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Dans cette thèse, on a d'abord considéré l'équation

On a premièrement montré que (0.0.1) est bien-posée presque sûrement par la méthode de décomposition de fréquence de Bourgain sous l'hypothèse de régularité que s > 2(p-3) p-1 . Ensuite, nous avons baissé cette hypothèse de régularité à p-3 p-1 en appelant une estimation probabiliste a priori. Nous considérons également l'approximation des solutions obtenus cidessus par des solutions lisses et la stabilité de cette procédure d'approximation. Et nous avons conclu que l'équation (0.0.1) est partout mal-posée dans le régime sur-critique.

Nous avons considéré ensuite l'équation des poutres quintique sur le tore 3D. Et nous avons montré que cette équation est presque sûr bien-posée globalement dans certain régimes sur-critiques.

Enfin, nous avons prouvé que la mesure de l'image de la mesure gaussienne sous l'application de flot de l'équation BBM généralisé satisfait une inégalité de type log-Sobolev avec une petite perte d'intégrabilité.

Des conseils avant la lecture

As this thesis is composed of several articles written by the author and his collaborator, I decide to write this short paragraph to indicate origins of these chapters.

-Chapter 1 is based on the work "ALMOST SURE GLOBAL WELL-POSEDNESS FOR SEMILINEAR WAVE EQUATION ON 3D TORUS : VIA BURQ-TZVETKOV'S APPROACH" by the author in 2013, with a slight modification suggested by professor N. Visciglia in 2016.

-Chapter 2 is based on the work "PROBABILISTIC WELL-POSEDNESS FOR SUPERCRITICAL WAVE EQUATIONS ON T 3 " by Chenmin Sun and the author in 2015. The method here is quite different from these in Chapter 1, mainly based on the method introduced by Oh-Pocovnicu.

-Chapter 3 is based on the work "INVARIANT MEASURES FOR QUINTIC BEAM EQUATION ON T 3 " by the author in 2016. Although the title is about 'invariant measure', it was only used in the proof of the main result 'almost sure well-posedness'.

-Chapter 4 is based on the work "GENERIC ILL-POSEDNESS FOR WAVE EQUATION OF POWER TYPE ON 3D TORUS" by the author in 2014.

-Chapter 5 is based on the work "PRESERVATION OF LOG-SOBOLEV INEQUALITIES UNDER SOME HAMILTONIAN FLOWS" by the author in 2015. u n e in•x , u n ∈ C telle que la quantité ci-dessous est finie

(2π) 3 n∈Z 3 1 + |n| 2 s u n 2 < ∞.
Et dans ce cas, pour l'élement u de H s , la racine carrée de cette quantité est notée u H s , ce qui est la norme H s de u. Avec ces notions à portée de main, nous aurions remarqué la relation suivante

u n = 1 (2π) 3 u e -in•x ,
qui est juste la valeur de la distribution u testée contre la fonction lisse e -in•x . A l'aide de cette expression ci-dessus, nous disons que la distribution u est réelle si u n = u -n , ou de manière équivalente

u ϕ = u φ , ∀ϕ ∈ C ∞ (T 3 ).
Dans le cas où u est une distribution réelle, nous pouvons exprimer u comme la somme

u(x) = a 0 + n∈Z 3 + [a n cos(n • x) + b n sin(n • x)] , a 0 ∈ R, a n , b n ∈ R, ∀n ∈ Z 3 + ,
et nous pouvons exprimer le carré de sa H s -norme comme

u 2 H s = (2π) 3 a 2 0 + 1 2 n∈Z 3 + (1 + |n| 2 ) s a 2 n + b 2 n , où Z 3 + est défini comme Z 3 + := (n 1 , n 2 , n 3 ) ∈ Z 3 | n 1 ≥ 0 \ (0, n 2 , n 3 ) ∈ Z 3 | n 2 < 0 ∪ (0, 0, n 3 ) ∈ Z 3 | n 3 ≤ 0 .
Nous pouvons aussi définir ces espaces H s pour tout s ∈ R de manière similaire via des fonctions sin-cos. Nous omettons ces lignes ici.

Ensuite, remplaçons l'espace sous-jacent T 3 par l'espace R 3 pour un moment. Dans le cas de R 3 , si u(t, x) est une solution de l'équation (0.1.1), alors pour tout λ > 0 la fonction u λ (t, x) d'espace-temps u λ (t, x) := 1

λ 2 p-1 u t λ , x λ
résout également cette équation (0.1.1). Par un calcul simple, nous avons

u λ (0, •), ∂ t u λ (0, •) H s ×H s-1 = λ 3 2 -2 p-1 -s u(0, •), ∂ t u(0, •) H s ×H s-1
.

En particulier, si l'on note s = s(p) := 3 2 -2 p-1 for p ∈ (3,5), nous avons u λ (0, •), ∂ t u λ (0, •)

H s ×H s-1
= u(0, •), ∂ t u(0, •)

H s ×H s-1
.

Intuitivement, le terme non-linéaire indique l'interaction des états et cette interaction est forte lorsque la fréquence est élevée. En général, plus fine l'échelle spatiale est, plus élevée la fréquence est. Dans notre cas, si 1 λ est de plus en plus petit et donc λ est de plus en plus grand, alors l'interaction non-linéaire |u| p-1 u est de plus en plus faible. Ainsi, nous prévoyons que le comportement linéaire domine le comportement non linéaire lorsque λ est grand. En outre, grâce à la relation de mise à l'echelle (uniquement pour p ∈ [3,5))

u(0), ∂ t u(0) H s ×H s-1 = λ s-s(p) u λ (•), ∂ t u λ (•) H s ×H s-1 ,
on peut contrôler la quantité, dans le cas de grandes fréquences,

u λ (•), ∂ t u λ (•) H s ×H s-1
par la quantité donnée u(0), ∂ t u(0) H s ×H s-1 sous la condition que s > s(p). D'après la discussion intuitive ci-dessus, pour le cas particulier p = 3 et donc s(3) = 1 2 , l'équation (0.1.1) avec l'espace sous-jacent R 3 a été conjecturé être bien posée globalement dans Ḣ 1 2 × Ḣ -1 2 pendant une longue période. Seulement récemment, il y a quelques progrès sur ce problème, voir Roy [17] pour le cas non-radial et voir Dodson [7] et Dodson-Lawrie [8] pour le cas radial.

Analogue à cette conjecture, on peut aussi demander au bien posé du problème (0.1.1) pour la puissance générale p. Afin de procéder de cette partie d'introduction pratiquement, nous allons re-définir s(p) pour tout p ∈ [2, 5) comme

s(p) =        1 - 1 p -1 , 2 ≤ p ≤ 3; 3 2 - 2 p -1 , 3 < p < 5,
qui est la même que la définition précédente pour p ∈ [3,5). Dans le travail de Lindblad-Sogge [13], les auteurs ont montré que pour s > s(p), (0.1.1) est localement bien posé (au sens de Hadamard, l'existence, l'unicité et la dépendence continue sur les données initiales) en Ḣs × Ḣs-1 en invoquant les estimations de Strichartz. Dans le même ouvrage, ils ont aussi prouvé un résultat opposé en disant, pour p ∈ [2, 3), losrsque s < s(p), un phénomène de concentration se produit, ce qui empêche l'équation (0.1.1) être bien-posé (localement). Pour des résultats plus généraux comme mal-posé en l'équation d'onde dans l'espace euclidien, on peut se référer au Christ-Colliander-Tao [6].

Maintenant, revenons au problème (0.1.1) sur le tore T 3 . Bien que T 3 n'a pas une structure de mise à l'échelle comme x -→ x λ , l'argument de la mise à l'échelle cidessus peut aussi nous donner quelques conseils sur la façon d'obtenir le bien posé de (0.1.1). Rigoureusement, en invoquant les estimations de Strichartz sur les variétés compactes par Kapitanski [11] et l'argument par Lindblad-Sogge [13] pour obtenir le bien posé de (0.1.1) dans le cas de l'espace euclidien, nous pouvons montrer que (0.1.1) est bien posée localement dans H s × H s-1 si s > s(p). Et dans la direction opposée, pour p ∈ [3,5), on peut montrer que (0.1.1) est mal posée dans H s × H s-1 pour s ∈ 0, s(p) , voir Burq-Tzvetkov [3, Appendix A] pour p = 3 et Xia [20] pour la puisance générale p ∈ (3,5). Nous pouvons résumer ce paragraphe comme Théorème 0.1.1. L'équation (0.1.1) est bien posée localement pour les données de H s × H s-1 lorsque s > s(p). Dans la direction opposée, pour p ∈ [3,5), si s ∈ 0, 3 2 -2 p-1 , alors (0.1.1) n'est pas localement bien posée. Un exemple qui contredit la dépendance continue sur les données initiales est le suivant : il existe une suite de solutions lisses (u n ) de (0.1.1) avec leurs données initiales u

(n) 0 , u (n) 1 respectivement satisfaisant lim n→∞ u (n) 0 , u (n) 1 H s ×H s-1 = 0 mais lim n→∞ u n (t), ∂ t u n (t) L ∞ ([0,T ];H s ×H s-1 ) = ∞, ∀T > 0.
Afin de remédier à l'incident de mal posée de l'équation (0.1.1) dans le cas supercritique et établir une théorie de bien posé similaire au cas déterminist, des outils probabilistes ont été introduits. Selon l'ordre historique, les outils probabilistes ont été introduits d'abord pour certaines équations hamiltonien complétées avec des données initiales spéciales, voir Friedlander [9] pour l'équation d'onde cube ; Lebowitz-Rose-Speer [12] et Bourgain [1] pour l'équation de Schrödinger. La spécialité des données initiales, ainsi que la structure hamiltonienne de l'équation, nous permet d'utiliser un argument de mesure invariante de construire des solutions globales de celles-locales. Comme cela est très spécial, nous parlons dans la Section 0.2. Dans cette section, nous allons discuter de ces méthodes probabilistes pour le problème (0.1.1), complété par les données initiales générales.

Paramètres probabilistes

Pour simplifier, nous supposons que α i , α i,n , β i,n i=0,1;n∈Z 3 + est une séquence de variables aléatoires gaussiennes réelles et stantards indépendentes dans un espace de probabilité Ω, A, P . Nous supposons également que les données initiales u 0 , u 1 sont donnée par sa série de Fourier

u i = a i,0 + n∈Z 3 + [a i,n cos(n • x) + b i,n sin(n • x)] , i = 0, 1.

Ensuite, nous randomisons les données initiales comme

u ω i = a i,0 α i,n (ω) + n∈Z 3 + [a i,n α i,n (ω) cos(n • x) + b i,n β i,n (ω) sin(n • x)] i = 0, 1.
Si les données (u 0 , u 1 ) est de H s × H s-1 avec s ≥ 0, alors l'application

M : Ω ω -→ (u ω 0 , u ω 1 ) ∈ H s × H s-1 (0.1.2)
induit une mesure de probabilité Borel µ sur H s × H s-1 , B , où B désigne le Borel σ-algèbre généré par la topologie de H s × H s-1 .

Dans la suite, nous allons utiliser fréquemment l'estimation suivante des moments élevés.

Lemme 0.1.2. ( [3]) Soient l n (ω) ∞ n=1 une séquence de variables aléatoires complexes guassiennes standards indépendantes sur (Ω, A, P), et (c n ) ∞ n=1 une séquence de nombres réels, qui est 2 sommable. Alors il existe une constante C > 0 telle que pour tout q ≥ 2, nous avons

∞ n=1 c n l n (ω) L q (Ω) ≤ C √ q (c n ) 2 . (0.1.3) En écrivant cos(n • x) = e in•x +e -in•x 2 et sin(n • x) = e in•x -e -in•x 2i
, nous pouvons exprimer u ω 0 , u ω 1 comme

u ω i = n∈Z 3 c i,n γ i,n (ω)e in•x , i = 0, 1.
Ici (c i,n ) i=0,1;n∈Z 3 est une séquence de nombres complexes tels que c i,n = c i,-n respectivement pour i = 0, 1, et la distribution avec des coefficients (c i,n ) se trouve dans l'espace H s et H s-1 respectivement pour i = 0, 1. γ i,0 est une variable réelle gaussienne standard et (γ i,n ) i=0,1;n∈Z 3 \{(0,0,0)} est une séquence de vairiables complexes gaussiennes indépendantes. De plus, la séquence γ i,n i=0,1;n∈Z 3 est une séquence de variables aléatoires indépendantes. Ainsi, en appliquant l'estimation (0.1.3) respectivement à la partie réelle et imaginaire de ces coefficients, et par l'inégalité de Minkowski nous pouvons avoir

u ω i (x) L q (Ω) ≤ C √ q a i,0 , a i,n cos(n • x), b i,n sin(n • x) n∈Z 3 + 2
, i = 0, 1, (0.1.4) où C est indépendante de q et x.

Notons S(t) le propagateur d'onde libre S(t)(u 0 , u 1 ) := cos t|∇| u 0 + sin t|∇| |∇| u 1 .

Puis, à l'aide d'estimations (0.1.4), nous disposons de ces estimations de Strichartz probabilistes en temps locale.

Proposition 0.1.3. ([3] [14]) Soient (u 0 , u 1 ) ∈ H s × H s-1 donné comme ci-dessus avec tous les coefficients réels et u ω 0 , u ω 1 randomisé comme dans (0.1.2). Supposons I = [a, b] ⊂ R est un intervalle de temps compact.

1. Si s = 0, alors pour tous 1 ≤ q < ∞ et 2 ≤ r < ∞, il existe C, c > 0 telles que P S(t)(u ω 0 , u ω 1 ) L q t L r

x (I×T 3 ) > λ ≤ C exp -cλ 2 |I| 2/q (u 0 , u 1 ) 2

H 0 ×H -1 .
2. Pour tous 1 ≤ q < ∞ et 2 ≤ r ≤ ∞, il existe C, c > 0 telles que P S(t)(u ω 0 , u ω 1 ) L q t L r

x (I×T 3 ) > λ ≤ C exp -cλ 2 |I| 2/q (u 0 , u 1 ) 2 H s ×H s-1 pour s > 0.

En notant S(t) par

S(t)(u 0 , u 1 ) := - |∇| ∇ sin(t|∇|)u 0 + cos(t|∇|) ∇ u 1 = ∂ t S(t)(u 0 , u 1 ) ∇ ,
nous pouvons affirmer l'estimation probabiliste suivante, qui, comme nous le verrons, est un nouvel ingrédient dans l'argument de Oh-Pocovnicu en obtenant le bien posé globale de l'équation d'onde critique d'énergie (voir [14]).

Proposition 0.1.4. Soient (u 0 , u 1 ) and (u ω 0 , u ω 1 ) les mêmes dans la Proposition 0.1.3. Soient T > 0 et S * (t) = S(t) ou S(t). Alors pour 2 ≤ r ≤ ∞, nous avons

P S * (t)(u ω 0 , u ω 1 ) L ∞ t L r x ([0,T ]×T 3 ) > λ ≤ C exp - cλ 2 max(1, T 2 ) (u 0 , u 1 ) 2 H ε ×H ε-1
pour tout ε ∈ (0, s), où les constantes C et c ne dépendent que de r et ε.

Pour tout entier N ≥ 1, on note Π ≤N l'opérateur de projection défini par

Π ≤N u(x) = |n|≤N u n e in•x .
Notons aussi Π N = Id -Π ≤N .

Dans l'argument de Burq-Tzvetkov (voir [5]) en obtenant le bien posée probabiliste globale de l'équation (0.1.1), nous avons également desoin des estimations probabilistes globales en temps.

Proposition 0.1.5. Soient (u 0 , u 1 ) ∈ H s × H s-1 avec s ∈ [0, s(p)), et (u ω 0 , u ω 1 ) le même que dans la Proposition 0.1.3.

1. Si 2 ≤ p 1 , p 2 < ∞ et δ > 1 p 1 , alors il existe C, c > 0 telles que pour tout λ > 0

P t -δ Π 0 S(t)(u ω 0 , u ω 1 ) L p 1 t L p 2 x (Rt×T 3 ) > λ ≤ C exp -cλ 2 (u 0 , u 1 ) 2 H 0 ×H -1 . 2. Si 2 ≤ p 1 , p 2 < ∞ et δ > 1 + 1 p 1 , alors il existe C, c > 0 telles que pour tout λ > 0 P t -δ S(t)(u ω 0 , u ω 1 ) L p 1 t L p 2 x (Rt×T 3 ) > λ ≤ C exp -cλ 2 (u 0 , u 1 ) 2 H 0 ×H -1 . 3. Si 2 ≤ p 1 , p 2 < ∞ et δ > 1 + 1 p 1 , alors il existe C, c > 0 telles que pour tout λ > 0 P t -δ S(t)(u ω 0 , u ω 1 ) L p 1 t L p 2 x (Rt×T 3 ) > λ ≤ C exp -λ 2 (u 0 , u 1 ) 2 H σ ×H σ-1
pour tout σ ∈ (0, s].

Paramètres déterministes

Nous disons que u(t, x) résout l'équation

(∂ 2 t -∆)u = f sur I × T 3 (u, ∂ t u)| t=t 0 = (u 0 , u 1 ) (0.1.5)
sur l'intervalle de temps I t 0 si u(t, x) satisfait pour t ∈ I la formule de Duhamel

u(t) = S(t -t 0 )(u 0 , u 1 ) + t t 0 sin (t -t )|∇| |∇| f (t )dt .
Dans ce cas, u(t, x) satisfait également l'estimation d'énergie suivante pour tout

s ∈ R u(t, •), ∂ t u(t, •) H s ×H s-1 ≤ u(t 0 ), ∂ t u(t 0 )) H s ×H s-1 + t 0 f (t , •) H s-1 dt (0.1.6) pour t ∈ I.
En outre, nous avons également besoin des estimations plus fines que l'estimation de l'énergie ci-dessous, le soi-disant l'estimation de Strichartz. Tout d'aboud nous rappelons la notion onde admissible. Nous appelons une paire (q, r) onde admissible si 2 ≤ q, r ≤ ∞, (q, r) = (2, ∞) et

1 q + 1 r ≤ 1 2 .

Ensuite les estimations de Strichartz disent

Proposition 0.1.6. ( [11]) Soit u(t, x) la solution d'équation (0.1.5) sur l'intervalle de temps

t 0 = 0 ∈ I ⊂ [0, 1]. Alors nous avons pour certaine constante C > 0 u L q t L r x (I×T 3 ) ≤ C (u 0 , u 1 ) H s ×H s-1 + f L a t L b x (I×T 3 )
sous les hypothèses 1. Les deux paires (q, r) et (a, b) sont onde admissibles ; 2. Ces indices q, r, a, b et s satisfont

1 q + 3 r = 1 a + 3 b -2 = 3 2 -s.
Avec ces préliminaires probabilistes et déterministes, nous sommes prêts à construire des solutions au problème (0.1.1).

Construction des solutions : via l'approche de Burq-Tzvetkov

En suivant la stratégie de Burq-Tzvetkov de construire des solutions à l'équation d'onde cube sur le tore T 3 , nous obtenons Théorème 0.1.7.

Supposons p ∈ [2, 5). Si 3 ≤ p < 5, fixons s ∈ 2(p-3) p-1 , 1 , et si 2 ≤ p < 3, fixons s ∈ [0, 1). Suppossons aussi que nous sommes donné (u 0 , u 1 ) ∈ H s × H s-1 . Soit µ la mesure sur H s × H s-1 induite par l'application (0.1.2). Alors il existe un sous-ensemble E ⊂ H s × H s-1 , qui a µ-mesure 1, tel que pour tout (v 0 , v 1 ) ∈ E, il y a une unique solution v à l'équation non-linéaire (∂ 2 t -∆)v + |v| p-1 v = 0, v(0), ∂ t v(0) = (v 0 , v 1 ) (0.1.7)
dans l'espace affine

S(t)(v 0 , v 1 ), ∂ t S(t)(v 0 , v 1 ) + C(R t ; H 1 × L 2 ).
En outre, pour ε > 0 assez petit, il existe C, δ > 0 tel que pour tout µ-presque tous (v 0 , v 1 ) ∈ H s × H s-1 , il existe une variable aléatoire M > 0 de sorte que la solution globale v à (0.1.7) construite précédente satisfait

v(t) = S(t)Π 0 (v 0 , v 1 ) + w(t) avec w(t) H 1 ×L 2 ≤    C(M + |t|) (5-p)(1-s) (p-1)s-2(p-3) +ε , 3 ≤ p < 5 C(M + |t|) (p+1)(1-s) 3-p+2(p-1)s +ε , 2 ≤ p < 3 et µ (v 0 , v 1 ) ∈ H s × H s-1 : M ≥ λ ≤ Ce -λ δ .
Il faut remarquer que dans le cas p ∈ [3,5), notre hypothèse sur la régularité s est compatible avec celle obtenue dans les deux cas de points finaux p = 3 et 5, au sens que : si l'on note cette borne inférieure de la régularité s par s(p) := 2(p-3) p-1 , alors quand p tend à 1. le point final p = 3, s(p) tend à 0. Cette hypothèse de la régularité s > 0 est juste le résultat obtenu par Burq-Tzvetkov. En effet, ils ont obtenu le résultat encore plus fort : pour s = 0, ils peuvent aussi la bien posée globale. Mais cela démand une analyse subtile, donc on peut se référer à Burq-Tzvetkov [5] pour de plus détails.

2. le point final p = 5, s(p) tend à 1. Cette hypothèse de la régularité s = 1 est juste la régularité nécessaire pour établir la bien posée déterministe de l'équation d'onde quintique.

Une autre remarque est le résultat similaires sur l'espace euclidienne R 3 , obtenus par Lührman-Mendelson. Car R 3 a volume infini, le spectre de Laplacien est continue et donc nous ne pouvons pas randomiser les donées initiales comme que nous avons fait dans l'application (0.1.2). Lührman-Mendelson ont tourné vers randomiser les donées initiales par une décomposition unicité-échelle dans l'espace de fréquence, et ils ont prouvé, par l'approche de Burq-Tzvetkov, l'équation (0.1.1) est presque sûrement bien posée globale pour s > p 3 +p 2 -11p-3 9p 2 -6p-3 . Cette régularité se trouve dans le régime super-critique seulement lorsque 1 4 (7 + √ 73) < p < 5. En conséquence, il n'a pas la compatibilité mentionnée ci-dessus. Récemment, ils ont amélioré ce résultat en invoquant l'approche de Oh-Pocovnicu (voir [14]), sur laquelle nous allons donner une autre remqrque dans le prochain paragraphe.

Analogue à la continuité classique par raport aux données initiales, nous avons aussi la dépendance continue conditionnelle suivante sur les données initiales.

Théorème 0.1.8. Soit p ∈ [2, 5). Si 3 ≤ p < 5, fixons s ∈ 2(p-3) p-1 , 1 , et si 2 ≤ p < 3, fixons s ∈ [0, 1). Supposons que nous sommes données (u 0 , u 1 ) ∈ H s × H s-1 . Soit µ la mesure sur H s × H s-1 introduite par l'application (0.1.2). Désignons B Λ := V = (v 0 , v 1 ) ∈ H s × H s-1 : V H s ×H s-1 ≤ Λ et soit T > 0. Soit Φ(t) le flot associé à (0.1.7) défini µ-presque partout dans le Théorème 0.1.7. Alors, pour tout ε > 0, il existe η > 0 tel que µ ⊗ µ (V 0 , V 1 ) ∈ (H s × H s-1 ) 2 : Φ(t)(V 0 ) -Φ(t)(V 1 ) X T > ε V 0 -V 1 H s ×H s-1 ≤ η, (V 0 , V 1 ) ∈ B Λ × B Λ ≤ g(ε, η), où X T := C([0, T ]; H s ) ∩ L 2p p-3 ([0, T ]; L 2p ) × C([0, T ]; H s-1 ) pour 3 ≤ p < 5 et X T := C([0, T ]; H s ) pour 2 ≤ p < 3, et g(ε, η) est telle que lim η→0 g(ε, η) = 0, ∀ε > 0.
0.1.4 Construction des solutions : via l'approche de Oh-Pocovnicu En suivant la stratégie de Oh-Pocovnicu (voir [14]), nous pouvons baisser la régularité dans le Théorème 0.1.7, pour résoudre l'équation (0.1.1), à p-3 p-1 . Précisément, nous avons obtenu Théorème 0.1.9. Pour p ∈ [3,5), fixons s ∈ p-3 p-1 , 1 . Supposons que nous sommes donnés (u 0 , u 1 ) ∈ H s × H s-1 et soit (u ω 0 , u ω 1 ) randomisé comme ci-dessus. Alor l'équation super-critique (0.1.1) est presque sûrement bien posée globale avec (u ω 0 , u ω 1 ) comme les données initiales. Plus précisément, il existe un ensemble Ω u 0 ,u 1 ⊂ Ω de probabilité 1 tel que pour tout ω ∈ Ω u 0 ,u 1 , il existe une solution unique u (dans une boule borné autour de l'origine) à (0.1.1) dans l'espace affine

S(t)(u ω 0 , u ω 1 ), ∂ t S(t)(u ω 0 , u ω 1 ) + C(R; H 1 × L 2 ),
et, par conséquent, cette solution est de type C(R; H s × H s-1 ).

Nous présentons ici l'approche de Oh-Pocovnicu à prouver ce théorème. Nous mentrons d'abord pour tous N ≥ 1 et T, ε > 0, il exist un sous-emsemble Ω N,T,ε ⊂ Ω avec P(Ω c N,T,ε ) < ε, la solution v N à l'équation tronquée

∂ 2 t -∆ v N + |v N + z N | p-1 (v N + z N ) = 0, z N = S(t) (Π ≤N u ω 0 , Π ≤N u ω 1 ) (v N , ∂ t v N ) | t=0 = (0, 0)
peut être borné de manière uniforme en tant que

sup t∈[0,T ] v N (t), ∂ t v N (t) H 1 ×L 2 ≤ C (0.1.8)
où C ne dépend que de T, ε et (u 0 , u 1 ) H s , et est indépendante de N . L'étape principale dans la preuve de cette estimation est Lemma 2.3.3, dans lequel nous avons utilisé un argument de coupage.

A l'aide de (0.1.8), nous avons pu trouver un autre ensemble ΩN,T,ε , qui peut être différent de Ω N,T,ε et est également de grande probabilité, telle que pour tout ω ∈ ΩN,T,ε , la solution v(t) à l'équation

∂ 2 t v -∆v + |v + z| p-1 (v + z) = 0, z = S(t)(u ω 0 , u ω 1 ) (v, ∂ t v)| t=0 = (0, 0) peut également être contrôlé de manière uniforme sup t∈[0,T ] v(t), ∂ t v(t) H 1 < 2C.
Ensuite, par un argument standard dans Burq-Tzvetkov [5], nous pouvons éteindre cette intervalle finie de temps [0, T ] à l'ensemble de la ligne de temps.

Mesures invariantes pour l'équation de faisceau

Dans cette section, nous nous tournons vers l'argument de mesure invariante pour les équations hamiltoniennes avec des données initiales spéciales. Pour ce faire, nous considérons l'équation du faissceau quintique sur

T 3 := R 3 /(2πZ) 3 ∂ 2 w + ∆ 2 w + w + w 5 = 0 w, ∂ t w | t=0 = (w 0 , w 1 ). u : (t, x) -→ u(t, x) ∈ R. (0.2.1)
Grâce au fait que l'opérateur principal dans (0.2.1) est de l'ordre quatre, nous avons besoin de certains paramètres fonctionnels différents de ceux-ci dans d'autres sections. Premièrement, il faut fournir T 3 avec la mesure de Legesgue normalisé dL(x) = 1 (2π) 3 dx. Ensuite si l'on note par L 2 (T 3 , dL) l'espcace des fonctions de intégrable du carré sur T 3 , alors la séquence

1, √ 2 cos(n • x), √ 2 sin(n • x) n∈Z 3 +
est une base de L 2 ortho-normal. Pour s ∈ R, on note l'espace de Sobolev H s à base L 2 comme

H s =    f (x) = a + n∈Z 3 + a n √ 2 cos(n • x) + b n √ 2 sin(n • x) f 2 H s := |a| 2 + n∈Z 3 + [n] 2s |a n | 2 + |b n | 2 < ∞    où [n] := (1 + |n| 4 ) 1 4 . 
A l'aide des paramètres fonctionnels, nous pouvons affirmer

Théorème 0.2.1. Soient s ∈ 0, 1 2 et σ ∈ [1, 2)
. Supposons que les données initiales w 0 et w 1 sont donnés par

w 0 (x, ω) = α 0,0 (ω) + n∈Z 3 + α 0,n (ω) √ 1+|n| 4 √ 2 cos(n • x) + β 0,n (ω) √ 1+|n| 4 √ 2 sin(n • x) , w 1 (x, ω) = α 1,0 (ω) + n∈Z 3 + α 1,n (ω) √ 2 cos(n • x) + β 1,n (ω) √ 2 sin(n • x) , où α j,0 (α n,n , β j,n ) n∈Z 3 + j=0,1
est une séquence de variables gaussienes réelles et standards indépendantes sur certains propre espace de probabilité (Ω, A, P). Alors, pour presque tous les ω ∈ Ω, le problème (0.2.1) a une unique solution w ω dans l'espace affine

cos t √ 1 + ∆ 2 w 0 + sin t √ 1 + ∆ 2 √ 1 + ∆ 2 w 1 + C(R t ; H σ ) ⊂ C(R t ; H s ).
Pour compléter ce théorème, plusieurs remarques sont en position.

Remark 0.2.2. Bien que nous ayons de très bons résultats comme bien posé pour les équations de faisceau (voir [16][15] [21] [19]) dans le cas de l'espace euclidien, nous ne savons pas beaucoup en les résultats comme bien posé en cas de variétés compactes. En effet, il y a encore un résultat bien posé [10], dans lequel l'auteur travaille sur le tore irrationnelle de dimension 2 sous une hypothèse Diophantine. Mais ce que nous voulons est une théorie générale. Un obstacle à l'établissement de cette théorie est que les estimations de Strichartz ne marchent que avec une perte de dérivé en cas de variété compacte (voir [2]). Cette inapplicabilité de méthodes déterministes nous motive à invoquer des outils probabilistes lorsque on travaille sur ce problème.

Remark 0.2.3. Via un argument de mise à l'échelle, nous pouvons voir que l'indice 

L'équation d'onde semilinéaire est génériquement mal posé

Nous continuons notre discussion en rappelant que, Théorème 0.1.7 et Théorème 0.1.8 nous disent que nous pouvons trouver une mesure de probabilité µ, selon les données fournies, sur H s × H s-1 telle que l'équation (0.1.7) est presque sûrement bien posé globale, et le flot associé est conditionnellement continue. Plaisament, comme l'a souligné par Burq-Tzvetkov, ces solutions peuvent être approchées par ces solutions lisses émisses à partir de certaines données correctement régularisés. Précisément, nous avons Proposition 0.3.1. Soit p ∈ [3,5). Fixons s ∈ 2(p-3) p-1 , 1 . Supposons (u 0 , u 1 ) est donnée dans le Théorème 0.1.7 et E est tel qu'obtenu dans le Théorème 0.1

.7. Si l'on tronque v 0,n , v 1,n = χ 2 -2|n| |∆| v 0 , χ 2 -2|n| |∆| v 1 avec χ une fonction de bosse équal à 1 dans l'intervalle unité [0, 1] et équal à 0 à l'extérieur [0, 2]
, alors presque sûrement, les solutions v n (t) de l'équation (0.1.7) avec des données (v 0,n , v 1,n ) convergent, quand n tend vers l'infini, à la solution v(t) avec des données (v 0 , v 1 ) dans l'espace C(R, H s ). Par conséquent, nous pouvons approcher, presque sûrement, la solution v(t) dans C(R, H s ) par certaine séquence de solutions lisses à l'équation (0.1.7).

Une question naturelle est la stabilité de ce processus de régularisation, c'est-àdit, peut-on avoir la même ou approximation similaire au-dessus si nous utilisons un processus de régularisation différente. Motivé par cela, et par l'approche de ODE utilisé dans Burq-Tzvetkov [3], nous obtenons Théorème 0.3.2. Pour tout p ∈ [3,5), fixons s ∈ 0, 3 2 -2 p-1 . Supposons (u 0 , u 1 ) ∈ H s est donnée. Alors, pour tout ε > 0, il existe une suite

(u 0,n , u 1,n ) ∞ n=1 ⊂ C ∞ (T 3 ) × C ∞ (T 3 ) convergeant vers (u 0 , u 1 ) in H s (T 3 ) tel que les solutions u n (t) aux équations (∂ 2 t -∆)u n + |u n | p-1 u n = 0 u n (0), ∂ t u n (0) = u 0,n , u 1,n satisfait u n L ∞ [0,ε];H s → n→∞ +∞.
La démonstration du Théorème 0. 

, u 1 ) ∈ C ∞ (T 3 ) × C ∞ (T 3
) est arbitrairement donné et u(t) est son correspondant lisse solution à l'équation (0.1.1). Alors, pour tout ε > 0, il existe une suite u n (t) ∞ n=1 de fonctions lisses en espace-temps, telle que

(∂ 2 t -∆)u n + |u n | p-1 u n = 0 u n (0), ∂ t u n (0) = (u 0,n , u 1,n ) avec u 0,n , u 1,n -(u 0 , u 1 ) H s → n→∞ +∞, mais u n -u L ∞ [0,ε];H s → n→∞ +∞.
En particulier, nous avons que

u n L ∞ [0,ε];H s → n→∞ +∞.
Nous avons un résultat encore plus forte que celui dans la Proposition 0.3.3, qui dit qu'il existe certaines données dans H s , de sorte que l'énergie de H s de sa solution correspondant à l'équation (0.1.1) explose instantanément. Théorème 0.3.4. Soient p, s le même dans le Théorème 0.3.2. Alors pour tout

(u 0 , u 1 ) ∈ C ∞ (T 3 ) × C ∞ (T 3 ), il existe une donnée (f 0 , f 1 ) ∈ H s (T 3 )\ C ∞ (T 3 ) × C ∞ (T 3
) , ce qui peut être prise arbitrairement proche de (u 0 , u 1 ) dans H s (T 3 ), de sorte que l'équation (0.1.1), complétée par la condition initiale u(0), ∂ t u(0) = (f 0 , f 1 ) et satisfaisant en plus la vitesse finie de propagation, n'a pas de solution dans L ∞ ([0, T ]; H s ), T > 0.

En combinant le Théorème 0.1.7, Théorème 0.1.8 avec les résultats ci-dessus, nous avons la "dépendance non continue presque sûr sur les données initiales" suivante.

Corollary 0.3.5. Pour p ∈ [3,5), laissez-nous fixer s ∈ 2(p-3) p-1 , 3 2 -2 p-1 . Soit (u 0 , u 1 ) ∈ H s . Alors pour tout ε > 0, nous pouvons trouver une mesure de pababilité µ sur H s (T 3 ) ne dépendant que de (u 0 , u 1 ) et un sous-ensemble E ⊂ H s (T 3 ) de µ-mesure 1, tel que pour tout (v 0 , v 1 ) ∈ E avec sa solution v(t) correspondante à (0.1.7), il existe une suite v n (t) ∞ n=1 de founctions lisses satisfaisant

(∂ 2 t -∆)v n + |v n | p-1 v n = 0 v n (0), ∂ t v n (0) = (v 0,n , v 1,n ) avec (v 0,n , v 1,n ) -(v 0 , v 1 ) H s (T 3 ) → n→∞ 0, mais v n (t) -Φ(t)(v 0 , v 1 ) L ∞ ([0,ε];H s (T 3 )) → n→∞ ∞,
où Φ(t) est le flot associé à l'équation (0.1.7) comme dans le Théorème 0.1.8.

Ce corollaire répond à la question de la stabilité du processus de régularisation.

Préservation des inégalités de type log-Sobolev par le flot de BBM

Dans la section précédente, nous construisons une mesure qui est invariante par un flot hamitonien. Récemment, Tzvetkov [18] a prouvé que la mesure initiale peut aussi être quasi-invariante, au lieu d'être invariante, par certain flot hamitonien. Inspiré par cela, dans cette section, nous allons chercher d'autres propriétés qui sont invariant ou presque invariant par le flot de ce genre. Considérons l'équation BBM généralisée

∂ t u + ∂ t |∂ x | γ u + ∂ x (u + u 2 ) = 0 u(0) = u 0 (0.4.1)
où u(t, x) est une fonction réelle définie sur R t × T. Ici, nous supposons γ ∈ 3 2 , 2 et fixons s ∈ 1 -γ 2 , 2 . Nous pouvons vérifier que, si u(t, x) résout (0.4.1), alors la moyenne T u(t, x)dx est conservée. Sous ce rapport, nous allons considérer les données de l'espace H s 0 , ce qui est la collection des fonctions de moyenne zéro de l'espace de Sobolev H s . Dans le reste de cette section, nous ne distinguons de ces deux espaces s'il n'y a pas de déclaration spécifique. Avec ces notations, nous pouvons établir que, pour tout u 0 ∈ H s et T ∈ (0, ∞), l'équation (0.4.1) a une unique solution dans l'espace C([0, T ]; H s ). Par conséquent, l'équation (0.4.1) définit un flot sur H s , que nous désignons par Φ(t).

Dans ce qui suit, nous allons considérer les données initiales aléatoires données par

u 0 = φ s (ω, x) = n =0
g n (ω) |n| s+γ/2 e inx , où g n = g -n et (g n ) n>0 est une séquence de variables guassiennes complexes et standards indépendantes sur certain espace de probabilité (Ω, A, P). Ensuite l'application ω -→ u 0 induit une mesure guassienne sur H s , que on note par µ s . Dans notre contexte de s et γ, H s+γ/2 est l'espace de Cameron-Martin de (H s , µ s ). La théorie classique indique que la mesure de probabilité µ s satisfait une inégalité de type logarithmique. 

E µs f 2 log f 2 E µs [f 2 ] ≤ CE µs |∇f | 2 H s+γ/2 , pour tout f ∈ W 1,2 (H s , R),
E ν f 2 log f 2 E ν [f 2 ] ≤ CE µs |∇f • T | 2 H s+γ/2 u 0 2 H s .
En outre, en invoquant le théotème de Fernique, nous obtenons, pour tout ε > 0, il existe C ε > 0 telle que ν satisfait une inégalité de type log-Sobolev avec une perte de l'intégrabilié

E ν f 2 log f 2 E ν [f 2 ] ≤ C ε E ν |∇f | 2+ε H s+γ/2 2 2+ε
, pour belle fonction f .
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Establishment of Probabilistic Dynamics 1

Almost sure global well-posedness for semilinear wave equation on 3D torus: Via Burq-Tzvetkov's approach

In [4], Burq-Tzvetkov obtained the probabilistic global well-posedness for cubic wave equation in the supercritical regime. In this chapter, we prove these results for the supercritical wave equation of a general exponent 2 ≤ p < 5 by using Bourgain's high-low frequency decomposition method.
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Introduction

We shall study the defocusing semilinear wave equation on 3 dimensional torus

T 3 = R 3 /(2πZ 3 ) ∂ 2 t -∆ u + |u| p-1 u = 0, 2 ≤ p < 5 (u(0), ∂ t u(0)) = (u 0 , u 1 ) ∈ H s × H s-1 =: H s . (1.1.1)
Here H s is the standard Sobolev space, that is to say if u ∈ H s , then the norm u H s of u is bounded and is given by

u 2 H s := (2π) 3 n∈Z 3 (1 + |n| 2 ) s |û(n)| 2
where û(n) is the nth-Fourier coefficients of u and is given by 

û(n) := 1 (2π) 3 T 3 u(x)e -ix•n dx.
s(p) =        1 - 1 p -1 , if 2 ≤ p ≤ 3; 3 2 - 2 p -1 , if 3 < p < 5.
By invoking the Strichartz estimate on compact manifolds by Kapitanski [6] and these technical ideas used to prove local well-posedness, (in the sense of Hardamard, existence, uniqueness and continuous dependence on the initial data), of semilinear wave equation on the Euclidean space by Lindblad-Sogge [8], we can prove that the equation (1.1.1) is locally well-posed in H s for any s > s(p). However, in the opposite direction s < s(p), the equation (1.1.1) is ill-posed. In the case 2 ≤ p < 3 when s < s(p), the concentration phenomenon happens [8], which prevents (1.1.1) to be (locally) well-posed. And in the case 3 ≤ p < 5 when s < s(p), one can construct counter-examples to well-posedness of (1.1.1) (for p = 3, see [2, Appendix A] and for 3 < p < 5, see [12]). For more general discussions of these ill-posedness results in this direction, one can refer to [5].

Fortunately, by generalizing the Hadamard's well-posedness to the notion 'probabilistic Hadamard well-posedness' (which allows a negligible set such that the equation is not well-posed for the data in this set), one can construct local and even global solutions to the equation (1.1.1) in the super-critical regime. For generic initial data, by randomizing it via its Fourier series, Burq-Tzvetkov [2] obtained probabilistic local well-posedness for cubic wave equation; for some special data, this above mentioned randomizing procedure can induce "invariant measures" under certain flow, via which Burq-Tzvetkov in [3] obtained probabilistic global well-posedness for cubic wave equation. Later on, they also proved the local and global well-posedness of the cubic wave equation on 3D torus by a conservation law argument in [4]. Using the similar argument, Burq-Thomann-Tzvetkov obtained the global existence of the cubic wave equation in higher dimension in [1]. In this article, by a continuity induction argument on the energy (see the proof of Proposition 1.3.4), we achieve such well-posedness results for the equation (1.1.1) with general power 2 ≤ p < 5. Precisely, we get

Theorem 1.1.1. Let 1 > s > 2(p-3)
p-1 for 3 ≤ p < 5 and 1 > s ≥ 0 for 2 ≤ p < 3. Let µ be the measure induced by (u 0 , u 1 ) ∈ H s via the map (1.2.5). Then there exists a full µ-measure set E ⊂ H s such that for every (v 0 , v 1 ) ∈ E, there is a unique global solution v of the nonlinear equation

(∂ 2 t -∆)v + |v| p-1 v = 0, (v(0), ∂ t v(0)) = (v 0 , v 1 ) (1.1.2) satisfying (v(t), ∂ t v(t)) ∈ (S(t)(v 0 , v 1 ), ∂ t S(t)(v 0 , v 1 )) + C(R t ; H 1 ).
Furthermore, for ε > 0 sufficiently small, there exists C, δ > 0 such that for µ-almost every (v 0 , v 1 ) ∈ H s , there exists random variable M > 0 on (H s , B, µ) such that the global solution v(t) to (1.1.2) previously constructed satisfies

v(t) = S(t)Π 0 (v 0 , v 1 ) + w(t) with w(t) H 1 ≤    C(M + |t|) (5-p)(1-s) (p-1)s-2(p-3) +ε , if 3 ≤ p < 5; C(M + |t|) (p+1)(1-s) 3-p+2(p-1)s +ε , if 2 ≤ p < 3. and µ((v 0 , v 1 ) ∈ H s : M > λ) ≤ Ce -λ δ
Several remarks are in position.

Remark 1.1.2. For s > 0, as p tends to 3, the possible growth of Sobolev norms becomes that, in the cubic case, obtained by Burq-Tzvetkov in [4]. But for the cubic case when s = 0, the analysis of these probabilistic bounds are much more subtle, we refer to [4] for more details.

Remark 1.1.3. Recently, Oh-Pocovnicu [11] proved that the energy-critical quintic wave equation on the whole Euclidean space is almost surely global well-posed by invoking the stability theory for wave equations and probabilistic estimates for new quantities.

Remark 1.1.4. For the general power p, the probabilistic result was first obtained by Lührmann-Mendelson [9] on the Euclidean space R 3 . As R 3 is unbounded, the spectrum of Laplacian operator is continuous and hence we can not use the general strategy in [2] to randomize the initial data. However Lührmann-Mendelson turned to randomize the initial data via a unit-scale decomposition in frequency space, and they proved that the equation is almost surely global well-posed for s > p 3 +p 2 -11p-3 9p 2 -6p-3 . This result is just an improvement (relative to the index s(p) defined as above) only when 1 4 (7 + √ 73) < p < 5. And recently, by using ideas of Oh-Pocovnicu in dealing with the energy-critical quintic wave equation, they improved this regularity lower bound to s > p-1 p+1 in [10]. Even in this case, their result does not couple very well with presently known results for the endpoint cases p = 3 and p = 5.

Corresponding to the classical continuity on the initial data, we also have the following probabilistically continuous dependence on the initial data.

Theorem 1.1.5. Let 1 > s > 2(p-3) p-1 for 3 ≤ p < 5 and 1 > s ≥ 0 for 2 ≤ p < 3. Let µ be the measure induced by (u 0 , u 1 ) ∈ H s via the map (1.2.5). Denote B Λ := V ∈ H s : V H s ≤ Λ and let T > 0. Suppose the random variables used in the map (1.2.4) are symmetric. Let Φ(t) be the flow associated to the equation (1.1.2) defined µ-almost everywhere in Theorem 1.1.1. Then for any ε > 0, there exists η > 0 such that

µ ⊗ µ (V 0 , V 1 ) ∈ H s × H s : Φ(t)(V 0 ) -Φ(t)(V 1 ) X T > ε V 0 -V 1 H s ≤ η and (V 0 , V 1 ) ∈ B Λ × B Λ ≤ g(ε, η),
where X T := C([0, T ]; H s ) ∩ L 2p p-3 ([0, T ]; L 2p ) × C([0, T ]; H s-1 ) for 3 ≤ p < 5, and X T := C([0, T ]; H s ) for 2 ≤ p < 3, and g(ε, η) is such that lim η→0 g(ε, η) = 0, ∀ε > 0.

Deterministic and Probabilistic Preliminaries

Deterministic Preliminaries

In the following, we will use frequently the following energy estimates.

Proposition 1.2.1 (Energy estimates). Let s ∈ R and T ∈ [0, ∞]. Suppose f ∈ L 1 ([0, T ]; H s-1
) and (u 0 , u 1 ) ∈ H s . Let u be a (weak) solution, on the time interval [0, T ], to the wave equation

(∂ 2 t -∆)u = f on [0, T ] × T 3 , (u(0), ∂ t u(0)) = (u 0 , u 1 ), (1.2.1)
then for any t ∈ [0, T ] we have

(u(t, •), ∂ t u(t, •)) H s ≤ C(1 + t) (u 0 , u 1 ) H s + t 0 f (r, •) H s-1 dr .
And also, we need Strichartz estimates, which are very useful in dealing with the nonlinearity. In order to state this estimate, we first define the notion of "waveadmissible" pair Definition 1.2.2. We call an exponent pair (q, r) wave-admissible if 2 ≤ q ≤ ∞, 2 ≤ r ≤ ∞, (q, r) = (2, ∞) and

1 q + 1 r ≤ 1 2
Proposition 1.2.3 (Strichartz estimates for wave equation [7][6]). Let u be the solution to (1.2.1), then on any time interval 0 ∈ I ⊂ [0, 1], we have

u L p (I;L q (T 3 )) ≤ C (u 0 , u 1 ) H s + f L a (I;L b (T 3 ))
under the assumptions that -wave admissible condition: both the pairs (p, q) and (a, b) are wave-admissible;

-Scaling invariant condition:

1 p + 3 q = 1 a + 3 b -2 = 3 2 -s.

Probabilistic preliminaries

Now let α j (ω), (β n,j (ω), γ n,j (ω))

n∈Z 3 + j=0,1 , with Z 3 + = (n 1 , n 2 , n 3 ) ∈ Z 3 |n 1 ≥ 0 \ {(0, n 2 , n 3 ) ∈ Z 3 | n 2 < 0}∪{(0, 0, n 3 ) ∈ Z 3 | n 3 ≤ 0} ,
be a series of independent real, mean zero, random variables on the probability space (Ω, A, P) with distribution functions θ j or θ n,j respectively. Assume that there exists c > 0 such that ∀γ ∈ R, ∀n ∈ Z 3 and j ∈ {0, 1}, +∞ -∞ e γx dθ n,j (x) ≤ e cγ 2 and ∞ -∞ e γx dθ j (x) ≤ e cγ 2 .

(1.2.2) Using such a series of random variables, we randomize the data (u 0 , u 1 ) ∈ H s given by their Fourier series

u j (x) = a j + n∈Z 3 + b n,j cos(n • x) + c n,j sin(n • x) , j = 0, 1, (1.2.3) 
by setting

u ω j (x) = α j (ω)a j + n∈Z 3 + β n,j (ω)b n,j cos(n • x) + γ n,j (ω)c n,j sin(n • x) . (1.2.4)
Now, for any set A ⊂ H 0 , we can define (formally) its probability µ(A) via the map

Ω ω -→ (u ω 0 , u ω 1 ) ∈ H s (1.2.5) by setting µ(A) := µ u 0 ,u 1 (A) = P ω : (u ω 0 , u ω 1 ) ∈ A . (1.2.6)
One can easily check that this defines a probability measure on H s , B , where B is the Borel-σ algebra on H s . Furthermore, this randomization procedure has many good properties such as "non-regularization of the data" and "non-vanishing on any open set" (see [2][4] for more details), which exclude the possibility of "regularizing effect" originating from such procedure when applied to PDE. To handle the above randomization, the following estimate of higher moments will be frequently used:

Lemma 1.2.4 ([2]). Let l n (ω)
∞ n=1 be a sequence of independent random variables, satisfying the assumption like (1.2.2), on (Ω, A, P), and (c n ) ∞ n=1 be an 2 -summable sequence of real numbers. Then there exists constant C > 0 such that for any p ≥ 2, we have

∞ i=1 c n l n (ω) L p (Ω) ≤ √ p (c n ) 2 .
Let N ≥ 1 be an integer, define the low frequency portion of u by setting

u ≤N = Π N u = a 0 + |n|≤N a n cos(n • x) + b n sin(n • x) (1.2.7)
and its high frequency portion by

u >N = Π N u = u -u ≤N = |n|>N a n cos(n • x) + b n sin(n • x) (1.2.8)
provided u is given as in (1.2.3). Define the free wave propagator by

S(t)(u 0 , u 1 ) = cos(t √ -∆)u 0 + sin(t √ -∆) √ -∆ u 1 .
Then we have the following large deviation estimates Proposition 1.2.5 ([4]). Let us fix s ∈ [0, 1) and suppose that µ is induced via the map (1.2.5) from the couple (u 0 , u 1 ) ∈ H s . Then there exists a positive constant C such that for every 2 ≤ p 1 , p 2 ≤ q < +∞ and every δ >

1 p 1 , µ (v 0 , v 1 ) ∈ H s : t -δ Π 0 S(t)(v 0 , v 1 ) L p 1 t L p 2 x > λ ≤ C √ q (u 0 , u 1 ) H 0 x (δp 1 -1) -1/p 1 λ q (1.2.9)
For fixed p 1 , p 2 , by taking

C √ q (u 0 , u 1 ) H 0 (T 3 ) λ = 1 2 ⇔ q = λ 2 (u 0 , u 1 ) -2 H 0 (T 3 ) 4C 2
we can optimize the estimate (1.2.9) as Corollary 1.2.6. There exist C, c > 0 such that under the assumptions of Proposition 1.2.5 for every λ > 0

µ (v 0 , v 1 ) ∈ H s : t -δ Π 0 S(t)(v 0 , v 1 ) L p 1 (Rt;L p 2 (T 3 )) > λ ≤ C exp -λ 2 (u 0 , u 1 ) 2 H 0 (T 3 )
. Remark 1.2.7. As a consequence, under the assumptions of Proposition 1.2.5, we have for every λ > 0

µ (v 0 , v 1 ) ∈ H s : t -δ Π N S(t)(v 0 , v 1 ) L p 1 (Rt;L p 2 (T 3 )) > λ = µ (v 0 , v 1 ) ∈ H s : t -δ Π 0 S(t)(v N 0 , v N 1 ) L p 1 (Rt;L p 2 (T 3 )) > λ = µ (v N 0 , v N 1 ) ∈ Π N (H s ) : t -δ Π 0 S(t)(v 0 , v 1 ) L p 1 (Rt;L p 2 (T 3 )) > λ ≤ C exp - cλ 2 Π N (u 0 , u 1 ) 2 H 0 (T 3 ) ≤ C exp - cλ 2 N -2s (u 0 , u 1 ) 2 H s (T 3 )
.

Notice that if u 0 and u 1 are constants, the free evolution is

S(t)(u 0 , u 1 ) = u 0 + u 1 t.
This free evolution will contribute to the growth of Sobolev norms, but the following corollary can deal effectively with the troubles brought by such growth.

Corollary 1.2.8. Let us fix s ∈ [0, 1) and suppose that µ is induced via the map (1.2.5) from the couple (u 0 , u 1 ) ∈ H s . Let us also fix 2 ≤ p 1 , p 2 < +∞ and δ > 1+ 1 p 1 . Then there exists a positive constant C such that for every λ > 0,

µ (v 0 , v 1 ) ∈ H s : t -δ S(t)(v 0 , v 1 ) L p 1 (Rt;L p 2 (T 3 )) > λ ≤ C exp - cλ 2 (u 0 , u 1 ) 2 H 0 (T 3 )
.

Finally by using the Sobolev imbedding W σ,p (T 3 ) ⊂ L ∞ (T 3 ), σ > 3 p , where the W σ,p norm is defined by

u W σ,p = (1 -∆) σ/2 u L p (T 3 ) ,
we obtain Corollary 1.2.9. Let us fix s > 0 and suppose µ is induced via the map (1.2.5) from the data (u 0 , u 1 ) ∈ H s . Let us also fix 2 ≤ p 1 < +∞, 2 ≤ p 2 ≤ +∞ and δ > 1 + 1 p 1 . Then, for any fixed 0 < σ ≤ s, there exists a positive constant C such that for every λ > 0,

µ (v 0 , v 1 ) ∈ H s : t -δ S(t)(v 0 , v 1 ) L p 1 (Rt;L p 2 (T 3 )) > λ ≤ C exp - cλ 2 (u 0 , u 1 ) 2 H σ (T 3 )
. Remark 1.2.10. The same argument as in the proof of Proposition 1.2.5 shows that for every 2 ≤ p < +∞ and s ≥ 0 there exist C, c > 0 such that under the assumption of Proposition 1.2.5 defining µ, for every λ > 0 and every integer N ≥ 0,

µ (v 0 , v 1 ) ∈ H s : Π N v 0 L p (T 3 ) > λ ≤ C exp - cλ 2 (u 0 , u 1 ) 2 H s (T 3 ) (1.2.10) µ (v 0 , v 1 ) ∈ H s : (v 0 , v 1 ) H s (T 3 ) > λ ≤ C exp - cλ 2 (u 0 , u 1 ) 2 H s (T 3 ) (1.2.

11)

Chapter 1

Local and Global well-posedness for 3 ≤ p < 5

We first recall the well-posedness result to the equation (1.1.1) in the energy sub-critical case, which will be the main deterministic ingredient in constructing the solution to the equation (1.1.1) in the super-critical regime.

Proposition 1.3.1. For 3 ≤ p < 5, suppose the data (u 0 (x), u 1 (x)) =: u(0, x), ∂ t u(0, x) ∈ H 1 (T 3 ) satisfies E 0 := E(u(0)) ≤ Λ with the energy E(u(t)) defined by E(u(t)) := 1 2 |∇ x u(t, x)| 2 + |∂ t u(t, x)| 2 dx + 1 p + 1 |u(t, x)| p+1 dx
then there exists a positive number c sufficiently small such that the equation

(1.1.1) with data (u 0 , u 1 ) is well-posed in X := C 0 [0, T ]; H 1 (T 3 ) ∩L 2p p-3 ([0, T ]; L 2p (T 3 )) × C([0, T ]; L 2 (T 3 )) where T = cΛ -p-1 5-p .
The proof is to write the equation in the Duhamel's integral form, and then using energy estimates and Sobolev embedding to obtain these conditions allowing us to use Banach fixed point theorem. This is standard, so we omit it here.

With the help of Proposition 1.3.1, we can prove the following probabilistic wellposedness result.

Proposition 1.3.2. Let s > 2(p-3)
p-1 be fixed and T > 0 also be fixed. Given (u 0 , u 1 ) ∈ H s , let µ be the measure induced by (u 0 , u 1 ) ∈ H s via the map (1.2.5). Then, there exists some N 0 ∈ N + large, such that for any N ≥ N 0 , there exists a subset E T ⊂ H s with its probability µ(E T ) ≥ 1 -Ce -cN δ for some constants C, c, δ > 0, such that for any (v 0 , v 1 ) ∈ E T there exists a unique solution

v(t), ∂ t v(t) ∈ S(t)(v 0 , v 1 ), ∂ t S(t)(v 0 , v 1 ) + C([0, T ], H 1 )
to the nonlinear wave equation

(∂ 2 t -∆)v + |v| p-1 v = 0 (v(0), ∂ t v(0)) = (v 0 , v 1 ) (1.3.1)
In order to solve the equation (1.3.1), we decompose the solution as

v = v N + v N with v N := S(t)(v N 0 , v N 1 )
as the free wave propagation of the high frequency portion of the data and v N solving the nonlinear evolution of the low frequency of the data

(∂ 2 t -∆)v N + |v N + v N | p-1 (v N + v N ) = 0 (v N (0), ∂ t v N (0)) = (v 0,≤N , v 1,≤N ) := (Π N v 0 , Π N v 1 ) (1.3.2)
Before applying the result in Proposition 1.3.1 to obtain the local well-posedness for the equation (1.3.2), we introduce the following sets

E N := (v 0 , v 1 ) ∈ H s : Π N v 0 p+1 2 L p+1 ≤ N ε ; F N := (v 0 , v 1 ) ∈ H s : Π N (v 0 , v 1 ) H 1 ≤ N 1-s+ε ; G N := (v 0 , v 1 ) ∈ H s : t -δ S(t)Π N (v 0 , v 1 ) L 2p p-3 t L 2p x ≤ N ε-s ; H N := (v 0 , v 1 ) ∈ H s : t -δ S(t)Π N (v 0 , v 1 ) L 1 θ t L ∞ x ≤ N ε-s .
All these sets defined above have a large µ-probability. Precisely, we have Lemma 1.3.3. Let θ > 0 be fixed, then for δ > max( 2p p-3 , θ), there exists ε 0 > 0 such that for 0 < ε < ε 0 , there exist some positive constants C, c such that for every N ≥ 1, we have

µ(E c N ) ≤ Ce -cN 2ε , µ(F c N ) ≤ Ce -cN 2ε , µ(G c N ) ≤ Ce -cN 2ε , µ(H c N ) ≤ Ce -cN 2ε .
For the data from the set

E N ∩ F N ∩ G N ∩ H N , we have Proposition 1.3.4.
Let N be a fixed but large enough integer. Assume ε > 0 and θ ∈ (0, 1 4(p-1) ) are given, then for any couple

(v 0 , v 1 ) ∈ E N ∩ F N ∩ G N ∩ H N , there exists a unique solution v N to the equation (1.3.2) in X := C 0 ([0, T ]; H 1 ) ∩ L 2p p-3 ([0, T ]; L 2p x ) × C 0 ([0, T ]; L 2 )
where T = cN -2(1-s+ε) p-1 5-p with c a small positive constant. Furthermore, for such choice of the initial data, there exists ε 0 > 0 such that for any ε ∈ (0, ε 0 ), we have for all t ∈ [0, T ] the energy estimate

E(v N (t)) < 4N 2(1-s+ε) .
(1.3.3)

Proof. By Duhamel's formula, we can define the solution map

L : v N (t) -→ L(v N )(t) := S(t)(v 0,≤N , v 1,≤N )+ t 0 sin (t -τ ) √ -∆ √ -∆ |v N +v N | p-1 (v N +v N )dτ
Now we are going to prove that the map L is a contraction on a closed ball B(0, R) ⊂ X for some R.

-L is a map onto B(0, R) for some R. Suppose v ∈ B(0, R), then by the energy and Strichartz estimates for wave equation we have for the small time T > 0 that

L(v N ) X ≤ S(t)(v 0≤N , v 1,≤N ) H 1 + T 0 |v N + v N | p L 2 x (t)dt ≤ E(v N (0)) + CT 5-p 2 v N p L 2p p-3 t L 2p x + v N p L 2p p-3 t L 2p
x Now as the initial data

(v 0 , v 1 ) ∈ E N ∩ F N ∩ G N ∩ H N , we have that L(v N ) X ≤ C(N 1+ε-s + N ε ) + CT 5-p 2 v N p L 2p p-3 t L 2p x + N p(ε-s) ≤ 2CN 1+ε-s + 2CT 5-p 2 R p ,
where in the second inequality we have used the assumption that the radius R ≥ N ε-s . Under this assumption, we can select R = 4CN 1+ε-s and set 2CT

5-p 2 R p-1 = c and thus the solution map L when restricted on the closed ball B(0, R) is onto.

-L is contract on B(0, R). Now suppose v 1 , v 2 ∈ B(0, R), then by the energy and Strichartz estimates again, we have

L(v 1 ) -L(v 2 ) X ≤ C T 0 |v 1 + v N | p-1 (v 1 + v N ) -|v 2 + v N | p-1 (v 2 + v N ) L 2 x dt ≤ CT 5-p 2 v 1 -v 2 L 2p p-3 t L 2p x × v 1 p-1 L 2p p-3 t L 2p x + v 2 p-1 L 2p p-3 t L 2p x + v N p-1 L 2p p-3 t L 2p x ≤ CT 5-p 2 v 1 -v 2 X (R p-1 + R p-1 + R p-1 ),
where in the last inequality we have used the fact that R = 4CN 1+ε-s > N ε-s . By taking T even smaller such that

CT 5-p 2 3R p-1 = c
where c is a small constant to be selected later, we get that L is a contraction map onto B(0, R)

Finally, we get that the solution map L is a contraction on B(0, R), and thus it has a fixed point in B(0, R). This is just saying that we can solve the equation (1.3.2) in X up to time

T = cN -2(1-s+ε) p-1 5-p , (1.3.4) 
where c is a small positive constant and can be chosen to be even smaller if we want.

It is only left to prove the energy estimate (1.3.3). To do this, we differentiate the expression of energy and calculate

d dt E(v N (t)) = ∂ t v N (∂ 2 t v N -∆v N + |v N | p-1 v N )dx = ∂ t v N |v N | p-1 v N -|v N + v N | p-1 (v N + v N ) dx ≤ ∂ t v N L 2 x |v N | p-1 v N -|v N + v N | p-1 (v N + v N ) L 2 x ≤ C E(v N (t)) v N (|v N | p-1 + |v N | p-1 ) L 2 x ,
Thus at last we get

d dt E(v N (t)) ≤ C v N p L ∞ x + v N L ∞ x v N p-1 L 2(p-1) x
Integrating the above inequality on time interval [0, t] ⊂ [0, T ] yields

E(v N (t)) ≤ E(v N (0)) + t 0 v N p L ∞ x dτ + t 0 v N L ∞ x v N p-1 L 2(p-1) x dτ (1.3.5)
To deal with the last term in (1.3.5), we start by the observation: since 3 < p < 5, we have p + 1 < 2(p -1) < 2p; and the number 2p turns out to be one component of the Strichartz pair ( 2p p-3 , 2p) and the number p+1 is just the exponent of potential energy in the expression of E(v N (t)). We are inspired to control by some interpolation between the Strichartz estimate and the energy estimate. Precisely, on one hand, we have for the solution v N (t), t ∈ [0, T ] obtained above that

v N L 2p p-3 t L 2p x ≤ E(v N (0)) + CT 5-p 2 R p-1 v N L 2p p-3 t L 2p x = E(v N (0)) + c v N L 2p p-3 t L 2p
x where in the equality we have used the selection of time (1.3.4). And hence we have the small time Strichartz estimate

v N L 2p p-3 t L 2p x ≤ 1 1 -c E(v N (0)). (1.3.6)
On the other hand, as the energy E(v N (t)) is continuous in time t ∈ [0, T ], we use the continuity argument under the assumption

E(v N (t)) ≤ 4N 2(1-s+ε) for all t ∈ [0, T ].
In particular by this assumption, we have

v N L ∞ t L p+1 x ≤ C 4N 2(1-s+ε) 1 p+1 . (1.3.7)
Now interpolate between (1.3.6) and (1.3.7), we have

v N L k t L l x ≤ 4N 2(1-s+ε) θ 1 p+1 E(v N (0)) 1-θ 1 2 with 1 l = θ 1 p + 1 + 1 -θ 1 2p ; 1 k = θ 1 ∞ + (1 -θ 1 ) p -3 2p .
By using the interpolation result by taking l = 2(p -1) and thus 1) .

θ 1 = p+1 (p-1) 2 , k = 2(p-1) 2 (p-3) 2 , we obtain v N L 2(p-1) 2 (p-3) 2 t L 2(p-1) x ≤ 4N 2(1-s+ε) p-2 2(p-
(1.3.8)

Using (1.3.8) and the choice of (u 0 , u 1 ) ∈ H N , by Hölder inequality we can control the energy E(v N )(t) as follows

E(v N (t)) ≤ E(v N (0)) +CT 1-pθ t -δ v N p L 1 θ t L ∞ x + CT 1-θ-(p-3) 2 2(p-1) t -δ v N L 1 θ t L ∞ x v N p-1 L 2(p-1) 2 (p-3) 2 t L 2(p-1) x ≤ E(v N (0)) + CT 1-pθ N p(ε-s) + CT 1-θ-(p-3) 2 2(p-1) N ε-s 4N (p-2)(1-s+ε) ≤ 2N 1-s+ε 1 + 2CT 1-θ-(p-3) 2 2(p-1) N ε-s N (1-s+ε)(p-3)
where in the last inequality we used the assumption

CT 1-θ-(p-3) 2 2(p-1) N ε-s 4N (p-2)(1-s+ε) CT 1-pθ N p(ε-s)
for N large, which requires

ε 1 -s + ε + 2(p -1) 5 -p θ < 1 5 -p + s 1 -s + ε .
And this is ensured by the assumption θ ∈ (0, 1 4(p-1) ). Now by the assumption that

(u 0 , u 1 ) ∈ E N ∩ F N ∩ G N ∩ H N , we have E(v N (t)) ≤ 2N 1-s+ε 1 + 2CT 1-θ-(p-3) 2 2(p-1) N ε-s 2N (1-s+ε)(p-3) =: 2N 1-s+ε (1 + f (N )), (1.3.9) 
where 3) . Using the time expression (1.3.4), we can write f (N ) simply as

f (N ) := 2CT 1-θ-(p-3) 2 2(p-1) N ε-s 2N (1-s+ε)(p-
f (N ) = 4Cc 1-θ-(p-3) 2 2(p-1) N -4 5-p +s p-1 5-p (1-2θ) N -ε p-1 5-p (1-2θ) (1.3.10)
Thus we can see that f (N ) 1 for N large provided ε, θ sufficiently small and s ≤ 4 p-1 ( which is guaranteed by our assumption s ∈ (0, 1)). This finishes the induction, and by the induction principle, we have at last

E(v N (t)) ≤ 4N 2(1-s+ε) , (1.3.11)
which completes the proof of Proposition 1.3.4.

Proof of Proposition 1.3.2. Denote by v

N (t) the solution v N (t) obtained in Proposition 1.3.4, we are going to solve the following Cauchy problem

(∂ 2 t -∆)v (2) N + |v (2) N + v N | p-1 (v (2) N + v N ) = 0 v (2) N (T ), ∂ t v (2) N (T ) = v (1) N (T ), ∂ t v (1)
N (T ) . 

X := C 0 ([T, 2T ]; H 1 ) ∩ L 2p p-3 t ([T, 2T ], L 2p x ) × C 0 [T, 2T ]; L 2
where T is just as the selection (1.3.4). Furthermore, we have for all t ∈ [T, 2T ] the energy estimate

E(v (2) N (t)) < 2N 1-s+ε (1 + f (N )) 2 .
Then by solving the equation

(∂ 2 t -∆)v (n+1) N + |v (n+1) N + v N | p-1 (v (n+1) N + v N ) = 0 v (n+1) N (nT ), ∂ t v (n+1) N (nT ) = v (n) N (nT ), ∂ t v (n) 
N (nT ) . inductively in n, we have for the time t ∈ [nT, (n + 1)T ] the energy estimate

E(v (n+1) N (t)) ≤ 2N 1-s+ε (1 + f (N )) n+1 .
Now if we want to construct a solution to the equation (1.1.1) for arbitrarily large time T , we only need the energy bound

E(v N (t)) ≤ 4N 2(1-s+ε) for all t ∈ [0, T ] (here we denote v N (t) = v (k) N (t)) for t ∈ [kT, (k +1)T ] or t ∈ [KT, T ], k ∈ {0, 1, . . . , K -1},
where K is the largest integer not bigger than T T ). And this energy bound can be ensured by

2N 2(1-s+ε) (1 + f (N )) 2 T T ≤ 8N 2(1-s+ε) . Using the fact f (N ) → 0 as N → ∞ and the inequality (1 + 1 n ) n ≤ e for all n, we only need to ensure for large N 2 T T f (N ) 1.
By the (1.3.4) and (1.3.10), we can reduce this to

4Cc -θ-(p-3) 2 2(p-1) T N 2(p-3) 5-p -s p-1 5-p (1+2θ) N ε p-1 5-p (1+2θ) 1 (1.3.13)
Thanks to the assumption s > 2(p-3) p-1 , the exponent of N in (1.3.13) is negative if we take θ and ε sufficiently small. Now take N = N ( T ) large enough such that (1.3.13) is true. For such choice of N , let

E T := E N ∩ F N ∩ G N ∩ H N ,
which is just the desired set in Proposition 1.3.2. This completes the proof. Lemma 1.3.5. For every t ≥ 1 and every integer N ≥ 1, there exists c > 0 such that, for t ≤ cN δ+ε 1 := cN s p-1

5-p - 2(p-3) 5-p +2sθ p-1 5-p -ε p-1
5-p (1+2θ) with δ := s p-1 5-p -2(p-3) 5-p and ε 1 := ε p-1 5-p (1 + 2θ), and for every (v 0 , v 1 ) ∈ E T (N ) the solution v to the equation

(1.3.1) with data (v 0 , v 1 ) satisfies v(t) -S(t)Π 0 (v 0 , v 1 ) H 1 ≤ cN 1-s+ε . In particular, if t ≈ cN s p-1 5-p - 2(p-3) 5-p +2sθ p-1 5-p -ε p-1 5-p (1+2θ) then v(t) -S(t)Π 0 (v 0 , v 1 ) H 1 ≤ ct (5-p)(1-s) (p-1)s-2(p-3) +ε 2 ,
where ε 2 is another small constant proportional to ε.

Proof. Now write the solution v to the equation (1.3.1) as

v = v N + v N = v N + S(t)Π 0 (v 0,≤N , v 1,≤N ) + v N -S(t)Π 0 (v 0,≤N , v 1,≤N ) = S(t)Π 0 (v 0 , v 1 ) + v N -S(t)Π 0 (v 0,≤N , v 1,≤N )
On one hand, by the energy estimate (1.3.3), we have that

(v N (t), ∂ t v N (t)) H 1 ≤ cN 1-s+ε , (1.3.14) 
for all t ≤ T . Here T is determined by the inequality (1.3.13) and can be written precisely as

T = cN s p-1 5-p (1+2θ)- 2(p-3) 5-p -ε p-1
5-p (1+2θ) =: cN δ+ε 1 , where δ = s p-1 5-p -2(p-3) 5-p is positive due to the assumption that s > 2(p-3) p-1 . On the other hand, as S(t)Π 0 (v 0,≤N , v 1,≤N ) is orthogonal to constants, we have

S(t)Π 0 (v 0,≤N , v 1,≤N ) H 1 ≤ Π 0 (v 0,≤N , v 1,≤N ) H 1 ≤ cN 1-s+ε . (1.3.15)
Therefore, by combining the estimates (1.3.14) and (1.3.15), we obtain for

t ≤ N δ v -S(t)Π 0 (v 0 , v 1 ) H 1 ≤ cN 1-s+ε .
Proof of Theorem 1.1.1 for the case 3 ≤ p < 5. We set

E = ∪ ∞ j=1 E Tj =2 j .
As for any j, the probability µ(E c 2 j ) ≤ Ce -2 δj for some δ > 0, we get that the set E is of full µ-measure. And by Proposition 1.3.2, we have that for any (v 0 , v 1 ) ∈ E, there is a unique solution

v(t), ∂ t v(t) ∈ S(t)(v 0 , v 1 ), ∂ t S(t)(v 0 , v 1 ) + C(R t , H 1 ), and v(t) -S(t)Π 0 (v 0 , v 1 ) H 1 ≤ c(M + |t| (5-p)(1-s) (p-1)s-2(p-3) +ε 1 ), with µ (v 0 , v 1 ) : M > λ ≤ Ce -λ δ 1 for some δ 1 > 0.

Local and Global well-posedness for 2 ≤ p < 3

In this section, we present the well-posedness results for the equation (1.1.1) with 2 ≤ p < 3. The approach to these results is almost the same as that in [4]. We first recall Proposition 1.4.1. For 2 ≤ p < 3, suppose the data (u 0 (x), u 1 (x)) =: u(0, x), ∂ t u(0, x) ∈ H 1 (T 3 ) satisfies E 0 := E(u(0)) ≤ Λ with the energy E(u(t)) defined by

E(u(t)) := 1 2 |∇ x u(t, x)| 2 + |∂ t u(t, x)| 2 dx + 1 p + 1 |u(t, x)| p+1 dx
then there exists a positive number c sufficiently small such that the equation (1.1.1)

with such data (u 0 , u 1 ) is well-posed in X T := C([0, T ]; H 1 ) with T = cΛ -p-1 2 .
The proof of Proposition 1.4.1 is also a standard fixed point argument, like that for Proposition 1.3.1, so we also omit it here.

Thanks to Proposition 1.4.1, we can prove the probabilistic local well-posedness result to the equation (1.1.1) in the super-critical regime for 2 ≤ p < 3.

Proposition 1.4.2. Let s ∈ (0, 1), p ∈ [2, 3) be fixed and T > 0 also be fixed. Given (u 0 , u 1 ) ∈ H s , let µ be the measure induced by (u 0 , u 1 ) via the map (1.2.5). Then there exists a sufficiently large integer N 0 , such that for any N ≥ N 0 , we can find a subset E T ⊂ H s with its probability µ(E T ) ≥ 1 -Ce -cN δ for some constants C, c, δ > 0, such that for any (v 0 , v 1 ) ∈ E T there exists a unique solution

v(t), ∂ t v(t) ∈ S(t)(v 0 , v 1 ), ∂ t S(t)(v 0 , v 1 ) + C([0, T ], H 1 )
to the nonlinear wave equation

(∂ 2 t -∆)v + |v| p-1 v = 0, 2 ≤ p < 3 (v(0), ∂ t v(0)) = (v 0 , v 1 ) (1.4.1)
In order to solve the equation (1.4.1), we decompose the solution as

v = v N + v N with v N := S(t)(v N 0 , v N 1 )
the free wave propagation of the high frequency portion of the data and v N solving the following equation complemented by the low frequency of the data

(∂ 2 t -∆)v N + |v N + v N | p-1 (v N + v N ) = 0 (v N (0), ∂ t v N (0)) = (v 0,≤N , v 1,≤N ) := Π N (v 0 ), Π N (v 1 ) . (1.4.2)
To construct the subset E T of large probability, we introduce

E N := (v 0 , v 1 ) ∈ H s : Π N v 0 p+1 2 L p+1 ≤ N ε ; F N := (v 0 , v 1 ) ∈ H s : Π N (v 0 , v 1 ) H 1 ≤ N 1-s+ε ; G N := (v 0 , v 1 ) ∈ H s : t -δ S(t)Π N (v 0 , v 1 ) L 1 θ t L 1 θ x ≤ N ε-s . Chapter 1
Any of these sets is of a large probability. The key ingredient to prove Proposition 1.4.2 is Proposition 1.4.3. Let N be an integer fixed, ε > 0 and 0 < θ < min{ 1 2(p-1)(p+1) , 3-p 2(p+1) } be fixed, then for any couple 1) with c a small positive constant. Furthermore, for such choice of the initial data, there exists ε 0 > 0 such that for all ε ∈ (0, ε 0 ), we have for all t ∈ [0, T ] the energy estimate

(v 0 , v 1 ) ∈ E N ∩ F N ∩ G N , there exists a unique solution v N to the equation (1.4.2) in X := C 0 ([0, T ]; H 1 ) where T = cN -(1-s+ε)(p-
E(v N (t)) ≤ 4N 2(1-s+ε) .
(1.4.3)

Proof. The proof here is the same as that of Proposition 1.3.4. We would like to present it here since there are some constants we need to use later on. By Duhamel's formula, we can define the solution map

L : v N (t) -→ L(v N )(t) := S(t)(v 0,≤N , v 1,≤N )+ t 0 sin (t -τ ) √ -∆ √ -∆ |v N +v N | p-1 (v N +v N )dτ
Now we are going to prove that this map is a contraction onto a closed ball B(0, R) ⊂ X for some R.

-L is a map onto B(0, R) for some R. Suppose v N ∈ B(0, R), then by the energy estimate we have for some small time T > 0

L(v N ) X ≤ S(t)(v 0,≤N , v 1,≤N ) H 1 + T 0 |v N + v N | p L 2 x (t)dt ≤ S(t)(v 0,≤N , v 1,≤N ) H 1 + C T 0 v N p L 2p x + v N p L 2p x dτ ≤ (v 0,≤N , v 1,≤N ) H 1 + C T v N p X + T 1-pθ t -δ v N p L 1 θ t L 1 θ x ≤ (v 0,≤N , v 1,≤N ) H 1 + 2CT R p
where in the third inequality we have used the fact θ < 1 2p and in the last inequality the assumption (to be checked later)

T R p ≥ T 1-pθ N p(ε-s) .
(1.4.4)

By taking R = 2N 1-s+ε and T R p-1 = c for some c > 0, we can see that if c is sufficiently small, the solution map L maps the ball B(0, 2N 1-s+ε ) into itself. Furthermore for such a choice of time, the assumption (1.4.4) is ensured provided

cN -(1-s+ε)(p-1) pθ N (1-s+ε)p ≥ N p(ε-s) .
And this is always valid for ε > 0 sufficiently small thanks to the fact θ ∈ (0, 1 p-1 ).

-L is contract on B(0, R). Now suppose v 1 , v 2 ∈ B(0, R), then by the energy estimate we have

L(v 1 ) -L(v 2 ) X ≤ T 0 |v 1 + v N | p-1 (v 1 + v N ) -|v 2 + v N | p-1 (v 2 + v N ) L 2 x dt ≤ C T v 1 p-1 X + T v 2 p-1 X + T 1-(p-1)θ t -δ v N p-1 L 1 θ t L 1 θ x v 1 -v 2 X ≤ 3CT R p-1 v 1 -v 2 X ,
where in the second inequality we have used the fact θ < 1 2(p-1) and in the last inequality the assumption (to be checked later)

T R p-1 ≥ T 1-(p-1)θ N (p-1)(ε-s) .
(1.4.5)

By taking R = 2N 1-s+ε and T R p-1 = c for some c > 0, we can see that if c is sufficiently small, the solution map L is contract on the ball B(0, 2N 1-s+ε ).

Furthermore for such a choice of time, the assumption (

1.4.5) is satisfied pro- vided cN -(1-s+ε)(p-1) (p-1)θ N (1-s+ε)(p-1) ≥ N (p-1)(ε-s)
And this is always valid for ε > 0 sufficiently small thanks to the fact θ ∈ (0, 1 p-1 ). Finally, we get that the solution map L is a contraction map from B(0, R) onto itself, and thus it has a fixed point in B(0, R). This is just saying that we can solve the equation (1.4.2) in X up to time

T = cN -(1-s+ε)(p-1) , (1.4.6)
where c is a small positive constant and can be optimized later on in the long time argument. The continuity in time can be checked as in [7].

Now it is only left to prove the energy bound (1.4.3). By differentiating the expression of E(v N )(t) and calculating in the same way as we did in the previous section, we have for any t ∈ [0, T ] that

d dt E(v N (t)) ≤ v N p L 2p x + v N L 1 θ x v N p-1 L 2(p-1) 1-2θ x .
Integrating this inequality on the time interval [0, t] ⊂ [0, T ] yields

E(v N (t)) ≤ E(v N (0)) + t 0 v N p L 2p x dτ + t 0 v N L 1 θ x v N p-1 L 2(p-1) 1-2θ x dτ. (1.4.7)
To control this last term in (1.4.7), we start by the observation: since 2 ≤ p < 3 and θ < 3-p 2(p+1) , we have -s+ε) . Substituting this assumption into (1.4.7) and using the bounds for data in

E(v N (t)) ≤ 4N 2(1
(v 0 , v 1 ) ∈ E N ∩ F N ∩ G N ,
and the fact that θ < 1 2p and p-1 p+1 ≤ 1 2 , we get

E(v N (t)) ≤ E(v N (0)) + T 1-pθ t -δ v N p L 1 θ t L 1 θ x + CT 1-θ t -δ v N L 1 θ t L 1 θ x 2N 2(1-s+ε) p-1 p+1 ≤ 2N 1-s+ε 1 + 2C cN -(1-s+ε)(p-1) 1-θ N ε-s N (1-s+ε)(2 p-1 p+1 -1) =: 2N 1-s+ε (1 + f (N )), provided that cN -(1-s+ε)(p-1) 1-pθ N p(ε-s) ≤ C cN -(1-s+ε)(p-1) 1-θ N ε-s N 2(1-s+ε) p-1 p+1 , where f (N ) := Cc 1-θ N -(1-s+ε)( p 2 -p+2 p+1 )-s N (p-1)θ(1-s+ε)-4ε p+1 . This demands for fixed c that θ + ε (p -1)(1 -s + ε) < 2 (p -1)(p + 1) + s (p -1)(1 -s + ε) ,
which is always valid by taking ε sufficiently small and thanks to the assumption θ < 

(∂ 2 t -∆)v (2) 
N + |v (2) N + v N | p-1 (v (2) 
N + v N ) = 0 v (2) N (T ), ∂ t v (2) N (T ) = v (1) N (T ), ∂ t v (1) N (T ) .
N (t)) ≤ 2N 1-s+ε (1 + f (N )) 2 .
Then by solving the equation

(∂ 2 t -∆)v (n+1) N + |v (n+1) N + v N | p-1 (v (n+1) N + v N ) = 0 v (n+1) N (T ), ∂ t v (n+1) N (T ) = v (n) N (T ), ∂ t v (n) N (T ) .
inductively in n, we have for the time t ∈ [nT, (n + 1)T ] the energy estimate

E(v (n+1) N (t)) ≤ 2N 1-s+ε (1 + f (N )) n+1 .
Now if we want to construct a solution to the equation (1.1.1) for arbitrarily large time T , we only need the energy bound

E(v N (t)) ≤ 4N 2(1-s+ ) ( here we denote v N (t) = v (n) N (t)) for t ∈ [kT, (k + 1)T ] or t ∈ [KT, T ], k ∈ {0, 1, . . . , K -1}
, where K is the largest integer not bigger than T T ). And this can be ensured by

N 2(1-s+ε) (1 + f (N )) 2 T T ≤ 4N 2(1-s+ε) .
Using the fact f (N ) → 0 as N → ∞ and the inequality (1 + 1 n ) n ≤ e for all n, we only need to validate for large

N 2 T T f (N ) 1.
By (1.4.6) and the expression of f (N ), we can reduce this to

2 T c -θ N (1-s+ε)θ+ε N -s N (1-s+ε) p-3 p+1 1. (1.4.9) 
Thanks to the assumption p ∈ [2, 3), s ∈ [0, 1) and 0 < θ < min{ 1 2(p-1)(p+1) , 3-p 2(p+1) }, the exponent of N in (1.4.9) is negative if we take ε sufficiently small. Now take N = N ( T ) large enough such that (1.4.9) is true. For such choice of N , let E T := E N ∩ F N ∩ G N , which is just the desired set. This completes the proof of Proposition 1.4.2.

Next we are going to prove the possible growth of Sobolev norm for the case 2 ≤ p < 3. Lemma 1.4.4. Given p ∈ [2, 3), let us denote δ = s + (1 -s) 3-p p+1 . Then for every t ≥ 1 and every integer N ≥ 1 large enough, there exists c > 0 such that for t ≤ cN δ+ε 1 with ε 1 ∼ ε, and for every (v 0 , v 1 ) ∈ E T (N ) , the solution v(t) to the equation (1.4.1) with data (v 0 , v 1 ) satisfies

v(t) -S(t)Π 0 (v 0 , v 1 ) H 1 ≤ cN 1-s+ε . In particular, if t ≈ cN δ then v(t) -S(t)Π 0 (v 0 , v 1 ) H 1 ≤ ct (p+1)(1-s) 3-p+2(p-1)s +ε 1 .
Proof. Now write the solution v to the equation (1.4.1) as

v = v N + v N = v N + S(t)Π 0 (v 0,≤N , v 1,≤N ) + v N -Π 0 S(t)(v 0,≤N , v 1,≤N ) = S(t)Π 0 (v 0 , v 1 ) + v N -S(t)Π 0 (v 0,≤N , v 1,≤N )
By the energy estimate (1.4.3), we have that

(v N (t), ∂ t v N (t)) H 1 ≤ cN 1-s+ε , (1.4.10)
for all t ≤ T . Here T is determined by the inequality (1.4.9) and can be written as

T = c θ N -(1-s+ε)θ-ε 2p-2 p+1 N s+(1-s) 3-p p+1 = N -ε 1 N δ ,
where δ = s + (1 -s) 3-p p+1 is positive thanks to the assumption that s > 0 and p ∈ [2, 3). On the other hand, as S(t)Π 0 (v 0,≤N , v 1,≤N ) is orthogonal to constants, we have

S(t)Π 0 (v 0,≤N , v 1,≤N ) H 1 ≤ Π 0 (v 0,≤N , v 1,≤N ) H 1 ≤ cN 1-s+ε .
(1.4.11)

Therefore, by combining the estimates (1.4.10) and (1.4.11), we obtain for

t ≤ N δ+ε 1 v -S(t)Π 0 (v 0 , v 1 ) H 1 ≤ cN 1-s+ε .
This finishes the proof of Lemma 1.4.4.

Proof of Theorem 1.1.1 for the case 2 ≤ p < 3. We set

E = ∪ ∞ j=1 E Tj =2 j .
As for any j, the probability µ(E c 2 j ) ≤ Ce -2 δj for some δ > 0, the subset E is of full µ-measure. And by Proposition 1.4.2, we have that for any (v 0 , v 1 ) ∈ E, there is a unique solution

v(t), ∂ t v(t) ∈ S(t)(v 0 , v 1 ), ∂ t S(t)(v 0 , v 1 ) + C(R t , H 1 ), and v(t) -S(t)Π 0 (v 0 , v 1 ) H 1 ≤ c(M + |t| (p+1)(1-s)
3-p+2(p-1)s +ε 1 ), with µ (v 0 , v 1 ) : M > λ ≤ Ce -λ δ 1 for some δ 1 > 0. This completes the proof of Theorem 1.1.1

Conditional dependence on the initial data

The probabilistic continuity result for the case 2 ≤ p ≤ 3 can be obtained in the same manner as that in [4], so we omit the proof here. For the case 3 < p < 5, we need a little bit different conditional large deviation estimates. Precisely, we have Lemma 1.5.1. Given p ∈ (3, 5), let us fix s ∈ (0, 2(p-3) p-1 ). Let µ be the measure induced by (u 0 , u 1 ) ∈ H s via the map (1.2.5). Define the following sets

A := (V 0 , V 1 ) ∈ H s × H s : t -δ S(t)(V 0 -V 1 ) L p 1 t L p 2 x > η 1-α ; B := (V 0 , V 1 ) ∈ H s × H s : t -δ S(t)(V j ) L p 1 t L p 2
x > β log log(η -1 ), j = 0, 1 ;

D := (V 0 , V 1 ) ∈ H s × H s : Π N V j L p+1 x > ΛN ε , j = 0, 1 ; E := (V 0 , V 1 ) ∈ H s × H s : Π N V j H 1 > ΛN 1-s+ε , j = 0, 1 ; F := (V 0 , V 1 ) ∈ H s × H s : V 0 -V 1 H s ≤ η, V j H s < Λ, j = 0, 1 .
Then for any 2 ≤ p 1 < +∞, 2 ≤ p 2 ≤ +∞, δ > 1 + 1 p 1 , η ∈ (0, 1), α ∈ (0, 1) and β > 0, we have

(µ ⊗ µ) A ∪ B ∪ D ∪ E|F → 0 as η → 0.
(1.5.1)

Proof. The proof is almost the same as that in [4].

Thanks to the estimate (1.5.1), we are going to prove Theorem 1.1.5 under the assumptions

t -δ S(t)(V 0 -V 1 ) L p 1 t L p 2 x < η 1-α (1.5.2) t -δ S(t)(V j ) L p 1 t L p 2 x
< β log log(η -1 ), j = 0, 1;

(1.5.3)

Π N V j L p+1 x < ΛN ε , j = 0, 1;
(1.5.4)

Π N V j H 1 < ΛN 1-s+ε , j = 0, 1. (1.5.5) Suppose (v(t), ∂ t v(t))
is the solution obtained in Proposition 1.3.2, we denote the flow associated to the equation (1.3.1) by

Φ(t) (v 0 , v 1 ) := (v(t), ∂ t v(t)).
Under this notation, we computer as follows

Φ(t)(V 0 ) -Φ(t)(V 1 ) X T := Φ(t)(V 0 ) -Φ(t)(V 1 ) L ∞ ([0, T ];H s ) + Φ(t)(V 0 ) -Φ(t)(V 1 ) L 2p p-3 ([0, T ];L 2p ) ≤ K k=0 Φ(t)(V 0 ) -Φ(t)(V 1 ) L ∞ (∆ k ;H s ) + Φ(t)(V 0 ) -Φ(t)(V 1 ) L 2p p-3 (∆ k ;L 2p ) + Φ(t)(V 0 ) -Φ(t)(V 1 ) L ∞ ([KT, T ];H s ) + Φ(t)(V 0 ) -Φ(t)(V 1 ) L 2p p-3 ([KT, T ];L 2p ) ,
where K is the largest integer not bigger than T T and ∆ k := [kT, (k + 1)T ]. On any time interval [kT, (k + 1)T ], we decompose the solution as

Φ(t)(V j ) = V j,N + V N j , j = 0, 1, then Φ(t)(V 0 ) -Φ(t)(V 1 ) L ∞ (∆ k ;H s ) ≤ V 0,N -V 1,N L ∞ (∆ k ;H s ) + V N 0 -V N 1 L ∞ (∆ k ;H s ) .
The second term can be controlled by radius used in the proof of Proposition 1.3.4.

We turn to control the first term. By using equations satisfied by V 0,N and V 1,N on ∆ k respectively, we have the estimates

V 0,N -V 1,N L ∞ (∆ k ;H s ) ≤ V 0,N -V 1,N H s (kT ) + V 0,N -V 1,N L 2p p-3 (∆ k ;L 2p ) + V N 0 -V N 1 L 2p p-3 (∆ k ;L 2p ) ×T 5-p 2 j V j,N p-1 L 2p p-3 (∆ k ;L 2p ) + V N j L 2p p-3 (∆ k ;L 2p )
.

Chapter 1

On one hand, by small time Strichartz estimates, we have

V 0,N -V 1,N L 2p p-3 (∆ k ;L 2p ) ≤ V 0,N -V 1,N H 1 (kT ) + V N 0 -V N 1 L 2p p-3 (∆ k ;L 2p )
.

On the other hand, by the fact H 1 ⊂ H s for s < 1 and using the assumptions (1.5.2)(1.5.3)(1.5.4)(1.5.5), we obtain

Φ(t)(V 0 ) -Φ(t)(V 1 ) L ∞ (∆ k ;H s ) ≤C( T ) V 0,N (kT ) -V 1,N (kT ) H 1 .
Using the equations satisfied by V 0,N , V 1,N on ∆ k-1 respectively, we have the estimate

V 0,N (kT ) -V 1,N (kT ) H 1 ≤ V 0,N -V 1,N C 0 (∆ k-1 ;H 1 ) .
This reduces the control of

Φ(t)(V 0 ) -Φ(t)(V 1 ) on the time interval ∆ k to that on ∆ k-1 .
Then we can repeat the above procedure to control

V 0,N -V 1,N C 0 (∆ k-1 ;H 1 )
inductively. And finally, we obtain

Φ(t)(V 0 ) -Φ(t)(V 1 ) X T ≤ C( T ) V 0,N -V 1,N H 1 (0) + V N 0 -V N 1 p L 2p p-3 ([0, T ];L 2p )
.

Thus by taking η sufficiently small, we get

Φ(t)(V 0 ) -Φ(t)(V 1 ) X T ≤ C( T ) √ η.
Finally for some fixed ε > 0, the µ ⊗ µ measure of the collection of (V 0 , V 1 ) such that

Φ(t)(V 0 ) -Φ(t)(V 1 ) X T > ε
under conditions (1.5.2)(1.5.3)(1.5.4)(1.5.5) is zero, provided that η > 0 is sufficiently small. This finishes the proof of Theorem 1.1.5.

Introduction

In this chapter, we are going to construct solutions for the equation

(∂ 2 t -∆)u + |u| p-1 u = 0, 3 < p < 5 u, ∂ t u | t=0 = (u 0 , u 1 ) ∈ H s × H s-1 =: H s , (2.1.1)
where u is a real-valued function defined on R t × T 3 . Via a scaling argument, one can see that s cr = 3 2 -2 p-1 is a critical index in solving the equation (2.1.1). It turns out that for s < s cr , the equation (2.1.1) is ill-posed, while for s ≥ s cr , the equation (2.1.1) is known to be well-posed (in the sense of Hadamard) only for s in certain range. More precisely, we have Theorem 2.1.1. The Cauchy problem (2.1.1) is locally well-posed for data in H s for s > s cr . In the opposite direction, for p ∈ [3, 5), if s ∈ (0, 3 2 -2 p-1 ), then the problem (2.1.1) is not locally well-posed in H s . One example contradicting the continuous dependence on the initial data is as follows: there exists a sequence (u n ) of global smooth solutions to (2.1.1) with initial data u

(n) 0 , u (n) 1 such that lim n→∞ (u (n) 0 , u (n) 1 ) H s = 0 but lim n→∞ (u n (t), ∂ t u n (t)) L ∞ ([0,T ];H s ) = ∞, ∀T > 0.
The well-posedness part of Theorem 2.1.1 can be proved in the same way as Lindblad-Sogge did in [13], by invoking the Strichartz estimate on compact manifold thanks to Kapitanski [10]. For the special case p = 3, (2.1.1) is even globally well-posed if the regularity index s is sufficiently close to 1. One can also refer to [19] for these results on the Euclidean space R 3 . For the ill-posedness statement of Theorem 2.1.1, one can see Burq-Tzvetkov [6, Appendix A] for p = 3 and [20] for 3 < p < 5, or see [9] for even more discussions.

Up to these counter examples, we can not solve the equation (2.1.1) in the sense of Hadamard in the super-critical regime. In order to construct solutions to these super-critical equations, probabilistic tools have been introduced. On one hand, for some special initial data, one can use an "invariant argument" to construct local or even global solutions to several equations in super-critical regime ( see [3][2][12] [7] for detailed discussions). On the other hand, for general initial data, by randomizing the data via its Fourier series, Burq-Tzvetkov [6] succeeded in constructing local solutions to (2.1.1) in the super-critical regime. Shortly after this, they also proved the probabilistic global well-posedness of the cubic wave equation on 3D torus by a conservation law argument in [8]. Using this argument, Burq-Thomann-Tzvetkov obtained probabilistic global existence of solution to the cubic wave equation in higher dimensions in [5].

Recently Oh-Pocovnicu [17] proved the quintic wave equation on R 3 is almost surely global well-posed with the initial data in the homogeneous space Ḣs (R 3 ) := Ḣs (R 3 ) × Ḣs-1 (R 3 ) with s > 1 2 . The approach Oh-Pocovnicu used is slightly different from Burq-Tzvetkov's. Here as the spectrum of Laplacian is continuous, we can not use the randomization procedure used by Burq-Tzvetkov to randomize data. Oh-Pocovnicu turned to use Wiener randomization introduced in [1], and they proved similar probabilistic estimates as in [8] [6]. Furthermore, they also proved probabilistic estimates for the time derivative of the free evolution of the data. By using these probabilistic estimates, the authors first established a probabilistic a priori estimate. Then by combining this a priori estimate with the stability theory for NLW, they succeeded in constructing a global solution to quintic wave equation in Ḣs with s > 1 2 . Also on the Euclidean space R 3 , by randomizing the initial data via a unitscale decomposition of the frequency space, Lührmann-Mendelson [14] proved similar probabilistic estimates as that in [6][8] [17]. With these estimates in hand, they proved that the problem (2.1.1) with the underground space replaced by R 3 is almost surely global well-posed in Ḣs for s > p 3 +5p 2 -11p-3 9p 2 -6p-3 . Notice that this regularity index only lies in the super-critical regime when 1 4 (7 + √ 73) < p < 5. To remedy this, they improved in [15] this result to 1 > s > p-1 p+1 by using Oh-Pocovnicu's ideas in [17].

One should observe that, no matter the underlying space is the torus T 3 or the whole Euclidean space R 3 , we have almost the same probabilistic estimates. So we shall expect that the minimal regularity s(p) required to solve (2.1.1) should be compatible with the two endpoint cases p = 3 and p = 5, in the sense that

s(p) → p→3 0 = s(3) and s(p) → p→5 1 2 = s(5),
where s(3) = 0 is the result by Burq-Tzvetkov [8] and s(5) = 1 2 is the result by Oh-Pocovnicu [17]. However, Lührman-Mendelson's result s(p) = p-1 p+1 fails to behave like this. In this article, we are going to address this problem. Our approach is as follows.

Fix s ∈ ( p-3 p-1 , 1). Let (u 0 , u 1 ) ∈ H s be given in its Fourier series form

u j = a j,0 + n∈Z 3 + (a j,n cos(n • x) + b j,n sin(n • x)) , j = 0, 1,
where

Z 3 + := (n 1 , n 2 , n 3 ) ∈ Z 3 | n 1 ≥ 0 \ {(0, n 2 , n 3 ) ∈ Z 3 |n 2 < 0} ∪ {(0, 0, n 3 ) ∈ Z 3 |n 3 ≤ 0} . Suppose α j (ω), β j,n (ω), γ j,n (ω) n∈Z 3 + j=0,1
is a series of independent real Gaussians on (Ω, A, P) with standard distribution N R (0, 1), or even more general that they satisfy the assumption (2.2.3). Then we define the random variables u ω j as u ω j = a j,0 α j (ω) +

n∈Z 3 + (a j,n β j,n (ω) cos(n • x) + b j,n γ j,n (ω) sin(n • x)) , j = 0, 1.
For any integer N ≥ 1, denote by P N the projection operator defined by

P ≤N   a 0 + n∈Z 3 + (a n cos(n • x) + b n sin(n • x))   = a 0 + n∈Z 3 + ;|n|≤N a n cos(n•x)+b n sin(n•x)
Denote also the free wave propagator by S(t). Then we first prove that for any given N ≥ 1 and T, ε > 0, there exists a subset Ω N,T,ε ⊂ Ω with P(Ω c N,T,ε ) < ε, the solution v N to the truncated equation

∂ 2 t -∆ v N + |v N + z N | p-1 (v N + z N ) = 0, z N = S(t) (P ≤N u ω 0 , P ≤N u ω 1 ) (v N , ∂ t v N ) | t=0 = (0, 0)
can be bounded uniformly as

sup t∈[0,T ] v N (t), ∂ t v N (t) H 1 ≤ C (2.1.2)
where C depends only on T, ε and (u 0 , u 1 ) H s , and is independent of N . The main step in the proof of this estimate is Lemma 2.3.3, in which we have used a cut-off argument.

With the help of (2.1.2), we could find another set ΩN,T,ε , which may be different from Ω N,T,ε and is also of large probability, such that for any ω ∈ ΩN,T,ε , the solution v(t) to the equation

∂ 2 t v -∆v + |v + z| p-1 (v + z) = 0, z = S(t)(u ω 0 , u ω 1 ) (v, ∂ t v)| t=0 = (0, 0)
can also be controlled uniformly

sup t∈[0,T ] v(t), ∂ t v(t) H 1 < 2C.
By a standard argument in [8], we can extend this finite time [0, T ] to the whole time line. And at last we arrive at Theorem 2.1.2 (Almost sure global well-posedness). Let s ∈ ( p-3 p-1 , 1). Given (u 0 , u 1 ) ∈ H s (T 3 ), let (u ω 0 , u ω 1 ) be the randomization as in (2.2.5) under the assumption (2.2.3). Then the super-critical wave equation (2.1.1) is almost surely globally well-posed with (u ω 0 , u ω 1 ) as the initial data. More precisely, there exists a set Ω (u 0 ,u 1 ) ⊂ Ω of probability 1 such that, for every ω ∈ Ω (u 0 ,u 1 ) , there exists a unique solution u (in a bounded ball around zero) to (2.1.1) in the class:

S(t)(u ω 0 , u ω 1 ), ∂ t S(t)(u ω 0 , u ω 1 ) + C(R; H 1 (T 3 )) ⊂ C(R; H s (T 3 )).
Remark 2.1.3. We should notice that the lower bound p-3 p-1 is compatible with the endpoint cases p = 3 and p = 5. That is to say, when p tends to 3, the minimal regularity required to solve the equation (2.1.1) becomes the one obtained in [8] for the case p = 3; and the same for the other endpoint p = 5, see [17]. But if p = 3 and s = 0, we refer to [8] for the possible growth of Sobolev norms.

Remark 2.1.4. For higher dimensional case d ≥ 4, the global infinite energy solution to the cubic wave equation was constructed by Burq-Thomann-Tzvetkov [5], where the conditionally continuous dependence on the initial data is left unknown. But Oh-Pocovnicu succeeded to prove this uniqueness result in [16].

Preliminaries

Deterministic Preliminaries

In this section, we recall several classical results about the linear equation

(∂ 2 t -∆)u = f on I × T 3 , (u, ∂ t u)| t=t 0 = (u 0 , u 1 ). (2.2.1) 
We say that u solves the equation (2.2.1) on the time interval I t 0 if u satisfies for t ∈ I the Duhamel formula

u(t) = S(t -t 0 )(u 0 , u 1 ) + t t 0 sin((t -t ) √ -∆) √ -∆ f (t )dt ,
where S(t) is the free wave propagator defined by

S(t)(u 0 , u 1 ) = cos(t √ -∆)u 0 + sin(t √ -∆) √ -∆ u 1 .
We now recall the following energy estimates for the solution u to the equation (2.2.1).

Proposition 2.2.1 (Energy estimates). Suppose u solves (2.2.1) on I = [t 0 = 0, T ].

Then for any t ∈ [0, T ] we have

(u(t, •), ∂ t u(t, •)) H s ≤ C(1 + T ) (u 0 , u 1 ) H s + t 0 f (r, •) H s-1 dr .
We also use frequently the following Strichartz estimate, which is very useful in dealing with the nonlinearity in the equation (2.1.1). In order to state this estimate, we first define the concept of "wave-admissibility" in 3D case. Definition 2.2.2. We call a pair (q, r) wave-admissible if 2 ≤ q ≤ ∞, 2 ≤ r ≤ ∞, (q, r) = (2, ∞) and

1 q + 1 r ≤ 1 2
Proposition 2.2.3 (Strichartz estimates for wave equation [11][10]). Let u be the solution to (2.2.1) on any time interval 0 ∈ I ⊂ [0, 1], we have

u L p (I;L q (T 3 )) ≤ C (u 0 , u 1 ) H s + f L a (I;L b (T 3 ))
under the assumptions that 1. Wave admissible condition: both the pairs (p, q) and (a, b) are wave-admissible;

2. Scaling invariant condition:

1 p + 3 q = 1 a + 3 b -2 = 3 2 -s.
Indeed, in our case, the Strichartz type estimate we use is mainly for the pair 2p p-3 , 2p with regularity s = 1 and the pair (∞, 2) with s = 0. Precisely, what we need is the following estimate

(u, ∂ t u) L ∞ t (I;H 1 x ) + u L 2p p-3 t (I,L 2p x )
≤ (u 0 , u 1 )

H 1 + f L 1 t (I;L 2 x ) (2.2.2)
for any time interval I containing t 0 with |I| ≤ 1. In the following, we denote φ 0 a radial smooth function on R 3 such that φ 0 = 1 on the ball B(0, 1) and φ 0 = 0 outside the ball B(0, 2). Then we recall the following projection operators for any integer N ≥ 1

P ≤N u = a 0 + n∈Z 3 + φ 0 |n| N a n cos(n • x) + b n sin(n • x)
provided that u is given by

u = a 0 + n∈Z 3 + a n cos(n • x) + b n sin(n • x),
where

Z 3 + := (n 1 , n 2 , n 3 ) ∈ Z 3 | n 1 ≥ 0 \ {(0, n 2 , n 3 ) ∈ Z 3 + |n 2 < 0} ∪ {(0, 0, n 3 ) ∈ Z 3 |n 3 ≤ 0} . When N = 2 j
is a dyadic for some j ≥ 0, we also define the projection operators P j u := P ≤2 j u -P ≤2 j-1 u, where we have used the convention that P ≤2 -1 u = 0. Then by the classical Littlewood-Paley theory, we have the following characterization of H s -Sobolev spaces

u 2 H s ∼ j≥0 2 2js P j u 2 L 2 .
We also need Bernstein's inequality

P ≤N u L q ≤ N 3 p -3 q P ≤N u L p , 1 ≤ p ≤ q ≤ ∞.

Probabilistic preliminaries

Now let α j (ω), β n,j (ω), γ n,j (ω) n∈Z 3 + , j=0,1 be a series of independent identically distributed real, mean zero, random variables on the probability space (Ω, A, P) with the same distribution function θ. Assume that there exists c > 0 such that

∀γ ∈ R, +∞ -∞ e γx dθ(x) ≤ e cγ 2 .
(2.2.3)

Using such a series of random variables, we randomize the data (u 0 , u 1 ) ∈ H s , given by their Fourier series with all coefficients real

u j (x) = a j + n∈Z 3 + b n,j cos(n • x) + c n,j sin(n • x) , j = 0, 1 (2.2.4) 
by setting

u ω j (x) = α j (ω)a j + n∈Z 3 + β n,j (ω)b n,j cos(n • x) + γ n,j (ω)c n,j sin(n • x) . (2.2.5)
Remark 2.2.4. Indeed the map ω -→ (u ω 0 , u ω 1 ) induces a Borel probability measure on H s equipped with its natural topology. Furthermore, this probability measure on H s has many nice properties such as "non-regularization of the data" and "nonvanishing on any open set", which exclude the possibility of "regularizing effect" originating from such procedure when applied to PDE. See [8][6] for more details.

We first recall the following estimates of higher moments of random series associated to any given 2 sequence (c n ), which is very important in obtaining probabilistic estimates for the random variables (u ω 0 , u ω 1 ). Lemma 2.2.5 ([6]). Let {g n } be a sequence of independent mean-zero, real-valued random variables and the distribution function of g n satisfies the assumption (2.2.3) for any integer n. Then for any 2 sequence (c n ) and any q ≥ 2, there exists c > 0 such that

g n (ω)c n L q ω ≤ c √ q (c n ) 2 .
By using this estimate, we can prove the following local-in-time probabilistic Strichartz estimates by using the ideas used in [6][7] [18].

Lemma 2.2.6 ([6][7][18]

). Let (u 0 , u 1 ) ∈ H s (T 3 ) be given by the series (2.2.4) with all coefficients real and (u ω 0 , u ω 1 ) be randomized as in (2.2.5). Assume I = [a, b] ⊂ R is a compact time interval. 1. If s = 0, then for any given 1 ≤ q < ∞ and 2 ≤ r < ∞, there exist C, c > 0 such that

P S(t)(u ω 0 , u ω 1 ) L q t L r x (I×T 3 ) > λ ≤ C exp -c λ 2 |I| 2 q (u 0 , u 1 ) 2 H 0 .
2. For any given 1 ≤ q < ∞, 2 ≤ r ≤ ∞, there exist C, c > 0 such that

P S(t)(u ω 0 , u ω 1 ) L q t L r x (I×T 3 ) > λ ≤ C exp -c λ 2 |I| 2 q (u 0 , u 1 ) 2 H s for s > 0.
By denoting S(t) by

S(t)(u 0 , u 1 ) := - |∇| ∇ sin(t|∇|)u 0 + cos(t|∇|) ∇ u 1 , (2.2.6) 
we state the following proposition, which plays an important role in obtaining the probabilistic a priori bound on the solution to the equation (2.3.2). This is also the key probabilistic estimate in Oh-Pocovnicu's approach to almost sure global well-posedness of energy critical wave equation in [17].

Lemma 2.2.7 ([17][4]

). Assume s > 0. Let (u 0 , u 1 ) ∈ H s (T 3 ) be given by the series (2.2.4) with all coefficients real and (u ω 0 , u ω 1 ) be randomized as in (2.2.5). And let T > 0 and S * (t) = S(t) or S(t). Then for 2 ≤ r ≤ ∞, we have

P S * (t)(u ω 0 , u ω 1 ) L ∞ t L r x ([0,T ]×T 3 ) > λ ≤ C exp -c λ 2 max(1, T 2 ) (u 0 , u 1 ) 2 H ε (2.2.7)
for any ε > 0 smaller than s, where the constants C and c depend only on r and ε.

The proof of Proposition 2.2.7 runs the same as what T. Oh and O. Pocovnicu did in [17]. However, by viewing ∂ t ε = ∇ ε when acting on e ±it √ -∆ u 0 , we can prove Proposition 2.2.7 by the trick of loss of derivatives in space-time. See [4] for more details.

Probabilistic Analysis of NLW

We first look at the truncated equation

(∂ 2 t -∆)u N + |u N | p-1 u N = 0 u N , ∂ t u N = (P ≤N u 0 , P ≤N u 1 ). (2.3.1)
As the initial data (P ≤N u 0 , P ≤N u 1 ) is smooth for any data (u 0 , u 1 ) ∈ H s with s > 0, the equation (2.3.1) has a global smooth solution. In order to study the contributions of the low-frequency portion of the initial data, we rewrite (2.3.1) equivalently as

(∂ 2 t -∆)v N + |v N + z N | p-1 (v N + z N ) = 0 v N , ∂ t v N = (0, 0), (2.3.2) 
where z N = S(t)(P ≤N u 0 , P ≤N u 1 ) is the free wave propagation of (P ≤N u 0 , P ≤N u 1 ).

The following probabilistic a priori estimate of solutions to the equation (2.3.2) is the main result in this section.

Proposition 2.3.1. Let s ∈ ( p-3 p-1 , 1) and N ≥ 1 dyadic. Given T, ε > 0, there exists ΩN,T,ε ⊂ Ω such that 1. P( Ωc N,T,ε ) < ε, 2. There exists a finite constant C(T, ε, (u 0 , u 1 ) H s ), independent of N , such that the following energy bound holds

sup t∈[0,T ] (v ω N (t), ∂ t v ω N (t) H 1 ≤ C (T, ε, (u 0 , u 1 ) H s ) (2.3.3)
for any solutions v ω N to (2.3.2) with ω ∈ ΩN,T,ε .

Remark 2.3.2. Indeed, we can even choose the set ΩN,T,ε independent of N , which is just a careful application of Lemma 2.2.6 and Lemma 2.2.7.

Proof. We argue in the same way as Oh-Pocovnicu did in [17]. First observe that

v ω N L 2 ≤ c v ω N L p+1 ≤ cE(v ω N ) 1 p+1
,

where E u (t) is the energy function associated to the equation (2.1.1), and is defined by

E(u)(t) = 1 2 T 3 |∇u| 2 + |∂ t u| 2 + 1 p + 1 T 3 |u| p+1 dx. Now if we have sup t∈[0,T ] E(v ω N ) ≤ C (2.3.4)
then we would have

sup t∈[0,T ] (v ω N (t), ∂ t v ω N (t) 2 H 1 ≤ (C + C 2 p+1
).

Consequently, we only need to prove (2.3.4).

As above z N (t) = S(t)(P ≤N u 0 , P ≤N u 1 ) and we let zN := ∂tz N ∇ . Let δ > 0 sufficiently small such that p-3 p-1 + δ < s. For fixed T, ε > 0 we define ΩN,T,ε by

ΩN,T,ε := ω : z ω N L 2p T,x + z ω N L ∞ T L p+1 x + z ω N 2 L ∞ t L 4(p+1) 5-p + ∇ s-zω N L ∞ T,x ≤ λ
where λ = λ(T, ε, (u 0 , u 1 ) H s ) > 0 is chosen such that P( Ωc N,T,ε ) < ε. The existence of ΩN,T,ε is guaranteed by Lemma 2.2.6 and Lemma 2.2.7.

In the sequel, we are going to prove

sup t∈[0,T ] E(v ω N (t)) ≤ C(T, ε, (u 0 , u 1 ) H s ) (2.3.5)
for ω ∈ ΩN,T,ε . In the following of this section, we suppress the index N for the solution v N to the equation (2.3.2). We will also do this for the linear evolution z N (t). In order to achieve the energy bound (2.3.5), we differentiate the expression of the energy and calculate

d dt E(v)(t) = T 3 ∂ t v(∂ 2 t v -∆v + |v| p-1 v)dx = - T 3 ∂ t v(|v + z| p-1 (v + z) -|v| p-1 v)dx = - T 3 ∂ t v(p|v| p-1 z + p(p -1)|v + θz| p-2 z 2 )dx
where in the last equality we have used differential mean value equality with θ ∈ [0, 1]. By integrating in time, we have

E(v)(t) = E(v)(0) - t 0 T 3 ∂ t v(t )[pz(t )|v(t )| p-1 + p(p -1)|v(t ) + θz(t )| p-2 z(t ) 2 ]dt dx = - T 3 t 0 z(t )∂ t [|v| p-1 v(t )]dt dx - t 0 T 3 ∂ t v(t )p(p -1)|v(t ) + θz(t )| p-2 z(t ) 2 dt dx =: I(t) + II(t).
Noticing that

|v + θz| p-2 z 2 ≤ c |v| p-2 z 2 + |z| p ,
where c is a constant depending only on p, we have

|II(t)| ≤ t 0 ∂ t v(t ) L 2 v(t ) p-2 L p+1 z 2 L 4(p+1) 5-p (t ) + t 0 ∂ t v(t ) L 2 z(t ) 2p L 2p dt ≤ 1 + z 2 L ∞ t L 4(p+1) 5-p t 0 max E(v)(t ), E(v) 3(p-1) 2(p+1) dt + z 2p L 4p T L 2p
x .

Thanks to the assumption p < 5, we have that 3p-3 2p+2 ≤ 1. And hence we only need to consider

|II(t)| ≤ 1 + z 2 L ∞ t L 4(p+1) 5-p t 0 E(v)(t )dt + z 2p L 4p T L 2p
x .

(2.3.6)

First, we are going to deal with the term I(t). As v(0) = 0 and v = v ω N is smooth, both in t and x, integrating by parts, we have

I(t) = - T 3 z(t)|v| p + T 3 t 0 ∂ t z(t )|v(t )| p dt dx =: I 1 (t) + I 2 (t).
(2.3.7)

As for the first term I 1 (t), we have

|I 1 (t)| ≤ a v(t) p+1 L p+1 + a -p z(t) p+1 L p+1 ≤ aE(v)(t) + a -p z p+1 L ∞ T L p+1 x , (2.3.8)
where a is a small constant, to be chosen later.

Next we turn to bound the term I 2 (t). To do this, we need the following lemma:

Lemma 2.3.3. Let v, z as above. Then there exists some constant C such that,

T 3 |v| p-1 v ∇ zdx ≤ C ∇ s-z L ∞ x + 1 E(v)(t) + ∇ s-z p+1 L ∞ x ,
where s-:= s -δ for any sufficiently small, positive δ.

Proof of Lemma 2.3.3. Denote P j the Littlewood-Paley projection onto the dyadic 2 j for j ∈ N + . Then we have

T 3 |v| p-1 v ∇ zdx ∼ k=1 k=-1 j≥0 T 3 P j+k (|v| p-1 v)P j ( ∇ z)dx.
Notice that the contribution of the summation over k = -1, 0, 1 can be bounded by that of the case k = 0, so in the following we will omit the summatin over the index k and sometimes omit the index k directly.

For the low frequency case j ≤ 2, we have

T 3 P j+k (|v| p-1 v)P j ( ∇ z)dx ≤ ∇ s-z L ∞ x v p L p+1 .
A further application of Hölder inequality, we have

j≤2 T 3 P j+k (|v| p-1 v)P j ( ∇ z) ≤ ∇ s-z p+1 L ∞ x + E(v)(t). (2.3.9) 
For the high frequency portion j > 2, we split the nonlinear part P j (|v| p-1 v) into the small value part and large value part. Precisely, we introduce a bump function χ : R + → [0, 1], which takes its value 1 on [0, 1] and vanishes outside [0, 2], then we split

P j (|v| p-1 v) = P j |v| p-1 vχ( v 2 λ 2 j ) + P j |v| p-1 v 1 -χ( v 2 λ 2 j ) =: I 21 + I 22 ,
where λ j is a sequence of numbers to be chosen later.

For small values of v, by Hölder inequality, Bernstein's inequality and the boundedness of Riesz transformation, we can do the following calculations

T 3 P j (|v| p-1 vχ)P j ( ∇ z)dx = T 3 P j |v| p-1 vχ ∇ • ∇ -1 P j ∇ z dx = T 3 ∇P j (|v| p-1 vχ)∇ -1 P j ( ∇ z)dx 2 -j(s-) ∇ s-z L ∞ x P j ∇(|v| p-1 vχ) L 1 2 -j(s-) ∇ s-z L ∞ x v p-1 ∇vχ L 1 x 2 -j(s-) ∇ s-z L ∞ x |v| p-1-p+1 2 χ L ∞ x ∇v L 2 |v| p+1 2 L 2 2 -j(s-) ∇ s-z L ∞ x λ p-3 2 j E(v)(t).
To guarantee the convergence of the series j≥2 2 -j(s-) λ p-3 2 j , we choose λ j = 2 aj with a ∈ (0, 2s- p-3 ). And in this case, we have

j>2 T 3 P j (|v| p-1 vχ)P j ( ∇ z)dx ∇ s-z L ∞ x E(v)(t) (2.3.10)
provided that the Sobolev regularity index s is positive.

For the case v is large, we first consider the case [p] is odd. By denoting α = p-[p], we do the following calculations

T 3 P j |v| p-1 v(1 -χ) × P j ( ∇ z)dx ≤ T 3 P j   j 1 ,j 2 ,...,j [p]-1 ,γ Π [p]-1 i=1 P j i v P γ v|v| α (1 -χ)   P j ∇ z dx ≤ P j ∇ s-z L ∞ x 2 j(1-(s-)) j 1 ,...,j [p]-1 ,γ Π [p]-1 i=1 P j i v P γ v|v| α (1 -χ) L 1 x ≤ M j + N j where M j := P j ∇ s-z L ∞ x 2 j(1-(s-)) j 1 ≥max (j 2 ,...,j [p]-1 ,γ) Π [p]-1 i=1 P j i v P γ v|v| α (1 -χ) L 1 x and N j := P j ∇ s-z L ∞ x 2 j(1-(s-)) γ≥max (j 1 ,...,j [p]-1 ) Π [p]-1 i=1 P j i v P γ v|v| α (1 -χ) L 1 x .
1. To control M j : observe that if j j 1 , we should have that M j = 0. And hence, we have j>2

M j ≤ j>2 P j ∇ s-z L ∞ x 2 j(1-(s-)) j 1 ≥j 2 ,...,j [p]-1 , j 1 ≥γ j 1 +[p]≥j Π [p]-1 i=1 P j i v P γ v|v| α (1 -χ) L 1 x ≤ j>2 P j ∇ s-z L ∞ x 2 j(1-(s-)) j 1 ≥j 2 ,...,j [p]-1 j 1 ≥γ j 1 +[p]≥j P j 1 v L p+1 2 x Π [p]-1 i=2 P j i v L p+1 [p]-2 x × P γ v|v| α (1 -χ) L p+1 1+α x ≤ j>2 P j ∇ s-z L ∞ x 2 j(1-(s-)) j 1 +[p]≥j P j 1 v L p+1 2 x v p-1 L p+1 x ≤ j>2 P j ∇ s-z L ∞ x 2 j(1-(s-)) j 1 +[p]≥j P j 1 v 2 p-1 L 2 P j 1 v p-3 p-1 L p+1 v p-1 L p+1 x j>2 P j ∇ s-z L ∞ x 2 j(1-(s-)) j 1 +[p]≥j 2 -j 1 2 p-1 P j 1 ∇v 2 p-2 L 2 v p-2 p-1 L p+1 x j>2 ∇ s-z L ∞ x 2 j(1-(s-)) 2 -j( 2 p-1 -) E(v),
where in the second last inequality, we have used the boundedness of Riesz transformation. Consequently, the last series converges provided

s > p -3 p -1 .
And in this case, we have

j>2 M j ∇ s-z L ∞ x E(v)(t). (2.3.11)
2. To control N j : the same observation as in controlling M j allows us to only need to deal with the case γ + [p] ≥ j. Then j>2

N j = j>2 P j ∇ s-z L ∞ x 2 j(1-(s-)) γ≥j 1 ,...,j [p]-1 γ+[p]≥j Π [p]-1 i=1 P j i v P γ v|v| α (1 -χ) L 1 x = j>2 P j ∇ s-z L ∞ x 2 j(1-(s-)) γ≥j 1 ,...,j [p]-1 γ+[p]≥j P γ v|v| α (1 -χ) L p+1 2+α Π [p]-1 i=1 P j i v L p+1 [p]-1 x ≤ j>2 ∇ s-z L ∞ x 2 j(1-(s-)) γ+[p]≥j P γ (v|v| α (1 -χ)) 2 p-1 L 2(p+1) p+1+2α x × P γ (v|v| α (1 -χ)) p-3 p-1 L p+1 1+α x v [p]-1 L p+1 x ≤ j>2 ∇ s-z L ∞ x 2 j(1-(s-)) γ+[p]≥j P γ (v|v| α (1 -χ)) 2 p-1 L 2(p+1) p+1+2α x v p- 2(1+α) p-1 L p+1 x j>2 ∇ s-z L ∞ x 2 j(1-(s-)) γ+[p]≥j 2 -γ 2 p-1 ∇P γ (v|v| α (1 -χ)) 2 p-1 L 2(p+1) p+1+2α x v p- 2(1+α) p-1 L p+1 x ,
where in the last inequality, we have used the boundedness of Riesz transformation. Since

∇P γ (v|v| α (1 -χ)) ∼ ∇v|v| α , we have that j>2 N j j>2 ∇ s-z L ∞ x 2 j(1-(s-)) γ+[p]≥j 2 -γ 2 p-1 ∇v × |v| α 2 p-1 L 2(p+1) p+1+2α x v p- 2(1+α) p-1 L p+1 x j>2 ∇ s-z L ∞ x 2 j(1-(s-)) γ+[p]≥j 2 -γ 2 p-1 ∇v 2 p-1 L 2 |v| α 2 p-1 L p+1 α x v p- 2(1+α) p-1 L p+1 x j>2 ∇ s-z L ∞ x 2 j(1-(s-)) γ+[p]≥j 2 -γ 2 p-1 E(v) j>2 ∇ s-z L ∞ x 2 j(1-(s-)) 2 (-j 2 p-1 )+ E(v)
Thus the last series converges provided that

s > p -3 p -1 .
And in this case we have

j>2 N j ∇ s-z L ∞ x E(v)(t).
(2.3.12)

For the case [p] is even, we should replace the expression P j (|v| p-1 v) = P j (Π

[p]-1 i=1 P j i vP γ (v|v| α )) in the case that [p] is odd by the expression P j (|v| p-1 v) = P j (Π [p]-2 i=1 P j i vP γ (v|v| 1+α )), and do the same calculations as above with some different Hölder indices. Now, in our situation, it is only left to prove the case α = 0, which is just the case p = 4. Indeed, this case is much easier to check.

By collecting the bounds (2.3.9), (2.3.10), (2.3.11) and (2.3.12), we can close the proof of Lemma 2.3.3.

As a consequence of Lemma 2.3.3, by the fact that ∂ t z(t) = ∇ z, we have

|I 2 | ≤ t 0 ∇ s-z L ∞ x (t ) p+1 1 + ∇ s-z L ∞ x (t ) E(v)(t )dt .
(2.3.13)

Finally, by collecting the estimates (2.3.6), (2.3.8) and (2.3.13) together, with a sufficiently small, and using Gronwall's lemma, one can finish the proof of Proposition 2.3.1

Deterministic analysis of NLW

Using energy and Strichartz estimates, we can establish the following lemma, which is the key deterministic step in constructing solutions for the problem (2.1.1).

Lemma 2.4.1. Let p ∈ (3, 5) and suppose that (v 0 , v 1 ) ∈ H 1 is bounded 1 , then for the wave equation

(∂ 2 t -∆)v + |v + f | p-1 (v + f ) = 0, v, ∂ t v | t=t 0 = (v 0 , v 1 ) ∈ H 1 (T 3 ), (2.4.1) 
there exists t * > 0, such that the equation (2.4.1) has a unique solution in C([t 0 , t 0 +

t * ]; H 1 x ) ∩ L 2p p-3 t (I; L 2p x ) × C([t 0 , t 0 + t * ]; L 2 x ) =: X, under the condition that f L 2p p-3 t ([t 0 ,t 0 +t * ];L 2p x ) ≤ Kt β * . (2.4.2)
where β is some positive number.

Remark 2.4.2. Thanks to the fact that p is strictly less than 5, we do not need to prove Lemma 2.4.1 via the stability theory for the energy-critical NLW as Pocovnicu did in [18].

The proof of Lemma 2.4.1 is a standard argument via fixed point argument. As we will play this argument in the forthcoming Lemma 2.4.4, we omit the proof here. Now we are going to construct solutions for the equation (2.1.1). By denoting v := u -f with f = S(t)(u 0 , u 1 ), then v satisfies the following zero-initial data problem

(∂ 2 t -∆)v + |v + f | p-1 (v + f ) = 0 v, ∂ t v | t=0 = (0, 0) (2.4.3)
The following deterministic result, allows us to draw an a priori energy bound of solution v to the equation (2.4.3) with f = S(t)(u ω 0 , u ω 1 ) from that of solution v N to the truncated equation (2.3.2).

Proposition 2.4.3. Let f N := P ≤N f denote the projection onto the first N -Fourier modes of the given function f and v N be the solution to the truncated wave equation (2.3.2). Given finite T > 0, assume the following conditions hold:

1. There exists K > 0 for some β > 0 such that

f L 2p p-3 t L 2p x (I×T 3 ) ≤ K|I| β (2.4.4)
for any compact interval I ⊂ [0, T ]. 2. For each dyadic N ≥ 1, the solution v N to (2.3.2) exists on [0, T ] and satisfies uniformly the following a priori energy bound

sup N sup t∈[0,T ] v N (t), ∂ t v N (t) H 1 (T 3 ) < C 0 (T ) < ∞. ( 2 

.4.5)

3. There holds for any dyadic N ≥ 1 and some α > 0

f -f N L 2p p-3 [0,T ] L 2p x ≤ C 1 (T )N -α . (2.4.6)
Then there exists a unique solution (v,

∂ t v) ∈ C([0, T ]; H 1 (T 3 )) to (2.4.3) satisfying sup t∈[0,T ] (v(t), ∂ t v(t)) H 1 (T 3 ) < 2C 0 (T ) < ∞. (2.4.7)
Proof. To prove Proposition 2.4.3, we need the following lemma, which states that we can solve simultaneously, on some time interval [t 0 , t 0 + t * ] for any t 0 ∈ [0, T ), the following two equations

(∂ 2 t -∆)v N + |v N + f N | p-1 (v N + f N ) = 0 v N , ∂ t v N | t=t 0 = v N (t 0 ), ∂ t v N (t 0 ) (2.4.8) and (∂ 2 t -∆)v + |f + v| p-1 (f + v) = 0 v, ∂ t v | t=t 0 = v(t 0 ), ∂ t v(t 0 ) .
(2.4.9)

Lemma 2.4.4. Assume there hold (2.4.4), (2.4.5), (2.4.6). Assume also there holds for any

t 0 ∈ [0, T ) sup t∈[0,t 0 ] (v, ∂ t v) H 1 < 2C 0 (T ) < ∞, (2.4.10)
where C 0 (T ) is the same constant as in the assumption (2.4.5). Then there exist a sufficiently large N 1 and a positive time t * = t * (C 0 , K, N 1 ) > 0 such that, for all N ≥ N 1 , on the time interval I = [t 0 , t 0 + t * ], we can solve simultaneously the equations (2.4.8) and (2.4.9). Moreover, if we denote these solutions by v n and v respectively, we have

t 5-p 2 * v p-1 L 2p p-3 I L 2p x + v N p-1 L 2p p-3 I L 2p x + f p-1 L 2p p-3 I L 2p x + f N p-1 L 2p p-3 I L 2p x 1, (2.4.11) for all N ≥ N 1 .
Proof of Lemma 2.4.4. We will use fixed point argument to prove this lemma. As this is standard, we only outline the main steps here and give precisely these estimates that we are going to use in the following of this section. Let X be the space as in Lemma 2.4.1. Define the maps L 1 on B(0, R 1 ) ⊂ X and L 2 on B(0, R 2 ) respectively as:

L 1 : u N ∈ B(0, R 1 ) -→ v N L 2 : u ∈ B(0, R 2 ) -→ v,
where v N and v solves respectively the equations

(∂ 2 t -∆)v N + |u N + f N | p-1 (u N + f N ) = 0 v N , ∂ t v N | t=t 0 = v N (t 0 ), ∂ t v N (t 0 ) and (∂ 2 t -∆)v + |f + u| p-1 (f + u) = 0 v, ∂ t v | t=t 0 = v(t 0 ), ∂ t v(t 0 ) .
By (2.4.4) and (2.4.6), we have

f N L 2p p-3 I L 2p x ≤ K|I| β + C 1 (T )N -α .
In order to show L 1 to be a contracting map onto B(0, R 1 ), by using energy and Strichartz estimates, we have for (v N , ∂ t v N ) ∈ B(0, R 1 ) and u, ũ ∈ B(0, R 1 ) the following estimates

L 1 v N X (v N (t 0 ), ∂ t v N (t 0 )) H 1 + t 5-p 2 * v N p L 2p p-3 t L 2p x + f N p L 2p p-3 t L 2p x (v N (t 0 ), ∂ t v N (t 0 )) H 1 + t 5-p 2 * v N p L 2p p-3 t L 2p x + K p t pβ * + N -pα ,
and

L 1 u -L 1 ũ X t 5-p 2 * u -ũ X u p-1 X + ũ p-1 X + f p-1 L 2p p-3 t L 2p x t 5-p 2 * u -ũ X u p-1 X + ũ p-1 X + K p-1 t (p-1)β * + N -(p-1)α .
Hence we conclude that, under the assumptions that

             R 1 = 2C 0 (T ), t 5-p 2 * R p-1 1 1, t 5-p 2
the solution map L 1 is a contraction map onto B(0, R 1 ). Doing similar calculations as above, we can see that under the conditions that

             R 1 = 2C 0 (T ), t 5-p 2 * R p-1 2 1, t 5-p 2 * K p t p * R 2 , t 5-p 2 * K p-1 t p-1 * 1,
(2.4.13) the solution map L 2 is also a contraction map onto B(0, R 2 ).

Thus there exists sufficiently large N 1 = N 1 (K, C 0 (T )) such that, for all N ≥ N 1 , by choosing t * = c(K + C 0 (T )) -γ with c and γ small positive constants, these two assumptions hold true at the same time. And hence we can solve these two equations on the same time interval [t 0 , t 0 + t * ]. By choosing t * even smaller if necessary, we can validate the estimate (2.4.11).

As a consequence of the proof of Lemma 2.4.4, we have for the difference w N = v -v N on the time interval I = [t 0 , t 0 + t * ]:

w N L ∞ I H 1 + w N L 2p p-3 I L 2p x ≤ C 2 w N (t 0 ) H 1 + 1 2 w N L 2p p-3 I L 2p x + 1 2 f -f N L 2p p-3 I L 2p
x .

(2.4.14) Thus we have

w N L ∞ I H 1 + w N L 2p p-3 I L 2p x ≤ C 3 (T ) w N (t 0 ) H 1 + N -α (2.4.15)
for all N ≥ N 1 .

With these estimates, we start to solve the problem (2.4.3) with t 0 = 0. As (v, ∂ t v) H 1 (0) = 0 < 2C 0 (T ), we can solve simultaneously the equations (2.4.8) and (2.4.9) on the time interval I 0 = [0, t * ], where t * is obtained in Lemma 2.4.4 and it depends only on C 0 (T ) and K. Furthermore, by (2.4.14) and (2.4.15), we have for all

N ≥ N 1 t 5-p 2 * v p-1 L 2p p-3 I 0 L 2p x + v N p-1 L 2p p-3 I 0 L 2p x + f p-1 L 2p p-3 I 0 L 2p x + f N p-1 L 2p p-3 I 0 L 2p x 1, (2.4.16)
and hence

w N L ∞ I 0 H 1 + w N L 2p p-3 I 0 L 2p x ≤ C 2 w N (0) H 1 + 1 2 w N L 2p p-3 I 0 L 2p x + 1 2 f -f N L 2p p-3 I 0 L 2p x .
(2.4.17) Thus we have

w N L ∞ I 0 H 1 + w N L 2p p-3 I 0 L 2p x ≤ C 3 (T )N -α (2.4.18)
Therefore, by (2.4.18) and (2.4.5), there exists

N 2 = N 2 (T ) ≥ N 1 such that (v, ∂ t v) L ∞ I 0 H 1 ≤ C 0 (T ) + T C 3 (T )N -α < 2C 0 (T ) (2.4.19) for all N ≥ N 2 .
This last bound (2.4.19) allows us to apply Lemma 2.4.4 again with t 0 = t * . And by denoting I 1 = [t * , 2t * ], we have

t 5-p 2 * v p-1 L 2p p-3 I 1 L 2p x + v N p-1 L 2p p-3 I 1 L 2p x + f p-1 L 2p p-3 I 1 L 2p x + f N p-1 L 2p p-3 I 1 L 2p x 1.
By the same argument as we did on I 0 , there exists 

N 3 = N 3 (T ) ≥ N 2 such that (v, ∂ t v) L ∞ I 1 H 1 ≤ C 0 (T ) + T C 3 (T )(C 3 (T ) + 1)N -α < 2C 0 (T ) ( 
N 0 = N 0 (T, t * ) ∈ N such that sup t∈[0,T ] (v, ∂ t v) H 1 ≤ C 0 (T ) + T (C 3 (T ) + 1) T t * N -α < 2C 0 (T )
for all N ≥ N 0 . Hence we have that the solution v to the equation (2.4.3) satisfies the energy bound (2.4.7) on [0, T ].

Almost sure global well-posedness

The following proposition can finish the proof of Theorem 2.1.2, see [8] and [18] for details. Proposition 2.5.1 (Almost sure global well-posedness). Given s ∈ ( p-3 p-1 , 1), for any data (u 0 , u 1 ) ∈ H s , let (u ω 0 , u ω 1 ) be the randomization defined in (2.2.5) under the assumption (2.2.3). Then given any T, ε > 0, there exists Ω T,ε ⊂ Ω such that 1. P(Ω c T,ε ) < ε, 2. For any ω ∈ Ω T,ε , there exists a unique solution u ω to the equation (2.1.1) with (u ω , ∂ t u ω )| t=0 = (u ω 0 , u ω 1 ) in the class:

S(t)(u ω 0 , u ω 1 ), ∂ t S(t)(u ω 0 , u ω 1 ) + C [0, T ]; H 1 (T 3 ) ⊂ C([0, T ]; H s (T 3 )).
3. For any ω ∈ Ω T,ε , the following probabilistic energy bound holds for the nonlinear part v ω of the solution u ω :

sup t∈[0,T ] (v ω , ∂ t v ω ) H 1 (T 3 ) < C T, ε, (u 0 , u 1 ) H s (T 3 ) .
Proof. We argue in the same way as in [17]. We first construct a set Ω 1 , over which the assumption (3) in Proposition 2.4.3 holds for all dyadic N . As usual, we denote z ω = S(t)(u ω 0 , u ω 1 ) and z ω N = P ≤N S(t)(u ω 0 , u ω 1 ). Taking α ∈ (0, s), we set

M = M (T, ε, (u 0 , u 1 ) H α ) ∼ T p-3 p log 1 ε 1 2 (u 0 , u 1 ) H α .
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We then denote

Ω 1 := Ω 1 (T, ε) := ω ∈ Ω : ∇ α z ω L 2p p-3 T L 2p x ≤ M .
By Lemma 2.2.6 (2) we have that

P(Ω c 1 ) < ε 3 . (2.5.1)
Moreover, for each ω ∈ Ω 1 , we have for any N ≥ 1

z ω -z ω N L 2p p-3 T L 2p x ≤ N -α/2 ∇ α z ω L 2p p-3 T L 2p x ≤ M N -α/2 . (2.5.2)
Next, we are going to construct another subset Ω 2 ⊂ Ω, over which the assumption (2) in Proposition 2.4.3 holds for all dyadic N . Given any dyadic N ≥ 1, apply Proposition 2.3.1, we can construct Ω 2 (N ) := ΩN,T,ε with

P(Ω c 2 ) < ε 3 (2.5.3) such that sup t∈[0,T ] (v ω N (t), ∂ t v ω N (t)) H 1 < C 0 T, ε, (u 0 , u 1 ) H s < ∞ (2.5.4) for each ω ∈ Ω 2 (N ).
The main point here is that the constant C 0 = C 0 (T, ε, (u 0 , u 1 ) H s ) can be chosen to be independent of N .

Lastly, fix K = (u 0 , u 1 ) H 0 and 2β = p-3 2p in the following. Let t * > 0 be a small number and be chosen later. By writing

[0, T ] = ∪ [T /t * ] k=0 I k with I k = [kt * , (k + 1)t * ] ∩ [0, T ], define Ω 3 by Ω 3 := [ T t * ] k=0 ω ∈ Ω : z ω L 2p p-3 I k L 2p x ≤ K|I k | β . (2.5.5) 
Then by Lemma 2.2.6 with |I k | ≤ t * , we have

P(Ω c 3 ) ≤ [T /t * ] k=0 P z ω L 2p p-3 I k L 2p x > K|I k | β ≤ T t * exp - c T 2 t 2β * .
By taking t * even smaller if necessary, we have

P(Ω c 3 ) ≤ T t * t * exp - c 2T 2 t p-3 2p * = T exp - c 2T 2 t β * .
Hence, by choosing t * = t * (T, ε) sufficiently small, we have

P(Ω c 3 ) < ε 3 . (2.5.6) Let Ω T,ε := Ω 1 ∩ Ω 2 (N 0 ) ∩ Ω 3
, where N 0 is to be chosen later. Then from (2.5.1), (2.5.3) and (2.5.6), we have that

P(Ω c T,ε ) < ε.
By choosing N 0 = N 0 (T, ε, (u 0 , u 1 ) H s ) 1, by Proposition 2.4.3, we have that there exists a solution v ω to the equation (2.4.3) on [0, T ] for each ω ∈ Ω T,ε . Hence for ω ∈ Ω T,ε , there exists a solution u ω = z ω + v ω to the equation (2.1.1) on [0, T ]. Moreover, there holds the estimate:

sup t∈[0,T ] (v ω (t), ∂ t v ω (t)) H 1 (T 3 ) < 2C 0 T, ε, (u 0 , u 1 ) H s (T 3 ) < ∞,
for each ω ∈ Ω Bibliography Chapter 3

Introduction

Fourth order nonlinear wave equation

∂ 2 t w+∆ 2 w+w+|w| p-1 w = 0, w : (t, x) ∈ R t ×R d -→ w(t, x) ∈ R, 1+ 4 d < p < 2 # , (3.1.1) with 2 # = +∞ if d ≤ 4 and 2 # = 2d d-4 if d ≥ 5
, was proved to be scattering (see [9] and [8]) in the energy space for d ≥ 2. In [12], it was shown to be global well-posed for rough data. In [11], the well-posedness and ill-posedness were also discussed in the space of low regularity. Then one should ask what happens for the equation (3.1.1) on compact manifolds with rough initial data? This question is not easy to answer: since one of the main tools they used is Strichartz estimates for Schrödinger operators on the whole Euclidean space, which is only true with a loss of derivative [1] in the case of compact manifolds. And hence we can not apply the strategy in [12] directly to attack this problem. But there are still some discussions in the case of compact manifolds, see e.g. [6] on two dimensional irrational torus under some Diophantine assumption.

In this chapter, we are going to address this problem, for quintic case on the three dimensional torus, by invoking tools from probability theory. For some special rough datum, by combining the probabilistic local theory (see e.g. [3]) with some invariant measure arguments, we can obtain global solutions. Precisely, we consider

∂ 2 t w + ∆ 2 w + w + w 5 = 0, (3.1.2) 
where w is a real valued function defined on R t × T 3

x . And we achieve Theorem 3.1.1. Let us fix some s ∈ (0, 1/2) and σ ∈ [1, 2). Let α j,0 , (α j,n , β j,n ) n∈Z 3 + j=0,1 is a sequence of independent real standard Gaussian random variables on some probability space (Ω, A, P). Consider (3.1.2) with initial data

w 0 (x, ω) = α 0,0 (ω) + n∈Z 3 + α 0,n (ω) √ 1+|n| 4 √ 2 cos(n • x) + β 0,n (ω) √ 1+|n| 4 √ 2 sin(n • x) , w 1 (x, ω) = α 1,0 (ω) + n∈Z 3 + α 1,n (ω) √ 2 cos(n • x) + β 1,n (ω) √ 2 sin(n • x) .
Then for almost every ω ∈ Ω, the problem (3.1.2) has a unique global solution w ω in the affine space

cos t √ 1 + ∆ 2 w 0 + sin t √ 1 + ∆ 2 √ 1 + ∆ 2 w 1 + C(R t ; H σ ),
and hence w ω ∈ C(R t ; H s ).

Remark 3.1.2. Via a scaling argument, we can see that if the index s < 1 2 , the equation (3.1.2) is in the super-critical regime. Thus we do obtain a global solution to the super-critical equation (3.1.2) in the above theorem.

We end this introductory section by describing the organization of this chapter: As the eigenvalues of the operator 1 + ∆ 2 are not these we commonly use to define Sobolev spaces, hence in Section 3.2, we introduce functional notations associated to 1 + ∆ 2 . Under these notations, we present formally the Hamiltonian formulation of the problem (3.1.2) complemented by some initial data in Section 3.3. In Section 3.4, we introduce a family of finite dimensional models, which we will use to approximate the problem (3.1.2) in Section 3.7. In this approximation procedure, two more ingredients: probabilistic estimates and local well-posedness theory are needed, which we will establish in Section 3.5 and Section 3.6 respectively.

Notations

Let T 3 = R 3 /(2πZ) 3 be equipped with the normalized Lebesgue measure dL(x) = 1 (2π) 3 dx. Denote by L 2 (T 3 ; dL) be the space of square integrable complex valued functions defined on T 3 . For simplicity, we will denote it by L 2 in the following. Then the sequence

1, √ 2 cos(n • x), √ 2 sin(n • x) n∈Z 3 + with Z 3 + := (n 1 , n 2 , n 3 ) ∈ Z 3 : n 1 ≥ 0 \ (0, n 2 , n 3 ) ∈ Z 3 : n 2 < 0 ∪ (0, 0, n 3 ) ∈ Z 3 : n 3 ≤ 0
is an ortho-normal basis of L 2 . For s ∈ R, we can define the set H s as the collection of distributions

f (x) = a + n∈Z 3 + a n √ 2 cos(n • x) + b n √ 2 sin(n • x), a, a n , b n ∈ C, (3.2.1) 
such that

|a| 2 + n∈Z 3 + [n] 2s |a n | 2 + |b n | 2 < ∞, (3.2.2) 
where

[n] = (1 + |n| 4 ) 1 4
. And for f ∈ H s given by the series (3.2.1), we define its H s -norm, denoted by f H s , as the square root of the finite quantity in (3.2.2). Next we define the complex linear operator D := (1 + ∆ 2 ) 1 4 by its action on the basis

D(1) = 1; D √ 2 cos(n•x) = [n] √ 2 cos(n•x), D √ 2 sin(n•x) = [n] √ 2 sin(n•x), n ∈ Z 3 + .
In a similar way, we can define D s for all s ∈ R. Then we can check, for f ∈ H s ,

T 3 D s f 2 dL(x) = |a| 2 + n∈Z 3 + [n] 2s |a n | 2 + |b n | 2 = f 2 H s ,
where we have used the notations

T 3 |u| 2 dL(x) = T 3 uūdL(x).
At the end of this section, we should remark that if f ∈ H s is real, then all its coefficients in (3.2.1) are real numbers.

Hamiltonian formulation of the beam equation

If we set u := w+iD -2 ∂ t w, then we have that the equation (3.1.2), complemented by (w, ∂ t w) | t=0 = (w 0 , w 1 ), is equivalent to the system

   i∂ t u = D 2 u + D -2 Re(u) 5 u(0) = u 0 := w 0 + iD -2 w 1 . (3.3.1)
For this system, we have the conserved quantity

H(u)(t) = 1 2 D 2 u 2 L 2 + 1 6 Re(u) 6 L 6 .
Now suppose u(t) is the solution to (3.3.1) given by

u(t) = a 0 + ib 0 + n∈Z 3 + a n + ib n √ 2 cos n • x + c n + id n √ 2 sin n • x ,
where a 0 , b 0 , a n , b n , c n and d n are real functions of time t. Then the Hamiltonian can be expressed as

H a 0 , b 0 ; (a n , b n ; c n , d n ) n∈Z 3 + = 1 2   a 2 0 + b 2 0 + n∈Z 3 + [n] 4 a 2 n + b 2 n + c 2 n + d 2 n   + 1 6 T 3 a 0 + n∈Z 3 + a n √ 2 cos n•x +c n √ 2 sin n•x 6 dL(x).
Then the equation (3.3.1) has its equivalent system

                         ȧ0 = ∂H ∂b 0 ḃ0 = - ∂H ∂a 0 ȧn = 1 [n] 2 ∂H ∂b n ; ḃn = - 1 [n] 2 ∂H ∂a n , n ∈ Z 3 + ċn = 1 [n] 2 ∂H ∂d n ; ḋn = - 1 [n] 2 ∂H ∂c n , n ∈ Z 3 + . (3.3.2)

The Approximating ODE

We consider the Cauchy problem (3.3.1), complemented with the following random initial data

u 0 (x, ω) = α 0 (ω) + n∈Z 3 + α n (ω) [n] 2 √ 2 cos n • x + β n (ω) [n] 2 √ 2 sin n • x where α 0 , (α n , β n ) n∈Z 3 +
is a sequence of independent complex Gaussian random variables, with its distribution N C (0, 2), on some proper probability space (Ω, A, P).

For N ≥ 1, we denote by Z N := {n ∈ Z 3 + : |n| ≤ N }. We also denote by

E N the #Z N + 1 dimensional space over C spanned by {1, √ 2 cos(n • x) n∈Z N , √ 2 sin(n • x) n∈Z N }. Fix χ ∈ C ∞ 0 (-1, 1) equal to 1 on (-1/2, 1/2). Define S N = χ 1+∆ 2 1+N 4 , which is precisely defined as S N   a 0 + n∈Z 3 + a n √ 2 cos(n • x) + b n √ 2 sin(n • x)   = a 0 + n∈Z 3 + χ 1 + |n| 4 1 + N 4 a n √ 2 cos(n • x) + b n √ 2 sin(n • x) .
By the proof of [1, Proposition 2.1] we have Lemma 3.4.1. For any given p ∈ [1, ∞], there exists C > 0 such that for every integer

N ≥ 1, S N L p →L p ≤ C. Moreover, for any f ∈ L p , S N (f ) → N →∞ f in L p .
In the following, we are going to approximate solutions to (3.3.1) via the solution of ODE

i∂ t u = D 2 u + S N D -2 S N Re(u) 5 u(0) = u 0 ∈ E N . (3.4.1) 
Let µ N be the measure on E N induced by the map

ω -→ α 0 (ω) + n∈Z N α n (ω) [n] 2 √ 2 cos n • x + β n (ω) [n] 2 √ 2 sin n • x . (3.4.2) 
We define the measure ρ N as the image measure, under the map (3.4.2), of the measure

exp - 1 6 S N (u 0 (x, ω)) 6 L 6 dP(ω).
Then ρ N is invariant under the flow associated to the equation (3.4.1).

Proposition 3.4.2. For any u 0 ∈ E N , the equation (3.4.1) is global well-posed, and hence its flow is globally defined in time. Moreover the measure ρ N is invariant under this flow.

Proof. We follow these lines in [2] and [4] to prove this proposition. We first have local existence and uniqueness for the ODE system (3.4.1) by Cauchy-Lipschitz theorem. Next, we are going to extend this local solution to be a global one via some conserved quantity. Indeed, the derivative (with respect to time t) of the expression

1 2 D 2 u 2 L 2 + 1 6 ReS N (u) 6 L 6
is 0, and hence it is a conserved quantity. Thus we have a uniform control of u in E N with respect to time and therefore we can extend the solution to (3.4.1) to be a global one. Let us now turn to the proof of the invariance of ρ N along the flow. Suppose u(t) is the solution to (3.4.1) given by

u(t) = a 0 + ib 0 + n∈Z N a n + ib n √ 2 cos n • x + c n + id n √ 2 sin n • x ,
where all these appearing coefficients a 0 , b 0 , a n , b n , c n and d n are real functions of time t. Then the Hamiltonian can be expressed as

H a 0 , b 0 ; (a n , b n ; c n , d n ) n∈Z N = 1 2 a 2 0 + b 2 0 + n∈Z N [n] 4 a 2 n + b 2 n + c 2 n + d 2 n + 1 6 T 3 a 0 + n∈Z N a n √ 2 cos n•x +c n √ 2 sin n•x 6 dL(x).
And the system (3.4.1) can be rewritten in coordinates

a 0 , b 0 , a n , b n , c n , d n as                          ȧ0 = ∂H ∂b 0 ḃ0 = - ∂H ∂a 0 ȧn = 1 [n] 2 ∂H ∂b n ; ḃn = - 1 [n] 2 ∂H ∂a n , n ∈ Z N ċn = 1 [n] 2 ∂H ∂d n ; ḋn = - 1 [n] 2 ∂H ∂c n , n ∈ Z N . (3.4.3) 
Thus we can apply Louville's theorem for divergence free vector fields to conclude that the measure

da 0 db 0 Π n∈Z N [n] 2 4 da n db n dc n dd n is invariant under the flow of (3.4.3). Observing that H a 0 , b 0 ; (a n , b n ; c n , d n ) n∈Z N
is also conserved under the flow of (3.4.3), we obtain that the measure

exp -H a 0 , b 0 ; (a n , b n ; c n , d n ) n∈Z N (2π) 1+2#Z N da 0 db 0 Π n∈Z N [n] 2 4 da n db n dc n dd n = exp - 1 6 T 3 a 0 + n∈Z N a n √ 2 cos n • x + c n √ 2 sin n • x 6 dL(x) × 1 √ 2π e -a 2 0 2 da 0 1 √ 2π e -b 2 0 2 db 0 Π n∈Z N [n] 2 √ 2π e -[n] 4 2 an da n × Π n∈Z N [n] 2 √ 2π e -[n] 4 2 bn db n [n] 2 √ 2π e -[n] 4 2 cn dc n [n] 2 √ 2π e -[n] 4 2 dn dd n
is also invariant under the flow of (3.4.3), which, coming back to E N , completes the proof of Proposition 3.4.2.

What we want to do is to approximate the solution to the equation (3.3.1) by these solutions to (3.4.1) via taking the limit N → ∞. So the next step is to exploit 'compactness' property concerning ρ N . First we define two measures, defined on infinite dimensional space. The measure µ is defined as the image measure on H s , of P, under the map

Ω ω -→ u 0 (x, ω) ∈ H s , (3.4.4) 
One can check that, if s < 1/2, then µ is a Borel probability measure on H s . We can also define one more measure ρ on H s by letting

ρ = exp - 1 6 Re(u) 6 L 6 x dµ(u),
which turns out to be the image measure, under the map (3.4.4), of

exp - 1 6 Re u 0 (•, ω) 6 L 6 x dP(ω).
This is a nontrivial measure thanks to the fact that the quantity u 0 (•, ω) 6

L 6
x is finite almost surely (see [3] for its proof). With these notations, we have Lemma 3.4.3. By setting

f (u) = exp - 1 6 Re(u) 6 L 6 x f N (u) = exp - 1 6 Re S N (u) 6 L 6 x we have f N -f L 1 (dµ) → N →∞ 0.
In particular

ρ N (E N ) → N →∞ ρ(H s ).
The proof of this lemma is exactly the same as that of [4,Lemma 2.3]. One should notice that the eigenfunctions here are uniformly L ∞ bounded, and hence we can expect more integrability. Indeed, to get this, one can follow these lines in [10].

Probabilistic estimates

We have the following standard Gaussian estimates (see [3][2] and [10]) Proposition 3.5.1. Let s ∈ (0, 1/2). There exist some constants C s , c s > 0 such that for all N, λ we have

ρ N u ∈ E N : u H s > λ ≤ µ N u ∈ E N : u H s > λ ≤ C s e -csλ 2 , and ρ u ∈ H s : u H s > λ ≤ µ u ∈ H s : u H s > λ ≤ C s e -csλ 2 .
We denote the free propagator for the equation (3.3.1) by e -itD 2 . Now let σ ∈ [1, 2) and let p > 5 be a large number. Then we can check that the pair (p, 30 7-2σ ) is not Schrödinger admissible in the 3 dimensional case. Thus we can not apply the Strichartz estimate in [1] to control e -itD 2 u L p (I;L 30 7-2σ )

. However, we can still have the following probabilistic Strichartz estimates. Proposition 3.5.2. Let I ⊂ R be a finite time interval. Then for p > 5 and σ ∈ [1, 2), there exist C, c > 0 such that for all N, λ > 0

µ N u ∈ E N : e -itD 2 u L p (I;L 30 7-2σ ) > λ ≤ C exp -c λ 2 |I| 2 p
, and

µ u ∈ H s : e -itD 2 u L p (I;L 30 7-2σ ) > λ ≤ C exp -c λ 2 |I| 2 p
.

The proof of this proposition is very standard as in e.g. [5] and [7]. So we omit it here.

Local well-posedness

The problem (3.1.2) can be reduced to the Duhamel equation

u(t) = e -itD 2 u 0 + i t 0 e -i(t-t )D 2 D -2 Reu(t ) 5 dt . (3.6.1) 
Then v(t) = u(t) -e -itD 2 u 0 solves the equation (at least formally)

   i∂ t v = D 2 v + D -2 Re e -itD 2 u 0 + v 5 , v(0) = 0. (3.6.2)
The next statement says that not only we can solve (3.6.2) in some small time interval, but also its solution is of high regularity. Proposition 3.6.1. Let s ∈ (0, 1/2) and σ ∈ [1, 2). Suppose p is a very big number and I 0 = [-τ, τ ] for some small τ > 0. Assume also that u 0 H s ≤ Λ, e -itD 2 u 0

L p I 0 L 30 7-2σ x ≤ Λ and e -i(t+τ )D 2 u 0 L p I 0 L 30 7-2σ x
≤ Λ for some big Λ if there is no specification. If we take τ = cΛ -2γ for some 0 < c 1 and γ 1, then there is a unique solution v to (3.6.2) in C(I 0 ; H σ ). And hence the equation (3.3.1) has a solution of the form u(t) = e -itD 2 u 0 + v(t).

Moreover, we have

v C(I 0 ;H σ ) ≤ CΛ -γ ; u C(I 0 ;H s ) ≤ CΛ;
e -itD 2 u(τ )

L p I 0 L 30 7-2σ ≤ CΛ,
where C is a constant independent of Λ, τ and c.

Proof. We play here an argument of fixed point. First suppose that B(0, R) is a closed ball centered at the origin with radius R (to be selected) in H s . For v ∈ B(0, R), define the solution map

M : B(0, R) v -→ M (v) = i t 0 e -i(t-t )D 2 D -2 Re e -it D 2 u 0 + v(t ) 5 dt .
Then for v ∈ B(0, R), we can do calculations

M (v) C(I 0 ;H σ ) ≤ τ 0 ∇ -2+σ Re e -it D 2 u 0 + v(t ) 5 L 2 x dt ≤ τ 0 e -it D 2 u 0 + v(t ) 5 L 6 7-2σ x dt ≤ τ 0 e -it D 2 u 0 + v(t ) 5 L 30 7-2σ x dt τ 1-5 p e -itD 2 u 0 5 L p I 0 L 30 7-2σ + τ v C(I 0 ;H σ ) τ 1-5 p Λ 5 + τ R 5 ,
where in the second last inequality we have used first the Minkowski inequality and then the Sobolev embedding H σ ⊂ L 30 7-2σ . And for v, ṽ ∈ B(0, R), we have by the same calculations

M (v) -M (ṽ) C(I 0 ;H σ ) v -ṽ C(I 0 ;H σ ) τ 1-4 p e -itD 2 u 0 4 L p I 0 L 30 7-2σ + τ 4 p v 4 C(I 0 ;H σ ) + ṽ 4 C(I 0 ;H σ ) v -ṽ C(I 0 ;H σ ) τ 1-4 p (Λ 4 + 2τ 4 p R 4 ).
From these two estimates, if we take R = Λ -γ and τ = cΛ -2γ for c 1 and γ 1, then we have that the map M is a contraction map onto B(0, R). In other words, we can solve the equation (3.6.2) uniquely in H σ up to time τ . And its solution v satisfies on

I 0 v C(I 0 ;H σ ) ≤ Λ -γ .
Therefore, the solution u(t) to the equation (3.3.1) satisfies

u(τ ) H s = e -iτ D 2 u 0 + v(τ ) H s ≤ u 0 H s + v C(I 0 ;H σ ) ≤ Λ + Λ -γ ≤ CΛ
for some universal C. We also have the desired estimates for the mixed space-time norm of u(τ ) by splitting u(τ ) into the linear and nonlinear part, and by invoking the assumption in the statement of Proposition 3.6.1.

Thanks to Lemma 3.4.1, we can play the above argument onto the equation (3.4.1), which results in Proposition 3.6.2. Let s ∈ (0, 1/2) and σ ∈ [1, 2). Suppose p is a very big number and I 0 = [-τ, τ ] for some small τ > 0. Assume also for all N ≥ 1 that S N (u 0 ) H s ≤ Λ, e -itD 2 S N (u 0 )

L p I 0 L 30 7-2σ x ≤ Λ and e -i(t+τ )D 2 S N (u 0 ) L p I 0 L 30 7-2σ x
≤ Λ for some big Λ. If we take τ = cΛ -2γ for some 0 < c 1 and γ 1, then there is a unique solution v N in C(I 0 ; H σ ) to the equation 

   i∂ t v N = D 2 v N + D -2 Re e -itD 2 S N (u 0 ) + v N 5 , v N (0) = 0.
u N (t) = e -itD 2 S N (u 0 ) + v N (t).
Moreover, we have

v N C(I 0 ;H σ ) ≤ CΛ -γ ; u N C(I 0 ;H s ) ≤ CΛ; e -itD 2 u N (τ ) L p I 0 L 30 7-2σ ≤ CΛ,
where C is a constant independent of Λ, τ, N and c.

Global well-posedness

Let Λ be as in Proposition 3.6.1 and Proposition 3.6.2. In the following of this section, we will take Λ = λ for some big λ. Under such a selection of Λ, let τ be given as in Proposition 3.6.1 and Proposition 3. 

ρ N E N \Ω T,λ N ≤ µ N E N \Ω T,λ N ≤ T τ k=-T τ µ N E N \Ω k,T,λ N ≤ 2 T τ Ce -cλ 2 ≤ C T λ 2γ e -cλ 2 ,
which is very small if λ is big.

Let us denote by Φ N (t) : E N → E N , t ∈ R the flow associated to the equation (3.4.1), the existence of which is guaranteed by Proposition 3.4.2. Then by Proposition 3.6.2, we have that

Φ N (τ ) Ω T,λ N ⊂ Ω T,Cλ ,
where C is as in Proposition 3.6.2. Therefore, if we denote

Σ T,λ N := T τ k=-T τ Φ N (-kτ ) Ω T,λ N , then Σ T,λ
N is also of large probability. To see this, we do the following calculations

ρ N E N \Σ T,λ N ≤ T τ k=-T τ ρ N E N \Φ N (-kτ ) Ω T,λ N ≤ T τ k=-T τ ρ N E N \Ω T,λ N ≤ C T λ 4γ e -cλ 2 ,
which is also very small if λ is large. Here in the second inequality we have used the fact that ρ N is invariant under the flow Φ N (t), and in the last inequality we have used the fact that Ω T,λ N is of large probability. For the same T, λ, we define the cylindrical sets

ΣT,λ N = u ∈ H s : S N (u) ∈ Σ T,λ N .
Let Σ T,λ be the upper limit set of the sequence ΣT,λ N , that is

Σ T,λ = lim sup N →∞ ΣT,λ N = ∞ N =1 ∞ N 1 =N ΣT,λ N 1 .
Then we would have

ρ lim sup N →∞ ΣT,λ N = lim N →∞ ρ ∞ N 1 =N ΣT,λ N 1 ≥ lim sup N →∞ ρ ΣT,λ N .
Recall that f, f N is defined as in the statement of Lemma 3.4.3. Then by the definition of ρ, we have

ρ ΣT,λ N = ΣT,λ N f (u)dµ(u).
On the other hand, by the definition of ρ N and that of Σ T,λ N , ΣT,λ N , we have

ρ N Σ T,λ N = Σ T,λ N f N (u)dµ N (u) = ΣT,λ N f N (u)dµ(u).
Thus from these two points, we conclude

ρ ΣT,λ N -ρ N Σ T,λ N ≤ ΣT,λ N f N (u) -f (u) dµ(u) ≤ H s f N (u) -f (u) dµ(u),
which tends to 0 as N tends to infinity by Lemma 3.4.3. And hence we have

lim N →∞ ρ ΣT,λ N -ρ N Σ T,λ N = 0.
From here we get that lim

N →∞ ρ ΣT,λ N ≥ lim sup N →∞ ρ N Σ T,λ N ≥ lim sup N →∞ ρ N (E N ) -C T e -c T λ 2 = ρ(H s ) -C T e -c T λ 2 ,
where in the last inequality we used once again Lemma 3.4.3.

In order to solve the equation (3.3.1) globally in time, we need some more probabilistic estimates. For k ∈ -T τ , -T τ + 1, . . . , T τ -1, T τ , we first set

Θ k,T,λ = u ∈ H s : e -itD 2 u L p (I 0 ;L 30 7-2σ x ) ≤ λ .
Then take the intersection over k

Θ T,λ = T τ k=-T τ Θ k,T,λ .
Thus by the definitions of ρ and µ, we have that

ρ H s \Θ T,λ ≤ µ H s \Θ T,λ
which is controlled by, by Proposition 3.5.1 and Proposition 3.5.2,

C T λ γ e -c T λ 2 .
Therefore the set Proof. Without loss of generality, we assume that u 0 ∈ Σ T,λ ∩ Θ T,λ for some large λ. Then by the definition of S N , we have that e -itD 2 S N (u 0 ) → N →∞ e -itD 2 u 0 in C([-T, T ]; H s ). This makes sense the linear part of the solution u to the equation (3.3.1). Thus to prove the existence of u(t), it suffices to prove the existence of the nonlinear part v(t) := u(t) -e itD 2 u 0 in the space C([-T, T ]; H σ ). We observe that v(t), t ∈ [-τ, τ ] is just the local solution obtained in Proposition 3.6.1. Then we want to extend this solution to the time interval [-T, T ]. We first approximate v(t) by v N (t) in the space C([-τ, τ ]; H σ ). Proof of Lemma 3.7.2. From the equations satisfied by v(t) and v N (t), we get that the difference w N (t) := v N -v solves the equation

Σ T := λ dyadic Σ T,λ ∩ Θ T,λ
   i∂ t w N = D 2 w N + D -2 [Re e -itD 2 u 0 + v ] 5 -S N [Re e -itD 2 S N u 0 + v N ] 5
w N (0) = 0.

(3.7.2) Then by Duhamel formula, we have that for t ∈ [-τ, τ ]

w N (t) = i t 0 e -i(t-t )D 2 D -2 [Re e -it D 2 u 0 + v(t ) ] 5 -S N [Re e -it D 2 S N u 0 + v N (t ) ] 5 dt = i t 0 e -i(t-t )D 2 D -2 [Re e -it D 2 u 0 + v(t ) ] 5 -S N [Re e -it D 2 S N u 0 + v N (t ) ] 5 dt +(1 -S N )i t 0 e -i(t-t )D 2 [Re e -it D 2 u 0 + v(t ) ] 5 dt =: I + II.
To control the term II, we should have noticed that

II = (1 -S N )v(t)
which tends to 0 in C(I 0 ; H σ ) as N tends to infinity thanks to Lemma 3.4.1 and the uniform boundedness of v C(I 0 ;H σ ) . To control the first term I, we do the same calculations as we did in the proof of Proposition 3.6.1 and we obtain

I C(I 0 ;H σ ) τ 0 e -it D 2 (1 -S N )u 0 + v N (t ) -v(t ) L 30 7-2σ × e -it D 2 u 0 4 L 30 7-2σ + e -it D 2 S N u 0 4 L 30 7-2σ + v N 4 C(I 0 ;H σ ) + v 4 C(I 0 ;H σ ) dt .
On one hand, by the assumption that u 0 ∈ Σ T,λ ∩ Θ T,λ , we have that

e -it D 2 S N u 0 L p I 0 L 30 7-2σ x ≤ λ, ∀N ≥ 1; e -it D 2 u 0 L p I 0 L 30 7-2σ x ≤ λ.
On the other hand, from proofs of Proposition 3.6.1 Proposition 3.6.2, we see that

v N C(I 0 ;H σ ) , v C(I 0 ;H σ )
can be bounded by some common constant. Thus by applying Minkowski inequality to the upper bound of I C(I 0 ;H σ ) and using the above two points, we arrive at (1).

I C(I 0 ;H σ ) o(1) v N -v C(I 0 ;H σ ) + o N →∞
From this last bound, and the previous discussions on II, we conclude that (1).

w N C(I 0 ;H σ ) ≤ o(1) w N C(I 0 ;H σ ) + o N →∞
By taking c even smaller if necessary, we have that w N C(I 0 ;H σ ) → N →∞ 0, which finishes the proof of Lemma 3.7.2.

We continue the proof of Proposition 3.7.1. We argue by induction. By Lemma 3.7.2, we can assume that v exists on the time interval [-kτ, kτ ] for some k ∈ 1, . . . , T τ -1 , and there validates 

v N -v C([-kτ,kτ ]) → N →∞ 0. ( 3 
v N -v C(I k ;H σ ) → N →∞ 0, I k := [(k -1)τ, (k + 1)τ ]. (3.7.4) 
As long as we show (3.7.4), we can also show the same result holds on time interval

[-(k + 1)τ, -(k -1)τ ].
Hence in the following we focus on the proof of (3.7.4). To do this, we first need to solve, on the time interval [-τ, τ ], the equation

   i∂ t v = D 2 v + D -2
Re(e -itD 2 u(kτ ) + v) v(0) = 0.

(3.7.5)

Let M denote the solution map (defined as that in the proof of Proposition 3.6.1).

We do the same calculations as we did in the proof of Proposition 3.6.1, we arrive at the following two estimates

M (v) C(I 0 ;H σ ) τ v 5 C(I 0 ;H σ ) + τ 1-5 p e -itD 2 u(kτ ) 5 L p (I 0 ;L 30 7-2σ ) , (3.7.6) 
and properly. To do this, there are some natural estimates, like Strichartz estimates on compact manifold in [1]. However, we can not apply these estimates directly, since we can not find some p > 5 such that the pair (p, Then by Minkowski inequality and Sobolev embedding H σ ⊂ L 30 7-2σ , we have e -itD 2 u(kτ ) -e -itD 2 u N (kτ ) (1).

M (ṽ) -M (v) C(I 0 ;H σ ) ṽ -v C(I 0 ;H σ ) τ 1-4 p τ 4 p ṽ C(I 0 ;H σ ) + v C(I 0 ;H σ ) + e -itD
L p (I 0 ;L 30 7-2σ ) ≤ e -i(t+τ )D 2 u((k -1)τ ) -e -i(t+τ )D 2 u N ((k -1)τ ) L p (I 0 ;L 30 7-2σ ) + o N →∞
By iterating the above process inductively, and at last we can arrive at e -itD 2 u(kτ ) -e -itD 2 u N (kτ )

L p (I 0 ;L 30 7-2σ ) ≤ e -i(t+kτ )D 2 u 0 -e -i(t+kτ )D 2 S N u 0 L p (I 0 ;L 30 7-2σ ) + T τ o N →∞ (1)
.

Then an application of Lemma 3.4.1 completes the proof.

Furthermore, we can specially choose µ such that the flow Φ(t) generated by the equation (4.1.2) is continuous in the following sense: for any ε > 0, T > 0, there exists η > 0 such that

µ ⊗ µ (V 0 , V 1 ) ∈ H s × H s : Φ(t)(V 0 ) -Φ(t)(V 1 ) X T > ε V 0 -V 1 H s ≤ η and (V 0 , V 1 ) ∈ B Λ × B Λ ≤ g(ε, η),
where

X T := C([0, T ]; H s ) ∩ L 2p p-3 ([0, T ]; L 2p ) × C [0, T ]; H s-1 , B Λ := V ∈ H s : V H s ≤ Λ , and g(ε, η) satisfies lim η→0 g(ε, η) = 0, ∀ε > 0.
Remark 4.1.2. The probability measure µ depends heavily on the data (u 0 , u 1 ) ∈ H s . For (u 0 , u 1 ) with all these Fourier coefficients non-vanishing, the measure µ is of positive measure on any non-empty subset of H s . One can refer to [1] and [2] for more discussions.

Remark 4.1.3. Recently, Chenmin Sun and the author in [12], by following the ideas used by Oh-Pocovnicu [10] solving energy-critical wave equation, improved the regularity s > 2(p-3) p-1 required to solve the equation (4.1.1) to s > p-3 p-1 , but we do not have the explicit probabilistic dependence on the initial data there. Theorem 4.1.1 says that we can construct a probability on proper function space (e.g. H s ×H s-1 in our case) and show that the wave equation (4.1.1) is globally wellposed almost surely and moreover the flow generated by the equation is conditionally continuous. Interestingly, as pointed out by Burq-Tzvetkov, it is also possible to show that these solutions are limits, in certain topology, of smooth solutions obtained by properly regularized initial data. In fact we have Proposition 4.1.4. Given (v 0 , v 1 ) ∈ Σ, where Σ is the invariant set in Theorem 4.1.1. We truncate (v 0,n , v 1,n ) = χ(2 -2|n| |∆|)v 0 , χ(2 -2|n| |∆|)v 1 with χ a radial bump function equal to 1 in the unit interval [0, 1] and vanishing outside [0, 2], then almost surely, the solutions v n (t) to the equation (4.1.2) issued from (v 0,n , v 1,n ) converge, as n tends to infinity, to the solution v(t) with initial data (v 0 , v 1 ) in the space C(R, H s ). Consequently the solution v(t) to (4.1.2) can be almost surely approximated by certain smooth solutions to the equation (4.1.2) in C(R, H s ).

Indeed, to prove this statement, we only need to apply Burq-Tzvetkov's strategy (see [2] or [13]) to the equation satisfied by

w n := v -v n (∂ 2 t -∆)w n + |v| p-1 v -|v n | p-1 v n = 0 w n (0), ∂ t w n (0) = (1 -χ(2 -|n| ∆))v 0 , (1 -χ(2 -|n| ∆))v 1 ,
and we can establish that µ v 0 , v 

p ∈ [3, 5), fix s ∈ 2(p-3) p-1 , 3 2 -2 p-1 .
Let (u 0 , u 1 ) ∈ H s (T 3 ) be arbitrarily given. Then for any ε > 0, we can find a probability measure µ on H s (T 3 ) depending on (u 0 , u 1 ), and a subset Σ ⊂ H s (T 3 ) of full µ-measure, such that for any (v 0 , v 1 ) ∈ Σ with its corresponding solution v(t) to (4.1.2), there exists a sequence v n (t) ∞ n=1 of smooth functions, both in space and in time, satisfying

(∂ 2 t -∆)v n + |v n | p-1 v n = 0 v n (0), ∂ t v n (0) = v 0,n , v 1,n with (v 0,n , v 1,n ) -(v 0 , v 1 ) H s (T 3 ) → n→+∞ 0, but v n (t) -Φ(t)(v 0 , v 1 ) L ∞ ([0,ε];H s (T 3 )) → n→+∞ +∞,
where Φ(t) is the flow associated to (4.1.2) as in Theorem 4.1.1.

We should note that this result does not contradict the probabilistic continuity on the initial datum stated in Theorem 4.1.1, which says that the set of the datum, initiated at which the equation (4.1.2) does continuously depend on the data, is of µ-probability 1 (conditionally), and which does not exclude the possibility that there may exist discontinuity on the data. This remark convinces us that there actually not only exists discontinuity on the initial data, but also the event, consisting of the data initiated at which such discontinuity occurs, is of µ-probability 1.

We also have a deterministic analogue to results as in Remark 4.1.9.

Remark 4.1.10. Given p ∈ [3, 5), let s ∈ 2(p-3) p-1 , 3 2 -2 p-1 . Assume (v 0 , v 1 ) ∈ H s (T 3 ) is given. Then, for any ε > 0, there exists a sequence v n (t) ∞ n=1 of smooth functions such that (∂ 2 t -∆)v n + |v n | p-1 v n = 0 v n (0), ∂ t v n (0) = v 0,n , v 1,n with (v 0,n , v 1,n ) -(v 0 , v 1 ) H s (T 3 ) → n→+∞ 0, but v n (t) L ∞ ([0,ε];H s (T 3 )) → n→+∞ +∞. independence of α n for different n ∈ Z 3 + and E (a 2 n ) = 0, we can calculate 1 E u ω q L q x = Ω u ω q L q dP = Ω T 3 2β 1 +•••+2β i =2k q! (2β 1 )! • • • (2β i )! Π i j=1 u n j α n j 2β j dxdP ≤ T 3 β 1 •••+β i =k (2k)! (2β 1 )! • • • (2β i )! E Π i j=1 |u n j α n j | 2β j dx ≤ C |u n | 2 k = C u q L 2 .
By Hölder inequality, we have

E u ω L q ≤ E u ω q L q 1/q ≤ c u L 2 .
Next for the case 2k < q < 2k + 2, by the interpolation of L p -spaces and Hölder inequality with θ 1 + θ 2 = 1 and θ 1 2k + θ 2 2k+2 = 1 q , we have

E u ω L q ≤ E u ω θ 1 L 2k u ω θ 2 L 2k+2 ≤ E u ω L 2k θ 1 E u ω L 2k+2 θ 2 ≤ c u L 2 ,
which completes the proof by using Markov-Chebychev's inequality.

As a corollary of the the proof of Theorem 4.2.1, we have Corollary 4.2.2. If (u n ) ∈ 2 , then for any q > 2, almost surely

u ω := u n α n (ω)e in•x ∈ L q x .
Now that u ω lies in L q x for almost all ω ∈ Ω, one would like to ask: is there exactly some element ω ∈ Ω such that u ω is not in L q x ? The forthcoming Proposition 4.2.3 answers this question: there does exist some ω such that u ω / ∈ L q x . Moreover, the set of these elements is also dense in some proper topology. Proposition 4.2.3. 2 For any q > 2, there exists a dense G δ type subset G ⊂ L 2 such that for any

v = n∈Z 3 v n e in•x ∈ G, the series v = n∈Z 3 v n e in•x is NOT lying in the space L q . Proof. -Step 1. Given u = n∈Z 3 u n e in•x ∈ L 2 , for any ε > 0, we can choose N large enough such that u -v 0 L 2 < ε 2 ,
1. Indeed, we here should have used the truncation to finite summations and arrived at the estimates indipendent of this truncation (see the proof of Kahane inequality in [5]).

2. Actually, this is an exercise, left by N. Burq when he gave the M2 class 'Super-critical nonlinear wave equations' in the winter of the year 2012.

where v 0 := n∈Z 3 ;|n|≤N u n e in•x . In the following, we are going to work in local coordinates. Denote χ ∈ C ∞ c (R 3 ) such that χ is radial and equal to 1 when |x| ≤ 1/2 and is 0 when |x| > 1. We also denote χ(x) = χ(|x|). Set w k (x) = k 3/2 χ k(x -x 0 ) . Then we have i+3) and k p = 2 p+20 , where p = 1, 2, . . . . Therefore supp w kp ∩ supp w k p is a null set if

w k L p ∼ k 3( 1 2 -1 p ) , and supp w k ⊂ (x 1 , x 2 , x 3 ) ∈ R 3 | x 0,i -1 k ≤ x i ≤ x 0,i + 1 k , where x 0,i is the i-th component of x 0 ∈ R 3 . Consider a sequence of functions w kp (x) = k 3/2 p χ k p (x -x p ) with x p = p i=1 2 -(i+3) , p i=1 2 -(i+3) , p i=1 2 -(
p = p . Now for ε p = 2 -δp √ ε with δ < 3 q 1 2 -1 q , we set v := v 0 + ∞ p=1 ε p w kp (x -x p ).
Then thanks to the disjointness of the supports of functions w kp for different p, we have

u -v 2 L 2 ≤ u -v 0 2 L 2 + ∞ p=1 ε 2 p ≤ Cε, but ∞ p=1 ε p w kp (x -x p ) q L q ∼ ∞ p=1 ε q p k 3( 1 2 -1 q ) p ∼ ∞ p=1 2 p -qδ+3 1 2 -1 q ε q 2 = +∞.
-Step 2. Let N ∈ N + be an integer. We define Π ≤N be the projection operator as

Π ≤N n∈Z 3
a n e in•x :=

n∈Z 3 ;|n|≤N a n e in•x .
Then Π N is continuous from L 2 to L q . Therefore, for any big enough integer M , the set defined by 

G M := {v ∈ L 2 : Π M v L q > log log M } is an open set in L 2 . Thus the set G := lim sup G M is a G δ set.

The case of linear wave equation

In this section, by using the ideas used in the last section, we are going to present some results similar to Proposition 4.2.3 for linear wave equation

∂ 2 t -∆ u = 0, (u(0), ∂ t u(0)) = (u 0 , 0), u 0 ∈ L 2 (T 3 ). (4.3.1)
It is known that the equation is well-posed in L 2 , but it is ill-posed in the L p space, as can be shown by contradicting the continuous dependence on the initial data.

Theorem 4.3.1. For any q > 2, there exists a G δ type set G dense in L 2 , such that the equation (4.3.2) is not well-posed in C([0, T ]; L q ) for any T > 0, no matter how small it is.

Remark 4.3.2. For the proof, we only list the main steps. And we omit the construction of such a set, which is similar to the series case.

Proof. Let ε p , w kp be the same as in the proof of Proposition 4.2.3, and set v 0 := Π ≤N u 0 + M p=1 w kp (x-x p ) and hence u 0 -v 0 L 2 ≤ cε. The essential idea underlying the proof is that the time is so short that it does not destroy the property that the supports of w kp do not intersect with each other for different k p 's. Precisely, let us consider the Cauchy problem

∂ 2 t -∆ v = 0, v(0), ∂ t v(0) = (v 0 , 0). (4.3.2) Now set t M = 2 -(M +10
) , then by the finite speed of propagation of waves, we have

u(t M , •)-v(t M , •) L 2 ≤ cos(t √ -∆)Π >N u 0 L 2 + M p=1 cos(t √ -∆)ε p w kp (• -x p ) L 2 ≤ cε, and 
M p=1 cos(t √ -∆)ε p w kp (• -x p ) q L q ∼ M 1 2 p -qδ+3 1 2 -1 q ε q 2 .
Therefore, as M tends to ∞, we have

u(t M , •) -v(t M , •) L q ≥ M 1 2 p -qδ+3 1 2 -1 q ε q 2 → ∞.
This finishes the proof.

The case of cubic wave equation

In this section, we are going to show the equation (4.1.1) is ill-posed for the cubic case with generic initial data in the super-critical regime. We first recall the illposedness result for the cubic wave equation with zero initial data by Burq-Tzvetkov 

(t) of C ∞ (T 3 ) functions such that (∂ 2 t -∆)u n + u 3 n = 0 with u n (0) H s (T 3 ) ≤ C log(n) -δ → n→∞ 0 but u n (t n ) H s (T 3 ) ≥ C log(n) δ → n→∞ ∞.
Thanks to the finite speed of propagation of wave operator, we can work in the local coordinates. And the basic idea in the proof of this proposition is to compare the solutions to the equation

(∂ 2 t -∆)u n + u 3 n = 0 (u n (0), ∂ t u n (0)) = (f 1,n (x), 0) (4.4.1)
with these to the ODEs

v n + v 3 n = 0 (v n (0), v n (0)) = (f 1,n (x), 0). (4.4.2)
Under a special choice of the initial data f 1,n = κ n n 3/2-s φ(nx) with φ a nontrivial bump function on R 3 , the solutions to the ODEs (4.4.2) have an explicit representation v n (t, x) = κ n n 3/2-s V (tk n n 3/2-s φ(nx)), where V solves the ODE

V + V 3 = 0, V (0) = 1, V (0) = 0. (4.4.3) 
(Although the solution to the ODE (4.4.3) can be represented explicitly with the help of Jacobian elliptic functions, we do not need to, since what we need is just the periodicity property of the solution). Then the following two basic facts will complete the proof.

u n and v n are very close to each other with respect to the semi-classical energy E n (u) defined by

E n (u) := n -(1-s) ∂ t u 2 L 2 + ∇u 2 L 2 + n -(2-s) ∂ t u 2 H 1 + ∇u 2 H 1
and consequently u n -v n H s ≤ Cn -ε ; (It is this fact that requires the regularity s should be smaller than 1/2.)

-Due to the periodicity of the solution to the ODE (4.4.3), by the explicit representation, we can do some calculations, which lead to v n H s → ∞ as n → ∞. (It is this fact that requires s > 0.)

Generally, we shall consider the cubic wave equation with general datum

(u 0 , u 1 ) ∈ C ∞ (T 3 ) × C ∞ (T 3 ) (∂ 2 t -∆)u + u 3 = 0 u, ∂ t u | t=0 = (u 0 , u 1 ) ∈ C ∞ (T 3 ) × C ∞ (T 3 ). (4.4.4)
Our goal is to show that this equation is ill-posed in H s for s ∈]0, 1/2[. we obtain

w n (t, •) H k (T 3 ) ≤ t n sup 0≤τ ≤t ∂ t w n (τ, •) H k (T 3 ) , k = 0, 1, 2. (4.5.5)
In particular

w n (t, •) L 2 (T 3 ) ≤ t n n q 2 e n w n (t) ,
where e n (w n (t)) := sup 0≤τ ≤t E n (w n (τ )). And hence we have

w n (t, •) H 1 (T 3 ) ≤ Cn q 2 e n (w n (t)), w n (t, •) H 2 (T 3 ) ≤ Cn q 2 +1 e n (w n (t)).
Thanks to the Gagliardo-Nirenberg inequality, we have

w n (t, •) L ∞ ≤ C w n (t, •) 1/2 H 2 (T 3 ) w n (t, •) 1/2 H 1 (T 3 ) ≤ Cn q 2 +1/2 e n (w n (t)), (4.5.6) 
Using (4.5.5), (4.5.6) and the L ∞ -bound for v n , together with Hölder inequality and the inequality |a

+ b| p-1 (a + b) -|a| p-1 a ≤ C(|a| p-1 + |b| p-1
)|a| for some positive constant C, we obtain

n -q 2 G(t, •) L 2 (T 3 ) ≤ Ct n (κ n n q 1 ) p-1 e n (w n (t)) + (n q 2 +1/2 ) p-1 e n (w n (t)) p , n -(q 2 +1) G(t, •) H 1 (T 3 ) ≤ Ct n (κ n n q 1 ) p-1 2 t n (κ n n q 1 ) p-1 e n (w n (t)) + κ n n q 1 (n q 2 +1/2 ) p-2 e n (w n (t)) p
+Ct n (κ n n q 1 ) p-1 e n (w n (t)) + (n q 2 +1/2 ) p-1 e n (w n (t)) p Therefore, coming back to (4.5.4), we get

d dt E n (w n (t)) ≤ C κ n n q 1 +1/2-q 2 t n (κ n n q 1 ) p-1 2 
3 +t n (κ n n q 1 ) p-1 e n (w n (t)) + (n q 2 +1/2 ) p-1 e n (w n (t)) p +t n (κ n n q 1 ) p-1 2 t n (κ n n q 1 ) p-1 e n (w n (t)) + κ n n q 1 (n q 2 +1/2 ) p-2 e n (w n (t)) p .

Notice that, by the assumption on p and s, the index q 2 = 5-p 2 3 2 -2 p-1 -s is strictly positive. Hence we can suppose that e n (w n (t)) ≤ 1 which holds for small values of t thanks to the smallness of e n (w n (0)) = C(u 0 , u 1 )n -q 2 n -ε for any positive ε that is sufficiently close to zero, and the continuity of e n (w n (t)) with respect to time. We then get

d dt E n (w n (t)) ≤ Cκ n n q 1 +1/2-q 2 t n (κ n n q 1 ) p-1 2 3 + C t n (κ n n q 1 ) p-1 2 2 f (n)e n (w n (t)) where f (n) := κ n n q 1 p-1 2 + log(n) -δ 2 κ n n q 1 -p-1 2 (n q 2 +1/2 ) p-1 + κ n n q 1 1-p-1 2 
(n q 2 +1/2 ) p-2 . Thanks to the special choices of q 1 , q 2 and s being in super-critical regime, we have the bound f (n) ≤ (κ n n q 1 ) p-1 2 . Now going through a Gronwall argument for t ∈ [0, t n ], we obtain

e n (w n (t)) ≤ κ n n q 1 +1/2-q 2 (log n) 3δ 2 (log n) 2δ 2 (κ n n q 1 ) p-1 2 × e (log n) 2δ 2 (κnn q 1 ) p-1 2 t ≤ κ n n q 1 +1/2-q 2 (κ n n q 1 ) p-1 2 log(n) δ 2 e log(n) 3δ ≤ κ 1-p-1 2 n
n q 1 +1/2-q 2 -q 1 p-1 2 log(n) δ 2 e log(n) 3δ 2 ≤ log(n) δ 1 p-3 2 +δ 2 e log(n) 3δ 2 n s-( 32 -2 p-1 ) .

Thus for δ 2 sufficiently small, there exists some ε > 0 such that E n (w n (t)) ≤ Cn -ε .

In particular, one has for t ∈ [0, t n ] ∂ t w n (t, •) L 2 (T 3 ) + w n (t, •) H 1 (T 3 ) ≤ n q 2 -= Cn w n (t, •) L 2 (T 3 ) ≤ Ct n sup 0≤τ ≤t ∂ t w n (τ, •) L 2 (T 3 ) ≤ C log(n) δ 2 +δ 1 p-1 2 n q 1 (3-p)-5-p 2(p-1) -ε .

Interpolating between this last inequality with the inequality (4.5.7) yields

w n (t, •) H s (T 3 ) ≤ C log(n) (1-s)(δ 2 +δ 1 p-1 2 ) n g(s,p) n -ε , (4.5.8) 
where g(s, p) := -p-1 2 s 2 + 7p-15 4 s-(p-2)(3p-7)

2(p-1)

= -1 2 (p-1)s-2(p-2) s-( 3 2 -2 p-1 ) is non-positive for s ∈ (0, 3 2 -2 p-1 ) and 3 ≤ p < 5. Thus, we finally get u n (t n , •) -v n (t n , •) H s (T 3 ) ≤ Cn -ε , for some even smaller > 0. This finishes the proof of Lemma 4.5.4. Now using Lemma 4.5.4, we have

u n (t n , •) H s (T 3 ) ≥ v n (t n , •) H s (T 3 ) -Cn -ε .
Thus to close the proof, thanks to the arbitrary choice of small parameters δ 1 and δ 2 (we choose these parameters such that sδ 2 > δ 1 ), it suffices to show

v n (t n , •) H s (T 3 ) ≥ Cκ n n q 1 n -(3/2-s) t n (κ n n q 1 ) p-1 2 s = C[log(n)] -δ 1 +sδ 2 .
Indeed, this is just a consequence of the following lemma. 

Instantaneous ill-posedness for the wave equation

We devote this last section to the proof of Theorem 4.1.7, which indicates that the equation (4.1.1) is actually ill-posed instantaneously for generic initial data. Proposition 4.6.1. Fix s ∈ (0, 3 2 -2 p-1 ). Suppose we are given a data (u 0 , u 1 ) ∈ C ∞ (T 3 ) × C ∞ (T 3 ). Then for any ε > 0, there exists some data (ũ 0 , ũ1 ) ∈ H s \ C ∞ × C ∞ with (u 0 , u 1 ) -(ũ 0 , ũ1 ) H s (T 3 ) ≤ ε, such that the equation (4.1.1), satisfying in addition the finite speed of propagation, has no solution in L ∞ ([-T, T ]; H s ), T > 0 with initial data (ũ 0 , ũ1 ).

Proof. As before, we work in local coordinates. Let ψ n (x) be a sequence of nontrivial bump function such that ψ n is supported around the point x n = x n,1 , x n := (x n,2 , x n,3 ) = 0 with |x n,1 | → 0 to be specified. As a consequence, ψ n is supported in the set

x ∈ R 3 : |x 1 -x n,1 | + |x | ≤ C n .
Now let v n be the solution of the ODE (4.5.2) with the initial data ψ n . Notice that for any fixed n, we have that ψ n H s ∼ log(n) -δ 1 . This allows us to consider a sub-sequence {n k } such that n k ≥ 2 k and ψ n k H s ≤ 2 -k-1 ε. Let t n k be as in Proposition 4.5.1. Owing to our assumption s < 3 2 -2 p-1 , the quantity 1 2n k -t n k can be positive for all these k very big, for instance, we can assume k ≥ k 0 . Then for k ≥ k 0 , we can define the sets

K n k = x ∈ R 3 : |x 1 -x n k ,1 | + |x | ≤ C 2n k -Ct n k , x n k ,1 = 1 k 2
which are non-empty and are disjoint with each other for two different k's (bigger than k 0 ). And then by Lemma 4.5.5 and Proposition 4.5.1, the solution u n k to the equation (4.5.1) with initial data (u 0 + ψ n k , u 1 ) satisfy

u n k (t n k , •) H s (Kn k ) ≥ log(n k ) α
for some positive α, as in Proposition 4.5.1. Now consider the initial value problem

       (∂ 2 t -∆)u ∞ + |u ∞ | p-1 u ∞ = 0 u ∞,0 (0), u ∞,1 (0) = u 0 + k≥k 0 ψ n k , u 1
Thus by the disjointness of K n , the finite speed of propagation and the Sobolev-Slobodeckij characterization of fractal Sobolev space on bounded domain (see [9]), we have for these t n k > 0 with n k sufficiently large

u ∞ (t n k , •) H s ≥ u ∞ (t n k , •) H s (Kn k ) ∼ u n k (t n k , •) H s (Kn k ) ≥ log(n k ) α ,
and hence lim sup k→∞ u ∞ (t n k , •) H s = +∞.

To finish the proof of Proposition 4.6.1, we should check that (u 0 + k≥k 0 ψ n k , u 1 ) ∈ H s \ C ∞ × C ∞ , which is just a consequence of the selection of ψ k 's and the fact that u 0 + k≥k 0 ψ k C 0 = ∞. Thus ũ0 , ũ1 := (u 0 + k≥k 0 ψ n k , u 1 ) is just the desired element in the statement of Proposition 4.6.1.

5

Preservation of Log-Sobolev inequalities under some Hamiltonian flows

In this chapter, we proved that the probability measure induced by the BBM flow satisfies a logarithmic Sobolev type inequality. Precisely, suppose the initial data u 0 induces a Gaussian measure on H s with s ∈ [1 -γ 2 , 2] for γ ∈ ( 3 2 , 2], then the induced measure ν under BBM flow satisfies

E ν f 2 log f 2 E ν [f 2 ] ≤ C ε E ν |∇f | 2+ε

Introduction

Logarithmic Sobolev inequality was first introduced by Gross [4] for Gaussian measures on finite dimensional spaces. And it turned out to be an effective tool for analysis on manifolds. For infinite dimensional manifolds, thanks to its dimensionless character, logarithmic Sobolev inequalities seem to be similar to these classical ones. Indeed, logarithmic Sobolev inequalities were proved for infinite dimensional spaces equipped with Gaussian measures [3], for some infinite dimensional space equipped with certain weighted Gaussian measures [7], and even for some measures induced by certain transformations [11] (These inequalities were also established on path spaces [6] and loop groups [5]). In this chapter, I establish logarithmic Sobolev-type inequalities for measures induced by some flows associated to BBM equation.

Consider the generalized BBM model equation

∂ t u + ∂ t |∂ x | γ u + ∂ x (u + u 2 ) = 0 u(0) = u 0 u : (t, x) ∈ R × T -→ u(t, x) ∈ R. (5.1.1) 
One can find in Subsection 5.4.1 that the equation (5.1.1) is quasi-global well-posed. Precisely, for fixed γ ∈ 3 2 , 2 and s ∈ 1 -γ 2 , 1 , if u 0 ∈ H s and T ∈ (0, ∞), then the equation (5.1.1) has a solution in C([0, T ]; H s ). We denote by Φ(t) the flow associated to the equation (5.1.1). Now suppose the initial data u 0 is given by

u 0 = φ s (ω, x) = n =0
g n (ω) |n| s+γ/2 e inx , where g n = g -n and (g n ) n>0 is a sequence of independent standard complex Gaussian random variables on some proper probability space (Ω, A, P). Then the map ω -→ u 0 induces a Gaussian measure on H s , which we denote by µ s . The classical theory asserts that µ s satisfies a logarithmic Sobolev inequality (see [11] for a proof in the case of Wiener space)

E µs f 2 log f 2 E µs [f 2 ] ≤ CE µs [|∇f | 2 H s+γ/2 ]
for any f ∈ W 1,2 (H s , R), where C is a universal constant. In this chapter, we consider if or not the measure ν := Φ(t) * µ s satisfies inequalities of this type. And our main result is Theorem 5.1.1. Let γ ∈ 3 2 , 2 and s ≥ 1 -γ 2 . Assume also t ∈ [0, T ] is fixed and T := Φ(t). Then there exists some constant C, such that the induced measure ν = T * µ s satisfies for nice functions defined on H s

E ν f 2 log f 2 E ν [f 2 ] ≤ CE µs |∇f • T | 2 H s+γ/2 1 + • 2 H s .
Furthermore, by invoking Fernique's theorem, we can get, for ε > 0, there exists C ε > 0 such that ν satisfies a log-Sobolev type inequality with a little loss of integrability

E ν f 2 log f 2 E ν [f 2 ] ≤ C ε E ν [|∇f | 2+ε H s+γ/2 ] 2 2+ε
.

where f ∈ W 1,2+ε (H s , R).

We end this introduction section by describing the organization of this chapter: In Section 5.2 and Section 5.3, we proved that the logarithmic Sobolev inequality is preserved under the flows generated by certain ODEs in finite and infinite dimensional spaces respectively. That is, the induced measures still satisfy logarithmic Sobolev inequalities both in finite and infinite dimensional cases.Then in Subsection 5.4.1 we proved the existence of the dynamics of BBM equation, and in Subsection 5.4.2 we prove Theorem 5.1.1.

The flow generated by vector fields in finite dimensional case

Consider the Gaussian space R d , dµ(x) = 

E ν f 2 log f 2 E ν [f 2 ] = E µ (f • T ) 2 log (f • T ) 2 E µ [(f • T ) 2 ] ≤ 2E µ |∇(f • T )| 2 ≤ 2E µ |∇f • T | 2 • |∇T | 2 ≤ 2cE ν [|∇f | 2 ],
provided that, for some constant c > 0, one has |∇T | ≤ c, µ-a.s.

(5.2.2)

Now we are in a position to claim Proposition 5.2.1. Suppose T : R d → R d is an invertible diffeomorphism and it satisfies the assumption (5.2.2). Then for the induced probability measure ν = T * µ there holds, for some other constant C,

E ν f 2 log f 2 E ν [f 2 ] ≤ CE ν |∇f | 2 .
Consider its Cameron-Martin space H defined by H = u ∈ W : u exists and

1 0 |u (τ )| 2 dτ < ∞ .
We supply H an inner product (u, v) = 1 0 u (τ )v (τ )dτ for u, v ∈ H. We select an orthonormal basis {e 1 , . . . , e k , . . .} in H, such that all these e k are from a subspace H 0 of H H 0 = h ∈ H : h is a signed measure .

For example we can take this orthonormal basis to be the Faber-Schauder system. Then the linear continuous functional x -→ (x, e k ) for any k defined on H can be extended as a continuous one defined on W . We also supply a Gaussian or Wiener measure µ on W via the formula W e i(x,h) dµ(x) = e -1 2 |h| 2 H ∀h ∈ H.

For any n ≥ 1, denote by V n the linear envelope of {e 1 , e 2 , . . . , e n }. Suppose a function f (x) = F (x 1 , x 2 , . . . , x k , . . . ) 1 , where x i = (e i , x) for all i ≥ 1, we define its restriction to V n by f n (x) = F (x 1 , x 2 , . . . , x n ).

An equivalent way to define this restriction is via the Hermite polynomial. For any k ≥ 0, the Hermite polynomial H k (y) on R is defined by H k (y) = (-1) k √ k! e y 2 /2 d k dy k e -y 2 /2 , y ∈ R.

Then we define the Hermite polynomials on W by

H k (x) = Π i H k i (e i , x) ,
where k = (k 1 , . . . , k n , . . . ), k i ≥ 0, |k| = k i < ∞. Then {H k (x)} k∈N N is an orthonormal basis of L 2 (W, R). Denote by C n = {k = (k 1 , . . . , k n , . . . )|k q = 0, ∀q > n}, then the restriction of f to V n can be also expressed as f n (x) = k∈Cn c k H k (x). Now for any φ ∈ L 2 (W, µ), we define its H-derivative ∇ h φ for any h ∈ H provided that there makes sense the limit expression

∇ h φ(x) = d dε | ε=0 φ(x + εh) =: ∇φ, h .
Thus we can see that ∇φ(x) is actually in H * = H, that is, it is an H-valued random variable. In general, if X is another Banach space, then ∇φ(x) is indeed an element in L(H, X), the space of linear operators from H to X. Now we define the Sobolev spaces W 1,p on W as the collection of these functions f on W such that f ∈ L p (H s ) and also their derivatives ∇f H ∈ L p (W, dµ).

Some kind of LSI

In the following, we are going to consider the special random initial data

u 0 = φ s (ω, x) = n =0
g n (ω) |n| s+γ/2 e inx , where g n = g -n and (g n ) n>0 is a sequence of independent standard complex Gauss random variables on a given probability space (Ω, A, P). Then one can show that the map ω -→ φ s (ω, x) induces a Gaussian measure µ s on H s , and the space H s+γ/2 is the Cameron-Martin space of the Gaussian probability space (H s , µ s ). In this case, the triple (H s+γ/2 , H s , µ s ) is called an abstract Wiener space. Furthermore, one can also define the H-derivative as in the case of classical Wiener space. Under these notions, we actually have an infinite dimensional log-Sobolev type inequality with some constant c (5.4.13) for any f ∈ W 1,2 (H s , R), the space of real functionals on H s , which is L 2 (µ s )integrable together with its H s+ γ 2 -derivatives.

E µs f 2 log f 2 E µs [f 2 ] ≤ cE µs |∇f | 2 H s+γ/2 ,
As u 0 = φ s (ω, x) lies in H s almost surely, the flow Φ(t) is defined almost surely everywhere. In order to study the preservation of log-Sobolev type inequality, we are going to study the linearization, in the direction v 0 , of the solution Φ(t)(u 0 ) as follows 3 .

For abbreviation, we denote the solution Φ(t)(u 0 ) := S(t)(u 0 ) + K(t) u 0 . Then (DΦ(t)) u 0 (v 0 ) = S(t)(v 0 ) + (DK(t)) u 0 (v 0 ), where

(DK(t)) u 0 (v 0 ) = -2 t 0 S(t -τ ) (1 + |∂ x | γ ) -1 ∂ x (Φ(τ )(u 0 )v(τ )) dτ,
where v(t) solves the linearized equation 

∂ t v + ∂ t |∂ x | γ v + ∂ x v + 2∂ x (Φ(t)(u 0 )v) = 0 v| t=0 = v 0 . ( 5 
E ν f 2 log f 2 E ν [f 2 ] = E µ (f • T ) 2 log (f • T ) 2 E µ [(f • T ) 2 ] ≤ cE µ |∇(f • T )| 2 H s+γ/2 ≤ cE µ |∇f • T | 2 H s+γ/2 1 + • 2 H s
. Now thanks to Fernique's theorem, we arrive at the following log-Sobolev type inequality, with a little loss of integrability Proposition 5.4.9. Let γ ∈ (3/2, 2] and s ≥ 1 -γ/2. Then for any ε > 0, there exists C ε > 0 such that the induced measure ν = Φ(t) * µ s satisfies a log-Sobolev type inequality 

E ν f 2 log f 2 E ν [f 2 ] ≤ C ε E ν |∇f | 2+ε
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  Define an index s(p) of the exponent p appearing in the equation (1.1.1) by

( 1 . 3 . 12 )

 1312 Although the definition of the sets G N and H N is global in time, the property of these two sets we used in the proof of Proposition 1.3.4 is essentially localized on the time interval [0, T ]. So by the time translation invariance of the free wave propagation operator, we also have that both of these complements G c N and H c N (translated onto another localized time interval) are of low probability. Combining this observation with the energy estimate (1.3.3), by the deterministic theory i.e. Proposition 1.3.1, we can solve the equation (1.3.12) in the space

1 2 (

 2 p-1)(p+1) . On the other hand, the factor f (N ) can be arbitrarily small either due to the smallness of c in(1.4.6) or by taking N sufficiently large. And hence, by the induction principle, we get the desired energy estimate(1.4.3). This completes the proof of Proposition 1.4.3.Proof of Proposition 1.4.2. Denote by v

( 1 )

 1 N (t) the solution v N (t) obtained in Proposition 1.4.3, we are going to solve the following Cauchy problem

( 1 .

 1 4.8) Although the set G N is globally defined in time, the property we used in the proof of Proposition 1.4.3 is essentially localized on the time interval t ∈ [0, T ]. So by the translation invariance of the free wave propagator, the complement G c N (translated on to some other localized time interval) is of low probability. Combining this observation with the energy estimate (1.4.3), by the deterministic theory i.e. Proposition 1.4.1, we can solve the equation (1.4.8) in the space X := C([0, T ]; H 1 ) where T is just as the in (1.4.6). Furthermore we have for all time t ∈ [T, 2T ] the energy estimate E(v

( 3 . 6 . 3 )

 363 And hence the equation (3.4.1) has a solution of the form

  6.2. Denote I 0 = [-τ, τ ]. Assume T is any given positive number. Without loss of generality, we assume T > τ . Let us denote by z be the integer part of z for positive z. Next we define, for any k ∈ -T τ , -T τ + 1, . . . , T τ -1, T τ , the set Ω k,T,λ N = u ∈ E N : e -i(t+kτ )D 2 u L p (I 0 ρ N measure. Indeed, by Proposition 3.5.1 and Proposition 3.5.2, we have

  is of full ρ measure. At last we say that, for u 0 ∈ Σ T , we can solve the equation (3.3.1) on the whole time interval [-T, T ]. Proposition 3.7.1. Let s ∈ (0, 1/2), σ ∈ [1, 2) and T > 0 be given. Let Σ T be constructed as above. Then for any u 0 ∈ Σ T , the equation (3.3.1) has a unique solution u(t) of the form u(t) ∈ e -itD 2 u 0 + C([-T, T ]; H σ ), and hence u ∈ C([-T, T ]; H s ).

Lemma 3 . 7 . 2 .

 372 On the time interval I 0 = [-τ, τ ], we have the convergence relation v N -v C(I 0 ;H σ ) → N →∞ 0. (3.7.1)

2 u(kτ ) 4 L 7 )

 47 Thus to solve the equation (3.7.6) on I 0 is reduced to control the quantity e -itD 2 u(kτ )

30 7 -

 7 2σ ) is Schrödinger admissible. Fortunately, we have the following statement, which allows us to solve the equation (3.7.5) on the time interval [-τ, τ ].

Lemma 3 . 7 . 3 .

 373 Let k, τ, p and σ be as above. For u 0 ∈ Σ T,λ ∩ Θ T,λ , let u and u N be the solution, up to time kτ , to (3.3.1) and (3.4.1) respectively. Then there holds e -itD 2 u(kτ ) -e -itD 2 u N (kτ )L p (I 0 ;L 30 7-2σ ) = o N →∞ (1).With the help of Lemma 3.7.3, we can use fixed point argument to obtain the existence of the solution v to (3.7.6) on I 0 . Indeed, by the construction of the set Σ T,λ , we have e -itD 2 u N (kτ ) L p (I 0 ;L 30 7-2σ ) ≤ λ. And hence by Lemma 3.7.3 we have e -itD 2 u(kτ ) L p (I 0 ;L 30 7-2σ ) ≤ λ + o N →∞ (1), which allows us to solve the equation (3.7.5) on the time interval I 0 , by taking c even smaller if necessary. Now that we can solve (3.7.5) on I 0 , we can use the equation satisfied by w N := v N -v to achieve (3.7.4). Therefore, to finish the proof of Proposition 3.7.1, it remains to prove Lemma 3.7.3. Proof of Lemma 3.7.3. At time kτ , the values u(kτ ) and u N (kτ ) of solutions u(t) and u N (t) can be expressed as u(kτ ) = e -iτ D 2 u (k -1)τ + v(kτ ), u N (kτ ) = e -iτ D 2 u N (k -1)τ + v N (kτ ).

[ 1 ,

 1 Appendix A]. Precisely Proposition 4.4.1. Let us fix s ∈]0, 1/2[. Then there exist δ > 0, a sequence (t n ) of positive numbers tending to zero and a sequence u n

2 p- 1 )

 21 -ε . (4.5.7) Next we have for t ∈ [0, t n ],

Lemma 4 . 5 . 5 (

 455 [1]). Consider a smooth non constant 2π periodic function V and two functions φ, ψ ∈ C ∞ c (R d ) such that φψ is not identically vanishing. Then there exists C > 0 such that for any λ > 1 and any s > 0ψ(•)V λφ(•) H s (R d ) ≥ λ s C -C.
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 222 -x 2 /2 dx , then there holds the classical logarithmic Sobolev inequality f dµ dµ ≤ 2 |∇f | 2 dµ. (5.2.1) Now suppose T : R d → R d is an invertible diffeomorphism, then it induces a new probability measure ν = T * µ on R d . By denoting E µ [•] = •dµ, and applying (5.2.1) with f • T , we have
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  3.2 est juste une combinaison d'argument diagonale avec la proposition suivante. Proposition 0.3.3. Soient p, s les même dans Théorème 0.3.2. Supposons (u 0

  où C est une constante universelle et ∇ est l'opérateur de H s+γ/2 -dérivé. Nous montrons que la mesure induite ν := Φ(t) * Soient s, γ et T comme dans ce qui précède. Fixons t ∈ [0, T ] et notons T := Φ(t). Alors il existe une constante c > 0 tel que la mesure ν := T * µ s satisfait

	µ s satisfait une
	inégalité de type log-Sobolev avec an peu de perte de l'intégrabilité.
	Théorème 0.4.1.

  2.4.20) for all N ≥ N 3 . Notice that the bound (2.4.20) together with (2.4.19) allows us to use Lemma 2.4.4 again. Iterate the above procedure, we can extend the solution v onto the whole interval [0, T ]. Moreover, there exists

  Remark 4.1.8. This theorem states that the set of datum initiated at which the equation(4.1.1) is ill-posed in L ∞ ([0, T ], H s ), T > 0 is dense in H s .Indeed what we expect is that it (at least) has a G δ -structure, but due to technical difficulties, we cannot prove this now.

	Remark 4.1.9. By combining the Theorem 4.1.1 and Theorem 4.1.7, we obtain
	the following 'almost-sure non-continuous dependence on the initial data': Given

1 ∈ Σ : w n C(R,H s ) → n→∞ 0 = 1.

  Moreover, by the result in Step 1, we can see that G is dense in L 2 . This finishes the proof of 4.2.3.

  .4.14) Proposition 5.4.8. Let γ, s and u 0 as in Theorem 5.4.6, then for any v 0 ∈ H s+γ/2 , we have that v(t) is also in H s+γ/2 for any t in the life span of u(t). Furthermore, we have boundv(t) H s+γ/2 ≤ C(t) v 0 H s+γ/2 .Now we are going to show that, as an operator parametrized by u 0 , (DK(t)) is bounded from H s+γ/2 into itself.DK(t) u 0 v 0 H s+γ/2 ≤ -τ )ϕ(∂ x ) Φ(τ )(u 0 )v(τ ) dτ ) H s v(τ ) H s+1-γ/2 dτ.Under the condition that γ > 3/2 and hence s -γ/2 + 1 ≤ γ/2 + s, we haveDK(t) u 0 H s+γ/2 →H s+γ/2 ≤ C u 0 H s . (5.4.15) By denoting T := Φ(t) : u → Φ(t)(u) for fixed t, now we are in a position to do the calculations

		t		
		0	S(t H s+γ/2
		t		
	≤	0	ϕ(∂ x ) Φ(τ )(u 0 )v(τ )	H s+1-γ/2+γ-1 dτ
		t		
	≤		Φ(τ )(u 0	
		0		

3. Here we follow these lines in

[10]

.

this expression is unique due to the fact that {e 1 , e 2 , . . .} is a Schauder basis

Here s is just from the lemma, which is not the s in our main assumption on the initial data

Remerciements

Part II

Approximation of the Probabilistic Dynamics and Its Instability 4

Generic ill-posedness for wave equation of power type on 3D torus

In this chapter, we prove that the equation (∂ 2 t -∆)u + |u| p-1 u = 0, 3 ≤ p < 5 u(0), ∂ t u(0) = (u 0 , u 1 ) ∈ H s (T 3 ) × H s-1 (T 3 ) =: H s (T 3 ) with s < 3 2 -2 p-1 is everywhere ill-posed. This work also indicates that, only properly regularizing the initial data can we smoothly approximate the solutions constructed in [2] and [13]. 

Abstract

Introduction

In this chapter we consider the semi-linear wave equation (∂ 2 t -∆)u + |u| p-1 u = 0, 3 ≤ p < 5 u(0), ∂ t u(0) = (u 0 , u 1 ) ∈ H s (T 3 ) × H s-1 (T 3 ) =: H s (T 3 ) (4.1.1)

and we are interested in the ill-posedness issues in the sense of Hadamard for the super-critical case 0 < s < 3 2 -2 p-1 . We obtained that the set of data, initiated at which the equation (4.1.1) is ill-posed, is dense in H s (T 3 ). To explain this clearly, we first review some development for the Cauchy problem for the equation ( 4

.1.1).

There is an extensive literature, in the past thirty years, dedicated to the wellposedness of the equation (4.1.1) in the (sub-)critical case s ≥ 3 2 -2 p-1 . The first rigorous proof of the local existence and uniqueness for the (sub-)critical equation (4.1.1) was obtained by Lindblad-Sogge in [8] by using Strichartz estimates. After this, there arose a lot of works on the scattering theory and the growth of Sobolev norms of solutions to the equation (4.1.1). However, the Cauchy problem is still quite open in the super-critical case. To this end, Lebeau [7] first proved, based on the local-in-time asymptotic analysis of geometric optics, that the solutions to (4.1.1) with p any odd integer not smaller than 7 are unstable. And then, Christ-Colliander-Tao via a small dispersion analysis in [4] and Burq-Tzvetkov via a direct ODE approximation proved in [1, Appendix A] that the equation (4.1.1) with p = 3 is not well-posed by contradicting the continuous dependence on the initial data around the origin (u 0 , u 1 ) = (0, 0) ∈ H s (T 3 ). For more information on other approaches to obtain ill-posedness results for other dispersive equations, see [6] and [3]. Now that the super-critical equation is ill-posed, in what sense can we have the well-posedness theory similar to that of the (sub-)critical equation? In order to answer this question, by introducing the concept "probabilistic Hadamard wellposedness", Burq-Tzvetkov proved the local well-posedness result in [1] and the global well-posedness result in [2] to the problem (4.1.1) for the cubic case with the regularity s ≥ 0. These results are generalized in [13] to the general power 3 ≤ p < 5 with the restricted regularity 2(p-3) p-1 < s < 3 2 -2 p-1 . Precisely, these results can be summarized as

p-1 , 1 . Let (u 0 , u 1 ) ∈ H s (T 3 ) be given. Then there exist a probability measure µ on H s (T 3 ) depending on (u 0 , u 1 ), and a subset Σ ⊂ H s (T 3 ) of full µ-measure such that for any (v 0 , v 1 ) ∈ Σ, there is a unique global solution v to the nonlinear equation
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Now a natural question is the stability of this regularizing process. At a first sight, it might be difficult to define this stability, so we ask this question in a slightly different manner: what happens when we are using a different regularizing process? The purpose of this work is to address this problem, and indeed, via the ODE approach used in [1, Appendix A], we obtain Theorem 4.1.5. Given p ∈ [3,5), fix s ∈ 0, 3 2 -2 p-1 . Let (u 0 , u 1 ) ∈ H s (T 3 ) be given. Then for any ε > 0, there exists a sequence

The proof of Theorem 4.1.5 is just a combination of diagonal argument with the following proposition, so we omit its proof here. Proposition 4.1.6. Let p, s be the same as in Theorem 4.1.5. Assume

) is arbitrarily given and u(t) is its corresponding smooth solution to the equation (4.1.1). Then for any ε > 0, there exists a sequence u n (t) ∞ n=1 of smooth functions both in space and in time, such that

In particular, we have that 

) arbitrarily close to (u 0 , u 1 ) in H s , such that the equation (4.1.1), complemented by the initial condition u(0), ∂ t u(0) = (f 0 , f 1 ) and satisfying in addition the finite speed of propagation, has no solution in L ∞ ([0, T ], H s ), T > 0.

Chapter 4

The chapter proceeds as follows: in Section 4.2 we present the similar results as above for the Fourier series case, which is non-evolutionary. And then in Section 4.3 we generalize these results to a simple evolutionary case: the linear wave equation. For the nonlinear case, in Section 4.4, we summarize the routine in which Burq-Tzvetkov proved the ill-posedness result for cubic wave equation, and then by a similar argument, we prove the ill-posedness result for fixed time interval for equation (4.1.1) with generic data in Section 4.5. In the last Section 4.6, we prove the set of datum initiated at which the equation becomes ill-posed instantaneously is dense in H s , that is, Theorem 4.1.7.

The series case

We begin our discussion by recalling some results on the randomization of the initial data used in [1] and references therein. These typical results, especially Proposition 4.2.3, serve as the prototype in our consideration for the PDE case.

Suppose a real function u on the torus T 3 is given by its Fourier series

We then have the decomposition Z 3 = Z 3 -∪ Z 3 + ∪ {(0, 0, 0)}. Let {α n } n∈Z 3 + ∪{(0,0,0)} be a series of i.i.d. standard complex random variables on some proper probability space (Ω, A, P). For n ∈ Z 3 -, let α n (ω) := α -n (ω). Then we can randomize u via

Now we have the following statement.

For readers' convenience, and also for the self-containing of this article, we present the proof of this theorem. One also can refer to [1] [11].

Proof. We first consider the case q = 2k for some positive integer. Thanks to the In order to get the inflation of H s norm , we try to add the solutions of ODEs

to these of the PDEs

And this leads to the equation for the difference

In this case, thanks to the smallness of the semi-classical energy E n (w n (0)) ∼ n -(1-s) , one can follow the strategy listed above to obtain that w n (t) is small in the sense of E n (w n (t)) and thus small in H s for small time t n , and hence the blow-up of v n (t n ) in H s (as n tends to infinity) forces u n (t n , •) to blow up in H s in the same limiting process. Here we are not going to write down all the details, but turn to the more general equations: the wave equation of power 3 ≤ p < 5.

Nonlinear wave equation of power 3 ≤ p < 5

The goal of this section is to show that the equation

. The following proposition is just a relatively quantitative statement of Proposition 4.1.6. Proposition 4.5.1. For any s ∈ (0, 3 2 -2 p-1 ) fixed and any given data

n=1 of positive numbers decreasing to zero and a sequence u n (t) ∞ n=1 of smooth functions, both in space and in time, such that

Proof. We present the proof analogous to that in [1]. We work in a local coordinate near a fixed point of T 3 , and will not distinguish this with the Euclidean space. By choosing the initial data u 0,n , u 1,n = u 0 + ψ n , u 1 ( ψ n to be chosen later), we compare the solution u n (t) of the equation (4.5.1) with that to the ODEs

Lemma 4.5.2. The solution V to the ODE

is periodic. And by choosing ψ n (x) = κ n n q 1 φ(nx) (φ and κ n to be chosen later) with q 1 = 3 2 -s, the solution v n (t) to the ODE (4.5.2) has an explicit expression

.

Proof. Multiplying the ODE (4.5.3) by V , we see

Then by a qualitative analysis, we have V is periodic. The left of the proof of this lemma is just a calculation.

In order to exploit a deeper property of v n , we need to select the bump function φ carefully. Lemma 4.5.3. There exists a nontrivial bump function φ supported in the unit ball

for any possible combination i, j, k ∈ {1, 2, 3}. Here ∂ i φ denotes the partial derivative

By choosing such a bump function φ obtained in Lemma 4.5.3 and set

By working on the semi-classical energy E n (u) defined by

, we can show that for every small times, u n and v n are close to each other with respect to E n . And these small times are not long enough to drive these two solutions away from each other in H s . Before we state this precisely, we summarize these parameters appearing this section

where δ 1 and δ 2 are small constants to be determined. With this in mind, we state Lemma 4.5.4. We can find a positive δ 0 , an ε > 0 and C > 0 such that for n 1 and every t ∈ [0, t n ], we have

uniformly with respect to these positive δ 1 , δ 2 ∈ (0, δ 0 ).

Proof. Set w n := u n -v n , then w n solves the equation

By differentiating the expression of the semi-classical energy E n (w n )(t) and doing some calculations, we get

By using the bounds for

Writing for t ∈ [0, t n ],

Part III

Further Properties of Probabilistic Flows

Chapter 5

Now suppose the transformation

under the perfect condition that B is C 1 and also globally Lipschitzian. Then in the following, we are going to search some condition on the vector field B such that |∇T | is (T t ) * µ-almost surely bounded by some constant C. Now by differentiating the flow equation (5.2.3) in the space variable, we arrive at

∇U 0 (x) = Id.

(5.2.4)

By the assumption that B is global Lipschitzian, the ODE system (5.2.4) is global well-posed and its solution can be written as

and hence we have

With the notation L being the Lischitzian bound of B, then we have

Then by Gronwall inequality, we have

Thus we are in a position to state Proposition 5.2.2. Let T t : x -→ T t (x) = U t (x), where U t (x) is the flow map defined by (5.2.3). Assume that B is a C 1 Lipschitzian vector field with Lipschitzian constant L. Then for any t ∈ (-∞, +∞), the induced measure ν t = (T t ) * µ satisfies Logarithmic Sobolev inequality with some constant depending on c and t. In particular, for some given time T , then for any t ∈ [-|T |, |T |], the measure ν t satisfies a Logarithmic Sobolev inequality with a uniform constant C = C(T ).

The flow generated by vector fields in infinite dimensional case

Suppose W = C 0 ([0, 1]; R) is the space of continuous functions vanishing at 0. We equip W with supremum norm • C 0 , then (W, • C 0 ) is a Banach space.

Chapter 5

With these notions and notations, we are ready to study the following infinite

where B is a vector field over W . We can write the equation in the integral form

And hence, by the Cameron-Martin theorem, it is expected that the induced measure v t = (U t ) * µ is absolutely continuous with respect to µ if B is a Cameron-Martinspace-valued. Indeed this is was studied by Cruzeiro [2], and he obtained this absolute continuity under some exponential integrability condition, which gives a sense of the Radon-Nykodim derivative. Now the successive question is whether or not there exist some other properties of the measure, which are invariant or quasi-invariant under the flow associated to the equation (5.3.1)?

To answer this question, we begin with the statement of well-posedness of the flow associated to (5.3.1), whose proof is standard

in the general sense rather than H-derivative, and global Lipschitzian. Then (5.3.1) defines an invertible global flow on W . Moreover, for fixed t, the flow map is actually a C 1 -diffeomorphism, and so is its inverse.

Under the conditions of the above proposition, the induced measure ν t = (U t ) * µ is also a probability measure on W , but it may be not absolutely continuous with respect to µ. For example, we take B(x) = x on W , and the flow U t is

and hence the induced measure is just a scaling of µ. In the infinite dimensional case, it is well-known that ν t is singular to µ for any t = 0! But ν t is still a Gaussian meausre, and hence it still satisfies a log-Sobolev type inequality.

In the rest of this section, B is assumed to be Lipschitzian and H-valued. In this case, we can perform the trick similar to the finite dimensional ODE case, applying the composed function f • T in the log-Sobolev inequality for µ leads us to

where T := U t for fixed t. Now we are going to estimate the upper bound of the operator norm of ∇T . For any h ∈ H, differentiating the ODE (5.3.1) in the direction h, we get

The flow generated by BBM model equation 123or, equivalent form in the space L(H, H),

Then the succeeding estimates are similar to that in the finite dimensional ODE case. And at last we get the desired result.

5.4

The flow generated by BBM model equation

Existence of the global transformation

Consider the generalized BBM model equation

where u is real-valued function defined on R t × T 1 . One can see that T udx is preserved by the equation, so we can assume T udx = 0. And hence in the following, we work on the space H s of functions of Sobolev regularity s with mean zero. By denoting ϕ(∂ x ) = ∂x 1+|∂x| γ , we can rewrite the equation (5.4.1) as

By integrating on the time interval [0, t], we can also write the equation in the integral form

Now we can see, if we are using fixed point argument to solve the equation (5.4.3), the main trouble is to deal with the nonlinear term u 2 . The following lemma allows us to overcome this trouble.

where C is a finite positive constant, depending on s, α and β.

Proof. We follow these lines in [1] and [8] to prove this lemma. Indeed, it suffices to prove, for any w ∈ L 2 , there exists some universal constant C such that

(5.4.4)
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Denote the LHS of inequality (5.4.4) by I, we then do the following calculations

, where in the first inequality we used the Hölder inequality, and in the second one we used Young's inequality and the fact that the quantity k -s+α+β k-l α l β is bounded by some constant C on (k, l) ∈ Z 2 provided α, β ∈ [0, s]. Now to finish the proof, we need to use Hölder inequality again

This last condition is just the assumption in the statement of the lemma. Thus this completes the proof of Lemma 5.4.1.

Remark 5.4.2. In particular, if we take α = β = s, the inequality in the lemma reads

And this is the place where we need γ to be strictly bigger than 3/2. Furthermore, this inequality can not hold for γ ≤ 3 2 and s = 0, as shown by Chenmin Sun [9]. In a later paper, we will talk more about this inequality in some more general case.

With the help of this bilinear estimates, we can prove the following local wellposedness result.

Theorem 5.4.3 (Local well-posedness). Fix γ > 3 2 and s ≥ 0. Then for any u 0 ∈ H s , the equation (5.4.1) is local well-posed in X s T := C(0, T ; H s ) provided T is small enough.

Proof. Taking X s T -norm on both sides of (5.4.3), we can do the following estimates by using Lemma 5.4.

By taking R = 2 u 0 H s , the map defined by the right hand side of (5.4.3) is onto B R ⊂ X s T for T sufficiently small. Suppose v is another solution with the same initial data, we estimate

Now choose T = C (1 + u 0 H s ) -1 with C a small constant, we can see that the solution map defined on the right hand side of (5.4.3) is a contraction map. Therefore, by contraction mapping principle, there is a solution u to the equation (5.4.3) in X s T for T sufficiently small. Remark 5.4.4. Now we can see from the proof that, the length of the time interval is just of size (1 + u 0 H s ) -1 . This contradicts the general expectation that we can get the solution on any long time interval if we let the size of the initial data be sufficiently small. To remedy this expectation, we need to rewrite (5.4.2) in the Duhamel form as

and do the same estimates as above, we have the following estimates similar to estimates (5.4.5) and (5.4.6)

And then taking R = 2 u 0 H s and playing the fixed-point argument, we get the desired size of the existence time interval. In particular, for any T > 0, there exists δ > 0, such that for any data u 0 ∈ H s , as long as u 0 H s ≤ δ, there exists solution u(t) to equation (5.4.1) up to time T .

Next we are going to study the large time existence. For any u 0 ∈ H s and any T > 0, we can find some positive N such that

Denote v 0 = |k|≥N û0 (k)e ikx , then by Remark 5.4.4, there exists a unique solution v in X s T to the equation (5.4.1), issued from v 0 .Furthermore, the solution v is of size 1 T in X s T . Now decompose u 0 = v 0 + w 0 . Then if we want to solve the equation (5.4.1), we only need to solve the following equation e -(t-τ )ϕ(∂x) φ(∂ x ) 2v(τ )w(τ ) + w 2 (τ ) dτ =: L(w), (5.4.8) we can play the fixed point argument as follows. Before doing this, we need one lemma, which allows to deal with the nonlinear term ϕ(∂ x )(vw). 

The proof of Lemma 5.4.5 can be followed in the same lines as in [1], so we omit it here. Suppose S is a positive time to be selected, then we can estimate for t ∈ [0, S]

Under the assumption that s ≥ 1 -γ/2, we have

(5.4.9)

A similar argument gives us the estimate In order to establish the large time existence of solution of the equation (5.4.7), we need to establish the following a priori estimate, which can be seen as an almost conservation law.

Multiplying (5.4.7) by (1 + |∂ x | γ )w, integrating on the circle give us d dt

On one hand, by the definition of ϕ(∂ x ) and integration by parts, we have that

On the other hand, by the self-adjointness of (1 + |∂ x | γ ) 1/2 and Cauchy-Schwartz inequality, we have

By using Lemma 5.4.5 with s = 1 -γ 2 2 and α = γ 2 , we have in a further step

Thus, by combining the above two points, and using the assumption that s ≥ 1 -γ 2 , we have d dt

A usage of Gronwall's inequality gives us, for any t ∈ [0, T ]

Therefore, by the a priori estimate (5.4.11), we can solve the equation (5.4.7) on the interval [0, S], with S of size c w 0 H γ/2 e 1+T +1/T . Thanks to this a priori bound, we can solve the equation (5.4.7) on the succeeding interval [S, 2S] with initial data w(S) obtained in the previous step. As S does not depend on the step we solve the equation, we can repeat the above procedure until we arrive at some interval [kS, (k + 1)S] such that (k + 1)S ≥ T . That is to say, we can solve the equation (5.4.1) up to time T and also there validates the estimate

up to some constants. Therefore, we are in a position to state Theorem 5.4.6. Fix γ ∈ 3 2 , 2 . Let s ≥ 1 -γ 2 . Then for any u 0 ∈ H s and any T > 0, there exists a unique solution u to the equation (5.4.1) in C([0, T ]; H s ). Furthermore, there exists some N 0 ∈ N such that all t ∈ [0, T ], we have

Remark 5.4.7. As we can see from the proof of Theorem 5.4.6, to get long time existence, we need to use the local well-posedness and Lemma 5.4.5. To establish the local well-posed result we need to use the assumption γ > 3/2, while we do not need the assumption in Lemma 5.4.5. This assumption just arises when we use Lemma 5.4.1 to deal with the nonlinearity. So this motivates us to seek some other conditions that are sufficient to the local well-posedness. There are two other conditions, like 1. γ ≥ 1 and s > 1 2 , which works due to fact that H s is an algebra when s > 1/2 and ϕ(∂ x ) is a smoothing operator; 2. γ > 5 4 and s > 1 4 , which works thanks to that, in this case, u ∈ H s implies u 2 ∈ H s-1 4 and hence ϕ(∂ x )(u 2 ) ∈ H s . But both of the above conditions cannot guarantee the large time well-posedness for the regularity s < γ-1 2 , so we omit the detailed discussion here.