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Résumé

Nous construisons une méthode numérique fiable pour simuler un écoulement dans un
milieu poreux modélisé par une équation elliptique. La simulation est rendue difficile par
les hétérogénéités du milieu, la taille et la géométrie complexe du domaine de calcul.

Un maillage d’hexaédres réguliers ne permet pas de représenter fidélement les couches
géologiques du domaine. Par conséquent, nous sommes amenés 4 travailler avec un maillage
de cubes déformés. Il existe différentes méthodes de volumes finis ou d’éléments finis qui
résolvent ce probléme avec plus ou moins de succés. Pour la méthode que nous proposons,
nous nous imposons d’avoir seulement un degré de liberté par maille pour la pression et un
degré de liberté par face pour la vitesse de Darcy, pour rester au plus prés des habitudes des
codes industriels. Comme les méthodes d’éléments finis mixtes standards ne convergent pas,
notre méthode est basée sur un élément fini mixte composite.

En deux dimensions, une maille polygonale est découpée en triangles en ajoutant un
point au barycentre des sommets, et une expression explicite des fonctions de base a pu étre
obtenue. En dimension 3, la méthode s’étend naturellement au cas d’une maille pyramidale.
Dans le cas d’'un hexaédre ou d’'un cube déformé quelconque, la maille est divisée en 24
tétraédres en ajoutant un point au barycentre des sommets et en divisant les faces en 4
triangles. Les fonctions de base de 1’élément sont alors construites en résolvant un probléme
discret. Les méthodes proposées ont été analysées théoriquement et complétées par des
estimateurs a posteriori. Elles ont été expérimentées sur des exemples académiques et
réalistes en utilisant le calcul paralléle.

Mot clés : éléments finis mixtes, éléments finis composites, maillage polygonal, maillage
hexahedrique, maillage pyramidal, écoulement en milieu poreux.






Abstract

We develop a reliable numerical method to approximate a flow in a porous media, modeled
by an elliptic equation. The simulation is made difficult because of the strong heterogeneities
of the medium, the size together with complex geometry of the domain.

A regular hexahedral mesh does not allow to describe accurately the geological layers of
the domain. Consequently, this leads us to work with a mesh made of deformed cubes. There
exists several methods of type finite volumes or finite elements which solve this issue. For
our method, we wish to have only one degree of freedom per element for the pressure and one
degree of freedom per face for the Darcy velocity, to stay as close to the habits of industrial
software. Since standard mixed finite element methods does not converge, our method is
based on composite mixed finite element.

In two dimensions, a polygonal mesh is split into triangles by adding a node to the
vertices’s barycenter, and explicit formulation of the basis functions was obtained. In
dimension 3, the method extend naturally to the case of pyramidal mesh. In the case of
a hexahedron or a deformed cube, the element is divided into 24 tetrahedra by adding a
node to the vertices’s barycenter and splitting the faces into 4 triangles. The basis functions
are then built by solving a discrete problem. The proposed methods have been theoretically
analyzed and completed by a posteriori estimators. They have been tested on academical
and realistic examples by using parallel computation.

Keywords: mixed finite element, composite finite elements, polygonal mesh, hexahedral
mesh, pyramidal mesh, flow in porous media.
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Introduction

En France, la construction d’un nouveau centre de déchets radioactifs nommé Cigéo est
étudiée pour entreposer des déchets radioactif de haute activité ou de moyenne activité a
vie longue. Ces déchets proviennent principalement de résidus générés par le traitement
des combustibles nucléaire usés ou d’anciens composants situés & l'intérieur d’un réacteur
nucléaire. Une zone favorable a la construction de Cigéo est située dans la Haute-Marne,
représenté sur la Figure 1. Ce site a été choisis pour les propriétés de sa roche argileuse
qui limitent la circulation souterrain de ’eau. Aucune faille n’a été détectée a proximité du
centre de stockage et l'activité sismique est faible dans la région. Les déchets radioactifs
seraient enterrés sous 500m de profondeur pour les isoler du milieu extérieur, mais leur
stockage en milieu profond soulévent d’importantes questions.

Contexte

Un colis de déchets radioactif de haute activité affiché sur la Figure 2a, contient 70kg
d’éléments radioactifs, mélangés avec 400kg de verre adapté au stockage et placés dans un
conteneur en inox. Certains éléments sont hautement radioactifs et possédent une durée de
vie trés longue, entre 102 et 10% années et peuvent générer de la chaleur. Les colis de déchets
radioactifs sont entreposés temporairement pendant plusieurs décennies pour étre refroidis,
puis ils sont entreposés dans Cigéo dans des alvéoles de stockage. Les colis sont espacés a
intervalle régulier pour limiter le réchauffement de la roche, sa température ne devant pas
dépasser 90°C. Ensuite, la fermeture du centre de stockage est effectuée graduellement. Les
colis de déchets sont sellés dans les alvéoles par un bouchon d’argile et de béton, comme sur
la Figure 3. Les différentes galeries sont remblayées de la méme maniére avec ’agile collecté
pendant la construction de Cigéo.

Cependant sur ces échelles de temps longues, les matériaux utilisés pour la construction
de Cigéo vont se dégrader & cause de la présence d’eau dans la roche. L’écoulement de
cette eau va entrainer une certaine concentration de particules radioactives en dehors du
colis et du centre de stockage. Les risques de contaminations sont réduits par la trés faible
perméabilité de la roche, mais d’autres phénoménes physiques doivent étre pris en compte'.
Lors de la construction de Cigéo, une partie de la roche autour du centre de stockage
sera endommagée. Les techniques de construction doivent étre adaptées pour minimiser
I’apparition de micro fractures dans la roche, qui augmenteraient sa perméabilité. Les
propriétés de la roche argileuse réduisent également ce risque. A long terme, la dispersion
des particules radioactives doit étre étudiée sur I’ensemble du domaine géologique, ce qui

1Des informations complémentaires sont disponibles sur le site internet de 1’ Andra, http://www.andra.fr et
du projet dédié a Cigéo, http://wuw.cigéo.com. Les informations recueillies proviennent des rapports d’activités
de I’ Andra : "Stockage réversible profond - étape 2009 : Options de conception du stockage en formation géologique
profonde", et "Stockage réversible profond - étape 2009 : Options de réversibilité du stockage en formation
géologique profonde".


http://www.andra.fr
http://www.cig�o.com
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zone faverable & I'ir_nplﬁtalﬁpn

ges Inetallations sciiterraines:de stockn

FIGURE 1 — Carte de la France avec les départements de la Meuse et la Haute-Marne, ot peuvent
étre situés le dépot de déchets radioactif Cigéo.

(a) Colis de déchets radioactifs de haute (b) Schéma d’un centre de stockage
activité (70cm de diameétre) (2km x 2km)

(c) Formation géologique autour du centre de stockage (20km x 20km x 500m)

FIGURE 2 — Les différents domaines de calculs utilisés pour la simulation. Au cours du temps, les
particules radioactives s’échappent du colis de déchets et du centre de stockage, ce qui rend leur
déplacement difficile & prévoir.
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FIGURE 3 — Scellement d’une alvéole de stockage

rend son évaluation difficile.

Mathématiquement parlant, on travaille sur des systémes complexes d’équations aux
dérivées partielles pour approcher les écoulement d’eau dans un milieu poreux souterrain,
ainsi que le transport de particules radioactives. Il n’est pas possible de reproduire
la complexité ce transport en laboratoire compte tenu de la lenteur du phénoméne
physique. C’est pourquoi la simulation numérique joue un réle essentiel. Les caractéristiques
particuliéres du probléme posé se répercutent sur la résolution de ces équations :

e La simulation numérique utilisée pour résoudre les équations du modeéle doit étre fiable
et efficace. Un intervalle de confiance doit étre donné avec les résultats. De plus,
certains paramétres comme la perméabilité du milieu proviennent d’estimation. Par
conséquent, le temps de calcul de la simulation doit étre raisonnable pour effectuer
une étude de sensibilité par rapport a ces paramétres.

e La simulation fait intervenir des échelles de longueur différentes, de moins d’un meétre
pour le colis de déchet radioactifs & plusieurs kilométre pour le milieu géologique. De
plus, ces différents domaines possédent des propriétés hydrogéologiques propres. Le
maillage utilisé pour la simulation doit étre raffiné localement pour prendre en compte
ces hétérogénéités et éviter des calculs inutiles.

e La géométrie du domaine est complexe. Le maillage peut inclure des faces courbes pour
suivre le bord d’un colis de déchet radioactif, les galeries d’accés de Cigéo, ainsi que
les différentes couches géologique du milieu. Le schéma numérique doit rester stable
lorsque le maillage contient des faces courbes, tout en conservant un faible temps de
calcul.

Les éléments finis mixtes sur des maillages ayant des
faces courbes

L’objectif de cette thése est de développer une méthode numérique adaptée aux contraintes
énumeérées précédemment. Nous nous concentrons sur le cas des écoulements souterrains
modélisés par une équation elliptique du second ordre. L’importance de ce travail tient au
fait que le calcul d’un tel écoulement est ensuite utilisé pour simuler un transport de soluté,
par exemple la propagation de particules radioactives dans le sous-sol, et évidemment la
précision de cette simulation dépend beaucoup de la qualité du calcul de I’écoulement.

La nouvelle méthode que nous proposons fait partie de la famille des éléments finis mixtes
[19, 68, 31]. Ce sont des méthodes localement conservatives, bien adaptées aux problémes
avec des tenseurs de perméabilité non-diagonaux et discontinus, ainsi qu’aux maillages de
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triangles ou de tétraédres et de carrés ou de cubes qui sont 'images d’une transformation
linéaire de 1’élément de référence. La méthode d’éléments finis mixtes de plus bas degré que
nous notons RTN, approche avec la méme précision la variable scalaire, la pression, et la
variable vectorielle, la vitesse de Darcy. Elle posséde un degré de liberté par maille pour la
pression et un degré de liberté par face, le flux, pour la vitesse de Darcy.

Cette méthode d’éléments finis mixtes est donc trés proche des méthodes de volumes finis
centrés sur les mailles [57, 44], et aussi des méthodes mimétiques [53, 56, 25]. De nombreux
articles se sont intéressés aux relations étroites qui existent entre ces méthodes. Citons parmi
d’autres [69, 52, 80, 11, 7, 6, 79, 81, 42, 78]. Des méthodes de volumes finis centrées sur les
mailles [1, 46] et des méthodes mimétiques [26, 56] permettent maintenant de traiter les
maillages d’hexaédres quelconques.

Rappelons qu’en ce qui concerne la méthode des éléments finis mixtes, elle peut étre aussi
vue comme une méthode d’éléments finis non conforme avec un degré de liberté par face pour
la pression [10, 28, 4, 30|, mais pour des problémes de stabilité numérique, la précision des
résultats diminue si la perméabilité du domaine varie fortement d’une maille & l’autre [51].

La méthode des éléments finis mixtes a été développée et analysée par P.-A. Raviart,
J.-M. Thomas et J.-C. Nédélec [66, 61]|. Depuis les années 80, les méthodes mixtes se sont
répandues dans de nombreuses applications, et en particulier pour résoudre des problémes
d’écoulement en milieu poreux, que ce soit pour I’hydrogéologie ou la simulation de réservoirs
pétroliers. Citons par exemple [40, 41, 28, 33, 30, 65, 12, 36, 32, 47|. Dans le domaine
du stockage de déchets radioactifs en milieu profond on peut citer [50, 70] et pour les
écoulements dans un milieu fracturé [59, 35]. Pour ce qui est des estimations a posteriori
on mentionnera simplement [82, 76, 77].

Le probléme qui nous préoccupe dans cette thése est l'extension de la méthode des
éléments finis mixtes a des maillages d’hexaédres (faces planes) ou méme de cubes déformeés
(faces non planes). Ces éléments demandent une étude spécifique car la transformation vers
un élément de référence (la transformation de Piola) n’est pas linéaire [15, 63, 60]. Des
problémes similaires apparaissent pour des pyramides. Des études préliminaires ont été
faites en 2 dimensions [8, 72|, montrant qu’une extension standard de la méthode RTN|
ne converge pas sur des maillages d’hexaédres quelconques. Comme montré dans [49], cette
erreur se répercute évidemment sur le calcul du transport de solutés.

Une maniére d’obtenir la convergence de la méthode des éléments finis mixtes sur des
maillages hexaédriques quelconques est d’augmenter le nombre de degrés de liberté associés
a la vitesse de Darcy [9, 81]. Une autre méthode consiste & ajouter un terme de stabilisation
pour obtenir la convergence [39, 38]. Cependant, ces solutions augmentent le cotit de calcul
de la méthode. Une autre solution est de construire un élément composite. Un sous maillage
tétraédrique de ’élément est construit pour définir des fonctions de base polynomiales par
morceaux sur I’élément, comme pour une méthode multi-échelle 78, 3]. On peut trouver
dans [54, 55, 71] des propositions précédentes d’éléments finis composites. En particulier
dans [71], les hexaedres sont divisés en 5 tétraddres et les faces en 2 sous faces triangulaires.
Cependant, il n’est pas possible d’utiliser cette méthode sur un maillage ayant des faces
courbes. En effet une face courbe est approchée par deux faces planes obtenues en joignant
deux sommets opposés de la face, mais il y a deux choix possibles pour les sommets opposés,
et si ces choix ne sont pas les mémes pour les deux cubes déformés adjacents alors il se crée
un vide dans le maillage.

Pour surmonter cette difficulté, et aussi obtenir de bonnes propriétés de symétrie, nous
construisons un élément composite de 24 tétraeédres en ajoutant un point au barycentre des
sommets. Les faces courbes sont alors approchées par 4 triangles. La problématique des faces
courbes est détaillée de maniére générale dans [63], avec une liste de méthodes abordant ce
probléme. Cet article montre que si le maillage contient des faces courbes, alors les vitesses
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constantes n’appartiennent plus & I'espace d’approximation. Par conséquent, la convergence
ne peut étre obtenue que sous certaines conditions sur la maniére de raffiner le maillage.

Avant d’aborder le cas des faces courbes, nous avons souhaité considérer le cas de la
dimension 2. Une extension de la méthode RTq a été développée dans [5] pour des maillages
de quadrilatéres quelconques. Il y est montré que la transformation de Piola non-linéaire
modifie les fonctions de base de la vitesse, et introduit des vitesses dans le noyau de
I'application div: H(div, E) — L?(E). Une décomposition de type Helmholtz-Hodge [16, 73]
est utilisée pour identifier ces vitesses. Cette décomposition a été mise en évidence en 1990
dans [34, p. 51], elle décompose une vitesse continue comme la somme d’un gradient et d’un
rotationnel possédant une divergence nulle. Son utilisation sur les espaces d’approximation
des méthodes mixtes semble récent. La méthode présentée dans [5] conserve le méme nombre
de degré de liberté que la méthode RT. Cependant elle n’a pas encore été étendue au cas de
la dimension 3. Pour ce qui concerne notre méthode d’éléments finis composites, les cellules
polygonales du maillage sont divisées en triangles en ajoutant un point au barycentre des
sommets.

Contenu de la thése

Nous étendons la définition des éléments composites présentés dans [71] et [54, 55] en
ajoutant un point au barycentre des sommets. Cette nouvelle décomposition de I’élément
permet d’étudier la convergence de la méthode sur des maillages possédant des faces courbes.

Dans le premier chapitre de cette thése, nous rappelons les modéles physiques et
mathématiques les plus simples qui modélisent les écoulements d’eau ainsi que le transport
de solutés dans le sous-sol. Dans cette thése, nous nous concentrons sur le probléme elliptique
du second ordre.

Dans le deuxiéme chapitre nous définissons un élément fini composite en deux
dimensions ot une maille polygonale £ du maillage est divisée en triangles en ajoutant un
point interne au barycentre des sommets de la cellule.

Les vitesses approchées de notre espace d’approximation sont déterminées par leur flux
qui sont constants & travers les arétes du maillage. La pression approchée est elle constante
sur chaque maille. Les fonctions de base de la vitesse sont des fonctions de H(div, E), qui sont
définies sur chaque triangle du sous-maillage triangulaire comme des fonctions de ’espace
RT, espace des éléments finis mixtes de plus bas degré. Les fonctions de base de la vitesse
sont déterminées par la valeur de leur flux & travers les arétes du bord de FE, elles sont
a divergence constante sur F comme pour la pression approchée. Enfin pour définir les
fonctions de base de facon unique, on ajoute encore une condition éliminant la possibilité
d’un champ de vitesse pouvant tourner autour du point interne. La définition et I'analyse
de cet élément composite sont basées sur une décomposition des vitesses de ’espace de RT
défini sur le sous-maillage triangulaire de E. Cette décomposition nous permet en méme
temps d’obtenir une expression explicite des fonctions de base. On termine ce chapitre par
des expériences numériques confirmamt la validité des estimations a priori obtenues. Le
chapitre fait ’objet de l’article [17] soumis & publication.

Nous définissons la méthode composite en 3 dimensions dans le troisiéme chapitre.
Elle est définie & la fois pour des maillages d’hexaédres et de pyramides. Le sous-maillage
tétraédrique de ’hexaédre est construit en ajoutant un point au barycentre des sommets,
et en divisant les faces en 4 sous-faces triangulaires. Celui d’'une pyramide est construit en
ajoutant un unique point a sa base pour la diviser en 4 tétraédres. La méthode composite du
second chapitre ne peut s’étendre a la dimension 3 que pour les maillage de pyramides. Dans
le cas d’hexaédres quelconques, un probléme discret doit étre résolu sur chaque élément pour
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définir les fonctions de base. L’apparition de faces courbes dans le maillage est également
étudiée numériquement : si elles sont approchées pendant le raffinement du maillage, alors
la convergence de la méthode est obtenue. Une estimation d’erreur a posteriori de la
méthode est ensuite présentée. Elle permet de majorer I’erreur commise sans connaitre la
solution exacte. Un critére de raffinement local est également développé pour raffiner le
maillage. Ensuite, nous testons la méthode composite sur un cas test concret regroupant
les contraintes énoncées précédemment. La méthode composite a été implémentée dans le
logiciel Traces del’ Andra, et est comparée avec une méthode RTIN( étendue & des maillages
de cubes déformés. Le maillage utilisé décrit la formation géologique autour du centre de
stockage. Il contient des faces courbes ainsi qu'un nombre important d’éléments. La méthode
RTN, étendue ne donne pas de bons résultats. Sur certains éléments la vitesse approchée
atteint des valeurs non physiques qui perturbent le calcul de transport, alors que la méthode
composite converge comme attendu.



Chapter 1

The porous media and the
transport of radioactive
particles

A porous medium as shown in Figure 1.1, is a solid structure containing pores that fluid or
gas may go through. To facilitate our study, we assume that medium is saturated in water,
i.e. that it contains only one fluid. Underground flows are estimated by performing a space
average of fluid velocity over a representative elementary volume. Its size is chosen to be:

1. large enough to not distinguish differences between a pore and a grain,
2. small enough in oder that macroscopic quantities defined does not depends on its size.

Over an elementary volume, we define the total porosity of a solid w, which is the ratio of
void volume over the solid volume,

volume of voids

volume of the solid”

Similarly, we define macroscopic quantities as pressure and fluid velocity, and we enunciate
mathematical equations that must solve to estimate spreads of radioactive particles.
1.1 Flow equations

Underground flow is modeled by two equations: Darcy’s law and the equation of mass
conservation.

1.1.1 Darcy’s law

Fluid moves through porous medium from highest energy levels to lowest. If we assume that
only variations of pressure and gravity are enough strong to move fluid, we can approximate
fluid flow in porous medium due to Darcy’s law [58, Chapter 4]:

K
u= —;(VP—l-ngz),

where
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Y
B

Figure 1.1: Porous medium [58, p. 163]

e u (m.s~!)is Darcy’s velocity. It is a space average of fluid velocity over an elementary
volume.

e K (m?) is the intrinsic permeability of the medium. It measures fluid abilities to flow
through rocks, according to material type, temperature and links between pores. It does not
depend on fluid characteristics. High permeability will allow fluids to move rapidly through
rocks.

e P (Pa) is the fluid pressure. It is an average value as for Darcy’s velocity. We recall
that Pa = N.m~2 = kg.m~!s72.

e 1 (Pa.s) is the fluid dynamic viscosity.

e p=p(P,c0) (kgem™3) is the fluid density, which depends on fluid pressure,
concentration of dissolved contaminants ¢ and temperature 6.

e g~ 9.8067 (m.s~2) is the magnitude of the gravitational acceleration.
e 2 (m) is the height.

Darcy’s law is valid only for slow and viscous flow. Moreover, if we assume that variations
of fluid density are insignificant in space, then Darcy’s velocity can be defined in two
different ways:

u=-KVh,

where

o h= % + z (m) is called the hydraulic head,

e K= % (m.s~1) is the hydraulic conductivity tensor. For a medium saturated in

water, these coefficients vary from 102 (m.s~1) for sand to 10~ (m.s~!) for clay. Moreover,
if fluid flow is invariant in each direction of porous medium, then the medium is isotropic. In
this case, intrinsic permeability together with hydraulic conductivity are scalar coefficients.
Otherwise, hydraulic conductivity is a symmetric tensor,

Ky Kwy K.
K= |Ksy Kyy Ky.|,

sz Kyy Kzz

and the medium is said to be anisotropic. Choosing a coordinate system where axis
follow characteristic directions of porous medium, hydraulic conductivity reduces itself to
a diagonal tensor. Since geological layers are built by sediment deposit, we distinguish
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a longitudinal permeability Ki, and a transverse permeability K7. In the new coordinate
system, we obtain

Ky, 0 0
K=]10 Ky 0
0 0 Kr

Second definition of Darcy’s velocity is obtained from substitution p = P + pgz, which
gives
u=-KVp,

where
e p (Pa) is the pressure,

« K=K (mzPa_ls_l) is the permeability tensor. These properties are similar to
hydraulic conductivity tensor.

1.1.2 The equation of mass conservation

This equation shows the principle of mass conservation of a fluid. In an elementary volume,
mass variation of fluid over time is equal to the mass of injected of withdrawn fluid plus the
sum of flows going through volume boundary. For porous medium, continuity equation is
given in [58, Chapter 3] and [29] and writes

o(wp)

T V-(pu) = pf,

where f (s7!) is a sink or source term per volume unit. Since we have assumed that variations
of fluid density are insignificant in space, previous equation becomes

1 0(wp)

oot +V-u=f.

Porosity and fluid density are functions depending on fluid pressure, which may varies in
time. We define then the specific storage coefficient s (m~1), such that

d(wp)
oP

It is used to measure capability of porous medium to release fluid in function of pressure
variations. Introducing this variable, we highlight variations in time of fluid pressure,

s OP

—— +V.u=f

pg ot
Finally, we wish to replace fluid pressure by the hydraulic head. By definition, we have the
relation P = pg(h — z), which gives us

op\ 0P oh
(1 —g(h - Z)(Hpj) o =PI

The isothermal compressibility law set a relation between fluid density and pressure. For a

constant temperature, we have
_1lop

Bl = 56?7
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where 3, (Pa™?) is the fluid compressibility coefficient. However, this value is insignificant
for fluids and approximate %—f ~ pg‘;—? is often performed [58, p. 82]. Adding Darcy’s law,
we obtain a closed system for a compressible flow with two unknowns, the scalar h and the

vector field u:

u=-KVh,
oh
sg+v~u=f.

Remains to set behavior of the solution at the boundaries of the domain. Several kinds
of limit conditions may be considered:

Dirichlet boundary conditions are used when hydraulic head at the boundary is set by
a known function hq which does not depends on Darcy’s velocity inside the porous
medium.

h = hgq, on 0.

It is used for instance where the porous medium is in contact with a river.

Neumann boundary conditions set Darcy’s velocities at the domain boundary:
u-n=gq,, ond,

where n is the outgoing normal at the boundary, and ¢, a function modeling a sink or
a source term.

Robin boundary conditions, which are a mix between Dirichlet and Neumann boundary
conditions. We have the relation

u-n+ah=gq, onodfd

where a and ¢, are given. It may be used on lake border, when hydraulic head depends
on Darcy’s velocities of the medium.

Periodic boundary conditions can be set on both sides of the porous medium to simulate
large domains.

If fluid characteristics vary in time, then we must specify hydraulic head at initial time.
Otherwise, the system is in steady state and writes for homogeneous Dirichlet conditions
(hd = 0)
u=-KVh inQ,
Viu=f in Q,
h=0 on 012,
or equivalently,
u=—-KVp inQ,
Viu=f in Q,
p=20 on 0.
In this case, we also assume that concentration of particles dissolved in the fluid is enough

small to not modify fluid density. Darcy’s equations can be solved regardless of transport
equation.
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1.2 Transport equation

Transport equation is obtain by applying mass conservation law to particles dissolved
in fluid. It involves complex phenomena which are presented in [58, Chapter 9] and in
[13, Chapter 4] in general form. If the porosity is constant in time, transport equation writes

oc .
w§+v.7_fv

where:
e ¢ (mol.I71) is the concentration of the dissolved contaminant in the fluid,

® J = Jaav t+ Jai T Jaisp 1S the flux of chemical species, i.e. the amount of species going
through a surface over time. We distinguish three mainly fluxes moving radioactive particles.
First one is advection j,4,, which is quantity of species being carried along by underground
flows:

Jadv = UcC.

e The second kind of flux is the molecular diffusion j 4, caused by Brownian motion of
the molecules. In fluid phase, dissolved particles move in all directions. If the concentration of
particles is uniform, then there is as many particles which come in and go out an elementary
volume. Otherwise, molecular diffusion follows gradient of concentration. Its expression is
given in liquid phase by Flick’s law:

Jaigr = —dm V¢,

where dy, (m2s!) is the molecular diffusion coefficient of the medium, depending on
temperature and dynamic viscosity of the fluid. However in porous medium, rock slows
down brownian motion of particles, which leads us to use a smaller coefficient according
to the medium porosity. If we denote d. (m%s~!) the effective diffusion coefficient of the
medium, Flick’s law writes for porous medium:

jdlﬁ' = _de V C.
The ratio between both coefficients may vary from 0.7 for sand to 0.1 for clay.

e Last studied flux is dispersion j 4;4,, which is specific to porous media. Dispersion is
caused by irregular flows going through pores of porous medium, which increases spread of
dissolved particles. This phenomenon is ignored in advection because Darcy’s velocity is an
averaged velocity. The motion of particles is simulated using the gradient of concentration as
molecular diffusion, but is guided by the dispersion tensor D 4is, which depends on Darcy’s
velocity. Expression of dispersive flux is then

jdisp = —Duisp(u) Ve,
where the dispersion tensor is defined from Scheidegger’s model:
Dgisp(u) = [ufl(arLE(a) + ar(I — E(a))),
with I the identity matrix,
u;u;

Eivj(u) = ||u||27 27] = 17. .. ,37
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and where «p, and at are the longitudinal and transverse dispersion coefficients.
Longitudinal dispersion coefficient is usually larger than the transverse coefficient, which
means that concentration of particles spreads faster in flow direction.

o [ = fo+ fadas + fr models contributions or extinctions of the considered element. With
fe which represents a source term in the domain, we retain two other physic phenomena
which alter concentration of radioactive particles in porous medium.

e First one is adsorption modeled by f.4s and simulating the deposit of particles on
rock surface. Over an elementary volume, we define the mass concentration of particles cg,
which is the mass of adsorbed particles divided by solid mass m (kg). If ps is the mass density
of the solid, then the solid mass m = ps(1 — w) over an elementary volume, and ps(1 — w)cs
is particle mass sticked to the rock. Source term is the variation over time of particle mass,

Ocg
ot

fads = _ps(l - w)

There exists several adsorption laws linking particle concentration in liquid phase and at
rock surface. We choose to model adsorption with the relation:

cs = Kce

where K (ml.g™!) is the adsorption constant. We assume then that adsorption is linear
and reversible. Radioactive particles are not confined inside porous medium. Moreover,
adsorption phenomenon is considered as instantaneous. For clay porous medium, steady
state of both concentrations is obtained after few minutes, which is relatively fast compared
with flow speed. Using this adsorption law in transport equation, we obtain

ac

wR o

+V'j:fr+fca

where R =1 + py (1;“}) K is the retard coefficient. We can see that porous medium acts as a

filter by slowing movement of radioactive particles.

e Second phenomenon is radioactivity expressed by f;. Over time, radioactive particles
decay to other chemistry species by emitting radiations. The number of radioactive particles
n follows the law of radioactive decay

on
— = —\n,
ot
where A (s71) is the constant of radioactive decay. Solving this equation allow us to estimate
the number of radioactive particles over time. If ng is the number of radioactive particles at
time ¢t = 0, then we have
n(t) = ngexp(—At).

On average, half of radioactive particles are decaying at time t;/, = A~1In2 (s) which is
defined as half-life of radioactive particles. Moreover, the behavior of radioactive particles is
similar in liquid phase and in adsorbed phase. The mass of radioactive particles to consider
over an elementary volume is we + ps(1 — w)es and then the source term f; is

fr = =AM we + ps(1 —w)eg) = —AwRe.

During transport computing, we should take into account the presence of several radioactive
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chemical species together with other chemical species resulting from their radioactivity but
we neglect this aspect.

Combining all these physical phenomena, transport equation writes

wR% + V-(uc— D(u)Ve) — AwRe = fe,

where phenomena of molecular diffusion and dispersion have been gathered in the
dispersion-diffusion tensor D(u),

D(u) = deI + Dgisp(u).

Dispersion often makes insignificant molecular diffusion except when flow speed is slow. As
Darcy’s system, transport equation must be completed with boundary conditions at domain
border together with concentration of radioactive particles at initial time.






Chapter 2

A 2-D Composite Polygonal
Mixed Finite Element

Abstract

General hexahedral and quadrangular grids present a challenge for mixed finite
elements for second-order, elliptic problems. We define and analyze a mixed finite element
method for a mesh made up of star-shaped polygons. The scalar unknown is approximated
by element-wise constants and the vector unknown is determined by its flux through the
edges of the polygons. The elements are composite elements. Each polygon is split into
triangles by taking an interior point of the polygon, one for which it is star-shaped, and
considering the triangles radiating from that point and having one side as a side of the
polygon. Convergence of the method is proven, and numerical experiments are shown to
confirm the theoretical results.

Keywords: mixed finite element, polygonal mesh, flow in porous media

2.1 Introduction

Single-phase, incompressible flow in a porous medium is governed by the Darcy flow
equation, a second-order elliptic equation, which when written in mixed form as a system of
first order equations consists of a conservation equation together with Darcy’s law. If gravity
is neglected, these equations may be written as follows:

V-u=f and u=-KVp,

where p is the fluid pressure, u is the Darcy flow velocity, the coefficient K is a symmetric,
positive-definite tensor, and f is a source term. It has been known since the early 1980’s
that mixed finite element methods are particularly well suited to solving these equations
numerically. In particular, a mixed method is locally conservative, it calculates the Darcy
velocity u simultaneously with the pressure p and to the same order of accuracy, it is well
adapted to handling a highly discontinuous and non diagonal permeability tensor K. For
most applications it is desirable to have the discretization of the domain into finite elements
conform to the layering of the domain by the permeability coefficient K. This is of course
easily done with a grid of triangles or tetrahedra. However there are obvious advantages to
using a logically rectangular grid, and for a grid of rectangles or rectangular solids, adapting
to the natural layering of the domain leads to a deformation of the rectangular structure.
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Several mixed finite element methods for second-order elliptic problems, both for meshes
of triangles or tetrahedra and for meshes of rectangles or rectangular solids have been
introduced and analyzed. The most well known of these are probably the elements defined
by Raviart and Thomas (and by Nédélec in 3D) [66, 61] and the elements defined by Brezzi,
Douglas and Marini (and with Fortin for rectangular solids and by Brezzi, Douglas, Duran
and Fortin for tetrahedra), [24, 23, 22|. Methods have also been developed for meshes of
parallelograms or parallelepipeds and for triangular prisms. See also [19] or [68] for an
extensive bibliography. However straight forward extensions of these methods to handle
meshes of quadrilateral polygons or hexahedra lack essential approximation properties.
Several articles have addressed the problem of defining a mixed finite element on a mesh
of quadrilaterals or hexahedra. Some of these, such as [72, 9, 43, 81, 5], have constructed
mixed methods by enriching the polynomial approximation space, but the number of degrees
of freedom can quickly become unmanageable, particularly in 3 dimensions. Others, such
as [54, 55, T1], have instead kept the original degrees of freedom of the lowest order
Raviart-Thomas-(Nédélec) elements, but, following an idea introduced by Kuznetsov and
Repin in [54], have used composite elements. In [71], each hexahedron is divided into 5
tetrahedra, each face being divided into 2 triangles. The method has optimal convergence
properties, but there is no evident way to extend the method to the case of generalized
hexahedra which might have a non planar face. To overcome this problem, a composite
element, in which a deformed cube is divided into 24 tetrahedra, was introduced in [18].
This element, obtained by dividing each of the 6 faces of the deformed cube into 4 triangles
and considering the cones over the 24 resulting triangles emanating from an interior point of
the deformed cube, has in addition the following desirable attributes: it has good symmetry
properties and the division into 24 tetrahedra is uniquely defined.

The aim of the present article is to analyze the two-dimensional counterpart of the
composite element of [18]. The results of [54, 55, 71] are extended for the 2D setting to
the case of a composite element whose division into subcells has a vertex in the interior of
the cell. This we view as a first step towards the analysis of the 3D composite element of
[18].

The remainder of this article is organized as follows: Section 2.2 recalls some of the basic
theory for mixed finite element methods. In Section 2.3, the composite method is defined for
a mesh made up of polygons. Approximation spaces are defined locally on each polygonal
cell using a triangular submesh constructed by adding an additional vertex inside the cell.
With this additional point in the interior of a cell F, the local approximation space contains
nontrivial velocity vector fields in the image of the mapping curl: H*(E) — H(div, E) and
thus in the kernel of div: H(div, E) — L?(E). Section 2.4 highlights the presence of these
velocities, which must be taken into account. Section 2.5 gives some preliminary results for
this extra difficulty. Optimal order convergence of the method is proven in Section 2.6, and
numerical experiments corroborating this result are shown in Section 2.7.

2.2 Numerical analysis for mixed methods

Let Q < R? be a polygonal domain that represents the porous medium. The equations that
govern an incompressible Darcy flow may be written as follows:
u=-KVp inQ,
Vu=f in Q,
P =pq on 052,
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where the unknowns are the pressure p and the Darcy velocity u. The symmetric,
positive-definite tensor K models the diffusion of the fluid in the porous medium. The
function f: £ — R is a source term. For simplicity, we have assumed that the boundary
conditions are only Dirichlet conditions. Let M = L%*(Q) and W = H(div,2). The weak
mixed formulation of the system is then
Find u € W and p € M such that
a(u,v) +b(v,p) = Lyw(v), VveW, (2.1)
b(ua Q) = ‘CM (q)a VQ € M7

where the bilinear forms a: W x W — R and b: W x M — R are defined by
a(u,v) = J K'u-v, Yue W,VveW, (2.2)
Q
b(u,q) = —j qV-u, Yue W,Vqge M, (2.3)
Q
and the linear forms Lyy: W — R, and Lr: W — R by
Lw(v) = —J pav - n, Vv ew,
oQ
Lam(q) =—| fa, Vge M,
Q

where pq is a function on the boundary of Q determined by the Dirichlet data. In [21,
Proposition 3.1], [19] and [68], it is shown that if the bilinear forms a and b defined
respectively in (2.2) and (2.3) satisfy the following conditions:

i.) ais V-elliptic, where V = {v e W : b(v, q) = 0,Vq € M}; i.e.

Ja > 0 such that a(v,v) > O‘”"H%{(div,g)» Yvevy, (2.4a)

ii.) b satisfies the following inf-sup condition:

36 > 0 such that inf sup b(v,q) = 5||VHH(diV7Q)||qHO’Q, (2.4b)
geEM veWwW

then problem (2.1) admits a unique solution (u, p).

We consider now a discrete version of problem (2.1). Let M; < M denote an
approximation space for the pressure and W, < W an approximation space for the velocity.
The discrete problem (2.1) obtained by replacing the spaces W and M by the finite
dimensional spaces W, and My,, respectively in (2.1) is

Find uy, € Wy, and p;, € M}, such that
a(up, vi) + b(va,pn) = Lw(va), Vvi € Wy, (2.5)
b(an, qn) = Lrm(qn), Van € Mp,.
As for the continuous problem (2.1), if for the approximation spaces M}, and W), the bilinear

forms a and b defined in (2.2) and (2.3) satisfy the following conditions:
i. ais Vy-elliptic, where V}, = {vi, € Wy, : b(vp, qn) = 0,Vq, € My}; ie.

Jay, > 0 such that  a(vy,vy) = ah|\vh||%l(div79), Vv € Vp, (2.6a)
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Figure 2.1: The mesh Tg for a pentagon E divided into 5 triangles

ii. b satisfies the following discrete inf-sup condition:

3Bp > O such that, inf  sup b(va,qn) = Bullvalla(aiv,0) llgn o0, (2.6b)
gn€Mp vREW),

then the problem (2.5) admits a unique solution (up,pp), and further there exists C' > 0
depending only on the constants of continuity of @ and b and the constants ayj, and S such
that

Hp - ph”O,ﬂ + ||u - uh”H(div,Q) <C (qhiel}\f/[h@ - Qh||07Q + vhigfvhﬂu - Vh||H(div,Q)) . (2~7)

Thus if the constants ap and B, can be chosen independently of h, then C' will also be
independent of h, and the problem of obtaining error estimates is then reduced to a problem
of interpolation.

In the following we construct a composite mixed finite element space satisfying
conditions (2.6a) and (2.6b) with constants independent of the discretization parameter h.
Interpolation and approximation errors are shown later in Section 2.6.

2.3 A composite method for polygons

In this section we define the finite dimensional spaces W), € W and M < M in which the
approximations uy of u and p;, of p will be sought. These are two dimensional analogues of
the spaces defined in [18].

Denoting by H a countable set of meshsizes having 0 as its unique accumulation point,
we consider mesh sequences {7, h € H} where for all h € H, T}, is a conforming discretization
of the domain 2, made up of polygons E of diameter no greater than h. Each polygonal cell
E € T, is assumed to be star-shaped with respect to the barycenter mg of its set of vertices.
To define the composite elements we make use of a refinement ’771 of 75, made up of triangles.
If E € Ty, is a polygon with np edges, then it is divided into ng triangles each of which is the
cone with summit mg over one of the edges of F as shown in Figure 2.1. The set of these ng
triangles is denoted 7~'E, and ’7~7L is defined by

= Te.

EeTy,

WeNIet Fh degote the set of all edges of elements of T, and ]S"h the set of all edges of elements
of Ty,. Then Fg will denote the set of edges of elements of Tg.
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We will also use some intermediate approximation spaces associated with the mesh 7~71
Mh = {q € M: §|r is constant on T, VTeﬁ}, Wh :RT0(7~71),
and the following spaces associated with the triangular submesh Te:
ME ={qe LQ(E): | is constant on T, VT € %E}, WE = RTO(%E)v

where, for any triangular finite element mesh 7~“, RT0(7~‘) denotes the Raviart-Thomas space
of lowest order associated with 7.

The approximation space for the pressure, M; < f\/l\/h < M, is defined, just as in the
case of the standard Raviart-Thomas method with lowest-order elements, to be the space of
functions which are constant on each polygon E € Tp,:

My, = {ge M), © M: g|g is constant on E, VE € Ty,}.

We would like to define the approximation space for the velocity, W), < Wh c W such
that, just as in the case of the standard Raviart-Thomas method, for each v, € W,

i) V-vy, is constant on each cell E € Ty; i.e. V- vy € My,.

ii) vy, is defined uniquely by its (constant) normal components on the edges of the mesh

Th.

The space W), will be defined locally; i.e. for each F € T, we will define a space Wg < WE,
and then W, will be defined by

WhZ{VGWhCW:VhEGWE, VE € Tp}.

To define the spaces Wg we introduce some more notations. Let E be a polygon with ng
edges in 7. Then as noted earlier T has ng triangles, 11, ...,T, . The set Fg of edges of

these triangles contains 2np elements, ng edges FF**, ... Fﬁ’;t on the boundary of E, and
ng edges Fint ... F;L‘g in the interior of E. We denote the corresponding sets of edges as
follows:

Fpt ={FeFp:Fc B} = Fi( ) Fn
Fit ={FeFg: Fc E° = Fg\Fg".
We suppose that these triangles and edges are numbered such that (see Figure 2.1):

o Fint ¢ Fint iy an edge of Ty and of T}, ..

o Fint e Fintisan edge of Ty and of Ty, k = 2,...,ng.
o e Fxtisanedgeof Ty, k=1,...,ng.

For each edge F' in .7?E we choose a unit normal vector ng such that if ' € Fg* then np
points outward from E, and if F = F}*" € Fi*® then n Fint points inward toward T}; again
see Figure 2.1.

Clearly, if ii) is to be satisfied, the dimension of Wg should be equal to ng, the number
of edges of E, whereas that of WE is 2ng, the number of edges in ]?E Ifve WE, then,
according to the divergence theorem, the flux through the edges of T} are related by the
equations

it — it = — ™ ke Zy,, (2.8)
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where vi"® and v§**, are the fluxes of v through Fi"* and F&* respectively, and dj is the
integral of the divergence of v over Ty, k = 1,...,ng. If the ng values v{** are known
then the average value (over E) of the divergence is known (again from the divergence
theorem), and if i) is satisfied, then so are the ng values di. From (2.8), we have then ng
equations in ng unknowns which are the fluxes on internal edges, however they are clearly
not independent: summing these ng equations we eliminate the unknowns and obtain the
divergence theorem for £ which we have already used. Clearly if {vi"* : k = 1,...,ng}isa
solution then so is {vmt ik =1,...,ng} for any constant c; i.e. there remains one extra
dimension, in particular that generated by the nontrivial element ¢ € WE with dive =0

defined by
@ZXt:J t4p~nF§xr,:O, Soiknt:J\_t(P’nF,im:L kzl,...,nE.
F}?X Fén

However any ng — 1 of these equations are independent and to obtain a solution it Would
suffice to fix vi™ for any k, and to avoid a rotation it seems reasonable to set some vi"® = 0.
However this leaves an arbitrary choice so instead we require that the average value of the

vi'®’s be 0. So we define the space Wi by

Wg ={ve W : div v is constant on E and pp(v) =0},

where, for v € WE, ¢ (v) is defined by

pp(v) = J Vo Dpin, Vv e WE (2.9)
nE k=1 Fmt

Then the local problems (2.10) which are used to compute the basis functions for Wg
are, for all F € Fgxt,
Find wg r € WE such that

1
V'WE,F = E,
(2.10)
. , = 5 VF/ fext
WEgE F-Nfp |F| F ’
(bE(WE,F) = 0

An explicit formula to compute the normal components of velocities from the conditions
defined in (2.10) is given in Lemma 2.4.1. Consequently, the problem (2.10) is well-posed,
and has a unique solution.

Remark 1. Of course we could define basis functions wg r and the space that they generate
W, by imposing, instead of the requirement that ¢ p(wg p) = 0, the requirement that wg g
be a discrete gradient in the sense that it is a solution of the following problem
Find wg r € VNVE and pg F € ME such that
i(Wpp, V) +b(v,ppr) =0 YveWp,

blw . ) = G gl e s, o)

WE . F "N = |F|6F E]'-eXt,

f pe,r =0,
E
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where the bilinear form a : W x W — R is defined by a(u,v) = {_u-v, forue W and
VvV E WE

These definitions coincide in the case that the polygon F is a regular quadrangle, coming
from a linear transformation of the reference element. We compared the methods resulting
from these two choices of basis functions and could not observe any significant difference
in the error behavior. However the computing cost is lower when using (2.10) because
unlike (2.11), the solution of this problem does not depends on the shape of the polygon.

2.4 An explicit expression for the flux across the
interior edges of a composite element

We know that a velocity v € WE is uniquely defined by its normal components. An
expression is given for the interior fluxes, which depends only on the divergence of v, its
normal components at the boundary, and ¢g(v) defined in (2.9). This expression of the
normal components is used later to decompose v with a velocity rotating around the node
mpg, and a remainder.

Lemma 2.4.1. Letv e WE be arbitrary. Then for allk =1,... ,ng, we have
ot = 3 — (di —oP) = ) (di — &) + ¢p(v), (2.12)
- e ik B

where ¢ (v) is defined in (2.9), and

d; = V-v pnt — V - Npint v = V - Npext ori=1,...,ng.
’ A Fints i Fexty ) )
i Q i
T Fil!lt Fiext

i

Proof. Let v € Wg and k € {1,...,ng}. To prove (2.12), we introduce the divergence
theorem in (2.8) for v on triangles T; for i = 1,...,ng — 1. Counting the definition of ¢ (v)
in (2.9), there is ng equations, which are written in matrix form and where the definition of
¢ (v) is placed on the k' line. We obtain the linear system

Mkvmt = bk,

where the components of the unknown vector vi™® are its normal components to the internal

edges, vint = SF;M V - Ngine. The matrix is
—1 1
—1
My = 1 1 1 1 — line k,
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and the righthand side is
br; = d; — v$** for i < k,
bk}c = nE¢>E(V) for i =k,
bpi = di_q —v&Y fori > k.
Moreover, we can find an expression of the normal component U‘“t using the structure of the

matrix, by summing the lines from 1 to k& — 1 to the k™ line, and subtracting the lines from
k + 1 to ng. On one hand we have

k—1 k—1 — k

. . ext mt 1nt int int
X b= 30— a) = 3ot — o) = ot - Y
i=1 i=1 i=1 i=1

and on the other hand we have

nge ne—
Z (i—1—ng)bg; = 2 (i—ng) d —vf"t)
i=k+1 i=k
ng—
_ int int
= 2 (i —np) z+1_vi )
_ (nE _ 1nt Z Umt
i=k+1
Therefore,
k—1
brr + Z by + Z i—1—ng)by; =npdp(v) + npvi™ — Z vint,
i=1 i=k+1

And using the definition of ¢z (v) in (2.9), it follows that

k—1
v,ignt (bkk + Z ibg; + Z i—1— nE)b;”> ,

i=k+1

which can be rewritten as (2.12). O

Definition 1. According to (2.12), any velocity v € WE can be split into a velocity rotating
around the interior point of E denoted by ®g(v) € Wg and a remainder $g(v) € Wg:

v==&gV)+Tg(v). (2.13)
Both projections are defined by their normal components on interior edges F,icnt € Fint and

on edges included in the boundary of the mesh F*' € F&X'. & p(v) is defined by using the
definition of ¢ (v) in (2.9):

| #e@) i np —oe), | @e)nge =0, k=1ing,
Fmt Fext
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and the remainder ¥ g(v):

k=1
i
Vp(v) npm = Z — Vv — Vo Dpext
T; Fext

Fp i=1 "B
"E g —i
i—x B i Pt '
‘I’E<V) 1 pext —f V - Il pext, k= 17 ,ME
Fext Fext

2.5 A bound on the velocities
From the Definition 1, we can study the behavior of a velocity v € WE inside the composite

element. This decomposition allow us to estimate the norm of v, from its divergence, its
normal components at the boundary and ¢g(v).

2.5.1 A bound of the remainder
We need first to introduce the following norm for functions of Wh
vz = J v-n|, VTeT,, YveW,
oT

and a shape regularity assumption to estimate the L? norm of v.

Definition 2 (Shape regularity). Let pr be the radius of the inscribed circle of the triangle

T and hr be its diameter. The shape constant of T' is o = Z—i. og, the shape constant of
the mesh 7~'E and oy, that of the mesh 7}, are
Op = maxor, Op = MAaX 0p = Max or.
TeTE E€eTy, TeTh

The family of meshes {7, h € H} is shape regular if o}, is uniformly bounded.

Lemma 2.5.1 (Norm equivalence). For any velocity v e RTo(T), there are constants ar
and Br such that

VI3
v

with ar and Pr non-negative constants that depend on T'.
Moreover, if the family of meshes {Tn, h € H} is shape regular, then there are constants
a and B independent of T and h such that VT € Tg, E€ Tp, he H

ar s < /6T7

VI3~
a < — < . (2.15)

V17
Proof. The proof is a scaling argument. It is similar to that in [71] where E was an
hexahedron divided into 5 tetrahedra. O

We can now estimate the norm of ¥ g(v) by the following theorem,
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Theorem 2.5.2. For any v € WE, there exists a constant C > 0 independent of h and v
such that

1) 5 < fw vi+ Y f|v nel | . (2.16)

Fe]:pxt

Proof. Let v € Wg. By using the norm equivalence (2.15), we have

1es)IE 5 < BZWE <as| 3 | [ww)-nl

FG]“E

We deduce inequality (2.16) from the expression of normal components of ¥ (v) in (2.14).
O

2.5.2 Projection operators

It remains to bound the norm of ® g(v), which is possible if v is the projection of a velocity
in H!(E). We define then the projection operators onto the approximation spaces.

Let 7, be the projection operator from M = L?(2) onto the approximation space M,
defined as

1
m(@le = 75 (q), me(0) = 135 | a VEE T Vg e M.
E
Let IT;, be the projection operator from H*(£2) onto the space W, defined as

I, (v)|p = Oe(v), Me(v)= )| vrwor, UF:Jv-nF, VE € Ty, Vv € H{)T)
FeFgt F

with wg g, F' € F&', the basis functions of W, solutions of problems (2.10).

Similarly, the projection operators onto the approximation spaces (./W;L,Wh) for the
RTN method are defined on Let 7, be the projection operator from M = L2(Q2) onto
M, defined as

~ ~ - 1 ~
Fn(@)lr = Fr(0). 7e(0) = 77 Lq, VT e T Vg e M.

Let II,, be the projection operator from H*(£2) onto Wh defined as

ﬁh(V)|T :ﬁT(V), ﬁT(V) = 2 VFWT,F, UF :J vV-ng, VTEﬁ,VVEHl(Q)
FE}‘T F

where the basis functions wr g of the RTy method are associated with the edges F' € Fr of
the triangle 7.

We deduce some known results from the definition of the projection operators. It is
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known [14, 64] that the following results hold for constants C' > 0 independent of h:

For g e L*(E) lg — me(Dlo,z < Cligllo,E VE €T, (2.18)
For g e L*(T) lg = 7e(@)llor < Cligllo,r Ve T (2.19)
For g e H'(E) llg — me(@)|lo.e < Ch||V o,k VE€ T, (2.20)
Forge H'(T) lg = 7e(@)llo,r < CRIV qllo,r VT € T

For vector functions, we have the following commutative properties:

For ve H'(E) me(V-v) = V-IIg(v), VYE € Tp,. (2.21)
For v e H'(T) Fp(V-v) = V-TIp(v), VT € Ty (2.22)

The interpolation errors for f[h are known and proven in [68, Theorem 6.3] or in [19,
Proposition 2.5.1]:

For ve H'(E) v —TI,(v)|jo.e < Chlv|1.g, VE € Tp. (2.23)
For v e H'(E) |V-v = V-TII,(v) 0.z < Ch||V-V|1.E, VEeT.

The interpolation errors for IT; will be proven in Section 2.6.2.

2.5.3 A bound of the rotating velocity

If v € H(E), the velocity ®(II,(v)) can be interpreted as an interpolation error because
these normal components at the boundary of E are zero. Consequently, its norm can
be bounded like the estimate (2.23). We recall first the Bramble-Hilbert lemma in |20,
Theorem~2], which is used to bound the interpolation errors. Later we give an estimate
of | 5(TT (v)) .-

Lemma 2.5.3 (Bramble-Hilbert). Let E < Q be a Lipschitz domain. If the linear operator
F: HY(E) — R meets the following conditions for any v e H(E):

i [FVo.e < Cllvih.e,
it. F(v) =0 when v is constant,

then there exists a constant C > 0 independent of h and v such that

[FW)llo,z < Chllv]l1,e-

Theorem 2.5.4. Let v € HY(E). There exists a constant C > 0 independent of h and v
such that N
@ 5L (V)05 < Chllv]15. (2.24)

Proof. We prove the estimate of Theorem 2.5.4, by showing that on E € 7T}, the operator
F := ®p o I}, satisfies the conditions of Lemma 2.5.3. For v € H!(E) we have

IFW)llo.z < Ivlo.5 + €T (W))llo.s < C|lv

II,E7
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Figure 2.2: The mesh 7~—E with a constant velocity

by using the decomposition of v in (2.13), the estimate (2.16) and the norm equivalence
in (2.15).

Remains to prove the condition F(v) = 0 when v is constant. As shown in Figure 2.2,
we place ourselves into the coordinate system centered on mg, where the = axis is oriented
to follow v. For i = 1,..., ng, the different vertices of E are denoted p; = (). We deduce
that SF}'“ v D = —||v|[y; because v follows the z axis and V- v = 0. Consequently,

o --I1F o
ng P! i )

because mg is the barycenter of the vertices of F. O

2.6 A priori error estimation

From the previous results, we can now prove the convergence of the composite method. First,
we estimate the norm of the projection IIg(v), needed to have the estimate (2.7). Then we
prove the convergence of the composite method.

2.6.1 A bound of the projection operator for the velocities

From a trace theorem [48, Theorem 1.5.1.10], there exists a constant C' > 0 independent of
h such that,

‘J V- -ngp
F

With this result, the norm of the velocities projected by II; can be estimated, which is
necessary to prove the convergence of the method.

< CO|vl,e VF e Fp,Yve H(E),YE € Ty,. (2.25)

Theorem 2.6.1. For velocities v e H (), there exists a constant C' > 0 independent of h
such that

1T, (V) |5 (aiv,0) < Clv1a- (2.26)

Proof. Let v e H'(Q). The norm is studied on each element E € Ty,. By definition of the
projection operator (2.17), we have
J V- -ng
F

Me(v)|o.e < Z

FE]“E

wE,rllo,z-
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For an edge F € Fg, the basis function wg g solves the problem (2.10). From it, we deduce
that the norm of wg g can be bounded by (2.16), by using the decomposition (2.13) of
velocities, and the property ¢g(wg r) = 0. There exists then a constant C' > 0 such that

2
HWE,F”%,E (J V-wg r|+ 2 J |Wg F - IlF/) .

F'eFg

)
Moreover, we have V-wg r = |E|”! and wg p - np = |F|710E | for an edge F' € Fg.

Consequently,
J‘ v-nrg,
and from (2.25), we obtain [|[IIg(v)|lo.z <
Concerning the divergence of II g (v), using the commutativity property (2.21) we obtain

ITe()loe <C .

FE]'—E

IV-Tg(V)lo.e < [V-He(v) = V-vlor + V- v]or

<|
< mp(V-v) —

We conclude by using inequality (2.18). O

We can prove that the approximation spaces My, and W), satisty the conditions (2.6a)
and (2.6b), and so prove the estimate (2.7) with the previous results. The first
condition (2.6a) on the bilinear form a holds using (2.4a) and the fact that V), is a subset of
V.

To prove (2.6b), another condition is shown from (2.4b) in [68, Theorem 13.2]. The
bilinear form b satisfies the inf-sup condition with respect to the spaces My, and H*(2),

38>0, inf sup b(v,qn) = Blviallanlloq-
thMhVEHl( )

Consequently, for g, € My, there exists a velocity v € H! () such that

b(v,qn) =
Since b(I1,(v), qn) = b(v, ¢r) and since the velocity is bounded by (2.26), we have
b(IT(v), qn) = BOITIA(V) [l #1(aiv,0) I gnllo.0-
This inequality holds for a velocity v, = II,(v) € Wy, so for the supremum, and for all
functions ¢;, € M,, which proves the estimate (2.7).

2.6.2 Error estimates

It remains to estimate the interpolation errors for the composite method.

Theorem 2.6.2 (Interpolation errors). Let u e W, p € M be the solution of problem (2.1).
Ifue HY(Q) and V-u € L?(Q), then there exist constants C > 0 independent of h such that

lp — 7 (p)llo,o < Ch|p||10, (2.27)
[u—TIn(u)loq < Chllull1 q, (2.28)
[V-(u —II4(u))ljo,0 < Chl|V-ul1,q. (2.29)
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Proof. The estimate of the interpolation error for the scalar functions (2.27) is just
inequality (2.20) extended to 2.

For the interpolation error of the vector functions (2.28) we have
lu = T (w)llo,0 < [u—TLx (w0, + [|TLx(w) =TI (w)lfo,o0-

Estimate (2.23) gives a bound on |ju — IIj,(u)|jo.o. To bound ||II,(u) — IIj(u)|o.0, we
use the decomposition of velocities in (2.13) on a polygon E € Tj,. We also remark that
¢r(IIL(u)) = 0, since it is a linear combination of the basis functions, which are solutions of
problems (2.10). Therefore we obtain

T () = Ty (w)lo,5 < @£ (Th(w)llo.z + | ¥ 5 (L (w) — x(u)

0,E-

Since u € H!(E), the rotating velocity ®(II,(u)) is bounded by (2.24). The remainder is
bounded by (2.16), which gives

9 5 (L, ()~ TL, (w))Jo.5 < € ( | |9 () = ) +

> | [ - mw) -nFD :

FE]'-E
with C' > 0 independent of h and u. On an edge F' € Fg at the boundary, II;(u)|r =
IT, (u)|F, so

L \ (ﬁh(u) - Hh(u)) : nF’ —0.

Concerning the estimate of divergence in the sum, the Cauchy-Schwarz inequality used
together with the commutative properties (2.21) and (2.22), and inequalities (2.18)
and (2.19) gives:

|19 (0 0) = 1100 | < 12929 (Fi) = T84 () o2

h([|7n (V-u) = Veullog + [V-u =7, (V-u)lo,r)

<
< Ch|[V-ullo,r

where C is a constant independent of A.

Finally to prove inequality (2.29), the commutativity property (2.21) together with
inequality (2.20) imply

V- (a — I (u))|

0.5 =[IV-u—m,(V-u)llop < Chl[V-ull1 g
where C' is a constant independent of h. This concludes the proof of Theorem 2.6.2. O
Theorem 2.6.3. Letu e W, p e M be the solution of problem (2.1), andup, € Wy, pr, € My,
be the solution of (2.5). If u € HY(2), then there exists a constant C' > 0 independent of h
such that

[P = prlloe + [[u—uplla@iv.e) < Ch(pllie + llullie + [V ullie).

Proof. The error of the convergence is proved by using the error estimate (2.7) and the
interpolation errors (2.27), (2.28) and (2.29). O
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2.7 Numerical experiments

The convergence of the composite method is shown on the domain 2 = [0; 1]2 with meshes
of quadrangles. n denotes the number of discretization intervals in each direction. The exact

scalar solution to compute is
3

X
pz,y) = 5 +ay’.

With an anisotropic tensor K = (% 4 ), the expression of the exact velocity u is:
322 + 297 + 2xy)
u(z,y) = — .

(z,y) (g’xQ + 9% + 402y

The first numerical experiment is performed on rectangular meshes, shown in Figure 2.3.
The convergence errors and orders of convergence of the composite method are shown in
Table 2.1, and compared with the errors of the RTy method on the corresponding triangular
submesh in Table 2.2 and one can check that the two methods converge with the same rate.

The second numerical experiment uses non rectangular meshes shown in Figure 2.4.
These meshes are not built by refining a coarse mesh, so all meshes maintain the same
aspect ratio for the quadrangles. Even on this kind of meshes, the method converges with an
optimal rate as shown in Table 2.3, even though the errors are a little larger than that of the
RT( method on the triangular submeshes shown in Table 2.4.

Note that in both experiments the triangular RTy method uses for velocity 3 times as
many degrees of freedom as the composite method and 4 times as many for pressure.

2.8 Conclusion

We constructed a two-dimensional composite mixed finite element for polygonal meshes
by adding an interior point to the polygonal cell which serves as a vertex as well as the
polygon vertices for a triangular submesh of the polygon. We analyzed the method and
showed optimal convergence. This convergence was confirmed by numerical experiments.
This analysis is a first step towards the analysis of a 3-D composite mixed finite element
with one interior point inside the element [18].
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1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

O0 0.20.40.60.8 1 00 0.20.40.60.8 1

Figure 2.3: Rectangular meshes for n = 8 and n = 16.

P — pullo.o [u—upllo0
n h error rate error rate
2 7.07-100' 1.66-107" 3.79 - 109

4 354-107' 855-1072 096 1.91-10° 0.99

8 1.77-107% 4.30-1072 0.99 9.57-10"! 1.00
16 8.84-1072 2.15-107%2 1.00 4.79-10"! 1.00
32 4.42-1072 1.08-1072 1.00 2.39-10~! 1.00
64 2.21-1072 5.39-107% 1.00 1.20-10"% 1.00
128 1.10-1072 2.69-10"2 1.00 5.98-10"2 1.00
256  5.52-107% 1.35-1073 1.00 2.99-10"2 1.00

Table 2.1: Error of the composite method on rectangular meshes.

P — pullo.o [u—upllo0
n h error rate error rate
2 5.00-107' 1.03-107! 3.85-109

4 250-107' 5.01-1072 1.03 1.95-10° 0.98

8 125-107' 249-1072 1.01 9.77-10~! 1.00
16 6.25-1072 1.25-1072 1.00 4.89-10~"! 1.00
32 3.13-1072 6.22-107% 1.00 2.44-10"! 1.00
64 1.56-10"2 3.11-10=% 1.00 1.22-10"' 1.00
128 7.81-1073 1.56-10"2 1.00 6.11-1072 1.00
256 3.91-10% 7.78-107* 1.00 3.06-10"2 1.00

Table 2.2: Error of the RTy method on the triangular submeshes of the rectangular meshes.
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1 1
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O0 0.20.40.60.8 1 00 0.20.40.60.8 1

Figure 2.4: Non rectangular meshes with fixed aspect ratio for n = 8 and n = 16.

P — prllo,o [u—unllo0
n h error rate error rate
2 820-107' 1.63-1071 5.11-10°

4 4.10-107' 9.07-1072 0.85 3.20-10° 0.67

8 205-107' 4.65-1072 096 1.61-10° 0.99
16 1.03-107' 235-1072 098 7.79-107% 1.05
32 5.13-1072 1.18-1072 0.99 3.81-10~! 1.03
64 2.56-10"2 5.91-107% 1.00 1.88-10~' 1.02
128 1.28-1072 2.96-10"2 1.00 9.34-1072 1.01
256 6.41-1073 1.48-10% 1.00 4.65-1072 1.01

Table 2.3: Error of the composite method on non rectangular meshes with fixed aspect ratio.

P — prllo,o [u—unllo0
n h error rate error rate
2 6.50-1071 1.12-1071 4.88 - 109

4 4.00-107' 6.63-1072 0.76 3.10-10° 0.66

8 200-107% 3.30-1072 1.01 1.58-10° 0.97
16 1.00-10!' 1.63-10"2 1.02 7.74-10"! 1.03
32 5.00-1072 8.13-1073 1.00 3.80-10~! 1.02
64 2.50-1072 4.08-10~% 0.99 1.88-10~! 1.01
128 1.25-1072 2.05-10~2 1.00 9.36-1072 1.01
256 6.25-10% 1.03-10~% 1.00 4.67-10"2 1.00

Table 2.4: Error of the RTy method on non rectangular meshes with fixed aspect ratio.






Chapter 3

Composite Methods on
Irregular Hexahedral and
Pyramidal Meshes

Abstract

We develop mixed methods for polyhedral meshes for second order elliptic problems.
They are based on the construction of a tetrahedral submesh of the polyhedra. All
methods have one degree of freedom per element for the pressure, and one degree of
freedom per face for the velocity. Pyramidal meshes is a special case which can be treated
as an extension of a work done previously. For hexahedra and prisms, a different method
must be used. Meshes with curved faces are also considered. Convergence is proved for all
methods and confirmed by numerical experiments. The hexahedral method is used in a
realistic simulation.

Keywords: mixed finite elements, composite finite elements, polyhedral mesh, flow in
porous media

3.1 Introduction

Let 2 < R? be a polyhedral domain. We consider the following problem governing
incompressible one-phase flow in porous media

u=-KVp inQ,
Vou=f in Q, (Po)
P =pd on 0f2,

where p is the fluid pressure, u the Darcy flow velocity, K is a positive definite permeability
tensor and f is a source term.

We are interested in the discretization of (Py) by mixed finite element methods. The
velocity u is calculated simultaneously with the pressure p with the same order of accuracy.
Also in many applications, the permeability K is discontinuous and its magnitude varies
over several orders from one geological region to another. Mixed finite element methods
are particularly well suited to handle these difficulties. Moreover these methods are locally
conservative and can be used both on meshes of tetrahedra and hexahedra which are
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obtained from a reference element using a linear mapping. Several methods have been
developed and we refer to [19] for a large bibliography.

However these methods cannot be readily extended to general polyhedral meshes since
their mapping to the reference element is not linear and several methods have been proposed
to overcome this difficulty [60, 63]. In [5], a solution was proposed in two dimensions but
in three dimensions, the proposed methods increase the number of degrees of freedom
[72, 9, 43, 81]. In this work, in order to ease the implementation into existing codes, we
impose to stick to standard discretization techniques requiring one degree of freedom per
cell for the pressure and one degree of freedom per face for the velocity, as in a standard
cell-centered finite volume method or in the Raviart-Thomas-Nédélec mixed finite element
method of lowest order, which we call the RTINy method. To achieve this goal we construct
in this paper a composite mixed finite element.

Composite mixed finite elements were already introduced in [54, 55, 71] and in Chapter 2.
In [71] an hexahedron is divided into five tetrahedra and a face into 2 triangular subfaces.
The method has optimal convergence properties for hexahedral meshes but the division
into 5 tetrahedra is not unique and the element does not have good symmetry properties.
Furthermore it is not possible to use the method to meshes of deformed cubes with
non-planar faces.

Therefore we are drawn to the idea of dividing an hexahedron F into 24 tetrahedra, by
adding an interior point and dividing each of its 6 faces into 4 triangular subfaces. This
division is unique and has good symmetry properties. The local approximate space must be
a subset of H(div, E) whose elements are defined piecewise as functions of RTNj and must
be uniquely defined by their constant divergence on E and by their normal components on
the boundary of E. However such an approximation space may have velocity vector fields
turning around the internal edges, which are in the kernel of the mapping div: H(div, E) —
L?(E). Therefore the basis functions of our approximation space will be defined by solving
numerically a local Neumann problem on F and unlike in the 2-D case in Chapter 2, we will
not have an explicit formula for the basis functions.

On the other hand the method presented in Chapter 2, in two dimensions, in which a
polygon is split into triangles by adding an internal node, extends readily to the case of
pyramids with a quadrilateral base.

The contents of this article is as follows. Firstly Section 3.2 gives known results for
the mixed finite element method. Common results used later to show the convergence
of the composite methods are presented in Section 3.3. A definition of a first composite
method is given in Section 3.4 together with the proof of its convergence. This method is
a follow up of a 2-D polygonal method presented in [17]. Then a definition of a composite
method for general polyhedral meshes is given in Section 3.5. Section 3.6 presents numerical
experiments confirming the previous theoretical results. Additional test cases are studied
when the mesh has curved faces. A posteriori error estimators are presented with numerical
experiments in Section 3.7 and a realistic numerical experiment is shown in Section 3.8.
Finally, conclusions are drawn in Section 3.9 and auxiliary results giving trace inequalities
are shown in Section 3.A.
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3.2 Mixed finite element methods

Let M = L?(Q) and W = H(div, Q). The weak mixed formulation of (Py) is then

Find u € W and p € M such that
a(uv V) + b(V,p) = ‘CW(V)v Vvew, (P)
b(u,q) = Lm(q), Vg e M,

where the bilinear forms a: W x W — R, b: W x M — R are defined such that
YueW, VveWw, a(u,v) = J Klu v, (3.1)
Q
YueW, VgeM, b(u,q) = —f qV-u, (3.2)
Q
and the linear forms Lyy: W — R, L: M — R such that
Vvew, Lw(v)=fj P4V - ng,
0
Vge M, L)) =~ 1o

It is shown in [21, Proposition 3.1] and [68] that if a and b defined respectively in (3.1)
and (3.2) satisfy the conditions:

i) a is V-elliptic, where ¥V = {v e W : b(v,q) = 0,Yq € M}, i.e.

Ja > 0, a(v,v) = a||v||%1(div752), Vvew, (3.3a)

ii) b satisfies the inf-sup condition:

18 > 0, inf sup b(v,q) = B|vl|luiv,o)llallo,o; (3.3b)
qgeM veWw

then there exists a unique solution (u,p) to the problem (P).

We give now the discrete formulation of (P). For h > 0, we set M) < M as the
approximation space for the pressure and W, < W the approximation space for the velocity.
The discrete formulation of problem (P) is to find uj, € Wy, and p;, € My, such that

a(un,vp) +0(vh,pn) = Lw(vy), Yvi € Wy,

P
b(un, grn) = Lrm(qn), Yan € My, (Pn)

If the bilinear forms a and b satisfy the conditions:
i) a is Vp-elliptic, where V}, = {v, € Wy, : b(vp, qn) = 0,Yqn € My}, ie.

Jay, > 0, a(vy,vy) = athh”%{(div,Q)’ Vvp € Vy.  (3.4a)
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ii) b satisfies the discrete inf-sup condition:

1B, > 0, inf  sup b(vh,qn) = Bullvellaaiv,o)llanlloo.  (3.4b)
qn€EMp VREW),

Then the problem (P}) admits a unique solution (uy, py), and there exists C' > 0 depending
only on the constants of continuity of ¢ and b, and the constants «y, and §;, such that

- - oy <C( inf |]p— inf |ju— o). 35
=l + = wn iy < € (i, 10~ o+ ing u =il ) - 55

In the following, we construct composite mixed finite elements with spaces W) and My,
which satisfy conditions (3.4a) and (3.4b) and we will evaluate the interpolation errors.

Denoting by H a countable set of meshsizes having 0 as its unique accumulation point,
we consider mesh sequences {7y, h € H} where for all h € H, Ty, is a conforming discretization
of the domain €2, made up of pyramids, prisms and hexahedra of diameter no greater than
h. We denote by F}, the set of faces of the mesh. The approximation spaces are defined such
that vy, € Wy, and g, € M, satisfy the following conditions:

i) g, is constant on each cell E € Tj,.
ii) V-wvy, is constant on each cell E € Tj,.
iii) vy, is defined uniquely by its normal components on the faces F' € F,.

Thus, the approximation space for pressure is
My, ={qge M : q|g is constant on E, YE € Tp}.

Concerning velocity, W), is defined locally on each cell of the mesh. We will define a local
finite element space Wg < H(div, E) for each cell E € T, and

Wh,Z{WEW:W|E€WE, VEE'];L}.

We denote Fg = {F € Fp, F c 0E} < Fj, the set of faces of E. To define our composite
method, we construct a tetrahedral submesh 7g of £ and Wy will be defined as spanned by
its basis functions wg r € RTN((Tg) associated to faces F' € Fg of the cell. We introduce
F E the set of triangular faces of Tg and we distinguish the internal faces ]-"E“ c F £ from
the external faces F&X* Frg

Fit = {FeFp,F ¢ o), Fi' ={F e Fp. F < 0B},

The normal components of the velocity though internal faces FeF I are obtained using
the divergence theorem on the tetrahedron T' € Tg. If we denote Fr = {F € Fg, F < 0T}
the set of faces of T', we introduce

Fit — (F e Fr,F ¢ 0E}, Fgt = (F e Fp,F c 0E).

The divergence theorem applied to a velocity v e RTNy(7g) gives

VT € Tg, Z J‘V.HT:JV.V_
T

FeFipt

j vonr, (3.6)

FeFgxt
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where nr is the outward normal on 07

However if the submesh Tg contains an internal edge which is the case with the methods
that we consider in this paper, then the system (3.6) does not have a unique solution. Let
£ be the set of internal edges of E. As shown in Chapter 2 in two dimensions, we can
define a velocity ¢, € RTNg(7z) turning around the internal edge e € 2% which is in the
kernel of the matrix of system (3.6). For this, we define the set of faces F. < F* which
have e included in their boundaries:

Fo={F e F¥* ec oF}.

Moreover for each face F' e Fe, we associate a normal n% in order that the set of these
normals is oriented to turn around e. Thus the velocity ¢, is defined such that

VF e F., ‘[Ncpe-neﬁzl, VE € Fg\Fe, J‘Ngoe-nﬁ:O.
P F

Consequently we have V- ¢, = 0, Sﬁ . ng = 0 for all faces Fe F&t and system (3.6) does
not have a unique solution.

In order to define uniquely a velocity v € RTNg(7g) from its divergence and its normal
components at the boundary, we introduce for e € £ the function ¢, as

be(v) = ni NZ fwv ‘n%, Vv e RTNy(Tx), (3.7)
FeF.
where n. is the cardinal of F, i.e. the number of faces which have e included in their
boundary. Adding equation (3.7) to the system (3.6), we obtain an expression of the flux
of v across all internal faces in terms of the divergence of v, the flux of v across the faces
included in 0F and of the ¢.(v)’s.

Lemma 3.2.1. Let E € Ty, be a polyhedron and Fe FI be a triangular face of the mesh
T located inside E. There exists sets of coefficient {ap,, F' € Fg*}, {Br,T € Tg} and

{Ve, € € EBtY depending only on F such that for any velocity v € RTNy(Tg):

[vomp= ¥ ap[vonp+ Xoor[ v X owam 69

P ﬁ/ej:%xt TeTE eegiélt

This will be proved in (3.8) Lemma 3.4.1 for pyramids and Lemma 3.5.1 for any
polyhedra. Also in Lemma 3.4.1, an explicit formula of the coefficients is given for the case
of pyramids.

For a pyramid F, the tetrahedral submesh can be built with only one internal edge e
connecting the apex of F to the barycenter of the vertices of its base. Basis functions for
Wg are defined as defined by their normal components on the faces of F and by setting
¢pe(wgrp) = 0 for all F € Fg. Following ideas from the two dimensional analysis in
Chapter 2, we show in Section 3.4 that this is sufficient to construct Wg and W, satisfying
the inf sup condition and optimal convergence properties.

However this method can not be extended to hexahedra and prisms. Therefore we
consider a second composite mixed finite element method that call polyhedral method, which
applies to meshes of a combination of pyramids, prisms and hexahedra. To construct the
tetrahedral submesh 7g, we proceed as before for pyramids but for prisms and hexahedra,
we add an internal vertex inside E and quadrangular faces are divided into four triangular
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subfaces by adding a vertex at the barycenter of the vertices of the face, as we have done for
the pyramid bases. Setting ¢.(wg r) = 0, the resulting approximation spaces Wg and Wj,
do not have optimal approximation properties. Consequently, in Section 3.5, velocity basis
functions are instead computed by solving a Neumann problem on the tetrahedral mesh with
a vanishing average pressure.

3.3 Convergence of composite mixed finite elements

We now outline the main steps for obtaining convergence results. We introduce the
projection operators mp,: M — M, onto the scalar approximation space:

1
Ve M. (@)l = T5(a), m(a) = T j " VEeTi.
E

Interpolation errors of scalar functions are bounded by the Poincaré inequalities given in
[14, 64]. There exists constant Cp, > 0 independent of & such that

Vge H'(E), lg — 7E(q)

0.8 < Cph[|V g

0,E VE € Th. (3.9)

(3.9) gives the interpolation error for the pressure in the righthand side of (3.5).
Concerning velocities, we introduce the projection operator IT;: H!(Q) — W}, defined
as

WweH(Q), TL()|s=Tpv), Ta)= ZJV.nEwE,F, VE e T3.10)
FEJ:E F

where ng is the outward normal on 0F. For a polyhedron E € T, and a velocity v € H!(E),
we have

JE Vls(v) = M=(v)-ns = LEV e JE Vv

which implies the commutative property

25

vve HY(E), V-Mg(v)=rme(V-v). (3.11)

The interpolation error for the velocity will be obtained by applying the following lemma
given in [20, Theorem 2|.

Lemma 3.3.1 (Bramble-Hilbert). Let E < Q be a Lipschitz domain. If the linear operator
Iz: HY(E) — Wg satisfy the following conditions for every v.e H'(E):

i) [|[v—=Te(V)llor < C|Vvli,E,
i) ||v —IIg(v)|o,e = 0 when v is constant,

then there exists a constant C > 0 independent of h and v such that

v —Hg(v)lo.e < Chllv]

\E- (3.12)

We show condition ) of the Bramble-Hilbert lemma by bounding the norm of the
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projection operator. By definition we have that

vy e H'(B), M) fos< Y f vonp| [worlos  (313)
FeFg F

The L? norm of basis functions must be estimated according to their normal components.
For this purpose, we introduce the norm of normal components defined in [17] and [71],

V]l = J v-nr|, Vv e RTNo(T), VT e Tp. (3.14)
oT

Its link to the velocity L? norm is given below, assuming that the mesh used is shape regular.
The assumption of shape regularity needs to be applied on the tetrahedral submesh of the
elements because the composite method is built by using functions of the RTN(y method on
this submesh.

Definition 3 (Shape regularity). Let h € H and Tg a tetrahedral mesh of a polyhedron
E € Ty. For a tetrahedron T' € Tg, we denote hp its diameter and pr the radius of the
inscribed sphere of 1. The shape constant of T is o = h—; Thus we define the shape
constant op = maxrer, or of a polyhedron E as the supremum of the shape constants o
for T € Tg. Similarly, the shape constant of the mesh o}, = maxge7;, o is the supremum of
the shape constants o for E € Tj,. Therefore, the family of meshes {7, h € H} is said to be
shape regular if the shape constants for the meshes o} are uniformly bounded.

Assuming that the mesh is shape regular, we can estimate the norm of normal
components given in (3.14) according to the velocity L? norm.

Lemma 3.3.2 (Norm equivalence). Let T be a tetrahedron. For any velocity v.e RTNy(T),
there are non-negative constants ar and By such that

||V||%T
— < Br.
vz

Moreover, if the family of meshes {Tp, h € H} is shape regular, then there are non-negative
constants o and 3 independent of T and h such that for anyhe H, E€ T, and T € Tg,

ar <

17| IvI3.7
a< — — < f. (3.15)
h? |[v]%

Proof. The proof is a scaling argument. It is similar to that in [71] where F is an hexahedron
divided into 5 tetrahedra. O

Following norm equivalence given in previous Lemma 3.3.2, we can bound the L? norm
of a velocity according to its normal components. From Lemma 3.2.1 giving the expression
of normal components of a velocity on internal faces, we deduce the following estimate:

Lemma 3.3.3. Let E € T, be a polyhedron and v € RTNy(Tg) be arbitrary. Then there
exists a constant C' > 0 independent of v and h such that

h2
V|2 . < C— J v-n +J V-v|+ e(V . 3.16
(V1152 7] aEI Bl E\ [+ D (b)) (3.16)

int
eefy
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Proof. Inequality (3.16) is obtained by using both the norm equivalence (3.15) and the
expression of the normal components on internal faces (3.8). O

Now that we can bound the norm of basis functions, it remains to estimate the normal
components of a velocity v € H*(E). An estimate similar to the norm equivalence is obtained
by using the trace inequality [37, Lemma 1.49].

Lemma 3.3.4. Let E € Ty, be a polyhedron and F € Fg | F&* be a face of E or a triangular
subface included in the boundary of E. For g € H'(E) be arbitrary, we have

lgll5,r < C (IIV qllo.z + 2" lg]

0.5) llallo,z- (3.17)

With inequality (3.16), we can show condition %) of the Bramble-Hilbert lemma which
is done below depending on the definition of basis functions, in Theorem 3.4.2 if the cell is
a pyramid and in Theorem 3.5.2 for any polyhedron. Condition ) of the Bramble-Hilbert
lemma is shown thereafter.

Thus from error estimate (3.5), if the constants «y, and 85 can be chosen independently
of h, then C' will also be independent of i and the problem of obtaining error estimates is
then reduced to a problem of interpolation. The first condition (3.4a) on the bilinear form a
holds using (3.3a) and the fact that V, is a subset of V. To show the second condition (3.4b),
we apply condition (3.3b) to the space H!(Q2) = H(div, ) as in [68, Theorem 13.2],

38 > 0, inf  sup b(v,qn) = Blvliallgnlo.o-
thMh VEHl(Q)

Consequently, for any function g, € M, there exists a velocity v € H!(£2) such that

b(v,qn) = BlIvi.ellgnlloq- (3.18)

Below in Theorem 3.3.5, we show that the norm of a velocity is greater than the norm of its
projection, which allows us to show condition (3.4b) from (3.18) and to show estimate (3.5).

Theorem 3.3.5. Let E € T;, be a polyhedron and v € HY(E) be arbitrary. There exists a
constant C' > 0 independent of h such that

(V) la@v,p < ClviLe.

Proof. The L? norm of the projection operator is bounded below in Theorem 3.4.2 for a
pyramid and in Theorem 3.5.2 for any polyhedra. The norm of the divergence is bounded by
using the commutative property in (3.11) together with the Cauchy-Schwarz inequality. O

3.4 A composite mixed finite element method for
pyramids

We consider here the particular case of a pyramidal mesh.

3.4.1 Definition of the method

If E is a pyramid, the submesh 7z can be built by dividing the pyramid into 4 tetrahedra
by adding one node at the barycenter of the vertices of its base.
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v

Figure 3.1: The mesh Tg for a pyramid F, divided into 4 tetrahedra

As shown in Figure 3.1, the submesh contains only one internal edge joining this node
to the apex. The set of internal edges £ is reduces to a singleton which is common to
all internal faces of the submesh and for e € £, we have F, = Ft. Since the tetrahedral
mesh contains 4 triangular faces, system (3.6) resulting from the divergence theorem on each
tetrahedra is square but not invertible. Replacing one of the equations of system (3.6) by the
definition of ¢.(v) in (3.7), we obtain a invertible system presented below in Lemma 3.4.1.

To obtain an explicit formula of normal components, it is necessary to number tetrahedra
and faces of the submesh. For i = 1,...,n., the tetrahedron 7; is surrounded by the faces

Ej™ e Figt and Fj™, e Fipt, the face FP € Fg* located at the base of the pyramid and the
face F* € F&*, as shown in Figure 3.1.

Lemma 3.4.1. Let E € Ty, be a pyramid, such that the tetrahedral submesh Tg of E is build
with only one internal edge denoted e. For any velocity v.e RTNy(Tg) and a tetrahedron
To € Tg chosen arbitrary, the following system whose unknowns are the normal components
of v on internal faces,

VT € Te\{To}, Z Jﬁ‘v.nT:JTV.V7 Z L}V.HT’

ﬁ‘e]—'%‘t ﬁe]—';"t

1 (3.19)
e _
FeF.
has a unique solution. Moreover fork =1,...,n., we have
k—1 i
VN = — V-V—J V-n~b—J V- Nz,
nEfl .
ng — i
- Z L J V~vf‘[~ v~nﬁbffwv~nﬁa + Pe(V).
i=k nE T Fq‘,b ! Fi !
Proof. The proof is similar to that of [17, Lemma 4.1] in two dimensions. [

Remark 2. Coefficient of system (3.19) does not depends on h or on the shape of E, but
only on the topology of the submesh Tg. A similar system is given in Lemma 3.5.1 for a
polyhedron whose submesh 7z is built with an added node inside E.

From Lemma 3.4.1, normal components of a velocity are determined uniquely by its
divergence, its normal components on faces of E, and the average value of its normal
components on internal faces. Thus for F € T and F € Fg, we define the basis functions
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WEF € RTNQ(TE) of WE by

1
V-wgr= =,
|E|
L Fcr
N — ifFc F
VFe F, wppong={ |F| (3.20)
0 otherwise,

Ve e giEnt, (Z)e(WE,F) = 0.

3.4.2 Interpolation errors for pyramidal mixed finite elements

We now show that condition ¢) and i) in the Bramble-Hilbert Lemma 3.3.1 are satisfied so
that the velocity satisfies interpolation errors (3.12). Condition i) is a direct consequence of
the following theorem:

Theorem 3.4.2. Let E € T, be a pyramid. If the projection operator Ilg is defined as
in (3.10) with basis functions given in (3.20), then there exist a constant C > 0 independent
of h such that

vv e H'(E), e (V) |o.e < C|vl1,E-

Proof. Let E € T, be a pyramid and v € H(E). Applying inequality (3.16) to the basis
functions of Wg, we have

h2 2
VFeFg, |werlis< CE (JE |Weg,r-ng|+ L IV-wg p|+ |¢e(WE,F)|> ,
o

where e is the internal edge. From the definition (3.20) of basis functions, we have
S lWerp-ng|=1,§,|V-wg p| =1and ¢.(wg, r) = 0. Using inequality (3.13), we obtain

h
Melos<C ¥ i | vemel.
&, B ),

Using the Cauchy-Schwarz inequality, we can apply estimate (3.17) since v - np € H ().
The assumption of shape regularity concludes the proof. [

It remains to show condition 7). We have to show that the approximation space Wg
contains the constant velocities. For this purpose, we remark that if v e H(E) is a
constant velocity, then v € RTNq(7g). Consequently, it remains to show that the normal
components of v and IIg(v) are equals. Moreover, the decomposition of velocities given by
solving (3.19) applies for both on v and IIg(v). Thus we have to show that v and IIg(v)
have the same normal components at the boundary of E, that they have the same divergence
and that ¢.(v) = ¢.(ILg(v)) for the internal edge e € £, We have by definition of II

VF € Fg, JF Ig(v) np = JFV ‘np, V-Ig(v) =V-v, pe(Ip(v)) = 0.

It remains to prove that ¢.(v) = 0 for a constant velocity v so we have ¢.(v) = ¢.(IIg(v))
and v = IIg(v).
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c De i
/ e cx
z
(a) Numbering of the nodes of Tg (b) Coordinate system centered on pe

Figure 3.2: Coordinate system on a pyramid-shape element

Lemma 3.4.3. Let E € Ty, be a pyramid such that Tg is built with only one internal edge
denoted e connecting the barycenter of the vertices of the pyramid basis to its apex. If
v € HY(E) is a constant velocity, then

pe(v) =0 (3.21)

with ¢.(v) defined in (3.7)

Proof. Let E € T;, be a pyramid and v € H!(E) be a constant velocity. As shown in
Figure 3.2a, the submesh 7z has only one internal edge denoted e. The base of the pyramid
have n, vertices which is equal to the number of faces around e. We number these nodes p;
similarly as internal faces Fin® € Fi* such that p; is the node of Fin® located at the base of
the pyramid, for i = 1, ..., n.. The apex of the pyramid is denoted by ¢ and the barycenter
of the vertices of the pyramid base p.. We place ourselves in the coordinate system centered
on p. such that the x axis follows the edge e. Then we have

Te i
c=101], pi= |y |, fori=1,... n.
0 Zi

Moreover v is split into three components in this coordinate system:
V=V +Vy,+V,.

We have ¢.(v;) = 0 because v, is orthogonal to the normals of the internal faces. To
evaluate ¢.(v,), we define ¢; as the projection of p; on the plane y = 0, as shown
in Figure 3.2b. We denote by Fi”t the face whose vertices are p., ¢ and ¢;. By using
the divergence theorem on the tetrahedron with p., ¢, ¢; and p;, we obtain that the
components of v normal to on faces l?’z-i“t and F™ are equal because V-v = 0. Then we
have { fine Vy s N, = —[|vy||#5%. and consequently

Ne

(v )=1§J v, - n% =7_Hvy”$622'=0
o Me i=1 F; Y Fi 2n€ ' ,

i=1

since p. which is the center of the coordinate system, is the barycenter of vertices p;, for i =
1,...,ne. Similarly for v, we define the projection on the plan z = 0 to obtain ¢.(v,) = 0,
which concludes the proof. O

Thus we have shown that the velocity approximation space contains the constant



44 Chapter 3. Composite Methods on Hexahedral and Pyramidal Meshes

(a) Internal edge joining the  (b) Internal edge joining the vertex (c) Internal edge
barycenter of the vertices of a face of an hexahedron joining the vertex of
a prism

Figure 3.3: Examples of internal edges joining the barycenter of the vertices

velocities, the velocity approximation space satisfies both conditions of the Bramble-Hilbert
lemma so estimate (3.12) holds. Since approximation spaces satisfy conditions (3.4a)
and (3.4b), we can now state the following convergence estimate.

Theorem 3.4.4. Let p e M, ue W be the solution of problem (P). Let Ty, be a mesh made
of pyramids, and p, € My, up € Wy, be the solution of problem (Py,). If the family of meshes
{Th,h € H} is shape regular, then there exists a constant C' > 0 independent of u, p and h
such that

lp = pulld.0 + e = wnlzaie.0) < CB? (Ilpl o + [ulli o + V- ullf o) (3.22)

assuming that p and u are enough regular to define the righthand side.

Proof. The convergence error (3.22) is shown by using the estimate given in (3.5) by the inf
sup condition with the projection errors shown in (3.9) for the pressure and the divergence,
and the projection error in (3.12) given by the Bramble-Hilbert lemma for the velocity. [

Remark 3. Theorem 3.4.4 is valid only for pyramids. If we take the basis functions defined
previously in (3.20), then the constant velocities may not be inside the approximation space
W, for any polyhedron. Indeed for an hexahedron F € 7T, the submesh 7 is built by adding
an internal node at the barycenter. Equality (3.21) is true for edges joining the internal node
to the nodes added on the faces (Figure 3.3a) but not for the edges joining the internal node
to a vertex of E (Figure 3.3a). We notice however that if E is the reference cube and if
v € H'(E) is constant, then ¢.(v) = 0 for every edges e € 2. Therefore Theorem 3.4.4
holds for meshes made of hexahedra coming from a linear mapping of the reference element.

On the other hand if E is the reference prism and e € £ the edge joining the barycenter
to the origin, as shown in Figure 3.3¢c, then we have that ¢.(v,) # 0 for the constant velocity
v, which follows the x axis. Consequently, velocity approximation space generated by basis
functions in (3.20) is not suitable for prisms coming from a linear mapping of the reference
element.

3.5 A composite mixed finite element method for
polyhedra

We present in this section the composite method extended for any polyhedra. The definition
of basis functions is different from that of the pyramidal composite method because the
tetrahedral submesh is built by adding an internal node.



3.5. A composite mized finite element method for polyhedra 45

Figure 3.4: The mesh 7g for a cube E, divided into 24 tetrahedra

3.5.1 Definition of the composite mixed finite elements for
polyhedra

If we assume that the mesh 7j is made only of hexahedra, the tetrahedral submesh Tg
of E € Ty is built as following: The faces of the hexahedron are split into four triangular
subfaces by adding a node at the barycenter of the vertices. Next we add a node at the
barycenter of the vertices of the element and by joining each nodes to this one. The obtained
submesh is shown in Figure 3.4. So, every tetrahedra T € T has three faces located in the
interior of F and one face included at the boundary of E.

Similarly as the pyramidal composite method, the velocity approximation space W, is
defined by the local space Wg. The local space is spanned by the basis functions wg r €
H(div, E) of the method which are associated to the faces F' € F of the hexahedron. If we
denote Mg L?(E) and Wg < H(div, F) the spaces associated to the RTNg method on
the tetrahedral submesh:

Mg = (e L*(E): q|r is constant on T, VT € Tg}, Wg = RTN((Tr),

and if we denote F&* as the set of triangular subfaces located at the boundary of E, then
Wg,r € Wg is defined as the solution of the following mixed problem:

Findwg r e WE and pgp F € /WE such that

J WE’F-V—J. pe,rV-v=0 VVEWE,
E E

J §V'WE,F=ﬁJ q Vg e Mg,
E ] E (3.23)
— ifFc F, ~
Wg.F- N = |F| VFE.F%Xt,
0 otherwise,

J pe,r = 0.
E

The problem (3.23) has a unique solution, since it is the discrete formulation of the Laplacian
with Neumann boundary conditions.

In order to prove the convergence of the composite method for polyhedra, we have to
bound the normal components of a velocity on internal faces, as performed for pyramids
in Lemma 3.4.1. Equations of divergence theorems are completed by the average value of
normal components on faces located around internal edges until that obtaining an invertible
system.

Lemma 3.5.1. Let E € Ty be a polyhedron such that Tg is built by adding a node inside
the element. Given a velocity v € Wg, a tetrahedron Ty € Ty and an internal edge ey € Sglt,
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the following system is invertible:

VT € Te\{To}, Z fV HT—JVV— Z fV nr.

F Flnf FPXf
(3.24)

Ve € E2%\{eo}, n—e ﬁz; J;5 v-n% = ¢ge(v).

Proof. Let v € WE, To € Tg and eg € Eibl“. We introduce the divergence theorem for v on
tetrahedra of the mesh:

VT € Te\{Tov} Z JV nT—Jva 2 fv nr.

F ]:mt F J_'(_xt

If we denote # 7 the number of tetrahedra of the mesh 75, the above equation gives #75—1
linearly independent equations. Written in a matrix form, the kernel of this system contains
the velocities turning around the internal edges of Tg, because their divergence and their
normal components at the boundary are zero. As in Lemma 3.4.1, the previous equations
are completed with the definition of ¢.(v) given in (3.7), for edges e € £*\{eg} to obtain
the system (3.24).

If #Fmt and #E1° are respectively the number of internal faces 7z and the number of
internal edges of the tetrahedral submesh Tg, the system (3.24) has #F* unknowns for
#Tr + #EWB — 2 equations. From the incomplete basis theorem, the system is invertible if
it is square. We have from the Euler polyhedron formula in [67] that

#VE — #Eg + #Fe = 2,

where # Vg is the number of vertices of F, #&g is the number of edges of E and #.FF is the
number of faces of E. By construction of the tetrahedral submesh, we have

HFE = H#Tp + #Ep = #Tp + #Ve + #Fp — 2= #Tp + #E5" —

Then the system (3.24) is square and invertible. O

Definition 4. From the expression of normal components given in Lemma 3.5.1 for
polyhedra or that previously given Lemma 3.4.1 for pyramids, any velocity v € WE can
be split into a part turning around the internal edges of Tg denoted by ®g(v) € WE and a
remainder ¥ 5 (v) € Wy such that

v==®g(V)+Tg(v),

and defined as:

VT e TE7 V- @E(V) = 0, V- \I’E(V) = J- V-v.
T T T

\7F€.7:e"t7 f“ ®p(v) np =0, Wp(v) nﬁ:le ng
F F F

Ve e gmt d)e((I)E<V)) = (be(v)a (be(lI’E(v)) = 0.
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3.5.2 Projection errors of the composite mixed finite elements for
polyhedra

To show the convergence of the composite method, we have to show the conditions i) and i)
of the Bramble-Hilbert lemma.

Theorem 3.5.2. Let E € T;, be a polyhedron such that Tg is built with an added internal
node. If the projection operator Il is defined by the basis functions given in (3.23), then
there exist a constant C' > 0 independent of h such that

vve H'(E), Me(v)llo.e < Cv]1E-

Proof. Let E € Tj, and v € HY(E). By definition of the velocity projection operator in (3.10),
we have that

IMe)llos < Y] f v ng| [we.rlos
FeFg F

As in the proof of Theorem 3.4.2, we have to bound the norm of basis function. Given a face
F € Fg, the velocity wg, p solves the Neumann problem (3.23). Choosing the test function
® 5 (Wg,r) € Wg in the first equation, we obtain that

J wer- - ®Pr(wgr)=0.
E

Then from the decomposition of velocities in the Definition 4 and the Cauchy-Schwarz
inequality, we deduce that

|®e(We.F)lloe < |¥e(We,F)lo,z-

Moreover we have by definition that ¢.(¥g(wg r)) = 0 on every internal edges e € £t
Thus we obtain from the norm estimate (3.16) that

h
lwe rllor < CW (LE |Wg.r-ng|+ JE V'WE7F|) ;

where C' > 0 is a constant independent of h and wg r. By definition of basis functions, we
have {,, |Wg r-ng| =1and {, |V-wg p| = 1, which gives us

h
Melos<C ¥ i | vemel.
reze B Jr

Finally, the estimate ||IIg(v)|lo,z < C||v|l1,g is obtained due to the bound of normal
components in (3.17) since v - ny € H!(E), and the shape regularity assumption. O

It remains to show that the approximation space of the composite method contains the
constant velocities. As previously stated the constant velocities may not be in the kernel of
the function ¢, associated to edges e € £It. However solving the discrete problem (3.23)
ensures that the velocity approximation space contains the constant velocities.

Let i € HY(E) be a constant velocity. The projection Iz (1) € Wg is defined by a

linear combination of the basis functions which are solution of (3.23). We deduce from it
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that there exists a discrete pressure p € Mg such that the pair ITg (1), p is the solution to
the Neumann problem:

JHE(ﬁ).v_fﬁv-v:o, Yv e W,
E E

J'avanﬁﬂ:: Ve Mo,
E
W) ng = ng, VE e Ft,

| p-0
E

Moreover, we remark that the constant velocity 11, which is the exact solution of a Laplacian,
is a solution of the above problem. From the uniqueness of the solution, we have that
IIg(a) = .

Therefore we can apply the Bramble-Hilbert Lemma 3.3.1 for the velocity projection
operator defined from basis functions in (3.23). Thus we have the convergence estimate.

Theorem 3.5.3. Let p e M, u e W be the solution of problem (P). Let Ty, be a polyhedral
mesh, and pp, € Mp, up € W, the solution of problem (Py). If the family of meshes {Tp, h €
H} is shape regular, then there exists a constant C > 0 independent of u, p and h such that

Ta); (3.25)

fo+]u

llp —Ph”g,n + |lu— uhH%—I(div,Q) < Ch? (||P %Q +([V-u

assuming that p and u are enough regular to define the righthand side.

Proof. The convergence error (3.25) is shown by using the error estimates of projection
operators (3.9) and (3.12) with the bound (3.5). O

3.6 Numerical experiments for convergence

We present numerical convergence results for both composite methods on the unity cube
Q = [0; 1]3, on hexahedral and pyramidal meshes. The pyramidal mesh is built from the
hexahedral mesh, by splitting the hexahedra into 6 pyramids. Hence the pyramidal mesh
have the same properties as the hexahedral mesh. The chosen exact solution p is

Y2
p(z,y,2) = 2xz + 1 + z,

and the tensor K is

K =

M= =
= OoON=

Then the expression of the exact velocity u is

r+y—+6z+1/2
u(z,y,z) = — 2y + 2z
20+ 2+ 1

Dirichlet boundary conditions are set at the boundary of 2.

We recall that the pyramidal composite method uses for the velocity basis functions the
solution of the problem (3.20). Due to Lemma 3.5.1, one can easily see that it can actually
be readily extended to an hexahedral mesh by stating the condition ¢.(wg r) = 0 for
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Figure 3.5: Regular meshes with respectively 8, 64 and 512 hexahedra.

Method 1 Method 2
lp = prllo,o [u— o0 [P — prllo,o [u—uaplloq
n h error rate error rate error rate error rate
2 866-10"' 3.51-1071 9.72-107! 3.51-10"1 9.72-107!
4 4.33-107' 1.76-107' 0.99 4.86-10"' 1.00 1.76-10"' 0.99 4.86-10"' 1.00
8 217-107! 883-1072 1.00 243-10"' 1.00 8.83-10"2 1.00 2.43-10"' 1.00
16 1.08-10~' 4.42-10"2 1.00 1.21-107' 1.00 4.42-1072 1.00 1.21-107' 1.00
Table 3.1: Convergence errors on regular hexahedral meshes in Figure 3.5
Method 1 Method 2
HP—Ph,| 0,0 HU— uh||0,sz ||p—Ph,||0,Q Hll—uh |o,sz
n h error rate error rate error rate error rate
2 7.07-100! 2.34.1071! 9.71-1071 2.34-1071 9.71-10!
4 354-100' 1.17-107' 1.00 4.84-10"' 1.00 1.17-10"!' 1.00 4.84-10"' 1.00
8 1.77-107! 5.85-1072 1.00 242-10"' 1.00 5.85-10"2 1.00 2.42-10~' 1.00
16 8.84-1072 292-1072 1.00 1.21-10"' 1.00 292-1072 1.00 1.21-10"' 1.00

Table 3.2: Convergence errors on regular pyramidal meshes obtained from hexahedral meshes shown
in Figure 3.5

the 14 interior edges e € It of the tetrahedral submesh. In the following, we will refer
to the pyramidal composite method and its extension to hexahedral meshes as Method 1.
Similarly the hexahedral composite method uses for the velocity basis functions the solution
of the problem (3.23), but it can actually be implemented also for pyramids by replacing
the tetrahedral submesh of 24 tetrahedra for an hexahedron by a tetrahedral submesh of 4
tetrahedra for a pyramid. We will refer to the hexahedral composite method applied to both
hexahedral and pyramidal meshes as Method 2.

In all numerical experiments we will compare results on hexahedral meshes shown in
Figure 3.5, 3.6, 3.8, 3.9 and those obtained on a pyramidal mesh in which each hexahedron
is divided into 6 pyramids whose bases are the 6 faces of the hexahedron.

3.6.1 Numerical experiments with meshes having planar faces

The first numerical experiment is performed on regular meshes, as shown in Figure 3.5. The
convergence errors are presented in Table 3.1 for hexahedral meshes and in Table 3.2 for
pyramidal meshes. n describes the number of hexahedra in one direction, and h is the step
of the mesh. We observe that both methods converge with the same accuracy. For both
methods, the pressure errors are a little bit smaller for the pyramidal mesh than for the
hexahedral mesh, because the number of degree of freedom is larger for the former than for
the latter. However, difference in errors is not significant for the velocity.

The second test case is performed on hexahedral meshes in which the elements have a
constant aspect ratio. The set of meshes {7, h € H} is not built by refinement, as shown in
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Figure 3.6: Family of hexahedral meshes with respectively 8, 64 and 512 hexahedra.

Method 1 Method 2
lp —prllog [u—unlloe lp — prllo,o lu— o0
n h error rate error rate error rate error rate
2 1.05-10° 3.37-107! 1.58 - 10° 3.37-1071 9.74- 1071
4 566-107' 1.74-107' 096 2.17-10° —045 1.72-107! 097 5.16-107" 0.92
8 2.83-100! 895-1072 096 245-10° —0.17 8.63-1072 1.00 2.65-10"' 0.96
16 1.41-10"% 4.92-10=2 0.86 2.59-10° —0.08 4.31-10~2 1.00 1.34-10~' 0.98
Table 3.3: Convergence errors on the family of hexahedral meshes in Figure 3.6
Method 1 Method 2
lp — pullo,o lu—upllon lp — pullo.e [lu — upllo,0
n h error rate error rate error rate error rate
2 9.19-107% 2.32.107! 9.55- 107! 2.32-1071 9.59 - 107!
4 566-107' 1.22-107' 093 5.11-100' 090 1.22-107' 0.93 5.12-107' 0.91
8 283-100' 6.19-1072 098 2.64-107' 095 6.19-1072 0.98 2.64-10"% 0.95
16 1.41-107' 3.12-1072 099 1.34-107' 0.98 3.12-1072 0.99 1.34-107' 0.98

Table 3.4: Convergence errors on the family of pyramidal meshes obtained from hexahedral meshes
shown in Figure 3.6

Figure 3.6. The hexahedra have planar faces but do not come from a linear transformation of
the reference element. The convergence errors on hexahedral meshes are shown in Table 3.3.
The Method 1 does not converge because for hexahedra which make up the mesh, the
condition ¢.(v) = 0 is not satisfied for constant velocities v on edges joining the barycenter
to the vertices. This condition is only satisfied on regular hexahedra, as shown in Remark 3.
Consequently, constant velocities are not inside the approximation space and convergence
is not ensured by the Bramble-Hilbert lemma. In the other hand, the Method 2 converges
as expected. We study next the convergence errors on the pyramidal meshes in Table 3.4.
Similarly, the pyramids have a constant aspect ratio. Unlike the case of the hexahedral
meshes, the Method 1 converges because by construction of the tetrahedral submesh, the
constant velocities are always inside the approximation space. The Method 2 converges and
we remark that the velocity error is the same on both kinds of meshes, as in the case of
regular meshes,

3.6.2 Numerical experiments with meshes having curved faces

We have proven the convergence of both composite methods in Theorem 3.4.2 and in
Theorem 3.5.2 when the mesh contains only planar faces. For meshes having curved faces, we
approximate the curved faces by 4 triangular subfaces as shown in Figure 3.7a. Definitions
of basis functions in (3.20) and (3.23) remain unchanged for both methods because normal
components of basis functions at the boundary are defined on triangular subfaces.

Since triangular subfaces of a face have non constant normals, normal components of
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(a) Deformed hexahedron (b) Exact velocity (c) Approximate velocity

Figure 3.7: Example of deformed hexahedron, where a constant velocity and its approximation are
shown on a diagonal cross section.

—y =02
—y =038

Figure 3.8: Mesh of the domain 2 having curved faces.

Method 1 Method 2
lp = prllo.o lu—uspljo0 lp — prllo.o [lu — wpljo,0
n h error rate error rate error rate error rate
2 1.07-10° 3.56-10"1! 1.38 -10° 3.56 - 101 1.10 - 10°
4 6.23-107' 1.80-10' 098 6.55-10"' 1.07 1.80-10~' 0.98 528-10"' 1.06
8 347-107' 9.02-1072 1.00 3.22-10°! 1.02 9.02-1072 1.00 2.61-10"! 1.02
16 1.84-107' 4.51-1072 1.00 1.60-10~* 1.01 4.51-1072 1.00 1.30-10"' 1.00

Table 3.5: Convergence errors on the hexahedral meshes having curved faces in Figure 3.8

Method 1 Method 2
llp — prllo.o [u —unllo,0 lp — pullo.o [[lu—uplloe
n h error rate error rate error rate error rate
2 943-107' 239-1071 1.09 - 10° 2.39-107! 1.09 - 10°
4 537-100' 1.19-107' 1.00 5.20-107' 1.07 1.19-10"' 1.00 5.20-107' 1.07
8§ 285-107! 597-1072 1.00 2.57-107! 1.02 597-10"2 1.00 2.57-107' 1.02
16 1.47-107' 299-10"2 1.00 1.28-10~!' 1.00 2.99-10=2 1.00 1.28-10"' 1.00

Table 3.6: Convergence errors on the pyramidal meshes having curved faces obtained from
hexahedral meshes shown in Figure 3.8
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Figure 3.9: Family of random meshes with respectively 8, 64 and 512 deformed cubes.

Method 1 Method 2
lp — prllog lu— o lp — prllo. [[lu—uglloe
n h error rate error rate error rate error rate
2 1.08-10° 3.64-1071 1.31-10° 3.64-1071 1.12-10°
4 571-107% 181-107' 1.01 1.48-10° —0.17 1.80-10"! 1.01 1.08-10° 0.04
8 3.11-107% 9.29-1072 096 1.31-10° 0.17 9.27-1072 096 8.58-107!  0.34
16 1.59-107' 4.68-1072 0.99 1.38-10° —0.07 4.64-1072 1.00 8.92-10~! —0.06
Table 3.7: Convergence errors on the family of random hexahedral meshes in Figure 3.9
Method 1 Method 2
lp — prllo.g [la —uapllo.e lp —prllo.g [la —uapllo.e
n h error rate error rate error rate error rate
2 9.01-107' 2.47-1071 1.12-10° 2.47-1071 1.12-10°
4 522-100' 1.23-100' 1.00 1.10-10° 0.02 1.23-107' 1.01 1.10-10° 0.02
8 268-107! 6.31-1072 096 8.79-10"" 0.33 6.31-1072 0.96 8.74-10"! 0.33
16 1.38-107' 3.17-1072 0.99 9.16-10~' —0.06 3.17-1072 0.99 9.09-10"' —0.06

Table 3.8: Convergence errors on the family of random pyramidal meshes obtained from hexahedral
meshes shown in Figure 3.9

a constant velocity are different on each subfaces, and then different than its average
value used by the projection operator on the face. Consequently, a constant velocity can be
different from its projection into approximation space Wj,. Since constant velocities do not
lie anymore in the approximation space, estimate given by the Bramble-Hilbert Lemma 3.3.1
does not hold.

As shown in Figure 3.7b on the diagonal cross section of the deformed cube, a constant
velocity can go through the subfaces approaching the curved face. The closest approximation
which can be done by the method is shown in Figure 3.7c, where approximate velocity stays
inside the element by following the subfaces. It is shown in [63] that it is not possible to
reproduce constant velocities with only one degree of freedom per face, and a compact stencil.
However, we observe that the method converge while the mesh is refined in a standard
manner:

The first mesh is built with a saddle point defined in Q2 and shown in Figure 3.8, and
the family of meshes {7, h € H} is built by refinement to approximate it. The convergence
errors are shown in Table 3.5 if the mesh is made of hexahedra, and in Table 3.6 for pyramids.
Here, we remark that both methods converge, and that the velocity approximated by the
Method 2 is most accurate on pyramidal meshes.

Then we study the convergence of both methods on a family of random meshes shown
in Figure 3.9. Each mesh is made up deformed cubes having curved faces. The aspect ratio
of the elements is constant, like for the second test case. Table 3.7 and Table 3.8 show the
errors of methods on both meshes. This time, the convergence is shown only for the pressure.
It seems necessary to increase the degrees of freedom of the velocity to obtain a method
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which converges on this kind of mesh.

3.7 A posteriori error estimate

We continue the analysis of the composite method by obtaining a posteriori error estimates
for the method. From previous results, we decide to restrain this study for the hexahedral
composite method, whose velocity basis functions are defined by the following Neumann
problem:

Findwg r e WE and pp F € ME such that

J K_IWE’F-V—J’ pe,FrV-v=0 VVEWE,
E E

J‘?V'WE,F=%J‘? Vg e Mg,
E . E (3.26)
— ifFc F, ~
WgFp N = |F| VFE.F%Xt7
0 otherwise,

J pe,r = 0.
E

Adding the tensor K~ does not change the convergence proof of the method, nor the
obtained convergence results. However, we remark that the coefficients used to build the
system (3.26) can be used another time to build the discrete problem (Py,). Approximation
spaces are then defined similarly as for previous composite methods.

We also restrain our study to the error made by the approximate velocity. It will be used
later to simulate the particles transport in the deep medium and depends on how the mesh
is refined, when this one has curved faces. The velocity error is measured with the energy
norm defined as follows:

wew, VB[ Kvev Vs [ Kvev, vEeT
Q E

3.7.1 Definition of the error estimators

As in [77], the velocity error is bounded by using several estimators which are defined to
bound the error caused by a specific parameter. The first of them is the residual estimator
which is used to bound the error coming from the divergence approximation. Since it is
piecewise constant on the elements of the mesh, its error is bounded using the projection
error of the source term. The residual estimator is then defined as following;:

Lemma 3.7.1. Let u e W solve (P) and uj, € W), solve (Py,) such that V-uy, = mp(f). The
residual estimator is

o2
VE € Th, NR,E = hE%Hf —75(f)lo.B: (3.27)
K.E

where hg is the diameter of E € Ty, Cp, is the Poincaré constant defined in (3.9) and where
ck,E 15 the smallest eigenvalue of K in E. Moreover, we have that

2 . 2 2
u—ul|; < inf u, + KVyll: + NR.E- 3.28
ool < it o + K V4l + 3 o (3:29)
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Proof. The proof is similar to that in [77, Corollary 6.6] O

To complete our a posteriori error study, we have to find a function pj, 2 € H'(Q) closed
to the exact pressure to bound the equation (3.28). This function must be continuous on the
domain, it will be defined as the projection of the hybrid solution onto the continuous space
H'(€2). However, the hybrid solution can not be defined on the hexahedral mesh because the
RTN, method does not converge on irregular elements. Here, we take advantage that the
union of tetrahedral submesh gives a conforming tetrahedral mesh of the domain.

Let 7j, = Uger, Te be the tetrahedral submesh of the domain built by taking the union

of tetrahedral submesh of each element. We denote respectively /\7 n < M and Wh c W the
approximation spaces of the RTINy method over the tetrahedral submesh, such that

M, = {g€ M : g|z is constant on T, VT € T},
Wi = {weW : wlr e RINy(T), VT € Tp}.

From the approximate solution given by the RTNy method, we define a hybrid solution
associated to the tetrahedral submesh of the domain. The approximate velocity given by
the composite method is already inside Wh by definition of the basis functions. However,
the approximate pressure is only constant on hexahedra of the mesh. To have a pressure
piecewise constant on the tetrahedral submesh, pj, is completed with the pressure variations
pe,r defined in (3.26). We define 1y, € Wh and pj, € Mh such that

VE € Ty, Uy|p = up, Dule = pn + Z pE‘,Ff uy - np.
FE]'—E F

We define from these solution a discontinuous approximation of the pressure. Let P2 (7~7L)
be the space of discontinuous polynomial of degree at most n on each tetrahedra T" € T;,. The
hybrid form ¢y, » € P?(7},) is computed by using the following properties:

~ N - 1
VT €T, ty|r = —K V9, Pl = m‘[ ©Ph,2- (3.29)
T

The candidate P, o € P2(7,) () H () used to estimate the velocity error in (3.28) is the
projection of ¢y, 2 into the continuous space H!(f2). We define then the averaging operator
Toe: P2(T5) — P2(T,) () HY(Q) such that: for a function ¢ € P2(7;,) which is defined by its
degrees of freedom at Lagrangian’s nodes of each tetrahedra, values of the degrees of freedom
of Z,,(¢) are equal to the average of the degrees de freedom of . So we have

ﬁh,Q = Iav(‘ph,?)v (330)
which allow us to define the second error estimator:
Lemma 3.7.2. Let u € W solve (P) and up, € W solve (Py). Let nr. g be the residual

estimator defined in (3.27) for all E € Ty, and 5 € P2(T,) (VH' () defined in (3.30). The
potential estimator is

VT € Th, ne,r = [[Un + KV droalls, (3.31)
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and we obtain that

= wnlz <77, M= > M+ Y, The
TeTh LEeTh
Proof. The estimate is just inequality (3.28) applied with pj, 2. O

Moreover, a local efficiency result ensures that both estimators decrease at the same rate
as the error. They are then reliable to approximate the error during the mesh refinement.

Lemma 3.7.3. Let p € M, u € W solve (P) and pp, € My, up, € W solve (Py,). Let
©Vh2 € IP’2(7~71) be the piecewise polynomial approzimation of the pressure defined in (3.29).
Let the estimators nr.g and np v define respectively in (3.27) and (3.31) for E € Tp, and
Te 7~71 Then there exists a constant C' independent of h such that:

Clla = upll+.5,

o = upllsr + Cllp — en2lll, 7,

NR,E S
np,r <

where 7~} is the set of tetrahedra that share at least one node with T .
Proof. The proof is similar to that in [77, Theorem 6.16]. O

Finally, a local estimator 17z can be computed due to previous results:

VE € Th, np = Ma,p + Z 5 - (3.32)
TeTE

It can be used as a refinement criterion but the proof of local error estimate is an ongoing
work.

3.7.2 Numerical experiments

The study of a posteriori error is performed on the unity cube, Q@ = [0; 1]37 meshed with
regular hexahedra. The domain is split into two part Q, = [1; 1]? and Q, = O\Q,, shown
respectively in red and in green in Figure 3.10. In this test case, source term f = 0 and the
tensor K is discontinuous:

1 00 1
a=-— in€Q,,
K=a|0 1 0],
0 0 1 a=1 inQg,
Both Dirichlet and Neumann boundary conditions are set on the border of the domain:
e on the face x = 0, weset p = 1,
e on the face x = 1, we set p = 0,

e homogeneous Neumann boundary conditions are set on other faces of the domain.

From the chosen tensor K and boundary conditions, we deduce that the velocity goes
through the domain from the face x = 0 to the face x = 1, and is 10 times smaller inside €2,..

We show in Figure 3.11 the coefficients ng defined in (3.32) around the plane z = %,
and on z = % We can see that coefficient values are not uniform: maximum is reached on
T = % at the boundary edges of €2, where the coefficient increases up to 6 - 1073, whereas
on boundary face of €2,., it decreases to 5 - 1076. This shows that contrary to what one may
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think, this is not necessary to refine the mesh on all boundary between 2, and €}, but only
one part of it.

This analysis is confirmed by computing another kind of estimator. Figure 3.12 shows
the error of approximate velocity using a finer mesh. However we recall that approximate
velocity is inside RTIN( approximate space of the tetrahedral submesh, and therefore this
estimator can be computed only because we use a regular mesh with few elements. We can
see that errors are distributes similarly than the coefficients ng, even though the errors are
smaller on = = 3.

Table 3.9 compares the global a posteriori error estimator 7, with the approximate error
llup, —u B |- The estimator ny, is greater than the error approximated by a finer mesh but
both have the same order of magnitude. They also converge at the same rate which is smaller
than 1, because the error is concentrated in a small area of the mesh.

3.8 A realistic numerical experiment with parallel
computing

The last experiment is done on an industrial test case. Figure 3.13 shows the
domain of calculation provided by engineers from Andra. It describes underground of
Meuse/Haute-Marne districts. The mesh contains a little fewer than 6 millions of elements,
most are deformed cubes used to mesh the surface together with geological layers of the
domain. Prisms are added to refined locally the mesh around potential location of waste
repository, which is shown in pink.

Compared to previous numerical experiments which are performed on the unity cube,
characteristics of this industrial test case makes the discrete problem (7P} ) harder to solve:

e The domain is large and flat. It varies of 30 (km) in both x and y directions, and only
1 (km) in the z direction. Consequently, tetrahedral submesh built on deformed cubes
is flat, which makes local problem (3.26) used to define basis functions ill conditioned.

e Permeability tensor K is anisotropic and its coefficients vary strongly from a geological
layers to another. The permeability jumps between two geological layers can reach six
order of magnitude. Its trace is shown in Figure 3.14 using a logarithmic scale.

The composite method is compared with a RTNy method of lowest order extended to
deformed cubes. We compare the obtained results on an horizontal cross section located
in the middle of the domain, shown in blue in Figure 3.13b.

The pressure fields which are similar for both methods, are shown in Figure 3.15. The
main difference between both methods comes from the velocity fields in Figure 3.16, where
is shown the L2 norm of approximate velocities. Compared to the composite method, the
norm of the RTNy method extended to deformed cubes reaches a non-physical value of
6 - 103, which hides the behavior of velocity in the domain. Its maximum value is clipped
in Figure 3.17 to fit to the range of values of the composite method. In this figure, we can
see that velocity norm varies according to the permeability tensor, excepts for a small area
circled in red where deformations of elements are stronger. Note that this lack of precision of
the extended RTIN( method is important since it will affect the calculation of the transport
of radioactive particles.

The numerical results have been obtained using the Traces code developed by Andra
where the composite method has been implemented. It uses the parallel algebraic linear
solver MaPHyS [2] based on a domain decomposition method with a direct subdomain solver.
Note that if the nonphysical values of the velocity calculated by the extended RTINy method
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2
3
green. The velocity is assumed to move 10 time slower in 2., according to the variation of K.

Figure 3.10: Domain 2 with the planes x = % and x = %. The domain €2, is shown in red and 24 in

1— 1t 2
1 1 1 6.62-1073
- E - E - .
0 0 0 .74-1076
0 0.5 1 0 0.5 1 0 0.5 1 57410
Y Y Y
Figure 3.11: Coefficients ng, around the plane x = % and on x = %
L 1~ _ 1+t _ 2
1 1 1 4.21-1073
- - - . - .
0 0 0 .88-106
0 0.5 1 0 0.5 1 0 0.5 1 0.88 - 10
Y Y Y

Figure 3.12: Approximate error computed using a mesh 4 times finer, ||u;, — up s, 2 around the

1 - 2
planz = 5 andonz = %

error estimates

n h Mh rate ||lup — urllx rate
2 866-107t 1.73-10! 1.15-1071
4 433-107! 1.07-100' 070 7.16-1072 0.68
8 2.17-107' 6.49-107%2 0.72 4.40-1072 0.70
16 1.08-10~! 3.92-1072 0.72 2.68-1072 0.72

Table 3.9: Convergence of the global a posteriori error estimate and an approximate error computed
with a finer mesh.
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(a) Above view (b) Side view enlarge 10 time in the z axis

Figure 3.13: Computational domain modeling Meuse/Haute Marne district. Pink area is refined
locally using prisms. Solutions of both methods are studied on the blue cross section.

2.98 - 102
3.78-107°
(a) on the domain (b) on the horizontal cross section.
Figure 3.14: Trace of permeability tensor K in logarithmic scale
3.14 - 102 ﬂ 3.14 - 102
2.09 - 10? ' 2.09 - 102
(a) RTN( method extended to deformed (b) Composite method

cubes

Figure 3.15: Approximate pressure on the horizontal cross section of 2.
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' ﬂ 22 1075

(a) RTNj method extended to deformed (b) Composite method
cubes

6.6 - 103 7.02- 10!

2.48-107°

Figure 3.16: L2 norm of approximate velocities on the horizontal cross section of Q.

7.02- 10!

2.24.107°

Figure 3.17: L? norm of velocity approximated by the RTNg method extended to deformed cubes,
on the horizontal cross section of 2. The norm is clipped to fit to the range of the composite method.
The non-physic maximum jump is located inside the red circle.
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are located at the interfaces between subdomains, then the MaPHyS solver may crash. When
using the composite method which does not produce such nonphysical values of the velocity,
the solution is obtained without any difficulty.

3.9 Conclusion

We developed two composite methods, one for pyramids and one for polyhedra. The
pyramidal composite method is an extension of the method presented in [17] in two
dimensions. A pyramid is split into 4 tetrahedra such that the node added on its basis is the
barycenter of the vertices. The velocity basis functions belong to the RTIN( approximation
space defined on the tetrahedral submesh. The velocity basis functions are defined by (3.20)
and are given explicitly by solving the systems (3.19). Consequently, the constant velocities
are inside the approximation space because the average value of their normal components
on internal faces are zero. This ensures the convergence of the method. However, this is no
longer true if we try to apply the same method to any polyhedra.

The extension of composite method for polyhedra is similar to that presented in [71]. The
tetrahedral submesh is built by adding an internal node and by splitting each of its faces. In
particular, an hexahedron is divided into 24 tetrahedra. The new tetrahedral submesh has
good symmetry properties but there are no explicit formula for the basis functions. Basis
functions are computed by solving the Neumann problem (3.23), which ensures that the
constant velocities are inside the approximate space and that the method is convergent.
This method can be easily extended to any polyhedra, in particular to prisms.

Theoretical convergence of both methods with optimal order have been proved and
was confirmed by numerical experiments. Concerning the case of meshes with curved
faces, numerical experiments show converge of both methods only when using standard
refinements of the mesh.

A posteriori error estimates have been defined for polyhedral method and shown to be
optimal theoretically and numerically.

Finally, the hexahedral composite method has been compared with an extension of the
RTN( method on a realistic numerical experiment provided by Andra. The domain of
calculation is large and has industrial characteristics. As expected, the composite method
gives satisfying results while the standard RTNg method was giving erroneous results
for the velocities at some locations in the mesh. The composite method was implemented
in an Andra software using the massively parallel hybrid solver MaPHyS [2] for parallel
computations.

3.A Appendix: Trace inequalities

The trace inequalities used for the convergence proof of the composite methods are given in
this section. Firstly, we state a general theorem given in [45, Lemma 3] for hexahedra and
pyramids, necessary to prove the trace inequalities.

Lemma 3.A.1. Let E c R? be an hezahedron or a pyramid of diameter hg. Let F < 0F
be a face of E. For g € H'(E), we have the estimate:

| [ 6@ - swrayas < cngrt [ 19g@nP as

where C' is a positive constant independent of hg.

Proof. The proof is similar to that given in [45, Lemma 3]. O
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From Lemma 3.A.1, we deduce several inequalities given below. Estimation (3.33) has
been proven for simplexes in {74, Lemma 3.12| and in [48, Theorem 1.5.1.10]. Another proof
is given in [27, Theorem 4.1] for the case of two dimensions. The estimate (3.34) is shown
in [45, Lemma 2] and [62, Lemma 3.5] for several kinds of elements. The estimate (3.36) is
shown in |75, Lemma 4.1] for simplexes elements.

Lemma 3.A.2. Let E c R be an hexahedron or a pyramid of diameter hg, and let F < 0F
be a face of E. For g € HY(E), with gr and gg denoting the average value of g over F and

E respectively,
fif (z)d ,LJ (z)d
gF = 7] Fga: x, gE = ] Ega: x

the following estimates hold for a generic constant C > 0 independent of hg:

Lg(gc)2 dz < C (dhE fE |V g(z)|* dz + 2h5 f da:) (3.33)

f (g(z) — gp)*dax < Cth |V g(:r)\2 dz. (3.34)
F E

JF(g(x) —gg)*dx < Chg JE IV g(z)|* dz. (3.35)
JE(g(x) —gr)?dr < Ch% fE \Y g(nc)\2 dz. (3.36)

Proof. Let E < R be an hexahedron or a pyramid, F' < 0E, and g € H*(FE). To show (3.33),
we note that if z € F',

1
g(x) j ) dy + — | g(y)dy,
T E| B JE

and therefore

oo <2 (k[ o0 @) +2 (o [ gway)

If we integrate over the above equation over F', we obtain using the Cauchy-Schwarz
inequality that

J o< i [, [ o0 - st avan + S5 | ot

which can be rewritten as (3.33) using Lemma 3.A.1.
To establish estimate (3.34), we note that for z € F and y € E,

(9(x) = gr)* < 2(g(x) — 9(1))* + 2(9(y) — gr)*
<209(0) - 9)* +2 (5 [ o) - st ar)

Then by using the Cauchy-Schwarz inequality, we have

2

(9(x) — gr)* < 2(g(x) — g(y))* + an (g(y) — g(t))* dt.
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Integrating over F and F', we obtain

81| ote) —gras <4 [ | (o) -0 ara

Applying Fubini’s theorem and Lemma 3.A.1 gives (3.34).

For (3.35),
JF(Q(:U) —gp)’de = Lv <|11?| ng(x) —g(y) dy)2 dz.

By using once again the Cauchy-Schwarz inequality, we obtain

[ -geras< L [ [ o) - gt ava,

which gives (3.35) using Lemma 3.A.1.
Finally for (3.36), we have

fE<g(x) _gr)?de = JE (I;W L o(z) — g(y) dy>2 dz.

Then by using the Cauchy-Schwarz inequality, we obtain

[ 6 -geae < o [ [ 6lo) - st avas,

which gives (3.36) using Fubini’s theorem and Lemma 3.A.1. O
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