N
N

N

HAL

open science

Goal-driven agents for the tolerance of unforeseen faults.
A safety net for the programmers

Costin Caval

» To cite this version:

Costin Caval. Goal-driven agents for the tolerance of unforeseen faults. A safety net for the program-
mers. Multiagent Systems [cs.MA]. Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR
7606, 2016. English. NNT: . tel-01365983v1

HAL Id: tel-01365983
https://theses.hal.science/tel-01365983v1
Submitted on 13 Sep 2016 (v1), last revised 16 Nov 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01365983v1
https://hal.archives-ouvertes.fr

UPMC Py THALES

1AA{ SORBONNE

THESE DE DOCTORAT DE
PUNIVERSITE PIERRE ET MARIE CURIE

Spécialité
Informatique

Ecole doctorale Informatique, Télécommunications et Electronique (Paris)

Présentée par

Costin CAVAL

Pour obtenir le grade de
DOCTEUR de 'UNIVERSITE PIERRE ET MARIE CURIE

Sujet de la these :

Agents Dirigés par des Buts pour la
Tolérance aux Fautes Imprévues

Un Filet de Sécurité pour les Programmeurs

Goal-Driven Agents for the Tolerance of Unforeseen Faults
A Safety Net for the Programmers

soutenue le 31 mai 2016

devant le jury composé de :

Mme. Amal EL FALLAH SEGHROUCHNI, Professeur Université Pierre et Marie Curie, Directrice de these

M. Cyrille ENDERLI, Ingénieur Thales, Invité

Mme. Adina-Magda FLOREA, Professeur Politehnica de Bucarest, Rapporteur
Mme. Zahia GUESSOUM, Maitre de Conférences Université de Reims, Examinateur
M. René MANDIAU, Professeur Université de Valenciennes, Rapporteur
M. Patrick TAILLIBERT, Ingénieur, Invité

M. Laurent VERCOUTER, Professeur INSA de Rouen, Examinateur

ABSTRACT

While fault tolerance is hot topic in software development, there are situations
when potential faults can be omitted by the near-exhaustive identification and
handling methods employed by “classic” approaches. Examples range from cases
where the complexity hides faults from a rigorous development process, to cases
where due to cost and time constraints on the fault tolerance effort, risks are as-
sumed, either consciously or not. The main question this thesis addresses is “How
should software be developed in order to be tolerant to unforeseen faults?”, i.e. faults
that were not covered in the implementation.

The first contribution of this thesis is a development framework — design, lan-
guage and platform requirements — for producing software that is tolerant to un-
foreseen faults. We show that the use of a multi-agent architecture with goal-driven
agents has numerous benefits for the confinement of errors and the subsequent sys-
tem recovery. We propose language requirements that constrain the programmers
in order to limit some of the possible faults and in the same time localise the ar-
eas where other faults can be present. The execution platform for the written code
also needs to be adapted to take advantage of the resulting structure and trigger the
necessary reparation, dependency handling and reconfiguration reactions in case of
fault manifestations at runtime. We illustrate the approach by discussing the design
and implementation of an application based on a well known multi-agent protocol
(the CNP). For this, we propose an adapted agent-oriented programming language
(ALMA+) and the corresponding platform. Just as a trapeze artist’s “safety net”, the
use of our approach provides last resort mechanisms complementing the “classic”
fault tolerance methods for improving the robustness of software applications.

The second contribution of the thesis focuses on the way goal-driven agents are
programmed. The issue is that many approaches to cognitive agent modelling per-
mit the agent developers to interleave the levels of plans and goals. This is possible
through the adoption of new goals inside plans. These goals will have plans of their
own, and the definition can extend on many levels. From a software development
point of view, the resulting complexity can render the agents” behaviour difficult
to trace, due to the combination of elements from different abstraction levels, i.e.
actions and goal adoptions. This has a negative effect on the development process
when designing and debugging agents. We thus propose a change of approach that
aims to provide a more comprehensible agent model with benefits for the ease of
engineering and the fault tolerance of agent systems. This is achieved by impos-
ing a clear separation between the reasoning and the acting levels of the agent.
The use of goal adoptions and actions on the environment inside the same plan is
therefore forbidden. Our approach is illustrated in two agent-based applications: a
maritime patrol application developed at Thales Systemes Aéroportés (Thales Air-
borne Systems) and an ambient intelligence deployment software. We argue that by
constraining the agent model we gain in clarity and traceability therefore benefiting
the development process and encouraging the adoption of agent-based techniques
in industrial contexts.

iii

RESUME EN FRANCAIS

Dans le cadre de la tolérance aux fautes dans le développement logiciel, il y a des situati-
ons oil des fautes potentielles peuvent étre omises par les méthodes d’identification et de
traitement quasi-exhaustif employées par les approches « classiques ». Les exemples vont
des cas ol la complexité cache les fautes méme en présence d'un processus de dévelop-
pement rigoureux, a des cas ot, en raison des contraintes en termes de cofits et de temps
sur les démarches de tolérance aux fautes, des risques sont assumés, consciemment ou pas.
La principale question que cette thése aborde est « Comment le logiciel devrait étre déve-
loppé afin qu'il soit tolérant aux fautes imprévues ? », c’est a dire les fautes qui ne sont pas
couvertes dans la mise en ceuvre.

La premiere contribution de cette these est 1'élaboration d’un cadre de développement
— des exigences pour la conception, le langage de programmation et les outils employés —
pour produire des logiciels tolérants aux fautes imprévues. Nous montrons que l'utilisation
d’une architecture multi-agent avec des agents dirigés par des buts a de nombreux avan-
tages pour le confinement des erreurs et la récupération ultérieure du systeme. Nous
proposons des exigences au niveau du langage de programmation ayant pour but de
contraindre les programmeurs afin de limiter certaines des fautes possibles et dans le
méme temps de localiser les zones ol d’autres fautes peuvent étre présentes. La plate-
forme d’exécution doit également étre adaptée pour tirer parti de la structure résultante
et déclencher la réparation nécessaire, gérer les interdépendances des composants et la re-
configuration en cas de manifestation de fautes a 'exécution. Nous illustrons 'approche
en étudiant la conception et la mise en ceuvre d'une application reprenant un protocole
multi-agent bien connu (le CNP). Pour cela nous proposons un langage de programmation
orientée agent (ALMA+) adapté et la plate-forme correspondante. Tout comme le « filet de
sécurité » d"un trapéziste, 1'utilisation de notre approche fournit des mécanismes de dernier
recours en complément des méthodes de tolérance aux fautes « classiques » pour améliorer
la robustesse des applications logicielles.

La deuxiéme contribution de la thése concerne la maniére de programmer les agents
dirigés par des buts. Le probleme est que de nombreuses approches pour la modélisati-
on des agents cognitifs autorisent les développeurs a entrelacer les niveaux des plans et
des buts. Ceci est possible grace a I'adoption de nouveaux buts a I'intérieur des plans.
Ces buts ont leurs propres plans, et la définition peut s’étendre sur plusieurs niveaux.
Du point de vue du développement logiciel, la complexité résultante peut rendre le com-
portement des agents difficilement tracgable, en raison de l’entrelacement d’éléments de
différents niveaux d’abstraction, a savoir les actions et les adoptions de buts. Ceci a un
effet négatif sur le processus de développement lors de la conception et du débogage des
agents. Nous proposons un changement d’approche qui vise a fournir un modéle d’agent
plus compréhensible pour faciliter le travail des ingénieurs et augmenter la tolérance aux
fautes des systéemes d’agents. Ceci est réalisé en imposant une séparation claire entre les
niveaux de raisonnement et d’action des agents. L'utilisation des adoptions de buts et des
actions sur l'environnement dans le méme plan est désormais interdite. Notre approche est
illustrée dans deux applications a base d’agents : une application de patrouille maritime
développée a Thales Systemes Aéroportés et une application de déploiement de logiciels
dans le domaine de l'intelligence ambiante. En contraignant le modeéle d’agent nous ga-
gnons en lisibilité et tragabilité, avec un bénéfice pour le processus de développement. Cela
aide aussi a 'adoption de techniques & base d’agents dans des contextes industriels.

iv

ACKNOWLEDGMENTS

This thesis is the accomplishment of a voyage that saw the author start as an unpolished
stone and work his way through many experiences to become who he is today. The chosen
subject turned out to be more challenging than anticipated, but with perseverance and
the help and goodwill of the many wonderful people whom I had the chance to meet
and work with, the appropriate “tools” were in place for the project to be successfully
completed. The vastness of the possible choices helped me learn how to filter out potential
paths and choose the ones that are relevant and feasible given the time constraints. This
gave me the opportunity to improve my autonomy with respect to decision making and
work independently when needed. Working between the university and industry was an
opportunity to study the two sometimes different perspectives and try to always find the
best solution.

I would like to start by thanking the members of my defence jury for their appreciation
of my work, their challenging questions and valuable feedback. I want to acknowledge
my thesis reviewers, Professor Adina-Magda Florea and Professor René Mandiau, for their
thorough and insightful reviews on my work. I would like to add a particular word for
Ms. Florea who was been my mentor and supervisor during the bachelor and masters
dissertations and opened me to the doors that led to this PhD. I would like to thank Pro-
fessor Laurent Vercouter for his kind words and presiding the jury, and Professor Zahia
Guessoum for her all her advice, both during the PhD and the defence.

I would like to express my gratitude towards my PhD Supervisor Professor Amal El
Fallah Seghrouchni whose mentorship, trust, support, guidance and advice helped me
learn, evolve and get through even the most difficult parts of the project. I would like to
thank Patrick Taillibert, with whom I first discovered the subject that become my PhD and
who then dedicated a part of his free time to our collaboration during my PhD, for his
insights and the way he challenged and enriched my ideas, with an ever-present attention
to details. I would also like to thank Cyrille Enderli for his understanding and care during
my time at Thales.

I cannot express enough gratitude towards my parents Cristiana and George for the way
they raised me and supported me through this all. Brenda deserves a special mention, for
not only being the best sister one can have, but also a great friend. I would like to single
out Magda for being by my side and being so understanding and empowering. I would
also like to thank Ileana, Christian, Simona, Marc and Cristi for being my family away from
home. Thank you Dorina for all your support.

I had the chance to have many great colleagues during my years at Thales and LIP6,
whom I can unfortunately not mention all by name. I would like to thank Emmanuel, Kei,
Kevin, Olivier and Thomas for their support during my final months at LIP6. A special
thanks to Cédric Herpson and Sylvain Ductor for their advice and especially their invalu-
able input for the preparation of my defence. From Thales, I would like to note Hadrien,
Hugo, Ludovic, Pierre-Yves and Romain for the good times we had in our lab, as well as
Alex, Emilie, Fanny, Nico, Sophie, Will and many others from the Youth Employee Soci-
ety who helped me feel at home in the company and discover many interesting industrial
projects. I also want to thank Andrei Ciortea, Mihai Trascau, Andreea Urzica, Nicolas Vidal
for the discussions we had and their advice and support at different stages of my journey.
Many thanks to my friends Radu and Anca for our late night talks, their support and the
enriching experiences we shared together. Alex, Alex (yes, there are more), Andrei, Bogdan,
Cristi, Tudor and Vlad, thank you for your friendship.

A great thanks to all of you out there who had a direct or indirect, known or unknown,
wanted or accidental, minuscule or enormous contribution to my work, my life and my
personal growth during these unforgettable years.

alle
| 2Ng
-

CONTENTS

I
1

II

INTRODUCTION AND STATE OF THE ART

INTRODUCTION

1.1 Raisond’Btre
1.2 WeavingaNet
1.3 Separating Reasoning from Acting
1.4 Definitions and Working Hypotheses
1.5 Thesis Structure o oo
STATE OF THE ART

2.1 The Tolerance of Unforeseen Faults

2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9

The Observer
Anomaly detection L oL
TibFit and Chameleon
Mission Data System
Recovery Blocks
A Case for Automatic Exception Handling
Defensive Programming
Design by Contract and Executable Specifications
LetItCrash

2.1.10 The Mercury Programming Language
2.2 Fault Tolerance with and for Agents

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7

A Perspective on Exceptions in Multi-Agent Systems
Communication Standards for Agent Fault Tolerance
Replication
Detecting Errors Through Agent Disagreement
The Sentinels, ..
Norms. Trust and Reputation
Agent Autonomy for Robust Agents

23 Goal-Driven Agents

2.3.1
2.3.2
2.3.3
2.3.4

Describing Goals
The Goal Life-Cycle
Reasoning on AgentGoals
The Goal-PlanTree

2.4 ALMA: An Agent Language for Dependable Agents

2.4.1
2.4.2
2.4.3
2.4.4

ALMA Motivations
Problem Solvers and Truth Maintenance Systems
Parenthesis on Model Based Diagnosis
The Programming Language

2.5 Conclusion e

CONTRIBUTION TO THE FAULT TOLERANCE

A SAFETY NET APPROACH TO FAULT TOLERANCE
3.1 Expecting the Unexpected: Error Detection

3.1.1
3.1.2

Exception-Based Detection
Objective-Based Detection

3.2 Avoiding Further Error Propagation: Confinement

N W W R

10
12
14
15
15
17
18
20
21
22
23
24
24
25
26
26
27
28
28
28
29
30
30
31
32
33
34
36
37
37
38
41
43
50

53
55

58
59
61

vii

viii

CONTENTS

I

33 SystemRecovery
3.3.1 Dependency Handling
3.3.2 Reparation., .
3.3.3 Reconfiguration.,
3.4 The Programmer’s Guide for a Safety Net
3.4.1 Language Requirements
3.4.2 Platform Requirements
3.4.3 Design Requirements
3.5 Discussion o
AN INSTANTIATION OF THE SAFETY NET
41 TheBaselLanguage
4.2 Extending ALMA for The Safety Net Approach
4.2.1 The unexpected Keyword
422 Goals
423 Plans o
4.2.4 The ALMA+ Model and Language
4.3 The Three Fault Tolerance Phases in ALMA+
43.1 Detection0 L.
432 Confinement
433 Recovery. o
4.4 Extending the Platform,
4.4.1 Language Extension Support
4.4.2 Safety NetSupport
4.4.3 Agent Architecture o L 0L
45 Discussion o o
EXPERIMENTING
5.1 The CNP+Scenario
52 Modelling the Agents,
5.2.1 The Initiator Agent
5.2.2 The Main Contractor Agent
5.2.3 The Worker Agent
5.2.4 Giving Unanticipated Errors a Thought
5.3 Adding The Safety Net Mechanisms
5.4 The Safety NetatWork
5.4.1 Study by Type of Confinement
5.4.2 Study by Location of Error Occurrence in the Agent Code .
5.4.3 Other Error Situations
5.5 Discussion

CONTRIBUTION TO GOAL PROGRAMMING

THE GOAL-PLAN SEPARATION

6.1 Goal-Plan Trees to Goal-Plan Separation

6.2 The Goal Reasoning Level

6.3 Mars Rover Scenario

GPS METHOD IMPLEMENTATION

7.1 Examples of Possible Models for the Goal Reasoning Level
7.1.1 Reasoning through Rules.
7.1.2 Reasoning Using a Planner.

7.2 Reasoning througha Goal Plan.

7.3 Reasoning through Multiple Goal Plans

103
111
111
111
112
112
117
117
117
118
122
125
125
126
128
132
133
134

v

>

C

74 Execution 000000
7.5 Key Literature Aspects

EXPERIMENTING WITH GPS

8.1 An Application for Maritime Surveillance
8.1.1 In the Lead Role: The Aircraft Agent
8.1.2 GPS for Modelling the Aircraft Agent
813 Discussion.
8.2 The Deployment of Ambient Intelligence Applications . .
82.1 Scenario
8.2.2 Multi-agent Modelling
8.2.3 Design and Implementation
82.4 Discussion.
83 Overview

CONCLUSIONS
CONCLUSIONS

9.1 The Safety Net Approach
9.2 The Goal-Plan Separation Approach
9.3 Putting It All Back Together

APPENDIX
CONTROLLING GOAL EXECUTION
MODELS OF THE CNP+ AGENTS

B.1 TheInitiator Agent
B.1.1 AgentGoals.
B.1.2 AgentPlans
B.2 The Main Contractor Agent
B2.1 AgentGoals.
B22 AgentPlans
B.3 The Worker Agent
B3.1 AgentGoals.
B3.2 AgentPlans

ERROR RESPONSE BY LOCATION OF OCCURRENCE IN CNP+

BIBLIOGRAPHY

CONTENTS

171
173

..... 174

..... 177
..... 178

181
183
185

..... 185
..... 185
..... 187
..... 190
..... 190

..... 194
..... 199

..... 199
..... 201

203

211

ix

LIST OF ACRONYMS

AAMAS Autonomous Agents and Multi-Agent Systems International Conference
Aml Ambient Intelligence

ATMS Assumption-based Truth Maintenance System
BDI Belief, Desire, Intention

CNP Contract Net Protocol

COMPS system components set

DAG Directed Acyclic Graph

EMAS Engineering Multi-Agent Systems

FMEA Failure Mode and Effects Analysis

GPS Goal-Plan Separation

GPT Goal-Plan Tree

GPU Graphics Processing Unit

HTN Hierarchical Task Network

IE Inference Engine

JIMS Justification-based Truth Maintenance System
LIP6 Laboratoire d'Informatique de Paris 6

MAS Multi-Agent System

MBD Model-Based Diagnosis

MDS Mission Data System

MEA Means-end analysis

OBS observations set
RT Reasoning Thread
SD system description set

TS Truth Maintenance System
TPN Time Petri Net
TSA Thales Airborne Systems/Thales Systémes Aéroportés

UAV Unmanned Aerial Vehicle

Part1

INTRODUCTION AND STATE OF THE ART

INTRODUCTION

1.1 RAISON D'ETRE

Interviewer: “HAL, you have an enormous responsibility on this
mission, in many ways perhaps the greatest responsibility of any single
mission element. You're the brain, and central nervous system of the
ship, and your responsibilities include watching over the men in
hibernation. Does this ever cause you any lack of confidence?”

HAL: “Let me put it this way, Mr. Amor. The gooo series is the most
reliable computer ever made. No gooo computer has ever made a mistake
or distorted information. We are all, by any practical definition of the
words, foolproof and incapable of error.”

— 2001: A Space Odyssey, 1968. Film.

While the fault-free software application has always been a desideratum for pro-
grammers, project managers and users alike, and many fault tolerance techniques
have pushed for ever more reliable software, from the occasional high profile catas-
trophe to the more common mundane annoyances, reality has proven that perfec-
tion is rarely achievable. Needless to say that the fictional dialogue above precedes
the computer’s transition towards a villain of the film, due to high-level behaviour
faults. For a real example we turn to the notorious Ariane 5 crash [73] which was
caused by a software bug coupled with a system-level fault. Less critical software
is even more prone to encounter such unforeseen circumstances: smartphone users
may be more accustomed to the occasional application crash. This thesis tackles the
question of how to build programs that are less vulnerable to faults not taken into
consideration in their implementation.

Nowadays, computers are given more and more important tasks, departing from
their original “computational duties” from the days when the Enigma Machine was
being broken, to control and decision tasks for various uses in factories, cars, planes
etc. and one day, as HAL" in the dialogue above, spacecraft to take us to the stars.
As the role of the human diminishes — e.g. Unmanned Airborne Vehicles (“drones”)
and autonomous cars — the responsibility and importance of the software increase.
Even more less critical electronic devices surround, accompany and support us in
our daily lives, from computers, to smartphones and now ubiquitous computing
devices?, all interconnected and run by software. While the stakes are different, all
these need to offer a corresponding degree of assurance with respect to their correct
functioning.

The autonomy of devices, from the manufacture’s and well as the user’s point
of view, is the fact that these devices function without any or with only minimal
human inputs. This also means that in case of faults, they are expected to be able

HAL, Heuristically programmed ALgorithmic computer, is the artificial intelligence that controls the
systems in the film’s spacecraft and interacts with the crew.

One can now buy smart power plugs that allow the monitoring and control of power consumption,
light bulbs that are controlled via the Internet and even smart kettles that boil the water exactly when
your phone tells them you need your coffee.

INTRODUCTION

to continue functioning without much disruption. The recent example the Rosetta
Mission [37] for exploring the comet Churyumov—Gerasimenko is evocative for not
only is it out of the reach of any repair team, but communication time (up to 52
minutes in each direction at the farthest point during the mission) and bandwidth
were also extremely limiting for most earth-based measures.

Most of these systems exhibit complexity in a form or another, either in their
internal design — e.g. a plane with its subsystems: avionics, radar, communications
etc. — or through their distributed nature — e.g. the devices in a connected home or
an internet-based application — or both — e.g. a fleet of drones. As these applications
grow in complexity, the task of rendering them fault tolerant becomes more and
more challenging. A method for the fault tolerance that is frequently used in the
industry is the Failure Mode and Effects Analysis (FMEA) [107] which requires
listing all possible faults and specifying the handling of each, which is difficult in
open and complex systems. Software testing does not provide a perfect validation
either, as it is notoriously known “to show the presence of bugs, but never to show
their absence!” [32]. On top of these susceptibilities, real life projects are subject to
project management constraints — i.e. taking into account system criticality, costs,
time to market etc. When the stakes are high, the margin of error is narrow, and
this comes with a price: exhaustive tests and evaluations for complex systems take
many man-hours and require highly specialised workforce. This can result in an
increased chance to omit faults.

Proof and verification techniques are also gaining recognition (they are, under
specific conditions, allowed even for avionics software certifications DO-178C [78])
but they require an enormous amount of work (e.g. to the 2.2 man years required
for developing a microkernel, [63] needed another 11 man years for the proof).

Once they are identified, faults are either (1) removed altogether through changes
in design, (2) provided with tolerance mechanisms (e.g. redundancy) or (3) ac-
cepted as possible, depending on the risk versus cost analysis. This means that
even in critical systems, there is always a calculated, albeit very small, probability
of failure: for example a 1 in 10 billion probability of failure for the Boeing 777
flight computer is defined in its requirements [118]. Fault tolerance can be expen-
sive and may involve trade-offs for the original system (e.g. five-point harnesses are
seatbelts used in automotive racing for better safety, but are too cumbersome to use
on a day to day basis). When time is an issue, for example in prototyping or just
when the time to market criterion prevails, fault tolerance may be given less impor-
tance. Furthermore, component re-usability and validation, while largely beneficial,
do not always guarantee a smooth ride, as proven by the Ariane 501 accident [73]
cited before, where a reused piece of equipment failed due to the different running
context in which it was used. Reliability is therefore a matter of assumed risks.

At runtime, these accepted faults, together with the unidentified ones, can pro-
duce errors that the system is not prepared for — unanticipated errors — and that can
cause catastrophic results, or just unpleasant experiences for users. We call these
faults unforeseen faults. The concept emerged while discussing with engineers work-
ing with well-established methods such as FMEA. As stated before, these methods
require the designers to identify all possible faults and prepare for all possible er-
rors linked to these faults. The engineers’ questions were: “What happens if we
overlook a fault case? How can we improve the behaviour of the system in such
situations?”.

When even compilers are shown to contain errors [117], we can try to change
the point of view to a higher level and focus on results, using a “let it crash” [2]

1.1 RAISON D'ETRE

approach for lower level components, while ensuring higher level controls and
recovery solutions.

As software becomes more and more complex, better development tools are
needed to cope with the increased risk of errors, from the models, languages
and methodologies, to platforms and development environments. More code often
means more “opportunities” for errors, or, in the form of the software engineers’
joke paraphrasing Einstein’s formula:

E=m:c? < Errors = more - code?

The code for handling errors can be source of further errors itself. Furthermore,
exception handling was shown to be treated lightly by programmers [16], who of-
ten use generic catchers and do not provide recovery measures — only logging and
then terminating the execution. A means for runtime and as well as user generated
exceptions to be caught and handled automatically is therefore needed in order to
ease the task of programmers and result in more dependable applications.

Over the years, in parallel with the need for more and more complex applica-
tions, the evolution of software has been accompanied by a constant preoccupation
for reliability. From early languages to Assembler and then Java and beyond, the
programming paradigm and language evolution has been a constant string of ab-
stractions that gave programmers more power while often limiting their possibility
to make mistakes. An example is the abolition of goto for its facilitation to create
difficultly readable “spaghetti code” [113]. Agent oriented programming follows
this trend in offering a higher level of abstraction, coupled with the framework
and tools for developing modular and distributed software, thus supporting the
development of complex software [8]. The modularity of agents and the loose cou-
pling associated with their message-only communications recommend them for the
development of dependable programs. However, this paradigm has two tricks up
its sleeves which we argue are at least as important for the dependability of the
resulting systems: goal-directed agents and autonomous agents.

Using agent goals helps structure the human programmer’s thoughts and im-
proves the design process, facilitating development methodologies [71]. Further-
more, when used inside agent design, goals also guide the agents” behaviour at
runtime. The goals’” property to describe the desired outcome make them well
suited for tolerating faults [91]: as long as the goal’s satisfaction condition is not
tulfilled, regardless of the reason, the goal is not successful and the agent may try
again. This means that even errors that were not caught can be masked, as long
as they impact a goal’s outcome. Another property that is interesting for the fault
tolerance is that achieved goals can act as checkpoints for the agent behaviour: they
provide intermediary verifications and can be used for roll-back strategies in case
of errors.

While a lot of interest goes into building autonomous systems, we aim at guiding
the programmers” attention to a different perspective: what does it mean to build
agents that interact with autonomous agents? Autonomy can be perceived from
the outside as “the right to say no” [86]. From this perspective, designing code
that can interact with autonomous agents means not taking their predictability for
granted, thus being ready for any situation, such as a message reply that is not
sent because the agent decided not to do so. In reality, the lack of reply can be
due to an agent decision, overload or even because the message was lost, but the
important aspect here is that an agent should not work under the supposition that
its peers will necessarily reply to any request. The resulting systems are therefore

INTRODUCTION

more loosely coupled and more robust. Note that this state of mind is beneficial
in multiple contexts, including open systems and systems which are developed by
different teams, also called heterogeneous.

When pursuing this line of thought, a programmer can doubt any data inputs —
e.g. from other agents, sensors, other modules, human operators etc. Ideally, one
would be able to evaluate the validity of data before acting, but most of the times,
even as humans, we are forced to reason and act based on assumptions. For ex-
ample one may prepare for the summer holidays by buying the plane tickets and
booking hotels, “knowing” that there are no constraints at work that can prevent
her for leaving. Then, at the last minute, she finds out about a meeting that had
been scheduled long before the vacation plans without the person’s knowledge
prevent her for leaving, she needs to evaluate the situation and take the necessary
measures. Maybe finding another colleague for the meeting is possible to continue
with the original vacation plans, or maybe rebooking the outbound flight is enough.
In the worst case, one may just accept that the money were lost and there is nothing
left to do then go to work. The idea here is that as humans we are able to adapt be-
cause most of the time our beliefs are, consciously or not, assumptions that allow
us to act and we can reconsider our actions if at a later moment these assump-
tions are contradicted. In a context where unforeseen faults are acknowledged to
appear, having the possibility to work with assumptions is therefore an important
feature, as pursuing a course of action may need to be stopped due to an error in
the system. Tools for handling assumptions were already proposed for applications
dealing with uncertainty, e.g. diagnosis [62], and recently included in the ALMA
agent programming language [29] which we used in our work.

So far we have introduced the unforeseen fault issue and a few existing tech-
niques that provide good properties for the fault tolerance.

This thesis proposes a development approach with the aim of producing pro-
grams that are implicitly tolerant to residual faults — unforeseen faults. Our ap-
proach covers the used paradigm, through the programmer’s state of mind — the
ideas that guide her design and programming — to the language and platform used.

1.2 WEAVING A NET

<— safety net here —>

1.2 WEAVING A NET

In trapeze3 shows, one or more artists perform various acrobatics including jumps
at a considerable height. While the shows are usually well rehearsed and the artists
take all the necessary precautions, given the difficulty of their acts and the risks
involved, a safety net is usually placed below them. The net, which is not normally
involved in the actual shows, provides a last resort for unexpected situations: an
artist falls due to a miscalculated jump, slipping etc. Let us note the following three
characteristics of the safety net:

e it is a last resort solution, being complementary to other, usually more desir-
able, techniques. For example the trapezist would be better off skipping a
difficult move and continuing the show than falling into the net. In the same
time, having the net also allows novices to try the trapeze without much risk.

e it is a generic solution covering many cases, from a trapeze breaking to a
trapezist sneezing, missing a jump and falling.

e it is not intrusive: the net does not interfere with the show.

There are many parallels that can be drawn between the trapeze show and com-
puter software. Organising the show — e.g. deciding on the number and attributes
of artists, the choreography, the safety measures and so on — corresponds to the
software engineering effort. Using many artists in a single show may be likened
to the use of the multi-agent paradigm: they offer more expressiveness for a more
complex show and in case one or more of them encounters a problem, the others
can most likely still continue without. Let us now focus on the three safety net prop-
erties listed above, in the context of our approach for the tolerance to unforeseen
faults:

¢ a solution meant for faults that escaped the used fault tolerance mechanisms
— i.e. the unforeseen faults — acts as a last resort solution;

¢ an unforeseen fault’s characteristics are obviously unknown, so it is important
that the provided handling solution be generic;

* as a general software development objective and because the solution’s use
will be very limited (as unforeseen faults are meant to manifest rarely), it is
important for it to be light and not intrusive.

3 A trapeze is “a short bar hanging high up in the air from two ropes, which acrobats use to perform
special movements” (cf. http://dictionary.cambridge.org/dictionary/british/trapeze).

7

http://dictionary.cambridge.org/dictionary/british/trapeze

INTRODUCTION

Note that the subtitle of this thesis is “A Safety Net for the Programmer” and this
implies that the aim is not to save particular components of the final application,
but the overall system functionalities. This implies that (1) particular components
may be allowed to crash for the benefit of the overall application and (2) the recov-
ery of the application after a local incident is very important as well. The second
point especially may go against the first intuition of the metaphor that may make
one think that once the artist fell into the safety net, the story is over. In the con-
text of a show with an audience, however, recovery is as important for the overall
show as it is for the particular artist: the show would surely stop in case someone
actually got badly injured, while with the safety net, that artist can — depending on
the reason of his or her fall — even go back and continue to contribute to an overall
successful show.

Tolerating unforeseen faults is concerned with two aspects: (1) the offline prepa-
ration phase — where the system is engineered by designers and/or programmers
following our requirements and using the tools we provide — which then results in
(2) a safety net behaviour at runtime.

The idea of the thesis is that the programmer is able to focus on the definition
of the behaviour of the system and assign any effort he or she desires to the fault
tolerance, with our approach providing a supplementary level of robustness, a
safety net. For this, the programmer is required to write goal-driven agents that are
meant to interact with autonomous components — agents or other types of entity.
The programmer is guided through programming constraints to define the agents
in a certain way — including writing reparation code in specific locations in the code
— so that the provided error recovery mechanisms — including the hypothesis-based
use of inputs — can act as a safety net.

The result is a program which has its own fault tolerance mechanisms, but can
also tolerate faults that were not normally covered by these “classic” mechanisms.
In the best case scenario, the resulting error is masked by the goal driven agent that
has the necessary plans and resources to reach its goals, despite the manifestation
of the fault. In the worst case, the language structure guides the behaviour towards
a correct shut-down or mission abort, keeping within the specifications.

Let us switch now from the point of view of the programmer to the point of view
of the fault tolerance engineer. Our work will need to focus on the latter in order
to provide the programmer with the desired safety net effect. The goal is that the
programmer can produce fault tolerant software without even realising it by simply
defining the functional aspects of the program using our tools and complying with
our requirements.

We will study fault tolerance using a three phase approach to produce the de-
sired safety net behaviour. First, an error needs to be detected. As we are aiming at
unforeseen faults, the detection needs to be implicit. For example, code “crashes”
(e.g. segmentation faults, divisions by zero) are usually detected by the runtime
environment without any input from the programmer. However, as known faults
can benefit from our safety net too, we do include the means for a programmer to
call our mechanisms willingly, just like a trapezist that decides to let go and fall in
the safety net.

Following the error detection, the confinement phase has the goal to limit the
propagation of the error in the system from the point of detection. Here we take
advantage of the modular architecture provided by agents together with their goals
and plans. The third and most complex phase concerns the recovery of the system.
First, other agents and plans that may have been impacted already — e.g. transmit-

1.2 WEAVING A NET

ted possibly corrupted data — are identified and informed of the detection. Then,
any available reparation code, coupled with the power of the goals to reconfigure
provide the means to bring the system towards a nominal behaviour. The goals also
provide a last resort for undetected errors as the goal verification conditions can
trigger the recovery even without a detection event, just because the condition was
not satisfied.

Going back to the metaphor, the true safety net in our approach is the agent-
goal-plan architecture that facilitates confinement and offers the necessary base for
recovery, this placing the goal-driven agents at the centre of our approach. This
also means that the level of granularity is important: smaller agents with shorter
plans and more specific goals create a net with a finer and more resistant mesh.

Another very important role will be played by the programming language which,
together with the other design requirements will ensure the necessary elements are
in place for the moment when the unforeseen fault manifests. This is like a person
who surveys the preparations for the show to ensure that the acrobats will be
working above the safety net and they know what to do once they fall into it — e.g.
get back in the show or leave the stage gracefully.

This work does not claim to surpass or overthrow well established fault tolerance
approaches — especially in the world of critical systems for which more mature
propositions are required —, but to explore a new possible path. Furthermore, spe-
cific solutions for specific types of fault will most likely provide better optimised
results than our generic approach, hence the complementarity of our work.

Limitations

A problem in fault tolerance is that errors are not necessarily detected at the mo-
ment when they are produced, they may spread throughout the system just as an
unknown computer virus that spreads to many machines and only later its man-
ifestation (e.g. deleting files) is triggered by a condition (e.g. a specific date or a
command). Similarity, errors that are below a detection threshold can spread to
many components until their detection. Our dependency handling step which is
part of the recovery phase aims to limit the impact of propagating errors. However,
given that the main focus of this work is not the detection and the means discussed
are usually generic and aimed at unforeseen faults, our work may be even more
susceptible to such issues.

Also, while we use tools from the diagnostic domain, we are not attempting to
diagnose the cause of an error due to the complexity of the task.

As our work has a methodological component, the actual design and program-
ming work is very important for obtaining the desired results. While we provide
tools and requirements, the final responsibility lies with the authors of the design
and code. Furthermore, just as an acrobat may rely too much on the safety net,
a programmer may end up taking too many risks and end up too often on the
mechanisms proposed in this work. Design and code verification — e.g. through
peer review — would therefore be needed to ensure the safety net requirements are
complied with.

10

INTRODUCTION

Goal/Sub-goal

execute

Environment

Figure 1: Agent complexity when goals are adopted in plans acting on the environment

1.3 SEPARATING REASONING FROM ACTING

In our pursuit for fault tolerant systems, we chose goal-driven agents for the good
properties offered by this paradigm for our safety net. However, we considered that
the actual use of goals and plans in many platforms can be improved.

The purpose of an agent is usually to act on the environment, which is done
through its plans. Actions can involve the use of actuators, but they also cover the
sending of messages*. However, in practice, various works [49, 109] and program-
ming frameworks (Jason [11], Jadex [14] etc.) employ a model where plans can also
adopt new goals, often termed sub-goals. A goal can thus have multiple possible
plans, whose success depends on the achievement of their respective sub-goals and
this can extend on many levels (Fig. 1). Note however that the successful comple-
tion of a plan does not necessarily guarantee the achievement of a goal, as goals
can have success and failure conditions [99].

While it may be straightforward to design in this way, the fact that in a plan (1)
actions on the environment — i.e. with effects “outside” of the agent — and (2) goal
adoptions — i.e. with effects on the, possibly long-term, reasoning and behaviour
of the agent — are used together in the same structure can have adverse effects on
the resulting agents: low intelligibility during design, difficult traceability during
execution and poor reusability afterwards.

This recursive construction has the advantage of using already existing Belief,
Desire, Intention (BDI) building blocks and can help abstract certain aspects of an
agent’s behaviour offering the possibility to define the agent in a top-down ap-
proach. However, it also creates a structure which is difficult to trace, especially
when actions occur at any level, and whose depth may be unpredictable. Important
aspects in the behaviour of an agent might be hidden from the eyes of a developer
or code reviewer due to this intricate design. One might always wonder whether
the current plan is a terminal one or whether the model continues with further sub-
goals. Given that the adoption of a goal usually implies a new reasoning process
with an automaton and further plans, the goal adoption should not be treated the
same as an atomic action.

For a change of perspective, let us take the example of the army as a clear-cut
multi-level organisation. A soldier executes the orders (goals) given from “above”
but cannot make high level decisions. Strategies and new objectives (goal adop-
tions) are decided by the higher ranks. This is due to the separation of responsi-
bilities and competences, as well as the soldier’s limited view of the situation. In
a similar way, an agent’s goals should not be mixed with the acting. This would

4 We do not consider belief revision to be an action.

1.3 SEPARATING REASONING FROM ACTING

also allow plans to have limited interdependencies, just as the soldier has a limited
view of the situation, with benefits on complexity and fault confinement. A similar
analogy can be made with other hierarchical human organisations such as com-
panies, where the management decides — either on a single or at multiple levels —
before requiring the workers to perform the required tasks. Needs that can arise
have to be discussed with the manager or managers, who can then decide to take
new measures, just as an agent’s reasoning would adopt new goals. While small
companies with a “flatter” hierarchy can cope with certain issues faster, complex
organisations have proven to benefit from this hierarchical composition>.

Agent oriented development methodologies such as Tropos [44] and Prometheus
[114] have top-down approaches where they start with system level characteristics
to then “descend” towards agent goals before defining plans and other low level
details. Implementing agent systems modelled using methodologies such as these
would also be more natural if reasoning and acting were more clearly separated.

Several works [27, 53, 99, 115] have argued for the interest of using declarative
goals-to-be together with procedural goals-to-do, for decoupling goal achievement
(the “to be” part) from plan execution (the “to do” part), giving the agents their
pro-activeness, but also better flexibility and fault tolerance. Taking this delimitation
a step further, we argue for the interest of separating a level where goal reasoning
takes place — managing goal adoptions, dependencies, conflict resolution — from an
action level where the agent interacts with its peers and environment.

While at runtime it is useful and even inevitable to alternate between reasoning
and acting, we argue that these already conceptually distinct levels should be kept
separate when designing agents.

To address these issues we propose a subtle change in the agent modelling that
simplifies the agent representation by requiring the actions on the environment to
be separated from the goal adoptions. We call the approach Goal-Plan Separation
(GPs). As shall be seen, the direct consequence of this separation is the structuring
of the agent into two levels: one concerned with goals and one concerned with
actions.

Publication

Our work on the subject produced the GPS approach (Part III of the thesis) was
presented in the Engineering Multi-Agent Systems (EMAS) 2014 Workshop and later
published in a reviewed form in a Springer volume dedicated to the Workshop [19].
We later applied the GPS approach for papers to be presented at AAMAS [81] and
EMAS [80], both in May 2016.

5 Note: while we are presenting examples of organisations with many people, our scope remains the
design of the reasoning of a single agent, which would thus correspond to the army or the company
as a whole.

11

12

INTRODUCTION

1.4 DEFINITIONS AND WORKING HYPOTHESES

“The elevation was probably not under 11,000 feet [...]. At the place
where we slept water necessarily boiled, from the diminished pressure of
the atmosphere, at a lower temperature than it does in a less lofty
country; the case being the converse of that of a Papins digester. Hence
the potatoes, after remaining for some hours in the boiling water, were
nearly as hard as ever. The pot was left on the fire all night, and next
morning it was boiled again, but yet the potatoes were not cooked. I
found out this, by overhearing my two companions discussing the cause;
they had come to the simple conclusion, that the cursed pot [which was
a new one] did not choose to boil potatoes.”

— Charles Darwin, The Voyage of the Beagle, originally published in 1839.

THESIS CONCEPTS Let us now define the main concepts that we will be using
in the thesis. The descriptions of the following dependability-related concepts are
based on the work by Avizienis et al. [4], while the agent-specific and other concepts
are based on the author’s own view, as well as other works, as specified. The two
definitions are part of the author’s contribution.

A (service) failure is a situation in which the service no longer performs as
required by its functional specifications (which usually has a functionality as well
as performance component). An error is a deviation of the external state of the
system, so a service failure is a succession of errors.

Definition 1. An unanticipated error is an error for which no specific handling exists in
a system.

An unanticipated error is therefore left to the platform and will probably cause
a component failure, or “crash”.

An exception is special situation that is signalled by an invoked operation to its
caller, that is then permitted or even required to react to this condition [45]. In
software development, exceptions are often used to indicate and treat error cases.
The common verbs used for generating and handling an exception are “throw” and
“catch”.

The determined or hypothetical cause of an error is called a fault. A fault may
manifest to become active and produce an error, or remain “dormant”.

Definition 2. An unforeseen fault is a fault that was not covered when building a system.

As stated before, a fault can be unforeseen because (1) it was not identified at all
or (2) it was identified during design time but was consciously ignored (e.g. due to
high costs, low risk etc.).

Examples of unforeseen faults:

1. residual code error (“bug”), uncaught exceptions: “segmentation fault”, divi-
sion by zero etc.;

2. system error: an error code interpreted as data (Ariane 5 [73]);

3. hidden variables: when Darwin’s men were unable to cook potatoes as they
were not aware of the influence of the altitude on the boiling point of water
(as in the quote above);

1.4 DEFINITIONS AND WORKING HYPOTHESES

4. unconsidered situation: an important computer for the system in question
stops (for example the power cable is disconnected).

The purpose of fault tolerance is that no service failures occur despite the pres-
ence of faults. A system is said to be in a degraded mode when due to partial
failures, it can only provide a subset of its services. In this case we say a system’s
functionality or performance suffered a partial failure. The coverage of a fault tol-
erance technique is the measure of its effectiveness.

While many different definitions of the concept exist, depending on the applica-
tion domain and field of computer science research, we define a software agent as
a clearly delimited software entity that does not share memory with other entities
and communicates through messages.

A Multi-Agent System (MAS) is “a set of software agents that interact to solve
problems that are beyond the individual capacities or knowledge o each individual
agent” [86]. In this work, we adopt the distinction between (intelligent) agents whose
behaviour is autonomous and pro-active, and artifacts [93] which are the tools or
services used by the agents.

The use of agents for designing and programming systems can be referred to as
a paradigm and the resulting program structure is sometimes called a multi-agent
architecture.

A belief is an agent’s momentary representation of a particular characteristic of
the environment or itself. Beliefs correspond to variables in “classic” programming
languages but they usually have another component than their value which deals
with belief revision, for example generating events when the belief value changes
in Jadex [14] or keeping that belief’s justification in ALMA [29] (see Sec. 2.4).

A goal is the state that an agent wishes to bring about. While this is a generic
definition, we shall see in Sec. 2.3 that goals can be used to represent agent pro-
activity in different ways: by requiring a plan to be executed without regard to the
system state, maintaining a system state etc.

A goal-driven agent is an agent built to pursue explicit goals. BDI agents are
goal-driven agents.

A plan corresponds to the sequence of operations that the agent can use to pur-
sue a goal.

For an agent, the environment is comprised of everything else that is exterior to
that agent. An action is an interaction emanating from an agent towards its envi-
ronment (e.g. sending a message or using an actuator such as a robotic arm, as long
as this latter is considered included in the agent rather than a stand-alone artifact).
Operations internal to the agents — belief writes — are not considered actions.

THESIS CONTEXT This work is concerned with systems whose size and complex-
ity or needs for distribution can justify the use of a multi-agent architecture.

The thesis focuses on the improvement of the development process in order to
obtain the desired runtime behaviour in the presence of faults. It is important to
delimit our work — which is concerned with fault tolerance — from other reliability-
related domains such as safety, security, robustness, reliability, even availability
(defined and compared in [4]).

13

14

INTRODUCTION

1.5 THESIS STRUCTURE

This first part of the thesis continues with a state of the art (Chapter 2) covering
elements of fault tolerance that we relate to the unforeseen faults (Sec. 2.1), as
well as to agents (Sec. 2.2). We then discuss goal-driven agents in Sec. 2.3. We
conclude the state of the art by introducing ALMA, an agent language built for
agents dealing with uncertainty and which, as we will see, incorporates elements
that are of interest for the tolerance of unforeseen faults (Sec. 2.4).

Part II of the thesis is dedicated to the safety net approach for the tolerance of
unforeseen faults. Chapter 3 details our safety net approach for the tolerance of un-
foreseen faults. In this chapter we detail the 3 phases for fault tolerance introduced
above: detection, confinement and recovery. We first present various methods that
can be used for each phase, and then present our choices and contributions for each.
This allows us to distinguish between the design, the programming language and
the technical aspects of our approach, which we concentrate into 10 principles. We
then continue in Chapter 4 with the extension of the ALMA agent programming
language [29] in order to make it and its platform compliant with the safety net
principles. This then allows us to illustrate the safety net at work in an implemented
example using a scenario based on the Contract Net Protocol (CNP) (Chapter 5).

In Part I1I we describe our contribution to agent design: the Goal-Plan Separation
approach. In Chapter 6 we describe the approach and then, in Chapter 7 we provide
an example of implementation. In Chapter 8 we present two applications on which
we experimented the GPS approach.

In Part IV we discuss the conclusions of this thesis and the perspectives that this
work offers.

SETTING

This work has been carried out at Thales Airborne Systems/Thales Systéemes Aéro-
portés (TSA), Elancourt, France, and at the Laboratoire d’Informatique de Paris
6 (LIP6) at Pierre et Marie Curie University. We built, among other, on heritage
from the PhD work of Sylvain Dekoker on the ALMA hypothetical reasoning-
based agent programming language [28, 29], Katia Potiron on fault tolerance in
multi-agent systems and autonomy [85, 86] and Caroline Chopinaud on norms
and autonomy [23, 24]. An internship by Xavier Jean offered the first ideas on the
tolerance to unforeseen faults, before the author’s own internship on the matter
preceded this PhD.
This work was supported through a CIFRE® grant from the ANRTY.

6 Convention Industrielle de Formation par la REcherche.
7 Association Nationale de la Recherche et de la Technologie.

STATE OF THE ART

This thesis aims to propose solutions for programmers to help them produce sys-
tems that are tolerant to unforeseen faults. The first part of this chapter (Sec. 2.1) is
dedicated to fault tolerance methods that can be related to the concept of “unfore-
seen fault”. We then discuss (in Sec. 2.2) fault tolerance in the context of multi-agent
systems, before going into more details regarding the goal-driven agent represen-
tations (Sec. 2.3). We end this chapter with the description of ALMA, an agent
programming language designed for working under uncertainty and which has
several fault tolerance properties.

2.1 THE TOLERANCE OF UNFORESEEN FAULTS
We start by revisiting the concept descriptions from Sec. 1.4, based on [4].

THREATS A fault is the judged or hypothesised cause of an error. A fault is dor-
mant until manifested into an error. Errors are one or more abnormal external states
of a system and can lead to failures if not contained and handled properly. A failure
describes the functioning of a system that does not perform according to its speci-
fications. For example, a car’s flat tire is an error, with the nail that the car ran over
being the fault and the failure being the impossibility to continue the trip. However,
as this situation was foreseen when the car was built, there is usually a spare wheel
that can replace the damaged one thus avoiding the failure. Note that these three
concepts are a matter of perspective, as for example the failure of an agent can be
only an error at Multi-Agent System (MAS) level, provided that the overall system
continues to perform according to its specifications.

DEPENDABILITY Dependability is the ability of a system “to avoid failures that
are more frequent or more severe than is acceptable” [4]. The means to build de-
pendable systems can be split into four categories:

e fault prevention for preventing the faults from appearing in the system in the
first place;

e fault tolerance for the good reaction to faults at runtime;
e fault removal for reducing the number and severity of faults;

e fault forecasting for estimating the characteristics (type, consequences etc.) of
future faults.

A widespread method for building dependable systems consists in listing all
the possible faults and then handling them, depending on the situation, by either
eliminating them from the finished product (i.e. fault prevention), or specifying
the desired behaviour in case they manifest (i.e. fault tolerance) [112]. Various for-
malisations of this approach have been proposed, e.g. Failure Mode and Effects
Analysis (FMEA) [92, 107], used by NASA among others. With this method, systems
are studied in a bottom-up manner beginning with the most basic components and

15

16

STATE OF THE ART

then moving to sub-system level, with each identified fault described with respect
to its impact. Afterwards, the appropriate measures can be taken when building
the finished product.

This type of approach, more or less formal, is susceptible to missing faults as it
is mostly based on the knowledge and expertise of the system designers and devel-
opers, as well as on the hypothesis that the system is completely known, which is
often difficult to guarantee for complex, open or evolving systems.

FAULT TOLERANCE The purpose of fault tolerance is to avoid system failures in
the presence of faults. The focus is thus on the behaviour of the system at runtime,
even though the means, e.g. goals to achieve and plans to support these goals, are
put in place at design time. This is complementary to other approaches such as fault
prevention and fault removal that are usually addressed at design time only. As
stated before, we aim at complementing the classic approaches [112] where all faults
are identified during design and development, and are either removed altogether or
provided with specific handlers. This complementarity is needed because complex
systems that act in open environments can encounter unforeseen situations, but
our approach can also help lower fault tolerance-related costs by providing means
for creating an “implicit” fault tolerance. The idea is thus to provide a “safety net”
for the programmer.

REDUNDANCY In [47], Gédrtner makes two important observations. First of all,
he notes that despite the existence of fault tolerance mechanisms, there is always
the possibility that the seriousness of faults result in a failure. This is no surprise
as there is always a limit in the coverage and strength of these mechanisms and so
is the case for the trapezist’s safety net. The second observation is that in order to
achieve fault tolerance, a form of redundancy is always required. He distinguishes
redundancy in space (e.g. a second inertial system in a rocket, a duplicated agent
in a MAS, but also the parity bit in transmissions) from redundancy in time, i.e. exe-
cuting the same computation again (for example in rollback recovery mechanisms
which take the system back to a previous state and then re-execute [36]). With our
aim to provide implicit fault tolerance through our safety net approach, we will
need to find a paradigm that encompasses features of redundancy, while in the
same time encouraging the programmers to introduce redundancy themselves, ide-
ally without concern for specific faults. We shall see that the execution mechanisms
behind the Multi-Agent Systems with goal driven agents that we use in this work
already contain elements of redundancy in time.

SELF-HEALING In “The Vision of Autonomic Computing” [58], Kephart and
Chess speak of the need of a new approach for relieving the humans from the
burden of managing, optimising, diagnosing, repairing etc. the ever more complex
systems that are being created. They even make an analogy with “the autonomic
nervous system [which] governs our heard rate and body temperature, thus free-
ing our conscious brain from the burden of dealing with these and many other
low-level, yet vital, functions” [58]. The similarity to our work comes from the fact
that we too aim to free the programmer from the burden of consciously dealing
with fault tolerance. One of the self-* axes envisaged for autonomic computing is
self-healing [87], which shares many characteristics with fault tolerance, while some-
times focusing more on recovery.

2.1 THE TOLERANCE OF UNFORESEEN FAULTS

Connexions

Tested
software

Observer ! Worker

Figure 2: The principle of the observer method

RESILIENCE Another related concept is resilience [72], which in a general defini-
tion “is the ability to successfully accommodate unforeseen environmental pertur-
bations or disturbances”, or, closer to our field of study “the persistence of depend-
ability when facing changes”.

ANTIFRAGILE SYSTEMS Recently, a new design approach for engineering an-
tifragile [55] systems was proposed. The objective is to produce systems that become
stronger when subjected to “stress”, just as a muscle does. The new direction comes
as a consequence of the observation that current requirements-based systems result
in “fragile” systems, in the sense that they eventually break under stress. To avoid
that, the idea is to provide the systems with properties that permit them to adapt
to unexpected situations. The authors argue that these properties are also required
for achieving true autonomy, rather than just autonomy expressed through higher
levels of automation. The antifragile systems, however, often have a learning com-
ponent and fall outside the scope of our current work.

Let us now introduce examples of works that can be used to increase system
robustness in the presence of unforeseen faults.

2.1.1 The Observer

Diaz et al. [31] propose a system in which distributed systems can be verified
with respect to the specifications of a previously defined model. Their method
is called “the observer” and is an evolution of a concept originally proposed in
[5], initially conceived for parallel rather than distributed systems. The observer
method requires the existence of a model of the system and a means of verifying
the behaviour by accessing certain of the system’s internal states or events. This
can be done, for example, by monitoring the messages exchanged by the system
components [31] or even by using physical connections in the case of electronic
circuits [70]. The result is a two-part layout, as seen in Fig. 2: the working part of the
system, marked “worker”, and the “observer”. This provides a sort of “minimal”
redundancy (as opposed to a complete redundancy which would use two copies
of the “worker”) used to detect deviations from the specifications. This method
is based on the assumption that the system is either functioning correctly, or it is
producing visibly incorrect outputs, in other words the errors are observable.

The model serves as a reference for the correct functioning of the system, thus
allowing the observer to detect errors at runtime, including any errors caused by
unforeseen faults. This model can take the form of a Petri net, as is the case in

17

18

STATE OF THE ART

Tested
Model software
—

o Start S1

~ End S1

e Start S2

- End S2

Figure 3: Petri net with corresponding observed code

the cited paper by Diaz et al. The example in Fig. 3 shows two code sequences that
must not be executed simultaneously. In the Petri net (ignoring the dotted lines and
the “tested software” part) there are four transitions and five places, with the initial
tokens presented in the figure. Due to the non-determinism of Petri nets, the central
token can be used to trigger a transition either to the left or to the right, but not
both at the same time. Assuming that the token is passed to the left (the network is
symmetrical anyway), the only transition that can fire next is the one at the lower
left, which will produce a token in the central place again. The two transitions at the
left are thus always forced to fire consecutively, before giving the other transitions
the opportunity to fire as well. In Fig. 3, the dotted lines indicate the connections
for the observer method, with the start and end of each code sequence each linked
to a transition in the Petri net. If, for example, S2 starts before the end of S1, the
observer will find it impossible to fire the corresponding transition, thus indicating
a deviation from the expected behaviour.

The levels of detail for the model and the observations are fixed taking into
account the fact that more observations can often lead to a more accurate detection
of defects, but can also increase the execution time.

This type of approach can detect faults we call “unforeseen” because it observes
deviations in the execution of a system without needing to know the cause, but the
need for a correct model (often validated by other means which are generally quite
expensive) makes it difficult to apply.

2.1.2 Anomaly detection

The extensive review by Chandola et al. [20] on the detection of anomalies drew
our attention due to the similarities to our subject. The study in concerned with

2.1 THE TOLERANCE OF UNFORESEEN FAULTS

et

X

Figure 4: Point anomaly example (example from [20])

Monthly Temp

/M

| | |
Mar Jun Sept Dec Mar Jun Sept Dec Mar Jun Sept Dec

Figure 5: Context anomaly example from [20]

the anomalies, defined as samples from data collections that do not conform to the
expected or desired behaviour. In Fig. 4 for example, both points Oy and O, as
well as the group O3 can be considered as anomalies with respect to the normal
areas N7 and Nj. In particular, these are “point anomalies”. This type of anomaly
can be used for example for detecting bank fraud, where unusual transactions can
be used to raise the alarm. They can also be used to identify noise in data sets.

Another type of abnormality is the “contextual anomaly”, as in Fig. 5, where
temperatures t; and t, are equal, but the context indicates a problem in the case of
t2 (e.g. a winter temperature in July). This type of anomaly is often used for time
series.

A third type of anomaly identified in the review mentioned above is the “col-
lective anomaly”, exemplified with a heartbeat example in Fig. 6. In this case, the
anomaly is represented by a subset of the data instances.

Essentially, the anomaly detection problem is a classification problem: for each
instance in the data set, its class must be decided between “normal” or “abnormal”.
For this type of problem, three types of approach are commonly used:

1. The supervised anomaly detection uses data that is already labelled/clas-
sified to decide on new instances. This approach is expensive and cannot
guarantee the coverage of all possible cases.

2. The semi-supervised detection uses only instances labelled “normal”. As it
does not involve a knowledge of the possible cases of failure, this approach
has broader applications, such as the fault detection for space craft [42]. From
this perspective, this approach is also the closest to ours, because we too are

19

20

STATE OF THE ART

A

i i i i i
0 500 1000 1500 2000 2500 3000

Figure 6: Collective anomaly example from [20]

considering the use of a description of the normal (or nominal) behaviour for
the detection of errors.

3. The unsupervised anomaly detection does not use any already classified in-
stances and works on the assumption that the abnormalities are much rarer
than the normal instances.

The description of the anomaly detection problem for Internet attacks is also
worth mentioning in relation to the concept of unexpected fault. In the work of
Kruegel and Vigna [68], the detection of anomalies is based on models of “normal”
behaviour of the users. Applications are then used to interpret the behavioural
deviations of the users, which are judged as malicious activity. This approach is
complementary to the detection of misuse, where descriptions of known attacks
are used to identify attacks from the flow of monitored events. This is therefore the
detection of unexpected events, which brings this method closer to our proposal.

The interest in discussing the anomaly detection here is that it can show a model
for the detection of unexpected behaviours, similar to a certain point to our prob-
lem. While we are currently not concerned with data deviations as presented here,
it can be envisaged for future work to integrate such tools at the detection level of
our approach.

2.1.3 TibFit and Chameleon

TIBFIT TibFit [67] is a protocol for the tolerance of arbitrary faults in wireless sen-
sor networks. It uses a trust index for quantifying the reliability of each sensor in
the network. The index is a real number between zero and one calculated through a
learning process. The process starts with the maximal confidence level (of one) and
then increases or decreases the value (while remaining between zero and one) of
this level depending on the accuracy of the evaluated sensor behaviour over time.
The index is used to determine the validity of these sensors in a weighted vote that
is designed to help the system achieve a consensus by giving more credit to sensors
that have proven reliable in the past. To enable the use of a voting protocol, each
event is assumed to be located within the range of a well-defined group of sen-
sors. After each assessment, the indices of the relevant sensors are updated. This
approach allows the protocol to cover various cases of errors such as temporary or
permanent sensor failures, as well as malicious sensors. TibFit is an interesting ex-

2.1 THE TOLERANCE OF UNFORESEEN FAULTS

ample for us because it allows components of a distributed system — and therefore
potentially agents of a multi-agent system — to tolerate arbitrary faults collectively
through a vote.

cHAMELEON Chameleon [56] is a collection of tools for fault tolerance in a net-
worked environment — several applications working together — and provides three
types of entity. Daemons are attached to each node of the system for communication
and local support for other entities of Chameleon. Then, entities called ARMORs
are used for the implementation of specific fault tolerance techniques (voter AR-
MOR, for example). The third type of entity consists of managers who are used
for the supervision of the Chameleon system. Although not a multi-agent architec-
ture itself, this distributed network for fault tolerance is interesting for our study
because:

¢ its ARMORs are tools that are available for use in different applications, re-
sulting in different levels of reliability. This flexibility allows on the one hand,
choosing from different tools those that are better suited to the current appli-
cation, and on the other hand adjusting the balance between the computation
speed and the level of fault tolerance — knowing that normally adding addi-
tional tools increases the computation cost.

* one objective of this infrastructure is to provide fault tolerance for “off the
shelf” applications, which means that this system is transparent for the appli-
cation developers, a feature we would also like to offer through our safety net
approach. In other words, we aim to minimise the level of intrusion of our
fault tolerance mechanisms so that the programmer can focus on desired sys-
tem behaviours. This transparency for applications means that the Chameleon
tools are responsible for the tolerance to faults that are unexpected for the de-
velopers of the final system.

This last statement brings us to an important observation on the concept of “un-
foreseen fault” with respect to the point of view differences. Taking the example
of Chameleon, the faults that are “unforeseen” for application developers are not
necessarily unexpected for those who have implemented the underlying platform
and tools. Similarly, we will see that for our safety net approach we provide mech-
anisms that can be considered as “foreseen” faults without it being a violation of
the concept of “unforeseen fault” for the final developer.

2.1.4 Mission Data System

The system complexity and the constraints linked to the fact that the response time
can be very large in space missions determined NASA to use a goal-based control
system instead of the usual commands [91]. The essential difference identified by
the authors of the paper between a command and a goal is that a command is
linked to a moment in time and does not easily allow the verification of its per-
manent effects. This also makes it difficult to verify the conflicts between different
commands. In the proposed system, called Mission Data System (MDS), goals are
represented as constraints on state variables over time intervals. Then, the veri-
fication of conflicts and inconsistencies is reduced to a comparison between the
constraints on shared variables and their time intervals. Taking the example of a
drone, if a command to “avoid hazardous area” is launched, it will be easier to find

21

22

STATE OF THE ART

a conflict with “follow target X” when the target enters the danger zone if the two
are represented as constraints (the position of the drone and the next movement),
compared to the case when the two are represented as individual commands. In
the same time, if the area is classified as “dangerous” between the instants t1 and
t2, the verification can also conclude that there is no conflict if for example the tar-
get comes in the area after time t2. The actions to perform are deducted from the
differences between the current state of the variables and the desired state.

Fault tolerance is included in the system naturally as error conditions are treated
in the same way as normal states. Moreover, the states do not need to be explicitly
and accurately described, as it suffices to define them only with respect to the ob-
servable main states. One possibility that is closer to our concept of “unforeseen
fault” is to describe the “normal” behaviour or “acceptable” of the system. An er-
ror is detected when the observations on the system do not match the expected
behaviours. We consider this natural inclusion of fault tolerance in the design spec-
ifications useful for reliable systems and it can be used to handle cases of “unfore-
seen faults”. Compared to our approach, the MDS does not discuss the distribution
into several entities — the multi-agent design in our case — which we consider very
important for fault tolerance.

2.1.5 Recovery Blocks

In the early days of software fault tolerance, an enriched program [54] and system
[88] structure was proposed for allowing error detection and recovery. The idea is to
include regular tests on the outcome of program execution and include alternative
solutions for the situations when the original code did not produce the expected
results. For this, the programs are segmented into recovery blocks. The normal code
becomes a succession primary blocks which are each tested using an acceptance test.
For each primary block, one or more alternate blocks are provided for the situations
when the acceptance tests fail. Should the test of a primary block fail, the alternate
blocks are executed one by one until the test is successful. If none of the alternate
blocks for a primary block produce the required results, control is passed at a
higher level where similar measures may apply. Each alternate block is applied as
if the previous blocks of the same recovery block were never applied. To ensure
this property, all non-local variables' are tagged when modified using a boolean
flag, while their original values are stored in a stack. When a primary or alternate
block fails, any modifications that it operated on these variables are undone. Should
more specific recovery measures be needed, dedicated procedures can be defined
and triggered by the same mechanisms as the automatic variable recovery.

The types of errors that are covered by this technique are generic and of interest
for our approach:

¢ errors in the block that are detected by the acceptance tests,
e failure to terminate, caught by a timeout,

¢ detection inside the block by an implicit error detection mechanism (e.g. divi-
sion by zero),

¢ the failure of an inner recovery block.

1 Variables that are local to the blocks are not concerned.

2.1 THE TOLERANCE OF UNFORESEEN FAULTS

Similarly to our approach, the authors note, however, the complementarity to
other fault tolerance techniques as “errors which are expected to be sufficiently
frequent that special handling would be appropriate can perhaps be regarded as
normal program conditions rather than unforeseeable errors”.

The advantage of the recovery blocks approach is that it provides redundancy
of design, which ensures better fault tolerance than replication which has more
chances to produce the same errors as the original execution.

Algorithmus 1 : The recovery block structure

recovery block A
acceptance test AT

recovery block AP
| program

recovery block AQ
| program

When multiple processes are involved, conversations, which are recovery blocks
spanning two or more processes, are used to avoid a domino recovery effect. For
the conversation to be complete, all the processes must satisfy their respective ac-
ceptance tests.

There is also an important multi-level aspect, as the failure of a block is treated
at the next level, therefore enhancing the overall fault tolerance in complex applica-
tions. This means that even hardware errors may be masked by the application of
the recovery block structure at higher levels.

2.1.6 A Case for Automatic Exception Handling

Cabral and Marques [16] offer an insight in the way exceptions are used in Java
and .NET and conclude that exceptions are treated lightly by the programmers:

* generic exceptions that are difficult to properly handle and recover are
thrown;

¢ generic catching mechanisms are provided, resulting in a poor recovery (caus-
ing the program to continue in a corrupt state). There are even cases when
errors are not caught at all, allowing the program to crash even from minor
errors;

¢ providing “proper” exception handling decreases productivity and can have
negative effects on the overall software development project;

¢ providing “proper” exception handling can be challenging and even con-
tribute to the introduction of new errors.

They go on to make “A Case for Automatic Exception Handling”? [17], draw-
ing a parallel with the introduction of garbage collections and memory allocation.
The idea is to improve software quality and robustness by better covering excep-
tion cases and also ease the programmer’s task by minimising their error-handling
inputs.

Their solution combines exceptions with an execution similar to the recovery
blocks approach discussed here in Sec. 2.1.5. The programmers have the possibility

2 The actual name of the publication.

23

24

STATE OF THE ART

to let the platform handle exceptions or provide specific handlers. The platform
handling, however, is ensured through exception-specific actions — which can in-
clude throwing a new exception to be handled by the higher level, i.e. the caller of
the caller — provided by the programmer in a separate configuration file. This helps
diminish the programmer’s task when writing the bulk of the application but still
requires his or her involvement and concern for specific, foreseen, cases. At run-
time, an execution section producing an exception can be ran multiple times, each
time applying a different handler, until recovery is successful or the last handler —
“Log&Abort” — is reached. A transactional model ensures that after each exception
handler is executed the application state is restored to the initial condition so that
the code can be ran again.

Their study on exceptions shows that there are cases where fault handling is
poorly done and can result in a system crash or even continuing in an inconsistent
state. This means that even errors that were foreseen — for example because the
language would normally force the programmers to provide a specific handler —
become unforeseen as they are not treated or not treated correctly in the finished
application. Furthermore, there are also situations when the programmers could
use the aid of the platform for handling certain types of error. Our goal is to pro-
vide a development framework (platform, language and design requirements) that
allow the programmer to rely on the platform for the automatic handling of at least
some of the runtime exceptions. The safety net in this case is used in a conscious
manner by the programmer who either throws exceptions knowing that they are
handled by our mechanisms, or simply does not provide generic, empty or possibly
wrong handlers, knowing that the platform will take care of the concerned excep-
tions. Note, however, that as the authors of the cited studies, we too acknowledge
the limits of providing a completely generic mechanism for handling exceptions,
thus we need to integrate in the language the necessary features that facilitate the
recovery, e.g. goals with satisfaction tests.

2.1.7 Defensive Programming

The software engineering technique called defensive programming requires the pro-
grammers to systematically cover all possible cases, even if this may seem redun-
dant. While this technique does bring robustness benefits, it does so by relying
heavily on the judgement of the programmer who is forced to add numerous tests
to ensure the correct values for all variables. More tests means more code and this
comes with the increased risk of errors. This technique is thus outside the scope of
our work but constitutes an interesting example of expensive and yet not guaran-
teed fault tolerance technique.

2.1.8 Design by Contract and Executable Specifications

DESIGN BY CONTRACT The contract programming paradigm was introduced
by Meyer with the Eiffel programming language [74, 75]. The idea is to require the
programmer to systematically specify the conditions to check, but without the com-
plexity of the defensive programming approach. These conditions (annotations) are
assertions, to which the programmer associates a truth value and which have their
own semantics (not necessarily the same as the language). In general, this semantics
corresponds to boolean expressions with first order logic quantifiers. This program-

2.1 THE TOLERANCE OF UNFORESEEN FAULTS

ming paradigm is used not only to systematically test during the execution (and
thus in a way provide a means to elegantly perform defensive programming), but
also to analyse the code. One can indeed, in certain cases, link the contracts to an
automatic prover or a static analysis tool. There are three types of assertion:

¢ Precondition: verified before an operation, for example a function call, which
will not be performed if the assertion is not valid;

¢ Postcondition: verified after an operation;

¢ Invariant: is an assertion that needs to hold permanently during the entire
program execution or more locally (e.g. in a loop).

Contract programming is a popular paradigm as it increases the robustness of
software and also reduces the debugging time. Various programming languages
contain an annotation facility in order to comply with the paradigm, for example
SPARK [7] for annotating Ada code.

EXECUTABLE SPECIFICATIONS Another approach is represented by the use of
executable specifications [41] for increasing software reliability. The goal in this case
is to identify errors and deviations in the development process from the user intent
in order to correct them early in the application life-cycle. More recently, Samimi
et al. [98] extend the application of the executable specifications to runtime, thus
obtaining a use similar to the contracts, in an approach called Plan B. The speci-
fications are used to check the postconditions after executions. In case of failure
in the execution (through a RunTimeException, e.g. an ArrayIndexOutOfBounds or
NullPointerException in Java) or if the postconditions are not as required, instead
of halting the execution, the execution falls back on the specifications which are
used to try and provide an alternative solution. The authors aim to:

e increase software reliability by introducing redundancy through the speci-
fications and catching the error states in order to handle them using the
specifications. The advantage is twofold: the imperative and more efficient
implementation (in Java in their case) is used for the actual execution, fol-
lowed by a verification and possibly an attempt at recovery through the more
computationally expensive specifications.

¢ improve the developer’s experience by not requiring him or her to program
the specific cases. In case they occur, an exception is thrown which causes the
execution to fall back on the specifications.

These approaches rely on the programmer for the verifications but are both more
refined than the defensive programming and can cover unforeseen faults. Further-
more, the Plan B approach, similarly to the recovery blocks above, also provides
mechanisms for attempting to recover in case of error.

2.1.9 Let It Crash

Erlang [2, 3] was conceived for concurrent applications with a large number of
threads and with high availability requirements. Software written in Erlang has a
reputation for being very reliable, for example the network switch AXD301 [10]
with a “nine 9” reliability.

25

26

STATE OF THE ART

Erlang is a dynamically typed functional language whose particularity is in the
way it handles processes. It contains a library of very light threads which only
communicate by messages on which timeouts can be set.

Erlang processes can also send messages on their functioning, for example when
ending their execution: {‘EXIT’', Existing_Process_Id, Reason}. In case the
value of Reason is “normal”, the execution is considered correct and the message
is ignored. Otherwise, it is seen as an error message and the concerned thread
can either handle through a catch block, or finish sending the same signal. While
error messages are standardised in many languages (e.g. Java, C#, Prolog), the exit
signal standardisation is specific to Erlang. By default, a thread always sends an
exit signal to its parent thread. Two processes can also be linked together, so that
one of them is informed of the ending of the other.

The designers of Erlang encourage the programmers to not catch exit signals un-
less these are required by the specifications, thus leaving the processes apply their
default handling when the case is not covered by the specifications. This approach
is called “let it crash” [2] and is a characteristic we are intending to integrate in our
safety net as well.

2.1.10 The Mercury Programming Language

Mercury [51] issued from the observation that even if Prolog was more expressive
than the imperative programming languages of the 1990s, it was not much used by
companies. The two main arguments the creators of Mercury give are:

¢ the Prolog compilers do not detect enough compilation errors,

¢ the programs written in Prolog are sensibly slower than the ones written in
imperative languages.

Mercury is a strongly typed language, proposing a more evolved typing system
than Prolog. It also has a means for analysing the input/output modes of predi-
cates (i.e. the state of instantiation of variables of a predicate) and a determinism
analyser (to identify the number of potential outputs of a predicate). These verifi-
cations increase both the reliability of software by helping avoid certain runtime
errors and the execution speed (e.g. no backtracking is performed on a determinis-
tic predicate). However, this is done through language restrictions, in particular on
the constructions that are outside the scope of the first order logic, e.g. the “cut”.

A compromise is thus required between the restrictions imposed on the program-
mer and the ease of programming in a language. For the tolerance to unforeseen
faults, we need to keep the chosen language usable, expressive and in the same
time include restrictions to guide the programmer towards more reliable code.

2.2 FAULT TOLERANCE WITH AND FOR AGENTS

In order to discuss fault tolerance in the domain of Multi-Agent System, let us first
present a couple of definitions of the term “agent”.

AGENTs While we gave a definition of agents focusing on the practical aspect of
delimiting their memory and defining their communication in Sec. 1.4, we cite here
the very wide definition of the concept by Ferber [39]:

We call agent a physical or abstract entity

2.2 FAULT TOLERANCE WITH AND FOR AGENTS

a. which is capable of acting in an environment,
b. which can communicate directly with other agents,

c. which is driven by a set of tendencies (as individual goals, satisfac-
tion or even survival functions that it seeks to optimise),

d. which has its own resources,
e. which is able to perceive (but in a limited manner) its environment,

f. which has only a partial representation of this environment (and
possibly none),

g. which has capabilities and provides services,
h. which can possibly reproduce,

i. whose behaviour tends to satisfy its objectives, taking into account
the available resources and capabilities, depending on its percep-
tions, representations and the communications that it receives.

Wooldridge [116], focusing on computer systems, defines an agent as: “a com-
puter system that is situated in some environment, and that is capable of au-
tonomous action in this environment in order to meet its design objectives.”. The
same author continues by pointing out three characteristics of agents:

e reactivity — they can can perceive and react to those perceptions, in line with
their design objectives;

* proactiveness — they are able to take the initiative in order to satisfy their design
objectives;

e social ability — they can interact with other agents.

AGENTS AND FAULT TOLERANCE Generally speaking, multi-agent systems are
seen as having one advantage and one disadvantage for fault tolerance [48]:

+ they are naturally modular, which is a very important characteristic for the
dependability of software;

- it is difficult to guarantee a deterministic behaviour due to their autonomy
and asynchronism.

We continue this section by describing a few approaches that can be used for the
fault tolerance when using MAS.

2.2.1 A Perspective on Exceptions in Multi-Agent Systems

Platon et al. [82, 83] distinguish the “classical” programming exceptions — they call
continuity exceptions — from the rupture exceptions (in the sense of MAS) by defining
the latter as “the evaluation by the agent of a perceived event as unexpected”. While
we do not use the word “unexpected” in the same sense, we do acknowledge their
perspective on the fact that exceptions are a matter of agent perspective rather
than a given “external” event. Their definition takes into account agent autonomy;,
as the agent perspective is used to decide whether an event is an exception or
not, contrary to the classic definition where the program is forced to react to any
exception thrown by a called operation. The agent architecture they propose is

27

28

STATE OF THE ART

thus focused on evaluating the agent perceptions (e.g. messages) with respect to
the local expectations and relevance in order to decide if they need to be treated as
exceptions. This architecture does not suffice for our purposes, because our concept
of unforeseen fault covers both their rupture and continuity exceptions, as we take
into consideration issues that appear at different levels, both at programming and
system level. Furthermore, they base their exception detection and handling on
mechanisms that require conscious designer involvement — e.g. providing a specific
knowledge base for certain interactions — which makes the exceptions “foreseen”
from our perspective.

One of their proposed directions of research for exception handling [82] is au-
tomatically enriching the agent context at runtime with information that are to be
used in case of exceptions. As shall be seen in Chapter 3, this corresponds to one
of our contributions for handling dependencies.

2.2.2 Communication Standards for Agent Fault Tolerance

Numerous works on the fault tolerance in the MAS were concerned with the
creation of standards in the communication languages, with languages such as
AgenTalk [69] and COOL [6]. One of the objectives was to force the programmer to
specify the behaviour in case a language primitive failed, for example because of an
agent death. The communication language FI-ACL [33] was proposed in 2006 as
a communication standard. An agent supporting FT-ACL must contain a facilitator
acting as a mediator between an agent and the other agents. The facilitator is in
charge of sending and receiving messages and thus the errors that occur at low
level (e.g. physical communication error). It communicates with a failure detector
which monitors the good functioning of the other agents, in particular for detecting
agent deaths.

2.2.3 Replication

Another research direction for the fault tolerance of the MAS is the management of
the replication [38]. The idea is to introduce proxys between agents and the rest of
the system in order to make the replication transparent with respect to the other
agents. These works were influenced by the similar approaches in distributed sys-
tems, in particular the N-version programming. These techniques were extended
to take into account the importance of each agent in the MAS [46]. The relative
importance of an agent with respect to the others is determined dynamically by
a reactive agent associated with each problem-solving agent and whose role is to
monitor the communications. The idea is then to only replicate the agents that are
evaluated as “critical”, thus improving system performance. This method has the
advantage of allowing the system to dynamically adapt to any conditions it can
encounter, which are thus unforeseen.

2.2.4 Detecting Errors Through Agent Disagreement

The idea of Socially Attentive Monitoring (SAM) [57] is that an error will manifest
through a disagreement between the agents, for example on the value of a belief
or even a goal to adopt. SAM is based on a social psychology theory, in which an
agent turns to the other agents in order to look for errors inside itself as well as the

2.2 FAULT TOLERANCE WITH AND FOR AGENTS

Inter-agent messages
77777 Exception-handling messages

Figure 7: Sentinel architecture example from [65]

others. Once an error is found, the other agents of the group are announced and a
diagnosis can be attempted. The problem with this approach is that it requires an
explicit representation of the group and the possible interactions, which makes it
difficult to adopt in dynamic architectures.

2.2.5 The Sentinels

For fault tolerance in MAS, Haegg [48] proposes adding special agents called “sen-
tinels” whose sole purpose is to monitor the behaviour of problem-solving agents.
Sentinels can intervene, if necessary, by choosing alternative problem solving meth-
ods for the agents, deciding to exclude failing agents, change the parameters of
the agents, or even to refer to human operators. Communication in this case is a
form of broadcast which facilitates the monitoring work of the sentinels. An exam-
ple described by Haegg presents a distributor and several customers in the context
of the electricity market. Sentinels are introduced into the system with the aim of
monitoring its correct functioning and the respect of the different market rules. If
for example a customer permanently offers contracts that are below certain thresh-
old prices, the sentinels can notify the human operators or advise the distributor
to avoid this agent.

A sentinel can be provided for each agent [64] upon its creation, in order to con-
trol the agent’s behaviour with respect to the its nominal behaviour. If an exception
is identified, the sentinels use dedicated diagnostic and reparation agents to recover
the system. A proposed alternative [65, 100, 101] is to interpose a sentinel between
each agent and the rest of the system to better control its state, allowing in the case
of [65] to improve the speed of detection for the death of an agent. The proposed
architecture is shown in Fig. 7, where messages between agents are represented
using the solid line, while messages for handling exceptions are represented by the
dashed line. A “reliability database” is used to centralise all information on the
exceptions detected thus far.

The sentinels of Shah et al. [100] provide each agent with a service similar to
the observers described in Sec. 2.1.1. To communicate with other agents, an agent
passes each message through its sentinel, which not only transmits it to the re-
cipient, but also checks it with respect to the “ideal” behaviour of the agent. This
approach uses multiple knowledge bases, such as the one for the behaviour of the
agents and the one for diagnostic rules. The sentinels are responsible for diagnos-
ing the causes of exceptions, regardless of their source: an undesirable behaviour
detected by the sentinels themselves or an exception received from their agents.

29

30

STATE OF THE ART

The diagnosis is made based on local knowledge, but also by making queries to
other sentinels.

While this approach is powerful for monitoring multi-agent systems, its imple-
mentation remains within the the scope of foreseen faults, since the detection sys-
tem is based on the knowledge of abnormal situations. In addition, in order to
develop systems that are tolerant to unforeseen faults, we are not interested in
diagnosis. Indeed, finding the origin of the fault may require an important comput-
ing time and also a more specific knowledge of the application domain, which may
conflict with the concept of unexpected fault.

It is important to note that the observers and the sentinels are usually generic and
offered by the platform, thus being tools that can be formally validated and reused.
The advantage of comparing the functioning of a system with the ideal function-
ing indicated by its model lies in the fact that errors can be detected without the
designer’s concern for specific errors, making it a good detection mechanism for
errors caused by unforeseen faults.

2.2.6 Norms. Trust and Reputation

The need to handle system complexity and the level of abstraction of agents led
researchers to propose organisational approaches to MAS designs, with the purpose
of organising and regulating the agents. Norms are used in these organisations to
regulate the agent behaviour and avoid unwanted behaviours, regardless of their
cause, e.g. unforeseen emergent behaviours [24].

Trust and reputation [97] are another pair of concepts the computer science com-
munity has borrowed from human societies. For agents, they can be used to keep
track of the agent interactions and penalise agents that are perceived as misbehav-
ing, regardless of the actual cause, including thus what we call “unforeseen” faults.
The concept of trust is also used in TibFit, as presented in Sec. 2.1.3.

2.2.7 Agent Autonomy for Robust Agents

In the domain of multi-agent systems, autonomy is a special property that presents
both positive and negative aspects for the fault tolerance [86]. Autonomy is often
cited among an agent’s defining characteristics. It implies the ability to make one’s
decisions without external intervention and adapt to changing conditions.

A first interpretation of this property — and the reason why it is often marketed
as a desirable characteristic of agents, but also robots and other systems — presents
it as positive for the fault tolerance: autonomous agents are more independent with
respect to others, and should therefore be more resilient.

However, a more in-depth evaluation can give a more nuanced result. When other
agents are autonomous, they can be seen as “black boxes” that can “refuse” inter-
actions so their peers have to take these into consideration. Autonomous agents
can thus be perceived as being less reliable by their peers, with behaviours that
can be seen as unpredictable by their human designers or controllers too. For this
reason, in [86] it is argued that the classic fault classification needs to be extended
to include what others perceive as faults caused by autonomy. The bright side of
this observation is that it can be included in the design of agents with benefits on
their robustness. While difficult to quantify, this makes an important guideline to
give to system designers: “an agent should not depend on a single second agent”.

2.3 GOAL-DRIVEN AGENTS

From this point of view, ideally for the fault tolerance it would be for the agent
to be completely independent, but that would result in one or several single-agent
systems, which defeats the purpose of the MAS in the first place. But applying the
rule in moderation results in agents that are less prone to be negatively impacted
by errors or failures in their peers.

This gives a totally different approach from the tightly coupled classic systems
where designers suppose that the other components work according to their spec-
ifications. The result is more flexible systems where errors are well confined and
agents are designed taking into consideration the possible autonomy of their peers
and thus their possible “refusal” to cooperate — for whatever reason, either moti-
vated by their own goals, or an agent or communication error. While there is an
obvious limit to the number of reconfiguration alternatives for action an agent can
have, it is important for it not to behave erratically or block in case none of them
responds as expected.

2.3 GOAL-DRIVEN AGENTS

In the field of intelligent agents, goal-driven agents are used extensively due to their
pro-activity, adaptability and similarity between their abstract representation and
the human reasoning. The original model for these agents is called Belief, Desire,
Intention (BDI) [90]. BDI agents are enticed with beliefs to cover their view of the
world, a reason for their behaviours in the form of desires or goals, and a description
of the means to act, in the form of plans or intentions. Different implementations [1,
11, 14] require various characteristics such as goal preconditions, postconditions
or satisfaction conditions, as well as ways to handle conflicts and other execution
issues.

Goal-driven agents allow designers and programmers to separate the objectives
of an agent from the means to achieve those objectives. As seen in Sec. 2.1.4, this
characteristic of goals makes them particularly interesting for systems where auton-
omy and fault tolerance are especially important issues: in space missions. Dalpiaz
et al. [26] propose a four-step cycle: monitor, diagnose, reconcile and compensate,
that is based on goal-driven agents for detecting errors and reconfiguring, pro-
moting the use of goal-driven agents for fault tolerance. We cite three of the most
important advantages offered by goal-driven agents:

1. at runtime, flexibility to adapt to the given situations by choosing the appro-
priate means depending on the execution context;

2. at runtime, the possibility to retry achieving a goal in case the means initially
applied were not successful;

3. at design-time, the facility of designating high-level objectives that are then
decomposed into lower level ones and eventually actions [44, 114].

As shall be seen in Part II of this thesis on the safety net approach, the first
two advantages are particularly useful for augmenting agent robustness. The third
advantage is more relevant for the GPS approach discussed in Part III.

While we focus on a plan-centred approach, we note the use of goals for
interaction-centred approaches, always in the interest of robustness and agent
autonomy [13, 22].

31

32

STATE OF THE ART

WHERE DO GOALS AND PLANS COME FROM? Our work is based on the idea
that goals and plans are available for the agent execution when needed. For simplic-
ity reasons, we use plans and goals that are already written by the programmers
when the program is executed. However, our work should be compatible with
other means of procuring goals and plans, such as motivational goal generating
[50] and planning [21, 99], including dynamic plan revision [12]. The advantage of
pre-existing plans is that they can make the agent behaviour more predictable and
the computational cost is lower.

2.3.1 Describing Goals

GOAL PROPERTIES In order to better define the abstract concept of goal, Winikoff
et al. [115] identify a series of desired properties of goals:

e persistent — goals should only be dropped for a good reason;

* unachieved — goals should not be adopted if they are already achieved, and
they should be dropped when the desired state is achieved;

* possible — impossible goals should not be pursued;

* consistent — adopted goals should not be in conflict between them. However,
an agent can have conflicting goals, as long as they are not pursued in the
same time (e.g. a robot whose desires can be to “plug in to recharge” and
“work outside”);

* known — the agent should know its goals in order to be able to reason based
on these goals.

GOAL TYPES Among various classifications of goals proposed in the literature,
goals can be procedural when the goal is to execute actions, or it can be declarative
when it describes the state sought [115]. Van Riemsdijk et al. [94] also point out the
distinction between system goals which represent high level goals that the system
as a whole needs to accomplish and which are different from the individual goals
of its constituent actors [71]. When adding a temporal aspect to the description of
goals, they can be [15, 94, 115]:

* achievement goals that relate to the common understanding of the word “goal”,
as “something has to be achieved”;

* maintenance goals that aim to preserve a certain condition, either by reacting
to its changing, or by pro-actively acting to avoid a foreseen menace;

e perform goals that are goals to execute actions;

* query or test goals that are goals to own a certain information.

PARTIAL GOAL SATISFACTION In this thesis, we treat only binary goal out-
comes (success or failed), but goal satisfaction can also be evaluated using a more
refined approach: a progress metric [95]. Partial goal satisfaction could be integrated
with our model by enforcing the coverage of the whole range of possible values for
the progress metric used. For example for a Surveillance goal, instead of specifying
success and fail behaviours, it could be interesting to estimate the percentage of the

2.3 GOAL-DRIVEN AGENTS

/ Adopted \

v
8=

Context
--------- - it R Drop
Gondition l : Condition I

Creation—) ______ . _____
Condition :
create n adopt

Legend
- Negated condition

D---o Condition guards transition
[C)---e Conditiontriggers transition &

option i
drop
Finished

suspend

activate

Figure 8: Goal automaton example from [15]

assigned area that was covered and to use thresholds for the desired behaviours:
less than 30% would be considered a mission failure with the area announced as
unsafe, a coverage between 30 and 80% would require a call for backup to finish the
job, while a coverage of more than 80% would be considered a success. Note that
this does not concern the intermediary stages such as those that are handled by the
goal automata, but final goal failures, i.e. when all alternatives have been tried and
no positive outcome resulted.

2.3.2 The Goal Life-Cycle

In the original BDI model proposed by Rao and Georgeff [90], the “matching” be-
tween goals and plans is assured through a cycle that considers the options for
desires, deliberates on them to update the existing intentions and then executes the
actual actions. In more practical approaches — e.g. Fig. 8 by Braubach et al. [15] or
Fig. 9 by Thangarajah et al. [111], described into more detail in [49] — automata
are used to handle the life-cycle of goals from their adoption to the appropriate
plan selection and execution.. The automaton generally uses different parameters
and conditions to decide when and how to adopt goals, handle conflicts and most
importantly goal retries. Note how in Fig. 9 the goal state transitions depend on
the goal type, with the particular case of the maintenance goal which has specific
transitions related to its particular state Waiting.

The goal automaton proposed by Braubach et al. [15] presents a goal state la-
belled “New” with a “Creation condition” acting as a triggering condition for the
goal before the adoption and the actual goal life-cycle. This state, together with
the condition are at the level we are concerned with for our GPS approach. A goal
that was defined for the agent is considered to be in the “New” state, as opposed
to a goal that can for example be received from the exterior or generated through
the agent reasoning. Only when such a goal is received does it pass into the “New”
state. All the goals discussed in the examples in our work can be considered already
in this state.

In Fig. 24 in Sec. 3.3.3 we give our version of an automaton for achievement goals,
whose implementation we discuss in Appendix A.

WHEN TO GIVE UP: COMMITMENT STRATEGIES A question that needs to be
asked is how much an agent should insist in pursuing a goal, as various conditions

33

34

STATE OF THE ART

activate (P,A)

respond

Waiting [

re-activate (M)

consider

re-activate

(M)

suspend

re-activate
(PA)

Suspended

Figure 9: Goal automaton example from [111], with specific transitions depending on goal
type: A - Achievement goal, P - Perform goal and M - Maintenance Goal, and T
corresponding to a goal ending: drop, abort, succeed or fail.

that depend on the context (e.g. no route to the destination), agent definition (e.g.
the goal is too ambitious with respect to the means in place) or existing errors
(either anticipated or not) can make achieving the goal impossible or just more
difficult. As Winikoff et al. note in [115], using declarative goals in BDI agents helps
decouple plan failure from goal failure, meaning that a goal is not be dropped only
because its plan failed. This is a very important property of the goal model that we
will base our error recovery on.

Here are three strategies for the level of commitment of an agent to its goals,
based on [89]:

1. blind commitment, where an agent pursues a goal until achievement;

2. single-minded commitment, where an agent pursues a goal as long as it esti-
mates that it is still achievable;

3. open-minded commitment, where an agent pursues a goal as long as the goal
is still desirable, is still valid.

In practice, different degrees of commitment can be used, for example allowing
an agent goal to be aborted when a certain failure condition is true [96]. Sardina and
Padgham [99] propose a solution whose “flexible” commitment is placed between
the single-minded and open-minded strategies.

2.3.3 Reasoning on Agent Goals

SEPARATING REASONING FROM ACTING As introduced in Sec. 1.3, in Part III
of this thesis we present the Goal-Plan Separation (GPS) approach for designing
goal-driven agents in which actions are well delimited from the part of the agent
concerned with the goals — adopting, handling, reasoning etc. — which we will call
the goal reasoning level.

The aspect of the Goal-Plan Separation that handles goal reasoning is situated
at what Harland et al. [49] and Thangarajah et al. in earlier works [108, 109] call
agent deliberation level. This is where agent goals are considered, which constitutes
the point where goals start their life-cycle. It is the same level where top level com-
mands are issued to interfere with the goal life-cycle, e.g. when deciding to drop or
suspend the goal. As the cited authors point out, goal deliberation can deal with
issues such as goal prioritisation, resource management and even user intervention.

2.3 GOAL-DRIVEN AGENTS

These aspects are beyond the scope of our work but can be considered for future
developments of our approach. We note, however, that in [49], changes in the goal
state have preference over any executing plans, which is an important detail to
consider for our GPS approach.

The arguments for planning in BDI agents at goal level employed by Sardina and
Padgham [99] offer more reasons for the existence of the goal reasoning level (be
it “hardcoded”, created through planning or other means) that the GPS approach
aims to delimit: “(a) important resources may be used in taking actions that do not lead
to a successful outcome; (b) actions are not always reversible and may lead to states from
which there is no successful outcome; (c) execution of actions take substantially longer than
“thinking” (or planning); and (d) actions have side effects which are undesirable if they turn
out not to be useful”. All these advocate for an agent that behaves strategically and
pro-actively rather than react based on a limited context, and it is at goal reasoning
level that such a strategic reasoning is possible.

In [84] Pokahr et al. address the issue of goal deliberation. An important difference
from our work on GPS is that they only consider goals that are already adopted,
while we are concerned with where exactly goals are adopted in the agent defini-
tion. Their work focuses on goal interactions, i.e. when goals interfere positively or
negatively with each other, and they base their proposed strategy on the extension
of the definition of goals. They include for example inhibition arcs that block the
adoption of a certain goal or type of goal when another goal is adopted. We do
not include such a specific facility in the goal definition, but, as shall be seen in the
example in Chapter 5, we can achieve the desired effect using the available agent
reasoning mechanisms. This concept is not equivalent but rather included in our
goal reasoning level as they consider only goals that have already been adopted.

Klenk et al. [66] introduce an approach called Goal-Driven Reasoning (GDR)
based on the hypothesis that their agents are functioning in a complex and dynamic
environment which is difficult (if not impossible) to model completely. Their work
deals with planning issues when the agent is confronted with new, unexpected sit-
uations. They aim to complement the “knowledge engineering” (design work put
into defining goals, the environment model etc.) needed for agents, which is some-
what similar to our goal of complementing programmer work on fault tolerance.
They employ an agent model called Autonomous Response to Unexpected Events
(ARTUE) and which uses a Hierarchical Task Network (HTN) planner to produce
plans and their expected results. “Discrepancy detection” is then used to identify
any deviation from the expected results, which then is evaluated by a “explanation
generation” system that produces hypotheses on the possible cause. The discrep-
ancy can lead to new goals being created to solve problems or take advantage
of opportunities. The new goals can influence the goal management as they may
modify which goals are currently executing. While we are similarly interested in
the good runtime behaviour in the presence of unforeseen difficulties, their work
focuses on external, where ours is concerned with internal issues. Furthermore,
while their work is based on having a planner, we speak of the possibility of using
one, but we focus on readily-written plans (as in Jadex, Jason etc.). We also note
they use an Assumption-based Truth Maintenance System (ATMS)3 for handling
hypotheses, which, as shall be seen, is also part of our solution.

3 Discussed here in Sec. 2.4.2.

35

36

STATE OF THE ART

Figure 10: An example of Goal-Plan Tree (GPT)

2.3.4 The Goal-Plan Tree

Thangarajah [108, 109] formalises the representation of the agent model in the
form of an AND-OR tree: the Goal-Plan Tree (GPT). Goals are OR nodes since their
child nodes, the plans, offer alternative solutions and only one plan suffices for the
achievement of a goal. Plans on the other hand are AND nodes in order to denote
the obligation to achieve all the adopted sub-goals for a successful plan execution.
Furthermore, two operators are added to the plan node, to indicate either that the
goals have to be achieved in sequence (;) or in parallel (|). A generic example
which illustrates all these is given in Fig. 10. Here, the GPT using the two operators
spreads in depth across several levels. Note that there can be more than one tree
for a given agent, in other words more than one root goal. This model is used more
as an analysis than a development tool as it represents execution traces: the same
agent can have different GPTs depending on the specific goals adopted during a
certain execution.

The goal-plan trees have been used in various works for representing agent spec-
ifications and as a basis for further treatments. In [109] GPTs are used to gather
resource requirements called summary information and identify possible goal in-
teractions. This is due to the hierarchical structure of the tree where summary in-
formation can be propagated upwards towards the root of the tree. Further works
on the subject [49] reuse the model to illustrate their operational semantics for the
goal life-cycle. However, Shaw et al. propose different approach for handling goal
interactions using Petri nets [103] and constraints [104] instead of GPTs.

Singh et al. [105] use learning for plan selection in BDI agents. They also use GPTs
to describe the agents and even note briefly that only “leaf plans interact directly with
the environment”, which is consistent objective for the GPS approach. This allows for
a representation where, given the results —i.e. success or fail — of the executions of all
leaf nodes, the success or failure of the root node is decided by simply propagating
these logic values in the AND-OR tree. This shows a benefit of separating agent
reasoning from acting, for, if actions were included in intermediary plans, even if
all sub-goals of a plan were achieved, the plan would not necessarily cause the
achievement of its parent goal. The GPT is therefore already a simplification of the
system, as it uses the rather strong hypothesis that there are no perturbations, such

2.4 ALMA: AN AGENT LANGUAGE FOR DEPENDABLE AGENTS

as the one in the afore-mentioned case, in the AND-OR tree. Another example of
“perturbation” in the propagation of success values in the tree can be the use of
specific achievement and failure conditions for each goals [76, 99].

2.4 ALMA: AN AGENT LANGUAGE FOR DEPENDABLE AGENTS

We will now describe the ALMA agent programming language* whose main goal
is to permit writing agents capable of interacting with autonomous agents, in par-
ticular to adapt to their unpredictability. As a consequence, the designers of the
language placed a strong emphasis on working with assumptions. As we argue
in Sec. 4.1, the language’s built-in fault tolerance features and other characteristics
(e.g. the use of assumptions, modularity) recommend it for our safety net approach
and therefore the implementations for this thesis (both for the safety net and the
GPS) were done in ALMA.

2.4.1 ALMA Motivations

Agents, just as humans, are often pressured into acting without complete infor-
mation on their current context. They therefore need to base their reasoning and
acting on assumptions that may later be proven wrong. Inconsistent assumptions
can be used when reasoning: “supposing the weather is nice tomorrow, I'm calling
my friends to organise a barbecue; in parallel, supposing it rains, I'm borrowing
this projector so that we can all see a film indoors”. The agent (or person) will
most certainly end up doing only one of the actions and cancel the other when
the assumptions will be confirmed, but the advantage is that all cases were well
covered.

Some facts are known to be true. We can thus write true = fact which reads
“fact is true under all circumstances”. However, in case newer information contra-
dicts the previously “sure” fact, the agent may find itself in the impossibility to
continue functioning. The statement “water boils at 100° C” may seem a sure fact,
until one is exposed to a different atmospheric pressure, for example due to alti-
tude, resulting in the contradiction of this “sure” fact. A 1800s sailor or a robot
with too strict rules would be seriously confused by such an event. It may thus be
useful for the sailor and the agent to be able to take a step back and consider the
options, possibly taking into consideration both contradicting facts and being able
to discard any of them depending on other information and criteria.

Both these examples show the utility of assumptions and as well as the capability
to function in multiple, possibly inconsistent contexts, something that we humans
are able to do.

When taking this perspective, facts can be based on other facts and assumptions:
f1/\...fn = fact. For example instead of having true = temperature = 10, we
would have sensor = temperature = 10. This means that when we add sensor’ =
temperature = —5, the agent can conclude that sensor and sensor’ cannot be both
correct simultaneously and it can even continue reasoning in both hypotheses in
parallel: either sensor or sensor’ is right.

For an agent, the environment in which it exists and acts can be [29]:

1. More or less observable, in terms of completeness, accuracy and of the infor-
mation available to the agent.

4 An in-house language developed in collaboration between TSA and LIPé.

37

38

STATE OF THE ART

Justifications
—

Assumptions

IE TMS
Beliefs
—

Contradictions

Figure 11: Problem Solver = Inference Engine + Truth Maintenance System (from [40])

2. Deterministic or not, in the sense that an action always produces the same
results.

3. Static or dynamic, depending on whether the agent is the only one who can
produce changes in it.

In most real applications, the environment is partially observable, not determin-
istic and dynamic, so the use of assumptions is useful to allow for the agent to act
without having all the data. This also has a positive effect on the fault tolerance, as
the agent is more flexible and less likely to crash due to a contradiction.

Following this rationale, the ALMA agent programming language [29] was devel-
oped with the purpose of creating agents able to reason and act under uncertainty.
Particular care was given to the fault tolerance characteristics of the language and
its platform, as we shall see in the following.

ALMA can be used for defining agents with respect to their behaviour, decisions,
use of beliefs and communications. The language aims at a high level of abstraction
as the sole action an agent can perform is sending a message>, with actuators
and sensors being represented as artefacts that are exterior to the agent and with
which the agent interacts only through messages. This is an important aspect as
it facilitates the abstraction of hardware errors which can be handled by specific
means in their own artefacts.

The result is an imperative agent programming language whose central point is
the way beliefs are handled. It uses a rule-based inference engine together with a
consistency checker to represent assumptions and complex reasoning, while var-
ious fault tolerance elements are present both at language and platform level.
ALMA was implemented on top of Prolog, so, as we will describe later on, it shares
certain characteristics with the language, notably regarding data types.

As we used ALMA as a base for our work and experimentations for both main
contributions of this thesis (Parts II and III), we will now describe the language
into more detail. In order to fully understand ALMA, we need to first describe the
underlying mechanisms that make its belief and assumption management possible:
the problem solver composed of an inference engine — truth maintenance system
duo.

2.4.2 Problem Solvers and Truth Maintenance Systems

The problem solver model on which ALMA is based is composed of two parts
(Fig. 11): an Inference Engine (IE) focused of drawing inferences and a Truth Main-
tenance System (TMS) focused on storing and managing beliefs, assumptions and
contexts [40, Chapter 6].

In this acception of the term “action”, we do not include belief writing. However, note that other
internal “debugging” actions such as console writes are possible in the ALMA language.

2.4 ALMA: AN AGENT LANGUAGE FOR DEPENDABLE AGENTS 39

THE INFERENCE ENGINE A pattern directed inference system (PDIS) [40, Chap-
ter 4] works with two types of data:

1. declarative data in assertions (facts, which when justified are also called “be-
liefs”);

2. procedural data in rules: (rule < trigger >. < body >), where the body can
be an assertion, another rule etc. Rules are applied indefinitely, remain in the
database forever and are order-independent.

The inference engine uses forward-chaining: it applies rules on existing asser-
tions to produce new ones and it ensures the rules are applied until the system
reaches quiescence® for each new rule and assumption added. It is important to
note that the order of application of rules is not deterministic.

THE TRUTH MAINTENANCE SYSTEM Generally speaking, a TMS allows the prob-
lem solver to:

1. identify responsibility for conclusions, in order to provide more convincing
solutions (e.g. why the proposed reparation) and more useful explanations
(e.g. why the system does not work, not just that it does not). This is done by
tracing the justifications for beliefs.

2. recover from inconsistencies by tracing backwards justifications to find the
sources of bad conclusions.

3. avoid unnecessary repetitions of computations and reasoning by maintaining
a cache of inferences.

4. guide backtracking by indicating assumptions that lead to contradiction, thus
identifying early the branches whose exploration is futile.

5. manipulate assumptions and use default reasoning, i.e. reasoning based on
insufficient information (e.g. Tweety is a bird therefore it flies, unless proven
contrary). The T™MS allows assumptions to be retracted gracefully.

While it offers these advantages, a TMS is not a solution for any system. For
example, if the rules used are inexpensive to apply and the system does not have a
very large number of rule applications, then storing the results of their application
may not be justified as the TMS might actually slow down the resulting problem
solver. Also, the rigid form of rationality imposed by the T™MS in which rules are
added forever in the database and no facts can be simply retracted can be a problem
for some purposes.

In a problem solver, the inference engine interprets data and decides which rules
are applied. These are then given to the TMS in the form of justifications. The T™MS
stores all data in form of nodes, which it cannot semantically understand. Its job is
to maintain a dependency network between these nodes and reply to queries from
the problem solver regarding justifications, contradictions” etc. At a given moment,
these nodes can be believed to be true or not by the problem solver, depending
on the existence of a valid justification for them at that moment. The dependency
network is a bipartite graph containing assertions (facts, beliefs) and justifications.

6 Quiescence: state in which there are no more rules that can produce new beliefs
7 It is the TMS that detects contradictions and informs the IE.

40

STATE OF THE ART

P
In Out
_p In | Contradiction —P
Out P Don’t know

Figure 12: Representing a node and its negation

The set of justifications grows monotonically as there are usually no means to
retract a justification. However, the set of enabled (believed) assumptions is always
subject to change.

The T™MSs work with definite clauses, which, by associating each node a propo-
sitional symbol, allow us to write the justification of a node n in the following
manner:

X1V VxnVn

which is equivalent to
X1 A AxXm = n

A node of the TMS can either be believed or enabled, “in”, or not believed, “out”.
Given a set of justifications J and a set of enabled assumptions A, a node x is
labelled “in” if it logically follows from g U A and “out” otherwise. This, however,
does not imply its logical value, as see in Fig. 12. Note that in order to represent a
negation, a new node corresponding to the negated assumption needs to be created.

Let us consider for example a belief “Sky colour = blue”. “Sky colour” is an
attribute, while “blue” is its value. A belief can be “in” because: (1) is was declared
to be always true, in which case it is called an premise, (2) it is justified by itself,
in which case it is an assumption or (3) justified by other beliefs through rules. As
depicted in Fig. 12, there is a clear difference between a fact that is not believed, i.e.
not known to be true, and a belief that is known to be false.

A special place is given to contradictions, which can be explicitly introduced
through rules whose right-hand side is false (1). When such a rule is activated,
measures need to be taken by retracting assumptions. If there are no assumptions
that can be retracted, an error is produced (it means that we reached a case where
true = 1). While the T™MS does not explicitly allow negation of nodes, this can be
achieved for example for a node n by creating another node —n and adding the
justification n A—m = L.

THE ASSUMPTION-BASED TRUTH MAINTENANCE SYSTEM The Assumption-
based Truth Maintenance System (ATMS) [40, 59, 61] provides a tool for handling
hypotheses and multi-context applications. This means that, as opposed to other
T™S like the Justification-based Truth Maintenance System (JTMS)®, the ATMS can
handle multiple inconsistent contexts in parallel, with a node being in the same
time “in” and “out” in different contexts. For example when reasoning in the same
time on the hypothesis that tomorrow it rains and tomorrow it will be sunny, an
agent will be able to use either hypothesis independently but will not be allowed to
work with both in the same context, as this would cause a contradiction. The belief
that tomorrow will be sunny will be “in” for one of the two contexts and “out” for
the other. The ATMS handles facts linked through rules, all in propositional logic.

Definition 3. A set of assumptions is called an environment.

8 The JTMS maintains a single consistent justification context at a time.

2.4 ALMA: AN AGENT LANGUAGE FOR DEPENDABLE AGENTS

A belief holds in an environment if when all the assumptions in the environ-
ment are enabled, the belief is enabled. A nogood is an environment in which a
contradiction holds. A consistent environment is one which is not a nogood.

Definition 4. All the facts that can be deduced from an environment form a context.

Definition 5. The label of a fact comprises all the minimal consistent environments that
support that fact.

An environment is minimal with respect to a belief if removing any of its as-
sumptions causes the belief to no longer be supported. There are two special cases
to consider:

1. the empty label, corresponding to a disabled belief;

2. the label of a premise, which signifies that the premise holds in any envi-
ronment. Nodes that are not premise nodes can have the same label if they
ultimately depend only on premises. Therefore, labels contain only assump-
tions (no premises).

Contradictions must be entered by the inference engine. This can be produced by
an application specific rule (e.g. Netherlands /A mountain = 1) or an automatic
rule (e.g. as shall be seen, normal beliefs in ALMA are governed by an “unique
value” rule belief(B1,V1) Abelief(B1,V2) A V1 # V2 = 1). When the contradic-
tion becomes justified, the ATMS updates the labels of its nodes to ensure that there
are no environments that can result in the contradiction, nogoods.

As stated before, the rules are handled monotonously, meaning that once they
are added, they cannot be removed. However, their application could be controlled
by adding an “applicable” assumption to the left-hand side of the rule, for example
applicable(rule) A left = conclusion. When using this instead of a rule left =
conclusion the programmer can later prevent the rule’s application by adding the
contradiction applicable(rule) = L to cause the assumption to be retired.

2.4.3 Parenthesis on Model Based Diagnosis

One of the applications of the ATMS is for Model-Based Diagnosis (MBD) [62]. We
chose to present this as an example because we will use elements inspired by MBD
in our safety net approach (Sec. 3.3.1).

In MBD, a system’s correct behaviour is described using three sets of logical for-
mulae:

* system components set (COMPS)
¢ system description set (SD)
¢ observations set (OBS)

The idea is that in case the actual observations OBS is not consistent with the sys-
tem description SD, the diagnosis will attempt to identify the “guilty” components
among the elements of COMPS. The ATMS serves to handle dedicated assumptions
(ok(X) in our examples) that correspond to components that are functioning cor-
rectly. In the example in Fig. 13, three resistors are connected to each other as part
of a simple circuit. In Fig. 14 we introduce the three MBD sets using rules which

41

42

STATE OF THE ART

L I I3

—_— — —
Ng Np
— Ry — Rz — R3 —
Vi Vs Vs

Figure 13: System example for diagnosis: three 100Q) resistors

COMPS :{R1,R2, R3,Na,Nb} (1)
OBS = {V; =10,V = 10,V = 12} 2)
SD = {
{ok(R1) = Vi =Ry x I} (3)
U
{ok(R2) = V2 =Ry x I3} (4)
U
{ok(R3) = V3 =R3 * I3} (5)
U
{ok(Ng) = I1 =1} (6)
U
{ok(Np) = 1> =15} 7)
}

Figure 14: The MBD sets for the resistor example

allow the introduction of the specific formulae depending on whether the corre-
sponding components are functioning correctly or not. The underlying logics in
not important, as long as the system has access to a mechanism for proving the
consistency of a formula.

The system is faulty if the assumption that all components COMPS are functioning
correctly conflicts with the actual observations OBS.

Faulty system <
SDUOBS U{ok(c)|c € COMPS} is inconsistent

A diagnostic is a subset A of COMPS such that, supposing that the components in
A are functioning incorrectly and the others correctly reinstates the consistency of
the set of relations:

A C COMPS is a diagnostic <
SD UOBSU{—ok(c)|c € A}U{ok(c)lc € COMPS\ A} is consistent

While proving the consistency is difficult, the fact that the ok(X) predicates are
similar to assumptions bring us back to the concept of nogood introduced in the
previous section on the ATMS. For determining a diagnostic, it suffices to compute
the minimal sets that make the system inconsistent (i.e. the nogoods) and then
combining them by calculating the hitting sets (sets containing at least one element
from each nogood).

2.4 ALMA: AN AGENT LANGUAGE FOR DEPENDABLE AGENTS

NG C COMPS is a nogood <
SDUOBS U{ok(c)lc € NG} is inconsistent

In diagnosis, the conflict set is comprised of the components which cannot all be
working correctly. A candidate set is an assumption on how the error was produced,
so it contains assumptions (ok(COMPONENT)) that when considered false can
explain the observed symptom or error.

Candidate N Conflict; # 0, Vi

The purpose of diagnosis is to find candidate set, which is often difficult due to the

fact that many possible interpretations can explain an error. A minimality condition

is often used to filter out unnecessary candidates, as the hypothesis is usually that

the probability that multiple components fail simultaneously is usually very low.
In the example above, the given values result in two nogoods:

® {R1,R2, Ny} because rules 3, 4 and 6 are inconsistent (I; = 0.1A is different
from I, = 0.12A);

® {Ry,R3, Ny} because rules 4, 5 and 7 are inconsistent (I, = 0.12A is different
from I3 = 0.1A).

Computing the hitting sets in this case produces the list of minimal candidates,
each of which can explain the observed symptoms:

{RZ}I {R1 s RS}/ {R1 s Nb}r {R3I N a}/ {N ar Nb}

This method can take into consideration multiple failures, but if the minimality
condition is applied, the only remaining candidate is {R,}. Otherwise, a means to
filter the candidates is needed, for example using heuristics.

As we see in [62], the ATMS is useful when measurements are made on the system
in order to help narrow down the conflict sets in the diagnosis process.

2.4.4 The Programming Language

ALMA agents are defined using Reasoning Threads (RTs), also called plans in the
original work, which are Directed Acyclic Graph (DAG) structures using 4 types of
transition node (Fig. 15): wait (perception), decision, action and add rules (reasoning),
to which start and end nodes are added. Each transition node has a specific role,
with one or more possible transitions towards the next node, each guarded by a
condition on the current context, e.g. a specific event waited by the perception
node. The language structure ensures that for each RT, all nodes are reachable from
the start node and the end node can be reached from any node.

An ALMA agent starts with an initial RT which can then launch other RTs which
will execute in the same time. The programmer has the possibility to require an
RT to wait for the completion of a child RT if necessary. Parallelism is obtained
through the sequential execution of RT segments that can belong to different RTs.
The parallelism is thus handled in a safe way thanks to “critical” execution sections
in which an RT is sure to be the only one having access to the agent memory. The
critical sections are delimited by wait nodes. This ensures that between two wait

43

44

STATE OF THE ART

Begin
& Perception

timeout(x)

Decision

Reasoning l

Action
End

unjustified

Figure 15: The original ALMA nodes: perception (wait), decision, action, reasoning (add
rules) and the Begin and End terminal nodes. The compulsory branches repre-
sented for the corresponding nodes are: unjustified, timeout(x seconds) and
default.

nodes an RT has exclusive access to the agent memory, thus avoiding consistency
issues linked to parallelism. This design choice is based on the hypothesis that RTs
are written with a cooperative state a mind, in that one RT will not monopolise the
use of resources by avoiding wait nodes and blocking the rest of the agent?.

RTs can recursively call on instances of themselves, thus eliminating the need
for iterative loops (which are actually not allowed in ALMA). RTs can be passed
parameters when they are instantiated which, while circumventing the agent mem-
ory and beliefs, can facilitate certain tasks. Besides from helping keep RTs short, the
recursiveness could be coupled with an input variable validation (e.g. typing, or
more precise, on values) applied to the RT parameters to detect errors early.

THE WAIT NODE A perception node waits for an event. It can have multiple tran-
sitions marking different event types:

* a message was received (of a specific nature or not);
¢ another RT finished;
* a belief is given a (specific or not) value;

¢ a timeout (with respect to the current wait node) occurred. This is a compul-
sory transition for this type of node, thus avoiding the situation when an
agent blocks in a waiting state (e.g. for a message that was lost);

¢ the RT is no longer justified (unjustified), another compulsory transition
marking the fact that the context of the present node is no longer consistent
(as described by the RT context below).

THE DECISION NODE A decision node is equivalent to an if-elseif-else where
the final else (marked default) is compulsory, thus ensuring that there is always

The default task management in JACK [1] is very similar to the solution chosen in ALMA, as an
agent’s tasks are executed sequentially from a queue until finishing or reaching a @wait_for or @sleep
statement, in which case the task moves back to the queue. The possibility of a task to block the
execution (as in ALMA) is acknowledged by the authors. An alternative round-robin based manager
aims to overcome this by allowing a maximum predefined number of task steps (Java code counts as
one step) to execute for each task turn.

2.4 ALMA: AN AGENT LANGUAGE FOR DEPENDABLE AGENTS 45

a transition that can be crossed. The transition that is triggered corresponds to the
tirst condition that is valid. A condition is a conjunction of elements of various

types:

¢ beliefs, used to verify the existence of a certain belief value, but also to query
for the current value of a belief;

* a boolean function, which, due to the Prolog-based implementation, is cur-
rently possible only through a Prolog predicate.

For example, a decision can be (Fig. 16):

node_name decision
node_climb_more << belief(altitude, X) /A goal(X < 3000)
node_do_nothing << default

where the “goal” keyword marks a predicate that can also be defined outside the
ALMA code. This offers multiple possibilities, while keeping the overall ALMA
code readable.

default belief(altitude, X) A goal(X < 3000)

node_do_nothing node_climb

Figure 16: Decision node example

THE ACTION NODE An action node is given a list of actions to perform and only
has a single possible transition. An action can be:

* sending a message;
® creating an RT;

¢ a for each containing actions;

demanding the migration of the agent;

® a printing action.

THE REASONING NODE In ALMA, the agent reasoning is represented by a set of

rules which control the beliefs and assumptions. Rules and assumptions are added

to the rule base using the reasoning nodes (namely add rules in the language).
The node has two possible transitions:

¢ the normal continuation after the rules are added,;

* unjustified (compulsory), activated in the event that the rules added negatively
affected the preconditions of this node (as in the case of the similar transition
in the wait node, see the description of the RT context below).

46

STATE OF THE ART

RULES The agent knowledge in ALMA is represented through rules. Rules are
presented as clauses of the form:

p]/\~--/\pn:>C1/\"'/\Cm

Concretely, rules have the form decision = belief_conjunction, where decision
is as defined for the decision node, e.g.:

belief(weather, cloudy) A belief(temp, X) A goal(X < 0)
= belief(clothes,ski jacket)

Once added, the rules continue independently of their parent RT, cannot be re-
tracted and are applied permanently. This means that nothing is lost in the agent
memory, but beliefs may end up disabled, depending on their justifications.

Note that the use of true = p rules (corresponding to the declaration of
premises) is closer to “classical” imperative programming and limits the infer-
ence engine’s task. The risk with such premises is that they may produce system
level contradictions, in other words a set of rules that ca be reduced to true = 1,
i.e. the “universal environment” is contradicted, in which case there is currently no
choice but to stop the agent.

ASSUMPTIONS Assumptions are beliefs that are considered enabled but do not
have a justification. This allows them to be disabled in case they are either directly
contradicted or they serve as premises in a chain of rules that result in a contradic-
tion.

THE ATMS IN ALMA By now we have seen many similarities in the use of rules
and assumptions with the problem solvers described above. ALMA thus uses an
inference engine and an ATMS for reasoning and handling assumptions, beliefs and
rules. With the strong emphasis in ALMA on assumptions and reasoning with rules,
the ATMS plays a central role in the programming language. While its reasoning
capabilities can be used explicitly, e.g. adding rules with the purpose of performing
multi-context reasoning, it is also incorporated in the language in two ways: (1)
beliefs are used by an RT (in decision and wait nodes) are added to the RT’s context
as seen below, and (2) beliefs are written using rules, so justifications are kept for
each of them.

Note that due to the multi-context possibilities of the ATMS, an assumption can
be in the same time enabled and disabled, depending on the context of reference.

EXECUTION CONTEXT At every moment an RT is characterised by an execution
context comprised of all the facts used by that RT together with the context that its
parent RT had when it created the RT. In other words, the context of an RT represent
the preconditions corresponding to the execution up to the current node of that RT.

We say that a belief is unjustified (no longer justified) when its label is empty. A
context is unjustified when at least one of its beliefs is no longer unjustified. An RT
is unjustified when its context becomes unjustified. Note that even if justifications
change, a context can remain justified as long as all its beliefs remain justified. Take
the example of a family going to the supermarket to buy a cake. While driving
there, they realise that they also need milk, but decide to cut down on their sugar
intake and not buy the cake after all. The reasons are now different, but they are
still going to the supermarket.

2.4 ALMA: AN AGENT LANGUAGE FOR DEPENDABLE AGENTS

The context contains beliefs that were used during the current execution trace.
These beliefs were therefore enabled at a certain moment. As an unjustification is
reached when at least one of the beliefs in the context is no longer justified, this
is equivalent to saying that the current execution context is contradicted, in other
words, a contradiction (L) can be deduced using the assumptions in the execu-
tion context and the existing rules. An agent cannot function in the presence of
inconsistencies so it is important to be able to identify these situations.

EXECUTION CONTROL The context can be used to stop the execution of an RT
in case it is no longer justified. In ALMA, this results in the RT entering a special
reparation mode [28]. This is ensured by the unjustified branch that is obligatory for
two types of node: (1) the wait node, because this is where another RT can modify
agent beliefs and (2) the add_rules node as the RT can cause an unjustification is
achieved when adding a rule itself. The advantage is that this format forces the
programmer to consider the reparation required at that specific point in the code,
thus providing a more precise and better response than any other generic repara-
tion means to such situations. Furthermore, the precise reason why the reparation
is triggered is not known, thus keeping in line with the idea of unforeseen fault
studied in the current thesis.

This mechanism allows for the execution of RTs to be controlled and neatly
stopped in case this is wanted (e.g. use a rule to willingly retract an assumption
that allowed for a certain set of actions to be pursued) or a situation that was not
foreseen changes the justifications of current RTs (e.g. update a belief only to re-
alise that it contradicts something else), with the result being that the execution
continues as specified in the reparation unjustified branches.

DATA TYPES HANDLED IN THE RTS Given that ALMA is written on top of Pro-
log, the data types that are handled based on the Prolog types: symbolic atoms,
numbers (floats and integers) and compound terms (predicate style, for example
car(ford, mustang, 1967), lists and strings). As stated before, parameters can be
passed to RTs. These parameters, as well as other values from beliefs and messages
are handled in the form of intra-RT variables. They are useful for example when
creating the content of a message to send, as seen in Fig. 17. These are single as-
signment variables, which means that after they are assigned a value, any other
assignation attempt acts as a verification: if a new value is proposed for the vari-
able, the statement returns false, which constitutes a useful feature for avoiding
unwanted variable changes.

defaul belief(altitude, X)
o send(X,...)

Figure 17: Possible variable use

DATA TYPES STORED IN BELIEFS The same type of data is handled by rules and
stored in beliefs. Note, however, that while rules can use variables for example for

47

48

STATE OF THE ART

ALMA
ALBA ATMS

Prolog

Figure 18: The ALMA framework

computing the value of a belief, beliefs are functional terms, they can only store
values, but no variables.

BELIEF TYPES IN ALMA In ALMA there are currently three types of belief which
are based on several variations of attribute-value pairs:

1. belief(Name, Value) - for a simple “single assignment” belief, which cannot
have two different values in a same context (otherwise, a contradiction is
reached, which puts the concerned RTs in the unjustified state).

2. set(Name, Value) — for representing beliefs with multiple possible values.
Note that these are monotonous: no retract of value is allowed.

3. belief(Name, Value, Timestamp) — for storing variables that change over
time (e.g. state of a system). The particularity of this type of belief is that
each time it is read at a moment T,.qq, an implicit persistence assumption
is created to guarantee that the value did not change since the last known
timestamp Treference corresponding to the current known value. If a late
update arrives with a timestamp T.pdate With Treference < Tupdate < Tread,
the use of the value at T.ead is unjustified, thus avoiding inconsistencies. This
illustrates the use of assumptions for improving fault tolerance.

TECHNICAL ASPECTS As so often is the case with agent languages, ALMA
comes with its own execution platform (called ALBA [30]) that ensures all lower
level functionalities, from communications to agent creation, timing etc. and which,
in turn, is implemented in Prolog (Fig. 18).

The platform is completely distributed, as each agent is executed in a separate
Prolog instance with its own ALBA module, thus ensuring a clear separation with
respect to agent memory and helping confine any errors at agent level. The respon-
sibility of inter-agent parallelism is therefore passed to the operating system.

Through Prolog-based interfaces, ALMA can interact with any other language, a
feature used for example to develop a means to use Java-based graphical interfaces.

A MAS initialisation and management system using a plain text file combined
with a graphical interface is available for ALMA. This system also provides a yellow
pages service. Figure 19 shows the ALMA agent architecture, together with the
MAS Management Agent, distinguishing between the elements to be written by the
programmer and the ones provided by the platform. Agent migration was also
studied for ALMA but this is not relevant for our work.

Note that ALMA, while built on top of Prolog, is an imperative language. How-
ever, as seen in the case of decision conditions, Prolog code can be easily used
inside ALMA. The “external” code is not limited to Prolog, as other languages can
be interfaced with and used inside decisions and rules, thus giving many possibili-
ties to program designers.

2.4 ALMA: AN AGENT LANGUAGE FOR DEPENDABLE AGENTS

. ALMA Agent MAS Management Agent
:, ____________ : Reasoning : MAS description
“- Reasoning Threads (RTs) |« and L l
Knowledge | : Avent looi
I base gent logics
- Communications interface |[----ooooooeeerrrrerenss N Communications interface

! !

Figure 19: Defining an ALMA MAS, with normal agent architecture to the left and the MAS
Management Agent (which includes the yellow pages service) to the right. Black
rectangles represent the components provided by the programmer (RTs and the
MAS description), with the rest (green) being provided by the platform. The
dashed line represents the execution flow, while full lines are for information
exchanges (messages, belief reads, rule writes).

CONCLUSIONS As can be seen, ALMA is an agent programming language that
allows for the development and execution of agents with a specific assumption-
based handling of their memory.

As it is a research prototype, several aspects of the language need improvement,
for example the variable and belief types which need to be extended to enhance
the language expressibility and thus the programming experience. Ameliorations
in the memory management also need to be envisioned.

Nevertheless, ALMA incorporates many interesting features that make this lan-
guage useful for use and further research, in particular for the development of fault
tolerant software:

¢ the clear and cycle-less RTs provide a good programming base for modular
code segments.

¢ the control of wait nodes through the compulsory timeout branches helps
avoid the situations of infinite waiting.

¢ the execution control through contexts and the unjustified branch allow for
programs that take into consideration inconsistencies to be written. The same
mechanism also gives more control to programmers on the execution of pro-
grams, as they can willingly trigger reparations in case they require to do so
(for example in case they detect another type of error, as we shall see in Sec.

4.3.1).

¢ the integration of assumptions and unjustified branches allows the agents to
function under uncertainty and still be able, to a certain degree, to reconsider
their behaviour in case the assumptions are no longer supported.

¢ the timestamped beliefs allow the program to take into account inconsisten-
cies caused by messages arriving late.

¢ the default branch in the decision nodes helps avoid unexpected situations.

¢ the use of single assignment variables and beliefs improves the control on
variable changes.

49

50

STATE OF THE ART

¢ the execution platform based on independent Prolog threads enforces the
clear separation between agents thus contributing to the confinement of er-
rors.

With a strong Prolog heritage, ALMA allows the execution of non-ALMA code
only inside decisions and the left-hand side of rules, and that in a functional pro-
gramming fashion: while not producing side effects. The actual variable writes are
done indirectly trough the rules added by the programmer. The idea in ALMA
is to have memory writes done only through reasoning nodes and the application
of rules, while interactions with the environment are possible only via messages
towards other agents or artefacts, the latter possibly having actuator capabilities.
The “external” code executed inside decisions and rules is therefore without side
effects, thus limiting unwanted and unforeseen interactions. Furthermore, as we
shall see, this structure provides a good basis for safety measures that help create
a fault tolerant language.

While rules provide a declarative component, the language in itself is imperative,
thus, depending on the needs of the programmer, the written code can be more
imperative (even only using premises and assumptions with no rule implications
and the rest in the RT code) or declarative (using mostly rules).

ALMA is therefore an interesting programming language for our safety net ap-
proach as it proposes specific fault tolerance properties while in the same time al-
lowing the use of the agent paradigm with its own advantages and fault tolerance
mechanisms.

2.5 CONCLUSION

In this chapter, we presented various approaches that can be used for augmenting
the fault tolerance of a software system, with a particular interest in works which
are close to the concept of “unforeseen fault”. We showed different uses of be-
havioural models, such as the observer, which can indicate, when compared with
the observed facts, behaviour anomalies possibly caused by unforeseen faults. We
also saw TibFit, a way to control the sensor information through a voting mech-
anism, as well as the agent-based use of norms and reputation, all of which can
be used to increase the robustness in the presence of faults in distributed systems.
Programming language elements were also discussed, from the issues of exception
handling and defensive programming, to the “let it crash” philosophy and design
by contract. While generic enough to cover unforeseen faults, many of these ap-
proaches are still introduced by the designers and programmers with the explicit
purpose of handling errors. Our working hypothesis on the existence and nature
of faults makes these approaches unsuitable, as long as they are not included into
the design and programming approach in a way that does not purposefully aim
faults. There are, however, also characteristics that are worth considering for our
cause, including for example the idea of taking into consideration the autonomy
of other components or agents, as well as the various fault tolerance elements of
ALMA, such as the use of assumptions and the control of the execution through
contexts.

Goals in agent systems, together with the Mission Data System (MDS), a goal-
based control system, as well as the lower level recovery blocks and even design by
contract serve the same purpose of using predefined objectives to detect possible
deviations and keep the system within its specified limits. These objective-based

2.5 CONCLUSION

means are more powerful than the other language level error detection means that
are used to produce exceptions, due to the fact that in their definition, a default
means to treat abnormal situations is usually included — e.g. a goal whose plan does
not finish successfully can retry automatically. As shall be seen later in this thesis,
this characteristic makes these approaches particularly interesting for integrating
in a solution for unforeseen faults.

A common error handling pattern is usually present, starting from a detection
event, to which the system then reacts to recover. The isolation, or confinement, of
the error is also an important aspect, especially in large and distributed systems.

This section concludes the state of the art of this thesis. Next we are ready to
introduce our contribution to fault tolerance: the safety net approach.

51

PartII

CONTRIBUTION TO THE FAULT TOLERANCE

The Safety Net Approach

A SAFETY NET APPROACH TO FAULT TOLERANCE

“A fool throws a rock in a lake and a hundred wise men cannot pull it
out.”

Proverb

OBJECTIVE The objective of this thesis is to provide the means for assisting pro-
grammers in producing programs that in the presence of unforeseen faults have a
more controlled and appropriate behaviour than a “brutal” stop or crash. For this,
the programmers do not need to be aware of the fault tolerance measures, being ei-
ther uninvolved or unconsciously involved in the implementation of the safety net
mechanisms (depending on the requirements of each mechanism, as shall be seen).
In the extreme case, the programmer writing his or her code without any concern
for the fault tolerance but respecting our requirements would produce software
that exhibits characteristics of fault tolerance thanks to the safety net approach.

CcONTRIBUTION To achieve the desired fault tolerance properties, our contribu-
tion addresses 3 software development factors by requiring:

i. a set of design requirements: program using autonomous goal-driven agents,
containing a certain level of redundancy and with a consideration for system
granularity;

ii. a programming language that guides the programmer to specify all possible
cases (e.g. providing a behaviour both in case a goal succeeds and fails, time-
outs), as well as reparation measures and also improves fault coverage (prob-
ability of error detection);

iii. a software platform that provides a series of facilities for the fault tolerance:
confinement of errors, dependency tracking.

In this chapter, we present how these are defined and show how their combina-
tion provides two levels of fault tolerance, each aiming to handle more and more
subtle errors:

1. the first level is aimed at errors that generate exceptions which are not treated
by the programmer;

2. the second level is aimed at errors that do not cause exceptions but prevent a
software component from achieving its objective. This can happen due to an
undetected local error in the component or even an undetected error inside
another cooperating component.

As we aim to tolerate unforeseen faults, i.e. faults that were not included by the
programmer in the system design, our approach is complementary to other fault
tolerance methods. The aim of the safety net approach is thus to increase the overall
system fault coverage.

55

56

A SAFETY NET APPROACH TO FAULT TOLERANCE

THE FAULT TOLERANCE PERSPECTIVE In order to determine the necessary
framework that will result in the safety net, we shall now discuss the issue of
unforeseen faults from a fault tolerance perspective. Questions that are asked at
this stage relate to the ability of the approach to catch errors, limit their propaga-
tion and then recover the system functionalities. As the objective of our work is to
improve the fault tolerance of programs, we are concerned with the runtime man-
ifestation of these faults, so a first phase to consider is the detection of deviations
from the nominal states or behaviours, i.e. errors. Recovery measures can then be
taken to attempt to compensate and eventually mask these errors. As the proverb
above suggests’, it is often much easier to do a mistake than to undo it. In what
follows, we shall see that recovering from an error is a more complex task than
the other phases of our approach. Detection can occur in a different component
than the one in which the fault originated, a phenomenon exacerbated by our fault
model, as we are interested in faults that were not aimed by specific mechanisms.
For this reason we are also interested in means to confine the error propagation.

The chosen three phase approach on fault tolerance follows the reactions to a
fault chronologically, from (1) detecting the error, through (2) its confinement and
to (3) system recovery. As shall be seen, while the faults that we aim to tolerate are
unforeseen, the reaction of the system needs to be triggered by an error detection
event. To facilitate confining the error to a limited part of the system, as well as the
recovery process, a good modularity is required. Finally, recovery is performed in
three steps: (a) identification of the concerned components, (b) reparation of these
components and (c) reconfiguration of the system. To illustrate these steps we use
the metaphor of a boat or ship to compare it to the system being programmed. The
boat, just as the system, has a purpose: to get a certain load from one point to the
other. While there are many ways in which it can fail, the one we are interested in is
the boat taking on water and eventually sinking, thus not reaching its destination.

The analysis of these three phases of fault tolerance will then allow us to return
to the software development perspective and list the requirements with respect to
the used tools and the programmer’s state of mind and actions. In the following
chapters, the discussion will therefore switch between the fault tolerance and the
software development perspectives (Fig. 20).

3.1 EXPECTING THE UNEXPECTED: ERROR DETECTION

UNFORESEEN BY WHOM? The concept of unforeseen fault might seem paradoxi-
cal as one might question whether not all faults are unforeseen. This is not the case:
while the moment when a fault manifests is usually not known, the actual faults
or fault classes are normally identified. This is because the classic approach when
building a system is to foresee everything that can go wrong and either design the
system in order to avoid those situations (i.e. fault removal) or include correspond-
ing behaviours in case the faults do manifest (i.e. fault tolerance). It is thus with
respect to this identification that faults can be unforeseen. The goal is to provide
a framework that allows for faults to be overlooked by the programmers — either
due to time or cost constraints, either by actual design errors — without disastrous
consequences: they are still covered, but by the safety net. However, we will see

Obviously, the programmers” mistakes would be different in nature, but the issue remains: how can
they be reversed or repaired?

3.1 EXPECTING THE UNEXPECTED: ERROR DETECTION 57

Fault tolerance phases

T O
Detection IR
‘L Xl
A
\
Confinement }M‘;fz‘ & AN
Dependency handling TS ;Q,S»*L::f
Reparation}Recovery ma L
Reconfiguration | |
S I
@,b?? Qg@éo &0&0 Softwarjr de;velopoment
X actors
>
@QQ \5’0 Q
3
N
F

Figure 20: The two discussion axes for the safety net approach

that certain types of fault and errors are discussed here, but this is done from our
perspective — that of the safety net designer.

FROM FAULT TO ERROR Note here that the distinction between fault and error
is very important: while the fault is unforeseen, when it manifests as an illegal
state it becomes an error whose manifestation can and should be detected. We call
unanticipated errors the errors for which no specific handling was provided by the
programmer of a system. We use the concept of unanticipated error as a mani-
festation of the unforeseen fault in the system state. We do not need to take into
consideration the cases where unforeseen faults end up being successfully covered
by fault tolerance mechanisms aimed at other types of known fault, thus not pro-
ducing an unanticipated error. However, a badly handled error — be it foreseen or
not — should be handled by the safety net. For example if a system reacts to an
error by restarting a component which ends up in the same erroneous state, result-
ing in repeated (possibly infinite) restarts, the other components should eventually
decide to give up — e.g. due to timeouts —, even if no other symptoms are visible.

APPROACH Our objective from the perspective of the detection phase is to pro-
vide mechanisms that allow the coverage of the fault tolerance of the resulting
system to be improved without the conscious involvement of the programmer. For
a boat or ship, an error would be having water inside, while the fault could be
anything from a hole in the hull to too much cargo or very bad weather. A non
purposeful detection that would be close to the idea of unforeseen fault is the mo-
ment when the cook goes to the galley to pick up potatoes and finds them floating
in a half a meter of water. This would clearly indicate that there is a problem, with-
out knowing its cause. Placing the storage room in an area that is at risk would
be a way to ensure that a problem is detected early enough through the “cook
method”. For the cook, this would be an unexpected fault. For the ship designer, if
positioned in this manner with a detection purpose, it would be a normal, foreseen,
fault. If, however, the layout was made due to design rules that the ship designer
was required to apply without specific a fault tolerance purpose, then this would
constitute tolerance to unforeseen faults by design. In this thesis we position our-
selves at the level of definition of the design requirements, while the ship designer

58

A SAFETY NET APPROACH TO FAULT TOLERANCE

would be the programmer and the “cook method” would correspond to a runtime
behaviour. In software, the error detection is an event produced to indicate that an
abnormal state of the system was observed.

We continue this section by listing a few techniques that can be used for detect-
ing errors, with a focus on language techniques and unanticipated errors. The idea
of this thesis is to provide a framework that allows the developers to build fault
tolerance into their systems without this being a conscious action. With the detec-
tion being a vital component of the approach, we aim at mechanisms that, while
seemingly helping specify the normal behaviour of the system, they also set clear
boundaries that are not to be crossed. Once these boundaries are crossed, the other
components of our approach are called into action to provide the confinement and
recovery. When they involve language features thus concerning the human pro-
grammers, these mechanisms need to be sufficiently acceptable — difficult and com-
plicated constructs and the languages that impose them end up being avoided by
the programmers. Also, these need to be light as requiring more code to be written
increases the risk of introducing more faults. The aim is to avoid, for example, end-
ing up in a defensive programming (see Sec. 2.1.7) mindset where the programmer
is required to permanently verify all the possible values and cases, regardless of
the other tests and guarantees provided by other components, thus moving away
from the issue of unforeseen faults. Lining all the hull of a ship with sensors to
detect any crack or breach would be the equivalent of defensive programming — ex-
pensive and difficult to maintain. What we aim for is having simpler error-focused
mechanisms, for example sensors for water in the lowest levels of the ship, as that
is where water would end up regardless of the location of the breach, if any.

Depending on the scope of the detection mechanisms, we distinguish 2 levels:

1. exception-based detection mechanisms with a focus on lower level errors such
as those concerning programming bugs and data,

2. objective-based detection mechanisms that are aimed at higher level errors
that do not trigger exceptions but prevent, nevertheless, the objective of the
respective component of being reached.

3.1.1 Exception-Based Detection

Exceptions are a powerful tool for signalling error detections in modern program-
ming languages. Any exceptions (or errors, depending on the vocabulary of the
chosen language) that would be thrown at runtime by the execution environment
and not caught by any programmer-specified mechanism can cause the program to
crash. This is specifically the type of error that our safety net aims to cover. Naive
well-known and yet dreaded examples are the division by zero in Java (among
others) and segmentation fault errors in C. These uncaught exceptions can be gen-
erated by the language and platform, or even thrown but not handled by the pro-
grammer. In the following, we describe a few language characteristics that can
contribute to the detection unanticipated errors.

(1) DATA TYPING Data typing is present in many mainstream programming lan-
guages. For the tolerance of unforeseen faults, what is interesting here are the run-
time rather than compile-time verifications provided by such mechanisms (even
though the compile-time verifications do contribute to the fault removal during

3.1 EXPECTING THE UNEXPECTED: ERROR DETECTION

development), for example the content of a received message not being of the ex-
pected type.

(2) SINGLE ASSIGNMENT VARIABLES A more specific technique is the use of
single assignment variables that can help identify unwanted variable changes in
languages like Prolog®. The X = 5 statement translates to “the variable X is as-
signed the value 5” if it previously did not have an assigned value, or “test if X has
the value 5” if the variable already had a value. This can help identify unwanted
and unexpected value changes, even in cases when this simply guides the execu-
tion elsewhere, such in Prolog where such a situation is considered normal and
does not produce an exception. Single assignment, especially when coupled with
an exception generating mechanism, forces the programmer into a state of mind
where he or she is more aware of the values used and their changes than when
using destructive assignation (where variables content can be overwritten at will).
These variables also cause an exception to be thrown in case their use is attempted
before their first assignation.

(3) CONSTRAINT PROGRAMMING Constraint programming [52] also provides
interesting properties for the detection of unanticipated errors. While they are pri-
marily used for specific problem solving, constraints also allow for the detection
of unanticipated errors, for example when the inputs lead to impossible solutions
regardless of the cause of the incoherence. It is this type of unexpected implicit de-
tection that helps increase the fault coverage of systems without the programmer
being directly concerned by errors that we are interested in for the tolerance of
unforeseen faults.

(4) DATA ANOMALIES AND (5) INCONSISTENCIES In a wider sense, con-
straints can be used to signal errors in various situations such as anomalies in
data streams, e.g. the value corresponding to the altitude of an aircraft varies
too abruptly (see Sec. 2.1.2), and inconsistencies in the existing data, e.g. city =
Dubai /A weather = snowing (as shall be seen in Sec. 4.3.1).

3.1.2 Objective-Based Detection

(6) “cCONTRACTS” AND (7) RECOVERY BLOCKS VERIFICATIONS Certain mech-
anisms are used to evaluate the degree of success of an execution (in terms of du-
ration, produced results etc.), for example the “contracts” proposed by Bertrand
Meyer (see Sec. 2.1.8) and the verifications proposed in the recovery blocks ap-
proach (see Sec. 2.1.5) can help identify errors without aiming specific faults.

(8) GoAL VERIFICATIONS (BDI) The recovery blocks approach marks the tran-
sition towards techniques that are based on state evaluations but are also an inte-
grating part of another — fault tolerance oriented or not — mechanism and thus do
not produce an exception as the cases before. The (8) BDI agent model provides
another detection mechanism, which interestingly enough is implicit to the model.
The model requires plans to be executed for the achievement of goals. If anything
goes wrong during the execution of a plan (i.e. a fault manifests and the plan ex-
ecution is not as expected), this may or may not result in an error detection event.

2 The final variables in Java have a similar signification but focused on compile-time verifications.

59

60

A SAFETY NET APPROACH TO FAULT TOLERANCE

If an error event is generated, it will have to be handled by the mechanisms that
are intended for this — either provided by the programmer or by the safety net.
However, if no error event is produced, there is another way the system can over-
come the fault manifestation: the goal satisfaction conditions may not be satisfied,
in which case the faulty plan execution will not be considered valid — despite the
lack of other signals — and the execution will continue as if the plan failed. As
errors are defined as deviations from the normal state, we can consider that the
non-satisfaction of a goal by the purposeful plan execution is an error. Note, how-
ever, that this error is not signalled through an exception as before, but through a
goal-related event. Depending on the available resources, the same or another plan
may be attempted, or the goal may fail, passing the treatment at goal level where a
reaction to the goal failure may be specified. Let us consider the example of a sim-
ple drone that is asked to reach a position (x,y) (this is the goal) and it evaluates
that it needs to fly for an hour in a certain direction to reach that location (this is
the plan). If during its advancement varying wind speeds and slow it down and its
advancement is less than expected, the fact that it did not reach the desired GPS
(Global Positioning System) position after the execution of the first plan will cause
the drone to execute a new plan to compensate for the error.

(9) TIMEOUTS Message exchanges can be seen as sure (e.g. in tightly coupled
systems), when the reply characteristics, both in terms of time and content (i.e. the
protocol) are “guaranteed” by design. At the other end of the spectrum, a defen-
sive programming approach would check for each and every characteristic, both
content-wise and time-wise. In the same idea, we propose a perspective of the pro-
grammer where he or she is forced to see the other components as autonomous,
which in this context means that they cannot be fully trusted with their replies.
This brings us to the error corresponding to (9) the lack of an expected reply from
another entity. The non-reply, as explained in [86] in the case of agents, can be
either caused by an error in the concerned entity or a communication error, but
also by a decision of that entity. Either way, it constitutes an abnormal situation for
the observing entity. This case, as well as other situations when a system waits for
an event can be protected from a possible and unexpected blocking by imposing
systematic maximum waiting times, timeouts, as it is done for example in ALMA
(Sec. 2.4). The risk here is that when a programmer is forced to provide a timeout
value that is difficult to evaluate or useless, he or she can use a very large — prac-
tically infinite — value that defeats the purpose of the mechanism. This, however
can be identified when the code is reviewed by a peer. Another issue with such
techniques is that they risk imposing “hardcoded” values for elements that may
need more flexibility. Note that while we describe the timeouts as objective-based
detection mechanisms, they can also be used to generate exceptions.

CONCLUSIONS Goals, constraints and other techniques such as requiring the
programmer to specify timeouts for specific events (e.g. message replies) are thus
important for the tolerance of unforeseen faults as they can constrain the program-
mer to specify these as normal program execution without this being a voluntary
fault tolerance measure. Therefore, for the tolerance of unforeseen faults, a specific
programming language, either totally new or an extension of an existing one, incor-
porating these elements will be required. In Chapter 4 we propose a programming
language for the tolerance of unforeseen faults and in Sec. 4.3.1 we describe the
specific detection mechanisms linked to the language characteristics.

3.2 AVOIDING FURTHER ERROR PROPAGATION: CONFINEMENT

All the detection mechanisms described here are agent-centred: there is either a
local error detection, or an error corresponding to the non-fulfilment of the local
objective. In our work we do not currently consider system level errors (such as
errors that are not detectable at agent level) and errors that an agent detects in a
different agent (e.g. “you sent me the wrong data, you are experiencing an error”).
More on this in our perspectives for future work (Sec. 9.1).

There are thus various mechanisms that correspond to our needs and can be
introduced into the framework being used. Let us now see how the system reacts
once an error is detected.

3.2 AVOIDING FURTHER ERROR PROPAGATION: CONFINEMENT

THE PROBLEM Ideally, an error is detected in the same moment it occurs and at
its source, but this is often not the case. In absence of specific mechanisms, errors
freely propagate in the system both before and after being detected. This is espe-
cially true when we take into consideration errors that resulted from faults that
were not foreseen at design time and thus not targeted by any specific detection
mechanisms.

For example when a simple wooden boat without any compartments or sepa-
rations is pierced by a rock, there is no way to prevent the water from spreading
everywhere3, so the boat may gradually fill up with water and eventually sink. In
software systems, many errors concern data: either actual corrupted or incorrect
data, or unwanted, illegal or erroneous data manipulation. These are then involved
in interactions — data exchanges, actions etc. — that easily propagate the error to
other parts of the system and to the environment. In a program where memory is
freely shared, an error in a part of the system can impact any other part and is very
difficult to control and trace. A sensor that is used outside its capabilities (e.g. an
accelerometer subjected to greater accelerations than it can measure) can produce
an erroneous value that is then treated by the navigation system that produces an
incorrect order. If we imagine this happening in a monolithic layout with shared
memory and all these components interacting with many other variables and com-
ponents, a detection in the middle of the navigation procedure would largely be
useless since all the other components would already be “infected” by the error. So
the problem is that errors can freely propagate inside large software systems.

Furthermore, in complex, as well as in open systems, there is also the fact that
the actions of parts of the system, sometimes even created by different program-
mers, are not always known and guaranteed, thus increasing the risk of unwanted
interactions and error propagations.

There is therefore a need to constrain interactions to specific cases between
clearly delimited components. This would help limit the propagation of errors,
while in the same time give the possibility to control the interactions and stop the
propagation upon the detection of an error. This would also offer the possibility to
monitor or trace (as we shall see in the recovery phase) and even to add tests on
these interactions.

For the purpose of the tolerance to unforeseen faults, it is important that the
confinement is implicitly obtained through the used paradigm, language and archi-
tecture, and not a purposeful fault tolerance-oriented effort from the programmer.

Except from starting to bail the water overboard and hope to be efficient while also continuing to
operate the boat (e.g. steer and maybe row).

61

62

A SAFETY NET APPROACH TO FAULT TOLERANCE

APPROACH The confinement phase of the safety net aims at ensuring that once
an error occurs and is detected, it can be restrained to a limited part of the system.
This is addressed in two ways: (1) programs are written with a built-in modularity
and (2) in case of an error detection, the reaction is to isolate, to “quarantine”,
the concerned components. Using an image from the world of shipping, instead
of the simple layout of small boats, large ships (and submarines) are built with
compartments that can be cut away from the rest of the ship in case of a hull
breach, in order to limit the flooded areas and maximise the chances that the ship
remains afloat. This means that the ship may need to give up the use of some
of its compartments, but it will be able to keep functioning. In software systems,
modularity implies the construction of the programs using more or less tightly-
coupled components (e.g. procedures, objects, agents, packages).

An unanticipated error caught by the safety net mechanisms signals a situation
that was not explicitly handled by the programmer, be it an exception-based or
an objective-based error. Given the safety net is generic, the reaction in this case
needs to be cautious. While the source or the impact of the error are not known,
the detection event is a clear indication of an element impacted by the error and
thus the reaction is to take measures on the concerned component. In the case
of exception-based detection, the component where the exception occurred would
be stopped, a similar approach to the “let it crash” described in Sec. 2.1.9. As we
consider that the goal-based detection evaluates the system state only after the
execution of a plan, the plan would not need to be stopped. However, as shall be
seen in Sec. 4.3.2, if the evaluation itself produces an exception, then the goal needs
to be aborted. Modularity and, as we describe below, granularity are thus very
important for facilitating this first reaction to the error. The result is the protection
of the system from further propagating the error+, e.g. by writing corrupted data,
sending corrupted messages or performing unjustified actions.

For the purpose of confinement, the software components need to be loosely
coupled, so that they can be easily isolated in case of error. The solution is therefore
to use a modular representation as a base paradigm for the programmers using the
safety net approach. The other safety net mechanisms would then be in charge of
catching unanticipated errors and stopping the concerned components. To ensure
the required modularity, we aim at restricting memory sharing between modules
and use communication through message exchanges, which are some of the main
characteristics of the multi-agent paradigm.

CONFINEMENT THROUGH THE MULTI-AGENT PARADIGM The multi-agent
paradigm corresponds to a new level of abstraction, in line with what has always
been a source of progress in computer science: restrictions on the possibilities of
the designer, coupled with new language abstractions. This was the case of the
structured programming introduced mainly through the elimination of the “goto”,
but also the object oriented programming that offered a central role to data, until
then seen only as memory space. The lack of shared memory and, consequently,
the agents’ obligation to only communicate through messages is one of the defining
characteristics of the multi-agent paradigm and this creates a highly modular struc-
ture. We are not putting the agent paradigm into question, but rather place it into
the context of fault tolerance, with a focus on three of the paradigm’s characteris-

Unfortunately, as we discuss at the end of this chapter, there is a possibility that the error appeared
elsewhere and may have affected and even may still be affecting and propagating to other compo-
nents which, given the existing information, may be impossible to identify.

3.2 AVOIDING FURTHER ERROR PROPAGATION: CONFINEMENT

tics: (1) information sharing with no common memory, (2) communication through
messages, as well as (3) the choice of a proper level of granularity. As agents share
no memory and are clearly separated software entities, any error is inherently con-
fined to the agent concerned and its propagation can be traced through the agent’s
communications and interactions with its peers. The distribution that is inherent to
the multi-agent paradigm provides another level of confinement: the applications
can be deployed on multiple machines, thus taking advantage of the hardware and
operating system protections as well.

Changing the point of view to a higher level of abstraction, when designing
agents, the concept of autonomy can help enhance the system-level confinement.
As described in Sec. 2.2.7, autonomy is an agent’s ability to make its own decisions,
but from the outside it can be seen as the possibility to refuse even legitimate
requests from its peers, “the right to say no” [86]. Designing agents that are meant
to interact with autonomous agents makes them less susceptible to being affected
by errors or even failures of their peers, thus contributing to confinement. While
this requires a certain change of point of view from the programmer, it is primarily
not focused on the fault tolerance, but rather on the “normal” functioning.

GRANULARITY Modularity in general comes with questions of granularity, the
choice of component size, which also implies the number of used components in
a given system. Granularity depends on the particularities of the chosen paradigm
and the needs of the application and is often balanced (consciously or not) to meet
the cost-benefit targets of each project. For example if two components exchange
a lot of information, they may be better off merged. Likewise, if each component
requires the use of a virtual machine, the number of components might need to
be kept under control to avoid slowing down the host machine needlessly. When
it comes to confinement, granularity plays a key role. Intuitively, having a system
made up of only 2 similarity-sized components means that in case of error, the con-
finement options are limited to isolating one of the two relatively large components.
If, on the contrary, the system is made up of many smaller components, there is
more margin for confinement and the isolation will hopefully> concern only one or
a few components representing a more limited part of the overall system.

Agent granularity is important for fault tolerance since the more the agents, the
finer the confinement. The downside is that if the agents are not well chosen, re-
sources (time, bandwidth, processing power) are wasted on excessive communi-
cation. Thus, depending on what each agent requires for its execution (generic
elements such as modules to include, memory allocation etc., but also specific data
requirements), there is a certain “reasonable” size for the agent. For the safety net
approach, however, the number of agents needs to be high in order to facilitate the
confinement of and recovery from errors.

CONFINEMENT THROUGH GOALS AND PLANS Given these different con-
straints, there is also a need for an intra-agent modularity. The agent represen-
tation that we require for the recovery phase (specifically the reconfiguration part
described in the next section), involves writing agents using goals and plans which
can also serve to produce a modular structure. While writing an agent with a single
goal and plan would not be of much help for the confinement, breaking up the
agent behaviour in multiple independent, related or even hierarchically connected

5 If the detection occurred early enough.

63

64

A SAFETY NET APPROACH TO FAULT TOLERANCE

goals and their corresponding plans provides an excellent intra-agent modularity.
This is similar to an employee working on multiple projects in the same time. If
he or she encounters a problem in one of those projects, chances are that only that
one is reconsidered or even dropped.

The added advantage of this representation is that stopping a plan, even unex-
pectedly, is natively handled by the goal-directed architecture which requires the
execution to continue with the evaluation of the goal satisfaction condition and, de-
pending on the result and programmer-provided specifications, acceptance of the
goal failure or retries (more on the goal life-cycle in Sec. 3.3.3).

However, because plans usually have shared access to an agent’s memory, their
confinement is more difficult to realise compared to the case of agents. Just as in
programming languages such as Java, the widespread use of public variables is
frowned upon because they facilitate uncontrolled data exchanges, data exchanges
between plans should be limited for the purpose of confinement. Similarly to the
agent-message case, if two plans exchange a lot of information, it may be useful to
merge them.

There is therefore a balance to be struck with respect to the granularity between
the number and size of agents, and the number and size of their goals and plans.
While at first each agent can be assigned a single goal, as we can see in various
methodologies that use goal decomposition (e.g. Tropos [44]), in the end it is prefer-
able to decompose that goal into more refined sub-goals. As the authors of the
recovery blocks note (Sec. 2.1.5), such a structure opens up possibilities for con-
finement because failure at a level can be treated at higher levels. In our case, we
favour the format in which higher level goals adopt plans whose role is to manage
the adoption of lower level goals that refine the behaviour to eventually apply ac-
tion plans. This model is described in detail in Part III of this thesis. The multi-level
approach helps increase the chances that the system tolerates the unanticipated (or
not) error, as error handling can manifest both horizontally — in the same plan with
more or less “classic” fault tolerance mechanisms — or vertically — through the goals
at various levels and their plans. Another advantage is that by representing the sys-
tem through agents which are themselves made of multiple goals with plans, the
overall level of granularity with respect to plans becomes lower as the size of these
latter can be kept small. The consequence is that the number of interactions and
dependencies of each plan is also limited, thus facilitating confinement.

UNRECOVERABLE ERRORS In the previous section we discussed detection meth-
ods. Plan-level confinement concerns errors that can be caught and handled lo-
cally, e.g. an illegal variable value. However, when it comes to unrecoverable errors,
i.e. errors that are too serious for their component to continue executing (e.g. an
OutOfMemoryError or other errors in Java which are meant to indicate a serious
condition that usually requires the Virtual Machine to exit), the plan-level confine-
ment cannot cope with the situation and it is at agent level that the error has to be
handled, thus protecting the other agents from a general crash. In our case, this can
mean for example that an error in a plan causing the agent to run out of memory
would only impact that specific agent.

PLATFORM-LEVEL CONFINEMENT Confinement also needs to be ensured by the
platform with respect to the environment where the software is executed, with the
operating system being protected from the running components, making sure that
a defect component cannot block the machine or cause it to crash.

3.2 AVOIDING FURTHER ERROR PROPAGATION: CONFINEMENT

[A | Ay

|
|

A: |

|
=

o

LA

/|'\

N

| Sq S, S |

Figure 21: Multi-agent example, with the solid lines indicating current interactions and the
dashed line the reconfiguration of agent A

CONCLUSION A strict modularity is therefore required, which, while constrain-
ing the programmer, provides the required elements for confining errors. This mod-
ularity also helps master system complexity. There is an issue of granularity to be
considered and the “reasonable” level is not obvious to determine, in the trade-off
between too few modules with diminished advantage for the fault tolerance, and
too many modules whose overhead is too costly. For the safety net approach, the
system must be comprised of a considerable number of agents, each represented
using multiple goals and plans.

The solution we propose is to require designing using goal-directed multi-agent
systems executed on a platform that ensures confinement between the agents as
well as with respect to the the operating system. Upon the detection of an error, the
platform also ensures the directly concerned module or modules (e.g. plans, goals,
agents) stop immediately.

ILLUSTRATIVE EXAMPLE Let us consider the example of a robot subsystem that
takes decisions based on data from various sensors. The subsystem is comprised
of a camera, a sonar and computing device, including a Graphics Processing Unit
(Gru) for image processing. Among the objectives of the subsystem, we focus on
the objective to provide localisation information for the robot.

For confinement, the subsystem is structured in a hierarchy of agents, as illus-
trated in Fig. 21:

¢ the resources: a camera S;, a sonar S3 and the GPU-based image processing
unit S».

¢ the functional agents: A; for localising the robot using the camera S; and
processing unit S, and A, for localising using the sonar S3 and the same
processing unit S.

¢ the control agents: Ay, Ay and A, for handling high level decisions and dis-
patching orders to the functional agents.

In Table 1 we present each agent with a single goal and its corresponding plan or
plans. However, as discussed above, each agent could and should have more than
one goal.

Figure 21 shows an arbitrary state of the multi-agent system with A executing
P11 for A and Ay, using S7 and S;, when the plan crashes for an unknown reason.
Owing to the chosen agent-based architecture and the robust implementation at
platform-level, the crash is confined only to the respective plan and the rest of
the agent, as well as the other agents, continue functioning. We will continue the
discussion on this example after introducing the recovery measures.

65

66

A SAFETY NET APPROACH TO FAULT TOLERANCE

Table 1: The goals and plans for each agent from Fig. 21
Agent ‘ Goal ‘ Plan ‘ Plan description

Ay Gy Px.1 | Localise using the camera

Px.2 | Localise using the sonar

Ay Gy Py.1 | Localise using the camera

Py.2 | Localise using the sonar

A, G, P.1 | Localise using the sonar

Aq G P11 | Use the camera and processing unit to localise

Ao G, P21 | Use the sonar and processing unit to localise

Sq Gs1 | Ps1.1 | Provide camera image (one plan instance per demand)

S, Gs2 | Ps2.1 | Process location information (one plan instance per de-
mand)

S3 Gs3 | Ps3.1 | Provide sonar data (one plan instance per demand)

As shall be seen in the next section, we take advantage of the modular structure
defined in this section for the system recovery in multiple ways: interactions are
monitored to help cut dependencies in case of error and the goals of the agents
provide pro-active reconfiguration.

Also, both at multi-agent and agent level, as shall be seen in Sec. 3.3.1, the de-
limitation of these confinement components allows us to take into consideration
the domino effect of errors causing successive components to fail. These errors can
spread either from plan to plan (usually through shared beliefs) inside an agent or
from agent to agent (through messages) at MAS level.

3.3 SYSTEM RECOVERY

PURPOSE The role of fault tolerance is to help overcome errors that occur during
system execution, so once an error is detected and its propagation is limited, the
system needs to recover, provided it has the necessary means. Recovery is the phase
in which the system adapts to the error in an attempt to mask it and return a
functioning that is normal or degraded but within specifications.

Going back to the ship metaphor, after water was detected and the concerned
compartments were sealed, other measures need to be taken in order to ensure that
the ship and its functions are preserved so that it can fulfil its mission, e.g. deliver
cargo to its destination, limit the material losses by reaching another port or even
abandon the ship (which would correspond to an orderly system shutdown). The
event raises multiple questions. How serious is the situation? Can the ship continue
its mission or an evacuation will be required? Can any of the compartments or their
content be recovered? What functions of the ship are impacted by this situation?
For example maybe the power supply is now endangered. Similarity, the software
system that deals with an unforeseen fault needs to react properly and attempt to
keep providing its services.

OVERVIEW In our ship scenario, the first reaction would be to inform all the
functions that are concerned by the “quarantined” areas, so that they can react to
the situation, if needed. For example if a part of the power supply of the ship is in

3.3 SYSTEM RECOVERY

a flooded room, the engineer in charge of the power on board would need to be
identified and informed. In a software system, this would correspond to identifying
the agents or plans that depend on a failing one and sending them an error signal.
This dependency handling step ensures a fast reaction once an error was detected
and confined. The agents or plans that receive this signal would be able to react in
order to limit the further deterioration due to the error, for example by stopping
early a protocol that involved a failing agent. On the ship, the engineer could de-
cide to stop all power in the affected areas in order to avoid any short circuit or
tire. This is the reparation step. Once the system was brought to a safer state, the
continuation of the service providing needs to be considered. The engineer would
check for alternative power sources and depending on the available resources and
the severity of the accident, provide full power restoration or only a fraction of the
power for the critical components. This is the reconfiguration phase, where a soft-
ware system would attempt to fulfil its objectives, in our case agent goals, despite
the perturbation caused by the error.

As discussed above, the paradigm that we are using for our work is goal-driven
agents. Therefore, the main software “components” that are concerned by these
recovery steps are agent plans. In Chapter 4 we will see how other components are
integrated into our approach due to the specificities of the chosen programming
language, in particular the reasoning rules. In the same way, other applications of
the approach may need to include different types of component or even dependen-
cies.

3.3.1 Dependency Handling

THE PROBLEMS Errors occur during the execution of a program, which often
implies components interacting between them. When a component encounters an
unanticipated error, it is abruptly stopped by the confinement reaction, which,
while possibly harmless, leaves nevertheless two possible problems for the com-
ponents it interacted with. These components might have been “infected” through
the propagation of corrupted data before the detection. Even if this were not the
case, these components may still find themselves in the middle of a complex in-
teraction that is no longer justified because of the error. In our case, this could be
an agent plan sending a call for proposals and then failing while its peers prepare
proposals, or a plan requesting an expensive computation and then crashing, in
both cases leaving pointless and possibly costly consequences.
The problems that are aimed at by this step appear thus:

1. when the component (plan) concerned by the error detection propagated the
error to other components (plans) prior to the detection;

2. when the component (plan) concerned by the error detection was involved in
an interaction that is no longer justified.

APPROACH The concerned components need to be identified and informed in
case of unanticipated error. Using this information, the components (plans) can
take the necessary measures to adapt, for example by repairing, restarting or even
avoiding the use of all these components any further. The role of dependency han-
dling is thus (1) to trace the dependencies between the components of the system
in order to be able (2) to trigger recovery measures (reparations and reconfigura-

67

68

A SAFETY NET APPROACH TO FAULT TOLERANCE

tions, which are described in the next subsection) when an unanticipated error is
detected.

WHAT IS TRACED A first question to ask here is which were the outputs of the
concerned component, as either (1) they can constitute unfinished activities (e.g. in-
complete data, partially executed actions from a plan, a request that does not need
a reply any more), or (2) they can actually have propagated the error (e.g. incorrect
data sent, actions that were performed for the wrong reasons). As these examples
show, outputs (and inputs) can take different forms, from writing to (and reading
from) the local memory (variables, beliefs etc.), to data exchanges (e.g. through
messages) and even interactions with the physical world through sensors and ac-
tuators. We call dependency the directed relation between a component that is the
source of an interaction and the component that is the target or recipient of that
interaction. The second component is thus said to depend on the first. In case of
error in a component of the system, the other components that depend on the first
may find themselves acting or reasoning in an incorrect context. Using the multi-
agent paradigm simplifies this step as agents communicate only using messages.
In the next chapters we will see other dependencies that are traced once a specific
language and platform are chosen. From the point of view of a component € where
an error was detected, dependency handling is concerned with the outgoing depen-
dencies, “downstream” in the flow of data, for which the outputs of C help identify
the components which may find it useful to know that € was quarantined.

soLUTION The other question for the dependency handling step is how to trig-
ger reparation and reconfiguration actions in the affected components once they
are identified. The solution we propose is to work under assumptions: for example
when a message is received, it is used under the assumption that its source was
working correctly. If later its source is discovered to have been compromised, this
means that the use of the message is no longer justified, in which case measures
may need to be taken in the receiving entity. Using a MBD®-inspired representation
(see Sec. 2.4.3 in the State of the Art or directly [62] for more on the subject), we
can create a dependency context for executing components. This rule-based context,
similar to the RT context in ALMA, would contain for all concerned components
and at any moment during the execution the dependencies that justify that com-
ponent’s continuation. If any of these dependencies is later proven to no longer be
supported (for example because it encountered an unanticipated error), the compo-
nents which based their execution on that dependency, in other words the compo-
nents whose dependency contexts contain that dependency, are no longer justified.
Depending in the component, this can mean simply stopping, retracting or placing
it into reparation state, as discussed in the following recovery step in Sec. 3.3.2.

EXAMPLE In Fig. 22, the concerned components are agent plans. The context
is formed using rules that build on the assumption that all the components are
functioning normally (rule 10 creates an ok(Pl) assumption for each component P1).
The context is expanded through the incoming dependencies which in the example
are the read beliefs and the received messages (rules 11 and 14). The successive
context states are represented through the second parameter of the predicate. As we
discuss below, these rules produce a graph of dependencies between all interacting

6 Model-Based Diagnosis.

3.3 SYSTEM RECOVERY

COMPS = [PlPL € Plans} (8)
OBS = {test(Pl) = error} (9)
SD ={
{ok(Pl) = context(Pl,0)} (10)
U
{context(Pl,n) Aread(Bel) = context(Pl,n+ 1)} (11)
U
{context(Pl,n) = write(Bel)} (12)
U
{write(Bel) = read(Bel)} (13)
U
{context(PL,n) Arcv(M, A¢rom) = context(PL,n+1)} (14)
U
{context(Pl,n) = send(M, Ao, PLLAgent)} (15)
U
{ok(comm(Afrom — Ato))JA
send(M, Ato, Afrom) = TeV(M, Afrom)} (16)

}

Figure 22: An example of MBD-inspired representation for tracing dependencies generated

through beliefs and messages between agent plans

69

70

A SAFETY NET APPROACH TO FAULT TOLERANCE

components. In its original form, the model would include a rule stating that given
the system description with all components functioning correctly, the expected test
value is okay:

context(Pl,n) = test(Pl,n) = okay (17)

In case of error, a contradiction would be reached due to the inconsistency between
the “observed” test(Pl,n) = error and the expected value of the observation. The
result would be a nogood, a list of components that cannot be all functioning cor-
rectly, a first step for diagnosing the source of the error. As we do not focus on
the diagnosis, we use the previous rules in a different manner, by replacing rule 17
with rule 18 below which can be interpreted in the following manner: “if an error
occurs in plan Pl, the assumption that the plan is justified cannot be true”:

ok(Pl) = test(Pl) = okay (18)

Note that the right side fact test(Pl) = okay is a prediction rather than an obser-
vation, so it is not declared in the OBS set. Its role in this model is to produce a
contradiction once the error is detected.

FUNCTIONS OF THE DEPENDENCY CONTEXT This model has two uses:

1. in case an unanticipated error is detected in the current component (plan
in this example), the correct functioning assumption is disabled and all the
component’s outputs are invalidated;

2. in case an unanticipated error is detected in a component on which the cur-
rent component depends (e.g. a plan that wrote a variable used by the current
plan or sent a message used by the current plan), the current component’s
context will be invalidated and it will be forced to enter the reparation state
discussed in the next subsection.

This is therefore a mechanism that can be used for maintaining a trace of system
dependencies and triggering recovery when unanticipated errors are detected.

Depending on the chosen language and its characteristics, different components
and interactions can be concerned by this tracing mechanism, as shall be seen in
Chapter 4.

Our approach here is to try to rapidly isolate the error and “keep the boat afloat”
rather than look for the guilty components, so we are not aiming to use this mech-
anism for diagnosis as well — more on this at the end of the chapter.

THE DEPENDENCY GRAPH The structure of dependencies can be seen as a di-
rected graph § =< N, E > dynamically created during execution, with:

* N = {Components} the nodes: in this case the plans, but they can also other
components, depending on the chosen level of granularity and base model;

* E = {Dependencies} the directed edges: in this case through belief accesses
and message exchanges.

The “downstream” approach of the dependency handling step corresponds to
propagating a signal to the nodes that are reachable in the graph from the node
where the unanticipated error was detected.

3.3 SYSTEM RECOVERY

SYSTEM-LEVEL VIEW This system-wide representation of the dependencies
needs to be stored and handled. A solution would be to keep a unique service for
monitoring all dependencies and triggering reparations in case of unanticipated
error. Such a service would suffer from a high demand as storing all dependencies
for all agents would be very communication intensive. Due to real-life constraints
(such as system complexity, communication delays etc.), keeping this omniscient,
i.e. complete and up to date, dependency graph is not feasible. More in line with
the multi-agent approach would be to keep a local version of the dependency
graph in each agent and use it in case of error detection. This would allow local
reparations to be triggered more easily as communications would be minimal. The
two aspects of dependency handling need to be discussed in the context of this
distribution: the representation of the dependency graph and the propagation of
the error signal.

AGENT PERSPECTIVE How much of the system should the graph stored in an
agent cover? As the nodes we are considering, the plans, are at a finer grain than
the agents, the agent would have to store at least the local dependency graph corre-
sponding to its plan interactions. The question is then if it is desirable for agents to
share their dependency graphs with other agents. To do so, a protocol would have
to be implemented for exchanging dependency information either with each nor-
mal message, in the form of meta-data, or independently from the normal agent
interactions. These exchanges could include (a) only the parts of the graph that
directly concern the current node (i.e. all the nodes from which the current node
can be reached and thus which could cause the current node to repair), or (b) all
known dependencies of the involved nodes. These strategies would involve shar-
ing all the internal inter-plan dependencies of each agent, which would be verbose
and possibly unnecessary, as agents usually communicate with other agents and
not with specific plans in those agents. Furthermore, the exchanges would become
more and more difficult as the graph would expand over time. We therefore prefer
a lighter alternative: (c) to have each agent manage only its own local graph but
take into consideration the incoming and outgoing dependencies from messages.

SIGNAL PROPAGATION When an unanticipated error is detected, how is the sig-
nal propagated in the system given the agents only have a local view of the depen-
dency graph? Locally, the rules allow triggering an automatic reaction in all the
plans whose contexts are concerned by the error. However, when messages are in-
volved, the peer agents need to be automatically informed through messages that
allow them to react to the error too. A transparent connector needs to be integrated
in the platform to ensure that an “inform” message is sent from the source agent
and interpreted at the destination in case the error signal has to be propagated
over a graph edge that passes to another agent. The fact that the “bridge” between
agents is automatic means that the rules in Fig. 22 do not need to change.

Note that while the communication is normally performed towards and from an
agent rather than a specific plan (agents usually do not have knowledge on the
internal workings of other agents, a detail we took into consideration when writ-
ing the corresponding rules in Fig. 22), the mechanism described here suffice for
propagating the error signal and triggering reparations on the paths of messages.

Once the propagation mechanism is in place, the question is how far should the
error signal be propagated? The dependency context in the example above causes
all the nodes that are reachable from the detection node in the dependency graph to

71

72

A SAFETY NET APPROACH TO FAULT TOLERANCE

react by repairing and eventually reconfiguring in case of unanticipated error. This
is quite a radical solution, especially since the dependency handling step is already
done in a preventive state of mind: the seriousness of the error is not known, so
it is even possible that the informed entities were not affected at all by the error.
The current solution can thus result in a domino effect, a dreaded phenomenon in
fault tolerance [88], causing many components to either fail in cascade or simply all
recover (e.g. restart) following a single error. Therefore, policies for propagations
and cuts in the graph need to be defined in order to ensure that the domino effect
is limited, for example by restraining the propagation distance in the graph. The
solution we propose is to give each node the choice of whether to propagate the
signal further or not. In other words, the signal is only sent to the components
that are situated at a distance of 1 from the detection node in the dependency
graph, leaving it to them to decide whether to repair normally or to trigger a new
unanticipated error that would propagate the error signal further. The reason is
that in this way, the programmer can handle locally the decision which depends
on the actions that the plan already executed and may not require the other plans
to be informed as well.

As plans can finish and agents can be stopped or cut away from the system, how
does this affect the dependency handling step? If a plan is no longer running when
the signal is propagated to the node corresponding to it, then we stop the propaga-
tion on that graph path. More refined policies can be considered here, for example
propagating to the first running plan on each path, but we limit our current ap-
proach to this “at most one step” propagation which implies less communication
costs and limits the risk of a domino effect.

What happens is a plan is reached by more than one unjustification? This does
not pose problems regardless of the chosen propagation policy, as only executing
plans are concerned by the unjustification signal and they can only react once to it,
so any other attempts are ignored.

Can there be cycles in the graph and if yes, would that be a problem? Yes, as
even a simple request-reply exchange creates a cycle in the graph. This does not
pose any problem as the plan would not be executing because of the error so no
other unjustifications can be created.

CONCLUDING ON THE PROPAGATION So if any of the plan’s inputs is unjusti-
tied, only the current plan’s dependency context is unjustified and it is inside the
plan that it is decided whether the unjustification is propagated further to its de-
pendants. The propagation to the dependants is done through the contradiction of
the “ok(X)” assumption and is allowed in the following situations:

1. the plan handled an unjustification and the programmer added an “Unexpec-
ted” in the unjustified branch to propagate the reparation,

2. the plan encountered an unexpected error.

In order to ensure the level by level propagation, we need to change the justi-
fications of the rules in the example above so that instead of the current context,
outputs are justified only by the ok(Pl) assumption resulting in the SD set in Fig.

23.

FULLY AUTOMATIC In line with our objective of keeping the programmer’s in-
volvement minimal, but also to protect the mechanisms from any interference, all

3.3 SYSTEM RECOVERY

SD ={
{ok(P1) = context(PL,0)} (19)
U
{context(Pl,n) Aread(Bel) = context(Pl,n+ 1)} (20)
U
{ok(P1) = write(Bel)} (21)
U
{write(Bel) = read(Bel)} (22)
U
{context(P1l,n) Arcv(M, Afrom) = context(PL,n+1)} (23)
U
{ok(Pl) = send(M, Ao, PLLAgent)} (24)
U
{Ok(comm(Afrom - Ato))/\
Send(M/ At0/ Afrom) = TCV(M/ Afrom)} (25)
U
{ok(Pl) = test(Pl) = okay} (26)
}

Figure 23: An updated version of the SD in example in Fig. 22 after taking into consideration

propagation issues

73

74

A SAFETY NET APPROACH TO FAULT TOLERANCE

the techniques proposed for the dependency handling level must be transparent
to the software developer. They are to be provided by the platform in the form
of specific code included in each module, but separate from the working memory
available to the programmer. This is feasible as assumptions and dependency rules
can be associated with specific actions in the language (for example sending a mes-
sage, as in the example above). The reaction to an exception, as well as generating
a signal locally or an inform message between agents and reacting to them are also
easy to automate.

The separation from agent memory and the automation also mean that the de-
pendency handling mechanism should function even in the presence of agent-level
unrecoverable errors, as described in the detection section.

DEPENDENCY HANDLING VS. AUTONOMY FOR ROBUSTNESS What are the ad-

vantages of such a mechanism when we already require the programmers to take

into consideration the possibility that their peers are autonomous, e.g. they can

decide to stop responding? Can taking into account the agent autonomy suffice?
We propose this recovery step because on the one hand it offers gains in:

¢ speed — the peers are notified as soon as the error is detected, not after a
timeout;

* resource consumption — interactions are cancelled, avoiding possibly expen-
sive computations or other interactions;

* robustness — a retraction message is emitted after a possibly erroneous in-
formation was sent, information which may otherwise continue to be used
obliviously of the detected error, in case no other detection mechanisms are
triggered at the receiver.

On the other hand, in case an agent is completely cut away from the others or
encounters an error that is so serious that it also impedes the dependency handling
mechanism to function, agent autonomy can help improve the system reaction, for
example by avoiding blocking situations when lacking a reply.

So while there are certain situations where the two measures overlap, there are
also many advantages in using them both.

concLusION Up to this point, we saw how an error can be detected, the archi-
tecture allows us to confine it and then dependencies point to the other components
that may need to adapt to the event. Let us now see how the dependencies gath-
ered by the dependency handling mechanisms work towards the recovery of the
functions of the system.

3.3.2 Reparation

REACTION TO DEPENDENCY HANDLING Once an error is detected and a signal
is sent to all concerned entities, their execution is no longer justified and will need
to stop. Because executing components are involved, there is a risk of system-wide
inconsistencies caused by data accesses (e.g. write partial values or lock a data-
base for writing), or actions (e.g. a call for potentially expensive computations or
actuator commands that are no longer needed) that were only partially executed.
Contrary to the case of the components where the error was detected and that

3.3 SYSTEM RECOVERY

needed to be abruptly stopped, these other components are still executing normally
and should react differently by stopping in an orderly manner, before attempting
to reconfigure and continue providing the right functionalities. Indeed, they may
attempt to return the system state to a stable state, for example by performing cer-
tain memory operations (e.g. delete partial values) and actions (e.g. cancel a call).
Given that interactions with the environment may have been performed, an auto-
matic rollback procedure involving the internal system state may be inappropriate.
The authors of recovery blocks (presented in Sec. 2.1.5) too note that there may not
always be appropriate nor possible to automatically retract the outputs or undo the
changes performed by a code segment.

Returning the system to a consistent state is thus something that we need to
introduce for our safety net approach. Hence, we propose requiring the system de-
signer (programmer) to provide the necessary reparation steps in specific locations
in plans. These would be used in case the current plan needs to be stopped due
to a dependency from a component that encountered an unexpected error. Further-
more, these will be the places where it can be specified if the error signal needs to
be propagated further or not.

sOoLUTION The idea is to include in the development process the definition of
reparation procedures that can be triggered by the notification signals from the de-
pendency handling step. A means to require specific programmer-provided repa-
rations is to be included in the language.For this we draw on work on ALMA
(described in Sec. 2.4.4) where programmers are demanded, in specific points in
the code, to provide specific measures to be taken in case the execution of the
concerned code segment is no longer justified. The mechanism is well adapted for
unforeseen (as well as foreseen) faults because of its generic approach: the pro-
grammer does not have access to the reason that triggered the reparation — he or
she only knows that the execution needs to be stopped. Also, the programmer’s
task is much less tedious if there is only a generic case to consider, rather than a
multitude of specific situations.

In case no repair measures are needed, or even to avoid using the mechanism for
whatever reason, the programmer could leave it empty to let the reconfiguration
apply directly. Another important case is when the programmer decides to use the
repair reaction to signal an unanticipated error, leaving the safety net take charge
and thus propagating the error signal one step farther. Imagine a lord participating
in an event with multiple auctions. In case after a few bids his participation is
no longer justified (e.g. he receives a message that his accounts were temporarily
blocked), he could:

¢ simply leave without saying anything, if none of his bids ended in a purchase.
This corresponds to the case where no “reparation” is needed.

* 20 to see the sellers to personally cancel any winning bids and present his
excuses. This corresponds to the case where the “reparation” contains specific
measures.

¢ ask his assistant to announce all the auctions where the lord participated that
one of their bidders was actually out of money and would not be able to pay.
This corresponds to the propagation of the “error signal”, which, in this case
would cause “much ado about nothing”.

75

76

A SAFETY NET APPROACH TO FAULT TOLERANCE

A programmer would certainly face the same choice: is there need for a repa-
ration if the execution is forced to stop at this point in the plan? Can a specific
reparation be provided? The propagation of the error signal should be the last
choice and be avoided, as its overuse could generate the dreaded aforementioned
domino effect.

The granularity issue discussed in the confinement section above comes again
into play, but with a twist: plans with many interactions would have more com-
plicated reparation code, but longer ones with little to no interactions (e.g. request
and display information) may require only limited reparations.

coNCLUSION The reparation step transparently reacts to the signals issued by
the dependency handling step from other agents or plans and executes reparation
steps in order to bring the system to a safe state before the reconfiguration phase.
The reparation code can be provided by the programmer in specific locations in the
code.

3.3.3 Reconfiguration

PURPOSE With fault tolerance being the objective of our work, we need ensure
the system continues performing as specified despite the manifestation of faults.
As we are concerned with unforeseen faults, the focus of our solution cannot be
in the cause of the problem, but rather on the objectives of the system. While the
reparation phase was charged with returning the system to a consistent state, re-
configuration is the process through which the system adapts to ensure its best
functioning in order to compensate for errors. Depending on the means put in
place and the seriousness of the situation, components (agents, plans etc.) may
need to be eliminated or restarted in order to “clean” the effects of the error. How-
ever, what is important for the system is to avoid an erratic behaviour by staying
within the specifications, in the worst case by performing an orderly shutdown and
in the best case by continuing to provide the service it is meant to provide.

FROM FAULT TOLERANCE TO GOAL-DRIVEN AGENTS The recovery blocks fault
tolerance approach described in Sec. 2.1.5 requires the programs to be divided into
blocks, each with alternative solutions and governed by an acceptance test. Failed
block executions can be followed by automatic or programmer specified measures
aimed at returning the system to its original state, ready for further block execu-
tions. The resulting redundancy of design and the focus on the results constitute
valuable properties for the tolerance of unforeseen faults. The definition of agents
using goals and plans compares favourably to the recovery block approach: plans
correspond to execution blocks and goals with their success conditions correspond
to the acceptance tests.

THE GOAL LIFE-CYCLE AND POSSIBLE OUTCOMES Given the expressiveness
that can be associated with goals through satisfaction conditions and life-cycles,
they offer the possibility to define more refined behaviours than in the recovery
blocks approach. An example of a goal life-cycle for which an automaton is used is
depicted in Fig. 24. Goals have two possible states: when adopted by the goal plan,
they become desires, but as long as they are not intentions, no plan is searched or
executed. The state change can be controlled by various constraints, for example
with respect to limited resources. A series of beliefs are used for state changes,

3.3 SYSTEM RECOVERY 77

—sel/A\—sat

Adoption

. sel/\des A—sat . meAsel Ades A—sat | Planin |end(plan) Plan
Desire ——— > Intention —> .. .
progress finished

satx sat

sel A des A\ —sat

—sel A\ —sat

(toV —desV —me) A —sat
(toV —des) A —sat

(toV —des) A—sat

Figure 24: Our generic goal life-cycle with transition conditions on state beliefs (des =
desirable, sel = selected, sat = satisfied, me = means, to = timeout)

for example sel (selected) indicates the passage in an active Intention state and sat
(satisfaction) indicates that the goal was achieved. The advantage of goals is that as
long as they are not achieved and the situation is still favourable (e.g. resources are
still available, the goal timeout has not elapsed), plans can be attempted again and
again.

Note that we consider that a goal outcome can only be “Success” or “Fail”.

GOAL-DRIVEN RECONFIGURATION The objective-based error detection and
confinement properties of the goal-plan paradigm were presented in the previous
sections, but here we are interested in the properties it offers for the reconfigura-
tion. When written in a goal-pursuing manner, an agent will adapt its behaviour
to retry plans or execute new ones whenever its goals are not achieved. This can
happen regardless of the presence of errors during the execution of its plans.

Goal-driven reconfiguration is the process through which an agent reconsiders its
behaviour with regard to a concerned goal, resulting in (1) re-attempting the same
or another plan, or (2) renouncing at the goal and eventually continuing with the
behaviour, if any, corresponding to the failed goal. In both cases, the implications
can spread to other components. For example in the first case the agent can re-
attempt a plan that failed to obtain a valid radar image but this time uses a different
radar and succeeds. Or it uses a completely different plan that uses a different type
of sensor to achieve the goal. In the second case, if the goal was adopted in the
context of a cooperation, the agent may need to inform its peer or peers that it
cannot achieve that specific goal. The idea here is that even if a goal fails, this is a
case that can and should be taken into consideration by the programmer as normal
program execution and thus the system will contain the suitable measures to take,
without this being considered a fault tolerance-related measure.

Therefore, whatever happens, as long as the level at which goals are handled
stays functional”, goals will be retried and pursued as indicated by the agent defi-
nition. As already stated in the section on detection, this means that unanticipated
errors can be detected and masked by simply the fact that a plan did not execute
correctly [26] or more generally unforeseen faults can be successfully tolerated
when attempt to achieve a goal failed.

7 As stated before, there can be critical errors when the whole agent needs to be stopped.

78

A SAFETY NET APPROACH TO FAULT TOLERANCE

REDUNDANCY Furthermore, as discussed above in the section on confinement,
the possibility to define multi-level structures as well as the ease of introducing
redundancy in the definition of goal-driven agents recommend their use for fault
tolerance in general and the tolerance of unforeseen faults in particular. While the
simplest way to view redundancy is through duplicating components - e.g. the two
inertial systems in the Ariane 501 rocket [73] — or software agents [46], redundancy
can also be achieved in a functional manner: providing different means to reach
the same goal — e.g. a Mars rover can acquire images using a radar or an optical
imaging system (camera). Goal-driven agents can provide specific redundancy in
the form of (a) repetition of a plan execution, commitment strategies (weak redun-
dancy, effective for transient errors), (b) plan libraries with multiple plans (medium)
and (c) planners that can adapt to the current context to provide well suited solu-
tions (medium-strong redundancy).

PLANS AS A RESOURCE Plans are thus a precious and often limited resource for
agents (not many plans are usually provided despite the point above). As certain
validations can be performed on their code, we will consider that when an error
occurs in a plan, it is not the plan code that is to blame, but rather the plan instance
with all its interactions (messages, beliefs), so plans will not be discarded, only
stopped. A consequence to this is that temporary errors can be survived (e.g. the
code does not check if a sensor is available, so if the sensor is temporarily out,
not eliminating the plan upon its crash can allow it to be successful upon a later
try). A learning strategy could then be used to detect cases when plan instances of
the same prototype (i.e. plan code) often cause problems in order to eliminate that
prototype.

RECONFIGURATION CASES In Fig. 25 can be seen the three cases when a com-
ponent (an agent) reconfigures:

1. when an unanticipated error (exception) is detected, the component is
stopped and while the dependencies are handled (“pruned”), reconfigura-
tion is launched,;

2. when a component is notified that one of its inputs was produced by a com-
ponent that was stopped due to an error, the component goes through a repa-
ration phase before reconfiguring;

3. when a component’s goal is not achieved following a plan execution, regard-
less of the reason, the component reconfigures.

ARE TIMEOUTS AND KNOWN ERRORS CONCERNED BY THE RECONFIGURA-
TION? A timeout inside a plan being a specific error case — despite the fact that
it covers many unforeseen faults —, its treatment raises the question: what should
be the reaction to this event? A first reaction could be to simply generate an unan-
ticipated error and let the safety net mechanism handle the situation from that
point. However, as the programmer is supposed to provide this value as a normal
event among other, the treatment of this event is more appropriate if provided as
a normal continuation of the execution. In the most extreme case, the program-
mer could decide to throw an unanticipated error (an error that he or she does
not intend to catch) corresponding to the timeout, possibly after executing some
code with reparation purposes. Even if an unanticipated error is not thrown, the
corresponding agent goal could still fail, thus triggering a reconfiguration.

3.3 SYSTEM RECOVERY

Recover

Detect | Confine | Handle Dependencies | Repair | Reconfigure

Cexception | * | I -
stop .
lmform (error)
Cinvolved i1
oal not
Cgoats] =
achieve
Cothers N

Figure 25: Involvement of components by phase of fault tolerance, with Cexception: the
component where the uncaught error was detected, Cinyolvea: components that
were depending on the first one, Cgq1s: components whose detection occurred
through the goal mechanism and Cgythers: Other components that are not con-
cerned, but may be eventually required to participate after the reconfiguration of
the others, e.g. to compensate for another component that is no longer available.

Furthermore, this treatment of known errors can be employed for other types of
error that the programmer can easily detect but does not want to handle — for ex-
ample due to lack of time. The programmer can thus provide the specific detection
mechanism and then leave the handling to the safety net mechanism.

GOALS AND AUTONOMY Goals are central for the autonomy of a system. On
one side, the agent contains its own purpose, in the form of goals, which it will
pursue until its achievement or until another condition is reached (e.g. it decides
that the goal is impossible to reach), in spite of any hardships it may encounter. On
the other side, goals are the source of the pro-active behaviour of agents, as they
initiate actions and interactions in order to fulfil the agent’s role.

An interesting direction of study for reconfiguration is also the idea of involving
humans in the process, as long as the level of autonomy of the software system
remains high, as for example in [34] where the human operator is given a certain
time window to modify the action proposed by the system.

CcONCLUSION To sum up the recovery phase, a plan can either encounter an
error and be forcefully stopped, or be stopped through a dependency in which
case a reparation procedure corresponding to that plan can be applied. In both
cases, the goal model requires that the current context is evaluated and other plans
are executed, or the control is given to a higher level with the goal failing. There
is also the case when reconfiguration is triggered by a goal’s success condition
following the execution of a plan. Either way, the execution is kept controlled and
within the limits imposed by the programmer, regardless of the final outcome — a
working system or a graceful degradation. Note that it is thanks to the confinement
that the errors are limited to certain components and we can separate between the
four types of component in the figure (i.e. there can be components where the
error was detected, “involved” components, but also “other” components that are
not concerned by the event).

79

8o

A SAFETY NET APPROACH TO FAULT TOLERANCE

ILLUSTRATIVE EXAMPLE (CONTINUED) Let us go back to the robot subsystem
example introduced in Sec. 3.2. Following the advice for the confinement phase,
the subsystem was already defined using goals and plans. For the purpose of this
example, we assume that the plans Py ; and P, function over longer periods of
time (thus cumulating dependencies), as opposed to the plans of the S; agents that
are short and are instantiated for each demand from the A; and A, agents.

We use the same arbitrary state from Fig. 21, with A executing P17 for A and
Ay, using Sq and S;. Let us consider the moment after the confinement of the crash
of P 1. If no dependency handling mechanism is in place, as A was programmed
using the autonomous agent philosophy, it will not wait indefinitely for an answer
and will eventually reconfigure to its second plan Py ;. If, however, the complete
safety net approach was used, the dependency handling mechanisms would need
to send error notifications to the concerned agents. The traced dependencies for
plan Py 7 indicate that:

¢ it had inputs (messages) from S; and S, (the data), and from A (a com-
mand);

¢ the outgoing dependencies go towards S; and S; (requests for data), and to
Ay from a previous call processed by the same plan that crashed.

According to the dependency handling policy, all the downstream dependencies of
P11 are notified:

e for S7 and S;, as they only had plan instances especially created for the re-
quest, no reparation or reconfiguration measures are performed.

¢ agent A, is able to reconfigure sooner than when relying only on the timeout,
while also applying a reparation procedure, if necessary.

¢ in the case of Ay, the concerned plan stops, the plan’s reparation is applied
— e.g. written values are deleted — and the agent reconfigures by attempting
a new plan in order to achieve its goal. We can suppose that the reparation
procedure of A did not require any propagation of the reparation to A,, for
example because the programmer estimated that the message sent to A, did
not require that kind of treatment. If the only alternative for A to continue
passes through A; again, it will call on that agent and if the error was just a
transitory one, it may succeed.

This example illustrated how the safety net approach helped the system to suc-
cessfully tolerate an unknown (and unforeseen) fault.

THE SAFETY NET In conclusion, as depicted in Fig. 25, the expected course of
events in case an unanticipated error is detected is as follows. First of all there need
to be implicit means of detection, which can be either based on exceptions or based
on objectives (the satisfaction of goals, timeout conditions etc.). Then, given a mod-
ular architecture, the impacted elements can be isolated. To achieve this modularity
we propose the use of a multi-agent architecture with agents defined using goals
and plans. The dependencies between these modules are transparently traced and
in case of error, the modules that depend on the primarily affected one can be in-
formed. While the module where the error was detected is directly stopped, the
informed modules can automatically repair, given they are endowed with the re-
quired procedures. In the end, the whole system, both the stopped and repaired

3.4 THE PROGRAMMER’S GUIDE FOR A SAFETY NET

modules, can reconfigure with the purpose of keeping the system functioning cor-
rectly, or experience a graceful degradation. For the reconfiguration part, we pro-
pose the use of the goal paradigm, already cited for the confinement, while for the
reparation part, specific procedures are to be provided for each plan.

3.4 THE PROGRAMMER’S GUIDE FOR A SAFETY NET

Now that we looked at the unforeseen fault issue from the perspective of the fault
tolerance, we can return to the developer’s point of view. In the following, we
state the 10 principles of the safety net approach, comprising of a safety net-savvy
language and an adequate execution platform to be used with specific design re-
quirements.

3.4.1 Language Requirements

1. The language is based on the goal-directed agent paradigm.
2. The language provides an exception-based error signalling system.

3. The language requires the programmers to regularly specify reparation pro-
cedures that are to be used when a plan loses its justification and needs to be
stopped.

4. The language requires a timeout for every state which implies an agent

waiting for an event.

3.4.2 Platform Requirements

5. The execution platform ensures multi-level confinement (confinement from
the machine and operating system to avoid propagation of errors to them) as
well as horizontal confinement (between agents).

6. The platform catches all unanticipated (uncaught) errors/exceptions which
are to be handled by the safety net mechanisms.

7. The platform performs transparent dependency tracking that is then lever-

aged for triggering system-wide reparations in case of unanticipated errors.

3.4.3 Design Requirements

8. The programmer uses a multi-agent architecture featuring a significant num-
ber of agents with respect to the application.

9. The programmer uses goal-driven agents whose behaviour is split into mul-
tiple goals and plans.

10. The programmer takes into consideration redundancy: allowing goals to retry
plans, providing alternate plans or agent designs etc.

81

82

A SAFETY NET APPROACH TO FAULT TOLERANCE

3.5 DISCUSSION

In this chapter we presented our solution for the tolerance of unforeseen faults by
dividing it into three phases: detection, confinement and recovery. We showed how
goal-driven agents play a central role in the approach through their involvement in
all three phases. Other detection techniques were presented which, together with
the subsequent safety net handling, aim to ensure an increased fault coverage. This
is all done while the focus of the programmer is on specifying the normal system
behaviour and following the language constraints (e.g. reparation code in specific
locations or specifying the maximum waiting time, i.e. timeout, every time the
program waits for an event). An automatic dependency tracing mechanism which
takes advantage of the goal-plan structure completes the safety net.

The solutions considered for confinement and recovery rely on the granularity
used by the programmer when designing the application. If the component that
needs to be isolated is very large with respect to the overall system or it has been
running for a very long time and has produced a lot of outgoing dependencies,
then the safety net approach will not be able to significantly contribute to the fault
tolerance of the system. On the other hand, shorter execution segments with less
dependencies and smaller components mean that an error would be easier to con-
fine and the recovery would impact a more limited part of the system. The problem
with granularity is that it is relative, it depends on each application and is difficult
to quantify, but for the safety net approach, it is important to have more rather than
less agents, each with more rather than less goals and plans.

Since they are concerned with the plan (and thus agent) outputs, the dependency
handling and the reparation steps constitute the means to backtrack the plan effects
in an attempt to bring the system back to a safe state, which ideally would be
identical to the state before the erroneous execution. There are, however, situations
where this is not possible or not covered by our approach. Besides from issues
related to badly specified reparation steps, a few other examples include:

¢ plans that end without signalling an unanticipated error, but whose goals are
not achieved and require the application of a new plan, possibly failing;

* actions that cannot be undone (e.g. permanently deleting a piece of informa-
tion);

¢ as we discussed when defining the dependency handling propagation strat-
egy, there are situations where the receivers of outputs originating in the “in-
criminated” plan (e.g. plans using messages sent by the “incriminated” plan)
are no longer active, in which case their effects are accepted as they are.

The study of these limitations and how much farther the backtracking of plan
outputs can be extended is a subject for future work.

ILLUSTRATIVE EXAMPLE (DISCUSSION) In the robot sub-system example used
for illustrating the confinement and recovery phases, one may wonder why the
original plan failed. Was it because it was fed corrupted data from the sensors?
Even if it were the case, the safe way of programming the plan would have been
to test that data and not let the plan crash. Or maybe there had been corrupted
data for a while and the crash was just a consequence of their accumulation. If
this was the case, than the fact that another agent was transmitted data from that
same plan (i.e. Ay) could have propagated that incorrect information, in which case

3.5 DISCUSSION

Table 2: Measures by phase of our safety net approach, split between the offline measures
concerning the programmer and the online ones ensured by the platform

Detection Confinement Recovery
Dependency Reparation Reconfiguration
handling
Offline || Code as | Code with | - Write repara- | Write goals and
required by | agents, goals tion code as | plans; provide
language and plans required by | redundancy
the language
Online || Catch unan- | Protect plat- | Trace depen- | Receive “in- | Handle the
ticipated form and other | dencies; inform | form” signal | goal life-cycle
(uncaught) components; concerned com- | and react
errors stop component | ponents upon
upon detection | detection

informing the other agent of the error might have avoided compromising more of
the system. Either way, the unforeseen fault was well masked and its exact cause
is less important for our work®. Did the system suffer from a domino effect? On
one hand, there are plans that already finished and which did not produce any
propagation of the recovery (e.g. Sy did not repair and reconfigure needlessly, nor
did it propagate the error to A, “one goal and plan per request” policy allowed for
a good confinement of the possible error). On the other hand, there is the use of
specific reparation procedures that provide more insight on the current situation
and can permit avoiding a propagation, like in the case of A that did not need to
inform A, of the error.

In conclusion, the safety net approach reacted well in this simple unforeseen
fault example, owing to the fact that the required tools were put in place and the
system was programmed following our requirements.

PROGRAMMER’S PERSPECTIVE The takeaway from this chapter are the 10 prin-
ciples of the safety net approach presented in Sec. 3.4. These are divided between
language, platform and design requirements. Table 2 takes the programmer’s per-
spective from a slightly different angle: contrasting the development, i.e. “offline”,
and runtime, “online”, aspects of our approach. Note how the “online” behaviour
of the system is partly made possible by the programmer-issued design following
the language constraints (goals, reparation code), and partly ensured by the plat-
form mechanisms — particularly noticeable in the case of the dependency handling
step.

DOES THE SAFETY NET APPROACH IMPACT AGENT AUTONOMY? Platon et al.
[82] (discussed in Sec. 2.2.1) argue that exception handling mechanisms need to re-
spect the agent paradigm, in the sense that they need to avoid being intrusive and
respect the agent autonomy. The idea of the safety net approach is that agent goals
guide the recovery process, thus giving priority to agent autonomy. The depen-
dency handling mechanisms, nevertheless, are made to be transparent to the pro-
grammer and the agent reasoning and trigger reparations in the concerned plans
regardless of the agent willingness to react. It is only after the reparation that the
agent autonomy takes control through the agent goals. We consider that this type

8 As in the recovery blocks work, measures may be taken for logging such events for later diagnosis,
but this falls outside the scope of this thesis.

83

84

A SAFETY NET APPROACH TO FAULT TOLERANCE

Conflict set: Conflict set:
f crashes [ab,c,d, f] f crashes [a/)b,c,d.ef,gh] (all)
e crashes [a,be] e crashes [ab,c,def,gh] (all)
Diagnosis: [a,b] Diganosis: [ab,c,def,gh] (all)

LN LN S
\Z/ \i/

Figure 26: Dependencies propagating between components. The bottom a component
sends a request to the upper layer entities via a middle layer. In red compo-
nents detecting an error, in green outgoing dependencies, in yellow suspected
dependencies and in orange components incriminated by a diagnosis strategy
that takes advantage of multiple detections to reduce the conflict set.

of reaction is required as we are in the presence of unforeseen faults, which means
that we aim to keep the programmer’s involvement minimal.

AS MBD IS ALREADY USED, WHY NOT ADD A DIAGNOSIS STEP? Besides the
“downstream” perspective described for the dependency handling step (Sec. 3.3.1),
given that we are considering unforeseen faults, there is a risk that they manifested
well before the detection point. There may be components that contributed to the
error propagation and may still do so even after the detection and confinement
and recovery measures. There is therefore the possibility that the error originated
elsewhere in the system, in which case a diagnosis would help identify other com-
ponents that were affected before the detection. From the point of view of a soft-
ware component (agent, plan) where an error was detected, diagnosis would be
concerned with the incoming dependencies, “upstream” in the flow of data, in or-
der to attempt to identify the possible source or sources of the error, also pointing
to a string of components that were affected from the identified source to the point
of detection. This information would then help clean up, repair and reconfigure the
system more thoroughly.

Furthermore, we already conceptually use MBD tools, which in theory would
facilitate the localisation of errors or even faults. In the example in Fig. 22, MBD
logics dictate that at least one of the assumptions used to reach that point is false.
These are all the assumptions “gained” through the inputs, plus the assumption
linked to the current plan which may itself be the cause of the error. Being a tool for
diagnosis, this model helps indicate all the possible sources of the error, which often
results in too many “suspects”. Furthermore, a diagnosis in our case would also
face problems linked to the distribution of the application and the questions related
to the reliability of the communication links, represented in the model through the
ok(comm(..)) assumption.

If we consider the example in Fig. 21, we see that the incoming dependencies
would not be useful for diagnosing the source of the error (which at this point could
be any of the inputs plus the actual plan that crashed) as too many interactions
already took place and the actual culprit is no longer distinguishable.

3.5 DISCUSSION

To try to overcome this issue of ambiguity between “suspect” components, we
could try to look for more symptoms of the error, which in the case of unforeseen
faults would be other error detections. Comparing the sets of suspects for multiple
errors would help narrow down the list of suspects and limit the number of com-
ponents that can be incriminated. To illustrate this issue related to diagnosis, let us
consider a scenario where an entity requests a service from a set of peers which in
turn use other entities to fulfil the requests (Fig. 26) and some of these communicat-
ing components experience unanticipated errors during different moments of their
functioning. At the left, once the middle layer entities translate the request, first
e and then f crash. Using a diagnosis strategy that considers all the components
that participated at the creation of a dependency, we can compare the two initial
lists of “suspects” (in yellow) and narrow the possible “incriminated” components
(in orange) to a and b. At the right the errors are detected later in the execution,
and the diagnosis does not produce any useful conclusion. Note that this example
contained two detections in order to help narrow down the list of suspects. There-
fore, even this simple example shows the difficulties that the diagnosis would bring
to our problem, as the complexity incurred by the diagnosis problem is very im-
portant. Furthermore, the detection of unanticipated error shows that there was a
vulnerability in the concerned entity, so a first fault is in that instance itself, which
was already isolated as part of the confinement phase. However, the fact that the er-
ror propagated from somewhere else is a matter of supposition and often requires
more than one detection event for filtering the list of suspects. On the other hand,
for the outgoing dependencies there is less ambiguity, as the component where the
detection took place was certainly affected by the error and is entitled to announce
at least its direct dependencies (in green in the example above).

Having a ship that is repaired to a perfect shape is important, but the purpose
is to have it perform its mission, and only afterwards repair it, for example in
the safety of a port (which would be the equivalent of a maintenance job on the
software). Spending time looking for a crack in the hull instead of sealing off the
concerned section of the ship may actually endanger the entire vessel, so the speed
of the reaction is important. So while diagnosis can be an aspect of fault tolerance,
our focus is not on finding the exact source or cause of the error upstream, but on
limiting its impact and propagation downstream and ensuring a correct continua-
tion of the functioning of the system.

In this chapter we introduced the main building blocks of the safety net approach.
We continue in the next chapter with a proposal of an instantiation of the safety net
approach starting from a programming language, together with technical solutions
for the platform to use.

85

AN INSTANTIATION OF THE SAFETY NET

The main objective of this thesis is to provide a development framework to assist
programmers in building software that is tolerant to unforeseen faults. In the previ-
ous chapter we studied the issue of unforeseen faults along the lines of three fault
tolerance phases: detection, confinement and recovery. This allowed us to propose
10 principles covering design, programming language and platform requirements.

In this chapter, we propose a language and platform which provide required
characteristics to be used for the safety net approach. For this, we aim to cover the
corresponding safety net principles (1-4 for the language and 5-7 for the platform):

1. The language is based on the goal-directed agent paradigm.
2. The language provides an exception-based error signalling system.

3. The language requires the programmers to regularly specify reparation pro-
cedures that are to be used when a plan loses its justification and needs to be
stopped.

4. The language requires a timeout for every state which implies an agent
waiting for an event.

5. The execution platform ensures multi-level confinement (confinement from
the machine and operating system to avoid propagation of errors to them) as
well as horizontal confinement (between agents).

6. The platform catches all unanticipated (uncaught) errors/exceptions which
are to be handled by the safety net mechanisms.

7. The platform performs transparent dependency tracking that is then lever-
aged for triggering system-wide reparations in case of unanticipated errors.

The language we propose is an extension of ALMA (described in Sec. 2.4). We
start from the original language which we discuss with respect to fault tolerance
and acceptability by the programmers. We then revisit the three phases of fault
tolerance described in the previous chapter: detection, confinement and recovery.
These will allow us to define the required modifications for the language and plat-
form in order to comply with the safety net principles.

4.1 THE BASE LANGUAGE

As we conclude in Sec. 2.4, ALMA is an agent programming language designed
for working under uncertainty and that comprises elements that allow agents to be
fault tolerant. In this section, we discuss the main characteristics of the language
and their interest for our work: agents only acting through messages, the specific
language structure and the use of rules.

87

88

[

AN INSTANTIATION OF THE SAFETY NET

ACTING ONLY THROUGH MESSAGES An agent is defined by a series of sense-
reason-act cycles. The actual agent behaviour and intelligence are in its reasoning
part, while the sense and act steps can involve hardware components as well as
interactions with other elements of the system (usually agents). For the perspective
of fault tolerance, it is useful to encapsulate the external hardware components into
“artefacts” and therefore limit the sense and act steps to message exchanges at agent
level, a characteristic of ALMA. In this way, the agent encapsulates the intelligence
and is loosely coupled with the actual hardware devices. These devices can be built
with their specific fault tolerance characteristics (at hardware and software levels),
with the agent reasoning providing a supplementary level of protection, a safety
net.

GRAPH STRUCTURE AND ISOLATED COMPUTATIONS In ALMA, an agent def-
inition is written on two different levels. On the one hand, there is the Directed
Acyclic Graph (DAG) structure that provides a scaffolding for the agent definition,
containing the most important high level elements defining the agent behaviour:
actions, perceptions, reasoning and decisions. On the other hand, there are the
computations which are executed in a functional programming manner, i.e. with-
out producing side effects, only returning values. The DAG creates a code that is
readable, clear and simple enough to transmit the important details, but sufficiently
expressive to allow for the definition of complex agents. A clear and simple code
structure makes the programmer’s task easier, while in the same time limiting the
risk of introducing faults and making such cases more easily detectable during
the code review process. The fact that the computation sections can be written in
various languages (e.g. Prolog, Java, C etc.) and can contain complicated and error-
prone tasks, makes them more prone to introducing faults in the system then the
rest of the agent definition. However, executing the computations in a functional
programming manner facilitates catching and confining any errors that may appear
in these code sections.

With the graph structure sufficiently well written by the programmer and the
code sections well confined by the platform, the resulting agent definition should
have less faults, while any code errors will be easier to handle. Furthermore, the
graph structure of ALMA contains specific branches that are beneficial for the fault
tolerance and two of which we will actively use in our error handling mechanisms:
the unjustified and timeout.

THE USE OF REASONING RULES The use of rules for reasoning and belief updat-
ing in ALMA is a characteristic that clearly sets it apart from other agent program-
ming languages. A rule in ALMA has the form premises = belief_conjunction,
where premises is a conjunction of beliefs and functional code sections that return
a boolean value. Code sections can be used to test the values of the beliefs in the left-
hand side, but variables can also be used for computing values that can be possibly
used for the conclusions, e.g. belief(mass, M) /\ (WeightForce = M x 9.81) =
belief(weight, WeightForce).

Rather than just being simple if-then code constructs, rules are part of the agent
reasoning and once added, they are applied every time one of their premises is
updated. In conjunction with a Truth Maintenance System — the ATMS in our case —
they allow forward chaining as well as the enabling and disabling® beliefs. It is this

As seen in Sec. 2.4.2, this is a characteristic of non-monotonic reasoning, where varying assumptions
can cause a belief to be “believed” or not, depending on the current context or contexts.

4.1 THE BASE LANGUAGE

“living and executing code outside plans” characteristic that may strike as unusual
a programmer used to more procedural languages such as Java.

Let us now list some benefits and drawbacks of the use of rules. We start by
briefly restating (1) why they are useful for programming agents. Then we list a
couple of reasons (2) why they are useful for the fault tolerance and we see (3) what
other advantages they bring for our specific approach. Finally, we list (4) what are
the main drawbacks for the use of rules.

(1) RULES FOR PROGRAMMING AGENTS Since it was aimed at programming
agents that can handle uncertainty, ALMA was built around a rule-based reasoning
engine and endowed with an ATMS. This allows for reasoning in the presence of
inconsistent beliefs, for example “we smoke even if we know it is not good for the
health”. A secondary effect of this ALMA design is the possibility to use the rules
in a expert-systems like paradigm, focusing on a large number of rules and their
implications instead of the imperative agent definition.

Rules are added to the rule base and are applied indefinitely. This means that
they can produce a belief value immediately after being added, or later, whenever
a change occurs in the beliefs of their left-hand side. In conjunction with the ATMS,
they can produce multiple belief values as long as their input beliefs can have mul-
tiple values (e.g. by being supported by different hypotheses). Rules can also be
used to specify incoherences, e.g. flight_stage = landing /A door = open = 1,
allowing the underlying system to take measures in case of undesirable situations.
Their primary reason of being is thus given by the wide range of reasoning possi-
bilities offered to the intelligent agent. This means for example that the agent would
be able to go beyond a procedural definition and even combine rules to generate
plans.

(2) RULES FOR FAULT TOLERANCE For fault tolerance in general and for the
tolerance to unforeseen faults in particular, the use of rules has the following ad-
vantages:

e it facilitates the definition of asynchronous behaviours, e.g. rules can be
added without worrying about the order in which the data arrives. This
results in more flexible and robust agents.

¢ they are declarative and are more easily understandable by the domain ex-
perts, thus leaving less room for faults. Furthermore, they are easier to vali-
date as they are simpler in structure than procedural code (at least the non-
code part).

(3) RULES FOR THE SAFETY NET APPROACH On top of these generic rule ad-
vantages, in our specific ALMA and safety net use, we also note that:

¢ the rule representation with isolated “external” code employed in ALMA is
similar to the one used in the decision nodes of the DAG code, with the same
“external” code confinement properties;

¢ rules are of interest for the dependency tracking mechanism envisaged for
the safety net approach (as discussed in Sec. 3.3.1);

¢ blocking the application of a rule results in the unjustification of all the beliefs
that are based solely on that rule (if a belief value is supported by other

89

90

AN INSTANTIATION OF THE SAFETY NET

rules, they may remain enabled). In case a rule contains an error, its impact
can be limited and its previous applications that produced beliefs can be
automatically backtracked. As a consequence, our error handling mechanisms
are easily expandable to rules.

(4) DISADVANTAGES OF RULES From the programming perspective, it is more
verbose to store values in implications, e.g. source(Sensor) = temperature(10) or
even true = temperature(10) or true = data(temperature = 10), rather than by
using simple variables such as temperature = 10 as in most imperative program-
ming languages. This practice does therefore require writing sensibly more code.
Furthermore, due to the increase in complexity, there is also a risk of introducing
faults into the written code. These two reasons may possibly impact the acceptabil-
ity of the language for mainstream programming. While outside the scope of our
work, syntactic sugar could be used to improve the programming experience.

Additionally, the fact that rules apply permanently may cause other issues, since
errors in the left-hand side code of rules need to be taken into consideration. Rules
are evaluated each time their premises change their values. This means that, in
theory, a rule may produce an error at any later moment through the code it can
contain in its left-hand side. This is independent of the execution of the procedure
(RT in the case of ALMA) that added that rule, which may finish its execution
successfully with the programmer assuming that there is no error at that location
(e.g. no exception was thrown), only for an error to appear a lot later during the
execution. Executing the code in the rule only in the parent procedure, as it would
be done in a more “classical” style, would allow the evaluation of the error state to
be performed immediately and would possibly force the programmer to handle the
error cases differently. The re-application of rules and the asynchrony between the
rules and their parent procedures are therefore possible risks for the fault tolerance
of any written application, when compared to “normal” code. These risks need to
be carefully considered when employing rules.

RESTRICTING RULES IN ALMA But what is ALMA if we restrict the use of rules?

If it is the “permanently applying code” of rules that we are concerned about, a
solution could be refraining from using rules with a code element and only using
a conjunction of beliefs for the left-hand side of rules. In this “ALMA restricted”,
code elements associated with a rule could be added to a decision node just before
adding the rule, but its effect would be different from the one in the original ALMA
as it would only be applied once, before adding the rule.

A more drastic approach would be an “ALMA-r” for “ALMA minus rules”,
where the use of rules would be completely eliminated from the language. This
could for example be done by using only true = beliefs rules, possibly abbrevi-
ated to beliefs through syntactic sugar.

Our error handling approach is based on ideas from previous work on ALMA
and we need to be careful not to undermine it when restricting the use of rules.
So what are the consequences of this restrictions of ALMA on the main concepts
present in the language?

¢ The execution context keeps its reason of being: decisions still cause belief
values to be added to the context.

4.2 EXTENDING ALMA FOR THE SAFETY NET APPROACH

¢ Unjustifications are still a valid concept, but in ALMA-r they would not be
possible for the programmer (hidden mechanisms, e.g. safety net dependency
tracking, can still use this).

¢ Hypotheses can still be added, but in ALMA-r they would be useless, as there
is no longer a means to indicate an inconsistency, for example by adding

contry(netherlands) A landscape(mountains) = L

DISCUSSION As discussed above, the ALMA characteristics including the use of
reasoning rules are of interest for the fault tolerance in general and our safety net
approach in particular. As shall be seen later on in this chapter, the fault tolerance
risks issued from the fact that rules are applied permanently can be handled for
the integration with the fault tolerance approach. If, for example for acceptability
purposes, the language needs to be restricted with respect to the use or rules, this
can be easily done as discussed above. We will now continue with a series of ex-
tensions that we propose for the base language in order to support the safety net
approach.

4.2 EXTENDING ALMA FOR THE SAFETY NET APPROACH

In order to provide the necessary elements for the safety net approach, the ALMA
language needs to be extended, in particular with respect to the definition of declar-
ative goals. We begin, however, with the introduction of a keyword used to explic-
itly throw an unanticipated error.

4.2.1 The unexpected Keyword

While aiming our error handling mechanism at unforeseen faults, we also give
the programmer the possibility to throw an error to our generic handling system
through a keyword: unexpected. The unexpected keyword triggers the same reac-
tions as the detection of an actual unanticipated error in the program execution,
thus allowing the programmer to deliberately “throw the execution into the fault
tolerance safety net”. We distinguish two use cases:

¢ the “honest” use: the programmer estimates that a situation should never be
reached under normal conditions (e.g. an abnormal timeout, an unanticipated
unjustified);

¢ the “authorised” use: the programmer identifies the possibility of reaching
a certain situation but does not have the time to treat that specific case or
does not know how to react more specifically. An advantage is that this can
spare him or her from writing code that does not make sense when forced to
consider cases which should not occur, thus producing lighter programs.

To these programmer-aimed use cases, we add our own use for injecting unex-
pected errors in various locations in the code in order to test the post-detection
behaviour of the safety net approach, as shall be seen in Chapter 5.

When using the unexpected keyword, especially in the “authorised” case, the
programmer must be aware of the implications of reaching the call, in particular
with respect to the effects of the dependency handling step, which can trigger

91

92

AN INSTANTIATION OF THE SAFETY NET

Table 3: Goal definition template. *As defined in our GPS work in Part III of this thesis.

Goal Description

Name goal name ‘ goal identifier

Satisfaction rules for testing the goal outcome (success or failure)

Means-end analysis | plan selection procedure

Time out maximum goal waiting time

Required beliefs names of input beliefs | types for the input beliefs

Produced beliefs names of output beliefs | types for the output beliefs

Plans Py plan"typeil— either fftlon
P; plan” or “goal plan

reconfigurations in dependant goals and agents. With the dependency handling
policy chosen in this work, this concerns the retraction of the direct outputs of a
plan: goals, rules, assumptions and messages. Below, we give an example where the
use of the unexpected keyword is justified and one where it is better to “silently”
end a plan rather than cause many other components to reconfigure:

1. A plan P1 of an agent A sends a request for processing information to an
agent B and waits for the result. An unjustification in P1 during this wait can
be treated using an unexpected as this would retract the request message and
cause agent B to stop processing, thus saving resources. The alternative would
be for the programmer to manually specify that B needs to be contacted (pos-
sibly as part of the protocol between the two agents). The programmer could
even ignore the situation or decide that B should not be informed at all of the
fact that the reply is no longer needed.

2. A participant in an auction may reach an unjustification after being refused
the bid. If the unjustification is treated with an unexpected, this can cause the
whole auction to be stopped, while in reality this may not be necessary as the
participant was refused anyway.

Depending on the specific requirements of each project, the code review phase
would allow to identify situations where the unexpected is used excessively.

4.2.2 Goals

GOAL TYPES As seen in the State of the Art (Sec. 2.3), several goal types have
been identified in the literature. In this thesis, we focus on achievement goals, which
correspond well to our chosen definition of “state of affairs that the agent is at-
tempting to bring about”. These are goals whose success is verified by a condition
that is not necessarily linked to any plan execution. For our purposes, we consider
that the other goal types can be expressed using an achievement goal, albeit with
a possibly verbose pattern. A perform goal can be represented as an achievement
goal whose success condition is linked to the plan execution — a successful plan
execution results in an achieved goal. A maintain goal is an achievement goal that
is adopted in a loop each time a certain condition is breached, while a query goal
is an achievement goal whose success condition requires the existence of a certain
belief or variable value.

4.2 EXTENDING ALMA FOR THE SAFETY NET APPROACH

ALMA GOAL DEFINITION Goals are defined according to the template seen in
Table 3. First, the outcome of the goal needs to be verified and this is done with
the help of one or more rules. They allow the current state (beliefs, plan execution
state etc.) to be evaluated to decide if the goal was achieved or failed. The next
plan to execute is determined using the Means-end analysis (MEA) procedure. In
this work, we use programmer-provided plans and the role of the MEA is to sort
through these plans and identify the most suitable one to use for the current context.
In the simplest form, this procedure simply selects the plans in the order of their
appearance. This is also where plan application conditions (pre-conditions) would
be implemented. A more complex Means-end analysis alternative would be able
to automatically generate plans. There is also a timeout value that ensures that an
agent does not block on a goal. Finally, one or more plans can be provided for each
goal. Their inputs and outputs need to coincide to the ones indicated for the goal.

In our examples we used two of the three ALMA beliefs: simple beliefs and sets.
In the models, for clarity, we distinguish three types:

¢ simple, for any belief containing a Prolog term. This corresponds to the unique
assignment belief of ALMA.

¢ list, for when the use of the belief requires it to be in the form of a list. This is
actually a simple belief that contains a list.

¢ set, for beliefs that can have multiple values that may change in time. This
corresponds to the set beliefs in ALMA.

The implementation of the goal life-cycle introduced in Sec. 3.3.3 is described
in Appendix A. The implementation of goals using ALMA RTs means that the
RT context is inherited from plans to the goals they adopt and then to the plans
executing for those goals. This means that the beliefs can be used to stop the goal
execution, as well as the executions of any plans and sub-goals that inherited the
original goal’s context.

4.2.3 Plans

LEVELS OF ABSTRACTION While the original language was constructed using
RTs, the introduction of goals changes the level of abstraction of the model. Our
introduction of plans in ALMA required an inquiry on their relationship with RTs.
Since RTs are meant to constitute the agent behaviour by launching other RTs or
new instances themselves, in order to attain a reasonable level of expressiveness,
we define a plan as a structure of one or more RTs executing for the achievement of
a goal.

ALMA VARIABLES Vs BELIEFS In ALMA, while the beliefs and assumptions
used by each RT need to be declared in its header (for programming reasons), they
are actually global in that any other RT can use them. Prolog terms also exist inside
the RTs and can be used to transfer values between different nodes and even trans-
mitted when launching the execution of a new RT, thus circumventing the belief
system, which is not a good practice in general. Nevertheless, as in our representa-
tion multiple RTs work together for a same goal form a plan, data exchanged inside
an RT and between RTs is not a problem as intra-plan data exchanges are not of
interest for the dependency handling step of the recovery phase.

93

94

AN INSTANTIATION OF THE SAFETY NET

LACK OF CYCLES In ALMA, due to the way RTs are constructed, no for or
while-equivalent construct are possible. Dekoker [29] notes that “a succession of
states in the graph corresponds to a unique sequence of operations. This makes
the agent’s behaviour more explicit; in an automaton, to keep track of successive
passes through a state, variables are used, while in an RT, this is read graphically.
Furthermore, this means of programming leads to the use of shorter RTs.”. The
problem with this characteristic of the language is that it makes it difficult to write
automata-style behaviours and it bears the risk of unforeseen behaviour due to
the focus on a single iteration (e.g. infinite loops). The solution we propose is to
take advantage of the changing of levels of abstraction from RTs to plans to allow
loops in our language, while implementing them using the ALMA workaround —
recursive RT calls.

PARALLELISM While the multi-agent architecture has parallelism at its founda-
tion, intra-agent parallelism is also an important feature for programming expres-
sive and thus useful agents. For example, an agent may need to process a message
while in the same time wait for a new one. In Java, this can be done by launching a
new Thread, while in ALMA the equivalent is achieved through the new_rt action
that starts a new reasoning thread. In a plan, such actions create multiple branches
that function in parallel and may even interact with each other. When an error is
encountered inside the plan, the repair of these branches is more tedious and may
result in stopping multiple branches. Goal adoption, on the other hand, allows for
implicit parallelism as goals are natively parallel. Therefore, instead of allowing
branch creation inside plans, we require parallelism to be created only through
goal adoptions. The consequences of this choice are:

¢ plans are simpler and easier to read;
* reparations in case of error are simpler as intra-plan interactions are limited;

¢ more fall-back points — the goals — are present in the agent behaviour thus
avoiding massive roll-backs in case of error.

DIscUsSION The introduction of goals therefore also changes the level of ab-
straction from RTs to goals and plans. These plans are allowed to have cycles, while
their parallelism is only only allowed through goal adoptions. The result is plans
that are simple enough, yet more complex and expressive than RTs.

4.2.4 The ALMA+ Model and Language

THE GRAPHICAL MODEL The enriched model® can be seen in Fig. 27.

First, we added an adoption node to clearly distinguish goal adoptions from the
other agent actions. We used the block arrow symbol to suggest the idea that the
goal executes in parallel with its parent plan. Then, there are extended decision
and wait nodes that need to be able to verify or wait for a specific goal outcome.
Waiting for a goal outcome is trivial — e.g. an agent adopts a goal to acquire the
list of acquaintances and then waits because it needs to use that list for its next
action. Being able to verify the status of a goal offers more flexibility in continuing
the execution of the goal plan in parallel with the goal execution — e.g. an agent

2 The original nodes are described in Sec. 2.4.4.

4.2 EXTENDING ALMA FOR THE SAFETY NET APPROACH

Adopt(G) Perception/Wait(G)
(G)
Decision/State(G) ForEach(A in SEt)Zj& l
condition; . End ForEach |
) 5(G) toptional) ? unexpected

Figure 27: Proposed new nodes: adopt (extends action node), wait with new condition on
goal end, a decision node for the outcome of a goal, for each nodes and finally an
unexpected error node symbolising a case deemed impossible by the program-
mer, or in which the preferred reaction is given by our recovery mechanism. As
exemplified in Fig. 28, the End ForEach is needed only if the plan does not finish
with the ForEach block.

adopts a goal to acquire the list of acquaintances and then continues the same plan
by adopting other goals after which it tests the status of the first goal in order to
decide if it can use its outputs. Therefore, these two nodes allow the goal plans to
be expressive enough for most tasks. Note that while we use the terminology from
our GPS work, this model can be used without it as well.

We also added the possibility to graphically represent the for each command
which was already supported by the original ALMA language. There are an open-
ing ForEeach node and a closing End ForEach one to indicate precisely which steps
are performed for each element of the given set or list. As seen in the example in
Fig. 28, when the for each block is used at the end of a plan, the End ForEach node
can be omitted.

A black star marks an unanticipated error deliberately triggered by the program-
mer, which corresponds in ALMA+ to the unexpected keyword described above.

INPUTS AND OUTPUTS Plans have input and output beliefs that correspond to
the ones required by their goals as specified in the goal description. For each plan,
a list of beliefs and their type is thus specified. The types are the same as described
in the case of goals — simple, list and set — to which we add their mode: “IN” for
input, “OUT” for output and “IN/OUT” for input and output. When a belief is
local to the plan and possibly used by its sub-goals, no mode is specified.

A PLAN EXAMPLE In Fig. 29 we give a simple plan example. The plan starts with
a decision node that verifies that belief(Defense_approved,yes) is justified (thus
adding it to the RT context), before dealing with each of the contacts given in the
input belief Jury_list. For each of these, a goal is adopted to handle the discus-
sion. When the goal is achieved, the list of confirmed jury members is updated.
If the RT context is unjustified while waiting for any of the goals, for example be-
cause the belief(Defense_approved,yes) is no longer supported, then the safety
net mechanisms take control as the unexpected keyword was used.

95

96 AN INSTANTIATION OF THE SAFETY NET

ForEach(A in Peers)

buyer(A default
a1: Send(offer, A)

a2: Send(price, A)

End ForEac

true = belief(initialised, ok)

 ForEach(A in Peers)

buyer(A) default

End End

End ForEach

End

Figure 28: Examples for the use of the ForEach node. Note how at the end of a plan the End
ForEach node is optional. Also, note that the unexpected node is a terminal node
(just as an End node). The plan sections in the dotted rectangles are identical
between them.

4.3 THE THREE FAULT TOLERANCE PHASES IN ALMA+

Belief Type
Begin Defense_approved | simple, IN
Jury_list list, IN
Member simple
default belief(Defense_approved,yes) : - P
Dates_available list
End ForEach(Member in Jury_list) Confirmed set. OUT
have_jury_member_invited(Member, Dates_available)
unjustified success(G)

belief(Defense_approved, yes) =
set(Confirmed, [Member, Dates_available])

End End

Figure 29: A plan example for a goal to organise the PhD defense. Goal G:
have_jury_member_invited uses two beliefs: Member of type “simple, IN” and
Dates_available of type “list, OUT”. Goal G is achieved only when the con-
tacted jury member confirms his or her availability, and fails otherwise.

In ALMA, this plan would involve an RT testing the belief and then adopting
a new RT for each contact. The second RT would contain a goal adoption and the
subsequent wait and reasoning nodes.

GOAL RELATIONSHIPS The model defined here takes advantage of the expres-
sive power of the ALMA+ model for integrating goal adoptions into complex be-
haviours which use conditions, parallelism etc. However, the model does not di-
rectly allow the representation of more subtle goal relationships like inhibitions
(when a goal is achieved, another ceases to exist) as these are not present as such
in the underlying language. These kinds of relationship can be represented, never-
theless, using reasoning mechanisms that are available to the programmer through
the ATMS and rules. For example, the relationship “if goal G1 is achieved, goal
G2 is no longer desirable” could be introduced using a rule “achieved(G1) A
desirable(G2) = L” which causes the assumption “desirable(G2)” to be disabled
once goal G1 is achieved.

4.3 THE THREE FAULT TOLERANCE PHASES IN ALMA+

Having chosen a programming language, we can now revisit the three phases of
fault tolerance in the more specific setting of ALMA+.

4.3.1 Detection

The ALMA+ language structure now allows us to pinpoint more precisely the cases
in which an unanticipated error can appear. In Table 4 we list the g error classes we
identified, together with an example for each. In the same table, we also indicate
four levels for the error detection (represented in the fourth column):

97

98

AN INSTANTIATION OF THE SAFETY NET

i. C for code level;

ii. P for plan level;
iii. RB for rule base level;
iv. G for goal level.

Let us now introduce each of the error classes.

crass 1 The first class corresponds to an unhandled code exception. Due to
the fact that computation “external” code in ALMA is executed only in specific
locations — in decisions and in the left-hand side of rules — these locations constitute
excellent places for exceptions to be caught by the platform.

cLAss 2 A particular error that is related to the first class is when the memory
allocated to the code execution is exceeded. These first two classes of error must be
caught at platform level (more on this in Sec. 4.4).

cLass 3 While a wait node or goal timeout are part of the normal behaviour, a
code section that takes too long to execute can block an entire agent due to the
way parallelism is implemented in ALMA. Safeguards are therefore needed at this
level. While not present in ALMA and currently not introduced in ALMA+ either,
lower level timeouts could be required for each “external” code section. The risk is
that such specification may add an important burden on the programmer, without
bringing considerable robustness benefits. A solution could be to set default large
values for these as upper limit, possibly allowing the programmer to specify a
different value if appropriate.

CLASS 4 Similarly to the previous class, plans may also take too long to execute.
This too is not a case explicitly covered in ALMA or AMLA+. However, since goals
already have a timeout condition that can cause a goal to abort after a specified
amount of time, our intuition is that with code timeout to avoid the agent com-
pletely blocking, a plan should not require another safeguard.

crLass 5 The next class concerns the use of the unexpected keyword introduced
in Sec. 4.2.1 for explicitly using the safety net.

cLAss 6 Moving on to the use of rules, a first error class is when the agent
memory is exceeded, i.e. the knowledge base comprising agent rules and beliefs
is full. This is another mechanism that is not present in the original language and
that we did not yet study for ALMA+ but which constitutes a possible error class
for the safety net approach.

CcLASS 7 Another error is the global inconsistency, which is reached when a con-
tradiction is supported by true facts (contradictions are added explicitly, e.g. Ri:
position = MontBlanc A altitude < 4809m = L, or automatically as is the case
of single assignment variables in ALMA), in other words when true = false can
be deduced from the existing rules. In this case, there are no assumptions that can
be disabled to bring the agent knowledge base to a consistent state (as is the case
in the next error class) and rules cannot be removed. This means that the agent
needs to be stopped. Adding, for example, R2: true = altitude = 1000m and R3:

4.3 THE THREE FAULT TOLERANCE PHASES IN ALMA+

true = position = MontBlanc together with R1 above leads to an implication
that is equivalent to true = L.

cLAss 8 A less serious situation, is an inconsistency, which is reached when a
contradiction is supported by the current assumptions. While this can be part of
the normal agent reasoning, it can also indicate an error, for example rule R1 above
can help detect error in the auto-pilot function of a plane. Through its normal
functioning, the ATMS ensures that the context or contexts are kept consistent by
removing the necessary assumptions, as long as this is possible, otherwise, the
agent finds itself in the previous error class. Disabling assumptions may cause one
or more plans to become unjustified, which is a situation already covered by the
current implementation of ALMA.

cLAss 9 The last class corresponds to the non-achievement of a goal following
an apparently successful plan execution and, as discussed in the previous chapter,
is handled normally as defined in the goal life-cycle.

With respect to the two error families discussed in Sec. 3.1, classes 1, 2, 5, 6,
7 correspond to exception-based detections, while classes 8 and 9 correspond to
objective-based detections. As shall be seen from the handling strategies we present
below, we use classes 3 and 4 as exception-based rather than objective-based detec-
tions.

4.3.2 Confinement

For the confinement phase, we start by listing the ALMA+ properties that con-
tribute to the confinement of errors:

¢ the execution of computations as “external” code in specific locations and
without “external” effects, i.e. writing to the agent memory, sending messages
or adopting goals;

¢ support for the goal-plan paradigm;

¢ the platform creating one Prolog instance per agent.

WHERE In order to identify the entity directly impacted by the error, we need
to study where the considered errors can occur, with another advantage of the
language structure being that the errors are localised in the four cases cited below.
In Table 5 we revisit the error classes described in the previous subsection with
the corresponding confinement phase, while in Table 6 we turn perspective on the
confinement cases:

I. inside a plan — corresponding to a level C detection (a code crash, memory
or time condition violation in the code of a decision node, classes 1, 2 and 3 re-
spectively), or at level P (from plan-level timeout — class 4 — or an unexpected
— error class 5);

II. inside a rule — level C detection (a crash or violation of a memory or time
condition in the code of the rule, error classes 1, 2 and 3 respectively);

99

100

AN INSTANTIATION OF THE SAFETY NET

Table 4: Faults and errors

No. Error Fault Level Example
How we detect | Cause For detection | What it can look like
comp ut§t1on division by zero; corrupted
fault (in de- ..
1 code crash . . message (even malicious at-
cision or
tack)
rule)
code level mem- | 0% ©f mem- | C (code) an infinite loop that con-
ory crash (in
2 ory safety mech- - sumes memory too fast (be-
. decision or . .
anism fore timeout) in code
rule)
3 code level time- infinite loop in code
out e .
infinite loop/
too much infinite loop in plan struc-
waiting (in ture; wrongly timed wait
4 plan level time- | {ecision, rule (e.g. timeout set to very large
out or plan) number, local timeout not ac-
P (plan) ceptable at plan level); cumu-
lative large waiting times
situation that a default branch that should
never be reached; an error
5 unexpected should not oc-
cur (in plan) the programmer does not
want to handle
plan level mem- | rule or belief .
6 ory safety mech- | base full (in logical error causes too many
Y rules to be added
anism plan)
7 i[global HCONSIS™ | 1ad rules RB (rule base | true = .= L
ency manager -
IE/ ATMS) (a) altitude = 1000m A
position = MontBlanc and
bad wuse of position = MontBlanc A
8 inconsistency rules or bad altitude < 4809m = L;
rule inputs (b) altitude = 1000m and
altitude = 300m in the same
context
hidden/unobserved variable
oal not undetected G (goal satis- | (e.g. the boiling time is cor-
9 gchieve d error during | faction condi- | rect but the goal to cook food

plan execution

tion)

is not achieved — see example
in the quote from Sec. 1.4)

4.3 THE THREE FAULT TOLERANCE PHASES IN ALMA+

Table 5: Faults and errors with the reactions: what is stopped in each case, with D=decision

and R=rule
No. Error Location Stops Confin.
How we detect Of detection By confinement Case
in the decision .
D that crashes plan containing D I
1 code crash rule R I
in the rule R -
that crashes goal wlr}ose satisfac- 1
tion test is R
2 CZ??[IieZEIanigmory code (D or R) I for D, II for R or III for goal
salely me whose satisfaction test is R
3 code level timeout
plan level timeout plan plan I
unexpected
6 plan level memory
safety mechanism rule base agent v
7 global inconsistency manager
8 inconsisten (IE/ ATMS) 0 (handled by the |
conststency unjustified)
. satisfaction con- | () (handled as part of
? goal not achieved dition the goal life-cycle) v
Table 6: Confinement cases
Confinement Detection
Case Action Level Covered error classes
I stop plan P (plan) 45
1, 2, 3 for error in decision
II stop rule C (code) 1, 2, 3 for error in rule
111 abort goal 1, 2, 3 for error in goal satisfaction rule
v stop agent RB (rule base) 6.7
v 0 8 (normal unjustified)
G (goal) 9 (normal goal life-cycle)

101

102

AN INSTANTIATION OF THE SAFETY NET

III. inside a goal verification — a special case of rule code failure (classes 1, 2 and
3);

IV. at the level of the agent memory (error classes 6 and 7).

A fifth case presented in the tables corresponds to the error classes 8 and 9, where
an active confinement phase is not needed. In class 8, it is the language structure
that, through its handling of contexts and unjustifications, already ensures a proper
response to the situation, i.e. the inconsistency. In class 9, it is the goal that guides
the reaction to an undetected error in its plan. This fifth confinement case will not
be discussed further as there is no confinement reaction, nor dependency handling
to it.

In what follows, we consider the MEA procedures associated to each goal as
simple platform-provided patterns which are not concerned by errors. However,
if programmers were allowed to write the code of these procedures, the possible
faults introduced would be handled similarly to the case III above.

WHAT The active part of the confinement requires stopping the entity, which, for
each of the four cases, means:

I. for a plan, the execution is abruptly stopped: the fact that an error occurred
during the plan execution implies that there is no corresponding unjustified
branch to use. However, note that the plan’s parent goal will handle the event
just as a failed3 plan execution.

II. for a rule, stopping means ensuring that the rule is never executed again;

III. for a goal, stopping means making it no longer desirable (some works use
the term “drop” or “abort” [111]);

IV. when the memory of an agent is compromised, the agent needs to stop its
entire behaviour.

HOW The confinement needs to be ensured by mechanisms included in the plat-
form.

All executions of the “external” code are to be performed with a code “sandbox’
to help confine any error. As we discuss in Sec. 4.4, timeouts and generic error
catching mechanisms can be associated with these executions.

While an “external” code section can be easily stopped as there are no side effects
involved, ideally, a plan would be stopped by unjustifying it, thus taking advantage
of its own repair mechanism. The problem is that when a plan timeout is exceeded,
such a mechanism may not be reachable (e.g. no appropriate nodes are present
in the currently executing section). In this case, a two level system may be useful:
first attempt to unjustify the plan, and after a fixed amount of time, kill the plan
completely and act as in the case of a code crash.

7

TECHNICAL ASPECTS In ALMA, as described in Sec. 2.4.4, each agent executes
in a single Prolog thread, which is thus managed by the Prolog platform which
handles its confinement with respect to the host operating system.

3 If we consider that plans can indicate a successful execution, similar to a boolean return value.

4.3 THE THREE FAULT TOLERANCE PHASES IN ALMA+

Table 7: The direct dependency table. Reading by line: goals can cause their plans to be
unjustified, plans should unjustify the goals they adopt, messages they send, rules
they add and assumptions they make etc. Reading by column: goals depend of the
plans that adopted them etc.

Goal | Plan | Message | Rule | Belief | Assumption
Goal X
Plan X X X X
Message X
Rule X
Belief/ Assumption X X

4.3.3 Recovery

As presented in Sec. 3.3, the recovery phase is comprised of 3 steps: dependency
handling, reparation and reconfiguration. One of the reasons for choosing ALMA
was that there is already a dependency-reparation mechanism in place in the form
of the RT context and the unjustified branch. The use of beliefs in a decision node
causes them to be added to the context, so that in case any of them is no longer
justified, the RT can be stopped and placed into reparation mode, as defined in the
unjustified branch corresponding to the current execution. These will be extended
for the use as part of the safety net approach. The use of goals for reconfiguration
completes the recovery.

4.3.3.1 Dependency handling

DEPENDENCIES For the dependency handling step, the idea is to support the
clean-up process after an error by triggering reparations in the components that are
downstream from the error in the dependency graph. This means issuing an error
signal on all the paths that originate in the current component. As seen in Sec. 4.3.2
on confinement, in ALMA+ there are more plan outputs and dependency types
than the ones discussed in Chapter 3, so the dependency handling model will have
to be adapted accordingly. In Table 7 we can see the types of dependency possi-
ble in our model. To ensure these dependencies are correctly propagated, we need
to enrich the platform behind ALMA+ with the appropriate dependency mech-
anisms. However, these dependency mechanisms and any rules and beliefs they
include must not interfere in any way with the ones that are actually used by the
programmer. It is also important that the programmer does not tamper with the
recovery mechanisms.

wHAT In Table 8 we present the dependencies and reactions following each of
the confinement cases discussed in Sec. 4.3.2. After the confinement phase stops
the entities concerned by the error, the dependency handling step needs to ensure
the correct propagation of the error signal to the entities concerned. While several
types of component are concerned by the dependency handling, only the plans
react through a reparation. The others — goals, rules and agents — are either stopped
or blocked:

I. for a plan, the retractions are:

103

104 AN INSTANTIATION OF THE SAFETY NET

Table 8: Dependencies to “prune” for each confinement case

Case Confinement action | Dependency handling
Dependency Reaction
assumptions retract

I stop plan rules stop (as II below)
goals abort (as III below)
messages remotely unjustify

1 stop rule beliefs retract (automatically)

1 abort goal executing plan (if any) unjustify

v stop agent messages for all executing plans | remotely unjustify

\Y 0 n/a n/a

a) any assumptions made are disabled (no longer believed, but not contra-
dicted)

b) the application of any added rules is blocked (see II. below)
c) any goals adopted by the plan are aborted (see III. below)

d) messages are no longer supported, for each one that the plan sent, an-
other message that states that the original is no longer valid is dispatched
(this implies that the receiver agent can interpret such message)

II. for a rule, the confinement phase permanently blocks the application of that
rule thus disabling automatically any beliefs that are supported only by it,
the “retraction” part is implicit, possibly causing the unjustification of certain
plans (or RTs) as described in Sec. 4.3.3.2

III. for a goal, its abortion implies stopping through an unjustification the plan
executing for that goal, if any. The goal outcome will be “failed”.

IV. when an agent needs to be stopped, it is the outside actions that are con-
cerned, as the internal retractions are no longer useful. Therefore, for all exe-
cuting plans, the retraction concerns the sent messages (as in the case of point
I.d above).

APPROACH As introduced in Sec. 3.3.1, the idea is to build a rule-based struc-
ture reflecting the observed behaviour of the agents with their interdependencies.
In each agent, a view of the dependencies concerning that agent will be locally
managed. For example the rules will be saying: “if X can be trusted and X sends a
message to Y, then Y can trust that message" and “if Y can trust a message and its
own reasoning, then the results of that reasoning on the message are correct”. In
this way, for example if we learn that X should not be trusted, we can stop Y from
reasoning with the message from X.

This dependency context acts just as the RT context in ALMA+: it accumulates
dependencies and if any of these dependencies is no longer justified during the
execution, the components that based their execution on that dependency are no
longer justified either. For a plan, this implies entering the unjustified state. For
a rule, this implies not applying the rule any more. It is important to note that a

4.3 THE THREE FAULT TOLERANCE PHASES IN ALMA+ 105

belief needs to be justified by both the RT context and the dependency context to
be enabled.

MBD DEPENDENCIES FOR ALMA+ In order to identify the required MBD rules
for creating the dependency context, we studied the interactions that generate de-
pendencies. For ALMA+, these interactions concern: goals, plans, rules, beliefs, as-
sumptions and messages. We aim to be able to control the programming elements
corresponding to the four elements that can be stopped during the confinement
phase: (I) plans, (II) rules, (III) goals and (IV) agents. Each of these will have a cor-
responding ok(...) assumption that will be disabled to propagate the error signal to
the element’s outputs.

Figure 30 shows the three MBD sets, with SD split into SD.NORMAL correspond-
ing to the normal functioning of the system listed in Fig. 31 and SD.ERROR for
reacting to an error detection and retracting the corresponding ok(X) assumption
in Fig. 32.

We place in COMPS the components we that the model can cause to stop and for
which we will create ok(X) assumptions to indicate their correct functioning:

COMPS = {Plans, Rules, Goals, Agents}

We consider three types of “observation”, as seen in the OBS set:

1. code executions that return true#, corresponding to the successful application
of a rule or transition in a decision node. As the reads are already verified as
part of the MBD rules, only the output of the code execution is required. If
the required belief values are not available, their corresponding MBD rule is
not concerned. If the code output is other than true — ie. false or error
— the MBD rule will not be applied either. The interest of this observation
is for distinguishing between tests that are attempted but do not influence
the dependency context of the plan, and the ones that actually do and will
allow the continuation of the plan or the writing of a belief. The distinction
is important when a code section encounters an error, as for example in the
case of the decision nodes, all branches are concerned with the test MBD rule
but only the chosen one is concerned by the context changing MBD rule.

2. message injustifications received from another agent in case it encountered
an unanticipated error and it does not support the sent message any more.

3. error detections which, as described in the previous sections, can appear at
4 levels: code (level C), plan (level P), rule base (level RB) and goal (level
G). While the last level corresponds to the unsuccessful execution of a plan
for a goal which is already taken into account by the goal life-cycle, the first
three correspond to detection events that we take into consideration for our
confinement and dependency handling phases. They are thus included in
the OBS set. When an unanticipated error is detected in the corresponding
component, the observed value for text is “error”.

Let us now describe the SD rules. The idea is to keep track of all inputs of a plan
instance in what we call its dependency context. As these create a logical structure, il

4 Note that a code execution can return false as part of its normal functioning, without this being an
error.

106

AN INSTANTIATION OF THE SAFETY NET

COMPS = {Plans, Rules, Goals, Agents} (27)
OBS ={Code = trueju
{supported(Message) = false}U
{test(X) = error|X € {Code, Plan, RuleBase}} (28)
SD = SD.NORMALUSD.ERROR (29)

Figure 30: The three sets from the MBD model for the dependency context tailored to
ALMA+

will be possible to control the execution by contradicting hypotheses on the normal
functioning of components.

The execution of an agent starts with a first implicit goal and its plan. We thus
need to add an MBD rule for justifying the initial goal that is assigned to the agent
at its creation, adding on this occasion an assumption that will allow the whole
agent to be stopped if needed, “ok(Agent)”:

ok(Agent) Ainitial(Goal) = execute(Pl)

When the execution of a plan is started, the plan inherits from its goal the context
in which it was started. We also need to add the assumption that the plan instance is
functioning correctly — ok(Pl). The successive evolutions of the dependency context
are then represented through the context(Pl;) predicate. The dependencies of a
plan instance get richer only with its inputs: outputs have no effect on the local
context.

execute(Pl) A ok(Pl) = context(Plp)

Receiving a message adds the dependencies of that message to the current de-
pendency context:

context(Pl,,) Arcv(Message, Afrom) = context(Ply 1)
A message is linked to the current plan’s assumption:
ok(Pl) = send(Message, Ao, Pl)

The send predicate is based on the assumption of the plan that created the mes-
sage, but this needs to be transmitted through other mechanisms that are not rep-
resented at this level. justified(Message) is an assumption that is created auto-
matically when an agent receives and uses a message. In case the sender agent
encounters an unanticipated error, it automatically sends another message stating
that it does no longer support the original message, which is transparently handled
by the receiver agent. In this MBD model, this is translated into an observation that
invalidates the “justified” assumption causing the plans that used that message to
react.

send(Message, Ao, Plerom) /\ justified(Message) = rcv(Message, Afrom)

A single case of belief read can occur outside decisions and ALMA+ rules: in
wait nodes.
context(Pl,) Aread(Bfrom) = context(Plyi1)

4.3 THE THREE FAULT TOLERANCE PHASES IN ALMA+

Adding an ALMA+ rule does not affect the context and is only linked to the
“ok(Pl)” assumption. Tests on the memory are made in parallel and the error case
is discussed later in this section.

ok(Pl) = add_rule(Rule)

When the condition is observed to be true and the plan execution continues,
the dependency context needs to be enriched by the values of the beliefs used by
the condition. Note that we are considering here the test condition rather than the
entire ALMA+ decision node.

context(Pl)N

Pl.Dec = (/\ Bx A Codeprpec) N\ /\read(Bk) A Codepipec = true
k k

= context(Pl, 1)

Similarly, the execution of reasoning rules is addressed by a MBD rule correspond-
ing to its successful applications. The main differences from the similar rule for the
decision nodes are the fact that no plan context is involved, that the ALMA+ rules
result in written beliefs which can be read by other ALMA+ rules or plans and that
there is an “ok(Rule)” assumption that can be used to block the application of the
rule.

add_rule(Rule) A ok(Rule)A
Rule = (/\ Bx A Codegute — B) A /\ read(Bi) A Codegyte = true
k k

= read(B)

An assumption added by a plan is only linked to that plan (remember that an
assumption is just a normal belief but which is enabled without being justified by
a rule):

ok(Pl) = read(Assumption)

Any branching in a plan, possible through a new_rt in ALMA+, causes the cur-

rent context to be copied to that branch as well:
context(Pl,) = context(PLYewBranch)

The goal adoption is similar to the other outputs of the plan — it does not change
the context — but it does inherit the plan’s current context.

context(Pl,) = adopt(NewGoal)

A goal’s context is based on the context inherited from the parent plan to which
the assumption that the goal is executing correctly is added.

adopt(Goal) N ok(Goal) = context(Goal)
The goal context is then linked to the goal verifications which are rules as well:
context(Goal) = add_rule(Goal.Rule)

While the dependencies are handled just as in the case of normal rules, as shall be
seen in Fig. 32, an error detected in a goal satisfaction rule causes the whole goal
to be unjustified.

107

108

AN INSTANTIATION OF THE SAFETY NET

An executing plan inherits its goal’s dependency context:
context(Goal) = execute(Pl)

Plan execution finishes when either the last action finished or an error occurs
or the plan is stopped. Rules, however, remain in the rule base and are applied
indefinitely, as long as they are still justified, i.e. no error occurs in their code.

In Fig. 32 we introduce the rules corresponding to the observation of errors and
the active confinement reactions, together with the rule corresponding to the un-
justification of messages. These rules have on their left side assumptions of correct
functioning of the chosen components — plans, rules, goals and agent — or the as-
sumption that a message is justified, and on their right, the expected observation
— that the corresponding component executed correctly — or that the message is
supported by the sender agent. In case any of these observations is contradicted,
regardless of the cause, the left side assumption is disabled and the component’s
outputs are no longer justified. Each of these rules are added once the correspond-
ing assumption is first used, so at the creation of each agent, plan, goal and rule,
as well as the use of a message by a plan.

coNcLUSION We showed in this section that more than one component con-
cerned by the dependency handling step. The rules, together with the other under-
lying mechanisms that ensure they are added at the right moment as well as the
inter-agent propagations all have to be transparently ensured by the platform. After
this automatic propagation, in the next step plans are given the possibility to apply
reparation steps tailored for the specific situation and provided by the programmer.
Note that while the error signal always propagates all the way to the next plans,
regardless of the type of dependency — through one or more rules, assumptions,
adoptions or messages.

4.3.3.2 Reparation

THE IDEA Once the dependency handling signals plans that at least one of their
inputs is no longer supported, the plans need to enter a reparation mode, which
is the next step in recovery. As stated before, of the components concerned by
the dependency handling, only plans contain reparation elements. In ALMA+, the
role of reparation branches is carried by the unjustified which are compulsory for
the wait and add_rules nodes. These are triggered when the current RT context is
unjustified, in other words when at least one of the beliefs that were used by the
current RT or its ancestors is unjustified, leaving the execution in an inconsistent
state. The idea here is to extend the use of the unjustified branches in ALMA+ from
the RT context to include the dependency context as well. In this way, the semantic of
the unjustification is extended to include inputs that were no longer justified due
to an error detection in their source.

THE PROGRAMMER’S STATE OF MIND The state of mind of the programmers
writing unjustified branches remains the same as in the original ALMA language,
as the question they ask themselves is: what if during the time this plan is waiting,
its existence is no longer justified? Why it would be the case? It can be that:

1. one of the beliefs that led the program here is no longer supported,

5 A message is received in the “mailbox” (incoming messages buffer) of an agent and can be used
(read) by zero or more plans. A dependency is created only when a message is used.

4.3 THE THREE FAULT TOLERANCE PHASES IN ALMA+ 109

SD.NORMAL ={
{ok(Agent) Ainitial(Goal) = execute(Pl)} (30)
U
{execute(Pl) A ok(pl

—_—

= context(Ply)} (31)

Z C

{context(Pln) Arcv(Message, Afrom) = context(Pl,, 1)} (32)

(-

{ok(Pl) = send(Message, Ao, P1)} (33)

C

{send(Message, Ato, Plfrom)/\
justified(Message) = rcv(Message, Afrom)} (34)

U
{context(Ply) Aread(Bsrom) = context(Pl, 1)} (35)

@]
{ok(Pl) = add_rule(Rule)} (36)

U

{context(Pl)A

Pl.Dec = (/\ Bx A Codeprpec)/\

k

/\read(Bk) A Codepy pec = true = context(Pl,41)} (37)
3

U

{add_rule(Rule) N ok(Rule)/\

Rule = (/\ B A Codegute — BJA
k

/\read(Bk) A Codegyle = true = read(B)} (38)
k

U
{ok(Pl) = read(Assumption)} (39)
@]
{context(Ply) = context(PLYewBranchyy (40)
@]
{context(Pl,) = adopt(NewGoal)} (41)
U
{adopt(Goal) A ok(Goal

—_—

= context(Goal)} (42)

= C

{context(Goal) = add_rule(Goal.Rule)} (43)

C

{context(Goal) = execute(Pl)} (44)
}

Figure 31: The SD.NORMAL set for the dependency context tailored to ALMA+

110 AN INSTANTIATION OF THE SAFETY NET

SD.ERROR ={
{ok(Pl) = test(Pl) = okay} (45)
@]
{ok(Ag) = test(RuleBase) = okay} (46)
U
{ok(P1) = test(Codepipec) = okay} (47)
@]
{ok(Goal) = test(Codegoal.rute) = okay} (48)
U
{ok(Rule) = test(Codegryie) = okay} (49)
@]
{justified(Message) = supported(Message) = true} (50)
}

Figure 32: The SD.ERROR set for the dependency context tailored to ALMA+

2. or one of the messages that allowed the program to get to the current point
was retracted,

3. or one of the components that this plan is working with is no longer consid-
ered reliable.

Whatever the case, a programmer is the best placed to give the local reparation that
needs to be performed.

THE REPARATIONS As previously noted, reparations can range from doing noth-
ing (an empty branch, for example at the beginning of a plan where no outputs
were generated yet), to automatic retractions via an unexpected (if the programmer
considers that the unjustification should not the safety net retractions are appropri-
ate for the given situation), to a specific reparation (that can eventually end with
an unexpected, but the risk is that it may undo some of the reparation steps if they
count as outputs).

Entering the reparation mode, i.e. unjustified, does not guarantee plan stops, for
example when the branch leads to more nodes and branches, or simply in the case
of long reparations. The result is that for example if a goal requests the cancellation
of its plan, it may need to wait for a long time for the plan to stop so that the goal
can go on living. The solution can be to simply consider that the unjustification
signal is enough, or to include a timeout for the unjustification itself and to kill the
plan afterwards. For now we use the first.

FROM RTS TO PLANS As we note in Sec. 4.2, our approach operates a change
in the level of abstraction, from RTs to plans. A plan can therefore be comprised
of multiple RTs, possibly executing simultaneously. This means that in case of un-
justification, there may possibly be more than one RTs that perform reparations for
the given plan and due to the way ALMA is conceived, these will be performed
sequentially.

4.4 EXTENDING THE PLATFORM

UNJUSTIFIED AND UNEXPECTED While essentially different tools, unexpected
and unjustified both mark unusual executions and they both imply the end of a
plan. The unjustified is the ALMA compulsory reparation branch used in the wait
and add rules nodes to indicate the desired reparation behaviour in case the plan is
no longer required to execute in the current context. The unjustified branch needs to
be written with the idea of undoing any plan action and then ending the plan. The
unjustified branch is reached when an error occurs in a related plan, as well as when
the actual program logics caused the execution context to no longer be justified.
The unexpected, on the other hand, is an imperative keyword that stops the plan
immediately and triggers the corresponding recovery measures. The possibility of
placing unexpected in the unjustified gives the programmer the ability to retract
the outputs of a specific plan as a reaction to an unjustification, possibly another
unexpected error.

4.3.3.3 Reconfiguration

The addition of goals to ALMA, as described in Sec. 4.2 provides the necessary
mechanisms for the agent reconfiguration. After a plan ends its execution, regard-
less if it was a normal end, an unjustification or an unexpected, the execution will
be conditioned by the evaluation of that goal’s satisfaction condition.

coNncLUSION This concludes the presentation of the three fault tolerance phases
in ALMA+. We shall now continue with the description of the impact these have
on the execution platform.

4.4 EXTENDING THE PLATFORM

There are two directions for extending the platform: (1) the language modifications
as well as (2) the safety net properties need to be supported by the platform.

4.4.1 Language Extension Support

The goal adoption and automaton were implemented using RTs (described in more
technical details in Appendix A). As a consequence, the ALMA RT context is auto-
matically transferred from plans to goals and then to other plans, maintaining its
base function.

While when modelling agents we discuss plans, they are based on RTs at ALMA
level so the language properties are the same.

4.4.2 Safety Net Support

The study of the ALMA+ language for the application of the safety net approach
raised a series of issues that need to be covered by the platform executing the code.

For the detection and confinement phases, the error classes described in Sec. 4.3.1
need to be covered using specific mechanisms:

¢ For the error classes 1 and 2 concerning code “crashes” and memory overruns,
the “external” code executions need to be guarded by a generic exception
catching mechanism that ensures that the error is confined to the precise
code that was executing.

111

112

AN INSTANTIATION OF THE SAFETY NET

¢ For the error class 3, which we did not yet implement, the “external” code
execution needs to be guarded by a timeout, which in Prolog could be easily
achieved with a wait. As stated before, the issue here is defining the time-
out, which cannot be generic as an arbitrary value would be impossible to
cover all cases. Such code timeouts are also too low grain for them to be a
feasible programming solution, which leaves the question open for further
investigation.

¢ In the same situation, the error class 4 on plan timeouts needs to be controlled
when launching a plan, probably in the goal automaton.

¢ For the error class 5, the unexpected keyword, the corresponding safety net
reaction needs to be ensured by the platform by unjustifying the “ok(P1)”
assumption.

¢ For the error class 6 — agent memory full - the agent memory handling mech-
anisms need to be adapted to avoid the whole agent blocking in case this
error occurs. This case is also subject to future work.

¢ For the error class 7 concerning a global inconsistency, the only reaction being
to stop the agent, the “ok(Agent)” assumption needs to be retracted.

* For the error classes 8 — “normal” inconsistencies — and 9 — goal not
achieved -, there is nothing to add as they are already taken care of by
the current implementation.

For the recovery phase, in particular the handling step, tables 9 and 10 summarise
the requirements for each execution event (Table 9) and error event (Table 10) that
the platform needs to ensure, trough a mix of rules and mechanisms in the ALMA+
interpreter. In Sec. 5.3 we propose an implementation for these requirements.

4.4.3 Agent Architecture

The resulting ALMA+ agent architecture is presented in Fig. 33. The programmer is
required to provide the goal and plan definitions. The goal automaton and Means-
end analysis6 are already available as part of the ALMA+ extension, while the
reasoning and communications facilities were already part of ALMA, as presented
in Fig. 19 (Sec. 2.4.4). The safety net mechanisms are represented in red and corre-
spond to the error catching at goal, plan and knowledge base level, sending and
receiving error signals and writing rules to control the execution.

4.5 DISCUSSION

In the previous chapter we presented our safety net approach for which we es-
tablished a set of 10 principles. In this chapter we introduced a programming lan-
guage and execution platform that comply with the requirements of the safety net
approach. These choices do not modify the design requirements presented in the
previous chapter.

The programming language that we propose for this instantiation of the safety
net approach has, as discussed in Sec. 4.1, good fault tolerance properties to start

As stated before, the MEA can also be written by the programmer, but we did not consider this case
for the moment.

4.5 DISCUSSION

Table 9: “Safety net” specifications for normal execution

Event Specifications
New goal Link the goal “execution” to its “parent” plan
Create the support for aborting the goal and unjustifying
its plans and verification rule in case of error in the rule
New plan Link the plan execution to its “parent” goal
Create the support for stopping the plan and unjustifying
its outputs
Received (used) | The message is used under the assumption that it was sent
message in correct conditions (no error); the agent can be informed

through a message from the original sender if the message
is unjustified

Sent message

Be prepared to inform the receiver of the message in case of
error-based unjustification (a normal unjustification does
not cause this message to be sent)

New rule
“Beliefs_in /A
Code =
Beliefs_out”

Ensure the rule is no longer applied in case of
error in the plan

Ensure that the rule does not even re-attempt to execute its
code in case of error in the rule code

New assumption

Ensure it is retracted if the plan encounters an error (just
as for rules)

Goal ends Nothing to do
Plan ends Stop waiting for local unjustifications for sent and message
ones received messages
Table 10: “Safety net” specifications for error events
Event Specifications
unexpected Stop plan and trigger recovery
Decision code | Confine the error to the concerned code, stop plan and
crash trigger recovery

Rule code crash

Confine the error to the concerned code, block the applica-
tion of the rule (avoid reattempting the rule)

In a goal satisfaction test rule: confine the error to the con-
cerned code, stop goal and declare it failed

Agent memory
compromised

All running plans become “not safe”

113

114 AN INSTANTIATION OF THE SAFETY NET

Figure 33:

T
'

ol Goals |

: - 0

E Goal automaton ReaSO(riling
| : an

| § : Knowled

' Means-end analysis %‘;’Si ge

- IR T
!

....... Communications interface

{ !

- - - Plans

The architecture of an ALMA+ agent with safety net. Black rectangles represent
the components provided by the programmer (goals and plans), the safety net
mechanisms are represented in red and the rest (green) are provided by the
platform. Dashed lines represent the execution flow, while full lines are for in-
formation exchanges (messages, belief reads, rule writes).

with, both at language and platform level. On top of those, we use the language’s
reasoning capabilities to integrate the mechanisms required for the safety net ap-
proach, in particular those concerning the dependency handling step at platform
level. Therefore, ALMA+ and its modified platform comply with the safety net
principles:

¢ Language requirements:

v 1.
v 2.
v'3.

v'4.

ALMA+ does support the goal-directed agent paradigm.
ALMA+ does have an exception-based system for handling errors.

ALMA+ does contain regular reparation procedures in the form of the
unjustified branches.

ALMA+ does require systematic timeouts for its wait nodes.

¢ Platform requirements:

v'5.

V6.

The ALMA+ safety net platform does ensure confinement between the
agent code and the operating system, as provided by Prolog. The fact
that each agent executes in its own Prolog thread ensures the horizontal
confinement — i.e. between agents.

The ALMA+ safety net platform does catch all unanticipated errors, as
studied in this chapter.

v'7. The ALMA+ safety net platform does perform transparent dependency

tracking that is used to trigger reparations and reconfigurations in case
of unanticipated error.

ERROR EXAMPLES Let us now discuss a few error examples, some of which
already mentioned in this thesis.

First, let us see how the safety net approach handles the examples given when
we defined the concept of unforeseen fault in Sec. 1.4:

4.5 DISCUSSION

1. Residual code error (“bug”), uncaught exceptions: “segmentation fault”, di-
vision by zero etc.: both in the generic safety net approach, as presented in
Chapter 3, and in the ALMA+ instantiation of the approach, these errors are
caught and handled at plan level, triggering reparations in any plans that de-
pend on the “incriminated” one, including in other agents. Examples of such
errors will be seen in Chapter 5.

2. System error: an error code interpreted as data, as in the failure of the Ariane
501 rocket [73] where the two inertial sensors failed in the same time due to
a common software bug. This caused the rocket to abruptly steer in order to
correct what it thought was a completely wrong direction. After the initial
forces started tearing apart the fuselage, the automatic self-destruct mecha-
nism was automatically triggered. Bad specifications in a system can mean
that an error can exist and manifest without any meaningful reaction. Such
system-level faults can be avoided through good design philosophies. A sim-
ilar error situation could cause a safety net ALMA+ design to use a default
branch when receiving the unkwnown error code, followed by a recovery that
would most likely still lead to a foreseen self-destruction of the rocket.

3. Hidden variables: when Darwin’s men were unable to cook potatoes as they
were not aware of the influence of the altitude on the boiling point of water: a
goal-driven approach would have them find other solutions. For example the
goal to cook potatoes could lead them to cook them without using water (e.g.
placing them on the hot coals), and even moving a level higher in the goal
hierarchy and trying to cook something else.

4. Unconsidered situation: an important computer for the system in question
stops (for example the power cable is disconnected): timeout conditions
would avoid the other agents blocking, and a sufficiently-redundant design
would allow the agents to find alternative agents on other machines to achieve
their goals.

In the robot example from Sections 3.2 and 3.3, one of the ideas to note is the
importance of providing a form of redundancy, e.g. functional redundancy — certain
tasks can be performed either using the camera or the sonar. As we discussed in
the corresponding section, the agent architecture that we used was beneficial for
the fault tolerance of the resulting system.

In case an anticipated error is treated inappropriately by an existing — usually
programmer-provided — handler, the system may end up reacting well either be-
cause the handling did eventually cause another error event (a “crash”), or that a
goal is not achieved despite de handling. Once again, the safety net would provide
the property that we are looking for: tolerance to unforeseen faults.

A dreaded fault in computer systems comes from radiations that can randomly
change bits of data, a particular problem in very large computers [43] as well as
in space missions where the Earth magnetic field and atmosphere no longer pro-
tect the computer chips. Such random bit changes may well fall in the domain of
unforeseen faults and our safety net may bring a solution for the tolerance to such
faults.

WHY WE DO NOT EXPLICITLY CONSIDER COMMUNICATION ERRORS Given
that the communication errors are very common in distributed systems and multi-
agent systems, they are a constant discussion point in works on fault tolerance in

115

116

AN INSTANTIATION OF THE SAFETY NET

these fields. This also means that they are quite well catered for, with many solu-
tions at various levels, from checksums at low level to Potiron’s work at behaviour
level [86, Chapter 5]. These errors include lost, late and modified messages. When
designing agents, a lost message, together with a refuse to reply, should be seen
as a possibility and not an unforeseen fault. Late messages can be coped with to
some extent thanks to our reasoning rules. Modified messages are a complex prob-
lem and our mechanisms will react only if they are bad enough to create a code
crash. All these, however, can be treated with our error handling approach if the
programmer uses the unexpected keyword with a communication specific detection
mechanism.

This concludes the description of our safety net approach. In the next chapter we
present an experimentation of the approach on a CNP-based scenario.

EXPERIMENTING

In the previous chapters we defined the characteristics of the safety net approach. In
this chapter we will present a scenario and its implementation following the safety
net principles. For this, we will use ALMA+ and its adapted execution platform
described in the previous chapter, which we showed that are compliant with the
safety net requirements. We will then study the system behaviour by testing various
error situations.

This experimentation serves as a concept proof as well as illustration for the
safety net approach.

5.1 THE CNP+ SCENARIO

In order to illustrate our safety net approach, we need a scenario that is simple
enough to be understood, implemented and controlled, and yet that offers enough
details and complexity for the approach to be evaluated in a realistic context. The
scenario needs to allow the definition of multiple communicating agents, each with
a sufficient internal complexity so that the use of goals and plans is justified. For
these reasons, we will use a scenario based on the Contract Net Protocol (CNP) [106]
which we call CNP+.

SCENARIO DESCRIPTION The scenario starts with an initiator agent I broadcast-
ing CFP (Call For Proposals) messages towards possible main contractors MCj,
which then initiate negotiations in order to form teams of workers Wj for the job.
It is thus a CNP on two levels, with two calls (Fig. 34): a first call for proposals CFP
seeking one single subcontractor and a call for workers CFW; for each MC; look-
ing for a team. In our example, we limit the number of winners for each level to
one. Note that we use different indices (i and j) to mark the difference in numbers
(there is no correlation between the two) between the MC; and Wj agents. Once
an MC; has a possible team to work with, it replies to the chosen worker(s) with
a Preliminary Accept; message and rejects all the others, then sends the proposal
to the initiator. If its bid is selected, the M C; confirms the deal to its workers and
waits for the results of their work that it can then process and deliver to the initiator.
Otherwise, it informs the workers that the deal is cancelled. The object of the CFP
is not relevant to our illustration and will therefore be ignored.

5.2 MODELLING THE AGENTS

The system was designed with the safety net design requirements — principles 8-10
— in mind:

8. The programmer uses a multi-agent architecture featuring a significant num-
ber of agents with respect to the application.

9. The programmer uses goal-driven agents whose behaviour is split into mul-
tiple goals and plans.

117

118 EXPERIMENTING

Initiator Main Contractor i Worker j

CFP

"T CFWi

Refuse; }
Propose; B

Reject;

N
Refuse; %
Propose; Preliminary accept;

Reject
> Cancel;
N
Accept
Confirmy
Result;

Failed

Success

M M N

Figure 34: Two-level CNP+ protocol description

10. The programmer takes into consideration redundancy: allowing goals to retry
plans, providing alternate plans or agent designs etc.

To achieve the desired level of granularity, we aimed at designing agents with
multiple goals and plans, using plans that are short and simple. Each agent has
a main “goal plan” which contains only goal adoptions and other nodes such as
decision and wait nodes, but no actions. This allows an easy description of the high
level agent behaviour and also marks the checkpoints in the behaviour in the form
of goals. We will detail this approach in Part III of this thesis.

In the following we briefly describe the agents using the ALMA representation
enriched with goals, ALMA+, as discussed in Sec. 4.2. The complete agent models
(including the modifications discussed in Sec. 5.2.4) can be found in Appendix B.

5.2.1 The Initiator Agent

The Initiator agent has a need (e.g. a computational task) that it will fulfil through a
Call for Proposals. The call will be sent to agents which are initially unknown to the
Initiator, so the first step is to acquire a list of eligible contractor agents (goal G1).
It then obtains solution proposals from these agents through goal G2, which it can
sort (goal G3) in order to find the winner agent. All the others are notified of their
failure to obtain the job (goal G5), while the winner is asked to provide the results
(goal G4). The goal plan in Fig. 35 clearly reflects this behaviour. In the plan, the
ALMA+ constraints for the wait nodes force an interrogation from the programmer
for situations which may or may not occur: timeout, unjustified, besides from the
more obvious achievement and sometimes failure of a goal. In this version of the
scenario model, we only adopt the main goals and let the plan end if anything goes
wrong (e.g. goal G1 fails). The goal paradigm does allow us to consider reparations,
for example in case the sorting takes too long or the CFP is no longer justified, all
agents that sent proposals are informed that they lost the bid (goal G6) — this is a

5.2 MODELLING THE AGENTS

Begin

.
@ know_acquaintances(Acquaintances)

get_proposals_sorted(
Proposals, Winners, Losers)

have_work_done(
Winners)
Belief .
have_losers_informed(
Acquaintances list Losers)
CFP impl
simple End
Proposals list
- - have_cfp_cancelled(Proposals)
Winners list
Losers list End

Figure 35: The Initiator agent’s main goal plan P1o_;

specific treatment for a clear case, a foreseen fault. Note that for clarity, the main
beliefs used in the model are listed together with their types.

Goal G1 - “know_acquaintances” (Table 11) is successful if when its plan finished
executing, the list of acquaintances contains at least two agents. Its plan (Fig. 36)
simply sends a request to a DirectoryReference (in our case a Yellow Pages agent)
and waits for a reply. A timeout ensures that the plan finishes in a finite time.

Goal G2 - “have proposals” (Table 12) has a plan P2-1 (Fig. 37 top) that adopts for
each acquaintance a goal G2-1 that deals with that acquaintance and then waits for
a certain period for the calls to expire, regardless of the outcomes of the adopted
sub-goals: there is no blocking condition on the replies from the other agents and

the success of G2 is only conditioned by the receiving of at least one proposal.

After the wait node in P2-1, the list of proposals can be considered final and is

Table 11: Goal G1 — “know_acquaintances” of agent I

Goal Description

Name know_acquaintances ‘ 1

Satisfaction plan done A length(Acquaintances) > 1

Means-end analysis | Ordered list

Time out 1508
Required beliefs 0

Produced beliefs Acquaintances list

Plans Pri1—1 Action plan

119

120

EXPERIMENTING

Begin
Belief Type l
DirectoryReference simple Send(g.et_all(mamcontractorl),
- - DirectoryReference)
Acquaintances list, OUT
msg(give_all(Acquaintances),
T(50 u DirectoryReference)
End End End
Figure 36: Plan Py1_7 — “know acquaintances” — for enquiring DirectoryReference (e.g. an-

other agent, a web service etc.) for a list of all agents of type maincontractori.

Table 12: Goal G2 - “have proposals” of agent I

Goal Description

Name have_proposals 2

Satisfaction plan done A —empty(Proposals)

Means-end analysis | Ordered list

Time out 1508

Required beliefs Acquaintances, CFP list, simple
Produced beliefs Proposals list

Plans Pi2_1 Goal plan

therefore written in a single assignment belief, which allows the rest of the process
to continue under the implicit assumption that the proposals do not change. The
plan P2-1-1 sends a CFP message and then waits for a reply, being very similar to
P2-1, but we marked explicitly the fact that it writes the received information to a
set rather than simple belief.

Goal G3 — “get proposals sorted” is charged with finding a list of winners —
containing one element in our case — and will be successful only if it can produce
that list.

Goals G4 — “have work done” and G5 — “have losers informed” are adopted
in parallel, the former using a plan containing a request — reply exchange with
the winner agent, while the latter’s plan is foreach message sending. Goal G6 is
very similar with G5, but uses the list of proposals as senders list. Note how one
of the situations in which G6 is adopted is as a reparation measure following an
unjustfication during G3.

This multiple level goal-plan structure for the case of a successful call with re-
ceived results can be seen in the goal-plan hierarchy in Fig. 38. This is similar to a
Goal-Plan Tree (GPT)", but here, we only use a simplified version where we do not
indicate the sequence or parallelism between goals, focusing only on the goal-plan
parent-child relations. Consequently, we also omitted the AND-OR logical relations.
This is also because in our representation, the goal satisfaction tests and the fact
that not all sub-goal outcomes are tested in the goal plans means that the relation-
ships are more complicated than in the original GPT. Here, all child nodes of a plan
are sub-goals adopted by that plan.

1 Formalism described in Sec. 2.3.4.

5.2 MODELLING THE AGENTS

Begin
|
Belief Type ForEach(Ai in Acquaintances)
CEP simple, IN have_cfp_intent_from_
Acquaintances list, IN one_acquaintance(Ai, CFP, ProposalSet)
Ai simple
v End ForEach
ProposalSet set
Proposals list, OUT @
u T(50) extract_list_from_set(ProposalSet,
End ProposalList) =
u belief(Proposals, ProposalsList)
End End
Belief Type Begin
Ai simple, IN
ProposalSet | set, OUT
T(50 u msg(Propose_i, Ai)
End End
default valid(Propose_i)
true =
End

set(ProposalSet, (Propose_i, Ai))

End End

Figure 37: Plans P1;_1 “have proposals” and P12_1_7 “have cfp intent from one acquain-
tance” of the Initiator agent.

‘ P1-1 ’ ‘ P2-1 ’ ‘ P3-1 ’ ‘ Pg-1 ’ ‘ P5-1 ’

P2-1-1

Figure 38: The goal-plan hierarchy for the initiator agent for a successful call (results are
received)

121

122

EXPERIMENTING

5.2.2 The Main Contractor Agent

T(200 msg(cfp(CFP), Initiator)
End
is_acceptable(CFP, CFW)
Belief Type belief(G1,failed) A
Initiator simple belief(DesirableWorker,yes)
. = false
FP !
< P — belief(Gz,failed) A
CFW simple belief(Desirablelnitiator,yes)
G1 (goal outcome) | simple U = false
DesirableWorker simple initiator_part(Initiator, CFW,
; End G1 .
G2 (goal outcome) | simple Winners, Neg, Results)
Desirablelnitiator | simple worker_part(Initiator, Winners,
Winners list Neg, Results)
Neg simple End
Results simple G3 > have_refuse_sent(Initiator)
End

Figure 39: The Main Contractor agent’s main goal plan (Pmcio—1)

As it is both at the receiving and the initiating end of calls, the Main Contractor
agent performs two functions: it has a worker function with respect to the Initia-
tor agent and an initiator function with respect to the Worker agents. To express
this duality, the two functions are represented by two goals that execute in paral-
lel, G1 for the initiator function and G2 for the worker one. As can be seen in Fig.
39, the two goals are strongly connected as the failure of one renders the other
useless — this is expressed through the two rules added just before their adoption.
belief(G1,failed) /A belief(DesireableWorker,yes) = false translates into saying
“if G1 fails then G2 is no longer desirable”, as otherwise a contradiction would be
reached. This representation for the Main Contractor agent also allows us to exem-
plify the dependency of two plans that share beliefs, because each of the plans P1-1
and P2-1, the plans corresponding to the goals G1 and G2, use beliefs written by
each the other (beliefs Winners allows P2-1 to know that P1-2 has successfully pro-
duced a list of workers, while the belief Neg signals P2-1 that the Initiator accepted
this agent’s bid and the work can start). Is_acceptable(CFP, CFW) is a predicate
that returns true and instantiates the CFW if local conditions are met for the MCi
to try and reply positively to the CFP (e.g. demand parameters are within accept-
able limits, resources to spare etc.). Plan P1-1 compares favourably with the main
goal plan of the Initiator agent so only the different section is showed in Fig. 0.
Note how Gi1-7 is used as a reparation in case the plan is unjustified while waiting
for the outcome of the negotiation, but also in case of timeout.

Plan P2-1 (Fig. 41) waits for a list of Winners before adopting goal G2-1 — “have
proposal sent”. This goal is successful only if the Initiator accepts this agent’s bid,
which allows P2-1 to set the Neg belief that causes the P1-2 plan to request the
results from the Worker agents. When these results are acquired, the “worker part”

Belief Type
Winners list
Losers list
Neg simple
Results | simple

5.2 MODELLING THE AGENTS

Successfully obtained a Winners list

S(G1

—3) l
have_winners_preliminary_accepted(Winners)

have_losers_informed(Losers)

belief(Neg, success)

have_work_done(Winners, Results)

End

have_accept_revoked(Winners)

End

Figure 40: Extract from plan Ppici1—1 “initiator part”. This goal plan is very similar to
the one in the Initiator agent, but with supplementary elements linked to its
interaction to the worker part: the agent needs to wait for the negotiation with
the Initiator agent to be successful before giving the green light to the Worker
agents.

plan can adopt the goal G2-2 to have them sent to the Initiator. In P2-1, the adoption
of G3 to refuse the CFP is a reparation, used in case of unjustified or timeout while
waiting for a winner to be chosen among the Worker agents.

The goal-plan hierarchy corresponding to a successful bid can be seen in Fig. 42.

123

124 EXPERIMENTING

true =

_ belief(Neg, success)
u

End End End

Belief Type

End

Winners | list, IN belief(Results,)

Initiator | simple, IN

have_results_sent(

Neg simple Results, Initiator)

Results simple End

Figure 41: Plan Ppciz—1 “worker part”. Setting the “Neg” belief to true signals to the
initiator part that it can continue its CFW, while adding a contradiction to the
desirable belief causes the initiator part to stop. This plan is very similar to the
Worker agent’s main goal plan.

Figure 42: The goal-plan hierarchy for the main contractor agent in case it wins the bid

5.2 MODELLING THE AGENTS

5.2.3 The Worker Agent

Belief Type
CFW - End End End
Sumpe have_work_done(CFW, Results)
MCi simple
Results | simple

have_results_sent(
Results, MCi)

have_mci_informed_of_failure(MCi)

End

Figure 43: The Worker agent’s main goal plan Pyjo_1

The Worker agents are programmed to wait for a single CFW (Call for Workers)
message and then evaluate it to see if it corresponds to its work criteria (e.g. if it
can be done with the worker’s resources). As can be seen in Fig. 43, if the answer
is positive, goal G2 — “have proposal sent” will attempt to obtain the job from the
MCi agent. The goal is achieved only if a “Preliminary Accept” message is received,
in which case the Worker continues waiting for a second confirmation that would
trigger the adoption of goal G3 — “have work done”. In our case, this goal executes
a computation predicate, whose result can then be transmitted back to the main
contractor agent using goal G5 — “have results sent”.

The goal-plan hierarchy corresponding to the three cases — (1) worker refuses the
call; the bid is accepted and the agent (2) fails or (3) succeeds to perform the task —
are presented in Fig. 44.

5.2.4 Giving Unanticipated Errors a Thought

As the subject of this work are the unforeseen faults and the first version of the
scenario was already designed following the design requirements of the safety net
approach, the only change that can be performed — but is not compulsory! — when
modifying the platform is to add the unexpected keyword where appropriate.

125

126

EXPERIMENTING

7] B 2] () [Ba) [P

Figure 44: Goal-plan hierarchies for the worker agent in case it refuses the bid (left), it
completes the task successfully (centre) or it fails to complete the task (right)

THE unexpected KEYWORD The CNP+ models were reconsidered in order to
estimate where there was more appropriate to have an unexpected rather than just
a normal end node.

There are cases that the programmer is confident the execution cannot reach (e.g.
a timeout that is covered by a higher level “contract” and should never be reached,
but it is required nevertheless by ALMA+). There are cases in which it is beneficial
to leave the reparation to the safety net mechanism to clean up after the plan — for
example by retracting messages or stopping goals. There are also cases in which
the use of the keyword would not produce other results than simply using an end
node, for example due to the fact that the plan did not produce any outputs to be
retracted.

5.3 ADDING THE SAFETY NET MECHANISMS

THE PLATFORM From the perspective of ALMA+ integration and implementa-
tion, we have three aspects to consider:

1. the error detection and triggering the fault tolerance mechanism;

2. the connections that represent a dependency model of the actual system, in-
cluding a “bridge” system for automatically unjustifying messages;

3. the integration with the language context through decisions in order to trigger
the same unjustifications as the “normal” ALMA RT context.

Ideally, a second hidden agent memory (ATMS) would be used, but for the pur-
poses of this demonstration we use the existing ATMS and ALMA+ mechanisms but
with careful definition of the rules in order to keep the interferences to a minimum.
This allows us for this prototype to minimise the number of added mechanisms
by taking advantage of the RT context, for example when creating goals, starting
the execution of plans, branching the plan execution and in the normal functioning
of decision nodes. We therefore built the dependency context on top rather than in
parallel with the RT context. In this way, the rules in Fig. 31 (from Sec. 4.3.3.1) are
reduced to the ones in Fig. 45, because:

e rules 40, 41, 44 and partially rule 30 (only the part concerned with the context
transfer, but not the one concerning the “ok(Agent)” assumption) are covered
by the fact that goals and branching are all represented as RTs, which by
default inherit each other’s contexts;

¢ rules 35 and 37 are covered through the normal context enrichment in
ALMA+.

5.3 ADDING THE SAFETY NET MECHANISMS

SD.NORMAL ={
{ok(Agent) Ainitial(Goal) = execute(Pl)}

C

{execute(Pl) A\ ok(pl) = context(Ply)}
U
{context(Pln) Arcv(Message, Afrom) = context(Pl,i1)}
U
{ok(Pl) = send(Message, Ao, P1)}

C

{send(Message, Ato, Plfrom)/\
justified(Message) = rcv(Message, Afrom)}
U
{ok(Pl) = add_rule(Rule)}
@]
{add_rule(Rule) N ok(Rule)/\
Rule = (/\ B A Codegute — BJA
k

/\read(Bk) A Codegyle = true = read(B)}
k

U
{ok(Pl) = read(Assumption)}
@]
{adopt(Goal) A ok(Goal) = context(Goal)}
U
{context(Goal) = add_rule(Goal.Rule)}

}

(55)

(56)

(57)

(58)

(59)

(60)

Figure 45: The SD.NORMAL set for the dependency context added on top of the RT context

127

128

EXPERIMENTING

The ad hoc solutions for the specifications described in Sec. 4.4 are presented in
Tables 13 and 14. Note that in this experimentation, we did not take into considera-
tion agent level failures. The specifications were defined for and used with Sicstus
Prolog 4.2.0.

5.4 THE SAFETY NET AT WORK

To illustrate the behaviour of the safety net mechanisms, we study error cases from
two perspectives. First we discuss errors by confinement type, as presented in the
previous chapter. Then, we study the location where these errors can occur and the
variation of the system reaction. For each error we show the behaviour with and
without the dependency handling mechanisms. We also discuss the gain obtained
through the decision confinement reaction — stopping an entire plan in case of error
in a decision code.

GRAPHICAL REPRESENTATION In order to facilitate the study, we represent the
system using an adapted sequence diagram. In Fig. 46 two samples from a se-
quence diagram corresponding to the CNP+ implementation are shown. We use
this representation not only to depict inter-agent message exchanges (in red in the
diagrams), but also intra-agent dependencies such as goal adoptions and plan exe-
cution starts — black continuous arrows in the diagram —, plan and goal end events
— black dotted arrows — and belief sharing between parallel not directly hierarchi-
cally connected plans — green arrows. Each agent type has a main goal plan which
and multiple levels of goals with their corresponding plans. To better represent the
dual function of the main contractor agent and the fact that its two goals G; and
G are executed in parallel, we draw them and their plans and sub-goals each on
one side of the main goal plan.

Figure 47 is the complete diagram of a successful CNP execution. As the GPTs
given when describing the agents (and with which they share the same colours),
the sequence diagrams represent execution situations. Also, note how the repre-
sentation by level helps distinguish the corresponding GPTs easily from a sequence
diagram.

ERROR INJECTION As discussed before, we take advantage of the the existence
of the two levels of abstraction in the ALMA language — the DAG structure and
the “external” (Prolog) code. Due to the way the error catching and confinement
mechanism is implemented, any type of Prolog-generated error can be caught and
used to trigger a safety net reaction. This covers a large range of errors, from “bugs”
in the code, an errors the input data, infinite loops and memory leaks. As the nature
of the “unforeseen faults” can be varied, our focus here is not on listing or testing
“exotic” faults, but to show credible cases and the reaction of the safety net to their
manifestations.

The introduction of the “unexpected” keyword allowed us to easily “jump in the
safety net” in various places in the plan for testing the varying reactions of the
system.

For the errors involving an unreachable agent, simply killing the Prolog process
was enough.

5.4 THE SAFETY NET AT WORK

Table 13: “Safety net” specifications and the implementation for normal execution. Goal-
plan and plan-goal links were not included as in ALMA+ they are ensured im-
plicitly through context transmission.

Event Specifications Proposed ALMA+ implementation

New goal Create the support for | At the beginning of the automaton (adoption RT): a de-
aborting the goal and | cision executes assert(is_safe(Adoption_RT_id)),
unjustifying its plans | the rule goal(is_safe(Adoption_RT_id))
and verification rule in | => belief (Adoption_RT_id,ok) is added
case of error intherule | and the Dbelief is tested in another deci-

sion. Verification rules are then added as:
goal(is_safe(Adoption_RT_id)) " Beliefs_in °
catch(Code, _, (retract(is_safe(Adoption_RT_id),
fail))) => Beliefs_out.

New plan Create the support for | Plans are wrapped so that: (1) before their actual exe-
stopping the plan and | cution, a decision calls assert(is_safe(Plan_id)), the
unjustifying its out- | rule goal(is_safe(Plan_id)) => belief(Plan_id,ok)
puts is added and the belief is tested in another decision; (2)

Plan_id (the id of the wrapper RT) is transferred to all
other RTs of the plan.

Received The message is used | Add new_assumption(belief(Message,ok)) and then

(used) mes- | under the assumption | add it to the execution context (decision) just after the

sage that it was sent in | message use; an action node is then added to create an
correct conditions (no | RT containing a wait msg(unjustified(Message)) that
error); the agent can | can contradict the previous assumption on the message.
be informed through a | The wait finishes when the current plan ends (one of the
message from the orig- | branches is rt_end(Plan_id)), as in this case unjustifi-
inal sender if the mes- | cations are not propagated further; message_id is sent
sage is unjustified with message (see below).

Sent mes- | Be prepared to in-| Add to plan wrapper (see new plan above) the creation

sage form the receiver of | of an RT that uses a set of all of the messages sent by
the message in case | the plan to send unjustifications for all sent messages
of error-based unjusti- | in case the plan needs to be stopped from an unantici-
fication (a normal un- | pated error. This RT’s context contains only the parent
justification does not | context plus belief(Plan_id,ok), and in case of un-
cause this message to | justification it tests goal(is_safe(Plan_id)) to confirm
be sent) that it is indeed an error that caused this unjustifica-

tion. The wait finishes when the current plan ends (as
above). For each sent message, its unique identifier (Mes-
sage_id=agent_name+plan_id+static counter) and recip-
ient(s) are stored.

New rule Ensure the rule is no | goal(is_safe(Plan_id)) " Beliefs_in " Code =>

“Beliefs_in | longer applied in case | Beliefs_out (but this does not cover errors in the rule -

~ Code => of error in the plan see next row)

Beliefs_out”

Ensure that the rule

does not even re-
attempt to execute
its code in case of

error in the rule code

Execute assert(is_safe_rule(Rule_id)) in a decision
before adding the rule; goal((is_safe_rule(Rule_id),
is_safe(Plan_id))) " Beliefs_in " catch(Code,

_, (retract(is_safe_rule(Rule_id), fail))) =>
Beliefs_out; Rule_id=plan_id+static counter.

New as- | Ensure it is retracted if | new_assumption(belief(Support_assumption,
sumption the plan encounters an | V)), goal(is_safe(Plan_id)) "
error (just as for rules) | belief(Support_assumption, V) =>
belief(Assumption, V)
Goal ends Nothing to do -
Plan ends Stop waiting for lo- | Already covered above.

cal unjustifications for
sent and message ones
received messages

129

130

EXPERIMENTING

Table 14: “Safety net” specifications and the implementation for error events

Event Specifications ‘ Proposed ALMA+ implementation
Unexpected Stop plan and trigger recov- | Use the keyword as the name of a decision node that
ery executes retract(is_safe(Plan_id)) and then
ends (see New plan in Table 13)
Decision Confine the error to the con- | Execute code in catch(:ProtectedGoal, _,
code crash cerned code, stop plan and | (retract(is_safe(Plan_id)),fail)). In or-
trigger recovery der to stop the plan right after the error,
add goal(is_safe(Plan_id)) ~ to all deci-
sion branches and add a final branch with
goal(not(is_safe(Plan_id))) that leads to
Unexpected just before default.
Rule code | Confine the error to the con- | Everything already taken care of at the creation of
crash cerned code, block the ap- | the rule (see New rule in Table 13)

plication of the rule (avoid
reattempting the rule)

In a goal satisfaction test
rule: confine the error to the
concerned code, stop goal
and declare it failed

Everything already taken care of at the creation of
the goal (see New goal in Table 13); an unjustified
in the automaton leads to a failed goal.

Agent mem-
ory compro-
mised

All running plans become
“not safe”

Case not covered here

Nl main GF | [M1st vl goals || iplans | [i2nd vl goals | fplans
I I
| |
| |
| |
I I
I I
i i
| |
| P2-1-1 1

L CFP
Inlans | |f2nd Il goals | fplans [|Mst vl goals |[[IMCi main GP || M st goals || iplans | [i2nd vl goals | fplans | [f3rd Il goals || fplans
T T T —T T T T T T T

| 51-2

—
G1-3

Belinner

Figure 46: Sequence diagram samples. Top: a cut from the initiator (I) agent, bottom: a cut
from the main contractor agent (MCi).

131

5.4 THE SAFETY NET AT WORK

| 1 1 | | 1 | | T < | | 1
| 1 1 1 1 1 1 | ——— = 1 1 —_
I 1 1 1 1 1 1 I 1 1 m IIV V
,] ! ! ! I F---.V|-----.V ! !
| 1 1 1 1 R, ynsay 1 1
| 1 1 1 —L 1 1 1 1
| |||VI.I |||||| 1 1 v f LR 1 1 1
| | unsaxiag To i i i
1 1 | 1 1 1
unssy 1 1 | 1 1 1
“ “ ST “ “ “
1 1 | 1 1 1
1 1 | 1 1 1
8
“ “ T'I_ ” “ “ “ [nm_:_ |enf))
1 1 | 1 1 1
1 1 | 1 1 1
| T 1 1 | 1 1 1 I_A H_
| 1 1 1 -~ e b————— A
| i unguog | i | i i i T
| i i i bl N og | i i i
| 1 1 1 1 1 . I 1 1 1
| \ \ \ \ \ Ho'BanNaR - - - = o I A
| 1 1 1 1 1 =TT] [}
| 1 1 1 1 1]]
daany
| A e ! ! ! ! “ :
| 1 | 1 1 1 1 1 1
| 1 1 1 1 1 1 1
| 1 1 1 1 1 1 1
| 1 1 1 1 1 1 1
| T F 1 I I = f J I 1
o i i -- - i i
JEERRLAL I EYET “ “
1 1] —
! ! bobrld T g -4
| 1 | |||V‘ \\\\\ T asodold
! ! TbEd |
1 1 L-E5 | 1
1 1 iauunag | 1
1 1 | 1
| i Ve Teg ” i
1 1 1 T = | 1
e R S |
-4 zd T , _
. asodold 4 4 \
T ! | ! R
| i i i | i
| 1 T
| 1 1 bbTobd 1z-19 1T W 1 | 1
| i i i by T i | i
I 1 1 1 ! |~ = 1 I 1
| 1 1 | |||V 1 | |
| 1 1 1 1 | 1
W | | | p‘ | | i S
W ! ! ! e ! W !
| 1 1 1 1 1 1 | 1 1 | 1
I 1 1 1 1 1 1 I _‘o N@ | | I |
| i i i i i i | i oA i i
| 1 1 1 1 1 1 | 1 1 | 1 1 blTd
I 1 1 1 1 1 1 I 1 1 I 1 1 1
| 1 1 1 1 1 1 | 1 1 | 1 1 1
| 1 1 1 1 1 1 | 1 1 | 1 1 1
| 1 1 1 1 1 1 | 1 1 | 1 1 1
| 1 1 1 1 1 1 | 1 1 | 1 1 1
| 1 1 1 1 1 1 | 1 1 | 1 1 1
| 1 1 1 1 1 1 | 1 1 | 1 1 1
| 1 1 1 1 1 1 | 1 1 | 1 1 1
| 1 1 1 1 1 1 | 1 1 | 1 1 1
sueld; ([sjeofl 432 10| D wEw g suedy |[=0l | pgr| | suedi | seof) pugs|| sueidy || sieof w32 10| | 4o wew o] seof wisr| | suedr | g0l o) pugi|| suedy sueld; [geofl o) pugy|| sued; || sjeof i3S | d9 wiew |

Figure 47: Sequence diagram for a successful CNP+ negotiation (the Initiator agent ends

up with a result). Pink tags with letters correspond to the error cases from Sec.

5.4.1 and the yellow tags with numbers to the ones in Sec. 5.4.2.

132

EXPERIMENTING

Error

Table 15: Error examples

Behaviour of safety net

without dependency handling

complete safety net (+ from left)

I: decision crash
in P2-1-1

G2-1 may retry and eventually
fail (MCi will cancel its deal with
Wj only when its wait will time-
out); G2 can still be achieved
with the other instances of G2-1

The corresponding MCi is informed
of the error which causes the corre-
sponding MCi to cancel its bidding
process with the Wj agents

I. decision
crash/error in
P3-1

G3 retries and if the error was
caused by the input data and the
decision code, it will reappear
and the goal will eventually fail

No dependencies to retract

I: unexpected in
plan P2-1-1 after
adding the rule

As in case a above: G2-1 fails

The corresponding MCi is informed
of the error and the rule is also re-
tracted

MCi: unexpected
in plan P21
while waiting for
results

G2 will probably fail and cause
G1 to stop as well, stopping G1-
6 in the process

The rule corresponding to the Neg
belief is retracted causing P1-1 to un-
justify and stop G1-6, but the conse-
quences are the same as in the nor-
mal case

Wij: rule crash for
the rule of P3-1

Rule application is blocked to
prevent error manifestation

Not concerned by the dependency
handling step

I: goal rule crash

in the test for G4

Goal is stopped (with its plan un-
justified) and fails

Not concerned by the dependency
handling step

5.4.1 Study by Type of Confinement

For this part of the study, the error examples are given in Table 15, with their identi-
tied with pink tags in Fig. 47. The examples correspond to three of the confinement
types introduced in Sec. 4.3.2: at plan, rule and goals level. The agent level error
and confinement case was not included in this experimentation.

PLAN LEVEL Cases a and b correspond to errors in the decision nodes, being
taken care of by the plan-level confinement:

¢ the message validation code of plan P2-1-1 of the Initiator agent in case a, for
example due to a bug in the code, an error in the message, or even a malicious
interference with message content.

¢ the proposal sorting procedure in P3-1 of the Initiator agent in case b, for
example because of a bug in the code, an infinite loop, or a memory leak.

In the base ALMA implementation, a code error would cause a whole agent to
stop. This, while well confined from the other agents who continue functioning cor-
rectly?, is a rather radical and dangerous outcome as other executing plans could
still continue functioning, or at least go through a reparation phase before stopping.
The next step is to confine the error to the affected code section and only produce
a false outcome for the decision condition. In our two examples, the result would
be the application of the default condition in the corresponding decision node fol-
lowed by a plan end, which would not change much. However, the risk here is

Without even blocking if they were interacting with the affected agent, as all their wait nodes also
contain a timeout event.

5.4 THE SAFETY NET AT WORK

that an important decision is taken in this manner rather than through the actual
code application, for example “if (estimation(food resources)<10 days) turn
back; else continue” could have catastrophic consequences in case of error in
the evaluation function. We therefore support the “let it crash” approach, as stated
in the previous chapters, stopping the concerned plan and rely on the recovery
mechanisms for the continuation, in particular the goals.

Cases ¢ and d also concern plan-level confinement, but this time the error was
signalled by the programmer through the “unexpected” keyword.

Between these four cases we can see various instances of application for the
dependency handling, from no dependencies concerned, to local rules blocked to
triggering recovery in other agents.

RULE AND GOAL LEVEL In case ¢, the error occurs in the code of a rule, while
case f concerns an error in the goal verification rule: the ok(Result) test causes a
crash. In both situations, the dependency handling is not involved, with only the
confinement acting to stop the rule or the goal and its concerned rule from execut-
ing.

The same discussion as above on the confinement applies here as well: in case
of error in the rule code, the goal is declared “failed” and the rule is retracted in
order to avoid incorrect behaviours. Otherwise, as the rules do not apply correctly,
they may or may not eventually produce results, and these may not be reliable (e.g.
if a rule contained a code error or the input data that was causing the crashes was
incorrect). In the case of the goal rule, the goal will attempt multiple plans until
timeout or another condition, but the rule may also eventually succeed resulting
in an achieved goal. However, our policy is to conclude that the goal is no longer
reliable and to stop it.

p1scussiOoN This first comparison also shows that the first implementation al-
ready exhibits good properties due to the compliance with the safety net design
requirements and use of ALMA+. The addition of the dependency handling mech-
anisms helps the system recover sooner than the timeouts of the involved plans.

5.4.2 Study by Location of Error Occurrence in the Agent Code

Let us now study how the system reaction varies depending on the location of the
error occurrence. The accent is on plan-level errors as they are the ones that take
advantage the most of the safety net mechanisms (the error in a goal only triggers
ALMA-like unjustifications, the error in a rule only blocks that rule). The retractions
are caused by plan-level errors — decision crashes and the use of the unexpected
keyword. Note that the cases discussed do not necessarily correspond to decisions
or unexpected in the current version of our models, but were chosen due to their
representativeness for the system reaction. The error cases are represented using
yellow tags in Fig. 47, with the corresponding explanations in Table 16. These and
other cases are listed in Appendix C.

HANDLING DEPENDENCIES The objective of the dependency handling mecha-
nisms is to help trigger reparations in plans that depend on the one where the error
was detected, but also to retract any outputs (usually rules, e.g. case 10) of these
plans that were not yet used by any plans. The examples show different situations,
the simpler of which involving a message that is retracted to trigger recovery in

133

134

EXPERIMENTING

the receiver agent (cases 3 and 6). In case 8, we also see that these recovery mea-
sures may involve stopping plans in the concerned agent. Rules are also subject to
retractions (e.g. in cases 6 and 9) and even when this does not trigger reparations,
it is still a good means to clean up the agent memory. The propagation is best seen
in the error case 2 where the recovery is triggered on many levels in a step by step
manner through unexpected calls, causing many agents to stop the bidding pro-
cess when the Initiator agent encounters a problem. In case 7 we see that the error
signal also propagates from level to level and to another agent, but the latter does
not recover as the concerned plan is no longer running.

CASES WITH LIMITED EFFECT There are cases where the effect of dependency
handling does seem limited. This is a result of the chosen goal-plan structure as
well as the propagation policy. For example, in cases 4, 5 and at the end of 7, there
is no longer a plan executing at the receiver side in order to react to the error signal.
While in case 5, there is nothing that can and needs to be done as the agent already
finished its job, the other two cases beg the question: “what if the other plans
reacted to the signal, despite the fact that the original plan that used the messages
was over”? This change of policy should be studied further, but looking at case 7,
a different implementation or dependency handling policy could have caused the
CFP to stop, causing a domino effect.

Also, note that in case 10, the plan does not have any direct3> dependencies so
there is no need for dependency handling.

OPEN SYSTEM CHARACTERISTIC For case number 1, we consider that the Di-
rectoryService (DS) was not programmed using our approach and will not react
in any way. This shows that there is compatibility with agents that are not pro-
grammed using the dependency handling mechanisms of the safety net, as long
as the messages do not interfere with the normal protocols and do not fill up the
inbox of the concerned agents.

COMPARISON In many cases, we can see that the dependency handling mecha-
nism helps trigger reactions quicker than would be the case when relying only on
timeouts. Timeouts are good, but they are “hardcoded” values and depend a lot on
the hardware running the application, so while they are useful last resort measures,
they should not be relied upon too much.

We note that the used CNP protocol was not at all modified in order to take into
account failures, e.g. through the addition of retries.

5.4.3 Other Error Situations

Here are some other examples of possible error cases:

* a machine crash causing agents to disappear, an agent isolated due to com-
munication failure, or simply one or more messages that do not arrive: these
are all handled by the other agents through their timeout conditions.

* a message that is corrupted or false can cause a code crash, in which case it is
handled as above, or may also fail a validation condition in which case the de-
fault branch gives the continuation (in the examples above, this simply means

3 One could argue that retracting the Propose sent through a sub-goal of the plan would be beneficial

for the system recovery, but this is again a discussion of dependency propagation policy.

5.4 THE SAFETY NET AT WORK

Table 16: Error examples by location of occurrence (DS stands for Directory Service)

Error occurrence

Normal goal-driven reaction

Safety net (+ from normal)

I: During P1-1

G1 may retry and if it fails,
Po-1 will stop gracefully (fore-
seen)

if the error occurred after the
message to the DS was sent, re-
tract message

I: Unjustified (or time-
out) in Po-1, during
G2, in time for at least
one P1-2-1-1 of an MCi
to be active

Gz is unjustified too because
it inherited the RT context
from Po-1 (goal continues in
the case of timeout). No CFP
is cancelled so MCi and Wj
agents continue pointlessly.

unexpected causes all goal hi-
erarchy to unjustify; the corre-
sponding unexpected in any still
running P2-1-1 propagates the
error signal to the MCi agents
unjustifying all their plans (as
this concerns their Po-1) and for
any active P1-2-1-1, the error sig-
nal is propagated to the corre-
sponding Wj agent

I: During P4-1 (after
Accept, but before P2-1-
1 of MCi ends)

G4 may retry, but receiving
multiple Accept messages is
not included in the current
model (however, in the ab-
sence of a strict message iden-
tification, the new Accept mes-
sage would be ignored and the
MCi agent would receive the
Result which comes as a reply
to the first Accept).

The Accept message is retracted,
P2-1-1 of MCi is unjustified, then
its goal, G2-1, will probably fail.

I: During P4-1 (after
Accept, but AFTER P2-
1-1 of MCi ends)

As above

The Accept message is retracted
but with no consequences for
MCi

I: During P4-1 (after re-
ceiving Result)

Any retries for G4 will end in
timeouts in the current model
as MCi already finished.

Accept is retracted, but MCi is al-
ready done.

MCi: During P1-2-1-1
(after writing Propose)

G1-2-1 may retry but the corre-
sponding Wj is not informed
to stop waiting for a confirma-
tion; G1-2 can still be achieved
with the other instances of
G1-2-1; the written Propose re-
mains enabled in the agent
memory.

CFW is retracted for the Wj corre-
sponding to the plan, triggering
recovery in Wj; the written Pro-
pose is retracted too

MCi: unjustified (or
timeout) in P2-1 while
waiting for Ga-1

Ga2-1 is unjustified too because
it inherited the RT context from
P2-1 (goal continues in the
case of timeout). Furthermore,
the I agent is not informed
and may wrongly choose this
agent as winner.

unexpected causes goal G2-1 to
be unjustified, which in turn un-
justifies P2-1-1 which because of
its unexpected will retract the
Propose; no reaction in agent I as
P2-1-1 is over

MCi: During P1-6-1, af-
ter confirming and be-
fore the Result

G1-6 may retry but the proto-
col is broken and the outcome
is not guaranteed.

The Confirm is retracted caus-
ing Po-1 of Wj to unjustify, also
aborting any active sub-goals
(e.g. G3 or Gp).

MCi: During P2-1, just
after receiving Result

Retries for G2 would result in
a broken protocol.

belief(Neg,ok) is retracted, but
no reparation is triggered as P1-1
finished.

10

Wj: During Po-1, while
waiting for Confirm

the MCi agent waits for Result
until its wait deadline

no direct dependencies of the
plan, so no retractions

135

136

EXPERIMENTING

ignoring the message). A third possibility is that any of the corresponding
goals fails and the agent reconfigures without going through an actual error
state. If none of these apply, then the system continues with the error unde-
tected.

¢ an infinite loop, as discussed in the previous chapter: in the plan it can reach
the goal timeout or be detected and handled through the other agents; in the
code it is handled by other agents (because the current agent is blocked due
to the way ALMA+ handles parallelism).

5.5 DISCUSSION

In this chapter we presented a CNP-based scenario and its modelling and imple-
mentation using the safety net approach. Using this example, we studied the be-
haviour of the system in various error cases to show the benefits of the approach.

MODELLING AND DEVELOPMENT The modelling and development were done
following the safety net principles using the ALMA+ language and notation exe-
cuted on the adapted ALMA+ execution platform. The design requirements of the
safety net approach were covered as follows:

v'8. The design of the CNP+ scenario does use a multi-agent architecture with
several agents corresponding to the actors involved in the scenario.

v’9. The design of the CNP+ scenario does use goal-driven agents defined with a
multi-level structure of goals and plans.

v'10. The design of the CNP+ scenario does exhibit time redundancy through the
possibility to retry goals and space redundancy through the number of par-
ticipating agents in the case of MCi and Wj agents.

To facilitate this process and gain in readability, we chose not to place goal adop-
tions and actions in the same plan, thus complying with the GPS approach that we
present in Part III of this thesis.

For the autonomy aspect, as required by the ALMA+ model, timeouts were spec-
ified for all wait nodes. Furthermore, our extension also added timeouts with the
goal definitions. These values allow the system to avoid blocking behaviours, both
when it comes to interactions with other agents and when it comes to behaviours
that do not produce the result expected by the goal, regardless of the reason, thus
covering various unexpected faults.

We note that because different plans handle different parts of the protocol, retries,
which are normal in a goal-plan architecture, can easily cause the protocol to be
broken as long as there are no specific solutions in the protocol design. Our focus
was on showing the way the system benefits from the safety net approach and in
particular how the dependencies are handled. A solution for better protocol designs
is using goal-oriented interaction protocols [13].

ENRICHING THE PLATFORM The introduction of the platform level safety net
features was facilitated by the ALMA+ language structure and underlying platform.
For the purposes of this experiment, we added dependency elements to the already
existing RT context. However, a separate memory for the dependency context would
provide a more robust mechanism and would be safer with respect to programmer
interference.

5.5 DISCUSSION

ERROR DETECTION The structure of the language made it possible to reduce the
error detection to a limited number of situations, with the most important being
code errors in decisions and rules, followed by timeouts guarding various aspects
such as waiting for events and goal achievement.

The unexpected keyword also proved a useful means to trigger the safety net
reaction. The question that the programmer needs to ask when considering adding
an unexpected node is “would the program be able to reach this point under nor-
mal circumstances?”. Furthermore, if he or she was aware of the existence of the
safety net including the chosen handling policy, he or she would also ask “would
jumping into the safety net be beneficial in this case?”, in other words “would the
program benefit from the safety net in this case, for example through the retraction
of this plan’s outputs?”.

CONFINEMENT The first aspect of the confinement was the system modularity.
Agents were split into goals and plans corresponding to their local tasks. This pro-
vided a good confinement in case of errors, facilitating the reparation and helping
limit the propagation of the error signal to avoid domino effect. A drawback was
the fact that the protocol was not designed to cope with retries, which meant that
even if the goal structure was robust enough to survive an error, the successful
continuation was unlikely.

The active reaction to stop a plan when an error is detected was shown to be
beneficial for the system design.

RECOVERY As stated before, the recovery with its three steps is a very important
phase of the safety net approach.

The repair step with was visible through the unjustified branches which had vary-
ing outcomes, depending on the local needs of each plan. Several of them simply
led to the plan finishing, possibly leading to a reconfiguration through the goal
of those plans. Others were used to trigger the safety net mechanisms through an
unexpected, often also helping propagate the dependency further when the unjus-
tification was already the result of dependency handling. The unjustified branches
were also used to adopt goals with reparation effect, for example G6 of the Initiator
agent, used to inform the Main Contractor agents that the CFP was cancelled. Note
that these unjustified branches are used both when the RT context is no longer valid
and when a dependency has encountered an unanticipated error.

The usefulness of the dependency handling mechanism was demonstrated in the
comparative study where it could be seen how it helps trigger recovery sooner, but
also helps retracting useless rules.

Reconfiguration is always present through the goal-plan structure to eventually
guide the agent behaviour, regardless of the presence or not of errors in the system.

CONCLUSION In conclusion, the safety net approach provides a development
framework for designing systems with minimal overhead, yet the results are bene-
ficial for the fault tolerance of the system, especially with respect to faults for which
no handling was not included by the programmer.

This concludes the part of the thesis dedicated to the safety net approach. The
third part of the thesis presents an approach for designing goal-driven agents.

137

Part III

CONTRIBUTION TO GOAL PROGRAMMING

The Goal-Plan Separation Approach

THE GOAL-PLAN SEPARATION

In this part of the thesis we provide an approach for programming goal-driven
agents that brings more clarity to agent code. As we argue in Sec. 1.3, the fact
that agent plans can in the same time adopt goals and perform actions creates a
mix of between the reasoning and the acting parts of the agent. To counter this,
we propose the Goal-Plan Separation (GPS) approach and we show how it benefits
agent development.

In this chapter we present the original approach of this part of our work which
is illustrated using two examples. Chapter 7 discusses implementation issues and
gives examples of GPS-compliant plans. In Chapter 8 we present two examples
of applications designed following the GPS approach: one in the domain of mar-
itime patrol and the other for deploying Ambient Intelligence applications on a
distributed infrastructure.

We continue by introducing a representation model from the literature which we
use to illustrate our proposition through a first generic example. This allows us to
discuss the consequence of the Goal-Plan Separation, followed by the more refined
example of a Mars rover.

6.1 GOAL-PLAN TREES TO GOAL-PLAN SEPARATION

To illustrate the Goal-Plan Separation approach, we show in Fig. 48 two represen-
tations of the same agent side by side: a GPT* (a) and a possible GPS version (b). We
chose to use the GPT representation because even if it is used more as an analysis
than a development tool, it shows well the issues we are addressing, in particular
how the goal and plan levels alternate. The plans that are the most important in
the example at hand are P1, P3 and P4 as they are the ones that can contain both
actions on the environment and goal adoptions. The new representation, which
decomposes goals into sub-goals is an AND-OR tree (very similar to the one used
in [76]) with only the leaf nodes having plans containing actions, but no goal adop-
tions. To save space, we consider that the default operator for the AND nodes is
the sequence operator, unless stated otherwise, e.g. in the case of SG23. To preserve
the original structure, goals are also allowed to be OR nodes, in order to depict
cases where a goal or sub-goal can be achieved in more than one way. Similarly,
goals that have more than one plan are OR nodes. While the original goals were
preserved, the plans that were not leaves were replaced by sub-goals, e.g. SG11.
To compensate, plan names of the form P’ were used to indicate a variation of
an original P plan which at least removes the goal adoptions. Note, however, that
this exact transformation is not unique for the given example as it depends on the
plan’s specific features®>. More examples can be seen in Sec. 6.3. SG12 was intro-
duced to avoid the existence of siblings of different types. This example shows that
transforming an existing agent is possible. Nevertheless, as is the case with many

Formalism described in Sec. 2.3.4.

2 E.g. a plan that turns on a sensor, adopts a goal to retrieve data and then saves that data. Such a plan
would rather transform into a main goal with three sequential sub-goals, the first corresponding to
the beginning of the original plan, and the last corresponding to its final part.

141

142

THE GOAL-PLAN SEPARATION

/Goal Reasoning Level

[re] [)] [|
El ‘Psl ‘PZI‘P7|

(b)

Figure 48: An example of Goal-Plan Tree (same as in Fig. 10) (a) and a Goal-Plan Separation
of the same example (b)

such translations and as we discovered during the experimentation we describe in
Sec. 8, a complete redesign of the agent produces a more appropriate result.

6.2 THE goal reasoning level

As can be seen in Fig. 48 (b), a direct consequence of the separation of goal adop-
tions from the actions on the environment is the appearance of two levels in the
definition of the agent: a goal reasoning level and an action level.

The goal reasoning level is the part of the agent concerned with goal adoption,
control, dependencies and interactions. Here we are concerned mostly with the
specification (by a programmer or designer) of dependencies between goals and
issues related to the adoption and life-cycle control. For the purpose of the Goal-
Plan Separation, no actions on the environment are present at this level. However,
as will be discussed further on, other mechanisms can appear at this level, e.g. for
handling perceptions, events or various types of goal dependency.

6.3 MARS ROVER SCENARIO

To further illustrate the GPS, let us consider a Mars rover example from [108]. Figure
49 (a) represents a Goal-Plan Tree for a Mars rover’s goal to analyse soil samples.
The depth of the tree varies between Py7: ExpSoilByDelegationPlan that is at a depth
of one and P6: TransmitTo(Lander)Plan, at a depth of 5. While all leaf nodes are plans,
there are also intermediary plans which adopt goals and can contain actions: P1:
ExpSoilBySelfPlan and P4: RecordResultsPlan. If these two plans had no actions on the
environment, the representation would be GPs-compliant as no unwanted action-
goal adoption mix would be present. In this case, an alternative representation can
also be obtained in the same manner as in the example in Sec. 6. As depicted in
Fig. 49 (b), P1 changes into a sub-goal and P4 disappears completely as there is
already SG3 to regroup the corresponding sub-tree. For Py, a parent sub-goal SG12
is created to avoid having two siblings of the G1 node of different types, i.e. a goal
and a plan. SG12 also carries the precondition originally contained by P;.

Another approach would be to rewrite the Mars rover’s behaviour in a format
similar to the goal diagram from Tropos [44], as in Fig. 49 (c). The representation
can also be seen as a type of plan. It starts with a decision node that corresponds to

63 MARS ROVER SCENARIO

ExpSoilGoal

ExpSoilGoal \

/Goa] Reasoning Level

ExpSoilByDelegationPlan

PreCond: FreeRover(X) ExpSoilByDelegationGoal

PreCond: FreeRover(X)
Collect(Soil)soal RecordResultsGoal
Collect($oil)Plan

L=][] [[Pe]
Analyse(Soil)Plan

Analyse(]

r)Goal

itTe(Lander)Goal \ TransmitTo(StofageAgent)Goal /
TransmitTo(Land¢r)Plan
Collect($oil)Plan
TransmitTo(StorageAgent)Goal |Z| *5 LS
TransmitTo(Lander)Plan 2 TransmitTo(StorageAgent)Plan
P6 P3 P7
TransmitTo(StorageAgent)Plan Analyse(Soil)Plan ExpSoilByDelegationPlan
(@ (b)
. X === Legend - - - =
ExpSoilByDelegationGoal Goal Reasoning Level !
FreeRover(X)? TransmitTo(StorageAgent)Goal <> Test Condition

yes

I
Collect(So0il)Goal I Analyse(Soil)Goal :
l
I 1 L
I X I | [
Collect($oil)Plan : Analyse(Soil)Plan | TransmitTo(Lander)Plan
| I

— I

ExpSoilByDelegationPlan TransmitTo(StorageAgent)Plan
(@

Figure 49: (a) the Goal-Plan Tree of a Mars rover from [108], (b) a translation of the Mars
rover scenario in the form of a GPS-compliant AND-OR goal decomposition and
(c) a modified representation of the scenario with a clear goal-plan separation

P7’s precondition from the original scenario. The sequence operator is represented
through the arrows that depict the dependencies between goals, while the paral-
lelism is implied through the fact that two arrows start from the same entity, in this
case 5G2.

If, however, P1 and P4 also contained actions on the environment, the transforma-
tion would become more complicated. Figure 50 shows only the sub-tree starting
from SG3 with three simple examples of possible cases: (1) actions in parallel with,
(2) before or (3) after the goal adoptions. This shows the hidden complexity associ-
ated with the action-goal mix.

The examples in this section obey the GPS principle since in each case, the two
levels, the goal reasoning level and the plan level, can be clearly distinguished. This
shows the applicability of the Goal-Plan Separation is not restricted to a specific
goal reasoning formalism.

Now that we introduced our approach, let us present a means of implementing
it when designing or programming goal-driven agents.

143

144 THE GOAL-PLAN SEPARATION

RecordResultsGoal

RecordResultsGoal

TransmitTo(StorageAgent)Plan TransmitTo(StorageAgent)Plan

@) (b)

RecordResultsGoal

AuxRecordResultsPlan TransmitTo(Lander)Plan TransmitTo(Lander)Plan
P6 P6
TransmitTo(StorageAgent)Plan TransmitTo(StorageAgent)Plan AuxRecordResultsPlan
© G

Figure 50: Transformation of the SG3 sub-tree (a) from the Mars rover scenario (Fig. 49) into
a GPs-compliant form, in some of the non trivial cases: P4 contains actions on
the environment that happen in parallel with the goal adoption (b), P4 contains
actions on the environment that happen before (c) or after (d) the goal adoption

GPS METHOD IMPLEMENTATION

Throughout the evolution of programming, languages and development tools of-
ten advanced by limiting the programmer’s freedom to access lower level elements
such as registers and pointers to data, and offering in exchange higher level tools
and constructs such as variables and dynamically created references to data. These
evolutions allowed for the creation of increasingly complex systems while decreas-
ing the possibilities for coding errors. Similarly, we do not refrain from restraining
the freedoms of the programmers and designers in the interest of clarity and relia-
bility.

To achieve the Goal-Plan Separation, rather than adopting sub-goals, at execution
time an agent’s action level (usually composed of action plans) would accomplish
the necessary actions and then relinquish control to the higher level where the
reasoning and possibly a following goal is adopted. This creates, as illustrated
in the examples above, a distinct goal reasoning level where an agent’s goals are
chosen and their execution is managed.

As shall be discussed in this and the following chapters, the representation on
multiple levels, either by using sub-goals or through other mechanisms, is impoz-
tant for the scalability and intelligibility of the resulting agents and therefore con-
stitutes an important characteristic of the models that should be at least taken into
consideration for the goal reasoning level.

In [110], GPTs are used as support for a study on plan coverage and overlap, with
the hypothesis that the plan libraries discussed have no cycles. This is important
to note as in the general case adopting goals inside plans may produce cycles,
sometimes even with unwanted consequences similar to the infinite loops in classic
programming. We, on the other hand, do not restrict cycles, as will be seen in the
scenario in Sec. 8. However, the Goal-Plan Separation does not allow cycles created
through plans that also have actions on the environment.

As the Goal-Plan Separation approach in its simplest form is the requirement to
keep a clear distinction between the two abstraction levels, it is general enough so
that it can be applied using any of the BDI frameworks that allow goal adoptions
in plans. The important condition, however, is to make sure no goals are adopted
in plans that act on the environment. Examples of representations that can be used
are given next, followed by a more detailed description of a model based on what
we call goal plans and that we use in Sec. 8.

7.1 EXAMPLES OF POSSIBLE MODELS FOR THE GOAL REASONING LEVEL
7.1.1 Reasoning through Rules.

Using goal trigger rules, an almost “reactive” agent can be created. The goal rela-
tionships are implicit but a dependency tree similar to the one seen in Fig. 49 (c)
above can be constructed at runtime for tracing purposes. This reasoning model
can be implemented in Jadex by simply specifying trigger conditions for each goal
but without creating explicit connections between these goals. The advantage of
this approach is that the representation can handle more complex systems that act

145

146 GPS METHOD IMPLEMENTATION

P = < N,E> // action plan GP = < Ng,E> // goal plan

N = AUOUT // nodes Ng = AgquUOUT // nodes

A = {action| action # goalAdoption} Ag = {adopt(G)|G € Goals}

O = {o|oe{startNode, finishNode, O = {o]oe{startNode, finishNode,

AND, |, wait(duration)}} AND, |, wait(duration)}}

T = {test(stateCond) | stateCond € T = {test(stateCond) | stateCond €
{Beliefs, Events}} // conditions {Beliefs, Events}} // conditions

E = {n; —nylng,nyeN}// edges E = {ny = ny2lny,ny €N} // edges

(a) (b)

Figure 51: Action plan (a) compared to goal plan (b). Only the action nodes differ.

in highly dynamic environments, with new goals added effortlessly. However, this
model lacks look-ahead capabilities.

7.1.2 Reasoning Using a Planner.

Rather than having goals simply triggered by rules, a planner can be used to select
among available goals, as for example in CANPLAN [99]. The difference then from
the reasoning model described above is that this time the reasoning allows the
choice of goals to be prepared in advance starting form the current context. Another
difference is that a planner would render the agent pro-active, as it would not have
to wait for events in order to act. The job of the planner would be to select, order
and parallelise goals according to the current needs, and for this it could use certain
operators [21]. The example in Sec. 8 does not correspond to this method as no
planner is used and its goal plan (see below) is defined at design time. Our intuition
is also that the GPS approach benefits this model as planning should be easier to
perform only on goals, without the interference of details from actions.

7.2 REASONING THROUGH A goal plan

Between the reactivity of the first model above, and the planning capabilities of
the second, we propose here a middle solution that allows for a certain level of
look-ahead owing to the use of pre-written goal dependencies, just as plan libraries
can be used with BDI systems. As required by the GPS method, the goal reasoning
level should be kept separate from the plans that handle action composition. Con-
sidering that relations between goals can be similar to those between actions, we
can envisage using a modified plan language to represent the relations between
goal adoptions. We call the resulting plans that handle goal composition goal plans
and we oppose them to action plans.
As defined in Fig. 51, a goal plan is an oriented graph with three types of node:

* Ay, the goal adoption nodes, as the unique action allowed in the goal plan.
Each node represents the invocation of an automaton associated with the
goal. Note that this is the only distinction from the action plans which have
A ={action | action # goalAdoption}.

¢ O, the operator nodes, with operations including a unique start node and at
least one finish node. Different finish nodes can be used to indicate final states

7.2 REASONING THROUGH A goal plan

FreeRover(X)? ExpSoilByDelegationGoal success(5G12)?

yes N yes
TransmitTo(StorageAgent)Goal success(SG4)?
l success(SG1)? success(SG2)?
SG1 yes @ yes success(SG5)?
yes

Finish
TransmitTo(Lander)Goal no (Success)

—————————————— Legend - - - = - — = — — = — — - - g
‘ g hl Finish (Fail)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Collect(Soil)Goal l NO - Analyse(Soil)Goal lno (Parallel)

Figure 52: A goal plan for the Mars rover scenario from Fig. 49

for a plan, e.g. “successful completion” or “partial failure”. There is also an
operator for branching parallel threads and one for the logical condition AND
that can be used to synchronise threads or to indicate the obligation of two
or more conditions to be all true, for example to require several goals to be
achieved in order for the execution to continue.

e T, the condition test nodes that can handle state conditions for belief values
and events such belief change and message arrival. They can either be used
to test for a momentarily condition, or to wait for a condition to become true
or for a message to arrive.

Edges indicate the succession of nodes in the goal plan and, as stated before,
cycles are possible, for example to indicate a recurrent goal adoption.

The Mars rover scenario in Fig. 49 (c) with its inline goal dependencies can easily
be transformed into a goal plan, as seen in Fig. 52. There are two possible finish
nodes, with one for a successful mission where either SG12 or both SG4 and SGj5
were achieved, and one to indicate all other cases as failures.

While implicit relations between entities (such as the rule-triggered goals above)
may be enticing due to their ease of definition and generality, they are also difficult
to follow and may hide unwanted interactions. The goal plans, however, favour
the use of explicit specifications of dependencies between goals. If for example a
Mars rover needs to perform an experiment at a location X and it has two goals
for achieving this, one being G1="move to X” and the other G,="drill”, then it is
clearer to link the adoption of G, to the successful achievement of G; rather than
for example the belief that the rover is at location X.

In a framework like Jadex, this model can be implemented using a plan that is
triggered at agent’s birth. The plan would specify the dependencies between sub-
goals and adopt them without any other actions.

In practice, this model can become difficult to manage as the agent grows in
complexity. A solution to this problem is to group together parts of the goal plan
and abstract them into sub-goal plans, that are to be expanded only when needed.
In this way, the representation can still be conceptually on one level, while having
the advantages, in particular the scalability, of a hierarchical representation.

This kind of reasoning is suitable for agent systems where the behaviour can
be thoroughly specified at design time so that all dependencies can be accurately
included. Adding new goals and other modifications, however, are difficult to apply.
The first implementation described in Sec. 8.1.1 corresponds to this approach.

147

148 GPS METHOD IMPLEMENTATION

/Goal o \ FreeRover(X)? ExpSoilByDelegationGoal success(SG12)? ~— - - Legend - - -

Level GP1 I opt goal |
no no | |
success(SG11)? ! !
yes : DOperator :
SG11) \
Collect(Soil)Goal Y Finish : Conditi :
{) Condition
Finish (Fail) (Cliccess) : :
success(SG1)? (Wait) success(5G2)? success(SG3)?
Start yes - yes yes Finish
GP2 (Success)
Collect(Soil)Goal Analyse(Soil)Goal |"© TransmitData
Finish (Fail)
TransmitTo(StorageAgent)Goal success(SG4)?
Start success(SGs)? g
k] / m—[ves no AND I»—»l Finish (Success) I
(Parallel) @
P3 P6
! TransmitTo(Lander)Goal no
(e] [] [P} Finish (Fail)

(a) (b)

Figure 53: A multiple level goal plan for the Mars rover scenario from Fig. 49, with (a) the
resulting goal-plan hierarchy (as used in Sec. 5.2 and similar to a GPT) representa-
tion and (b) the corresponding goal plans. Note the separation in (a) between the
action plans, i.e. P2, P3, P5, P6 and P7, and the goal reasoning level comprising
the goals and the three goal plans, i.e. GP1, GP2 and GP3.

7.3 REASONING THROUGH MULTIPLE GOAL PLANS

The method above has the advantage of providing a “big picture” of the agent’s
behaviour but, as stated before, does not scale well to complex agents. Designing
the behaviour of an agent that can run for hours can for example create a large goal
plan that is difficult to follow and which risks being too rigid in case of unforeseen
events. The solution is then to decouple the sub-goal plans from their “parent” goal
plans by using goals to manage the expansion, in other words, by allowing any goal
not only to have action plans, but also goal plans. This means using the “classic”
BDI mechanisms —i.e. goals, plans and automata — with just the subtle difference in
the construction of plans: no goal adoption will be in the same plan as an action on
the environment. Note, however, that in this case the states indicated through finish
nodes do not necessarily reflect the achievement or failure of the parent goal, as
the goal would normally have its own conditions for success and failure. Figure 53
(b) shows the Mars rover’s behaviour represented with this model. The resulting
model can be represented through a structure that is similar to the GPT as can be
seen in the Fig. 53 (a), but this tree contains fewer details as more logic is included
in the goal plans, while in the same time complying with the GPS approach.

There are many advantages of this multiple goal plan model. First of all, split-
ting the behaviour into more levels of goals and sub-goals with the corresponding
plans improves flexibility and fault tolerance — in case a plan fails, the BDI logics
can require a retry using the same or a different plan, provided that such plan is
available. Then, splitting the behaviour into more manageable chunks leaves less
room for hidden faults. The use of goal plans for managing goal dependencies al-
lows for a more refined specification than what was available through the AND, OR
and the operators in the GPT. For example, in Fig. 53, the suite of goal adoptions in

7.4 EXECUTION

Goal/Sub-goal

BDI Logics

| Plan Library

Figure 54: BDI logics: handler of the goal-plan relation at runtime

Plan Generator

GP2 does represent the sequence that was originally in the GPT, but other operators
- such as the delay in the example - can be added through this specification, and
precise goal failures can be handled accordingly (while not present in the given
example, one could add other goals to account for these specific sub-goal failures).
This model is therefore preferred to the simple goal plans presented above, and is
illustrated in the second implementation in Sec. 8.1.1.

7.4 EXECUTION

While not explicitly presented in the GPT, as stated before and seen in Fig. 54,
between the goal and plan levels there are the BDI logics or more commonly a goal
automaton handling the goal life-cycle (as presented in the state of the art in Sec.
2.3 and also in Sec. 3.3.3 on the safety net contribution). This life-cycle usually starts
with the adoption of the goal and includes the choice and execution of plans.

For the GPS approach the automaton is a black box that is given a goal to adopt
and possible plans to execute and this is why we represent only goals and plans in
our modelling examples. The execution can cause side effects such as belief changes
that can lead the reasoning level to take actions with respect to current goal or even
the adoption or execution of other goals. For example, this can cause the goal to be
aborted in case it is estimated to take the agent in an unsafe state, or it can cause
the adoption of a reparation or compensation goal to counter certain unwanted
effects. Note that several automata can function at a given moment as parallelism
is allowed in our method. While conflicts are normally treated at goal reasoning
level and can even be explicitly handled in the goal plans, conflict management is
not within the scope of this thesis.

7.5 KEY LITERATURE ASPECTS

While we discuss the goal reasoning level in the need to better organise the levels
“below”, i.e. the plans, Morandini et al. [76] approach the same level from a dif-
ferent perspective: the need to fill in the gap between goal based engineering and
goal implementations. They propose a tool for transforming an agent designed
using the Tropos methodology [44] into Jadex code, for which they introduce a for-
malism based on rules for the life-cycle of non-leaf goals in a goal hierarchy. This
segregation between leaf and non-leaf goals creates a goal level that corresponds to
our goal reasoning level and thus their work is consistent with the GPS approach.
This further confirms our statement with respect to the utility of a goal-plan separa-
tion for the implementation of goal-based methodologies. Furthermore, our propo-
sition of using goal plans on multiple levels means that even goals that are internal
to the goal reasoning level will have the same life-cycles as goals that use action
plans. A specific life-cycle, as proposed by Morandini et al. is therefore no longer

149

150

GPS METHOD IMPLEMENTATION

needed, deeming the development process easier, as there are less types of goal to
consider. One of the interesting aspects is that Morandini et al. take into account
the fact that even if the sub-goals are achieved, the parent goal may still fail due to
its own achievement condition, which is often not taken into consideration when
discussing the Goal-Plan Trees. While this formalism is rich and GPS-compliant, as
our application example shows, our approach aims to provide a model that allows
for a more refined representation, with more diverse goal relations, event-based
goal reasoning and time constraints.

There are many parallels that can be drawn between our approach and the one
employed by the Prometheus agent development methodology [114] in the detailed
design phase. This is where functionalities identified in the previous phases of the
methodology — system specification and architectural design — are used as a start-
ing point for designing capabilities. A capability is a module within the agent that
can contain further capabilities, and at the bottom level plans, events and data, e.g.
capability C; uses data D or plan P; sends message to plan P,. Internal messages
are used to connect between different design artefacts, such as plans and capabil-
ities. This functionality is assured by either beliefs or direct goal dependencies in
our work. This nested structure of capabilities is similar to the sub-goal plans (Sec.
7.2) in its pursuit of “understandable complexity at each level”, and while semantically
different, it does provide a very similar functionality to our goal reasoning level.
Furthermore, the use of internal messages to indicate dependencies between inter-
nal artefacts (mostly capabilities and plans) creates a very similar structure to our
goal plans where we explicit dependencies between goals, often guided by tests on
beliefs and messages. In Prometheus, BDI goals at agent level can be represented
through a specific type of event, because events can trigger plans. As events, i.e.
goal events, but also messages, percepts and internal messages, can be produced
in plans as well as in outside the agent, a clearly defined goal reasoning level in
the GPS sense cannot be delimited in the current form of the methodology. The
Goal-Plan Separation approach would, however, benefit from the integration with
the first two phases of the Prometheus methodology: the system specification and
the architectural design. Due to the fact that these two phases correspond to a
top-down design approach, and also, as we showed above, the fact that there are
already similarities in the current form of Prometheus, we feel that such an integra-
tion would be possible, resulting in a methodology tailored for goal-directed GPS
agents.

The task expansion tree described in [77] represents the decomposition of a task (a
concept similar to goals in our work) into subtasks. The particularity is the introduc-
tion of special composite tasks that are used to compose other tasks in a functional
manner. These include, besides the sequence and parallel operators present in the
GPT model described in here, other tasks that allow other types of branching and
tests. The use of these operators in a tree structure situates their model between
classic goal hierarchies and our goal plan.

Clement et al. [25] champion the advantages of abstraction for solving various
problems such as large scale planning and scheduling. They argue that by abstract-
ing the less critical details in a large problem, the overall solution is easier to find,
and can then be expanded to the actual detailed solution. This applies well to our
Goal-Plan Separation approach, as well as to their approach on planning in a hier-
archical way. They extend HTNs to take time into consideration and use summary
information at higher levels in the HTN to identify possible interactions between
plans while working with abstract actions (which are similar to the BDI concept of

7.5 KEY LITERATURE ASPECTS

goal). HTNs are quite similar to goal hierarchies in that they too offer a gradual re-
finement for the behaviour of an agent from the more abstract to the actual actions.
The advantage of using goals instead of “abstract plans” is given by the flexibil-
ity and resilience offered through the goal life-cycles where a goal’s achievement
can be attempted through various plans, with different constraints etc. Neverthe-
less, our work does not exclude the possibility of using HTNs for plan selection, for
example in a similar fashion with CANPLAN [99].

Having proposed a model for using the Goal-Plan Separation approach, in the
next chapter we present two applications where the approach was successfully
used.

151

EXPERIMENTING WITH GPS

Now that we introduced the Goal-Plan Separation approach, we will present two
occasions in which we experimented with it. In Sec. 8.1 we describe our experience
with the implementation of goal-driven agents in the context of a Thales application
for maritime surveillance. While the actual implementation was done in ALMA,
the modelling part was done using Petri nets. In Sec. 8.2 we present the modelling
of a software for the deployment of Ambient Intelligence (AmI) applications on a
distributed infrastructure, which we represented using a restricted version of the
ALMA notation. This second application was part of work that was accepted at
AAMAS 2016 [81] and EMAS 2016 [80] (both in May).

8.1 AN APPLICATION FOR MARITIME SURVEILLANCE

The GPS approach has been experimented in an industrial context at TSA on an
application designed for experimenting on Al in general and more precisely on
Interval Constraints propagation and MAS. The purpose of this application, Interloc,
is the localisation of boats from a maritime patrol aircraft. It is implemented as a
MAS and can contain dozens of agents implemented as Prolog processes.

Interloc was initially designed as a set of non goal-directed autonomous agents.
This means that the agents had only one purpose that was achieved through a set
of associated plans. Subsequently, it was redesigned in order to improve the level of
autonomy of the agents by endowing them with goals. The pursuit of intelligibility
brought along the idea of having a clear separation between the levels of abstraction
of goals and plans.

A first implementation in the spirit of GPS used a goal plan formalism as the
one described in Sect. 7.2. This meant designing a plan where the only possible
action was goal adoption. For the ease of use, sub-goal plans — which anticipate the
hierarchical approach later implemented — were also used, adding their activation
to the goal adoption as the only possible “actions” in the goal plan. The intention
of the designer (prior to the GPS methodology presented here) was to exhibit an
abstract (goal) level describing the main features of the behaviour of agents so
that one would find it sufficient to only read the goal level description in order
to understand the salient behaviour of the agents. Agents were then implemented
following the idea described in Sect. 7.3 as the flexibility and robustness of goals
seemed preferable to the simple invocation of sub-goal plans.

In the pursuit of a more formal representation, we abstracted the goal plans into
Time Petri Nets (TPNs) [9], seen in Figs. 55, 57 (b) and 58 (a-d). We chose the TPNs
because they present many advantages through their graphical and intuitive repre-
sentation, as well as their expressive power (parallelism, sequence, synchronisation
etc.). This extension over classic Petri nets gives the possibility of assigning firing
time intervals to the transitions, which we used for representing waiting in the
agent behaviour. Furthermore, the TPNs allowed us to structurally verify the goal
plans and ensure their correctness. We also used a type of Petri net that resemble
the Recursive Petri Nets (already used for representing agent plans [35]) where we
distinguished two types of transition: the elementary transitions to be fired accord-

153

154

EXPERIMENTING WITH GPS

ing to the standard semantics of Petri nets and the abstract ones corresponding
to the action of adopting a goal. However, the expansion of this action, the goal
adoption, is not handled in this network, and its transition corresponds to a call to
the associated automaton, e.g. the one in Fig. 24 in Sec. 3.3.3.

We first present the application itself, then the particular case of one of the main
agents, the aircraft, in the two goal plan-based implementations mentioned above.
This section concludes with a discussion on the advantages of the GPS approach in
the specific case of the Interloc application.

THE APPLICATION The main goal of the application is the localisation of boats
using a goniometer' on-board a maritime patrol aircraft. The sole use of a goniome-
ter allows for a stealth detection, i.e. detect without being detected, of boats which
is important for some missions such as gas-freeing prevention®. If the boats were
steady, the problem would be simple. The fact that they move necessitates a reliance
on non-linear regression methods, as is the case of existing commissioned imple-
mentations, or interval constraint propagation, in Interloc. Most of the agents, i.e.
boats, the goniometer and the data visualisation agent, were designed for the pur-
pose of simulation. The main agent, the aircraft, must (1) follow all the boats visible
from its location, (2) compute in real-time their position by accumulating bearings
and interacting with computation agents (more precisely artifacts3) operating inter-
val propagation, (3) adapt its trajectory to observations and contingencies and (4)
transmit results to the visualisation agent. For the patrol aircraft, boats may appear
or vanish at any time. Several aircraft might be present at the same time, but so far
they do not communicate with each other. Typically 20 to 30 agents or artifacts are
active in the system at a given time.

8.1.1 In the Lead Role: The Aircraft Agent

Boats and aircraft have been designed following the GPS method. We present here
the aircraft, which is the most complex agent type and hence the most interesting
for illustrating the methodology.

Five goals corresponding to five main activities of the agent were identified:

e Init. (for “initialisation”) of the system: get data related to the aircraft trajec-
tory (pre-defined, planned or human-guided) and various parameters charac-
terising the simulation;

* Move: execute one step forward;
® Measure: initiate measurement of the bearing of all the visible boats;
* Treat. (for “treatment”): process a received measurement;

¢ Visu. (for “visualisation”): process a single request from the visualisation
agent.

The sole knowledge of the various goals present in the system is not sufficient
to understand (and define) its behaviour. One must also describe the way in which
these goals are adopted and what happens when they are achieved, for example

1 Tool which displays the direction towards the source of a signal, in this case a boat and its radar.
2 Deterring tankers from polluting the environment by cleaning their fuel tanks at sea.
3 Concept introduced by Ricci et al. [93] and briefly defined here in Sec. 1.4.

8.1 AN APPLICATION FOR MARITIME SURVEILLANCE

Start
Init % Ready to go
nit.
~a — Wait Init.

Init. fails Init. succedes

Msg: request(...) Msg: infomeasure(...) Ready to move

Requests Ready to respond

Measurements
A 4 ¥ v £
Q Ready Q Move T [10,w]
Visu. Open msg
— Wait

Move
Opened
v test: new boat Q Move succedes
O test: known boat
I\
Wait Visu. i

New boat Move fails
. / \ Known boat Ready to b-cast
Visu. fails v
-
Treat.(new)

—— Treat.

. Measure
Visu. succedes

Wait Treat. Q Ready for next

a7

Treat. succedes

Wait Measure

Measure fails [10.3]

Measure succedes

Treat. fails

Finish(Fail)

Figure 55: Petri net representation of the goal plan for the aircraft agent with goal adoptions
represented as hollow transitions. The Treat. (for “treatment”) goal is adopted in
two different contexts in order to insure that messages from each boat are treated
sequentially, but in parallel with the other boats. Multiple instances of the goal
with different beliefs are thus created.

by specifying their chronology, conditions for becoming a desire, conditions for
becoming an intention. This knowledge may be provided in different forms, corre-
sponding to the different ways of applying the GPS approach.

8.1.2 GPS for Modelling the Aircraft Agent

USING A SINGLE GOAL PLAN. For the first implementation we present here, the
aircraft agent in Interloc was designed using a goal plan with four sub-plans to
indicate the dependencies of the goals above. These dependencies correspond to
the goal reasoning level in the GPS approach.

Informally, the goal plan is the following (a more formal description of this plan
is given in Fig. 55 as a Petri net): the achievement goal Init. is adopted. If the goal is
not achieved, the system is halted. Otherwise, four sub-branches implemented as
sub-goal plans are activated in parallel: main_move, main_measure, main_visualisation
and main_analyse.

The main_move sub-plan:

¢ Wait for a move_time_step delay;

¢ Adopt the Move goal, whose associated plans will compute and execute the
next time step;

¢ Wait for the Move goal achievement;

¢ Loop.

155

156

EXPERIMENTING WITH GPS

/ \ Start
Gt — A7) Ready
Reasoning - MissionGoal Init. eady to go

Init. fails

P1(“P2
Visualisation l_—@I/Iove‘ment l_LI
Visu. Treat Move Measure

\ ééé@ Finish(Fail)

I

[cp2] [Gps | [Gra | [Gps |

o] o] o] [] : . .
Figure 57: Petri net representation of the GP1
Figure 56: The goal-plan structure of goal plan. Goal adoptions are repre-
the aircraft agent sented as hollow transitions.

The main_measure sub-plan:

¢ Adopt the Measure goal, where the associated plans will measure the bear-
ings of all the visible boats through interactions with the measurement artifact
and the (simulated) boat agents;

* Once achieved, the goal will be re-adopted after a given time delay.
The main_analyse sub-plan:

¢ Wait for a measurement, in the form of a message that arrives randomly after
a measurement request message is issued;

* Record the newly present boats;

¢ Adopt the Treat. goal, whose associated plan will generate a constraint to be
added to the previously received measurements and send it to an interval
constraint propagation artifact which will compute a more and more precise
boat location;

* Loop, in order to process waiting measurements.
The main_visualisation sub-plan:

¢ Wait for a request from the visualisation agent;

¢ Adopt the Visu. goal in order to process the request;

¢ Wait for the achievement;

¢ Loop to process pending requests.

USING A MULTIPLE LEVELS OF GOAL PLANS. When the pursuit for flexibility
and robustness pushed us further and we separated the goal plans and their sub-
goal plans through new goals, we obtained the tree structure seen in Fig. 56. GP1, in
Fig. 57, guides the adoption of four intermediary goals that are internal to the goal
reasoning level, i.e. they do not have action plans. GP2-GP5 in Fig. 58 correspond
roughly to the sub-goal plans described above and can easily be matched with the
corresponding branches in the initial one-level goal plan (Fig. 55).

8.1 AN APPLICATION FOR MARITIME SURVEILLANCE

Start Msg: infomeasure(...)

-
T Measurements
Msg: request(...) Start v
Ready
Requests Ready to respond
Open msg
(0] d
Visu.¢ test: new boat pene
—— test: known boat
New boat
= Known boat
Wait Visu.
Treat.(new) Treat.
Visu. fails
Wait Treat. Ready for next
Visu. succedes
O Finish(Fail) Treat. fails Treat. succedes
Finish(Fail)
(@ (b)
Start
Start
Ready to move T
) 4
Ready to b-cast O
Move % [10,w[Measure —
. ¢ Wait Measure é
Wait Move
\. Move succedes Measure fails ¥ (10w
Move fails Mﬁasure succedes
Finish(Fail) () Finish(Fail)
(0 (d)

Figure 58: Petri net representations of the GP2z (a), GP3 (b), GP4 (c) and GP5 (d) goal plans.
Goal adoptions are represented as hollow transitions.

8.1.3 Discussion

With GPs, iterative and timed behaviours appear at goal level: in the pre-GPS ver-
sion of the application, the natural tendency was to incorporate dynamic aspects
into the plans, making them fairly complex. For instance, the Move goal was not
conceived as a single step as presented above, instead, it was charged with the
complete management of the aircraft’s trajectory, including the loop sequencing in-
dividual steps. This rather straightforward design would close the loop inside the
plans and after the actions on the environment — e.g. the movement or broadcast of
measure request messages — were performed. The move time-step, which is impor-
tant for the global understanding of the behaviour of the aircraft, was also “buried”
in the plan pursuing the goal. In the GPS-compliant versions, deciding to rewrite
the plan and change the scope of the goal to the achievement of a single movement
step, created the need for the definition of the time-step and the iterative behaviour
at the goal reasoning level, leading to a clearer design. The fact that such details
are at an upper level of abstraction emphasises their importance and improves the
understanding of the agent behaviour.

157

158

EXPERIMENTING WITH GPS

DISCUSSION ON FAULT TOLERANCE WITH GOAL REASONING In real life ap-
plications agents tend to have more refined representations than the ones discussed
in Sec. 6. In particular, when it comes to handling errors, as we discuss in Part II of
this thesis, the specification easily grows in complexity as specific cases have to be
taken into consideration. As we stated before, goals give agents a level of abstrac-
tion that is beneficial for a system’s robustness as errors, exceptions, anomalies etc.
usually occur during plan execution which, in a robust* system, only cause the
plan to fail and the goal automaton to react normally and reattempt to achieve the
goal. While there are studies that treat the more general case of partial goal satis-
faction [95] (described in Sec. 2.3), if we only consider a binary goal definition, a
goal’s adoption has only two possible outcomes at reasoning level: the goal is either
achieved or not. Requiring the programmer to specify not only the actions to take
after the achievement of a goal, but also the actions to take in case the goal fails
enhances the reliability of the agent without dramatically increasing its complexity.
This is in the same idea as the default branches for the decision nodes in ALMA (Sec.
2.4.4) whose role is to avoid unforeseen situations.

In the Mars rover scenario represented in Fig. 52, the failure to delegate the task
to another agent, i.e. the failure of SG12, causes the rover to attempt to accomplish
the mission by itself through the adoption of SG1. Similarly, in the aircraft speci-
fication of the Interloc application (Sec. 8.1), both the successful achievement and
the failure of goals are represented in the Petri net and also in the implementation.
However, for simplicity reasons, in our example, no special actions are taken and
the only result of a goal failure is to ensure the agent does not reach unforeseen
states. Also, the current format implies an infinite life for the agent, which is not
necessarily desirable in a real application.

IMPLEMENTATION For Interloc, we used ALMA to implement the goal plans.
All the required primitives were available, since a goal plan is a type of plan.
Nonetheless, it appears that specific primitives could be introduced to facilitate the
programming of the goal level. These concern mainly iterative and time-controlled
behaviours.

4 In this case, we understand by robust an agent system in which an error or exception in a plan is
confined to that plan, so it is caught and only causes that plan to fail, while the rest of the agent
continues to function normally, i.e. does not cause the whole agent to fail.

8.2 THE DEPLOYMENT OF AMBIENT INTELLIGENCE APPLICATIONS

8.2 THE DEPLOYMENT OF AMBIENT INTELLIGENCE APPLICATIONS

Another application of the GPS approach was for modelling a MAS for deploying
Aml applications on a distributed infrastructure. This work was a continuation of
previous contribution by our co-authors Piette et al. [79] on the centralised de-
ployment on AmlI applications using graph-based representations of the infrastruc-
ture and application requirements together with a graph-matching algorithm. This
time, the objective was building a distributed software that can assist the context-
dependant deployment of applications (e.g. an intelligent video doorkeeper) on
a diverse and distributed infrastructure (e.g. camera, various displays situated in
different environments to which the user has more or less access rights). As users
evolve in a varying environment including infrastructure with different owners,
resource privacy was an important aspect of this work.

8.2.1 Scenario

The scenario we used in this work highlights both the dynamic deployment of
distributed applications and the privacy management encapsulated in both agents
and agent organisations. Mr Snow uses a video doorkeeper for dependant persons
(e.g. visually impaired) application in his home. When someone rings at the door,
the image of the entrance camera is displayed on a screen near Mr Snow, making
sure he can properly see the person. He can then discuss with the person and
decide whether or not to remotely open the door.

It is Saturday morning and Mr Snow is waiting for a parcel that will be deliv-
ered to his home at any time. While he is grooming himself in the bathroom, his
neighbour, Mr Den, rings the door. The smart house, aware that Mr Snow is in
his bathroom, selects the connected mirror of the bathroom, instead of any of the
other display screens of the house, as a support to display the image stream of the
entrance camera. Mr Snow, not being able to receive his guest, informs him, thanks
to the microphone in the mirror, that he will meet him in an hour. After getting
ready, Mr Snow goes to his neighbour. In the middle of their conversation, he is
notified that an unknown man rings at his door again. He tries to recognise with
his neighbour by displaying the image on Mr Den’s television. By default, Mr Snow
does not have the right to use any devices that he does not own, but the latter has
authorised him to access the television when he is at home. The doorkeeper appli-
cation is redeployed dynamically to use the requested hardware entities. Neither
Mr Snow nor his neighbour know the visitor. Mr Snow decides to activate the mi-
crophone of the camera which allows him to learn that the unknown person is the
expected transporter, which he can now go and see in person.

The important point in this scenario is not the video doorkeeper application,
but the way it is deployed dynamically in the environment, considering the user’s
context. The scenario shows two deployment situations:

1. the application was deployed for use in the user’s own home infrastructure,
but in a less usual place: the bathroom;

2. the application was deployed on the infrastructure of another user, as the
necessary access rights had been granted.

159

160

EXPERIMENTING WITH GPS

8.2.2 Multi-agent Modelling

Our scenario highlights several necessary specificities of the deployment software.
This software has to dynamically deploy and undeploy distributed AmI applica-
tions in an environment that is also dynamic: when a visitor rings the doorbell,
the deployment of the video doorkeeper should start, considering the available
hardware entities and the location of the user, in order to choose the most relevant
screen for displaying the image from the camera. This scenario helps emphasise
resource and information privacy: Mr Snow is the owner of the hardware entities
in his house and he does not want that unauthorised persons use or even know
of the existence of these resources. Furthermore, autonomy and robustness of the
system are very important specificities: if my neighbour’s system fail, mine should
continue functioning normally and should not be impacted.

As the required software demanded distribution, privacy, context management,
autonomy and robustness, MAS were identified as a suitable solution. Through its
modularity, this paradigm facilitates a local processing of the data and guarantees
the autonomy of the different parts of the hardware infrastructure, thus handling
aspects of privacy and robustness.

To solve the dynamic deployment problem, we use the work of Piette and al.
[79] in which the available hardware infrastructure is described by a graph. Nodes
represent hardware entities or relations between these entities and properties can
be attached to each node. The requirements of the deployable applications are also
described using such graphs. A graph matching algorithm can then be used on the
available infrastructure graph to find the entities that can support the running of
the application.

Next, we present the modelling of agents and the agent organisation for our
deployment solution, while focusing on the encapsulation of resource privacy.

8.2.2.1 Agents and Artifacts

The deployment application involves the user deploying applications on an infras-
tructure. Three types of agent were therefore defined to represent and clearly sep-
arate each of the parties in handling the deployment: User Agent, Application Agent
and Infrastructure Agent. A fourth type of agent was introduced for enhancing re-
source privacy: the Infrastructure Super Agent. For each type of agent we identified
a few main functions that, as we present in Sec. 8.2.3, will be their main goals:

* An Infrastructure Agent deals with a part of the global hardware infrastructure.
It uses the graph representation of this available infrastructure [79] (hard-
ware entities, relations and properties). This graph representation is never
shared with other agents. The Infrastructure Agent reasons on it in order to
propose partial solutions for the deployment of applications, thanks to a
graph-matching algorithm. This class of agent has several functions, as it has
to:

1. keep the infrastructure graph up to date;

2. propose solutions for the deployment of applications, considering the
available hardware infrastructure, but also the sharing and privacy pol-
icy;

3. deploy or undeploy functionalities of an application.

8.2 THE DEPLOYMENT OF AMBIENT INTELLIGENCE APPLICATIONS

: :

2]

[}

73]
|
1o
8
K]
2
=
0
‘SD
'8

deploys .. on

Y

#1: Camera #4: Computer
framerpte>10

[#13: has] [#r4: runsOn]
! !

|#2: CommDevice | |#3: CommDevice] [#5: Os|

OSType=Linux

L[#rz: communicatesWi’ch]j

bandwidth = #1.framerate x #1.imageSize

Figure 59: Example of a basic application graph

* An Infrastructure Super Agent is a representative of a set of Infrastructure Agents
which are related to it forming a group. It acts as a proxy between the agents
inside and outside of the group.

* An Application Agent manages an entire application during its runtime. It
has a graph-based description of the application [79]. An example of such
graph is represented in Fig. 59: the upper part represents the functionalities
of the application and the bottom part shows their hardware requirements.
The objectives of this class of agent are to:

1. guarantee the consistency of the application and
2. deploy or undeploy functionalities of the application if necessary.

The Application Agent has to interact with several Infrastructure Agents in order
to deploy the functionalities of the application over the infrastructure.

o At last, the User Agent is the interface between the user and the other agents
of the deployment software. Through this agent, a user can request the (1)
deployment or (2) undeployment of applications.

In addition to these four classes of agent, we also propose two classes of artifact>
which are resources and tools that can be instantiated and/or used by agents in
order to interact with the environment:

* Deployment artifacts can be used by the Infrastructure Agents in order to effec-
tively deploy some parts of an application, or configure hardware entities so
that they can be used by the application.

* The second class of artifact are the functionalities of the applications them-
selves. Some of them can provide useful contextual information to the de-
ployment software (location of a user, available bandwidth etc.), to help the
agents keep their application or infrastructure graph up to date.

In the video doorkeeper scenario, there are three Infrastructure Agents. The first
one manages the hardware entities located in the living room of Mr Snow, e.g. the
television. The second one manages the entities of the bathroom, such as the con-
nected mirror. The last Infrastructure Agent manages Mr Den’s house. We also find

5 Concept introduced by Ricci et al. [93] and briefly defined in this thesis in Sec. 1.4.

161

162

EXPERIMENTING WITH GPS

Mr Den’s
house
infrastructure
(super) agent

Living room
infrastructure
agent

Mr Snow’s
house
infrastructure
super agent

Bathroom
infrastructure
agent

Doorkeeper authorised as:

app. agent

regular user

authorised as:

authorised as: guest

regular user

Mr Den
user agent

Mr Snow
user agent

Location
app. agent

Figure 60: Agent organisation

two Application Agents. The first one manages the video doorkeeper application:
when a visitor rings the doorbell, this Application Agent triggers the deployment of
the video interaction functionality. The second one manages the application which
provides the location of the Mr Snow inside his own house to his own Infrastructure
Agents. The contextual location information is useful for deploying other applica-
tions. Indeed, the display screen of the video doorkeeper application has to be
chosen near the user. Then, we have two User Agents. The first one is the interface
between the deployment software and Mr Snow, and the second one is owned by
Mr Snow’s neighbour. At last, we have a certain number of deployment artifacts
that can configure the display screens, the cameras, or deploy software on devices
(TV box, connected mirror etc.).

The agent decomposition encapsulates a part of the privacy mechanism. Indeed,
the graph representation of the available hardware infrastructure managed by an
Infrastructure Agent is only known by this agent and is never shared with others.
Moreover, the architecture used helps keep a clear separation between the applica-
tive part, managed by the Application Agents, and the hardware part, monitored by
the Infrastructure Agents. As agents only have a local view of the system, the privacy
is enhanced.

8.2.2.2 Organisation and Interactions

The interactions between the agents presented above are regulated through their
organisation and a privacy policy. Infrastructure Agents are grouped behind an In-
frastructure Super Agent which, as stated before, acts as a proxy for the agents of
the group. From an outside view, this Infrastructure Super Agent is seen as a normal
Infrastructure Agent.

In our scenario, the living room and the bathroom Infrastructure Agents of Mr
Snow are grouped behind an Infrastructure Super Agent representing the house
of Mr Snow. Similarly, the Infrastructure Agent managing the house of Mr Snow’s
neighbour is a super agent, regrouping several Infrastructure Agents (or other sub-
super agents). The advantage of this organisation is that it is easy to abstract groups
of agents and make them invisible from the outside, resulting in a multi-scale or-

8.2 THE DEPLOYMENT OF AMBIENT INTELLIGENCE APPLICATIONS

ganisation that helps improve privacy. Indeed, Mr Snow knows about his own
Infrastructure Agents (bathroom and living room), but he does not have to know
anything about the details of Mr Den’s infrastructure organisation. If he wants to
interact with his neighbour’s house, he has to interact with Mr Den’s Infrastructure
Super Agent with the required access rights granted (as described below). The upper
part of Fig. 60 shows the organisation of the Infrastructure Agent from Mr Snow’s
point of view.

The hierarchical organisation of Infrastructure Agents ensures privacy by hiding
information about the structure of its sub-organisations. However, to improve pri-
vacy by controlling the use of resources, we also propose sharing policies. User
Agents can be authorised, by the owner of some hardware infrastructure, to use
some parts of its infrastructure, and cooperate with the associated Infrastructure
Agents or Super Agents, to deploy applications. If a User Agent is not authorised by
the Infrastructure (Super) Agent, it cannot use the hardware resources proposed by
this agent. Otherwise, it can have different authorisation levels. For example:

1. Administrator level: the agent (and implicitly its user) has full access to the re-
sources proposed by the Infrastructure Agent, can reconfigure the Super Agent
organisation and manage the authorisation levels;

2. Regular user: the agent has access to the resources of the Infrastructure (Super)
Agent but it cannot reconfigure authorisation levels or agent organisation and

3. Guest: the agent has a restricted access to the resources. Only the resources
considered as non critical by an administrator are allowed to be shared.

These authorisation levels are not limited to three and can be modified by the
administrator of the Super Agent. In the video doorkeeper scenario, Mr Snow’s User
Agent is a Regular user for his home Infrastructure Super Agent, but it is just a Guest
to his neighbour’s home Infrastructure Super Agent. As such, it has only access to
the television of Mr Snow’s neighbour. This allows to ensure privacy of the other
resources of Mr Den. The Application Agents have the same authorisation level as the
User Agent that creates them. They can interact with the authorised Infrastructure
Agents in order to effectively deploy their application. Figure 6o shows the agent
structure of the doorkeeper scenario; the agent organisation, the authorisation level,
and the Application Agents that are bounded to their User Agent creator.

In this section, we have shown how privacy is preserved through encapsulation
in our MAS. Infrastructure Agents keep the information about the hardware infras-
tructure secret. The Infrastructure Agent hierarchy keeps the details of the agent
organisation hidden. Privacy policies can allow or prevent the sharing of resources
to User Agents.

8.2.3 Design and Implementation

Agents are goal-directed, hence the description focuses on the goal specification
which suffices for understanding the agent behaviour. Goals are specified by de-
scribing their associated plans following the GPS approach: higher level goal plans
describing relationships between goals and lower level action plans for concrete
actions. This approach helped handle agent complexity through the multi-level de-
scription, from top level abstract behaviours with goals to concrete action plans.
Using goal-plans also has the advantage of specifying the relationships between
goals in a plan format.

163

164 EXPERIMENTING WITH GPS

Adopt goal

1 1 1
@Wait for events I;' Perform action(s) @ in parallel with
e current plan
B/ o
Abegm ForEach = Adopt goal and
Decision . wait for outcome
case; case; Vend ForEach . S

Figure 61: Flowchart nodes for efficiently describing the plans of goal-driven agents

Begin main goal plan U

4
request(new app, App) request(delete app, App)
Gus (App)> | Guz(APP)>
L]
handle handle
application application

deployment undeployment

Figure 62: Main goal plan for the User Agent

For this application, we used flowchart notation based on ALMA (Fig. 61). For
convenience, we introduced the possibility to add cycles in the flowchart (which
was an directed acyclic graph in ALMA), as well as a synchronous goal adoption
node which can be obtained using a normal goal adoption followed by a wait node.
The reasoning (add_rules) node was not necessary and thus was omitted. For this
application, we considered a simple goal model where a goal is successful (“S”)
when the plan executing for it ends with “End ok”.

We continue by describing in detail the agents of the system. As the Infrastructure
Super Agent is only a proxy between the agents of the group it represents and the
other agents outside this group, its implementation is not detailed here. In what
follows, Px;i_;j are the plans for a goal Gx;.

8.2.3.1 User Agent

The User Agent acts as an interface between the user and the deployment MAS.
The goal plan of the User Agent (Fig. 62) waits for user input and, depending on
the received request, adopts the corresponding goal. The plans of Gz and Gy
are similar: they create an Application Agent (Fig. 63) or request an application to
be undeployed, wait for a confirmation and display the information to the user.
The User Agent also allows the changing of the privacy policies, but this was not
represented here.

8.2.3.2 Application Agent

The Application Agent is created by a User Agent. It tries to deploy a precise appli-
cation by cooperating with one or more known Infrastructure (Super) Agents, from
which it does not need to have any infrastructure details.

Upon its creation, an Application Agent adopts two goals (Fig. 64): Ga1 for de-
ploying an initial functionality (Fig. 65) and Ga, that waits for internal events

8.2 THE DEPLOYMENT OF AMBIENT INTELLIGENCE APPLICATIONS

Begin Py 1_1(App)
Create
app. agent(App)

app. agent ping timeout
Display “success” Display “error”

End ok End error

Figure 63: Plan for Gy 1: “handle application deployment”

Begin main goal plan A

1 have
Ga1(fg) D functionality
fo working
have
GA2 > app. messages
handled
End ok

Figure 64: Main goal plan for the Application Agent

for new deployments or undeployments (Fig. 66). The deployment is done in two
steps: first the agent obtains a deployment solution from Infrastructure Agents via
Ga3 and then it requests the deployment according to this solution through Ga4.
The Application Agent sends a list of the requirements described in the application
graph to the Infrastructure Agent and the solution it receives contains the list of re-
quirements that could be fulfilled. Note that the reply does not contain any actual
infrastructure details, which is important for the privacy of the infrastructure. It
can be seen (Fig. 67) that the agent may need to call multiple Infrastructure Agents
in order to obtain a complete deployment solution. Indeed an Infrastructure Agent
tries to find in its own infrastructure the hardware entities that match the require-
ments of the application. However, if these requirements only partially match, the
Infrastructure Agent will return a partial solution to the Application Agent. In this
case, the latter will call another Infrastructure Agent that will continue to match the
requirements of the application. Once a solution has been found, the Application
Agent interacts again with the concerned Infrastructure Agents to effectively deploy
the functionalities of the application: plan Pa4_1 in Fig. 69 simply sends a message
and waits for a confirmation.

After a functionality was deployed, the agent monitors it through G5 (with its
plan in Fig. 68) in order to adapt the deployment to the current context: infrastruc-
ture inconsistency (e.g. changing infrastructure availability, changing user location)
and messages from the application itself (e.g. new guest at the door). An applica-
tion message can result in multiple requests for deployments and undeployments.
Internal events are used to control the execution of different plans. Deploy and
undeploy events originate in the plan for Gas and trigger the adoption of Ga; for
the deployment of other functionalities or redeployment of the current one, and
Gag (Fig. 70) for the undeployment of the functionality. As each functionality is
monitored by an instance of G a5, in case of an undeployment, the plan of G a4 sig-
nals the corresponding G a5 to stop through a kill event (besides sending a request
message to the corresponding Infrastructure Agent).

165

166

EXPERIMENTING WITH GPS

Begin Pa1_1(f)

Ga3(f): obtain Begin Pas_ 1
projection solution 4
S
t
End error event(deploy,f) event(undeploy,f)
G a4(f): have functionality deployed
A y qepoy ’ GA1 (f)> ’ GA6(ﬂ>
1 J

maintain have have
functionality coherence functionality functionality
End ok f working undeployed

Figure 65: Goal plan for Ga1: “have func- Figure 66: Goal plan for Ga: “have app.
tionality f working” messages handled”

Begin Pa3_1(f)

|

3 another known Infrastructure Agent else

Send msg(A, request(projection, f)) End error

partial(Solution imeout

complete(Solution)
End ok End error

Figure 67: Plan for G A3: “obtain projection solution”

Note here that the Application Agents only handle the application deployment.
The application itself is in charge of its own actions, data and privacy.

8.2.3.3 Infrastructure Agent

An Infrastructure Agent receives requests from Application Agents that it tries to sat-
isfy (Fig. 71). Only requests originating from known User Agents are treated, in
other words only applications from agents that were granted one of the levels of
authorisation are accepted.

When it receives a request for a deployment solution, the Infrastructure Agent
uses the graph matching algorithm to determine if it can fulfil the requirements of

Begin PA57'I (f)

app. msg. M infrastructure inconsistency
event(kill, this)
Process M End ok

Emit event(deploy, this)

End error
QForEach event E, E € L < (deploy, F) >UL < (undeploy, F) >

Emit E

Figure 68: Plan for G A5: “maintain functionality coherence”

8.2 THE DEPLOYMENT OF AMBIENT INTELLIGENCE APPLICATIONS

Begin Pag_1(f)

Begin Pagq_1(f) Emit event(kill, f)

Send msg(infra, Send msg(infra,
request(deploy, f)) request(undeploy, f))
IV timeout IV timeout
End ok End error End ok End error
Figure 69: Plan for Ga4: “have functional- Figure 7o: Plan for Gag: “have functional-
ity deployed” ity undeployed”

Begin main goal plan I

keep
@ infrastructure graph
up to date

request(undeploy, f)

request(solution, f)

have have have
application application application
projection functionality functionality
solution deployed undeployed

Figure 71: Main goal plan for the Infrastructure Agent

the request (Fig. 74) using the devices it manages. The algorithm takes into consid-
eration the levels of authorisation of the involved User Agents. If it cannot produce
a complete solution, the Infrastructure Agent requests the help of other agents in its
group, but without informing the Application Agents. In this way, the components
of the infrastructure remain private. If a complete solution is eventually produced
and the Infrastructure Agent is given the order to deploy the application, it will do
so by adopting Gz (Fig. 75) and its sub-goals (Fig. 76 and 77) to dispatch the de-
ployment tasks to its own deployment artifacts as well as to any other Infrastructure
Agents that were included in the final solution. In case any of these requests fails
(e.g. an artifact malfunctions), the whole application is undeployed using G4 (Fig.
78) and the Application Agent is informed (Fig. 79), which will cause it to restart the
deployment procedure.

In parallel with the request handling, the agent also adopts Gy (Fig. 72) which
listens for agent and artifact information in order to manage the graph the devices
corresponding to the Infrastructure Agent. In case of an inconsistency (e.g. Mr Snow
leaves Mr Den’s home, so any display he used there are no longer relevant for the
application), the agent informs the Application Agents via G117 shown in Fig. 73 that
it will need to redeploy the concerned parts of their applications.

8.2.3.4 Implementation

A demonstration model of the deployment software has been developed in a labora-
tory apartment replica. This home replica implements various scenarios applied to
home care for dependent persons, including the presented scenario. These scenar-
ios are using commercial connected devices tweaked to be horizontally connected,

167

168

EXPERIMENTING WITH GPS

Begin PII 1—1
|

Update graph

ForEach known app. agent A

Begin Pr1_;
graph inconsistent for A
. Send msg(A, else
Agent/artifact infra. i -
: . infra. inconsistency)
information
graph updated
End ok
Figure 72: Plan for Gpj: “keep infras- Figure 73: Plan for Gyy1: “have graph up-
tructure graph up to date” dated”

Begin P12 _1(f)

3
Use graph matching algorithm

complete(Solution) partial(Solution)
Send
msg(Inquirer, complete(Solution)) [il else J agent A € same group that can help

Send End ok Send

msg(A, request(projection, f))

msg(Inquirer, partial(Solution))

End ok

complete(Solution timeout
partial(§olution)

Figure 74: Plan for Gy,: “have application projection solution”. “Inquirer” can be an Appli-
cation Agent or another Infrastructure Agent.

thanks to the deployment software. This realisation was used to evaluate the diffi-
culties of handling the heterogeneity of hardware entities.

8.2.4 Discussion

THE APPROACH This work allowed us to test the GPS approach as well as the
graphical notation with other researchers and on a second application, thus giving
a better understanding of the approach. The model proved its in top-down design
for defining the agent behaviour in terms of goals and their relationships, before
moving to more concrete levels to describe the action or even goal plans for these
goals.

THE ALMA-DERIVED MODEL This modelling work on the AmI application
proved that the ALMA can be adapted for general purpose goal-driven agent
modelling. The ALMA-derived notation proved useful and more appropriate than
the Petri net based notation used in the Interloc scenario. Its closeness to actual
code means that a code generation tool could be envisaged to aid the design
process. The inclusion of “external” code — represented an an action in the plan
— represents a good abstraction for the required level — the agent behaviour. This
modelling approach is plan centred and lacks organisational view of the MAS.

Begin Py3_1(f

)
G131(f): ensure application
functionality deployment
S F

’ Gis(S) ’ Gis(F) . have app. agent
informed of outcome

I
End ok have
application
Gra(f) functionality
End error undeployed

Figure 75: Plan for G3: “have application
functionality deployed”

8.3 OVERVIEW

Begin P1371_; (f)

ForEach A

task t; € f
ensure

task deployment

WV

VG311 1&61311 :F

End ok End error

Figure 76: Plan for G31: “ensure application

functionality deployment”

Begin P1311 1

Send
msg(depl. artifact,
request(deploy, t;))

Send
msg(infra,

request(deploy, (t;)))

End ok End error

Figure 77: Plan for Gi311: “ensure task deployment” (similar to Gi41: “ensure task unde-
ployment")

8.3 OVERVIEW

PERCEPTION HANDLING With GPS, relevant perceptions of the environment
are required at the goal reasoning level: it is the case of messages coming from
the visualisation or the measurement agents in Interloc, and various deployment
requests in the AmI application. This comes from the fact that certain perceptions
can be essential for the global understanding of the agent behaviour. In both ap-
plications, messages trigger the adoption of a goal whose achievement is more or
less secondary since other measurements or requests can arrive rapidly. That is the
reason why it seems to be a good approach to handle these inputs at the upper
level of abstraction. A perception filtering strategy, to avoid unnecessary inputs or
even overloading the agent, can also appear in this goal plan, possibly through the
adoption of a specific goal prior to the adoption of the concerned goal itself.

Begin PI471 (f)

ForEach X
ensure task

task t; € f

Begin PIS—] (M)

VG141 : S GI41 :F have 1
Send
F app. agent
’ Gli(s)> ’ Gli()> informed msg(app. agent, M)
End ok Enderror ©f outcome End ok

Figure 78: Plan for Gp4: “have application
functionality undeployed”

Figure 79: Plan for G5: “have app. agent
informed of outcome”

169

170

EXPERIMENTING WITH GPS

ERROR HANDLING With GPS, handling errors is easier to take into account:
this is because errors, whatever their cause, often manifest through the failure of
goals. This provides an adequate range of exception mechanisms in the language
in which plans are written. Hence, the programmer’s effort with regard to fault
tolerance is mainly to take into account the processing of non-achieved goals. Of
course, this does not concern the goal plan itself, which has to be designed tradi-
tionally by explicitly introducing fault tolerance actions. However the amount of
code regarding the “classic” action plans is far greater than the amount of the goal
plan code. Furthermore, as we show in Part II of this thesis, using multiple levels of
goals and plans in an agent help improve its fault tolerance through confinement
and the reconfiguration that is built into the goal paradigm.

In the Interloc application, no specific fault tolerance effort has been carried out
but a clean processing of non-achieved goals in order to stop the system rather
than have it crash. As a consequence, application debugging was greatly facilitated.
For the same reasons, the GPS approach proved to facilitate the evolution of the
multi-agent system. Thus, the aircraft agent was easily changed into an Unmanned
Aerial Vehicle (UAV), with a larger autonomy in the trajectory choice. Here again,
the abstraction obtained by separating goals and plans seems to be the reason.

ON THE USE OF GPT Note that, while we use the GPT representation to justify our
approach, the GPS is concerned with more general agent models. Also, we do not
argue against the GPT formalism, neither do we dispute the plethora of works that
use it as a model, but rather we discuss the more general issue of specifying agents
with interleaved goal and action levels. Our research complements the works on
goal interactions cited in Sec. 2.3.3 (e.g. [103, 109]) as it concerns the agent spec-
ification rather than the runtime mechanisms that aim to improve the efficiency,
pro-activity, reactivity etc. of the agents. These, as well as other works that use
GPTs, such as [102] on intention conflicts, can be used with GPS, and our intuition is
that by separating the goal reasoning level, goal interactions can be managed more
easily.

Part IV

CONCLUSIONS

CONCLUSIONS

“Monsieur Jourdain : Par ma foi ! Il y a plus de quarante ans que je dis de
la prose sans que j’en susse rien, et je vous suis le plus obligé du monde
de m’avoir appris cela.””

a English: “Monsieur Jourdain: By my faith! For more than forty years I have been
speaking prose without knowing anything about it, and now I am grateful to you
for having taught this to me.”

— Moliere, Le Bourgeois gentilhomme, 1670

Fault Tolerance

Agent Design
and Programming

Thesis Part 111 Thesis Part II

Figure 8o: Thesis contributions: the safety net and the Goal-Plan Separation (GPS), with the
mention that the Fault Tolerance and Agent Design and Programming domains
are by no means disjoint

In this thesis, we started from the questions “What happens if we overlook a fault
case? How can we improve the behaviour of the system in such situations?” for
which we set out to propose a “safety net” approach for developing software that
is tolerant to unforeseen faults. These faults can be introduced accidentally or as
accepted risks during the development process. The safety net approach is centred
on using the multi-agent paradigm with goal-driven agents, which, together with a
series of programming language and platform requirements, provides the desired
fault tolerance properties. This work also allowed us to propose the GPS approach
for designing and programming agents. This approach requires the reasoning and
acting levels to be clearly separated in each agent.

We shall now conclude the thesis by summarising each of the two main contri-
butions and the perspectives they present.

173

174

CONCLUSIONS

9.1 THE SAFETY NET APPROACH

Another way of describing the idea of the safety net is that we aim to help program-
mers write software that is tolerant to faults, without them being aware of this, just
as Monsieur Jourdain in the quote at the beginning of this chapter was “speaking
prose without knowing anything about it”.

Due to the nature of the considered faults, we focused on means of runtime de-
tection and handling rather than static (offline) methods and validations, which
remain usable as complementary to our approach. Furthermore, for the purpose of
the correct continuation of the functioning of the system, we aim at limiting the im-
pact of errors and propagation from the point of detection rather than diagnosing
and describing the fault that is to blame.

The safety net approach is comprised of 10 principles, split between program-
ming language, platform and design requirements. In order to define them, we
changed the perspective and studied the issue of unforeseen faults following three
phases borrowed from the “classic” fault tolerance approaches: detection, confine-
ment and recovery. First we examined what and how can be detected, focusing on
means that exist or can be integrated in the programming language and produce
exceptions — e.g. single assignment variables and data typing —, as well as objective-
based techniques — such as goal verifications — which trigger reactions differently
— by calling on the goal life-cycle in the case of goals. Timeout conditions for wait
states are also an important mechanism. We then proposed means to confine the
system into modules in order to be able to limit the propagation of errors and
have a good base for reacting to them in the last phase of the error handling: the
recovery. For confinement, the system is designed using a considerable number
of agents, each with multiple goals and plans. The last phase, i.e. the recovery, is
performed in three steps: (1) dependency handling propagates the error signal to
the concerned neighbouring entities, which then (2) repair and (3) reconfigure. The
dependency handling is performed transparently by the platform by tracing com-
ponent interactions and using those traces to inform the concerned components in
case of error. For the reparation step, the programmer is required by the language
to regularly provide specific procedures in the code, by considering what measures
need to be taken in case the current plan needs to be stopped. Reconfiguration is
ensured by the agent goals. Goal-driven agents are therefore the central point of
our approach. The resulting safety net approach allows the system to react to and
recover from errors at agent level while also triggering recovery in agents which
were possibly impacted by the detected error. Based on the safety net principles, we
proposed the ALMA+ programming language and its platform, whose functioning
we illustrated on an application based on a well known multi-agent protocol, the
Contract Net Protocol (CNP).

There is an utopian aspect to the target of this thesis: the tolerance to unforeseen
faults. Indeed, all failures — notorious or not — can be traced to unforeseen faults, but
can we actually prevent all of them from producing disastrous consequences? Our
approach aims at extending the fault coverage of programs but cannot guarantee a
complete fault coverage.

Both the objective/goal-based and the more classical exception-based detections
are dependant on the precision and correctness of their definitions, as for example
an objective that is set too loose — a very large timeout value — can compromise the
detection mechanism. The example in the introduction of the thesis suffers from
a specifications problem: while objective driven, HAL lacks a good definition of

9.1 THE SAFETY NET APPROACH

these objectives and ends up endangering the objectives of the other elements of
the mission, the crew. As a problem of bad specifications with unforeseen emergent
behaviour, this falls outside the scope of the current proposal of safety net.

On the issue of granularity, our experiences showed that an architecture com-
prised of relatively few large agents is not adapted for illustrating our approach as
these agents are often critical for the overall system. Even if the detection is suc-
cessful, the confinement is too coarse-grained with respect to the system size and
the recovery steps do not have much margin to provide the desired fault tolerance,
other than orderly stopping the system or restarting processes — in the wide sense
— which in the case of protocols may mean that many resources are wasted. A finer
segmentation of the system into agents as well as of agents into goals and plans is
thus beneficial for tolerating faults with the safety net approach.

APPROACH ACCEPTABILITY FOR PROGRAMMERS The safety net approach, as
presented in Chapter 3, is applicable to potentially any programming language and
platform. As the idea is to provide a safety net with minimal intrusion, i.e. minimal
programmer involvement, the acceptability of the approach comes down to two
main components: the design requirements and the language used. To these, the
costs in terms of memory, computational and communications overhead are added.
The central point of the design requirements is the use of agents with multiple
goals and plans. As we note in our work on GPS, one of the benefits of the use of
goal-driven agents is that the human concepts are used.

For the safety net approach, we propose ALMA+ as a solution for designing and
implementing fault tolerant software. As discussed in Chapter 4, certain aspects
of the (ALMA and) ALMA+ language(s), in particular the importance given to the
use of rules, may be seen as “exotic” by software developers. However, ALMA+
presents a series of advantages for the tolerance of unforeseen faults, such as the
two level code — with the DAG and the “external” code — and the fact that it fa-
cilitates the introduction of the dependency handling mechanisms. The graphical
notation of the DAG proved to be intuitive enough when introduced to other engi-
neers for our experimentations. In particular, the ALMA-based model used in the
CNP+ scenario proved to be more appropriate for modelling and representation
than the more analysis-focused Petri nets used in the Interloc example from the
GPS contribution. For the “external” code sections, other languages than Prolog
can be used, for programmer comfort or other language specific properties, as long
as the code confinement is ensured and the code does not produce side effects
(e.g. the agent writing memory) that are difficult to trace. As we discuss below, the
overhead issue needs more investigation.

BENEFITS The safety net approach offers benefits for easier and safer prototyp-
ing, helping lower development costs and the time to market. In the long term,
critical applications could also benefit from the increased fault tolerance brought
by our approach, due to our complementarity to classic approaches.

The goal-driven multi-agent architecture proposed as a central point of the safety
net approach provides good properties for handling system complexity and easily
designing distributed applications, thus making the approach suitable for a large
array of applications.

As discussed in Chapter 5, agents that do not have the dependency handling
mechanisms can be included alongside safety net agents, in other words, the safety
net can be used in open systems. The only condition is that the error signal mes-

175

176

CONCLUSIONS

sages are ignored, which should normally be the case if there is no semantic over-
lap with any of the used protocols. This is one of the benefits of communication
by messages (and the agent architecture). Note, however, that while a safety net
agent would be able to function even if no other similar agents were present in the
MAS, the multi-agent component brought by the dependency handling would be
lost with the reparations and reconfigurations being performed only locally in the
safety net agents.

PERSPECTIVES The work covered by the safety net approach is vast and opens
many directions for future developments.

Firstly, the ideas put forward in Chapter 4 pave the way for a full integration of
the safety net approach with ALMA+ and its platform. This includes covering all
error cases discussed in the same chapter, after, in certain cases such as the timeout
conditions for the “external” code, studying their pertinence and feasibility. Putting
these tools to test with software developers would then allow the approach to be
refined and moved closer to an operational software development solution. This
would also involve enhancing the ALMA+ prototype (the platform and language
features), including providing a, possibly graphic-based, integrated development
environment (IDE). These would also allow for a maturation of the ideas for a
generic safety net approach, as presented in Chapter 3.

This direction of work would also provide an opportunity to study the way the
safety net approach scales. While the use of goal-driven agents and the multi-agent
architecture are both recommended for the use for complex and distributed applica-
tions, there are other components of the approach that may need a closer inspection
with respect to their scalability. In particular, the dependency handling mechanisms
may require garbage collecting mechanisms in order to avoid slowing down the sys-
tem or taking up too much of its memory. Issues related to the domino effect may
also be considered for large and long-running systems.

On the subject of dependency handling, the limitations of the proposed solu-
tions should be investigated. In particular, alternative propagation policies could
be studied and compared to see if other solutions are better with respect to the
fault tolerance — costs trade-off. As mentioned before, care should be taken when
choosing the policies so that the agent paradigm be respected, e.g. respecting the
agent autonomy [82]. The issue of broken propagation links when agents are ter-
minated could be solved using “ghost” agents that exist only with the purpose of
propagating any late error signals.

For the case of global inconsistency errors (i.e. “true = --- = false”), a possible
solution would be considering the introduction of elements of default reasoning
[60] to replace the total certainty of “true = ...” rules and allow for more flexibility
in the agent reasoning.

As we discuss in the examples of Ariane 501 and HAL, there are certain limi-
tations to our approach related to the specification issues. A solution to consider
for future work is introducing the requirement for organisational norms [24] (men-
tioned in Sec. 2.2.6 of this thesis), as well as other goal-oriented approaches to
design such as goal-oriented interaction protocols [13] as part of the safety net.

In our current work, the focus is on a situation where a single detection occurs.
If multiple components detect errors consecutively, the safety net approach ensures
that the concerned components reconfigure as they should. However, the system
does not take advantage of the information provided by the multiple detections,
e.g. indicating a common failing component. As discussed before, the diagnosis

9.2 THE GOAL-PLAN SEPARATION APPROACH

part of the recovery could take advantage of such events, possibly correlated with
a reputation mechanism (e.g. as the one used by TibFit, described in Sec. 2.1.3) for
filtering the components that are more likely to have caused the error or errors.

As we stated before, the safety net approach is complementary to the “classic”
fault tolerance approaches. Extending the approach requires studying which mech-
anisms can be easily integrated into the approach without this interfering with the
main purpose of the safety net — keeping the programmer’s involvement minimal.
These extensions could help improve the error coverage by adding other existing
mechanisms aiming both agent and multi-agent level errors. A direction of work
could be extending the detection to other agents, for example using a mechanism
similar to the Socially Attentive Monitoring described in Sec. 2.2.4 or trust and
reputation from Sec. 2.2.6. These can be used for remotely detecting errors and
identifying which entities should be “thrown” into the safety net — to trigger the
steps of our approach.

In the same idea of fault tolerance with minimal involvement of the program-
mer, it could also be investigated to what extent legacy systems can benefit from
the propositions in this work [18]. While the tools for dependency tracking are
transparent and can be integrated in other platforms, there will be design aspects
that may not have been considered when the original system was developed. For
example, modularity is one of the central points and so is the goal-plan definition.
Furthermore, the reparation specifications that are omnipresent in our plans are
not commonly used and would have to be provided through default policies or
automatic mechanisms. There are therefore certain requirements for such a retrofit
to be possible, but a goal-based agent system may to some extent benefit from a
safety net approach.

9.2 THE GOAL-PLAN SEPARATION APPROACH

In the second part of the thesis, we argued that the separation of reasoning and
acting is important for the specification and construction of goal driven (e.g. BDI)
agents. It was shown that the possibility to mix actions on the environment with
goal adoptions in various agent models and languages can have negative effects on
the resulting representation and can hinder the development process. A series of
examples illustrated what an agent would look like when complying with the Goal-
Plan Separation approach, with emphasis on the two resulting levels: a goal reasoning
level and an action level. As a possible representation for the former, goal plans were
introduced. These, while written using the exact same constructs, are the opposite
of action plans which are allowed to contain actions, but no goal adoptions. The GPS
therefore imposes a constraint on agent design that does go against the reflex of
adopting a goal in any place it is needed but produces a better-structured result.
The GPS also results in agents that “step back and look at the overall picture” rather
than react “rashly” to their current situation, making it suitable for “strategic”, pro-
active and complex behaviours, without necessarily neglecting the reactive ones,
e.g. GP2 in Fig. 58. We experimented with the GPS approach in two applications:
a maritime patrol application and a software for deploying AmI applications on a
distributed infrastructure. The importance of tidy agent representation lies with
the ease of development, which can, in turn, facilitate the wide-scale adoption of
the development model. Furthermore, a clean representation that helps diminish
the number of design and development faults and also improves maintainability
helps bring the overall project costs down.

177

178

CONCLUSIONS

The main downsides of this approach spring from the fact that it is a supplemen-
tary constraint that is placed on the programmer. He or she can thus be tempted to
circumvent it, for example by creating a specific goal for each action that would oth-
erwise be at the same level as other goals. This is not the purpose of the approach
and such implementations should be looked for during the code verifications. In
the same time, as any constraint, it can affect the appeal for programming goal-
driven agents. However, as it results into more structured and clearer code, we
consider this is not the case.

As presented in Chapter 8, we have already began the empirical evaluation of the
approach and its advantages on agent design through two applications. Among the
characteristics of the approach that appear promising, we note the fact that the goal-
based GPS should scale well as it promotes a multi-level model that allows for the
definition to manage complex and large agents. Furthermore, the use of plans and
goal plans based on the same language simplifies the development process, while
allowing both complex “strategic” and simple “reactive” behaviours (GP3 vs. GP2
in Fig. 58 from Sec. 7.3). Increasing the number of goals and plans also requires
taking into consideration goal and plan interferences.

GPS PERSPECTIVES On the side of BDI agent modelling there are many studies
on goal representations and goal life-cycles. However, the higher level that is placed
above these automata is less examined in the literature. Our work contributes to this
discussion by clearly separating the goal reasoning level, opening research oppor-
tunities into the formalisms for specifying this level, the goal plans presented here
being only a possible direction. Among other primitives, the handling of temporal
constraints is important for agent systems and should be taken into consideration.

If we take into account the MAS level, another perspective opened by the GPS
is for allowing agents to exchange data on their behaviours for cooperation or
coordination purposes. Having a clearly-defined goal reasoning level allows them
to exchange only this level, leaving unnecessary and specific details — the actions
and possibly the lower level goals — out of the discussion. Going multi-agent from
the GPS level can be tackled in two manners:

¢ via a top-down approach, where we keep the designer/methodology state
of mind and we ask ourselves how to build a MAS with GPS agents. This
corresponds to a Prometheus-GPS approach.

* by considering the agent’s point of view with respect to interactions with
other agents, in various cases that involve cooperation, fault tolerance and
delegation.

9.3 PUTTING IT ALL BACK TOGETHER

As we argue in our work on the Goal-Plan Separation, the part of the agent that is
in charge of reasoning on goals should be clearly separated from the actions. Apart
from the gains in code clarity and traceability, this separation offers another impor-
tant advantage: as acting is present in plans and separated from the goal reasoning
level, if proper confinement is assured at plan level, any error would be limited
to the running plan and the corresponding actuators and beliefs, leaving the goal
reasoning level functional. While the GPS approach is independent from the safety
net approach, the Goal-Plan Separation remains a good development practice for

9.3 PUTTING IT ALL BACK TOGETHER

designing and programming goal-driven agents. In the long run, the goal is to in-
tegrate the two, together with a system-level development methodology such as
Prometheus [114] in order to propose a complete development methodology for
reliable applications.

Autonomy is both an input and a by-product of our work. On the one hand, we
promoted autonomous agents and considering the autonomy of others during the
development process for loose coupling and we used goals which are important
for agent autonomy. On the other hand, having a system that tolerates unfore-
seen faults makes it less susceptible to requiring user or programmer assistance to
achieve its objectives, thus being more autonomous.

For today’s world where distribution is everywhere and systems become more
and more complex, the Multi-Agent Systems with goal-directed agents are an ex-
cellent paradigm through their fault tolerance properties, high level of abstraction
and closeness to the human reasoning. Furthermore, in the right setup — when the
safety net principles are applied — the paradigm can help programmers write fault
tolerant software without even knowing it.

179

Part V

APPENDIX

CONTROLLING GOAL EXECUTION

In Fig. 81 we present the model corresponding to the goal automaton implementa-
tion in ALMA for ALMA+. It contains four Reasoning Threads (RTs):

* goal adoption — for adding the satisfaction condition and handling the goal
timeout and unjustification, making sure the outcome is “failed” in these
cases;

e desire and aux_desire — for allowing the goal to be in a desire state without
being an intention (Selected is not believed, but Desirable is);

e intention — for cycling through the plans until the goal result is set, there are
no more plans or the goal is stopped or set back into a desire state.

The unexpected nodes at this level (the node is normally defined for ALMA+,
not ALMA) correspond to abnormal executions which are to be treated just as
unanticipated errors in the goal rules: the goal execution is stopped and the goal
result is set to “failed”.

In order to be able to keep a global goal timeout, all intermediary threads are
synchronised (i.e. the parent thread cannot finish as long as its children are still
executing).

183

184 CONTROLLING GOAL EXECUTION

Begin goal_adoption Begin desire(n)

|

sat_condition = Result

unjustified default Result?

Start aux_desire

unjustifiedT(Gpal) “Send(aux_desire)

Start
End
n desire(n+1)
End(F) End(F)
end(desire(n+ 1))V
unjustified T(Goal)
End
Begin aux_desire Begin intention(n)
defaul Selected? default Means?
Start
intention(o) End® Start MEA
ResultV
SelectedV
unjustified
End unjustified T (Gpal) Send(MEA)
End * Start plan
end(intention(0))V
unjustified T(Goal)
End
unjustified “T(Gpal) Send(plan)
End
Belief Type
)) default Result?
Desirable simple, . .
Start intention(n+1) End
(for all 4 RTs) IN/OUT
Selected simple, IN
(for all 4 RTs) end(intention(n+1))V
Result simple, OUT unjustified T(Goal)
(for all 4 RTS) End
Plan outcome set
(for all 4 RTs and plan)

Figure 81: The goal life-cycle (automaton) for ALMA+. Top left: goal adoption, top right:
desire thread, bottom left: aux desire thread, bottom right: intention thread. T(x)
= Timeout(x seconds). End(F) ends the thread only after marking the goal as
“failed”, thus hiding a reasoning node.

MODELS OF THE CNP+ AGENTS

B.1 THE INITIATOR AGENT

B.1.1 Agent Goals

Goal Description

Name main_goal 0
Satisfaction plan outcome = success
Means-end analysis | Ordered list

Time out 3008

Required beliefs 0

Produced beliefs 0

Plans Pro—1 Goal plan

Goal Description

Name know_acquaintances 1

Satisfaction plan done /A length(Acquaintances) > 1
Means-end analysis | Ordered list

Time out 1508

Required beliefs 0

Produced beliefs Acquaintances list

Plans Pri_1 Action plan
Goal Description

Name have_proposals 2

Satisfaction plan done A —empty(Proposals)

Means-end analysis | Ordered list

Time out 1508

Required beliefs Acquaintances, CFP list, simple
Produced beliefs Proposals list

Plans P12_1 Goal plan

Goal Description

Name have_one_acquaintance_dealt_with | 2-1
Satisfaction plan outcome = success

Means-end analysis | Ordered list

Time out 1008

Required beliefs Acquaintance, CFP simple (both)
Produced beliefs ProposalSet set

Plans Pro—1-1 Action plan

185

186

MODELS OF THE CNP+ AGENTS

Goal Description

Name get_proposals_sorted ‘ 3

Satisfaction plan done A —empty(Winners)

Means-end analysis | Ordered list

Time out 308

Required beliefs Proposals list

Produced beliefs Winners, Losers list, list

Plans P13_1 Plan (no goals, no actions)

Goal Description

have_work_done ‘

Name 4
Satisfaction plan done A ok(Results)

Means-end analysis | Ordered list

Time out 1008

Required beliefs Winners list
Produced beliefs Results simple
Plans Pra_i Action plan
Goal Description

Name have_losers_informed 5
Satisfaction plan done

Means-end analysis | Ordered list

Time out 408

Required beliefs Losers list
Produced beliefs 0

Plans Pis_q Action plan
Goal Description

Name have_cfp_cancelled 6
Satisfaction plan done

Means-end analysis | Ordered list

Time out 408

Required beliefs Proposals list
Produced beliefs 0

Plans Pre—1 Action plan

B.1 THE INITIATOR AGENT

B.1.2 Agent Plans

Begin

know_acquaintances(Acquaintances)

get_proposals_sorted(
Proposals, Winners, Losers)

S(G3)

B have_work_done(
Belief Type Winners)
Acquaintances list have_losers_informed|(
CFP simple |$> Losers)
Proposals list End
Winners list have_cfp_cancelled(Proposals)
Losers list

End

Figure 82: Plan P1g_1 - main goal plan

Begin
Belief ‘ Type |
DirectoryReference ‘ simple Send(g'et_all(maincontractori),
Acquaintances ‘list, ouT DirectoryReference)

msg(give_all(Acquaintances),
(30 u DirectoryReference)

End End End

Figure 83: Plan P11_1 - “know acquaintances” - for enquiring DirectoryReference (e.g. an-
other agent, a web service etc.) for a list of all agents of type maincontractori

187

188

MODELS OF THE CNP+ AGENTS

Begin
Belief Type ForEach(Ai in Acquaintances)
CFP simple, IN
A int list. IN G have_cfp_intent_from_
cquaintances e 21 one_acquaintance(Ai, CFP, ProposalSet)
Ai simple
ProposalSet set End ForEach
Proposals list, OUT

T(50) extract_list_from_set(ProposalSet,

End ProposalList) =
belief(Proposals, ProposalsList)
End End
Begin Belief Type
J Send(CEP. Aj CFP simple, IN
end() A Ai simple, IN
ProposalSet | set, OUT
u msg(Propose_i, Ai)
default valid(Propose_i)
End

true = set(ProposalSet, (Propose_i, Ai))

End

Figure 84: Plans P1,_1 “have proposals” and P1;_7_7 “have cfp intent from one acquain-

tance”

Begin
Belief Type
Proposals | list, IN _
Winners | list, OUT default who_.wuls(Proposals,
Winners, Losers)
Losers list, OUT End End
Begin
Belief Type Send(accept, Winners[o])
Winners list, IN
Result | simple, OUT

sg(Result, Winners[0])

* End

Figure 85: Plans P13_1 - “get proposals sorted” and Py4_1 - “have work done”. Plan Pj3_;
simply uses an external method to sort according so some criteria and produce
the two lists: Winners and Losers. The goal will fail if the Winner list is empty.

Plan Py4_

1 sends “accept” message to the single winner and waits for the reply.

B.1 THE INITIATOR AGENT

Begin

Belief ‘ Type ForEach(Contact in Losers)
Losers ‘ list, IN

Send(reject, Contact)

End
Begin

Belief ‘ Type ForEach(Contact in Proposals)

Proposals ‘ list, IN Send(reject, Contact)

End

Figure 86: Plans P15_1 “have losers informed” (left) and Pis_1 “have cfp cancelled” (right)
to send “reject” message to all the refused agents

189

190

MODELS OF THE CNP+ AGENTS

B.2 THE MAIN CONTRACTOR AGENT

B.2.1 Agent Goals

Goal Description

Name

main_goal 0

Satisfaction

plan outcome = success

Means-end analysis

Ordered list

Time out 3008s

Required beliefs 0

Produced beliefs 0

Plans Pnmcio-1 Goal plan
Goal Description

Name initiator_part 1
Satisfaction plan otucome = success

Means-end analysis

Ordered list

Time out 2008

Required beliefs Initiator, CFW, Desirable- | simple (Winners is
Worker, Winners, Neg, Results | list)

Produced beliefs 0

Plans Pmcii—1 Goal plan

Goal Description

Name worker_part 2

Satisfaction plan outcome = success

Means-end analysis

Ordered list

Time out 200S

Required beliefs Initiator, Desirablelnitiator, | simple (Winners is
Winners, Neg, Results list)

Produced beliefs 0

Plans Pmci2—1 Goal plan

Goal Description

Name have_refuse_sent 3

Satisfaction plan done

Means-end analysis | Ordered list

Time out 408

Required beliefs Initiator simple

Produced beliefs 0

Plans Pmci3—1 Action plan

B.2 THE MAIN CONTRACTOR AGENT

Goal Description

‘ 1-1

Name know_acquaintances

Satisfaction plan done A length(Acquaintances) > 1
Means-end analysis | Ordered list

Time out 1508

Required beliefs 0

Produced beliefs Acquaintances list

Plans Pmci1-1-1 Action plan
Goal Description

Name have_proposals ‘ 1-2
Satisfaction plan done A —empty(Proposals)
Means-end analysis | Ordered list

Time out 1508

Required beliefs Acquaintances, CFW list, simple
Produced beliefs Proposals list

Plans Pmci1—2-1 Goal plan

Goal Description

Name have_one_acquaintance_dealt_with | 1-2-1
Satisfaction plan outcome = success

Means-end analysis | Ordered list

Time out 1008

Required beliefs Acquaintance, CFW simple (both)
Produced beliefs ProposalSet set

Plans Pmci1—2—1-1 Action plan

Goal Description

Name

get_proposals_sorted ‘ 1-3

Satisfaction

plan done A —empty(Winners)

Means-end analysis | Ordered list

Time out 308

Required beliefs Proposals list

Produced beliefs Winners, Losers list, list

Plans Pnmci1-3-1 Plan (no goals, no actions)

Goal Description

Name have_winners_preliminary_accepted | 1-4
Satisfaction plan outcome = success

Means-end analysis | Ordered list

Time out 60s

Required beliefs Winners list
Produced beliefs 0

Plans Pmc1—4—1 Action plan

191

MODELS OF THE CNP+ AGENTS

Goal Description

Name have_losers_informed | 1-5
Satisfaction plan done

Means-end analysis | Ordered list

Time out 408

Required beliefs Losers list
Produced beliefs 0

Plans Pmci1-5-1 Action plan
Goal Description

Name have_work_done ‘ 1-6
Satisfaction plan done A belief(Results, _)

Means-end analysis

Ordered list

Time out 1008

Required beliefs Winners simple
Produced beliefs Results simple
Plans Prmci1—6—1 Action plan
Goal Description

Name have_accept_revoked 1-7
Satisfaction plan done

Means-end analysis | Ordered list

Time out 408

Required beliefs Winners list
Produced beliefs 0

Plans Pnmci1—7-1 Action plan
Goal Description

Name have_cfw_cancelled 1-8
Satisfaction plan done

Means-end analysis | Ordered list

Time out 408

Required beliefs Proposals list
Produced beliefs 0

Plans Pmc1-8-1 Action plan
Goal Description

Name have_proposal_sent 2-1
Satisfaction plan outcome = success

Means-end analysis

Ordered list

Time out 60s

Required beliefs Initiator simple
Produced beliefs 0

Plans Pmci2—1-1 Action plan

B.2 THE MAIN CONTRACTOR AGENT

Goal Description

Name have_results_sent 2-2
Satisfaction plan outcome = success

Means-end analysis | Ordered list

Time out 408

Required beliefs Initiator, Results simple, simple
Produced beliefs 0

Plans Pmci2—2-1 Action plan

193

194 MODELS OF THE CNP+ AGENTS

B.2.2 Agent Plans

Belief belief(G1,failed) A
Initiator belief(DesirableWorker,yes)
CFP = false
CFW :' belief(G2,failed) A
belief(Desirablelnitiator,yes)
G1 (goal outcome) - false
DesirableWorker | simple G initiator_part(Initiator, CFW,
1 .
G2 (goal outcome) | simple Winners, Neg, Results)
Desirablelnitiator | simple worker_part(Initiator, Winners,
Winners list Neg, Results)
Neg simple End
Results simple G3 > have_refuse_sent(Initiator)

End

Figure 87: Main goal plan for the MCi agents (Pncio—1) - it adopts two complementary
goals: one for dealing with the worker agents to whom it acts as an initiator
(G1) and one for managing the initial CFP, in which case it acts as a worker
(G2). The two goals G1 and G2 have strong links so the failure of one causes the
other to stop and this is ensured by the two rules added before their adoption.
“Is_acceptable(CFP, CFW)” is a predicate that returns true and instantiates CFW
if local conditions are met for the MCi to try and reply positively to the CFP (e.g.
demand parameters are within acceptable limits, resources to spare etc.).

B.2 THE MAIN CONTRACTOR AGENT

Begin

Belief | Type

Send(refuse, Initiator)
Initiator ‘ simple, IN

End

Figure 88: Plan Ppici3—1 “have refuse sent” that refuses the CFP with a message to the
Initiator

Begin

m know_acquaintances(Acquaintances)

T(100)1U F(Cr-1)
End End End m have_proposals(Acquaintances, CFW, Proposals)

get_proposals_sorted(
Proposals, Winners, Losers)

have_winners_preliminary_
accepted(Winners)

have_losers_informed(
Losers)

G
have_cfw_gancelled(Proposals)

1-5

Belief Type
. . E
Acquaintances list nd T(belief(Neg, success)
CFW simple, IN have_work_done(
Proposals list Winners, Results)
Winners list End
Losers list have_accept_revoked(Winners)
Neg simple
Results simple End

Figure 89: Plan Ppci1—1 “initiator part”. This goal plan is very similar to the one in the
Initiator agent, but with supplementary elements linked to its interaction to the
worker part: the agent needs to wait for the negotiation with the Initiator agent
to be successful before giving the green light to the Worker agents.

195

196 MODELS OF THE CNP+ AGENTS

Begin
Belief Type Send(get_all(workerj),
DirectoryReference | simple DirectoryReference)

Acquaintances list, OUT

msg(give_all(Acquaintances),
u DirectoryReference)
End End End

Figure go: Plan Pnici1—1-1 - “know acquaintances” - for enquiring DirectoryReference (e.g.
another agent, a web service etc.) for a list of all agents of type workerj

Begin
Belief Type 4&ForEaCh(Ai in Acquaintances)
CF w s1n.1ple, IN G have_cfw_intent_from_
Acquaintances list, IN 271 2 one_acquaintance(Ai, CFW, ProposalSet)
Ai simple

End ForEach
ProposalSet set
Proposals list, OUT
T(50) extract_list_from_set(ProposalSet,

u
End ProposalList) =
u belief(Proposals, ProposalsList)

End End
Begin Belief Type
CFW simple, IN
Send(CFW, Ai) . .
Ai simple, IN
ProposalSet | set, OUT
T(50 u msg(Propose_i, Ai)

default valid(Propose_i)

true = set(ProposalSet, (Propose_i, Ai))

End

Figure 91: Plans Ppci1—2—1 “have proposal set” and Ppici1—2—1-1 “have cfw intent from
one acquaintance”

B.2 THE MAIN CONTRACTOR AGENT

Begin
Belief Type
Proposals | list, IN
Winners | list, OUT default who_wins(Proposals, Winners, Losers)
Losers list, OUT
End End

Figure 92: Plan Ppnici1—3-1 - “get proposals sorted” simply uses an external method to
sort according so some criteria and produce the two lists: Winners and Losers.
The goal will fail if no Winners list is produced.

Begin
|
Belief ‘ Type QForEach(Contact in Losers)

Losers ‘ list, IN I;' Send(reject, Contact)

End

Begin

Belief ‘ Type éForEach(Contact in Winners)
Proposals ‘ list, IN I;' Send(cancel, Contact)

End

Figure 93: Plans Ppci1—5-—1 “have losers informed” (left) to send “reject” message to all
the refused agents (Pnpmci1—8—1 “have cfw cancelled” is identical but uses Pro-
posals as list of receivers) and Pypci1—7—1 “have accept revoked” (right) to send
“cancel” message to all previously accepted worker agents (for example in case
of failed negotiations with the Initiator).

Begin

Belief ‘ Type

Send(preliminary_accept, Winners[o])
Winners ‘ list, IN

End
Begin
Belief Type l Send(confirm, Winners[o])
Winners list, IN
Result | simple, OUT
T(60 u sg(Result, Winners[0])

End

Figure 94: Plans Ppici1—4—1 “preliminary accept” and Ppici1—¢—1 “have work done” that
confirms the first message to the single winner and waits for the reply

197

198 MODELS OF THE CNP+ AGENTS

ave_refuse_sent(
Initiator)

true =

| belief(Neg, success)
u

Belief Type
Winners list, IN belief(Results, _)
Initiator | simple, IN have_results_sent(
- Results, Initiator)
Neg simple
Results simple End

Figure 95: Plan Ppciz—1 “worker part”. Setting the “Neg” belief to true signals to the
initiator part that it can continue its CFW, while adding a contradiction to the
desirable belief causes the initiator part to stop.

Begin
Belief ‘ Type I_J__| Send(propose, Initiator)
Initiator ‘ simple, IN

sg(accept, Initiator)

End

msg(reject, Initiator

End

Begin

Belief Type

Results | simple, IN Send(results(Results), Initiator)

Initiator | simple, IN
End

Figure 96: Left: Pnqci2—1-1 “have proposal sent” that sends a “propose” message to the
Initiator and waits for the reply. The goal is achieved if the reply is “accept”.
Right: Pap1ciz—2—1 “have results sent” sends the Results to the Initiator.

B.3 THE WORKER AGENT

B.3.1 Agent Goals

B.3 THE WORKER AGENT

Goal Description

Name

main_goal

(¢}

Satisfaction

plan outcome = success

Means-end analysis

Ordered list

Time out 3008s

Required beliefs 0

Produced beliefs 0

Plans Pw;0-1 Goal plan
Goal Description

Name have_refuse_sent 1
Satisfaction plan done

Means-end analysis | Ordered list

Time out 20s

Required beliefs MCi simple
Produced beliefs 0

Plans Pw;1-1 Action plan

Goal Description

Name

have_proposal_sent

2

Satisfaction

plan outcome = success

Means-end analysis

Ordered list

Time out 60s

Required beliefs MCi simple
Produced beliefs 0

Plans Pw;2-1 Action plan

Goal Description

Name have_work_done 3
Satisfaction belief(Results,_)

Means-end analysis | Ordered list

Time out 30S

Required beliefs CFW simple
Produced beliefs Results simple
Plans PW). 3.1 Action plan

199

200 MODELS OF THE CNP+ AGENTS

Goal Description

Name have_mci_informed_of_failure | 4

Satisfaction plan done

Means-end analysis | Ordered list

Time out 20s

Required beliefs MCi simple
Produced beliefs 0

Plans Pw,a—1 Action plan

Goal Description

Name have_results_sent 5

Satisfaction plan outcome = success

Means-end analysis | Ordered list

Time out 408

Required beliefs MC(j, Results simple, simple

Produced beliefs 0

Plans Pw;5-1 Action plan

B.3 THE WORKER AGENT

B.3.2 Agent Plans

Belief | Type
CFW | simple End End End
MCi simple |—E‘f\> have_work_done(CFW, Results)
Results | simple

T(4
have_results_sent(
Results, MCi)

have_mci_informed_of_failure(MCi)

End

Figure 97: Main goal plan for the Wj agents Pyjo 1

201

202 MODELS OF THE CNP+ AGENTS

Begin
Belief | Type Send(refuse, MCi)
MCi | simple, IN

End

Begin
Belief ‘ Type Send(propose, MCi)

MCi | simple, IN

msg(refect, MCi
End

msg(preliminary_accept, MCi)
End

Figure 98: Plans Pyyj1_1 “have refuse sent” and P21 “have proposal sent”, whose goal
is achieved if the reply is “preliminary accept”

Begin
Belief Type

- Calculus_function(CFW, R) =
CEW | simple, IN belief(Results, R)
Results | simple, OUT

End End

Figure 99: Plan Pyyj3_1 “have work done”

Begin

Belief ‘ Type
MCi ‘ simple, IN

Send(results(failed), MCi)

End
Begin
Belief Type l
MCi simple, IN I;I Send(results(Results), MCi)
Results | simple, IN
End

Figure 100: Plans Pyyjs_71 “have mci informed of failure” and Pwjs5_1 “have results send”

ERROR RESPONSE BY LOCATION OF OCCURRENCE IN CNP+

In this appendix, we give a more complete list of errors by location for the CNP+
example in Chapter 5, as an extension of the example in Sec. 5.4.2.

203

ERROR RESPONSE BY LOCATION OF OCCURRENCE IN CNP+

204

up with a result). Yellow tags correspond to the error cases from Tables 17-19.

1 1] 1 1 1 | | 1 s ---- Lo _ L 1 1 | 1 1 1
1 1 1 1 1 | | 1
1 1 1 1 1 | | 1 Shi oo ” 1 . S _B
1 1 1 1 1 | | | | 1 8 \\V
1 1 1 1 1 | |,||||V|||||||V T T
1 1 1 1 1 . Hhsay | 1
e _ |
i \\\Vl_| | | A L oo ™5 eed | |
= | | wnsaxiag e i | i
1 1 1 1 | 1
150 ansay 1 1 1 1 | 1
1 - T 1 1 1 1 | 1
1 1) 1 1 1 1 | 1
1 1 [|Nm; 1 1 1 1 | 1
- “ T | | W |
“ “ ST “ ” “
1 1 1 1 | 1
1 - 1 1 1 1 | 1
1 btd “ £9 1 1 O i S b ——— Lluuulf b
1 1 1 1 1 1 I 1 —
1 1 HHguog 1 1 T 1 1 | 1
“ “ “ “ L e T %5 “ “ W “
' ' 1 1 ' ” Ho'Banafes P o L
1 1 1 1 1 | = - T 1
1 1 1 1 1 | 1 1
1 1 [iF4 1 1 1 | etk | 1
1 1 [‘L 1 1 1 | | 1
1 1 1 1 1 | | 1
1 1 1 1 1 | | 1
1 1 1 1 1 I I 1
1 1 1 1 1 I I 1
1 1T~~~ = 1 1 1 [| 1
S I 1 1 __=z | 1
v 1 1 | 1 e._
daaaeieUIL I ” “
1 1 T ¥l —
! ! Uobld TNy 2] 7]
1 1 i L. [asndold
1 1 IIIV T -7d 1
1 1 [Ra] 1 1
“ “ glauuipaag “ “
1 1 [ol 1 1
Bl Zh
§ ! “ “ et N, I “ “
ﬂ 1 |||V 1 1
— I 1 1
bt zd 4 4
| 1 1
T | 1 1
1 1-Td T | 1 1
1 1 | 1 1
1 1 | 1 1
1 1 1 T | 1 1
' \ ST | I | l
| | i i T T | i i
1 1 1 1 1 1~ "= | 1 1
1 1 | | |||V | | |
1 1 1 1 | 1 1
1 1 1 1 | 1 1
1 1 1 1 | 1 1 f'lw_
1 1 1 1 1 -1- | | 1 1
! ! ! ! P e _ W ! !
1 1 1 1 1 I I 1 o & | I | |
i i i i i | | i i |0 i ,
1 1 1 1 1 | | 1 1 | 1 1 = |
1 1 1 1 1 | | 1 1 | 1 1 | 1
1 1 1 1 1 | | 1 1 | 1 1 | 1
1 1 1 1 1 | | 1 1 | 1 1 | 1
1 1 1 1 1 | | 1 1 | 1 1 | 1
1 1 1 1 1 I I 1 1 I 1 1 I 1
1 1 1 1 1 I I 1 1 I 1 1 I 1
1 1 1 1 1 I I 1 1 I 1 1 I 1
1 1 1 1 1 | | 1 1 | 1 1 | 1
1 1 1 1 1 | | 1 1 | 1 1 | 1
suedy || s1e0f 1415 1i || 9 wiew [y suedy || sie0f | pagi || suedi | sieof) pugi|| sued || =eof s || do wew o] sie0f a s || suedr [=1eof a pugr| | suedr suedy | =eof o pugs| | sueds || sieof W s | o wew |

Figure 101: Sequence diagram for a successful CNP+ negotiation (the Initiator agent ends

205

ERROR RESPONSE BY LOCATION OF OCCURRENCE IN CNP+

I I I I I I | |_||IIIIIV| I I I I I I I I
“ “ “ “ “ SN o G “ “ “ “ “ “ “ “
I I I I T I I I I I I I I
I I L L I I I I I I I I
“ “ jpaue0 | “ “ “ “ “ “ “ “ !
“ “ “ “ Dobld] Y kS == el 1 i | “ “ i B N
1 1 1 1 1 1 e 1 1 1 [
I I I I I I A o= I I V
I I I I I I T T
1 1 1 1 1 1 v palay 1 1
I I I I I I I I | -
I I I I I ‘Tt -t 1t 1Tt vt v rr—------- == A==l _Ilnrm&ln.,l lwmull
1 1 1 1 1 1 1 1 1 I i, V
I I I I I I I | R
I I I I I I I I V
I I I I I I I I
1 T~~~ "F 1 1 1 . 1 1 A
s | | - | | Do bEd
: : 1 1 1 l £o
JdanaeeUILBId) 1 1 1 i V
1 1 T 1 N . |||||V
1 1 1 - — — — —
! ! bobrld T g - -
1 1 | I T asodoid
1 1 |||V T -1-2d 1
1 1 (3] 1 1
1 1 ‘ EIETIEL: | 1 1
1 1 1 1
i i i VE Y Ve i i
i LT i i
-- 3 zd | ! !
. asodoig 4 4 4
 FE z0 i i i
! ! mio ! ! !
I I
1 1 1 bebE-ld “ ‘_‘.w._.o T 1 1 1
I I I I I =& I - I I I
I I I I I _‘N_‘&_ g I I I
1 1 1 1 1 | 1 1 1
1 1 1 1 |||V 1 1 1
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I - [I I I
| | | | I A _ | | |
I I I I I I I I 19 o I I I I
| | | | | | | | | T | T
I I I I I I I I I I I I I L I -5
| | | | | | | | | | | | | | TR N
I I I I I I I I I I I I 1 1 1 R I ——
| | | | | | | | | | | | | | —
I I I I I I I I I I I I I I
I I I I I I I I I I I I I I
i i i i i i i i i i i i i i R T
sued; || seal (81510]| 49 view i sueld; || sjeol |y pagi || suedy [s1eof @y pugi|] sued; || seol iy s || 49 wew o) sieol m1s]| sueds | sieal) puzr| | sueds sue|d; | s|eal o puzy|| sued; || sieofa 1=y | 9 wiew |

up with a result). The yellow tag corresponds to an error case from Table 20.

Figure 102: Sequence diagram for a successful CNP+ negotiation (the Initiator agent ends

1 1 [1 1 1 | [[]]] 1 1 [[]
1 i 1 1 1 I 1 1
- I I - I I
v 1 1 v 1 1
+ + I I
1 peley 1 1
{54 I I T 1 B I,
_— - L = . | S | B — . b
: _ b-bbdd 4T gy 3
1 1 .Y P asodoid
1 1 L] _‘n_‘|N& 1
| | L-Z5 | |
1 1 ‘ Fiauulpag 1 1
1 1 1 1
I I I - | I I
1 1 1 LEld | -lg 1 1
I I I T - = I I
1 [|||V 1 1
by zd | ! !
. asodold 4 4 4
1 L-2d 7 1 1 1
1 1 o 1 1 1
i i Mda T i i i
T
! ! e ! ! |
I I I I I i | - I I I
1 1 1 1 1 _‘ N _‘l | N _‘O 1 1 1
I I I I | I I I I
I I I I IIIV I I I
1 1 1 1 1 1 1
I I I I I I I
1 1 1 1 1 1 1
“ “ “ “ |l T o “ “ “
1 1 1 1 1 | 1 1 1 1 1 1
I I I I I | I I o o I I I I
1 1 1 1 1 | 1 1 1 1 1 1
I I I I I | I I I I EEW I I I -hzd
I I I I I | I I I I I I I b I -5 T
l-2d
i i i i i | i i i i i i i i i Lo N
1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 — — == =
I I I I I | I I I I I I I I DIII
I I I I I | I I I I I I I I V
1 1 1 1 1 | 1 1 1 1 1 1 1 1
I I I I I | I I I I I I I I
1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 - T
1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 bid 1 D}
. A . A " . . A A . A . . A . A
sueldy || 51206 415 10 || A9 LIELL [sueldy || sjeof) pagi| | sued; | sjeob a pugi| | suedy || sieof a1s || do wew o (| sieof s || sueidy | sieofi g pug|| sued; sue|dy | sjeof o pugi|| suedy || sieof w18 | | o Lie |p

ERROR RESPONSE BY LOCATION OF OCCURRENCE IN CNP+

206

Figure 103: Sequence diagram for a successful CNP+ negotiation (the Initiator agent ends
up with a result). The yellow tag corresponds to an error case from Table 20.

207

ERROR RESPONSE BY LOCATION OF OCCURRENCE IN CNP+

i i i | i i SREEEE el 1 i i i i
1 1 1 | 1 1 A\\\ 1 1 1
1 1 1 | 1 1 ——-- 1 T - =
| | 1 | | | —r - --H
I I I I I I
I I I I I I asnay
I I I I I I P B 1
1 1 1 | 1 1 co “ b-Ed “
“ “ I RPN SRR S | |
1 1 1 e - —— = 1 1
1 [-- o 1 1
— “ “
ashjay “ “
I I
1 1
w0 a1 g ! !
o bbEsld - T 1 1
“ R “ “
i i mr: B i i
I I I I
I I I I
1 1 1 1
1 1 1 _‘ _‘|_‘& | L-19 1 1
1 1 1 | 1 _.n_.& _‘uﬂl 1 1 1
“ “ “ | “ IaE o | ! ! !
“ “ “ " “ “ “ o | “]
I I I | I I I I I I T t= 120
i i i | i i i i i i i i P T N
I I I I I I I I I 1 1 1 1 e _
“ “ “ W “ “ “ “ “ “ “ “ mv
1 1 1 | 1 1 1 1 1 1 1 1
1 1 1 | 1 1 1 1 1 1 1 1
! ! “ | ! ! ! ! ! “ ! ! e
sue(d; (| S|206 1415 17 || d9 e [y sue(di (| 510l A pagg| | sueds | s1eof o puzr|| sueds || sieof 1415 10| | d9 e g (| sieol s || sueids [sieof s pugg| | sueds sue(di [sjeof A puzg| | sueds || sieol s | | d9 uew |

Figure 104: Sequence diagram for a successful CNP+ negotiation (the Initiator agent ends

up with a result). Yellow tags correspond to error cases from Table 2o0.

ERROR RESPONSE BY LOCATION OF OCCURRENCE IN CNP+

Table 17: Error cases for the Initiator agent (DS stands for DirectoryService)

Error occurrence

Normal goal-driven reaction

Safety net (+ from normal)

1 | During P1-1

G1 may retry; if it fails, Po-1
will stop gracefully (foreseen)

if the error occurred after
the message to the DS was
sent, retract message

2 | During P2-1-1 (after
sending CFP)

G2-1 may retry but the cor-
responding MCi is not in-
formed and it may contact
Wj agents in order to pre-
pare a Propose; G2 can still
be achieved with the other in-
stances of G2-1

CFP is retracted which
causes unjustifications
in MCi in all sub-goals
adopted by Po-1 after
receiving the message
(eventually CFW should be
called off if already sent)

3 | During P2-1-1 (after
writing Propose)

As above, and the written Pro-
pose remains enabled in the
agent memory:.

As above, but the written
Propose is retracted too

4 | During Po-1, just af-
ter G2

MCi agents wait for replies
until their deadlines

no direct dependencies of
the plan, so no retractions

5 | During P3-1

G3 may retry and fail. All
foreseen

6 | During Pg4-1 (after
Accept, but Dbefore
P2-1-1 of MCi ends)

G4 may retry, but receiving
multiple Accept messages is
not included in the current
model (however, in the ab-
sence of a strict message iden-
tification, the new Accept mes-
sage would be ignored and
the MCi agent will wait for
Result which comes as a reply
to the first Accept).

The Accept message is re-
tracted, P2-1-1 of MCi is
unjustified, then its goal,
Gz2-1, will probably fail.

7 | During Pg-1 (after
Accept, but AFTER
P2-1-1 of MCi ends)

As above

The Accept message is re-
tracted but with no conse-
quences for MCi

8 | During P4-1 (after
receiving Result)

Any retries for G4 will end in
timeouts in the current model
as MCi already finished.

Accept is retracted, but MCi
is already done.

9 | During Po-1 after G4

Nothing to retract - all
goals are over

ERROR RESPONSE BY LOCATION OF OCCURRENCE IN CNP+

Table 18: Error cases for the Main Contractor; agent (DS stands for DirectoryService)

Error occurrence

Normal goal-driven reaction

Safety net (+ from normal)

10

During P1-2-1-1 (af-
ter sending CFW)

G1-2-1 may retry but the
corresponding Wj is not in-
formed to stop preparing a
Propose; Gi1-2 can still be
achieved with the other in-
stances of G1-2-1

CFW is retracted for the Wj
corresponding to the plan,
triggering recovery in Wj

11

During P1-2-1-1 (af-
ter writing Propose)

G1-2-1 may retry but the
corresponding Wj is not in-
formed to stop waiting for
a confirmation; G1-2 can still
be achieved with the other
instances of Gi1-2-1; the writ-
ten Propose remains enabled
in the agent memory.

As above, but the written
Propose is retracted too

12

During P1-1, just af-
ter G1-2

Wj agents wait for replies un-
til their deadlines; G1 may
still be achieved leading to a
positive outcome of the CFP,
but the Wj agents may not be
able to reply to a new CFW
while waiting for a confirma-
tion for the first

13

During P1-1, just af-
ter G1-3

Wj agents wait for replies un-
til their deadlines, but P2-1
now negotiates using a list
of winners that is no longer
valid; if G1 fails, G2 will be
unjustified, but if a new plan
goes well for Gi, the two
plans will work with inconsis-
tent beliefs

14

During P2-1-1, after
sending Propose

G2-1 may succeed with an-
other plan, but the protocol
with I is broken. The I agent
is not informed and may
wrongly choose this agent as
winner.

The Propose message is re-
tracted but I will react only
if P2-1-1 is still running.

15

During P2-1,
after setting
belief (Neg,ok),
before Result

G2 will probably fail and
cause G1 to stop as well, stop-
ping G1-6 in the process.

belief(Neg,ok) is re-
tracted, causing Pi-1 to
unjustify and stop Gi-6,
but the consequences are
the same as in the normal
case.

16

During P1-6-1, after
confirming and be-
fore the Result

G1-6 may retry but the pro-
tocol is broken and the out-
come is not guaranteed.

The Confirm message is
retracted causing the Wj
agent to stop.

17

During P2-1, just af-
ter receiving Result

Retries for G2 would result in
a broken protocol.

belief (Neg, ok) is re-
tracted, but no reparation
is triggered as Pi-1 fin-
ished.

209

210

ERROR RESPONSE BY LOCATION OF OCCURRENCE IN CNP+

Table 19: Error cases for the Worker; agent

Error occurrence

Normal goal-driven reaction

Safety net (+ from normal)

18

During Po-1, when
evaluating CFW

MCi is not informed and its
P1-2-1-1 will timeout. Proto-
col is broken.

19

During P2-1, after
having sent the Pro-
pose

G2 may retry or just fail,
but the protocol is broken
and MCi may even wrongly
choose this Wj as winner

Propose is retracted, but if
P1-2-1-1 of MCi was done,
no reparation is triggered

20

During Po-1, while
waiting for Confirm

21

The rule added by
P3-1 crashes while
G3 still executes

The goal fails (its outcome is
based on the rule output)

The rule is retracted

22

During Po-1, just be-
fore G5

MCi will wait for reply until
its timeout

23

During Ps5-1, when
attempting to send

As above

Table 20: Error cases in the not-perfect case.

Error occurrence

Normal goal-driven reaction

Safety net (+ from normal)

24

P2-1-1 of MCi after
the I agent decided
the MCi agent is
not among the win-
ners (before or after
receiving the Reject
message)

No negative impact for the
negotiation, all well.

Propose message retracted,
but no plan reacts.

25

P2-1 of Wj after
the MCi agent de-
cided the Wj agent is
not among the win-
ners (before or after
receiving the Reject
message)

No negative impact for the
negotiation, all well.

Propose message retracted,
but no plan reacts.

26

P1-1 of Wj after the
Refuse message was
sent

No negative impact for the
negotiation, all well.

Refuse is retracted, but no
plan unjustifies.

27

Po-1 of Wj after G1
was achieved (the
Refuse message was
sent)

No negative impact for the
negotiation, all well.

BIBLIOGRAPHY

[1]

Agent Oriented Software Pty. Ltd. JACK Intelligent Agents® - Agent Manual.
Release 5.3. June 2005 (cit. on pp. 31, 44).

Joe Armstrong. “A History of Erlang.” In: Proceedings of the Third ACM SIG-
PLAN Conference on History of Programming Languages. HOPL III. New York,
NY, USA: ACM, 2007, pp. 6-1-6—26 (cit. on pp. 4, 25, 26).

Joe Armstrong and Robert Virding. “Erlang - An Experimental Telephony
Programming Language.” In: Switching Symposium, 1990. XIII International.
Vol. 3. May 1990, pp. 43—48 (cit. on p. 25).

Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr.
“Basic Concepts and Taxonomy of Dependable and Secure Computing.” In:
IEEE Transactions on Dependable and Secure Computing 1.1 (2004), pp. 11-33
(cit. on pp. 12, 13, 15).

J. M. Ayache, P. Azema, and M. Diaz. “Observer, a Concept for on Line
Detection for Control Errors in Concurrent Systems.” In: Madison, June 1979
(cit. on p. 17).

Mihai Barbuceanu and Mark S Fox. “COOL: A Language for Describing
Coordination in Multi Agent Systems.” In: ICMAS. 1995, pp. 17-24 (cit. on
p- 28).

John Barnes. High Integrity Software: The SPARK Approach to Safety and Secu-
rity. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003
(cit. on p. 25).

Steve S. Benfield, Jim Hendrickson, and Daniel Galanti. “Making a Strong
Business Case for Multiagent Technology.” In: Proceedings of the Fifth Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems. AAMAS
‘06. New York, NY, USA: ACM, 2006, pp. 10-15 (cit. on p. 5).

Bernard Berthomieu and Michel Diaz. “Modeling and Verification of Time
Dependent Systems Using Time Petri Nets.” In: IEEE Transactions on Software
Engineering 17.3 (1991), pp. 259—273 (cit. on p. 153).

Staffan Blau, Jan Rooth, Jorgen Axell, Fiffi Hellstrand, Magnus Buhrgard,
Tommy Westin, and Goran Wicklund. “AXD 301: A New Generation ATM
Switching System.” In: Comput. Netw. 31.6 (Mar. 1999), pp. 559582 (cit. on
p- 25).

Rafael Bordini, Jomi Hiibner, and Renata Vieira. “Jason and the Golden
Fleece of Agent-Oriented Programming.” In: Multi-Agent Programming.
Ed. by Rafael Bordini, Mehdi Dastani, Jirgen Dix, and Amal El Fallah
Seghrouchni. Vol. 15. Multiagent Systems, Artificial Societies, and Simu-
lated Organizations. Springer US, 2005, pp. 3—37 (cit. on pp. 10, 31).

Radja Boukharrou, Ahmed-Chawki Chaouche, Amal El Fallah Seghrouchni,
Jean-Michel Ilié, and Djamel Eddine Saidouni. “Dealing with Temporal Fail-
ure in Ambient Systems: a Dynamic Revision of Plans.” In: Journal of Ambient
Intelligence and Humanized Computing 6.3 (2015), pp. 325-336 (cit. on p. 32).

211

212

Bibliography

[13]

Lars Braubach and Alexander Pokahr. “Goal-Oriented Interaction Proto-
cols.” In: Proceedings of the 5th German Conference on Multiagent System Tech-
nologies. MATES "o07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 85—97 (cit.
on pp. 31, 136, 176).

Lars Braubach, Alexander Pokahr, and Winfried Lamersdorf. “Jadex: A
Short Overview.” In: Net.ObjectDays 2004: AgentExpo. 2004 (cit. on pp. 10,
13, 31).

Lars Braubach, Alexander Pokahr, Daniel Moldt, and Winfried Lamersdorf.
“Goal Representation for BDI Agent Systems.” In: Programming Multi-Agent
Systems. Ed. by Rafael Bordini, Mehdi Dastani, Jiirgen Dix, and Amal El Fal-
lah Seghrouchni. Vol. 3346. LNCS. Springer Berlin Heidelberg, 2005, pp. 44—
65 (cit. on pp. 32, 33).

Bruno Cabral and Paulo Marques. “Exception Handling: A Field Study in
Java and .NET.” In: ECOOP 2007 — Object-Oriented Programming. Ed. by Erik
Ernst. Vol. 4609. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2007, pp. 151-175 (cit. on pp. 5, 23).

Bruno Cabral and Paulo Marques. “A Case for Automatic Exception Han-
dling.” In: Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM
International Conference on. Sept. 2008, pp. 403—406 (cit. on p. 23).

Radu Calinescu. “Towards a Generic Autonomic Architecture for Legacy
Resource Management.” In: Innovations and Advanced Techniques in Systems,
Computing Sciences and Software Engineering. Ed. by Khaled Elleithy. Dor-
drecht: Springer Netherlands, 2008, pp. 410—415 (cit. on p. 177).

Costin Caval, Amal El Fallah Seghrouchni, and Patrick Taillibert. “Keeping
a Clear Separation between Goals and Plans.” In: Engineering Multi-Agent
Systems. Ed. by Fabiano Dalpiaz, Jiirgen Dix, and M. Birna van Riemsdijk.
Vol. 8758. Lecture Notes in Computer Science. Springer International Pub-
lishing, 2014, pp. 15-39 (cit. on p. 11).

Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly Detection:
A Survey.” In: ACM Comput. Surv. 41.3 (2009), 15:1-15:58 (cit. on pp. 18-20).

Ahmed-Chawki Chaouche, Amal El Fallah Seghrouchni, Jean-Michel Ilié,
and Djamel Eddine Saidouni. “A Higher-order Agent Model for Ambient
Systems.” In: Procedia Computer Science 21.0 (2013). The 4th International
Conference on Emerging Ubiquitous Systems and Pervasive Networks and
the 3rd International Conference on Current and Future Trends of Informa-
tion and Communication Technologies in Healthcare, pp. 156 —163 (cit. on
Pp- 32, 146).

Christopher Cheong and Michael Winikoff. “Hermes: Designing Goal-
oriented Agent Interactions.” In: Proceedings of the 6th International Con-
ference on Agent-Oriented Software Engineering. AOSE’05. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 16—27 (cit. on p. 31).

Caroline Chopinaud. “Controle de 1'émergence de comportements dans les
systemes d’agents cognitifs autonomes.” French. Title in English: “Control-
ling the Emergence of Behaviours in Autonomous Cognitive Agent Sys-
tems”. PhD thesis. Paris: Université Pierre et Marie Curie, 2007 (cit. on p. 14).

[36]

Bibliography

Caroline Chopinaud, Amal El Fallah Seghrouchni, and Patrick Taillibert.
“Prevention of Harmful Behaviors Within Cognitive and Autonomous
Agents.” In: Proceedings of ECAI 2006: Amsterdam, The Netherlands, The
Netherlands: 10S Press, 2006, pp. 205209 (cit. on pp. 14, 30, 176).

Bradley J. Clement, Edmund H. Durfee, and Anthony C. Barrett. “Abstract
Reasoning for Planning and Coordination.” In: Journal of Artificial Intelligence
Research 28.1 (2007), pp. 453-515 (cit. on p. 150).

Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. “Adaptive Socio-
Technical Systems: a Requirements-Based Approach.” In: Requirements Engi-
neering 18.1 (2013), pp. 1—24 (cit. on pp. 31, 77).

Mehdi Dastani, M. Birna van Riemsdijk, Frank Dignum, and John-Jules
Meyer. “A Programming Language for Cognitive Agents: Goal Directed
3APL.” In: Programming multiagent systems, first international workshop (Pro-
MAS’03). Vol. 3067. LNAL Berlin: Springer, 2004, pp. 111-130 (cit. on p. 11).

Sylvain Dekoker. “Detection of Unjustified Plans for Cognitive Agents.” In:
COGnitive systems with Interactive Sensors (COGIS 09). Paris, France, 2009 (cit.

on pp. 14, 47).

Sylvain Dekoker. “Alma : un langage de programmation d’agents cognitifs.”
French. Title in English: “ALMA: A Programming Language for Cognitive
Agents”. PhD thesis. Paris: Université Pierre et Marie Curie, May 2012 (cit.
on pp. 6, 13, 14, 37, 38, 94).

Benjamin Deveze, Caroline Chopinaud, and Patrick Taillibert. “ALBA: A
Generic Library for Programming Mobile Agents with Prolog.” In: Program-
ming Multi-Agent Systems. Ed. by RafaelH. Bordini, Mehdi Dastani, Jiirgen
Dix, and Amal El Fallah Seghrouchni. Vol. 4411. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2007, pp. 129-148 (cit. on p. 48).
Michel Diaz, Guy Juanole, and Jean-Pierre Courtiat. “Observer-A Concept
for Formal On-Line Validation of Distributed Systems.” In: IEEE Trans. Softw.
Eng. 20.12 (1994), pp. 900—-913 (cit. on p. 17).

Edsger W. Dijkstra. “Structured Programming.” In: ed. by O.]J. Dahl, E. W.
Dijkstra, and C. A. R. Hoare. London, UK: Academic Press Ltd., 1972, pp. 1-
82 (cit. on p. 4).

Nicola Dragoni and Mauro Gaspari. “Crash Failure Detection in Asyn-
chronous Agent Communication Languages.” In: Autonomous Agents and
Multi-Agent Systems 13.3 (Nov. 2006), pp. 355-390 (cit. on p. 28).

Pierre-Yves Dumas, El Fallah Seghrouchni, Amal, and Patrick Taillibert.
“Aerial: A Framework to Support Human Decision Making in a Constrained
Environment.” In: Tools with Artificial Intelligence (ICTAI), 2012 IEEE 24th In-
ternational Conference on. Vol. 1. Nov. 2012, pp. 626-633 (cit. on p. 79).

Amal El Fallah Seghrouchni and Serge Haddad. “A Recursive Model for
Distributed Planning.” In: Proceedings of the 2nd International Conference on
Multi-Agent Systems. Kyoto, Japan: AAAI Press, 1996, pp. 307-314 (cit. on
p- 153).

E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. John-
son. “A Survey of Rollback-Recovery Protocols in Message-Passing Sys-
tems.” In: ACM Comput. Surv. 34.3 (Sept. 2002), pp. 375—408 (cit. on p. 16).

213

214

Bibliography

[37]

[38]

[47]

[48]

[50]

European Space Agency. Rosetta - Living with a Comet. Brochure. 2015 (cit. on
p- 4)-

Alan Fedoruk and Ralph Deters. “Improving Fault-Tolerance by Replicat-
ing Agents.” In: Proceedings of the First International Joint Conference on Au-
tonomous Agents and Multiagent Systems: Part 2. AAMAS "02. New York, NY,
USA: ACM, 2002, pp. 737-744 (cit. on p. 28).

Jacques Ferber. Les systemes multi-agents : vers une intelligence collective. Title
in English: “Multi-Agent Systems: Towards a Collective Intelligence”. In-
terEditions Paris, 1995 (cit. on p. 26).

Kenneth D. Forbus and Johan de Kleer. Building Problem Solvers. MIT Press,
1993 (cit. on pp. 38—40).

Norbert E. Fuchs. “Specifications Are (Preferably) Executable.” In: Softw.
Eng.]. 7.5 (Sept. 1992), pp. 323—334 (cit. on p. 25).

Ryohei Fujimaki, Takehisa Yairi, and Kazuo Machida. “An Approach to
Spacecraft Anomaly Detection Problem Using Kernel Feature Space.” In:

Proceedings of the Eleventh ACM SIGKDD International Conference on Knowl-
edge Discovery in Data Mining. KDD "o5. New York, NY, USA: ACM, 2005,
pp. 401—410 (cit. on p. 19).

Al Geist. “Supercomputing’s Monster in the Closet.” In: IEEE Spectrum (Mar.
2016). Title of the online version: “How To Kill A Supercomputer: Dirty
Power, Cosmic Rays, and Bad Solder” (cit. on p. 115).

Fausto Giunchiglia, John Mylopoulos, and Anna Perini. “The Tropos Soft-
ware Development Methodology: Processes, Models and Diagrams.” In:
Agent-Oriented Software Engineering 1II. Ed. by Fausto Giunchiglia, James
Odell, and Gerhard Weifs. Vol. 2585. LNCS. Springer Berlin Heidelberg,
2003, pp. 162-173 (cit. on pp. 11, 31, 64, 142, 149).

John B. Goodenough. “Exception Handling: Issues and a Proposed Nota-
tion.” In: Commun. ACM 18.12 (Dec. 1975), pp. 683-696 (cit. on p. 12).

Zahia Guessoum, Nora Faci, and Jean-Pierre Briot. “Adaptive Replication
of Large-Scale Multi-Agent Systems: towards a Fault-Tolerant Multi-Agent
Platform.” In: SIGSOFT Softw. Eng. Notes 30.4 (2005), pp. 1-6 (cit. on pp. 28,
78)-

Felix C. Gértner. “Fundamentals of Fault-tolerant Distributed Computing
in Asynchronous Environments.” In: ACM Comput. Surv. 31.1 (Mar. 1999),
pp. 1-26 (cit. on p. 16).

Staffan Haegg. “A Sentinel Approach to Fault handling in Multi-Agent Sys-
tems.” In: Multi-Agent Systems Methodologies and Applications. Ed. by Chenggqi
Zhang and Dickson Lukose. Vol. 1286. LNCS. Springer Berlin / Heidelberg,
1997, pp- 181-195 (cit. on pp. 27, 29).

James Harland, David N. Morley, John Thangarajah, and Neil Yorke-Smith.
“An Operational Semantics for the Goal Life-Cycle in BDI Agents.” In: Au-
tonomous Agents and Multi-Agent Systems 28.4 (2014), pp. 682—719 (cit. on
pp- 10, 33-36).

Nick Hawes. “A Survey of Motivation Frameworks for Intelligent Systems.”
In: Artificial Intelligence 175.5-6 (2011). Special Review Issue, pp. 1020 —1036
(cit. on p. 32).

[55]

[56]

[58]

[59]

[60]

[61]

[62]

Bibliography

Fergus Henderson, Zoltan Somogyi, and Thomas Conway. “Determinism
Analysis in the Mercury Compiler.” In: Australian Computer Science Commu-
nications 18 (1996), pp. 337346 (cit. on p. 26).

Pascal Van Hentenryck. “A Gentle Introduction to NUMERICA.” In: Artifi-
cial Intelligence 103.1-2 (1998), pp. 209—235 (cit. on p. 59).

Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules
Meyer. “Agent Programming with Declarative Goals.” In: Intelligent Agents
VII Agent Theories Architectures and Languages. Ed. by Cristiano Castelfranchi
and Yves Lespérance. Vol. 1986. LNCS. Springer Berlin Heidelberg, 2001,
pp- 228—243 (cit. on p. 11).

James J. Horning, Hugh C. Lauer, Peter M. Melliar-Smith, and Brian Ran-
dell. “A Program Structure for Error Detection and Recovery.” In: Operating
Systems. Vol. 16. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 1974, pp. 171-187 (cit. on p. 22).

Kennie H. Jones. “Engineering Antifragile Systems: A Change In Design
Philosophy.” In: Procedia Computer Science 32 (2014). The 5th International
Conference on Ambient Systems, Networks and Technologies (ANT-2014),
the 4th International Conference on Sustainable Energy Information Tech-
nology (SEIT-2014), pp. 870 =875 (cit. on p. 17).

Zbigniew T. Kalbarczyk, Ravishankar K. Iyer, Saurabh Bagchi, and Keith
Whisnant. “Chameleon: A Software Infrastructure for Adaptive Fault Toler-
ance.” In: IEEE Trans. Parallel Distrib. Syst. 10.6 (1999), pp. 560-579 (cit. on
p. 21).

Gal A. Kaminka and Milind Tambe. “What is Wrong with Us? Improving
Robustness Through Social Diagnosis.” In: Proceedings of the Fifteenth Nation-
al/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial
Intelligence. AAAI '98/1AAI "98. Menlo Park, CA, USA: American Associa-
tion for Artificial Intelligence, 1998, pp. 97-104 (cit. on p. 28).

J.O. Kephart and D.M. Chess. “The Vision of Autonomic Computing.” In:
Computer 36.1 (Jan. 2003), pp. 41-50 (cit. on p. 16).

Johan de Kleer. “An Assumption-Based TMS.” In: Artif. Intell. 28.2 (1986),
pp. 127-162 (cit. on p. 40).

Johan de Kleer. “Extending the ATMS.” In: Artificial Intelligence 28.2 (1986),
pp- 163 =196 (cit. on p. 176).

Johan de Kleer. “Problem Solving with the ATMS.” In: Artificial Intelligence
28.2 (1986), pp. 197 —224 (cit. on p. 40).

Johan de Kleer and Brian. C. Williams. “Diagnosing Multiple Faults.” In:
Artificial intelligence 32.1 (1987). (corrected version of 2008), pp. 97-130 (cit.
on pp. 6, 41, 43, 68).

Gerwin Klein et al. “seL4: Formal Verification of an OS Kernel.” In: Pro-

ceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles.
SOSP “09. New York, NY, USA: ACM, 2009, pp. 207-220 (cit. on p. 4).

Mark Klein and Chrysanthos Dellarocas. “Exception Handling in Agent Sys-
tems.” In: Proceedings of the Third Annual Conference on Autonomous Agents.
AGENTS “99. New York, NY, USA: ACM, 1999, pp. 6268 (cit. on p. 29).

215

216

Bibliography

[65]

[69]

[70]

[71]

[77]

Mark Klein, Juan-Antonio Rodriguez-Aguilar, and Chrysanthos Dellarocas.
“Using Domain-Independent Exception Handling Services to Enable Ro-
bust Open Multi-Agent Systems: The Case of Agent Death.” In: Autonomous
Agents and Multi-Agent Systems 77.1 (2003), pp. 179—-189 (cit. on p. 29).

Matthew Klenk, Matt Molineaux, and David W. Aha. “Goal-Driven Auton-
omy for Responding to Unexpected Events in Strategy Simulations.” In:
Computational Intelligence 29.2 (2013), pp. 187—206 (cit. on p. 35).

Mark Krasniewski and Bryan Rabeler. “TIBFIT: Trust Index Based Fault Tol-
erance for Arbitrary Data Faults in Sensor Networks.” In: Proceedings of the
2005 International Conference on Dependable Systems and Networks. DSN ‘o5.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 672-681 (cit. on
p- 20).

Christopher Kruegel and Giovanni Vigna. “Anomaly Detection of Web-
Based Attacks.” In: Proceedings of the 10th ACM conference on Computer and
communications security. CCS "03. New York, NY, USA: ACM, 2003, pp. 251—
261 (cit. on p. 20).

Kazuhiro Kuwabara. “Meta-level control of coordination protocols.” In:
Proceedings of the third international conference on multi-agent systems. 1996,
pp- 104-111 (cit. on p. 28).

Guy Lamarche and Patrick Taillibert. “Utilisation des réseaux de Petri pour
le test des programmes temps réel.” French. In: Technique et Science Informa-
tiqgues 4.1 (1985). Title in English: “Using Petri Nets for Testing Real-Time
Software”, pp. 83 -8y (cit. on p. 17).

Axel van Lamsweerde. “Goal-Oriented Requirements Enginering: a Round-
trip from Research to Practice [Enginering Read Engineering].” In: Require-
ments Engineering Conference, 2004. Proceedings. 12th IEEE International. Sept.
2004, pp- 4-7 (cit. on pp. 5, 32).

Jean-claude Laprie. “From Dependability to Resilience.” In: In 38th IEEE/I-
FIP Int. Conf. On Dependable Systems and Networks. 2008 (cit. on p. 17).

Jaques-Louis Lions. Ariane 5 Flight 501 Failure. Report by the Inquiry Board.
Paris, France: CNES/ESA, 1996 (cit. on pp. 3, 4, 12, 78, 115).

Bertrand Meyer. “Eiffel*: A language and environment for software engi-
neering.” In: Journal of Systems and Software 8.3 (1988), pp. 199—246 (cit. on
p- 24).

Bertrand Meyer. “Applying Design by Contract.” In: IEEE Computer 25
(1992), pp. 40-51 (cit. on p. 24).

Mirko Morandini, Loris Penserini, and Anna Perini. “Operational Semantics
of Goal Models in Adaptive Agents.” In: Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems. Vol. 1. Budapest,
Hungary: International Foundation for Autonomous Agents and Multiagent
Systems, 2009, pp. 129-136 (cit. on pp. 37, 141, 149).

David N. Morley, Karen L. Myers, and Neil Yorke-Smith. “Continuous Re-
finement of Agent Resource Estimates.” In: Proceedings of the Fifth Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems. Hako-
date, Japan: ACM, 2006, pp. 858-865 (cit. on p. 150).

[79]

[81]

[82]

[85]

Bibliography

Yannick Moy, Emmanuel Ledinot, Herve Delseny, Virginie Wiels, and Ben-
jamin Monate. “Testing or Formal Verification: DO-178C Alternatives and
Industrial Experience.” In: IEEE Softw. 30.3 (May 2013), pp. 50-57 (cit. on
p- 4).

Ferdinand Piette, Cédric Dinont, Amal El Fallah Seghrouchni, and Patrick
Taillibert. “Deployment and Configuration of Applications for Ambient Sys-
tems.” In: Procedia Computer Science 52 (2015). The 6th International Con-
ference on Ambient Systems, Networks and Technologies (ANT-2015), the
5th International Conference on Sustainable Energy Information Technology
(SEIT-2015), pp. 373 —380 (cit. on pp. 159-161).

Ferdinand Piette, Costin Caval, Cédric Dinont, Amal El Fallah Seghrouchni,
and Patrick Taillibert. “A Multi-Agent Solution for the Deployment of Dis-
tributed Applications in Ambient Systems.” In: Engineering Multi-Agent Sys-
tems Workshop 2016 (EMAS 2016). Singapore, May 2016 (cit. on pp. 11, 153).

Ferdinand Piette, Costin Caval, Amal El Fallah Seghrouchni, Cédric Dinont,
and Patrick Taillibert. “A Multi-Agent System for Resource Privacy: Deploy-
ment of Ambient Applications in Smart Environments.” In: Proceedings of the
2016 International Conference on Autonomous Agents and Multiagent Systems. to
appear. Singapore, May 2016 (cit. on pp. 11, 153).

Eric Platon, Nicolas Sabouret, and Shinichi Honiden. “Challenges for Excep-
tion Handling in Multi-Agent Systems.” In: Software Engineering for Multi-
Agent Systems V. Vol. 4408. Lecture Notes in Computer Science. 10.1007/978-
3-540-73131-3_3. Springer Berlin / Heidelberg, 2007, pp. 41-56 (cit. on pp. 27,
28, 83, 176).

Eric Platon, Nicolas Sabouret, and Shinichi Honiden. “An Architecture for
Exception Management in Multiagent Systems.” In: Int. |. Agent-Oriented
Softw. Eng. 2.3 (2008), pp. 267—289 (cit. on p. 27).

Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. “A Goal Delib-
eration Strategy for BDI Agent Systems.” In: Multiagent System Technologies.
Ed. by Torsten Eymann, Franziska Kliigl, Winfried Lamersdorf, Matthias
Klusch, and Michael Huhns. Vol. 3550. LNCS. Springer Berlin / Heidelberg,
2005, pp. 82—93 (cit. on p. 35).

Katia Potiron. “Systémes Multi-Agents et tolérance aux fautes : conséquences
de I'autonomie des agents.” French. Title in English: “Multi-Agent Systems
and Fault Tolerance: Consequences of the Agent Autonomy”. PhD thesis.
Paris: Université Pierre et Marie Curie, 2010 (cit. on p. 14).

Katia Potiron, Amal El Fallah Seghrouchni, and Patrick Taillibert. From Fault
Classification to Fault Tolerance for Multi-Agent Systems. Briefs in Computer
Science. Springer, 2013 (cit. on pp. 5, 13, 14, 30, 60, 63, 116).

Harald Psaier and Schahram Dustdar. “A Survey on Self-Healing Systems:
Approaches and Systems.” In: Computing 91.1 (2011). 10.1007/500607-010-
0107-y, Pp. 43—73 (cit. on p. 16).

Brian Randell. “System Structure for Software Fault Tolerance.” In: SIG-
PLAN Not. 10.6 (Apr. 1975), pp- 437-449 (cit. on pp. 22, 72).

217

218

Bibliography

[89]

[94]

[96]

[100]

Anand S. Rao and Michael P. Georgeff. “Modeling Rational Agents Within
a BDI-Architecture.” In: Principles of Knowledge Representation and Reasoning.
Proceedings of the second International Conference. San Mateo: Morgan Kauf-

mann, 1991, pp. 473—484 (cit. on p. 34).
Anand S. Rao and Michael P. Georgeff. “BDI-Agents: from Theory to Prac-

tice.” In: Proceedings of the First International Conference on Multiagent Systems.
San Francisco, USA: AAAI Press, 1995, pp. 312-319 (cit. on pp. 31, 33).

Robert D. Rasmussen. “Goal-Based Fault Tolerance for Space Systems Using
the Mission Data System.” In: Aerospace Conference, 2001, IEEE Proceedings.
Vol. 5. 2001, pp. 24012410 (cit. on pp. 5, 21).

Donald J. Reifer. “Software Failure Modes and Effects Analysis.” In: IEEE
Transactions on Reliability R-28.3 (Aug. 1979), pp. 247—249 (cit. on p. 15).

Alessandro Ricci. “Agents and Coordination Artifacts for Feature Engineer-
ing.” In: Objects, Agents, and Features, International Seminar, Dagstuhl Castle,
Germany, February 2003, Revised and Invited Papers. Ed. by Mark Dermot Ryan,
John-Jules Ch Meyer, and Hans-Dieter Ehrich. Vol. 2975. Lecture Notes in
Computer Science. Springer, 2003, pp. 209-226 (cit. on pp. 13, 154, 161).

M. Birna van Riemsdijk, Mehdi Dastani, and Michael Winikoff. “Goals in
Agent Systems: A Unifying Framework.” In: Proceedings of the seventh in-
ternational joint conference on autonomous agents and multingent systems (AA-
MAS’08). Estoril: IFAAMAS, 2008, pp. 713—720 (cit. on p. 32).

M. Birna van Riemsdijk and Neil Yorke-Smith. “Towards Reasoning with
Partial Goal Satisfaction in Intelligent Agents.” In: Programming Multiagent
Systems, 8th International Workshop (ProMAS’10). Vol. 6599. LNAI Springer,
2012, pp. 41-59 (cit. on pp. 32, 158).

M. Birna van Riemsdijk, Mehdi Dastani, Frank Dignum, and John-JulesCh.
Meyer. “Dynamics of Declarative Goals in Agent Programming.” In: Declar-
ative Agent Languages and Technologies II. Ed. by Jodo Leite, Andrea Omicini,
Paolo Torroni, and pInar Yolum. Vol. 3476. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2005, pp. 1-18 (cit. on p. 34).

Jordi Sabater and Carles Sierra. “Review on Computational Trust and Repu-
tation Models.” In: Artificial Intelligence Review 24.1 (2005), pp. 33—60 (cit. on
p- 30).

Hesam Samimi, Ei Darli Aung, and Todd Millstein. “Falling Back on Ex-
ecutable Specifications.” In: Proceedings of the 24th European Conference on
Object-oriented Programming. ECOOP’10. Berlin, Heidelberg: Springer-Verlag,
2010, pp. 552—576 (cit. on p. 25).

Sebastian Sardina and Lin Padgham. “A BDI Agent Programming Language
with Failure Handling, Declarative Goals, and Planning.” In: Autonomous
Agents and Multi-Agent Systems 23.1 (2011), pp. 18—70 (cit. on pp. 10, 11, 32,
34, 35, 37, 146, 151).

Nazaraf Shah, Kuo-Ming Chao, Nick Godwin, and Anne James. “Ex-
ception Diagnosis in Open Multi-Agent Systems.” In: Proceedings of the
IEEE/WIC/ACM International Conference on Intelligent Agent Technology. IAT
‘05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 483—486 (cit.
on p. 29).

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Bibliography

Nazaraf Shah, Kuo-Ming Chao, Nick Godwin, Anne James, and C-F Tasi.
“An Empirical Evaluation of a Sentinel Based Approach to Exception Diag-
nosis in Multi-Agent Systems.” In: Proceedings of the 2oth International Confer-
ence on Advanced Information Networking and Applications - Volume o1. AINA
‘06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 379-386 (cit.
on p. 29).

Steven Shapiro, Sebastian Sardina, John Thangarajah, Lawrence Cavedon,
and Lin Padgham. “Revising Conflicting Intention Sets in BDI Agents.”
In: Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems. Vol. 2. Valencia, Spain: International Foundation for Au-
tonomous Agents and Multiagent Systems, 2012, pp. 1081-1088 (cit. on
p- 170).

Patricia Shaw and Rafael Bordini. “Towards Alternative Approaches to Rea-
soning About Goals.” In: Declarative Agent Languages and Technologies V. Ed.
by Matteo Baldoni, TranCao Son, M. Birna van Riemsdijk, and Michael
Winikoff. Vol. 4897. LNCS. Springer Berlin Heidelberg, 2008, pp. 104-121
(cit. on pp. 36, 170).

Patricia Shaw and Rafael Bordini. “An Alternative Approach for Reasoning
about the Goal-Plan Tree Problem.” In: Languages, Methodologies, and Develop-
ment Tools for Multi-Agent Systems. Ed. by Mehdi Dastani, Amal El Fallah
Seghrouchni, Jomi Hiibner, and Jodo Leite. Vol. 6822. LNCS. Springer Berlin
Heidelberg, 2011, pp. 115-135 (cit. on p. 36).

Dhirendra Singh, Sebastian Sardina, Lin Padgham, and Geoff James. “In-
tegrating Learning into a BDI Agent for Environments with Changing Dy-
namics.” In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence. Vol. 3. Barcelona, Spain: AAAI Press, 2011, pp. 2525—
2530 (cit. on p. 36).

Reid G. Smith. “The Contract Net Protocol: High-Level Communication and
Control in a Distributed Problem Solver.” In: IEEE Transactions on Computers
C-29.12 (1980), pp. 1104—-1113 (cit. on p. 117).

Dean H. Stamatis. Failure Mode and Effect Analysis: FMEA from Theory to Exe-
cution. Asq Press, 2003 (cit. on pp. 4, 15).

John Thangarajah. “Managing the Concurrent Execution of Goals in Intelli-
gent Agents.” PhD thesis. Melbourne, Australia: RMIT University, 2005 (cit.
On pp. 34, 36, 142, 143).

John Thangarajah and Lin Padgham. “Computationally Effective Reason-
ing About Goal Interactions.” In: Journal of Automated Reasoning 47.1 (2011),
pp- 17-56 (cit. on pp. 10, 34, 36, 170).

John Thangarajah, Sebastian Sardina, and Lin Padgham. “Measuring Plan
Coverage and Overlap for Agent Reasoning.” In: Proceedings of the 11th In-
ternational Conference on Autonomous Agents and Multiagent Systems. Vol. 2.
Valencia, Spain: International Foundation for Autonomous Agents and Mul-
tiagent Systems, 2012, pp. 1049-1056 (cit. on p. 145).

219

220

Bibliography

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

John Thangarajah, James Harland, David Morley, and Neil Yorke-Smith.
“Operational Behaviour for Executing, Suspending, and Aborting Goals
in BDI Agent Systems.” In: Proceedings of the 8th international conference on
Declarative agent languages and technologies VIII. DALT 10. Berlin, Heidelberg;:
Springer-Verlag, 2011, pp. 1—21 (cit. on pp. 33, 34, 102).

Wilfredo Torres-Pomales. Software Fault Tolerance: A tutorial. Tech. rep. NASA
Langley Research Center, USA, 2000 (cit. on pp. 15, 16).

David A. Watt. Programming Language Design Concepts. pp. 216-218. John
Wiley & Sons, 2004 (cit. on p. 5).

Michael Winikoff and Lin Padgham. Developing Intelligent Agent Systems: A
Practical Guide. Wiley Series in Agent Technology. John Wiley and Sons, 2004
(cit. on pp. 11, 31, 150, 179).

Michael Winikoff, Lin Padgham, James Harland, and John Thangarajah.
“Declarative and Procedural Goals in Intelligent Agent Systems.” In: Proceed-
ings of the 8th International Conference on Principles of Knowledge Representation
and Reasoning. Toulouse, France: Morgan Kaufman, 2002, pp. 470-481 (cit.
on pp. 11, 32, 34).

Michael J. Wooldridge. Introduction to Multiagent Systems. New York, NY,
USA: John Wiley & Sons, Inc., 2001 (cit. on p. 27).

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and Un-
derstanding Bugs in C Compilers.” In: Proceedings of the 32Nd ACM SIG-
PLAN Conference on Programming Language Design and Implementation. PLDI
‘11. New York, NY, USA: ACM, 2011, pp. 283-294 (cit. on p. 4).

Y.C. Yeh. “Triple-Triple Redundant 777 Primary Flight Computer.” In:
Aerospace Applications Conference, 1996. Proceedings., 1996 IEEE. Vol. 1. Feb.

1996, pp. 293-307 (cit. on p. 4).

	Abstract
	Résumé
	Acknowledgments
	Contents
	Introduction and State of the Art
	1 Introduction
	1.1 Raison d'Être
	1.2 Weaving a Net
	1.3 Separating Reasoning from Acting
	1.4 Definitions and Working Hypotheses
	1.5 Thesis Structure

	2 State of the Art
	2.1 The Tolerance of Unforeseen Faults
	2.1.1 The Observer
	2.1.2 Anomaly detection
	2.1.3 TibFit and Chameleon
	2.1.4 Mission Data System
	2.1.5 Recovery Blocks
	2.1.6 A Case for Automatic Exception Handling
	2.1.7 Defensive Programming
	2.1.8 Design by Contract and Executable Specifications
	2.1.9 Let It Crash
	2.1.10 The Mercury Programming Language

	2.2 Fault Tolerance with and for Agents
	2.2.1 A Perspective on Exceptions in Multi-Agent Systems
	2.2.2 Communication Standards for Agent Fault Tolerance
	2.2.3 Replication
	2.2.4 Detecting Errors Through Agent Disagreement
	2.2.5 The Sentinels
	2.2.6 Norms. Trust and Reputation
	2.2.7 Agent Autonomy for Robust Agents

	2.3 Goal-Driven Agents
	2.3.1 Describing Goals
	2.3.2 The Goal Life-Cycle
	2.3.3 Reasoning on Agent Goals
	2.3.4 The Goal-Plan Tree

	2.4 ALMA: An Agent Language for Dependable Agents
	2.4.1 ALMA Motivations
	2.4.2 Problem Solvers and Truth Maintenance Systems
	2.4.3 Parenthesis on Model Based Diagnosis
	2.4.4 The Programming Language

	2.5 Conclusion

	Contribution to the Fault Tolerance
	3 A Safety Net Approach to Fault Tolerance
	3.1 Expecting the Unexpected: Error Detection
	3.1.1 Exception-Based Detection
	3.1.2 Objective-Based Detection

	3.2 Avoiding Further Error Propagation: Confinement
	3.3 System Recovery
	3.3.1 Dependency Handling
	3.3.2 Reparation
	3.3.3 Reconfiguration

	3.4 The Programmer's Guide for a Safety Net
	3.4.1 Language Requirements
	3.4.2 Platform Requirements
	3.4.3 Design Requirements

	3.5 Discussion

	4 An Instantiation of the Safety Net
	4.1 The Base Language
	4.2 Extending ALMA for The Safety Net Approach
	4.2.1 The unexpected Keyword
	4.2.2 Goals
	4.2.3 Plans
	4.2.4 The ALMA+ Model and Language

	4.3 The Three Fault Tolerance Phases in ALMA+
	4.3.1 Detection
	4.3.2 Confinement
	4.3.3 Recovery

	4.4 Extending the Platform
	4.4.1 Language Extension Support
	4.4.2 Safety Net Support
	4.4.3 Agent Architecture

	4.5 Discussion

	5 Experimenting
	5.1 The CNP+ Scenario
	5.2 Modelling the Agents
	5.2.1 The Initiator Agent
	5.2.2 The Main Contractor Agent
	5.2.3 The Worker Agent
	5.2.4 Giving Unanticipated Errors a Thought

	5.3 Adding The Safety Net Mechanisms
	5.4 The Safety Net at Work
	5.4.1 Study by Type of Confinement
	5.4.2 Study by Location of Error Occurrence in the Agent Code
	5.4.3 Other Error Situations

	5.5 Discussion

	Contribution to Goal Programming
	6 The Goal-Plan Separation
	6.1 Goal-Plan Trees to Goal-Plan Separation
	6.2 The Goal Reasoning Level
	6.3 Mars Rover Scenario

	7 GPS Method Implementation
	7.1 Examples of Possible Models for the Goal Reasoning Level
	7.1.1 Reasoning through Rules.
	7.1.2 Reasoning Using a Planner.

	7.2 Reasoning through a Goal Plan
	7.3 Reasoning through Multiple Goal Plans
	7.4 Execution
	7.5 Key Literature Aspects

	8 Experimenting with GPS
	8.1 An Application for Maritime Surveillance
	8.1.1 In the Lead Role: The Aircraft Agent
	8.1.2 GPS for Modelling the Aircraft Agent
	8.1.3 Discussion

	8.2 The Deployment of Ambient Intelligence Applications
	8.2.1 Scenario
	8.2.2 Multi-agent Modelling
	8.2.3 Design and Implementation
	8.2.4 Discussion

	8.3 Overview

	Conclusions
	9 Conclusions
	9.1 The Safety Net Approach
	9.2 The Goal-Plan Separation Approach
	9.3 Putting It All Back Together

	Appendix
	A Controlling Goal Execution
	B Models of the CNP+ Agents
	B.1 The Initiator Agent
	B.1.1 Agent Goals
	B.1.2 Agent Plans

	B.2 The Main Contractor Agent
	B.2.1 Agent Goals
	B.2.2 Agent Plans

	B.3 The Worker Agent
	B.3.1 Agent Goals
	B.3.2 Agent Plans

	C Error Response by Location of Occurrence in CNP+
	Bibliography

