A student model can contain multiple layers. We divide a student model into two parts according to different issues are treated in these layers-the evidence model and the skill model. The evidence model is used to handle the uncertainty in transferring student behaviors to knowledge. The skill model is used to represent the latent variables that measure student knowledge and the relationships among them. We have reviewed the prevalent evidence models, each of which is in a formulism to handle the uncertainty. We have also reviewed the common relationships in a skill model and the probabilistic methods to represent these relationships.

Based on the knowledge of existing student models, we focus on two aspects to improve a student model for individualized learning. One is the diagnostic ability of a student model.

Most of current student models are binary. Student behaviors are measured by success/failure

Limitations and Future Research

Our work towards improving student models for individualized learning has been presented.

In this section, we discuss the limitations of our work and some possible directions for the future research. Our work can be improved in some aspects and the direction of improving student modeling for individualized learning can be further studied. Our method to discover prerequisite structures of skills from data performs well on testing data, but not on the log data. The final knowledge state of a student on each skill in the log data is used for discovering prerequisite relations. However, the final knowledge states of students might not comply with the prerequisite relations of skills. The log data (or longitudinal data) are more complex than the testing data. Student knowledge is timesensitive. As discussed in section 4.3.3, a student's knowledge state on some skills might be implicitly changed during learning other skills, which results in the real knowledge state inconsistent with the historical data. A further study on applying our method in log data is needed. Another limitation is that our method relies on an accurate Q-matrix. The Q-matrix is usually studied by human experts. However, when the Q-matrix contains some biases, the accuracy of our model will be affected. The effect of the Q-matrix on our method need to be further studied. Or a method directly learning the skill structure from performance data without requiring a Q-matrix can be investigated in future work.

Student modeling has been developed for ITSs for several decades. There are many competing student models, which provide the accurate estimation of student knowledge. In 
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  introduced skill topologies into the BKT model. To ensure the plausibility of parameters, they constrained the parameter space. Using five large-scale data sets, they demonstrated that their BKT model with skill topologies outperforms the original BKT on the prediction accuracy. González-Brenes et al. (2014) proposed the Feature Aware Student knowledge Tracing (FAST) model using logistic regression to model general features in the BKT model. They showed three features for their model: multiple sub-skills, Item Response Theory (which will be introduced in section 2.1.2.1) features, and features designed by experts. They showed that their feature engineering model is significantly more accurate in prediction and more efficient for model fitting and inference. Besides evaluating student knowledge, some works analyzed some other issues of interest in student learning based on the BKT model. Beck et al. (2008) measured the impact of tutor help on student learning in an ITS based on the BKT model. They estimated the four parameters of the BKT model conditioned by whether a tutor help is provided. Thus their model has eight parameters in the forms of P(a parameter | help) and P(a parameter | no help). They used the data from Project LISTEN's Reading Tutor (Mostow and Aist 2001) to evaluate the effectiveness of tutor help. Their work can be used to improve the instructional intervention design of an ITS. Baker et al. (2010b) used the probabilities of student knowledge estimated by the BKT model to detect at which point a skill was learned. Based on these probabilities, they also provided educational data mining analysis of which skills are learned gradually, and which are learned in "eureka" moment. San Pedro et al. (2011) used the Contextual-Slip-and-Guess variant BKT model to predict the carelessness behavior in the Scatterplot tutor, an ITS for mathematics. Gong et al. (2010b) integrated the BKT model with a student's gaming state to discover the impact of gaming on learning. First, they used a gaming detector to analyzing the patterns of a student's actions in terms of their criteria to determine the student's gaming state. Combing with the gaming states, they trained a modified BKT model and estimated six parameters (initial knowledge | gaming, initial knowledge | no-gaming, learning | gaming, learning | no-gaming, guess and slip) for each skill, i.e. the initial knowledge and learning parameters are conditioned by the gaming states. Their results demonstrated that the students with gaming have less learning during training and lower initial knowledge.
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  their model did. They used a new function G derived from a linear transform of the item response function of the 3PL-IRT model, i.e. G i (θ)=m+nP i (θ), where m and n are computed to satisfy Gi(0)=g and lim θ→∞ 𝐺 𝑖 (θ) =1. The function G is given by (Millán and Pérez-De-La-Cruz 2002) as equation 2.6.

  [START_REF] Pardos | The sum is greater than the parts: ensembling models of student knowledge in educational software[END_REF] examined whether the ensemble methods, which integrate multiple models, improve predictive accuracy compared with a single model.[START_REF] Baker | Ensembling predictions of student knowledge within intelligent tutoring systems[END_REF] integrated nine student models (e.g. BKT and its variants, PFA) with five different ensemble methods, and compared them with the single models. Their ensemble methods perform slightly better than the best single model in predictive accuracy on the tutor data, but worse than the best single model on the post-test data.[START_REF] Pardos | The sum is greater than the parts: ensembling models of student knowledge in educational software[END_REF] implemented the similar ensemble methods. The difference is that they integrated eight student models with eight ensemble methods. And the ensemble methods were more effective than any single model on their data.Two recent models integrate the IRT model with the BKT model. The Latent Factor Knowledge Tracing (LFKT) model(Khajah et al. 2014a) associates the slip and guess parameters with the item difficulty and the student ability. And the functions are as the equation 2.14, where γg and γs are offsets for the slip and guess probabilities, and dj is the difficulty of item j. Student knowledge on skill i is measured by a continuous variable, i.e. θi.In all the prior models, the slip and guess parameters are differentiated in terms of the limited classes. In the original BKT model, they are different over two classes, i.e. the skill is mastered and not mastered. In the diagnostic Bayesian model[START_REF] Millán | A Bayesian Diagnostic Algorithm for Student Modeling and Its Evaluation[END_REF], for a item related to three skills, the two parameters are different over 2 3 classes. The LFKT model individualizes the slip and guess parameters according to a continuous scale of student knowledge. In fact, the intuition behind the LFKT model is similar to the diagnostic Bayesian model[START_REF] Millán | A Bayesian Diagnostic Algorithm for Student Modeling and Its Evaluation[END_REF]. Both of them attempt to use the IRT distribution to specify the slip and guess parameters. However, the diagnostic Bayesian model discretizes the student ability according to the skills. The LFKT model uses the continuous variable to represent the student ability, and combines the IRT model with the most popular student model-the BKT model. And they learn the IRT parameters and the transition parameters of the BKT model simultaneously. The other more general model-Feature Aware Student Knowledge Tracing (FAST) (González-Brenes et al. 2014) allows to individualize the slip and guess probabilities with arbitrary features. And the model can be efficiently estimated using a modified EM algorithm. The performance of the two models are further investigated and compared by

  Beheshti and Desmarais (2012) used the Matrix Factorization technique to extract Q-matrix and to assess student skills mastery from student performance data. They tried to improve the matrix factorization algorithm by employing the partial order constraints that are derived with the POKS algorithm from the same data.(Desmarais et al. 2012;[START_REF] Desmarais | A Matrix Factorization Method for Mapping Items to Skills and for Enhancing Expert-Based Q-Matrices[END_REF] extended a technique based on Non-negative Matrix Factorization to construct the conjunctive item to skill mapping from test data. They used simulated student test data to validate their approach and their results show that their approach yields reliable mapping for items involving one or two skills from a set of six skills.Beheshti et al. (2012) applied two techniques, namely the Singular Value Decomposition (SVD) and a wrapper approach, to determine the number of dominant latent skills.[START_REF] Desmarais | The refinement of a q-matrix: assessing methods to validate tasks to skills mapping[END_REF] discussed three techniques to refine the Q-matrix.

  used the alternative 1 model to represent the aggregation relationships in their learner model used in MEDEA, an open system to develop ITSs. Some recent approaches discussed the granularity of skill model in the perspective of statistics. Skill models in these approaches only involve the finest-grained knowledge components, which directly explain student behaviors. A standing issue in a student model is at what level of granularity student skills should be modeled. Pardos et al. (2007) explored the models with varying levels of skill granularity (1, 5, 39, and 106 skill models) and measure the accuracy of these models by predicting student performance within their ITS, i.e.

  [START_REF] Carmona | Introducing Prerequisite Relations in a Multi-layered Bayesian Student Model[END_REF] introduced the prerequisite relationships to a generic BN student model for MEDEA, in order to improve the efficiency of both adaptation mechanisms and the inference process. They used a modified noisy AND-gate or a modified noisy OR-gate to model the prerequisite relationships.[START_REF] Ferguson | Improving Intelligent Tutoring Systems: Using Expectation Maximization to Learn Student Skill Levels[END_REF] used EM algorithm to learn the hidden parameters in BNs and compared the flat skill model (the skills are mutually independent) with hierarchical skill model (prerequisite relationships between skills given a priori) according to Bayesian Information Criterion (BIC). Their results show that a hierarchical model better fits their data than the flat model does.
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  One important feature is the error pattern. Student erroneous responses are informative, which might be caused by different types of knowledge bias or lack. This feature is usually overlooked by the binary models. If we can recognize student error patterns, and associate each error pattern with the corresponding type of knowledge bias or lack, student behaviors can be more precisely recognized. A psychometric model-MC-DINA proposed by De La Torre (2009) is an extension of the DINA model, which transfers student responses to multiple choice items to their knowledge states. In their MC-DINA model, the erroneous responses are the distractors which are coded to associate with the types of knowledge lack.The knowledge lack used in this thesis indicates that some required skills are not mastered.For example, if a correct response requires three skills, it can be coded as 111. And if a distractor is coded as 101, students who choose this distractor are very likely to lack the second skill. The polytomous response data are used, and thereby the variables representing observations are multinomial rather than binary. The binary DINA model has been introduced in section 2.1.2.2. Compared with the binary DINA model, the observed variable Xij in equation 2.9 is a multinomial variable in the MC-DINA model, whose values are the options.The latent response variable ξij is also multinomial, and whose values denote the groups of ideal response patterns. Each of the coded options including the correct response and distractors is a group. All the remaining ideal response patterns which do not correspond to any distractor are in one group. In their MC-DINA model, the noise parameters are used to represent the conditional probabilities between two multinomial variables, i.e. P(Xij | ξij). The MC-DINA model distinguishes student behaviors in multiple groups. Student erroneous behaviors are recognized by the MC-DINA model.Besides the error pattern, other important features are the item difficulty and student ability.Most of existing models do not distinguish items and student abilities. For example, in the binary NIDA model and the original BKT model, items related to the same set of skills have the same response functions. The item 3+2 is considered to be equivalent with the item 12+7 in these models. In the binary DINA model and the original BKT model, the novice and medium students have the same probability to guess the correct answer. The IRT model (which has been introduced in section 2.1.2.1) uses a statistic scaling method to characterize items with the feature-item difficulty and to characterize student abilities. To my knowledge, the initial research to introduce the item difficulty and student ability into a graphical model is the paper of[START_REF] Millán | A Bayesian Diagnostic Algorithm for Student Modeling and Its Evaluation[END_REF], which has been introduced in section 2.1.2.1. Their diagnostic model combines the IRT model with a conjunctive dynamic Bayesian network model. The item difficulty parameter for each item is learned by the IRT model. And student knowledge corresponding to an item is discretized into several ordinal categories. The slip and guess parameters for each item are specified by the IRT model with the discrete ability values and the item difficulty value. Although they still used the binary response data, they applied an IRT distribution to model the probabilities of a correct response given different types of knowledge lack. Their model distinguishes different types of knowledge lack. However, their model has not been empirically evaluated. And in their dynamic Bayesian network, there is no transition parameter, which is different from the BKT model. In recent researches, the item difficulty has been introduced into the most popular student model-the BKT model. All the parameters in the original BKT model are skill-specific, that is, the parameters are learned per skill. The KT-IDEM model (Pardos and Heffernan 2011) introduced the item difficulty into the BKT model. Instead of measuring the item difficulty, like the IRT model, they learned the item-specific slip and guessing parameters, that is, the slip and guess parameters are fitted for each item. The LFKT model proposed by Khajah et al. (2014a) integrates the IRT model into the BKT model. In their model, the slip and guess parameters are individualized by the item difficulty and student ability. FAST (González-Brenes et al. 2014) provides a general framework to individualize the slip and guess parameters with arbitrary features. Given student and problem features, FAST discovers the weights equivalent to student ability and the item difficulty.

Figure 3

 3 Figure 3.2 A multiple choice item with coded options
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 33 Figure 3.3 Comparison of three diagnostic models

  MC-DINA model treats equivalently the knowledge states which do not correspond to any coded option. For example, students with knowledge state 000 and students with knowledge state 110 are considered to select the four options with the same probability distribution. As mentioned in section 3.2, the NIDA model assumes that the probability of giving a correct response is an accumulative function of the number of skills mastered. To differentiate all the knowledge states, we propose a diagnostic model which is an extension of the NIDA model. The graphical description of our model is shown in Figure3.3 (c). The structure of our model is the same with the graphical model equivalent to the NIDA model.

  Figure 3.3, while using the partially deterministic specification, our model requires 24 parameters. Compared with the other two models, in this example, our model with the deterministic specification requires the least parameters. Compared with the diagnostic BN model, both our model and the MC-DINA model reduce the number of parameters. The item response function of our model is as equation 3.3, where α is the skill vector; αi denotes one entry; Nj is the number of the skills required a correct response to item Xj; fj(x)=P(Xj=Ok | ηj1, ηj2, ηj3) (see Table

  3, the MC-DINA model has the best AIC and BIC values in the real data, and the best BIC values in the simulated data. The diagnostic BN model has the best AIC value in the simulated data. Although our model using the partially deterministic specification fits better than the MC-DINA model, it requires more parameters. As a result, our model has a relatively worse AIC and BIC values. If many items in data related to three or more skills, the model complexity should be taken into account. Thus the AIC or BIC metrics should be used for selecting models. In our experiments, according to the AIC and BIC values, the MC-DINA model is preferred among the three models.
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 42 Figure 4.2 Procedure of discovering prerequisite structures of skills from performance data
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 4 Figure 4.3 (a) and (b) describe how the probabilities of the corresponding association rules in the simulated data change with different confidence thresholds, where the support threshold is given as a constant (0.125 here). When the probability of a rule is close to 1.0, the rule is deemed to satisfy the thresholds. All the association rules satisfy the support threshold since their probabilities are almost 1.0 at first. The rules in the two figures corresponding to the same prerequisite relation candidate are depicted in the same color. In the figures, when the confidence threshold varies from 0.2 to 1.0, the probabilities of the different rules decrease from 1.0 to 0.0 in different intervals of threshold value. When we choose different threshold

  Figure 4.3 (c) and (d) illustrate how the probabilities of the corresponding association rules change with different support thresholds.

Figure 4

 4 Figure 4.4 (a) Presupposed prerequisite structure of the skills in the simulated data; (b) Probabilities of the association rules in the simulated data given minconf=0.76 and minsup=0.125, brown squares denoting impossible rules; (c) Discovered prerequisite structure

Figure 4

 4 Figure 4.4 (b) illustrates the probabilities of the corresponding association rules in the simulated data given minconf=0.76 and minsup=0.125. A square's color indicates the probability of the corresponding rule. Five association rules in each of the figures whose probabilities are almost 1.0 are deemed to exist. And the prerequisite relations corresponding to the discovered rules are deemed to exist. To qualitatively construct the prerequisite structure of skills, every discovered prerequisite relation is represented by an arc. It should be
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 4 Figure 4.4 (a) due to the transitivity of prerequisite relation. Consequently, the prerequisite structure discovered by our method which is shown in Figure 4.4 (c), is completely in accordance with the presupposed structure shown in Figure 4.4 (a).
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 45 Figure 4.5 The probabilities of the association rules in the ECPE data given different confidence or support thresholds
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 4 Figure 4.6 (a) Prerequisite structure of the skills in the ECPE data discovered by Templin and Bradshaw (2014); (b) Probabilities of the association rules in the ECPE data given minconf=0.80 and minsup=0.25, brown squares denoting impossible rules; (c) Discovered prerequisite structure
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 47 Figure 4.7 Selected knowledge states inferred by BKT from log data

  students' final knowledge state of Si and Sj to analyze whether a prerequisite relation exists between them (see Figure 4.7). Thus students' final knowledge states on each skill are used as the input data of our method.

Figure 4 . 8

 48 Figure 4.8 The Probabilities of the association rules in the "Bridge to Algebra 2006-2007" data given different confidence or support thresholds
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 4 Figure 4.10 Probabilities of the association rules within the skill pair S2 and S3 in the ECPE data given different confidence and support thresholds, and their maximum threshold points which are eligible (green) or not (red) given minconf=0.8 and minsup=0.25

  figures demonstrate that the probability of a rule decreases almost from 1.0 to 0.0 when the confidence and support thresholds vary from low to high. It can be found that the rules in the left figures can satisfy an evidently higher confidence threshold than those in the right figures, and have the same support distributions with them. If we set minconf=0.8 and minsup=0.25, only the rules in the left figures satisfy them.

Figure 4 .

 4 Figure 4.11 Maximum threshold points for the association rules in our three experiments, where eligible points are indicated in green given the thresholds

  Figure 4.11 are indicated given the thresholds. In Figure 4.11 (c), some maximum threshold points in the upper right area are not eligible as their counterpart points are not in the area.
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 4 Figure 4.12 Discovered prerequisite structures of skills using the likelihood method: (a) simulated data; (b) the ECPE data

Figure 4 .

 4 Figure 4.13 Discovered prerequisite structures of skills using the POKS algorithm: (a) the simulated data; (b) the ECPE data

Figure 4 .

 4 Figure 4.14 The student model with the prerequisite structure vs. the original student model

  Our diagnostic model in this thesis is specified to deal with student responses to multiple choice items. If student erroneous responses can be collected and labeled with corresponding knowledge biases, our model can be easily generalized to deal with student erroneous responses to any type of items, like open-ended items. Moreover, student knowledge on a skill is measured by a binary variable with the values 1 (mastered) and 0 (not mastered). The knowledge biases used in our model actually indicate lack of knowledge on some skills. The misconceptions are not incorporated in our model. If erroneous responses are associated with misconceptions, our diagnostic model can be extended to incorporate misconceptions by measuring student knowledge with a multinomial variable. Recognizing student systematic errors in open-end items requires a lot of knowledge engineering effort. Associating errors with misconceptions is also a tough and time-consuming task. The existing methods of automatically generating errors (VanLehn 1990; Paquette et al. 2012; Guzmán et al. 2010) need to be empirically studied. The automatically generated errors might be verified with a diagnostic student model. Student erroneous behaviors provide much diagnostic information, which can enhance the individualized learning. Further researches to improve the diagnostic ability of a student model are necessary. Nowadays, a large number of ITSs and online learning environments provide plenty of learning data for researchers to analyze, in order to improve student learning achievement with deeper individualization. In recent two decades, many researchers have been investigated to analyze sequence data from ITSs by using educational data mining techniques. The state of the art technique for modeling the sequence data is the BKT model. There are plenty of variants for the BKT model (see section 2.1.1.3). However, most of the variants still focus on binary performance data. Our diagnostic model is an extension of a static student model (i.e. NIDA). It can be extend for sequence data by using a dynamic Bayesian network. The BKT model is a special dynamic Bayesian network model, which accounts for the transitioning of student knowledge state during learning. And in the original BKT model, an observation is only related to one skill. The multiple subskills are considered in a variant of the BKT model (Xu and Mostow 2011). And a recent general framework (González-Brenes et al. 2014) is proposed to integrate arbitrary features into the BKT model. Based on these researches, the diagnostic feature-student erroneous responses perhaps can be introduced into the BKT model. Some other diagnostic features have been introduced into the BKT model. A recent research extended the BKT model to allow partial credit data (Wang and Heffernan 2013). They took into account the attempt and hint data from an ITS, and designed an reward and penalty mechanism to score student performance. The observations in their BKT model are measured by a continuous variable. However, their work assumed that the continuous performance variables and the slip and guess parameters follow the Gaussian distribution. The parameters of the Gaussian distributions are learned for the fit of the model. Although it is shown that their model outperforms the traditional BKT model, their model is not optimized. Dealing with the partial credit data is necessary in some educational environments. For example, student behaviors in a game-based learning environment cannot be measured by a binary variable. Student actions in educational games are usually scored by a reward and penalty mechanism. Thus the performance data are usually the ordered continuous values. Student models for partial credit data need to be further investigated.Item difficulty is also an important feature in student learning. In probabilistic graphical models, like the BKT model and the NIDA model, the items are not distinguished. Our preliminary work presented in section 3.4 has empirically discussed the relationship between item difficulty and the probability of slipping/guessing on an item. Recently, the LFKT model(Khajah et al. 2014a) integrates the IRT model and the BKT model. The item difficulty and student ability are introduced into the BKT model for individualizing the slip and guess parameters.

  recent years, the emerging learning environments-MOOCs attract the interest of a lot of educators and researchers. Tracking student knowledge and analyzing learning characteristics in MOOCs is an active issue. Modeling large scale sequence data become a challenging problem. And individualized learning for the new kind of educational environments can be a good direction for future research.
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	Table 4.3 Dynamic-Programming algorithm
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 2 1 Different types of latent variable models[START_REF] Galbraith | The analysis and interpretation of multivariate data for social scientists[END_REF] 

		Observable variables
	Latent variables	Continuous	Categorical
	Continuous	Factor analysis	Latent trait analysis
	Categorical	Latent profile analysis	Latent class analysis

  Moreover, when a correct answer to an item requires multiple skills, the skills are equally blamed for an error, no matter the error is caused by the lack of which skill. The IRT models have the advantages that they take item characteristics into account and differentiate student knowledge precisely with a continuous scale rather than several categories. However, as mentioned above, an IRT model evaluates a student's ability with a continuous variable, and it is a general evaluation on a learning subject instead of on a fine-grained skill. And a Bayesian network model commonly represents a student's knowledge with a discrete variable, and it is related to a fine-grained skill. Student knowledge of fine-grained skills is more desired for individualized learning than a general evaluation.They proposed a method to integrate the advantages of the two models. To adapt variables of an IRT model to the variables in a Bayesian network model, they scattered the discrete knowledge states on the scale of the overall ability (see Figure2.7).

	Millán and
	Pérez-De-La-Cruz (2002) applied the 3PL-IRT model in a Bayesian network student
	modeling. They used the IRT function to model the conditional probabilities between a multi-

skill item and the student knowledge of each skill. As discussion in section 2.1.1.1, a Bayesian network model evaluates student knowledge commonly in terms of the correctness of student responses. A lot of other information is overlooked, like the item difficulty, which can also affect student responses.

  [START_REF] Johns | Estimating Student Proficiency Using an Item Response Theory Model[END_REF] used the dichotomous IRT models for student modeling. They used EM algorithm to learn item parameters from the data, which are collected by the Wayang Outpost, an ITS providing tutoring on SAT mathematics problems. And they used different IRT models, i.e. 2PL and 3PL to estimate student knowledge, and they showed the predictive power of the models and the best result on their data is 72% accuracy to predict student responses.[START_REF] Feng | Addressing the assessment challenge with an online system that tutors as it assesses[END_REF] integrated the student proficiency parameters estimated by 1PL-IRT model into a linear regression model, which simultaneously accounts for the tutoring assistance metrics, e.g. the number of hint requests during learning in an ITS. They used student proficiency instead of student performance on original question, since the IRTestimated student proficiency takes into account the difficulty of each item.Gálvez et al. 

(2013) combined an IRT model with Constraint-Based Modeling (CBM) for student modeling.

  progressing gradually according to the practice frequency. It should be noted that the learning rate is only specified for each skill in the regression model without being individualized, in order to reduce the number of parameters. The regression model is depicted as equation 2.12.

	m	i	j	KCs	n	i		j	j	n	i	j
							j	KCs			
					p	m	e	m			
								The power law model considers the
	effect of skill characteristics (i.e. the initial difficulty level and learning rate) on student
	learning. But the individual characteristics should be considered to evaluate a student's

knowledge of a skill during learning. The LFA uses a logistic regression model, which extends the power law model by incorporating the initial performance of students, besides the learning rate and initial difficulty level of each skill. It assumes learning as a continuous variable, and

Table 2

 2 

	.2 Comparison of existing models		
	Model	allows features slip/guess ordering learning
	1PL-IRT	Y			
	Noisy-gate models/Latent class models		Y		
	BKT		Y	Y	Y
	LFA/PFA	Y			Y
	LFKT/FAST	Y	Y	Y	Y

Table 3 .

 3 1 Two ways of the specification for conditional probabilities

	Used skills
	(ηj1, ηj2, ηj3)

  Table 3.2 is an example for the binary classification. TP refers to the count of the positive cases that are correctly predicted. The other three values (i.e. TN, FP, FN) have their corresponding meanings. If there are n classes, the confusion table is a table of size n by n.

											If the prediction
	is not categorical, like a probability in [0, 1], it is customary to round it. That is, probabilities
	of 0.5 and greater become 1; those less than 0.5 become 0. The common metrics based on the
	confusion table are described by equations 3.4a-3.4d. F-measure is a combination of the
	precision and recall.									
				Table 3.2 Confusion Table
											Actual
											Correct	Incorrect
	Predicted	Correct			True Positive (TP)	False Positive (FP)
		Incorrect			False Negative (FN)	True Negative (TN)
		accuracy		TP		TN TP	 	FP TN		FN	3.4a
		precision		FP TP TP 	3.4b
		recall		FN TP TP 	3.4c
		F		measure		2	precison precision  	recall recall 	3.4d

Table 3 .

 3 3 The performance of the three diagnostic models on two data sets

		Diagnostic	MC-DINA	Our model	Our model
		BN		(deterministic)	(partially deterministic)
			Simulated data	
	Log-likelihood	-21991	-22421	-24056	-22384
	Number of	485	293	105	377
	parameters				
	AIC	44952	45428	48322	45522
	BIC	48785	47744	49152	48502
			Real data	
	Log-likelihood	-34584	-34604	-35784	-35058
	Number of	87	63	35	47
	parameters				
	AIC	69342	69334	71638	70210
	BIC	70065	69858	71929	70610

Table 3 .

 3 4 Prediction accuracy of the three diagnostic models on two data sets

		Diagnostic	MC-DINA	Our model	Our model
		BN	(deterministic)	(partially deterministic)
			Simulated data	
	Accuracy	0.9564	0.9534	0.9022	0.9522
	(knowledge				
	estimation)				
	Accuracy	0.5988	0.5906	0.5612	0.5924
	(multinomial)				
	Accuracy	0.8780	0.8744	0.8577	0.8760
	(binary)				
	RSME	0.2088	0.2159	0.3127	0.2186
	(knowledge				
	estimation)				
	RSME	0.6334	0.6398	0.6625	0.6385
	(multinomial)				
	RSME	0.3492	0.3543	0.3773	0.3522
	(binary)				
			Real data		
	Accuracy	0.5800	0.5799	0.5515	0.5654
	(multinomial)				
	Accuracy	0.8449	0.8446	0.8346	0.8451
	(binary)				
	RSME	0.6481	0.6482	0.6697	0.6592
	(multinomial)				
	RSME	0.3938	0.3942	0.4067	0.3936
	(binary)				
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	.1 A database of probabilistic knowledge states
	Student ID	Probabilistic Knowledge State
	st1	{S1: 0.9, S2: 0.8, S3: 0.9}
	st2	{S1: 0.2, S2: 0.1, S3: 0.8}

Table 4 .

 4 2 Possible worlds of the probabilistic database in Table4.1 The support count pmf of the pattern {S1=1, S2=1} in the database of Table4.1 Table 4.2 shows the possible worlds of the probabilistic database in Table4.1 as well as the probability for each possible world. For example, the probability of the possible world that the knowledge states of the students "st1" and "st2" are {S1=1, S2=1, S3=1} is about 0.0104 (i.e.

	ID	Possible worlds	Probability
	1	st1: {S1=0, S2=0, S3=0}	0.001152
		st2: {S1=0, S2=0, S3=0}	
	2	st1: {S1=1, S2=0, S3=0}	0.002592
		st2: {S1=0, S2=0, S3=0}	
	3	st1: {S1=0, S2=0, S3=0}	0.000072
		st2: {S1=1, S2=0, S3=0}	
	…	…	…
	64	st1: {S1=1, S2=1, S3=1}	0.010368
		st2: {S1=1, S2=1, S3=1}	

Table 4 .

 4 5 "Bridge to Algebra 2006-2007" data used in our experiment

	Anon Student	Problem Hierarchy		Problem Name	Step Name	Correct First
	Id					Attempt
	271823buwnj5	Unit EQUIVALENT-	EQFRAC1C001-6	MultiplyBy	1
		FRACTIONS, Section		
	EQUIVALENT-FRACTIONS-1		
	271823buwnj5	Unit EQUIVALENT-	EQFRAC1C001-6	Fraction:UnitFractor	0
		FRACTIONS, Section		
	EQUIVALENT-FRACTIONS-1		
	271823buwnj5	Unit EQUIVALENT-	EQFRAC1C001-6	GeneralHelpGoalNode	0
		FRACTIONS, Section		
	EQUIVALENT-FRACTIONS-1		
	…	…		…		…
	271823buwnj5	Unit EQUIVALENT-	EQFRAC1S001-8	MultiplyBy	1
		FRACTIONS, Section		
	EQUIVALENT-FRACTIONS-1		
	…	…		…		…
	Table 4.6 Skills in the curriculum "Bridge to Algebra"
	Skill			Problem Hierarchy		Example
	S1: Writing equivalent fractions	Unit EQUIVALENT-FRACTIONS,	Fill in the blank:
			Section EQUIVALENT-FRACTIONS-1&2	6 2  . 3
	S2: Simplifying fractions	Unit EQUIVALENT-FRACTIONS,	Write the fraction in
			Section EQUIVALENT-FRACTIONS-	simplest form:
			3&4		

Table 4 .

 4 8 The model with the prerequisite structure vs. the original model

			Original model	Model with the prerequisite structure
	Simulated	Accuracy	0.7780	0.7913
	data	RSME	0.4712	0.4568
	ECPE	Accuracy	0.7443	0.7451
	data	RSME	0.5057	0.5049
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parameters. And the student's ability θj is estimated via the function "factor.scores" in the package. Using the estimated ability θj of the student and the learned parameters of the unseen item, the probability of the student giving a correct response to the unseen item can be calculated according to equation 3.6. The probability is rounded, and the student's response to the unseen item is predicted. This process is similar to the performance prediction discussed in section 3.3.3. The evaluation of the (binary) DINA model has been introduced in section 3.3.3.3. A Q-matrix is required for the DINA model. The Q-matrix is also available in the R package "CDM", which is from human experts. Student knowledge of skills is assessed. In this experiment, the difference is that we train slip and guess parameters via function "din" in the R package "CDM" [START_REF] Robitzsch | Package 'CDM[END_REF]. The resulting accuracy and RSME values of the IRT model and the DINA model for the performance prediction are shown in Table 3.5. We can see that on ECPE data the IRT model have a higher accuracy and lower RSME values than the DINA model, while the opposite result is obtained on the Fraction data. Therefore, no model is always outperforms the other one. The performance of the two models depends on the specific data set. Surprisingly, the DINA model does not outperform the IRT model in the ECPE data even though it makes use of the information of Q-matrix whereas the IRT model does not.

Besides the prediction accuracy of the two models, we also investigate the features used in the two models: the probability of slipping and guessing in the DINA model and the item difficulty in the IRT model. These features in the two models are item-specific, which are distinct among items. The features are defined in different paradigms. The slip and guess parameters in the DINA model is actually the error probabilities. That is, the slip parameter denotes the probability of the false negative error, while the guess parameter denotes the probability of the false positive error. The item difficulty is derived from the statistical scale analysis. The relationship between the features in the two models becomes an issue of interest.

item difficulty and student ability. In this thesis, we only present our preliminary work on analyzing the features in the two models. Integrating the features to improve student modeling can be further studied.

Summary

In this chapter, we present our work towards improving diagnostic ability of the evidence model. Most evidence models focus on dealing with the binary data, that is, student behaviors [START_REF] Vuong | A Method for Finding Prerequisites Within a Curriculum[END_REF] proposed a method to determine the dependency relationships between units in a curriculum with the data of students' behaviors that are observed at the unit level (i.e. graduating from a unit or not). They used the statistic binominal test to look for a significant difference between the performance of students who learned the potential prerequisite unit and the performance of students who did not. If a significant difference is found, the prerequisite relation is deemed to exist. The methods discussed above are proposed to discover prerequisite structures of the observable variables. [START_REF] Tseng | A new approach for constructing the concept map[END_REF] proposed to use the frequent association rules mining to discover concept maps. They constructed concept maps by mining frequent association rules on the data of the fuzzy grades from students' testing. They used a deterministic method to transfer frequent association rules on questions to the prerequisite relations between concepts, without considering the uncertainty in the process of transferring students' performance to their knowledge. Deriving the prerequisite structure of skills from noisy observations of student knowledge is considered in the approach of [START_REF] Brunskill | Estimating Prerequisite Structure From Noisy Data[END_REF]. In this approach, the log likelihood is computed for the precondition model and the flat model (skills are independent) on each skill pair to estimate which model better fits the observed response data. [START_REF] Scheines | Discovering Prerequisite Relationships among Knowledge Components[END_REF] extended a causal discovery algorithm to discover the prerequisite structure of skills by performing statistical tests on latent variables. In the next section, we will introduce our method of applying a data mining technique, namely the probabilistic association rules mining, to discover prerequisite structures of skills from student performance data.

Discovering Prerequisite Structure of Skills

Association Rules Mining

Association rules mining [START_REF] Agrawal | Mining association rules between sets of items in large databases[END_REF][START_REF] Agrawal | Fast Algorithms for Mining Association Rules in Large Databases[END_REF] is a well-known data mining technique for discovering interesting association rules in a database. Let

I={i 1 ,i 2 ,⋯,i m } be a set of attributes (or called items) and D={r 1 ,r 2 ,⋯,r n } be a set of records Maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] to maximize the marginal likelihood of data.

The R package CDM is developed to provide functions to implement some famous cognitive diagnosis models, such as DINA and NIDA, and some psychometric models, such as multidimensional latent class IRT model, as well as some data sets. The functions used in this experiment are "sim.din", which is the data simulation tool, and "din", which implements the parameter estimation by EM algorithm for cognitive diagnosis models.

Result. The estimated probabilistic knowledge states of the simulated students are used as the input data to discover the prerequisite relations between skills. For each skill pair, there are two prerequisite relation candidates. For each prerequisite relation candidate, we examine whether the two corresponding association rules Sj=1⇒Si=1 and Si=0⇒Sj=0 exist in the database. The probability of an association rule existing in the database is computed according to formula 4.6, which is jointly affected by the selected support and confidence thresholds. For the sake of clarity, we look into the effect of one threshold leaving the other one unchanged. The joint effect of the two thresholds will be discussed in section 4.3.4. prerequisite structures for the simulated data and the ECPE data (which are also used in section 4.3) are illustrated in Figure 4.12. We can find that the prerequisite structure discovered in the simulated data by the likelihood method is mostly consistent with the "true structure" (see section 4.3). However, there are many disagreements between the structures discovered in the ECPE data by the likelihood method and the finding of [START_REF] Templin | Hierarchical diagnostic classification models: a family of models for estimating and testing attribute hierarchies[END_REF]. Some erroneous links are found by the likelihood method. The result is interpretable, since the likelihood method compares the prerequisite model with the flat model, and the additional link in the prerequisite model is very likely to increase the model fit no matter what the parameter values for the links. As a result, in the two data sets, our model outperforms the likelihood method on the accuracy.

Application of the POKS algorithm

The POKS algorithm [START_REF] Desmarais | User-expertise modeling with empirically derived probabilistic implication networks[END_REF]Desmarais et al. 2006) learns the prerequisite structure of the observable variables (items). To adapt the POKS algorithm to learn the prerequisite structure of skills, firstly, we classify student knowledge states according to their performance. The knowledge states classified here are deterministic. That is, we determine whether each skill is mastered or non-mastered by a student. We still use the DINA model as the evidence model and the probabilistic knowledge state of each student is estimated. When the probability of a student mastering a skill is higher than 0.5, we suppose the student mastered the skill; otherwise, the student have not mastered the skill. Thereby, the deterministic knowledge state of each student can be determined. Then the POKS algorithm can be used to learn the prerequisite structure of skills from the deterministic knowledge states.

The POKS algorithm determines whether a prerequisite relation exists in a pair of variables (in the research of Desmarais and his colleagues, the variables represent items; in our experiments, they represent skills). In their POKS algorithm, a prerequisite relation candidate A→B is verified by three statistic tests on conditions 4.7, where Pc is the minimal conditional probability for P(A|B) and

, which can be considered as an indicator of the "strength" of prerequisite relations. The first two conditions ensure that the minimal "strength" of the relation is above a predetermined threshold. The third condition is the conditional independence test, which verifies that A and B interact with each other.

The first two conditions are verified by two binomial tests. The null hypotheses used in the POKS algorithm for the two conditions are as equations 4.8. There is an important measure in the hypothesis tests-p-value. The p-value is the probability of obtaining the observed sample results, or "more extreme" results, when the null hypothesis is true. To calculate the p-value of these null hypotheses, three frequency variables are needed, that is,

, which are the occurrences of the patterns in the database. The frequency variables used in the POKS algorithm have the same meaning with the term "support count" in our method. They stated that the frequency pairs (

) are the stochastic variables and follow the binomial distribution, i.e. Bin(k, n, p), where for the pair

; for the pair ( N , , which is depicted as equation 4.9. Please note that the p-value computed here is expressed differently from that in the paper of [START_REF] Desmarais | User-expertise modeling with empirically derived probabilistic implication networks[END_REF], but the result should be the same. The pvalue of the other null hypothesis is computed in the same way.

4.9

The significance level (also called the error tolerance level) denoted by αc is predetermined.

When the p-value computed in equation 4.9 is smaller than the significance level, the null hypothesis will be rejected. As a result, the alternative hypothesis   c p B A P  will be accepted. If the p-value is greater than the significance level, it is failed to reject the hypothesis.

The third condition in conditions 4.7 is verified by the χ 2 (Chi-square) test. Chi-square test is a statistical test commonly used to compare observed data with the data we expect to obtain given a specific hypothesis. The null hypothesis for the third condition in conditions 4.7 is as equation 4.10, that is, A and B are independent with each other. There are three steps to compute the p-value of the observed sample given the null hypothesis. The first step is to calculate the degrees of freedom DF=(LA-1)*(LB-1), where LA and LB are the number of alternatives of variable A and B. In our test, A and B are the binary variable, thus the DF=1.

In the second step, we calculate the chi-square value given the null hypothesis. According to the null hypothesis, the expected co-occurrence of A and B should be (𝑁 𝐴 * 𝑁 𝐵 ) 𝑁 ⁄ , where N is the sample size. Thus the chi-square value of the observed sample is computed as equation 4.11. In the final step, the p-value is computed with the degrees of freedom and the chi-square value in terms of Chi-Square Distribution. Likewise, when the p-value is smaller than the significance level αi, the null hypothesis is rejected. Thereby, A and B are not independent. If the p-value is greater than the significance level αi, the null hypothesis is accepted. In this case, A and B are independent with each other.

We apply the three statistic tests for the estimated deterministic knowledge states to discover the prerequisite structure of skills. In our experiments, the pc is given 0.8 or 0.9, while both the significance levels αc and αi are given 0.1. The p-values of the three tests for each skill pair are computed. Comparing the p-values with the significance levels, when all the p-values are below the significance levels, the prerequisite relation exists in the skill pair; otherwise, the skill pair has no prerequisite relation. The discovered prerequisite structures of skills in the simulated data and the ECPE data given different values of "strength" indicator pc are depicted in Figure 4.13. In this figure, it can be found that the value of the "strength" indicator pc affects the discovered structures. The parameter pc is similar to the confidence threshold in our method. In the experiments, the POKS algorithm is used to discover prerequisite structure of skills from the deterministic knowledge states. This two-phase application of the POKS algorithm also relies on the accuracy of the evidence model. Moreover, the deterministic knowledge states used by the POKS algorithm are the most possible classes of student experiments. If a skill has multiple prerequisites, like the skill S4 in the simulated data (see section 4.3) which has three prerequisites, i.e. S1, S2 and S3, the parameters is initialized as P(Sj=1 | if any prerequisite is 0)=0 and P(Sj=1 | all the prerequisites are 1)=0.5. Please note that the transitivity cannot be expressed by the prerequisite links in the Bayesian network. Thus all the discovered prerequisite relations should be represented by the links in the Bayesian network. For example, in the simulated data, there should be a link from S1 to S4.

And in the ECPE data, there should be a link from S3 to S1. Using our specification, the noise parameter P(Sj=1 | Si=1) can be learned from data by the EM algorithm. We also can give a "soft" specification for the parameter P(Sj=1 | Si=0), like 0.1. Then this parameter can be also learned from data. In this experiment, we assume the prerequisite relationship between skills is deterministic. As introduced in section 2.1.1.1, the EM algorithm learns the parameter values which maximize the likelihood of data. The maximum log-likelihood of each model is computed.

Table 4.7 shows the log-likelihood values of the model with the prerequisite structure estimated by our method in section 4.3 and the original model. The models are tested by using the simulated data and the ECPE data. We can find that the model with the prerequisite structure of skills has a significant higher log-likelihood value than the original model (without links between skills) on both of the data sets. Therefore, the prerequisite structure estimated by our method improves the model fit to data.

Besides the model fit to data, we also investigate whether the prerequisite structure improves the accuracy of a student model on predicting student knowledge states and their performance. We use the 4-fold cross-validation to estimate the accuracy of the two models (with and without the prerequisite structure). In the simulated data, the knowledge state of each student is known, which is generated simultaneously with the response data. Thereby we estimate the accuracy of the two models for knowledge estimation. After the parameters in the Bayesian network of each model are learned by the EM algorithm using the training data, variables. We introduce the diagnostic items to more precisely distinguish student behaviors.

Some erroneous behaviors are labeled by the corresponding knowledge biases, and then recognized and transferred by our diagnostic model. The other one is the expressive ability of a student model. Learning sequence is an importance characteristic of human knowledge acquisition. The cognitive order is expressed by the prerequisite relationships among knowledge components. Incorporating the prerequisite structure of knowledge components enables a student model to capture the cognitive order. A student model complying with the learning characteristics and laws can better interpret and predict student behaviors. However, acquiring prerequisite structures of skills is a tough and time-consuming task. Student knowledge on a skill is a latent variable. Extracting prerequisite structures of skills from student performance data is challenging. We propose a two-phase method to learning skill structures from data. In the first phase, student performance data are transferred to probabilistic knowledge states by an evidence model. In the second phase, we learn the prerequisite structure of skills from the probabilistic knowledge states. Probabilistic association rules mining is an emerging data mining technique for discovering association rules from uncertain data. We apply this technique to discovering the skills pairs with the prerequisite relationship.

We evaluate our diagnostic model with simulated data and real data. The simulated data is generated based on the parameter values from real data. This strategy makes the simulated data close to the real data. We evaluate the accuracy of our diagnostic model in knowledge estimation and performance prediction. The accuracy of knowledge estimation is only evaluated for simulated data, since in real scenarios a student's real knowledge is unknown.

We use k-fold cross-validation to estimate the model accuracy. The knowledge estimation accuracy is calculated by comparing the predictions of unseen students' knowledge states with their real states. The performance prediction accuracy is calculated by comparing the predictions of unseen responses with the observed responses. We compare our diagnostic models with other two diagnostic models. Since the differences between the three models are the model complexity (the number of parameters) and the assumptions of the noise assigned for observations, we firstly compare the three models on the model fit and complexity. In two data sets, the MC-DINA model has the best AIC and BIC values. Then we compare the accuracy of the three models. Our model has a competing performance on student performance prediction. Furthermore, we compare our model and other two diagnostic models with three binary models. The three binary models have the same structures with the diagnostic models. And the results demonstrate that the diagnostic models significantly outperform the binary models on knowledge estimation, and slightly better than binary models on performance prediction.

We evaluate our two-phase method of learning skill structure from data using one simulated data set and two real data sets. Among the two data sets, one is the testing data, and the other is the log data. The simulated data is the testing data. To generate the simulated data, we presuppose a prerequisite structure of skills. And the simulated knowledge states are restricted to comply with the prerequisite structure. For the testing data, we use the DINA model to estimate student probabilistic knowledge states. For the log data, we use the BKT model to estimate student knowledge states. And the final knowledge states of each skill are used to extract the prerequisite structure. The prerequisite structure discovered in the simulated data is compared with the presupposed structure, while the structure discovered in the real testing data is compared with the finding of another research [START_REF] Templin | Hierarchical diagnostic classification models: a family of models for estimating and testing attribute hierarchies[END_REF] on the same dataset. And the structure derived from the log data are compared with the structure from human expertise. The results demonstrate that our method performs well to discover the prerequisite structure of skills from the testing data, but not well for the log data. The log data might contain much noise from student learning. Applying our method to the log data needs to be improved. At last, we also verify whether the accuracy of a student model is improved by introducing the prerequisite structure of skills. We compare the model incorporating the prerequisite structure with the original model. The results demonstrate that the accuracy of the model is significantly improved by introducing the prerequisite structure.

In the theoretical perspective, on one hand, we extend a popular student model-the NIDA model for polytomous data. The polytomous data are the student responses to multiple choice questions. On the other hand, we propose a two-phase method to learn the structure of latent variables from noisy data. The structure of latent variables is the prerequisite structure of skills. In the application perspective, our diagnostic model for responses to multiple choice questions can be easily extended to model general erroneous response data. The requirement is only that student systematic errors are collected and labels with knowledge biases. Our method to learn prerequisite structures of skills can be used to assist human experts in skill modeling or to validate the prerequisite structures of skills from human expertise.