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Abstract

Mobile Edge Cloud brings the cloud closer to mobile users loying the cloud computational
efforts from the internet to the mobile edge. We adopt a lovabile edge cloud computing ar-
chitecture, where small cells are empowered with compmnatiand storage capacities. Mobile
users’ offloaded computational tasks are executed at thel-@oabled small cells. We propose
the concept of small cells clustering for mobile edge conmgpitwhere small cells cooperate in
order to execute offloaded computational tasks. A first daution of this thesis is the design of
a multi-parameter computation offloading decision algonit SM-POD. The proposed algorithm
consists of a series of low complexity successive and nesasdifications of computational tasks
at the mobile side, which leads to an offloading decision thexd the tasks. The tasks are either
computed locally using the handset resources, or offloanlé¢aetcloud. To reach the offloading
decision, SM-POD jointly considers computational tasks)dsets, and communication channel
parameters. In the second part of this thesis, we tacklertiiggm of small cell clusters set up
for mobile edge cloud computing for both single-user andtirusler cases. The clustering prob-
lem is formulated as an optimization that jointly optimizee computational and communication
resource allocation, and the computational load distidbubn the small cells participating in the
computation cluster. We propose a cluster sparsificati@testy, where we trade cluster latency
for higher system energy efficiency. In the multi-user c#lse,optimization problem is not con-
vex. In order to compute a clustering solution, we proposenaex reformulation of the problem,
and we prove that both problems are equivalent. With the gidahding a lower complexity clus-
tering solution, we propose two heuristic small cells @usg algorithms. The first algorithm is
based on resource allocation on the serving small cellsevasks are received, as a first step.
Then, in a second step, unserved tasks are sent to a smatiadiging unit (SCM) that sets up
computational clusters for the execution of these taskse mhin idea of this algorithm is task
scheduling at both serving small cells, and SCM sides fondrigesource allocation efficiency.
The second proposed heuristic is an iterative approach ichvgerving small cells compute their
desired clusters, without considering the presence of otbers, and send their cluster parameters
to the SCM. SCM then checks for excess of resource allocatiamy of the network small cells.
SCM reports any load excess to serving small cells thatseiloliite this load on less loaded small
cells. When no small cell is overloaded, the SCM validatesctbsters set up accordingly. In the
final part of this thesis, we propose the concept of compmrtataching for edge cloud computing.
With the aim of reducing the edge cloud computing latency emefgy consumption, we propose
caching popular computational tasks for preventing theiexecution. Our contribution here is
two-fold: first, we propose a caching algorithm that is basedequests popularity, computation
size, required computational capacity, and small cellseotivity. This algorithm identifies re-
guests that, if cached and downloaded instead of beingmguted, will increase the computation
caching energy and latency savings. Second, we proposehadnietr setting up a search small
cells cluster for finding a cached copy of the requests coatipnt The clustering policy exploits
the relationship between tasks popularity and their pritibabf being cached, in order to identify
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possible locations of the cached copy. The proposed metdthates the search cluster size while
guaranteeing a minimum cache hit probability.

Keywords

Mobile cloud computing, Local cloud, Edge cloud, Smallseluster, Resource allocation, Com-
putation offloading, Computation caching, Load distributi
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2 INTRODUCTION AND THESIS OUTLINE

The imminent emergence of mobile cloud computing to wielestworks is today a real-
ity. Mobile equipments are henceforth a platform that comsts are using to replace their desk-
top applications. Mobile equipment offers nowadays noy @mdmmunication services, but also
sensing, computing and storage. Mobile communicatingcgevare becoming ubiquitous, from
smartphones in the hands of billions of persons, to wiredessors, to connected things (vehi-
cles, machines, cities, etc.). As a result, there is an &sing proliferation of various domains in
the wireless communication such as medicine, health nimgtobusiness, banking, image pro-
cessing, and home monitoring. It becomes more and more bWt wireless devices need to
have greater capabilities in terms of communication resesjrcomputational capacities, storage
space, and most importantly great autonomy. As new furalities have been integrated in mo-
bile connected devices over the last couple of decades;ateliave grown in features, capacities,
capabilities, and sometimes in size. However, batteryrieiclyy has not been able to cope with
the development of mobile devices and their increasing deméenergy. Indeed, sensing, com-
puting and communicating through mobile equipment inadhs energy consumption and thus
decrease the devices battery lifetime. Mobile Cloud Coingus one of the most powerful solu-
tions for allowing mobile devices to do more while consumiegs. Mobile cloud computing is
an attempt, that is proving success, at extracting the ifumatities that have been added to mobile
equipment without depriving mobile equipment users fromeasing the offered service. In other
terms, mobile devices will always have the result of a certmimputation without necessarily
calculating it on their own. Mobile cloud computing is a ‘nilebdelivery service’ that is offered
to mobile devices at a lower cost. The base of a mobile clomdpcing service is computation
offloading from mobile devices to the available cloud.

In addition to empowering mobile users’ devices, in the lafgaigm, computation offloading
is also important to empower simple devices, like e.g. teysers, with computational capacities
that they could have otherwise. In addition, moving comiionna from base stations to the cloud
is a form of computation offloading that is the central isstieemtralized-Radio Access Network
(RAN), which can be efficiently implemented as Cloud-RANthis case, computation refers to
the various blocks in the radio chain, such as de-multipgxdecoding, etc. In this particular
case, computation offloading is primarily for reducing tlmenputational load of base stations,
rather than maobile devices.

The focus in this thesis is put on the mobile edge cloud achite where cloud functionalities
are driven to proximity of mobile users. Mobile edge cloudldotake place in small cells base
stations, in connected routers, in network switches, onyjncannected entity that can be equipped
with computational and storage capabilities. First, agrabminimizing mobile equipment power
consumption, but also, and more importantly, guaranteaiggod quality of experience, we shall
examine computation offloading decision algorithm desmmnnfiobile cloud computing. Indeed,
one of the most important ingredients of the success of matdud computing process is to have
the right offloading strategy.

Second, we shall look into the computation services on the etbud. We consider edge cloud
clustering possibility where several computing entitiestipgipate in the computation of users’
tasks by forming a computation cluster. Therefore, inttester resource management should be
well orchestrated in order to achieve high quality of exgece. To this end, it should be inter-
esting to combine communication and computation resouloeation inside every computation
cluster. Computation load distribution and/or balancitgnmunication resources allocation, and
computational capacities association at each of the elpatéicipants should be studied for a reli-
able computational cluster performance and high serviaéitguelivery. Computational tasks are
mostly subject to latency constraints and computation @gpeequirements. In a cluster-based
computation on edge cloud, overall perceived service ¢gtercorporates transmission delays and
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computation time. Transmission delays result from inttester communication where comput-
ing entities exchange computational data and results. dgéapg latency constraints, couples the
allocation of communication and computation resourcesyedbas load distribution. Finally, we
shall investigate possible mechanisms and novel paradigai€ould be considered for reducing
computational clusters power consumption. Since mobiieeedbud infrastructure is distributed,
scalable, adaptable, and mostly based on user deployednketwdes, power consumption is
an important issue in this kind of architectures. Reduchmg eédge cloud power consumption
makes mobile edge cloud computing an interesting soluggpecially in the green networking
framework.

The challenge of this thesis is to investigate how we cantljoioptimize communication
and computation resources in a mobile edge cloud clustdewhjproving the delivered quality
of service and guaranteeing mobile users’ requests sdtmia The outline of the thesis is as
follows:

e In Chapter 1 we discuss the proliferation of a new servicesagplications ecosystem in the
mobile networks. We show how future mobile cellular netvgoske based on new technical
breakthrough that will allow the mobile network to maintaire capability of serving the
increasing number of mobile users and their generateddraffe present a quick review
on future 5G networks and their requirements set to be iniitle the network traffic ex-
plosion. 5G networks are required to support massive deioanectivity but also massive
system capacity. Higher data rates are at the top of theremsgants list along with very
low latency, which will enable more real time services angligations. To achieve the
set of 5G requirements, a number of enabling technologie®eing widely discussed. A
main enabler technology is massive MIMO, which has proveactieve higher data rates
through the equipment of communicating devices and nodds miltiple antennas. We
also discuss the use of wider spectrum and the introductionilbmeter waves and full
duplex radio. Furthermore, we focus on the emergence d-dinse heterogeneous net-
works, and the integration of cloud services. These twateldgies are the key enablers for
the mobile edge cloud architecture. Then, we zoom on clatltht@ogies evolution in mo-
bile networks, and show how the cloud integrated wirelessroanication systems through
evolving and various architectures. We start by descriltigCloud-RAN architecture as
one of the first cloud based networks, and we continue withilmalbud computing plat-
forms like cloudlet based mobile cloud, edge cloud, and 4g.show the advantages and
characteristics of each of the architecture in terms oflabiity, reliability, experienced
latency, mobility support and proximity to users. The finattpf the chapter discusses the
upcoming uplink traffic explosion, which is mainly causedtbg increase of mobile cloud
computing traffic. We explain why it is just a matter of timefdme an uplink traffic explo-
sion hits the mobile network. Mobile networks which haveahabeen designed and scaled
according to downlink traffic requirements, have alwaysesed lower attention, and lower
capacities to the uplink direction. While this was supptg justified reasons, the traffic
patterns are now changing, and uplink is not less important townlink anymore. In this
chapter we discuss several factors that contribute in thekugata traffic increase such as
the growing number of mobile subscribers, the number of eotad devices, and the evolu-
tion of mobile networks. The emergence of cloud technob@gene of the main factors of
the uplink traffic increase, not to forget the convergencl afnd wireless communication
systems, and the integration of the Internet of things, lesiesensor networks, and machine
to machine communication to the mobile networks. Furtheenihis chapter presents a set
of trade-offs that are faced in the mobile edge computingé&aork. A part of the material
of this chapter is reported in conference paper [C8].
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e Chapter 2 describes the adopted mobile cloud computingtectire in this thesis. We
present the advantages and characteristics of the adoteittature, while pointing out
the assumptions that are made within this thesis. We digbaslmitations, optimization
parameters, and objectives that we tackle in this thesis.eXfg&ain why a joint commu-
nication and computation resource allocation, and loattildigion is needed in the edge
cloud computing architecture based on small cells comgutiosters. A study over the
existing trade-offs in the adopted architecture is prexkniThe proposed architecture is
based on heterogeneous cellular networks. Therefore, weeagpreliminary overview on
the communication-related trade-offs of heterogeneotsarks. We extend the study to
incorporate computation-related parameters, broughhéyetige cloud integration of mo-
bile networks. We discuss a series of trade-offs showing tth& edge cloud shifts the
heterogeneous networks optimization paradigm to a wholeleeel by adding additional
resources to optimize. Energy efficiency from both mobild apstem perspective, com-
putation and communication resource allocation efficiensgrs quality of experience, and
network deployment efficiency are some of the trade-offaators that are studied in this
chapter. In a cluster environment, an important bottlenafckuture wireless networks is
backhaul. In the last part of this chapter we present a caatiparstudy on the impact of
backhaul technology and topology on small cell clustertgims of latency and power con-
sumption. We compare the full mesh, tree, and ring topotoée fiber, microwave, and
wireless LTE technologies. Wireless backhaul use is ingmbtio complement the standard
wired backhaul, especially in dense small cell networks.

A part of the material of this chapter is reported in confeeepaper [C2].

e In Chapter 3, we review some of the offloading decision meishan and algorithms pre-
sented in literature for the context of mobile cloud compgitiWe show that the majority of
these mechanisms are based on the energy trade-off betagdrcdmputation on mobile
handsets, and computation offloading to the cloud. Whileilabtandsets energy consump-
tion is an important parameter to consider for deciding ammatational tasks offloading,
it is not the only parameter that affects the decision. Usgirality of service should be
the main parameter that contributes to the decision proceiss trade-off of energy con-
sumption and quality of service should then be studied atithged in order to enable
mobile handsets to do more while consuming less. Furtherpammputational tasks are
mostly constrained by latency limits and memory requiretsiefhese constraints impose
a minimum computational capacity that should be allocatettie tasks. Few are the exist-
ing offloading decision strategies that consider the tytali these parameters. Most of the
existing algorithms are based on mathematical optimimatiaulti-criteria utility functions,
and solved using linear programming, integer (or multeg#r) linear programming. Hence,
the complexity of these algorithms increase with the nunolbeonsidered parameters.

The material of this chapter is reported in conference pppEr

¢ A mobile user may decide to run its applications locally,riéegy and time are not an issue,
or at the nearest cloud-enhanced fixed device, or in a cloéfederated devices, depend-
ing on energy consumption and latency constraints. In @habtve focus on edge cloud
clustering for computational purposes. We propose and/siptimization formulations of
computation cells clustering. Our models are based on fgtimization of communica-
tion and computation resources inside the computationearsisEach cluster is responsible
for fulfilling a computational request. The optimized sautidentifies the cells to include
in the cluster. Furthermore, it distributes the computatimad on the participating cells.
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Indeed, each of the cluster participants computes a pahteo€omputational load, with a
computational capacity that is also defined by the derivagtisn. As computational tasks
are received at first at one cell, the load is distributed,rewssary information is transmit-
ted to helping cells in the clusters. The transmit power dsedending the necessary data
between cluster participants is the third degree of freedefimed by the cluster optimiza-
tion solution. The three parameters (transmit power, Idatfibution, and computational
capacity allocation) define the total edge cloud computiraegss latency. The total per-
ceived latency includes both transmission and computalitey. The optimization solution
is constrained to always respect the latency constraintesed by the computational tasks.

We start by studying the single user case where only one tskohbe computed. We pro-
pose four different cluster optimization strategies. Tha&t fias the objective of minimizing
the cluster perceived latency. The second is based on tecia’s power consumption
trade-off, and searches to sparsify the cluster by exoudome of the participating cell
and increasing the load of others. The two remaining stiedegjm at reducing the cluster
power consumption from a whole cluster and single partidip®int of view, respectively.
Then, in the second part of the chapter, we evolve the cargldeEenario to a multi-user sit-
uation where several clusters are to be formed at once, tigrgame pool of resources. The
optimization problem that is presented has an objective infmizing the overall clusters
power consumption, while guaranteeing users’ quality ofise by respecting the delay
constraints imposed by each task. As the formulated proldenot convex, we propose
an equivalent convex problem that leads to efficient implatatéon of the solution. We
evaluate all of the proposed clustering solutions in anandmall cells deployment, where
mobile edge computing is offered by the set of active smdl.cé/e compare the proposed
solutions, and show their effectiveness in terms of usatssfaction ratio. Furthermore, we
evaluate their energy consumption and perceived latency.

The material of this chapter is reported in part in journggrgJ1] and conference papers
[C3] and [C5].

e In Chapter 5, we propose clustering algorithms that areadtarized by lower complexity
than the optimization algorithm studied in the previousptba Heuristics are proposed
in order to keep the quality of service delivered by edge c¢loomputing while reducing
the process complexity. The chapter contribution is basetthe idea of exploiting the low
complexity optimization of computation cluster for the gl user case. Both algorithms
that are proposed rely on the single user selfish clustemagation.

A first algorithm consists of scheduling computational tagkthe serving cell where they
are received. The serving cell is the cell that receives tmaputational requests from
mobile users. The scheduling policies that can be adopted/iaious, such as earliest
deadline first, and proportional fair to name a few. Companal resources are allocated
at the serving cell. Unserved requests are then sent to eatized entity that re-schedules
the tasks sent from all serving cells. Unserved requesttharecomputed, while respecting
the task scheduling, by computational clusters using thglesiuser optimization. Three
different implementations of this algorithm are proposékhey differ in the scheduling

metrics and the clustering objectives.

The second algorithm we propose is an iterative algorithris based on operations at the
serving cells and a centralized cluster manager, resgctiis a first step, each serving
cell selfishly forms the clusters for each of the receivediests. The selfish clustering is
done by serving cells without considering the presence lofrotisers. As a second step,



CHAPTER INTRODUCTION AND THESIS OUTLINE

clusters report to a centralized entity that controls ttesifality of the resource allocation

from all serving cells. Since the same resources can beaddlddy several serving cells,

the centralized control management validates or corrbetsaquested clusters according
to resources availability. Excess of allocated resoursédantified, and feedback is sent
to serving cells in order to notify them on remaining regadstbe computed, and relative
correction values.

We benchmark the proposed algorithms by simulating an indumbile edge cloud envi-
ronment. We evaluate the performance of both algorithmscantpare them in terms of
requests satisfaction ratio and cluster power consumption

The material of this chapter is reported in part in patenf gl conference papers [C4]
and [C6].

Finally, in Chapter 6, we propose to exploit, in addition tomputation capacity, the stor-
age capacity available at the Edge cloud. We introduce thielramncept ofcomputation
caching Cache memories at Edge small cells are used for caching’ usenputations.
When a cached computation is requested, it is not computesisdrving small cell retrieves
the request from the cache memory. Our proposal is basedpboiting the knowledge of
computational requests popularity at each small cell, tiosh the requests to be cached.
We consider, in this chapter, the same architecture of tredl @l cloud clusters. How-
ever, we introduce the approach of small cell clusteringcbarhe search. A search cluster
is thus defined as the set of small cells whose cache memeoeegarched for finding the
requested computation.

In the first part of the chapter, we propose a caching alguaritiCaching algorithms de-
fine the computations requested to be saved in the cache nesmabeach small cell. The
proposed caching algorithm takes into account, not onlyctreputation request popular-
ity, but also the amount of required computational capduityits execution, the imposed
latency constraints, and the small cell connectivity intleéwvork. The algorithm caching
policy aims at increasing theomputation cachingains in terms of both latency, and power
consumption. We compare the performance of the proposeditalg with the state-of-the-
art, and show that even though less computational requestsaehed, higher performance
gains can be achieved, especially when the storage spdeeBtige cloud is limited.

After the computational requests are cached at the Edgesafatwork, small cells should
be able to locate the cached copies of each request. In tbadeart of this chapter, we
propose a method that allows reducing the set of small cddeteearched for retrieving a
computational request. The proposed method exploits tablehed relationship between
requests popularities and their caching probability. Téliationship depends on the adopted
caching policy. Knowing the popularity of each request i tietwork small cells, the most
probable caching location of each request can be identified. Themgrdcg to the small
cells connectivity in the network, the cache location thratraachableare identified. The
proposed method identifies the small cells that have a coplyeofequested computation,
which can be retrieved while respecting the latency comsgraf the application.

The material of this chapter is reported in part in pateni el conference paper [C7].
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1.1 Motivation

The famous ‘dramatic increase of mobile data traffic’ isadiyehappening! Mobile communica-
tion is nowadays an essential component in millions of pEspives and daily activities around
the globe. The number of mobile subscribers, number of radmpblications, and thus, mobile
data traffic are subject to an exponential increase. Indeadtic forecasts foresee further data traf-
fic abundance in the coming years [3]. We are currently wiimgsa new revolution of the Internet
where people and smart objects are connected together memaonments. The Internet world
is converging with cellular mobile communication netwotkdorm a complete services package
for mobile users. Data services have been widely incorpdrat cellular networks. For instance,
3G and 4G networks are both Internet Protocol (IP) basedik&B8IG, 4G uses IP even for voice
communication data. The interaction and inter-connedbetween people, devices, sensors, and
service providers have opened the door for an eruption oflmoter-the-web applications. New
innovative applications are released at a daily basis aoyavide areas of communication pur-
poses, going from entertainment and social networkingydastrial and health-care applications.
These applications are accessible from mobile devicesembed to the Internet through cellular
mobile network. The diversity of services that are hendbfawailable is as large as the diver-
sity of life essentials. Indeed, we are witnessing a rapahtion of an e-life where different
essential utilities, favorite interests, and daily lifgugements can be controlled, checked or ac-
complished through a mobile device, throughout a largeetsaidf applications. The merge of
IT and communication networks is downright a reality brimggservices closer and making them
more accessible to mobile users. As a consequence, carntyeitibecoming an essential life
component rather than a privilege. The enormous amount bfhvased applications launched
through mobile networks generates a non-negligible amotiatditional data traffic, as well as
computational requirements in terms of both computatigracitly and storage space. Therefore,
ubiquitous connection and resources accessibility aenéasrequirements of cellular networks.
Mobile networks should be able to deliver high quality seesi with high speed connection, as-
sure resources (computing, storage, sensing) availabitit reachability by mobile subscribers.
On the other hand, mobile users expect to enjoy high endcasrwith a minimal cost especially
in devices battery consumption and in latency delay. As denaf fact, two of the most impor-
tant marketing keys for mobile devices are autonomy and lwattery lifetime. The challenge
to overcome is allowing mobile devices to achieve more wli $ame, nay much lower costs
in terms of energy consumption, experience quality dedgiauaand latency delay. As mobile
users will continue to generate increasing amount of datadmmunication, but also, and more
importantly, for computational services, mobile netwof&se the challenge of delivering high
service quality despite the traffic increase. Through tifferdint generations of mobile networks,
the architecture has been and is still evolving, and new ar@sms are still being proposed in
order to improve service quality and to efficiently integrabmputing services. Two essential
requirements for overcoming the big data/large computatichallenge are the following: (i) a
breakthrough in cellular networks functionalities, cdpas, and capabilities in order to cope with
the ongoing, and upcomintsunamiof data and the ever-increasing number of connected devices
(i) Find an adequate location, both geographical and iwae, for implementing powerful com-
puting solutions. The computational burden in mobile neksds composed of network required
signal processing and solution computing for various R&#isource Management (RRM) mech-
anisms, and of the users launched computation requestgtihmobile-friendly applications. In
the remainder of this chapter, we discuss the future geoaraf mobile networks, 5G, and show
how it can be seen as the next breakthrough for mobile conwations to overcome the quickly
evolving market. Then, we give a panoramic view of the ewoiubf network architecture with
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a focus on cloud technologies integration within. This @i@x shows the effort done for mobile
networks to incorporate, increase and grant accessibiligpmputational capacities by means of
various solutions.

With the incorporation of cloud services in wireless netgoran important change in traffic
patterns takes place: the increase of uplink traffic. Whileelss networks have always been
designed based on downlink traffic, that represents thedarshare of mobile traffic, current
networks may not be able to cope with the increase in upliafi¢t Uplink to downlink traffic
ratio depends on the application type. However, cloud sesvpromote applications and services
that are based on high uplink traffic ratio, such as, comjautatffloading and online photos and
videos storage. In the last part of this chapter, we pointtibeitupcoming traffic changes, the
contributing factors, and emerging solutions.

1.2 5G Cellular;: The Future of Mobile Networks

Mobile and wireless traffic volume is continuously and répidcreasing. It is foreseen that the
mobile data traffic will grow 1,000 times higher from 2010 t02P with a rate that is roughly
the double per year [13]. This traffic increase is due to macyofs. Mobile devices nowadays
are a platform for accessing various types of services rieguhigh volumes of data. The in-
crease in the number of mobile subscribers, and thus the ewaflwireless connected devices
(e.g. smartphones, tablets) generates additional trafiicapproaches the limits of what current
cellular networks could deliver. Indeed, the number of Hebonnected devices exceeded the
world’s population in 2014. Moreover, the forecasts on thmher of connected devices by 2019
state that there will be 1.5 mobile devices per capita, ite rtumber of mobile-connected de-
vices will exceed the number of people on earth in 2019 [14]rtHermore, the scopes of the
services that are made available to users through mobileoriet are expanding. Some of these
services are linked to essential aspects of people’s exgiifé such as e-banking, e-health, and
e-learning, and will continue to be further adapted to mebitvironments [15]. Others are on-
demand services launched directly by mobile users or thrangbile applications. These kinds
of services are evolving every day and including more andencomplex and data hungry appli-
cations such as face recognition, online gaming, augmeetdity, instant translation, and video
decoding. The expansion of applications in number and siiyeleads to an explosive increase
of data usage. The interactive side of some of these apiplsatequires a network that supports
lower latencies and higher data rates. As the worlds of ITtaletommunication networking are
converging, the exploding Internet data traffic has drivemards a new 5th generation of cellu-
lar wireless networks. Moreover, various market drivergehpushed towards the conception of
this new generation of wireless communication. The Inteofi@hings (loT) and its wide range
of applications are quickly proliferating in the wirelessmemunication services. 10T is expected
to further expand in the future and to impose billions of desi deployment which need to effi-
ciently rely on highly scalable network architecture. Ird#idn of scalability, the network should
deliver a high level of reliability since the |oT applicat® can be linked to highly sensitive do-
mains as tele-medicine for example. Furthermore, with Ippliaations such as smart grids and
infrastructure monitoring, the latency of the network carhigher than the maximum time delay
required by this type of applications. 5G linked applicati@over a wide variety of domains such
as social networking, automotive, sports, smart citiedudtrial monitoring, home security, and
health care. Figure 1.1 shows different types of 5G apptinatand how they differ in latency
and bandwidth requirements. 5G networks have been thecsdfjextensive research in the last
years. As the next step in the evolution of mobile commuidoatbG capabilities must extend far
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Figure 1.1: Bandwidth and latency requirements for poa¢Bis applications [1].

beyond previous generations to meet increasing requiresmBiespite the fact that 5G is not fully
and uniquely defined yet, its technical requirements haea Iset using an explicit formulation,
by one of the first large-scale projects on 5G, the Europeaje@rMETIS (Mobile and Wireless
Communications Enablers for the 2020 Information Socigig), as follows [17]:

e 1000 times higher mobile data volume per area

10 to 100 times higher typical user data rate

10 to 100 times higher number of connected devices

10 times longer battery life for low power devices

5 times reduced end-to-end latency

1.2.1 5G: Design Essentials

The new 5th generation of mobile networks design has to at@afulfillment of all 5G require-
ments. Key design principles are needed to guide all reapgings and technical solutions. Two
main characteristics of 5G networks design are defined bya\dkexibility and reliability [18].

o Flexibility : As stated earlier, 5G use cases and application cover a viely avea of
domains. As seen in Figure 1.1 it can go from use cases thairees) data rate as low as
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1Mbps and a latency of 1 second, to others that require degdrrahe order of Gbits per
seconds and a latency in the order of milliseconds. Thissgiveexample of how the size
of the packet to transmit through the network extremelyegsdepending on the use case in
question. Consequently, the quantity of resources that ttebe allocated and the urgency
of completing the packets transmission are not the same.o&@ntinication system need
to be flexible enough to guarantee a full adaptation to varteaffic speeds in both uplink
and downlink. This needs to be done without increasing thapbexity of the network
management nor affecting the mobile users’ quality of expee.

o Reliability : Reliability is another key design principle for 5G netwotkat guarantees a
quality of experience beyond the best effort and towardalsld communication. Reliability
is a very important key principle of 5G networks design sii¢& will be the platform
of various QoE critical use cases (e.g. e-health, tele-oimeali monitoring). 5G should
incorporate new technologies, protocols, designs, andanktlayers in order to guarantee
sufficient reliability for mobile users in all types of apgdtions.

1.2.2 5G Requirements and Enabling Technologies

1.2.2.1 5G Requirements and Capabilities

Even though the 4th generation of cellular networks broumw advances in both design and
evolution, the market trend and the expanding connectilidy reached both people’s devices and
smart objects are imposing new breakthrough in cellularroanications. 5G is facing challeng-
ing targets that, if met, will allow the network to absorb theer-increasing data traffic explosion
and services high requirements. Many industries, ingiitgt and research centers have presented
a view over the future 5G networks. Nokia [18], Ericsson [Iidpawei [20], GSMA intelli-
gence [1], NTTDOCOMO [21], and others have published whipgws in which each company
presents its vision of 5G. These 5G requirements, as deschy all of these works, converge to
the same set of challenges which are the following:

Massive system capacity

The number of mobile devices expected to be connected toGhaebwork is in the order of
billions. Traffic volumes are expected to be larger by mameos of magnitude that could reach
at least 1,000 fold higher capacity demand. The requiredagpof the network in order to
handle such an extremely high number of connections, iimauldoth signaling and data traffic
volume, provides a serious challenge. This is consideretheasnost challenging requirement
for 5G networks. Some targets have been set by NTTDOCOMOhizee a 1000-fold system
capacity petkn? compared to LTE [21]. 5G networks should guarantee a higfidaandling
capacity while maintaining mobile users Qos and QoE.

Higher data rates

As the next evolution of cellular networks, 5G should be dbleffer, as a minimal requirement,
higher data rates compared to its predecessors. Howeeelipahs for previous generations has
been on peak data rates instead of individual data ratesposdible real life scenarios. With the
proliferation of new services and applications that candom¢hed by mobile users anytime and
anywhere, peak data rates are less significant. Focus showlte accorded to real-life scenarios
and the data rate that can be offered to users whenever ne¥dedus scenarios with different
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data rate targets should be studied. According to [19], dndmd dense outdoor environments
scenarios should guarantee a data rate for mobile userf vghas high as 10 Gbps. For urban and
suburban scenarios, Ericsson set a target in the order dfifpe. Furthermore, a minimum data
rate of 10 Mbps should be seamlessly and ubiquitously gtesdrat any location even in sparsely-
populated areas. NTT-DOCOMO also focused on the targethoéaing uniform experience for
mobile users. Their target has been set for a 1 Gbps of peakhusaghput everywhere.

Massive availability, connectivity, and reliability

5G networks should be able to support all kind of use case¢svilidoe integrated into the cellular
network. From cloud services support to loT devices, allgonents shouldlwaysfind their way
into being connected to the network. 5G networks should na@assive connectivity to embrace
the increasing number of simultaneously connected devitshould also enable high reliability
and availability especially in use cases that handle atisituations or crisis management. In other
use cases such as cloud services, the network should batdeaithenever on-demand resources
are required from the users’ side. Additional key requiretrfer 5G networks is robustness.
A robust and reliable network is required for guaranteeiatadusers, and infrastructure security.
Finally, 5G networks will be the essential platform of migsicritical management and monitoring
applications such as public safety, water and gas disivibuand home security. This further
amplifies the need of a future network with an ultra-high kaality and reliability.

Very low latency

5G will gather heterogeneous use cases with requiremegtitaute very different in terms of both
required capacity and latency constraints. Some of thaagigins to be implemented over 5G
networks require very low time delay, in the order of miliseds. Autonomous driving, 3D
gaming, and augmented reality are very good examples ofyipésof applications. Targets have
been set to an overall latency in the order of 1 ms, a reducti@x to 10x in latency compared

to previous generations.

Reduced cost and higher energy Efficiency (EE)

Energy consumption in mobile networks can be seen from twtindt perspectives. A first per-
spective is related to energy consumption on the network sidne way to reduce the overall
network energy consumption is to increase spectral effigiddowever, due to the exploding traf-
fic volumes, attention should also be accorded to the enemgsurnption per bit (Joules/bit) that
has a direct effect on the network energy efficiency. Moreavetwork energy performance is a
very important component for reducing operational cos$.[ln another perspective, the energy
consumption on the wireless devices side should also bedayed. Very low energy consump-
tion for wireless devices has always been a well sought reopgint. With the integration of loT
that could include various types of sensors, a long batifetyrhe is a must. Targets have been set
for batteries lifetime of around a decade. Therefore, 5Godswshould be able to operate on a very
low energy consumption conducted by both adequate hardiesmign and high energy efficient
communication protocols and techniques.
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1.2.2.2 5G Enabling Technologies

Based on the key design principles described in 1.2.1 andherexpected capabilities of 5G
networks, several driver technologies have been definedséltechnologies will help cope with
the challenges imposed by the data increase. They will melease capacity, improve energy
efficiency, and reduce spectrum utilization. And in lightleé key design features, they will allow
better and easier scalability, and help increasing the ar&tveliability.

Massive MIMO

Massive MIMO (Multiple Input Multiple Output) is the evolign of single point-to-point MIMO
and Multiuser MIMO (MU-MIMO). In MU-MIMO a set of base statis equipped with more than
one antenna (less than 10) serves a set of users, each oftvelsietsingle antenna. Massive MIMO
is the result of an effort made to expand the MU-MIMO visiotoila large scale antenna system
where each base station is equipped with approximately A6®oe antennas. Figure 1.2 shows a
shapshot of what a massive MIMO system could look like. Thecept was proposed by Marzetta

Figure 1.2: lllustration of Massive MU-MIMO systems [2].

[22] [23]. His works showed that as the number of antennasMiMO cell grows to infinity,
small-scale fading effect is eliminated, and the requineer@y per bit for transmission is nulled.
When a very large number of antennas is available, serviigndisantly smaller number of users,
then many degrees of freedom are available. These comtributetter shaping the signals to be
hardware-friendly, or reducing interference [2]. The axdwailable antennas allow the system to
achieve higher throughput and improve radiated energyieifig. Indeed, with a large number
of antennas, the energy can be concentrated in smallemsegispace, thus energy efficiency is
increased by using beam-forming like techniques [24]. Mwee, higher capacity, in the order of
10-fold increase, can be achieved by Massive MIMO systerhis i$ due to the fact that massive
MIMO rely on spatial multiplexing. Interference betweemnténals in such systems is already
lowered thanks to the extreme sharpness of destinationséocenergy. The spatial multiplexing
is based on channel quality knowledge on the base statieno$idoth uplink and downlink. To
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obtain this information relying on reciprocity of the chahna TDD approach is adopted. In
fact, there appears to be a general agreement that the ptapaghannel is reciprocal a priori.
Massive MIMO relies on the law of large numbers and beam-iiagmvhich allow to (i) avoid
fading clips and thus improve overall transmission laterfiy eliminate the effect of frequency
domain scheduling and therefore each terminal is graneavtiole bandwidth, which simplifies
the multiple access layer. Finally, massive MIMO systents loa built with non-expensive and
low power components. With all the benefits that could be ddijemassive MIMO, it does not
come challenge-free. One of the most important challenfdéseomassive MIMO systems is
referred to as “pilot contamination”. Pilot contaminatisncaused by the reuse of uplink pilots
(used in the TDD channel estimation) from one cell to anotfiése pilots should be orthogonal
for all users. However, the number of existing orthogon#itgiis limited. Therefore pilots are
repeated and thus channel estimation for a single ussniaminatedy a linear combination of
the channel of other users using the same pilot.

Device-to-Device (D2D) communication systems

Device-to-Device communication is the direct communaatietween two end equipments with-
out going through the network infrastructure. In celluletworks, it serves as an additional tier
that helps improve network capacity. Network nodes colatsoin relaying information to benefit
from spatial diversity advantages. D2D is based on the pribxiof end users. Devices can com-
municate together using either the same spectrum as maltsp-@r unlicensed spectrum. With
the recent trends in the wireless market and the introduatfanew services that require location
and context information, communication between neighleviads can be useful. When several
devices or clusters of devices are acting as relays for etheln, dhey form a massive ad-hoc mesh
network. This can serve for offloading traffic into the D2Lx tid the network and thus increase
per area capacity. As an example of such scenarios, we ¢dndhcrowded areas, such as malls
or stadiums, where a high number of devices are operatingchise distance. Furthermore,
D2D helps reduce end-to-end delay and power consumptianrexgonple, in cell edge scenarios,
mobile users require a higher power consumption. Howeveroibile users communicate with
neighbor devices at a proximity acting as relays, power wamion is reduced and end-to-end
delay is lowered. D2D communication also plays role in défé levels of the network. D2D
can have a major role in mobile cloud services, especiallyhat is linked to mobile cloud com-
puting. Devices at proximity of each other create pools ebueces that could be shared among
users for a better quality of experience for mobile userser@tare four different types of D2D
communication as envisioned in [25]:

e Device relaying with operator controlled link establishment (DR-OC) where mobile
devices act as relays for each other. Link establishmentllis ér partially controlled by
nodes of the operator’'s network by communicating with thayiag device. The cell edge
scenario is a good use case for using this type of D2D comratioic

e Direct D2D communication with operator controlled link establishment (DC-OC)where
mobile devices do not act as relays, but communicate thrdirght links. Data transfer and
information exchange happen without the assistance ofibeator's network, however, it
centrally handles links establishment between devicesmralized links formation policy
helps control interference that results from D2D commuiocausing the same spectrum
as other core network linked base stations.

¢ Device relaying with device controlled link establishmen{DR-DC) Devices act as relays
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for each other, but operator’s network does not play anyiroliek establishment. It is for
the devices (source and relay) to coordinate relay commatiaitlinks between each other.

e Direct D2D communication with device controlled link estabishment (DC-DC) Devices
are responsible for creating communication links betwemmce and destination. Devices
do not act as relays to operator’s base stations; they acuasesand destination nodes that
directly exchange information through the self-estalgishink. This type of D2D commu-
nication is the most exposed to interference and collisioblpms.

To resume, D2D serves to increase coverage, guaranteectivitpevhen the link with in-
frastructure is weak or brakes, increases capacity peraargapectrum utilization, and reduces
end-to-end latency and power consumption. Neverthelezb, darries some challenges. Security
and privacy issues are probably the most constraining in BD@Pmunications. One challenge
is to protect user data against any potential attacks. Twizee access modes are then defined.
Closed accesis a mode where mobile devices only communicate with a sattbiaized devices
that are in their trusted devices li€bpen accesis the communication type where no restrictions
are made. All devices can communicate through D2D links witlevice configured as open ac-
cess. Another significant challenge for D2D communicat®mierference management. When
links are established with the help of the operator netwarttes, it is easier to control interfer-
ence since management is centralized. However, in thealewaictrolled link establishment use
cases, interference is not centrally managed. Two typestefference can be identified. The
first is between the two tiers of the operator network and D@8mmunications. If both tiers are
communicating using the same licensed bands, D2D comntingcdevices will affect devices
communicating with the network base stations. To reducdrtimact of inter-tier interference
on the existing operator base stations, smart interfererargagement and adequate resource al-
locations strategies should be designed for the two-tiewari. Then, there is the interference
between several devices in the D2D tier. Using D2D in the daamel by neighbor devices results
in possible collisions and interference. This can be adéakshrough designing smart resource
allocation, admission control techniques, and peer disgoprotocols.

Ultra-dense heterogeneous networks (Het-Nets)

5G will witness a huge expansion in user base and an in diyefiechnologies operating in dif-
ferent bands. From these trends arises the necessity afyitgplshorter links to connect mobile
users, and the necessity to increase connectivity as wetlvdtk densification is a key mechanism
for 5G and for mobile wireless evolution in general. It alkothie network to meet the requirements
of very high capacity, connectivity and availability. Farhéeving ultra-dense networks, hetero-
geneity of network nodes will play an important role [26]. tel®geneous networks introduce a
sort of a dynamic aspect to the cellular network, especiaiti the introduction of moving net-
works and ad-hoc networks. With the presence of low tranpmiter devices that are randomly
and densely deployed, the number of network nodes is iniogeaend the network itself is getting
ultra-dense. This approach will improve spectral efficiesinice it reduces the distance between
base stations and mobile users [27]. According to a work hysBhret al., which network densi-
fication is the main focus area, networks densification isalioation ofspatial densificatiorand
spectral aggregatiofi28]. Spatial densification is the act of increasing the nemdf base stations
deployed in a geographical area. It can also be achievedcbgasing the number of antennas at
each operating base station node. Several types of bagmstab-exist in Het-Nets and can be
densely deployed. However, further deployment of macre Istetions imposes significant costs
of both Operating Expenses (OPEX) and Capital Expendit{€&a$*EX). In addition, deploying
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more macrocells requires site planning and searching fesiple deployment locations. As an
alternative, picocells, which are small outdoor operaipoyed base stations, can be deployed
more easily and with a much lower cost in both OPEX and CAPHE®od®lIs require backhaul
access to be directly connected to the operator core netwRetay nodes could be deployed
where wired backhaul is not accessible. Relay hodes hawahtracteristic of appearing as a base
station to mobile devices and as mobile devices to basessati-inally, small cells nodes such as
femtocells are the easier to intensively deploy. They arallssize low power nodes that can be
user-deployed. They require no site planning, and do nobgasignificant OPEX and CAPEX
on cellular operators. Femtocells allow mobile users telabase station at proximity with direct
high speed connection. They also help solve black holesrielegs coverage, and improve signal
guality at cell edge and indoor locations. However, shatirgsame carrier frequency, between
macro and femto cells, results in inter-tier interferenthis introduces network design, interfer-
ence mitigation, and resource allocation challenges.

As for spatial aggregation, it consists in using larger Isasfdspectrum ranging from 500MHz to
the higher bands of 30300 Ghz [28]. Aggregating fragments of bandwidth of diffarfequency
bands leads to antenna and transceiver design challengasn@gspectrum between several net-
work nodes requires the integration of spectrum-sharioprtigue to be integrated into licensed
carrier networks to assure good QoS and support mobilitgerised Shared Access (LSA) is a
paradigm that helps coordinate spectrum use between gpetilders and secondary licensed
users. LSA spectrum rights holder has the exclusivity afigigart of the spectrum when no in-
cumbents are using it. LSA offers the information neces$arySA licensed users to use the
bandwidth when the spectrum rights holder is not using ialdb allows to quickly moving the
spectrum whenever spectrum rights holders need to opékatexample of the spectrum sharing
and LSA is the TV white spaces concept.

Finally, it is important to note that spatial densificatiamdaspectral aggregation need to be sup-
ported by a densification of the network backhaul. Backhaunhects base stations to the core
network; therefore it should be able to handle all the addéti traffic brought by network den-
sification. Otherwise, ultra-dense networks will have tadiimpact on the overall 5G networks
performance.

More spectrum and millimetric waves

Mobile cellular systems have almost always been deploydtiB00MHz - 3GHz band. However,
the mobile wireless data demand, as well as the number okctethdevices are and will continue
to grow. The cellular systems spectrum is becoming incnghsicrowded. Network densification
with reduction of cells sizes is one way for allowing furtlsgectrum reuse. However, this step is
not enough since capacity only grows linearly with the nunabeells. At the same time, the super
and extremely high frequency bands (SHF and EHF) whose cmdlpectrum goes from 3 to
300 GHz, are underutilized. The signals in this band aranedeto as millimeter-Waves (mmW)
since their wavelengths are between 1 and 100 mm. Millimegyes are characterized by a large
bandwidth that results in very high throughput and very $mwalvelength. Small wavelength
has the advantage of allowing the implementation of a largaeber of very small antennas in a
small device area. According to Bi al,, millimeter-wave mobile broadband will offer 100 GHz
new spectrum for mobile communication, a 200 times largecspm than what is used for the
same purpose in the bands below 3GHz [29]. Including mmW conication in the next cellular
networks is an important pillar of 5G. With the increase addibandwidth, capacity will increase
and latency will decrease. This allows a better users’ éapee in real-time services and data
hungry applications. The main challenges for mmW commuigioca are mainly propagation
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related issues [30]. Free-space path loss grows with thereai the carrier frequency. Therefore,
going from 3 to 30GHz adds 20 dB of signal power loss. As sthtedndrewset al,, if antennas
aperture are held constant, then free space-loss effettecaompensated. Maintaining the same
antenna aperture can be assured by using antenna arraydi3bjs case, the main challenge
would be to co-phase antennas of the arrays so that they fieiergfy collect energy. mmw
signals are prone to be blocked by various objects in ther@mvient. In a No Line-of-Sight
(NLoS) trajectory, the blocking loss is very high an is in trder of 15- 40dB added to the free-
space path loss of around 40dB [31]. Furthermore, mmW arecidf severe absorption due to
rain and air. In conclusion, propagation challenges of mnmdivmunication can be handled by
using antenna arrays to collect and steer energy, and alsodes narrow and highly directional
beams in order to avoid interference problems. New chadlerage then imposed in the narrow-
beam communication which requires at first link establishimiechniques and protocols, and of
course adapted transceivers.

Full duplex communications

Full Duplex (FD) communication allows a wireless deviceitadtaneously transmit and receive
data in the same frequency band. Wireless communication &laays operated in a half-duplex
mode, based on the assumption that wireless nodes cannsmitavhile receiving signals due
to the generated interference between transmitter andveeagrcuits. This kind of signal per-
turbation is called self-interference. The key of using Flbnmunication is to be able to cancel
the effect of self-interference on signals decoding. Resardies tackled this problem of self-
interference cancellation in order to achieve a FD systezh [BD communication may double
the spectral efficiency at the physical layer by not usingirdis slots for uplink and downlink
anymore. It can also improve the efficiency of contentioaeobnetworks by eliminating the hid-
den node problem. In fact, hidden terminal problem occuremdnnodeB in the network cannot
detect the presence of a no8ghat is transmitting data to the same destination at the saneg
leading to collision at destination base station. Figugéa).shows a simple representation of both
nodes in half duplex mode. Using full duplex communicatjghs base station can start sending
data back to nodA while simultaneously receiving data from the same node.eNRxckinnot hear
nodeA transmitting, but can hear the base station. Once mbdetects that the base station is
transmitting, it delays its transmission towards the baatos. In case the base station does not
need to send data back to noéié can repeat nod@ signal. This will serve for securing the base
station from any hidden terminal collision, and for sendingort of acknowledgment to node
Figure 1.3(b) shows a simple representation of both nodkgliduplex mode.

Node A Half Duplex Small Cell Node B Node A Full Duplex Small Cell Node B

(a) Half Duplex scenario with two nodes (b) Full Duplex scenario with two nodes

Figure 1.3: Hidden terminal problem with HD and FD scenarios
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Cloud technologies for flexible 5G radio access networks

A major direction adopted by 5G is based on cloud conceptoldiing the C-RAN concept
(Centralized Radio Access Network), also referred to astzlRAN, deployed base stations use
shared resources and the centralized cloud. In fact, thé&R-&chitecture consists in splitting
radio and processing functionalities of a base station.eBtations have always been designed
to incorporate both radio protocol stacks as well as basd bamal processing. With C-RAN
functional split, base stations are reduced to Radio Reietals (RRH) that only handle radio
modules. The processing functions are then offered to thd &FRa service through a pool of Base
Band Unit (BBU). After being separated from analog radioesscunits, network management
and base band processing units are moved to form a virtustieclwhere all network functions
are pooled. This cluster can be seen as if network funcitmbre moved to the cloud and are
offered as a service to the RRHs. The BBU pool serves sev&HliR a particular area. A cellular
network architecture with cloud-based radio access nétigawhown in Figure 1.4.

Celofi ) (HE0E— .

BBU pool

’
’,:L& Radio Remote Head

E Mobile User Equipment

Figure 1.4: System architecture with cloud-based radiesgsaetwork

C-RAN allows the deployment of more radio remote heads and #mhances 5G networks
scalability, capacity, and extends their coverage. Chmtichnetwork management lowers the cost
of baseband processing and reduces the power consumptioramgging radio resources (load
distribution, cooperative processing) from several béasigoss. Furthermore, by enabling MIMO
and Coordinated Multi-Point (CoMP) mechanisms throughGHRAN architecture, energy con-
sumption can be minimized.

In addition to cloud-RAN architecture that offers netwotké€tionality as a service, cloud
based computing services has been proposed as an effeGtiezBnology. Indeed, with the pro-
liferation of a wide range of innovative and complex appimas and services generating data
and computation tsunamis, users’ devices are facing a mhgitenge which is the inability to
efficiently perform extensive calculation and process higta volumes. The splitting of hardware
and software to enable horizontal services is an existihgisa to such problems through cloud
computing. As a matter of fact, cloud based solutions in Thegace have revolutionized the IT
industry in recent years [33]. Importing the cloud concepivireless network opens the door
for deploying Mobile Cloud Computing (MCC) which consisfsoffering computing and storage
capabilities to mobile users’ devices over the cloud. @ffgcomputing and storage resources on
demand to mobile users creates a new level of flexibility dasdtieity in network services. Mo-
bile cloud computing plays an important role in user exparecentric networks, where mobile
subscribers expect excellent quality of experience withrdamal cost in terms of services delay,
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data usage, and battery consumption. Advocating compatatid storage functionalities to the
cloud will alleviate mobile devices from executing relatedources consuming mechanisms such
as performing complex computations and searching largeaneapaces for a particular file. In
conseguence, reachability of the cloud through mobildgiais increases computation and stor-
age capabilities of performance limited devices in battergcessing capacity, and storage space.

In the remainder of this chapter, we focus on the cloud comguéchnology and its integra-
tion in current and future cellular networks.

1.3 Cloud Technologies and Network Architecture: A Joint Ewlu-
tion

1.3.1 Cloud Computing

1.3.1.1 Definition and Characteristics

As defined by NIST (National Institute of Standards and Tebtyy) [34], cloud computing is
a model that enables ubiquitous on-demand network accespdol of configurable computing
resources. The accessible resources are speedily prdsiand provided with low manage-
ment efforts or service provider interaction. In other teygloud computing provides computing
resources as a utility and software and applications aswviceerCloud computing is achieved
through geographical coalition of powerful servers comegdo the internet. This coalition is
referred to as a server farm that handles computation intabdited way. Network users of-
fload computational tasks, applications and services ddswarthe centralized servers for a cost-
effective computation and a higher QoS. Co-located in alsisige, large server clusters handle
computation through a distributed system, offering usdester computation. Cloud computing
offers its users increase in computational and storagairess capabilities. The cloud comput-
ing paradigm is also referred to in literature @sdemand computingitility computing or pay
as you go computingThe resources offered by the cloud are available over thveank and are
accessible through network mechanisms by any connectédedeVhis characterizes the cloud
with broad network access. Access to cloud resources isegtéor users without interaction with
their service providers. On-demand self-service is offamecloud consumers upon request for
imminent use or provisioning. The cloud serves multiplersisgmultaneously through assigning
and re-assigning resources. Computing, storage, menmahgther possible resources are pooled
in server farms and are not dependent of consumer’s locatioother terms, cloud users have
no knowledge about the exact location of provided resousoesce. Resource pooling allows a
better management and allocation of resources to coverex wid of consumers. Therefore, cloud
mechanisms for resource allocation, provisioning andassanust be rapid enough to scale with
varying demands. Elasticity is an important characteristicloud computing platforms to always
give consumers the impression of having access to unlinséabilities. Due to the centralized
handling of cloud resources, usage tracks can be kept indeca used for improving both users
utilization and providers control of cloud services. Toum®, cloud computing characteristics
can be summed up to on-demand self-service, broad netwodess resource pooling, rapid
elasticity, and measured service.
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1.3.1.2 Service and Deployment Models

Defined cloud computing service models are: Software as w@cgefSaaS), Infrastructure as a
Service (laaS), and Platform as a Service (PaaS).

e Software as a Service is defined as the ability of users tosaaeplications deployed on
the cloud by its providers. Consumers reach the applicdtioough an interface on their
device. However, they have no control on the infrastructuréerneath, including storage,
operating systems and servers. SaasS is a growing markeeapplications are delivered
in a one-to-many model. Deployed on the cloud, applicatamesmanaged centrally and not
by users’ end devices. Applications updates are not redjtiirde handled by consumers
and are directly installed by providers on the cloud setvers

e Platform as a Service gives access to cloud deployed dewelapplatform. Consumers
have the ability to create and deploy their own applicationdhe cloud using a provider
platform overlaying a development environment (prograngmianguages, libraries, ser-
vices, and tools). As in the case of SaaS, consumers haventwicarhatsoever on the
underlying cloud infrastructure. As stated in [35], Saa8 BaaS can be seen as analogs
where the former is a software delivered over the web whiddkter delivers the platform
for creating software on the web.

o Infrastructure as a Service offers resources control andigioning possibility for con-
sumers. Consumers have access to the cloud resources gut@ssing, operating sys-
tems, and storage, where they are able to deploy softwarappidations and launch com-
putational tasks. Even though consumers do not controlltha dnfrastructure, they have
control on its computing resources, deployed applicatimd some networking compo-
nents. Using laaS, consumers do not have to invest in exgehardware, plus, scaling
hardware capabilities up and down is much easier and aumnfaEquiring more resources
could be handled through using a larger part of cloud ressufahich imposes higher
money costs most of the times) instead of investing in buyng placing new hardware
that includes much more costs in terms of deployment andtera@nce. On the other side,
downscaling resources is achieved by simply releasingigiomed cloud resources instead
of keeping on paying for the cost of deployed but unused harelw

Cloud services, with their three defined models, can be médiaihrough various types of cloud
deployment. First, cloud utilities can be delivered thio&ublic cloudsto which access is pub-
licly granted for all types and varieties of consumers. Tdoss not impose delivering the same
service quality for all consumers. Providers can alwaypgse various cloud plans with various
costs depending on the amount of accessible resources.cBucts can be managed by no other
than the providers, or by institutions (business, govemtireecademic) that deploy such clouds on
the premises of the cloud providers. ContraryPuablic clouds which grant open access to the
general publicPrivate cloudsgrant access to only a closed set of usémdvate cloudsservices
are exclusively dedicated for a specific set of users defipethd owner/manager of the cloud.
This type of clouds is vastly used by business organizatioatseither own their private clouds or
use a private cloud provided by a cloud services provider.

A Community cloudas defined in [34] is exclusively used by a community of constanirom
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organizations that share the same concerns. Such cloudagthbr owned by one of these orga-
nizations, a cloud provider, or a combination of both.

Any composition of two access modes of private, public, amdmunity, leads to &lybrid cloud
access mode. In Hybrid clouds two or more clouds of two or ndefoyment modes are bound
and can be inter-operatively used for specific portabdityabled applications.

1.3.1.3 Cloud Computing Enablers

Virtualization

Virtualization technique is the main enabler for cloud canivpg environment. As in the cloud all
consumers are sharing the same hardware, a virtualizatimsources abstracts them as virtual
machines (VMs) along with associated storage and netwgrkimnectivity [36]. It is a separa-
tion of hardware and software that enables horizontal clasid solutions. Virtualization creates
virtual resources such as operating systems, serverspragstdevices. Resources are available
on demand, which introduces a new level of flexibility, sbédity and automation in service de-
ployment. Virtualization is possible through a hypervismyer added above the hardware layer.
Several VMs run then on the hypervisor layer, and thus on tdpeophysical layer running reg-
ular operating system. VMs have no access to the hardwartéroutgh the hypervisor layer. By
virtualization, multiple VMs can run on a single physicalehane. For cloud computing environ-
ments, virtualization is then a key enabler that allows s#v@nsumers to run various tasks on
the same hardware, the cloud hardware specifically. Theguarently creating a major evolution
and transformation in the communication industry by offgréfficient solutions that increase the
network scalability and flexibility.

High standard servers

Cloud computing is based on computing users tasks, agplisatand services using a pool of
resources reachable through network access. A main miotivedr using cloud services is the

lack of capability or the high cost of local computing resms to accomplish requests compu-
tations. Advocating computation to the cloud should guiE®nat least, enough computation
capacities to handle traffic and computation of a very higiminer of users. Cloud servers should
be high-volume IT hardware in order to support the commértsa of cloud computing. Server

components, if standardized, can be rapidly and efficiasttgnged or updated in a cost-effective
manner.

1.3.2 Cloud Technologies in Cellular Networks

Early generations of cellular networks were all about afigvoice communication between sub-
scribers. Even though 2G included some very low rate datdcesr through GPRS (General
Packet Radio Services) (up to 115Kbits/sec), it is not k8 that cellular networks could offer
advanced data services to deliver speeds in Megabits pend¢87]. In less than two decades,
data services demand in cellular networks grew thousandsiibons of times larger. With the
new generation of mobile networks being IP-based, datéidrdémand has been exponentially
increasing. Indeed, Figure 1.5 shows the total traffic fr@h®@to 2014 comparing both data and
voice traffic. Voice traffic development is almost flat comgzhto the clear exponential increase in
data traffic. This is due to the increasing number of mobika dabscribers since mobile phones
have been an effective tool for accessing various intdsased services. Mobile networks are
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Figure 1.5: Total global monthly data and voice traffic [3].
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no longer dedicated to voice calls and text messages; tleelyearceforth a capable platform for
accessing the Internet and for launching applications tfnited scopes, going from web brows-
ing to video processing. Delivering high quality voice commitation is no longer the sole goal
of mobile networks. The wide scope of applications, becgravailable over cellular networks,
demands high computational capacities. First, consigettie ever-increasing number of con-
nected mobile devices, more sophisticated mechanismsaded to compute efficient resources
management on the network level. Furthermore, demand faitaile computing resources is
increased when users ask for services and applicationgirggoomputation. As the services ex-
pected from mobile networks changed from communicatiomtoputing, an evolution of network
architecture and serving base stations is a must for imwplwéquired computational resources.

1.3.2.1 Classic Base Station Architecture

The traditional architecture of mobile base stations is where both radio and baseband pro-
cessing functionalities are integrated within. All basatish functionalities are deployed in the
same location as the base station itself. Radio (RF) modydaced at a proximity to the antenna
linked through coaxial cables. The baseband (BB) procgdsitocated at the same site. Figure
1.6 shows the classic base station architecture.

With the proliferation of 3G networks, new network architee was proposed which is based
on a split of base station main functionalities: radio andgeliand processing. This architecture
consists in dividing base stations into two separate entitiRadio Remote Heads (RRH) and
BaseBand Unit (BBU). RRH is the unit that handles all analod sdio modules and function-
alities, along with conversion between analog and digiBU is where all the other network
functions modules are deployed. A non-exhaustive list obBirvices contains FFT/IFFT oper-
ations, modulation/de-modulation, sampling, MIMO marmagat, channel coding and decoding,
interference management (e-ICIC), multi-point commutidcemanagement (CoMP), transport
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and MAC layers, and radio resource control. After functipliting, RF modules are placed right
next to the antennas. As for the baseband unit, it is relddata distance that can go from hun-
dreds of meters to tens of kilometers. RRH and BBU are coedettirough either optical fiber

or microwave connections. A first advantage of such ardhiteds the ability to link a set of

multiple RRHs to one BBU. This will reduce the cost of deplayRRHs. Furthermore, BBUs are
placed in a more convenient location, enabling cost sawingsite rental for deploying all-in-one

traditional base stations. The distributed Radio Accedsvbi (RAN) with RRH is represented

in Figure 1.7.

1.3.2.2 Cloud Radio Access Network (C-RAN)

Radio Access Network (RAN) is a very important part of molbigworks. It is where all process-
ing and computation takes place in order to manage netwakurees and deliver high quality
high data rate services for mobile subscribers. In theticadil RAN architecture, each base sta-
tion handles transmission/reception signals for a certamber of users over a specific geograph-
ical area. With the increase of the number of users curravitlyessed by wireless networks, this
RAN architecture faces severe interference problems amgldbgradation of capacity per users.
Adapting a solution consisting of deploying more base @tatrequires more site rental, and thus,
imposes additional CAPEX and OPEX costs. Furthermore,ri@iat of computing necessary for
network management is increasing, and thus, more compugttapacity is needed. In addition
to that, with the Internet proliferation, and IP traffic ctarg growth, a need for over-dimensioning
of processing and forwarding resources in the radio patheheerged [38]. A cost-efficient so-
lution with high quality of delivered services is thus ragai. Following these requirements, a
Centralized Radio Access Network (C-RAN) architecture lixen proposed and given high im-
portance [39]. In C-RAN, baseband units are centralizea amte entity referred to as BBU pool
(Figure 1.8). The centralized pool handles all the proogsir different cell sites, and is virtu-
alized. This reduces the number of equipment needed at emehdpation site. The BBU pool
is connected to the mobile core network through backhauvbnthaul connects RRHs to BBU



24 CHAPTER 1. THE EVOLUTION OF CLOUD ENABLE MOBILE WIRELESS NETWORKS

(D))
Core L RRH
Network

Figure 1.7: RAN distributed architecture

pool. When pooled, BBUs utilization is more efficient andteeffective. Network flexibility is
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Figure 1.8: C-RAN architecture

increased and power consumption reduced. BBU pool progdescentration of high processing
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capabilities used for faster solutions and resources nesmeagt computation and for decreasing
response time of application servers. Furthermore, BBUspinorease network scalability by al-
lowing a large number and variety of base station (macris;ggico-cells, femto-cells) to benefit
from C-RAN services. BBU pools can be seen as server farme meailable for computing all
network required baseband functionalities through theeaiization of the RAN.

1.3.2.2.1 Advantages of C-RAN

Statistical Multiplexing C-RAN transports all baseband processing to a centralinetigh
BBUs. The computational capacities needed at each basenssae replaced by a centralized
capacity at a BBU pool which is supposed to be smaller. Sitalanultiplexing is defined as the
ratio of the total processing capacity required at the BBOI pothe sum of processing capacities
needed, in case of classic RAN, at all base stations covereddebsame BBU pool. Statistical
gain has been studied and assessed in several works, amdiglagain is estimated of around
25% of the computing resources [40] [41] [42]. An importaattbr contributing in achieving
computing resources gain is the adaptability of C-RAN to-oaiform traffic. Base stations were
always designed to have high performance at traffic peak®asylhours. However, daily traffic
of mobile users varies throughout the day. Resources aredvasbase stations in off-peak hours
and off-peak sectors (location). With BBU pool handlingk@iseband processing for a large set
of base stations, compute resources utilization rate isaugal and adapted to the variation of
network load.

Scalability Improving coverage and increasing network capacity carirbplg achieved by
adding more RRHs and splitting existing cells. Since all RRire linked to a BBU pool, deploy-
ing more RRHs does not require finding a large location sitedtall a cumbersome base station.
RRHs are more easily deployed and accepted by local comigsinBy increasing the number
of operating RRHs, network scalability and flexibility aregroved. Additionally, increasing the
overall network capacity can be centrally managed at a @nigeation where BBU pool servers
can be expanded, empowered and updated.

Costs savings OPEX costs are reduced with C-RAN architecture since alethépment is
aggregated in a single location. Maintenance intervestamd operations costs associated with
the large number of BBUs in RAN are saved. Furthermore, dilest@adaptability to non-uniform
network load, some BBUs in the pool may be switched off withaffecting network coverage
and performance. This allows saving electricity and cagptiosts.

Increase of network capacity BBU pool is associated to a centralized processing of many
virtualized base stations. Joint processing between latsers normally requires a non-negligible
amount of signaling for sharing traffic data and channekdtdbrmation (CSl). In C-RAN, these
information can be easily shared which permits to implenneoite efficient interference manage-
ment and mitigation techniques, such as enhanced inteimtetference coordination (e-ICIC),
and in consequence improve spectral efficiency. All tealmesgrequiring multi-cell cooperation
are easily implemented with the C-RAN architecture. A majample is coordinated multi-point
(CoMP) which also fights inter-cell interference by a setafsccoordinating for serving a single
set of user(s) and thus increase the perceived Signal tddraace plus Noise Ratio (SINR) at
the mobile side [43]. CoMP requires tight synchronizatiad aoordination between participating
base stations which can be achieved more rapidly, effigiesntid with lower costs in C-RAN.
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1.3.2.3 Mobile Cloud Computing: Remote Clouds

New innovative applications are released at a daily basieromy wide areas of communication
purposes, going from entertainment and social networkinigdustrial and health-care applica-
tions. Applications that are being released require irsinggamount of data processing and com-
putation. This covers a very wide sector of applications doald include, among others, video
decoding, image recognition, and online gaming. The mal#ldces business industry is endow-
ing devices such as smartphones and tablets with advaratedde and services. However, mobile
handsets are limited in computational resources, storagecity, and energy (limited battery life-
time). Therefore, mobile handsets processors, even iftadap be equipped with computing
capabilities, can be easily overloaded: The launching wérs¢ applications simultaneously, or a
high computation load application, will eventually leadattower quality of experience for mobile
users. This could result in quick battery discharge, lomgsponse time, or the shutdown of some
running applications. This is a problem that we have all égepeed, at least once, as mobile users.
Offloading computation requests to remote servers has beegmized as an effective solution for
guaranteeing good Quality of Experience (QoE) while miging mobile handsets energy con-
sumption. On-demand resources, such as storage and camhaie already been implemented
through Cloud Computing. For network processing functiitiea, on-demand resources are also
possible through C-RAN architecture. In wireless mobilevaeks, offloading computation tasks
of mobile users to remote resource providers instead ofgbeimputed by the mobile handset
itself is referred to as Mobile Cloud Computing (MCC). MCGsHzeen widely discussed in liter-
ature. Many comprehensive surveys detail and explain dsiteictures, taxonomies, motivations
and challenges [44] [45] [46] [47].

The term of mobile cloud computing refers then to the abiityunning mobile applications
and computations by using resource providers other thamti@le device itself. The network
architecture through which this is possible is shown in Fegli9. Mobile users are connected to
the mobile network through the association with a baseostatf any type (Marco, Pico, Femto).
The base station is connected to either a BBU, in the case &f R#h RRH, or to a BBU pool
in case of C-RAN (the case of Figure 1.9). BBU is connectedh¢ocbre of the network through
which Internet is accessible. Through the Internet, cloeryers are accessible by mobile users
initially communicating with a cellular base station. Migbiisers’ computational case can be sent
over the described architecture to reach cloud powerfwkeserin order to have access to greater
computing resources than available resources on mobilésede Examples of applications that
motivate the need of mobile cloud computing include: image@ssing, natural language trans-
lation, crowd computing, sensor data applications, mdtia search, and social networking [47]
. These examples represent a non-exhaustive list of pesafplications that can benefit from
the MCC paradigm. MCC is adopted for offloading computatidasks, or retrieving requested
information with costs lower than local computation on neldevices. As cloud computing,
mobile cloud computing should also adapt to traffic non-amifity, and assure a high degree of
scalability, flexibility and availability.

1.3.2.3.1 Advantages of Mobile Cloud Computing

Extended battery lifetime Battery lifetime is one of the biggest concerns of mobilersise
As mobile phones are becoming multi-service, multi-agtlan platforms generating an ever-
increasing amount of traffic, a higher autonomy of such devis required. Unfortunately, with
the growth of mobile phones capabilities, battery indugrgot advancing in the same pace for
improving battery lifetime [48]. Mobile cloud computingrbugh computation offloading is one of
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Figure 1.9: Mobile cloud computing architecture [4]

the most effective current solutions for this problem. Rearinore, mobile devices do not consume
energy, and in consequence do not lose battery lifetimesdomputing large tasks.

Empowering mobile devices A wide variety of applications are often too computation in-
tensive to run on a mobile device. Indeed, mobile devicesemmurce-limited in terms of energy,
computation, processing, and storage space. As discusseidysly, MCC can help extending
devices battery lifetime. As for computation and procegsiapabilities, mobile devices executing
applications on resourceful and powerful distant cloudessrare given a great increase of com-
puting powers. Through MCC, mobile devices are able to perfwirtually, complex and large
computations and process a larger amount of data in shat®ysd Furthermore, being connected
to powerful cloud servers allows mobile devices to use atbgl storage space remotely. This al-
lows saving a great deal of local memory space at the mobilieeleWith a connection to a cloud
that is always available, mobile users can access thegdftdes, photos, documents, and videos
stored at the cloud servers instantly.

Improving reliability By delegating applications and data processing to clouegsgrbackup
and storing data are saved on the cloud servers. These Wtatg,veith any personal files stored
on the cloud, could be easily retrieved in case of a crasheantbbile device level. Further-
more, applications that are computed on the cloud are aedandcessary computational power
by high standard servers that are less exposed and moreépsilde to any system crash or dis-
functionality.

Scalability MCC provides mobile users with a powerful tool for perforgnicomputation.
Furthermore, mobile devices do not have to allocate contiputaesources and schedule tasks if
they are offloaded to the cloud. This gives mobile devicesitiii@y of dynamic on-demand provi-
sioning of resources on a self-service basis. Mobile dewea thus run their applications without
prior reservation of resources due to the scalability agt hivailability of cloud resources.
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1.3.2.3.2 Operational Issues

Offloading decisions Mobile cloud computing is based on a main operation of mathde
vices: offloading. To use cloud resources, mobile devicisaaf computational tasks to the cloud
through the mobile network. A major operational issue of MiS@o take the right offloading
decision. The main questions to ask are: What are the afiphisato offload? When is offloading
beneficial? What should be the offloading decision based arswvAring these questions is not as
easy at it seems. A basic approach would be to offload apiplicathat cannot be performed using
the mobile device limited resources. But MCC is about moestheing an alternative for local
computation. Many issues may prevent or push mobile devaeffload computation. Various
research studies tackle this paradigm, trying to find th¢ dggroach to take the best offloading
decision. A very intuitive basic decision rule has been gmésd in [49] based on the concept of
saving energy at the mobile device side. Since the mobiled@aommunicates with its serving
base station through wireless connection, the data tnatastiee network may impose serious costs
depending on the channel conditions, the used transmigsiaer, and the available bandwidth.
The work byKumar et al. simply compares the energy consumption of mobile devicdsoth
cases of local computation and offloading in [49]. The enemysumption gain or loss depends
on the requested computation size and the communicati&@ngliality. Figure 1.10 shows the
conclusion reached in Kumar’s work, indicating that offlmgdcomputation is beneficial (energy
wise) when the size of instructions to be computed is largd,the necessary amount of bits to
send is small. If the amount of bits to communicate is largaaring to the size of instructions to

Communication amount

Computation amount

Figure 1.10: Offloading decision based on mobile deviceggneonsumption

compute, offloading will consume more power consumptiom tbaal computation. In other than
these two extreme cases, the gain of energy consumptiomdepa the available bandwidth and
the channel conditions. This conclusion takes into accthaitthe computation of the requested
application is possible on both platforms, local and in tloeeid. However, this is not always the
case. Mobile devices are resource-limited, and could beegoras unable to ensure the required
resources amount of either computational capacity, memaayirement, or others. In addition,
some applications have tight latency constraints that aiape met by offloading computation to
the cloud due to physical distance separating the servied ard the computing resources. The
offloading decision paradigm is widely studied in liter&uA detailed state of the art can be found
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in Chapter 3 where we also present our own contribution inprgation offloading decision.

Privacy Sending user computation to be performed on remote senaysmolude sending
sensitive and/or private information. An example of thiformation is the user's GPS location
which is necessary to provide location-based servicesdmains private and personal informa-
tion. Being computed on remote servers, application dadenceforth stored at the computing
servers and not on users’ devices. This introduces privadysacurity issues especially with the
exchange of sensitive data managed at the cloud. Any loephotloud security systems can
threaten the privacy of users’ data. Many recent attackshaoking incidents have taken place in
cloud environments [49] [47]. These may occur due to eitiistesn failure or hacking operations.
Therefore, MCC should have strong and resilient privacycpdhat guarantees at best users’ con-
fidentiality. To fight against such problems, we often notineagreement between users and cloud
services providers on terms and policies including privaegt dissemination of data.

Handover in heterogeneous network accessin MCC, mobile users access cloud services
through the wireless network. Two types of handover cantensaues for service delivery from
the cloud. The first is when users toggle between differgmedyof base stations that are linked
differently to the cloud. For example, users can be conddote radio cellular base station at one
moment, and switch to a WiFi connection at another. In theecthe cellular base station is no
longer the connecting entity between the mobile device hadtloud. Mobile users expect to be
delivered computation results and services no matter htem dfiey change connection from one
base station to another, or the base station type they anectad to. This variation affects service
delivery drops, hence, soft handover schemes are reqiié@dThe second type of handover than
can occur, is between homogeneous types of base statioissisThainly due to users’ mobility
and the resulting switching off of base stations. Intehigsobility management is an important
issue in MCC systems. Users should be provided seamledgsesémough a mobility supporting
cloud services delivery system.

Network latency Service and applications delay is an important metric iluatang sur-
rogate computation. Indeed, latency constraints can berestrictive bottlenecks especially in
real-time applications. If on top of that real-time applioas require the exchange of a large
amount of data, latency is a limiting factor. Looking at MCfhitecture in Figure 1.9, we can
spot possible latency increasing factors. First, datalghog transmitted from mobile devices to
the serving base station. The data transmission time batthese two parties depends on many
factors such as the channel quality, the distance betwess aad base station, and the transmis-
sion protocol in use. Then, data is transferred from bag®stathrough the Internet to remote
cloud servers. Unfortunately, the latency of WAN connetfior reaching the remote clouds can-
not be controlled and might be high. Remote clouds are veryda the mobile devices in both
physical location and network transport. As a result, negiresources (computing, storage) are
far from the need (mobile devices), and thus MCC latency dueansport and computation de-
lays may not meet with the tight delay constraint some agfitios may impose. Solutions that
have been proposed to tackle this problem mainly involve &CMarchitecture evolution, and
resource management optimization. These solutions wipkbsented in the following sections of
this chapter.

Availability and reliability =~ Another issue resulting from connecting mobile devices the
cloud infrastructure through wireless networks is netwavkilability. Wireless transmissions
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through wireless networks are less-reliable compared tedmietwork connections. Services
may be found interrupted for random reasons of system &illurthermore, the accessibility
of MCC services depends on the seamless and ubiquitousagm/ef wireless network. Indoor,
crowded, cell edge, and out of coverage scenarios are egampsituations where MCC services
are either not available or hardly accessible. Furtherpreren though cloud computing is based
on powerful servers handling the computations, systengeuthowever possible. Server outage
may occur and result in service failure, and loss of data andectivity. Not to forget data stor-
age issues that can occur after servers crashes that leaajdo losses of users’ data or service
unavailability. Solutions for availability and reliakifi problems are mostly based on expanding
the cloud infrastructure and empowering it with more powkskrvers, in order to enable it to
handle peak traffic. As for storage, backup copies of usdisidaan effective solution, even if
CAPEX and OPEX costly.

1.3.2.4 Mobile Cloud Computing: Cloudlets

After the introduction of mobile cloud computing in wireteaetworks, solutions to operational
and technical issues discussed above were investigat@fiOBy Satyanarayanaat al. proposed

a new concept of MCC using “Cloudlets” [51]. The concept wasoiduced by the authors as
“A new vision of mobile computing liberates mobile devicesifsevere resource constraints by
enabling resource-intensive applications to leverageidlcomputing free of WAN delays, jitter,
congestion, and failures.The work proposes a new architecture of the wireless ndtwdrere
cloudlets are introduced as a new entity in the network. @kig are defined as resource-rich
powerful computers, or cluster of computers, that are deyulas “data centers in a box”. They
are connected to the Internet and can be used by near mobitesge The main motivation for
cloudlets is overcoming un-controllable WAN delays of melsloud computing in remote clouds.
Cloudlets are installed at a proximity to mobile users arel aacessible through a single hop
connection. The cloudlets proximity to users, both physiand in network layers, is an effective
solution for overcoming harmful WAN large delays. Howewdoudlets are proposed as accessible
through local area network connection (LAN) and not throwgfieless cellular network. Cloudlets
are not part of the mobile cellular network, and are not adieti by wireless network providers.
Cloudlets are to be managed by end users and can serve upialades simultaneously. Figure
1.11 shows where cloudlets are placed in the network. Cétsigroximity not only allows mobile
users to have ubiquitous good service quality, but alsoue eaergy due to the short transmission
distance. The introduction of cloudlets brings the cloudkset to mobile devices, i.e. brings
resources closer to the need. An additional feature of tdsids the fact that in case of system
crash or loss of data at the cloudlets level, mobile users@renuch affected. Cloudlets connect
to remote centralized clouds in order to store data. Whaejs &t the cloudlets level is a copy
of the data. Therefore, cloudlets do not increase the riglatd loss compared to remote clouds.
However, the fact that cloudlets are new service providedependent elements to introduce into
the wireless network infrastructure has two major drawbadkirstly, cloudlets may serve only
a few users at a time. Therefore, a cloudlet may not be avikaen if accessible. In case
of unavailability or inaccessibility of a nearby cloudlehobile users are then forced either to
connect to remote clouds or to compute all tasks locally eir thevices. Furthermore, as a newly
introduced entity to the network, no wide deployment of dlets is available. The case of non-
existence of nearby cloudlets risks of being frequent. Belyp being independent of mobile
network, cloudlets do not have access to operator relatedlkdge. In this case, location aware
services, users positioning and mobility management axdeh#o handle.
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Figure 1.11: Network architecture with cloudlets

1.3.2.5 Mobile Edge Computing

Cloudlets bring the cloud close to mobile users. Howeveés, s previously discussed, indepen-
dent of the mobile operator network. As communication anavéFlds are converging, and with
the emergence of over-the-web applications that run onledevices and use operator network
knowledge (such as location based services), it is moreeroent to allow cloud computing el-
ements to be implicitly integrated in the mobile network. okimg at mobile networks, we can
notice that capabilities within the RAN extend to a closexprity to mobile subscribers. The
RAN edge is characterized by an ultra-low latency, high badth, and direct access to real-
time network information. Therefore, deploying cloud seeg at the RAN edge allows content
services and applications to be accelerated.

Moving cloud capabilities to the RAN edge is known as Mobitige Cloud (MEC). By mov-
ing the cloud to the edge of the network, mobile core utilrats alleviated and latency is reduced
for mobile end users. MEC aims at reducing network load byingpgomputational efforts from
the internet to the mobile edge. As discussed in previoudet.3.2.1, traditional base stations,
which are the devices deployed at the edge of the mobile mkhwoly forward traffic. But they do
not actively analyze, nor respond to user requests. Thesg,db not provide computing resources
for hosting edge services beyond network connectivity.

Mobile devices-base station links have always been coreidas “dumb” links dedicated to
only transporting communication data. With the on-goingvargence of IT and communication
worlds and the advent of software defined infrastructureyoek operators can make the mobile
devices-base stations link intelligent by overlayingritistted cloud computing solutions onto the
RAN. MEC introduces new network elements at the edge, pimyidomputing and storage ca-
pabilities at the base stations. MEC can be seen as a cloug sanning at the edge of a mobile
network and performing specific tasks that could not be aelisvith traditional network infras-
tructure (M2M gateway, control functions) [33]. Mobile edlgomputing proposes co-locating
computing and storage resources at base stations of celletaorks. This requires deploying
general purpose processors and storage onto base stdtiarelular networks, outdoor mobile
edge is represented by eNodeB or base station (e.g. mdgtocated in close proximity of mo-
bile subscribers. MEC users are typically connected to bagns that loop the traffic through
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the MEC server for further processing of the data. IndoorQW&mpact servers are added to serv-
ing small cells (basically femto-cells). Indoor scenailimdude networks in enterprises, shopping
malls, and other commercial buildings. A compact servediged to a small cell that manages
traffic to multiple small cells.

In MEC, communication between cloud edge servers and moisiées is done over high-
capacity radio link that operate over 3G/4G/or the futurerg®vork radio access networks. Op-
erating cloud services jointly with the cellular mobile wetk ensure wide coverage through the
wide deployment of operator networks. This further enstitasthe vast majority of the customers
of a mobile operator can be served.

1.3.2.5.1 MEC Enablers and Characteristics

As for remote mobile cloud computing, virtualization tetfues and high standard servers are
major key enablers for mobile edge computing. Virtualiatiwhich enables several virtual ma-
chines of various users to be deployed on the same hardwaetes readily-available computing
capacity for service-oriented software. Resources arefibhie available on-demand. However,
the unique architecture of MEC requires an additional kegbéar: availability and integration
of MEC adapted applications. Open environments need todmtant to allow the efficient and
seamless integration of edge enabled application acroksvandor MEC platforms. Innovative
MEC enabled applications need to be introduced to marketdardo push the prosperity of the
edge computing concept. When MEC applications emerge withideas and are accessible for
mobile users and adaptable to all devices platforms, a nesystem of MEC applications and
services will take its place in the market.

Mobile edge computing architecture is characterized fifstlloby its proximity to mobile
users. Services are hence managed and operated for satigfgbile users requests directly at
the network edge. Data traffic do not have to be forwardedutifrahe internet to remote clouds.
In other cases, where computation is offloaded by users toteeaiouds, MEC has the ability of
forwarding necessary data to the required destinatiorthBumore, the availability of resources at
the edge of the radio access network eliminates the needitifigodata through the core network
or through the internet. Edge computing servers are deglayehe very edge of the network,
the closest to mobile devices with direct access betwedngmoties. This proximity results in a
lower end-to-end delay experienced by mobile users, whiclsio supported by high bandwidth
connection between mobile users and MEC servers. MEC secaerrun independently from the
rest of the network. Data do not need to travel higher levelthé network if all resources are
available at the edge of the network. This aspect of MEC isoit@mt for privacy and security
issues of users data. Being a part of the mobile network, M&Cdtcess to operator network
knowledge as real-time radio network information and lmcatwareness. This will allow the
implementation of a wider set of business oriented senacgsapplications that are dependent of
location or context information

In outdoor scenarios, MEC servers are deployed in basemstatMEC helps improving mo-
bile users’ QoE by reducing latency and improving QoS by jgiog customized service related
to consumers’ context. MEC improves infrastructure efficiewith more intelligent and opti-
mized network management and resource allocation. IniaddiMEC enables vertical services
e.g. M2M, big data management, smart cities. As serversepioyed at base stations where all
traffic is routed, it is easier to understand traffic charésties through probabilistic analysis and
thus deal with radio cognition with the help of devices cahtaformation. As for indoor, users
can enjoy dedicated intelligence that comply with theircsiie context and needs due to smaller
cells and thus better provisioned and dedicated resourcetermore, in indoor scenarios, appli-
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cations applied to particular locations (M2M, retail, casybig data) will thus be widely available
through MEC. To resume, MEC provides a highly distributethpating environment that can be
used to deploy applications and services, as well as to atat@rocess content in close proximity
to mobile users. It creates an ecosystem where new servieeeeeloped in and around the base
station. The MEC server provides computing resourcesagéotapacity, connectivity, and access
to user traffic and radio and network information [33].

1.3.2.5.2 MEC Applications and Services Ecosystem

The most obvious advantages of edge computing inside aetgtworks is given by both reduc-
tion of end-to-end delay and context information accekibA solution without edge computing
would involve a transmission through the core network as asthrough Internet links towards
the application host and back. In [5] a categorization oésavapplication types which are possi-
ble candidates for the deployment at the mobile edge is ptedeThe promising applications are
resumed in Figure 1.12.
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Figure 1.12: Mobile edge applications and use cases [5]

Offloading Computation tasks that are launched at mobile users carilbad¥d for remote
computation. Offloading decision can depend on severahpeters and is due to various reasons.
Examples of the most common reasons are the insufficienures® at the mobile devices for
intensive computations, the inability of local devices t&fprm computations with acceptable
delay, and the high energy consumption of mobile device®paing computations. Examples of
computing intensive applications are transcoding of métlia traffic, and face recognition. The
use of MEC makes offloading feasible in more cases, as todagie bandwidth is much higher
compared to usable Internet bandwidth. Moreover, tasksitbald typically be performed on the
mobile device due to the size of their input can be perforntethe edge [33].

Edge content delivery Located at the network edge and equipped with storage shHoE,
servers are able to cache local content information atel®limodes and serve users directly by
retrieving data locally. Caching techniques in general lbarclassified as reactive and proac-
tive. Caching is transparent if neither the mobile userstherservice provider are aware of the
caching MEC server. Proactive caching consists in norsprarently caching content before being
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requested. Example of data that could be cached is all toté@idsed services data and context
related information. MEC servers can either keep their oache private and not share it with
other MEC servers, or share cached information with neigMieCs. These modes are known as
isolated and shared cache, respectively. MEC enables emgent delivery which aims at storing
data in a close proximity to the need (requesting users'césyi Edge content delivery leads to a
reduction of experienced latency, computational capaaiy energy consumption comparing to
centralized database systems.

Data aggregation Several applications that generate huge amount of datdandre region
or context related (e.g. Car2Car, GPS route informatiomerge a lot of similar and region-
related event notifications which can be aggregated. Aggigcan also take place in the context
of monitoring applications where many devices measurdairdata that can be jointly processed
at the edge of the network thanks to MEC servers.

1.3.2.5.3 Technical Challenges and Requirements

In order for MEC to be completely and efficiently integratadtie wireless network infrastructure,

and contribute in the advancement of such networks, somkeibas need to be overcame. The
following is a non-exhaustive list of possible technicahlbbnges that can block or delay MEC

effective operation in wireless networks.

e MEC servers should be able to integrate the existing netidrastructure without affect-
ing mobile devices and base stations functionalities. ME®ess should comply with all
network standards and specifications and their implementahould be transparent to the
network architecture and existing interfaces.

e Applications should have the possibility to run on diffaréhEC platforms provided by
different vendors. This portability allows a fast trangéapplication between MEC servers
in case of shared processing, caching and computing. Riytalso provides MEC servers
with an ability to optimize resources and virtual appliasedthout location constraints.

¢ MEC should inherit as well all privacy and security issuesnabile cloud computing.

e MEC servers should be able to deliver high performance sesvio mobile users. Edge
computing is transparent to mobile users who expect highif@ud Experience. A main
challenge for MEC is delivering higher performance whilenimizing mobile users’ ener-
getic and delay costs and the impact of virtualization.

e MEC servers are co-located with network edge equipment. fAiyre or crash in MEC
servers should not affect the network functionality noradbenectivity of users to the mobile
network.

e Legal considerations are to be taken into account in MEGqtats especially in regard of
privacy-restricted information diffusion.

In conclusion, MEC allows base stations to increase theictfanalities and deliver services
adapted to mobile users’ requests and contexts. Users amedsdirectly by the edge of the
network, which is characterized by high resources proxiraitd availability. Proximity, context,
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agility and speed can be translated into unique value arehtevgeneration, and can be exploited
by operators and application service providers to createvavalue chain that will enter in the
ecosystem of new MEC-enabled services and applicatiofjs [33

1.3.3 Fog Computing

The Internet of Things (IoT) is an emerging wave of connegtimngs to the network, creating
and consuming huge amounts of data. Connected things aaflyupart of large systems that
collect and analyze data for decision making. Computatiwhsiorage resources must be avail-
able and sufficient for serving the 10T systems. Finding atfion for deploying computing and
storage resources is not trivial. We have shown in Secti®r2 how resources locations have been
changing in cellular networks. What is then the best locatar network architecture to server
loT requirements? Deploying resources in 10T endpointotgmnactical since they are designed
to be very simple and energy efficient. Consequently, outdogi resources for loT computations
is a must. Unfortunately, due to 10T applications charasties, cloud computing (we refer here
to remote clouds) is not an efficient solution. Resourcesasigd by 10T applications may be
generated by tens of millions of devices over a very wide ggalycal area. Some applications
may be characterized by very low latency, high throughpuingushort time periods, and prompt
decision making based on real-time analytics. 10T end @ésvibemselves are often characterized
by a low communication power consumption and short rangenmanications, settings that are
required due to energy scarcity. Yannuetial. [52] give three main reasons for which cloud
computing is not adapted for all of the 10T scenarios andieatibns.

o |ot platforms may require on-demand high throughput andtswgport mobility, and even
rapid mobility patterns. The particular mobility and fasoloility aspects are weakly sup-
ported by remote cloud computing. In the case of MCC, devieasobility connection
with cloud servers are subject to frequent variations ofvodt conditions including ser-
vice degradation. Moreover, reaching the cloud serverdearery time costly through the
WAN. In the case of MEC, connection through macro-cells,clutdre base stations of wide
coverage with a very large number of served devices, is abtesand do not always guaran-
tee high data rates. In the case of smaller coverage bammst@dico-cells and femto-cells),
higher data rates are available, but the mobility aspedaitisupported due to small coverage
area. Mobility in 10T can be associated with various examgigch as sensors in moving
vehicles e.g. cars and trains.

e An loT platform must be able to deal with systems that reqe@esing, analysis, control
and actuation. Scenarios may vary and objects might be @ubjeinreliable connectivity
to the cloud. Examples of such scenarios are when objectglaced in locations where
communication with the cloud is not possible or too weakngsipes, gas sectors, aircrafts,
etc. In these cases, 0T systems need computing resou@aspibcessing, and storage
space for being able to compute a decision, under latendgations.

e A platform for loT must be able to manage large amounts ofatbjehat are widely dis-
tributed on large geographical areas. This produces datard¢iguire different levels of
real-time analytics and data aggregation.

For compensating cloud services non-adaptability in Iadhacios, Cisco has proposed a new
vision calledfog computingo enable the millions of I0T devices operating at networgesfb3].
The fog is a new architecture that extends the cloud to beechusthe user. As in the MEC
case, the cloud is brought to the edge of the network. Howé&wgrcomputing is adapted to IoT
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systems where any device with computing, storage, and mietvamnectivity can be a fog node,
notably routers, switches, cameras, and base stationgante a few. Treating IoT data close to
where it is collected minimizes latency and does not sendeusitive data [54]. Developers can
bring their own applications at the edge of the network, whbe newly introduced architecture
allows them to run at a proximity to where data is collected. atldition to low latency, fog
provides location awareness services and improves QoS well positioned for real time big
data analysis and support dense data collection points E&Sfesumed in [56], fog computing
is characterized by low latency and location awarenesse-sfitead geographical distribution,
mobility, very large number of nodes, predominant role afeléss access, real-time applications
presence and support, and nodes heterogeneity. It con$i§)sfog nodes that are the closest
to the 10T devices and equipped with computing and storageurees used for time-sensitive
applications; (ii) fog aggregation nodes that are conmketianany fog nodes and where data is
sent for analysis and action; (iii) the cloud, which is alwaypnnected to the system for any big
data analysis and applications with large computationaladel and large delays. Data sensitivity
in aggregation nodes may be in seconds or minutes. Clousidsiakd as long term storage entities
for data and historical analysis [54].

The benefits of fog computing have been defined by Cisco [54] [First, fog computing
provides loT systems with data privacy whenever data iectdt and analyzed within the far edge
of the network without being sent to remote data centersad@ed-deployed with network nodes,
security of fog nodes uses the same policy of network nodesrise controls and procedures.
Moving data analysis in 10T to the edge of the network will lgleanew applications that can
be easily and rapidly integrated in the new architecture, thans fog computing creates greater
business agility and innovation. Finally, fog computindpseconserve network bandwidth by
lowering the size of data to travel over the network to theid|@and substitutes remote processing
by local data management.

Fog computing satisfies the requirements of many loT sees@ncluding smart grid, smart
traffic lights, connected vehicles, wireless sensor angsaat networks, decentralized smart build-
ing control, and IoT and cyber-physical systems [56] [55].

1.4 Uplink Traffic in Future Mobile Networks: Pulling the Ala rm

1.4.1 Motivation

Cellular networks have always been designed, dimensi@retideployed based on the downlink
(DL) mobile users’ demand and traffic patterns. The reasotef@raging downlink traffic was
the asymmetry — then true — between uplink (UL) and DL traffit.other terms, the capacity
required in the downlink was much higher than the one redduir¢he uplink. Therefore, design-
ing networks with higher data rates to offer in downlink thawiplink was trivial. More precisely,
within early 2G based cellular networks, the traffic load foth UL and DL have been roughly
the same. This has also been the case for the very early 3@rsystlt is not until the 3.5G
and 4G systems that downlink traffic load greatly surpassitkurequirements [58]. In these
systems, with the eruption of IP based networks and highdspeeess to the Internet through
cellular networks, traffic is dominated by downlink. Thealakplosion in downlink and uplink
was asymmetrical. While downlink traffic grew exponentiallplink traffic was also subject to an
increase, however, the traffic demands in both directiorns wet equal. Mobile users downloaded
more than they uploaded. The estimated ratio of uploadedwmidaded data is about 1:7 [59].
Thus, current mobile networks are dimensioned based onrttwaist of data mobile users are
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downloading according to downlink traffic models. As thetéas growing segment of the com-
munication industry, wireless communication, and espigoiallular systems, have experienced,
and are still experiencing, exponential growth over thé de@sade. Many new applications, ser-
vices, and technologies have and will integrate the wisetedwork. The way mobile users see,
use, and exploit mobile networks have changed. Mobile nédsvare nowadays the provider of
unlimited number of heterogeneous services that diffelata dequirements. As some are mainly
downlink based, others have equal requirements of uplididanlink traffic, or depend on large
amount of data upload, like cloud storage for example. Tath@asymmetry between UL and DL
is reduced, and sometimes inverted. These changes evokefajgestions: What is the impact of
network evolution on uplink traffic? Have networks startggeriencing uplink traffic explosion?
Should networks continue to be designed, planned and diorertsaccording to downlink traffic
only? What has been done to increase uplink network capsgitirhese questions are of great
importance, especially under the fact that very low attentias been given to UL traffic models
comparing to DL. Indeed, uplink traffic lacks of tractabledets since it depends on users actions
and unplanned interventions that are often less easilysaitite and predictable. In contrast to
downlink traffic that has been given significant attentiditgrapts to model the uplink have been
limited [60]. With an increasing number of connected deviaad mobile subscribers, the inte-
gration of cloud enabled technologies in wireless netwgattks convergence of 10T systems, the
development of M2M and MTC platforms, and many other fagtibis important to understand if
and how new communication networks will cope with challegguplink traffic loads. The idea
is not about uplink rising over downlink traffic. We do notasg or consider that uplink traffic
overtakes the downlink — although this might be the case @tifip scenarios. We only present
the uplink as a new important player that should be consiietgen setting network design and
dimensions. Even though there are no precise forecasts lmk,uthe traffic pattern change is
inevitable. A study by NSN in 2013 showed that the overall OIDL usage ratio reaches approx-
imatively 1:2.4 [61]. In addition, the Ericsson mobilityp@rt of 2012 shows that UL to DL ratio
reaches 1:1 for bi-directional applications such as P2Reimil, and P2P sharing [62]. With the
availability of high data rate services, new applications @nabled, and mobile devices energy
consumption increases. Cloud technologies, sensor riefywdevice to device communications
and social networking are all growing trends that incregdaki traffic and do not rely solely
on downlink traffic. All of these trends introduce applicais where mobile users create content
and launch actions on the network, which changes the cl&dsisased traffic pattern adopted in
wireless networks. The research community, aware of thempg uplink traffic volume change,
is already proposing some solutions in the network for inaprg uplink capacity.

In the remainder of this section, we present the major factioat contribute to the uplink
traffic explosion in the current/future mobile networks.efihwe discuss some of the efforts that
have already started by the wireless community to improvesati networks uplink capacity in
order to cope with mobile users’ increasing uplink demand.

1.4.2 Why Uplink Traffic is Growing

1.4.2.1 Increase in Number of Mobile Subscribers and Devise

The number of mobile subscriptions and mobile devices has lbenstantly growing since the
first deployments of cellular mobile networks. From 6.4ibill mobile subscriptions in 2012 to
7.2 billion in early 2015, the ever-increasing index is taate 9.2 billion by 2020 according to
latest mobility reports [6]. Mobile broadband that was asted for 2.9 billion out of the 7.1
billion subscriptions will grow its share to occupy 7.7 lait out of the 9.2 billion subscriptions
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in 2020, which is around 85% of all subscriptions. As the neamif fixed broadband and the
number of related devices such as mobile PCs and mobilersouti## have very low growth,
and the number of total mobile subscribers and subscriptiah increase linearly, the number of
mobile subscriptions will increase exponentially. Smiaotpes, which already are the main mobile
equipment (2.6 out of 2.9 billion), are expected to doublaumber by 2020. Mobile broadband
will be accessible to everyone and mobile devices will cargito outnumber the earth population.
By 2020, mobile phones will be in possession of 90% of humames 6 years old. The growth of
mobile devices and users showed in numbers gives an ideanvodaia traffic (in both uplink and
downlink) could increase.

1.4.2.2 Evolution of Cellular Networks

Since wireless Internet, wireless generations adoptimgteehnologies for increasing system ca-
pacity have been designed and deployed. The increasing tredfic demand required a network

evolution to cope with constant changes. However, for atisegutive technologies and wire-

less generations, downlink data rate far exceeded uplinie tD possible technical challenge and
asymmetry in traffic demand, mobile networks were alwaysedisioned to assure higher DL ca-
pacity. Table 1.1 shows the difference in up and downstreatia ihtes among technologies. Note
that the table shows advertised peak data rates, which aa#lyukigher than nominal achieved

rates.

Table 1.1: Cloud architecture evolutions comparison

Technology Generation | Downstream (Mbits/sec) | Upstream (Mbits/sec)
EDGE 2.5G 1.6 0.5

EVDO (Rev A) 3G 2.45-3.1 0.15-1.8
HSPA 3G 0.384-14.4 0.384-5.76
HSPA+ 3.5G 21-678 5.8-168

LTE 4G 100-300 50-75

LTE-A 4G 1000 500

Evolution of wireless networks and users’ traffic demandraperpetual evolution and growth,
one implying the other. Indeed, wireless network evolveégiwe more” for mobile users and cope
with their increasing traffic. At the same time, when offeradre capacity, mobile users would
like to “do more” with their mobile equipment through the wireless networkinibers show that
the proliferation of new wireless generations offeringi@gservice quality attracts mobile users.
Since the introduction of HSPA and then LTE, the number of iteolisers continues to grow
strongly. In the third quarter of 2012 HSPA and LTE subsaim increased by 13 and 65 million
respectively. As for GSM/EDGE it attracted then 20 millioensubscriptions. With LTE prolif-
eration in the market, the numbers in the first quarter of 20&5s follows: 105 million additions
for LTE, 60 million for HSPA, and a decline of 30 million for GBEDGE. These numbers and
Figure 1.13 show how the market follows the offer of new tetbgies and increasing service
quality. LTE will have, alone, 3.7 billion subscriptions B¥20. In conclusion, the number of
mobile users and the evolution of cellular networks aretjivian escalating increase relationship;
where the increase of the first requires improvement in lkeglletworks, which re-attracts more
mobile users to subscribe.
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Figure 1.13: Mobile subscriptions by technology [6]

1.4.2.3 Emergence of Cloud Technologies and Dense Heterngeus Networks

Cloud technologies are progressively but rapidly intégeatvireless networks. Cloud radio ac-
cess network, remote cloud computing, cloudlets, and reauiye cloud, are all new technologies
and architectures in which the cloud concept integratedless networks (see Section 1.3). Cloud
technologies in mobile networks consist on delegating aging, storage, data processing, and
other resources consuming functionalities to a computigyeinstead of performing the tasks on
the mobile devices. Cloud in wireless networks can takeifit forms. It can be a centralized re-
mote server pool, a nearby cloudlet, or an edge computirippta. Aside from cloud computing,
cloud can be used as a remote storage location. As mobilpraguis in general suffer from lack
of resources of computing and storage, mobile users are amarenore relying on outsourcing
required storage and computation capacities. With clooichge, mobile users can take photos or
record videos with their mobile devices and directly upldaemn for saving on the cloud instead
of their devices. In such applications, uplink is as impatras downlink and thus should be taken
into account in network dimensioning.

Another emerging deployment technology in wireless néetwas Heterogeneous networks
(HetNets). All mobile users are not served by the same typgeasé stations. Along with clas-
sic large coverage macro-cells, cellular networks aregowitensively deployed with pico-cells,
relays, and femtocells. One of the main motivations anddsts of heterogeneous networks is of-
floading heavily loaded macro-cells. Users in reach of adesit, for example, will communicate
with the latter instead of a congested macro-cell. As ferlts@re deployed at closer distances
from mobile users, communication channels between feridomed mobile users are very often
characterized by a better signal to noise ratio. Due to ttle ¢& tractable models, the impact of
such offloading on the uplink performance is not well unaergt[60].

Uplink traffic modeling has not gained the same attentionaagndink. Both directions differ
fundamentally in access modes, heterogeneity of traremgiitand resources management. The
invasion of wireless networks by cloud enabled heterogesm@etwork certainly has an effect on
traffic patterns especially in uplink, since new offloadiqportunities are available to consumers.
With the adoption of offloading computation and the concépirtual machines (VM) and enable
applications such as videoconferencing in enterprisesirapdoved network mobility support,
upload speeds become critical against users’ experiera@ygand content efficient delivery to
the cloud. With the development of cloud technologies, aglspeed and capacity will continue
to have an important impact.
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1.4.2.4 New Applications and Services Ecosystem

Cloud based wireless networks are the next breakout of ttedess communication. Cloud is in-
tegrating many functionalities of the wireless networkd arcreasing their capabilities. Whether
a remote cloud or an edge cloud, the cloud unlocks a whole nesystem of services and appli-
cations. Application developers have now the door openwtgpes of applications that can be
run on the cloud and that were not adapted before to the mobileept due to heavy resources
requirements. Furthermore, cloud and services provider& wn increasing their infrastructure
ability and performance through improving availabilitydareliability: An evolving ecosystem
that will push forward the cloud based offer and demand, &nd treate higher cloud related
traffic requirements. Among the applications that are nompgatible with the mobile network,
we distinguish different types of traffic requirements. ®oapplications require very high down-
link and/or uplink traffic with varying latency constraint&pplications that comply with downlink
based networks include streaming basic video and music abdvowsing, where upload require-
ments are relatively low. Streaming relies basically orhidgwnlink traffic, as for web browsing
it has in general lower traffic requirements. However, nwasrapplications do not comply with
that model. Many applications require roughly the same arhofiupload and download such as
web conferencing (cloud-based), video conferencing;reddicine, virtual office and connected
vehicles safety applications [63]. Others, on the contnaguire more traffic upload than down-
load such as web electronic health records, virus scanfaeg, recognition, cloud storage, and
aggregated data analysis. Hence, the heterogeneity in @ewicess and applications has non-
negligible impact on traffic patterns and on the importanicephink. The diversity of services
offered through the Internet requires a management of nkteapacities in order to avoid both
functional and economical harm to wireless communicatdrastructure and businesses and their
customers.

1.4.2.5 Crowded Networks Scenarios

Mobile networks are designed based on peak network traffictanability to serve in peak hours.
This has led into excessive energy consumption. Sevengiaos were proposed for this problem
such as base station sleeping. Furthermore heterogenetwsrks deployment helps by offload-
ing traffic from congested macro-cells onto smaller bastosia Now that solutions exist, the
network should be dimensioned to keep its efficiency in pesth traffic scenarios. Peak traffic
does not only concern downlink, uplink traffic is also subjeqeak demands. Crowded scenarios
are the best example for such situations. We take the exashal®otball stadium were thousands
of people are gathered to watch a game. In such situationsilengsers share their experience
through social networks, texting or talking. They post lsaind videos during matches. A study
by Ericsson [6] about the FIFA 2014 football games showetl $baial networking and texting
were used during the matches and traffic peaked at half tinmsurihig a good user experience
in such scenarios is a challenge to operators. Network frlgramd optimization are necessary.
What is important to notice in crowded scenarios is the footmf uplink traffic. According to
the same study, the ratio of uplink in total data traffic wasighk as 50% during the final game
of the world cup. The normal ratio in the same location is leetw12 and 17 %. The increase
in uplink traffic is clearly non negligible and should be takato account during network plan-
ning and dimensioning. The study showed that 61% postednbmpsetures via the Internet, and
only 25% used the Internet to find and download content retletehe world cup. The numbers
also showed that more users posted videos (33%) than watatems (18%) through the Internet.
Video uploading data usage is quite high especially thattgianes and tablets camera technol-
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ogy is quite advanced and 4K video enabled. Furthermore ainynsports events, uplink traffic
surpasses downlink in some time windows. With the accdigibf high data rate services such
as 3G and 4G, mobile users will be more active uploading dadauging social networking. 4G
users, which have higher data rates, are more active thars&@.uThis proves what was stated
in Section 1.4.2.2 that users with higher services will wardo more. Even though 30% of data
traffic was handled by 4G networks, 4G users consumed 70% dataghan 3G users.

1.4.2.6 Sensor and MTC Networks

The evolution of sensor networks and Machine Type Commtinite (MTC) has been more

than evident in the last decade. Mobile devices, sensodsalhtypes of objects already or soon
will be equipped with sensors and RF circuits in order togrdée the wireless communication
network. The Internet of Things is a well-known applicatimihsuch networks that is creating a
new trend and imposing a breakthrough in network managerremtost wireless sensor networks
scenarios, data is aggregated from end equipment (seitgora)gateway that communicates with
the network infrastructure. As for machine to machine (M2dinmunications that allow devices
of the same type to intercommunicate is also requiring areaxing role in the wireless network.
Any device to device (D2D) communications can be estaldisheugh different scenarios, where
control link can be managed by end devices or the networkjsasigsed in Section 1.2.2.2. In
D2D communications, especially scenarios where contrdbige by the network, uplink traffic

is at least equal to downlink. Figure 1.14 shows a simplifeabll architecture of how the M2M

system will be connected to wireless networks. The capilteatwork, which represents the set
of communicating machines, aggregates data in a M2M gatévedys connected to the network
and may use cellular communication. The convergence obsemtworks and cellular has been

Simple M2M Architecture

Application Network M2M Device
Domain Domain Domain

Figure 1.14: High level simplified M2M architecture

studied in literature. The European FP7 SENSEI project {6dlises on the integration of WSN
(Wireless Sensor Networks) and actuator networks. Witretpected increasing deployment of
0T devices and services, the traffic generated by theseetemay change current traffic patterns.
In fact, regarding the number of connected 0T devices, &mated 50 billion “things” will be
connected to the Internet by 2020 according to Cisco [54]fodraffic patterns, current traffic
models do not take into account traffic generated by smaitegvAnd since mobile networks are
designed according to those patterns, they may not be abimpseich applications that are mostly
uplink traffic generating. It is then necessary to undedstaow smart devices will affect network
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traffic and include it in network optimization and dimensian

1.4.3 Uplink Improvement Related Work

1.4.3.1 Range Extension in Heterogeneous Networks

Coverage Range Extension (CRE) in heterogeneous netvgaki®chnique that can help increas-
ing the uplink/downlink fairness. In an area covered by lm#tro-cell and a small-cell, the MUE/
Base Station (BS) association is based on the downlinkwedesignal power only. And since
small cells are characterized by a smaller transmit powaar thacro-cells, and are randomly de-
ployed, they are expected to have large areas with low stgriaterference (SIR) conditions [65].
In the uplink, the strength of the signal does not depend erBth transmit power. It depends on
the mobile device transmit power and the received signalep@t base stations depends on the
channel gain. This results in boundaries mismatch betwpknkuand downlink handover in het-
erogeneous networks. And since small cell coverage rangesyaaller than those of macro-cells,
we notice unfair distributions of data rates between mandismall cells due to different loadings
of connected users. The proposed solution is to balance#tedetween macro and small base
stations by expanding the range of small cells (see Figurg)1This is achieved by associating
users to base stations based on path loss instead of resgived power. This will be in favor
of uplink network performance since minimum path loss assion maximizes uplink coverage
rate [60]. Nevertheless, range expansion lead to highfararce levels in the downlink which
imposes using interference coordination techniques.
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Figure 1.15: Cell Range Expansion (CRE) impact of baseosisfiootprint

1.4.3.2 Downlink and Uplink Decoupling

From the first generation to 4G, downlink and uplink of celluhetworks have been coupled. In-
deed, mobile users’ equipments have been connected witkathe base station in both uplink
and downlink directions. As mentioned earlier, the beselstation and user equipment couple is
not necessarily the same for both directions. While fornipit is best to connect UEs with the
base station with the highest received signal power, forrdiok, the best association is the one
that minimizes path loss. Adopting a downlink centric agsitian negatively affects load balanc-
ing in heterogeneous networks as well as uplink overallgearnce. Nevertheless, adopting an
uplink centric association through cell range expansi@aters interference problems for uplink
users. As a solution, uplink and downlink association dpting has been proposed in order to
optimize communications in both directions [66] [58]. Aswtion decoupling is expected to in-
crease uplink SNR and reduce transmit power, improve uplitdeference conditions, improve
uplink data rate, allow distribution of users among macrd small cells, and achieve more effi-
cient resources utilization and uplink rates. This techeiqdeed proved to achieve up to 200%
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improvement in the8 percentile uplink throughput in a simulation based on aViedafone LTE
test network deployment in London [66]. Nonetheless, theept of uplink and downlink decou-
pling is considered as one of the components of future eellubtworks [67] [68]. However, this
technique requires changes in system design since it needsamisms to allow acknowledgment
process between serving base stations for uplink and dokyrdirong synchronization, and data
connectivity between base stations.

1.4.3.3 Uplink CoMP Techniques
Uplink Coordinated Multi Point (CoMP) is a new technologyraduced with the LTE systems,
which consists on jointly processing signals that are veckat different antennas and/or base sta-

tions. Itis the uplink analogy of CoMP where a single useersad by more than one base station
(see Figure 1.16). In uplink CoMP, users’ signals are captbly more than a base station and pro-
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Figure 1.16: Uplink CoMP usecase example
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cessed jointly. Uplink CoMP can be deployed through thréferdint scenarios: Intra-cell CoMP,
Inter-cell CoMP, and between macro and small cells in hgemmeous networks. Inter-site CoMP
is easily deployed since all signals information are ingide cell. Intra-site and heterogeneous
CoMP require however low delay high capacity backhaul stigpetween base stations. We note
that uplink CoMP is transparent to mobile users in the semsenobile equipment do not need
to be aware of the base stations receiving their signal. éfbez, uplink CoMP does not change
the association complexity on the mobile equipment sidejoByly processing received signals
at different base stations, uplink CoMP results in uplinipiovement. Uplink CoMP achieves
uplink gain from both macro diversity reception and from dimey uplink/downlink decoupling
in heterogeneous networks. Uplink perceived capacity aved in high interference and poor
coverage conditions. Important gains can be achieved idlyeio locations where uplink and
downlink optimal associations are not the same, i.e. intiona where the most powerful re-
ceived signals and the minimum channel path loss are noeafame base station. In a full scale
field trial in LTE network [69] uplink CoMP proved to achieveMbps improvement in uplink
throughput, and 100% throughput gain if coupled with donkiliplink decoupling.
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1.5 Conclusion

The number of connected devices to the wireless networly bmibile users portable devices
(smartphones, tablets), the number wireless connectettshjsensors, machines), and the gen-
erated traffic are exploding. The traditional network aextture limits its capabilities, especially
in computation, and is rapidly found un-adapted to such gbsarand increase of requirements
and demands. This has imposed a series of changes in therkeinebitecture for satisfying the
parallel exponential increase in data traffic and computaiquirements. In this chapter, we have
presented a description of the future generation of wisatetworks, 5G, which requirements are
set to meet the changing network demand. We presented thectdmdstics, enabling technolo-
gies, and requirements of the 5G future networks. Then, weskd on the cloud technologies
integration in mobile networks. Cloud computing has beest fliefined and its characteristics,
enablers and deployment scenarios have been discussedowdgran overview over the archi-
tecture evolutions involving cloud functionalities hasheresented. Starting with centralizing
the radio access network as a first cloud aspect operatidme imbbile network, we discussed the
advantages of having network required computational teske performed on a cloud platform.
Mobile cloud computing was the first cloud aspect allowingbiteousers to compute their own
tasks on the cloud. The major MCC platforms, remote cloudsidtets, and edge computing have
been presented with detailed architectures and analyiially an overview on the cloud emer-
gence in the world of the Internet of Things detailed edgepmaing functionalities in a parallel
system to cellular networks. Table 1.2 shows a brief corsparpf the different cloud systems
characteristics.

Finally, we discussed the challenge facing wireless ndtsvar uplink communications. In-
scriptions number increase, network development, cloddni@ogies, cloud computing enabled
ecosystem, and convergence of sensor and actuators netar@khe main factors that we dis-
cussed and showed how they can influence uplink traffic. Wediscussed some research works
and studies that have been already proposed by the comrtianisaciety and can help improve
uplink network resources management and increase uplpdcis in current and future networks.
However, there are still no clear uplink traffic patternst tten validate if the existing efforts are
enough for coping with the upcoming challenge.
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Table 1.2: Cloud architecture evolutions comparison

Remote
Cloudlets MEC Fog
Servers
Uncontrol-
Latency lable (often Low Low Low
high)
Availability High Moderate High High
Reliability Moderate High High High
Cloud
_ network End users and
Managed by services end users
i operators ISPs
providers
Access to network
i . Yes No Yes No
information
Privacy and . . .
] Low High High High
security
Mobility support Moderate Low Moderate High
Proximity to users Low Moderate High High
Number of hops to
>>1 1 1 1 or more
be reached
Computation tasks Connected
End users End users End users

source

things
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2.1 Introduction

Cloud functionalities are integrating wireless networkbkjch empowers mobile devices with re-
motely accessible computational and storage resourc#ssitihesis, we consider cloud-empowered
Het-Nets with added capacities: processing and storagezdvHave indeed the possibility, in ad-
dition to communication, to offload processing and companal requests for an execution on the
cloud, through the wireless network. We adopt a MEC archite¢ which moves cloud capabili-
ties to the edge of the network, by moving computationalweses, and thus computation efforts,
from the Internet to the very edge of the network, charazderby its proximity to mobile users.
We specifically adopt the architecture proposed in TROP@, [ih which small cells (SCs) are
considered equipped with additional computational anchgi capacities. Small cells are used,
not only for delivering communication services to MUEs, alsio for computing MUEs offloaded
computational requests, and storing mobile users’ offldatita. Each MUE is associated to a
serving small cell (SSC). SSCs receive offloaded computaticequests from connected MUES,
execute the requests, and send back computation resultsEssMA Small Cell Manager (SCM)
entity manages the use, performance, and delivery of clendcgs. The cloud-enhanced small
cells and SCM form amall-cell cloudin which users’ computation requests are executed. While
SSCs can offer local edge computing services, we proposddadtheir capabilities by allowing
SCs to cooperate through a small cells cluster (SCC), inhlwbéveral small cells contribute in
the computation of MUES offloaded computational request&nkf SSCs capabilities can serve
MUEs offloaded requests, a SCC can enhance the local edge cipabilities. For example,
distributing the computation load one more than one contiput&ntity can speed up the compu-
tation. SCCs form a local edge cloud platform at high proijrto mobile users. The introduction
of local edge cloud to wireless networks adds extra reseurmesystem operation optimization.
In addition to communication resources, computationalsiochge resources should be optimized.

2.1.1 Contribution

In the first part of this chapter, we detail the adopted sn&lllaloud architecture. We describe

the mobile computation offloading and small cells clusggratenarios. We discuss about the
limitations of the cluster-based edge cloud computing, daduce the optimization degrees of
freedom that make the basis of the approaches proposedsitht#sis. The set of optimization

variables in small cell clustering for computational puses, are involved in a set of trade-offs.
We present an overview over these trade-offs. We start belarpnary state of the art on trade-

offs in heterogeneous networks, before focusing on theerlesige cloud architecture trade-offs.
Finally, we present an in-depth study on the impact of iettester communication backhauling

on edge cloud computing.

A part of this chapter is based on the conference paper C2.

2.2 System Model

2.2.1 Small Cells Edge Computing

Using network edge entities, as indoor/outdoor small cafid relays for example, offers some
advantages with respect to their counterparts, namelyortzage stations or WiFi access points.
The advantages with respect to macro-cell base stations are
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e proximity offered by small cells makes possible energy rsgat the mobile handsets, with
consequent increase of mobile users equipment battetiyride

¢ the number of users concurrently served by a small cell isvsutaller than the number of
users served by a macro-cell. This simplifies the setup ofpctational clusters, and the
computation offloading process between mobile users anthgesmall cells.

e short distance between mobile users and small cells entitdatevelopment of proximity-
based services, such as home security control, which agosstble in a macro-cells based
cloud.

Advantages of using small cells with respect to WiFi nodes ar
e femtocells simplify hand-off as they are fully complianttivihe mobile standard
o femtocells provide QoS guarantee and better interfereramgagement than WiFi [71].

e WiFi and cellular technologies (3G/4G/5G) are standalogigvarks, and their integration
is considered cumbersome from the operator’s point of viewufficient authentication,
access control techniques, and integration with cellutaie metwork are the concerns of
operators in using WiFi as a cloud solution.

2.2.2 Computation offloading

MUEs are limited in computational capacities, storage spand energy (battery lifetime). Com-
putational requests offloading to the cloud extends MUEslgidipes, and allow mobile users to
have access to higher amount of computational and storagarmes. MUESs have the possibility
of either executing computational tasks locally at the MWEg the handsets resources, or of-
floading computational tasks for execution on the cloud. @atation offloading requires sending
computational requests to the cloud, via the SSC, in our. chsaddition to increasing MUEs
computational and storage capabilities, mobile handsetsgg saving is an important advantage
of computation offloading. However, computation offloadmgy not always be beneficial from
an energy consumption perspective. Energy costs for larapatation on MUEs is equal to the
tasks execution energy consumption, related to the conipuitsize and the MUE processor char-
acteristics such as the processor speed and its energyneptisn per CPU cycle. Mobile energy
consumption in case of computation offloading is equal tatmemunication cost between MUESs
and SSCs. This cost depends on the amount of data to send & &3Con the communication
channel quality. Moreover, despite the assumption thatcctdfer much higher capacity than mo-
bile devices, widely adopted in literature, executing $ask the cloud may consume more time
than local computation. In fact, computation offloading &sdéd on sending the computational
requests to the cloud, executing the computation on thedcland sending back the computation
results to mobile users. These steps impose both commiamicatd computation delays. The
gain in computation time, due to higher computational caigscat the cloud side, should be high
enough to compensate the additional communication delay.

Computational requests of mobile users are considered tegresented by an instruction
block (CPU cycles) to execute within a latency constrairite Tomputation results should be de-
livered to mobile users without any violation of these comists. Hence, an offloading decision
strategy is required in order to efficiently compute an offing decision that guarantees the re-
spect of energy, time, and resources constraints. Thisidads subject to various system, tasks,
MUE, and cloud characteristics, and to several trade-offs.
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2.2.3 Computation Small Cells Cluster

Small-cell Cloudserves MUEs computational requests by executing them wssivadl cell com-
putational resources in the local edge of the network. Wpgse forming a local edge cloud that
extendssmall-cell cloudcapabilities by setting up small cells clusters for compaotel purposes.
The idea is to distribute MUEs offloaded computational loachset of small cell referred to as
the Small Cells Cluster (SCC). SCC shifts the paradigm frooall edge computing in a small
cell to local edge cloud where computational tasks areildiggd among several small cells. SCC
includes the SSC that receives the computation request ftbtg, and a set of neighbor small
cells that help execute the offloaded tasks, referred to §geH8mall Cells (HSCs). We make
the assumption of possible parallelization of computaisaquests, in order to be able to find the
optimal distribution of computational load on the clusteradl cells. SCC is a distributed comput-
ing platform that is set up for improvingmall-cell cloudenergy efficiency, service latency, and/or
power consumption. Various reasons for a SSC setting up aiS€€ad of executing the tasks
itself are possible. For example, when SSC resources, suchraputational capacity or storage
space, are lower than the computational request requitsirienannot execute the tasks, at least
without violating requirements constraints. In this c&88C sets up a SCC for increasing its ca-
pabilities by delegating computations to HSCs. Moreowsnaf SSC resources are sufficient for
executing offloaded tasks, SSC can set up a cluster for einiggite performance. From a service
latency perspective, distributing computational load ewesal computing entities decreases the
service latency through parallelization of computatioattiBg up a SCC, is requested by the SSC,
and managed by the SCM. An additional functionality of SCNbisnanage intra-cluster resource
allocation.

Setting up SCC for computing an offloaded computational tasiot straightforward. The
cluster set up is constrained by the resources availakifity demanded requirements. The main
conditions and constraints to be respected in a clustempsataithe following:

e Complete tasks execution
Distributed computing of offloaded computational tasks smaall cell cluster, should guar-
antee the execution of the totality of the task. The distedicomputational load should be
equal to the total computational size, and all distributestiishould be computed.

e Respect tasks requirements
Computational requests consist on executing a number CRléscin a fixed time limit,
referred to as latency constraint. Latency constraintosa minimum computational ca-
pacity for a task executioim time. Furthermore, computational tasks may also have memory
and storage space requirements, which should be respeaotezllaThe SCC in which com-
putational tasks are executed should guarantee, at lbastihimum requirements of the
computational tasks in terms of computational, storagd,amy other requirements. Note
that service latency in SCC is defined by both communicati@ivween computing nodes)
and computation delays.

e Small cells resources availability
Distributing computational load on several small cellsuiegs allocating computational re-
sources on each of them. Small cells have larger compugaticapacities than MUES;
however, these resources are limited. We refer to a smathicebmputational node asser-
loadedif its available computational capacity is not sufficient fmmputing the accorded
computational load. Load distribution and computatiomaources allocation should then
be jointly orchestrated for preventing small cells compateal overload
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e Communication power budget
In a SCC, small cells exchange computational data. Firdr at the cluster set up, SSC
sends computational load and requirements to HSCs, thdsdmack computational re-
sults to SSC after their execution. The data exchange bat8&& nodes is referred to
as intra-cluster communication, and is often subject togydmudget limitations. Power
budgets are of high importance especially in the case ofl@gsantra-cluster communica-
tion. Intra-cluster communication resources should kexatied in order to respect imposed
communication power budgets.

Respecting the constraints above is crucial for guarameaaitime service delivery for mobile
users. In this thesis, we consider mobile users’ QoE as #eclpsrformance evaluation criterion.
QOE is a subjective measure of mobile users’ satisfactidh délivered services. We assume that
mobile users are ‘satisfied’, and achieve desired QoE, wheradded service is delivered without
any violation of imposed latency constraints. In generahstimers are willing to wait for service
delivery for a reasonable time depending on the applicatiosmall extra waiting time is often
acceptable, however, when service delay does not meetmensuexpectations, QoE is judged
as insufficient.

In order to achieve high QoE while respecting the imposedstraimts and limitations, the
cluster set up requires a joint optimization of computam communication resources. In ad-
dition to this joint optimization, efficient load distridah is required. These three optimization
sets of variable define the service latency, allocated ctatipnal resources, and communication
power consumption. We now detail each of the optimizatioratbde sets and the related model
and assumptions that we adopt in this thesis.

Intra-cluster communication

We assume that small cells communicate through in-bandessdinks that support Line of Sight
(LoS) as well as NLoS (No Line of Sight) communication. We ptdweireless intra-cluster com-
munication, even though it can impose larger communicatalays (comparing to wired fiber, for
example). We choose wireless intra-cluster communicdtipits scalability and low deployment
cost, as no wired connection are required to allow smalsamlilclusters nodes to communicate.
Most importantly, wireless transmission raises the chgkeof communication resource alloca-
tion for intra-cluster communication. Furthermore, cdesing wireless communication, several
types of nodes (femtocells, pico-cells, relays) could hesatered as part of the cluster through
plug-and-play or ad-hoc scenarios.

Channel conditions and maximum link capacities betweeh ga@ of small cells are known to
the SCM. In other words, we consider that the SCM has full @eaState Information (CSI)
knowledge. The SCM adapts the transmission rate by tuniadrémsmission power over each
wireless link joining the SSC with a HSC. The transmit poweupper bounded by a maximal
power budget, and thus, the rate is also bounded by the maxi&hannon capacity. We consider
that the SSC communicates with several HSCs, by adoptitmpgonal simultaneous transmis-
sions through orthogonal frequency division multiplexirithis decreases the transmission data
rate over each link between small cell and helper small ,cbils mitigates the intra-cluster in-
terference problem. Nevertheless, through our simulati@nnel models, we increase the noise
value as an implicit way to take into account a fixed interfieselevel. In all simulations and nu-
merical evaluations presented in this thesis, we consefatd cells edge cloud nodes. However,
the formulation of the proposed solutions can be genedlized applied to any type of wireless
communicating node by adapting the simulations parameters
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Computational resources

The SCM also has the functionality of allocating computadiocapacities at the clusters nodes.
Every small cell is characterized by a total computatioradacity, and a utilization ratio. The
utilization ratio determines the ratio of momentary alkechcomputational resources. Network
small cells report their utilization ratio to the SCM. Samglthis information is done either period-
ically, upon a request of the SCM, or at every variation ofttikzation ratio. The SCM allocates
computational resources for tasks execution, taking intmant resources availability. Resource
allocation is subject to aomputing outageonstraint. Small cells should not be overloaded, i.e.
allocated computational resources must not be greaterawailable resources. Otherwise, com-
putational tasks cannot all be executed, and the cell isrmpeming outage.

Load Balancing

Cluster nodes are connected through limited capacity @dKimks, which differ in capacity and
utilization rate. Furthermore, each of the cluster nodeh@acterized by a total computational
capacity and a utilization ratio. Computational tasks astributed among the cluster nodes.
Computational load in the computing cluster should be effity distributed for guaranteeing the
execution of the tasks while meeting the mobile users’ egie@QoE. However, load balancing
can follow various strategies. For example, from a laterrayoon putational resources availability
aware perspective, thgestdistribution uses all available small cells. Distributitige load on a
large number of small cells, results in smaller computatiémad blocks (CPU cycles) to compute
at each small cell. Hence, a lower overall computation tates perceived. In addition, large
clusters require smaller amount of computational res@uateeach small cells, which increases
resource availability for future requests. On the otherdhaaducing the number of computing
small cells allows to achieve higher system energy effigigdmat can lead to higher computational
delay, since the distributed instruction blocks on thetelusodes are larger.

In order to balance all of these different aspects, loadiligton strategy has to take into
consideration small cells, computational requests, anthzonication channels characteristics. A
joint algorithm that considers the system radio conditiand computational load of cells must be
designed in order to respect all the imposed constraintléde computational capacity, max-
imum latency tolerance, and maximum communication capacin general, splitting an exe-
cutable task into instructions is not easy. An applicatian be more easily split into modules
(Java modules for example), which provides more coarseutaaty than splitting over CPU cy-
cles. Throughout the work of this thesis, and the proposeiingation procedures we assume
very high granularity, and we work using task splitting o@®U cycles or instructions. We note
that the relationship between the number of CPU cycles amdumber of instructions depend on
the type of the instructions in question. This assumptioa adopted since the aim of this thesis is
to find a solution for resource allocation in small cell cleudther than to distribute computational
tasks from an information technology point of view. The @gations parallelization is however
not a far reality. Many applications can already be disteduvith very loose constraints, such as
virus scanning for example.

Figure 2.1 represents a small cell cluster architecturavistgpthe MUE that offloads a com-
putational request to its serving small cell. The lattelorepthe request to the small cell manger
(SCM) that already has information about the small celltustan the network, through the con-
tinuous status report of small cells to the SCM. Note that S&inot send the request in itself but
only necessary information: computation size, latencystraints, and application requirements.
The SCM computes cluster parameters: it allocates commtimicand computation resources
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Figure 2.1: Small cell cloud basic architecture and propéseiples

and distributes the load on cluster nodes. The cluster amhparameters are then sent back to
SSC, which distributes the load on the cluster HSCs. Afterdoeomputed by HSCs, sub-requests
results are sent back to the SSC, that sends the computasioh to the mobile user.

2.3 Preliminary on Communication Trade-offs in Heterogen®us Net-

works

Heterogeneous networks witness the co-existence of dttleadiers. HetNets are proposed as
a solution for increasing wireless network performance xigreding the network capacities, but
also for improving wireless networks energy efficiency. toying the communication service

quality in HetNets is subject to various trade-offs. in thétion, we elaborate some trade-offs

that has been studied in literature.

e Energy efficiency vs system performance
One of the main issues of HetNets is the trade-off betweerggredfficiency and system

performance degraded by high interference levels. In atigvaietwork where macrocells
and femtocells co-exist, communication traffic is offloafiedn macro to femtocells. Fem-
tocells, characterized by smaller distance from mobilesjsese lower transmit power and
deliver higher throughput than macrocells, especially mherving MUEs at macro cell
edge. Increasing the density of small cells in the netwockeiases the energy efficiency.
With more deployed small cells, MUEs are connected to clesall cells, and thus trans-
mit powers are reduced, and energy consumption is decreldsggbver, this gain in energy
efficiency comes at the cost of higher interference leveth wiacro users. As small cells
deployment can significantly improve energy efficiencyyéhs a trade-off with macrocell
system performance in terms of throughput or spectral effi. This trade-off has been
studied by Cacet al. [72] and Charet al. [73]. Cao shows the trade-off between energy
efficiency and macrocell performance degradation witheesppo femtocells density in a
single macrocell scenario. The study shows that there i¥ani@&yradation of macrocell
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performance, and an energy consumption gain up to 100 tiowesr| when 80 small cells
are deployed within one macrocell. Chen formulates botinggrend spectral efficiency for
an Additive White Gaussian Noise (AWGN) channel for a pagapoint transmission. The
trade-off formula is derived using the Shannon’s capaditynula, as follows:

Nse

nEE:m (2.1)

wherensg, Nee, andNg represent the spectral efficiency, energy efficiency, amiepspec-
tral density of AWGN, respectively. The trade-off curvevbeen EE and SE is monotoni-
cally decreasing in this case. However, Chen states thahitipal network situations, the
trade-off curve will turn into a bell shape after taking irdocount the effect of resource
allocation mechanisms, coding and modulation schemesransiission channels charac-
teristics.

MUE energy efficiency vs system energy efficiency

With the dense deployment of small cells, MUE will be assietiao closer base stations,
resulting in a transmit power reduction, and higher eneffjgiency at the mobile side.
However, with denser deployment of small cells, some bas@sts will be activated for
serving a very low number of users. Small cells power congiomps mainly due to its
activation, and slightly increases with the cell load (sepufe 2.7). Therefore, MUE EE
increases for higher small cells density, whereas systerddeEeases. This trade-off be-
tween MUE and system EE is exploited to propose energy awatEdvand base stations
association schemes [74].

Wired and wireless backhauling trade-offs

Backhaul is considered as one of the bottlenecks in heteenges wireless networks [75].
Backhaul costs and delays affect network performance. ¥&ds two trade-offs between
wired and wireless backhaul for HetNets.

— Flexibility vs reliability Wired and wireless backhaul have each their advantages,
which creates trade-offs between the two backhaul typesedMiackhaul has the ad-
vantage of higher reliability, data rates, and availapilitn addition, throughput is
not subject to transmission channel changes or envirorahtating. Wired backhaul
performance depends on the used technology (optical fiBs|Lxetc.), the material
(fiber, copper), and traffic congestion. However, a majoti&oeck of wired backhaul
is deployment cost and complexity. Small cells can be deguldg areas or locations
where it would be hard to deploy wired backhaul. As for wissldackhaul, vari-
ous technologies can be used, such as, in band wirelesspwaige, or millimeter
wave. The choice of wireless technology depends on the gt scenario and the
availability of spectrum. In general, wireless technoésgoffer higher flexibility in
dense deployment scenarios, since no wired connectiontadexinstalled. However,
flexibility is at the cost of reliability. Wireless commuiaiton is subject to commu-
nication channel conditions and variations. Wireless haakhas lower availability
and flexibility than wired network. In addition, higher tsanission delays incur due
to reception failure, and retransmissions.

— Small cells density vs communication latencys wired backhaul technologies can
achieve higher data rates comparing to wireless backhaelcammunication delay
witnessed in both cases depends on small cell deploymesitgleA study by Cheret
al. evaluates the effect of both wired and wireless backhauletiNEits performance in
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terms of service delay. The authors show that for wireleskHmul, latency decreases
with the increase of small cells density. However, the leyegain saturates beyond a
certain density, and thus, small cells deployment becoessdost-effective. As for
wired backhaul, it is shown that there is an optimal smalkadénsity, beyond which,
wired backhaul performance degrades significantly. Basetth® studies by Chen D.
et al,, we sketch in Figure 2.2 the variation of system performaanog deployment
cost efficiency with respect to small cells deployment dgr{3i6].

----- Wired backhaul
— Wireless backhaul

Service latency
Deployment efficiency

Small cells density Small cells density

Figure 2.2: Small cells density vs service ld&=igure 2.3: Small cells density vs deployment
tency for wired and wireless backhaul efficiency

e Energy efficiency vs Deployment efficiencipeployment efficiency is measured as system
throughput per unit of deployment costs including both CXPahd OPEX. In network
design, deployment and energy efficiency are in trade-ofhil®increasing the number
of deployed small cells, energy efficiency increases duedaiation of transmit powers.
However, from a deployment efficiency perspective, witls lesall cells, and larger cells
coverage radius, more users are associated per small metlthas, deployment costs are
reduced per user, or per throughput unit. Increasing thebeuwf small cells in a low den-
sity network increases significantly energy efficiency, panng to increasing the number
in already dense deployment. As for deployment efficiertdpcreases when adding small
cells in low density deployment scenarios, and decreasembean optimal small cell den-
sity. The optimal small cell density in this case dependshertiaffic load and throughput,
used for computing deployment efficiency. Based on the etubly Chen et al. and Chen
D. et al,, we sketch the deployment efficiency in function of the sroells density [73, 76].

e Communication latency vs transmit power Wireless communication is always subject
to a trade-off between transmit power and communicationyelictated by the Shannon
capacity. The relationship between transmit power andydslenonotonically decreasing.
However, in practice, taking into account hardware powasamption, and scheduling la-
tencies for example, the relationship between the oveoaligp consumption and the whole
service delay does not have the same behavior. The tradeHe changes its behavior,
and, in general, there is no closed formed expression tlmatssthe relationship between
power and delay [73]. This phenomenon can be due to, amomgspttihhe scheduling la-
tency that increases when transmission delay is largewitipower, channel conditions,
and traffic arrival rate.
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2.4 Advanced MEC trade-offs: Joint Communication and Compu
tation

When empowered with cloud functionalities, HetNets argestiio additional trade-offs. In ad-
dition to communication QoS and communication resouraacation, an extra system operation
parameter is added to HetNets: computation. HenceforthEMshare both communication and
computation resources. In previous Section 2.2, we détaibtiopted MEC model in this thesis.
The required joint communication and computation resoatt®ation, in addition to computa-
tional load distribution in cluster set up, are subject eksal trade-offs. In addition to the HetNets
classic trade-off axes, new axes are added when computicen@&dered in HetNets, and some
evolve to include more parameters. For example, serviemdgtin classic HetNets is based on
the communication delay perceived from MUESs perspectine ¢loud-enabled HetNets, service
latency depends, not only on communication delay, but atsoamputation delay, tasks execu-
tion location (SSC or SCC), used computational capacitaes] distribution, and intra-cluster
communication delay.

2.4.1 Computation Offloading Trade-offs

First, we consider the computation offloading mechanismhitivMUESs decide between execut-
ing computational tasks locally using handset resouraas,offloading tasks to be executed on
the cloud.

e Energy efficiency: local computation vs computation offloathg
MUE low energy consumption and extended battery lifetireesanong the most important
performance indicators of mobile handsets. Therefore, Mbkgy efficiency is considered
as a main parameter in computation offloading decision. Kewéocal computation and
computation offloading energy efficiencies vary with respesystem conditions and tasks
requirements. This creates a trade-off between energyesitic and system performance
in terms of service latency and computational capacity.

¢ MUE energy consumption vs service latency

A main trade-off in computation offloading is between enecgpsumption on the MUE
side, and the perceived service latency. Less energy canguwamputation strategy does
not always have lower service latency. For example, locaimdation of requests that
require the transmission of high volume of data in case obaffing may be less energy
consuming than the task offload. However, since local coatjmual capacities on MUEs
are lower than the cloud, the computation time is larger. é&sds\g computational data
to SSCs imposes communication energy consumption, highrapetational capacity is
offered by the cloud, and thus the computational servicaydedn be reduced. We note that
this trade-off depends on computational tasks requiresn&fil E resources availability, and
communication channels quality.

¢ MUE energy consumption vs computational capacity
While computational capacity offered by the cloud is higtiemn available computational
capacity at the MUEs, computation offloading may not alwag<sbneficial from an en-
ergy consumption perspective. Conversely, local comjamuitatt the MUE may be less en-
ergy consuming, but computational resources may not begenfmur respecting resources
constraints (latency, memory requirements, or computaticapacity). We note that this
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trade-off depends on computational tasks requirementsk Mésources availability, and
communication channels quality.

¢ MUE resources extension vs privacy

Having the possibility of offloading computational taskenfMUEs to the cloud extends the
MUEs computational and storage capacities. However, ¢xercomputational tasks, even
on local cloud, requires sending computational data that coatain private users’ infor-

mation. A trade-off takes place between keeping usersapyivby computing tasks locally,
and computational and storage resources availabilitychvisi higher on the cloud. We note
that this trade-off depends on the MUE resources avaitgbilie local cloud deployment
model (Private, public, community, hybrid), and the SSCloapent model (open access,
closed access, hybrid access).

2.4.2 Small Cell Cloud Clustering Trade-offs

In this section, we focus on the trade-offs that are facekdémtobile edge cloud computing cluster
set up. Setting up a computational cluster requires idengifthe small cells to participate, load
distribution among the small cells, computational cagaaitocation at each of the small cells,
and the communication resources allocation for exchangimgputational data between SSC and
HSCs. We assume that computational tasks are received by, 88& we investigate the trade-
offs in the cluster set up between SSC and HSCs, indepepdeath MUEs. The size of the
computational SSC is an important parameter in cluster getTine cluster size is constrained
by several parameters such as the aggregated computatapeity and the latency constraints
of the computational tasks. Larger clusters have highereggded computational capacity, and
lower service latency. However, increasing the clustez sizluces the system energy efficiency,
and may increase as well intra-cluster power consumptibe.ifposed constraints on the cluster
and the various limitations in terms of power and energy iefficy result in a set of trade-offs that
we list below:

e Transmit power vs computational capacity
All participating small cells in the SCC should be able toide! computational results to
the SSC without violating latency constraints. Except Far 8SC, where no data exchange
is required, the service latency for each HSC can be writseth@ sum of communication
and computational delay.

Wisc | Whisc
S+

RpHSC Fisc
The communication delay in Eq. 2.2 depends on the size oftddia exchanged between
SSC and HSCW,s, and on the transmission rate defined by the transmit p@uee.
The computational delay depends on the computationalWgagt and the computational
capacity allocated at the HF& sc. The trade-off between communication and computation
delay is clear, where, for respecting latency constesinic, if one increases the other should
decrease. Figure 2.4 shows the trade-off, for a fixed lateongtrainfT and computational
load, between allocated transmit power and computaticm@adaity. Higher transmit power
reduces the communication delay, and thus less compuhtiapacity can be used at the
HSC for satisfying latency constraints. In the multi-usase, this trade-off is important for
coordinating computational resources allocation andstrassion powers for distributing
computational resources among several users, while r@sgexd! latency constraints. We
note that in case of a fixed offered computational capacithetHSC, the service latency
increases with transmit power decrease. This trade-offisttieat the cluster set up depends

Apsc= (2.2)
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=== Computational capacity
=== Communication throughput
=== Transmit power

Communication delay

Figure 2.4: Transmit power vs computational capacity traffle

on a clustering policy. Based on this trade-off we formulat&Chapter 4 two clustering
policies based on either reducing the communication trérnsower or the cluster service

latency.

Cluster size vs service latency vs power consumption
While a trade-off exists between communication power conion and service latency at

each HSC in a SCC, the whole service latency is not only defigetiat trade-off. SCC la-
tency depends on the set of all participating small celks cthmputational load distribution,
and the communication and computation resources. We gligsh a first trade-off between
SCC perceived latency and intra-cluster communicationgp@ensumption. Increasing the
number of HSC in a SCC, i.e., increasing the cluster sizelteeih smaller computational
loads distributed on participating small cells. For a fixethputational capacity at HSCs,
and fixed transmit power, decreasing the load leads to a Isemice latency. This can be
seen in Eq. 2.2 where it is shown that the perceived lateneaetht HSC depends on the
computational load and the size of computational data thaxge. Smaller service latency
at each HSC results in smaller perceived cluster latenayywslapted load distribution.

With smaller loads to be distributed at each small cell, tegaputational data is exchanged
between SSC and each HSC. Fixing the computational capafdit$sCs, sending less data
to HSCs decreases the transmit power between SSC and HSQ@gevétp an excessive
increase in the cluster size, can result in an increaserisrna power consumption. Figure
2.5 represents the variation of latency and intra-clustemraunication power consumption
with respect to the cluster size. Note that a contributiothisf thesis in Chapter 4 is based
on this trade-off, where the cluster size vs communicationgr consumption is exploited
in order to decrease power consumption, at the cost of ardsirg latency due to cluster

size reduction.

e Cluster size vs system energy efficiency vs aggregated contgtional capacity
Increasing cluster size allows further parallelizationcofmputational tasks, and thus de-
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Cluster service latency
Communication power consumption

Cluster size Cluster size

(a) Cluster size vs cluster service latency  (b) Cluster size vs cluster communication power
consumption

Figure 2.5: Cluster size vs service latency vs power contiomprade-off

creases the service latency in SCCs. However, energy efficiecom a system perspective
decreases with assigning lower computational load to ste##i. In fact, small cells power
consumption is mostly due to them being activated. The pameasumption slightly de-
pends on the communication load. Therefore, assigningehifffads to each small cell
improves its energy efficiency. However, cluster set up isst@ined by required compu-
tational capacity and latency constraints. When aggrdgatenputational capacity at the
SCC cannot satisfy the computational tasks requiremerage tHSCs should be included
in the cluster. Increasing the number of HSCs increasesgbeegated computational ca-
pacity that could be offered by the cluster. The clusterreflecapacity, seen as the sum
of perceived capacities at each HSC, increases with the eupnftHSCs. This is true if
we consider a SCC built with HSC of equal computational caies¢ which are added to
the cluster following an order of ascending distance fron€SiSote that the aggregated
capacity saturates when the added HSCs cannot improveustercperformance due to the
high communication delay imposed by large communicatistadice. Figure 2.6 shows the
variation of System Energy Efficiency (SEE) and aggregatedputational capacity of a
SCC in function of the cluster size. Note that improving egsenergy efficiency is the aim
of a proposed cluster size reduction strategy based onudktecllatency vs communication
power consumption trade-off. We detail the SEE and comjauait capacity trade-off in
the next section.

e Deployment density vs cluster service latency
SCCis based on the joining several small cells for compartatipurposes. The intra-cluster
communication is an important parameter that affects thé S&formance in terms of both
service latency and communication power consumptionatdlense small cell deployment
is a major key enabler for SCC-based edge cloud computinghdfismall cells density
increase the number of neighbor small cells at high proxinaitSSC. Proximity of cluster
small cells allows faster intra-cluster communicatiorhddétwer power consumption. There-
fore, service latency increases with cloud-enabled snedl8 density around the SSC. The
deployment density relative to the distance between SSGH&k is exploited differently
according to the cluster set up policy. A latency minimizétigategy will exploit the density
of available small cells to increase the cluster size foienthg lower service latency. An
energy aware strategy, exploits neighbor small cells tetsireduce intra-cluster commu-



60 CHAPTER 2. EDGE CLOUD CLUSTER COMPUTING : CHALLENGES AND TRADE-OFFS

acity

System Energy Efficiency

Aggregated computational cap:

Cluster size Cluster size

(a) Cluster size vs system energy efficiency (b) Cluster size vs aggregated cluster computa-
tional capacity

Figure 2.6: Cluster size vs SEE vs aggregated computati@apalcity trade-off

nication power consumption while keeping the same clustey, or example. In Chapter
4, we show the effect of small cells density on cluster settrgtegyies.

¢ Intra-cluster backhaul technology and topology trade-off
Intra-cluster communication has an impact on almost ev&l§ 8ade-off. The communi-
cation delay and power consumption, are defined accorditigetadopted communication
technology and topology. Intra-cluster backhaul in edgaidticomputing platforms has
been very rarely studied in literature. In the next sectiva,propose a detailed study that
shows the impact of backhaul on SCC characteristics.

The discussed trade-offs are based on a set of parametemsffé@ the cluster set up and
performance. From the same parameters, we identify made-tvés that have similar behavior
than the discussed trade-offs above. A few of these tradeacd mentioned in the list below.

e System energy efficiency vs latency
e Deployment density vs required cluster size
e Cluster latency vs Electromagnetic Field (EMF) exposure

e Deployment efficiency vs system energy efficiency

2.4.3 Local Computing vs Computation Offloading

The core of mobile cloud computing is computation offloadifigm mobile devices, to be com-

puted by the cloud. Computational requests offloading regusending data from MUEs to the
cloud. In MEC, mobile devices communicate with the clouatiyh users’ serving base stations.
From an energy point of view, computation offloading has camication costs, which increase
with the size of data transferred to the serving cell. Comigation energy consumption also de-
pends on transmission data rate, and transmit power. Le¢fisedhe energy efficiency metric,

Deg[bits/Joule] as a measure of the amount of data that can bsféraed with a given energy

budget. Then, the total enery, consumed for offloading a task Nfbits, is equal to:

N

Ep— ——
°" Dee

2.3)
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In case of local computation at the MUE, consumed energyaeks execution depends on
the number of CPU cycles to be executed, and MUE processorputing energy efficiency. Let
us define the computation energy efficiency me@iig: [CPU cycles/Joule] as a measure of the
amount of CPU cycles for a given energy budget. Then, cortipatanergyke;, consumed on the
MUE for executing tasks of a block & CPU cycles, is:

C
E Cer (2.4)
From an energy point of view, the more efficient computingatam, between the cloud and
MUE, is the one with lower energy consumption. Computinggdscally at MUE is more energy
efficient if E; > E,, and vice versa. Offloading is usually more beneficial whenamount of
data to transfer is low, comparing to the amount of compartatiocal computation is less energy
consuming when large amount of data have to be sent for émgautsmall amount of computa-
tion. In cases that vary between the both previous extrethedess energy consuming solution

depends greatly on energy efficiency parameters of bothiau

2.4.4 Performance and Energy Savings

Mobile computation offloading is not only seen as an efficieay to save energy, but also as a way
to reduce computation delay. Service delivery time is anoigmt performance metric for QoE.
When making offloading decision, execution time should lkeriainto consideration. However,
computation offloading decisions that aim at reducing gnestg not necessarily coincide with
decisions that reduce execution time. In general, the delalpoud computing is equal to the sum
of the communication and computation latencies. Commtinitdatency is the communication
time between MUEs and the cloud (in both UL and DL). Compatatatency is the time the
cloud takes to execute requested tasks. We defias the whole computation offloading process
latency, which is equal to the sum of communication tigg and computation delatomp

b = 1lcom‘i‘tcomp (2-5)
N C
= —4+= 2.6
Rt E (2.6)
N C
= ﬁ+_)\F| (2.7)

whereN is the number of bits to sen® is the transmission bit rate in bits/sec, drdis cloud
computational capacity in CPU cycles/sec, whiclk ismes greater than the local computation
capacityR.

We defing; as the local computation delay.

whereR is the mobile device computational capacity.

From a delay perspective, offloading reduces executionwitrent, > t,, i.e. when

N
t| > m (29)
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Knowing the delay in both local computing and computatiditoafling use cases, we can formu-
late the energy consumption of both cases.

The consumed energy for computation offloading and comipuatan the cloud is formulated as
follows:

N C
Eoz ﬁptr‘i‘Ecpc (2-10)

wherep is the cloud computation power, aipg the transmission power.

In the case of local computation at the MUE, energy conswnptan be written as follows:
C

E = ﬁpl (2.11)

wherep, is the local power for computing.

From an energy perspective, offloading reduces energy oguitan wheng, > E,, i.e. when

N pr
> — 2.12
" R -Apo (212)
If both conditions in Eq. (2.9) and (2.12) are satisfied, ifet; > max{R T R(;T'“' }, then

computation offloading is beneficial. Not only it reducesrgye:onsumptlon but reduces service
delivery delay as WeII On the contrary, where either of ¢hesnditions are satisfied, and thus,
t < mln{R Y } then local computation at MUE is less time and energy coirsgim
In the case WLGI‘E respects only one of the two equations, there is a tradeetifiden energy
consumption and execution time. If Eq. (2.9) is valid, a@% <t < RNi'Q then com-
putation offloading execution is faster, but more energysoaring. If Eqg. (2 12§ is valid, and
W <t < R(l L then computation offloading execution is less energy aoingy, but it is
taﬁes more time to execute the tasks. In the last two casesexibting trade-off can be biased by
varying some parameters, if possible. For example, intrgdke transmission power reduces the
overall offloading computation delay, at the cost of incimg&nergy consumption.

We now focus on the adopted SCC cloud scenario. As alreadyeshim Eg. (2.7) the offloading
delay depends on both communication and computation coempenFor SCC, where the cloud
is a set of coordinated small cell instead of a single entifcating the tasks, computation delay
does not dependent on a single computational capacity &ssirquation. Theloud computa-
tional capacity is offered by more than one small cell andoisfixed a priori. A total perceived
computational capacity can be computed taking into accihvendllocated capacities at each small
cell in the cluster, the number of computed CPU cycles, aaddtal perceived computation delay.
The perceived delay depends on both intra-cluster commatioitfor exchanging computational
data and results, and computation delay for executing tberded tasks at every small cell. The
formulation of cluster latency depends on intra-clustengnication topology and technology.
In addition, load distribution inside the cluster, and edlited capacities at cluster SCs contribute as
well in computing the overall cluster perceived latencyusigrs latency and power consumption
formulations will be detailed in Section 2.5.

2.4.5 System Energy Efficiency, Cells Density, and EMF Expase

Mobile networks design has been basically focused on radube energy consumption of mobile
terminals. Nevertheless,many efforts are put in order fwrave energy efficiency of the network
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as well. Indeed, a high percentage, around 70%, of the maobii&orks energy consumption
comes from the base stations [7]. Consequently, the ogitiniz of network base stations energy
efficiency is investigated, and several mechanisms anaappes that aim to increase system en-
ergy efficiency are proposed. Small cells deployment, and the co-existence of macro cells
and small cells in heterogeneous networks, helps improstesyenergy efficiency by offload-
ing macro-cells traffic. Macro-cells power consumptionetegbon cell load and output transmit
power. Hence, reducing traffic of macrocells, lowers the nmaetwork power consumption. On
the contrary, power consumption of small cells, partidulégmtocells, is independent of the cell
load. Figure 2.7 shows the operating power consumption @fonand femto base stations with
respect to the cell load [7]. Femto base stations power eopsan barely depend on the cell load,
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Figure 2.7: Power consumption dependency on relativeaad.| (PA: Power Amplifier, RF: small
signal RF transceiver, BB: Baseband processor, DC: DC-D@asters, CO: Cooling, PS: AC/DC
Power Supply, Red mark: BS sleep mode power consumption) [7]

and thus on the output power. From a system energy efficiepioy of view, it is best that femto-
cells operate at full load, when activated. As shown on FEguhe energy consumption of an idle
base station is nearly the same as one under full load. It tod@ve energy, and achieve higher
energy efficiency, base stations on-off switching is prepd®r switching off under-utilized base
stations. Cell activation/deactivation mechanisms cgrave the network performance enabling
local access points to self-switch off in absence of neighigoend-users [77].

In a small cell cloud cluster scenario, system energy effagiedepend on the load of each
computing node in the cluster. Energy efficiency is howewsmsaered for both communication
and computation. In terms of computation, small cells enemnsumption depend on the used
computational capacity and the computation load. Systegrggrefficiency is then improved by
switching off some cluster nodes that under-utilize theimputing capacities. Cells switching-
off in a small cell cloud scenario results in reducing the2gf the cluster. In a smaller cluster,
small cells operate at higher communication and computdtiad, achieving higher network
energy efficiency. With small cells switching-off, the dieissize is reduced, and the cluster can
also be geographically sparsified. This means that clusdesimay end be at a larger distance
from the serving cell. HSCs at a larger distance from SSC iggeehtransmit power, in order to
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achieve desired SINR, or compensate for the latency loggyhtdy increasing the distance. The
sparsification is less harmful in cases of ultra-dense gemot of small cells. The high density of
neighbor small cells increases the probability of limitthg geographical expansion of the small
cell cluster.

Increasing system energy efficiency is however subject rieestvade-offs or limiting factors.
The main limiting factor of small cell clusters sparsificatj and size reduction, is latency. Re-
ducing the size of the cluster, results in according highad$ to the participating nodes. Higher
loads not only impose longer computation time at each snedill lout also larger data size to be
transmitted to each node, which imposes higher commuaoicatlay, and/or higher transmission
power.

From a system energy efficiency point view, the best caseasiceis to compute tasks at
SSCs. Inthis case, no intra-cluster communication is redquand thus, no communication energy
costs are imposed. However, this solution is not applicablase SSC available computational
capacity is less than required. The cluster size is congliaby latency constraints and thus
computational capacity requirements. A representatia@lygin Figure 2.8 shows that there’s a
minimum cluster size imposed in order to be able to serve dhapaitational request, i.e. to have
sufficient computational capacity for not violating latgreonstraints. As shown on Figure 2.8,
the aggregated computational capacity offered by theaustsmaller than the sum of cluster
nodes capacities. This is because the aggregated capaloity into account the intra-cluster
communication latency cost, and thus, load distributiolne Perceived computational capacity is
then equal to the ratio of the total request size to the tduster computation latency.

Computational capacity

Capacity sum

Aggregated capacity

Demanded capacity

|:| Capacity outage
|:| Capacity excess

Cluster size

Figure 2.8: Example of aggregated computational capadity imespect to the cluster size

Another issue gaining a lot of attention with the prolifésat of mobile cloud computing
paradigm, is Radio Frequency Electromagnetic Fields BExgoRF-EMF). Wireless devices om-
nipresence raises health concerns due to possible effieeksotromagnetic radiations on the hu-
man body, and especially on the brain, due to its proximithwhe hand-held radio devices [8].
When radio frequency transmission is used for extendedtidnramplications may take place,
especially due to the heating effect. Mobile cloud compyiimcreases uplink traffic, and con-
sequently, EMF exposure. Moreover, in small cell cloudiairtiuster communication creates a
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source of EMF exposure, since small cells are normally gegal@t a proximity to mobile users.
While this enables user devices to transmit at lower powalsd moves the transmitters closer to
the users, which increases the EMF effect. EMF exposure &suned via a Specific Absorption
Rate (SAR) expressed in W/Kg. EMF exposure depends maintjistance between the commu-
nicating device and the human brain, and on the uplink trirsower. Reducing the EMF effect
can be achieved through using the minimum amount of trarssomigpower, especially when good
channel conditions are available. However, when the conigatian signal is subject to severe
losses, caused by either large distance between commingichvices, or severe fading caused
by obstructions, communicating devices are forced to aszehe transmission power. Figure 2.9
is a heat map that shows the impact of transmit power andngdistirom the device to human
brain, on EMF. The map considers only the effect from the tealisers, and not the surround-
ing base stations that despite the fact that they are fafithier the users, they use much higher
transmit power. In a small cell cloud scenario, EMF expossiii@ a trade-off with system en-
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Figure 2.9: Specific absorption rate in respect with distaatd transmit power [8]

ergy efficiency. Indeed, as deduced earlier, increasingytbiem energy efficiency requires using
the cluster nodes at full load in both communication and aatatjpn. As cluster node loads are
larger, and the latency constraints are the same, then thmaaication time needs to be smaller.
This leads to increasing the transmit power, and thus, the Ekposure. Small cells density plays
also a role in this trade-off. Cell switching-off limits tmmber of active small cells, and if the
deployment density is low, then the distance between naslkes being larger. Therefore, higher
transmit power should be used in order to maintain desirethwanication efficiency.

2.4.6 Small Cell Cluster Cloud

All of the discussed trade-offs above apply to the MEC sderadopted in this thesis. In a small
cell cloud, the main steps are the following: (i) computataifloading decision (ii) communica-
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tion resource allocation for sending computational regjieethe SSC (iii) load distribution among
cluster nodes (iv) communication resource allocation ffitnai-cluster communication (v) compu-
tational capacity allocation at each small cell in the @ust

In each of these steps, an optimization of the decisiortisolus required. In the first step
of offloading decision, it is necessary to incorporate atbpaeters that affect the most essential
optimization criteria, which is users’ QoE. Energy constiom available computational capac-
ity, service latency, memory requirements, are examplespécts that should be considered for
deciding between computation offloading and local compnait mobile devices. The offload-
ing decision process must be of low enough complexity, eafhedf it is to be implemented on
mobile devices.

SCC latency depends on both data transmit time, and conqutiglay. Therefore, transmit
powers and computational capacities should be optimalbcatied, in order to equilibrate the
communication and computation latencies for respectitgny constraints. The transmission
power is subject to a trade-off with EMF, device energy afficy and perceived latency.

Computation load distribution, computational capacityd éntra-cluster communication re-
source allocation are the main steps that create the sntlatlleed cluster. The three steps are
related since the cluster characteristics in terms of tgtecomputational efficiency, and power
consumption are affected by all the steps. Therefore, & @iocation of computation and com-
munication resources is required for guaranteeing theemt gy latency constraints. Building the
small cell cluster is subject to numerous trade-offs, ladlsidoetween latency and power con-
sumption. Cluster size expansion and sparsification is aferagnanipulating these trade-offs.
SCC dimensioning creates, however, a trade-off betweerggradficiency of system and mo-
bile devices. Intra-cluster communication technology &mblogy also have an effect on the
load distribution and resource allocation. Backhaul tedbgy and topology have an impact on
the perceived cluster latencies, power consumption, asalrees utilization. For example, in a
small cell cluster where nodes communicate through highdaapfibers, communication latency
is small, nay negligible, and thus, the focus will then be @edl distribution and computational
capacity allocation. On the contrary, OTA (Over The Airyatluster communication requires
optimization of communication resource allocation in ordeguarantee in time service delivery.

2.5 Extending the Impact of Backhaul Network on Small Cell Cbud
Computing

In the considered SCC (small cell cloud), the cooperaticsnddll cells, through cluster formation,
merges cooperation for communication with computatioroaffing. The cloud network boosts
the computational capacity of mobile terminals, and itsxpnity to users’ equipment reduces
the end-to-end latency. To enhance the computation anglggtarapacities, small cells are back-
hauled together and exchange data. Accordingly, when alicappn is offloaded to the SCC,
one or more cells could contribute in the data processingcamputing. The cluster management
process, i.e., choosing the cluster size and the set of catdpgesmall cells, depends on multiple
constraints such as, latency and power consumption. Anirttportant parameter is the backhaul
type through which the nodes are connected. Nevertheles® ts a lack of studies that investi-
gate these relationships. With the dependency on seveamagters, getting the optimal number
of base stations to include in a cluster would request moaéysis.
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2.5.1 System Model

To model and evaluate cluster latency and power consumptierconsider a cellular deployment
model of hexagonal compartments of radius of 5m. Each cels&imed to be equipped with
a deployed small cell (see Figure 2.10). We consider an L =gy withK mobile users and
N femtocells. Users are served by a femtocell base statidminnt distanced. We consider a
connection channel of bandwidBbetween UE (User Equipment) and the serving base station.

Figure 2.10: Cellular deployment of small cells.

Instantaneous bit rate is maximized based on adaptive mtoluland coding scheme (AMC)
[78]. A parametefl in the channel model indicates the SNR margin to guaranteenihimum
error rate. We adopt a Rayleigh channel model with path |gpsreent, noise powemNy, and
fading channel coefficiert,. We assume perfect estimation of the channel coefficlardsd the
channel fading is assumed constant for a whole transmiggdnd. The maximum information
rate that can be achieved through this channel is calculetieag) the following equation:

R=Blog(1+aPry) (2.13)

wherea = r'gg‘z , Bis the channel bandwidth, afi is the transmission power. We consider that

userk asks for the computation ¥% CPU cycles to the femtocell it is connected. We assume that
the number of bits to be transmitted through uplink and davkntommunications is proportional
toW: Ny = WPy, for uplink andNp,. = WBp, [79], where the constanf,, andBp. account
respectively for the overhead due to the uplink and downtioiknmunications and for the ratio
between output and input bits associated to the executi@P&f cycles at small cells. The up-
link and downlink transmission length are expressed rasede as: Ay = % andAp, = g—gt,
whereRy andRp, are the instant maximum rate that can be achieved in uplinkdamavnlink
transmissions, evaluated with Eq. (3.1).

We denote the latency constraint of the applicatioh. g, and the cluster overall latency as
Aquster- FOr the application latency to be respected, we should: have

Lapp > Dy + Deluster+ Aol (2-14)
Finally, the power consumption of the overall process cafobaulated as:
P= P‘%'J)I(' + Peom=+ Peomp+ I:)'II'D)I<_ (2.15)

wherePYL and PPL are, respectively, the radiated power of uplink and dovkntiansmissions.
Pcom and Peomp represent the power consumed in the cluster for commuaitatnd computation
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respectively. In the rest of this section we modglster and Poom and their relations with the
cluster characteristics such as, size, backhaul topotogybackhaul technology.

2.5.2 Latency Models

To guarantee an acceptable quality of experience (QoEcappns latency constraints must be
respected. We identify three major latency components:triresmission duration from MUE
to the SSC, the overall cluster latency due to the data ghanmongst cluster nodes and load
computations, and data transmission from the SSC back taDdE transmission between UE
and the serving cell depends on the channel quality and oarttoeint of data to be transmitted.
Particularly, data processing latency depends on the nuaofdéSCs, the amount of computing
tasks assigned to each one of them, and their allocated datigmal capacity. Data transport
inside the cluster depends on the cluster size, the backbaibgy used to interconnect the base
stations, and the backhaul technology.

The numbemN of femtocells in the cluster should be set in order to satibfy following
constraint:

Nur  NpL

N = {n € N/Acjuster(N) < Lapp— m ~ Ror

(2.16)

We now model the cluster latency when using the ring, bingeg,tand full mesh topologies
(see Figure 2.11). As for transmission technologies weidenéiber backhaul, microwave back-
haul, and over the air (OTA) LTE wireless backhaul. As alyedidcussed, the cluster latency is
due to the communication latency between cluster nodeshencbimputation latency at each one

of them.
(a) (b} {c)

Figure 2.11: Wireless backhaul topologies: (a) full megiotogy, (b) tree topology, and (c) ring
topology.

2.5.2.1 Full Mesh Topology

Hence, in the full mesh case, the cluster latency can beanris:

N _
Acluster = rr?:aix(wn f, 1y 6T>gbh(n) + 6!r)gbh(n)) (2.17)

whereW, is the computation task assigned to each base statjoits computational capacity,
dxph the one way communication latency through the backhaul detvihe serving small cell
and helper small cells, ar&, ,, the communication latency for the reverse way.
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2.5.2.2 Wireless LTE Backhaul

Considering LTE wireless backhawy ypn(n) = g—'nn: andE’)’T)gbh = % whereN;, = WPy is the
number of bits sent to base stationandN{; = W,BpL is the number of bits that base station
should send backk}, andRj; represent the rates of data transmission achieved in dakvatid

uplink through the channel between base statiamd the base station connected to the UE.

N ~1, N Now
Aciuster = MaxWh fy ~ 4+ =3+ + =) (2.18)
n=1 in  Rout

Fiber and microwave backhaul

For fiber and microwave backhaul, the latency of a transorissiassumed to be load independent
because of the high throughput than can be achieved usisg thehnologies. A categorization
of non-ideal backhaul latency based on operator inputs ediound in [11]. Therefore, in both
cases the total cluster latency can be formulated as traniok):

N _
Acjuster = T:alx(wn fh 1y 26Tx,bh) (2.19)

2.5.2.3 Tree Topology

In the tree topology case, for the data to reach base statarevell,, it should be transmitted
throughl,, base stations (The serving small cell is considered of leveD). Therefore, the total
cluster latency can be formulated as:

In In
Aciuster = Tﬁai_)(Wn frTl + z Srxpbh(N) + z 6[|'>gbh(n)) (2.20)
- =1 =1

Wireless LTE backhaul

For LTE wireless backhaudrypn anddt, ,, depend respectively on the number of bits to be sent
in uplink and downlink, and on the channel capacity at thegmgission time.

Botuser — iy 1 5 N0 5 Nou 2.21
cluster = Max(Wh f =+ T z | ) (2.21)
n=1 S Rn 5 Rou

whereR, andR},, are the transmission rates in downlink and uplink at the betn backhauling
the traffic at level.

Fiber and microwave backhaul

For fiber and microwave backhaul cases, as the transmisaiencly is constant,5¢xpn(n) =
Ot ph(N) = drxph ), the total latency can be represented as:

N _
Acluster = T:alx(wn fa 1y 2|n5T>gbh) (2.22)
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2.5.2.4 Ring Topology

In the ring topology case, the total cluster latency can bexfbated as:

hn hn
N -
Aciuster= Tf—l)(Wn fa Ly Z Srxph(N) + Z 6rT>gbh(n)) (2.23)
= h=1 h=1
wherehy,, is the number of hops needed for HSC of indeto reach the SSC. Similar to the tree

topology case, LTE wireless backhaul latency depends oddtee load and channel conditions,
and for fiber and microwave backhaul backhaul transmissine is constant.

Wireless LTE backhaul

So the equation for LTE wireless can be written as:

hn Nn hn Nout

N
Dciuster = max(Wh fry L+ n ) (2.24)
cuser =RV 0 R 2 R
Fiber and microwave backhaul
And for fiber and microwave backhaul:
N _
Acluster = T:alx(wn fa 1y 2hn6T>gbh) (2.25)

Given the latency formulas for different backhaul topoésgiwe can distribute the computa-
tional load across the distributed cloud in order to minigrtency. In all previous cases, for any
set of computational ratefy and channel states, the optimization problem can be cast as:

minimize ml\zlalx(Wn fot+Ln)
X n=

N
subject to: Z W, =W (2.26)

WnZO

Wherel, is the delay associated to communications across the corgmades.

2.5.3 Power Consumption Models

Another important issue in the formation of the small cetiuzl cluster, is the power consumption.
Cloud computing leads to an increase in network traffic, &nd,tin power consumption and EMF
exposure. Power consumption in transport and switchingoeaa significant percentage of total
power consumption in cloud computing [80]. This sectionsprés power consumption models
for data transport inside the SSC cluster. The cluster poaesumption depends on the number
of base stations within, the backhaul technology, and tapol All traffic from the base stations
is assumed to be backhauled through the SSC, playing the@fraldnub node. If more than one
backhaul link originates at any node, the base station isnass to be equipped with a switch.
The equations in this section are based on the study don&]jn The equations below assume
that the backhaul topologies are height balanced (forméutive lowest possible level depth).
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2.5.3.1 Wireless LTE Backhaul

For LTE wireless backhaul transmissions between basessatihe total power consumption is
expressed as [9]: N NI, '
P=73 Y (Po+ApPry) (2.27)
n=1j=1

In this equation N} is the number of active antennas at S&§G the base station power
consumption at zero loadyp is the slope of the load-dependent power consumptionPapdhe
transmission power used to transmit at base statittmough antenna.

Considering constant transmission powegy for all base stations, the total power consumption
for the different types of backhaul topology is modeledatiéintly for every topology.

Full mesh topology:

The base station connected to UE will transmit to allthe 1 base stations in the cluster, that will
transmit back once computing tasks are accomplished. Themotal number of transmissions in
this case is @ — 1), and the power consumption can be formulated as:

P =2(N—1)(Py+ApPry) (2.28)

Tree topology:

The number of base stations that will transmit through twieamas to two different base stations
is [ M52 |, and thus, the number of base stations that will transnétgin only one antenna (&l —

1) — 2|81 |, which is equal to 1 iN is even and 0 if odd. AI[N — 1) base stations transmit back
when computing tasks are accomplished. Therefore, thiegoteer consumption is expressed as:

o {( tE—J N)(Po + ApPry), if N is odd (2.29)

2
2|N52 ) + N—1)(Po+ApPry), if Nis even

Ring topology:

Only the SSC will transmit through two antennas to two ddfdrbase stations. In addition,
N — 1 base stations will transmit back after accomplishing cating tasks. The total number of
transmissions in this case i$N2— 1), and the total cluster power consumption is:

P =2(N—1)(Py+ApPry) (2.30)

2.5.3.2 Fiber Backhaul

For fiber backhaul, the communication power consumptiotménsimall cell cluster is formulated
as:

N
P =NucPuL +NoLPor + 5 N&Ps (2.31)
=1
with N? {0 T Nag = 1
s =\ .M,
[mai-]  otherwise

whereNg is the number of switches needed at base statiandmay is the maximum number
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of interfaces available at one switch. For the differenetypf backhaul topology considered here,
the total power consumption can be modeled as follows:

Full mesh topology:

P=(N— 1)(PDL+PUL)+[ma)81P (2.32)
Tree topology:
P=(N- 1)<PDL+PUL)+LN—1Hm:)gl1Ps (2:33)
2.5.3.3 Ring topology
P:(N—l)(PDLJrPUL)Hm;IWPs (2.:34)

2.5.3.4 Microwave Backhaul

For microwave backhaul, the communication power conswnpgti the small cell cluster is for-
mulated as [12]:

= Z Z 04 (Coj) + P (2.35)

(C ) . Pow—c: ian,jSThowfc
agg "l Phigh-c,  otherwise

0, if NJy=1
PD —
ss PS( CMAX ], otherwise

'switch

mitting and receiving the aggregate backhaul traffic throbhgse statiom via antennaj. This
power consumption is modulated as a two steps function #yagntls on whether the backhauled
capacity traffic through the same anten@a( is low or high. The capacity traffic is considered
as high if it exceeds a defined thresholthgw—_c), and considered as low otherwisBg is the
function that accounts the necessary switch power consomiitat depends on the backhauled
capacity and the maximum capacity of a swit€l{f%,).

WherePay is the power consumption for trans-

2.6 Numerical Evaluation

We evaluate the backhaul cluster latency and communicptiarer consumption, using the mod-
els proposed in Sections 2.5.2 and 2.5.3. Our evaluationpare latency and power consumption
for the different considered backhaul technologies andltmpes, with respect to the cluster size.
We adopt the same system model described in Section 2.%:48idening a single useK(= 1) at

the cell edge of its serving base station. Nllksmall cells are assumed to have the same compu-
tational ratef = 2.10° CPU cycles/sec. We assume that computational load is gciatributed
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on the cluster small cells. Tables 2.1,2.2, and 2.3 resum@dhameters used for LTE wireless,
fiber, and microwave backhaul respectively.

BIMHz] | B | No | Te[S] | Pra(W] | Po[W] | Ap
20 51103 | 1 1 6.8 4

Table 2.1: LTE wireless backhaul parameters [9] [10].

O1xbh[MS] | PoL[W] | RuL[W] | P[W] | maxy
5 2 1 300 12

Table 2.2: Fiber backhaul parameters [11] [12].

6T>gbh Flow-c I:lhighfc Thow-d Pss Cg/lwpi\éh

[ms] | [W] W] [Mbps]| [W] [Gbps]
15 37 37 500 | 53 36

Table 2.3: Microwave backhaul parameters [11] [12].

As assumed in section 2.5.3, backhaul topologies are asstonee balanced. For the whole
mesh topology, we assume that a clusteNa$ formed with the SSC and tlié¢— 1 closest HSCs.
We consider three different sizes of application CPU cyéesorresponding to 1MB, 50MB, and
100MB traffic, representing low, medium, and high trafficdsenarios.

2.6.1 Cluster Latency

As already shown in Eq. (2.18), the cluster latency for th& Wireless backhaul depends on
the traffic load. In both tree and ring topologies, the clutaéency for wireless LTE backhaul
will be greater than the full mesh case. In fact, not everylsoad is reachable via a direct link,
and thus, cluster nodes will have to backhaul traffic forfartbase stations which increases the
overall cluster latency. We show simulation results on fifeceof traffic load on cluster latency
only for a full mesh topology (Figure 2.12). As the assumpiiio our simulations is to always
form the cluster with the closest SSC to the UE, the clustienkzy will be subject to a brutal
increase with the increase of cluster radius (distance dmvthe SSC connected to the user and
the farthest HSC in the cluster).We notice that for low loagisrios, including more nodes in the
cluster will not have an effect on the latency since the cdatmn time with only one small cell

is already low. However, for higher load scenarios, inadgdnore HSCs in the femtocell cluster
will decrease the overall latency since the tasks are liged on different computing entities.

In the cases of fiber and microwave backhaul, as can be seeap {2H9), (2.22), and (2.25),
the cluster communication latency does not depend on tffieizad. The load will only have an
effect on the computation latency in the cluster througH; .

Figure 2.13 shows cluster latency for medium traffic loaddifferent backhaul topologies and
technologies. As can be seen, wireless LTE backhaul is tis¢tinge costly for lower cluster sizes.
Full mesh is the topology less time consuming for both fibet emicrowave backhaul, followed
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—¥Low Load
45001 -8 Medium Load
-©-High Load

Cluster size

Figure 2.12: Wireless LTE full mesh backhaul cluster layefioe different traffic loads.

by tree and then ring topologies. As the tree and ring topetogre assumed height balanced,
we can see a step when a level is added to the topology (evenaR cells for ring topology,
every 2 for tree topology). We notice that we always gain in latermyef cluster of siz&l over a
cluster of sizeN — 1 when the addition of thi's base station does not increase the cluster radius.
However, adding too much base stations can result in more ¢iomsuming as can be seen for
the fiber ring backhaul. In fact, when the number of basewstatincreases, the task computation
delays at each node decrease. When computing delay becessethan the transmission time
between two nodes, the addition of new base stations to tiséeclwill increase the total latency.

Figure 2.14 compares between the adopted assumption dflegdalistribution and the op-
timal load distribution among cluster base stations fdrriidsh wireless LTE and tree fiber back-
haul. Same kind of results goes for other technologies gmaldgies. We notice that the optimal
load distribution is optimal for the fiber tree backhaul, @ad outperform equal load distribution
in the case of wireless LTE backhaul. This is due to the faattiththe latter case the transmission
latency is highly affected by the distance, whereas it istietcase of fiber backhaul. The Major
difference of performance is noticed when the cluster mdhanges. This graph shows that op-
timal load distribution in a cluster with wireless intratster communication improves the cluster
performance and is thus necessary.

2.6.2 Cluster Communication Power Consumption

The cluster communication power consumption for the wa=IETE backhaul depends on the
transmission powePry. If this transmission power is kept constant, as in our satioths, traf-
fic transport power consumption will be a linear function lné number of HSCs in the cluster,
however, it will consume more time as seen in 2.6.1.

For the microwave backhaul, the communication power copsiom depends on the traffic
load through Eqg. (2.35). For this reason, a full mesh toppliogthis case would be the most
interesting. Indeed, a previous study on microwave badikbawer consumption in [12] shows
that the ring topology is the most costly in terms of powellpfeed by the tree topology. Figure
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Figure 2.13: Cluster backhaul latency for different backhi@chnologies and topologies for
medium traffic load.
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Figure 2.14: Equal load distribution (ELD) and optimal Iadistribution (OLD) comparison.
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2.15 shows the variation of power with respect to the numlbdrase stations. In the case of
low traffic load the nodes are always operating in the low oomsion regime Pow_c) and the
total consumption is a linear function of the number of HSE¢hee cluster. In the case of high
and medium traffic loads, we notice that the power consumpsiseduced when the cluster size
exceeds the values of 9 and 19 small cells. This is due to théfat the traffic backhauled through
each base station decreases with the increase of the dimterAnd at a certain point, the traffic
backhauled through each base station gets lower Thg,c, and thus, the base stations switch
from operating at a higher power consumptfgyh_c to a lower power consumptioPgy_c.

—*Low load
| |-BMedium load
-©-High load

Power (KW)

5 10 20 25 30

15
Cluster size

Figure 2.15: Microwave backhaul traffic power consumptiondifferent traffic loads.

In the case of fiber backhaul, the communication power coptomin the cluster does not
depend on the traffic load. As shown in Eq. (2.32), (2.33), @ 84) it depends on the number
of small cells in the cluster. Figure 2.16 shows the powesuaoption for the three topologies for
fiber backhaul, and for the full mesh topology for microwaeekhaul. It can be seen that fiber
backhaul consumes less power than microwave backhaul ihradsh topology. Fiber backhaul
power consumption for a full mesh topology increases byaasehmay base stations, because
an extra switch is needed. Ring topology is the less congysiirce it requires the least number
of switches which consumes the major part of the total powasemption. For the tree topology,
at each addition of two base stations an additional switcleésled. For this reason, it is the most
power consuming.

A comparison of different backhaul technologies charésties are summarized in table 2.4.

2.7 Conclusion

Mobile cloud computing can be implemented through variows @ifferent architectures. In this
chapter, we presented in details the adopted mobile clootpoting architecture. It is based on
a mobile edge computing scenario case where the cloud funadiies are offered by the small
cells base stations serving the mobile users. The sma#i eedl endowed with computational
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Criterion Wireless LTE Fiber Microwave
Load dependent latency Yes No No
Load dependent power consumption Yes No Yes
Topology with lowest latency Fullmesh | Fullmesh| Full mesh
Topology with lowest power consumption Full mesh Ring Full mesh
Latency classification * * kK Hok
Power consumption classification * * kK ok

Table 2.4: Comparison of backhaul technologies« -the bestx -the worst)
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Figure 2.16: Cluster backhaul power consumption for diffétackhaul topologies and technolo-
gies.

and storage capacities. A cluster of small cell can be forfoedistributing the execution of of-
floaded requests. We refer to this paradigm as the smallloeiticluster. We also described the
use case scenario we consider by specifying the assumptierix for our work. We consider
wireless intra-cluster communication, and therefore ves@nted the trade-offs that are faced in
a mobile edge computing with clustering possibility in aeléss scenario. We then focused on
the trade-offs that can be specifically encountered in tmsidered architecture and scenarios.
We discussed energy efficiency from both devices ad systesp@eives. We showed the rela-
tionships that joins latency, cluster size, power consionptand EMF exposure. The presented
trade-offs overview shows clearly how edge cloud compusimifts the paradigm of HetNets op-
eration optimization to include additional computingateld parameters. Edge cloud computing,
and notably, computation clustering, adds a new level afetraffs that control both network
service performance and users perceived service qualigypidsented as well the impact of the
backhaul technologies and topologies on the small celtelaharacteristics. The set of trade-offs
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are a main basis for our contributions in this thesis.
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3.1 Introduction

3.1.1 Motivation

The services offered by mobile devices have shifted frommanication only to computing, stor-
age, sensing, and communicating. This is a new revolutioimtefnet where people and smart
objects live connected in smart environments. Today, redidindsets are the platform used for
launching and running abundant and various services ar@tafgns [47]. Indeed, new mobile
applications are integrating the market, producing tsurafrdata traffic and imposing high re-
sources requirements. Handset battery lifetime is hentbefeduced due to communication, but
also computational tasks that are run over the equipmemiwzae. Offloading computational
tasks from mobile handsets to theddud is seen as an effective solution to limit computing en-
ergy consumption at the handsets side. Mobile cloud comgutifers the potential of increasing
mobile devices computational and storage capabilitied, extending their battery lifetime. Nev-
ertheless, computation offloading comes at the expensenefrating extra communication load,
the offloading traffic (uplink, intra-cloud, and downlinlaffic). Uplink communication costs vary
with the distance between the handset and the cloud gateméhyhe wireless channel condi-
tions. On another hand, computation tasks are generallstzined by time limits and memory
requirements. The first proposed mobile computation offt@gadecision algorithms are mainly
based on the energy trade-off between local computatioheatnobile device and computation
offloading to the serving cloud. However, mobile users’ Qualf Experience (QoOE) must be
taken into account in the offloading decision process. Tleggnminimizing decision does not
necessarily deliver the best QoE. On one side, all appbicatrequirements should be respected
(latency constraints, memory requirements, tasks offloiitid. On the other side, offloading de-
cision should allow to minimize energy consumption on théitesside without losing experience
quality. Hence, energy consumption is not the only parambgg affects the offloading decision.
Integrating all parameters that affect offloading decisgofundamental to guarantee a good QoE
while minimizing the offloading process cost. In this chaptee look into computation offloading
decision from the mobile devices to the cloud with a singlp tireless communication.

3.1.2 Related Work

Several studies related to offloading decisions for molidad computing frameworks have been
proposed. Nevertheless, the majority of existing work pegs offloading decision processes
and algorithms based on the energy trade-off without cemisig all parameters that affect the
offloading decision [49, 81-86].

Maui [81], CloneCloud[83], and ThinkAir [82] are frameworks that enable mobile compu-
tation offloading to the cloud. BotMaui and CloneCloudpropose to solve the problem of op-
timizing applications partitioning between local exeouatand offloading, with quite similar op-
timization targets: maximize energy savings Maui, and minimize execution time or energy
consumption forCloneCloud Both framework architectures include solver and profilatities,
but they differ in implementation. IMaui, the profiler monitors program and network character-
istics continuously at runtime, no persistent result isestacross multiple runs, and the solver is
periodically run at runtime. Where&loneCloudcreates device clones operating on the cloud.
It profiles and solves, before the partitioned applicatiegibs, by assuming different running
conditions, and profiling results are used to generatetjparttonfiguration files. Nevertheless,
building profiles at runtime is energy consuming for the nwhandset and offline profiling does
not easily cover all possible running conditions.
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Chenet at. propose an offloading decision process based on commumicatompilation
and communication energies comparison [84]. With the gbaboserving energy on the mobile
client, the decision process is launched when a methoda&éals It consists in comparing differ-
ent energy consumption values corresponding to differbtatsl interpreting strategies (remotely,
locally, through an interpreter), and choosing the altivaawith the lowest energy cost. Energy
cost takes into account estimated energies for bytecodepietation through local computation
or remote execution, and parameters representing comatiamigower, the size of data to be sent
and received in case of remote computation, and the contypleikiocal execution. Communica-
tion power, data size, and computation complexity are ptedias weighted average of current
and past values. Various execution strategies are copsiderChen’set al. work. A decision
is made over both the computation granularity (bytecodmfor with code compilation) and the
computation location (remote or local). The decision aitn®ducing energy consumption at the
mobile side, but it does not take into account latency cairgs of each method or task. In fact, a
local execution of a method can be more energy saving in sasesdut it could require a period
of time larger than the latency constraint of that task. Bowionly on energy consumption does
not guarantee mobile users’ QoE. In addition, no memaoryiremqents are taken into account.

Another study by Kumaet al. shows that the energy saved by computation offloading depend
on the wireless bandwidth and the amount of computation tpdréormed [49]. The authors
also discuss some offloading challenges such as secullighiliey, and real time data. This
study concludes that not all applications are energy effficihen offloaded if additional energy
overhead for security and reliability is considered. Thergn saving is represented with respect
to the system bandwidth and the amount of computation.

Related work algorithms incorporate only the energy corion in the mobile offloading
decision algorithms. However, many other parameters andittons could be introduced in the
algorithm in order to solidify decisions and adapt them @dkistem conditions. If an offloading
decision only depends on energy saving, the chosen corigputtategy (local or remote) could
violate, among others, latency and memory constraintsedddmobile handsets limitations, other
than energy consumption, have an influence the offloadingidac In addition to the limited
battery lifetime, mobile handsets have limited computslacapacity and memory space. Fur-
thermore, the offloading decision depends strongly on tipdicagion to be offloaded. Mobile
applications are characterized by latency constraints)petation complexity, and memory re-
qguirements that should all be met. Therefore, an optiminatiade-off approach that is based on
a single parameter does not guarantee meeting the useesterp Additionally, not all tasks can
be offloaded. Some computational tasks require the use offigp@formation available on the
mobile handset, and/or the use of mobile devices hardware.

Other related work in literature proposes mobile offloadilegision algorithms that take into
consideration more than one parameter [10, 87—90]. Basbaet al. propose a joint offloading
decision and resource allocation solution [10], . The offlog decision process takes into account
both latency constraints of the tasks, and computation egistate. Computation queues repre-
sent a buffer on the mobile side where all computations tieahat yet executed are stored. First,
the set of users that are able to transmit data in a definedt blotime lower than the imposed
latency limits is identified. This set is reduced in orderatisfy the global condition of the sum of
the allocated computation capacities for all task is sméfian the total surrogate computational
capacity. Reducing the set consists in removing mobilesyses., forbidding some users from
offloading computations in the considered time block. Usetls larger queues are prioritized to
remain in the set in order to minimize the cases of queueshitisy at the mobile side. Users that
are removed from the set execute their tasks at the mobildskanFor users admitted to transmit,
transmit power and allocated computational capacity atlined side are jointly optimized. Joint
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optimization helps taking advantage of all the server ciapat order to meet latency constraint
while minimizing as much as possible the transmission powae joint optimization is formu-
lated as a convex optimization problem. The optimizatiarbfgm solutions takes full advantage
of the server computation capacities in order to meet tlemégt constraints while minimizing the
transmission power which varies according to the chanaét stThis approach could also lead in
case of bad channels conditions to an increase in the trassmipower.

Gu et al. propose a fuzzy control approach that consists on initiagin offloading decision pro-
cess whenever the mobile handset memory status is cri@8al The available memory space is
represented with three linguistic fuzzy statksv, moderateandhigh. When memory availability
is low, an offloading decision process is triggered. The afflog decision optimization is based
on a multi-criteria decision function which takes into aaabbandwidth, delay and memory. The
initiation of the offloading decision process in this apptoaoes not include other important pa-
rameters such as mobile battery level, latency constraints$ available computational capacity.
Gaoet al. propose a strategy where time and energy are evaluated toildaal and offloading
computations [89]. A computational task is allowed to beoaffled when offloading is less time
and energy consuming than local computing. After takingffloading decision for a task, a tasks
clustering algorithm is called. The clustering algorithims at taking similar decisions for the
tasks that communicate with each other, in order to reducamamication energy consumption.
Even though both energy and time are considered as decisrampters, memory requirements
and availability is ignored.

Kovachevet al. [90] consider energy, memory, and execution time in a nauiteria utility func-
tion. The multi-criteria function is introduced to avoidetbomplexity of solving an optimization
problem that jointly optimizes all the criteria. Howeverplti-criteria utility functions require
a fine tuning of the weights associated to each parameteisruhction. The multi-parameter
optimization complexity is twofold. First, the problemétsis complex to solve, and second the
decision needs to be refreshed whenever system conditi@amge.

3.1.3 Contribution

In this chapter, we tackle the problem of multi-parametgysnaization complexity, which is a
major bottleneck of classical multi-parameters optimaratechniques. We propose a hovel Se-
guential Multi-Parameters Offloading Decision algorithndar the name of SM-POD . We adopt
a sequential approach where decisions are sequentiallg m@mbrding to a decision tree. The
proposed approach introduces a multitude of parametetseimécision process while keeping
it simple to implement. We propose indeed to approach theiipatameters optimization with
a multi-fold task classification. We define successive arstegkeclassifications of tasks at the
mobile handset. Calvanese Strinatial. propose a single parameter classification to improve
downlink packet scheduling [91], . Following the same ititur, we introduce a multi-parameters
classification. In the proposed approach, we adapt the difigadecision to the current state of
the system that is defined through the series of classifitati®Ve classify computational tasks
into virtual buffers each of which is associated with an offloading denisRequested tasks that
are offloadable are classified and buffered depending orritiwality of their latency constraints.
Time critical tasks are to be executed immediately, eitbeally or at the server. According to the
application requirements and mobile available resourcasputational capacity, memory space,
battery life), the offloading decision is made. In order tefdigh user QoE, time critical tasks
are prioritized for offloading, regardless the offloadingtso Less time critical offloadable tasks
are allowed to be offloaded if the offloading communicatiostdow. The proposed approach is a
solution for incorporating several parameters in the caatpn offloading decision at the mobile
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side without imposing complex optimization solving. Nadbat the offloading decision concerns
the single hop communication between MUESs and their serétig The proposed algorithm does
not propose a resource allocation algorithm at the mobiige eétbud. The novelty of this work is
based on a patent [P2] and a conference paper [C1].

3.2 System Model

We consider a system witd users served by either a macro base station or a small cellsbas
tion (femtocell), within a distancd. We consider uplink connection, between MUE (mobile user
equipment) and the serving base station, with a bandviddthstantaneous uplink bit rate is max-
imized based on adaptive modulation and coding scheme (AlVi€}) We adopt a non-ergodic
Rayleigh channel model with path loss exporgnoise poweilNy, and fading channel coefficient
hx. We assume perfect estimation of the channel coefficiant¥he channel is assumed constant
for a whole transmission period, with a coherence tifneA parametefl” in the channel model
indicates the Signal to Noise Ratio (SNR) margin to guaratite minimum error rate. We con-
sider a constant transmission poviRk through the defined channel. The maximum information
rate that can be achieved through this channel is calculetiag) the following equation:

[h|?
rdBNg
Indeed, Ry determines the maximum number of tasks that can be tramshtlirough the

wireless link in one time slot.
Each MUE is characterized by a set of parameters summariZ&abie 3.1.

Rrx = B x log(1+ aPrx) wherea= 3.1

Parameter | Description |

F CPU computational capacity [CPU cycles/sec]
Tote Total energy capacity of the mobile handset [Wh]
EPI Energy consumption per cycle [J/CPU cycle]

May Current amount of available memory [MB]

Biev Available battery level percentage

Table 3.1: Mobile Handset Characteristics.

Applications are launched by the user at the mobile hands$et.applications arrival is mod-
eled as a Poisson process with a vaterhereA represents the number of launched applications in
a time windowT,,. We consider that an application call generates a burssk§ti be computed.
Each generated task is a set of instructions requih@PU cycles that has to be executed with a
required memoryn, and a maximum latencd. A parametep indicates if the task is offloadable
(p=1) or not p = 0). The percentage of tasks that cannot be offloaded is definagparameter
Ono. In case the task is offloadable, a param&#iindicates the number of bits to send to the
small cell. Table 3.2 resumes applications related paenset

We compute energy consumption relative to each task. Faatis that are computed locally,
the mobile handset energy consumption is evaluated as tdurigir of the number of executed
CPU cycles and the energy consumption per cycle:

Ejocal [J] =W x EPC[J/CPU cycle] (3.2)



84 CHAPTER 3. MULTI -PARAMETER COMPUTATION OFFLOADING DECISION

For the tasks that are offloaded, the energy consumptioreahttbile handset is evaluated based
on the mobile user power consumption model proposed by degtsal. [92]. In the adopted
model, the consumed energy for transmission is evaluated as

Eof floading = I3T>9C + PDQBB + I3T>cRF + I:)con (3-3)

Prx,c: Power consumption of active transmission chain.
Prx ga: Power consumption of the baseband (BB) components. Itrdispen the uplink data rate
Rrx as the following equation:

Pree[MW] = 34,5+ 0.87Rr{Mbits/s] (3.4)

Prx rr: Power consumption of radio RF components. It depends otrdhemission powe$ry
as the following equation:

Pryre[MW] = —943+ 1175, {dBm] (3.5)

Pcon: Average power consumption in connected mode. It is equhl3BW, according to [92].

Parameter | Description ‘

A Applications arrival rate
p Application offloadabilitye {0, 1}
Ono Ratio of non-offloadable tasks

Task number of CPU cycles
Task memory requirement

Application maximum tolerated latency
Number of bits to be sent in case of offloading

s|>|3|€

Table 3.2: Applications and tasks Characteristics.

3.3 Problem Statement

Consider a sef = {1,--- ,K} of K users served by a s@&f = {1,--- ,N} of small cells. Mobile
usersk € K have computational tasks to accomplish. Each task is ciesized by a maximum
tolerated latency and memory requirements. MUEs offloaid toenputation through sending the
computation requests to their serving cell. In order for MidEnake offloading decisions for each
of the tasks, many parameters are taken into account. Theyfiptication characteristic that is
considered is the tasks the ability of the task to be offloadeits offloadability Not all computa-
tional tasks are offloadable. Many tasks require launchingezlded sensors and hardware on the
mobile phone. Tasks that require using the microphone, iaguke hart beat sensor embedded
in some handsets are examples of tasks that cannot be offit@dee cloud. Furthermore, the
possibility of computing tasks locally is subject to theitalzility of sufficient resources of compu-
tation, memory, and battery life. Offloading decision aitjons in literature are mainly based on
energy consumption comparison between local computatidro#floading. Energy saving is in-
deed an important aspect at mobile handsets; however, i@ingrihe energy consumption should
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not affect the perceived QoE by mobile end users. Therefmgjcations latency constraint is an
important parameter to consider in the offloading decisimtgss. In addition, offloading tasks
requires wireless transmission of data to the cloud gateViéingless channel quality affects both
transmission latency and handsets power consumptionhasgdghould be included in the offload-
ing decision. To the best of our knowledge, any offloadinggies algorithm that considers this
variety of parameters and keeping low complexity have beepgsed. Keeping low complexity
of computation offloading decision algorithms is importemntase the algorithm is executed at the
mobile handsets. Engaging the handsets in complex congngdbr making an offloading deci-
sion is both time and energy penalizing. Hence, to find a q@iffkctive, and low energy consum-
ing offloading decision, we propose an algorithm based ooessive and nested classifications—
SM-POD. The SM-POD algorithm can be easily implemented ordbets, has low complexity,
and helps increasing handsets battery lifetime. The algorexploits the delays imposed by each
application to find theight momento offload or compute tasks without violating any constraint
and keeping low the mobile handset energy consumption.

3.4 Proposed Offloading Decision Algorithm: SM-POD

We propose to perform a series of classifications that joinsullitude of parameters, without
including them in a complex optimization problem. Each & tasks classifications is based on a
characteristic of either the mobile handset, the compmurtatitask, or the communication channel.
At the end of the successive classifications, tasks will besed in variousirtual buffers By
virtual bufferwe refer to a set of computational tasks that share the sdinadihg decision. The
novelty of this work is twofold. First, the offloading deasi process complexity is reduced while
a dependency on a variety of parameters is considered. SM-{tddes complex optimization
problem solving with a series of successive and nested tda&sifications. Second, mobile en-
ergy consumption is reduced by offloading tasks dependinima criticality, handset available
resources, and channel conditions.

At each time slot, the algorithm of mobile application offlirag decision is run on the set of
tasks generated by the launched applications. The pro@igeBOD algorithm is summarized as
follows:

Step 1: Offloadability classification

First step of the proposed offloading decision algorithnoidivide tasks that are offloadable and
ones that are not. To this end, in a first classification, cdatfmnal tasks are classified into two
distinct sets. The classification is based on the tasks cieaistic p that specifies if the task is
offloadable or not (see Figure 3.1). The first $&if" , includes all tasks that have the possibility
to be offloaded @ = 1). The second;NOff" , includes all tasks that cannot be offloaded by
characteristics definitiorp(= 0).

Step 2: Urgency classification

Then, the algorithm classifies tasks in both gef and NOff asurgentandnot urgenttasks as
shown in Figure 3.1.

e Off set: An offloadable task is labeled asgentwhen the remaining latency is less than
a predefined percentad®y, of the original latency constrairtk. Computational latency
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Step 1

Offloadable?
(p=1?)

yes no

Offloadable

Latency
urgency?
es no

Y

Not Offloadable

Latency
urgency?
es no

y

Step 2

[ Urgent ] [ Not Urgent ] { Urgent ] [ Not Urgent ]

Figure 3.1: First and Second classification steps of theqaegh algorithm.

constraints are seen as Time To Live (TTL) limits beyond \ntilee service delivery fails.
Computational tasks are set@gentwhen a TTL margin is reached, in other terms when
Aih% percent of the initial TTIA have passed. The adopted margin is either set as a constant,
or updated according to the current system state. Comntioriczhannel conditions and the
number of bits to transmitted, as well as statistics overctiraputation offloading success
can be used for adapting the TTL margin. We consider a congtimat takes into account

the current system state parameters. Then computationtaasified asirgentif:

DinA+V > AR (3.6)

whereAg is the time remaining to reach the maximum latency condtaurrent TTL).
This classification divides th®@ff set into two parts: thargentoffloadable tasks set referred
to as“Offurg” and thenon-urgentoffloadable set referred to &@ffNUrg” .

o NOff set: Tasks in theNOff set cannot benefit from computation offloading, they must be
computed locally at the MUE. Even for local computation, Wassify tasks are urgent or
not. To make such a classification, we account on the mobildde computational capac-
ity. We check if allNOff tasks can be computed at once while meeting each task latency
constraints. The check is done for equal computationalaiypdistribution among all tasks.
Total available computation capacity at the MUE is definethieyparametemHcap). Each
task is then given a computational capacityFof |'\N"g°faﬁ where|NOf f| is theNOf f set

cardinal number. Tasks that cannot be executed with theaa#dd computational capacity

are identified through the following classification criteri

A< VEV +€ 3.7)
whereW is the task computational load. Tasks that verify this cbowliare set atocally
urgentand are added to the not offloadable urgent set referredN®&s)rg. TheNOffUrg
tasks must be computed locally and therefore local resewme allocated. The remaining
tasks, that do not verify the above condition, can be diffened are added to the set referred
to asNOffNUrggrouping not offloadable not urgent tasks.
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Step 2 allows then to allocate resources for tasks that arstist demanding in terms of compu-
tational capacity first. This step can be seen as a scheduiougss that prioritizegrgenttasks.

Step 3: Resources availability check

The third SM-POD step concerns the offloadable urgent tagk®sented by th@ffUrg set. Ba-
sically, each of these tasks has the possibility to be ofidad = 1) and is not prevented from
being computed locallyp(# 0). However, local computation of some of these tasks mayeaot
possible due to a lack in available resources at the mobiidg®. In this case, the tasks have to
be offloaded. This classification aims to find the tasks thee i@ be offloaded, i.e., it finds tasks
for which resources demands are higher than what the modiiddet can offer. This decision is
based on a series of tests taking into account computati@aelcity, memory requirements, and
mobile battery consumption.

A task is classified asshouldbe offloaded” if any of the following conditions is satisfied:

Mobile is battery level is critical (lower than a predefinddesholdBLe ).

The task consumes more than a predefined percentage of tlabkvbattery leveBATo¢+.

e Task memory requirements surpass the allowed percentagaitdble memory at the mo-
bile handseME My;+.

The task requires a computational capacity greater thaadefined percentage of the total
locally available capacitZ ARys+.

The offloading thresholdBLew:t, BATort, MEMyss, andCARy¢; are parameters that can be
defined by the user through its mobile equipment operatistesy.

The set of tasks verifying one of these conditions is retetoeas“SOffUrg” in reference to
offloadable urgent tasks that should be offloaded. The rengatasks form a set that we refer to
as“COffUrg” in reference to offloadable urgent tasks that could be edfileraded or computed
locally. This classification is represented in Figure 3.2.

Step 4: Energy consumption comparison

Each of the tasks i€OffUrg is checked for whether it can be computed locally applying th
same conditions in section Step 3. If the task is allowed todmeputed locally, then two options
are available: offloading or local computation. In order dket a final decision between both
options, the mobile handset energy consumption is invastiE ¢4, the energy spent in case of
local computation of this task using Equation (3.2) and ther@y Eo fioading SPENt at the mobile
handset in case of offloading using Equation (3.3) are coatpaf Ejoca < Eof floading the task is
computed locally and transferred to tN©ffUrg set, otherwise, the task is offloaded. In case of a
local computation decision, memory and capacity resouscesllocated to the task in question.
Tasks that are decided to be offloaded are added to tHeG#t/rgwhich represents the set of
tasks whose offloading is necessary. This classificatiolsésslnown in Figure 3.2.

Step 5: Resources aware decision for non urgent tasks

SOffUrgis the set of tasks to be offloaded. The number of bits thatldhmusent radio link from
MUE to the cloud is known.
The transmission power Bry and the transmission rate . In the case where data rate does
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Figure 3.2: Third and fourth classification steps of the pemul algorithm.

not allow the transmission of all of the tasks offloading ficaftasks with lowest latencies are
prioritized. The mobile will offload as much tasks as possilaind the remaining tasks will be
differed to a posterior time slot.

In the case where the number of bits to be sent is less thanthhahannel capacity offers, we
refer to the transmission channel conditions. The chanvefficient is compared to a statistical
average channel coefficient calculated and updated over tlifrthe current channel realization
is above this average, it is considered that the channelasr@ativelyopportunisticstate. The
novelty in this case is to include current channel condgiomthe decision process. Opportunistic
channel conditions allow data transmission at a lower doskeed, better the channel conditions
allow having greater aggregated throughput, and thus higiergy efficiency. This is seen as an
opportunity to offload non urgent offloadable tasks from #t&4fNUrg. Priority is given to tasks
in OffNUrg that have lower latencies.

Offloading non-urgent offloadable tasks can be seen not aréy apportunistic utilization of
the radio link, but also as a tool to alleviate the system efthiure so it would not facargent
tasks too often.

The set of tasks that are going to be computed locally is ifiest(NOffUrg). Therefore, the
remaining mobile resources can be computed. Followingadhgesconditions as in 3.4 to the set
NOffNUrg we assign more tasks to be computed locally with the remgiavvailable resources.
Tasks that could not be computed are deferred, i.e. no dacisianticipated for these tasks,
they will be re-classified in the next time slot. Then-urgencyof these tasks permits deferring
the decision to a future time slot, since the algorithm goizes that whenever the task become
urgent it will be associated to an execution decision. This steliuistrated in Figure 3.3.
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Figure 3.3: Last steps of the proposed algorithm.

The proposed SM-POD algorithm can be seen as a smart bgfferotess. The algorithm
distributes the tasks at the mobile side into four differeinual buffers. Each of these buffers
is associated with an offloading decision. Table 3.3 sunmearihe virtual tasks buffers and the
associated offloading decision. Figure 3.4 shows the whiglerithm steps and indicates the
corresponding buffers to each of the decisions.

Buffer Offloading Decision
NOffUrg Instant local computation
SOffUrg Instant task offloading

DLE Deferred local task execution
DD Deferred offloading decision

Table 3.3: Computation offloading virtual buffers labelsl aecisions

3.5 Numerical Evaluation

In this section we investigate the offloading efficiency aehd with the proposed SM-POD algo-
rithm. Our evaluation highlights cost reduction in termsahdset battery life, memory, compu-
tational capacity, and tasks latency violation. We adoptsdime parameters as the system model
described in Section 3.2, considering a single user seryaddmtocell base station, within a dis-
tanced = 5m from the serving station. The considered uplink bandwislbf B = 20 MHz (which
is among the standard LTE uplink bandwidths), the path los$ficient3 = 5 that complies with
a multi-level building scenario [93], and the noise poweNgs= 10-2.We consider a transmission
power of Pry = 0.2W. The simulations are averaged over approximatelg®2channel instances
per hour.

The mobile handsdE Pl is estimated between 17nJ and 19nJ which is in line with soret |
processors EPI (Pentium, Pentium Pro, Dual Core) [94]oti& £nergy capacity between 4Wh
and 8Wh, its available memory M., = 5MB.
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Figure 3.4: Successive classifications of the offloadingsitat proposed algorithm.
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We consider application calls that generate a burst of téidkséasks). Each task is character-
ized by a required memory 1KB m< 1MB, a number of bits to be offloaded 1KBN < 20KB,
a latency constraint 90ms L < 300ms and a number of CPU cycles to be executed that varies
with each task and different scenario assumptions.

The application arrival modeled as a Poisson distributiah avrate = 2 for a time window of
Tw = 10ms. The percentage of tasks that cannot be offloaded is 40%. The constraints defined
in section 3.4 are set aBLewt = 20%,BATy 1+ = 30%,MEMyss = 70% andCAR) s+ = 50%.

According to the work by Kumaet al,, the offloading decision must be to never offload when
large amount of communication is needed with relatively lsemaount of computation, and must
be to always offload when large amount of computations isededth relatively small amount of
communication [49]. The offloading decision is based ongneonsumption. To benchmark the
proposed algorithm, we run simulations for different seersathat represents scenarios for which
we are in neither of the cases above. In such scenarios, Ketrahsstate that the decision depends
on the available bandwidth (Figure 1.10). We use this offlag@decision criterion to benchmark
the proposed SM-POD algorithm. The adopted scenarios marlgannel conditions and amounts
of computation per task. Each scenario is defined by a cortismaf two parameters defining the
channel conditions and the average computation size ottingested tasks. The set of parameters
are defined as follows:

e {0min, day, dmax} representing respectivelylaw, randomandgood channel coefficient av-
erage. Fofow channel coefficient we consider the lowest 20% of a randomeRdychan-
nel coefficients generation. Flandomchannel we adopt a random generation of Rayleigh
channel. Fogoodchannel coefficient average, we consider the highest 20¥%eafandom
coefficients.

e {TCnin, TCnix, TCmax} representing respectivelysmall mixedandlarge amounts of com-
putation for each task.

We show numerical results for the three following repreatrd scenarios:

Scenario 1 -Max-Max: good channel conditionsif,ay) and large amounts of computation per
task TGnay. For good channel conditions, we select the best 20% of ¢énergted channel in-
stances.

Scenario 2 -Min-Min : bad channel conditionsi,in) and small amounts of computation per task
(T Gmin)- For bad channel conditions, we select the worst 20% of émeated channel instances.
Scenario 3 -Mix-Mix : random channel conditionsiix) and mixed amounts of computation per
task (T Cqyix). For random channel conditions, no selection over the rgéed channel instances is
made.

In order to evaluate the algorithm performance, we compuattect following reference algorithms:
No Offloading Tasks are never offloaded.

Total Offloading Offloadable tasksp(= 1) are always offloaded.

Energy Reference Offloading Decision (EODJYask offloading is based on the offloading energy
trade-off between local computation energy cost and offf@adost.

Elocal § Eoffloading (3-8a)
EUE7Ioc § EUE.,off‘f‘Efemto (3-8b)

whereEye joc is the energy spent at the mobile handset for locally comguitie requested
task. Eye ot is the energy spent at the mobile handset for sending thessageinformation to
the small cell where the task will be offloadeiemio= W. f is the energy spent at the femtocell
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for computing the requested task¥.is the number of cycles to be executed at the femtocell, and
f is the computation capacity accorded to the execution ofybkes. This entity depends on var-
ious components such as system implementation, femtdastecisation, CAC (Call Admission
Control) at base stations, etc. Two approaches are pasSihke first one compares the energy
of the whole system in order to decide on offloading. In thise¢Bemto7# 0. Another possible
approach, which is adopted in this work, is the user cenpjr@ach. In this case, the mobile
handset searches only for reducing its own energy consammnd the decision does take into
account the whole system energy efficiency. It consists ampewming the energy spent only by the
mobile handset for the cases of both offloading and local edation. In this casek temio= 0 and

the trade-off equation will be reduced to:

Eueloc S BuEoff (3.9)

On figures 3.5, 3.6, and 3.7, blue curves willis marks represent battery level in the case
where the proposed SM-POD algorithm is applied. Black cumith point marks represent the
case of energy reference offloading decision algorithm (E@Deencircle marked and rediia-
mondmarked lines represent, respectively, the cases of tdtabdfng and no offloading.

Figure 3.5 shows the mobile handset battery discharg®lérMax . In this case, offloading
is beneficial, supported by good channel conditions. Datastnission, in case of offloading, is
done through high capacity links. The graph shows that theisn that computes all tasks lo-
cally costs the most in terms of handset energy. Referertmading and total offloading share
the same results because this is an extreme case where ioifjasdess battery consuming than
local computing in this scenario and thus the algorithm thasethe energy trade-off will always
decide to offload the requested tasks. Figure 3.5 also stawS$M-POD algorithm outperforms
all other algorithms in terms of handset battery lifetimefdct, taking advantage of good channel
conditions to deal with non-urgent tasks prevents the syfitem having a large amount of urgent
tasks to deal with in the future time slots. Therefore, byapmistic transmission of some tasks
on better channel conditions, data is sent using lowern&sson power, and thus energy is saved
and battery lifetime is prolonged. Using SM-DOP, battefgtime is 2.3 times longer compared
to the total offloading case, and approximately 1.5 timegéomompared to full local computing.
Table 3.4 resumes the battery lifetime, CPU memory overftowl, CPU capacity outage results.
It shows that the proposed algorithm prevents the system fraving CPU memory or capacity
outage while respecting latency constraints. For othesrdhgns, local CPU resources have ex-
perienced outage in at least 4.3% of the times, while aaljeddwer battery lifetime. Including
CPU memory and computational capacity in the decision p®@Eeevents the outage use case
from taking place.

For Min-Min scenario, offloading tasks is not beneficial. Considerirggektreme case of
bad channel conditions, offloading data is both time andggnesnsuming. Figure 3.6 shows the
battery discharge in such conditions. Results show thatlgegithm that does not allow offloading
outperforms the total offloading algorithm. In this cases BEOD algorithm that is based on the
energy trade-off gives results that are close to the no dfiihmpalgorithm decisions, which are
less energy consuming. SM-POD is more energy consumingtheareference offloading and
the no offloading algorithms. This is due to the fact that tteppsed algorithm decide to offload
offloadable tasks that are assignediggentregardless of the channel conditions. This affects the
energy consumption of the mobile handset, but on the othwd héll guarantee a good user QoE.
As it is shown in Table 3.4, latency constraints are violataty for the case of total offloading
up to 3%,due to bad channel conditions. The proposed digotitades the outage situations that
occur in both the No offloading and EOD use cases by increasiaggy consumption.
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Figure 3.5: Max-Max Scenario: Mobile battery discharge tuesks computation/offloading for
all considered algorithms
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Figure 3.6: Min-Min scenario: Mobile battery discharge dag¢asks computation/offloading for
all considered algorithms
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Mix-Mix scenario results are shown on Figure 3.7. The figure shows\ba in this random
case scenario, the proposed algorithm outperforms theerefe EOD algorithm. The latter is
clearly seen as less energy consuming than the no offloadiuhghe total offloading algorithms.
The ability of both algorithms to adapt the decision to the&nt situation results in better per-
formance and prolonged battery life. However, the flexipibf SM-POD and the fact that it
encompass a multitude of parameters, allows it to achiayleehiend performance. It adapts the
offloading decision to current system parameters consigexi the same time the application re-
qguirements, the handset available resources and the fzaimel quality. The proposed algorithm
prolonged the battery life 1.45 times in these random canditscenario compared to worst case
scenario (No offloading)
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Figure 3.7: Mix-Mix scenario: Mobile battery discharge dodasks computation/offloading for
all considered algorithms

In addition of energy savings at the mobile handset, SM-P@vgnts the mobile from suf-
fering of CPU memory overflow and computational capacityagatand allows the user to always
have good QoE by respecting each task latency constrairdseTbenefits are also validated by
simulations (see Table 3.4).

The proposed algorithm, allows, thanks to its flexible strce; the integration of several pa-
rameters in the offloading decision. By simple classificatiand comparison steps, it guarantees
a user good quality of experience, even if sometimes thisesoat the cost of increased energy
consumption and thus shorter battery lifetime. Neverglim the random scenario case, it proved
that it could adapt to the changing situations and expldfiedint latency constraints and varying
channel conditions to save energy consumption and extettetypéfetime.

3.6 Conclusion
With the proliferation of mobile-enabled applicationsdahe computations they require, mobile

computation offloading has a grown as an effective solutmnehabling handsets to do more.
Mobile devices have access to greater computational ressuand larger storage space, if they
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CPU CPU Latency
Battery . :
i i o memory | capacity Viola-
Scenario Algorithm Lifetime .
(mn] overflow | outage tion
(%) (%) (%)
SM-POD Proposed
, 223.9 0 0 0
algorithm
Max- .
No offloading 97.86 2.61 5.02 0
Max
scenario | EOD Reference algorithm| 144.77 0.17 4.31 0
1) Total offloading 144.77 0.17 4.31 0
SM-POD Proposed
_ 235.64 0 0 0
algorithm
Min-Min No offloading 263.19 1.29 0 0
scenario | EOD Reference algorithm| 277.8 0.17 4.31 0
(2 Total offloading 231.02 0 0 0
SM-POD Proposed
_ 223.96 0 0 0
algorithm
Mix-Mix No offloading 153.09 0.3 0 0
scenario | EOD Reference algorithm| 187.09 0.02 0 0
(3) Total offloading 158.87 < 0.01 0 3

Table 3.4: Simulations results for scenarios 1, 2, and 3

offload computational tasks to the cloud. However, in thiapthr, we show how computation
offloading is not always beneficial for mobile users. In mehiloud computing, offloading re-
quired sending computational data to the cloud. The enarggumption of the data transmission
varies with the size of the data to be sent, and the trangmisiannel conditions. A computation
offloading decision strategy that incorporates all the eispthat affects the decision, is needed.
Basically based on a simple energy comparison, proposeasiaealgorithms do not consider all
the parameters that could affect the offloading decisiomhS®iservations have led to the design
of a novel multi-parameter offloading decision algorithmaiacterized by a series of successive
and nested low complexity classification operations to leceted at the mobile side. In this
chapter, we propose an approach that exploits multi-fadtt tdassification to deal with multi-
parameters optimization. No complex optimizations or ivariteria utility function based linear
programs optimization are needed. The proposed algorithssifies the computational tasks in
virtual buffers, each of which is associated with an offloading decisClassifications depend on
several parameters including tasks offloadability, timgcality, handsets resources availability,
energy consumption, and radio channel conditions. Theifilzations lead to one of the following
offloading decisions: instant offloading, instant local potation, deferred local execution, and
deferred offloading decision. Furthermore, opportunistimputing and offloading are integrated
in the process. Identifying the tasks that should be offldadad when it should be done, is a step
forward that permits achieving higher computation offloadgains.
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The proposed algorithm is seen as a smart buffering proceseevdistinct virtual buffers join
tasks that are associated with the same offloading decisioa.buffers output orders depend on
the system conditions and are subject to quality of expeedrased or opportunity scheduling.

Simulation results proved that the proposed algorithm lig tbachieve extended battery life-
time while preventing any CPU memory overflows and capaaitage, and while keeping users’
quality of experience by always respecting the imposedtyteonstraints.

We note that the proposed algorithm constitutes a basedoritims variants that can be de-
signed by varying the classification hierarchy. As futurekyd would be interesting to investigate
the impact of the classification order on the computatioroatfing gain.
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4.1 Introduction

4.1.1 Motivation

Edge cloud computing is a combination of cloud computing rmodile Internet paradigms. Asin
cloud computing, computations are offloaded and processedmote servers. Future 5G ubig-
uitous mobile Internet allows mobile users to be always ected and have access to centralized
resources pool that can handle offloaded computation. Mabilud computing has evolved dur-
ing the past years and has adopted various architecturestides. A first architecture definition
of MCC is where mobile devices reach the remote cloud selivectty through the Internet. The
major bottleneck of this architecture is the cloud accesnty. Mobile devices are connected to
the cloud through a Wide Area Network (WAN) with uncontrblia access delay. Furthermore,
energy consumption for accessing the cloud through the nagliwork can be significant. This
also causes a major drawback for using MCC. Edge cloud dsrigisnoving the mobile compu-
tation process to the edge of the logical extremes of a n&twdmovel edge cloud architecture
was proposed in the European Project TROPIC. It consistsimihg the emerging paradigm of
mobile cloud computing with the ever-evolving trend of letgeneous networks creating thus a
local cloud in close proximity to MUES [70]. Small cells (S@se small sized low-power base sta-
tions, some of which powered by mobile subscribers (fenlitg)cdEven if small cells are endowed
storage space and computational capacities, they canmonigared to remote cloud servers. For
this reason, small cell cloud proposes to enable cells &tiderin what we call a ‘computation
cluster’. MUEs send computational requests to their sgremall cell (SSC) and get the compu-
tation results from that cell as well. The MUEs communicaiththe Edge cloud only through a
single hop communication with the serving cell. Serving ko®lls have the ability of distributing
the computation load among neighbor small cells. The sefG# i which the SSC and helper
small cells (HSCs) participate in the computation is thukedaSCs computation cluster. In this
case, the second hop (and more if necessary) is between Gar®88HSCs. The SC cluster acts
as a local cloud and delivers cloud services to the mobile adsays through its SSC. In fact,
mobile users will not have to establish various communicatinks with several SCs. It is the
SSC that sets the strategy for handling users’ requestswiibke process is transparent to mobile
users whose only interest is perceiving the desired Qolg,dwrsidered as respecting the services
delay constraints.

Joining a set of small cells in one computation cluster isiids through virtualization, par-
allelization and Virtual Machines (VMs) deployment. Theadhtell cloud architecture assumes
the presence of a virtual entity named Small Cell ManageMPB©ne of the SCM responsibil-
ities is to handle VM deployment and manage small cell clagburces. The computation load
is distributed among the cluster cells. The distributiopatels on both computational resources
availability at each small cell, and communication charpgllity between SSCs and HSCs.

The main motivation of this chapter is to extend the poténfiMEC from one-hop offloading
between MUEs and the SSCs, to multi-hop coordinated offtmpdin which we exploit small cell
clustering. The SSCs handle MUEs offloaded computatiorsidstand distribute computational
load within the cluster. As computation requests are oftdrjest to latency constraints, time
limits should be respected for offering high quality of seevto mobile users. At the same time,
the offloading and computation process should be applied ien&rgy efficient way in order to
reduce the system power consumption. The small cell clusteould then be set up such that
service is efficiently delivered to all mobile users.
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4.1.2 Related Work

Several works in literature investigate the problem of dlsasources management. Cloud re-
sources management in MCC can be classified according toasevieria.

Many offloading strategies and methodologies focused olicagipn partitioning for offload-
ing decision purposes. The decision for each partitiontiseeito be computed locally (at the
mobile device that launched the application) or to be offémbtb local cloudlet or distant cloud.
This kind of strategies can be classified according to theptadopartition model and the of-
floading objective. Mobile applications are modeled, piaried, and attributed to a computing
host. Application partitioning has taken different formSraph-based models are used to show
the computation components context and relationships9Bb-Using this model, computation
components are identified as to be computed locally or ofildadther works used linear pro-
gramming to cast the partitioning problem through linearagipns [10, 79,98-100]. Add to that,
many heuristics have been proposed in order to deal withdugiplexity situations and to include
a larger set of decision parameters [101-103]. Heurisidg tiealing with scalability problems
and decision computation delay.

Other works focus on partitioning for computation on theudoIn [104], Vermaet al. pre-
sented an algorithm for VM placement in virtualized systeiiige goal was to design a cost aware
dynamic VM placement controller. Two types of costs weresidered: power costs (activa-
tion and computation) and migration costs. The problem @estified as a bin-packing problem
which is NP-hard. The proposed solutions were three alyndgtbased on a FFD (First-Fit De-
creasing) policy. VM are ordered according to a specific imefind each is accorded with the
first server that can accommodate it. Three different implatiattions are considered. In the first
the goal is to minimize the power consumed by all servers.réfbee, VM are sorted by size.
This strategy does not lead to global allocation optimaliBolutions are only locally optimal.
An additional strategy is proposed in order to minimize VMgrmation cost. This strategy aims
at minimizing the number of VM migrations. A third strategijrjing both power and migration
cost is proposed. It is based on comparing two VM placememtsidentifies VM migrations
that allow the passage from one placement to another. Thiggations are sorted by power per
unit migration cost, and the most energy efficient are seteonly if the power cost decrease is
higher that the migration cost. In [105] a similar approaekdal on a BFD (Best-Fid Decreasing)
strategy is adopted. A heuristic based on allocating eacht&/ile server that can guarantee the
least power consumption is adopted. VM are sorted by ddag&PU utilization. These works
are part of the family of proposed heuristics that are apgiog the problem as a bin-packing
problem with differently sized bins [104-108]. Costs that eonsidered are all related to power.
Time cost has not been considered in these works, despifadhthat computation latency is a
of great importance especially for the current emergenceatitime applications and augmented
reality.

Another point of view, is formalizing the problem as a Markogcision Process (MDP) [109—
111]. An MDP approach is proposed in [111] where the goal isgtimize long term system
performance. The work tackles specifically the small cellidiplatform and assumes the presence
of a SCM that manages cloud resources through VM placeméret MIDP optimization problem
has the objective of minimizing resources offloading, neknadelay, and VM migration costs.
The factors that are taken into consideration in the proaesgach SC load, the network delay
for sending and receiving data, and the migration cost. Tséscare expressed in time. A final
conclusion lead to the fact that allocating computatioeaburces, i.e. deploying virtual machines,
at the SSC of each mobile user is the best choice since it ibdswest cost in terms of network
delay. This conclusion is only true because a single VM dattin is assumed per user, or in
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other words, each user is assigned a single VM. If a user stgoeld be assigned more than one
VM, the conclusion is not always true since deploying adddi virtual machine may accelerate
the process through computation parallelization, and dells clustering. In addition, only time
costs were taken into account in this work.

MAPCIoud a hybrid tiered cloud architecture, has been proposed IynRat al. for com-
putation load distribution [102]. In this work both localdapublic clouds are considered in a
2-tier cloud architecture. It is a service oriented framewshere users call for services at mobile
devices or on the cloud. Each service is characterized hiitg atetric that depends on the user’s
and service location, service price, delay, and power copson. Maximizing the utility over the
set of possible services allocation solutions is a NP-hablpm. An annealing based heuristic
under the name of CRAM (Cloud Resource Allocations for Melgipplications) is proposed. In
CRAM, an iterative approach over increasing distance isl tiggrogressively include more ser-
vices in the search process. For each iteration, a set dteeris randomly chosen according to
four different metrics that are normalized price, powelageand QoS. A good possible solution is
found through simulated annealing. In [103], a very simdpproach is adopted, this time consid-
ering users mobility. Instead of a location based work-fleving102], a location-time work-flow
is proposed. For introducing the mobility aspect, a centtérterest location is computed for each
user. The iterative annealing algorithm is then applied ovareasing distance from the center of
interest location of each user instead of its static pasigigin [102].

Multi-user edge cloud computing clustering has not beearesively investigated yet. Of the
few existing work that investigate the multi-users casef igamg et al. [99]. This work assumes
that the cloud does not have unlimited computing resourtesase of multiple simultaneous
users’ requests, cloud resources should be jointly akbokcat order to guarantee good QoE for
all users. The problem is formulated as a Multiple Integarelar Programming (MILP). The
objective function is to minimize the average applicatiaiagl for all the users. Scheduling is
considered in order not to allow servers to compute more ¢in@module at the same time. Users
requests are assumed to be formed of several componenispfeatich can be computed at a
different location: either locally on the mobile device,a@r a cloud server. Two heuristics based
on greedy algorithms are proposed in order to approach ttimalpsolution. A first algorithm
computes the optimal resource allocation for each userealas if it was a single user case.
This leads to overloaded allocation at servers. Allocaioadjusted by slightly increasing the
average application delay. This is assured by searchinghtomodule which adjusting leads
to lowest increase in overall average latency. Anotherradtiéve proposal is based on sorting
requests modules by non-increasing ready time. The sanee isrdised to allocating resources
for each module at the server that minimizes the extra deléys work presents an interesting
formulation of the problem. However, an important aspecioistaken in consideration, which is
power consumption. Furthermore, connection between VMerisidered as infinite.

In [112] the partition problem is studied for the multi-usarase where mobile devices can
share communication bandwidth. The goal is to maximizeesyshroughput in data stream ap-
plications. Mobile users also share cloud computatiorsdueces. The optimization problem is
formulated and addressed in terms of a genetic algorithm.

4.1.3 Contribution

Most of the works that tackled computation offloading wersdaaon offloading decision for
energy saving at the mobile handsets. In Chapter 3 we prdpageown offloading decision al-
gorithm. The algorithm is studied for a single user - sindtid scenario where a mobile user
is connected to the cloud through its serving base statiooweder, it can be easily extended
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to a multi-user case - single cloud case since it is decé&grhland implemented at the hand-
sets side. In this chapter, we tackle a cloud clustering gghtaradigm. We study the cluster
set up optimization by choosing which small cells contrifsuin the computational clusters, as
well as the resource allocation and load distribution. Ia thapter, we adopt the local small cell
cloud paradigm. We assume that small cell base stations coicate and exchange data through
wireless links. Active mobile users are connected and #&socwith one SC. Users have the pos-
sibility of offloading computation tasks to serving SCs. \eus on resources management inside
the small cells cluster. Resources management consistaafdistribution, radio resource allo-
cation, power allocation, and computational capacitissggasnent. Proposed solutions are based
on a joint resource allocation of computational and comication resources, in addition to joint
computational load distribution. The approaches we prepos centralized, and can be computed
by a small cell cluster managing unit. We note that the cépég control functionality can be
implemented at any of the network small cells as well. In ptdeform the cluster, we assume
that the SSC distributes the computational load on a set @fdd8.ccording to the adopted com-
munication technologies and topologies, the cluster caodmeed by multi-hop communications
between SSCs and HSCs. However, in wireless intra-clusi@mnainication, routing protocols
should then be considered in order to optimize the compunatidata delivery. In our work, we
consider only the special case of two-hop MEC computing. filsebeing between MUEs and
the SSCs, and the second, between SSC and HSCs in the cdmpuataster.

Our contribution in this chapter is x-fold.

First, for the single user multi-cloud use case, we propostdifferent novel approaches of small
cells clustering via optimization of computational loadtdbution between small cells. The first
approach is the optimization of the load distribution witfaal of minimizing the cluster latency.
The second consists in optimizing the cluster overall paeasumption, and the third consists in
minimizing the power consumption from a small cell centrigrp of view under the condition of
respecting imposed latency constraints. In addition, ve@@se a clustering strategy that exploits
the trade-off between the perceived latency and the clgster This trade-off, discussed in Sec-
tion 2.4.5, increase system energy efficiency by using lesdl sells operating at higher load. The
energy gain is at the cost of an increased perceived lataffeypropose a clusteparsification
approach that reduces the size of the cluster without ig/dhe latency constraints.

Then, we tackle the case of multi-user multi-cloud use cassr@/computation clusters should
be formed for all requests of all users. We propose a mudti-clsisters optimization that allocates
jointly communication and computation resources. We famusespecting imposed latency con-
straints and the minimization of the clusters communicapower consumption. A first novel
aspect of the solution we propose, is the cluster scahalaititording to the computation requests
requirements. In fact, small cell cloud has always beenidersd in previous works as an es-
tablished set with known characteristics. Our proposedtiswi allows the cluster to have adap-
tive size, load distribution, and intra-cluster commutiaraand computation resource allocation.
Computation clusters should be built so that all users aisfigal, i.e. have their computation
request handled without violating the imposed latency taitgds. Hence, the second novel ap-
proach, which is to jointly form clusters such that all aetiwsers’ requests simultaneously in
order to better distribute computation and communicat&sources for a better users’ QoE. We
formulate the clustering problem for multiple users as atintipation problem. We distribute
the computation load of all requests among the active sreliff m the network. And we jointly
allocate transmission powers for each of the small celld,the computational capacity allocated
for each user. The objective of the optimization problenpisinimize the clusters power con-
sumption while respecting the imposed latency constrainéach user request.

The novelty of this work is based on a journal paper [J1] ander@nce papers [C3] and [C5].
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4.2 System Model

We consider a multi-user indoor scenario where afgetf N small cells are deployed. A set
Kof K mobile users are served each by a small cell denote§,byrhe set of SSCs is denoted
by §. The set of devices associated to the small sédl denoted byXs. Every devicek in K
sends a computational reque8ié, Ay) to its SSCS.. Wk andAy denote for the number of CPU
cycles to execute and the maximum latency imposed by thecafiph, respectively. Note that
the relationship between the number of instructions anchtieber of CPU cycles depends on
the instructions type. Computational requests are cheiaet by the number of input and output
bits, which are the bits to be sent to the computing smallasedl back to the user. Each small cell
nin A is characterized by a computational capacitfzp€PU cycles per second. Each small cell
can serve multiple devices simultaneously by accordingragiats computational capacity, say
fkn, to each usek. We consider that the computation requests are alreadycstrd SSC. Each of
the SSC forms a computation cluster for each of the requastsdived. The computation load of
each requesdy is distributed among the small cells (SSC and HSCs) of thepedation cluster.
Each small celh is accordedM,, of user'sk request. We assume high granularity, and we split
computational load over CPU cycles. The SSC sends the ra@gasput bits to the cluster small
cells. The number of input bits is equal@g Wn. The cluster small cells processes the bits and
sends back the output bit to the SSC The number of output bits to be sent is equabpWkn.
We consider point-to-point wireless backhaul connectietwieen serving and helper small cells.
The transmission power used to send input and output bitgeleet the SSG and a helper small
cellnis psn. The information rate that can be achieved through the asseethannel link between
small cells, taking into account packet retransmission is:

o'c’hsnlzpsn )

Rsn = Bsilog(1
sn = Barl 0 +(l—PER)Fdl3N0

(4.1)

whereag, is the shadow fading coefficient of the adopted Rayleigh seamodel. The channel
fading is assumed constant for a whole transmission pewslassume perfect estimation of the
coefficientshg, of the channel between small ceis § andn € A. PERIs the target packet
error rate,I" indicates the SNR margin to guarantee a minimum bit erre B&ER (I (BER) =
—%), d represents the distance betwesandn, 3 indicates the path loss exponent which
depends, in an indoor environment, on the number of wallars¢ipg the two communicating
SCs [113], and\ is the noise power. Equation 4.2 details the path loss mededred is the
distance between the transmitter and the reced®Jindoor is the two dimensional separation
between the transmitter and the receiveis the number of penetrated flootsis the number of
walls that separate the transmitter and the receiver srabidl, @andL;,, is the penetration loss of
walls.

PL(d B) =38.46+ 201 Oglod + O-3d2D,ind00r

+183n(MD/(N+2-046 4 ) (4.2)
We adopt the small cells deployment model for urban scesanioposed in the 3GPP frame-

work [113]. This model represents a single floor buildinghaiOm x 10m apartments ina5 x5

grid. Each apartment is assumed to be equipped with a depiyeall cell. Parametgrindicates

the deployment ratio of SCs, which is the percentage of apants in which the deployed base

station is active. In the adopted system model we only censigingle floor, therefore,= 0 and

d = dap indoor iN Equation 4.2.
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P+ — {PO+ApPTx+ IDcomp 0<Prx< IDmax; (4.3)

Psieep Prx=0.

wherePeomp= EPCx W represents the computation power consumption which isqotiopal
to the number of CPU cycled executed by the SC characterized by an energy consumption pe
cycle equal t&EPC.

4.3 Single-user Multi-cloud Use Case

4.3.1 Problem Statement

We consider at first a single user case scenario, where aengd@l terminal offloads a computa-
tion request to its SSC (see Figure 4.1). We do not tackle ithielgm of user association with a
small cell. Users are already connected to one small celhiolwthey can send their computation
requests. Furthermore, we do not deal with the offloadingsaetprocess at the mobile handset
side. We assume that mobile handsets have already an afftpddcision process that takes into
account offloading related parameters. Note that by makirsgassumption we do not link the
cluster set up with the computation offloading at the molidie.slt is a realistic scenario since
MUEs only expect the service to be delivered with no addi#tiatelay, regardless if it is computed
on the MUE, SSC, or in a SSC. However, incorporating the afilog decision and the SSC is
possible by sending all requests to the SCM. The SCM comph#esthe offloading decisions
and reports back to the MUESs. In this case, SCM can jointlynupe the set of offloaded com-
putations and their computing clusters. In this sectioncwmsider that the SSC (SSC) receives

Figure 4.1: Single-user small cell cloud scenario.

a computation request from one of its connected mobile devithe computation request is de-
fined as a set of CPU cycles/instructions to be executed/fat@dpnder some latency constraint
defined by the application. The goal of the SSC is to compweauier request without violating
the imposed latency constraint. Depending on the systetm atal its available resources, SSC
may decide to either compute users’ requests locally (smguits own computational resources),
or build a cluster of small cells in order to distribute corgiion on the small cell cluster. In
case of computation distribution on a cluster of small ¢ddiad distribution should be optimized
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along with computation resources at each of the clusterlsmiéd. Furthermore, communication
resources for sending computation data from SSC to HSCddshtan be adequately allocated in
order to guarantee tolerable data delivery time and comeation power consumption.

We consider a set dfl small cells each endowed with a total computational capaxit=,
[CPU cycles/sec]. Serving small cslfeceives a computation request for runrWigCPU cycles.
The maximum processing time allowed is set by the applingtrametef,,p. Therefore Agpp
is the latency constraint to respect for the computatiomyd&l order to serve the mobile user’s
request. The SS€has the choice of either computing the request with its owalleesources, or
establishing a small cells computation clustering.

For the computation request to be satisfied, definehyAapp), by using only local resources
on SSCs, the following condition should hold:

W
S

The left term of this equation represents the minimum comprn time that can be achieved at
the SSC. In this case, the totality of computational capdgitat the SSC should be allocated
for the computation of the request. If equation (4.4) dodshidd, then the SSC forms a small
cells computation cluster in order to distribute the corapiah load. Each of the HSCs in the
computation cluster is accorded a fraction of the companidtiad. However, to guarantee service
delivery to the mobile user, resources should be adequapgimized. The SSC has the following
tasks: (i) Choose which small cell to include in the compatatluster and distribute computa-
tional load on the chosen HSCs. (ii) Allocate computatiaeaburces at each HSC. (iii) Manage
communication resources for sending and retrieving nacgskata to and from SCC to HSCs. We
consider that small cells communicate through point-tivpaireless backhaul connection (5G,
4G, 3G, WiFi, WiGig, etc.). For formulations and simulatsme adopt a wireless communica-
tion over Rayleigh non ergodic channels. Nevertheless, B&Coptimize a clustering process to
compute the request in question even if the condition in gojug4.4) is verified. This decision
depends on the strategy adopted for computing each usarstedn the following of this section,
several strategies for small cells clustering are proposhd variety of proposed strategies covers
different type of applications and user requirements.

For notations simplification, and since this section tagkle single user case, the inderf
all notations is omitted since it always refers to the singler we consider.

4.3.2 Latency Minimization

In this section, the goal is to compute the mobile user requieibee minimizing the service latency.
In general, the total overall service latency is measurah the moment the request is received by
the SSC until all components are computed and received &3k The total latency expression
can be written as follows:

ne{1,...,N'}

whereN’ is the number of HSCs that can be part of the computationeslultommis the time
needed for sending necessary data to and from HSCs. It ischreposed of two components:
Ay andAp,. Ay, is the transmission time from SSC to HSC, dksl is the transmission time
from HSC to SSC. In the case of the SSC (i.e. winea s) there is no communication delay
andAcomm= 0. Ap. andAy depend respectively on the number of Bik§ andN[j, to be sent



4.3. SNGLE -USERMULTI -cLOUD USE CASE 105

and received at HSCs. They are related to the load distibwtnd to the computation loadt,
allocated at each HSEthrough the following equations:

NBL - WneDL
NJ. = Wheur

whereBp. and By are constants that account respectively for the overheadathe uplink
and downlink communications and for the ratio between dusimd input bits associated to the
execution o, CPU cycles at HS®. We note that paramete6y, andBy_ vary according to
the application type. Indeed, different classes of apfitioa give rise to different sets of values
for the pair(N,W). Not all applications are equally amenable for computatififoading. The
classes of computation more suitable for offloading are ttes avhere, for a given computational
loadW, the number of bitd\ to be exchanged to enable the transfer of the program erecisti
low [49].
The total transmission time can then be written as:

Agomm = DoL+DuL
_ WhOpL n Whou L
(1—-PERBsnlog(1+asnpsn) (1 —PERBsnl0g(1+ asnpsn)
_ (4.6)

Wh o/
(1— PERBsnl0g(1+ @snpsn)

with @ = &utfoL B is the bandwidth used for transmitting data between S&6d HSC

n; psn is the power spent for transmitting this data which in thisectakes the maximal value;

asn = r(gj:_'hié’(‘j';\lo, whereh is the channel coefficient the shadow fading coefficienk,(BER)

the SNR margin for meeting a targeER d the distance between SS&nd HSCn, 3 the path
loss coefficient, andly the noise powerl_—éER the average number of retransmissions assuming
independent errors on each packet for a packet erroPak The packet error rate is determined
by the bit error rate BER and the transmission packet geetermined by the used modulation

and coding scheme for each transmission:

PER=1-(1-BER.

We consider, for simplicity, that both SSC and HSC transnifih whe same optimized power
psn. Otherwise, the transmission delay in downlink from HSC 8CSannot be estimated unless
it is fixed a priori.

Acompis the time required to compute the load accorded to the sralidl. This term depends
on the load distribution in the cluster, and on the compoitati capacity allocated at each small
cell of the cluster. Withf,, the allocated computational capacity, alfgithe computation load at
HSCn, Acomg(n) is defined as follows:

Acomg(n) = Yo (4.7)

fn
The first strategy consists in minimizing the cluster layetiat is the time that is consumed
for load distribution, computation at the cluster nodes] #ve computation results reporting to
the SSC. This kind of strategies could be requested by theinsader to increase his QoE.
This strategy does not impose power consumption consdraiot cluster size limitations. For
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these reasons, the system is forced to include all of theeaatid reachable small cells in the
computation cluster. Since we consider point-to-point eamication between small cells, the
overall cluster latency is the maximum latency as definedtiB)( This latency depends on the
computational load through the computation time at the ko@dl, and on the channel quality
through both communication latency in uplink and downliftar this strategy, we consider that
the SSC communicates with all other HSCs in the cluster wagrsame transmission powey, =
Pmax All transmission links are fully used in order to maximi&eetive throughput and decrease
the total experienced latency.
The optimization problem is formulated as follows:

min max AW,
W, n={1...N'}
s.t. Wo>0, n=1,... N,
N (PB1)
Z Wn == W
n=1
e/

1
where we defing\, £ — +
o fn  10g(1+ asnPmax)
the computation block is distributed among the cluster bogdlls. The solution of this optimiza-

tion problem leads to a load distribution among all activeebstations in a way that unifies the
experienced latency at each small cell. This is intuitifewb small cells do not have the same
experienced latencies, then we can always adjust the Iatdbdtion in order to decrease the
higher latency and increase the lower one in order to haveafiesnmaximal value.

Problem®?B; is a non-smooth problem. However to find its optimal solutlmnintroducing a

slack (real positive) variable= {max } AnW, we can solve the following equivalent problem:
n={1,...,N’

. The conditions inPB; guarantee the totality of

min t
tAWa N
S.t. W, >0, n:1,...,N’, _
N’ (?B1)
Z Wn == W
n=1

AW, <t, n=1,... N.

Theorem 1. The convex problen®B; is equivalent taPB; and its optimal solution is given by

N’ -1
Am Am
Wh =W — and =— Wy, Vn#£m. 4.8
m (nzl Aﬂ) W A, N # (4.8)
Proof. First observe that problem®3; is convex, then any local optimal point is a global opti-

mal solution satisfying the KKT conditions (note that Statecondition holds true). Given the
Lagrangian function defined as

N’ N’
L(IL,W)Et— > AWp—v (Z Wn—W>
n=1 n=1

N/

+ nzllh(Aan —t)

(4.9)
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whereW = Wi, ..., W] andAn, v, |, are the Lagrangian multipliers, the KKT conditions can be
written as

s N
(a): E—l—n;un—o,

0L

b: 5w

=—AM—-V+mwA =0, Vn,

N’ (KKT73,)
(c): veR, ZWn—W:O,
n=1

(d): O0<A, LW,L>0, Vn,

(©): O<pn L (t—AWh) >0, ¥n.

To find the optimal solution of this system, observe that asi®ne multipliei\, has to be null,
N/

sinceAn > 0 for all n leads from (d) toM, = 0 and this contradicts conditioy W, =W. Then
n=1

let us suppose that there exists at least a positive meiltipli > 0. From (d) we geW, = 0 and

from (b) —v + pnAn > 0. Hence using (e) it results> 0 sincet = 0 impliesWy, = 0, Vm and this
contradicts condition (c). Therefore it follows> 0 and from e, = 0 so that to meet condition
—V + UAn > 0 it results—v > 0, Yn. On the other hand to satisfy (c) it exists at least a value of
W, > 0 for which we yield from dA, = 0 and from (b)—Vv + ymAm = 0. This is an absurdum
since—v > 0. Then it results\, = 0 andv = LA, ¥Vn. Let us now focus on the multipligx,.
Note that if there exits a valug, = 0 this leads tov = 0 = Y, for eachm and then condition in

(a) never holds. It follows that, > 0 for all n and from (e}t = AW, = AnWpy, for eachn £ mor

N’ N’
W, = Arn 1o nce from (c)we gely Wh= 5 An _ \ <o that the optimal solution @3,
n=1 n=1
is
VoA An
Wh =W — and Who=— "Wy, Vnm. 4.10
n (nzl An> h="3, W # (4.10)

O

Note that this strategy may in some cases result in assigingsmall computation loads to
some HSCs that either experience a very bad communicatemmeh quality with the SSC, or are
very far from the SSC and subject to severe path loss, or hptthese situations, HSCs in bad
conditions will consume the major part of the time for reagmvand transmitting data. Even if
energy consumption is not in the goal of this strategy, timsl lof situations pushes the energy-
latency trade-off to its extent. It consumes a lot of eneagyafvery small amount of computation,
and thus system energy efficiency can be improved. This @molgould be solved by adding a
pre-selection step that limits the number of participati#gCs. This could be done by setting a
threshold on channel quality, distance, or both. HoweVehe sole goal is to guarantee a QoE
and to server the users’ requests regardless of the2@stis able to deliver the optimal solution.
For improving local cloud clusters energy efficiency, wegmee a clustering strategy that reduces
the cluster size while keeping the QoE guaranteed.
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4.3.3 Cluster Sparsification

Forcing a small cell exclusion rule at the beginning of thestdring process may result in service
delivery failure. If we exclude too many small cells, the gartational and communication re-
sources of the considered HSCs may not be enough for comgpaiinquest. And since the top
objective is to serve the user’s request, increasing thebthguaranteeing the service is a better
solution than reducing the cost and failing at delivering $iervice. In this section, we base on
the solution of the previous latency minimizing strategyneTobjective is to remove nodes that
are accorded very small computational tasks in order toaedioe cluster size, and eventually
its energy consumption. The main goal is to keep the serviegagtee while trying to exclude
costly HSCs. This may be seen as an exploitation of the lgfpower consumption and cluster
size/latency trade-offs. We propose to reduce the sizeeoE8IC, by distributing higher loads on
less small cells. Some small cells will then have no comriat load, while others will have
more. To minimize the size of the cluster, a cost is impose@d&éech used HSC. Minimizing the
size of the cluster is equivalent to minimizing the numbesrofll cells that are accorded compu-
tational load. The optimal cost function to use is ygorm, which associates a zero cost to every
non used HSC and a unit cost for used HSCs. Minimizingorm costs is minimizing the size of
cluster as much as possible. In this case, the optimizatiailgm can be cast as follows:

min  ||W||o
g W, WLE
st —+ N <Dapp, N=1,--- N
fn  109(1+ asnPmax)
Wh >0, n=1,---,N
N/
z Wn — W
n=1
whereW = W, --- \Wiy]. Unfortunately, implementing the minimization ol@norm is not
an easy task due to the discontinuous nature of its objeftthviion. Therefore, we replace the
norm by a cost function with similar properties. For havihg same behavior of thg norm, the
cost function should be null at zero and positive otherwige.propose the following function:

(fPB|O)

alx|
F _ 4.11
2(x) 1+alx| ( )

with o a parameter that sets the sharpness of the function. Figiighdws the variation d¥(X)
as a function ofx.

If X represents the percentage of computation load accordeattolSCF, penalizes more
HSCs with higher computational load. As seen in Figure 42, highera is, the moref(x)
approaches the form of thgnorm. However, in some cases, the solution could lead tocadiv),
if possible, many HSCs with low load for a lower cost. Thisasised by the continuity of the
and depends on its sharpness. If the solver is sensitiveglrtowcapt the weak gradient that exists
even for high values af, then the solution risks to be driven toward low load HSC=riEthough
this case is less probable to happen with small scale soshdris more likely to occur with a
large scale system.

For this reason, we propose a second cost function that isshméro, continuous, and that
associates lower cost for high loaded HSCs. The functioresigdied in a way that drives the
solver for assigning higher loads at each considered H3G@s designed to inverse the gradient
variation with the load increase comparing®o The cost function we propose is the following:

Fa(x) = 1+ (10y|x| — 1)e ™Y — % (4.12)
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Figure 4.2: Cost functiofr»(X) variation witha
wherey also sets the sharpness of the function as can be seen i Bigur
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Figure 4.3: Cost functiofrz(X) variation withy

As it is shown in Figure 4.3, the cost function sharpnessem®es for high values gf This
enormously decreases the chances that the solution dérivésad HSCs. In addition, it is clear
that lower costs are given to higher load HSCs. This furtr@psthe solution to tend toward
high loaded HSCs, and thus, to smaller cluster gizedoes not have the property of thenorm
of associating a value of 1 to the non-zero elements. Howeaseexplained above, this function
could help achieve the required solution while speedinghepoptimization process. Indeed, the
slope inF3 cost function will accelerate the convergence to a solutidath F, andF; can thus
be used as cost functions for reducing the computationesis&te. They have similar behavior at
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small scale scenarios, with giving a higher cost for higher loaded HSCs. For both casés of
andF; as cost functions, the optimization problem is cast as\ialo

N/
min F(Ws), =23
{Wn}wil nZl ,
Wi W,0
— + < Dapp, Vn:l,---,N’
fn  log(1+ asnPmax) app
W, > 0, Vn:l,---,N’

S.t.

(PBi)

N/
W, =W.
nZl "

The first condition inP‘B; guarantees the respect of the application latency constrgieach
of the HSCs, and the SSC. The second and third conditionsugiesr that the whole task com-
ponents will be computed. The solution of this problem, rdigss of the cost function, tends to
include HSC that are close to the SSC to the computationetluBhe closer the HSC, the higher,
in general, is the channel achievable rate. ThereforeecldSCs have lower latencies that farther
HSCs and can be accorded larger computation tasks.

4.3.4 Minimization of Cluster Power Consumption

Both proposed strategies in 4.3.2 and 4.3.3 deal with thetaling optimization problem from a
latency minimization and cluster size reduction point afws. These strategies do not account
for the cluster power consumption. Power consumption isrgortant issue in local MEC and
especially in small cell cloud since the local cloud senames typical cellular network base sta-
tions. Both first strategies aimed at achieving latency gaith good experience quality. Another
approach to the problem, is based on the fact that the latorstraint given by each application
(Aapp) should be respected, but not necessarily anticipatedeebhdf a computation is executed
and delivered to the user befahg,, seconds, this does not necessarily increase MUES perceived
QOE. What is necessary, is service delivery within — at moshsp,. Users’ experience quality
won't be affected if this constraint is respected. Even iflai@ncy gain ovel,pp is achieved,
users will still be able to receive the required service meti The main idea is to exploit the
latency-power consumption trade-off in local MEC in orderd@duce the small cells cluster power
consumption while keeping a good QoE. The following strig®gtress on power consumption
minimization, constrained by latency limitations.

The computation power consumption can be formulated asrtidupt of the number of pro-
cessed CPU cycles and the Energy Per CPU cycle (EPC) of tHecmih@rocessor,

W.EPC

Acom p

In the following, we focus on communication power consummptconsidering that the sum
of computing power consumption is fixed for each task inddpatly of the load distribution.
Communication power consumption can be optimized accgrttirthe channel quality, the com-
putational capacity offered by each HSC and the applicdfitency constraint. If no limitations
were imposed by the offered computational capacities aedatiency constraints, the problem
would be similar to water-filling [114]. However, with the @ditional constraints, the problem
is a joint optimization of the transmission powpy, and of the percentage of computatidf
accorded to each HSC. Since the optimization problem ainmsiritnizing the communication
power consumption, the optimal solution would be to complugerequest at the SSC. Indeed, the
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SSC allocates all of its computational capacity to compubteaaimum load within the latency
constraints, with any communication cogk{ = 0). If computational resources at the SSC are
sufficient for computing the whole request without violgtithe latency constraint, then no opti-
mization problem solving is needed and the load is accorddidet SSC. This is true only for the
case wherdsAapp > W. Otherwise, in the case whefeapp < W, the SSC will compute as much
as its resources allow inf,,p time. The SSC load will be equal Ws = fsAapp. Then, for the
remaining computational load, the optimization problem ba cast as follows:

Nl
min Psn
W n:lz,n;és
s.t. (@ W, >0, vn=1--- N;n#s
N/
() Y Wh=W-W, (PBa)
n=1n+#s
Wh W,0'
) —+————<Ngpp, N=1,--- N;n#s
© 3 T Tog{it asnPen) = Lere 7
(d) 0< psn < Pmax n=1,---,N;n#s.

Problem®? B, is non-convex, due to the non-convexity of the delay comstfa). In the following
we casePB, into a convex equivalent problem. The delay constraint Jnigeequivalent, for
psnWh > 0 and under the feasibility conditia®ppfr > W, to:

/
fWh6 <0 (4.14)

—log(1+ <
9(1+asnPsn) Bappfn — W

Note that the delay constraint in (4.14) is convex, as canasdyeproven by showing that its
Hessian is a semi-definite positive matrix. Therefore, ttoblem PB4 can be reformulated as:

N/
min Z Psn
pW n=1n#s

st. Wh>0, n=1,... N;n#s,
N/

Vo= W= (PBa)
n=1n#s
OSpS‘VnSF)rnaX7 n:1,...,N/;n7éS
log(1+ )+ W _ 0, n=1...,N;n#s
g AsnPsn Bappfn—Wh = =1,...,N; :

Wn—Aappfn<0, n:l,,N/,n#S

Problem® B, has the following properties:

Theorem 2. Given problem?3, and PB4, the following hold:
(i) Necessary condition faPB,4 to be feasible is:

N/

A
T e >W; (4.15)

n=Tns Ty T Tog(TTasnPmad

Ws +

(i) PB, is a convex problem, then any local optimal solution is a glaptimal minimum;
(iii) PB4 and P B, are equivalent
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Proof. To prove point (i) of Th. 2 observe that Equation (4.15) is @bgl condition that can be
easily derived from (b), (c) and (d) #B,. For proving point (i), observe that problef3, is
convex since the objective function as well as all the cass are convex. Then any stationary
point is aglobal optimal solution of the problem. As for point (iii), sincerf@3, the Slater’s
constraint is verified, any optimal solution satisfies theTkeonditions of?B,. The Lagrangian
function associated t# B, is:

N’ N’ N’
L(p,W) = Z Psn— Z Ban—F)\( Z Wn—(W—Ws)>

n=1n#s n=1n+#s n=1n+#s
N/ N/
+ HnPsn + 0n (Psn — Pmax)
n:lz,n;és n:lz,n;és (4.16)
N/ /
Wn fne
+ Tn <—|Og(1+as,nps,n)+7>
n:lz,n;és Aappfn —Wn

+Nn(Wh — Dappfn)

wherefn, A, kn, On, Ty, @andn, are the Lagrangian multipliers. The KKT conditions can bétem

as:

0L Asn
a): =140, —ph—Tp———— =0, Vn#s
@ 0pPsn n~Hn n1+as,nps,n 7

0L f20app®
b): —— =A—Bn+Tn—0 2P =0, Vn#s,
( ) aWn Bn+ n(Aappfn—Wn)z +r]n #

N/
n=1n+#s

(d): 0<PBn LWh>0, Vn#s, (KKT 33,)

(e): 0<an L (Pmax—Psn) >0, Vn#s,
M: 0<pr L psn>0, Vn#s,
W, 0/
(9): 0<Tt, L <—|Og(1+a&np$n) " Bappfn—Vih
(h): 0<nn L (Dappfn—Wh) >0, Vn#s.
wherea | b stands fora, b) = 0. From the complementary condition (h) we ggt=0,vn#s.
We study these two cases separately, i} 0 and ii)t, = 0. Under assumption i), it follows from
(9) that the delay constraint is always active. Therefdrps > 0 thenW, > 0 and we have a one
to one relationship established between the transmissimepand the computational load. From
(d) we have tha, = 0, then from (b) it results that < 0. Finally, assume that, > 0 andpsp =0,
then the solutiorps, = 0,W, = 0 is achievable according to the one to one establishedmesip

betweenps, andW,. We now consider the case ii= wherg= 0. Under this assumption (b)
reduces ta\ = 3, which contradicts the fact that< 0 and this leads to an absurdum.

>zo, Vs

O

The optimal strategy tends to assign the high computatiadddo small cells with larger
computational capacities and better communication cHanne
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4.3.5 Minimization of Small Cell Selfish Power Consumption

The previous optimization targets the minimization of tkerall communication power consump-
tion. This may lead to that some small cells hold greatly biginergy costs than others. This hap-
pens, for example, when a certain HSC has very high computdtcapacity. This small cell will
then be allocated very high load which leads to increasgigatmmunication power consumption
compared to other HSCs. In this problem, we address selfishmiziation of the communication
power consumption, i.e., each small cell in the clusterge¢adeduce its own energy consumption.
The power minimization should always take into account thgieation latency constraints. For
the same reasons as#B,, the SSG will be assigned a load equal f&\,,p. The optimization
problem can be set as follows:

min max
p‘,W n:{l,...,N/}psn

Wh WHO
s.t. —+———————— <NAgpp, Vn={1,--- ,N'}in#s
fo *10g(1+a@snPsn) — °F { yin#
Wi >0, vn={1,--- ,N'},
N’ (?Bs)
Z Wn :W,
n=1
OS ps,n < PmaX> vn= {17"' 7N,}>
Pss = 07

The solution will tend to accord to all small cells an equakpoconsumption. The same reasoning
of PB, applies. If any small cell has a greater power consumptiam tihe others, the load
distribution can be modified, if possible, to decrease theima power consumption value. This
policy will most likely increase the overall cluster powemsumption comparing t&3,.

4.3.6 Numerical Evaluation

We presented four different strategies for small cellsteliisg in the concept of local mobile
computing through computation offloading to SSCs. Thesgegies differ in their optimization
objective, and therefore form different clusters. As prire[111], in a cluster of size 1, the less
costly solution for small clustering is to compute the tasktéhe SSC. For the latency minimizing
strategies, this is clearly not the case when we can incluzte than one computation server. For
the power minimizing strategies, it is the most beneficiatdmpute the totality of the tasks at
the SSC. By doing so, there is no communication cost. Butishi®t always possible due to the
limited computational capacities at small cells.

In this section, we compare the solution®; and PB4 in a 3GPP 5< 5 apartments grid
scenario. p is the ratio of apartments where active small cells are geplo For simplicity we
consider a static user connected to the small cell in theecerfithe grid (see Figure 4.4). Direct
neighbors HSCs (separated of SSC by a maximum of 2 wallsgéaed to as Near HSCgnear
determines the percentage of Near HSCs among active sriiall ce

Figure 4.5 shows how much load can be allocated to the SSChwith latency and power
minimizing strategies. The computational load ration o€S8ear HSCs, and far HSCE%) are
reported with respect to the ratio of near HSCs with respetiié number of active HSCs in the
grid (Znear). Simulation parameters are listed in table 4.1

P8, solution tends to give larger computation tasks to far H®@sPB,, despite the fact that
they are subject to an average weak transmission channet®darger distance from SSC. This
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Figure 4.4: 3GPP apartment grid with small cells emplacemen

Table 4.1: Simulation parameters values

Parameter ‘ value H Parameter ‘ value ‘
Runs 3000 p 0.25

B 20MHz Oc 10

No -118.4 [dB/Hz] || BER 106
w [10°;2.10° Dapp [5;8]

fn [105;2.1F] BuL 1

BoL 0.2 Prax 1 [W]
Py 10.1 [W] Ap 15

-8-Serving SC - PB1
-©-Near SCs - PB1
-9-Far SCs - PB1
-B-Serving SC — PB4
-©-Near SCs - PB4 |
-9-Far SCs — PB4

>Wn /W
o
o

===

Figure 4.5: Comparison of load distribution to each HSC set 8SC for latency and power
consumption minimization

strategy allows the cluster to reduce its later2g, takes advantage of all active HSCs, especially
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Near HSCs to which it allows a greater computation load ireotd achieve a lower overall latency
since they normally have better channel conditions andulnjest to lower path loss. The solution
of PB4, which objective is to minimize the cluster power consumptiassigns more computation
load to the SSC when possible, because it has no commumigatieer consumption. This comes
at the cost of increasing the cluster latency since comiputtioad is not distributed in a way
that guarantees faster cluster computationgP# load is distributed such that all small cells in
the cluster have the same overall latency of receiving, caimg, and sending back the results
to the SSC. Whereas A8y, the load is not distributed according to perceived lateaog thus
some small cell with higher loads, notably SSC, will consun@e time for tasks execution that
others, and therefore, increase the overall cluster padédatency. As it is shown in Figure 4.6,
PB; has the largest latency gain, as expected. It shows alsthénaiptimizations that target the

0.251

-*PB5

Latency gain ratio

Figure 4.6: Latency gain of different strategies compatogapp

minimization of the power consumption, i.e?B4and PBs do not achieve almost any latency
gain. In fact, these strategies take advantage of all thigablea time delay in order to further
reduce power consumption. Transmitting with lower trarigmoiwer increases the bit duration,
and thus the communication time. They push the latency-poamsumption trade-off to its limits
defined by assuring QoE. Figure 4.6 also shows that when wddesparsify the solution in order
to eliminate HSCs with very low computation taskB%;), we can lose up to 15% in terms of
latency. However, this gain in latency is traded with powansumption as can be seen in Figure
5.7. As it is shown in the grapl?3B; achieves the higher power consumption gain comparing to
the consumption of?B;. This gain is between 50% and 60% for @lkar Value, i.e. the gain in
power consumption is considerable for all HSCs distributiothe apartments grid. We notice that
for the case where the power minimization is HSC centric,ghi@ decreases of approximately
10% for scenarios where far HSCs are dominant, and it dezsdass when the majority of HSCs
are in the Near HSCs set. As f@rB3; where the solution of latency minimization is sparsified,
it is shown that we can increase the power consumption gaim 9% in the case oB1 up

to 33% for deployments where far HSCs dominate. In fact, whemSCs are numerous, the
chances of being in a situation where far HSCs are accordgdoxe computation load increase.
Therefore, more gain can be achieved in such scenariose 8irtbe case of?B3; we assumed
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that transmission power is constant and equ#tg, the gain in power consumption comes only
from the reduction of the cluster size. F8mB; and PB,4, transmission power consumption can
be controlled. For this reason, the power consumption gaithése cases is a result of both
transmission power adaptation and cluster size redudtigiure 4.8 shows the ratio of used HSCs
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Figure 4.7: Power consumption gain for different strategiemparing to the maximum power
consumption

to form the cluster among the total number of active smalscdlhis plot shows that all strategies
that gained in power consumption own a part of it to the clusitee reduction®?B; is the strategy
that uses the smallest cluster size. Moreover, it tendséonme HSCs whenever they are in the
Near HSCs set. This can be seen from the gain decrease whepcthéncreases. We notice
that (PB,4), which has higher power consumption gain th&#3, achieves almost the same gain
in cluster size. Additional power gain is then due to powentad and load distribution. The
difference of power consumption gain betweRB®; and PB, is also due to the load distribution
since the first minimizes the overall power consumption &ledtcond does an HSC centric power
consumption. Power consumptions are compared in Figurhdt$hows the power consumption
distribution over the HSCs set. It is clear that the HSC déematpproach allocates more power to
far HSCs to be able to lower the power allocation for Near HSTss will balance the power
consumption over the cluster HSCs. But as seen in Figurarbsicomes at the expense of higher
overall cluster power consumption.

4.4 Multi-user Multi-cloud Use Case

In this section, we extend the cluster set up optimizatiablem in a local MEC, to the muli-user
case (See Figure 4.10). Each of the SSC will form clustergt$aswn requests. SSC will then
share HSCs and their computational capacities. This regj@irjoint and simultaneous set up of
the computations clusters. Almost all previous work coamsidhat computational capacities at the
cloud are always sufficient for computing users’ requesteh&n assumption is not always true,
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Figure 4.9: Power consumption distribution for power sg\dtrategies

especially in local small cell cloud. SSCs cells are smadiebstations with limited power and
computational capacities. In the case where there are & lstens, SSCs may receive concurrent
requests at the same time. The load distribution and coniquogh resource allocation should
be jointly assigned for all users in order to guarantee QaElicusers. The offloading decision
would be far more interesting if done with a global view onaative users in the system. If we
consider that each user allocates its own resources wittighdeehavior where each SSC forms
its own cluster without taking into account the presencetiogiousers’ requests, then, not all users
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MUE3

Figure 4.10: Multi-user small cell cloud scenario.

will have enough resources to compute their own tasks. Eiba system resources are sufficient
for computing all requested tasks, non-coordinated resoaltocation by various SSC can cause
system overload. Instead of distributing the load in ordesdtisfy all requests, SSC may ask for
the same resources at the same HSCs, which results in failtequests computation due to lack
of resources.

We study the multi-user computation partitioning and cleegburce allocation problem under
application latency constraints. In our work, we consideidealistic approach where transmis-
sions between small cells are orthogonal. In this thesisjaugot tackle interference management
techniques in small cell computation clustering. The ide#oijointly allocate communication
and computation resources in the novel proposed edge ciohitecture under considered system
characteristics. The goal here is to set a main insight alvbat can be done in cluster-based
distributed edge cloud platforms. The proposed solutior @ncepts can be upgraded to be
interference-aware, and to adapt cluster set up to radéof@mence map. Interference aware small
cell clustering in edge cloud computing is indeed an intérgsstep that can be considered as an
advanced in-depth future investigation of small cell @udsig solutions. For example, cluster set
up can target interference limitation goals. Interfereimcgeneral can be tackled through various
mechanisms such as orthogonalization (frequency, timepace duplexing), diversity increase
through repetition coding and MIMO systems for example,rdisated multi-points transmis-
sions, colored graph techniques, and interference margins

For simplifying notations, we refer to the set of active droalls asi\/.

We adopt the system model described in 4.2, and we dengietypk,)vn, sk, f £ (fn)Vk, n,

W £ (Wikn)VK, n respectively, the transmit powers, computational rates @mputational loads
associated to each mobile user.

4.4.1 Multi-user Clustering Optimization

We consider a multi-user MEC scenario, where SSC set up catiqmal clusters with the ob-
jective of reducing intra-cluster communication powersumption. Our proposed solutions is an
extension ofPB,4 solution of Section 4.3.4 to the multi-user case. In the cdsaultiple users,
we propose to formulate the problem with the objective ofimining the sum of transmission
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powers inside the cluster. Under the constraints of ressuavailability at each small cell, the
transmission power budget limitation, and the respecttehlay constraints, the problem is set as
follows:

min K
pfW SES keziig nel\lz,n;és Psn
st. (@ wWn>0,fn >0, Vke K,ne N
(b) z Win =Wk, Vke K
nen (fP)
) 0< P, <Prnax VseS.ke X neN,n#s
@ 3 fn<Fn Wnen
ke K
(e) Algn( plgm fkakn) < Ak7 Vn,se 57 ke Ks

where we define the delay function

0 if pX.. fin.Win = 0,Vn#£ s
Dl i) 2 {0 s fon Mo = 0,71 (4.17)
T2 if fta>0,n=s
oc|hsn|2Psn

with 6 = By + 6pL and Rs, = Bgrlog(1 + (l—PEW)' Note that the delay defined as in
(4.17) means that: i) for all the non SSCs, the delay fundsdorced to be strictly positive only
if the transmit power, the computational rate and load assigo the mobile user are non-zero;
ii) in case of computation at the SSC, i.e. foe= s, the transmit powep¥;, is null then the delay
constraint is reduced to a computation time constraint. dte that in the multi-user case, we
assume orthogonal transmission and thus we do not consigdeference. We are aware that the
model stays simple, however, the objective in this thesis iwabverview edge cloud architecture
to explore what solutions can be found for cluster-basee etlgud computing. We consider the
proposed solutions, with the adopted model, as a startiimg fow devising further in-depth inves-
tigations of edge cloud computing implementation. Unfoately problem? is non-convex, due
to the non-convexity of the delay constraints (e). Nevdess in the following we cagP into
a convex equivalent problem. To this end, observe that ttay dmnstraint can be equivalently
rewritten forpgn. fun-Wikn > 0,n = sand under the feasibility conditiofy fx, > Wkn, as

Wiafk (4.18)

glén( plém fknvwkn) £ _BSHIOQZ(]-"" als(npls(;n) =
Ay fen — Wien

k & _ o
whereag, = T PERINy"

verified by proving that the Hessian gf, is a semi-definite positive matrix. The delay condition
(e), which imposes a non-convex constraint to our optinongbroblem, can be reduced féy, >
0,n = s, to the linear convex constrainks < Ag fxs. Hence, problen® can be reformulated as:

Note that the delay constraint in (4.18) is convex as candsdye
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. k
min Psn

pfW SES ke?@nel\Zn;&s

st. (@ Wn>0,fkn>0, Vke K,ne N

(0) > Win=W, vkeX

nen
() 0<pk <Pmax VseS ke Z,ncA,n#s (P)
(d) z fkn S Fn, Vne N

ke K
(e) gls(n( plgn’ fkn,Wkn) S 07 \V/SG 5, k € 7@7 ne Na n 7& S
H wWkn—LOkfkin< 0, Vse S, ke Ks,ne A,n#s
(@) Wks—Axfs<0, Vse$ ke %

Problem®?, enjoys some desirable properties as stated in the follothiegrem.

Theorem 3. Given problem? and Z, the following hold:
(i) Necessary conditions faP to be feasible are:

N
A
%’WF CBOWE Y K (4.19)
nen " =1 * Rén(Prmax)

(i) 2 is a convex problem then any local optimal solution is a glagimal minimum;
(iii) ¢ and % are equivalent.

Proof. To prove point (i) of Th. 1 observe that from the constrainti{lexistsvk at least a server
n for which wy, > 0. Then from (e) in?, we can writewy, < Ak fkn which leads to the first
condition in (4.19). This implies that the maximum delay oapd by the applicatioAx cannot

be less than the minimum execution time which can be achieyedsingle equivalent server with

computational capacity equal to that of the overall netwakk 3 F,. The second condition
nen
in (4.19) is a global condition which can be easily derivaahir(e) in®. To prove point (ii) in

Th. 1itis sufficient to observe that problef is convex since the objective function and all the
constraints are convex. Then any stationary pointgto@al optimal solution of the problem. It
remains to prove point (iii). since fak; the Slater’s constraint qualification holds true, any optim
solution satisfies the KKT conditions @§. The Lagrangian function associatedRgis:

K N
L(p,f,W)éz Z Z pl;n+z)\k(ZWkn—Wk)
S S KEKs ne Al ,n+#s k=1 n=1

N K
- Z Z Blgann‘F Z Z Z [qlgn( plgn_ Pmax)

n=1k=1 seS ke Ks ne A ,n#s

Wknfkn
D fin — Win

K
+N&(Wkn = Aicfin)] + 3 Vol Y fin— Fi)

nen, k=1

K
= > Pfint Y D Kis(Wis— Dicfics)

neA k=1 scS ke Ks

- pls(nplén + Tlén(_ Rls(n( plén) +
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where the non negative variable$,, 1., T5, N8, Bkn, Pkn, Yn, Kks andAx € R are the Lagrangian
multipliers. The KKT conditions are:

k
@): aL—1+a'§n—p'§n—rkﬂ:O, Vse S,ke k,ne A,n#s,

aplén - "2 snl—i_als(nplgn
oL K 2 0 .
Ny X kn” . _ K
(b) 0 fun Yn Tsn(Akfkn_WIFg)z 9pkn rlsnAk 0, Vsel$, ke K,ne 9\[7n #S,
(©): awkn—)\k Bkn+rsn(Akfkn_Wkn)2+r]sn—0, Vse S,ke e,ne N, n+#s,

(@) - =Vs—Kilk—pPrs=0, VseS ke %,

(@) P =M—BrstKis=0,¥se S ke K, Vse S ke %,
(f’): Ak € R, VK, > nWkn — Wk = 0,

(@): 0<BknLwWkn=>0, WVk,n,

(h): 0<oak, L (Pmax—p5) >0, Vk.n#s,

(: 0<pk,Lpk,>0, Vkn#s

M: 0<ynl(F— 25;1 fkn) >0, Vn,

(m’): 0 < Pkn 1 fkn > 0, Vka n,

fknB
": < 1K K (nK Y WiknTkn
(n ) 0< Tsn 1 (Rsn( psn) D Fer — Wien
(0): 0<nK, L (Akfun—Win) >0, VKn#s,

(P): 0 <kKksL (Akfrs—Wis) >0, VkK,s

)>0, Vkn#s,

(KKTT—%)

wherea L b stands for(a,b) = 0. Observe that from the complementary condition (0’) we
getr]'gn = 0,Vk,n # s. Let us first considen # s by studying separately the two case$‘§1,) >0
and i) T8, = 0. Under assumption i), it follows from the complementadgndition (n’) that the
delay constraint is always active. Hencepff, > 0 thenwi, i, > 0 and conditions (g’) and (m’)
lead toBxn = pkn = 0. Then from (b") we gey, > 0,Vk, n so that the computational rate constraint
holds with equality and from(c) it results, < 0,Vvk, n. Finally, assumer'gn >0 andp'gn =0. then
Win > 0, fn > 0 is not an admissible solution since it contradicts the tramg qualification (n’)
being the delay constraint always active. On the other haggd; 0, fx, > 0 lean to an absurdum
since from (¢’) one getadx = 0 while it must always bay < 0. Under assumption i), it remains
to check if the solutiorp,,= 0,wi, = 0 is achievable. In this point conditions (b’) and (c’) reduc
respectively toy, = pkn andAg — Bkn+r'§n = 0. The conditiony, = pkn implies fyx, = 0 sincey, is
always positive. It is important to remark that albeit thadiéle set of7; does not include the all
zeros solution, the admissible solutipb1 = Wkn = 0 leads tofy, = 0. This permits to reach along
gradient directions for which the KKT conditions are notlated, the null delay point enclosed
through (4.17) inP.

Let us consider now the case ii), i.e# s,18, = 0. From (c’) one getdy = Bk, and this
contradicts the fact that, < 0.

The only case left to study is= s. Under this assumption, observe tkat= 0 is not admitted
since from (e')Ax could not be strictly negative. Then let us considgy> 0. From the comple-
mentary condition (p'Wks = Ak fks andwis, fks can assume non-negative values while meeting the
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KKT conditions. This implies that according to (4.17), thelay can assume the zero value for
Wys = fks= 0.

It is important to remark thaP is a hard to be handled problem due to the discontinuous non-
convex delay constraints. Nevertheless as stated in The Taw find out its optimal solution by
solving the equivalent convex problefy. O

We note that Eq 4.19 could represent a form of admission almtrthe sense that only when
that condition is satisfied for all users, then all usersuexis are accommodated. When Eqg.
4.19 is not met, the solution would require some admissiorirobstrategy that decides which
users’ requests should be accommodated and which onedddbeuliscarded. The admission
control process optimization is not addressed in this wouk,the theory developed here can be
the starting point for devising an admission control sggptéhat identifies a proper priority of
users’ requests and selects which users to serve and wherpeformance evaluation of the
proposed theory, we consider that, in case not all requestd be accommodated, SCM discards
request that requires the highest computational capanityy€les/sec).

4.4.2 Numerical Evaluation

For evaluating the performance of the joint clustering mjtation, we compare it to the case
where all requests are handled by the SSC (‘No Clusterirlgd,case where a static clustering
rule of equal load distribution between active neighbor lsiglls is imposed (‘Static Cluster-
ing’), and the case where clusters are formed for each useessively (‘Successive Clusters
Optimization’). Comparing to the ‘No Clustering’ case shothie gain that is introduced by al-
lowing computations execution on small cell clusters iagtef a single cell cluster, the SSC.
‘Static Clustering’ represents the case where a fixed alistassociated to every SSC. Our so-
lution brings a dynamic approach to the cluster setup, wtiereaumber of small cells and their
choice is QoE aware and depends on the current system loaghutations characteristics. The
‘Successive Clusters Optimization’ allows each SSC to dsian its clusters for computing its
own task. However, the clusters set up for different SSCetiglane jointly. Every SSC sets up
its cluster with remaining computational resources. Cammpgasuccessive clustering to our pro-
posed solution shows the gain of jointly optimizing mukiplsers’ clusters for a better resource
allocation resulting in higher QoE. The simulations parsrsare resumed in Table 4.2. First

Table 4.2: Simulation parameters values for the multi-gsse

Parameter‘ value H Parameter ‘ value
Pa 0.5 Ps 0.32

B 20MHz Oc 10

No -118.4 [dB/HZ] || BER 106

w [2.10°,10.10°] || Aapp [0.5;3.5]
Fn [10.10%;15.10°] || Prmax 1[w]
OpL 0.2 OuL 1

of all, we show how the small cells are chosen to participatdhé computational clusters. The
solution of problem?; jointly forms computation clusters for all users. In a sengker case, the

optimal power minimizing strategy would be to allocate amaomputational load as possible
to SSC as seen in Section 4.3.2. Furthermore, power mimmgblutions for a single user case
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tend to allocate more computational capacities to near HS&Gsler to reduce the transmission
cost. Figure 4.11 shows how the clusters are formed in thé-tmér case where computational
capacities are shared. With an increasing number of userS®€, each user is allowed to use

-©-Serving Small Cell (SSC)
-8 Near HSCs
-9-Far HSCs

Percentage of load
o o o o o o
R o 2 o o S

o
e

2 3 4 5 6 7 8
Maximum number of users per small cell

Figure 4.11: Cluster load distribution according smallscdistance to SSC

less of the SSC computational capacity and offload more ctatipn to HSCs. Furthermore, we
observe that far HSCs are used in the clusters nearly as rsudeaHSCs. This strategy allocates
more computational load to far HSCs when possible in ordérdeease the system performance
and achieve higher satisfaction ratio. Figure 4.12 showsp#rcentage of satisfied users. A user
is satisfied if its computation request result is deliverétthout violating the imposed latency con-
straint. In order to evaluate this percentage, we try toestite optimization problem with the total
number of active users in the network. In case of failure athéng a cluster solution, requests
with highest computation loads are dropped one by one Uhtibasidered users are satisfied. The
satisfied users ratio is evaluated for the considered clogtstrategies with respect to the number
of served users per SSC.

On Figure 4.12 we show how the joint clustering strategy fousers greatly outperforms all
other strategies. The fact of taking into account all thévaaevices in the system allows better
distribution and allocation of both computation and comination resources, and thus, higher
QoE.

On Figure 4.13 we observe the average power consumptiom ioaimputation clusters. With
the no clusteringcase, no data transmissions take place so there’s no caioputéloading, no
communication power consumption but extremely low QoEaRed with the extremely low sat-
isfaction ratio offered by this strategy (figure 4.12), thisategy is obviously not a suitable choice
as soon as the number of devices per small cells increasdbe ltase oftatic clustering the
power consumption in the computation clusters is highem thahe proposed joint optimization.
Despite the fact that in static clustering the SSC commumécavith its close neighbors small
cells that are subject to better channel quality, we obsleigte power consumption. With a fixed
number of computing small cells in the cluster, the aggesjabmputational capacity that can be
offered is limited. Therefore, the SSC may end up increagsmpgower consumption for a faster
transmission of input data in order to assure the tasks ctatipa without any latency violation.
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—6©— No Clustering
—B— Static Clustering
Joint Clusters Optimization
—#— Successive Clusters Optimization

Users satisfaction ratio
&
i

~

3 4 5 6
Maximum number of users per small cell
Figure 4.12: Users satisfaction ratio in dependence on ruwiftusers per small cell

This leads to higher power consumption for lower userssé&attion ratio. This figure also shows
that thejoint clusters optimizatiorconsumes more transmission power thlsaiccessive cluster-
ing with the goal of increasing the satisfaction ratio througbrenadapted resource allocation.
Our proposed solution achieves much higher performancke wianaging to keep a lower power
consumption than the static clustering strategy.

—6— No Clustering
—B— Static Clustering
Joint Clusters Optimization
—#— Successive Clusters Optimization

15

average power consumption per user [W]

D

? 4 ? ? ® ? 9 ?
maximum number of users per small cell

Figure 4.13: Average power consumption per user in depersdemthe number of users per small
cell

Even though the objective function of the joint clusterimgimization problem targets power
consumption minimization, we notice that it achieves somi@ @n the cluster latency. This is
mostly due to the cases where local computation resourdés &SC are enough for computing
its users’ requests. In this case, local computational aigpes accorded to the users’ power
consumption free, and a latency gain can be achieved. le& thatjoint clusters optimization
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compared tesuccessive clusteringxploits the latency gain and trades it with higher sattia
ratio.

Different latency trade-offs can be exploited, where wddrkatency for higher gains on other
optimization dimensions, such as, cluster cells energygieffty, cluster size, reduced EMF ex-
posure, and power consumption. Such trade-offs are disdussChapter 2. For example, we
could reduce the cluster size by means of sparsification aridde some small cells in order to
put them in an idle state for lower equipment power consumnpti he computation load of some
small cells could be redistributed to others at the costaiasing the experienced latency.
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Figure 4.14: Average user latency gain in dependence onutmber of users per small cell

The proposed joint clustering optimization might not gite ultimate optimal solution for
the multi-user computation clusters establishment probl&his is due to the fact that the small
cells are in a computation idle state, i.e. not performing@mputation, during the time they are
receiving input data. The data transmission time depesdf itn the cluster characteristics and
parameters, and especially on load distribution and tresssom powers. Computing idle time is
seen as a loss of computational resources that could elgriteaused for serving local devices
at each small cell. In addition, when clusters are formeda@mdputational loads distributed, it
is possible that some computations execution finish befweothers and thus some small cells
will have free computational capacities. These capacé#iesnot re-used or re-integrated in the
computation process, and can thus be seen as wasted resdDurgroposal is based on a single
one shobptimization that does not update the load distribution mub@mputational resources are
freed. The computational resources that are graduallyaibd are however used for the follow-
ing clusters set up. A possible way to overcome this problemlavbe to launch the optimization
problem with a different starting point of the system stat tallows better exploitation of compu-
tational resources. However, and despite its non-optiyn#tie proposed method achieves relevant
gains comparing to static strategies where each compntaltister is predefined.

4.5 Conclusion

In this chapter, we consider scenarios where edge cloud selsl are empowered with compu-
tational and storage capacities. Small cells have thenhiliéyao act as a local cloud through
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small cells cooperation through clustering for computaiopurposes. The pools of resources
thereby created are to be shared among the mobile subsccitnenected to the set of small cells.
We tackled the issue of load distribution and resource aflon inside the clusters in the small
cells local cloud. We started by studying the single-useeaghere only one computational task
is requested at a SSC. The optimal cluster depends on theutatiopal task requirements, the
network capabilities and the desired cluster characiesisFirst of all, we propose a solution for
setting up a computational cluster that can offer the fasewice time, i.e. cluster latency is min-
imized. Then, we proposed two additional cluster set-ugtesfiies that aim at reducing the cluster
power consumption. In a further step, we introduce a novetept of cluster sparsification. We
propose a strategy that aims at reducing computation clsigi, without violating computational
requirements especially in terms of time limitations. Thepgwsed solutions in the single user case
are based on efficient load distribution between partigigasmall cells in order to guarantee the
service delivery to the mobile users. In the multi-user cteeload distribution is more complex.
The formulated joint resource allocation and load distidouoptimization problem is not convex.
Our solution is based on tlmnvexificatiorof the formulated problem. We wrote a convex equiv-
alent problem and we proved that it can converge to the saliftit exists. Our proposed solution
is based on the trade-off of leveraging overall users sati®in on user centric QoE. Indeed, if
each of the mobile subscribers act selfishly by setting-aipvith optimal cluster using one of the
proposed single-user solutions, pooled resources willobgtt over by several clusters which
will dramatically lower the overall users satisfactionisatThe proposed solution was shown to
outperform existing policies by achieving a higher satigém ratio. However, the computation of
such a solution requires a powerful server with high comjmrial capacities since the complexity
scales with both the number of mobile users and small cells.a¥umed wireless communica-
tion between small cells with known channel charactegstiod known characteristics of every
small cell. In practice, a signaling system would be neagssa the central unit that computes
the solution can collect such information. Furthermore, ghoposed solution is a one shot opti-
mization. However, computations do not have neither same limitations nor are all completed
simultaneously. Thus, some computational resources eed fis soon as some computations are
done. The proposed solution does not include a strategefosing these capacities.

We note that the presented work can be applied to curremt ¢fgineration cellular wireless
mobile networks and its future evolutions (5G, 4G, 3GPP L3&PP LTE A, WiFi, LiFi, WiGIG,
WIMAX, etc.) with the modification of the adopted transm@siand deployment models. This is
because the proposed methods do not request changes imrérg standards to be implemented.
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5.1 Introduction

5.1.1 Motivation

In this chapter, we address the same context as Chapter 4evhpwve aim at designing low
complexity clustering algorithms, that do not contain céemmptimization problems solving.

We tackle the computing cluster set up paradigm for mobilgeecloud. In MEC, MUES
have the possibility to offload their computation to be exeduat the local edge cloud. In the
architecture we adopt, the cloud functionalities are dggdoat network edge small cells in close
proximity to mobile users. MUESs send offloading computatiequests to their SSC. The SSC sets
up a computing cluster for executing the received requ€simputation load is distributed among
the small cells participating in the cluster. In order topexs the latency constraints imposed by
the offloaded tasks, the cluster should consider jointlyalfecation of both computational and
communication resources, and load distribution within ¢hester. In this chapter, we propose
heuristic small cell clustering algorithm that also coes&ljoint communication and computation
resource allocation.

The clustering optimization solution proposed in Chaptdodboth single user and multi-user
use cases, are based on joint optimization of cloud clussaurces formulated as an optimization
problem. The proposed solution proved to be efficient andaguee high users’ satisfaction ratio,
i.e. guarantee the service of a high number of users withioldting the latency constraints. For
the single-user case, the optimization problem is simpkotee. In some cases, as in the case of
cluster latency minimization, a closed form solution cafdued. However, in the multi-user case,
the optimization problem is more complex, and non-conveserthough we proposed a solution
to compute a clustering solution using an equivalent cogimization problem, the number of
parameters to optimize increases with the number of userthemumber of small cells. In small
scale scenarios, this solution can be implemented and mjeardetter QoE. On the contrary,
in medium or large scale scenarios, the number of paramitaerptimize becomes very large.
Solving the optimization problem in this case can be timd,@mputational capacity consuming,
which may have a negative impact on finding a feasible saiutim cases where the solution
computing time is not negligible, the delay is omitted frdme tomputational time tolerance, and
thus reducing aggregated resources. The number of vagiableptimize is equal to 3 N x K
whereN andK are the number of considered small cells and users resplgctiVherefore, the
implementation of such a solution requires a powerful sroall manager that can derive the
solution without affecting the feasibility of the derivedigtion. In Chapter 4, the challenge was
to find a clustering solution that jointly optimizes compgigaal and communication resources,
and distributes the load, while guaranteeing a high Qobhithahapter, the challenge is different.
The motivation of this chapter is to relax the cluster setapglexity for avoiding the implication
of small cells in complex clustering set up calculations.nét®e alternative algorithms with low
complexity are needed for solving the cluster set up problem

5.1.2 Related Work

The topic of small cells clustering for computing purpogethie MEC is relatively new and very
few solutions have been proposed in the literature. In &ofdio the related work reported in
Section 4.1.2, we report the following related work. Thregource allocation algorithm®ath’,
‘Comp’, and‘ACA’ for SCC clustering are proposed as part of the solution tiRORIC pro-
pose [115]. The first algorithmPath’, is based on transmission quality between UEs (Users’
Equipments) and SCs. The SCs with the best ‘path’ qualitysahkected for participating in the
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computation process. Theomp’ algorithm is based on the computational power availablactt e
SC. ltis the SCs with the highest computational power at stienated data delivery time that par-
ticipates in the computation process. In addition, a comatimn of both algorithms is proposed
under the name 6ACA’ algorithm. By estimating the computational load to be e¥etaccord-
ing to the application type), an overall delay is computéghiinto account both path quality and
available computational power. SCs with lowest overalagelre selected for participating in the
computation process. Tasks are handled in all of theseitdgw in a FIFO (First In First Out)
manner. Indeed, for simplicity, no scheduling policy is sidered. Treating tasks as FIFO may
not always be the best scheduling solution especially irct#se where tasks characteristics vary
in latency constraints and computation load. Furtherntbieproposed algorithms are applied in
a scenario where the number of participating SC is predefidedhe contrary, with our proposed
approaches, the SCC size is adapted to the need and dimeshdmsatisfy the computational
requests.

Niyato et al. propose a game theoretic modeling of cooperation in molbdledccomputing
[116]. However, the addressed cooperation is betweenreliffeservice providers data centers,
which are separated from the radio access points. The ideali®w multiple providers of mobile
cloud services to cooperate and create a resource pool aredadigher number of users, and
support a higher number of applications instances. Thikwddresses the computation part at
the computing data centers coalitions as well as the conuation part between MUEs and radio
access points. Wireless access points communicate witpwtimg servers through wired links.
It proposes an admission control method enabling the useasdess the resource pool owned
by the coalition (cluster) of mobile service providers. Irmder distribute communication and
computation resources of base stations and data centergyanubile users, an admission control
mechanism is proposed. An optimization problem is fornadab obtain the maximum number
of supported users by base station and data center. The fgibes optimization is to maximize
the revenue of data center providers. The coalition of datders is assumed to be chosen a
priori, and any coalition algorithm is proposed or preséntéowever, a distributed algorithm that
allows the data centers and base station to increase thenamwioresources used in the cluster
is proposed. Base stations and data center have the optinareésing their participation in the
cluster in order to maximize their revenue, but once theypare of a coalition, they are forced
to participate in the computation cluster since it is coasad that this participation will generate
revenue for the service providers. However, in the contédnaall cell cloud where the data
centers are users’ deployed small cells, more strict pyiyadicies, security concerns, or cost
reduction strategies may be encountered. Therefore,nfpngarticipation in a coalition is not
always possible, and it depends on adopted small cells yleelot models (open access, closed
access, hybrid access) [117].

Garget al. tackle computational capacity and resource allocation dowd data center [107].
Even though the authors do not consider the same context af sell cloud computing, their
work shows different policies to allocate resources on apmging entity that we also use in the
proposed joint clustering and resource allocation algorit It considers an admission control
and scheduling policy that allow virtual machines to run ervers while minimizing the penalty
resulting from the violation of Service Level Agreement fLSLA is modeled as a time limit
for computing requests. The admission control policy csissin estimating the amount of avail-
able resources at each server based on an Atrtificial Neutaldde (ANN) forecasting model that
predicts future demands of computational tasks. Requestsdmitted based on the resources es-
timation. As for the scheduling policy, two different resoe allocation strategies are considered.
The first resource allocation strategy consists in givingliagtions the total amount of computa-
tional resources they require. The second strategy cerinistllocating computational resources
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to applications within the limits of availability at eachrger. This means that applications are
given the maximum between required and available resoatct® server. If available resources
are lower than required by the application, computatiomyléd larger, and a SLA violation may
occur. Then, for minimizing the SLA violation penalty, resoes are redistributed inside each
server according to the need of the running applications.

5.1.3 Contribution

In this Chapter, we approach the problem of small cell chirsgefor computation purposes with
two different algorithms. We propose two novel solutionsjahk both aim at keeping advantages
of dynamic clustering and adapting cluster size accordirgutrent users’ demands. We focus on
managing resources for the set of small cells forming thallsmall cell cloud. Furthermore, we
do not consider the cloud as an established entity — as ogpgosbe state-of-the-art. Instead, we
dynamically set up the computation clusters by choosinglwkmall cells to include and how to
distribute the load among them.

Our first proposition is based on a sequential algorithmdahatbe split into two phases: local
computation resource allocation and small cell clusteslisthment. The first phase consists in
scheduling computational tasks and the second in settirtauplusters for computation. Three
different implementations of the algorithm are proposetieyrdiffer in scheduling metrics and
cluster optimization objectives. Details are given in 8stb.3.

Our second proposition is based on an iterative clusterigorithm. The process is divided
into two phases: A first phase in which serving small cells potes their clusterselfishly and a
second in which the small cell manager validates or corttbetglusters of each SSC. Details are
given in Section 5.4.

As computational resources are shared by the set of semvialj sells, their allocation should
be coordinated between small cells. Allowing each smalltoedet up its own cluster without tak-
ing into account the presence of other computational réguwél lead to a problem of resources
management. Some small cells will be overloaded, whilersthal have unallocated available
resources. Load balancing is required in order to minimimertumber of dropped requests. In
both proposed algorithms, we rely on the low complexity efsmgle-user multi-cloud cluster op-
timization. The designed algorithms introduce clusterugetoordination between various SSCs
in order to efficiently distribute computational load andaerces among computational requests.

The novelty of this chapter is based on a patent [P4] and twéecence papers [C4] and [C6].

5.2 System Model

In this Chapter, we adopt the same system model of Chaptee4ohsider a multi-user scenario
where the set of userk are served by a set of small cefl§. Computation offloading requests
are defined by the paii\k,Ax) that represent the number of CPU cycles to execute and jatenc
constraints. Note that the relationship between the numiiastructions and the number of CPU
cycles depends on the instructions type. We assume higlilgréay, and we split computational
load over CPU cycles. SSCs communicate with HSCs througlttdioint-to-point wireless. The
full system model details can be found in Section 4.2.

As for simulations, we consider also a femtocell deployneatgrid of 25 10mx 10m apart-
ments, which is known as the 3GPP grid urban deployment nj@d8]. Simulation parameters
can be found in Table 4.2 of Section 4.4.2.
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5.3 Small Cell Cloud Clustering: A Scheduling Approach

5.3.1 General Algorithm

In this approach, we propose a novel five steps clusterslisstiaient procedure. We propose to
split the resource allocation process into two major phdseal computational resource allocation
and small cell cluster establishment. The general scherie @lgorithm is described through the
following steps resumed in Figure 5.1.

Tasks Scheduling at SSC

\Lanocation at

Feedback from SSCs to SCM

Tasks Scheduling at SCM

Cluster set up and Cloud
Resources allocation

Figure 5.1: Scheduling aware clustering proposed algarghheme

Step 1: Local computational resource allocation

First, local computational resources are allocated atirsgrsmall cells. Local resources at the
SSCs are allocated for users that are served by this cefigepted by the set of us€is| S« = s}.

e Step 1l.a)- Scheduling at SSE&ach serving SC accords priorities for tasks received from
its connected users, according to a specified metric sudctersl constraint, computation
load, minimum required computational capacity, minimuuieed energy efficiency, or ar-
rival time. The priority assignment defines the schedulirg for local resource allocation.
Some examples are the following: (i) sorting according terlay constraint corresponds
to an Earliest Deadline First scheduling (EDF) [118]; (dyting according to the order off
arrival corresponds to a First In First Out (FIFO) schedylifiii) sorting according to each
user service rate corresponds to a Proportional Fairndgss(Peduling [119]. This step
gives different priorities to users’ requests dependinghenadopted sorting metric or the
scheduling policy.

e Step 1.b)- resource allocation at SSGerving small cell computational resources are al-
located to users’ requests following the ordered list distadd in step 1.a. The resource
allocation policy may have different objectives: increaslatency gain, or increasing re-
sources availability time. For example, users can be aedottte maximum amount of re-
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sources and thus computation are done in a minimal duraberconversely, lower amount
of resource allocation can be allocated over a larger tinmelow.

Step 2: Small cell cluster establishment

As local computational resources are limited, only a lichiember of requests can be served with
SSC local resources. Whenever the local SSC has insuffigisotirces to serve the user, unserved
remaining requests are handled using a small cell clustethi$ end, a computing cluster is set
up by the SSC to comply with their specific requirements.

e Step 2.a)- Requests updatmformation on requests to be offloaded and remaining actual
ized computational capacities remaining at each servirglsmall is reported to the small
cell manager (SCM). Note that this step does not introdudé&iadal overhead comparing
to traditional centralized solutions. In fact, all cenzatl algorithms and solutions suppose
the presence of a small cell cloud control entity that reze@nd stores system parameters
and requests requirements.

e Step 2.b)- Scheduling at SCM Unserved requests of all SCs are classified at the SCM
according to a specific metric or a scheduling rule. Note timatscheduling policy can be
the same or not as in step 1.a. As the first scheduling on mbhildsets depends on the
policy of the device in computing tasks, in this step it defsean the small cell clustering
policy and the desired clusters characteristics.

e Step 2.c)- Clusters set ugComputation cluster are built for each of the unserved retgue
following the scheduling order established in step 2.b.s@ls are built for each request
independently of the other requests presence. Possilgkediger cluster policies that can
be adopted in this step are proposed in Section 4.3. Seimgmputation clusters for one
request at a time reduces the complexity of the clusteringgss. For guaranteeing a lower
outage probability, i.e. a lower number of unserved recdise focus is then on choosing
the best scheduling policy and clustering policy. Whentelissare set up successively
for the scheduled requests at SCM, some small cells congmehtapacities will be fully
allocated. These small cells are excluded from the follgwiluster set ups. Optimization
search space is indeed reduced. Moreover, small cells @vat tomputational resources
released will be added to the cluster optimization seareltesp Computational resources
are then allocated to as long as necessary and reused wbaseaed!

5.3.2 Algorithm Implementations

These general algorithm steps constitute a customizableegsee for small cell clustering for a
multi-user scenario. Several versions can be built usirsgalgorithm by varying the scheduling
metrics and resource allocation and clusters set up pslidiée consider three different imple-
mentations of the algorithm EDF-PC, EDF-LAT, CS-LAT whehe thotations refer to the local
scheduling rule and the clustering optimization objective

(i) EDF-PC
EDF-PC is based on an Earliest Deadline First schedulingSi, &nd a power consump-
tion minimizing clustering strategy[l.a] The requests are sorted in ascending order of
latency constraints. This choice of sorting metric impcme&DF (Earliest Deadline First)
scheduling. Priority is given to tasks with tightest latgoonstraints. FIFO, used for testing
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algorithms in [115], is not an adequate scheduling policyttie specific case of our adopted
testing scenario because FIFO scheduling does not takadetmunt QoE parameters. Our
objective is to associate the scheduling policy with a esy policy for achieving higher
QoOE[1.b] Local resources are allocated following a policy that biothe minimal required
computational capacity for each request. This capacitypeaxpressed as the ratio between
the computation load and the latency constraﬁ{ft).( We refer to this policy akorizontal
allocation (see Figure 5.2(a)

[2.b] Unserved requests are sorted in ascending order of avalkiehcy.

[2.c] Clusters are formed for users with the objective of minimigzoverall clusters com-
munication power consumptions. The problem formulatiogdu®r this clustering strategy
is cast for usek served by SG PB4 of Section 4.3.4 of Chapter 4.

(i) EDF-LAT
EDF-LAT is based on an Earliest Deadline First schedulingS&tC, and a latency mini-
mizing clustering strategy. This implementation has theesateps oEDF-PC except for
step 2.c where clusters are formed with the objective of mizing overall cluster latency.
The latency minimizing clustering problem is cast for usserved by SG as described in
Section 4.3.2 of Chapter 4.

(iiiy CS-LAT
CS-LAT is based on Ergest computation firstcheduling on SSC, and a latency minimizing
clustering strategyil.a]: Requests are sorted in decreasing order of requested tatiops
size.
[1.b] Local resources are allocated following a policy that biotke maximal computa-
tional capacity available for each request. This will bldokal resources for smaller time
periods and achieving higher latency gains. We refer tophlicy asvertical allocation
(see Figure 5.2(b)
[2.a] Unserved requests are sorted in ascending order of lateterance.
[2.c] Clusters are formed for users with the objective of minimizdverall clusters latencies
using the optimization probler®B; of Section 4.3.2 of Chapter 4.
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Figure 5.2: Resource blocks allocations of several requasdtdelay constrainf\, with horizontal
and vertical allocations.
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5.4 Small Cell Cloud Clustering: An lterative Approach

Our second proposal takes the form of an iterative algoritfei is based on a novel strategy for
radio access points based on two management layers: ddtardrand centralized. This strategy
allows to reduce cluster management time, through its deded layer, and maintain mobile
users’ QoE through the centralized layer by guaranteeiagdbpect of latency constraints. We
assume homogeneous data generation of computational tdsga & mobile devices, i.e. all
generated requests have the same range of latency cotsstiidie decentralized part of the algo-
rithm requires a form of signaling between the network S€=orisists orselfishclustering at each
serving small cell, where each small cell forms its own optinomputation cluster. Serving small
cells interrogates neighbor small cells about their alséél@omputational capacity. According to
link qualities and available computational rates, the isgrémall cells builds its own computa-
tional cluster. As for the centralized part, it requires fhiesence of a cluster management unit
that has knowledge of the SCs characteristics in terms &f dailable computational capacities
and channel link qualities between SCs. SCs available ress@are reported by SCs to the SCM
at a regular basis. As for channel link qualities, eithetigtiaal or instantaneous knowledge can
both be considered. Each serving small cell sends its ctuktad distribution to the central man-
agement unit, which acknowledges the global load distobutif any SC has been accorded more
computational load that it can offer, the management undistributes the excess of allocated
load among serving small cells. Management unit report& bae remaining computation load
to serving small cells. This process is repeated until thigeeoomputation load is distributed, or
until the system has reached the maximum computation dgighet can be offered. A maximum
delay or power consumption cost can also be used as stopitieecfor the algorithm.

The novelty of this proposal is indeed threefold. First, weppse to exploit optimization
solutions for the single user case, and we propose to peddiinst guess of resource allocation
per user neglecting that there are other concurrent rexjfi@sh other users. We will refer to
this case aselfishfor which optimization is performed without considerings thresence of other
users’ requests. Second, we propose to introduce a supewtigch verify the feasibility of the
union of selfishusers’ requests. Third, we propose to inform/notify useriggent on excess of
demands which are computed with the proposelfishapproach. Users are informed if they are
or not in offloading request excess. Therefore, the supsreisecks the combination of available
resources and their cost in terms of connectivity. More idetsill be given in the algorithm
description that follows hereafter.

The proposed iterative algorithm is represented on FigiBgthas several steps described as
follows:

A . Decentralized management layer steps

e Step 1: Update of available computing capacity of neighborrsall cells
Each serving SG € § with a computation task demand, requests neighborrs€s
A/,n +# s, using special form of signaling, to report available cotagional capacity.

e Step 2: One user guesselfishoptimal allocation
Each serving SG computes its optimal computational cluster for each repliagser
k € %, independently of other parallel allocations requestedifigrent SSCs. The
optimal cluster is computed by using the optimization peab{PB, whose objective
is to minimize the communication power consumption in thestr. This problem has
been studied in 4.4 of Chapter 4.

e Step 3: Cluster reporting to central management unit
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Each serving SGreports its cluster load distribution and resource aliocatariables
Wkn, Pkn, and fxn to the central management unit. Failure of building a comiian
cluster, if occurred, is also reported.

B . Centralized management layer steps

e Step 4: Central Unit Check on Feasibility of distributed allocation requests
In this steps there are two possibilities:

(a) No failure of clustering has been reported
(b) Failure of clustering has been reported

It could happen that SSCs are not able to set up their clustéis could be a reason
of lack of computing resources, errors in resources avéijalinformation, or low
connectivity with neighbor small cells. Therefore depedif we are in the case (a)
or case (b) we have different sub-steps in the proposeditligorHereafter, we refer
to steps with ‘.a’ when referring to case (a) and ‘.b’ whererghg to case (b).

Case (a): No failure of clustering has been reported

In this case, all serving small cells have found at leastseifishsolution (allocation that
does not consider potential resources allocated by otmeingesmall cells forming their
own clusters).

e Step 4.a: Computel,: total aggregated allocated load at each SC

K
Wh = z Wnk (5.1)
k=1

e Step 5.a: Update available computing capacityR!) and load excessX;) at each
SC
Update available computational capacity at eacm36:

Fp = (Fa— % fin)* (5.2)
k=1

and compute excess of allocated computaXaat each SG € A[
Xn = (Wn_-l-hn)Jr (5.3)

whereT hy is the maximum computation load that can be allocated at 8&GH h, <
F.A.

e Step 6.a: Redistribute available resources excess
In this step of the algorithm, the proposed optimizationriigtes the excess of load
on users that has the best opportunity of computing the rengaiCPU cycles with
available resources. Indeed we propose to redistributesthess of computational
load allocation at each SE< A/X, > 0. This excess of load is distributed among
mobile devices that includein their computing cluster. The redistribution follows the
following rules:
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s.t. 0< V\/nk < Whpk vn,k
W, =0 VK/Wpk =0 (?)
V\/nk =0 vn/F,=0
Wi = Xo
neA keX

wherebpt is the minimum bit processing time (transmission and cowtput) that
SCn can offer for user'k request as:

-
Rrmax(Pmax)

whereRnaxis the maximum bit rate that can be achieved. This optinonatistributes
the excess of load on usetghat has the best opportunity to execute remaining CPU
cycles. The first condition guarantees that redistribubed Idoes not exceed the allo-
cated load. The second condition limits requests that car-adiocated to the set of
requests that were served by The third condition forbids re-allocation to SCs that
have no available computational capacity. The last camlijuarantees distribution
of all excess of computation load.

1
bptw = F_r4+

e Step 7.a: Centralized controller reportW’ and F’ to SCs
ReportW’ andF’ to SCs.

e lteration.a
Repeat from Step 2 with computation load requ&dtand system computational ca-
pacity F'.

Case (b): Failure of clustering has been reported
In this case at least one serving small cell has not foundsigeifishresource allocation
guess enough resources to serve offloading remands withire¢fuired QOE.

e Step 4.b: Drop requests in excess
Drop non-served computation request with the highest requbit processing time
defined by%.

e Step 5.b: Update computing capacity at each SC$()
After the drop of a request, some allocated computing ressuare then freed. There-
fore we update the available computational capacity inystesn as~, < F/ + fok, Vn,
wherek is the index of the eliminated request.

e Step 6.b: Centralized controller report W’ and F’ to SCs
ReportW’ andF’ to SCs that serve the dropped ukellhe task drop decision is then
sent to usek.

e Iteration.b
Go back to Step 2 with updated computation load requésand system computa-
tional capacityF’.

The algorithm is run until one or more of the considered stugppriteria occur:
() all requests are either successfully computed or ebteid

(i) a fixed maximum number of iterations is reached
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I

Figure 5.3: Proposed iterative clustering algorithm sahem

(iii) maximum algorithm delay tolerance is reached
(iv) maximum algorithm power budget is reached

The proposed management method joins benefits of both teettand decentralized man-
agement. The central management unit does not solve heabeprs since clusters are com-
puted individually at SSCs for a single user request. Thdsices management time loss, since
single-user clustering solutions are rapid to compute hAtdame time, SCs report to one central
managing unit and not to each other; this reduces the fekdiigicaling overhead. The presence
of the central managing unit can be seen as a control chetkeadjusts clusters composition
whenever decentralization fails, which increases QoE.

5.5 Numerical Evaluation

In this section, we evaluate the proposed strategies of sgibtlustering in computation clusters.
We provide numerical evaluation considering the case ofdeell deployment for urban scenarios
model of the 3GPP framework [113]. This scenario is represkhy a single floor building of a
25 apartment grid. In each of these apartments a femtocddigkoyed. Paramet@ry determines
the ratio of active femtocells in the grid. Paramegigedetermines the ratio of active femtocells that
are connected to mobile users (serving femtocells). WetdHepsame system model described in
Section 5.2 with parameters values listed in Table 5.1.

In the following, we benchmark our proposed strategiesrialyns with four different clus-
tering strategies that we define beloNo Clustering: all requests are handled by the serving
SC, there is no computation offloading. There is no clustenédion. The comparison with this
strategy shows the benefits of small cells clustering forita@alge computing.
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Table 5.1: Simulation parameters values

Parameter | value Parameter | value
Pa 0.5 Ps 0.32

B 20MHz Oc 10

No -118.4 [dB/HZ] || BER 106

w [2.10°,10.10°] || Aapp [0.5;3.5]
Fn [10.10%;15.10°] || Prmax 1[w]
OpL 0.2 BuL 1

Static Clustering: a static clustering with a fixed set of small cells contiibgtin the clusters.
Equal load distribution is applied among the cluster cé&ligch small cells has in its computation
cluster neighbor small cells only (separated by 1 wall).sTihiposes then the size of the cluster,
which is not dynamically adapted to the computation demands
One shot optimization dynamic clustering with one shot optimization. This st is the one
we proposed in Section 4.4. It consists in computing all astaion clusters for all computation
requests simultaneously. Computation requests parasn@tember of instructions, number of
CPU cycles, delay constraints, requesting user, etc.)esteby SSCs to the managing unit, SCM,
that has the role of jointly allocating resources for alluests computation.
Successive clusteringdynamic clustering where each serving SC computes its @mpatation
clusters after gathering necessary information from rmaglsCs. Interrogated SCs wait for the
serving SC feedback in order to update system state infawmbefore engaging in a new com-
putation cluster. Clusters are computed successivelyraingeSCs starting with requests with
highest computational capacity demand.

We start by comparing the performance of the three impleatients of the first approach
described in Section 5.3 and resumed in Table 5.2.

Table 5.2: Algorithm implementation metrics and policies

Step Step description || EDF-PC | EDF-LAT | CS-LAT |
La Local scheduling Latency Latency Computation size
' at SSC (ascending) (ascending) (ascending)
Local resource _ . :
Step 1.b _ _ Horizontal Horizontal Vertical
allocation policy
2 b Tasks scheduling af Latency Latency Latency
' SCM (ascending) (ascending) (ascending)
Power
) ) ) Latency Latency
2.c Clustering policy consumption . .
L minimizing minimizing
minimizing

Figure 5.4 shows the users’ satisfaction ratio for consdealgorithms (number of users
served without violating latency constraints) with reggedhe maximal number of users simul-
taneously offloading computation requests to the samergesvnall cell.

With increasing number of users and incoming requests,eplomsources are to be shared
by SSCs to serve a larger number of offloaded computatiompiests. Thus, due to the lack
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Figure 5.4: Users satisfaction ratio in dependence on nuofhesers per small cell

of computational resources, satisfying all users becoraedeh and, in some cases, impossible.
In the case where each small cell computes the requests ofvitsusers lo clustering, the
users satisfaction ratio drops decreases almost linedtly the increasing number of users as
seen in Figure 5.4. It is important to note on the figure, thve performance achieved by the
static clustering strategy where computation load is dguhistributed on neighbor small cells.
This shows that clustering can be a inadequate solutiontiddaptively orchestrated. All of the
three variants of the proposed method show important gasafisfaction ratio even for a high
number of users per small cell. We can see that EDF-PC andlEZDFan maintain over 95% of
satisfaction ratio for up to 4 users per femtocell. Cladsisage of femtocells is about an average
of 4 mobile users [120]. We extend our numerical evaluatmmnup to 8 users considering that
a larger number of femtocells connected users can be fardésdabe future. Since both of these
algorithms schedule the users based on latency urgengyntheage to serve a larger portion
of users compared to the CS-LAT, which aims at achievingelatgtency gain. Nevertheless,
CS-LAT manages to keep a satisfaction ratio of at least 90%$§s than 4 users per femtocell.

In Figure 5.5 we also compare performance of the iteratiepgsed algorithm proposed in
Section 5.4 with the EDF-PC implementation and other cameid clustering strategies.

The centralizedne shot optimizatiooutperforms all other strategies. Since the central man-
aging unit is fully aware of the system state, and since fittipicomputes clusters for all requests,
it yields to better performance in terms of satisfactionmoraNevertheless, this comes at the cost
of higher complexity since larger optimization problemgado be solved. Furthermore, in this
strategy, if all requests cannot be satisfied withna shot optimizatigrthe central management
unit drops a request and runs again the optimization untilatien is found. In this particular
case, the time complexity is almost multiplied by the numiiesolved optimization. The pro-
posed algorithm achieves lower satisfaction ratio thancth@ralizedone shot optimizatigrbut
it clearly outperforms thesuccessive clusteringnd no clusteringstrategies. It approaches the
performance of centralized strategy especially at low rematbusers per small cell with less than
10% performance degradation for less than 3 users per selbbmd less than 20% for up to
6 users per small cell. The gain comparingst@cessive clusteringnd no clusteringbecomes
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of more importance with higher number of users per small dels shown that even with high
number of users per small cell, the proposed strategy caagieg a minimum of 75% of satisfac-
tion ratio. On Figure 5.5, it is important to notice ttstccessive clusteringan have even lower
performance than computation at the S®E ¢lustering. Successive clusterinwill allocate the
SSC computational capacities to If we compswecessive clusterirgnd no clustering, we notice
thatno clusteringhas, in some cases, a better performance. This shows tlsérithg is only a
good solution when we use a good strategy that is adaptee@ wy#tem conditions.

In Figure 5.6 we show the average latency gain per user vérsusumber of users per small
cell. The latency gain for each user is defined as the ratiwed®st the experienced latency for
computing the request and the imposed latency constraiet.d&8igned the iterative algorithm
to minimize cluster power consumptio®$B,). This means that the cluster will trade the delay
allowed by the computation requests in order to reduce gnewgsumption. Therefore, in this
case, no latency gains are observed.As shown in FigureHe8Z$-LAT algorithm achieves the
highest average latency gain. This due to both local andesluesource allocation. In fact, in
this algorithm, the local serving femtocell allocates it tomputational capacity to compute
the requests, which results in completing the task with ekt possible latency. Furthermore,
clusters are formed for unserved requests with the obgaifvminimizing the overall cluster
latency. On the other hand, the EDF-LAT latency gain is alte$datency minimizing clustering
strategy. As a matter of fact, serving femtocell local reseuallocation policy exploits all the
available time for each computation request by allocathngy minimal required computational
capacity. The more users are connected to the femtocelisntite requests are received by the
SSC, and the fewer requests are able to be computed localheaerving femtocell. Therefore,
higher latency gain can be achieved with this algorithm whthincreasing number of users since
more requests are handled to latency minimizing clustersaa be seen on Figure 5.6.

The high increase in latency gain achieved by algorithm withtency minimizing clustering

policy comes at the cost of increasing the communicationgp@ensumption in the cluster. This
is due to the basic wireless communication trade-off betvgssver consumption and latency (see
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Figure 5.6: Average latency gain in dependence on numbesesEper small cell

Section 2.4.5). Figure 5.7 shows the average power congumpér user request for the com-
pared algorithms. For the caserad clustering no data is sent between small cells and therefore
there is no communication power cost. An interesting rasttie very low communication power
consumption for the EDF-PC algorithm even for high numbeusars per femtocell. This shows
the convenience in the choice of battep landstep 2metrics and rules. This algorithm can
in fact achieve high energy efficiency while keeping a veighhjjuality of service. It is a very
good solution to implement whenever latency minimizat®nat an issue. In fact, when traffic is
elastic, optimization could focus on respecting the aldgtlimits instead of minimizing latency.
Even though EDF-LAT and CS-LAT implement both latency mirzimg clusters, which imply
high power consumption, it is clearly seen that CS-LAT islpswer consuming. In fact, since
CS-LAT schedules requestssiep 1based on their computation size instead of adopting and EDF
rule, it can serve more users’ request locally communioatiost free. This comes at the cost
of lower users satisfaction ratio as can be seen in Figursibeg users with high requirements
of computational capacity (computation size and latentip)aan be found dropped using such
strategy. We also notice a difference in the average poweswoption between thene shot
optimizationsolution and EDF-PC. This difference is potentially due égesal factors: (i) the
difference in satisfaction ratio shows that thiee shot optimizatioserves more users, and thus
exploits the QoE-power consumption trade-off to its lintdysincreasing the consumed power for
achieving higher QoE. (ii) EDF-PC schedules computatidasks on the SSC based on latency
constraints. Requests with the earliest deadlines are wthpocally on the SSC. Computed on
the SSC, there is no intra-cluster wireless exchange ofatadahus no transmission power con-
sumption. The minimization of offloaded tasks increasesattaéability of computing resources
at nearby small cells, i.e. at a small cost. These resouarede exploited by users that are less
urgent, and thus can further reduce their power consumjmjoopting a lower transmit power.
(iii) as computational resources are allocated locally andhe edge cloud following and EDF
rule, then freed resources on both sides can be re-usedefapthputing tasks with higher delay
tolerance. Itis especially the re-use of local computaticapacities at the SSC and then at nearby
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An important aspect to evaluate in the iterative algoritlsnthie number of iterations that are
necessary to compute all clusters solutions. Each iteratigposes signaling between SSCs and
the SCM. However, the signaling amount at each iteratiomedaes comparing to previous iter-
ations, since SSC that have their clusters established tdoeed to report back to the SCM. The
cumulated signaling overhead increases with the numbeterations, and therefore the whole
system resources and power consumption. Note that thelisigmiata to be exchanged between
SSC and SCM can be detailed as follows:

(i) SSCs send their computed clusters parameters thatstemdithe participant small cells,
and, for each cell, the computational capacity allocated,the number of CPU cycles to
execute. In case of clustering failure, a negative ackndgvteent (NACK) is sent.

(i) SCM response to SSC is (i) in case no modifications on theter are required, an ac-
knowledgment (ACK); (ii) in case of necessary cluster aujent, small cells that have
been overloaded, and the number of CPU cycles (instrugttbas should be re-allocated to
another small cell; (iii) in case of a dropped request, a NACK

Since the SSC population that participate in the clusteugetigorithm decreases at every itera-
tion, the signaling delay varies linearly with the numbeitefations — in the worst case scenario.

A study on the number of iterations required for establighdnclustering solution is repre-
sented in Figure 5.8.

Figure 5.8 shows the average, 25th, and 75th percentilesrober of iterations needed with
respect to the number of users per small cell. On each bogetiteal line is the median. The edges
of the boxes are the 25th and 75th percentiles. The mostestdata points are delimited by the
whiskers. Red cross marks represent outliers. Blue, redyeeeh curves represent respectively
the maximum, median, and minimum number of iterations féledint number of users per small
cell. It is shown that the median number of iterations dodgsroeed 4 iterations for less than 4
mobile users per small cell. For a higher number of usersipafl €ell, the number of iterations
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Figure 5.8: Average Number of Iterations Needed for CluBtstablishment

is mostly limited between 4 and 8 iterations. The variancéhefnumber of iterations increases
with the number of users per SC. Figure 5.9 shows the cumeldistribution function of the

5 6 7 8 i 9 10 11 12 13 14
Number of Iterations

Figure 5.9: CDF of the Number of Iterations Needed for CluEtablishment

necessary number of iterations for a varying maximum nurobesers per small cell. It shows

again that a solution is faster derived for a small numbersefsl It is important to notice that

even for high number of users per small cell, a large popuiattaches a clustering solution with
a small number of iterations. For example, for the most extrease of 8 users per small cell,
50% of users have a clustering solution in 5 iterations asd. |é\t each iteration, a set of users
is served. This means that at each iteration less optiroizaioblems need to be computed than
the previous one. Therefore, the complexity, which is alydlaw because of distributed cluster
optimization, further decreases for each iteration.
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5.6 Conclusion

In this chapter, we proposed two heuristic algorithms aslatisa for the small cell clustering
problem. The benefit is low complexity and the low impleméotacost it can offer. As most
of the joint computation and communication resource atiooafor mobile cloud computing are
formulated as NP-hard problems, they are usually solvdabely an approximation of the real
problem, by loosening a constraint, or by proposing hearé@gorithms. In a previous chapter we
opted for the optimization solution after loosening theesttliing and resources re-use constraint.
In this chapter, we took resources re-use into considerads well as tasks scheduling. We
proposed two heuristic with several implementation.

A first approach based on resources scheduling at the SS@smuatce allocation of the SSC
as a first step. In a second step, unserved request are sestrtallacell managing unit which
schedules the tasks and then sets up computing clusteradioroé them. Three implementations
that differ in scheduling and clustering metrics and pebcare then derived from the main algo-
rithm. We compared the EDF-PC, EDF-LAT, and CS-LAT implemad¢ions in terms of achieved
QOE, power consumption, and latency gain.

In the second part of this chapter, we proposed an iteralixsstering and resource allocation
algorithm for distributed mobile cloud computing enviroammt. The algorithm consists on dis-
tributed roles between SSCs and the SCM. SSCs form their twystecs that are then managed
and controlled by the SCM. In other words, the algorithm psHs to:

(i) Set up the clusters of small cells serving computatioifoafling requests from multiple
users, having potentially each request accommodated td An@established cloud. This
exploits combined centralized and distributed approach.

(i) Perform DistributedSelfishGuess: The distributed part of the cluster set up algoritbm ¢
siders all users’ requests sslfishplayers that propose to a centralized unit their preferred
allocation (and associated serving cluster) basedatfishinterests (own minimization of
delay, energy, etc). Note that while singlelfishuser clustering set up procedure is optimal,
scalable, practical, and is of a low complexity, for the riautter case it can drive to notable
losses of system performance.

(iii) Centralized Feasibility Check: The centralized wupervises which requests can be granted
as requested and which must be modified. This is needed t& dhthe set ofselfishre-
guests can be accommodated by the system.

(iv) Centralized Correction Evaluation: The central unmleates which serving small cell
presents excess of requests based on uni@elfishrequests. The central unit classifies
requests as ‘granted as demanded’ and ‘to be corrected’:gralhted as demanded’ are
allocated, available computing capacities of small cglidated. The centralized units in-
forms SSCs on remaining request to be re-computed andveetadirection values.

(v) SSCs of unserved requests, set up new cluster for congptiiese requests and sends the
cluster guess details to SCM (iteration).
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A performance evaluation of the iterative algorithm hasnbeeesented. An analysis of the num-
ber of iterations required to converge towards a clustesioigtion for all users has also been
discussed. The algorithm achieves guarantees a QoE faasttA6% of mobile users, in the case
of 8 users per small cell.

We note that the presented work can be applied to curremt ¢fgineration cellular wireless
mobile networks and its future evolutions (5G, 4G, 3GPP L3GPP LTE A, WiFi, LiFi, WiGIG,
WIMAX, etc.) with the modification of the adopted transm@siand deployment models. This is
because the proposed methods do not request changes imrég standards to be implemented.
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6.1 Introduction

6.1.1 Motivation

In previous chapters we studied and proposed resourceatitfacsolution for small cell clusters-
based Mobile Edge Cloud. The majority of the proposed smistiaim at minimizing the SCC
power consumption, while maintaining QoE, and deliveriaguested services to users, without
violating any of the imposed latency constraints. To thid, @@mmunication and computation are
jointly allocated, and load distribution is adequatelyapaied. In addition to resource allocation
and scheduling, resource provisioning can bring major fitsriato the MEC computing context.

In Chapters 4 and 5 we proposactivesolutions for resources management. In this kind of solu-
tions, communication and computation resources are afldceccording to the current requested
load — ademand and computeperation mode. In this chapter, we introduce the concept of
caching to the computation cluster. We propose to allowrsijazomputations in cache memories
of small cells. Conversely to what caching has traditignegferred to, we propose caching tasks
computation results instead of caching communication filgs Hence, we exploit caching for
computing storage and not data storage. If the cached taskugsted again, it is then retrieved
from cache and not computed. This approach shifts the MEGeaech and downloadperation
mode.

We propose the computation caching in small cell cloud atogrto the following motivations:

¢ In the context of edge computing, small cells are endowel @damputational and storage
capacities. These resources can be exploited for both aedrsystem usage. Computa-
tional resources are exploited for executing computatieqsiested by mobile users. The
idea is to also exploit available storage space for storingila users related computational
data.

e Mobile data traffic has been recognized as predictablegeleted, and can be identified
to patterns [121] [122]. Furthermore, several tools foradatediction and traffic statisti-
cal pattern learning exist. Partial traffic information knedge can help improve caching
efficiency by choosing the right files to cache. Caching pres/¢he system from being
overloaded and saturated in computational capacity. Rishircomputation of the same
tasks is reduced, and more computational capacity is iaila

e Caching computations at small cells reduces the computatsts in terms of power con-
sumption, or energy efficiency. Small cells power consuamptichile computing is higher
than in idle mode. If fewer computations are executed, tesa tomputational power is
consumed.

e Delay is a very critical aspect of mobile users QoE. Cachargputation results will prevent
their computation when they are requested. This can redymazienced latency, since data
is only sent from the SC where it is cached to the SSC, theretaghbr.

e Caching some computation results prevents their repetitomputation. It also prevents
sending necessary computational data to the computingy.eDtita sent from SSC to HSCs
is, generally, larger than computational results sent liimrk HSCs to SSC. Thus, caching
not only minimizes computation power consumption, but @luce communication energy
consumption and EMF radiation and exposure.

o With the increase of uplink traffic and the consequencesdtdrawireless networks (see
Section 1.4), computation caching can help reducing ugliaic. Computation caching
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limits uplink requests by reducing uplink sending of datadomputational offloading. In
case of computation caching, requests can consist in sgodiy a label for example.

In this chapter, we address the challenge of further enhgnitie performance of cluster-
enabled MEC, by reducing perceived latency and power copgam To this end, we propose to
exploit cache memories at small cells for caching populanpatation offloading requests.

6.1.2 Related Work

Distributed cache systems

Cache servers were initially introduced to reduce the @siog load of web servers. Distributed
caching is presented as a solution for the problem of ovdilgacentralized cache servers and
decreasing their performance. Normally, every cache sserges users connected to it. To further
improve the system performance, cache servers can exclitesg@ order to achiever higher hit
ratio over the whole system. Two important characteristicgistributed caching are (i) caching
of the same files at different cache servers; (ii) adoptinigla Fequest search process. For the
Internet Cache Protocol (ICP) [123] all cache servers arched for finding the requests, which is
not suitable for large scale networks. Kata@hal. propose a centralized cache server controller,
that can provide contents cached in any of the caching seft24]. The server controller keeps
a list of cachedirls and their cached server ID. Cache control server is regperier sending an
instruction to the cache server that has a cached copy odthuested file. This instruction consists
of a request to send the file to the user who requested it. Aamsiin of splitting the load, i.e., the
content list, on several (three) cache control serverssisudsed. In this case, a cache cooperation
router is needed to forward requests to the right cache a@asdrver.

Zhanget al. propose a distributed cache systems for real-time clowdcssr [125] . Cache
services are organized in a Peer-to-Peer (P2P) style, and Ddstributed Hash Tables (DHT).
The distributed storage process relies on creating thigizas of the requested data files in the
cache system. When a request is received, and is not ertitgiy at the distributed cache system,
the hash value of the file is calculated, and two nodes from RFTchosen to store replicas of
the file. File distributed system in wired network do not fadke problem of connection between
cache servers, nor do they discuss the costs in terms of dethgnergy consumption.

Data caching in cellular networks

In this section, we discuss some related work to data caéhingbile network. Data caching is
linked to data storage at cache memories of network entiigsh as base stations. Anandharaj
and Anitha propose a cache management for mobile hosts aottiext of cloud computing [126].
Base stations are assumed to be connected to database.sEitesrare stored at the mobile clients
according to a weight metric that is based on the availabielwalth, the CPU speed, access
latency and cache hit ratio. A cache discovery algorithmrésented, in which, if a requested
file is not found in local cache, a broadcast request is seatctioe clients. The client with
the most updated version of the file is selected to transmitfith to the requesting client. A
replacement algorithm is as well developed. It replaces filigh lowestRelevant Valuewhich

is a metric based on the access probability, the number of bepween requesting client and
responding client, and the file size. This caching procesggalto outperform the Least Recently
Used (LRU) algorithm [127] by achieving higher downloadfficaand lower delays. Bastugt

al. propose a caching system for cellular networks where ufirs’are stored at small cells base
stations [128]. The authors propose an algorithm for chngpsie files to be cached, based on the
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files popularities (popularity matrix). The algorithm serthe most popular files, i.e. files with
highest popularities, at each base station until cache memdull. If files are not found they
are downloaded using small cells backhaul. Performandasétgorithm is compared to random
caching, and it proved to achieve better performance andribackhaul load.

In [129], Bastuget al. follow the same concept, with modifications in the popwaritatrix
generation distribution . In the first proposal ( [128]), gapularity matrix is randomly generated
and assumed fully known. Whereas in the second ( [129]), tileoas introduce a training and
placement strategy for the matrix, to be more realistictiarmore, they introduce a social-aware
caching through the modeling of social content dissenonabetween users. Request probability
of content is affected by the number of previous contentestpuwithin the same community. The
higher the number of the same content request in a same coitgntha more D2D file sharing
is leveraged, instead of downloading files from the netw@iet al. proposed in [130] an MDP
decision process for cache replacement in base statiohe caemory. The strategy is based on
Q-learning and replaces cached data taking into considerbbth service popularities and the
transmission cost between base stations.

The presented work tackles the paradigm of data cachinglludarenetworks. Our proposal
is to exploit cache memaories in edge network entities inorlstore also computation data.

Computation caching

Computation caching means storing computation relateatrimdition, which can be used when
needed by a computation. The main issues of computatioringaahe what to cache, how to link
request to cached information. Linking the computatiorgliest to the search action can be done
either using DHTs as in the data caching case, or using oticbnigues similar to Information
Centric Networking (ICN), for example. Computation cachhms been proposed in the context
of Named Function Networking (NFN) in [131]. In this propbgshe network is able to cache not
only data but also computation results. The proposal ischasethe network recognition of the
function by a naming definition. ICN offers names for funogpenabling users to say what result
they need by writing expressions that refer to data and immatames. The network substrate
would then be in charge of finding out how these results canbib@ireed, either by computing
them, or by looking them up in case it was already computedthgre. Three scenarios are de-
scribed. First, the cached result is entirely available tang downloaded. Second, data is partly
processed, downloaded, and then remaining code is dowedcauld executed. Third, program is
not cached, then it is fully computed and the result is doaudal.

Another paradigm of computation caching is to decide whataithe. Of the existing solu-
tions, Waterlancbt al. propose to cache the act of computation, so that it is afgédater in the
same or different contexts [132]. Caches are used to aveidmgutation by storing the results
of computations. The proposal is based on cachingattef computation instead of the results
because computing can be dynamic. The function is cached alith actual executions results
and predicted possible executions as well. Furthermoeg, ¢bnsider an approach that uses se-
mantic information about the relationship between theftioncand the desired computation value.
This way only the value can be matched and not the functiothelffunction is found in cache,
the computation is speed up and forwarded to the final staseil(s). The idea is exploitable in a
network of computers or servers, that collaborate by sparindel parameters and cache entries
without middleware problems. If the act is stored, it can ppliad repeatedly in new contexts.
Another option would be to store computational results,ndire (or parts) of the computational
codes, as proposed in [131]. In our work, we adopt a solutiah ¢aches computational results,
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but that treats the problem from both perspectives of coatjmmal caching at the level of com-

puted instructions, and how to retrieve the information.ndlof the discussed work proposes to
form information retrieval ad hoc clusters, even in disttédadl caching systems. We exploit the
distributed caching in local edge cloud in order to changedbt up of the cluster to take into

account computational caching.

6.2 Contribution

In this chapter we propose a novel paradigm to further retbotle power consumption, and time
delay, of mobile computation offloading to the edge cloud. wessuppose that small cells are
equipped with computational and storage capabilities, Wpgse to use their storage space for
computation caching. Computation caching consists iningchopular computations, in order
to prevent re-executing the same instruction blocks. Moreretely, if the same computation is
asked for several times, the small cells do not need to casripat every request. If the compu-
tation is cached, the results are retrieved from the edgealcldhe benefits of this paradigm are
two-fold. First, it allows users to have faster responseotogutational requests service. Second,
it prevents small cells from consuming energy, time, and matational capacity for computing
the same tasks repeatedly. The two main contributions sfcmpter are the proposal of a com-
putation caching algorithm in the context of edge cloud cotimg with small cells clusters, and a
cluster search reduction (sparsification) method inclgidiomputational caching empowerment.
In the first contribution, we propose a caching algorithmtfar small cell edge cloud paradigm.
The algorithm is based on computing a caching metric thafusetion, not only of the computa-
tion popularities, but also the computation size, and ataonstraints. The proposed algorithm
is described and compared to state-of-the-art algorithms.

When a SSC searches for a cached computation, it may seaithawn cache memory, but
also on HSCs caches. However, cache searching algorithpesertime complexity. In addition
to our first proposal of clustering small cell for serving qartational requests, we propose, in
this chapter, to form clusters for cache searching. We gteéftluster set up paradigm from a joint
communication and communication aware clustering, andhadathing aware clustering. Search-
ing a cache memory where it is not likely to find the desiredsfitereases the costs of the cache
search operation. Hence, our second contribution consistslucing the set of small cells caches
that are searched for finding the requested computationsefieto the set of searched small cells
as the search cluster. We therefore propose to identifyahef£ligible small cell candidates, for
which the probability of finding the requested files meetsecB@d target. Obviously, reducing
the search cluster by focusing on a selection of small cetlsges the cache search process costs.

6.3 System Model and Notations

We consider a scenario & mobile users, each connected to a SSC fromNhactive small
cells in the network. Each small cellis characterized by a computational capacityFfCPU

cycles/sec]. The set of small cells communicate throughckHzaul connection. Parameter
indicates the connectivity ratio between small cells. Armmstivity matrix X shows available
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connections between small cells as follows:

X311 .-+ XN
X21 ... XoN

X=|"7" . 7 ]e{o1NN (6.1)
XN -+ XNN

wherex, y = 1 if small cellsn andn’ can communicate through a direct backhaul link.

In our model, we adopt the same concept of probability matroposed by Bastugt al. [128].
We therefore consider that a matfxgives the probability of a computatianto be offloaded to
SCn. A set of a maximum o€ popular computations is considered. The computation [mititya
matrix is then defined as follows:

P11 ... Pic
p— [Pt P g e (62)
Pni oo Pne

wherep, ¢ is the probability of computationto be requested at small cell Note that the sum of
each row ofP is equal to 1. MatriXP serves as an input for a caching algorithm that decides which
computation to cache at which small cells. The algorithrarret is a caching matria such that:

D171 DLC
D2‘1 Dz‘c

= 7 . T ef{oyhc (6.3)
Dle DN,C

whereDy ¢ = 1 if computationc is cached at small celt, andD,¢ = 0 if not. Each of theC
computations is characterized by an offloading req(WstA.), which consists of the computation
of W, instructions in a maximum time d. seconds. We assume that the number ofMifs and
NpL to be transmitted to each small cell in uplink and downlirdspectively, is related to the
number of CPU cycle¥/ as follows:

N = W.9U|_
NpL = W.Bp_ (64)

wherefBy_ andBp, are constants that account, respectively, for the overtieado the uplink and
downlink communications. The formulation in Equation &4/alid for both UE to SSC and SSC
to HSC communications.

The intra-cluster communication assumptions and modeltharsame as described in Section
4.2.

6.4 Computation Caching for Edge Computing

We adopt the concept of MEC described in Section 2.1. It etsigin deploying cloud services
at the edge of the network, in our case, in small cells. Mdiiledsets offload computation tasks
by communicating only with their serving small cell (SSCEG take the role of computing the
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requested tasks without violating the latency constramfgosed by each task. SSCs form com-
puting clusters with a set of its neighbor HSCs in order to pota received tasks. Computational
load is distributed among the cluster nodes. The procesmall gells clustering is transparent
to mobile users; however the perceived cluster computitaydeffects the users’ QoE. Cluster-
ing steps, that affect the perceived cluster computinghtteand energy consumption, can be
resumed as follows: (i) uplink computation request traigsion from MUE to SSC (ii) computa-
tional load distribution on the cluster SSC and HSCs (iilnpoitation execution at each small cell
of the cluster (iv) computational results transmissionkitacthe SSC (v) downlink computation
response transmission from SSC to MUE. All of these compisnéepend directly on the quan-
tity of data bits to be transmitted or processed. Even wigh liata transmission energy efficiency
in Joules/bit, the consumed energy will always scale withrtbmber of bits. The same applies
on computational power consumption which is linked to eaatgssor EPC (Energy Per CPU
cycle). Thus, with higher number of instructions to competgergy consumption increases.

In this chapter, we propose a new paradigm that allows furéucing the computation of-
floading process costs. We merge computation with cachimagnew paradigm that allows small
cells to store popular computations. If a computationaliestjis already cached, the SSC will only
have to retrieve it from the cache location. This will redtive quantity of transmitted data since
only computation results are to be exchanged. Computirgjesiget-up is thus not required, and
consequently, no computations are to be executed. Congutzaching will also allow sparing
computational resources, and therefore using these diigahtio satisfy more users. An obser-
vation that further supports such a proposal, is the fad¢tithman behavior is highly predictable
and correlated. Human behavior prediction may not be aletg {y predictexactactions at exact
locations and moments, but statistical patterns may bernadr$¢128]. An example of statistical
patterns is the requests popularity distribution. Pojitylés a matrix that associates each file with
a popularity value that translates the probability of itlgerequested. We also consider in this
work the presence of a known computation popularity matrat tve use for caching popular re-
guests. Whenever a computation request is sent to a SS@rdhes for a cached copy. If found,
the computation details are fetched and downloaded. Otbena computing cluster is set up by
the SSC and the computations are run inside the cluster.

The general scenario is the following:

e Step 1 - Offloading request:
Serving small cell (SSC) receives an offloading req@@&tAx) from mobile usek.

e Step 2 - Local search:
SSC searches for the computation in its own local cache mertfdound, results are sent
to UE.

e Step 3 - Search & Download:
If computation is not found on local cache, SSC sends a seagetest for reachable helper
small cells in the network. If found, the file is downloadednfr thebestHSC. After that,
results are forwarded to the UE.

e Step 4 - Cluster computation:
In case a cached version of the computation is not found, 88@sfa computation cluster
and distributes the load on participating small cells.
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The total costs components of the cluster computing proazasde written as follows:
Ctot = C'LrJ)IZ + CcIusterinng + Ccom p+ C‘?)IZ (6-5)

whereCiq is the total cost of the proce€¥; andCPL are the communication cost between UE and
SSC for uplink and downlink respectivel@gusteringT x is the cost of intra-cluster communication
for sending and receiving computational load and resuttd,fmally Ccompis the computing cost
at the SSC and HSCs. We note t@atsteringT x aNdCcompare the sum of costs relative to all small
cells participating in the computation cluster:

UL DL
CcIusterinng = Z (CSSCn + CSSCn)
neclustern#SSC

_ n
Ccom p— Z Ccom p
necluster

Costs in equations above can represent both energy andyatests. For transmission costs,
both, energy and time, scale with the number of bits to be &&atnote that UL, DL, and cluster
communication depend on both transmission and overhead, dbat both increase with data
load. The same applies for computing cost, where the conipatime is computed according
to the processor speed, and the computing energy consumgatimrding to the processor energy
consumption per cycle. Indeed, computation time at eachi selan is computed adl,,,= "f‘—f
and energy cost &Bmp= EPC(n).W,

The costs details allow us to assume that computation cguclain severely reduce offloading
costs, and that by greatly reducing the size of that data tcalbemitted and processed.

(6.6)

6.5 Proposed Caching Algorithm

The scenario described in the previous section assumesidvdddge of matriXD (see Section
6.3). In this section, we propose a novel caching algorithat e nameClusterCachingwhich
takes into account several parameters of the requestedutatiops. In [128], the authors pro-
pose a caching algorithm for data under the namieropCachingfor caching files at femto base
stations, with the objective of maximizing the satisfactratio defined by finding the files at the
base station cache. The algorithm is based on caching thiepoyslar files at each base stations.
We propose a caching policy metric and a caching algorithaptadi for the context of com-
putational caching. We re-engineer the same approach afitkst popularity for exploiting cache
clustering for computational data. We propose a cachingritifgn in which the common point
with the state of the art [128] is the exploitation of the ogpicof popularity matrix. Nevertheless,
our work is based on computational instructions resultficgcand not user data files. Further-
more, we design a multi-parameter caching mettiisat does not only takes into account the tasks
popularity as in state of the art. We introduce additionahpeeters in the caching metric, which
will adopt the caching policy to dynamic ad-hoc clustersugetor computation fetching. The aim
of the proposed caching algorithm is to adapt the cachinigytd achieving higher energy gain
(lower mean energy consumption per computational requdsth instructions results are fetched
in cache memory using ad-hoc clusters that include cackesgurces. In our work, and in the con-
text of mobile computation offloading, we define the usersfation ratio as the percentage of
mobile users that have a response of their offloaded requegteut any violation of the latency
constraintAy. We propose a novel caching algorithm whose objective isdease users satisfac-
tion while reducing the cost of the local edge cloud commupnocess. The proposed algorithm
takes into account, not only computation popularities,ats other characteristics, such as, data
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size, latency constraint, and the mean of data rates witblw¢ached copies can be retrieved. In
fact, our algorithm does not target a high hit ratio in caclemaries. Instead, we find the right
computations to cache at the right place (small cell) thdtalow us to reduce the edge comput-
ing and offloading costs. Our policy will provision computiand communication resources by
caching the most resources demanding computations. Rotais policy, more resources will
be free to be used by small cells for executing other tasksamputations requested by mobile
users.

We define the parametaras:
\ _ PacVel2((n)

L ¥ Rum
meA((n)

(6.7)

whereA((n) is the set of neighbor small cells connected,tdefined as the set of S¢s|C(n,m) =
1}, and|A((n)] its cardinal number. As noticed in its definitionjncreases with the computation
popularity p,c and with the required computational capacity, definec%.y Caching computa-
tions according ta\ gives priority to popular computations requiring high cartgtional capac-
ities. By giving priority to higher capacity requiring commations, higher amounts of computa-
tional capacities can be provisioned. Furthermares inversely proportional to the intra-cluster
communication mean rate with which the cell is connectedstaéighbors ('3 Rym/|A(N)))-
meA(n

The caching matribD is then obtained by applying Algorithm 1. This ;Igorithm quutes
parameteh for each pair (small cell, computation request), and therestcomputations with the
highestA, until small cells cache memory, of storage capacity dehasZ,, are full. We denote
asY; the amount of data to be stored on the cache memory for a catigputequest.

Algorithm 1 ClusterCaching algorithm
1. forn=1,--- N do
2: computel, according to (6.7)
. end for

 anxc < Onxc

3

4

5: Znxc < Onxc

6: forn=1--- Ndo
7 [X,s] < SOrtAn)

8 forc=1---,Cdo
9

: C+—
10: if Z,+Ya < Z,then
11: Zn—Zn+VYe
12: anc<1
13: else
14: break
15: end if

16: end for
17: end for
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6.6 Caching Algorithm Evaluation

In this section, we first evaluate, and then benchmark, tngpatation caching paradigm along
with the proposedlusterCachingalgorithm. We consider a scenario where in a time window of
lengthT, a set ofQ users computation requests are randomly generated. Usaraunicate with
their SSC through a wireless link of a delivery rate fixe&{p,. The generated requests are chosen
from a set of selecte@ popular requests. TH@ requests are also randomly distributed among the
N active small cells in the network. The number of active sroells is determined by the small
cell activation ratiax. Each of the small cells has a computational capagitandomly generated,
and a computing power consumption®bmp= 10W. Small cells communicate through wireless
links of a capacity oR f,y. The simulation parameters values are listed in Table 6.1.

Table 6.1: Simulation parameters values

‘ Parameter ‘ Value ‘ Parameter Value
N 25| a 0.8
p 17T 1024
Q 60xT | Ry 5 Mb/time slot
Rs 5 Mb/time slot| C 128
We (2,10 Mb | Ac [0.3,3.5] s
Ye W | Ry [10,15MIPS
BuL 1| 6pL 1

As for the storage of small cells, we consider different galof cache memory capacities. We

C
define& as the total storage space available at each SC; is the required storage space at one
c=1

small cell to store alC requests. We defingas the storage ratio at each small cell defined by:
S
> Ye
c=1

However, considering that small cells have access to ederotache through clustering, lower
memory space tha& may be needed for each SC to have access to cached copy ofaach c
putation. This comes at the cost of backhauling commumicatiConsequently, the amount of
required storage space depends on the connectivity betswealhcells. Indeed, when small cells
are inter-connected through high capacity and ubiquitoaslability backhaul, each node can
store or cache a smaller set of tasks, knowing that non-datztsks can be easily retrieved from
neighbor small cells through intra-cluster communicatidtevertheless, when cluster connec-
tivity is lows, small cells have lower chances of retrieviceched computation from a neighbor
small cell due to the low number of available and reachabighber small cells. A cluster with
high connectivity ratio lead to a better aggregation andaétgtion of neighbor small cell cache
memory, and thus, lower storage space is required for daogesk cached tasks.

Figure 6.1 shows the ratio of cached and accessible filesnictitn of both the small cells
connectivity ratio and the cache memory size. We noticedddkat we can achieve the same ratio
of cached and accessible requests, in a well-connectedretly using lower cache memory
space. In Figure 6.2, we compare béttopCachingand ClusterCachingalgorithms in terms of
cached requests. We show the probability of a request beinglfin the SSC cache in function of
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Figure 6.1: Cached requests ratio for different connegtievels and memory space

its popularity at the same SSC. This plot shows HRmapCachingclearly gives caching priority

to most popular requests afusterCachingdoes not. For example, as indicated by the double
arrow shown on the graph, a file with a popularitymp# 0.05 will be found on a cache memory
with a probability of 80% in the case ®&fropCaching and only 26% forClusterCaching The

-e-u = 4% - PropCaching
-8-u = 8.3% - PropCaching
-6-u = 16.7% - PropCaching
-4-u = 33.3% - PropCaching
-+-U =66.7% - PropCaching
—e— = 4% - ClusterCaching
—-&—1 = 8.3% - ClusterCaching
——u = 16.7% — ClusterCaching
—4—1 = 33.3% — ClusterCaching
——U = 66.7% — ClusterCaching

L L
004 005 006 007 008 009 01
Request Popularity

Caching Probability
o

Figure 6.2: Cached requests probability in function of gapty

objective ofClusterCachings to minimize the computation cluster energy in the contéxocal
cloud computing. Choosing the right requests to cache i®fatjve in order to achieve higher
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energy efficiency. To this end, we show on Figure 6.3 the gneogsumption per request with
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Figure 6.3: Energy consumption of different caching altonis

respect to cache memory storage space. We evaluate thg enesumption in cases of no cache
clustering, i.e. SSC only searches for the computationlteefacally on its own cache, and in
case of unit size cluster, i.e. if not found on local cacheC $i8wnloads the computation results
from a single small cell cache source. Solid and dotted lore&igure 6.3 represent cases with
and without cache download clustering, respectively. Wapare the energy consumption of our
proposed algorithm to the state of the RropCachingalgorithm. We also proposed anhanced-
PropCachingwhere we include clustering possibility for tiropCachingalgorithm. Square
marked red lines represent state of the art and referenosdthly; while circle marked blue lines
represent the proposed algorithm. Two important obsemstirom 6.3 are important. First,
comparing solid and dotted lines, we see the energy consmmgain brought by small cells
cache clustering. Indeed, having the possibility to dowdlcomputational results, even if not
from the SSC, leads to savings in energy consumption whedaveload cost is lower than tasks
computing costs. As shown on Figure 6.3, the energy for caimpuhe set of requests costs 5
times more the energy comparing to the case of computatiomrgg in the considered scenario
and parameters. Second, it is shown tBaisterCachingachieves higher energy savings than
PropCachingalgorithm comparing to the case where there is no cachinge that the no caching
case is represented by a zero cache memory size on all sitfmlMe notice thaClusterCaching

is more adapted to the cache clustering scenario, sinceplibiess in addition to computations
popularity, the cost of computation and download for chegsvhichtasks to cache. By caching
results of computations that imposes high execution or tlmmehcosts, even if legzopular, the
proposed algorithm reduces teearch and downloadost. Figure 6.4 shows the percentage of
energy savings comparing to the state of the RmvCachingwith no clustering). On this figure,
we distinguish three regions with different behavior.

1. Very low cache storage space: In this case, where cache &p@ery low comparing to the
considered computations population (0.25-0.5%), we adtiat both algorithms have al-
most the same behavior, with a slightly better performaoncerihanced-PropCaching his
can be explained by the fact tHRatopCachingstores the most popular tasks, whilkuster-
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Figure 6.4: Energy consumption gain of different cachirgpathms

Cachingcaches the computations based on a multi-parameter muaaticiépends, among
others, on the computation size. Therefore, with very loeheamemories;lusterCaching
is able to store less computational tasks, that can be lggdgrptharPropCaching Hence,
PropCachingachieves a higher cache hit ratio and lower average enemguotption per
request.

2. Moderate cache storage space: It is in this case that vieertigher gains for both the
cache clustering and the propoggtlisterCachingalgorithm. When cache memory space
is not very low, and not large enough to contain all the comfions considered popula-
tion, ClusterCachingoutperforms the reference algorithm for up to a gain of 70%ister
caching brings foPropCachingalgorithms a gain that goes up to 80%. Finally, combining
the effects of botlClusterCachingand cache clustering, a gain of 98% can be achieved.
This clearly shows that the proposed algorithm is adaptatie¢acache clustering mecha-
nism. Even ifPropCachingcan achieve higher cache hit ratiGlusterCachingachieves
higher energy gain with lower cache hit ratio, because itestpopular computations that
are the most energy consuming.

3. Cache storage excess: In this case, cache storage speaehosmall cell is high enough to
contain a cached copy of all the considered computationlptipn. In this case, computa-
tional results are always found at the SSC cache. The caalgogithm has no impact on
energy consumption in this case.

It is important to note that energy consumption in the caergid scenarios depend on several
parameter, most importantly the communication channeidition and the computing processors
power consumption that can vary by tens of watts. The reshitsvn in this chapter are for
a specific set of parameters. While energy consumption satae vary and the energy gain
percentage depend on the correlation between populariytasks size, the analysis of these
results remains general, and the relationships betwedmeaaemory space, computation size,
and popularities hold up even in the case of different sygiarameters.
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6.7 Search Cluster Sparsification

6.7.1 Motivation

Computation caching is a way of reducing the computatiosteluperceived costs in terms of
latency and power consumption, and of increasing resourtdieation efficiency.

A first problem identified in the concept of computation cachiis the complexity of the
cache search process. In medium and large scale netwoeksednch algorithm can be severely
penalizing in terms of time complexity. Small cells proagsscould be overloaded with search
jobs, which can reduce the availability, and the efficientEgamputational capacities. SSC has
interest in reducing its decision set, and hence, redutiagize of the cache clusters. Neverthe-
less, the cache cluster size reduction must not eliminatdidates of having the requested cached
file. Indeed, the larger the cluster, the more small cellbead has, and the higher the probability
of finding the required files since the search space is biggearch cluster sparsification should
be designed in order to reduce the number of searched sriialtele guaranteeing a minimum
cache hit probability. The reduction of the search clus&trshiould not prevent the SSC from
finding and retrieving the required files and cached comjausitt The excluded small cells from
the search cluster should not hold the required files in tteahe memories. Distributing the list
of cached files on every small cells into the network resulxtensive overhead, especially that
the cache update mechanism can be dynamic and very freqoneatdition, the main motivation
for introducing computation caching is to enable furthéetay and energy consumption of small
cell clusters. These objectives have to be maintained iardockeep the gain imported by compu-
tational caching. Occupying small cells resources in caelaech jobs may result in low resources
utilization efficiency.

There is a trade-off between reducing the search clustegaachnteeing the required files
retrieval in the discussed computation caching scenamoovErcome this existing trade-off, we
propose a method that reduces the cluster size, while geaiag a target cache hit probability.

6.7.2 Contribution

We already introduced an additional resource to the clngtgrrocess which is the cache storage
space. The idea we propose now, is to exploit the populardlyirifor interconnecting small cells
in cloud connected cache system.

Exploiting the popularity matrix, we can reduce the seanchaxision space without nega-
tively affecting the search results, i.e. we can perfeafesearch cluster sparsification.

We note a<’s the decision space that contains all SCs with cache storzgpes If each of
these small cellsn(e &) storedM computations in its cache memory, then the search algorithm
will have to go oveNM files. The complexity of the search algorithm (linear sepisibf 6(NM).
However, the searched file may not be cached in all oNtsenall cells inCs. We define(, as the
set of N’ small cells where the computation is cached € ). The small cells follow a policy
to cache computations defined by the caching algorithm. ddlisy depends on the popularity of
each request at each small cell (Examples are in SectionEBsfblishing a relationship between
popularity and caching will help identify possible cachingation of the requested computation.
If we exploit the knowledge of both the popularity matrix ahe caching policy, we can reduce
the cache cluster size without removing possible smals aalhdidates. The decision space will
thus be reduced frorgs to G; C Gs. The sparsified clustef; should include at least one cached
copy of the required files. The required and necessary dondilr G, to be asafesparsification
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of the search space is:
CaN C, # 0, where0 represents an empty set (6.9)

Figure 6.5 shows a graphical explanation of the decisionespize reduction(; is the image
of (s by popularity matrix aware transformation. If the seardhgS and G, have the same results,
then the decision space reduction includes no loss in thielspeocess. We propose a process that
defines this popularity aware transformation that can gueeaa minimum intersection wit.
The implementation of this idea is possible thanks to (i)ithieoduction of computation caching;
(i) the existing relationship between popularity and éagHocation.

The ultimate case for optimal size reduction is the knowdedfexact locations (small cells)
where the request is cached, i.e. Miesmall cells inC} can be perfectly identified an@d,N G = .

(a) Valid sparsificationda N ¢ # 0) (b) Non-valid sparsification N C; = 0)

C. .

Figure 6.5: Search space reduction use cases

We propose a method for reducing the search cluster set badbd knowledge, at each small
cell, of the files popularity and the caching policy. We rdtethe list of computations cached on a
small cell as theache inventorylf all the network small cells are aware of the cache invientd
all other small cells, the requested computation cached cap be localized. However, the cache
inventory at each small cell changes at a high pace, up ta¢heéncy of computations requests.
Indeed, at each computation request, the caching policy nesult in replacing older requests
with the newly requested. Diffusing the cache memory inwgnto small cells in the network
results in excessive overhead. Furthermore, even if a sralltan collect the cache inventory
of others, it will still have to search through the invenésti We propose to exploit the cache
probability, defined in Section 6.5, in order to efficientgduce the size of the search clusters.
We define ann cacheprobability matrix that associates to each popularity,apbility of being
cached at the small cell in question. This matrix is diffusedhe network small cells. Thim
cacheprobability matrix, does not require frequent update asctiehe inventory. The former
depends on the caching policy of the small cells, whereakattex depends on the computational
traffic. in cacheprobability drastic update occurs rarely, for example, wasmall cell changes its
caching policy. Furthermore, since it is a matrix built fretatistical observation, it can converge
to a final representative matrix. An additional element,eotthan thein cache probability is
eventually required to be shared among small cells: the atatipnal requests popularity. The
requests popularity is also a statistical observation astditaltion that is built by observation of
the requested computation traffic. Its update is not reduinebe instantaneous at every change
of a file’s popularity. Thresholds may be put in order to ladupopularity information diffusion
between small cells. For instance, whg(t) > po(c) + €, wherep(c) is the current popularity of
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computation requestand pp(c) is the initial popularity value which is equal to the lastfd#ed
request popularity of request

In addition, we propose a classification of computationguests that reduces the set of re-
guests to which a search cluster is set up. The idea is toqtrava@uster search set up for requests
that arenot worth searching fobecause they will, most probably, not be found.

We propose a method to reduce both the number of clustersatbaset up, and the size
of search clusters fronds to ;. The proposed method allows adapting the search cluster siz
exploiting the search space vs cache hit probability tiaftle-

The novelty of this method is based on patent [P5].

6.7.3 Concepts and Notations

We consider a MEC scenario, where a set of small cells ca-amnbcan form computational clus-
ter for satisfying mobile users’ computational offloadimguests. We refer to the set of deployed
small cells as the hyper-cluster. We define the followingrelets and concepts that we use to
introduce and explain our search cluster sparsificatioherfallowing sections of this chapter.

6.7.3.1 Notations Definition

The connectivity matrix ©:

In the hyper-cluster, small cells can be connected throuffbrent and various technologies
(Fiber, WiFi, Microwave, mmW, LTE, etc.). The communicatiguality and the aggregated
throughput on the links between every small cell couple isnexessarily identical over time
and space. According to the small cells backhaul technoéogl/topology, the communication
link existence and reliability may depend on several facgrch as the distance between small
cells, the deployment scenario (urban, dense, LOS, NL@3, #te backhaul congestion, and the
channel quality in wireless scenarios. The connectivityrix@® at each small celh is a matrix
that contains the connection quality between every sméitoaple.

O is a generic of the connectivity matrik defined in Section 6.30 represents normalized con-
nection quality between each small cell couple, whed¢dsa binary matrix that specifies if the
small cells are connected or net.can be obtained fror® by a thresholding operation.

Popularity matrix P:

The popularity matrix is defined in Section 6.3. It gives tlopylarity of computational requests
at each small cell. We do not tackle the problem of buildind apdating the popularity matrix.
We assume that it is built according to statistical obséaabver time, of the number of each
request occurrence at each small cell.

Caching policy metric A:

Based on the popularity matrix, a methican be built for each couple (request, small cell) in order
to choosavhatto cache, an#vhereto cache it. This metric can also take into consideratiotesys
conditions (wired/wireless connection, available memetg.), context, small cells connectivity,
etc. A is associated to a caching policy or algorithm that placesdéiguests in cache memaories.
Various policies with different objectives can be desigaad adoptedClusterCachingandProp-

Cachingare two examples of caching policies described in SectibrusingA = % and
men(n)

p - the files popularity - as a caching metric, respectively.
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Distributed cache matrix D:

Caching metric and policy are used at each small cell to demigtr the caching of computational
requests. A binary matri® defined in Section 6.3 keeps track of the cached requeststateall
cell.

In cache probability matrix I':

Exploiting cache matriX©, and popularity matri¥?, anin cacheprobability matrixI" can be
computed. Since the caching metric depends on the poputaégitrix, a relationship between the
requests popularities and their caching decision can labledted. It helps locating requested
tasks in cache in function of their caching probability, ethican be deduced from the popular-
ity. I gives for each request popularity (popularity intervatls® probability of the request being
cached at each small cell.

Yii -~ Y1Q
Fo Vzr,l V2:Q € [0,1MQ (6.10)
Wi -+ WQ

WhereQ is the number of considered intervals of populardtycan represent eitheominativeor
cumulativeln cache probability.
Nominative in cach@robability is defined as:

y(n,0) = P(dnc = 1|p1(0) < pc < p2(0)) (6.11)

where[pi, pz] is theq popularity interval in whichpg is.
Cumulative in cach@robability is defined as:

y(n,q) = P(dnc = 1|pc < p2) (6.12)

6.7.3.2 Traffic Classification

Computational requests launched at mobile users’ devioebeaclassified according to various
characteristics. One classification is based on computatitoadability. This classification is
used in the offloading decision algorithm proposed in ChapteExamples of tasks that cannot
be offloaded are tasks that use mobile devices hardware surdmaeras and microphones. Non
offloadable tasks have to be executed locally on the mobilicele As for the offloadable tasks,
we propose to classify them infrivate and Common By Private we refer to computations that
are unique for the user that requested them. They may depeadozal metric such as location,
or serving small cell. APrivate computation, can be any computation component that does not
yield to the same results if requested by different usergelmeral Private computations are not
able to be shared among different users.

By Commornwe refer to computation that can be requested by any userialuls yo the same
result (total or partial). We refer @&ommorcomputations to the ones that have the possibility to
be saved in cache memory somewhere in the network.

Private traffic: Private computations are not cached. However, an offloading decisiocess
decides if they will be computed locally at the mobile deviceffloaded to the small cell where
a computation cluster is formed (See Chapter 3).

Common traffic. Common computations have the possibility to be saved ineca@dmory some-
where in the network. Therefore, before any computation aslén a ‘search’ for computation
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results is launched. If the requested computation is cadhédretrieved (with the assumption
that retrieval costsc computation cost). Otherwise, a computation cluster isiém for comput-
ing the request. The popularity matrix can then be updatedreingly.

6.7.4 Proposed Search Cluster Sparsification Method

In this section, we detail the cluster search sparsificati@thod that we propose. After having
identified the necessary elements for introducing our pgahave detail the method in a series of
successive steps.

e Step O: Initialization
We assume that, at each small cell, are available:

(i)

(ii)

(iii)

(iv)

relative popularity matriX®(;,.c), whereC is the number of considered computations.
In addition to their own popularity matrix, small cells exrtfye popularity matrices,
and thus, each small cell has access to its own popularityixpand to the matrices
received from neighboring small cells. The size of the papty matrix available at
each small cell is then equal oI, x C), whereN; < N is the number of small cells

which popularity matrix is received by the small cell in ques.

relative connectivity matriX® .,y that reports normalized connection quality with
neighbor small cells.

relative distributed cache inventoby; .c) of the cached computations at the small cell
in question.

In cacheprobability matrice$™ of the small cell in question, and of the neighbor small
cells that diffused their own. The size bfdepends on the popularity quantification
sizedq = p2(q) — pa(q). Here, there is a trade-off between the quantification granu
larity and the overhead. Indeed, the smaller the populgrigntification ste@q, the
more accurate and reliable is the associatechcheprobability. On the other hand,
small popularity quantification steps result in largercachematrix, and thus more
network overhead, sinde matrices are shared between network small cells.

e Step 1. Computations classification
In this step, the mobile devices run through the receivedottiational requests and classify
them as offloadable or not offloadable. Non offloadable requee executed on the mobile
devices. Local computational resources are allocatechéoexecution of these tasks.

e Step 2: Private/Common classification
Offloadable tasks are classifiedRrévate or Common We distinguish three types Bfivate
computations.

(i)

(ii)

(iii)

Least private computations are user-private but can be offloaded to tli& 88om-
putation cluster can be set up by the SSC for the executidmeafisk.

Medium private computations can be offloaded to the SSC, but no computeltister
can be set up for their execution. Tasks can then be compittezt éocally at the
mobile devices, or at the serving small cell.

Utmost private Computations cannot be offloaded to the serving small CEfiey
are executed at the mobile devices. Non offloadable taska snbset of the utmost
private computations.
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Offloading decision algorithm is called féfedium privateandLeast privatecomputations.
According to the offloading decision and the computatioretygither local computation
resources are allocated, or joint computation and comnatioit resource allocation takes
place in case of cluster set up necessity.

As for Commoncomputations, they have the possibility to be found in catleenories of
the SSC or neighbor HSCs in the network. If @gmmorcomputations are requested, they
are offloaded to the SSC, and the following algorithm stepssaecuted.

e Step 3: In cache probability quantification
In cacheprobability matrixI" is available at each small cell. For each computatiaf
the set ofCommorrequests” we identify the popularityp.. We create a binary matri’
where each line represents a fixadacheprobabilityn, and each column represents small
cells whosén cacheprobability matrix is known. The size d¢f depends on tha cache
probability quantization step and/or number of levels. é\tbiat the probability quantization
can be linear or non-linear. We denotethshe number of probability quantization levels,
and thud™ will be a matrix of (H x Ny +1). I’ is defined as follows:

V1,1 N Vl,Nr+1
' \/2«,1 \/2er+1 HxN,+1
=7 . T e{oyt (6.13)
\/H71 VH,Nr+1

where
V(S — {; f ¥(s.a) < n(q), whereq = {q/p1(a) < pe < P2(q)} (6.14)
otherwise

I’ identifies, for each targeh cacheprobability ), the set of small cells where the proba-
bility of finding a cached copy of the request is at least etugl

e Step 4: Reachability weighting
In the previous step, the created matfik allows to identify the set of small cells that
hold the requested file with a certain probability. Howehg file existence in a small
cell's cache is not sufficient for retrieving it. Since corgtional requests are associated
to latency constraints, the connection quality betweenSB€,s;, and HSC s, where the
computation is cached is important to consider. The cacbpyg should be retrieved from
the cache while respecting the latency constraints. Fumibwe, [’ identifies the possible
location of a cached copy of the computation without idgiiij the bestlocation from
which it should be downloaded.
In this step, the elements &F are weighted with the connectivity between small cells.
Therefore, we weight the elements of each columii’oby the connectivity of the small
cell with the SSC. The weights are the elements of the SSCentinity in matrix ®. A
matrix " is then defined as follows:

V1/,1 Vll,N,+1

\/2/,1 \/2/,N,+1
. . . €

r= [0, 7]+t (6.15)

Va1 o Yan
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where
y’/(nvs) :V(rLS)G(S&S) (616)

In I, lines represent the probability of finding the cached retjiresmall cells, while the
matrix element values show the download link quality.

Step 5: Truncating

According to requests constraints in terms of latency, amum downlink quality can be
set in order to respect these constraints. In addition é&m&t eliminating weak communi-
cation link reduces power consumption. Resources managerukcies at SSCs and HSCs
contribute then in setting a threshold on the link qualitipécused for cached request down-
load. Setting{ as the link quality threshold and applying it E§' will result in having a
binary matrixI'{’ that identifies the cached request locations with a minimawrdoad link
quality of Z. I'{’ is defined as follows:

thl,l e ytll,NrJrl
! !
t ... t
A 2N ¢ 1,1y HxN+1 (6.17)
Vt/H,l Vt/H,NrJrl

where

. (6.18)
0 otherwise

H /

.S = {1 it y'(s,0) >
Step 6: Uplink requests set up
I{ allows to locate cached requests possible locations. Alowpto the desired search clus-
ter size, and/or latency and power consumption policiegaach cluster can be identified
usingl{. Indeed, each line df{’ represents a set of small cell that form a search cluster
with a defined probability of retrieving the file. For eachelig of I'{’, the search cluster
includes the set of small cells defined by|y/(g,s) = 1}. The minimum probability of
finding the request in at least one of the cluster small cglls i

P(ceclusten = 1—P(c¢ cluste (6.19)
Ne+1

> 1- [L\/t’(qs)(l—nm))
> 1_(1_n(q))||w<q>uo

wherey/'(q) is thegth line array ofl{, and||.||o is thelp norm, which is the number of
non-zero elements in the arrdyy (q)||o determines the search cluster size, which can also
be an important metric in the cluster set up decision.

If there is a maximal search cluster size liMitay the clustery that maximizes the cache
hit probability is defined by the ling of I'{’ where

= {min! [1¥/(@)lo < Nras (6.20)

If there is a minimum cache hit probabilify then the smallest cluster is defined by

= {max (1-n(q))¥19lo > ¢} (6.21)
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Table 6.2: Computation and SSC association

Computation ‘ Serving SC‘

C1 SCG
Co SG
C3 SG

We note that the smaller the valuedfis, the larger the cluster. When a cluster size limit is
set, the proposed method allows to identify the searchealtisat achieves the highest per-
ceivedin cacheprobability, with a cluster of that size Whereas, when a edghminimum
probability is set, the method identifies the smallest elushhat can achieve thie cache

probability target.

6.7.5 Numerical Example of Search Cluster Sparsification

We consider a hyper-cluster of 6 small cells. We considdrdhiaputational requests have already
been classified and offloading decisions have been made. filbading computational request
of type Commonare received at the serving small cells. A set of 3 tasks isidened. Table
6.7.5 reports the association of each task with its SSC. fial £ells connectivity® and the
computations probability? matrices are defined as follows:

0.9

0.3
6x6 = |04

0.2

Pex3) =

09
1
09
01
0.4
0

03 04
09 01
1 03

0.2
04
0

03 109 08

0 09
03 08

[0.05 005
001 002
0.02 055
0.01 Q05
0.03 007
008 0

1
0.8

002]
001
006
004
0
002)]

0
03
0 (6.22)
08
1 -
(6.23)

Small cellsSG, SG, andSG follow the ClusterCachingpolicy andSG, SG;, andSG follow the
PropCachingclustering policy (See section 6.5). The cumulativeacheprobability matrixI" of
each of the small cells are represented in Figure 6.2, witchememory ratio gi = 1/12. We
adopt a lineain cacheprobability quantization of 10 levels. Therefore, fr@tep 3 we will have
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the following matrices:

1 0 1 0 1 1 M 1 1 1 1 1 0 1 1 0
1 000 1 1 10111 00110
1 000 1 1 10111 00110
1 000 1 1 10111 00110
/ 1000114 10111 ' 00110
Mo = 10000 1" Fe, = 10100 e 100110 (6.24)
0 00 0 0 1 0 0100 00110
0 00 0 0 1 00100 00110
0 00 0 0 1 0 00 OO 00110
0 0 0 0 0 1 0 0 00O 10 0O 00O

For Step 4 we weight the matriceEy , I'¢,, andlg, with 87, 85, and @3, respectively. We
therefore obtain the following” matrices:

1 0 03 0 02 09 1 09 05 04 03] 04 0 03 1
10 0 0020 09 0 09 05 04 03 0 0 03 1
10 0 0 020 09 0 09 05 04 03 0 003 1
10 0 0020 09 0 09 05 04 03 0 0 03 1

pr_ |10 0 0020 ., (09009 050403 ,_ |0 0031

«~110 0 0 0 % |09 009 0 O O| % |0 0 03 1
00 0 0 O 0 009 0 0 O 0 0 03 1
00 0 0 O 0 009 0 0O O 0 0 03 1
00 0 0 O 000 O 0 O 0 0 03 1
00 0 0 O Lo 0o 0o 0 0 O L0 0 0 O

(6.25)

In Step 5 we setzeta the truncating threshold for link quality, &s= 0.3. The truncated
matrices are as follows:

(1

o
[EEN
o

1
[ERY

1
[ERY

"

"o "o
rtcl >rtc2_ >rtC3_

cNoNeoNoNeoNoNoNoNoNe!
cNeNeoNoNeoNoNeoNoNeNa
ORRPRRRPRRRRRR
ORRPRRRRRERRRR
cNeNeNoNeNeoNeoNoNeNe

oNeoNeoNololNolNolNolall
OOoOFRRFRPRFRPRFRPRLPELPPEREPR
cNeoNeoNeoNol N
OCO0OO0OO0CORFRFRPPFPRFRPF

COCOO0OO0ORRRRERR
cNeNeoNeoNeoNoNeoNoNa)
cNeNeoNeoNeoNeoNoNoNa)
cNeoNeoNoNeoNoNoNoNa)
COO0OORRRRER
cNeNeoNoNeoNoNeoNoNa)

(6.26)
For the cluster set up iBtep 6§ we consider the following constraints at each of the SSCs:
SG: Maximum cluster size = 1
SG: Minimum search cluster hit probability of 80%
SG: Maximum cluster size = 3

The lines (]) of each matrix represent the small cells that guaranteeganom hit probabil-
ity of n = 0.1q.

eceNeNoNoNoNoNolNoNe
leleNeleclecjojololole]
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Table 6.3:In cacheprobability of search clusters

‘ q ‘ P(c; € clusten H q ‘ P(c, € clusten ‘
1 0.47 6 0.84
2 0.67 7 0.7
3 0.83 8 0.8
4 0.92 9 0
5 0.97 10 0

For c; at SG, the maximum cluster size is equal to 1. Therefore, we ifietitie search clus-
ter as the lowest line with a single 1 value. This means thathese the single cell cluster that
guarantees the highest cache hit probability. Indgedgcreases witly and thusP(c; € cluster
defined in Eq. 6.20 increases. The chosen cluster is showbeé iequation below, withP(c; €
cluste) >1—(1-0.19)' =1—(1-0.6) =0.6

101000
100000
100000
100000
reg—| 90000 (6.27)
100000
000000
000000
000000
000000

In the case where the lowest line of the matrix has more srelil than the maximum limit, any
subset of small cells can be chosen. Indeed, the lowestdresents the guaranteed locations of
the requested file. Even if the small cells are aware of soraeagteed locations, it may happen
that a minimum number of download sources are required fuieaing lower delivery time.

In addition, we note that if the computation request is cdabe the SSC itself, the SSC is
always included in the cluster. This is because no conrigctionstraints are imposed in this
case.

Forc, at SG a minimumP(c; € clustern of & = 0.8 is required. If we compute this probability
for each line of the matrix using Eq. 6.20, we obtain the isssthowed in table 6.7.5 According
to the table, the eligible search clusters are thosg-e8,4,5,,, and 8. The proposed method will
choose the highestaccording to 6.21. The chosen cluster is the smallest cltrgieéachieves the
desired in cache probability target. Fpe= 5 (dark purple highlight)P(c; € cluster) > & as well,
but the cluster size is of 5. the chosen cluster achiéve$.8 with cluster size of 1 (light green
highlight).
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A
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6.8 Conclusion

Mobile edge computing is a solution for allowing mobile setevices to have access to a pool
of resources that are at high proximity. Computation offiogdo the edge cloud allow faster
execution and at lower latencies, power consumption, aedggrcosts. Edge cloud small cell
clustering is proposed in this thesis, and joint computatiaand communication resource allo-
cation policies are presented, discussed, and evaluatemho$ed policies varied in clustering
objectives. While some focused on increasing the clustersded QoE by reducing the perceived
computation latency from users’ perspective, others fedus reducing the computation cluster
power consumption. In this chapter, we propose a novel giribat allows further improvement
of computation clusters performance and resource altmcatificiency in terms of both perceived
latency and power consumption. The novelty of the work preskin this chapter is twofold.

First, we introduce the concept of computation cachingérgtige cloud. We exploit the cloud
enabled network edge, not only to execute computationks tasing computation resources, but to
cache computations using storage space available at teeckmgl. We shift the paradigm of edge
cloud clustering, currently used demand and compuiato search and downloadindeed, the
current vision of small cells clustering for computing ictmose the best nodes that can contribute
in the execution of computational tasks and guaranteeingEat@at respects the imposed latency
constraints. The cost of the computation offloading and etlged computing through clustering
is highly dependent on the computational load to be compated the size of computational data
to be transmitted. Reducing the computations size and #eeofidata to be exchanged reduces
the computation offloading costs. With the computation oagparadigm, tasks will beearched
for anddownloadedf possible. This prevents the edge cloud network from cainguhe same
computations repeatedly, and reduces the size of exchataad For choosing the computations
to be cached, we propose a caching algorithm based on theutatiops popularity. We exploit
the computations popularity at each node of the edge cloacktiie a caching metric that depends
on the computation popularity, but also on the computati@d land the required computational
capacity. The caching metric helps identifying the comfloits that arevorth caching since it
selects the popular computations that can generate higisés ceduction. The main idea is to
store computations that apppular, but that also impose high computation and communication
load, in the goal of reducing the edge cloud computing cosks.compare the average energy in
an edge cloud computing scenario for the cases with no ogchith caching using the proposed
algorithm, and with caching that uses files popularity ashitec metric. The latter algorithm
stores the most popular computations regardless of thair damd demanded capacity. Numerical
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evaluation showed that not only the size of available cacemany plays a role in reducing the
costs, but also the used caching metric. The proposed cpomirtric proved to achieve lower
energy costs for executing and/or downloading computatibrough an edge cloud platform with
small cells clustering.

Second, we propose a search cluster establishment andfispion method. The goal is
to exploit the knowledge of computations popularity at edtpud small cells for identifying
possible locations for cached copies of the computatiomiltation cached copies locations are
not known by the edge cloud small cells. Indeed, diffusirg¢hche computation at each small
cell in the edge cloud imposes severe overhead. Cached tatiops are frequently updated, and
maintaining knowledge of each small cell cache contentstigractical. Therefore, we introduce
the newin cacheprobability concept, which derives from the relationshtMeeen the computation
popularity and its probability of being cached. This depenéicourse on the adopted caching
policy. We exploit this information at serving small celladaweight it with the connectivity
between small cells. This allows to evolve framcacheprobability toin cacheprobability and
reachability. By doing so, we identify possilieachablelocation of cached computation copies.
The proposed method reduces the search space for cacheshedday exploiting the relationship
between request popularities and their possibility of yaiached and reachable. Reducing the
search space increases the edge computing performancdunyng cluster search delay, and its
computational costs as well.
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Conclusions and Future Work

In this thesis, we have looked into joint communication aadhputation resource allocation, and
load distribution solutions and algorithms, for local meliEdge cloud computing.

The Cloud has integrated wireless networks architectuceitth mobile cloud computing. The
Edge cloud paradigm brings cloud-offered functionaliti@sl services to the edge of the cloud, at
a close proximity to mobile users. In this thesis, we focusedbcal Edge cloud, where operator
network small cells, usually used for delivering commutiaraservices, are also able to deliver
cloud services, such as computing and storage. Unlimitedcss and applications, in numerous
domains, are henceforth accessible through mobile nesv@tinsequently, the foreseen increase
in the number of connected devices and in generated trafiéale a challenge to mobile networks
for coping with the ever-increasing requirements.

First, we discussed requirements, and enabling techreslagfi future 5G networks, the next
evolution in wireless networks. In order to keep deliveriigh QoS and QoE, 5G networks de-
sign is based on breakthrough technologies, includingntegiation of cloud-based technologies.
We presented the evolution of cloud-enabled networks, &odved the progressive integration
of the cloud concept into wireless networks. We discussedradges and challenges of each of
the cloud-based architectures including Cloud-RAN, nebibud computing, mobile edge cloud,
and fog computing.

In this thesis, we adopted mobile edge cloud architecture pWposed the novel concept of
local cloud computing through small cell clustering. Irtdture, the cloud is mostly considered
as an established entity that can deliver computationa@icgs to mobile users. Our approach
is based on forming a local cloud where small cells coopeiatelelivering cloud services to
mobile users. We discussed the existing trade-offs in tfukiecture. More precisely, we tack-
led energy efficiency, from both devices and system persgsctand delay related trade-offs. A
deeper investigation on the impact of the adopted backlemhinblogy and topology for intra-
cluster communication is presented. By analyzing diffetgackhaul models, we showed that
both computation and communication resource allocatienaffiected by the adopted backhaul
models. As the backhaul has an impact on both cluster pextértency and power consumption,
communication and computation resources, the cluster ammkthe load distribution, should be
jointly allocated and optimized in order not to violate inggd delay constraints, or power budgets.

We proceeded to focus on the joint resource allocation ial lowbile edge computing, in the
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context of small cell computation clustering. We considesesystem where mobile users launch
computational requests, consisting of an instructionlbtode computed in a maximum imposed
time delay. We considered QoE as a performance metric thaatgour work. Mobile users
are satisfied if the results of their computational requastsdelivered without violating latency
constraints. After the analysis of the trade-offs betweawrgy efficiency, perceived latency, and
cluster size, among others, we have identified three rasatrections to increase the efficiency
of mobile computation offloading, and improve the numberatis§ied users requests. We divide
the problem into two sub-problems, that we tackled respelgti

First, we considered the single user - single cloud caserevaenobile handset decides be-
tween executing computational requests locally and offftmpthe computations to the cloud.
Computation offloading from mobile handsets to their sep\dmall cell represents the first-hop
communication in the adopted local edge cloud computinggigm. We assumed that mobile
handsets offload the computational requests to the cloudrmjirsg the request to their associated
serving small cell. We investigated the computation, hatgjsand system parameters that affect
the computation offloading decision. More precisely, weppsed a multi-parameter computa-
tion offloading decision that is executed at mobile hand<gt4-POD. The algorithm takes into
account, not only energy consumption comparison of contipataffloading and local comput-
ing, but also the offloadability of the computational requbandsets available resources (battery
level, available memory space, computational capacigkd urgency, and communication chan-
nel quality. The algorithm joins offloading decision andesdhling while taking into account all
the listed parameters, in order to take the offloading detiat guarantees users QoE. Simu-
lation results showed how the proposed algorithm, SM-PCGpshincrease the mobile handsets
battery lifetime, and prevents any handset CPU capacitggeuand memory overflow. This re-
sult can be justified by the adaptation of the offloading degito handsets and system status. In
opportunistic communication channel quality, the handffiladsnon-urgentrequests in order to
save energy consumption. As a result of this research, wauabed that the computation offload-
ing decision to edge cloud should be based on the multitugpam@imeters that affect not only the
offloading decision energy consumption, but that also dauti in delivering high QoE to mobile
users.

A second research direction to improve mobile users QoEmméfticiency of the local edge
cloud computing paradigm, led us to investigate the smdlt ctuster set up to efficiently dis-
tribute computational load, and allocated computationdl @mmunication resources. In partic-
ular, we considered the case where serving small cells loefiggrh small cell clusters to execute
the received computational requests from mobile usersirg@esmall cells distribute the load on
neighbor small cells, through a second-hop communicatiahé edge computing process. The
challenge of small cell cluster set up is the joint commuimdcaand communication resource al-
location that guarantees the respect of tasks latencyraimtst Jointly allocating communication
and computation resources is indeed required since bathtaffe perceived overall computation
process latency. We start by studying the single-user +olatid scenario case. We proposed vari-
ous small cells cluster optimizations with different oltjees: latency minimization, cluster power
consumption minimization, small cell centric power congtion minimization, and a cluster size
reducing strategy. Cluster size reduction, or clustersifieaition, is based on exploiting the la-
tency/power consumption trade-off. We proposed to modiiydomputation load distribution on
less small cells, in order to allow the switching off of exadal small cell. Cluster sparsification
increases the system energy efficiency, but results inasek perceived latency. We compared
the proposed strategies and showed their impact on theipedaguster latency and power con-
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sumption.

We extended the problem formulation to the multi-user raltiuid case. As the joint resource
allocation and load distribution optimization problem @nAconvex, we re-wrote an equivalent
problem and proved it to be convex The solution of the optittidn is derived. Simulation re-
sults proved that the proposed solution is able to serve leehigumber of users comparing to a
successive single user clustering, and static clustetitgyvever, the proposed solution does not
take into account tasks or resource scheduling, which cautiie non-optimal resource allocation
efficiency. With an objective of decreasing the cluster getemplexity, we proposed two differ-
ent heuristic algorithms. A first algorithm consists of skheduling at serving small cells, and
assigning serving small cell computational resources astasfep. As a second step, unserved re-
guests are sent to a centralized cluster manager unit #satjgeomputational clusters, using one
of the proposed single-user multi-cloud clustering sohai Three variants of the algorithms are
proposed. The second proposed algorithm is based on ativiteagproach, where each serving
small cell sets up computational clusters, and ask for tredl grell manager validation. The small
cell manager verifies the possibility of the cluster estdistient, and reports back to the serving
small cells. In case of an excess allocation of computatimsources at any of the small cells,
the load excess is reported to the serving small cell foisigament. Simulation results compared
our three proposed multi-user cluster set up strategieseegdated the loss of performance for
heuristic solutions. The results proved that the joint allocation and load distribution in
small cells cluster can guarantee service QoE with an oytegigability of less than 5%, for up
to 8 users per small cell. A gain of 55% comparing to successlivstering with no scheduling
is achieved. As for the proposed scheduling aware andiiteraturistics, they can achieve up to
40% and 35 % gain of satisfaction ratio, respectively. Thesalts prove that small cell clustering
for mobile edge computing increases the cloud capabilitied creates pooled resources at a close
proximity to mobile users. However, in order to efficientiypéoit available resources, small cells
cluster should be optimized, communication and resouiafyj allocated, computational tasks
scheduled, and computational load adequately distributed

Finally, in order to further reduce the costs of small ceducl computing, we proposed a novel
concept ofcomputation cachindor edge computing. After exploiting small cells computireg
sources for executing mobile users’ requests, we propasegpioit small cells storage space, to
cache users’ computational requests. In order to idertifycomputations to be cached at small
cells cache memories, we proposed a caching algori@tiasterCaching The algorithm identifies
requests to be cached, while aiming at reducing the cost afi sell cloud computing. The pro-
posed concept shifts the small cell edge cloud computingdigm from ademand and compute
approach, teearch and downloadThen, in order to reduce the search space, i.e. small bels t
are searched for finding a cached copy of the requested catigpytwe propose a search cluster
set up method. The proposed method exploits the cachingygaliorder to establish a relation-
ship between computations popularity and their probabdftbeing cached. This relationship is
then exploited, along with the small cells connectivitydiewn order to identify possible locations
with a reachable cached version of the requested computafioe proposed contributions allow
caching the right files at the right small cell, and proposesthwd for identifying the search space
for guaranteeing a minimum cache hit probability. Numériesults proved that computation
caching in edge cloud can bring major benefits, especialtgrims of computation energy cost
reduction. We conclude, that it is important to adapt thehirar policy to the system storage
capacity, and to cache the right files in accessible cactaitors, for further increasing the edge
cloud computing performance.
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This thesis tackled the clustering techniques in the smalllocal edge cloud computing
paradigm. Three main research axes were investigatedortipatation offloading decision; (ii)
small cells clustering solutions; (iii) computational baxg and cache cluster solutions.

Much research can be carried out in the following directions

In Chapter 3, the proposed offloading decision algorithnedalkito account a multitude of
handset and applications parameters. It would be intagesti include an access control at the
cloud side into the offloading decision. Possible ways addgrating the cloud in the offloading
decision, without increasing the decision complexitypisonsider statistical value of the offered
computational capacity by the edge cloud. This informationld have a positive impact on the
algorithm performance, especially in bad communicaticanciels quality where the proposed al-
gorithm offloads computation without guaranteeing the@cesion on the cloud.

In Chapter 4, we formulated the joint resource allocatiotinogation problem, without in-
cluding tasks or resources scheduling. A challenging swyddwbe to formulate the problem, and
design a solution proposal for the joint resource allocatload distribution, and tasks schedul-
ing. In doing so, computational resources are more effigieised, and thus, more computational
tasks can be served, increasing the overall satisfactian ra
Further investigation can also be done in intra-cluster namication, especially the multi-user
case, for integrating interference in the cluster set uggs®. Intra-cluster interference sets a
novel challenge in edge cloud small cell clustering, andacks a series of possible solutions.
For example, the cluster set up process can designed to ipinintra-cluster interference by us-
ing colored graph or interference classification techrsque

The proposed clustering solution in Chapters 4 and 5 arallmaseentralized approaches that
include a small cell managing unit to compute or control thisters set up parameters. A very
interesting research area to investigate is the design etarndralized small cell clusters set up
algorithm. The algorithm should be light in terms of signgland time complexity. Special forms
of signaling can be used in order to reduce the intra-clusterhead. We investigated, during this
thesis, a special form on signaling, based on signalingoresptime, in order to pass cluster set
up parameters without increasing signaling overhead. déwe has been investigated, and evolved
to be the subject of a patent proposal [P3].

Mobile edge computing is the subject of a vivid researchvigtiWhereas the majority of the
work focuses on the computing functionalities optimizataf local cloud, the proposed compu-
tation caching concept is a novel paradigm that will gaiaraton in the near future. Computation
caching is a research area that we would like to keep inasiigy in the near future. Studying
both reactive and pro-active caching in small cell cloudvoeks, designing adaptive caching al-
gorithms, and investigating cache search and computatknieval algorithms, are possible leads
for future work.

Finally, in this thesis, we proposed small cells clustemogcepts and solutions in the edge
cloud computing paradigm in cellular networks. A very ieging future work direction is to
extend the proposed concepts of clustering for cloud fonetities into different contexts such as
sensor networks, internet of things, device to device, anariscities paradigms. The potential
brought by the general approach brought by this thesis EBeidaxploitable in various scenarios
and paradigms. As millions of resource limited devices agmsers will be connected per cell,
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clustering solutions can be seen as a very promising solifior data aggregation, processing,
caching, and computation services delivery. As a furthegs,stomputing clusters can also include
hybrid types of computing entities, such as base statiantbgdevices, routers, and switches, which
opens the possibility of a new form of inter-network coopierafor cloud services.
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Abstract: Mobile Edge Cloud brings the cloud closer to mobile users bying the cloud computational efforts from the internet to
the mobile edge. We adopt a local mobile edge cloud compaticigitecture, where small cells are empowered with contiounta and
storage capacities. Mobile users’ offloaded computatitaskis are executed at the cloud-enabled small cells. Weopedjhe concept
of small cells clustering for mobile edge computing, wherah cells cooperate in order to execute offloaded compmnatitasks. A
first contribution of this thesis is the design of a multi-graeter computation offloading decision algorithm, SM-P@Be proposed
algorithm consists of a series of low complexity succesaivenested classifications of computational tasks at théle®itie, leading to
local computation, or offloading to the cloud. To reach thHatling decision, SM-POD jointly considers computatidaaks, handsets,
and communication channel parameters. In the second ptrisdhesis, we tackle the problem of small cell clustersupefior mobile
edge cloud computing for both single-user and multi-useesa The clustering problem is formulated as an optimimdtiat jointly
optimizes the computational and communication resouloeation, and the computational load distribution on thekeells partici-
pating in the computation cluster. We propose a clusterstifiation strategy, where we trade cluster latency for éiglystem energy
efficiency. In the multi-user case, the optimization prole not convex. In order to compute a clustering solutionpvggose a convex
reformulation of the problem, and we prove that both prolsleme equivalent. With the goal of finding a lower complexitystering
solution, we propose two heuristic small cells clusteritggpethms. The first algorithm is based on resource allotatin the serving
small cells where tasks are received, as a first step. Thans@eond step, unserved tasks are sent to a small cell mgnagir{SCM)
that sets up computational clusters for the execution afahasks. The main idea of this algorithm is task schedulifgp#h serving
small cells, and SCM sides for higher resource allocatidiciency. The second proposed heuristic is an iterative @gr in which
serving small cells compute their desired clusters, witlramsidering the presence of other users, and send theteclparameters to
the SCM. SCM then checks for excess of resource allocatianyabf the network small cells. SCM reports any load excesgteing
small cells that re-distribute this load on less loaded bowdls. In the final part of this thesis, we propose the cohogpomputation
caching for edge cloud computing. With the aim of reducing ¢dge cloud computing latency and energy consumption, ogoge
caching popular computational tasks for preventing theiexecution. Our contribution here is two-fold: first, wepose a caching
algorithm that is based on requests popularity, computatine, required computational capacity, and small celfmeaotivity. This
algorithm identifies requests that, if cached and downldaugtead of being re-computed, will increase the computataching energy
and latency savings. Second, we propose a method for sefilagsearch small cells cluster for finding a cached copy oféfjaests
computation. The clustering policy exploits the relatioipsbetween tasks popularity and their probability of betaghed, in order
to identify possible locations of the cached copy. The psagomethod reduces the search cluster size while guanagi@eninimum
cache hit probability.

Résune: Cette thése porte sur le paradigme “Mobile Edge cloud” gpproche le cloud des utilisateurs mobiles et qui déploie
une architecture de clouds locaux dans les terminaisonésau. Les utilisateurs mobiles peuvent désormaisadgehleurs taches
de calcul pour qu'elles soient exécutées par les femilates (FCs) dotées de capacités de calcul et de stockbges proposons
ainsi un concept de regroupement de FCs dans des clusteascdés@ui participeront aux calculs des taches dédemgA cet effet,
nous proposons, dans un premier temps, un algorithme dsiaece déportation de taches vers le cloud, nommé SN»-PCet
algorithme prend en compte les caractéristiques degs$addncalculs, des ressources de I'équipement mobile Japelité des liens de
transmission. SM-POD consiste en une série de classifitmiuccessives aboutissant a une décision de calcljl docde déportation
de I'exécution dans le cloud. Dans un deuxieme temps, abasdons le probléme de formation de clusters de calcudr@orutilisateur
et a utilisateurs multiples. Nous formulons le problenwptmisation relatif qui considére l'allocation conjde des ressources de
calculs et de communication, et la distribution de la chalgealcul sur les FCs participant au cluster. Nous proposgalement une
stratégie d’éparpillement, dans laquelle I'effica@t@ergétique du systeme est améliorée au prix de ladatde calcul. Dans le cas
d'utilisateurs multiples, le probleme d’optimisatioratlibcation conjointe de ressources n’est pas convexe. Afiteadésoudre, nous
proposons une reformulation convexe du probleme écgrivala la premiére puis nous proposons deux algorithmesstiques dans le
but d’avoir un algorithme de formation de cluster a compéeséduite. L'idée principale du premier est I'ordomecament des taches de
calculs sur les FCs qui les re coivent. Les ressources delsaiont ainsi allouées localement au niveau de la FC.da®ts ne pouvant
pas étre exécutées sont, quant a elles, envoyéesuniteale contrdle (SCM) responsable de la formation destefs de calculs et de
leur exécution. Le second algorithme proposé est if@tatonsiste en une formation de cluster au niveau des F@&aat pas compte
de la présence d'autres demandes de calculs dans le réssguropositions de cluster sont envoyées au SCM quiiévaldistribution
des charges sur les difféerentes FCs. Le SCM signale tot @dwharges pour que les FCs redistribuent leur exces @ansetlules
moins chargées. Dans la derniére partie de la these propssons un nouveau concept de mise en cache des calcsiétige cloud.
Afin de réduire la latence et la consommation énergétitpseclusters de calculs, nous proposons la mise en cach&edbs gapulaires
pour empécher leur réexécution. Ici, notre contributst double : d’abord, nous proposons un algorithme de misaghe basé, non
seulement sur la popularité des taches de calculs, mssssur les tailles et les capacités de calculs demandas;@nnectivité des FCs
dans le réseau. L'algorithme proposé identifie les tAetmutissant & des économies d’énergie et de tempamhastantes lorsqu’elles
sont télechargées d’'un cache au lieu d'étre recadsulélous proposons ensuite d’exploiter la relation entpofaularité des taches et
la probabilité de leur mise en cache, pour localiser leslac@ments potentiels de leurs copies. La méthode premséasée sur ces
emplacements, et permet de former des clusters de rectdathile réduite tout en garantissant de retrouver unéecapcache.



