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Introduction

Therein, we address statistical models for structured data. In cases where statistical individuals are structured, graph-indexed data -based on graphs which are mathematical objects composed of vertices and edges -are used to represent and store data. Each vertex represents an elementary entity of an individual and the edges represent either temporal precedence, or topological or spatial adjacency between these entities. The most widespread examples of graph-indexed data are:

Data indexed by directed path graphs. In such graphs there is an order among vertices and each vertex (except the last), called parent vertex, is connected to the next one, called child vertex. Edges are directed and represent the order between vertices. Path-indexed data, also known as sequences or chains, are used to describe either time-evolution of individuals or topological sequences (e.g. DNA sequences or succession of nodes along plant shoots).

Data indexed by grid graphs. In such graphs there is no order among vertices and a vertex is connected to a set of vertices, called neighbor vertices. As there is no order, edges are undirected and they represent direct connectivity between vertices. Regular grid-indexed data with a fixed size neighborhood are used in particular to describe images, and more generally grid graphs provide an efficient representation of spatial data.

We focus here on less common data:

Data indexed by directed tree graphs. These data can be viewed as a generalization of path-indexed data since directed path graphs are directed tree graphs where there is at most one child per vertex. Let us consider the simple example of one cell followed-up over time. The directed path representation could be used to represent the evolution of this cell over time but as soon as it divides either we could consider two new paths representing the evolution of child cells, or one cell could be arbitrarily chosen as the continuation of the initial path while the other could be treated as the beginning of a new path. Since directed tree vertices can have more than one child, we are able to keep track of cell divisions using tree-indexed data where a given cell is connected to its two child cells. Among other applications in statistics, tree-indexed data have been used for the multiscale representation of images (Choi and Baraniuk, 2001) or more generally signals (Crouse et al., 1998;Durand et al., 2004), cell lineages (Olariu et al., 2009) and plant representation (Durand et al., 2005).

In the Virtual Plants team, the host team for this thesis, applications of interest focus on plant development and its modulation by environmental and genetic factors. Plants are branched living organisms that develop throughout their lifetime. Organs are created by small embryogenetic regions at the tip of axes, called apical meristems. One of the main objectives of the Virtual Plants team is to study plant apical meristem functioning and Introduction development. Tree-indexed data can be found in this context on two complementary scales:

A macroscopic scale. The methodology here consists in analyzing the structures produced by meristems. This can be viewed as methodology that aims to solve an inverse problem in which meristem functioning is inferred from the whole plants they produce. Each vertex represents a botanical entity (elementary constituent of plants) and edges encode either the temporal precedence of two botanical entities produced by the same meristem or the direct lineage relationships among two meristems (branching process in plants).

A microscopic scale. The aim is to understand how physiological and genetic processes control meristem functioning on a tissue scale. Recent scientific and technological advances in developmental biology have provided access to data on a tissue scale, especially cell lineages. Each vertex represents a cell and edges encode either the tracking of a cell over time or the lineage relationships among parent and child cells.

While trees are closely related to paths, far fewer models are available for treeindexed data than for sequences. Historically, the first interest in tree-indexed data concerned only tree topology without considering attributes attached to vertices. When considering the problem of family name extinction, Watson and Galton (1875) proposed a simple branching stochastic process that considered only the topology. This process was later generalized under the name Multi-Type Branching Process (MTBP), and considered both topology and categorical outcomes in tree-indexed data (see Harris, 2002). This improvement rendered the model applicable in many biological areas (see Haccou et al., 2005;Kimmel and Axelrod, 2002, for examples). It is noteworthy that these approaches are suitable for modeling tree-indexed data but were originally applied to univariate (resp. multivariate) counts data corresponding to the number of children of each vertex (resp. the number of children in each category for each parent category). The corresponding estimated distributions were therefore called generation distributions. More recently, an effort has been made to develop limit theorems (Yang, 2003) and algorithms for Markov Tree (MT) models applied to tree-indexed data with missing categorical values (Ronen et al., 1995) or non-categorical values (Crouse et al., 1998;Durand et al., 2004;Bacciu et al., 2010). MT models are stochastic processes wherein the simplest case -future events of the process are assumed to be independent of the past events given the present event. Hidden Markov Tree (HMT) models introduced by Crouse et al. (1998) are to MT models what Hidden Markov Chain (HMC) models are to Markov Chain (MC) models (see Ephraim and Merhav, 2002, for a review). The basic idea of HMT models is to define an unobserved categorical MT process that is linked to the observation process by simple probabilistic mappings. Hidden Markov models are thus not restricted to categorical outcomes but can deal with multidimensional outcomes combining heterogeneous variables. Note that unlike to path graphs, where the structure is unchanged whichever the chosen direction, directed tree graphs are non-symmetrical structures. In fact, as presented by Durand et al. (2005), two types of MT models can be distinguished:

• Markov In-Trees (MITs) studied by Bacciu et al. (2010) where the edges are directed from the leaves to the root,

• Markov Out-Trees (MOTs) introduced by Ronen et al. (1995) where the edges are directed from the root to the leaves.

Due to a narrow scope of applications -mostly image segmentation, signal classification/denoising or image document categorization -where the tree structure is fixed by the user, topology is not considered in such models, unlike the MTBP case. This thesis aims to propose a statistical modeling framework for studying patterns in tree-indexed data. To this end, two different classes of statistical models are investigated:

A class of short-range dependence models. Hidden Markov Out-Tree (HMOT) models, based on the modeling of local dependencies between child and parent vertices, are particularly suited to motif detection in trees such as alternation along paths within the tree or succession of homogeneous zones concerning botanical entity fates or cell identities. In order to model highly-structured motifs, the classical HMOT model family is enlarged to take account of dependencies between children and randomness of tree structures (i.e. variable number of child vertices). In a first step, this new family of models is introduced for trees with strong topological constraints (binary trees), and semi-parametric HMOT models with general observation processes are applied to cell lineages. In a second step, general trees are considered and combinatorics induced by variable, large numbers of children are modeled with parametric MOT models in order to obtain parsimonious models that may also be applied to the HMOT case.

A class of long-range dependence models. The multiple change-point models, based on the modeling of long-range dependencies, are particularly suitable when treeindexed data exhibit roughly homogeneous zones separated by marked change points. The generalization of multiple change-point models from path-indexed data to tree-indexed data is therefore considered and used for the segmentation of tree-indexed data.

As a consequence, graphs, probabilistic graphical models and latent state models emerged as transversal thematics in this thesis.

Chapter 1 introduces graphs and graphical models, providing general definitions, properties and visualization algorithms. In particular, the different types of graphs used in statistical modeling -undirected, directed and mixed -are introduced. Secondly, the general graphical model framework which relies on a graph for compactly encoding complex distributions, is developed. The focus is therefore first on Markov and factorization properties that are defined to ensure that a distribution and its graph representation are consistent. This formalism is used to derive rich sets of independence assertions holding in a probability distribution by simply examining graphs or defining distributions from graphs. But since for a given distribution many graph representations are consistent but not necessarily optimal, the concepts of minimal and perfect Independence maps (I-maps) are introduced. The use of graphical models is then illustrated in terms of Introduction interpretability of models, efficiency of inference and distribution manipulation using multivariate Gaussian distributions as an example.

In chapter 2, the graphs and graphical models defined in chapter 1 are used in the particular context of directed tree graphs. This encompasses the formal definition of tree-indexed data, their visualization, and presentation of the statistical models available in the literature to deal with such structured data. Particular emphasis is placed on the two different data sets studied in this thesis and associated modeling issues:

• On a microscopic scale, tree-indexed data are used to represent cell lineages observed in meristems. The case of a floral meristem is considered with the objective of recovering cell identities during the first stages of morphogenesis (from the initial undifferentiated stage to the emergence of sepals). Cell identities are not observable directly but only indirectly through different cell-related geometrical, mechanical and hormonal features. These recovered cell identities are used to characterize the cell division process over time and to identify homogeneous regions in terms of cell identities by spatial projection.

• On a macroscopic scale, tree-indexed data are used to represent whole plants. We consider here the example of mango trees. Like other tropical trees, mango is characterized by marked phenological asynchronisms, between and within trees, entailing patchiness. Patchiness is characterized by clumps of either vegetative, reproductive or resting botanical entities within the canopy. Latent states are therefore assimilated to patch fates, with clumps mostly composed of vegetative, resting or flowering botanical entities. In this particular case, segmenting the canopy in homogeneous regions is relevant for patch identification at a given date while motif identification can help us understand how such patterns can arise during a plant's lifetime.

In chapter 3 we focus on models that rely on a local dependency assumption. An enlarged family of HMOT models is introduced in order to relax the assumption of independence between children given their parent in state-of-the-art HMOT models. As a consequence, the MTBP concept of generation distributions is here re-introduced into HMOT models. The upward-downward smoothing algorithm employed to implement efficiently the E-step of the Expectation-Maximization (EM) algorithm, and the dynamic programming algorithm used to restore the most probable state tree, are derived. The advantage of such models is illustrated on cell lineages in floral meristems where nonparametric generation distributions are coupled with parametric observation models to define semi-parametric HMOT models.

Cell lineages can be considered as simple tree-indexed data since there are at most two children for a vertex (and at least one child). In the practical setting of plant architecture analysis, the combinatorics induced by the variable, large number of child vertices in each state inflates the number of parameters in semi-parametric HMOT models. In chapter 4 we address the inference of discrete-state models for complex treestructured data. Our aim here is to introduce parametric MOT that can be efficiently estimated on the basis of data of limited size. Each generation distribution, corresponding to a discrete multivariate distribution within this macroscopic model, is modeled by a graphical model where each variable corresponds to a number of children in a given state. In order to address the inference of these generation distributions, a new method for the inference of Mixed Acyclic Graph (MAG) models is proposed. The estimation of each graphical model relies on a greedy algorithm for graph selection. The proposed modeling approach is illustrated on an analysis of mango tree architecture in the context of patch set-up within trees.

In chapter 5 the classical multiple change-point models for path-indexed data are transposed to tree-indexed data. The objective of multiple change-point models is to partition heterogeneous tree-indexed data into homogeneous subtree-indexed data of consequent sizes. Unlike MT models, which rely on local dependencies, multiple changepoint models are relevant for tree-indexed data in which long-range dependencies have to be modeled. Since optimal algorithms of multiple change-point models for sequences cannot be transposed to trees, we propose here an efficient heuristic for tree segmentation. The segmented subtrees are grouped in a post-processing phase, and this segmentation/clustering approach is justified by the occurrence of similar disjoint patches in the canopy. Application of such models is illustrated on mango trees where subtrees are assimilated to plant patches and clusters of patches to patch type (e.g. vegetative, flowering or resting patch).

In the last chapter we focus on work currently in progress and perspectives. An originality of the Virtual Plants team is the effort dedicated to software development. All methods and models developed by team members are integrated in a common software component, V-Plants, within the OpenAlea platform (Pradal et al., 2008). This chapter gives an overview of the software resulting from the implementation of statistical models and methods developed in this thesis in order to make them available to team members and partners. Chapter 3 focused on HMOT models, but Hidden Markov In-Tree (HMIT) -discussed by Durand et al. (2005) and developed by Bacciu et al. (2010) are related models that also take account of dependencies between children. Such models are therefore discussed with respect to HMOT models. Concerning the generation distributions of HMOT, we consider the use of graphical models to reveal exclusion and inclusion patterns in child fates. An alternative model, based on mixture models, is presented and the different hypotheses induced by these two models are discussed. Finally, we revisit the patchiness phenomenon and present an integrative analysis that could be conducted to decipher mango tree asynchronisms and patchiness phenomena. 

Introduction to graph theory

In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to describe relations in systems consisting of many related objects. This introduction to graph theory aims to describe how graphs are used in the context of statistical analysis. It is noteworthy that graphs are used in many scientific fields, and that the terminology depends on the context. We use here the routine terminology found in statistical reference textbooks about graphical models (see Lauritzen, 1996;Koller and Friedman, 2009).

Definitions 1

Graphs Let G be a graph. G is defined by a pair (V, E) where:

• The vertex set, noted V, is a finite subset of N.

• The edge set, noted E, is a finite subset of V × V pairs of distinct vertices in V,

∅ ⊆ E ⊆ P (V) .

with P (•) the set of pairs of distinct elements of a set,

P (V) = (u, v) ∈ V 2 u = v .

Note

Here we consider only simple graphs where no loop edge can be found,

∀v ∈ V, (v, v) ∈ E.
For an edge (s, t) ∈ E, the vertex s is called the source vertex and vertex t the target vertex, and the vertices are said to be adjacent. If an edge (s, t) is in E and if:

• (t, s) is not in E, it is a directed edge. • (t, s) is also present in E, it is an undirected edge.
Therefore, considering elements present in E, different types of graphs can be considered:

• Undirected graphs containing only undirected edges,

G ∈ U (V) ⇒ ∀ (u, v) ∈ P (V) , (u, v) ∈ E ⇔ (v, u) ∈ E,
where U (•) is the set of all undirected graphs with the given vertex set.

• Directed graphs containing only directed edges,

G ∈ D (V) ⇒ ∀ (u, v) ∈ P (V) , (u, v) ∈ E ⇒ (v, u) ∈ E,
where D (•) is the set of all directed graphs with the given vertex set.

• Mixed graphs, containing both undirected (E ′ ) and directed edge sets (E ′′ ),

G ∈ M (V) ⇒ E = [E ′ ⊎ E ′′ ] ∧   ∀ (u, v) ∈ P (V) ,    (u, v) ∈ E ′ ⇔ (v, u) ∈ E ′ (u, v) ∈ E ′′ ⇒ (v, u) ∈ E ′′   ,
where M (•) is the set of all mixed graphs with the given vertex set, ⊎ denotes the union of disjoint sets and ∧ the logical and operator.

Note

Mixed graphs such as E ′ = ∅ (respectively E ′ = E), are directed graphs (respectively undirected graphs). Mixed graphs are therefore considered as a generalization of undirected graphs and directed graphs.

Induced subgraphs A subgraph G A is a graph induced by a given subset A of the vertex set of G. G A = (V A , E A
) is defined by the vertices A and all edges of G having both source and target in A, E A = E ∩ P (A) .

Quotient graphs A quotient graph G Π is a graph induced by a given partition Π of the vertex set of G. G Π = (V Π , E Π ) is defined by:

• Its vertex set represents an indexing of the partition blocks,

Π = {Π i } i∈V Π .
• Its edge set represents the edges between partitions blocks,

E Π = {(i, j) ∈ P (V Π ) | Π i × Π j ∩ E = ∅} .

Drawings

A great advantage of these mathematical objects is that with certain conventions, information about pairs (V, E) defining G can be easily interpreted using drawings. These drawings are pictorial representations of the vertex and edge sets depicting the relational information encoded in graphs for visualization purposes. We will now introduce the principal conventions used to draw these figures.

Node and link diagrams

Principle A widespread graph drawing type is the node and link diagram. Let us consider a graph G and vertex coordinates noted r = (r v ) v∈V where

∀v ∈ V, r v ∈ R × R,
for here we only consider 2 dimensional layouts. For each vertex v ∈ V a circle centered on the coordinate r v labeled v is drawn. Considering the edges set E different cases may be distinguished:

• an undirected edge (s, t) is represented by a straight line connecting the two labeled circles s and t.

• a directed edge (s, t) is represented by an arrow pointing from the source labeled circle s to the target labeled circle t.

Given these conventions, node and link diagrams are concerned with the automatic computation of vertex coordinates in order to draw the graph. As presented in Tamassia (2007, and references therein) many algorithms have been described in the literature for this task. These algorithms can be separated into two principal classes:

• algorithms for small graphs (i.e. |V| 100),

• algorithms for large graphs (i.e. |V| 100).

Where |•| denotes the cardinality of a set. Given that in this thesis we will mostly deal with small graphs, we will focus here on the former class where algorithms are intuitive, simple to implement, and produce layouts that tend to be clear for small graphs.

Undirected graph layouts Some of the most flexible algorithms for computing the layouts of simple undirected graphs belong to the class of force-directed algorithms. These algorithms compute the layout of a graph using mechanical models to produce layouts, and comply with some generally accepted criteria (see Kobourov, 2012, for more details):

1. minimize edge crossings, 2. render edge lengths uniform, 3. reflect inherent symmetry.

In the algorithm described by Eades (1984) the graph is abstracted into a mechanical system composed of steel rings and springs. Each vertex is assimilated to a steel ring and each edge to a spring attached to corresponding steel rings. Therefore, once the steel rings are placed in their initial positions, the system evolves according to:

• F Ē , a force exerted between non-adjacent vertices. This repulsive force caused by an electrical charge γ of steel rings and its norm is inversely proportional to the square-root of the vertices distance.

• F E , a force exerted between adjacent vertices. This force is caused by strings and has a norm that is logarithmically proportional to the vertices distance. Actually when two adjacent vertices are too close, the force is repulsive and when they are too far apart the force is attractive. The equilibrium distance is defined by parameter β, and the characteristic of the springs by α.

This system tends to reach a state of minimal energy corresponding to an aesthetic layout of undirected graphs. Given that at each iteration all vertices are moving simultaneously, the quantity of movement computed can be dampened using f ∆ in order to prevent excessive displacement that would not be relevant. When publishing their algorithm of undirected graph layouts Fruchterman and Reingold (1991) added the aesthetic criterion:

4. distribute the vertices evenly.

Like other algorithms developed subsequently (see Kobourov, 2012, and references therein) this algorithm is very similar to that proposed by Eades (1984). Main differences are:

• F Ē , the force exerted between non-adjacent vertices is replaced by F P , a force applied to all pairs of vertices. This is also a repulsive force with a norm that is inversely proportional for vertices distances.

• F E , the force exerted between adjacent vertices now has a norm that is proportional to the square of the distance of adjacent vertices.

These two forces are inspired by the forces exerted between atomic particles or celestial bodies. As forces computed can be excessively elevated, the authors proposed to dampen movements by decreasing the temperature of the system. This phenomenon is similar to the well-known annealing effect in metallurgy which is often used in computer science as a meta-heuristic (see Kirkpatrick et al., 1983).

We embedded these two algorithms in algorithm 1 -quadratic in time and space complexities -to compute graph layouts (see table 1.1 and figure 1.1).

Algorithm 1 Computing vertex positions of undirected graphs

Require

: r = (r v ) v∈V initial vertex positions 1 function ForceDirectedPlacement(G) 2 for k ∈ {1, • • • , M } do ⊲ Iterate procedure M times 3 ∆ ← ((0, 0)) i∈V ⊲ Resulting forces applied on vertex 4 for u ∈ V do 5 for v ∈ V \ {u} do 6 if (v, u) ∈ E then 7 ∆ u ← ∆ u + F E (r u , r v ) 8 ∆ v ← ∆ v -F E (r u , r v ) 9 else 10 ∆ u ← ∆ u + F Ē (r u , r v ) 11 ∆ u ← ∆ u + F P (r u , r v ) 12 for u ∈ V do 13 r u ← r u + ∆u min (f ∆ (∆ u ) , f k (k)) return r
Graphs and graphical models frameworks Figure 1.1 -Examples of force-directed undirected graph layouts. From left to right the initial position of vertices and then the results of the second, tenth and hundredth iterations. Starting from given positions, the graph is viewed as a spring system which evolves to reach a stable configuration. Algorithm 1 was configured to use the Fruchterman and Reingold (1991) algorithm but with the Eades (1984) forces F E and F Ē instead of F E and F P forces.

Directed graph and mixed graph layouts While force-directed algorithms are widely used for drawing undirected graphs, they are less used directed graphs. The principal reason is that they do not produce layouts that highlight the direction of edges. More sophisticated algorithms -known as hierarchical drawing algorithms (see Tamassia, 2007, chapter 13) -were therefore developed for directed graphs in order to take account of hierarchies generally encoded in directed graphs. But such algorithms require all edges to be oriented and can not therefore be used for mixed graphs without a preliminary transformation of undirected into directed edges which introduces an erroneous impression of hierarchy.

When limited to small directed graphs or mixed graphs, the extension of the forcedirected algorithms presented by Sugiyama and Misue (1995) is very interesting. In order to adapt force-directed algorithms to directed graphs and mixed graphs, the authors added the following criterion to the list of aesthetic criteria: 5. conform links to specified orientations.

They integrated this aesthetic criterion by considering magnetic fields. Each spring in the physical model is henceforth magnetized and the system evolves in a magnetic field defined by:

• a space-dependent orientation vector noted ω (.) (see table 1.2),

• a strength noted ν ∈ [0, 1], with:

• undirected edges as bi-directional magnetic springs,

• directed edges as uni-directional magnetic springs. Eades (1984) Fruchterman and Reingold ( 1991) The magnetic force applied is

F E : R 2 × R 2 → R 2 r u , r v → α • log (||δ||/β) • δ F Ē : R 2 × R 2 → R 2 r u , r v → -γ/||δ|| • δ F P : R 2 × R 2 → R 2 r u , r v → 0 f ∆ : R 2 → R ∆ → ǫ • ||∆|| f k : N → R k → +∞ F E : R 2 × R 2 → R 2 r u , r v → κ • ||δ|| 2 • δ F Ē : R 2 × R 2 → R 2 r u , r v → 0 F P : R 2 × R 2 → R 2 r u , r v → -δ/κ 2 • ||δ|| f ∆ : R 2 → R ∆ → ||∆|| f k : N → R k → λ • exp (-k/τ )
F m : R 2 × R 2 → R 2 r u , r v → - 1 -cos (νθ) -sin (νθ) sin (νθ) 1 -cos (νθ) δ,
where θ is the direct angle between the vectors

δ = r u + r u + r v 2 ,
representing the second half of edge (u, v) and

ω r u + r v 2 ,
is the orientation of the field at the middle of the edge. The introduction of this magnetic force F m does not change algorithm 1 as F E is henceforth considered as the resulting force of that chosen in the undirected case and the magnetic force induced by the field

Field name Orientation vector

South parallel ω : R 2 → R 2 r → (0, -1)

Centrifugal polar ω : R 2 → R 2 r → r Clockwise concentric ω : R 2 → R 2 r → 0 1 -1 0 r
Table 1.2 -Usual magnetic fields for force-directed algorithms (Sugiyama and Misue, 1995). r denotes the position considered in the magnetic field and r its renormalization.

The usual value for the field strength parameter is ν = 0.1.

(see figure 1.2). As a consequence of this rotational force, directed edges tend to be in the direction of the magnetic field whereas undirected edges tend do be in the orthogonal direction (see figure 1.3 and figure 1. 4).

Note

The force presented here is not the same as that presented by Sugiyama and Misue (1995). The main reason for this modification is that, when considering their force the edge lengths are greatly modified by the magnetic field. Therefore, the results produced are in contradiction with aesthetic criteria 2 and this behavior is exacerbated as the force of the field increases. The force we propose produces for edge (u, v) a rotation at the center of the edge of an angle proportional:

• to the angle between the edge and the orientation vector,

• to the force of the field, without modifying edge length.

Initialization

In this thesis, small graph drawings are produced using algorithm 1 for vertex positioning and a customized interface to the matplotlib package (Hunter, 2007) for producing drawings. As force-directed algorithms are highly sensitive to the initial vertex positions, we considered the following strategies:

• random, each coordinate is randomly set on the square |V|/2, |V|/2 Sugiyama and Misue (1995).

• circular, each coordinate is deterministically and evenly set on the circle centered at (0, 0) and of radius |V|. Instead of considering the vertices with their natural ordering, relevant ordering of vertices (see Tarjan, 1972, for more details and in particular the Depth-First Search (DFS) ordering) based on adjacencies can be used to improve this initialization.

It is noteworthy that if algorithm 1 automatically produces an appropriate layout, the result may be further improved by manual corrections. We therefore configured our matplotlib interface to allow for a posteriori vertex position corrections while updating link conformations.

Matrix plots

Basic force-directed algorithms can compute vertex positions only for small graphs and yield poor quality results for graphs with more than a few hundred vertices. There are many reasons why the traditional force-directed approach does not perform well for large graphs. One of the main obstacles to the scalability of these approaches is the fact that the underlying physical model has many local minima. For large graphs, another useful drawing approach is inspired from matrix drawings. A graph G can be represented using V × V square matrices noted G:

• The adjacency matrix of a graph of general element G u,v is defined as follows • The incidence matrix of a graph G of general element G u,v is defined as follows

∀ (u, v) ∈ V 2 ,    G u,v = 1 if (u, v) ∈ E, G u,v = 0 otherwise.
∀ (u, v) ∈ V 2 ,          G u,v = 1 if [(u, v) ∈ E ∧ (v, u) ∈ E] ∨ [(u, v) ∈ E ∧ (v, u) ∈ E] , G u,v = -1 if [(u, v) ∈ E] ∧ [(v, u) ∈ E] , G u,v = 0 otherwise, ,
where ∨ denotes the logical or operator.

To represent these matrices a square surface of V 2 pixels is considered and each pixel located at position (u, v) ∈ V 2 is colored according to the value of the element G (u,v) . The different values of G were mapped to colors, using the color-maps defined in matplotlib (Hunter, 2007, see figure 1.5).

Let us consider a permutation σ(.) ∈ S (V) where S (•) is the set of all permutations in a set. The graph adjacency matrix drawing can sometimes be enhanced by drawing a permuted version of the matrix P t • G • P where the permutation matrix P general element P u,v is defined as follows

∀ (u, v) ∈ V 2 ,    P u,v = 1 if v = σ(u) P u,v = 0 otherwise.
Like for the circular initialization in node and link diagrams, these relevant permutations are related to vertex ordering (Tarjan, 1972) induced by the topological information encoded in graphs which we will further illustrate below.

Graph properties 2

Mixed graphs are generalizations of undirected graphs and directed graphs, but for the sake of understanding, the concepts regarding graphs will first be presented for undirected graphs and directed graphs. In order to generalize these definitions to mixed graphs, efforts have been made to define undirected graphs and directed graphs notions in a manner that they hold for mixed graphs.

Undirected graphs

Topological notions Two distinct vertices u, v ∈ V are said to be neighbors if the edges (u, v) and (v, u) are present in E. The set of vertex neighbors is noted ne (•) and its cardinality -called degree -deg (•),

∀v ∈ V, ne (v) = {u ∈ V | [(u, v) ∈ E] ∧ [(v, u) ∈ E]} , deg (v) = |ne (v)| .
For a subset A of V, its neighborhood is defined as the union of the neighborhood of each of its elements without its own elements,

∀A ⊆ V, ne (A) = {∪ v∈A ne (v)} \ A,
and its closure is noted Ne (•),

∀A ⊆ V, Ne (A) = ne (A) ∪ A.
The subset A ⊆ V, such that in subgraph G A all vertices have all the other vertices as neighbors, is a clique. When A is a clique such that for any other vertex i ∈ V \ A, A ∪ {i} is no longer a clique, A is said to be a maximal clique. The set of all maximal cliques in the undirected graph G is noted K G . The notion of maximal clique is key in undirected graphs and all maximal cliques can be listed using the Bron and Kerbosch (1973) algorithm which has a worst case time complexity of O 3 K 3 (Tomita et al., 2006). Although other algorithms for computing K G have been designed since 1973, this algorithm, and optimized variants, are reported as being more efficient in practice than the alternatives (Cazals and Karande, 2008).

A path of length l from a vertex u ∈ V toward a vertex v ∈ V is a sequence

α 0 = u, . . . , α l-1 = v of distinct vertices such as (α k-1 , α k ) ∈ E for all k ∈ |[0, l|[.
If there is a path from a vertex u ∈ V to a vertex v ∈ V and another one from v to u, vertices u and v are said to be connected. The set of vertices connected to a vertex, noted cn (•), is defined as follows

∀v ∈ V, cn (v) = ∪ u∈ne(v) cn (u) ∪ ne (v) \ {v} .
For a subset A of V, its connected vertex set is defined as the union of vertices connected to each of its elements without its own elements, Graph G 2 is not chordal as there is a diamond shape 1, 2, 3, 4 missing a chord (1, 3) and/or (2,4). Graph G 3 is one of the chordal embedding of G 2 where the chord (2,4) has been added. The 4-cycle 1, 2, 3, 4 has therefore been split in 2 3-cycles 1, 2, 4 and 2, 4, 3. and its closure is noted Cn (•),

∀A ⊆ V, cn (V) = {∪ v∈A cn (v)} \ A,
∀A ⊆ V, Cn (V) = cn (A) ∪ A.
A graph such that each vertex is connected to all the others is said to be a connected graph. A connected component of an undirected graph G is a subset A of V such that G A is connected and that none of the vertices of A is connected to any of the vertices in V \ A.

A path of length l > 2 pointing from a vertex v to the same vertex v is a l-cycle. A chord is an edge linking 2 non-consecutive vertices in a cycle. A diamond shape is a l-cycle with l ≥ 4 containing no chords.

Remarkable graphs Considering the edge set, important classes of undirected graphs can be defined (see figure 1.6).

An undirected graph G is said to be a complete graph if V is a clique

K G = {V} .
If an undirected graph has no l-cycles and is connected, it is a tree. If it has more than one connected component, but all connected components are trees, it is a forest.

If any l-cycles for l > 3 in a graph have a chord, then the graph is a chordal graph. By extension, undirected graphs with no cycles are also said to be chordal. In fact, if an undirected graph does not contain any diamond shapes, it is chordal. A chordal embedding G ′ = (V, E ′ ) of a non-chordal graph G = (V, E) is a chordal graph such as E ⊂ E ′ . Computing a minimal chordal embedding -a chordal embedding such that the number of edges added is minimal -of a non-chordal graph is NP-hard (Yannakakis, 1981). A good heuristic for computing a chordal embedding is to generate a well chosen ordering of vertices such that the number of chords added is reasonable (see Rose et al., 1976;Amestoy et al., 1996;Berry et al., 2004, for more details).

Separation property

For three disjoint subsets of V, A, B and C, the subset C is said to be (A, B)-separator if all paths from vertices in A to vertices in B intersect vertices in C. This property is noted

A G ⊥ B|C.
If no possible confusion can arise, the notations A ⊥ B|C if C is not the empty set, or A ⊥ B otherwise, will be used. If C is (A, B)-separator, and for any vertices i ∈ C, C \ {i} is no longer (A, B)-separator, C is a minimal (A, B)-separator.

When considering a fourth disjoint subset of D ⊂ V, some important properties can be derived from graph separation:

• The symmetry property,

A ⊥ B | C ⇔ B ⊥ A | C.
• The decomposition property,

A ⊥ B ∪ C | D ⇒ A ⊥ B | D.
• The weak union property,

A ⊥ B ∪ C | D ⇒ A ⊥ B | D ∪ C. • The contraction property, [A ⊥ B | D, C] ∧ [A ⊥ C | D] ⇒ A ⊥ B, C | D. • The intersection property, [A ⊥ B | C] ∧ [A ⊥ C | B] ⇒ A ⊥ B, C.
Let S (G) denote the set that contains all the separations that hold in G,

S (G) = (A, B, C) ∈ P 3 (V) A ⊥ B | C .
For any two undirected graphs G and G ′ sharing the same vertex set, if they do not have the same set of edges, their sets of separations differ,

∀ (G, G ′ ) ∈ U 2 (V) , E = E ′ ⇔ S (G) = S (G ′ ) .

Directed graphs

Topological notions A vertex s is said to be the parent of a vertex t if the edge (s, t) is in E but not the edge (t, s). Correspondingly t is said to be a child of the vertex s. Let:

• pa (•), be the set of parents of a vertex,

∀v ∈ V, pa (v) = {u ∈ V | [(u, v) ∈ E] ∧ [(v, u) ∈ E]} , deg -(v) = |pa (v) |,
where deg -(•) is the in-degree (i.e. number of parents) of a vertex.

• an (•), be the set of ancestors of a vertex,

∀v ∈ V, an (v) = ∪ u∈pa(v) an (u) ∪ pa (v) .
• ch (•), be the set of children of a vertex,

∀v ∈ V, ch (v) = {u ∈ V | (v, u) ∈ E ∧ (u, v) ∈ E} . deg + (v) = |ch (v) |,
where deg + (•) is the out-degree (i.e. number of children) of a vertex.

• de (•), the set of descendants of a vertex,

∀v ∈ V, de (v) = ∪ u∈ch(v) de (u) ∪ ch (v) .
• nd (•), be the set of non-descendants of a vertex,

∀v ∈ V, nd (v) = V \ [de (v) ∪ {v}] .
Similarly, the same notations are used for any subset A of V,

pa (A) = {∪ v∈A pa (v)} \ A, ch (A) = {∪ v∈A ch (v)} \ A, an (A) = {∪ v∈A an (v)} \ A, de (A) = {∪ v∈A de (v)} \ A,
and are capitalized for their closures,

Pa (A) = pa (A) ∪ A, Ch (A) = ch (A) ∪ A, An (A) = an (A) ∪ A, De (A) = de (A) ∪ A, Nd (A) = nd (A) ∪ A.
The set of roots, noted R, is the set of vertices with no parents,

R = v ∈ V deg -(v) = 0 ,
Graphs and graphical models frameworks and the set of leaves, noted L, is the set of vertices with no children,

L = v ∈ V deg + (v) = 0 , A directed path of length l from a vertex u ∈ V toward a vertex v ∈ V is a sequence α 0 = u, . . . , α l-1 = v of vertices such that (α k-1 , α k ) ∈ E for all k ∈ |[0, l|[ and there is at least one (α k , α k-1 ) ∈ E. A directed l-cycle is a directed path of length l > 1 from a vertex v ∈ V to the same vertex v.
A v-shape is a set of 3 distinct vertices u, v and w of V such that (see G {1,2,3} in figure 1.7):

• w is a child of u and v,

• u is not a child of v, and conversely.

In a directed graph, a v-shape is also called an immorality. I G denotes the set of immoralities in G defined as follows

I G = (u, v, w) ∈ V 3 [u ∈ pa (v)] ∧ [v ∈ pa (u)] ∧ [w ∈ ch (u)] ∧ [w ∈ ch (v)] .
Remarkable graphs Considering the edge set, it is possible to define important classes of directed graphs (see figure 1.7).

A Directed Acyclic Graph (DAG) is a directed graph which does not contain any directed l-cycles. Conversely, directed cyclic graphs are directed graphs that are not DAGs.

A directed forest is a DAG such that none of its vertices has an in-degree of more than 1 and at least one vertex has an in-degree of 0. Moreover, if a directed forest has only one vertex with a null in-degree, it is a directed tree.

Two transformations of a directed graph G into an undirected graph are generally considered:

• Its undirected version, noted G u = (V, E u ), is the undirected graph obtained by removing edge directions,

E u = E ∪ E r ,
where E r is the set of reversed edges,

E r = {(t, s) ∈ P (V) \ E | (s, t) ∈ E} .
• Its moral graph, noted G m = (V, E m ), is the undirected graph obtained by adding all edges corresponding to immoralities into its undirected version, , where the only difference is the reversal of the edge (3, 1) into (1, 3), is a DAG. Graph G 6 is a DAG with 3 immoralities (0, 3), (2, 3) and (0, 2), therefore many of these edges were added into its undirected version in order to build its moral graph G m 6 , which is complete.

E m = E u ∪ (u, v) ∈ P (V) ∃w ∈ V, (u, v, w) ∈ I G .
Separation property Let A, B and C be three disjoint subsets of V.

The subset C is said to be (A, B)-d-separator if C is (A, B)-separator in G m an(A∪B∪C) 3 , A G ⊥ d B | C ⇒ G m an(A∪B∪C) A ⊥ B | C.
If no possible confusion can arise, the notations A ⊥ B|C if C is not the empty set, or A ⊥ B otherwise, will be used. If, as in the undirected graph case, the same important properties can be derived from graph d-separation, few important remarks need to be made concerning the set of separations in a directed graph:

• The set of separations of an undirected graph can be represented by a directed graph with no immoralities if, and only if, the undirected graph is chordal. Such graphs are said to be Separation equivalent (S-equivalent). A conversion from a chordal graph to a directed graph can be made by considering a vertex as the center of the undirected graph and orienting edges in a centrifugal way. Conversely, as soon as a directed graph has an immorality it has no S-equivalent in the undirected graph space (see figure 1.8).

• Contrarily to undirected graphs, for any two directed graphs G and G ′ sharing the same vertex set, if they do not have the same set of edges, their sets of separations do not necessarily differ,

∀ (G, G ′ ) ∈ D 2 (V) , E = E ′ ⇔ S (G) = S (G ′ ) .
These two directed graphs are S-equivalent if, and only if, they have the same undirected version and the same set of v-shapes, 

∀ (G, G ′ ) ∈ D 2 (V) , S (G) = S (G ′ ) ⇔    E u = E ′ u , I G = I G ′ .

Mixed graphs

Topological notions Mixed graphs can be viewed as a generalization of both undirected graphs and directed graphs. Therefore, notions derived from both undirected graphs and directed graphs need to be extended. In order to describe vertices and vertex subset relations, notions defined only for directed graphs such as:

• parents,

• children,

• ancestors,

• descendants,

• non-descendants, and the notion of neighbors or connected vertices defined only for undirected graphs remain the same.

Since mixed graphs combine lineage and neighborhood relations, it is convenient to work with the notion of boundary, noted bd (•), defined as the union of parents and neighbors of the vertex,

∀v ∈ V, bd (v) = pa (v) ∪ ne (v) .
Linke for previous notations, the boundary of a subset A of V, is the union of the boundaries of each vertex of A minus all elements belonging to A, ∀A ⊆ V, bd (A) = {∪ v∈A bd (v)} \ A, and its closure is noted Bd (•),

Bd (A) = bd (A) ∪ A.
A chain component is a set A of V such that G A is a connected undirected graph and for all vertices v ∈ V \ A, G A∪{i} is no longer a connected undirected graph. H G denotes the set containing all chain components in a mixed graph.

A u-shape is a set of 4 distinct vertices u, v, w and z of V such that (see G 9 in figure 1.9):

• w and z are in the same chain component,

• w is a child of u, • z is a child of v,
• u is not in the boundary of v, and conversely.

An immorality in a mixed graph is a u-shape or a v-shape. I G denotes the set of immoralities in G defined as follows

I G = (u, v, w) ∈ V 3 [u ∈ pa (v)] ∧ [v ∈ pa (u)] ∧ [w ∈ ch (u)] ∧ [w ∈ ch (v)] ∪        (u, v, w, z) ∈ V 4 [u ∈ bd (v)] ∧ [v ∈ bd (u)] ∧ [w ∈ ch (u)] ∧ [z ∈ ch (v)] ∧ [w ∈ cn (z)] ∧ [z ∈ cn (w)]       
.

Remarkable graphs Like for undirected graphs and directed graphs particular edge sets define important classes of mixed graphs (see figure 1.9).

In particular, the notion of DAG can also be extended to mixed graphs considering that a mixed graph is said to be a Mixed Acyclic Graph (MAG) if it does not contain any directed l-cycles. Conversely, mixed cyclic graphs are mixed graphs which are not MAGs.

The following two transformations of a mixed graph G into an undirected graph are generally considered:

• its undirected version, noted G u = (V, E u ), is the undirected graph obtained by removing directed edge directions,

E u = E ∪ E r .
• its moral graph, noted G m = (V, E m ), is the undirected graph obtained by adding all edges corresponding to immoralities into its undirected version,

E m = E u ∪      (u, v) ∈ P (V) ∃w ∈ V, (u, v, w) ∈ I G ∨ ∃ (w, z) ∈ V 2 , (u, v, w, z) ∈ I G     
.

Figure 1.9 -Remarkable mixed graphs. Graph G 8 is a mixed cyclic graph since it contains the directed 4-cycle 0, 3, 2, 1, 0. Graph G 9 , which is a MAG, contains one u-shape inducing the immorality (2,3). Graph G m 9 , the moral graph of G 9 , is not chordal as the immorality (2,3) in G 9 induced the addition of edge (2,3) in comparison to its undirected version.

Separation property Let there be three disjoint subsets A, B and C ⊂ V. The set C m-separates sets A and B if C separates A and B in G m an(A∪B∪C) 4 ,

A G ⊥ m B | C ⇒ A G m an(A∪B∪C) ⊥ B | C.
If no possible confusion can arise, the notations A ⊥ B|C if C is not the empty set, or A ⊥ B otherwise, will be used.

Mixed graphs generalize both undirected graphs and directed graphs

∀V ⊆ N * , M (V) ⊃ U (V) ∪ D (V) ,
and, as soon as a mixed graph contains u-shapes (see figure 1.10), it has no S-equivalent in U (V) or D (V) which illustrates the advantage of considering mixed graphs (see figure 1.11). Like for the directed case, two mixed graphs G and G ′ sharing the same vertex set but not the same edge set are not necessarily different in terms of m-separations. In fact, similarly to the directed graph case, they are equivalent if, and only if, they have the same undirected version, and the same set of v-shapes and u-shapes,

∀ (G, G ′ ) ∈ M 2 (V) , S (G) = S (G ′ ) ⇔    E u = E ′ u , I G = I G ′ .

Graphical model framework

Graphical models use a graph-based representation as the basis for compactly encoding a complex distribution. In this graph representation the vertices correspond to random variables, and edges to direct probabilistic relationships between them. 

(D) Representation of a u-shape, a typical feature of mixed graphs. The largest separation class is that of mixed graphs which contain diamond shapes, v-shapes and/or u-shapes. The intersection of undirected graph space and directed graph space is corresponding to chordal undirected graph sub-space and directed graph sub-space without immoralities. As soon as an undirected graph contains a diamond shape, it cannot be represented by an S-equivalent directed graph. Conversely, as soon as a directed graph contains a v-shape, it cannot be represented by an S-equivalent undirected graph. Note that the S-equivalent classes of directed graph space (i.e. directed graphs with the same undirected version and the same set of v-shapes

) and mixed graph space (i.e. mixed graphs with the same undirected version, the same set of v-shapes and u-shapes) are not represented. Were it to be represented, the classes would be split into many S-equivalent graph classes. In particular, in U (V) ∩ D (V), each S-equivalent class is represented by a chordal undirected graph.

Random vectors and independencies

Let X be a random variable defined on the probability space (Ω, F, P ) and x an outcome of X. If the observation space of X, noted X :

• is N or a subset of N, the random variable X is said to be a discrete random variable,

• is R or a subset of R but not of N, the random variable X is said to be a continuous random variable.

For a collection (X v ) v∈V of random variables defined on (Ω v , F v , P v ) v∈V , X = (X v ) v∈V denotes the random vector defined on the probability space (Ω, F, P ), and x is an outcome of X and X its observation space. For a subset A of V, X A (resp. x A or X A ) denotes the random vector (X v ) v∈A (resp. an outcome or the observation space of the random vector (X v ) v∈A ). In particular, ∆ and Γ denote the partition of V such that:

• X ∆ ⊆ N |∆| , the random vector X ∆ is said to be a discrete random vector,

• X Γ ⊆ R |Γ| , the random vector X Γ is said to be a continuous random vector.

If the two subsets are not empty, the random vector X is said to be a heterogeneous random vector. Note that in the following, X is considered to be a discrete random vector for convenience, but the extension to continuous or mixed random vectors is straightforward. For three distinct subsets A, B and C of V, X A is independent of X B given X C under the joint distribution P if, and only if

∀x ∈ X , P (X A∪B = x A∪B | X C = x C ) = P (X A = x A | X C = x C ) • P (X B = x B | X C = x C ) , whenever P (X C = x C ) > 0,
this conditional independence relationship noted

X A P ⊥ ⊥ X B | X C ,
will be simplified, if no possible confusion can arise, by the notations

A ⊥ ⊥ B|C if C is not the empty set, or A ⊥ ⊥ B otherwise. If C = ∅, this is a marginal independence.
When considering a fourth disjoint set D of V, it can be seen that the same important properties hold for conditional independencies and graph separations. This intuitively introduces the reason for developing a formalism in order to encodes conditional independencies in graphs:

• The symmetry property,

A P ⊥ ⊥ B | C ⇔ B P ⊥ ⊥ A | C,
• The decomposition property,

A P ⊥ ⊥ B ∪ C | D ⇒ A P ⊥ ⊥ B | D,
• The weak union property,

A P ⊥ ⊥ B ∪ C | D ⇒ A P ⊥ ⊥ B | D ∪ C,
• The contraction property,

A P ⊥ ⊥ B D ∪ C ∧ A P ⊥ ⊥ C D ⇒ A P ⊥ ⊥ B ∪ C | D,

Note that the intersection property,

A G ⊥ B C ∧ A G ⊥ C B ⇒ A G ⊥ B ∪ C,
which is always true in graphs, holds only under certain conditions for conditional independencies

A P ⊥ ⊥ B C ∧ A P ⊥ ⊥ C B ⇒ A P ⊥ ⊥ B ∪ C,
The intersection property holds for some interesting distributions called positive distributions. But, for instance, when considering that some deterministic relationships are present among random variables, it no longer holds. Let us consider the example presented in Lauritzen (1996) such that:

• V = {0, 1, 2}, • X 0 = X 1 = X 2 , • P (X 0 = 0) = P (X 0 = 1) = 1 2 . If we have 0 ⊥ ⊥ 2 | 1 and 0 ⊥ ⊥ 1 | 2, we do not have 0 ⊥ ⊥ 1, 2 since P (X = {0, 0, 0}) = 1 2 = 1 2 • 1 2 = P X {1,2} = {0, 0} • P (X 0 = 0) .
In order to discuss the similarities between separations in a graph and conditional independencies in a distribution, let I (P ) be the set that contains all the independencies that hold in a distribution,

I (P ) = (A, B, C) ∈ V 3 A P ⊥ ⊥ B | C .

From graphs to distributions 5

The formalism of graphical models is based on the definition of the Markov and factorization properties ensure that in a given graph G and a distribution P ,

I (P ) ⊆ S (G) .
The advantage of such a formalism is:

1. to enable the derivation of a rich set of independence assertions that hold in distributions by simply examining graphs, 2. or to define relevant factorization of the distribution for graph-structured random vectors.

The undirected case

A distribution P is said to obey, relatively to the undirected graph G:

• The Pairwise Markov property (PM) if, for every pair of distinct vertices (u, v) that do not belong to a set of edges, the random variables X u and X v are conditionally independent given the random vector X V\{u,v} ,

∀ (u, v) ∈ (s, t) ∈ V 2 [s = t] ∧ [(s, t) ∈ E] , u P ⊥ ⊥ v | V \ {u, v} . (PM)
• The Local Markov property (LM) if, for every vertex v the random variable X v is conditionally independent of the random vector X V\Ne(v) given the random vector

X ne(v) . ∀v ∈ V, v P ⊥ ⊥ V \ Ne (v) | ne (v) . (LM)
• The Global Markov property (GM) if, for every triplet of the disjoint subsets A, B and C of vertices, the random vectors X A and X B are conditionally independent given the random vector

X C if C separates them, ∀A ⊆ V, ∀B ⊆ V \ A, ∀C ⊆ V \ {A ∪ B} , A G ⊥ B | C ⇒ A P ⊥ ⊥ B | C. (GM) • The Factorization property (F) if, non-negative functions φ C (x C ), called clique potentials, exists and such that ∀x ∈ X (Ω) , P (X = x) = 1 Z C∈KG φ C (x C ) , (F)
where the partition function Z is a renormalization quantity defined by,

Z = x∈X C∈KG φ C (x C ) .
For distributions in which the intersection property holds, (F) ⇔ (??) ⇔ (LM) ⇔ (PM), but in the general case,

(F) ⇒ (GM) ⇒ (LM) ⇒ (PM).
Let us consider the example introduced by [START_REF] Moussouris | Gibbs and Markov random systems with constraints[END_REF] and discussed in Lauritzen (1996) in order to illustrate that (GM) may not imply (F). Let V = {0, 1, 2, 3},

Ω = × v∈V {0, 1} ,
and

∀x ∈ (0, 0, 0, 0) , (1, 0, 0, 0) , (1, 1, 0, 0) , (1, 1, 1, 0) , (0, 0, 0, 1) , (0, 0, 1, 1) , (0, 1, 1, 1) , (1, 1, 1, 1) , P (X = x) = 1 8 . (1.1)
The conditional distribution of X 0 given that X {1,3} = (0, 1) is degenerate,

P X 0 = 0 X {1,3} = (0, 1) = 1,
and therefore trivially independent of X 2 . All other combinations of conditions on X {1,3} in a similar way yield degenerate distributions for one of the remaining variables and also for variables X {0,2} . Hence,

[0 ⊥ ⊥ 2 | 1, 3] ∧ [1 ⊥ ⊥ 3 | 0, 2] ,
which is compatible with graph G 12 (see figure 1.12) in term of (GM) but not in terms of (F) as the probability distribution does not factorize according to graph G 12 . Let us consider a reductio ad absurdum. If P factorizes according to G 12 :

P (X = (0, 0, 0, 0)) = φ {0,1} (0, 0) φ {1,2} (0, 0) φ {2,3} (0, 0) φ {3,0} (0, 0) = 1 8 ,
and

P (X = (0, 0, 1, 0)) = φ {0,1} (0, 0) φ {1,2} (0, 1) φ {2,3} (1, 0) φ {3,0} (0, 0) = 0, thus φ {1,2} (0, 1) φ {2,3} (1, 0) = 0. Using P (X = (0, 0, 1, 1)) = φ {0,1} (0, 0) φ {1,2} (0, 1) φ {2,3} (1, 1) φ {3,0} (1, 0) = 1 8 , leads to φ {2,3} (1, 0) = 0, which contradicts P (X = (1, 1, 1, 0)) = φ {0,1} (1, 1) φ {1,2} (1, 1) φ {2,3} (1, 0) φ {3,0} (0, 1) = 1 8 = 0.
Hence P does not factorize according to G 12 .

Figure 1. 12 -Moussouris (1974) chordless four-cycle graph. Graph G 12 represents P (GM) properties defined by (1.1) but P cannot be factorized according to (F). If (F) ⇒ (GM) the reciprocal is not always true.

The directed acyclic case

A distribution P is said to obey with respect to a DAG G:

• The Directed Pairwise Markov property (DPM) if, for every pair of distinct vertices (u, v) that are not adjacent such that v is a non-descendant of u, the random variables X u and X v are conditionally independent given random vector

X nd(u)\{v} , ∀u ∈ V, ∀v ∈ nd (u) , u P ⊥ ⊥ v | nd (u) \ {v} . (DPM)
• The Directed Local Markov property (DLM) if, for every vertex v, the random variable X v is independent of the random vector X nd(v)\pa(v) given the random vector

X pa(v) , ∀v ∈ V, v P ⊥ ⊥ nd (v) \ pa (v) | pa (v) . (DLM)
• The Directed Global Markov property (DGM) if, for every triplet of disjoint subsets A, B and C of the vertices, the random vectors X A and X B are conditionally independent given the random vector

X C if C d-separates them, ∀A ⊆ V, ∀B ⊆ V \ A, ∀C ⊆ V \ {A ∪ B} , A G ⊥ d B | C ⇒ A P ⊥ ⊥ B | C. (DGM)
• The Directed Factorization property (DF) if, the distribution can be factorized as follows,

∀x ∈ X (Ω) , P [X = x] = v∈V P X v = X v X pa(v) = x pa(v) . (DF)
In the directed acyclic case, for any distribution P almost all these properties are equivalent, (DF) ⇔ (DGM) ⇔ (DLM) ⇐ (DPM), and for distributions in which the intersection property holds, they are all equivalent, (DF) ⇔ (DGM) ⇔ (DLM) ⇔ (DPM).

The mixed acyclic case

A distribution P is said to obey with respect to a MAG G:

• The Pairwise Chain Markov property (PCM) if, for every pair of distinct vertices (u, v) that are not adjacent such that v is a non-descendant of u, the random variables X u and X v are conditionally independent given the random vector

X nd(u)\{v} , ∀u ∈ V, ∀v ∈ nd (u) , u P ⊥ ⊥ v | nd (u) \ {v} . (PCM)
• The Local Chain Markov property (LCM) if, for every vertex v, the random variable X v is independent of the random vector X nd(v)\bd(v) given the random vector

X bd(v) , ∀v ∈ V, v P ⊥ ⊥ nd (v) \ bd (v) | bd (v) . (LCM)
• The Global Chain Markov property (GCM) if, for every triplet of disjoint subsets A, B and C of the vertices, the random vectors X A and X B are conditionally independent given the random vector

X C if C m-separates them, ∀A ⊆ V, ∀B ⊆ V \ A, ∀C ⊆ V \ {A ∪ B} , A G ⊥ m B | C ⇒ A P ⊥ ⊥ B | C. (GCM)
• The Factorization Chain property (FC) if, the distribution can be factorized as follows,

P (X = x) = C∈HG P X C = x C X pa(C) = X pa(C) (FC)
where, for each chain component

C ∈ H G , P X C = x C X pa(C) = x pa(C) obeys to (F) in G m A∪pa(A)
, the moral subgraph induced by A ∪ pa (A).

In the mixed acyclic case, by analogy with the undirected case, for any distribution P

(FC) ⇒ (GCM) ⇒ (LCM) ⇒ (PCM)
in the general case, but if the intersection property holds in P , (FC) ⇔ (GCM) ⇔ (LCM) ⇔ (PCM).

Note

In fact, four classes of Markov properties for chain graphs have been discussed in the literature (see Drton, 2009, and references therein). These four types arise by combining two different interpretations of directed edges with two different interpretations of undirected edges. Two of them are widely used to represent structured random vectors:

• The Lauritzen, Wermuth and Frydenberg property (LWF) or block concentration Markov property for mixed graphs (Lauritzen and Wermuth, 1989;Frydenberg, 1990).

• The Alternate Markov Property (AMP) or concentration regression Markov property for mixed graphs (Andersson et al., 1996).

We focus here on LWF mixed graphs as they are known to be more easily interpretable in the Gaussian case (Cox and Wermuth, 1993) and yield smooth models even for discrete multivariate distributions (Drton, 2009).

From distributions to graphs 6

Given a graph G and a distribution P , we described above under which conditions G is an Independence map (I-map) for P , that is

I (P ) ⊆ S (G) ,
or how to define relevant factorizations of P given the graph G. Although the latter property is useful for modeling purposes, the derivation of independence assertions holding in distributions by simply examining graphs is of particular interest for interpretation purposes. To this end, the construction of G from a given P needs to be minimal in some sense: the complete graph is always an I-map but does not enable the derivation of independence assertions holding in P .

A graph G is a minimal I-map for P if it is an I-map and if the removal of any edge in G renders it not an I-map. G is a perfect I-map for P if the set of separations holding in G is equal to the set of independencies holding in P ,

I (P ) = S (G) .

Gaussian graphical models 7

In the remainder of this chapter we focus on Gaussian graphical models as illustrations of the graphical model framework.

Parametrizations

Gaussian distributions A continuous random variable X follows a univariate Gaussian distribution with mean µ and variance σ 2 , denoted by X ∼ N (µ, σ 2 ), if it has the following density function

f (x) = 1 √ 2πσ exp - (x -µ) 2 2σ 2 .
Similarly, a continuous random vector X = (X v ) v∈V follows a multivariate Gaussian distribution with vector mean µ and variance-covariance matrix Σ, denoted by X ∼ N (µ, Σ), if it has the following density function

f (x) = 1 (2π) |V| det (Σ) exp - 1 2 (x -µ) T Σ -1 (x -µ) ,
where det (Σ) denotes the determinant of the variance-covariance matrix, and • T the transpose of a vector or a matrix. For multivariate Gaussian distributions, independencies are easy to determine directly from the parameters of the distributions:

• marginal independencies can be determined in the variance-covariance matrix

∀ (u, v) ∈ P (V) , Σ u,v = 0 ⇔ X u ⊥ ⊥ X v , • conditional independencies can determined in the concentration matrix Θ = Σ -1 ∀ (u, v) ∈ P (V) , Θ u,v = 0 ⇔ X u ⊥ ⊥ X v | X V\{u,v} . Let Π = {A, B} be a partition of V such that µ = µ A µ B ,
and

Σ = Σ A,A Σ A,B Σ B,A Σ B,B . The distribution of X A | X B = x B is a multivariate Gaussian distribution denoted N (µ ′ , Σ ′ ) with µ ′ = µ A + Σ A,B Σ -1 B,B (x B -µ B ) , and Σ ′ = Σ A,A -Σ A,B Σ -1 B,B Σ B,A .
Variables indexed by A are called response variables and these indexed by B are called explanatory variables.

Using block matrix decomposition note that

Θ B,A = -Σ -1 B,B Σ B,A Σ A,A -Σ A,B Σ -1 B,B Σ B,A -1 = -Σ -1 B,B Σ B,A Σ ′-1 = -Σ -1 B,B Σ B,A Θ ′ ,
Graphs and graphical models frameworks

with Θ ′ = Σ ′-1 . Therefore Θ A,B = Θ T B,A = -Σ -1 B,B Σ B,A Σ ′-1 T = -Θ ′ Σ -1 B,B Σ B,A T = -Θ ′ Σ A,B Σ -1 B,B .
Hence, conditional independence relationships in conditional Gaussian distributions can be derived from null coefficients (Wermuth and Lauritzen, 1990):

• in the matrix Θ ′ Σ A,B Σ -1 B,B
considering a response and an explanatory variable given all other response and explanatory variables.

• in the matrix Θ ′ considering two response variables given all other response and explanatory variables.

The matrix Σ A,B Σ -1 B,B is called the regression matrix and its elements are called regression coefficients.

From Gaussian distributions to graphs Since multivariate Gaussian densities are positive distributions, in:

• undirected graphical models (F) ⇔ (GM) ⇔ (LM) ⇔ (PM), • directed graphical models (DF) ⇔ (DGM) ⇔ (DLM) ⇔ (DPM), • mixed graphical models (FC) ⇔ (GCM) ⇔ (LCM) ⇔ (PCM).
As a consequence, with the conditional independence properties stated above, the matrix G, where the general element G u,v is obtained by binarization of the concentration matrix,

∀ (u, v) ∈ P (V) ,    G u,v = 1 if Θ u,v = 0, G u,v = 0 otherwise,
is an adjacency matrix of an undirected graph G corresponding to a minimal I-map of the distribution. Gaussian directed graphical model are defined such that each variable associated to a vertex:

• without parents follows an univariate marginal Gaussian distribution, • with parents follows an univariate conditional Gaussian distribution.

In fact, Wermuth (1980) demonstrated that any multivariate Gaussian distribution can also be represented by a Gaussian directed graphical model with any ordering σ ∈ S (V) with ∀v ∈ V * , pa (σ(v)) ⊆ X σ(0) , . . . , X σ(v-1) .

If there are non-zero regression coefficients, the resulting graphs (i.e. for each ordering) are also I-maps. Similar results hold for Gaussian mixed graphs with partial ordering of vertices (Wermuth, 1992). Gaussian mixed graphical models are defined in a similar manner to Gaussian directed graphical models. The only difference is that if a chain component has cardinality of more than 1, considered variables follow a multivariate marginal Gaussian distribution if they do not have parents or otherwise a multivariate conditional Gaussian distribution. While the three representations are equivalent in their expressive power, there is no one-to-one correspondence between their parametrizations (see figure 1.13).

Inference

Parameter inference Given a directed graph, the Maximum Likelihood (ML) parameter inference of Gaussian multivariate distributions reduces to ML parameter inference of univariate marginal and conditional Gaussian distributions, which is standard in statistics.

In the case of an undirected graph, the problem of ML parameter inference reduces to a convex optimization problem with the concentration matrix as variable. This problem was first studied by Dempster (1972) under the name of covariance selection. For an undirected graph, two cases are possible:

1. The graph is chordal. In this case the solution of the problem can be expressed in closed form (see Wermuth (1980) or Lauritzen (1996) for details).

2. The graph is not chordal. There is no closed form in this case and the ML parameter inference must be computed iteratively (see Dempster (1972) and Speed and Kiiveri (1986) for common algorithms).

These two cases have also been studied in detail by Dahl et al. (2005) who designed clear and efficient algorithms for both cases, especially for non-chordal graphs via chordal embedding.

The case of a mixed graph G can easily be tackled using undirected graph ML inferences in each moral subgraph G m A∪pa(A) induced by chain components A ∈ H G as a first step then a conditioning step with respect to pa (A), or directly using block recursive equations (Wermuth, 1992).

Structure inference Above we focused on parameter inference given a graph. The design of such graphs require expert knowledge but in many applications there are simply no experts with sufficient knowledge to design these graphs. In such cases, given a sample to model, the joint inference of structure and parameters can be used to infer these graphs which can be a posteriori interpreted by experts.

If the sampling distribution is assumed to be faithful to a Gaussian-undirected graphical model, the inference of structure involves finding the pattern of zeros in the concentration matrix. Conventionally, a greedy forward-backward search algorithm is used to determine the zero pattern (Lauritzen, 1996). More recently, another approach to estimating the undirected graphical model has been introduced and consists in finding the set of neighbors of each vertex in the graph by regressing that variable against the remaining variables. Meinshausen and Buhlmann (2006) studied this case using the Lasso of Tibshirani (1996) and showed that the resulting estimator is consistent, even for high-dimensional graphs. On this basis, exact or faster Lasso-based algorithms have been developed to infer the undirected graph (see Banerjee et al. (2008) or the graphical lasso of Friedman et al. (2008) for example) in the Gaussian case. Some extensions to discrete multivariate counts data or mixed data have also been proposed (Yang et al., 2012).

If the sampling distribution is assumed to be faithful to a Gaussian-directed graphical model, the inference of structure involve finding a directed acyclic graph. Two main approaches can be used for structure inference in directed acyclic graphs (see Gamez et al., 2011, and references therein):

• Greedy search algorithms. Given a consistent scoring function -like the Bayesian Information Criterion (BIC) for instance, see Yang and Chang (2002) for a review of different scores -a search heuristic among the DAG space is used to improve incrementally the considered graphical model. Greedy algorithms have been widely studied in the literature (Buntine, 1991(Buntine, , 1996;;Heckerman et al., 1995;Chickering, 2002;De Campos and Puerta, 2001;Friedman and Goldszmidt, 1997;Friedman et al., 1999). One of the reason for this may be that they do not depend, in most cases (see Chickering, 2002, for a counter-example), on the distribution parametrization while still producing interpretable models thanks to their graphical representation. Therefore, the directed acyclic graphical model representation has been used in many scientific fields where complex multivariate distributions are found.

• The use of constraint-based methods involving test of hypothesis (Spirtes et al., 2000;Neapolitan et al., 2004).

The case of a sampling distribution assumed to be faithful to a Gaussian mixed graphical model has been considered less often in the literature. Proposed algorithms (Edwards, 2000;Ma et al., 2008;Drton and Perlman, 2008) mostly focus on test of hypothesis and can require a priori knowledge of the chain components. Moreover, they are closely related to the Gaussian distribution. Another approach could be to use a greedy search algorithm extension to search among the MAG space and thereby generalize graph inference algorithms for mixed acyclic graphical models to discrete, categorical and continuous variables.

Introduction to tree-indexed data

Definitions

Tree-indexed data Data of interest are tree-indexed data x = (x t ) t∈T where T ⊂ N is the set of vertices of a directed tree graph T = (T , E), E ⊂ T × T \ R is the set of directed edges representing lineage relationships between vertices, and R is the set of roots.

Note

Sensu stricto T is a directed tree graph but sensu lato, T is a forest of directed tree graphs.

Let A be a subset of T and xA be the subset of x obtained by considering only the vertices in A, ∀A ⊆ T , xA = (x t ) t∈A .

Topological notions Since T is a tree -or a forest -topological notions of directed graphs directly apply to tree-indexed data. For example, child (ch (.)), descendant (de (.)), ancestor (an (.)) sets of a vertex -or set of vertices -and their closures (capitalized notations) can be used to the characterize relations between vertices in the data. In particular, for any vertex t ∈ T , xDe(t) is the subset indexed by the subtree τ t = sub [τ, De (t)] rooted at vertex t.

It is noteworthy that in trees, the parents set (pa (.)) of a vertex has cardinal 0 or 1. Therefore the notation of parenthood defined for directed graphs is slightly altered when working with trees. The parent of a vertex is only defined for non-root vertices and is another vertex

∀ (v, u) ∈ T × T \ R, (v, u) ∈ E ⇔ pa (u) = v.
Vertices sharing the same parent are called sibling vertices.

Roots, noted R, and leaves, noted L, play a key role in trees. The length of the directed path from a root to a vertex t is called tree depth of a vertex and is denoted

d t , ∀t ∈ T , d t =    0 if t ∈ R, d pa(t) + 1 otherwise.
.

Similarly, the length of longest directed path from a vertex to its leaves is called tree height of a vertex and is denoted

h t , ∀t ∈ T , h t =      0 if t ∈ L, max s∈ch(t) {h s } + 1 otherwise.
.

Quotient tree graphs

Quotient tree graphs are quotient graphs of tree graphs, noted τ Π , that are tree graphs. As presented in Godin and Caraglio (1998), a sufficient condition to obtain quotient tree graphs (or similarly quotient forest graphs obtained from C) is obtained from a partition where each subgraph induced by quotients is a tree graph. This a sufficient condition but not necessary as illustrated on (B) where the quotient tree graph has one red quotient which induces a forest tree graph (see Godin and Caraglio, 1998, for more details).

forest graphs) is that the subgraphs induced by quotients in Π must be sensu stricto tree graphs (see figure 2.1). These quotient tree graphs are particularly interesting for tree-indexed data. In fact, this quotienting operation can be seen as the production of structure at coarser scales for data inquiries at larger scales.

Drawing tree-indexed data 1

The aim of drawing tree-indexed data is to produce informative geometric representations automatically for visualization purposes. Since tree-indexed data can be viewed as directed graphs, they could be draw using conventions and algorithms previously presented (see sub-section 1.1.2 page 10). But it is common practice to modify the directed graph drawing standards for trees to take account of their topological particularities.

Aesthetics of tree drawings

Trees and forests are by definition sparse graphssame number of edges as vertices minus the number of roots -therefore node and link diagrams are preferred to adjacency plots. Usually, node and link diagrams for drawing trees are compared by considering qualitative and quantitative aesthetic criteria: area, defined as the surface area of the enclosing rectangle of the vertex drawing.

ratio, defined as the ratio of length of shortest side to length of longest side of the enclosing rectangle of the vertex drawing.

subtree separation property. A drawing of T satisfies the subtree separation property defined by Chan et al. (1997) if, for any two distinct vertices u and v of T , the enclosing rectangles of the drawing of T u and T v do not overlap one with the other.

Moreover, considering the simplicity of tree topology compared to general directed graphs, two non-exclusive types of drawing are of considerable interest:

Directional drawing. Considering a directed axis in the coordinate system used to draw the trees, no child is placed before its parent. With such a convention, and for clarity, a switch may be made from arrows to lines in order to represent a directed edge since there is no confusion about edge direction.

Planar drawing.

A planar drawing is a drawing in which edges do not intersect. Planar drawings are normally easier to understand than non-planar drawings (i.e. with edge-crossings). Since any tree admits a planar drawing, it is desirable to obtain planar drawings for trees.

Both Eades (1991) and Fruchterman and Reingold (1991) reported that difficulties are encountered when drawing trees without edge-crossing by force-directed algorithms. Even when using the magnetic extension of Sugiyama and Misue (1995), if the drawing tends to be directional, there is no guarantee that the result will be be planar. Hereinafter we present only two classes of tree layout algorithms among many others (see Tamassia, 2007, chapter 5 and reference therein). We focus on these two classes since they are relatively easy to understand and implement, while producing high quality layouts.

Level-based layouts

The level-based approach in tree drawing is characterized by the fact that vertices at the same depth are aligned on the same straight line (i.e. the level) and for two given depths these straight lines are parallel (Bloesch, 1993;Reingold and Tilford, 1981;Buchheim et al., 2002;Walker, 1990). Algorithms based on this approach produce intuitive drawings that clearly display symmetries and comply with both planarity and directionality conventions (see algorithm 2 and its results in figure 2.2).

Algorithm 2 Computing vertex positions in trees for a level drawing

Require: σ a reversed Depth-First Search (DFS) ordering

1 function LevelLayout(T ) 2 r ← (0, d t ) t∈T ⊲ Use the depth of vertex as second coordinate 3 l ← 0 ⊲ Initialize leaf index 4 for v ∈ T do ⊲ Compute vertex first coordinates 5 if σ(v) ∈ L then 6 r σ(v),0 ← l ⊲ Assign leaf index as first coordinate 7 l ← l + 1 ⊲ Increment the leaf index 8 else 9 r σ(v),0 ← u∈ch(v) r u,0 /|ch (v) | ⊲ Assign non-leaf first coordinate return r
Radial layouts While drawing using the level-based layouts in most cases respects the usual tree drawing conventions and the subtree separation property (this is not the case for the algorithms proposed by Buchheim et al. (2002) and Walker (1990)), quantitative aesthetics criteria are not satisfactory. For instance, let T be a perfect binary tree of depth d. In a perfect binary tree every non-leaf vertex has two children. There are 2 d leaves. The drawing of T produced using algorithm 2 has:

• an area of d • 2 d units,
• a ratio of 2 -d .

As presented in Tamassia (2007, Chapter 5), by considering a geometric transformation from Cartesian to polar coordinates, a level-based layout yields a radial layout (see algorithm 3 and its results in figure 2.2).

Algorithm 3 Computing vertex positions in trees for a radial drawing

1 function RadialLayout(T ) 2 r ← LevelLayout(T ) ⊲ Compute vertex r Cartesian coordinates 3 θ ← max t∈T {r t,0 } -min t∈T {r t,0 } + 1 4 for t ∈ T do 5 r t,0 ← 2π • r t,0 /θ ⊲ Transform vertex Cartesian into polar coordinates return r
Compared to the level drawing of T , the radial drawing produced by algorithm 3 has:

• an area of d 2 units,

• a ratio of 1.

Such values are far more satisfactory for these criteria. Given a level-based layout respecting planarity and directionality conventions such as those produced by algorithm 2, the geometric transformation from Cartesian to polar coordinates preserves these conventions. Moreover, although algorithm 3 drawings do not respect sensu stricto the 

(B)

Radial drawing produced by algorithm 3. Each edge is represented by a straight line given that directions are evident for drawings are directional. Each vertex is represented by a black filled dot. Both drawings are directional since no child vertex is before its parent considering the second unit vector. Roots of trees are situated at the bottom using algorithm 2 whereas they are situated in the innermost concentric circle using algorithm 3. In this thesis tree drawings are produced using algorithms 2 or 3 for node positioning and a customized interface to the matplotlib package for the rest (Barrett et al., 2005;Hunter, 2007).

subtree separation property, if the enclosing rectangle is changed to an enclosing triangle, the subtree separation property is respected.

Tree-indexed data and plants

Tree-indexed data are commonly used in signal processing (Crouse et al., 1998;Dasgupta et al., 2001) and in 2D and 3D images (Choi and Baraniuk, 2001) as multi-scale representations of path or grid-indexed data. This thesis does not include a broad spectrum of tree-indexed data but focuses on those which can be collected in studies on plant development. In particular, we present the usefulness of tree-indexed data representation on two scales:

A microscopic scale where tree-indexed data represent cell lineages in tissues throughout their development (Olariu et al., 2009),

A macroscopic scale where tree-indexed data represent whole plant architecture (Durand et al., 2005).

Tree-indexed data on a cellular scale

The study of morphogenesis A major challenge in developmental biology is to understand how multi-cellular tissues can give rise to complex shapes in animals or plants.

It is therefore crucial to be able to quantify and explain the cellular and tissular patterns that arise during morphogenesis2 . Although several studies have provided profound insight into the molecular regulatory networks that play a role during development, the effects of such networks on shape transformations are often only described qualitatively. Describing size and shape changes as a geometrical output of gene activity requires the quantification of growth patterns at a cellular resolution. Obtaining accurate geometric information about cell position and shape is key to developing quantitative models of morphogenesis. The identification of groups of cells is also essential, not only based on their differentiation state, but also on the outcome of the mechanical, genetic and hormonal events that drive morphogenesis.

Meristems and tree representation of tissues 3

In plants, meristems drive morphogenesis. A meristem is a set of embryonic cells that organize the construction of the plant. It creates new tissues by successive divisions of its stem cells. This division process is coupled with:

• a phenomenon that maintains certain cells obtained by division in a totipotency4 state,

• a phenomenon that enrolls certain cells obtained by division into a differentiation genetic program.

Divisions occur in such a way that cells entering the differentiating process will become part of new tissues and organs while the meristem does not disappear since the totipotent cells of which it is composed are constantly regenerating. Given the tissues and organs produced, and location within the plant, three main types of meristems can be considered:

The Shoot Apical Meristem (SAM) located at the apex of the stem (see figure 2.3).

It is responsible for genesis of the aerial part of the plant, i.e. leaves, stems and inflorescences5 . Inflorescence set up is the result of the transformation of a Shoot Apical Meristem (SAM) into a floral meristem.

The Root Apical Meristem (RAM) located at the tip of the root and responsible for genesis of the below ground part of the plant, i.e. the roots.

The secondary meristems which are responsible -when located inside stems -for the thickening of stems or roots when located inside roots. The idea of representing meristem development in a tree-structure, is to follow meristem cells over time represented by vertices, and use edges to represent lineage relationships (see figure 2.3).

Tree-indexed data collection by 3D + t meristem imaging Fernandez et al. (2010) presented a method to generate 3D digitized tissues at cell resolution with automatic tracking of cell lineage during growth. To create a digitized tissue that can be used to quantitatively analyze growth in four dimensions, they developed an experimental pipeline comprising two key steps:

Multi-angle Acquisition, 3 dimensional Reconstruction and Segmentation (MARS).

The multi-angle acquisition produces stacks of 2D images that are transformed into 3D images. Each voxel in the images stores the intensity with the signal associated to cell walls or other sources, for instance genetic markers. At the end of the MARS step, the segmentation associates each voxel with a given cell in the meristem, or with background (see figure 2.4). The corresponding segmented images are presented. Cells are identified and their color is allocated according to their root identifier in lineage trees (see Legrand, 2014, for more details). Since cells in the same lineage tree share the same color, it can be seen that even though there is no explicit spatial information in trees, since cells cannot migrate in plants, spatial information is implicit.

Automated Lineage Tracking (ALT). Once the cells have been identified in the

MARS step, the goal of the ALT step is to perform cell tracking throughout the experiment. At the end of the ALT step lineage trees of cells are obtained.

Available data

In this thesis we focus on joint work concerning flower morphogenesis in Arabidopsis thaliana conducted with J. Legrand, another Ph.D. student in the team (Legrand, 2014). We were interested in SAMs of Arabidopsis thaliana transformed into floral meristems. In contrast to the original SAM, a floral meristem follows a determinate growth process6 . This transformation is controlled by the expression of particular genes called identity genes, specifying floral organs and causing determinate growth. This work focused on the L1 cell layer7 (see figure 2.4) and the lineage tree was produced using the Fernandez et al. (2010) MARS-ALT method (see figure 2.3). Under the assumption that the cell differentiation process in floral meristems can be assimilated to a succession of finite unobservable cell identities, we aimed tot recover 55 Tree-indexed data and MT models these identities on the basis of genetic and geometric cell characteristics (Legrand, 2014) such as:

• volume,

• surface areas (internal L1/L2 and external L1),

• inertia values (on three axes),

• principal and secondary curvatures,

• AHP6 8 concentration.
Moreover, in order to understand the early mechanisms involved during flower morphogenesis, we aimed to identify and characterize cell identity motifs.

Tree-indexed data on the whole plant scale 9

Plant architecture analysis The importance of topological structure in understanding and analyzing the development of plants was underlined by Hallé et al. (1978) and Gatsuk et al. (1980) who were the first to analyze plant architecture. Architectural analysis was at first essentially developed as a qualitative method for describing plants ( Barthélémy et al., 1989). Subsequently, a major research effort was devoted to validating and refining architectural concepts and to studying their application in agronomic contexts. This led researchers to study progressively how to quantify plant architecture and to develop corresponding concepts and tools (see Godin and Caraglio, 1998, and references therein). The quantitative approach rapidly ran into the problem of obtaining computational representations of plants that are consistent with field observations. This problem raises the question of measuring and formally representing plant topological structures.

SAM activity, plant modularity and tree representation of plants

The notion of plant topological structure is based on the idea of decomposing a plant into elementary constituents and describing their connections. To obtain natural decompositions, it is possible to take advantage of the fact that the outcome of the plant growth process is modular: a stem is a succession of metamers constituted by an internode, the upper node, leaves and axillary buds attached to the node (see figure 2.5)

The topological structure stemming from a modular organism such as plants consists of a description of the connections between its elementary constituents. Considering only one SAM activity leads to consider stems that can be viewed as sequences: a metamer is connected to an anterior metamer -called the predecessor metamer -and possibly to a posterior metamer -called the successor metamer. But as a SAM produces buds containing other SAMs, as soon as an axillary meristem of a stem develops into a lateral axis, a metamer may have more than one child, counting the successor and the lateral(s) metamer(s) but has only one predecessor. The whole plant can thus be viewed as a treelike structure (see figure 2.6). (Barthélémy and Caraglio, 2007).

Each leafy axis (B) ends in an apical meristem frequently protected by an apical bud (A). Each stem comprises a succession of metamers (in gray on (B) constituted by an internode, the upper node, leaves and axillary buds attached to the node).

Tree-indexed data collection by retrospective measurements Plant growth is often a cyclic phenomenon: metamer set-up may be interrupted by resting phases corresponding for instance to winter in temperate species. It is thus interesting when collecting data on plant plant topological structure to consider meristematic activity at different scales depending in the growth strategy of the plant. Indeed, if the metamer is the basic unit of plant architecture, according to the plant growth cycles the treeindexation of data can be considered at different scales (see figure 2.7):

On the Growth Unit (GU) scale. The GU is composed of the metamers established in a ininterrupted phase of growth.

On the annual shoot scale. The annual shoot corresponds to the GUs established over a year.

On the axis scale. The axis corresponds to the succession of annual shoots or GUs produced by the same meristem.

When studying the architecture of a plant, appropriate selection of the botanical entity -the elementary constituent on the considered scale -is therefore primordial in order to describe the plant's growth strategy (see figure 2.6):

• The common walnut (Sabatier et al., 1998), possesses two types of annual shoots. Monocyclic annual shoots are preformed in the winter bud. The annual shoot and the GU are thus the same. Conversely, bicyclic annual shoots are made up of two GUs. Depending on the objectives of the analysis, the botanical entity chosen could be the GU or the annual shoot. • For some tropical plants, growth may be almost continuous. As a consequence, GUs are no longer relevant. A reasonable choice could therefore be to consider the metamers or the axis as the botanical entity.

Moreover, it is noteworthy that although axis scales are defined for all plants, the GU and annual shoot scales are mainly defined for temperate species. Morphological markers, which reflect past meristem activity, enable the botanist to reconstruct the life of a plant by identifying a posteriori growth periods. The tree graph T is therefore constructed with respect to the plant growth strategy (see figure 2.6). Over the same period the univariate set x or more generally the multivariate set x is collected considering characteristics -depending on the experiment -of botanical entities such as length, diameter, number (or presence) of flowers, number (or presence) of fruits.

Therein we only consider the collection of tree-indexed data. But since there are more than one pertinent scale on the same plant, data is actually collected using the Multiscale Tree Graph (MTG) data structure defined by Godin and Caraglio (1998). This MTG data structure can be seen as tree-indexed data where scales are represented by a recursive quotienting of the tree on a finer scale (see Godin and Caraglio (1998) for more details). Choice of scale is therefore made a posteriori in order to produce tree-indexed data and can depend on the growth aspect of the plant studied. (Barthélémy and Caraglio, 2007). This diagram represents main scales of organization (botanical entity) and repetition phenomena (terms in italics or in boxes) in seed plants.

Available data

In this thesis we focus on joint work on mango tree phenology conducted with Annaëlle Dambreville, Pierre-Eric Lauri and Frédéric Normand. We used mango MTGs containing 15 trees belonging to 5 cultivars collected during the thesis work by Dambreville (2012) to highlight and characterize mango tree patchiness phenomenon. Like other tropical trees, mango is characterized by marked phenological asynchronisms between and within trees, entailing patchiness (Chacko, 1986, see figure 2.8). Patchiness is characterized by clumps of either vegetative or reproductive GUs within the canopy: while some parts of the tree canopy develop vegetative GUs, other parts may remain in rest or produce inflorescences at the same time. These asynchronisms concern more or less large branching systems (Ramírez and Davenport, 2010). They entail various agronomic problems, such as the repeated use of pesticides to protect recurrent susceptible phenological stages from pests, or an excessively extended period of fruit maturity which may lead to difficulties organizing fruit harvesting.

Previous studies by Dambreville et al. (2013) showed that the fate and burst date of a daughter GU are strongly affected by those of ancestor GUs, indicating that patchiness pattern formation could be studied using spatio-temporal analysis. Our twofold objective here was to:

• Characterize tree patchiness. As stated above, patchiness corresponds to more or less large branching systems sharing similar GU fates. We therefore aimed to recover a quotient tree of tree-indexed data on the GU scale in which quotients were roughly homogeneous in terms of GU fates.

• Identify the mechanisms responsible for the set-up of tree patchiness. An inquiry of fate alternations along paths within the tree or successions of homogeneous zones in mango trees could reveal the mechanisms involved in this set-up. To this end, we therefore aimed to highlight particular fate motifs in mango trees on the GU scale. (Dambreville, 2012). This mango tree is separated into two parts. The left one in dark green is a clump of old GUs wherein fruits can be found. In contrary the right one in light green is a clump of new vegetative GUs.

Markov models for tree indexed-data

Here we assume that the indexed set, x = (x t ) t∈T , or more generally x = (x t ) t∈T , is the outcome of a random process. Note here we consider that τ is sensu stricto a tree. The only root of the tree is noted r.

In a forest, trees are considered as independent and identically distributed.

Markov models

Let us first consider the simple case where x is the realization of a X -valued stochastic process X = (X t ) t∈T such that X ⊂ N is called the state space. We are interested here in modeling the distribution of the random process

P X = x . (2.1)
When considering the case of tree-indexed data, the simplest dependent model that can be constructed is that which directly consider the tree-graph of the data as a graphical model combined with a usual homogeneity assumption. Combining both hypotheses leads to the following factorization of (2.1):

P X = x = P (X r = x r ) t∈T \{r} P X t = x t X pa(t) = x pa(t) . (2.2)
Given factorization (2.2), classical Markovian models for path-indexed data were easily adapted to tree-indexed data. These models are called Independent Markov Out-Tree (IMOT) where "independent" means that for such models siblings are assumed to be independent given their parent. Considering the mango tree application we aimed to highlight GU fate motifs assuming that at some point a switch occurred from a homogeneous tree to a heterogeneous patchy tree. In order to detect such patterns, we assumed that for a given parent fate:

• and a given growth period, only a few different state combinations could be observed for children,

• and for a generation, all children states could be observed.

Under these assumptions we sought to model dependencies among children fates in order to obtain such inclusion/exclusion patterns. Since in (2.2) children fates are assumed to be independent given their parent fate, we had to consider other models (see Durand et al., 2005, for a discussion of available models):

• Markov In-Tree (MIT) models. Instead of modeling siblings given their parent as in IMOT, the parent is modeled given its children, introducing the following factorization of (2.1),

P X = x = l∈L P (X l = x l ) t∈T \L P X t = x t X ch(t) = x ch(t) , (2.3)
where siblings are marginally independent but conditionally dependent on their parent.

• Multi-Type Branching Process (MTBP). Under a permutation invariance property (see Haccou et al., 2005;Kimmel and Axelrod, 2002, for more details), an extension of Markov Out-Tree (MOT) models that considers dependencies between children and where tree topology is partially represented thought the parametrization of vertex out-degree combinatorics. The following factorization of (2.1) is therefore introduced

P X = x ∝ P (X r = x r ) t∈T P (N t = n t | X t = x t ) , (2.4)
where N t is the discrete random vector of the number of children of vertex t in each state.

In the context of our mango tree analysis, the assumption of unordered children and the combinatorics induced by the variable and large number of child vertices in each state

Tree-indexed data and MT models

inflates the number of model parameters. We therefore focused on parametric versions of these models. Since parametric MIT models are not suitable for left-right cases (see chapter 5.4), we thus focused on MTBP models. The issue of specifying parametric MTBPs reduces to the problem of defining parametric models for discrete multivariate counts. The classical discrete multivariate distributions catalog (Johnson et al., 1997) only proposes rigid dependence and covariance patterns. The next step toward modeling mango tree patchiness was thus to derive flexible discrete multivariate distributions with complex dependency patterns. This was dealt by the introduction of mixed graphical models for multivariate discrete random vectors.

Hidden Markov Tree (HMT) models

When confronted by tree-indexed data that do not contain a few discrete outcomes, as in the mango tree case, but multidimensional heterogeneous outcomes as in the floral meristem case, MIT and MTBP models cannot be considered as they stand. A widespread extension of Markov Tree (MT) models in such cases is to consider Hidden Markov Tree (HMT) models. HMT models introduced by Crouse et al. ( 1998) are for MT models what Hidden Markov Chain (HMC) models are to Markov Chain (MC) models. As for HMC models (see Ephraim and Merhav, 2002, for more details), HMT models are no longer restricted to categorical variables but deal with any type of random variable or vector at a low cost in terms of parameters.

An HMT model can be viewed as a pair of stochastic processes (S t , X t ) t∈T where S = (S t ) t∈T is a S-valued MT process called a state process and the output or observed process X is related to S by a probabilistic mapping. Thus, for HMT models, the distribution (2.1) is rewritten as follows

P X = x = s∈S |T | P S = s, X = x = s∈S |T | P S = s t∈T f st (x t ) , ( 2.5) 
where f st (.) denotes the density function of the multivariate random vector X t given the vertex state S t = s t . Parametrization of HMT models is therefore only dependent up on that of the state process and of observation densities. The assumption that the output process at vertex t is dependent only upon the underlying state process at vertex t is relevant for the floral meristem application since these states can be interpreted as cell identities (see Olariu et al., 2009, for an example with human cells). The use of HMT models is based on two main algorithms:

• The smoothing algorithm. Quantities computed during the smoothing algorithm can be used for an efficient implementation of the E-step in the Expectation-Maximization (EM) algorithm for model parameters inference. Moreover by computing the probabilities of being in each state for each vertex, given all the observed data. These probabilities constitute a relevant diagnosis tool (see Durand et al. (2004) in a context of binary trees).

• The dynamic programming restoration algorithm. The goal of this algorithm is to reveal the most probable state tree given all observed data. In our floral meristem study, since hidden states are assumed to correspond to cell identities, this algorithm provides a direct interpretation of the data.

Because of application contexts, the literature on HMT models has focused on models defined by (2.5) where the vertex out-degree combinatorics is not represented in the parametrization, in particular:

• Crouse et al. ( 1998) and Durand et al. (2004) developed efficient EM algorithms and restoration algorithms for Independent Hidden Markov Out-Tree (HIMOT) models where state processes were modeled by IMOT.

• Bacciu et al. ( 2010) developed the EM algorithm and restoration algorithm for parametric Hidden Markov In-Tree (HMIT) models.

But we expected to encounter substantial differences between cell identity division patterns and that this phenomena could lead to better discrimination and interpretation of cell identities. The next step toward modeling cell lineage trees was therefore to derive EM and restoration algorithms where the state process was modeled by a MTBP. 

Introduction

Cell division is the key mechanism responsible for the development of plant organs (leaf, stem, flower, root). Data of interest typically consist of time series of growing organs at a cellular resolution obtained by live imaging. Considering that various geometrical and morphological characteristics of cells can be extracted from these images, we assume that organogenesis can be described using a small number of cell categories referred to as cell identities in the following. In order to study the emergence of new cell identities during organogenesis, we choose to focus on tree-indexed data corresponding to lineage forests extracted from the time series of tissues corresponding to growing organs. The only spatial structuring taken into account thus corresponds to siblings of a given parent cell. This is supported by the fact that cell topology is only affected by division, which makes the local spatial information taken into account in this approach highly relevant. Hidden Markov Out-Tree (HMOT) models were introduced by Crouse et al. (1998) as a direct generalization of Hidden Markov Chain (HMC) models to tree-indexed data. In a HMOT model, the non-observable states, assimilated to the cell identities in our application context, are arranged as a directed tree, whose topology duplicates that of the observed data (i.e. the cell characteristics). These initially proposed models have the same parametrization as first-order HMC models. This is the consequence of two main assumptions: tree topology and in particular vertex out-degree combinatorics is not represented in the model parametrization, and the children are independent given their parent. These two strong assumptions enable efficient algorithms to be designed both for estimating an HMOT model and restoring the most probable state out-tree (see Durand et al., 2004). We here describe an enlarged family of HMOT models that relax these two assumptions. Since we focus here on binary trees this family is presented in its semi-parametric version where semi-parametric means parametric modeling of the observation process and non-parametric modeling of the state process. For this family of models, application of the Expectation-Maximization (EM) algorithm is straightforward and technical difficulties are concentrated in the design of the upwarddownward smoothing algorithm used to implement the E-step in the EM algorithm, and the dynamic programming algorithm used to restore the most probable state tree. The upward-downward algorithm was initially proposed by Ronen et al. (1995) for the estimation of Markov Out-Tree (MOT) models with missing data, and was then adapted to the case of HMOT models by Crouse et al. (1998). This initially proposed algorithm is analogous to the forward-backward algorithm proposed by Baum et al. (1970) for HMC models (see Ephraim and Merhav, 2002, for an overview of Hidden Markov Model (HMM) and associated statistical methods). Like forward and backward recursions, upward and downward recursions are not numerically stable. To overcome this problem, Durand et al. (2004) proposed an upward-downward algorithm which is a true smoothing algorithm and therefore numerically stable.

The remainder of this chapter is organized as follows. HMOT for ordered and unordered tree-indexed data are defined in section 3.2. The dedicated upward-downward algorithm, which is a true smoothing algorithm, the EM algorithm, and the dynamic programming restoration algorithm, are derived in section 3.3. These models are applied and discussed for the early stages of flower development in section 3.4.

Definitions

Data of interest are univariate tree-indexed data x = (x t ) t∈T -or more generally multivariate tree-indexed data noted x = (x t ) t∈T -where T ⊂ N is the set of vertices of a directed tree-graph τ = (T , E) and E ⊂ T × T \ R the set of directed edges representing lineage relationships between vertices. R represent the set of roots and L the set of leaves of τ . Let pa (.) denote the parent, ch (.) the child set, de (.) the descendant set and nd (.) the non-descendant set of a vertex. These notations also apply to vertex set (see Lauritzen, 1996, for graph terminology). Capitalized versions indicate the closure of the corresponding notation, ∀t ∈ T , De (t) = de (t) ∪ {t} .

For any set A ⊆ T , xA denote the subset of x obtained by considering only the vertices in A, ∀A ⊆ T , xA = (x t ) t∈A .

The notation n = (n t ) t∈T designates the univariate tree-indexed data indexed by the same tree as x and corresponding to the number of children of each vertex, ∀t ∈ T , n t = |ch (t) |.

Markov Out-Tree (MOT) models

We assume here that x = (x t ) t∈T , or more generally x = (x t ) t∈T , and n = (n t ) t∈T are the outcomes of a random process. Note that in the following τ is considered sensu stricto as a tree and that in a forest trees are considered as independent and identically distributed. Let r denote the only root of τ . Let us first consider the simple case where:

• x is the realization of a X -valued stochastic process X = (X t ) t∈T such that X ⊂ N is called the state space and each value x ∈ X is called state. This process is therefore called a state process.

• n is the realization of a N -valued stochastic process N = (N t ) t∈T with N ⊂ N. This process is called a generation process.

These considerations raise the question of modeling the joint distribution

P X = x, N = n . (3.1)
Markov Tree (MT) models are parsimonious models relying on local dependence assumptions in X with respect to tree topology. The induced conditional independence hypotheses are called Markov properties. The order of a MT model is related to these Markov properties and refers to the number of ancestors or predecessors considered with respect to model siblings. Unlike sequences where the structure is unchanged whichever the chosen direction, directed trees are non-symmetrical structures. In fact, as presented by Durand et al. (2005), two types of MT models of order 1 may be distinguished:

• Markov In-Trees (MITs) studied by Bacciu et al. (2010) where a vertex is modeled given its children,

• MOTs introduced by Ronen et al. (1995) where children are modeled given their parent.

We focus here on the case of MOT models of order 1, and model tree-indexed data considering only child-parent local dependencies. The key difference with respect to the models developed by Crouse et al. (1998) and Durand et al. (2004) is that we now assume that the children vertices are not independent given their parent vertex and that tree topology is partially represented through the generation process.

Markov Ordered Out-Tree (MOOT) models

The usual Markov property of order 1 is expressed in trees as the assumption that the state process at vertex t is independent of its non-descendant processes given its parent state process ∀t ∈ T , X t ⊥ ⊥ N nd(t)\pa(t) , Xnd(t)\{pa(t)} X pa(t) .

Similarly, it is assumed that the generation process at vertex t is independent of its non-descendants processes given its state process

∀t ∈ T , N t ⊥ ⊥ Nnd(t) , Xnd(t) | X t .
The preceding assumptions induce the following factorization of the joint distribution (3.1)

P X = x, N = n = P (X r = x r ) t∈T P Xch(t) = xch(t) X t = x t , N t = n t ×P (N t = n t | X t = x t )} . (3.2)
where the child set, ch (.), is considered as an ordered set. Considering (3.2), a Markov Ordered Out-Tree (MOOT) model is specified by:

• one initial distribution for the root vertex

π xr = P (X r = x r ) ,
with x∈X π x = 1.

• as many composition distributions as states • as many generation distributions as states

∀t ∈ T , Π xt xch(t) = P Xch(t) = xch(t) X t = x t , with ∀x ∈ X , ∀n ∈ N , x∈X n Π (n) x (x) = 1.
∀t ∈ T , Γ xt (n t ) = P (N t = n t | X t = x t ) with ∀x ∈ X , n∈N Γ x (n) = 1.
Without any further hypotheses, there are a total of

|X | -1 + |X | |N | -1 + n∈N {|X | n -1} ,
independent parameters to define (see table 3.1). But in practice, such models can be parsimoniously parametrized using:

• Markov Chain (MC) models and variants (Ephraim and Merhav, 2002) for each composition distribution. Ordered children can be viewed as a sequence for which local dependencies can be assumed, leading to factorization of the composition distribution.

• Parametric discrete univariate distributions (Johnson et al., 1993) for each generation distribution.

Markov Unordered Out-Tree (MUOT) models

Depending on the application context, either ordered or unordered trees may be considered. In our context focusing on cell division, the latter case is more relevant since both children appear at the same time. Considering no order structure among siblings is equivalent to assuming that composition probabilities are invariant under every permutation of children vertices,

∀t ∈ T , ∀σ ∈ S [ch(t)] , Π (nt) xt xch(t) = Π (nt) xt xσ•ch(t) .
Let N t = (N t,x ) x∈X denote the random vector of the number of children of vertex t in the different states X , I (•) the indicator function and n t = (n t,x ) x∈X an outcome of N t . As a consequence of the latter assumption

P (N t = n t | X t = x t ) = Γ xt (n t ) n t n t,0 , • • • , n t,|X |-1 Π xt xch(t) , where • •,••• ,
• denotes the multinomial coefficient. Adaptations of algorithms for MOOT models to the Markov Unordered Out-Tree (MUOT) models case are therefore straightforward and only require combinatorics arguments.

For MUOT models the marginal distribution (3.1) is factorized as follows

P X = x, N = n ∝ P (X r = x r ) t∈T P (N t = n t |X t = x t , ) . (3.3)
This factorization corresponds to the family of Multi-Type Branching Processes (MTBPs) introduced as a generalization of Watson and Galton (1875) processes (see Harris, 2002).

In such MOT models, composition and generation distributions are replaced by the corresponding generation distributions

∀t ∈ T , Γ xt (n t ) = P (N t = n t |X t = x t ) , with ∀x ∈ X , n∈N |X | Γ x (n) = 1.
Hence, the total number of independent parameters drops to

|X | -1 + |X | n∈N |X | + n -1 n -1 ,
where • • denotes the binomial coefficient (see table 3.2). Their parametrization is closely related to the parametrization of discrete multivariate count models. In practice, two different cases can be considered: Simple trees. In cell lineage trees N = {1, 2}. Value 0 corresponds to the censuring at the end of the experiment since no cell death is observed. The combinatorics of child states is therefore reasonable for models with few states and non-parametric models can be considered.

General trees.

The combinatorics induced by the variable, large number of child vertices in each state inflates the number of model parameters. In such cases, models can be parsimoniously parametrized using different parametric discrete multivariate distributions (Johnson et al., 1997) 

Hidden Markov Tree (HMT) models

Hidden Markov Tree (HMT) models introduced by Crouse et al. ( 1998) have the same parametrization as standard HMC models for sequences. Like for HMC models (see Ephraim and Merhav, 2002, for more details), HMT models are not restricted to categorical variables but allow all types of random variables and vectors to be considered, at a low cost in terms of parameters.

In our case, an HMOT model can be viewed as a triplet of stochastic processes (S t , N t , X t ) t∈T where:

• S = (S t ) t∈T is a S-valued state process.

• N = (N t ) t∈T is a N -valued generation process.

• X = (X t ) t∈T is a X -valued process corresponding to the output or observation process. This process is related to S by a probabilistic function f st (x t ).

To simplify notations we will consider a univariate discrete output process in the fol-

lowing ∀t ∈ T , f st (x t ) = P (X t = x t | S t = s t ) , with ∀s ∈ S, x∈X f s (x) = 1 and X ⊆ N.
It is assumed that the output process at vertex t depends only on the underlying state process at vertex t ∀t ∈ T , X t ⊥ ⊥ ST \t , XT \t , NT | S t .

(3.4)

Thus, for HMOT models, the marginal distribution (3.1) can be factorized as follows

P X = x, N = n = s∈S |T | P S = s, N = n, X = x = s∈S |T | P S = s, N = n t∈T f st (x t ) . (3.5)
Parametrization of HMOT models therefore depends only on that of the state process and the observation probabilities f st (x t ). Thus, with appropriate parametrization, extension to the continuous or mixed multivariate case is straightforward. We define Hidden Markov Ordered Out-Tree (HMOOT) models as HMT models where the state process is a MOOT model. Similarly, for Hidden Markov Unordered Out-Tree (HMUOT) models, the corresponding state process is a MUOT.

Computational methods for Hidden Markov Out-Tree (HMOT) models

Since it is assumed a priori that any outcome value may be observed in any state, the state process S is not observable directly but only indirectly through observation process X. Therefore, the use of HMT models relies on two main algorithms:

• the smoothing algorithm, which computes the probabilities of being in each state for each vertex given the observed tree,

• the restoration algorithm, which computes the most probable state tree given the observed tree.

Parameter Maximum Likelihood (ML) inference can be performed using the EM algorithm or its variants (see McLachlan and Peel, 2000, for more details) based on quantities computed in the smoothing algorithm.

In the remainder of this section we derive algorithms for HMOOT and HMUOT models. Therefore, we introduce the notion of transition distributions, noted ∀t ∈ T , ∆ st sch(t) = P N t = n t , Sch(t) = sch(t) S t = s t , with:

• For MOOT, ∀t ∈ T , ∆ st sch(t) = Γ st (n t ) Π (nt) st sch(t) . • For MUOT, ∀t ∈ T , ∆ st sch(t) = Γ st (n t ) nt n t,0 ,••• ,n t,|S|-1 .
In particular, ∆ st (∅) denotes the probability of having 0 children for a vertex in state s t .

Upward-downward smoothing algorithm

The aim of the smoothing algorithm is to compute the smoothed probabilities, ξ t (s) = P S t = s X = x, N = n , for each vertex t and each state s. Such probabilities can be recursively computed using a downward pass (i.e. vertices are taken successively from root to leaves) requiring the upward probabilities, β t (s) = P S t = s XDe(t) = xDe(t) , NDe(t) = nDe(t) , which are computed in an upward pass (i.e. vertices are taken successively from leaves to root).

Preprocessing Like for Independent Hidden Markov Out-Tree (HIMOT) models discussed by Durand et al. (2004), the upward recursion requires preliminary knowledge of the marginal state distributions for each vertex and each state, which can be computed in an initial downward recursion (Durand et al., 2004). For an observed tree, this preprocessing is initialized at the root vertex with,

∀s ∈ S, P (S r = s) = π s , (3.6)
Subsequently, the computation is performed for all parent vertices taken from the root to the leaf vertices, ∀t ∈ T , ∀s ∈ S nt , P Sch(t) = s = s∈S ∆ s (s) P (S t = s) , ∀c ∈ ch (t) , ∀s ∈ S, P (S c = s) = s∈S n t -1 P S ch(t)\{c} = s, S c = s .

(3.7)

Upward recursion

The upward recursion is initialized for each leaf vertex by

∀l ∈ L, ∀s ∈ S, β l (s) = P (S l = s | X l = x l , N l = 0) ∝ P (X l = x l , N l = 0 | S l = s) P (S l = s) (⋆) ∝ ∆ s (∅) f s (x l ) P (S l = s) ,
where (⋆) indicates the use of Bayes' rule.

Then, for each of the remaining vertices taken upwards, we have the following recur-sion ∀t ∈ T \ L, ∀s ∈ S,

β t (s) = P S t = s XDe(t) = xDe(t) , NDe(t) = nDe(t) ∝ s∈S n t P Sch(t) = s, S t = s, XDe(t) = xDe(t) , NDe(t) = nDe(t) (⋆) ∝ s∈S n t P (S t = s) P N t = n t , Sch(t) = s S t = s P (X t = x t | S t = s) × sc∈s c∈ch(t) P XDe(c) = xDe(c) , NDe(c) = nDe(c) S c = s c        ∝ s∈S n t {P (S t = s) ∆ s (s) f s (x t ) × sc∈s c∈ch(t) P S c = s c XDe(c) = xDe(c) , NDe(c) = nDe(c) P (S c = s c )        (⋆) ∝ P (S t = s) f s (x t ) s∈S n t ∆ s (s) sc∈s c∈ch(t) β c (s c ) P (S c = s c ) , ( 3.8) 
Let φ t be the normalization constant for each vertex upward probability distribution, the different (⋆) give ∀l ∈ L, φ l = P (X l = x l , N l = 0) = P XDe(l) = xDe(l) , NDe(l) = nDe(l) , for each leaf vertex, and

∀t ∈ T \ L, φ t = P XDe(t) = xDe(t) , NDe(t) = nDe(t) c∈ch(t) P XDe(c) = xDe(c) , NDe(c) = nDe(c)
for the internal vertices. Since,

t∈T φ u = t∈T P XDe(t) = x De(t) , NDe(t) = n De(t) t∈T \{r} P XDe(t) = x De(t) , NDe(t) = N De(t) = P XDe(r) = x De(r) , NDe(r) = nDe(r) = P X = x, N = n ,
the log-likelihood can be computed as a byproduct of the upward recursion. Among other potential applications, this computation can be used to the monitor EM algorithm convergence (McLachlan and Krishnan, 2007) and for model selection (Claeskens and Hjort, 2008).

Downward recursion

The downward recursion of the smoothing algorithm is initialized at the root vertex by, ∀s ∈ S, ξ r (s) = P S r = s X = x, N = n = β r (s) .

(3.9)

For all remaining vertices let us remark first that ∀t ∈ T \ L, ∀s ∈ S, ∀s ∈S nt ,

P Sch(t) = s S t = s, X = x, N = n = P Sch(t) = s S t = s, XDe(t) = xDe(t) , NDe(t) = nDe(t) = P Sch(t) = s, S t = s, XDe(t) = xDe(t) , NDe(t) = nDe(t) P S t = s, XDe(t) = xDe(t) , NDe(t) = nDe(t) = P (S t = s) f s (x t ) ∆ s (s) β t (s) φ t sc∈s c∈ch(t) β c (s c ) P (S c = s c ) ,
(3.10) using (3.4) and previous calculations in (3.8). We therefore obtain directly the following downward recursion,

∀t ∈ T , ∀s ∈ S nt , P Sch(t) = s X = x, N = n = s∈S ξ t (s) P (S t = s) f s (x t ) ∆ s (s) β t (s) φ t sc∈s c∈ch(t) β c (s c ) P (S c = s c ) , ∀c ∈ ch (t) , ∀s ∈ S, ξ c (s) = s∈S n t -1 P S ch(t)\{c} = s, S c = s X = x, N = n . (3.11)

Application of the Expectation-Maximization algorithm

With reference to HIMOT models (see Crouse et al., 1998;Durand et al., 2004), the adaptation of EM algorithm is straightforward. Let us consider the complete data where both the outputs x and the states s of the underlying MT model are observed. Note that in this section x is considered to be a forest. The EM algorithm iteratively modifying model parameters in order to increase the likelihood, let θ be the vector of model parameters and let θ (k) denote the current value of θ at iteration k. The conditional expectation of the complete-data log-likelihood is given by Using (3.2) and (3.5), this conditional expectation can be rewritten as a sum of terms, each term depending on a given subset of parameters

Q θ θ (k) = E log L S, X; θ X = x, N = n; θ (k) . Let θ = θ O ⊎ θ L s∈S θ s with θ O = {f s (x)} x∈X ,s∈S , θ R = {π s } s∈S ,
Q θ θ (k) = Q O θ O θ (k) + Q R θ R θ (k) + s∈S Q s θ s θ (k) ,
with

Q O θ O θ (k) = s∈S t∈T P X t = x t , S t = s X = x, N = n; θ (k) log f s (x t ) . (3.12) Q R θ R θ (k) = r∈R s∈S P S r = s X = x, N = n; θ (k) log π s (3.13) ∀s ∈ S, Q s θ s θ (k) = t∈T s∈S n t P Sch(t) = s, S t = s X = x, N = n; θ (k) log ∆ s (s) (3.14)
During the M-step the initial and transition probabilities are obtained directly respectively from maximization of (3.13),

∀s ∈ S, π (k+1) s ∝ r∈R P S r = s X = x, N = n ∝ r∈R ξ r (s) ,
given by (3.9), and maximization of (3.14), ∀n ∈ N , ∀s ∈ S, ∀s ∈ S n , ∆ (k+1)

s (s) ∝ t∈T nt=n P Sch(t) = s, S t = s X = x, N = n ∝ t∈T nt=n ξ t (s) P (S t = s) f s (x t ) ∆ s (s) β t (s) φ t sc∈s c∈ch(t) β c (s c ) P (S c = s c ) .
given by (3.7), (3.8), and (3.11). Note that for algorithmic considerations the transient quantity

∀t ∈ T \ L, ∀s ∈ S, ϕ t (s) = β t (s) φ t f s (x t ) P (S t = s) = s∈S n t ∆ s (s) sc∈s c∈ch(t) β c (s c ) P (S c = s c ) ,
is computed during the upward recursion of the smoothing algorithm for all non-leaf vertices.

In the case of the Monte Carlo EM (MCEM) (Wei and Tanner, 1990) algorithm, the E-step of the EM algorithm is replaced by an approximation of the completed log-likelihood. In the case of HMOT models, this approximation is computed using a downward simulation of the state process given the observation and generation processes initialized at root vertices with (3.9) and proceeding with vertices taken downwards considering (3.10). The M-step of the MCEM algorithm is based on count data extracted from the simulated states.

Dynamic programming restoration algorithm

The objective of this Viterbi-like algorithm is to restore the most probable state tree s associated with the observed tree x . This is a major diagnostic tool in many applications of hidden Markovian models for most applications, knowledge of the hidden states provides an interpretation of the data.

The Viterbi upward recursion for a HMOT is initialized for each leaf vertex by

∀l ∈ L, ∀s ∈ S, δ t (s) = P (X t = x t N t = 0 | S t = s) = ∆ s (∅) f s (x t ) .
Then, for each of the internal vertices taken upward, we have the following recursion ∀t ∈ T \ L,∀s ∈ S,

δ t (s) = max sde(t) P XDe(t) = xDe(t) , NDe(t) = nDe(t) , Sde(t) = sde(t) S t = s = max sde(t) P Xde(t) = xde(t) , Nde(t) = nde(t) , Sde(ch(t)) = sde(ch(t)) Sch(t) = sch(t) × P (X t = x t | S t = s) P N t = n t , Sch(t) = sch(t) S t = s = max sde(t)        sc∈s c∈ch(t) P XDe(c) = xDe(c) , NDe(c) = nDe(c) , Sde(c) = sde(c) S c = s c ×∆ s sch(t) f s (x t ) = max sch(t)        sc∈s c∈ch(t) max sde(c) P XDe(c) = xDe(c) , NDe(c) = nDe(c) , Sde(c) = sde(c) S c = s c ×∆ s sch(t) f s (x t ) = max sch(t)        ∆ s sch(t) sc∈s c∈ch(t) δ c (s c )        f s (x t ) .
(3.15)

The probability of the observed tree x jointly with the most probable state tree is r∈R max s {δ r (s) π s }. The recursion (3.15) is equivalent to the upward recursion (3.8) where the summation on the states is replaced by maximization. To retrieve the most probable state tree, it is necessary to store for each vertex t and each state s the optimal states corresponding to each of the children. The backtracking procedure consists in tracing downward along the back-pointers from the optimal root state to the optimal leaf states. 

Application to cell lineage trees

Results

The use of HMOT models is illustrated herein by the analysis of the early stages of flower development which is usually described as a series of morphological events (Smyth et al., 1990). Only the first three stages were observed during the experiment (see figures 3.1, 3.2):

Stage 1 corresponds to floral meristem development from initiation as a small bulge on the flank of the inflorescence meristem.

Stage 2 starts when the floral bud is separated from the inflorescence meristem by a small crease between the two meristems.

Stage 3 is characterized by the emergence of the sepals from the sides of the floral meristem, growing to overlie the primordium.

In a first step, cell identities were inferred on the basis of the following cell characteristics:

• volume,

• epidermal surface,

• external surface, • inertia values (on three axes),

• principal and secondary curvatures. These characteristics were modeled independently using univariate Gaussian or Gamma distributions (depending on the observation space). Concerning the generation distributions, we used a non-parametric dependence model corresponding to the saturated model.

The number of states was selected using the Bayesian Information Criterion (BIC) (Schwarz, 1978). Although BIC properties have not been established in this context, it is frequently used (Durand et al., 2005). This penalized likelihood criterion makes a tradeoff between model fit to the data and model parsimony, and favored a 4-state model (model M 0 ). Epidermal surface area, internal surface area, volume and curvatures of the cells are structuring observed variables in this model since the estimated observation distributions for the different states are well separated for this five characteristics (see figure 3.3). These observation distributions allowed us to characterize the different states:

State 0 and 3 correspond to large cells and are mostly differentiated by their curvatures (negative for state 0 and positive for state 3).

State 1 corresponds to small cells with both curvatures almost of the same norm and mostly negative, this being a typical characteristic of saddle forms.

State 2 is in-between in terms of size but with clearly positive curvatures corresponding to the dome area.

In contrast, states do not have marked differences with respect to anisotropies. Using the restoration algorithm, the spatial regions that emerged from the cell identity labeling were then characterized (see figures 3.2,3.4):

Central dome and central zone were assigned to state 2. Sepals were split into states 0 and 3.

Boundary zone was assigned to state 1.

State 2 is the main state at the first time point and presents marked spatio-temporal coherence from 0h to 69h. Despite an early stage of meristem differentiation at 0h, few cells were already assigned to putative sepals. At subsequent time points, the multiplication of sepal and dome cells with the appearance of boundary cells, delimiting the Let us recall that ∀s ∈ {0, 1, 2, 3} , Γ s (n 0 , n 1 , n 2 , n 3 ) , denotes the probability of having jointly n 0 , n 1 , n 2 and n 3 children in state 0, 1, 2 and 3 considering a parent cell in state s. The reproduction and emergence of cell identities underlined by generation distributions are consistent with biological beliefs. State 3 is a hub for transitions from state 2 at 0h to other states at times after 44h. Transition from state 3 to state 0 corresponds to transition from early cells to late cells in sepals.

Transition from state 3 to state 1 corresponds to emergence of boundary cells induced by sepal formation, which seems to be a passive rather than an active phenomenon.

Discussions

Data limitation Regarding the biological conclusions drawn from the outputs of the HMOT models, we would like to stress that they were partly limited by the number of successive time points available, and data quality. Indeed, the time between successive images was too great, thus a few divisions were not observed. These missing divisions were interpolated for biological purposes, but this resulted in the presence of a large number of predicted cells without observed characteristics (almost 50%). In addition, the number of time points (5) also limited the investigation of cell division patterns. To solve this, Yassin Rehafi -former Ph.D. student in the team -used an enhanced version of the experimental protocol to acquire more time points (up to 15) with a shorter time interval between successive acquisitions. In addition, the raw images obtained were of better quality. This helped to obtain more accurate segmentations and thus more reliable cell characteristics. Since some algorithms tend to systematically overestimate or underestimate the values of cell characteristics, further improvements need to be made in the cell characteristic computation from raw or segmented images. This is particularly true for the curvature characteristics computed using an unadaptive algorithm, which could be improved by a more suitable algorithm (Tong and Tang, 2005).

Dependence hypothesis Let M 1 be the inferred HMUOT model in which the child number in each state are assumed to be independent

∀s ∈ S, ∀t ∈ T , P (N t = n t | S t = s) = i∈S P (N t,i = n t,i | S t = s) ,
A comparison of M 0 with M 1 can be used to discuss the benefits of introducing dependencies in HMUOT models (see figure 3.5).

It is not surprising that M 0 has a higher log-likelihood than M 1 since the state processes are nested and have theoretically 55 and 36 independent parameters. But the estimated models have a relatively similar number of non-zero parameters: 22 for M 0 versus 18 for M 1 . As a consequence, the BIC is higher for M 0 (-18164) than for M 1 (-18668). This fact indicates that there is a clear benefit in taking dependencies into account in this application.

According to confusion table 3.3, the robustness of the restoration algorithm with respect to model misspecifications induced little change concerning the most probable cell identities with models M 0 and M 1 . Nevertheless, most assignment mismatches concerned state 3. Although the limited quality of data precluded any observation of clear left-right models -in left-right models there are successions of transient states and final absorbing states such that states are partially ordered -the generation distributions for state 3 estimated in M 0 emphasized the main differences concerning left-right HMUOT models. If the child number in each state are assumed to be:

Independent. In such models, a left-right model is induced by forbidden state transitions whether the fact that division occurred or not.

Dependent. In such models, a left-right model can take the division phenomenon into account. In M 1 , cells in state 3 cannot change to other states without dividing except for state 0 which corresponds to sepal cells aging. However, when a cell in state 3 divides, it can give mostly a cell in the same state and in states 1 or 2, which corresponds to the transient period when the boundary zone is set up.

The dependent model can be used to detect -via its generation distributionspatterns that are of marked interest for biological applications.

Link to Hidden Independent Markov Out-Tree (HIMOT)

The HIMOT proposed by Crouse et al. (1998) dependent). The matching between the restorations are high (more than 82%) since the restoration can be considered as robust relative to model misspecifications (Durand et al., 2005).

Markov chain models. This is the consequence of a strong conditional independence assumption within the state process where the child vertices are independent given the state of the parent vertex. Given this assumption, the following transition distributions are obtained for MOOT models

∀t ∈ T , Π (nt) xt xch(t) = xc∈x ch(t) c∈ch(t) P (X c = x c | X t = x t , N t = n t ) = x∈X (π xt (x)) nt,x , with ∀x ∈ X , x ′ ∈X π x (x ′ ) = 1.
Hence, for MUOT models

∀t ∈ T , Γ xt xch(t) = Γ xt (n t ) n t n t,0 , • • • , n t,|X |-1 x∈X (π xt (x)) nt,x .
This corresponds to parametric generation distributions with sum compound multinomial parametrization (see Johnson et al., 1997).

Parametric generation distributions

We considered only semi-parametric HMUOT in this application since we were dealing with simple trees. For general trees, the combinatorics induced by the variable, large number of child vertices in each state rapidly inflates the number of model parameters (see table 3.2). In such cases, since the data used to infer each generation distribution is of limited size, an inference of parametric HMUOT models is required in order to obtain reliable generation distributions. As it has been presented, this issue reduces to the inference of parametric discrete multivariate distributions (Johnson et al., 1997) and will be discussed in the next chapter.

Introduction

We consider discrete state-space stochastic processes indexed by a directed tree. Our aim is to introduce parametric models that can be efficiently estimated using data of limited size and easily interpretable. These models rely on local dependency assumptions between parent and child vertices and belong to the family of Multi-Type Branching Processes (MTBPs).

In a practical setting of general tree analysis, the combinatorics induced by the variable, large number of child vertices in each state inflates the number of model parameters. Inference of MTBPs mostly reduces to inference of their generation distributions, which are discrete multivariate distributions. In order to have interpretable results, we focus here on a family of discrete multivariate generation distributions that fulfill the following criteria:

1. Multivariate parametric distributions must be used since the direct estimation of probability masses on the basis of multivariate counts is unreliable except for very large data sets.

2. These multivariate parametric distributions can have zero-inflated, right-skewed and natural number valued marginals; Therefore, discretized multivariate Gaussian distributions are not appropriate.

3. These multivariate parametric distributions can easily be simulated and probability masses can easily be computed in order to investigate motifs induced by generation distributions and long-range patterns stemming from these generation distributions as trees develop.

4. Child states that tend to appear simultaneously or, on the contrary, are incompatible can be identified.

To achieve this goal, we introduce parametric MTBPs incorporating probabilistic graphical models (Koller and Friedman, 2009) to represent each generation distribution. In this framework, the conditional independence relationships between number of children in each state can be easily represented. In particular, graph identification is one way to consider the above-mentioned criterion (4). Three kinds of graphical models are often encountered: undirected graphical models, Directed Acyclic Graphical Models (DAGMs) and Mixed Acyclic Graphical Models (MAGMs). Methods for graph identification have been proposed for:

Undirected graphical models. Using log-linear models or a multivariate Gaussian distribution assumption, approaches based on an L 1 penalization (Lasso) have been proposed (see Friedman et al. (2008) for the Gaussian graphical Lasso). To some extent, these approaches have been extended to discrete multivariate distributions using Poisson regression models and more generally Generalized Linear Models (GLMs) (Yang et al., 2012).

DAGMs. Most methods rely on an exploration of the Directed Acyclic Graph (DAG) space using search heuristics (e.g. hill climbing, see Chickering (2002) for instance) and consistent scores (e.g. Bayesian Information Criterion (BIC), see Yang and Chang (2002) for details). At each step of the greedy algorithm a list of graphs is proposed using graph edition (i.e. edges are removed, reversed or added), then the graph with the highest score is selected. This procedure is repeated until the score reaches a local optimum (see Koller and Friedman (2009) a review).

MAGMs. AlthoughMAGMs generalize both undirected graphical models and DAGMs, they have been less often considered in the literature. Proposed algorithms (Edwards, 2000;Ma et al., 2008;Drton and Perlman, 2008) mostly focus on tests of hypothesis and as an a priori require knowledge of the chain components. Moreover, most rely on Gaussian distributions or log-linear models that are not adapted to criterion 1 or 2..

We choose here to use discrete parametric MAGMs for generation distribution in MTBPs. The remainder of this chapter is organized as follows. MTBPs with Poisson Mixed Acyclic Graphical Models (PMAGMs) and their generalization to Discrete Parametric Mixed Acyclic Graphical Models (DPMAGMs) used to model generation distributions are presented in section 4.2. A dedicated algorithm for inference of MAGMs is introduced in section 4.3. Then, the advantages of such models for MTBPs is illustrated in section 4.4 using the mango tree asynchronism analysis as an example. Finally, section 4.5 describes work in progress and discusses possible extensions of considered MAGMs to multivariate continuous or mixed distributions.

Definitions

Data of interest are categorical tree-indexed data x = (x t ) t∈T where T ⊂ N is the set of vertices of a directed tree-graph τ = (T , E) and E ⊂ T × T \ R is the set of directed edges representing lineage relationships between vertices. R represent the set of roots and L the set of leaves of τ . Let pa (.) denote the parent, ch (.) the child set, de (.) the descendant set and nd (.) the non-descendant set of a vertex. These notations also apply to sets of vertices (see Koller and Friedman, 2009, for graph terminology). For any set A ⊆ T , let xA denote the subset of x obtained by considering only the vertices in A, ∀A ⊆ T , xA = (x t ) t∈A .

The notation n = (n t ) t∈T denotes the univariate tree-indexed data indexed by the same tree as x and corresponding to the number of children of each vertex, ∀t ∈ T , n t = |ch (t) |.

Multi-Type Branching Processes (MTBPs)

We here assume that x = (x t ) t∈T and n = (n t ) t∈T are the outcomes of a random process. In the following, τ is considered sensu stricto as a tree, and in a forest trees are considered as independent and identically distributed. Let r denote the only root of τ . We here consider the simple case where:

• x is the realization of a X -valued stochastic process X = (X t ) t∈T such that X ⊂ N is called the state space and each value x ∈ X is called a state. This process is therefore called the state process.

• n is the realization of a N -valued stochastic process N = (N t ) t∈T with N ⊂ N. This process is called a generation process.

These considerations raise the question of modeling the joint distribution

P X = x, N = n . (4.1)
MTBPs are parsimonious models that rely on local dependence assumptions in X with respect to tree topology. More precisely, the following Markov property is considered

∀t ∈ T , X t ⊥ ⊥ N nd(t)\{pa(t)} , Xnd(t)\{pa(t)} X pa(t) .
This assumption that the state variable at vertex t is independent of its non-descendant variables given its parent state variable combined with the assumption that the generation process at vertex t is independent of its non-descendant variables given its state

variable ∀t ∈ T , N t ⊥ ⊥ Nnd(t) , Xnd(t) | X t .
Adding a permutation invariance property (see Haccou et al., 2005, for details) yields a parsimonious model, in which the distribution (4.1) is factorized as follows

P X = x, N = n ∝ P (X r = x r ) t∈T \{r} P (N t = n t | X t = x t ) , ( 4.2) 
where N t is the discrete random vector of the number of children of vertex t in each state. Therefore, the outcomes to model are the realizations, (n t ) t∈T , of the discrete random vector N t for each vertex

∀t ∈ T , n t = (n t,x ) x∈X = (|{c ∈ ch (t)|X c = x}|) x∈X , n t = x∈X n t,x .
Under a homogeneity hypothesis, the considered MTBPs are thus specified by |X | discrete multivariate distributions -one per state -called generation distributions and an initial distribution for the root vertex that will not be considered hereafter.

Poisson Mixed Acyclic Graphical Models (PMAGMs)

Here we propose to model these generation distributions by MAGMs. Since, in the following, we focus on a single generation distribution, vertex indexing and parent state conditioning will be omitted in the notations.

Parametrization A MAGM is a bipartite model composed of a graph G and a distribution P . The graph G is a Mixed Acyclic Graph (MAG) and P is said to satisfy the Factorization Chain property (FC) with respect to G,

P (N = n) = C∈HG P N C = n C N pa(C) = n pa(C) , (4.3) 
where H G denotes the set of chain components of G induced by undirected edges and pa (.) the set of parents of a chain component induced by directed edges. Considering multivariate counts, we define a PMAGM as a MAGM where:

• For a chain component C, which is a singleton and has no parent, N C follows an univariate marginal Poisson distribution,

∀C ∈ H G , {|C| = 1} ∧ {|pa (C) | = 0} ⇒ N C ∼ P (θ C ) .
• For a chain component C, which is a singleton and has at least one parent,

N C |N pa(C) = n pa(C) follows a conditional Poisson distribution, ∀C ∈ H G , {|C| = 1} ∧ {|pa (C) | > 0} ⇒ N C |N pa(C) = n pa(c) ∼ P f C n pa(C) .
• For a chain component C, which is not a singleton and has no parent, N C follows a multivariate marginal Poisson distribution,

∀C ∈ H G , {|C| > 1} ∧ {|pa (C) | = 0} ⇒ N C ∼ P |C| (θ C ) .
• For a chain component C, which is not a singleton and has at least one parent,

N C |N pa(C) = n pa(C) follows a multivariate conditional Poisson distribution, ∀C ∈ H G , {|C| > 1} ∧ {|pa (C) | > 0} ⇒ N C |N pa(C) = n pa(c) ∼ P |C| f C n pa(C) .
We will there only present the basic multivariate marginal and conditional Poisson distributions. Readers are invited to refer to Johnson et al. (1993Johnson et al. ( , 1997)), Karlis (2003) and Karlis and Meligkotsidou (2005) for further details. The derivation of the multivariate Poisson distribution considered here is the result of multivariate reduction (see Mardia (1970) for further examples). The idea is to start with some independent random variables and to create new ones by considering some functions of the original variables.

Since each new variable is a function of the original ones, a dependence structure is imposed creating multivariate models. Here, for a chain component C ∈ H G , the multivariate marginal Poisson distributions (Karlis, 2003) 

|θ| ≤ |X | -1 + |X | C∈HG (|C| + 1 + |pa (C) |) ≤ |X | -1 + |X | 2 (|X | + 3) 2 ,
where the worst case is obtained by considering a complete DAG. In contrast to the number of parameters for non-parametric MTBPs,

|X | -1 + |X | n∈N |X | + n -1 n -1 ,
far more parsimonious models for generation distributions are obtained even for relatively few observed vertex out-degrees when considering PMAGMs (see table 4.1).

Complete chain components

Usually, for each C ∈ H G , the conditional distributions

P N C = n C N pa(C) = n pa(C)
are factorized as products of clique factors (Lauritzen, 1996). The issue of defining discrete parametric models for these distributions is related to the definition of parametric discrete undirected graphical models. In such undirected graphical models P satisfies the Factorization property (F)

P (N = n) = C∈HG φ C (n C ) , ( 4.4) 
with respect to the undirected graph G.

The case of univariate and multivariate Poisson distributions yields undirected graphical models where each chain component is complete. In order to obtain parametric undirected graphical models with sparse graphs, the recent framework of Yang et al. (2012) is of considerable interest. In such models, each variable follows a conditional distribution conditioned on its neighbors in the graph. The undirected edges of the graph are in fact considered as bi-directed edges. Yang et al. (2012Yang et al. ( , 2014) ) considered the GLMs framework (McCullagh and Nelder, 1989) to define these conditional distributions and in particular Poisson regressions (Allen and Liu, 2012). But, although criteria (1), ( 2) and ( 4) raised in the introduction are verified, criterion 3 is problematic for two reasons:

• In this framework, the partition function is not computationally tractable even for a small number of vertices. Moreover, the joint distribution may not be defined (the coefficients of the Poisson regression models must all be negative). As a consequence, masses cannot be computed exactly and/or rapidly.

• Simulations are conducted via Monte-Carlo Markov Chain (MCMC) methods such as the Gibbs sampler (Gilks, 2005). This algorithm introduces major mixing time issues such as the minimum chain length required to reach the stationary distribution and the sampling interval required to obtain independent events.

For these reasons we therefore chose to consider MAGMs such that chain components are complete.

Chain component vertices with same parents

In addition to the complete chain component constraint, vertices of a same chain component have the same parents in the defined PMAGMs. The direct consequence of these constraints is that the set of independences represented by the PMAGM class is the same as that represented by Poisson Directed Acyclic Graphical Models (PDAGMs). PDAGMs are defined as DAGMs such that P satisfies the Directed Factorization property (DF)

P (N = n) = x∈X P N x = n x N pa(x) = n pa(x) , (4.5) 
with respect to the directed acyclic graph G, and such that:

• For a vertex v that has no parent, N v follows a univariate marginal Poisson distribution.

• For a vertex v that has at least one parent,

N v |N pa(v) = n pa(v) follows a conditional Poisson distribution.
But the particular advantage of PMAGMs with respect to PDAGMs can be illustrated by two clear-cut examples:

The parametric catalog. Although multivariate Poisson distributions are highly related to univariate Poisson distributions, a multivariate Poisson distribution cannot be expressed as a succession of Poisson regressions. The distributions of PMAGMs are therefore more general than those of PDAGMs.

Controlled variance.

Let us consider a weakly connected component in a PDAGM such that covariances between the variables are positive. For simulation studies, an undesirable effect is that if the first random variable -in terms of topologyproduces a relatively rare event (high values), the succession of exponential links for Poisson regressions tends to produce ultimately a multivariate count with a huge count sum. In contrast, in a chain component with positive covariances, this effect is dampened.

Discrete Parametric Mixed Acyclic Graphical Models (DP-MAGMs)

In the case of DPMAGMs, the objective is to relax the Poissonian hypothesis. As presented by Johnson et al. (1997), the spectrum of discrete multivariate parametric distributions is not so broad and mostly relies on generalization of the usual discrete univariate parametric distributions (Johnson et al., 1993):

• the binomial distribution is generalized into the multinomial distribution,

• the negative binomial distribution is generalized into the negative multinomial distribution,

• and the multivariate Poisson distribution has already been introduced.

Although, as in the Poisson case, multinomial and negative multinomial distributions and/or regressions can easily be introduced in MAGM, the minimal Independence map (I-map) chain components of the resulting DPMAGMs are subject to the same two constraints:

1. all chain components are complete, 2. all vertices of a chain component have the same parents.

Discrete Parametric Mixed Acyclic Graphical Models (DPMAGMs) inference

In the following, we address the inference of DPMAGM in two different cases:

• A graph is given. For such cases we describe the Maximum Likelihood (ML) parameter inference of a DPMAGM for which the given graph is an I-map.

• No graph is given. For such cases, the inference of the graph is performed using a search heuristic and graph scoring via ML inference.

Parameter inference

Let us consider a graph G that fulfills constraints (1) and ( 2). In such cases, parameter inference reduces to multinomial, negative multinomial, multivariate Poisson marginal or conditional distributions for chain components of cardinality above 1, or otherwise binomial, negative binomial and Poisson marginal or conditional distributions. Such inferences are standard in statistics and the ML estimates have closed forms (Johnson et al., 1997) or can be estimated via iterative algorithms such as the Expectation-Maximization (EM) algorithm for multivariate Poisson marginal (Karlis, 2003) or conditional distributions (Karlis and Meligkotsidou, 2005).

In the case where a graph G that does not fulfill the imposed constraints is given as an I-map, it cannot be a minimal I-map. The solution is therefore to degrade the given graph -by removing undirected and/or directed edges -until a graph, which fulfills constraints (1) and ( 2), is reached.

Structure inference

If the graph is not given, graph structure and distribution parameters must be inferred. As in many discrete optimization problems, graph identification for DAGMs and MAGMs does not appear to admit tractable solutions. In such cases heuristic methods must be considered, although they do not guarantee that the optimal solution will be found. We here consider an extension of the standard method proposed for DAGMs, called the local search.

The local search method operates over a search space (set of graphs in our case). This search space can be represented as an undirected graph where:

The vertex set is the set of candidate solutions, each being associated with a score.

In the case of DAGMs, a vertex G represents a DAG and the score, noted score (G) corresponds to the log-likelihood, BIC or Akaike Information Criterion (AIC) obtained after ML parameter estimation (see Yang and Chang (2002) for a review of consistent scores in this case).

The edge set is defined using search operators. In the case of DAGMs, these operators correspond to edit operations: adding, removing or reversing an edge (see Koller and Friedman (2009) for a review). As a consequence, the neighbor set of a graph G is defined as the DAG subspace such that there is only one edge that is added, removed or reversed in G:

∀G ∈ D a (X ) , ne (G)=        G ′ ∈ D a (X ) ∃! (u, v) ∈ P (X ) , [E ′ ∪ (u, v) = E ∪ (v, u)] ∨ [E ′ = E ∪ (u, v)] ∨ [E ′ ∪ (u, v) = E]       
, with D a (X ) the set of directed acyclic graphs with X as vertex set.

Given this search space and an initial candidate G (0) , the local search consists in iteratively selecting among the neighbors of G (t-1) the candidate G (t) with the highest score,

∀G (0) ∈ D a (X ) , ∀t ∈ N * , G (t) = arg max G∈ne(G (t-1) ) {score (G)} ,
until the score reaches a local optimum. The efficiency of this heuristic relies on a connected state space and this space interconnectivity definition:

• If each candidate has few neighbors, then the search procedure must consider only a few options at each iteration, which can be evaluated exhaustively. However, due to the small number of neighbors, the path to an optimal solution can be long and the probability of being stuck in a local optimum is high.

• If each candidate has many neighbors, the path to the optimal solution is shorter and the probability of being stuck in a local optimum is lower. But each step can be computationally intensive or even prohibitive.

Local search in Mixed Acyclic Graph (MAG) space

The local search in the MAG search space combines edit operations in the DAG and the undirected search space (adding or removing undirected edges). To improve search space connectivity the following additional edit operations can be considered:

Orientation. An undirected edge in a MAG is oriented in both directions.

Disorientation.

A directed edge in a MAG is disoriented.

The major drawback of this search space is the huge number of local optima present when considering DPMAGM (see figure 4.1). Except for a few simple cases (e.g. a graph without any edge), the neighborhood of a minimal I-map is composed of graphs that are not minimal I-maps. As a consequence, these graphs are degraded in order to satisfy constraints (1) and ( 2) for ML parameter inference. Most of these minimal I-maps are therefore local optima (considering the neighborhood), the local search in this search space is stuck rapidly in local optima and inferred DPMAGM will not be relevant.

Local search in Quotient Acyclic Graph (QAG) space An alternative is therefore to change the search space. This approach is inspired by the Greedy Equivalent Search (GES) defined by Chickering (2003). The GES is a local search for DAGM graph inference that does not consider the DAG search space but the Equivalent Directed Acyclic Graph (EDAG) search space. An EDAG is a Partially Directed Acyclic Graph (PDAG) representing the set of DAGs that are Separation equivalent (S-equivalent) (see Chickering (2002Chickering ( , 2003) ) for more details). Note that a PDAG is a graph containing both undirected edges and directed edges but is not assimilated to a MAG since its separation properties are those of the S-equivalent DAGs it represents. For a few models (mostly non-parametric and Gaussian models), S-equivalent DAGs share the same score. The GES is therefore a local search that operates over the EDAG search space in order to limit score redundancy and local optima.

In our case, the idea is to define a search space that operates over the MAGs that are possible minimal I-maps for DPMAGM. To this end, let us first define the Quotient Acyclic Graph (QAG). A QAG of a MAG G is pair (G Π , Π) where:

• Π = H G is a quotienting,
• G Π is the quotient graph of G induced by quotienting Π that is a DAG.

As a direct consequence of constraints ( 1) and ( 2) for a given X vertex set, there is a one-to-one mapping between the space of DPMAGM minimal I-maps and the QAG space, noted Q a (X ). Since:

• The Stirling number of the second kind

|X | x + 1 ,
gives the number of ways of partitioning the vertex set into x + 1 non-empty cliques.

• For each of these partitions, a QAG can be defined.

The number of QAG, noted |Q a (X ) | is given by Robinson (1973). The number of MAGs, noted |M a (X ) |, has been calculated by Steinsky (2003). The number of QAG, noted |M a (X ) | is given by (4.6)

|Q a (X ) | = |X |-1 x=0 |X | x + 1 |D a ({0

Application to Multi-Type Branching Processes (MTBPs): the case of mango tree asynchronisms

Like other tropical trees, mango is characterized by strong phenological asynchronisms between and within trees, entailing patchiness (Chacko, 1986). Patchiness is characterized by clumps of either vegetative or reproductive Growth Units (GUs) within the canopy: while some parts of the tree canopy develop vegetative GUs, others may remain in rest or produce inflorescences at the same time. These asynchronisms concern more or less large branching systems (Ramírez and Davenport, 2010). They entail various agronomic problems, such as the repeated use of pesticides to protect recurrent sensitive phenological stages from pests, or an excessively extended period of fruit maturity, which may lead to difficulties organizing fruit harvesting. At a given date, if all terminal GUs produce both vegetative and reproductive child GUs in the same proportions and synchronously (i.e. at the same burst dates), all branching systems will grow synchronously and will have the same distribution of fates. Patchiness results from mutual exclusions, at the local scale of sibling GUs, between some of their burst dates, and/or fates. Our objective was to identify and characterize such exclusions and open up new perspectives to possibly connect them to patchiness in the canopy.

Previous studies showed that the fate and burst date of a child GU are markedly affected by those of some ancestor GUs (Dambreville et al., 2013). This approach, based on regression models, make it possible to determine the effects of several factors (e.g. timing of development or fate of the parent GU, fruit load) on only a single response variable, called the GU feature (e.g. either the timing of development or the fate of a single child GU). This approach suffers from two main limitations: • the features of a GU cannot be predicted together in an obvious manner,

• a feature cannot be predicted for all child GUs if interactions occur between sibling GUs in addition to those with the parent GU.

To characterize dependencies (in particular, exclusions) between child GUs through their architectural and phenological contexts, the notion of GU state must combine (see figure 4.2 and 4.3):

Growth cycle delay. The growth cycle i of mango trees extends from July 1 st of year i -1 until March 1 st of year i + 1. During this growth cycle, the vegetative phase corresponding to GU burst takes place between July 1 st of year i -1 until June 30 th of year i, followed by the flowering phase until September 30 th of year i, and finally the fructifying phase until March 1 st of year i + 1. With respect to its parent GU burst date, a child GU can burst in the same (S) growth cycle or in the next (N) growth cycle.

Flush of burst of a GU. Each growth cycle of a mango tree is divided into three flushes. Early flush corresponds to the period where the vegetative phase of a cycle Fate of a GU. The most important characteristic of a GU is its vegetative or reproductive character. Three cases must be considered: the GU is vegetative (V), reproductive with terminal flowering (T), or reproductive with lateral flowering (L).

In our study, over the 18 states defined by the Cartesian product of the GU characteristics, only eleven states were observed1 : X = {SEV, SLV, NEV, NIV, NLV, SIT, SLT, NIT, NLT, SIL, NIL} Eleven DPMAGMs or PMAGMs were thus identified, each associated with one parent GU state. We focus here on the graphs presented in figure 4.4 associated with the parent state SIT. Considering the QAG of the estimated PMAGM, 5 quotients are identified. Note that since we are considering PMAGM, covariances are positive in each quotient. Except for states NLV, NLT and NEV -for which the edges correspond to positive regression coefficients -all other edges are associated with negative ones. In the following we therefore group these former states together. As a consequence, there are 3 exclusive strategies: These three strategies are thus consistent with the patchiness set-up. The first two are contrasted regarding the fate of the children (vegetative against reproductive) but not for the period of burst. The last strategy is unlike the first two in terms of periods (early or late against intermediate flushes in the same cycle) but no particular fate is represented. Given SIT parent GUs, our results clearly show mutual exclusions between some of their burst periods or fates. These results illustrate the ability of the parametric MTBPs to identify in which contexts a given parent GU can or cannot have child GUs at different flushes or with different fates, which can be interpreted as the origin of asynchronisms. It is therefore not surprising that children in states SEV, SLV, SIT, and SIL are not observed (and therefore not represented) since these states are temporally or biologically incompatible (a succession of three GUs that burst in the same cycle is highly improbable).

The QAG is very convenient as it represents the MAG at a coarser scale, which is less complicated. Black edges are associated with positive covariances and red edges with negative covariances.

Concluding remarks

Discrete Parametric Mixed Acyclic Graphical Models (DPMAGMs) Let us consider the given parametric catalog of discrete multivariate distributions:

• multinomial and derived distributions,

• negative multinomial distribution,

• multivariate Poisson distribution.

All these distributions impose the same sign on covariances between random variables. Although this constraint may be seen as a flaw when they are directly used to model multivariate count data, when plugged in DPMAGMs this enables a two-stage interpretation of the model to be made.

As illustrated in the results, the same sign of covariances in quotients helps to interpret within quotients relations and to bring to the foreground biological meaning of these quotients. Then, the use of the QAG allows to investigate efficiently relations between quotients by representing the MAG at a coarser scale.

Gaussian Mixed Acyclic Graphical Models (GMAGMs) This chapter considered only MAGM for multivariate count data. In cases of collections of real-valued outcomes, Gaussian Mixed Acylic Graphical Models (GMAGMs) are of considerable interest. Since GMAGMs are not constrained (unlike DPMAGMs), they offer a relevant alternative to Gaussian undirected graphical models or Gaussian Directed Acylic Graphical Models (GDAGMs).

Although, for graph identification of GMAGMs, a local search in the MAG space could thus be used, it is important to remark that the local search space in the QAG may be more relevant. In fact, using Lasso estimators such as the Gaussian graphical Lasso (Friedman et al., 2008), the optimal MAG -which is a partial graph of a MAG encoded by a QAG -is easily selected and the estimation is consistent. Therefore, the local search in QAG combined with the Lasso estimator is an interesting alternative to the local search in MAG space. Current work consists in implementing such estimators in order to perform a sensitivity analysis of our heuristic and compare it with the local search space in MAG space.

A study of emerging patterns The motifs highlighted by generation distributions yields only a local point of view on asynchronisms. This local point of view can be turned into a more integrated view by using the MTBP model to predict the total number of descendant GUs at each flush and each fate using limit theorems (Yang, 2003) or simulation approximations. Note that this patchiness can also be viewed as a long-range pattern present in trees and it is therefore relevant to consider long-range dependency models for tree-indexed as discussed in the next chapter.

Introduction

Like other tropical trees, mango is characterized by strong phenological asynchronisms between and within trees, entailing patchiness (Chacko, 1986). Patchiness is characterized by clumps of either vegetative or reproductive Growth Units (GUs) within the canopy: while some parts of the tree canopy develop vegetative GUs, others may remain in rest or produce inflorescences at the same time. These asynchronisms concern more or less large branching systems (Ramírez and Davenport, 2010). They entail various agronomic problems, such as the repeated use of pesticides to protect recurrent sensitive phenological stages from pests, or an excessively extended period of fruit maturity, which may lead to difficulties organizing fruit harvesting. The objective here is to define statistical methodology to identify and quantify these patchiness patterns. This approach is particularly interesting since it could enable quantification of this phenomenon and more generally highlight patchiness patterns for species where such patterns are not directly apparent in the data.

Tree-indexed data are used as plant architecture representations and it is assumed that plant patches can be assimilated to a partition of tree-indexed data into subtrees. It is therefore assumed that there are subtrees within which the characteristics of the botanical entity follow the same or nearly the same distribution and between which these characteristics have different distributions. The detection of such subtrees can thus be stated as tree-indexed data segmentation. Although patchiness is a spatio-temporal phenomenon, we focus here on its spatial aspect on given trees observed at given dates. Such a point of view results in many missing values in tree-indexed data since over these periods it is mainly vertices corresponding to the canopy (i.e. leaf of trees) that are observed. Classical statistical models for tree-indexed data (Crouse et al., 1998;Durand et al., 2004Durand et al., , 2005) ) based on Markovian hypotheses are no longer relevant since internal vertices are not observed. The chosen strategy is to search for abrupt changes in the proportions of GU types within the tree. This is the analog of sequence segmentation problems (Hupé et al., 2004;Olshen et al., 2004;Picard et al., 2005) conducted on trees. It is noteworthy that exact methods for determining the most probable segmentation of a sequence cannot be transposed to tree-structured data. We therefore propose here to use a greedy algorithm for segmenting trees. As underlined by Picard et al. (2007), the output of the segmentation procedure is a partition of trees considering that each element of this partition is different from each others while two non-adjacent subtrees can be very similar. We therefore propose a two-stage tree segmentation/clustering algorithm based on the previous segmentation procedure combined with a mixture model in order to identify similar subtrees.

The remainder of this chapter is organized as follows. The presentation of treestructured representations of plants, is followed in section 5.2 by the development of segmentation/clustering models and practical aspects of the application of these models to botanical data. The contribution of these segmentation/clustering models for treeindexed data in plant architecture is then illustrated in section 5.3 through the patchiness application. Finally, efficiency and technical difficulties concerning these models are discussed in section 5.4. 

Material and methods

Tree-structured representation of plants

As discussed by Godin and Caraglio (1998), plant topology can be described formally through Multiscale Tree Graphs (MTGs). In a MTG, each vertex corresponds to a botanical entity at a given scale (e.g. metamer, GU) and each edge represent the physical connections between two botanical entities and each scale to a more-or-less macroscopic viewpoint on the plant (see chapter 2 for more details). Considering the methodology presented by Durand et al. (2005, see figure 5.1) for Hidden Markov Tree (HMT) models, a plant can also be represented by a tree-graph corresponding to a single scale of a MTG for purposes of statistical analysis.

Data of interest are thus univariate tree-indexed data x = (x t ) t∈T -or more generally multivariate tree-indexed data noted x = (x t ) t∈T -where T ⊂ N is the set of vertices of a directed tree-graph τ = (T , E) and E ⊂ T × T \ R is the set of directed edges representing lineage relationships between vertices. R represent the set of roots and L the set of leaves of τ . Until further notice, we consider that τ is sensu stricto a tree and the only root of τ is denoted by r. Let pa (.) denote the parent, ch (.) the child set, de (.) the descendant set and nd (.) the non-descendant set of a vertex. These notations also apply to the set of vertices (see Lauritzen, 1996, for graph terminology). Capitalized versions indicate closure of the corresponding notation, ∀t ∈ T , De (t) = de (t) ∪ {t} .

For any set A ⊆ T , xA denotes the subset of x obtained by considering only the vertices in A, ∀A ⊆ T , xA = (x t ) t∈A . tree-segmentation/clustering approach and τ A the subtree induced by A. The in-degree of a vertex t in a tree τ , is denoted by deg - τ (t). This in-degree is 0 if the vertex is a root or otherwise is 1.

Modeling plant patchiness with tree segmentation/clustering models

To simplify notations we will consider in the following the case where x is the realization of a X -valued stochastic process X = (X t ) t∈T such that X ⊂ N is called the observation space.

Unlike Picard et al. (2007) who proposed segmentation/clustering models for sequences where the segmentation and the clustering were performed in a single stage, we propose a two-stage approach here. In the first stage, each tree is quotiented into homogeneous subtrees considering tree segmentation models. In the second stage, a mixture model is used to group these homogeneous subtrees into clusters with similar biological characteristics.

Segmentation models A segmentation model is defined by a vertex quotienting, noted Π, such that each quotient induces a sensu stricto tree (any path between two vertices of one quotient is composed of vertices in the same quotient). Given these quotients, vertices in the same quotient are supposed to be independent and identically distributed. The parametrization of a segmentation model is therefore defined by these quotients and completed by one observation distribution for each quotient. As a consequence of these assumptions, the log-likelihood L (x; Π, θ Π ) of the model decomposes as follows:

L

(x; Π, θ Π ) = π∈Π v∈π log f π (x v ) ,
where f π (•) denotes the observation distribution of the quotient π ∈ Π and θ Π the set of parameters of these observation distributions. The quotients in Π can also be identified by the set of change points, noted P. Each corresponds to the root of the subtree induced by the considered quotient

∀Π ∈ P (T ) , P = t ∈ T ∃π ∈ Π, [t ∈ π] ∧ deg - τπ (t) = 0 ,
where P (•) denotes the powerset of a set. The function ν (•) denotes the function that returns the quotienting associated to a set of change points:

ν : P (T ) → P (T ) P → Π .
Inference of quotients In our practical case, given a quotienting Π, the inference of observation distributions is a simple Maximum Likelihood (ML) inference within each quotient. A major issue, given a number K of quotients, is to find the quotienting that maximizes the log-likelihood. Exact methods for determining the most probable segmentation of path-indexed data cannot be transposed to tree-indexed data. We therefore propose a heuristic approach to find a local optimal solution (see Hawkins (1976) for a similar approach on path-indexed data). Let P (k) denote the change points set associated with k + 1 quotients, corresponding to a local optimum of the log-likelihood. By definition, P (0) is the change points set that induces one quotient and therefore contains only the root of the tree,

P (0) = {r} .
Finding the change points set P (1) that maximizes the log-likelihood of the segmentation model with two quotients is easily achieved by testing successively all the non-root vertices as change points

P (1) = P (0) ∪ arg max t∈T L x; ν P (0) ∪ {t} , θ ν(P (0) ∪{t})
.

The optimal segmentation of a tree into 2 subtrees is therefore easily accomplished. The principle of the heuristic presented in algorithm 4 is to use this principle to build the quotienting iteratively. Note that in order to reduce the probability of being stuck in local optima, if at each step a new change point is found, the removal of change points is considered until further removals no longer increase the log-likelihood.

Selecting the number of quotients If the number of quotients is unknown it has to be selected. Since the purpose of the segmentation is to reveal plant patches, the estimation of the number of quotients is key. This problem can be handled in the more general context of model selection, like for path-indexed data cases, using statistical criteria adapted to the case of segmentation models (Zhang and Siegmund, 2007;Rigaill et al., 2012) or slope heuristics (Lebarbier, 2005;Baudry et al., 2012).

In our practical context of categorical observations, penalized-likelihood criteria with fixed penalties select over-parametrized models and are therefore unsuitable. We therefore considered the data-driven slope heuristic method implemented by Baudry et al. (2012). Since this method requires the computation of over-parametrized models, we thus considered the computation of change-points sequences up to 20 change points.

Tree clustering models Segmentation models detect subtrees such that the observations do not change substantially within each subtree but change markedly between two adjacent subtrees. But the occurrence of similar non-adjacent subtrees in the tree is an important feature. It is therefore assumed that:

• There are a finite, small number of these different types of quotients and that all vertices in a quotient are of the same type.

• Vertices in the same quotient are independent and identically distributed given the type of quotient.

The Expectation-Maximization (EM) and the Maximum A Posteriori (MAP) assignment of quotients of standard mixture models (McLachlan and Peel, 2000), under the constraint that vertices belonging to a given quotient are assigned to the same component, were therefore applied in this context to group similar patches.

P (0) ← {r} ⊲
The root is the optimal first change point

6 while k < K do 7 P ← P (k) ∪ arg max t∈T L x; ν P (k) ∪ {t} , θ ν(P (k) ∪{t}) 8 if L (k+1) ≤ L x; ν (P) , θ ν(P) then 9 k ← k + 1 10 P (k) ← P ⊲ Add a change point 11 L (k) ← L x; ν P (k) , θ ν(P (k) ) ⊲ Update the score 12 P ← P (k) \    arg max p∈P (k) \{r} L x; ν P (k) \ {p} , θ ν(P (k) \{p})    13 while L (k-1) < L x; ν (P) , θ ν(P) do 14 k ← k -1 15 P (k) ← P ⊲ Remove a change point 16 L (k) ← L x; ν P (k) , θ ν(P (k) ) ⊲ Update the score 17 else 18 k ← k + 1 return P (k) , L (k) k∈{0,••• ,K}

Plant material

Experimental design The experimental orchard was located at the Cirad 1 research station in Saint-Pierre, Réunion Island. Five mango trees were described at the GU scale for each of the following cultivars (Dambreville et al., 2013): Since the mango growth cycle in year i is a period ranging from July 1 st of year i -1 to March 1 st of the year i + 1, 2 growth cycles were observed in their entirety (see figure 5.

• Cogshall, • Jose, • Kensington Pride, • Irwin, • Kent, • Nam Doc Mai,

2).

Temporal resolution While patchiness is a spatio-temporal phenomenon, we focus here on its spatial aspect on given trees observed at given dates (see figure 5.3). In tree-segmentation/clustering approach particular, a growth cycle (see figure 5.2) contains 3 periods of marked interest:

Early flush. Early flush corresponds to the period where the vegetative phase of a growth cycle overlaps the flowering phase of the previous cycle.

Intermediate flush. Intermediate flush corresponds to the period where the vegetative phase of a growth cycle overlaps the fructifying phase of the previous cycle.

Late flush. Late flush corresponds to the period where the vegetative phase of a growth cycle does not overlap the previous or the next cycles.

Patchiness was therefore investigated at the flush temporal resolution. Tree-indexed data for each of these flushes and each growth cycle, were extracted from plants at the GU scale as follows:

1. Any GU which burst before the study date was not considered.

2. Any reproductive GU which flowered in the previous growth cycle was not considered because of the limited lifetime of these structures.

3. Any GU which burst or flowered in the current growth cycle and flush was labeled as F for a reproductive GU or V for a vegetative GU.

4. Any leaf of the tree graph which had no label was labeled R for resting GU.

As a consequence we obtained 181 trees in which mostly leaf vertices were observed with the following observation space2 X = {F, R, V } .

Results

Tree segmentation

Of the 181 trees, only 132 were successfully segmented. These failures were mainly due to the presence of trees with a very low level of noise, therefore over-parametrized models for penalty computation could not be computed for these trees. Note that even thought we did not consider these trees, these failures to obtain over-parametrized models could be considered as an indication of trees that are patches. But as illustrated on figure 5.4, the tree segmentation successfully detected 608 patches with various compositions and relative sizes. Note that only a few patches of height 0 were detected (6%), indicating that there were relatively few over-segmented trees. (Dambreville, 2012). This mango tree is separated into two parts. The left part in dark green is a clump of old GUs where fruits can be found. The right part in light green is a clump of new vegetative GUs. This visually patchy appearance is mostly due to GUs situated in the canopy at a given date.

Subtree clustering

Although the composition of the patches varied, most were close to the vegetative, flowering or resting poles (see figure 5.4). The second stage of clustering was therefore highly relevant since the occurrence of similar non-adjacent subtrees in the tree was an important feature.

For the mixture model, we considered three different states in order to group subtrees into 3 clusters and assess the general composition of these patches (see figure 5.4). Based on the observations distributions:

Flowering patches were assigned to state 0,

f 0 (F) = 0.7, f 0 (R) = 0.26, f 0 (V) = 0.04.
Vegetative patches were assigned to state 1, In both graphs each tree or subtree is identified by a blank disk, whose size is proportional to its relative size with respect to the original tree. (C) Ternary plot of clustered subtrees. In this graph each cluster of subtrees is identified by a blank disk, whose size is proportional to its weights in the inferred mixture model. In these ternary plots, the left bottom corner of the triangle represents the pure flowering trees, the right bottom corner the pure resting trees, and the top corner the pure vegetative trees. Therefore, a tree near a corner of the triangle is an almost pure tree. By contrast, if it is near an edge it has a very low proportion of the characteristic represented at the corner opposed to the edge. The colored triangles in the background of these ternary plots correspond to bins of histograms colored according to a heat map (from dark blue corresponding to low tree frequency to red for high frequency). The histogram of initial trees is represented in (A) and the histograms of segmented and clustered subtrees are represented in (B, C).

f 1 (F) = 0.08, f 1 (R) = 0.13, f 1 (V) = 0.79.
Resting patches were assigned to state 2,

f 2 (F) = 0.2, f 2 (R) = 0.72, f 2 (V) = 0.08.
Based on the weights π 0 = 0.22, π 1 = 0.46, π 2 = 0.32, there was a slight excess of vegetative patches, but all patches are clearly present. Note that this excess of vegetative patches is biologically understandable since the observed mango trees were young and therefore not at their permanent production regime, which induces more flowering GUs.

While there was some degree of opposition between vegetative and flowering GUs within patches, resting GUs were present in non negligible quantities in each patch.

Cultivar comparisons

The advantage of tree segmentation/clustering models is that, given the patches and their identities, the different cultivars can be compared. For instance, we computed for each cultivar (see figure 5.5):

Relative patch size. The empirical cumulative distribution functions of relative patch size was used to compare cultivar behaviors in terms of patch size. The relative size of a patch is defined as the ratio of the number of vertices in the patch to the number of vertices in the complete tree. Although most of the cultivars had almost the same behavior, there were relatively different. Irwin had the largest patches, in contrast to Tommy Atkins that had the smallest patches. Jose is also quite interesting since it is the cultivar with the most heterogeneous patch sizes and unlike the to other cultivars it has no marked plateau for intermediate patch sizes.

MAP assignment of quotients. MAP assignment of quotients yields information about patch representations in cultivars. The most marked differences concerned Tommy Atkins, which had only 2 categories of patches, with flowering patches being quasi-absent and partly compensated by a significant proportion of flowers in resting patches.

Discussion

Performance Our segmentation approach is based on a heuristic. We therefore assessed the performance of this heuristic approach assuming that the number of quotients was known. Comparisons of the specificity and sensitivity of these matrices indicated that the approach was suited to recovering the simulated quotienting (see figure 5.6). Note that, even in some cases of very low noise, sensitivity can be surprisingly low. This is due to identifiability issues that can be summarized with the following question: 'Is it a flowering tree with vegetative patches or a vegetative tree with flowering patches?'. At some point, if the proportions of simulated states are fairly similar, a small level of noise can make the difference. If the tree was considered to be 'a flowering tree with vegetative patches' but the heuristic method found that it was 'a vegetative tree with flowering patches', the corresponding comparison of simulated and segmented quotients induced low sensitivity but high specificity.

Scale comparisons

The scale of patch expression is of marked interest. If in one tree this can be tackled by comparing height, depth or width distributions between the different type of patches, in a forest, this approach is no longer relevant. We can therefore use an approach consisting in computing distributions of relative heights, depths or widths with respect to the tree within which the patch is found (see figure 5.5). But since plant topology can be described formally through MTGs, it may be relevant to consider the quotiented tree resulting from tree segmentation as an inferred scale and compare it to the biological scales encoded into the MTG. This could be tackled using distances between tree quotienting, defined by Ferraro et al. (2003). Using this distance, the distances between tree quotienting obtained by the segmentation stage and the nested biological quotientings could help identify the scale of patchiness patterns within the different cultivars and their modifications over time.

Work in progress and perspectives

This thesis aimed to propose a statistical modeling framework for studying patterns in tree-indexed data. To this end, two major classes of statistical models were investigated.

In chapter 3 we considered Hidden Markov Out-Tree (HMOT) models that rely on local dependency assumptions and devoted to motif analysis. A generalization of stateof-the-art HMOT models was introduced to consider dependences between siblings and randomness of the generation process. This required the design of:

• an upward-downward smoothing algorithm in order to implement efficiently the E-step of the Expectation-Maximization (EM) algorithm,

• a dynamic programming algorithm for the restoration of the most probable state tree for this family of models.

The upward-downward algorithm developed corresponds to an instance of the generic algorithm for graphical models proposed by ?. Compared to this generic algorithm, the more dedicated upward-downward algorithm has the following desirable properties:

• Upward and downward recursions are numerically stable.

• It is a true smoothing algorithm and its outputs, i.e. state profiles, can be used as a diagnostic tool.

• Intermediate results of the upward-downward algorithm, which are clearly defined in terms of conditional probabilities, can be used in different contexts such as the computation of the log-likelihood of the observed data or the simulation of a state tree given an observed tree.

In chapter 4 the focus was on unordered trees with large numbers of child vertices in the context of a categorical observed process. Since the state process of Hidden Markov Unordered Out-Tree (HMUOT) models studied in chapter 3 is modeled by Multi-Type Branching Processes (MTBPs), this chapter considered the case of MTBPs and focused on the design of parametric versions of HMUOT models in a simpler case. Inference of MTBPs mostly reduced to inference of their generation distributions, which are discrete multivariate distributions. Since the analysis of multivariate count data is a recurrent and crucial issue in many modeling problems, particularly in biology, ecology, sociology and econometrics, the scope of the problems that can be dealt using such models is far larger than the considered application to MTBPs. In order to characterize the dependences between the components of these discrete multivariate distributions, we introduced a Discrete Parametric Mixed Acyclic Graphical Model (DPMAGM). Although parameter inference for such models is a classical issue in statistics, we considered here the inference of the structure, which has been considered less often in the literature. Structure inference was tackled using a local search within the Quotient Acyclic Graph (QAG) search space instead of the Mixed Acyclic Graph (MAG) search space in order to minimize the probability of being stuck in local optima. The advantage of this search Work in progress and perspectives space is not restricted to DPMAGMs and we are now considering the case of Gaussian Mixed Acylic Graphical Model (GMAGM) to test and compare our heuristic with the local search space in the MAG space and other methods (???).

In chapter 5 we investigated the generalization of multiple change-points models from path-indexed data to tree-indexed data. In contrast to HMOT models, these models belong to the class of long-range dependency models and are suitable for segmentation analysis. Since exact methods for determining the most probable segmentation of path-indexed data cannot be transposed to tree-indexed data, we proposed an effective heuristic approach. Although in our application context our focus was on categorical variables, this approach can also be applied to any type of random variable or random vector. Note that in a few cases where decompositions of the log-likelihood are available (e.g. Poisson piecewise constant parameters or Gaussian change in mean and variance models), little work could be done to improve the time and space complexity of such algorithms.

In the remainder of this chapter we describe work in progress and perspectives conveyed by this thesis. We first focus on the efforts made for software development. All methods and models developed by team members are integrated in a common software component, V-Plants, in the OpenAlea platform (?). An overview of the software resulting from implementation of the statistical models and methods developed in this thesis in order to make it available to team members and partners is the presented. Then, whereas chapter 3 focused on HMOT models, Hidden Markov In-Tree (HMIT) -discussed by ? and developed by ? -are related models that also take into account dependencies between children. These models and their parametrizations are therefore discussed with respect to HMOT models. Concerning the generation distributions of HMOT, in chapter 4 we considered the use of graphical models in order to reveal exclusion and inclusion patterns in child fates. An alternative model, based on mixture models, is presented and the different hypotheses induced by these two models are discussed hereafter. Finally, we revisit the patchiness phenomenon discussed in chapters 4 and 5 and present an integrative analysis that could be conducted to decipher mango tree asynchronisms and patchiness phenomena.

StatisKit: graphical model inference in C++ and Python

Project description StatisKit is a bipartite library (C++ and Python) that developed during this thesis and concerns the domain of graphical models ranging from the inference of Hidden Markov Tree (HMT) models on the basis of tree-indexed data to undirected graph, Directed Acyclic Graph (DAG) and Mixed Acyclic Graph (MAG) model parameters and structure inference for multivariate mixed data. It is distributed under the CeCILL-C license as a package on the OpenAlea platform to encourage its use and development in academic settings. StatisKit provides implementations of the most recent work conducted by the Virtual Plants team in the field of statistics (in particular methods presented in ? and in this thesis a beta version was publicly released as a package on the OpenAlea platform in 20133 . Since then, the project has been augmented with Markovian models and segmentation algorithms for tree-indexed data and a new release is planned for the end of 2014.

Underlying technologies C++ and Python are popular programming languages for scientific computing. The C++ language, which is designed to be compiled into low-level code, allows for the design of efficient libraries. but such libraries are not intuitive or easy to manipulate for data analysis. The high-level interactive nature of Python language is an appealing choice for non-specialists in computer science such as biologists. In OpenAlea, a common choice is therefore to combine C++ for library design and Python the definition of its Application Programming Interface (API) (see table 6.1).

Code design

To facilitate module extensibility, particular attention was paid to the inheritance diagrams of model and estimators classes. Moreover, rather than providing as many features as possible, the project's goal was to provide solid implementations of estimators. Hence, code quality is ensured by:

1. The design of generic algorithms that can be tested on benchmark data. This is achieved by extensive use of templates and virtual classes in C++, allowing for code factoring.

2. The design of specific algorithms that are more efficient than those used formerly but also are more specialized. It is in particular possible to test complexity improvements by simulation and ensure that results are consistent with the generic algorithms.

For object of database types no hierarchy is imposed. The only requirement for such classes is that there must be a clear identification of the models available (e.g. univariate distributions for univariate data, tree processes for tree-indexed data) in order to build the corresponding model selection environment (classes combining data and the best model or the ordered or unordered collection of proposed models during estimation procedures). |X d | independent parameters to define, but in practice the parametrization of a MIT model is analogous to the parametrization of a high-order MC model, with the out-degree of the vertices playing the role of the order of the MC. Concerning high-order MC models for path-indexed graphs, two approaches are proposed to build parsimonious models:

Mixture transition distribution. These models were introduced by ? and later generalized as Mixed Memory Markov Chain (MMMC) models by ?. This type of parametric high-order MC relies on an analogy with Auto-Regressive (AR) models where high-order transition probabilities are represented as convex combinations -or a mixture -of first-order transition probabilities. The constraints on the dependencies induced by this type of parametric modeling are still unclear. This principle was transposed to Hidden Markov In-Tree (HMIT) models by ?.

Variable-order Markov chain. In these models (???), memory length is variable and depends on the context. The idea here is to aggregate memories with similar suffixes (i.e. most recent states) that share the same transition distributions.

The aggregation of memories relies on the fact the successive states in memories are ordered. Unlike mixture transition distribution models and mixed memory Markov models, this non-parametric approach does not impose constraints on the dependencies that can be represented. This approach could be transposed to MIT model by imposing order constraints either on the children of a vertex and/or on the states. independent parameters, but in practice each of these transition distributions can be parsimoniously modeled by categorical regressions (?).

Parsimonious Markov

If we reconsider the example developed in chapter 3, since the roots of lineage trees are not systematically at time 0h, it would be relevant to orient the lineage trees from the leaf vertices at the last time point to the roots. This leads to the Hidden Markov Unordered In-Tree (HMUIT) model, which is parametrized by transition probabilities. The transition probability matrix is described by the regression matrix of the categorical regressions. Since branching viewed backward is coalescence, this model can be viewed as a hidden coalescence process. We expect this model to provide complementary information, with respect to the HMOT, regarding in particular the cells identified at the first time points on the basis of cell identities propagated from the last time points (see figure 6.7). But simple categorical regressions suffer from the fact that left-right models cannot be defined. In order to achieve an ordering or a partial ordering on states, it could be relevant to consider the extension of categorical regressions proposed by ??. and the random variable S = x∈X B x . Precise investigations on the distribution of the random vector (B x ) x∈X given S ≥ 2 could be of considerable interest and we expect to obtain:

• Negative covariances between pairs of variables that are not in the same components,

• Positive covariances between pairs of variables that are in the same components.

Let G be the graph of positive covariances composed of the vertex set X and the edge set E. E is defined as the set of edges that correspond to positive covariances in the conditional dichotomous random vector,

E = (i, j) ∈ X 2 [i = j] ∧ [Cov (B i , B j | S ≥ 2) > 0] .
If there is a low level of noise, the quotienting could be identified by the connected components of the graph G. In the case of a high level of noise, a preliminary covariance selection step (see for ?? for examples) could be used to detect non-significant covariances.

Note that if this kind of procedure can identify the components, once the components are known, the Expectation-Maximization (EM) algorithm (?) for parameter inference could be initialized quite easily by the following approximation of the initial posterior probabilities: 

Integrative models for deciphering mango tree asynchronisms

In chapter 5 the patches were assimilated to hidden states in the subtree clustering stage. The motif analysis conducted in chapter 4 could therefore be enhanced and used to decipher more precisely mango tree asynchronisms incorporating hidden states, assimilated to patch identities. The use of HMUOT defined in chapter 3 combined with the DPMAGM studied in chapter 4 for modeling generation distributions would lead to parametric HMOT where motifs could be easily interpreted considering the graphical representation of generation distributions.

When considering the motifs highlighted by generation distributions, we only capture a local point of view on asynchronisms. This local point of view can be turned into a more integrated view by simulating state trees corresponding to the observed mango trees. The change-point detection algorithm defined in chapter 5 could then be applied to these simulated trees. This step could be used to test whether long-range patchiness patterns emerge or not when these motifs are chained during tree growth.
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  f k ), are introduced to reduce the forces applied. Usual values for parameters are α = 2.0, β = 1.0, γ = 1.0 ǫ = 0.1, κ = 1.0, λ = 273.0 and τ = 10.0 for M = 100 iterations.
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 212 Figure 1.2 -Examples of force-directed directed graph layouts. From left to right the initial positions of vertices then the results of the second, tenth and hundredth iterationsStarting from given positions, the graph is viewed as a magnetized spring system which evolves to reach a stable configuration in a given magnetic field (the parallel one in this case).
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 13 Figure 1.3 -Examples of movements induced by a magnetic field. The field orientation vector is represented by a compass directed from the south (in white) to the north pole (in red). Forces resulting from the magnetic field are represented by white arrows applied at both extremities of the edges. (A) represents the successive movements of a directed edge. (B) represents the successive movements of an undirected edge. The directed edge converges to the direction of the magnetic field while the undirected edge oscillates around the orthogonal direction.

Figure 1 . 4 -

 14 Figure 1.4 -Examples of magnetic fields. (A) The south parallel field. (B) The polar field. (C) The clockwise concentric field. The ideal directions for directed edges are represented at given positions considering 3 of the magnetic fields proposed bySugiyama and Misue (1995).
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 15 Figure 1.5 -Adjacency matrix drawing. Here are represented an adjacency matrix G, a permutation matrix P , and the corresponding rows and columns permutation of the adjacency matrix of an undirected graph. If the adjacency matrix describes the topological information encoded in the graph it may be advantageous to rearrange the rows and columns of this matrix in order to highlight structural information. Whereas the adjacency matrix G of a graph with 50 vertices does not reveal any particular topological information, the permuted matrix corresponding to a permutation of the vertex labels highlights the presence of 5 clusters of vertices.

Figure 1

 1 Figure1.6 -Remarkable undirected graphs. Graph G 0 is a tree and G 1 a complete graph. Graph G 2 is not chordal as there is a diamond shape 1, 2, 3, 4 missing a chord (1, 3) and/or(2, 4). Graph G 3 is one of the chordal embedding of G 2 where the chord(2, 4) has been added. The 4-cycle 1, 2, 3, 4 has therefore been split in 2 3-cycles 1, 2, 4 and 2, 4, 3.
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 17 Figure 1.7 -Remarkable directed graphs. Contrary to graph G 4 in which we have the directed 3-cycle 1, 2, 3, 1, graph G 5, where the only difference is the reversal of the edge (3, 1) into (1, 3), is a DAG. Graph G 6 is a DAG with 3 immoralities (0, 3), (2, 3) and (0, 2), therefore many of these edges were added into its undirected version in order to build its moral graph G m 6 , which is complete.
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 18 Figure 1.8 -The d-separation property. In graph G 7 , as the vertices 0 and 1 are separated in G 7 m an({0,1}) , 1 ⊥ 0 holds but not 1 ⊥ 0 | 2 as the immorality (0, 1) in G 7 m an({0,1,2}) is moralized, thus vertices 0 and 1 are not separated by vertex 2.
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 1 Figure 1.10 -The m-separation property. In the graph G 10 , 0 ⊥ 3|1, 2, 1 ⊥ 3|0, 4 (see G m 10 ) and 1 ⊥ 2 (see G 10 m an({0,1}) ) hold but not 1 ⊥ 2|3, 4 as the edge (1, 2) is added in the moral graph G m 10
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 1 Figure 1.13 -Examples of Gaussian graphical models. (A) Undirected perfect I-map for a multivariate Gaussian distribution. (B) Directed minimal I-map of the multivariate Gaussian distribution defined in (A). (C) Directed perfect I-map for a multivariate Gaussian distribution. (D) Undirected minimal I-map of the multivariate Gaussian distribution defined in (C). In (A) the definition of the multivariate Gaussian distribution requires 12 parameters since there are 4 means and 8 non null coefficients in the concentration matrix whereas the same distribution in (B) is defined with 13 parameters since there are 4 means, 4 variances and 5 regression coefficients in the matrix. Similarly, the multivariate Gaussian distribution in (C) is defined by 8 parameters whereas in (D) 9 parameters are used.
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 2 Figure 2.1 -Quotient tree graphs. (A) Tree graph with 5 quotients represented by the dashed hulls including quotiented vertices. (B) Quotient tree graph obtained by considering the 2 black quotients and the 2 red quotients. (C) Quotient tree graph obtained by considering the 2 black quotients and the green quotient. In (B) and (C), vertices are colored according to the color of quotients in (A). Quotient tree (C) is obtained from a partition where each subgraph induced by quotients is a tree graph. This a sufficient condition but not necessary as illustrated on (B) where the quotient tree graph has one red quotient which induces a forest tree graph (seeGodin and Caraglio, 1998, for more details).
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 22 Figure 2.2 -Drawing of trees. (A) Level-based drawing produced by algorithm 2. (B)Radial drawing produced by algorithm 3. Each edge is represented by a straight line given that directions are evident for drawings are directional. Each vertex is represented by a black filled dot. Both drawings are directional since no child vertex is before its parent considering the second unit vector. Roots of trees are situated at the bottom using algorithm 2 whereas they are situated in the innermost concentric circle using algorithm 3. In this thesis tree drawings are produced using algorithms 2 or 3 for node positioning and a customized interface to the matplotlib package for the rest(Barrett et al., 2005; Hunter, 2007).
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 2 Figure 2.3 -Meristem and example of tree-indexed data on the microscopic scale(Fernandez, 2010; Legrand, 2014). (A) SAM of Arabidopsis thaliana photograph and associated floral meristems. At some point, cells not maintained as embryonic cells in the SAM enter into the differentiation process of floral meristems. (B, C) Schematic cross-sections of the same meristem at different times represented with identified cells (c t ) t∈ 0,11 . The possible location of this cross-section is on (A) with a dotted black line. Only the first two layers of cells L1 and L2 are represented in this scheme. (C) Tree representation of follow-up from (A) to (B) where each cell is represented by the corresponding labeled vertex, and lineages are represented by directed edges. Cells of the first observation (A) are considered as roots of the tree, and at each time point a cell is connected to itself at the previous time point if no division occurred, or otherwise to its mother. Only two divisions occurred here, from cell 1 to cells 6 and 7 and from cell 2 to cells 8 and 9.
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 24 Figure 2.4 -Example of a 3D + t reconstruction and segmentation. (A) 3D images reconstructed after multi-angle acquisition are displayed over time. Images, from left to right, were acquired at 0h, 26h, 44h, 56h and 69h after the beginning of the experiment according to the Das et al. (2009) experimental design. The red color is due to a marker of cell walls. (B) The corresponding segmented images are presented. Cells are identified and their color is allocated according to their root identifier in lineage trees (seeLegrand, 2014, for more details). Since cells in the same lineage tree share the same color, it can be seen that even though there is no explicit spatial information in trees, since cells cannot migrate in plants, spatial information is implicit.
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 2 Figure 2.5 -(A) Shoot apical meristem and (B) stem organization(Barthélémy and Caraglio, 2007).Each leafy axis (B) ends in an apical meristem frequently protected by an apical bud (A). Each stem comprises a succession of metamers (in gray on (B)constituted by an internode, the upper node, leaves and axillary buds attached to the node).
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 2 Figure 2.6 -Tree-indexed data representation of plants(Durand et al., 2005). (A) The plant is represented on the Growth Unit (GU) scale where each GU is denoted by e v with v ∈ [|0, 14|[. (B) Formal tree graph representation of the same plant: each GU e v is represented by a vertex v. Part of the topological information is not encoded in the graph but can be stored as a property (the three shoots borne by e 1 ). A few other vertex properties can be defined such the length of GUs, their top and bottom diameters. . . depending on the study.
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 2 Figure 2.7 -Plant modularity(Barthélémy and Caraglio, 2007). This diagram represents main scales of organization (botanical entity) and repetition phenomena (terms in italics or in boxes) in seed plants.
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 2 Figure 2.8 -Illustration of mango tree patchiness(Dambreville, 2012). This mango tree is separated into two parts. The left one in dark green is a clump of old GUs wherein fruits can be found. In contrary the right one in light green is a clump of new vegetative GUs.
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  and ∀s ∈ S, θ s = {∆ s (s)} s∈ S , where S = n∈N S n .

Figure 3

 3 Figure 3.1 -Example of 3D + t images and meristem early stages. The 3D images reconstructed after multi-angle acquisition are displayed over time. Images, from left to right, were taken 0h, 26h, 44h, 56h and 69h after the beginning of the experiment according to the Das et al. (2009) experimental design. The red color is due to a marker of cell walls (vital dye FM4 -64). We focus here on the first three stages of floral meristem development. Stage 1 is observed at 0h with no clear distinction between floral meristem (confined in the dotted circle) and inflorescence meristem. Stage 2 is observed at 26h with a clear boundary (represented by the dotted line) between the inflorescence meristem and the floral meristem. Early stage 3 is observed at 69h when sepals start to emerge at the sides of the floral meristem (represented by the dotted line).
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 32 Figure 3.2 -Spatial regions on the floral meristem at stage 3, when spatial regions are relatively well defined and can be assigned manually. The most advanced sepal corresponds to red cells and the latest ones to green cells. Orange cells correspond to the central dome and light blue cells to the central zone. Boundary cells are in dark blue.
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 3 Figure 3.3 -Observation distributions of the hidden Markov unordered out-tree model. Observed histogram and mixture of observed distributions for each structuring characteristic. State 0 is in dark blue, state 1 in light blue, state 2 in yellow and state 3 in dark red. Surface areas and volumes are modeled by Gamma distributions and curvatures by Gaussian distribution. Combining separations induced by surface areas and volume and curvatures on the other indicates that states are well separated using solely these characteristics.
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 34 Figure 3.4 -Restoration of hidden states using the restoration algorithm for Hidden Markov Unordered Out-Tree (HMUOT) models. Images, from left to right, were taken 0h, 26h, 44h, 56h and 69h after the beginning of the experiment. Spatial projection of the four states obtained using the HMUOT estimated from epidermis surface area, internal surface area, volume, curvatures and inertia as cell characteristics. State 0 is in dark blue, state 1 in light blue, state 2 in yellow and state 3 in dark red. Sepals are mostly identified by considering state 0 and 3, the dome by state 2 and boundary cells by state 1.
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 3 Figure 3.5 -Iterations of the Expectation-Maximization (EM) algorithm for the independent and dependent Markov unordered out-tree models. The successive log-likelihood improvements during the EM algorithm for the independent model are numbered from 0 to 20. The successive log-likelihood improvements during the EM algorithm for the dependent model are numbered from 21 to 56. The maximum log-likelihood estimates reached -18286.48 for M 1 and -17730.57 for M 0 .
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 4 Figure 4.1 -Local search in Mixed Acyclic Graph (MAG) and Quotient Acyclic Graph (QAG) search spaces. The MAG search space vertices are represented by black or green disks and edges by black lines. The QAG search space vertices are represented by red circles and edges by red lines. The surrounding of a vertex in MAG search space by a vertex in the QAG search space represents the fact that they encode the same MAG. Since DPMAGMs are considered, the MAG search space is not relevant as most of the minimal Independence-maps (I-maps) represented in green have non-minimal I-maps represented in black as neighbors. This induces the fact that most I-maps are local optima in the MAG search space. A contrario since the QAG search space only considers the minimal I-maps of DPMAGM, the probability of being stuck in local optima is lower.
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 42 Figure 4.2 -Scheme of mango trees growth cycles. There are 3 phases in the mango tree growth cycle: vegetative phase (in green), flowering phase (in yellow) and fructifying phase (in magenta). Since a new growth cycle takes place each year and a growth cycle last a year and a half, the vegetative phase is decomposed into 3 flushes (early, intermediate and late) corresponding to the overlapping of this phase with the phases of the previous cycle.

  NIL & NIT children. In this configuration only flowering children produced in the intermediate flush of the next cycle are found.
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 4 Figure 4.3 -States of Growth Units (GUs) in mango trees. (A) Temporal components of states. States of GUs are defined by combining two temporal characteristics: a relative characteristic focusing on the fact that a GU can burst in the same cycle as its parent GU or in the following cycle, an absolute characteristic focusing on the fact that given the flush, the competition for GU resource allocation is not the same. During the early flush, new GUs are in competition with flowering GUs. In the intermediate flush, new GUs are in competition with developing fruits. In the late flush, new GUs are only in competition with themselves. (B) Fate components of states. The most important characteristic of a GU is its vegetative or reproductive character. Note that in the case of flowering, the position of the flower is important from an agronomic point of view since the space available for child GUs is not the same.
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 4 Figure 4.4 -(A) Mixed Acyclic Graph (MAG) and (B) Quotient Acyclic Graph (QAG) of a generation distribution. The parent state of the generation distribution is SIT, a flowering GU that burst in the same cycle as its parent during the intermediate flush.It is therefore not surprising that children in states SEV, SLV, SIT, and SIL are not observed (and therefore not represented) since these states are temporally or biologically incompatible (a succession of three GUs that burst in the same cycle is highly improbable). The QAG is very convenient as it represents the MAG at a coarser scale, which is less complicated. Black edges are associated with positive covariances and red edges with negative covariances.
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 5 Figure 5.1 -Tree-indexed data extraction from plants(Durand et al., 2005). (A) A plant is observed at the GU scale where each GU is denoted by e v with v ∈ [|0, 14|[. (B) Tree-graph representation of the same plant is drawn: each GU e v is represented by a vertex v.
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 52 Figure 5.2 -Mango tree growth cycles. (A) Number of new fructifying GUs by day. (B) Number of new flowering GUs by day. (C) Number of new GUs by month. (D) Scheme of mango tree growth cycles. There are 3 phases in the mango tree growth cycle: vegetative phase (in green), flowering phase (in yellow) and fructifying phase (in magenta). Since a new growth cycle takes place each year and a growth cycle lasts a year and a half, the vegetative phase is decomposed into 3 flushes (early, intermediate and late) corresponding to the overlapping of this phase with the phases of the previous cycle.
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 5 Figure 5.3 -Illustration of mango tree patchiness(Dambreville, 2012). This mango tree is separated into two parts. The left part in dark green is a clump of old GUs where fruits can be found. The right part in light green is a clump of new vegetative GUs. This visually patchy appearance is mostly due to GUs situated in the canopy at a given date.

  Figure 5.4 -Ternary plots of the outputs of the segmentation/clustering algorithm (A)Ternary plot of the initial trees. (B) Ternary plot of the segmented trees. In both graphs each tree or subtree is identified by a blank disk, whose size is proportional to its relative size with respect to the original tree. (C) Ternary plot of clustered subtrees. In this graph each cluster of subtrees is identified by a blank disk, whose size is proportional to its weights in the inferred mixture model. In these ternary plots, the left bottom corner of the triangle represents the pure flowering trees, the right bottom corner the pure resting trees, and the top corner the pure vegetative trees. Therefore, a tree near a corner of the triangle is an almost pure tree. By contrast, if it is near an edge it has a very low proportion of the characteristic represented at the corner opposed to the edge. The colored triangles in the background of these ternary plots correspond to bins of histograms colored according to a heat map (from dark blue corresponding to low tree frequency to red for high frequency). The histogram of initial trees is represented in (A) and the histograms of segmented and clustered subtrees are represented in (B, C).
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 56 Figure5.6 -Performance of the segmentation heuristic for tree-indexed data. This performance was assessed in a simulation study by comparing the simulated and segmented quotients. These comparisons were conducted using the sensitivity and specificity scores of the results.
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  Transition distributions from child vertices to their parent for each given configuration of child states∀v ∈ V, Γ xch(v) (x v ) = P X v = x v Xch(v) = Xch(v) , with ∀x ∈ X , ∀d ∈ deg + (T \ L) , ∀x ∈ X d , x∈X Γ x (x) = 1.Without any further hypotheses there are a total of|X | -1 + (|X | -1)d∈deg + (T \L)

  Figure 6.7 -Comparison of the restoration of hidden states using the Viterbi-like algorithm for HMIT and HMOT models. Images, from left to right, were respectively taken at 0h, 26h, 44h, 56h and 69h after the beginning of the experiment. (A) Spatial projection of the four states obtained using the HMUIT model. (B) Spatial projection of the four states obtained using the Hidden Markov Unordered Out-Tree (HMUOT) model. Both models were estimated using epidermis surface, internal surface, volume, curvatures and inertia as cell characteristics. State 0 is in dark blue, state 1 in light blue, state 2 in yellow and state 3 in dark red. Sepals are mostly identified by states 0 and 3, the dome by state 2 and boundary cells by state 1.

  ∀n ∈ N |X | , ∀x ∈ X , b x = , P (M = m | N = n) ∝ x∈X b x × I (x ∈ m) ,where I (.) denotes the indicator function.

  Cell lineage; change-point model; graphical model; Markov model; plant architecture; tree-indexed data
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Table 1

 1 

.1 -Forces used in classical force-directed algorithms. The notation ||•|| denotes the norm of a vector, • its normalization and δ = r ur v the vector from vertex v to vertex u. F P (resp. F E , F Ē ) is a force applied to all pairs of vertices (resp. adjacent vertices, non-adjacent vertices). Since the relevance of quantity of movement computed for a vertex is limited to a certain amount, functions f ∆ (resp.

  for each generation distribution.

	Number Maximal degree
	of states 2	3	4
	2	11 19	29
	3	29 59 104
	4	59 139 279
	Table 3.2 -Number of parameters of Markov unordered out-tree models as a function
	of the number of states and the maximal degree.

Table 3 .

 3 has the same parametrization of standard hidden first-order 3 -Confusion table regarding the most probable state tree for model M 1 (child number in each state independent) against model M 0 (child number in each state

	M 1 states	0	M 0 states 1 2	3
	0	197 18	0	98
	1	0	533 20	69
	2	0	5	358 24
	3	28	15	19 280

Table 4 .

 4 are constructed considering |C| + 1 independent univariate marginal Poisson variables denoted Y 0 , . . . , Y |C| and ∀c ∈ C, N 1 -Number of parameters in non-parametric and worst case Poisson multitype branching processes as a function of the number of states given trees with N = {0, 1, 2, 3}. For binary trees, there is at worst the same number of parameters in both cases. Note that the number of parameters in the non-parametric models is also a function of the cardinality of N , but that is not true for the Poisson case. univariate marginal Poisson variables and one common univariate conditional Poisson variable. Under this parametrization, the number of parameters, noted |θ|, is bounded in the worst case by:

	Number of	Number of parameters for the
	states	non-parametric case Poisson worst case
	2	19	11
	3	59	29
	4	139	59

c = Y 0 + Y (c)+1 ,

where (c) denotes the rank of c in C. Similarly, multivariate conditional Poisson distributions

(Karlis and Meligkotsidou, 2005) 

are constructed considering |C| independent

702, 329, 343 816, 625, 721, 787 14, 762, 428, 500, 992Table 4 .

 4 , x})| the number of DAGs with vertex set {0, • • • , x}. The QAG space is therefore far less large than the MAG space (see table4.2). Moreover, if the sampling distribution is faithful to a DPMAGM, its minimal I-map is in the QAG space.As a consequence, the local search is conducted in the QAG search space. Since QAGs are DAGs, the edit operations for DAGs can be used. But if only these operations are considered, the search space is not connected since quotients remain unchanged. We furthermore considered the following operations: Two quotients A and B of Π are merged into A ∪ B if the closure of the parent set of A is the parent set of B. This results in deletion of a vertex in the QAG. 2 -Number of Directed Acyclic Graphs (DAGs), Quotient Acyclic Graphs (QAGs) and Mixed Acyclic Graphs (MAGs) as function of the vertex number. |X | is the vertex number. The number of DAGs as function of the vertex number, noted |D a (X ) |, has been calculated by

	|X | 1	|D a (X ) | 1	|Q a (X ) | 1	|M a (X ) | 1
	2	3	4	4
	3	25	34	50
	4	543	715	1, 688
	5	29, 281	35, 381	142, 624
	6	3, 781, 503	4, 258, 357	28, 903, 216
	7	1, 138, 779, 265	1, 222, 487, 933	13, 663, 125, 680
	8 783,		
				, • • • , x}) |	(4.6)
	with |D a ({0, • • • Quotient merging. Quotient splitting. A vertex c of a quotient C ∈ Π is used to form a new quotient that is a singleton and has parents {C ∪ pa (C)} \ {c}. This results in insertion of a vertex in the QAG.

  ). Work on the software started in 2011 and StatisKit: graphical model inference in C++ and Python Table 6.1 -Lines of code in StatisKit. This table uses data generated by SLOCCout program (?).

			126
	Programming Source lines of code
	Language	Count Percentage
	C++	38, 207	57.16%
	Python	28, 637	42.84%
	All	66, 844	
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Morphogenesis is the process by which organisms acquire shape
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Totipotency is a cellular property reflecting a cell's capacity to differentiate into any specialized cell

An inflorescence is a group of flowers on a stem, or complicated arrangement of branches derived from a stem.

The determinate growth process is induced by termination of stem cell production in the meristem

The L1 cell layer is that at the surface of the meristem

AHP6 is a marker for a hormonal signal (cytokinins) present in floral meristems
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frontier between sepals and the dome zone was observed. The appearance of boundary cells was unobtrusive until 44h but significant as the continuous border was clearly identified starting from 56h. In fact, at this time point and the next, state 2 clearly corresponded to the dome, states 0 and 3 to the sepals and state 1 to the boundary. Temporal changes in cell identity are highlighted by the highest estimated probabilities in each generation distribution Γ 0 (0, 0, 0, 2) = 0.07, Γ 1 (0, 0, 0, 1) = 0.13, Γ 0 (1, 0, 0, 0) = 0.29, Γ 1 (0, 1, 0, 0) = 0.45, Γ 0 (1, 0, 0, 1) = 0.42, Γ 1 (0, 2, 0, 0) = 0.35. Γ 0 (2, 0, 0, 0) = 0.20.Γ 3 (0, 0, 0, 1) = 0.14, Γ 2 (0, 0, 0, 1) = 0.13, Γ 3 (0, 0, 0, 2) = 0.09, Γ 2 (0, 0, 0, 2) = 0.10, Γ 3 (0, 0, 1, 1) = 0.11, Γ 2 (0, 0, 1, 0) = 0.18, Γ 3 (0, 1, 0, 1) = 0.35, Γ 2 (0, 0, 1, 1) = 0.28, Γ 3 (0, 2, 0, 0) = 0.17, Γ 2 (0, 0, 2, 0) = 0.31. Γ 3 (1, 0, 0, 0) = 0.05.

states are defined by concatenation of period, flush and fates abbreviations instead of positive integers for purposes of clarity

Observations are defined in terms of GU characteristics instead of positive integers for purposes of clarity.

Available under the name statistic at http://openalea.gforge.inria.fr/dokuwiki/doku.php? id=packages:statistic:statistic

Remerciements

Chapter 5

Quantification of plant patchiness via tree-structured statistical models: a tree-segmentation/clustering approach Abstract Classical multiple change-point models for path-indexed data are transposed to tree-indexed data. The objective of multiple change-point models is to partition a heterogeneous tree-indexed data into homogeneous subtree-indexed data of consequent sizes. Since optimal algorithms of multiple change-point models for sequences cannot be transposed to trees, we propose here an efficient heuristic for tree segmentation. The segmented subtrees are grouped together in a post-processing phase since similar disjoint patches in the canopy are observed. Application of such models is illustrated on mango tree where subtrees are assimilated to plant patches and clusters of patches to patch types (e.g. vegetative, flowering or resting patch).

Keywords Change-point model; plant architecture; mango tree; tree clustering; tree pattern; tree segmentation To this end we simulated 100 different trees using simple Watson and Galton (1875) processes with patches at random heights. Once the height was simulated, given a topological ordering of the change points, their identities were simulated with periodic Markov chains of period 2 (two consecutive vertices cannot thus have the same identity). Then, each of these identities was projected onto corresponding leaf vertices. For each of these leaf-labeled trees, 10 different noise intensities (ranging from 0.0 up to 1.0) were simulated, with the noise intensity defined as the frequency of re-labeled vertices.

We used our heuristic in the 1, 000 trees obtained to recover the quotienting corresponding to the number of simulated quotients. As presented in Denoeud and Guénoche (2006), the comparison of obtained and simulated quotienting was based on the comparison of their quotienting matrices. A quotienting matrix Π of a given quotienting Π of vertices T is the square matrix of general element Π i,j defined as follows:

Work in progress and perspectives

Diffusion Stability of releases is ensured in the Python version using unit and functional tests (with Nose and DocTest ?). Moreover, in a context of reproducible research, all analyzes described in this thesis are available in IPython Notebooks (?) tutorials, which combine our models and a few R procedures (?). At present, the software does not give licenses and operating documentation needed to be published.

Dependencies

The minimal dependency for installation is the OpenAlea platform core (?, for deployment), the Eigen library (?, for linear algebra), and Boost libraries (?, for many things). For Python, the usual packages of Numpy (?, for linear algebra data structure and basic arithmetic operations), Scipy (?, for linear algebra), and Matplotlib (?) are required.

Hidden Markov In-Tree (HMIT) models

In chapter 3 we focused only on Hidden Markov Out-Tree (HMOT) models, but unlike sequences, directed trees are non-symmetrical structures and this induces fundamental differences in model parametrization for Markov Out-Tree (MOT) (edges directed from the root to the leaves) and Markov In-Tree (MIT) models (edges directed from the leaves to the root). For a given tree structure where vertices are labeled with discrete states, we have a small number of potentially complex multivariate transition distributions in the MOT model case, and a large number of simple univariate transition distribution in the MIT model case. The parametrization of a MIT model is analogous to the parametrization of a high-order Markov Chain (MC) model, and the different approaches to build parsimonious high-order MC models (i.e. full parametric approaches such as the mixture transition distribution model of ? and memory selection approaches leading to variable-order Markov chains (???) can be transposed to MIT models.

Parsimonious Markov Ordered In-Tree (MOIT) models

Considering the Markov property, vertices are independent of their descendants given their children ∀t ∈ T , X t ⊥ ⊥ Xde(ch(t)) Xch(t) . This is equivalent to the following factorization of the process distribution

(6.1) leading to MIT models. It is noteworthy that due to the opposite direction of the Markov property -from leaf to root vertices -random generation of children cannot be modeled like in MOT model cases. According to (6.1), a MIT model is defined by the following parameters:

• An initial distribution for leaf vertices, ∀l ∈ L, π x l = P (X l = x l ) ,

Hidden Markov In-Tree (HMIT) models

Multivariate mixture models in Multi-Type Branching Processes (MTBPs)

In chapter 4 we considered discrete multivariate parametric distributions that fulfill the following criteria:

2. These multivariate parametric distributions can have zero-inflated, right-skewed and natural number valued marginals; Therefore, discretized multivariate Gaussian distributions are not appropriate.

3. These multivariate parametric distributions can easily be simulated and probability masses can easily be computed in order to investigate motifs induced by generation distributions and long-range patterns stemming from these generation distributions as trees develop.

4. Child states that tend to appear simultaneously or on the contrary tend to be incompatible can be identified.

To this end, we defined Discrete Parametric Mixed Acyclic Graphical Model (DP-MAGM) that are consistent with criterion (4). But this imposed the constraint of gradual changes considering exclusion patterns. It might therefore be interesting to consider models in which abrupt changes are considered. To this end, we propose to use the following mixture decomposition of the generation distributions

where M ⊂ N represents the set of components, (π m ) m∈M the weights of the components and (P m (•)) m∈M are the discrete multivariate parametric generation distributions that fulfill criteria ( 2)-( 4). These mixture models have been used extensively in the literature, especially for dealing with the over-representation of zeros in the univariate case. Note that this issue is more difficult in the multivariate case since there are different ways of seeing the over-representation of zeros. We propose to address this issue as a problem of variables quotienting with |M| quotients such as:

∀m ∈ M, ∀x ∈ X \ X m , P m (N x > 0) ≈ 0, where X = m∈M X m . We therefore address this issue by using a model where each component contains only one quotient of states that has a significant number of children and such that these quotients have a significant number of children in only one component. The mixture model thus fulfills criterion (4).

The major problem in this model is to identify the components. Let us consider the dichotomous random vector (B x ) x∈X where ∀x ∈ X , B x =    0 if N x = 0, 1 otherwise.