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THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
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M., Emilio Calvanese Strinati
CEA-LETI, Grenoble, Co-Encadrant de thèse





Abstract

Mobile Edge Cloud brings the cloud closer to mobile users by moving the cloud computational
efforts from the internet to the mobile edge. We adopt a localmobile edge cloud computing ar-
chitecture, where small cells are empowered with computational and storage capacities. Mobile
users’ offloaded computational tasks are executed at the cloud-enabled small cells. We propose
the concept of small cells clustering for mobile edge computing, where small cells cooperate in
order to execute offloaded computational tasks. A first contribution of this thesis is the design of
a multi-parameter computation offloading decision algorithm, SM-POD. The proposed algorithm
consists of a series of low complexity successive and nestedclassifications of computational tasks
at the mobile side, which leads to an offloading decision to each of the tasks. The tasks are either
computed locally using the handset resources, or offloaded to the cloud. To reach the offloading
decision, SM-POD jointly considers computational tasks, handsets, and communication channel
parameters. In the second part of this thesis, we tackle the problem of small cell clusters set up
for mobile edge cloud computing for both single-user and multi-user cases. The clustering prob-
lem is formulated as an optimization that jointly optimizesthe computational and communication
resource allocation, and the computational load distribution on the small cells participating in the
computation cluster. We propose a cluster sparsification strategy, where we trade cluster latency
for higher system energy efficiency. In the multi-user case,the optimization problem is not con-
vex. In order to compute a clustering solution, we propose a convex reformulation of the problem,
and we prove that both problems are equivalent. With the goalof finding a lower complexity clus-
tering solution, we propose two heuristic small cells clustering algorithms. The first algorithm is
based on resource allocation on the serving small cells where tasks are received, as a first step.
Then, in a second step, unserved tasks are sent to a small cellmanaging unit (SCM) that sets up
computational clusters for the execution of these tasks. The main idea of this algorithm is task
scheduling at both serving small cells, and SCM sides for higher resource allocation efficiency.
The second proposed heuristic is an iterative approach in which serving small cells compute their
desired clusters, without considering the presence of other users, and send their cluster parameters
to the SCM. SCM then checks for excess of resource allocationat any of the network small cells.
SCM reports any load excess to serving small cells that re-distribute this load on less loaded small
cells. When no small cell is overloaded, the SCM validates the clusters set up accordingly. In the
final part of this thesis, we propose the concept of computation caching for edge cloud computing.
With the aim of reducing the edge cloud computing latency andenergy consumption, we propose
caching popular computational tasks for preventing their re-execution. Our contribution here is
two-fold: first, we propose a caching algorithm that is basedon requests popularity, computation
size, required computational capacity, and small cells connectivity. This algorithm identifies re-
quests that, if cached and downloaded instead of being re-computed, will increase the computation
caching energy and latency savings. Second, we propose a method for setting up a search small
cells cluster for finding a cached copy of the requests computation. The clustering policy exploits
the relationship between tasks popularity and their probability of being cached, in order to identify
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possible locations of the cached copy. The proposed method reduces the search cluster size while
guaranteeing a minimum cache hit probability.

Keywords

Mobile cloud computing, Local cloud, Edge cloud, Small cells cluster, Resource allocation, Com-
putation offloading, Computation caching, Load distribution
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2 I NTRODUCTION AND THESIS OUTLINE

The imminent emergence of mobile cloud computing to wireless networks is today a real-
ity. Mobile equipments are henceforth a platform that consumers are using to replace their desk-
top applications. Mobile equipment offers nowadays not only communication services, but also
sensing, computing and storage. Mobile communicating devices are becoming ubiquitous, from
smartphones in the hands of billions of persons, to wirelesssensors, to connected things (vehi-
cles, machines, cities, etc.). As a result, there is an increasing proliferation of various domains in
the wireless communication such as medicine, health monitoring, business, banking, image pro-
cessing, and home monitoring. It becomes more and more obvious that wireless devices need to
have greater capabilities in terms of communication resources, computational capacities, storage
space, and most importantly great autonomy. As new functionalities have been integrated in mo-
bile connected devices over the last couple of decades, devices have grown in features, capacities,
capabilities, and sometimes in size. However, battery technology has not been able to cope with
the development of mobile devices and their increasing demand of energy. Indeed, sensing, com-
puting and communicating through mobile equipment increase the energy consumption and thus
decrease the devices battery lifetime. Mobile Cloud Computing is one of the most powerful solu-
tions for allowing mobile devices to do more while consumingless. Mobile cloud computing is
an attempt, that is proving success, at extracting the functionalities that have been added to mobile
equipment without depriving mobile equipment users from accessing the offered service. In other
terms, mobile devices will always have the result of a certain computation without necessarily
calculating it on their own. Mobile cloud computing is a ‘mobile delivery service’ that is offered
to mobile devices at a lower cost. The base of a mobile cloud computing service is computation
offloading from mobile devices to the available cloud.

In addition to empowering mobile users’ devices, in the IoT paradigm, computation offloading
is also important to empower simple devices, like e.g. tiny sensors, with computational capacities
that they could have otherwise. In addition, moving computations from base stations to the cloud
is a form of computation offloading that is the central issue of centralized-Radio Access Network
(RAN), which can be efficiently implemented as Cloud-RAN. Inthis case, computation refers to
the various blocks in the radio chain, such as de-multiplexing, decoding, etc. In this particular
case, computation offloading is primarily for reducing the computational load of base stations,
rather than mobile devices.

The focus in this thesis is put on the mobile edge cloud architecture where cloud functionalities
are driven to proximity of mobile users. Mobile edge cloud could take place in small cells base
stations, in connected routers, in network switches, or in any connected entity that can be equipped
with computational and storage capabilities. First, aiming at minimizing mobile equipment power
consumption, but also, and more importantly, guaranteeinga good quality of experience, we shall
examine computation offloading decision algorithm design for mobile cloud computing. Indeed,
one of the most important ingredients of the success of mobile cloud computing process is to have
the right offloading strategy.

Second, we shall look into the computation services on the edge cloud. We consider edge cloud
clustering possibility where several computing entities participate in the computation of users’
tasks by forming a computation cluster. Therefore, intra-cluster resource management should be
well orchestrated in order to achieve high quality of experience. To this end, it should be inter-
esting to combine communication and computation resource allocation inside every computation
cluster. Computation load distribution and/or balancing,communication resources allocation, and
computational capacities association at each of the cluster participants should be studied for a reli-
able computational cluster performance and high service quality delivery. Computational tasks are
mostly subject to latency constraints and computation capacity requirements. In a cluster-based
computation on edge cloud, overall perceived service latency incorporates transmission delays and
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computation time. Transmission delays result from intra-cluster communication where comput-
ing entities exchange computational data and results. Respecting latency constraints, couples the
allocation of communication and computation resources, aswell as load distribution. Finally, we
shall investigate possible mechanisms and novel paradigmsthat could be considered for reducing
computational clusters power consumption. Since mobile edge cloud infrastructure is distributed,
scalable, adaptable, and mostly based on user deployed network nodes, power consumption is
an important issue in this kind of architectures. Reducing the edge cloud power consumption
makes mobile edge cloud computing an interesting solution,especially in the green networking
framework.

The challenge of this thesis is to investigate how we can jointly optimize communication
and computation resources in a mobile edge cloud cluster while improving the delivered quality
of service and guaranteeing mobile users’ requests satisfaction. The outline of the thesis is as
follows:

• In Chapter 1 we discuss the proliferation of a new services and applications ecosystem in the
mobile networks. We show how future mobile cellular networks are based on new technical
breakthrough that will allow the mobile network to maintainthe capability of serving the
increasing number of mobile users and their generated traffic. We present a quick review
on future 5G networks and their requirements set to be in linewith the network traffic ex-
plosion. 5G networks are required to support massive devices connectivity but also massive
system capacity. Higher data rates are at the top of the requirements list along with very
low latency, which will enable more real time services and applications. To achieve the
set of 5G requirements, a number of enabling technologies are being widely discussed. A
main enabler technology is massive MIMO, which has proved toachieve higher data rates
through the equipment of communicating devices and nodes with multiple antennas. We
also discuss the use of wider spectrum and the introduction of millimeter waves and full
duplex radio. Furthermore, we focus on the emergence of ultra-dense heterogeneous net-
works, and the integration of cloud services. These two technologies are the key enablers for
the mobile edge cloud architecture. Then, we zoom on cloud technologies evolution in mo-
bile networks, and show how the cloud integrated wireless communication systems through
evolving and various architectures. We start by describingthe Cloud-RAN architecture as
one of the first cloud based networks, and we continue with mobile cloud computing plat-
forms like cloudlet based mobile cloud, edge cloud, and fog.We show the advantages and
characteristics of each of the architecture in terms of availability, reliability, experienced
latency, mobility support and proximity to users. The final part of the chapter discusses the
upcoming uplink traffic explosion, which is mainly caused bythe increase of mobile cloud
computing traffic. We explain why it is just a matter of time before an uplink traffic explo-
sion hits the mobile network. Mobile networks which have always been designed and scaled
according to downlink traffic requirements, have always accorded lower attention, and lower
capacities to the uplink direction. While this was supported by justified reasons, the traffic
patterns are now changing, and uplink is not less important than downlink anymore. In this
chapter we discuss several factors that contribute in the uplink data traffic increase such as
the growing number of mobile subscribers, the number of connected devices, and the evolu-
tion of mobile networks. The emergence of cloud technologies is one of the main factors of
the uplink traffic increase, not to forget the convergence ofIT and wireless communication
systems, and the integration of the Internet of things, wireless sensor networks, and machine
to machine communication to the mobile networks. Furthermore, this chapter presents a set
of trade-offs that are faced in the mobile edge computing framework. A part of the material
of this chapter is reported in conference paper [C8].
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• Chapter 2 describes the adopted mobile cloud computing architecture in this thesis. We
present the advantages and characteristics of the adopted architecture, while pointing out
the assumptions that are made within this thesis. We discussthe limitations, optimization
parameters, and objectives that we tackle in this thesis. Weexplain why a joint commu-
nication and computation resource allocation, and load distribution is needed in the edge
cloud computing architecture based on small cells computing clusters. A study over the
existing trade-offs in the adopted architecture is presented. The proposed architecture is
based on heterogeneous cellular networks. Therefore, we give a preliminary overview on
the communication-related trade-offs of heterogeneous networks. We extend the study to
incorporate computation-related parameters, brought by the edge cloud integration of mo-
bile networks. We discuss a series of trade-offs showing that the edge cloud shifts the
heterogeneous networks optimization paradigm to a whole new level by adding additional
resources to optimize. Energy efficiency from both mobile and system perspective, com-
putation and communication resource allocation efficiency, users quality of experience, and
network deployment efficiency are some of the trade-offs actuators that are studied in this
chapter. In a cluster environment, an important bottleneckof future wireless networks is
backhaul. In the last part of this chapter we present a comparative study on the impact of
backhaul technology and topology on small cell clusters, interms of latency and power con-
sumption. We compare the full mesh, tree, and ring topologies for fiber, microwave, and
wireless LTE technologies. Wireless backhaul use is important to complement the standard
wired backhaul, especially in dense small cell networks.

A part of the material of this chapter is reported in conference paper [C2].

• In Chapter 3, we review some of the offloading decision mechanisms and algorithms pre-
sented in literature for the context of mobile cloud computing. We show that the majority of
these mechanisms are based on the energy trade-off between local computation on mobile
handsets, and computation offloading to the cloud. While mobile handsets energy consump-
tion is an important parameter to consider for deciding on computational tasks offloading,
it is not the only parameter that affects the decision. Users’ quality of service should be
the main parameter that contributes to the decision process. The trade-off of energy con-
sumption and quality of service should then be studied and optimized in order to enable
mobile handsets to do more while consuming less. Furthermore, computational tasks are
mostly constrained by latency limits and memory requirements. These constraints impose
a minimum computational capacity that should be allocated to the tasks. Few are the exist-
ing offloading decision strategies that consider the totality of these parameters. Most of the
existing algorithms are based on mathematical optimization, multi-criteria utility functions,
and solved using linear programming, integer (or multi-integer) linear programming. Hence,
the complexity of these algorithms increase with the numberof considered parameters.

The material of this chapter is reported in conference paper[C1]

• A mobile user may decide to run its applications locally, if energy and time are not an issue,
or at the nearest cloud-enhanced fixed device, or in a clusterof federated devices, depend-
ing on energy consumption and latency constraints. In Chapter 4 we focus on edge cloud
clustering for computational purposes. We propose and study optimization formulations of
computation cells clustering. Our models are based on jointoptimization of communica-
tion and computation resources inside the computation clusters. Each cluster is responsible
for fulfilling a computational request. The optimized solution identifies the cells to include
in the cluster. Furthermore, it distributes the computation load on the participating cells.
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Indeed, each of the cluster participants computes a part of the computational load, with a
computational capacity that is also defined by the derived solution. As computational tasks
are received at first at one cell, the load is distributed, andnecessary information is transmit-
ted to helping cells in the clusters. The transmit power usedfor sending the necessary data
between cluster participants is the third degree of freedomdefined by the cluster optimiza-
tion solution. The three parameters (transmit power, load distribution, and computational
capacity allocation) define the total edge cloud computing process latency. The total per-
ceived latency includes both transmission and computationdelay. The optimization solution
is constrained to always respect the latency constraints imposed by the computational tasks.

We start by studying the single user case where only one task has to be computed. We pro-
pose four different cluster optimization strategies. The first has the objective of minimizing
the cluster perceived latency. The second is based on the latency vs power consumption
trade-off, and searches to sparsify the cluster by excluding some of the participating cell
and increasing the load of others. The two remaining strategies aim at reducing the cluster
power consumption from a whole cluster and single participant point of view, respectively.
Then, in the second part of the chapter, we evolve the considered scenario to a multi-user sit-
uation where several clusters are to be formed at once, usingthe same pool of resources. The
optimization problem that is presented has an objective of minimizing the overall clusters
power consumption, while guaranteeing users’ quality of service by respecting the delay
constraints imposed by each task. As the formulated problemis not convex, we propose
an equivalent convex problem that leads to efficient implementation of the solution. We
evaluate all of the proposed clustering solutions in an indoor small cells deployment, where
mobile edge computing is offered by the set of active small cells. We compare the proposed
solutions, and show their effectiveness in terms of users’ satisfaction ratio. Furthermore, we
evaluate their energy consumption and perceived latency.

The material of this chapter is reported in part in journal paper [J1] and conference papers
[C3] and [C5].

• In Chapter 5, we propose clustering algorithms that are characterized by lower complexity
than the optimization algorithm studied in the previous chapter. Heuristics are proposed
in order to keep the quality of service delivered by edge cloud computing while reducing
the process complexity. The chapter contribution is based on the idea of exploiting the low
complexity optimization of computation cluster for the single user case. Both algorithms
that are proposed rely on the single user selfish cluster optimization.

A first algorithm consists of scheduling computational tasks at the serving cell where they
are received. The serving cell is the cell that receives the computational requests from
mobile users. The scheduling policies that can be adopted are various, such as earliest
deadline first, and proportional fair to name a few. Computational resources are allocated
at the serving cell. Unserved requests are then sent to a centralized entity that re-schedules
the tasks sent from all serving cells. Unserved requests arethen computed, while respecting
the task scheduling, by computational clusters using the single user optimization. Three
different implementations of this algorithm are proposed.They differ in the scheduling
metrics and the clustering objectives.

The second algorithm we propose is an iterative algorithm. It is based on operations at the
serving cells and a centralized cluster manager, respectively. As a first step, each serving
cell selfishly forms the clusters for each of the received requests. The selfish clustering is
done by serving cells without considering the presence of other users. As a second step,
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clusters report to a centralized entity that controls the feasibility of the resource allocation
from all serving cells. Since the same resources can be allocated by several serving cells,
the centralized control management validates or corrects the requested clusters according
to resources availability. Excess of allocated resources is identified, and feedback is sent
to serving cells in order to notify them on remaining requests to be computed, and relative
correction values.

We benchmark the proposed algorithms by simulating an indoor mobile edge cloud envi-
ronment. We evaluate the performance of both algorithms andcompare them in terms of
requests satisfaction ratio and cluster power consumption.

The material of this chapter is reported in part in patent [P4] and conference papers [C4]
and [C6].

• Finally, in Chapter 6, we propose to exploit, in addition to computation capacity, the stor-
age capacity available at the Edge cloud. We introduce the novel concept ofcomputation
caching. Cache memories at Edge small cells are used for caching users’ computations.
When a cached computation is requested, it is not computed. The serving small cell retrieves
the request from the cache memory. Our proposal is based on exploiting the knowledge of
computational requests popularity at each small cell, to choose the requests to be cached.
We consider, in this chapter, the same architecture of the small cell cloud clusters. How-
ever, we introduce the approach of small cell clustering forcache search. A search cluster
is thus defined as the set of small cells whose cache memories are searched for finding the
requested computation.

In the first part of the chapter, we propose a caching algorithm. Caching algorithms de-
fine the computations requested to be saved in the cache memories at each small cell. The
proposed caching algorithm takes into account, not only thecomputation request popular-
ity, but also the amount of required computational capacityfor its execution, the imposed
latency constraints, and the small cell connectivity in thenetwork. The algorithm caching
policy aims at increasing thecomputation cachinggains in terms of both latency, and power
consumption. We compare the performance of the proposed algorithm with the state-of-the-
art, and show that even though less computational requests are cached, higher performance
gains can be achieved, especially when the storage space at the Edge cloud is limited.

After the computational requests are cached at the Edge of the network, small cells should
be able to locate the cached copies of each request. In the second part of this chapter, we
propose a method that allows reducing the set of small cell tobe searched for retrieving a
computational request. The proposed method exploits the established relationship between
requests popularities and their caching probability. Thisrelationship depends on the adopted
caching policy. Knowing the popularity of each request in the network small cells, the most
probablecaching location of each request can be identified. Then, according to the small
cells connectivity in the network, the cache location that are reachableare identified. The
proposed method identifies the small cells that have a copy ofthe requested computation,
which can be retrieved while respecting the latency constraints of the application.

The material of this chapter is reported in part in patent [P5] and conference paper [C7].



Chapter 1

The Evolution of Cloud Enable Mobile

Wireless Networks

7



8 CHAPTER 1. THE EVOLUTION OF CLOUD ENABLE M OBILE W IRELESS NETWORKS

1.1 Motivation

The famous ‘dramatic increase of mobile data traffic’ is already happening! Mobile communica-
tion is nowadays an essential component in millions of people’s lives and daily activities around
the globe. The number of mobile subscribers, number of mobile applications, and thus, mobile
data traffic are subject to an exponential increase. Indeed,traffic forecasts foresee further data traf-
fic abundance in the coming years [3]. We are currently witnessing a new revolution of the Internet
where people and smart objects are connected together in smart environments. The Internet world
is converging with cellular mobile communication networksto form a complete services package
for mobile users. Data services have been widely incorporated in cellular networks. For instance,
3G and 4G networks are both Internet Protocol (IP) based. Unlike 3G, 4G uses IP even for voice
communication data. The interaction and inter-connectionbetween people, devices, sensors, and
service providers have opened the door for an eruption of mobile over-the-web applications. New
innovative applications are released at a daily basis covering wide areas of communication pur-
poses, going from entertainment and social networking, to industrial and health-care applications.
These applications are accessible from mobile devices connected to the Internet through cellular
mobile network. The diversity of services that are henceforth available is as large as the diver-
sity of life essentials. Indeed, we are witnessing a rapid creation of an e-life where different
essential utilities, favorite interests, and daily life requirements can be controlled, checked or ac-
complished through a mobile device, throughout a large variety of applications. The merge of
IT and communication networks is downright a reality bringing services closer and making them
more accessible to mobile users. As a consequence, connectivity is becoming an essential life
component rather than a privilege. The enormous amount of web-based applications launched
through mobile networks generates a non-negligible amountof additional data traffic, as well as
computational requirements in terms of both computation capacity and storage space. Therefore,
ubiquitous connection and resources accessibility are essential requirements of cellular networks.
Mobile networks should be able to deliver high quality services with high speed connection, as-
sure resources (computing, storage, sensing) availability and reachability by mobile subscribers.
On the other hand, mobile users expect to enjoy high end services with a minimal cost especially
in devices battery consumption and in latency delay. As a matter of fact, two of the most impor-
tant marketing keys for mobile devices are autonomy and longbattery lifetime. The challenge
to overcome is allowing mobile devices to achieve more with the same, nay much lower costs
in terms of energy consumption, experience quality degradation, and latency delay. As mobile
users will continue to generate increasing amount of data for communication, but also, and more
importantly, for computational services, mobile networksface the challenge of delivering high
service quality despite the traffic increase. Through the different generations of mobile networks,
the architecture has been and is still evolving, and new mechanisms are still being proposed in
order to improve service quality and to efficiently integrate computing services. Two essential
requirements for overcoming the big data/large computations challenge are the following: (i) a
breakthrough in cellular networks functionalities, capacities, and capabilities in order to cope with
the ongoing, and upcoming,tsunamiof data and the ever-increasing number of connected devices.
(ii) Find an adequate location, both geographical and in network, for implementing powerful com-
puting solutions. The computational burden in mobile networks is composed of network required
signal processing and solution computing for various RadioResource Management (RRM) mech-
anisms, and of the users launched computation request through mobile-friendly applications. In
the remainder of this chapter, we discuss the future generation of mobile networks, 5G, and show
how it can be seen as the next breakthrough for mobile communications to overcome the quickly
evolving market. Then, we give a panoramic view of the evolution of network architecture with
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a focus on cloud technologies integration within. This overview shows the effort done for mobile
networks to incorporate, increase and grant accessibilityof computational capacities by means of
various solutions.

With the incorporation of cloud services in wireless networks, an important change in traffic
patterns takes place: the increase of uplink traffic. While wireless networks have always been
designed based on downlink traffic, that represents the largest share of mobile traffic, current
networks may not be able to cope with the increase in uplink traffic. Uplink to downlink traffic
ratio depends on the application type. However, cloud services promote applications and services
that are based on high uplink traffic ratio, such as, computation offloading and online photos and
videos storage. In the last part of this chapter, we point outthe upcoming traffic changes, the
contributing factors, and emerging solutions.

1.2 5G Cellular: The Future of Mobile Networks

Mobile and wireless traffic volume is continuously and rapidly increasing. It is foreseen that the
mobile data traffic will grow 1,000 times higher from 2010 to 2020 with a rate that is roughly
the double per year [13]. This traffic increase is due to many factors. Mobile devices nowadays
are a platform for accessing various types of services requiring high volumes of data. The in-
crease in the number of mobile subscribers, and thus the number of wireless connected devices
(e.g. smartphones, tablets) generates additional traffic that approaches the limits of what current
cellular networks could deliver. Indeed, the number of mobile-connected devices exceeded the
world’s population in 2014. Moreover, the forecasts on the number of connected devices by 2019
state that there will be 1.5 mobile devices per capita, i.e. the number of mobile-connected de-
vices will exceed the number of people on earth in 2019 [14]. Furthermore, the scopes of the
services that are made available to users through mobile networks are expanding. Some of these
services are linked to essential aspects of people’s everyday life such as e-banking, e-health, and
e-learning, and will continue to be further adapted to mobile environments [15]. Others are on-
demand services launched directly by mobile users or through mobile applications. These kinds
of services are evolving every day and including more and more complex and data hungry appli-
cations such as face recognition, online gaming, augmentedreality, instant translation, and video
decoding. The expansion of applications in number and diversity leads to an explosive increase
of data usage. The interactive side of some of these applications requires a network that supports
lower latencies and higher data rates. As the worlds of IT andtelecommunication networking are
converging, the exploding Internet data traffic has driven towards a new 5th generation of cellu-
lar wireless networks. Moreover, various market drivers have pushed towards the conception of
this new generation of wireless communication. The Internet of Things (IoT) and its wide range
of applications are quickly proliferating in the wireless communication services. IoT is expected
to further expand in the future and to impose billions of devices deployment which need to effi-
ciently rely on highly scalable network architecture. In addition of scalability, the network should
deliver a high level of reliability since the IoT applications can be linked to highly sensitive do-
mains as tele-medicine for example. Furthermore, with IoT applications such as smart grids and
infrastructure monitoring, the latency of the network can be higher than the maximum time delay
required by this type of applications. 5G linked applications cover a wide variety of domains such
as social networking, automotive, sports, smart cities, industrial monitoring, home security, and
health care. Figure 1.1 shows different types of 5G applications and how they differ in latency
and bandwidth requirements. 5G networks have been the subject of extensive research in the last
years. As the next step in the evolution of mobile communication, 5G capabilities must extend far
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Figure 1.1: Bandwidth and latency requirements for potential 5G applications [1].

beyond previous generations to meet increasing requirements. Despite the fact that 5G is not fully
and uniquely defined yet, its technical requirements have been set using an explicit formulation,
by one of the first large-scale projects on 5G, the European Project METIS (Mobile and Wireless
Communications Enablers for the 2020 Information Society)[16], as follows [17]:

• 1000 times higher mobile data volume per area

• 10 to 100 times higher typical user data rate

• 10 to 100 times higher number of connected devices

• 10 times longer battery life for low power devices

• 5 times reduced end-to-end latency

1.2.1 5G: Design Essentials

The new 5th generation of mobile networks design has to allowthe fulfillment of all 5G require-
ments. Key design principles are needed to guide all requirements and technical solutions. Two
main characteristics of 5G networks design are defined by Nokia: flexibility and reliability [18].

• Flexibility : As stated earlier, 5G use cases and application cover a very wide area of
domains. As seen in Figure 1.1 it can go from use cases that require a data rate as low as
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1Mbps and a latency of 1 second, to others that require data rate in the order of Gbits per
seconds and a latency in the order of milliseconds. This gives an example of how the size
of the packet to transmit through the network extremely varies depending on the use case in
question. Consequently, the quantity of resources that need to be allocated and the urgency
of completing the packets transmission are not the same. 5G communication system need
to be flexible enough to guarantee a full adaptation to various traffic speeds in both uplink
and downlink. This needs to be done without increasing the complexity of the network
management nor affecting the mobile users’ quality of experience.

• Reliability : Reliability is another key design principle for 5G networksthat guarantees a
quality of experience beyond the best effort and towards reliable communication. Reliability
is a very important key principle of 5G networks design since5G will be the platform
of various QoE critical use cases (e.g. e-health, tele-medicine, monitoring). 5G should
incorporate new technologies, protocols, designs, and network layers in order to guarantee
sufficient reliability for mobile users in all types of applications.

1.2.2 5G Requirements and Enabling Technologies

1.2.2.1 5G Requirements and Capabilities

Even though the 4th generation of cellular networks broughtnew advances in both design and
evolution, the market trend and the expanding connectivitythat reached both people’s devices and
smart objects are imposing new breakthrough in cellular communications. 5G is facing challeng-
ing targets that, if met, will allow the network to absorb theever-increasing data traffic explosion
and services high requirements. Many industries, institutions, and research centers have presented
a view over the future 5G networks. Nokia [18], Ericsson [19], Huawei [20], GSMA intelli-
gence [1], NTTDOCOMO [21], and others have published white papers in which each company
presents its vision of 5G. These 5G requirements, as described by all of these works, converge to
the same set of challenges which are the following:

Massive system capacity

The number of mobile devices expected to be connected to the 5G network is in the order of
billions. Traffic volumes are expected to be larger by many orders of magnitude that could reach
at least 1,000 fold higher capacity demand. The required capacity of the network in order to
handle such an extremely high number of connections, including both signaling and data traffic
volume, provides a serious challenge. This is considered asthe most challenging requirement
for 5G networks. Some targets have been set by NTTDOCOMO to achieve a 1000-fold system
capacity perkm2 compared to LTE [21]. 5G networks should guarantee a high traffic handling
capacity while maintaining mobile users Qos and QoE.

Higher data rates

As the next evolution of cellular networks, 5G should be ableto offer, as a minimal requirement,
higher data rates compared to its predecessors. However, the focus for previous generations has
been on peak data rates instead of individual data rates in all possible real life scenarios. With the
proliferation of new services and applications that can be launched by mobile users anytime and
anywhere, peak data rates are less significant. Focus shouldnow be accorded to real-life scenarios
and the data rate that can be offered to users whenever needed. Various scenarios with different
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data rate targets should be studied. According to [19], indoor and dense outdoor environments
scenarios should guarantee a data rate for mobile users which is as high as 10Gbps. For urban and
suburban scenarios, Ericsson set a target in the order of 100Mbps. Furthermore, a minimum data
rate of 10Mbps should be seamlessly and ubiquitously guaranteed at any location even in sparsely-
populated areas. NTT-DOCOMO also focused on the target of achieving uniform experience for
mobile users. Their target has been set for a 1Gbps of peak user throughput everywhere.

Massive availability, connectivity, and reliability

5G networks should be able to support all kind of use cases that will be integrated into the cellular
network. From cloud services support to IoT devices, all components shouldalwaysfind their way
into being connected to the network. 5G networks should havemassive connectivity to embrace
the increasing number of simultaneously connected devices. It should also enable high reliability
and availability especially in use cases that handle critical situations or crisis management. In other
use cases such as cloud services, the network should be available whenever on-demand resources
are required from the users’ side. Additional key requirement for 5G networks is robustness.
A robust and reliable network is required for guaranteeing data, users, and infrastructure security.
Finally, 5G networks will be the essential platform of mission-critical management and monitoring
applications such as public safety, water and gas distribution, and home security. This further
amplifies the need of a future network with an ultra-high availability and reliability.

Very low latency

5G will gather heterogeneous use cases with requirements that are very different in terms of both
required capacity and latency constraints. Some of the applications to be implemented over 5G
networks require very low time delay, in the order of milliseconds. Autonomous driving, 3D
gaming, and augmented reality are very good examples of thistype of applications. Targets have
been set to an overall latency in the order of 1ms, a reductionof 5× to 10× in latency compared
to previous generations.

Reduced cost and higher energy Efficiency (EE)

Energy consumption in mobile networks can be seen from two distinct perspectives. A first per-
spective is related to energy consumption on the network side. One way to reduce the overall
network energy consumption is to increase spectral efficiency. However, due to the exploding traf-
fic volumes, attention should also be accorded to the energy consumption per bit (Joules/bit) that
has a direct effect on the network energy efficiency. Moreover, network energy performance is a
very important component for reducing operational costs [19]. In another perspective, the energy
consumption on the wireless devices side should also be considered. Very low energy consump-
tion for wireless devices has always been a well sought requirement. With the integration of IoT
that could include various types of sensors, a long battery lifetime is a must. Targets have been set
for batteries lifetime of around a decade. Therefore, 5G devices should be able to operate on a very
low energy consumption conducted by both adequate hardwaredesign and high energy efficient
communication protocols and techniques.
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1.2.2.2 5G Enabling Technologies

Based on the key design principles described in 1.2.1 and on the expected capabilities of 5G
networks, several driver technologies have been defined. These technologies will help cope with
the challenges imposed by the data increase. They will help increase capacity, improve energy
efficiency, and reduce spectrum utilization. And in light ofthe key design features, they will allow
better and easier scalability, and help increasing the network reliability.

Massive MIMO

Massive MIMO (Multiple Input Multiple Output) is the evolution of single point-to-point MIMO
and Multiuser MIMO (MU-MIMO). In MU-MIMO a set of base stations equipped with more than
one antenna (less than 10) serves a set of users, each of whichhas a single antenna. Massive MIMO
is the result of an effort made to expand the MU-MIMO vision into a large scale antenna system
where each base station is equipped with approximately 100 or more antennas. Figure 1.2 shows a
snapshot of what a massive MIMO system could look like. The concept was proposed by Marzetta

Figure 1.2: Illustration of Massive MU-MIMO systems [2].

[22] [23]. His works showed that as the number of antennas in aMIMO cell grows to infinity,
small-scale fading effect is eliminated, and the required energy per bit for transmission is nulled.
When a very large number of antennas is available, serving a significantly smaller number of users,
then many degrees of freedom are available. These contribute in better shaping the signals to be
hardware-friendly, or reducing interference [2]. The extra available antennas allow the system to
achieve higher throughput and improve radiated energy efficiency. Indeed, with a large number
of antennas, the energy can be concentrated in smaller regions of space, thus energy efficiency is
increased by using beam-forming like techniques [24]. Moreover, higher capacity, in the order of
10-fold increase, can be achieved by Massive MIMO systems. This is due to the fact that massive
MIMO rely on spatial multiplexing. Interference between terminals in such systems is already
lowered thanks to the extreme sharpness of destination- focused energy. The spatial multiplexing
is based on channel quality knowledge on the base station side of both uplink and downlink. To
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obtain this information relying on reciprocity of the channel, a TDD approach is adopted. In
fact, there appears to be a general agreement that the propagation channel is reciprocal a priori.
Massive MIMO relies on the law of large numbers and beam-forming which allow to (i) avoid
fading clips and thus improve overall transmission latency; (ii) eliminate the effect of frequency
domain scheduling and therefore each terminal is granted the whole bandwidth, which simplifies
the multiple access layer. Finally, massive MIMO systems can be built with non-expensive and
low power components. With all the benefits that could be added by massive MIMO, it does not
come challenge-free. One of the most important challenges of the massive MIMO systems is
referred to as “pilot contamination”. Pilot contaminationis caused by the reuse of uplink pilots
(used in the TDD channel estimation) from one cell to another. The pilots should be orthogonal
for all users. However, the number of existing orthogonal pilots is limited. Therefore pilots are
repeated and thus channel estimation for a single user iscontaminatedby a linear combination of
the channel of other users using the same pilot.

Device-to-Device (D2D) communication systems

Device-to-Device communication is the direct communication between two end equipments with-
out going through the network infrastructure. In cellular networks, it serves as an additional tier
that helps improve network capacity. Network nodes collaborate in relaying information to benefit
from spatial diversity advantages. D2D is based on the proximity of end users. Devices can com-
municate together using either the same spectrum as macro-cells, or unlicensed spectrum. With
the recent trends in the wireless market and the introduction of new services that require location
and context information, communication between neighbor devices can be useful. When several
devices or clusters of devices are acting as relays for each other, they form a massive ad-hoc mesh
network. This can serve for offloading traffic into the D2D tier of the network and thus increase
per area capacity. As an example of such scenarios, we can think of crowded areas, such as malls
or stadiums, where a high number of devices are operating at aclose distance. Furthermore,
D2D helps reduce end-to-end delay and power consumption. For example, in cell edge scenarios,
mobile users require a higher power consumption. However ifmobile users communicate with
neighbor devices at a proximity acting as relays, power consumption is reduced and end-to-end
delay is lowered. D2D communication also plays role in different levels of the network. D2D
can have a major role in mobile cloud services, especially inwhat is linked to mobile cloud com-
puting. Devices at proximity of each other create pools of resources that could be shared among
users for a better quality of experience for mobile users. There are four different types of D2D
communication as envisioned in [25]:

• Device relaying with operator controlled link establishment (DR-OC) where mobile
devices act as relays for each other. Link establishment is fully or partially controlled by
nodes of the operator’s network by communicating with the relaying device. The cell edge
scenario is a good use case for using this type of D2D communication.

• Direct D2D communication with operator controlled link establishment (DC-OC)where
mobile devices do not act as relays, but communicate throughdirect links. Data transfer and
information exchange happen without the assistance of the operator’s network, however, it
centrally handles links establishment between devices. A centralized links formation policy
helps control interference that results from D2D communication using the same spectrum
as other core network linked base stations.

• Device relaying with device controlled link establishment(DR-DC) Devices act as relays
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for each other, but operator’s network does not play any rolein link establishment. It is for
the devices (source and relay) to coordinate relay communication links between each other.

• Direct D2D communication with device controlled link establishment (DC-DC)Devices
are responsible for creating communication links between source and destination. Devices
do not act as relays to operator’s base stations; they act as source and destination nodes that
directly exchange information through the self-established link. This type of D2D commu-
nication is the most exposed to interference and collision problems.

To resume, D2D serves to increase coverage, guarantee connectivity when the link with in-
frastructure is weak or brakes, increases capacity per areaand spectrum utilization, and reduces
end-to-end latency and power consumption. Nevertheless, D2D carries some challenges. Security
and privacy issues are probably the most constraining in D2Dcommunications. One challenge
is to protect user data against any potential attacks. Two devices access modes are then defined.
Closed accessis a mode where mobile devices only communicate with a set of authorized devices
that are in their trusted devices list.Open accessis the communication type where no restrictions
are made. All devices can communicate through D2D links witha device configured as open ac-
cess. Another significant challenge for D2D communication is interference management. When
links are established with the help of the operator network nodes, it is easier to control interfer-
ence since management is centralized. However, in the device controlled link establishment use
cases, interference is not centrally managed. Two types of interference can be identified. The
first is between the two tiers of the operator network and D2D communications. If both tiers are
communicating using the same licensed bands, D2D communicating devices will affect devices
communicating with the network base stations. To reduce theimpact of inter-tier interference
on the existing operator base stations, smart interferencemanagement and adequate resource al-
locations strategies should be designed for the two-tier network. Then, there is the interference
between several devices in the D2D tier. Using D2D in the sameband by neighbor devices results
in possible collisions and interference. This can be addressed through designing smart resource
allocation, admission control techniques, and peer discovery protocols.

Ultra-dense heterogeneous networks (Het-Nets)

5G will witness a huge expansion in user base and an in diversity of technologies operating in dif-
ferent bands. From these trends arises the necessity of deploying shorter links to connect mobile
users, and the necessity to increase connectivity as well. Network densification is a key mechanism
for 5G and for mobile wireless evolution in general. It allows the network to meet the requirements
of very high capacity, connectivity and availability. For achieving ultra-dense networks, hetero-
geneity of network nodes will play an important role [26]. Heterogeneous networks introduce a
sort of a dynamic aspect to the cellular network, especiallywith the introduction of moving net-
works and ad-hoc networks. With the presence of low transmitpower devices that are randomly
and densely deployed, the number of network nodes is increasing, and the network itself is getting
ultra-dense. This approach will improve spectral efficiency since it reduces the distance between
base stations and mobile users [27]. According to a work by Bhusnanet al., which network densi-
fication is the main focus area, networks densification is a combination ofspatial densificationand
spectral aggregation[28]. Spatial densification is the act of increasing the number of base stations
deployed in a geographical area. It can also be achieved by increasing the number of antennas at
each operating base station node. Several types of base stations co-exist in Het-Nets and can be
densely deployed. However, further deployment of macro base stations imposes significant costs
of both Operating Expenses (OPEX) and Capital Expenditures(CAPEX). In addition, deploying
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more macrocells requires site planning and searching for possible deployment locations. As an
alternative, picocells, which are small outdoor operator-deployed base stations, can be deployed
more easily and with a much lower cost in both OPEX and CAPEX. Picocells require backhaul
access to be directly connected to the operator core network. Relay nodes could be deployed
where wired backhaul is not accessible. Relay nodes have thecharacteristic of appearing as a base
station to mobile devices and as mobile devices to base stations. Finally, small cells nodes such as
femtocells are the easier to intensively deploy. They are small size low power nodes that can be
user-deployed. They require no site planning, and do not impose significant OPEX and CAPEX
on cellular operators. Femtocells allow mobile users to have a base station at proximity with direct
high speed connection. They also help solve black holes in wireless coverage, and improve signal
quality at cell edge and indoor locations. However, sharingthe same carrier frequency, between
macro and femto cells, results in inter-tier interference.This introduces network design, interfer-
ence mitigation, and resource allocation challenges.
As for spatial aggregation, it consists in using larger bands of spectrum ranging from 500MHz to
the higher bands of 30−300Ghz [28]. Aggregating fragments of bandwidth of different frequency
bands leads to antenna and transceiver design challenges. Sharing spectrum between several net-
work nodes requires the integration of spectrum-sharing technique to be integrated into licensed
carrier networks to assure good QoS and support mobility. Licensed Shared Access (LSA) is a
paradigm that helps coordinate spectrum use between spectrum holders and secondary licensed
users. LSA spectrum rights holder has the exclusivity of using part of the spectrum when no in-
cumbents are using it. LSA offers the information necessaryfor LSA licensed users to use the
bandwidth when the spectrum rights holder is not using it. Italso allows to quickly moving the
spectrum whenever spectrum rights holders need to operate.An example of the spectrum sharing
and LSA is the TV white spaces concept.
Finally, it is important to note that spatial densification and spectral aggregation need to be sup-
ported by a densification of the network backhaul. Backhaul connects base stations to the core
network; therefore it should be able to handle all the additional traffic brought by network den-
sification. Otherwise, ultra-dense networks will have limited impact on the overall 5G networks
performance.

More spectrum and millimetric waves

Mobile cellular systems have almost always been deployed inthe 300MHz - 3GHz band. However,
the mobile wireless data demand, as well as the number of connected devices are and will continue
to grow. The cellular systems spectrum is becoming increasingly crowded. Network densification
with reduction of cells sizes is one way for allowing furtherspectrum reuse. However, this step is
not enough since capacity only grows linearly with the number of cells. At the same time, the super
and extremely high frequency bands (SHF and EHF) whose combined spectrum goes from 3 to
300 GHz, are underutilized. The signals in this band are referred to as millimeter-Waves (mmW)
since their wavelengths are between 1 and 100 mm. Millimeter-waves are characterized by a large
bandwidth that results in very high throughput and very small wavelength. Small wavelength
has the advantage of allowing the implementation of a large number of very small antennas in a
small device area. According to Piet al., millimeter-wave mobile broadband will offer 100GHz
new spectrum for mobile communication, a 200 times larger spectrum than what is used for the
same purpose in the bands below 3GHz [29]. Including mmW communication in the next cellular
networks is an important pillar of 5G. With the increase of used bandwidth, capacity will increase
and latency will decrease. This allows a better users’ experience in real-time services and data
hungry applications. The main challenges for mmW communications are mainly propagation
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related issues [30]. Free-space path loss grows with the square of the carrier frequency. Therefore,
going from 3 to 30GHz adds 20 dB of signal power loss. As statedby Andrewset al., if antennas
aperture are held constant, then free space-loss effect canbe compensated. Maintaining the same
antenna aperture can be assured by using antenna arrays [30]. In this case, the main challenge
would be to co-phase antennas of the arrays so that they can efficiently collect energy. mmW
signals are prone to be blocked by various objects in the environment. In a No Line-of-Sight
(NLoS) trajectory, the blocking loss is very high an is in theorder of 15−40dB added to the free-
space path loss of around 40dB [31]. Furthermore, mmW are subject of severe absorption due to
rain and air. In conclusion, propagation challenges of mmW communication can be handled by
using antenna arrays to collect and steer energy, and also requires narrow and highly directional
beams in order to avoid interference problems. New challenges are then imposed in the narrow-
beam communication which requires at first link establishment techniques and protocols, and of
course adapted transceivers.

Full duplex communications

Full Duplex (FD) communication allows a wireless device to simultaneously transmit and receive
data in the same frequency band. Wireless communication have always operated in a half-duplex
mode, based on the assumption that wireless nodes cannot transmit while receiving signals due
to the generated interference between transmitter and receiver circuits. This kind of signal per-
turbation is called self-interference. The key of using FD communication is to be able to cancel
the effect of self-interference on signals decoding. Recent studies tackled this problem of self-
interference cancellation in order to achieve a FD system [32]. FD communication may double
the spectral efficiency at the physical layer by not using distinct slots for uplink and downlink
anymore. It can also improve the efficiency of contention-based networks by eliminating the hid-
den node problem. In fact, hidden terminal problem occurs when a nodeB in the network cannot
detect the presence of a nodeA that is transmitting data to the same destination at the sametime,
leading to collision at destination base station. Figure 1.3(a) shows a simple representation of both
nodes in half duplex mode. Using full duplex communications, the base station can start sending
data back to nodeA while simultaneously receiving data from the same node. NodeB cannot hear
nodeA transmitting, but can hear the base station. Once nodeB detects that the base station is
transmitting, it delays its transmission towards the base station. In case the base station does not
need to send data back to nodeA it can repeat nodeA signal. This will serve for securing the base
station from any hidden terminal collision, and for sendinga sort of acknowledgment to nodeA.
Figure 1.3(b) shows a simple representation of both nodes infull duplex mode.

(a) Half Duplex scenario with two nodes (b) Full Duplex scenario with two nodes

Figure 1.3: Hidden terminal problem with HD and FD scenarios
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Cloud technologies for flexible 5G radio access networks

A major direction adopted by 5G is based on cloud concepts. Exploiting the C-RAN concept
(Centralized Radio Access Network), also referred to as cloud-RAN, deployed base stations use
shared resources and the centralized cloud. In fact, the C-RAN architecture consists in splitting
radio and processing functionalities of a base station. Base stations have always been designed
to incorporate both radio protocol stacks as well as base band signal processing. With C-RAN
functional split, base stations are reduced to Radio RemoteHeads (RRH) that only handle radio
modules. The processing functions are then offered to the RRH as a service through a pool of Base
Band Unit (BBU). After being separated from analog radio access units, network management
and base band processing units are moved to form a virtual cluster where all network functions
are pooled. This cluster can be seen as if network functionalities are moved to the cloud and are
offered as a service to the RRHs. The BBU pool serves several RRH in a particular area. A cellular
network architecture with cloud-based radio access network is shown in Figure 1.4.

Figure 1.4: System architecture with cloud-based radio access network

C-RAN allows the deployment of more radio remote heads and thus enhances 5G networks
scalability, capacity, and extends their coverage. Centralized network management lowers the cost
of baseband processing and reduces the power consumption bymanaging radio resources (load
distribution, cooperative processing) from several base stations. Furthermore, by enabling MIMO
and Coordinated Multi-Point (CoMP) mechanisms through theC-RAN architecture, energy con-
sumption can be minimized.

In addition to cloud-RAN architecture that offers network functionality as a service, cloud
based computing services has been proposed as an effective 5G technology. Indeed, with the pro-
liferation of a wide range of innovative and complex applications and services generating data
and computation tsunamis, users’ devices are facing a majorchallenge which is the inability to
efficiently perform extensive calculation and process highdata volumes. The splitting of hardware
and software to enable horizontal services is an existing solution to such problems through cloud
computing. As a matter of fact, cloud based solutions in the IT space have revolutionized the IT
industry in recent years [33]. Importing the cloud concept to wireless network opens the door
for deploying Mobile Cloud Computing (MCC) which consists of offering computing and storage
capabilities to mobile users’ devices over the cloud. Offering computing and storage resources on
demand to mobile users creates a new level of flexibility and elasticity in network services. Mo-
bile cloud computing plays an important role in user experience centric networks, where mobile
subscribers expect excellent quality of experience with a minimal cost in terms of services delay,
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data usage, and battery consumption. Advocating computation and storage functionalities to the
cloud will alleviate mobile devices from executing relatedresources consuming mechanisms such
as performing complex computations and searching large memory spaces for a particular file. In
consequence, reachability of the cloud through mobile platforms increases computation and stor-
age capabilities of performance limited devices in battery, processing capacity, and storage space.

In the remainder of this chapter, we focus on the cloud computing technology and its integra-
tion in current and future cellular networks.

1.3 Cloud Technologies and Network Architecture: A Joint Evolu-

tion

1.3.1 Cloud Computing

1.3.1.1 Definition and Characteristics

As defined by NIST (National Institute of Standards and Technology) [34], cloud computing is
a model that enables ubiquitous on-demand network access toa pool of configurable computing
resources. The accessible resources are speedily provisioned and provided with low manage-
ment efforts or service provider interaction. In other terms, cloud computing provides computing
resources as a utility and software and applications as a service. Cloud computing is achieved
through geographical coalition of powerful servers connected to the internet. This coalition is
referred to as a server farm that handles computation in a distributed way. Network users of-
fload computational tasks, applications and services demands to the centralized servers for a cost-
effective computation and a higher QoS. Co-located in a single site, large server clusters handle
computation through a distributed system, offering users afaster computation. Cloud computing
offers its users increase in computational and storage resources capabilities. The cloud comput-
ing paradigm is also referred to in literature ason-demand computing, utility computing, or pay
as you go computing. The resources offered by the cloud are available over the network and are
accessible through network mechanisms by any connected device. This characterizes the cloud
with broad network access. Access to cloud resources is granted for users without interaction with
their service providers. On-demand self-service is offered to cloud consumers upon request for
imminent use or provisioning. The cloud serves multiple users simultaneously through assigning
and re-assigning resources. Computing, storage, memory, and other possible resources are pooled
in server farms and are not dependent of consumer’s location. In other terms, cloud users have
no knowledge about the exact location of provided resourcessource. Resource pooling allows a
better management and allocation of resources to cover a wider set of consumers. Therefore, cloud
mechanisms for resource allocation, provisioning and release must be rapid enough to scale with
varying demands. Elasticity is an important characteristic of cloud computing platforms to always
give consumers the impression of having access to unlimitedcapabilities. Due to the centralized
handling of cloud resources, usage tracks can be kept in record and used for improving both users
utilization and providers control of cloud services. To resume, cloud computing characteristics
can be summed up to on-demand self-service, broad networks access, resource pooling, rapid
elasticity, and measured service.
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1.3.1.2 Service and Deployment Models

Defined cloud computing service models are: Software as a Service (SaaS), Infrastructure as a
Service (IaaS), and Platform as a Service (PaaS).

• Software as a Service is defined as the ability of users to access applications deployed on
the cloud by its providers. Consumers reach the applicationthrough an interface on their
device. However, they have no control on the infrastructureunderneath, including storage,
operating systems and servers. SaaS is a growing market where applications are delivered
in a one-to-many model. Deployed on the cloud, applicationsare managed centrally and not
by users’ end devices. Applications updates are not required to be handled by consumers
and are directly installed by providers on the cloud servers.

• Platform as a Service gives access to cloud deployed development platform. Consumers
have the ability to create and deploy their own applicationson the cloud using a provider
platform overlaying a development environment (programming languages, libraries, ser-
vices, and tools). As in the case of SaaS, consumers have no control whatsoever on the
underlying cloud infrastructure. As stated in [35], SaaS and PaaS can be seen as analogs
where the former is a software delivered over the web while the latter delivers the platform
for creating software on the web.

• Infrastructure as a Service offers resources control and provisioning possibility for con-
sumers. Consumers have access to the cloud resources such asprocessing, operating sys-
tems, and storage, where they are able to deploy software andapplications and launch com-
putational tasks. Even though consumers do not control the cloud infrastructure, they have
control on its computing resources, deployed applicationsand some networking compo-
nents. Using IaaS, consumers do not have to invest in expensive hardware, plus, scaling
hardware capabilities up and down is much easier and automatic. Requiring more resources
could be handled through using a larger part of cloud resources (which imposes higher
money costs most of the times) instead of investing in buyingand placing new hardware
that includes much more costs in terms of deployment and maintenance. On the other side,
downscaling resources is achieved by simply releasing provisioned cloud resources instead
of keeping on paying for the cost of deployed but unused hardware.

Cloud services, with their three defined models, can be obtained through various types of cloud
deployment. First, cloud utilities can be delivered through Public cloudsto which access is pub-
licly granted for all types and varieties of consumers. Thisdoes not impose delivering the same
service quality for all consumers. Providers can always propose various cloud plans with various
costs depending on the amount of accessible resources. Suchclouds can be managed by no other
than the providers, or by institutions (business, government, academic) that deploy such clouds on
the premises of the cloud providers. Contrary toPublic clouds, which grant open access to the
general public,Private cloudsgrant access to only a closed set of users.Private cloudsservices
are exclusively dedicated for a specific set of users defined by the owner/manager of the cloud.
This type of clouds is vastly used by business organizationsthat either own their private clouds or
use a private cloud provided by a cloud services provider.
A Community cloudas defined in [34] is exclusively used by a community of consumers from
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organizations that share the same concerns. Such cloud can be either owned by one of these orga-
nizations, a cloud provider, or a combination of both.
Any composition of two access modes of private, public, and community, leads to aHybrid cloud
access mode. In Hybrid clouds two or more clouds of two or moredeployment modes are bound
and can be inter-operatively used for specific portability-enabled applications.

1.3.1.3 Cloud Computing Enablers

Virtualization

Virtualization technique is the main enabler for cloud computing environment. As in the cloud all
consumers are sharing the same hardware, a virtualization of resources abstracts them as virtual
machines (VMs) along with associated storage and networking connectivity [36]. It is a separa-
tion of hardware and software that enables horizontal cloudbased solutions. Virtualization creates
virtual resources such as operating systems, servers, or storage devices. Resources are available
on demand, which introduces a new level of flexibility, scalability and automation in service de-
ployment. Virtualization is possible through a hypervisorlayer added above the hardware layer.
Several VMs run then on the hypervisor layer, and thus on top of the physical layer running reg-
ular operating system. VMs have no access to the hardware butthrough the hypervisor layer. By
virtualization, multiple VMs can run on a single physical machine. For cloud computing environ-
ments, virtualization is then a key enabler that allows several consumers to run various tasks on
the same hardware, the cloud hardware specifically. They arecurrently creating a major evolution
and transformation in the communication industry by offering efficient solutions that increase the
network scalability and flexibility.

High standard servers

Cloud computing is based on computing users tasks, applications, and services using a pool of
resources reachable through network access. A main motivation for using cloud services is the
lack of capability or the high cost of local computing resources to accomplish requests compu-
tations. Advocating computation to the cloud should guarantee, at least, enough computation
capacities to handle traffic and computation of a very high number of users. Cloud servers should
be high-volume IT hardware in order to support the commercial use of cloud computing. Server
components, if standardized, can be rapidly and efficientlychanged or updated in a cost-effective
manner.

1.3.2 Cloud Technologies in Cellular Networks

Early generations of cellular networks were all about offering voice communication between sub-
scribers. Even though 2G included some very low rate data services through GPRS (General
Packet Radio Services) (up to 115Kbits/sec), it is not before 3G that cellular networks could offer
advanced data services to deliver speeds in Megabits per second [37]. In less than two decades,
data services demand in cellular networks grew thousands nay millions of times larger. With the
new generation of mobile networks being IP-based, data traffic demand has been exponentially
increasing. Indeed, Figure 1.5 shows the total traffic from 2010 to 2014 comparing both data and
voice traffic. Voice traffic development is almost flat compared to the clear exponential increase in
data traffic. This is due to the increasing number of mobile data subscribers since mobile phones
have been an effective tool for accessing various internet-based services. Mobile networks are
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Figure 1.5: Total global monthly data and voice traffic [3].

no longer dedicated to voice calls and text messages; they are henceforth a capable platform for
accessing the Internet and for launching applications of unlimited scopes, going from web brows-
ing to video processing. Delivering high quality voice communication is no longer the sole goal
of mobile networks. The wide scope of applications, becoming available over cellular networks,
demands high computational capacities. First, considering the ever-increasing number of con-
nected mobile devices, more sophisticated mechanisms are needed to compute efficient resources
management on the network level. Furthermore, demand for available computing resources is
increased when users ask for services and applications requiring computation. As the services ex-
pected from mobile networks changed from communication to computing, an evolution of network
architecture and serving base stations is a must for involving required computational resources.

1.3.2.1 Classic Base Station Architecture

The traditional architecture of mobile base stations is onewhere both radio and baseband pro-
cessing functionalities are integrated within. All base station functionalities are deployed in the
same location as the base station itself. Radio (RF) module is placed at a proximity to the antenna
linked through coaxial cables. The baseband (BB) processing is located at the same site. Figure
1.6 shows the classic base station architecture.
With the proliferation of 3G networks, new network architecture was proposed which is based

on a split of base station main functionalities: radio and baseband processing. This architecture
consists in dividing base stations into two separate entities: Radio Remote Heads (RRH) and
BaseBand Unit (BBU). RRH is the unit that handles all analog and radio modules and function-
alities, along with conversion between analog and digital.BBU is where all the other network
functions modules are deployed. A non-exhaustive list of BBU services contains FFT/IFFT oper-
ations, modulation/de-modulation, sampling, MIMO management, channel coding and decoding,
interference management (e-ICIC), multi-point communication management (CoMP), transport
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Figure 1.6: Traditional base station model

and MAC layers, and radio resource control. After function splitting, RF modules are placed right
next to the antennas. As for the baseband unit, it is relocated to a distance that can go from hun-
dreds of meters to tens of kilometers. RRH and BBU are connected through either optical fiber
or microwave connections. A first advantage of such architecture is the ability to link a set of
multiple RRHs to one BBU. This will reduce the cost of deploying RRHs. Furthermore, BBUs are
placed in a more convenient location, enabling cost savingson site rental for deploying all-in-one
traditional base stations. The distributed Radio Access Network (RAN) with RRH is represented
in Figure 1.7.

1.3.2.2 Cloud Radio Access Network (C-RAN)

Radio Access Network (RAN) is a very important part of mobilenetworks. It is where all process-
ing and computation takes place in order to manage network resources and deliver high quality
high data rate services for mobile subscribers. In the traditional RAN architecture, each base sta-
tion handles transmission/reception signals for a certainnumber of users over a specific geograph-
ical area. With the increase of the number of users currentlywitnessed by wireless networks, this
RAN architecture faces severe interference problems and thus degradation of capacity per users.
Adapting a solution consisting of deploying more base stations requires more site rental, and thus,
imposes additional CAPEX and OPEX costs. Furthermore, the amount of computing necessary for
network management is increasing, and thus, more computational capacity is needed. In addition
to that, with the Internet proliferation, and IP traffic constant growth, a need for over-dimensioning
of processing and forwarding resources in the radio path hasemerged [38]. A cost-efficient so-
lution with high quality of delivered services is thus required. Following these requirements, a
Centralized Radio Access Network (C-RAN) architecture hasbeen proposed and given high im-
portance [39]. In C-RAN, baseband units are centralized into one entity referred to as BBU pool
(Figure 1.8). The centralized pool handles all the processing for different cell sites, and is virtu-
alized. This reduces the number of equipment needed at each base station site. The BBU pool
is connected to the mobile core network through backhaul. Fronthaul connects RRHs to BBU
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Figure 1.7: RAN distributed architecture

pool. When pooled, BBUs utilization is more efficient and cost-effective. Network flexibility is

Figure 1.8: C-RAN architecture

increased and power consumption reduced. BBU pool providesa concentration of high processing
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capabilities used for faster solutions and resources management computation and for decreasing
response time of application servers. Furthermore, BBU pools increase network scalability by al-
lowing a large number and variety of base station (macro-cells, pico-cells, femto-cells) to benefit
from C-RAN services. BBU pools can be seen as server farms made available for computing all
network required baseband functionalities through the virtualization of the RAN.

1.3.2.2.1 Advantages of C-RAN

Statistical Multiplexing C-RAN transports all baseband processing to a centralized pool of
BBUs. The computational capacities needed at each base station are replaced by a centralized
capacity at a BBU pool which is supposed to be smaller. Statistical multiplexing is defined as the
ratio of the total processing capacity required at the BBU pool to the sum of processing capacities
needed, in case of classic RAN, at all base stations covered by the same BBU pool. Statistical
gain has been studied and assessed in several works, and potential gain is estimated of around
25% of the computing resources [40] [41] [42]. An important factor contributing in achieving
computing resources gain is the adaptability of C-RAN to non-uniform traffic. Base stations were
always designed to have high performance at traffic peaks andbusy hours. However, daily traffic
of mobile users varies throughout the day. Resources are wasted in base stations in off-peak hours
and off-peak sectors (location). With BBU pool handling allbaseband processing for a large set
of base stations, compute resources utilization rate is improved and adapted to the variation of
network load.

Scalability Improving coverage and increasing network capacity can be simply achieved by
adding more RRHs and splitting existing cells. Since all RRHs are linked to a BBU pool, deploy-
ing more RRHs does not require finding a large location site toinstall a cumbersome base station.
RRHs are more easily deployed and accepted by local communities. By increasing the number
of operating RRHs, network scalability and flexibility are improved. Additionally, increasing the
overall network capacity can be centrally managed at a unique location where BBU pool servers
can be expanded, empowered and updated.

Costs savings OPEX costs are reduced with C-RAN architecture since all theequipment is
aggregated in a single location. Maintenance interventions and operations costs associated with
the large number of BBUs in RAN are saved. Furthermore, due tothe adaptability to non-uniform
network load, some BBUs in the pool may be switched off without affecting network coverage
and performance. This allows saving electricity and cooling costs.

Increase of network capacity BBU pool is associated to a centralized processing of many
virtualized base stations. Joint processing between base stations normally requires a non-negligible
amount of signaling for sharing traffic data and channel state information (CSI). In C-RAN, these
information can be easily shared which permits to implementmore efficient interference manage-
ment and mitigation techniques, such as enhanced inter-cell interference coordination (e-ICIC),
and in consequence improve spectral efficiency. All techniques requiring multi-cell cooperation
are easily implemented with the C-RAN architecture. A majorexample is coordinated multi-point
(CoMP) which also fights inter-cell interference by a set of cells coordinating for serving a single
set of user(s) and thus increase the perceived Signal to Interference plus Noise Ratio (SINR) at
the mobile side [43]. CoMP requires tight synchronization and coordination between participating
base stations which can be achieved more rapidly, efficiently, and with lower costs in C-RAN.
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1.3.2.3 Mobile Cloud Computing: Remote Clouds

New innovative applications are released at a daily basis covering wide areas of communication
purposes, going from entertainment and social networking to industrial and health-care applica-
tions. Applications that are being released require increasing amount of data processing and com-
putation. This covers a very wide sector of applications that could include, among others, video
decoding, image recognition, and online gaming. The mobiledevices business industry is endow-
ing devices such as smartphones and tablets with advanced features and services. However, mobile
handsets are limited in computational resources, storage capacity, and energy (limited battery life-
time). Therefore, mobile handsets processors, even if adapted to be equipped with computing
capabilities, can be easily overloaded: The launching of several applications simultaneously, or a
high computation load application, will eventually lead toa lower quality of experience for mobile
users. This could result in quick battery discharge, longerresponse time, or the shutdown of some
running applications. This is a problem that we have all experienced, at least once, as mobile users.
Offloading computation requests to remote servers has been recognized as an effective solution for
guaranteeing good Quality of Experience (QoE) while minimizing mobile handsets energy con-
sumption. On-demand resources, such as storage and computing, have already been implemented
through Cloud Computing. For network processing functionalities, on-demand resources are also
possible through C-RAN architecture. In wireless mobile networks, offloading computation tasks
of mobile users to remote resource providers instead of being computed by the mobile handset
itself is referred to as Mobile Cloud Computing (MCC). MCC has been widely discussed in liter-
ature. Many comprehensive surveys detail and explain its architectures, taxonomies, motivations
and challenges [44] [45] [46] [47].

The term of mobile cloud computing refers then to the abilityof running mobile applications
and computations by using resource providers other than themobile device itself. The network
architecture through which this is possible is shown in Figure 1.9. Mobile users are connected to
the mobile network through the association with a base station of any type (Marco, Pico, Femto).
The base station is connected to either a BBU, in the case of RAN with RRH, or to a BBU pool
in case of C-RAN (the case of Figure 1.9). BBU is connected to the core of the network through
which Internet is accessible. Through the Internet, cloud servers are accessible by mobile users
initially communicating with a cellular base station. Mobile users’ computational case can be sent
over the described architecture to reach cloud powerful servers in order to have access to greater
computing resources than available resources on mobiles devices. Examples of applications that
motivate the need of mobile cloud computing include: image processing, natural language trans-
lation, crowd computing, sensor data applications, multimedia search, and social networking [47]
. These examples represent a non-exhaustive list of possible applications that can benefit from
the MCC paradigm. MCC is adopted for offloading computational tasks, or retrieving requested
information with costs lower than local computation on mobile devices. As cloud computing,
mobile cloud computing should also adapt to traffic non-uniformity, and assure a high degree of
scalability, flexibility and availability.

1.3.2.3.1 Advantages of Mobile Cloud Computing

Extended battery lifetime Battery lifetime is one of the biggest concerns of mobile users.
As mobile phones are becoming multi-service, multi-application platforms generating an ever-
increasing amount of traffic, a higher autonomy of such devices is required. Unfortunately, with
the growth of mobile phones capabilities, battery industryis not advancing in the same pace for
improving battery lifetime [48]. Mobile cloud computing through computation offloading is one of
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Figure 1.9: Mobile cloud computing architecture [4]

the most effective current solutions for this problem. Furthermore, mobile devices do not consume
energy, and in consequence do not lose battery lifetime, forcomputing large tasks.

Empowering mobile devices A wide variety of applications are often too computation in-
tensive to run on a mobile device. Indeed, mobile devices areresource-limited in terms of energy,
computation, processing, and storage space. As discussed previously, MCC can help extending
devices battery lifetime. As for computation and processing capabilities, mobile devices executing
applications on resourceful and powerful distant cloud servers are given a great increase of com-
puting powers. Through MCC, mobile devices are able to perform, virtually, complex and large
computations and process a larger amount of data in shorter delays. Furthermore, being connected
to powerful cloud servers allows mobile devices to use available storage space remotely. This al-
lows saving a great deal of local memory space at the mobile device. With a connection to a cloud
that is always available, mobile users can access their stored files, photos, documents, and videos
stored at the cloud servers instantly.

Improving reliability By delegating applications and data processing to cloud servers, backup
and storing data are saved on the cloud servers. These data, along with any personal files stored
on the cloud, could be easily retrieved in case of a crash at the mobile device level. Further-
more, applications that are computed on the cloud are accorded necessary computational power
by high standard servers that are less exposed and more insusceptible to any system crash or dis-
functionality.

Scalability MCC provides mobile users with a powerful tool for performing computation.
Furthermore, mobile devices do not have to allocate computation resources and schedule tasks if
they are offloaded to the cloud. This gives mobile devices theability of dynamic on-demand provi-
sioning of resources on a self-service basis. Mobile devices can thus run their applications without
prior reservation of resources due to the scalability and high availability of cloud resources.
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1.3.2.3.2 Operational Issues

Offloading decisions Mobile cloud computing is based on a main operation of mobilede-
vices: offloading. To use cloud resources, mobile devices offload computational tasks to the cloud
through the mobile network. A major operational issue of MCCis to take the right offloading
decision. The main questions to ask are: What are the applications to offload? When is offloading
beneficial? What should be the offloading decision based on? Answering these questions is not as
easy at it seems. A basic approach would be to offload applications that cannot be performed using
the mobile device limited resources. But MCC is about more than being an alternative for local
computation. Many issues may prevent or push mobile devicesto offload computation. Various
research studies tackle this paradigm, trying to find the best approach to take the best offloading
decision. A very intuitive basic decision rule has been presented in [49] based on the concept of
saving energy at the mobile device side. Since the mobile device communicates with its serving
base station through wireless connection, the data transfer to the network may impose serious costs
depending on the channel conditions, the used transmissionpower, and the available bandwidth.
The work byKumar et al. simply compares the energy consumption of mobile devices inboth
cases of local computation and offloading in [49]. The energyconsumption gain or loss depends
on the requested computation size and the communication link quality. Figure 1.10 shows the
conclusion reached in Kumar’s work, indicating that offloading computation is beneficial (energy
wise) when the size of instructions to be computed is large, and the necessary amount of bits to
send is small. If the amount of bits to communicate is large comparing to the size of instructions to

Figure 1.10: Offloading decision based on mobile device energy consumption

compute, offloading will consume more power consumption than local computation. In other than
these two extreme cases, the gain of energy consumption depends on the available bandwidth and
the channel conditions. This conclusion takes into accountthat the computation of the requested
application is possible on both platforms, local and in the cloud. However, this is not always the
case. Mobile devices are resource-limited, and could be sometimes unable to ensure the required
resources amount of either computational capacity, memoryrequirement, or others. In addition,
some applications have tight latency constraints that cannot be met by offloading computation to
the cloud due to physical distance separating the service need and the computing resources. The
offloading decision paradigm is widely studied in literature. A detailed state of the art can be found
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in Chapter 3 where we also present our own contribution in computation offloading decision.

Privacy Sending user computation to be performed on remote servers may include sending
sensitive and/or private information. An example of this information is the user’s GPS location
which is necessary to provide location-based services, butremains private and personal informa-
tion. Being computed on remote servers, application data are henceforth stored at the computing
servers and not on users’ devices. This introduces privacy and security issues especially with the
exchange of sensitive data managed at the cloud. Any loophole in cloud security systems can
threaten the privacy of users’ data. Many recent attacks andhacking incidents have taken place in
cloud environments [49] [47]. These may occur due to either system failure or hacking operations.
Therefore, MCC should have strong and resilient privacy policy that guarantees at best users’ con-
fidentiality. To fight against such problems, we often noticean agreement between users and cloud
services providers on terms and policies including privacyand dissemination of data.

Handover in heterogeneous network accessIn MCC, mobile users access cloud services
through the wireless network. Two types of handover can create issues for service delivery from
the cloud. The first is when users toggle between different types of base stations that are linked
differently to the cloud. For example, users can be connected to a radio cellular base station at one
moment, and switch to a WiFi connection at another. In this case, the cellular base station is no
longer the connecting entity between the mobile device and the cloud. Mobile users expect to be
delivered computation results and services no matter how often they change connection from one
base station to another, or the base station type they are connected to. This variation affects service
delivery drops, hence, soft handover schemes are required [50]. The second type of handover than
can occur, is between homogeneous types of base stations. This is mainly due to users’ mobility
and the resulting switching off of base stations. Intelligent mobility management is an important
issue in MCC systems. Users should be provided seamless service through a mobility supporting
cloud services delivery system.

Network latency Service and applications delay is an important metric in evaluating sur-
rogate computation. Indeed, latency constraints can be very restrictive bottlenecks especially in
real-time applications. If on top of that real-time applications require the exchange of a large
amount of data, latency is a limiting factor. Looking at MCC architecture in Figure 1.9, we can
spot possible latency increasing factors. First, data should be transmitted from mobile devices to
the serving base station. The data transmission time between those two parties depends on many
factors such as the channel quality, the distance between users and base station, and the transmis-
sion protocol in use. Then, data is transferred from base stations through the Internet to remote
cloud servers. Unfortunately, the latency of WAN connection for reaching the remote clouds can-
not be controlled and might be high. Remote clouds are very far from the mobile devices in both
physical location and network transport. As a result, required resources (computing, storage) are
far from the need (mobile devices), and thus MCC latency due to transport and computation de-
lays may not meet with the tight delay constraint some applications may impose. Solutions that
have been proposed to tackle this problem mainly involve an MCC architecture evolution, and
resource management optimization. These solutions will bepresented in the following sections of
this chapter.

Availability and reliability Another issue resulting from connecting mobile devices the
cloud infrastructure through wireless networks is networkavailability. Wireless transmissions
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through wireless networks are less-reliable compared to wired network connections. Services
may be found interrupted for random reasons of system failure. Furthermore, the accessibility
of MCC services depends on the seamless and ubiquitous coverage of wireless network. Indoor,
crowded, cell edge, and out of coverage scenarios are examples of situations where MCC services
are either not available or hardly accessible. Furthermore, even though cloud computing is based
on powerful servers handling the computations, system outage is however possible. Server outage
may occur and result in service failure, and loss of data and connectivity. Not to forget data stor-
age issues that can occur after servers crashes that lead to major losses of users’ data or service
unavailability. Solutions for availability and reliability problems are mostly based on expanding
the cloud infrastructure and empowering it with more powerful servers, in order to enable it to
handle peak traffic. As for storage, backup copies of users data is an effective solution, even if
CAPEX and OPEX costly.

1.3.2.4 Mobile Cloud Computing: Cloudlets

After the introduction of mobile cloud computing in wireless networks, solutions to operational
and technical issues discussed above were investigated. In2009, Satyanarayananet al. proposed
a new concept of MCC using “Cloudlets” [51]. The concept was introduced by the authors as
“A new vision of mobile computing liberates mobile devices from severe resource constraints by
enabling resource-intensive applications to leverage cloud computing free of WAN delays, jitter,
congestion, and failures.” The work proposes a new architecture of the wireless network where
cloudlets are introduced as a new entity in the network. Cloudlets are defined as resource-rich
powerful computers, or cluster of computers, that are deployed as “data centers in a box”. They
are connected to the Internet and can be used by near mobile devices. The main motivation for
cloudlets is overcoming un-controllable WAN delays of mobile cloud computing in remote clouds.
Cloudlets are installed at a proximity to mobile users and are accessible through a single hop
connection. The cloudlets proximity to users, both physically and in network layers, is an effective
solution for overcoming harmful WAN large delays. However,cloudlets are proposed as accessible
through local area network connection (LAN) and not throughwireless cellular network. Cloudlets
are not part of the mobile cellular network, and are not controlled by wireless network providers.
Cloudlets are to be managed by end users and can serve up to a few users simultaneously. Figure
1.11 shows where cloudlets are placed in the network. Cloudlets proximity not only allows mobile
users to have ubiquitous good service quality, but also to save energy due to the short transmission
distance. The introduction of cloudlets brings the cloud closer to mobile devices, i.e. brings
resources closer to the need. An additional feature of cloudlets is the fact that in case of system
crash or loss of data at the cloudlets level, mobile users arenot much affected. Cloudlets connect
to remote centralized clouds in order to store data. What is kept at the cloudlets level is a copy
of the data. Therefore, cloudlets do not increase the risk ofdata loss compared to remote clouds.
However, the fact that cloudlets are new service providers independent elements to introduce into
the wireless network infrastructure has two major drawbacks. Firstly, cloudlets may serve only
a few users at a time. Therefore, a cloudlet may not be available even if accessible. In case
of unavailability or inaccessibility of a nearby cloudlet,mobile users are then forced either to
connect to remote clouds or to compute all tasks locally on their devices. Furthermore, as a newly
introduced entity to the network, no wide deployment of cloudlets is available. The case of non-
existence of nearby cloudlets risks of being frequent. Secondly, being independent of mobile
network, cloudlets do not have access to operator related knowledge. In this case, location aware
services, users positioning and mobility management are harder to handle.
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Figure 1.11: Network architecture with cloudlets

1.3.2.5 Mobile Edge Computing

Cloudlets bring the cloud close to mobile users. However, itis, as previously discussed, indepen-
dent of the mobile operator network. As communication and ITworlds are converging, and with
the emergence of over-the-web applications that run on mobile devices and use operator network
knowledge (such as location based services), it is more convenient to allow cloud computing el-
ements to be implicitly integrated in the mobile network. Looking at mobile networks, we can
notice that capabilities within the RAN extend to a close proximity to mobile subscribers. The
RAN edge is characterized by an ultra-low latency, high bandwidth, and direct access to real-
time network information. Therefore, deploying cloud services at the RAN edge allows content
services and applications to be accelerated.

Moving cloud capabilities to the RAN edge is known as Mobile Edge Cloud (MEC). By mov-
ing the cloud to the edge of the network, mobile core utilization is alleviated and latency is reduced
for mobile end users. MEC aims at reducing network load by moving computational efforts from
the internet to the mobile edge. As discussed in previous Section 1.3.2.1, traditional base stations,
which are the devices deployed at the edge of the mobile network, only forward traffic. But they do
not actively analyze, nor respond to user requests. Thus, they do not provide computing resources
for hosting edge services beyond network connectivity.

Mobile devices-base station links have always been considered as “dumb” links dedicated to
only transporting communication data. With the on-going convergence of IT and communication
worlds and the advent of software defined infrastructure, network operators can make the mobile
devices-base stations link intelligent by overlaying distributed cloud computing solutions onto the
RAN. MEC introduces new network elements at the edge, providing computing and storage ca-
pabilities at the base stations. MEC can be seen as a cloud server running at the edge of a mobile
network and performing specific tasks that could not be achieved with traditional network infras-
tructure (M2M gateway, control functions) [33]. Mobile edge computing proposes co-locating
computing and storage resources at base stations of cellular networks. This requires deploying
general purpose processors and storage onto base stations.In cellular networks, outdoor mobile
edge is represented by eNodeB or base station (e.g. macrocell) located in close proximity of mo-
bile subscribers. MEC users are typically connected to basestations that loop the traffic through
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the MEC server for further processing of the data. Indoor, MEC compact servers are added to serv-
ing small cells (basically femto-cells). Indoor scenariosinclude networks in enterprises, shopping
malls, and other commercial buildings. A compact server is added to a small cell that manages
traffic to multiple small cells.

In MEC, communication between cloud edge servers and mobileusers is done over high-
capacity radio link that operate over 3G/4G/or the future 5Gnetwork radio access networks. Op-
erating cloud services jointly with the cellular mobile network ensure wide coverage through the
wide deployment of operator networks. This further ensuresthat the vast majority of the customers
of a mobile operator can be served.

1.3.2.5.1 MEC Enablers and Characteristics

As for remote mobile cloud computing, virtualization techniques and high standard servers are
major key enablers for mobile edge computing. Virtualization, which enables several virtual ma-
chines of various users to be deployed on the same hardware, creates readily-available computing
capacity for service-oriented software. Resources are therefore available on-demand. However,
the unique architecture of MEC requires an additional key enabler: availability and integration
of MEC adapted applications. Open environments need to be created to allow the efficient and
seamless integration of edge enabled application across multi-vendor MEC platforms. Innovative
MEC enabled applications need to be introduced to market in order to push the prosperity of the
edge computing concept. When MEC applications emerge with new ideas and are accessible for
mobile users and adaptable to all devices platforms, a new ecosystem of MEC applications and
services will take its place in the market.

Mobile edge computing architecture is characterized first of all by its proximity to mobile
users. Services are hence managed and operated for satisfying mobile users requests directly at
the network edge. Data traffic do not have to be forwarded through the internet to remote clouds.
In other cases, where computation is offloaded by users to remote clouds, MEC has the ability of
forwarding necessary data to the required destination. Furthermore, the availability of resources at
the edge of the radio access network eliminates the need of routing data through the core network
or through the internet. Edge computing servers are deployed at the very edge of the network,
the closest to mobile devices with direct access between both parties. This proximity results in a
lower end-to-end delay experienced by mobile users, which is also supported by high bandwidth
connection between mobile users and MEC servers. MEC servers can run independently from the
rest of the network. Data do not need to travel higher levels in the network if all resources are
available at the edge of the network. This aspect of MEC is important for privacy and security
issues of users data. Being a part of the mobile network, MEC has access to operator network
knowledge as real-time radio network information and location awareness. This will allow the
implementation of a wider set of business oriented servicesand applications that are dependent of
location or context information

In outdoor scenarios, MEC servers are deployed in base stations. MEC helps improving mo-
bile users’ QoE by reducing latency and improving QoS by providing customized service related
to consumers’ context. MEC improves infrastructure efficiency with more intelligent and opti-
mized network management and resource allocation. In addition, MEC enables vertical services
e.g. M2M, big data management, smart cities. As servers are deployed at base stations where all
traffic is routed, it is easier to understand traffic characteristics through probabilistic analysis and
thus deal with radio cognition with the help of devices context information. As for indoor, users
can enjoy dedicated intelligence that comply with their specific context and needs due to smaller
cells and thus better provisioned and dedicated resources.Furthermore, in indoor scenarios, appli-
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cations applied to particular locations (M2M, retail, crowds, big data) will thus be widely available
through MEC. To resume, MEC provides a highly distributed computing environment that can be
used to deploy applications and services, as well as to storeand process content in close proximity
to mobile users. It creates an ecosystem where new services are developed in and around the base
station. The MEC server provides computing resources, storage capacity, connectivity, and access
to user traffic and radio and network information [33].

1.3.2.5.2 MEC Applications and Services Ecosystem

The most obvious advantages of edge computing inside cellular networks is given by both reduc-
tion of end-to-end delay and context information accessibility. A solution without edge computing
would involve a transmission through the core network as well as through Internet links towards
the application host and back. In [5] a categorization of several application types which are possi-
ble candidates for the deployment at the mobile edge is presented. The promising applications are
resumed in Figure 1.12.

Figure 1.12: Mobile edge applications and use cases [5]

Offloading Computation tasks that are launched at mobile users can be offloaded for remote
computation. Offloading decision can depend on several parameters and is due to various reasons.
Examples of the most common reasons are the insufficient resources at the mobile devices for
intensive computations, the inability of local devices to perform computations with acceptable
delay, and the high energy consumption of mobile devices performing computations. Examples of
computing intensive applications are transcoding of multimedia traffic, and face recognition. The
use of MEC makes offloading feasible in more cases, as today’sradio bandwidth is much higher
compared to usable Internet bandwidth. Moreover, tasks that would typically be performed on the
mobile device due to the size of their input can be performed on the edge [33].

Edge content delivery Located at the network edge and equipped with storage space,MEC
servers are able to cache local content information at delivery nodes and serve users directly by
retrieving data locally. Caching techniques in general canbe classified as reactive and proac-
tive. Caching is transparent if neither the mobile users northe service provider are aware of the
caching MEC server. Proactive caching consists in non-transparently caching content before being
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requested. Example of data that could be cached is all location based services data and context
related information. MEC servers can either keep their own cache private and not share it with
other MEC servers, or share cached information with neighbor MECs. These modes are known as
isolated and shared cache, respectively. MEC enables edge content delivery which aims at storing
data in a close proximity to the need (requesting users’ devices). Edge content delivery leads to a
reduction of experienced latency, computational capacity, and energy consumption comparing to
centralized database systems.

Data aggregation Several applications that generate huge amount of data and that are region
or context related (e.g. Car2Car, GPS route information) generate a lot of similar and region-
related event notifications which can be aggregated. Aggregation can also take place in the context
of monitoring applications where many devices measure similar data that can be jointly processed
at the edge of the network thanks to MEC servers.

1.3.2.5.3 Technical Challenges and Requirements

In order for MEC to be completely and efficiently integrated in the wireless network infrastructure,
and contribute in the advancement of such networks, some challenges need to be overcame. The
following is a non-exhaustive list of possible technical challenges that can block or delay MEC
effective operation in wireless networks.

• MEC servers should be able to integrate the existing networkinfrastructure without affect-
ing mobile devices and base stations functionalities. MEC servers should comply with all
network standards and specifications and their implementation should be transparent to the
network architecture and existing interfaces.

• Applications should have the possibility to run on different MEC platforms provided by
different vendors. This portability allows a fast transferof application between MEC servers
in case of shared processing, caching and computing. Portability also provides MEC servers
with an ability to optimize resources and virtual appliances without location constraints.

• MEC should inherit as well all privacy and security issues ofmobile cloud computing.

• MEC servers should be able to deliver high performance services to mobile users. Edge
computing is transparent to mobile users who expect high Quality of Experience. A main
challenge for MEC is delivering higher performance while minimizing mobile users’ ener-
getic and delay costs and the impact of virtualization.

• MEC servers are co-located with network edge equipment. Anyfailure or crash in MEC
servers should not affect the network functionality nor theconnectivity of users to the mobile
network.

• Legal considerations are to be taken into account in MEC platforms especially in regard of
privacy-restricted information diffusion.

In conclusion, MEC allows base stations to increase their functionalities and deliver services
adapted to mobile users’ requests and contexts. Users are served directly by the edge of the
network, which is characterized by high resources proximity and availability. Proximity, context,
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agility and speed can be translated into unique value and revenue generation, and can be exploited
by operators and application service providers to create a new value chain that will enter in the
ecosystem of new MEC-enabled services and applications [33].

1.3.3 Fog Computing

The Internet of Things (IoT) is an emerging wave of connecting things to the network, creating
and consuming huge amounts of data. Connected things are usually part of large systems that
collect and analyze data for decision making. Computation and storage resources must be avail-
able and sufficient for serving the IoT systems. Finding a location for deploying computing and
storage resources is not trivial. We have shown in Section 1.3.2 how resources locations have been
changing in cellular networks. What is then the best location, or network architecture to server
IoT requirements? Deploying resources in IoT endpoints is not practical since they are designed
to be very simple and energy efficient. Consequently, outsourcing resources for IoT computations
is a must. Unfortunately, due to IoT applications characteristics, cloud computing (we refer here
to remote clouds) is not an efficient solution. Resources requested by IoT applications may be
generated by tens of millions of devices over a very wide geographical area. Some applications
may be characterized by very low latency, high throughput during short time periods, and prompt
decision making based on real-time analytics. IoT end devices themselves are often characterized
by a low communication power consumption and short range communications, settings that are
required due to energy scarcity. Yannuzziet al. [52] give three main reasons for which cloud
computing is not adapted for all of the IoT scenarios and applications.

• Iot platforms may require on-demand high throughput and must support mobility, and even
rapid mobility patterns. The particular mobility and fast mobility aspects are weakly sup-
ported by remote cloud computing. In the case of MCC, devicesin mobility connection
with cloud servers are subject to frequent variations of network conditions including ser-
vice degradation. Moreover, reaching the cloud servers canbe very time costly through the
WAN. In the case of MEC, connection through macro-cells, which are base stations of wide
coverage with a very large number of served devices, is not stable and do not always guaran-
tee high data rates. In the case of smaller coverage base stations (pico-cells and femto-cells),
higher data rates are available, but the mobility aspect is not supported due to small coverage
area. Mobility in IoT can be associated with various examples such as sensors in moving
vehicles e.g. cars and trains.

• An IoT platform must be able to deal with systems that requiresensing, analysis, control
and actuation. Scenarios may vary and objects might be subject to unreliable connectivity
to the cloud. Examples of such scenarios are when objects areplaced in locations where
communication with the cloud is not possible or too weak, as in pipes, gas sectors, aircrafts,
etc. In these cases, IoT systems need computing resources, data processing, and storage
space for being able to compute a decision, under latency limitations.

• A platform for IoT must be able to manage large amounts of objects that are widely dis-
tributed on large geographical areas. This produces data that require different levels of
real-time analytics and data aggregation.

For compensating cloud services non-adaptability in IoT scenarios, Cisco has proposed a new
vision calledfog computingto enable the millions of IoT devices operating at network edge [53].
The fog is a new architecture that extends the cloud to be closer to the user. As in the MEC
case, the cloud is brought to the edge of the network. However, fog computing is adapted to IoT
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systems where any device with computing, storage, and network connectivity can be a fog node,
notably routers, switches, cameras, and base stations, to name a few. Treating IoT data close to
where it is collected minimizes latency and does not send outsensitive data [54]. Developers can
bring their own applications at the edge of the network, where the newly introduced architecture
allows them to run at a proximity to where data is collected. In addition to low latency, fog
provides location awareness services and improves QoS. It is well positioned for real time big
data analysis and support dense data collection points [55]. As resumed in [56], fog computing
is characterized by low latency and location awareness, wide-spread geographical distribution,
mobility, very large number of nodes, predominant role of wireless access, real-time applications
presence and support, and nodes heterogeneity. It consistsof (i) fog nodes that are the closest
to the IoT devices and equipped with computing and storage resources used for time-sensitive
applications; (ii) fog aggregation nodes that are connected to many fog nodes and where data is
sent for analysis and action; (iii) the cloud, which is always connected to the system for any big
data analysis and applications with large computational demand and large delays. Data sensitivity
in aggregation nodes may be in seconds or minutes. Cloud is also used as long term storage entities
for data and historical analysis [54].

The benefits of fog computing have been defined by Cisco [54] [57]. First, fog computing
provides IoT systems with data privacy whenever data is collected and analyzed within the far edge
of the network without being sent to remote data centers. Being co-deployed with network nodes,
security of fog nodes uses the same policy of network nodes security controls and procedures.
Moving data analysis in IoT to the edge of the network will enable new applications that can
be easily and rapidly integrated in the new architecture, and thus fog computing creates greater
business agility and innovation. Finally, fog computing helps conserve network bandwidth by
lowering the size of data to travel over the network to the cloud, and substitutes remote processing
by local data management.

Fog computing satisfies the requirements of many IoT scenarios including smart grid, smart
traffic lights, connected vehicles, wireless sensor and actuator networks, decentralized smart build-
ing control, and IoT and cyber-physical systems [56] [55].

1.4 Uplink Traffic in Future Mobile Networks: Pulling the Ala rm

1.4.1 Motivation

Cellular networks have always been designed, dimensioned,and deployed based on the downlink
(DL) mobile users’ demand and traffic patterns. The reason for leveraging downlink traffic was
the asymmetry — then true — between uplink (UL) and DL traffic.In other terms, the capacity
required in the downlink was much higher than the one required in the uplink. Therefore, design-
ing networks with higher data rates to offer in downlink thanin uplink was trivial. More precisely,
within early 2G based cellular networks, the traffic load forboth UL and DL have been roughly
the same. This has also been the case for the very early 3G systems. It is not until the 3.5G
and 4G systems that downlink traffic load greatly surpassed uplink requirements [58]. In these
systems, with the eruption of IP based networks and high speed access to the Internet through
cellular networks, traffic is dominated by downlink. The data explosion in downlink and uplink
was asymmetrical. While downlink traffic grew exponentially, uplink traffic was also subject to an
increase, however, the traffic demands in both directions were not equal. Mobile users downloaded
more than they uploaded. The estimated ratio of uploaded to downloaded data is about 1:7 [59].
Thus, current mobile networks are dimensioned based on the amount of data mobile users are
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downloading according to downlink traffic models. As the fastest growing segment of the com-
munication industry, wireless communication, and especially cellular systems, have experienced,
and are still experiencing, exponential growth over the last decade. Many new applications, ser-
vices, and technologies have and will integrate the wireless network. The way mobile users see,
use, and exploit mobile networks have changed. Mobile networks are nowadays the provider of
unlimited number of heterogeneous services that differ in data requirements. As some are mainly
downlink based, others have equal requirements of uplink and downlink traffic, or depend on large
amount of data upload, like cloud storage for example. Today, the asymmetry between UL and DL
is reduced, and sometimes inverted. These changes evoke a set of questions: What is the impact of
network evolution on uplink traffic? Have networks started experiencing uplink traffic explosion?
Should networks continue to be designed, planned and dimensioned according to downlink traffic
only? What has been done to increase uplink network capacities? These questions are of great
importance, especially under the fact that very low attention has been given to UL traffic models
comparing to DL. Indeed, uplink traffic lacks of tractable models since it depends on users actions
and unplanned interventions that are often less easily accessible and predictable. In contrast to
downlink traffic that has been given significant attention, attempts to model the uplink have been
limited [60]. With an increasing number of connected devices and mobile subscribers, the inte-
gration of cloud enabled technologies in wireless networks, the convergence of IoT systems, the
development of M2M and MTC platforms, and many other factors, it is important to understand if
and how new communication networks will cope with challenging uplink traffic loads. The idea
is not about uplink rising over downlink traffic. We do not assume or consider that uplink traffic
overtakes the downlink — although this might be the case in specific scenarios. We only present
the uplink as a new important player that should be considered when setting network design and
dimensions. Even though there are no precise forecasts on uplink, the traffic pattern change is
inevitable. A study by NSN in 2013 showed that the overall UL to DL usage ratio reaches approx-
imatively 1:2.4 [61]. In addition, the Ericsson mobility report of 2012 shows that UL to DL ratio
reaches 1:1 for bi-directional applications such as P2P TV,email, and P2P sharing [62]. With the
availability of high data rate services, new applications are enabled, and mobile devices energy
consumption increases. Cloud technologies, sensor networks, device to device communications
and social networking are all growing trends that increase uplink traffic and do not rely solely
on downlink traffic. All of these trends introduce applications where mobile users create content
and launch actions on the network, which changes the classicDL-based traffic pattern adopted in
wireless networks. The research community, aware of the upcoming uplink traffic volume change,
is already proposing some solutions in the network for improving uplink capacity.

In the remainder of this section, we present the major factors that contribute to the uplink
traffic explosion in the current/future mobile networks. Then we discuss some of the efforts that
have already started by the wireless community to improve current networks uplink capacity in
order to cope with mobile users’ increasing uplink demand.

1.4.2 Why Uplink Traffic is Growing

1.4.2.1 Increase in Number of Mobile Subscribers and Devices

The number of mobile subscriptions and mobile devices has been constantly growing since the
first deployments of cellular mobile networks. From 6.4 billion mobile subscriptions in 2012 to
7.2 billion in early 2015, the ever-increasing index is to reach 9.2 billion by 2020 according to
latest mobility reports [6]. Mobile broadband that was accounted for 2.9 billion out of the 7.1
billion subscriptions will grow its share to occupy 7.7 billion out of the 9.2 billion subscriptions
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in 2020, which is around 85% of all subscriptions. As the number of fixed broadband and the
number of related devices such as mobile PCs and mobile routers will have very low growth,
and the number of total mobile subscribers and subscriptions will increase linearly, the number of
mobile subscriptions will increase exponentially. Smartphones, which already are the main mobile
equipment (2.6 out of 2.9 billion), are expected to double innumber by 2020. Mobile broadband
will be accessible to everyone and mobile devices will continue to outnumber the earth population.
By 2020, mobile phones will be in possession of 90% of humans over 6 years old. The growth of
mobile devices and users showed in numbers gives an idea of how data traffic (in both uplink and
downlink) could increase.

1.4.2.2 Evolution of Cellular Networks

Since wireless Internet, wireless generations adopting new technologies for increasing system ca-
pacity have been designed and deployed. The increasing users’ traffic demand required a network
evolution to cope with constant changes. However, for all consecutive technologies and wire-
less generations, downlink data rate far exceeded uplink. Due to possible technical challenge and
asymmetry in traffic demand, mobile networks were always dimensioned to assure higher DL ca-
pacity. Table 1.1 shows the difference in up and downstream data rates among technologies. Note
that the table shows advertised peak data rates, which are usually higher than nominal achieved
rates.

Table 1.1: Cloud architecture evolutions comparison

Technology Generation Downstream(Mbits/sec) Upstream (Mbits/sec)

EDGE 2.5G 1.6 0.5

EVDO (Rev A) 3G 2.45-3.1 0.15 - 1.8

HSPA 3G 0.384-14.4 0.384-5.76

HSPA+ 3.5G 21-678 5.8-168

LTE 4G 100-300 50-75

LTE-A 4G 1000 500

Evolution of wireless networks and users’ traffic demand arein perpetual evolution and growth,
one implying the other. Indeed, wireless network evolves to“give more” for mobile users and cope
with their increasing traffic. At the same time, when offeredmore capacity, mobile users would
like to “do more” with their mobile equipment through the wireless network. Numbers show that
the proliferation of new wireless generations offering higher service quality attracts mobile users.
Since the introduction of HSPA and then LTE, the number of mobile users continues to grow
strongly. In the third quarter of 2012 HSPA and LTE subscriptions increased by 13 and 65 million
respectively. As for GSM/EDGE it attracted then 20 million new subscriptions. With LTE prolif-
eration in the market, the numbers in the first quarter of 2015are as follows: 105 million additions
for LTE, 60 million for HSPA, and a decline of 30 million for GSM/EDGE. These numbers and
Figure 1.13 show how the market follows the offer of new technologies and increasing service
quality. LTE will have, alone, 3.7 billion subscriptions by2020. In conclusion, the number of
mobile users and the evolution of cellular networks are joint in an escalating increase relationship;
where the increase of the first requires improvement in cellular networks, which re-attracts more
mobile users to subscribe.



1.4. UPLINK TRAFFIC IN FUTURE M OBILE NETWORKS : PULLING THE ALARM 39

Figure 1.13: Mobile subscriptions by technology [6]

1.4.2.3 Emergence of Cloud Technologies and Dense Heterogeneous Networks

Cloud technologies are progressively but rapidly integrating wireless networks. Cloud radio ac-
cess network, remote cloud computing, cloudlets, and mobile edge cloud, are all new technologies
and architectures in which the cloud concept integrated wireless networks (see Section 1.3). Cloud
technologies in mobile networks consist on delegating computing, storage, data processing, and
other resources consuming functionalities to a computing entity instead of performing the tasks on
the mobile devices. Cloud in wireless networks can take different forms. It can be a centralized re-
mote server pool, a nearby cloudlet, or an edge computing platform. Aside from cloud computing,
cloud can be used as a remote storage location. As mobile equipments in general suffer from lack
of resources of computing and storage, mobile users are moreand more relying on outsourcing
required storage and computation capacities. With cloud storage, mobile users can take photos or
record videos with their mobile devices and directly uploadthem for saving on the cloud instead
of their devices. In such applications, uplink is as important as downlink and thus should be taken
into account in network dimensioning.

Another emerging deployment technology in wireless networks is Heterogeneous networks
(HetNets). All mobile users are not served by the same type ofbase stations. Along with clas-
sic large coverage macro-cells, cellular networks are being intensively deployed with pico-cells,
relays, and femtocells. One of the main motivations and interests of heterogeneous networks is of-
floading heavily loaded macro-cells. Users in reach of a femtocell, for example, will communicate
with the latter instead of a congested macro-cell. As femtocells are deployed at closer distances
from mobile users, communication channels between femtocells and mobile users are very often
characterized by a better signal to noise ratio. Due to the lack of tractable models, the impact of
such offloading on the uplink performance is not well understood [60].

Uplink traffic modeling has not gained the same attention as downlink. Both directions differ
fundamentally in access modes, heterogeneity of transmitters, and resources management. The
invasion of wireless networks by cloud enabled heterogeneous network certainly has an effect on
traffic patterns especially in uplink, since new offloading opportunities are available to consumers.
With the adoption of offloading computation and the concept of virtual machines (VM) and enable
applications such as videoconferencing in enterprises andimproved network mobility support,
upload speeds become critical against users’ experience quality and content efficient delivery to
the cloud. With the development of cloud technologies, upload speed and capacity will continue
to have an important impact.
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1.4.2.4 New Applications and Services Ecosystem

Cloud based wireless networks are the next breakout of the wireless communication. Cloud is in-
tegrating many functionalities of the wireless networks and increasing their capabilities. Whether
a remote cloud or an edge cloud, the cloud unlocks a whole new ecosystem of services and appli-
cations. Application developers have now the door open to new types of applications that can be
run on the cloud and that were not adapted before to the mobileconcept due to heavy resources
requirements. Furthermore, cloud and services providers work on increasing their infrastructure
ability and performance through improving availability and reliability: An evolving ecosystem
that will push forward the cloud based offer and demand, and thus create higher cloud related
traffic requirements. Among the applications that are now compatible with the mobile network,
we distinguish different types of traffic requirements. Some applications require very high down-
link and/or uplink traffic with varying latency constraints. Applications that comply with downlink
based networks include streaming basic video and music and web browsing, where upload require-
ments are relatively low. Streaming relies basically on high downlink traffic, as for web browsing
it has in general lower traffic requirements. However, numerous applications do not comply with
that model. Many applications require roughly the same amount of upload and download such as
web conferencing (cloud-based), video conferencing, tele-medicine, virtual office and connected
vehicles safety applications [63]. Others, on the contrary, require more traffic upload than down-
load such as web electronic health records, virus scanning,face recognition, cloud storage, and
aggregated data analysis. Hence, the heterogeneity in new services and applications has non-
negligible impact on traffic patterns and on the importance of uplink. The diversity of services
offered through the Internet requires a management of network capacities in order to avoid both
functional and economical harm to wireless communication infrastructure and businesses and their
customers.

1.4.2.5 Crowded Networks Scenarios

Mobile networks are designed based on peak network traffic and the ability to serve in peak hours.
This has led into excessive energy consumption. Several solutions were proposed for this problem
such as base station sleeping. Furthermore heterogeneous networks deployment helps by offload-
ing traffic from congested macro-cells onto smaller base stations. Now that solutions exist, the
network should be dimensioned to keep its efficiency in peak data traffic scenarios. Peak traffic
does not only concern downlink, uplink traffic is also subject to peak demands. Crowded scenarios
are the best example for such situations. We take the exampleof a football stadium were thousands
of people are gathered to watch a game. In such situations, mobile users share their experience
through social networks, texting or talking. They post photos and videos during matches. A study
by Ericsson [6] about the FIFA 2014 football games showed that social networking and texting
were used during the matches and traffic peaked at half time. Ensuring a good user experience
in such scenarios is a challenge to operators. Network planning and optimization are necessary.
What is important to notice in crowded scenarios is the footprint of uplink traffic. According to
the same study, the ratio of uplink in total data traffic was ashigh as 50% during the final game
of the world cup. The normal ratio in the same location is between 12 and 17 %. The increase
in uplink traffic is clearly non negligible and should be taken into account during network plan-
ning and dimensioning. The study showed that 61% posted or sent pictures via the Internet, and
only 25% used the Internet to find and download content related to the world cup. The numbers
also showed that more users posted videos (33%) than watchedvideos (18%) through the Internet.
Video uploading data usage is quite high especially that smartphones and tablets camera technol-
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ogy is quite advanced and 4K video enabled. Furthermore, in many sports events, uplink traffic
surpasses downlink in some time windows. With the accessibility of high data rate services such
as 3G and 4G, mobile users will be more active uploading data and using social networking. 4G
users, which have higher data rates, are more active than 3G users. This proves what was stated
in Section 1.4.2.2 that users with higher services will wantto do more. Even though 30% of data
traffic was handled by 4G networks, 4G users consumed 70% moredata than 3G users.

1.4.2.6 Sensor and MTC Networks

The evolution of sensor networks and Machine Type Communications (MTC) has been more
than evident in the last decade. Mobile devices, sensors, and all types of objects already or soon
will be equipped with sensors and RF circuits in order to integrate the wireless communication
network. The Internet of Things is a well-known applicationof such networks that is creating a
new trend and imposing a breakthrough in network management. In most wireless sensor networks
scenarios, data is aggregated from end equipment (sensors)into a gateway that communicates with
the network infrastructure. As for machine to machine (M2M)communications that allow devices
of the same type to intercommunicate is also requiring an increasing role in the wireless network.
Any device to device (D2D) communications can be established through different scenarios, where
control link can be managed by end devices or the network, as discussed in Section 1.2.2.2. In
D2D communications, especially scenarios where control isdone by the network, uplink traffic
is at least equal to downlink. Figure 1.14 shows a simplified level architecture of how the M2M
system will be connected to wireless networks. The capillary network, which represents the set
of communicating machines, aggregates data in a M2M gatewaythat is connected to the network
and may use cellular communication. The convergence of sensor networks and cellular has been

Figure 1.14: High level simplified M2M architecture

studied in literature. The European FP7 SENSEI project [64]focuses on the integration of WSN
(Wireless Sensor Networks) and actuator networks. With theexpected increasing deployment of
IoT devices and services, the traffic generated by these devices may change current traffic patterns.
In fact, regarding the number of connected IoT devices, an estimated 50 billion “things” will be
connected to the Internet by 2020 according to Cisco [54]. Asfor traffic patterns, current traffic
models do not take into account traffic generated by smart devices. And since mobile networks are
designed according to those patterns, they may not be adapted to such applications that are mostly
uplink traffic generating. It is then necessary to understand how smart devices will affect network
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traffic and include it in network optimization and dimensioning.

1.4.3 Uplink Improvement Related Work

1.4.3.1 Range Extension in Heterogeneous Networks

Coverage Range Extension (CRE) in heterogeneous networks is a technique that can help increas-
ing the uplink/downlink fairness. In an area covered by bothmacro-cell and a small-cell, the MUE/
Base Station (BS) association is based on the downlink received signal power only. And since
small cells are characterized by a smaller transmit power than macro-cells, and are randomly de-
ployed, they are expected to have large areas with low signalto interference (SIR) conditions [65].
In the uplink, the strength of the signal does not depend on the BS transmit power. It depends on
the mobile device transmit power and the received signal power at base stations depends on the
channel gain. This results in boundaries mismatch between uplink and downlink handover in het-
erogeneous networks. And since small cell coverage ranges are smaller than those of macro-cells,
we notice unfair distributions of data rates between macro and small cells due to different loadings
of connected users. The proposed solution is to balance the load between macro and small base
stations by expanding the range of small cells (see Figure 1.15). This is achieved by associating
users to base stations based on path loss instead of receivedsignal power. This will be in favor
of uplink network performance since minimum path loss association maximizes uplink coverage
rate [60]. Nevertheless, range expansion lead to high interference levels in the downlink which
imposes using interference coordination techniques.

(a) Base stations coverage limits without CRE (b) Base stations coverage limits with CRE

Figure 1.15: Cell Range Expansion (CRE) impact of base stations footprint

1.4.3.2 Downlink and Uplink Decoupling

From the first generation to 4G, downlink and uplink of cellular networks have been coupled. In-
deed, mobile users’ equipments have been connected with thesame base station in both uplink
and downlink directions. As mentioned earlier, the best base station and user equipment couple is
not necessarily the same for both directions. While for uplink it is best to connect UEs with the
base station with the highest received signal power, for downlink, the best association is the one
that minimizes path loss. Adopting a downlink centric association negatively affects load balanc-
ing in heterogeneous networks as well as uplink overall performance. Nevertheless, adopting an
uplink centric association through cell range expansion creates interference problems for uplink
users. As a solution, uplink and downlink association decoupling has been proposed in order to
optimize communications in both directions [66] [58]. Association decoupling is expected to in-
crease uplink SNR and reduce transmit power, improve uplinkinterference conditions, improve
uplink data rate, allow distribution of users among macro and small cells, and achieve more effi-
cient resources utilization and uplink rates. This technique indeed proved to achieve up to 200%
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improvement in the 5th percentile uplink throughput in a simulation based on a liveVodafone LTE
test network deployment in London [66]. Nonetheless, the concept of uplink and downlink decou-
pling is considered as one of the components of future cellular networks [67] [68]. However, this
technique requires changes in system design since it needs mechanisms to allow acknowledgment
process between serving base stations for uplink and downlink, strong synchronization, and data
connectivity between base stations.

1.4.3.3 Uplink CoMP Techniques

Uplink Coordinated Multi Point (CoMP) is a new technology introduced with the LTE systems,
which consists on jointly processing signals that are received at different antennas and/or base sta-
tions. It is the uplink analogy of CoMP where a single user is served by more than one base station
(see Figure 1.16). In uplink CoMP, users’ signals are captured by more than a base station and pro-

Figure 1.16: Uplink CoMP usecase example

cessed jointly. Uplink CoMP can be deployed through three different scenarios: Intra-cell CoMP,
Inter-cell CoMP, and between macro and small cells in heterogeneous networks. Inter-site CoMP
is easily deployed since all signals information are insideone cell. Intra-site and heterogeneous
CoMP require however low delay high capacity backhaul support between base stations. We note
that uplink CoMP is transparent to mobile users in the sense that mobile equipment do not need
to be aware of the base stations receiving their signal. Therefore, uplink CoMP does not change
the association complexity on the mobile equipment side. Byjointly processing received signals
at different base stations, uplink CoMP results in uplink improvement. Uplink CoMP achieves
uplink gain from both macro diversity reception and from enabling uplink/downlink decoupling
in heterogeneous networks. Uplink perceived capacity is improved in high interference and poor
coverage conditions. Important gains can be achieved especially in locations where uplink and
downlink optimal associations are not the same, i.e. in locations where the most powerful re-
ceived signals and the minimum channel path loss are not of the same base station. In a full scale
field trial in LTE network [69] uplink CoMP proved to achieve 3Mbps improvement in uplink
throughput, and 100% throughput gain if coupled with downlink/uplink decoupling.
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1.5 Conclusion

The number of connected devices to the wireless network, both mobile users portable devices
(smartphones, tablets), the number wireless connected objects (sensors, machines), and the gen-
erated traffic are exploding. The traditional network architecture limits its capabilities, especially
in computation, and is rapidly found un-adapted to such changes and increase of requirements
and demands. This has imposed a series of changes in the network architecture for satisfying the
parallel exponential increase in data traffic and computation requirements. In this chapter, we have
presented a description of the future generation of wireless networks, 5G, which requirements are
set to meet the changing network demand. We presented the characteristics, enabling technolo-
gies, and requirements of the 5G future networks. Then, we focused on the cloud technologies
integration in mobile networks. Cloud computing has been first defined and its characteristics,
enablers and deployment scenarios have been discussed. Moreover, an overview over the archi-
tecture evolutions involving cloud functionalities has been presented. Starting with centralizing
the radio access network as a first cloud aspect operation in the mobile network, we discussed the
advantages of having network required computational tasksto be performed on a cloud platform.
Mobile cloud computing was the first cloud aspect allowing mobile users to compute their own
tasks on the cloud. The major MCC platforms, remote clouds, cloudlets, and edge computing have
been presented with detailed architectures and analysis. Finally, an overview on the cloud emer-
gence in the world of the Internet of Things detailed edge computing functionalities in a parallel
system to cellular networks. Table 1.2 shows a brief comparison of the different cloud systems
characteristics.

Finally, we discussed the challenge facing wireless networks in uplink communications. In-
scriptions number increase, network development, cloud technologies, cloud computing enabled
ecosystem, and convergence of sensor and actuators networks are the main factors that we dis-
cussed and showed how they can influence uplink traffic. We then discussed some research works
and studies that have been already proposed by the communication society and can help improve
uplink network resources management and increase uplink capacity in current and future networks.
However, there are still no clear uplink traffic patterns that can validate if the existing efforts are
enough for coping with the upcoming challenge.
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Table 1.2: Cloud architecture evolutions comparison
Remote

Servers
Cloudlets MEC Fog

Latency

Uncontrol-

lable (often

high)

Low Low Low

Availability High Moderate High High

Reliability Moderate High High High

Managed by

Cloud

services

providers

end users
network

operators

End users and

ISPs

Access to network

information
Yes No Yes No

Privacy and

security
Low High High High

Mobility support Moderate Low Moderate High

Proximity to users Low Moderate High High

Number of hops to

be reached
>> 1 1 1 1 or more

Computation tasks

source
End users End users End users

Connected

things



46 CHAPTER 1. THE EVOLUTION OF CLOUD ENABLE M OBILE W IRELESS NETWORKS



Chapter 2

Edge Cloud Cluster Computing:

Challenges and Trade-offs

47



48 CHAPTER 2. EDGE CLOUD CLUSTER COMPUTING : CHALLENGES AND TRADE-OFFS

2.1 Introduction

Cloud functionalities are integrating wireless networks,which empowers mobile devices with re-
motely accessible computational and storage resources. Inthis thesis, we consider cloud-empowered
Het-Nets with added capacities: processing and storage. MUEs have indeed the possibility, in ad-
dition to communication, to offload processing and computational requests for an execution on the
cloud, through the wireless network. We adopt a MEC architecture, which moves cloud capabili-
ties to the edge of the network, by moving computational resources, and thus computation efforts,
from the Internet to the very edge of the network, characterized by its proximity to mobile users.
We specifically adopt the architecture proposed in TROPIC [70], in which small cells (SCs) are
considered equipped with additional computational and storage capacities. Small cells are used,
not only for delivering communication services to MUEs, butalso for computing MUEs offloaded
computational requests, and storing mobile users’ offloaded data. Each MUE is associated to a
serving small cell (SSC). SSCs receive offloaded computational requests from connected MUEs,
execute the requests, and send back computation results to MUEs. A Small Cell Manager (SCM)
entity manages the use, performance, and delivery of cloud services. The cloud-enhanced small
cells and SCM form asmall-cell cloudin which users’ computation requests are executed. While
SSCs can offer local edge computing services, we propose to extend their capabilities by allowing
SCs to cooperate through a small cells cluster (SCC), in which several small cells contribute in
the computation of MUEs offloaded computational requests. Even if SSCs capabilities can serve
MUEs offloaded requests, a SCC can enhance the local edge cloud capabilities. For example,
distributing the computation load one more than one computation entity can speed up the compu-
tation. SCCs form a local edge cloud platform at high proximity to mobile users. The introduction
of local edge cloud to wireless networks adds extra resources for system operation optimization.
In addition to communication resources, computational andstorage resources should be optimized.

2.1.1 Contribution

In the first part of this chapter, we detail the adopted small cell cloud architecture. We describe
the mobile computation offloading and small cells clustering scenarios. We discuss about the
limitations of the cluster-based edge cloud computing, anddeduce the optimization degrees of
freedom that make the basis of the approaches proposed in this thesis. The set of optimization
variables in small cell clustering for computational purposes, are involved in a set of trade-offs.
We present an overview over these trade-offs. We start by a preliminary state of the art on trade-
offs in heterogeneous networks, before focusing on the cluster edge cloud architecture trade-offs.
Finally, we present an in-depth study on the impact of intra-cluster communication backhauling
on edge cloud computing.

A part of this chapter is based on the conference paper C2.

2.2 System Model

2.2.1 Small Cells Edge Computing

Using network edge entities, as indoor/outdoor small cellsand relays for example, offers some
advantages with respect to their counterparts, namely macro base stations or WiFi access points.

The advantages with respect to macro-cell base stations are:



2.2. SYSTEM M ODEL 49

• proximity offered by small cells makes possible energy saving at the mobile handsets, with
consequent increase of mobile users equipment battery lifetime.

• the number of users concurrently served by a small cell is much smaller than the number of
users served by a macro-cell. This simplifies the setup of computational clusters, and the
computation offloading process between mobile users and serving small cells.

• short distance between mobile users and small cells enablesthe development of proximity-
based services, such as home security control, which are notpossible in a macro-cells based
cloud.

Advantages of using small cells with respect to WiFi nodes are:

• femtocells simplify hand-off as they are fully compliant with the mobile standard

• femtocells provide QoS guarantee and better interference management than WiFi [71].

• WiFi and cellular technologies (3G/4G/5G) are standalone networks, and their integration
is considered cumbersome from the operator’s point of view.Insufficient authentication,
access control techniques, and integration with cellular core network are the concerns of
operators in using WiFi as a cloud solution.

2.2.2 Computation offloading

MUEs are limited in computational capacities, storage space, and energy (battery lifetime). Com-
putational requests offloading to the cloud extends MUEs capabilities, and allow mobile users to
have access to higher amount of computational and storage resources. MUEs have the possibility
of either executing computational tasks locally at the MUEsusing the handsets resources, or of-
floading computational tasks for execution on the cloud. Computation offloading requires sending
computational requests to the cloud, via the SSC, in our case. In addition to increasing MUEs
computational and storage capabilities, mobile handsets energy saving is an important advantage
of computation offloading. However, computation offloadingmay not always be beneficial from
an energy consumption perspective. Energy costs for local computation on MUEs is equal to the
tasks execution energy consumption, related to the computation size and the MUE processor char-
acteristics such as the processor speed and its energy consumption per CPU cycle. Mobile energy
consumption in case of computation offloading is equal to thecommunication cost between MUEs
and SSCs. This cost depends on the amount of data to send to SSCs, and on the communication
channel quality. Moreover, despite the assumption that cloud offer much higher capacity than mo-
bile devices, widely adopted in literature, executing tasks on the cloud may consume more time
than local computation. In fact, computation offloading is based on sending the computational
requests to the cloud, executing the computation on the cloud, and sending back the computation
results to mobile users. These steps impose both communication and computation delays. The
gain in computation time, due to higher computational capacities at the cloud side, should be high
enough to compensate the additional communication delay.

Computational requests of mobile users are considered to berepresented by an instruction
block (CPU cycles) to execute within a latency constraint. The computation results should be de-
livered to mobile users without any violation of these constraints. Hence, an offloading decision
strategy is required in order to efficiently compute an offloading decision that guarantees the re-
spect of energy, time, and resources constraints. This decision is subject to various system, tasks,
MUE, and cloud characteristics, and to several trade-offs.
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2.2.3 Computation Small Cells Cluster

Small-cell Cloudserves MUEs computational requests by executing them usingsmall cell com-
putational resources in the local edge of the network. We propose forming a local edge cloud that
extendssmall-cell cloudcapabilities by setting up small cells clusters for computational purposes.
The idea is to distribute MUEs offloaded computational load on a set of small cell referred to as
the Small Cells Cluster (SCC). SCC shifts the paradigm from local edge computing in a small
cell to local edge cloud where computational tasks are distributed among several small cells. SCC
includes the SSC that receives the computation request fromMUE, and a set of neighbor small
cells that help execute the offloaded tasks, referred to as Helper Small Cells (HSCs). We make
the assumption of possible parallelization of computational requests, in order to be able to find the
optimal distribution of computational load on the cluster small cells. SCC is a distributed comput-
ing platform that is set up for improvingsmall-cell cloudenergy efficiency, service latency, and/or
power consumption. Various reasons for a SSC setting up a SCCinstead of executing the tasks
itself are possible. For example, when SSC resources, such as computational capacity or storage
space, are lower than the computational request requirements, it cannot execute the tasks, at least
without violating requirements constraints. In this case,SSC sets up a SCC for increasing its ca-
pabilities by delegating computations to HSCs. Moreover, even if SSC resources are sufficient for
executing offloaded tasks, SSC can set up a cluster for enhancing its performance. From a service
latency perspective, distributing computational load on several computing entities decreases the
service latency through parallelization of computation. Setting up a SCC, is requested by the SSC,
and managed by the SCM. An additional functionality of SCM isto manage intra-cluster resource
allocation.

Setting up SCC for computing an offloaded computational taskis not straightforward. The
cluster set up is constrained by the resources availabilityand demanded requirements. The main
conditions and constraints to be respected in a cluster set up are the following:

• Complete tasks execution
Distributed computing of offloaded computational tasks in asmall cell cluster, should guar-
antee the execution of the totality of the task. The distributed computational load should be
equal to the total computational size, and all distributed load should be computed.

• Respect tasks requirements
Computational requests consist on executing a number CPU cycles in a fixed time limit,
referred to as latency constraint. Latency constraints impose a minimum computational ca-
pacity for a task executionin time. Furthermore, computational tasks may also have memory
and storage space requirements, which should be respected as well. The SCC in which com-
putational tasks are executed should guarantee, at least, the minimum requirements of the
computational tasks in terms of computational, storage, and any other requirements. Note
that service latency in SCC is defined by both communication (between computing nodes)
and computation delays.

• Small cells resources availability
Distributing computational load on several small cells requires allocating computational re-
sources on each of them. Small cells have larger computational capacities than MUEs;
however, these resources are limited. We refer to a small cell or computational node asover-
loaded if its available computational capacity is not sufficient for computing the accorded
computational load. Load distribution and computational resources allocation should then
be jointly orchestrated for preventing small cells computational overload.
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• Communication power budget
In a SCC, small cells exchange computational data. First, after at the cluster set up, SSC
sends computational load and requirements to HSCs, that sends back computational re-
sults to SSC after their execution. The data exchange between SCC nodes is referred to
as intra-cluster communication, and is often subject to power budget limitations. Power
budgets are of high importance especially in the case of wireless intra-cluster communica-
tion. Intra-cluster communication resources should be allocated in order to respect imposed
communication power budgets.

Respecting the constraints above is crucial for guaranteeing in-time service delivery for mobile
users. In this thesis, we consider mobile users’ QoE as a cluster performance evaluation criterion.
QoE is a subjective measure of mobile users’ satisfaction with delivered services. We assume that
mobile users are ‘satisfied’, and achieve desired QoE, when demanded service is delivered without
any violation of imposed latency constraints. In general, consumers are willing to wait for service
delivery for a reasonable time depending on the application. A small extra waiting time is often
acceptable, however, when service delay does not meet consumers’ expectations, QoE is judged
as insufficient.

In order to achieve high QoE while respecting the imposed constraints and limitations, the
cluster set up requires a joint optimization of computationand communication resources. In ad-
dition to this joint optimization, efficient load distribution is required. These three optimization
sets of variable define the service latency, allocated computational resources, and communication
power consumption. We now detail each of the optimization variable sets and the related model
and assumptions that we adopt in this thesis.

Intra-cluster communication

We assume that small cells communicate through in-band wireless links that support Line of Sight
(LoS) as well as NLoS (No Line of Sight) communication. We adopt wireless intra-cluster com-
munication, even though it can impose larger communicationdelays (comparing to wired fiber, for
example). We choose wireless intra-cluster communicationfor its scalability and low deployment
cost, as no wired connection are required to allow small cells or clusters nodes to communicate.
Most importantly, wireless transmission raises the challenge of communication resource alloca-
tion for intra-cluster communication. Furthermore, considering wireless communication, several
types of nodes (femtocells, pico-cells, relays) could be considered as part of the cluster through
plug-and-play or ad-hoc scenarios.
Channel conditions and maximum link capacities between each pair of small cells are known to
the SCM. In other words, we consider that the SCM has full Channel State Information (CSI)
knowledge. The SCM adapts the transmission rate by tuning the transmission power over each
wireless link joining the SSC with a HSC. The transmit power is upper bounded by a maximal
power budget, and thus, the rate is also bounded by the maximum Shannon capacity. We consider
that the SSC communicates with several HSCs, by adopting orthogonal simultaneous transmis-
sions through orthogonal frequency division multiplexing. This decreases the transmission data
rate over each link between small cell and helper small cells, but mitigates the intra-cluster in-
terference problem. Nevertheless, through our simulationchannel models, we increase the noise
value as an implicit way to take into account a fixed interference level. In all simulations and nu-
merical evaluations presented in this thesis, we consider femto cells edge cloud nodes. However,
the formulation of the proposed solutions can be generalized, and applied to any type of wireless
communicating node by adapting the simulations parameters.
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Computational resources

The SCM also has the functionality of allocating computational capacities at the clusters nodes.
Every small cell is characterized by a total computational capacity, and a utilization ratio. The
utilization ratio determines the ratio of momentary allocated computational resources. Network
small cells report their utilization ratio to the SCM. Sending this information is done either period-
ically, upon a request of the SCM, or at every variation of theutilization ratio. The SCM allocates
computational resources for tasks execution, taking into account resources availability. Resource
allocation is subject to acomputing outageconstraint. Small cells should not be overloaded, i.e.
allocated computational resources must not be greater thanavailable resources. Otherwise, com-
putational tasks cannot all be executed, and the cell is in computing outage.

Load Balancing

Cluster nodes are connected through limited capacity backhaul links, which differ in capacity and
utilization rate. Furthermore, each of the cluster nodes ischaracterized by a total computational
capacity and a utilization ratio. Computational tasks are distributed among the cluster nodes.
Computational load in the computing cluster should be efficiently distributed for guaranteeing the
execution of the tasks while meeting the mobile users’ expected QoE. However, load balancing
can follow various strategies. For example, from a latency or computational resources availability
aware perspective, thebestdistribution uses all available small cells. Distributingthe load on a
large number of small cells, results in smaller computational load blocks (CPU cycles) to compute
at each small cell. Hence, a lower overall computation latency is perceived. In addition, large
clusters require smaller amount of computational resources at each small cells, which increases
resource availability for future requests. On the other hand, reducing the number of computing
small cells allows to achieve higher system energy efficiency, but can lead to higher computational
delay, since the distributed instruction blocks on the cluster nodes are larger.

In order to balance all of these different aspects, load distribution strategy has to take into
consideration small cells, computational requests, and communication channels characteristics. A
joint algorithm that considers the system radio conditionsand computational load of cells must be
designed in order to respect all the imposed constraints (available computational capacity, max-
imum latency tolerance, and maximum communication capacity). In general, splitting an exe-
cutable task into instructions is not easy. An application can be more easily split into modules
(Java modules for example), which provides more coarse granularity than splitting over CPU cy-
cles. Throughout the work of this thesis, and the proposed optimization procedures we assume
very high granularity, and we work using task splitting overCPU cycles or instructions. We note
that the relationship between the number of CPU cycles and the number of instructions depend on
the type of the instructions in question. This assumption was adopted since the aim of this thesis is
to find a solution for resource allocation in small cell clouds rather than to distribute computational
tasks from an information technology point of view. The applications parallelization is however
not a far reality. Many applications can already be distributed with very loose constraints, such as
virus scanning for example.

Figure 2.1 represents a small cell cluster architecture showing the MUE that offloads a com-
putational request to its serving small cell. The latter reports the request to the small cell manger
(SCM) that already has information about the small cells status in the network, through the con-
tinuous status report of small cells to the SCM. Note that SSCs do not send the request in itself but
only necessary information: computation size, latency constraints, and application requirements.
The SCM computes cluster parameters: it allocates communication and computation resources
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Figure 2.1: Small cell cloud basic architecture and processprinciples

and distributes the load on cluster nodes. The cluster optimized parameters are then sent back to
SSC, which distributes the load on the cluster HSCs. After being computed by HSCs, sub-requests
results are sent back to the SSC, that sends the computation result to the mobile user.

2.3 Preliminary on Communication Trade-offs in Heterogeneous Net-

works

Heterogeneous networks witness the co-existence of at least two-tiers. HetNets are proposed as
a solution for increasing wireless network performance by extending the network capacities, but
also for improving wireless networks energy efficiency. Improving the communication service
quality in HetNets is subject to various trade-offs. in thissection, we elaborate some trade-offs
that has been studied in literature.

• Energy efficiency vs system performance
One of the main issues of HetNets is the trade-off between energy efficiency and system
performance degraded by high interference levels. In a two-tier network where macrocells
and femtocells co-exist, communication traffic is offloadedfrom macro to femtocells. Fem-
tocells, characterized by smaller distance from mobile users, use lower transmit power and
deliver higher throughput than macrocells, especially when serving MUEs at macro cell
edge. Increasing the density of small cells in the network increases the energy efficiency.
With more deployed small cells, MUEs are connected to closersmall cells, and thus trans-
mit powers are reduced, and energy consumption is decreased. However, this gain in energy
efficiency comes at the cost of higher interference levels with macro users. As small cells
deployment can significantly improve energy efficiency, there is a trade-off with macrocell
system performance in terms of throughput or spectral efficiency. This trade-off has been
studied by Caoet al. [72] and Chanet al. [73]. Cao shows the trade-off between energy
efficiency and macrocell performance degradation with respect to femtocells density in a
single macrocell scenario. The study shows that there is an 8% degradation of macrocell
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performance, and an energy consumption gain up to 100 times lower, when 80 small cells
are deployed within one macrocell. Chen formulates both energy and spectral efficiency for
an Additive White Gaussian Noise (AWGN) channel for a point-to-point transmission. The
trade-off formula is derived using the Shannon’s capacity formula, as follows:

ηEE =
ηSE

(2ηSE−1)N0
(2.1)

whereηSE, ηEE, andN0 represent the spectral efficiency, energy efficiency, and power spec-
tral density of AWGN, respectively. The trade-off curve between EE and SE is monotoni-
cally decreasing in this case. However, Chen states that in practical network situations, the
trade-off curve will turn into a bell shape after taking intoaccount the effect of resource
allocation mechanisms, coding and modulation schemes and transmission channels charac-
teristics.

• MUE energy efficiency vs system energy efficiency
With the dense deployment of small cells, MUE will be associated to closer base stations,
resulting in a transmit power reduction, and higher energy efficiency at the mobile side.
However, with denser deployment of small cells, some base stations will be activated for
serving a very low number of users. Small cells power consumption is mainly due to its
activation, and slightly increases with the cell load (see Figure 2.7). Therefore, MUE EE
increases for higher small cells density, whereas system EEdecreases. This trade-off be-
tween MUE and system EE is exploited to propose energy aware MUEs and base stations
association schemes [74].

• Wired and wireless backhauling trade-offs
Backhaul is considered as one of the bottlenecks in heterogeneous wireless networks [75].
Backhaul costs and delays affect network performance. We discuss two trade-offs between
wired and wireless backhaul for HetNets.

– Flexibility vs reliability Wired and wireless backhaul have each their advantages,
which creates trade-offs between the two backhaul types. Wired backhaul has the ad-
vantage of higher reliability, data rates, and availability. In addition, throughput is
not subject to transmission channel changes or environmental fading. Wired backhaul
performance depends on the used technology (optical fiber, xDSL, etc.), the material
(fiber, copper), and traffic congestion. However, a major bottleneck of wired backhaul
is deployment cost and complexity. Small cells can be deployed in areas or locations
where it would be hard to deploy wired backhaul. As for wireless backhaul, vari-
ous technologies can be used, such as, in band wireless, microwave, or millimeter
wave. The choice of wireless technology depends on the deployment scenario and the
availability of spectrum. In general, wireless technologies offer higher flexibility in
dense deployment scenarios, since no wired connection needto be installed. However,
flexibility is at the cost of reliability. Wireless communication is subject to commu-
nication channel conditions and variations. Wireless backhaul has lower availability
and flexibility than wired network. In addition, higher transmission delays incur due
to reception failure, and retransmissions.

– Small cells density vs communication latencyAs wired backhaul technologies can
achieve higher data rates comparing to wireless backhaul, the communication delay
witnessed in both cases depends on small cell deployment density. A study by Chenet
al. evaluates the effect of both wired and wireless backhaul on HetNets performance in
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terms of service delay. The authors show that for wireless backhaul, latency decreases
with the increase of small cells density. However, the latency gain saturates beyond a
certain density, and thus, small cells deployment becomes less cost-effective. As for
wired backhaul, it is shown that there is an optimal small cells density, beyond which,
wired backhaul performance degrades significantly. Based on the studies by Chen D.
et al., we sketch in Figure 2.2 the variation of system performanceand deployment
cost efficiency with respect to small cells deployment density [76].

Figure 2.2: Small cells density vs service la-

tency for wired and wireless backhaul

Figure 2.3: Small cells density vs deployment

efficiency

• Energy efficiency vs Deployment efficiencyDeployment efficiency is measured as system
throughput per unit of deployment costs including both CAPEX and OPEX. In network
design, deployment and energy efficiency are in trade-off. While increasing the number
of deployed small cells, energy efficiency increases due to reduction of transmit powers.
However, from a deployment efficiency perspective, with less small cells, and larger cells
coverage radius, more users are associated per small cell, and thus, deployment costs are
reduced per user, or per throughput unit. Increasing the number of small cells in a low den-
sity network increases significantly energy efficiency, comparing to increasing the number
in already dense deployment. As for deployment efficiency, it increases when adding small
cells in low density deployment scenarios, and decreases beyond an optimal small cell den-
sity. The optimal small cell density in this case depends on the traffic load and throughput,
used for computing deployment efficiency. Based on the studies by Chen Y.et al. and Chen
D. et al., we sketch the deployment efficiency in function of the smallcells density [73,76].

• Communication latency vs transmit power Wireless communication is always subject
to a trade-off between transmit power and communication delay, dictated by the Shannon
capacity. The relationship between transmit power and delay is monotonically decreasing.
However, in practice, taking into account hardware power consumption, and scheduling la-
tencies for example, the relationship between the overall power consumption and the whole
service delay does not have the same behavior. The trade-offcurve changes its behavior,
and, in general, there is no closed formed expression that shows the relationship between
power and delay [73]. This phenomenon can be due to, among others, the scheduling la-
tency that increases when transmission delay is larger, circuit power, channel conditions,
and traffic arrival rate.
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2.4 Advanced MEC trade-offs: Joint Communication and Compu-

tation

When empowered with cloud functionalities, HetNets are subject to additional trade-offs. In ad-
dition to communication QoS and communication resource allocation, an extra system operation
parameter is added to HetNets: computation. Henceforth, MUEs share both communication and
computation resources. In previous Section 2.2, we detail the adopted MEC model in this thesis.
The required joint communication and computation resourceallocation, in addition to computa-
tional load distribution in cluster set up, are subject of several trade-offs. In addition to the HetNets
classic trade-off axes, new axes are added when computing isconsidered in HetNets, and some
evolve to include more parameters. For example, service latency in classic HetNets is based on
the communication delay perceived from MUEs perspective. In a cloud-enabled HetNets, service
latency depends, not only on communication delay, but also on computation delay, tasks execu-
tion location (SSC or SCC), used computational capacities,load distribution, and intra-cluster
communication delay.

2.4.1 Computation Offloading Trade-offs

First, we consider the computation offloading mechanism in which MUEs decide between execut-
ing computational tasks locally using handset resources, and offloading tasks to be executed on
the cloud.

• Energy efficiency: local computation vs computation offloading
MUE low energy consumption and extended battery lifetime are among the most important
performance indicators of mobile handsets. Therefore, MUEenergy efficiency is considered
as a main parameter in computation offloading decision. However, local computation and
computation offloading energy efficiencies vary with respect to system conditions and tasks
requirements. This creates a trade-off between energy efficiency and system performance
in terms of service latency and computational capacity.

• MUE energy consumption vs service latency
A main trade-off in computation offloading is between energyconsumption on the MUE
side, and the perceived service latency. Less energy consuming computation strategy does
not always have lower service latency. For example, local computation of requests that
require the transmission of high volume of data in case of offloading may be less energy
consuming than the task offload. However, since local computational capacities on MUEs
are lower than the cloud, the computation time is larger. As sending computational data
to SSCs imposes communication energy consumption, higher computational capacity is
offered by the cloud, and thus the computational service delay can be reduced. We note that
this trade-off depends on computational tasks requirements, MUE resources availability, and
communication channels quality.

• MUE energy consumption vs computational capacity
While computational capacity offered by the cloud is higherthan available computational
capacity at the MUEs, computation offloading may not always be beneficial from an en-
ergy consumption perspective. Conversely, local computation at the MUE may be less en-
ergy consuming, but computational resources may not be enough for respecting resources
constraints (latency, memory requirements, or computational capacity). We note that this
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trade-off depends on computational tasks requirements, MUE resources availability, and
communication channels quality.

• MUE resources extension vs privacy
Having the possibility of offloading computational tasks fom MUEs to the cloud extends the
MUEs computational and storage capacities. However, executing computational tasks, even
on local cloud, requires sending computational data that may contain private users’ infor-
mation. A trade-off takes place between keeping users’ privacy by computing tasks locally,
and computational and storage resources availability, which is higher on the cloud. We note
that this trade-off depends on the MUE resources availability, the local cloud deployment
model (Private, public, community, hybrid), and the SSC deployment model (open access,
closed access, hybrid access).

2.4.2 Small Cell Cloud Clustering Trade-offs

In this section, we focus on the trade-offs that are faced in the mobile edge cloud computing cluster
set up. Setting up a computational cluster requires identifying the small cells to participate, load
distribution among the small cells, computational capacity allocation at each of the small cells,
and the communication resources allocation for exchangingcomputational data between SSC and
HSCs. We assume that computational tasks are received by SSCs, and we investigate the trade-
offs in the cluster set up between SSC and HSCs, independently from MUEs. The size of the
computational SSC is an important parameter in cluster set up. The cluster size is constrained
by several parameters such as the aggregated computationalcapacity and the latency constraints
of the computational tasks. Larger clusters have higher aggregated computational capacity, and
lower service latency. However, increasing the cluster size reduces the system energy efficiency,
and may increase as well intra-cluster power consumption. The imposed constraints on the cluster
and the various limitations in terms of power and energy efficiency result in a set of trade-offs that
we list below:

• Transmit power vs computational capacity
All participating small cells in the SCC should be able to deliver computational results to
the SSC without violating latency constraints. Except for the SSC, where no data exchange
is required, the service latency for each HSC can be written as the sum of communication
and computational delay.

∆HSC=
W′HSC

RpHSC

+
WHSC

FHSC
(2.2)

The communication delay in Eq. 2.2 depends on the size of datato be exchanged between
SSC and HSC,W′HSC, and on the transmission rate defined by the transmit powerpHSC.
The computational delay depends on the computational loadWHSC and the computational
capacity allocated at the HSCFHSC. The trade-off between communication and computation
delay is clear, where, for respecting latency constraint∆HSC, if one increases the other should
decrease. Figure 2.4 shows the trade-off, for a fixed latencyconstraintT and computational
load, between allocated transmit power and computational capacity. Higher transmit power
reduces the communication delay, and thus less computational capacity can be used at the
HSC for satisfying latency constraints. In the multi-user case, this trade-off is important for
coordinating computational resources allocation and transmission powers for distributing
computational resources among several users, while respecting all latency constraints. We
note that in case of a fixed offered computational capacity atthe HSC, the service latency
increases with transmit power decrease. This trade-off shows that the cluster set up depends
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Figure 2.4: Transmit power vs computational capacity trade-off

on a clustering policy. Based on this trade-off we formulatein Chapter 4 two clustering
policies based on either reducing the communication transmit power or the cluster service
latency.

• Cluster size vs service latency vs power consumption
While a trade-off exists between communication power consumption and service latency at
each HSC in a SCC, the whole service latency is not only definedby that trade-off. SCC la-
tency depends on the set of all participating small cells, the computational load distribution,
and the communication and computation resources. We distinguish a first trade-off between
SCC perceived latency and intra-cluster communication power consumption. Increasing the
number of HSC in a SCC, i.e., increasing the cluster size, results in smaller computational
loads distributed on participating small cells. For a fixed computational capacity at HSCs,
and fixed transmit power, decreasing the load leads to a lowerservice latency. This can be
seen in Eq. 2.2 where it is shown that the perceived latency ateach HSC depends on the
computational load and the size of computational data to exchange. Smaller service latency
at each HSC results in smaller perceived cluster latency, using adapted load distribution.

With smaller loads to be distributed at each small cell, lesscomputational data is exchanged
between SSC and each HSC. Fixing the computational capacityof HSCs, sending less data
to HSCs decreases the transmit power between SSC and HSCs. However, an excessive
increase in the cluster size, can result in an increase in transmit power consumption. Figure
2.5 represents the variation of latency and intra-cluster communication power consumption
with respect to the cluster size. Note that a contribution ofthis thesis in Chapter 4 is based
on this trade-off, where the cluster size vs communication power consumption is exploited
in order to decrease power consumption, at the cost of an increasing latency due to cluster
size reduction.

• Cluster size vs system energy efficiency vs aggregated computational capacity
Increasing cluster size allows further parallelization ofcomputational tasks, and thus de-



2.4. ADVANCED MEC TRADE -OFFS: JOINT COMMUNICATION AND COMPUTATION 59

Cluster size

C
lu

st
er

 s
er

vi
ce

 la
te

nc
y

(a) Cluster size vs cluster service latency

Cluster size

C
om

m
un

ic
at

io
n 

po
w

er
 c

on
su

m
pt

io
n

(b) Cluster size vs cluster communication power

consumption

Figure 2.5: Cluster size vs service latency vs power consumption trade-off

creases the service latency in SCCs. However, energy efficiency from a system perspective
decreases with assigning lower computational load to smallcells. In fact, small cells power
consumption is mostly due to them being activated. The powerconsumption slightly de-
pends on the communication load. Therefore, assigning higher loads to each small cell
improves its energy efficiency. However, cluster set up is constrained by required compu-
tational capacity and latency constraints. When aggregated computational capacity at the
SCC cannot satisfy the computational tasks requirements, more HSCs should be included
in the cluster. Increasing the number of HSCs increases the aggregated computational ca-
pacity that could be offered by the cluster. The cluster offered capacity, seen as the sum
of perceived capacities at each HSC, increases with the number of HSCs. This is true if
we consider a SCC built with HSC of equal computational capacities, which are added to
the cluster following an order of ascending distance from SSC. Note that the aggregated
capacity saturates when the added HSCs cannot improve the cluster performance due to the
high communication delay imposed by large communicating distance. Figure 2.6 shows the
variation of System Energy Efficiency (SEE) and aggregated computational capacity of a
SCC in function of the cluster size. Note that improving system energy efficiency is the aim
of a proposed cluster size reduction strategy based on the cluster latency vs communication
power consumption trade-off. We detail the SEE and computational capacity trade-off in
the next section.

• Deployment density vs cluster service latency
SCC is based on the joining several small cells for computational purposes. The intra-cluster
communication is an important parameter that affects the SCC performance in terms of both
service latency and communication power consumption. Ultra-dense small cell deployment
is a major key enabler for SCC-based edge cloud computing. Higher small cells density
increase the number of neighbor small cells at high proximity to SSC. Proximity of cluster
small cells allows faster intra-cluster communication with lower power consumption. There-
fore, service latency increases with cloud-enabled small cells density around the SSC. The
deployment density relative to the distance between SSC andHSCs is exploited differently
according to the cluster set up policy. A latency minimizingstrategy will exploit the density
of available small cells to increase the cluster size for achieving lower service latency. An
energy aware strategy, exploits neighbor small cells density to reduce intra-cluster commu-
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Figure 2.6: Cluster size vs SEE vs aggregated computationalcapacity trade-off

nication power consumption while keeping the same cluster size, for example. In Chapter
4, we show the effect of small cells density on cluster set up strategies.

• Intra-cluster backhaul technology and topology trade-offs
Intra-cluster communication has an impact on almost every SCC trade-off. The communi-
cation delay and power consumption, are defined according tothe adopted communication
technology and topology. Intra-cluster backhaul in edge cloud computing platforms has
been very rarely studied in literature. In the next section,we propose a detailed study that
shows the impact of backhaul on SCC characteristics.

The discussed trade-offs are based on a set of parameters that affect the cluster set up and
performance. From the same parameters, we identify more trade-offs that have similar behavior
than the discussed trade-offs above. A few of these trade-offs are mentioned in the list below.

• System energy efficiency vs latency

• Deployment density vs required cluster size

• Cluster latency vs Electromagnetic Field (EMF) exposure

• Deployment efficiency vs system energy efficiency

2.4.3 Local Computing vs Computation Offloading

The core of mobile cloud computing is computation offloading, from mobile devices, to be com-
puted by the cloud. Computational requests offloading requires sending data from MUEs to the
cloud. In MEC, mobile devices communicate with the cloud through users’ serving base stations.
From an energy point of view, computation offloading has communication costs, which increase
with the size of data transferred to the serving cell. Communication energy consumption also de-
pends on transmission data rate, and transmit power. Let us define the energy efficiency metric,
DEE [bits/Joule] as a measure of the amount of data that can be transferred with a given energy
budget. Then, the total energyEo, consumed for offloading a task ofN bits, is equal to:

Eo =
N

DEE
(2.3)
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In case of local computation at the MUE, consumed energy for tasks execution depends on
the number of CPU cycles to be executed, and MUE processors computing energy efficiency. Let
us define the computation energy efficiency metricCEE [CPU cycles/Joule] as a measure of the
amount of CPU cycles for a given energy budget. Then, computation energyEl , consumed on the
MUE for executing tasks of a block ofC CPU cycles, is:

El =
C

CEE
(2.4)

From an energy point of view, the more efficient computing location, between the cloud and
MUE, is the one with lower energy consumption. Computing tasks locally at MUE is more energy
efficient if El ≥ Eo, and vice versa. Offloading is usually more beneficial when the amount of
data to transfer is low, comparing to the amount of computation. Local computation is less energy
consuming when large amount of data have to be sent for executing a small amount of computa-
tion. In cases that vary between the both previous extremes,the less energy consuming solution
depends greatly on energy efficiency parameters of both solutions.

2.4.4 Performance and Energy Savings

Mobile computation offloading is not only seen as an efficientway to save energy, but also as a way
to reduce computation delay. Service delivery time is an important performance metric for QoE.
When making offloading decision, execution time should be taken into consideration. However,
computation offloading decisions that aim at reducing energy, do not necessarily coincide with
decisions that reduce execution time. In general, the delayof cloud computing is equal to the sum
of the communication and computation latencies. Communication latency is the communication
time between MUEs and the cloud (in both UL and DL). Computation latency is the time the
cloud takes to execute requested tasks. We defineto as the whole computation offloading process
latency, which is equal to the sum of communication timetcom and computation delaytcomp.

to = tcom+ tcomp (2.5)

=
N
R
+

C
Fc

(2.6)

=
N
R
+

C
λFl

(2.7)

whereN is the number of bits to send,R is the transmission bit rate in bits/sec, andFc is cloud
computational capacity in CPU cycles/sec, which isλ times greater than the local computation
capacityFl .

We definetl as the local computation delay.

tl =
C
Fl

(2.8)

whereFl is the mobile device computational capacity.

From a delay perspective, offloading reduces execution timewhentl > to, i.e. when

tl >
N

R(1−λ)
(2.9)
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Knowing the delay in both local computing and computation offloading use cases, we can formu-
late the energy consumption of both cases.
The consumed energy for computation offloading and computation on the cloud is formulated as
follows:

Eo =
N
R

ptr +
C
Fc

pc (2.10)

wherepc is the cloud computation power, andptr the transmission power.

In the case of local computation at the MUE, energy consumption can be written as follows:

El =
C
Fl

pl (2.11)

wherepl is the local power for computing.

From an energy perspective, offloading reduces energy consumption whenEl > Eo, i.e. when

tl >
N ptr

R(pl −λpc)
(2.12)

If both conditions in Eq. (2.9) and (2.12) are satisfied, i.e.if tl > max{ N
R(1−λ) ,

Nptr
R(pl−λpc)

}, then
computation offloading is beneficial. Not only it reduces energy consumption, but reduces service
delivery delay as well. On the contrary, where either of these conditions are satisfied, and thus,
tl < min{ N

R(1−λ) ,
Nptr

R(pl−λpc)
}, then local computation at MUE is less time and energy consuming.

In the case wheretl respects only one of the two equations, there is a trade-off between energy
consumption and execution time. If Eq. (2.9) is valid, andNR(1−λ) < tl <

Nptr
R(pl−λpc)

, then com-
putation offloading execution is faster, but more energy consuming. If Eq. (2.12) is valid, and

Nptr
R(pl−λpc)

< tl < N
R(1−λ) , then computation offloading execution is less energy consuming, but it is

takes more time to execute the tasks. In the last two cases, the existing trade-off can be biased by
varying some parameters, if possible. For example, increasing the transmission power reduces the
overall offloading computation delay, at the cost of increasing energy consumption.

We now focus on the adopted SCC cloud scenario. As already showed in Eq. (2.7) the offloading
delay depends on both communication and computation components. For SCC, where the cloud
is a set of coordinated small cell instead of a single entity executing the tasks, computation delay
does not dependent on a single computational capacity as in this equation. Thecloud computa-
tional capacity is offered by more than one small cell and is not fixed a priori. A total perceived
computational capacity can be computed taking into accountthe allocated capacities at each small
cell in the cluster, the number of computed CPU cycles, and the total perceived computation delay.
The perceived delay depends on both intra-cluster communication for exchanging computational
data and results, and computation delay for executing the accorded tasks at every small cell. The
formulation of cluster latency depends on intra-cluster communication topology and technology.
In addition, load distribution inside the cluster, and allocated capacities at cluster SCs contribute as
well in computing the overall cluster perceived latency. Clusters latency and power consumption
formulations will be detailed in Section 2.5.

2.4.5 System Energy Efficiency, Cells Density, and EMF Exposure

Mobile networks design has been basically focused on reducing the energy consumption of mobile
terminals. Nevertheless,many efforts are put in order to improve energy efficiency of the network
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as well. Indeed, a high percentage, around 70%, of the mobilenetworks energy consumption
comes from the base stations [7]. Consequently, the optimization of network base stations energy
efficiency is investigated, and several mechanisms and approaches that aim to increase system en-
ergy efficiency are proposed. Small cells deployment, and thus the co-existence of macro cells
and small cells in heterogeneous networks, helps improve system energy efficiency by offload-
ing macro-cells traffic. Macro-cells power consumption depend on cell load and output transmit
power. Hence, reducing traffic of macrocells, lowers the macro network power consumption. On
the contrary, power consumption of small cells, particularly femtocells, is independent of the cell
load. Figure 2.7 shows the operating power consumption of macro and femto base stations with
respect to the cell load [7]. Femto base stations power consumption barely depend on the cell load,

(a) Macro-BS power consumption with respect

to load [7]

(b) Femto-BS power consumption with respect

to load [7]

Figure 2.7: Power consumption dependency on relative cell load. (PA: Power Amplifier, RF: small

signal RF transceiver, BB: Baseband processor, DC: DC-DC converters, CO: Cooling, PS: AC/DC

Power Supply, Red mark: BS sleep mode power consumption) [7]

and thus on the output power. From a system energy efficiency point of view, it is best that femto-
cells operate at full load, when activated. As shown on Figure , the energy consumption of an idle
base station is nearly the same as one under full load. In order to save energy, and achieve higher
energy efficiency, base stations on-off switching is proposed for switching off under-utilized base
stations. Cell activation/deactivation mechanisms can improve the network performance enabling
local access points to self-switch off in absence of neighboring end-users [77].

In a small cell cloud cluster scenario, system energy efficiency depend on the load of each
computing node in the cluster. Energy efficiency is however considered for both communication
and computation. In terms of computation, small cells energy consumption depend on the used
computational capacity and the computation load. System energy efficiency is then improved by
switching off some cluster nodes that under-utilize their computing capacities. Cells switching-
off in a small cell cloud scenario results in reducing the size of the cluster. In a smaller cluster,
small cells operate at higher communication and computation load, achieving higher network
energy efficiency. With small cells switching-off, the cluster size is reduced, and the cluster can
also be geographically sparsified. This means that cluster nodes may end be at a larger distance
from the serving cell. HSCs at a larger distance from SSC use higher transmit power, in order to
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achieve desired SINR, or compensate for the latency loss brought by increasing the distance. The
sparsification is less harmful in cases of ultra-dense deployment of small cells. The high density of
neighbor small cells increases the probability of limitingthe geographical expansion of the small
cell cluster.

Increasing system energy efficiency is however subject to some trade-offs or limiting factors.
The main limiting factor of small cell clusters sparsification, and size reduction, is latency. Re-
ducing the size of the cluster, results in according higher loads to the participating nodes. Higher
loads not only impose longer computation time at each small cell, but also larger data size to be
transmitted to each node, which imposes higher communication delay, and/or higher transmission
power.

From a system energy efficiency point view, the best case scenario is to compute tasks at
SSCs. In this case, no intra-cluster communication is required, and thus, no communication energy
costs are imposed. However, this solution is not applicablein case SSC available computational
capacity is less than required. The cluster size is constrained by latency constraints and thus
computational capacity requirements. A representative graph in Figure 2.8 shows that there’s a
minimum cluster size imposed in order to be able to serve the computational request, i.e. to have
sufficient computational capacity for not violating latency constraints. As shown on Figure 2.8,
the aggregated computational capacity offered by the cluster is smaller than the sum of cluster
nodes capacities. This is because the aggregated capacity takes into account the intra-cluster
communication latency cost, and thus, load distribution. The perceived computational capacity is
then equal to the ratio of the total request size to the total cluster computation latency.

Figure 2.8: Example of aggregated computational capacity with respect to the cluster size

Another issue gaining a lot of attention with the proliferation of mobile cloud computing
paradigm, is Radio Frequency Electromagnetic Fields Exposure (RF-EMF). Wireless devices om-
nipresence raises health concerns due to possible effects of electromagnetic radiations on the hu-
man body, and especially on the brain, due to its proximity with the hand-held radio devices [8].
When radio frequency transmission is used for extended duration, implications may take place,
especially due to the heating effect. Mobile cloud computing increases uplink traffic, and con-
sequently, EMF exposure. Moreover, in small cell cloud, intra-cluster communication creates a
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source of EMF exposure, since small cells are normally deployed at a proximity to mobile users.
While this enables user devices to transmit at lower power, it also moves the transmitters closer to
the users, which increases the EMF effect. EMF exposure is measured via a Specific Absorption
Rate (SAR) expressed in W/Kg. EMF exposure depends mainly ondistance between the commu-
nicating device and the human brain, and on the uplink transmit power. Reducing the EMF effect
can be achieved through using the minimum amount of transmission power, especially when good
channel conditions are available. However, when the communication signal is subject to severe
losses, caused by either large distance between communicating devices, or severe fading caused
by obstructions, communicating devices are forced to increase the transmission power. Figure 2.9
is a heat map that shows the impact of transmit power and distance from the device to human
brain, on EMF. The map considers only the effect from the mobile users, and not the surround-
ing base stations that despite the fact that they are fartherfrom the users, they use much higher
transmit power. In a small cell cloud scenario, EMF exposureis in a trade-off with system en-

Figure 2.9: Specific absorption rate in respect with distance and transmit power [8]

ergy efficiency. Indeed, as deduced earlier, increasing thesystem energy efficiency requires using
the cluster nodes at full load in both communication and computation. As cluster node loads are
larger, and the latency constraints are the same, then the communication time needs to be smaller.
This leads to increasing the transmit power, and thus, the EMF exposure. Small cells density plays
also a role in this trade-off. Cell switching-off limits thenumber of active small cells, and if the
deployment density is low, then the distance between nodes risks being larger. Therefore, higher
transmit power should be used in order to maintain desired communication efficiency.

2.4.6 Small Cell Cluster Cloud

All of the discussed trade-offs above apply to the MEC scenario adopted in this thesis. In a small
cell cloud, the main steps are the following: (i) computation offloading decision (ii) communica-
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tion resource allocation for sending computational request to the SSC (iii) load distribution among
cluster nodes (iv) communication resource allocation for intra-cluster communication (v) compu-
tational capacity allocation at each small cell in the cluster.

In each of these steps, an optimization of the decision/solution is required. In the first step
of offloading decision, it is necessary to incorporate all parameters that affect the most essential
optimization criteria, which is users’ QoE. Energy consumption, available computational capac-
ity, service latency, memory requirements, are examples ofaspects that should be considered for
deciding between computation offloading and local computation at mobile devices. The offload-
ing decision process must be of low enough complexity, especially if it is to be implemented on
mobile devices.

SCC latency depends on both data transmit time, and computation delay. Therefore, transmit
powers and computational capacities should be optimally allocated, in order to equilibrate the
communication and computation latencies for respecting latency constraints. The transmission
power is subject to a trade-off with EMF, device energy efficiency and perceived latency.

Computation load distribution, computational capacity, and intra-cluster communication re-
source allocation are the main steps that create the small cell cloud cluster. The three steps are
related since the cluster characteristics in terms of latency, computational efficiency, and power
consumption are affected by all the steps. Therefore, a joint allocation of computation and com-
munication resources is required for guaranteeing the respect of latency constraints. Building the
small cell cluster is subject to numerous trade-offs, basically between latency and power con-
sumption. Cluster size expansion and sparsification is a wayfor manipulating these trade-offs.
SCC dimensioning creates, however, a trade-off between energy efficiency of system and mo-
bile devices. Intra-cluster communication technology andtopology also have an effect on the
load distribution and resource allocation. Backhaul technology and topology have an impact on
the perceived cluster latencies, power consumption, and resources utilization. For example, in a
small cell cluster where nodes communicate through high capacity fibers, communication latency
is small, nay negligible, and thus, the focus will then be on load distribution and computational
capacity allocation. On the contrary, OTA (Over The Air) intra-cluster communication requires
optimization of communication resource allocation in order to guarantee in time service delivery.

2.5 Extending the Impact of Backhaul Network on Small Cell Cloud

Computing

In the considered SCC (small cell cloud), the cooperation ofsmall cells, through cluster formation,
merges cooperation for communication with computation offloading. The cloud network boosts
the computational capacity of mobile terminals, and its proximity to users’ equipment reduces
the end-to-end latency. To enhance the computation and storage capacities, small cells are back-
hauled together and exchange data. Accordingly, when an application is offloaded to the SCC,
one or more cells could contribute in the data processing andcomputing. The cluster management
process, i.e., choosing the cluster size and the set of cooperative small cells, depends on multiple
constraints such as, latency and power consumption. Another important parameter is the backhaul
type through which the nodes are connected. Nevertheless, there is a lack of studies that investi-
gate these relationships. With the dependency on several parameters, getting the optimal number
of base stations to include in a cluster would request more analysis.
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2.5.1 System Model

To model and evaluate cluster latency and power consumption, we consider a cellular deployment
model of hexagonal compartments of radius of 5m. Each cell isassumed to be equipped with
a deployed small cell (see Figure 2.10). We consider an LTE system withK mobile users and
N femtocells. Users are served by a femtocell base station within a distanced. We consider a
connection channel of bandwidthB between UE (User Equipment) and the serving base station.

Figure 2.10: Cellular deployment of small cells.

Instantaneous bit rate is maximized based on adaptive modulation and coding scheme (AMC)
[78]. A parameterΓ in the channel model indicates the SNR margin to guarantee the minimum
error rate. We adopt a Rayleigh channel model with path loss exponentβ, noise powerN0, and
fading channel coefficienthk. We assume perfect estimation of the channel coefficientshk and the
channel fading is assumed constant for a whole transmissionperiod. The maximum information
rate that can be achieved through this channel is calculatedusing the following equation:

R= Blog(1+aPTx) (2.13)

wherea= |hk|
2

ΓdβN0
, B is the channel bandwidth, andPTx is the transmission power. We consider that

userk asks for the computation ofW CPU cycles to the femtocell it is connected. We assume that
the number of bits to be transmitted through uplink and downlink communications is proportional
to W: NUL =WβUL for uplink andNDL =WβDL [79], where the constantsβUL andβDL account
respectively for the overhead due to the uplink and downlinkcommunications and for the ratio
between output and input bits associated to the execution ofCPU cycles at small cells. The up-
link and downlink transmission length are expressed respectively as: ∆UL = NUL

RUL
and∆DL = NDL

RDL
,

whereRUL andRDL are the instant maximum rate that can be achieved in uplink and downlink
transmissions, evaluated with Eq. (3.1).

We denote the latency constraint of the application asLapp, and the cluster overall latency as
∆cluster. For the application latency to be respected, we should have:

Lapp≥ ∆UL +∆cluster+∆DL (2.14)

Finally, the power consumption of the overall process can beformulated as:
P= PUL

Tx +Pcom+Pcomp+PDL
Tx (2.15)

wherePUL
Tx andPDL

Tx are, respectively, the radiated power of uplink and downlink transmissions.
Pcom andPcomp represent the power consumed in the cluster for communication and computation
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respectively. In the rest of this section we model∆cluster and Pcom and their relations with the
cluster characteristics such as, size, backhaul topology,and backhaul technology.

2.5.2 Latency Models

To guarantee an acceptable quality of experience (QoE), applications latency constraints must be
respected. We identify three major latency components: thetransmission duration from MUE
to the SSC, the overall cluster latency due to the data sharing amongst cluster nodes and load
computations, and data transmission from the SSC back to UE.Data transmission between UE
and the serving cell depends on the channel quality and on theamount of data to be transmitted.
Particularly, data processing latency depends on the number of HSCs, the amount of computing
tasks assigned to each one of them, and their allocated computational capacity. Data transport
inside the cluster depends on the cluster size, the backhaultopology used to interconnect the base
stations, and the backhaul technology.

The numberN of femtocells in the cluster should be set in order to satisfythe following
constraint:

N = {n∈ N/∆cluster(n)≤ Lapp−
NUL

RUL
−

NDL

RDL
} (2.16)

We now model the cluster latency when using the ring, binary tree, and full mesh topologies
(see Figure 2.11). As for transmission technologies we consider fiber backhaul, microwave back-
haul, and over the air (OTA) LTE wireless backhaul. As already discussed, the cluster latency is
due to the communication latency between cluster nodes and the computation latency at each one
of them.

Figure 2.11: Wireless backhaul topologies: (a) full mesh topology, (b) tree topology, and (c) ring

topology.

2.5.2.1 Full Mesh Topology

Hence, in the full mesh case, the cluster latency can be written as:

∆cluster=
N

max
n=1

(Wn f−1
n +δTx,bh(n)+δr

Tx,bh(n)) (2.17)

whereWn is the computation task assigned to each base station,fn its computational capacity,
δTx,bh the one way communication latency through the backhaul between the serving small cell
and helper small cells, andδr

Tx,bh the communication latency for the reverse way.
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2.5.2.2 Wireless LTE Backhaul

Considering LTE wireless backhaul,δTx,bh(n) =
Nn

in
Rn

in
andδr

Tx,bh =
Nn

out
Rn

out
, whereNn

in =WnβUL is the

number of bits sent to base stationn, andNn
out =WnβDL is the number of bits that base stationn

should send back.Rn
in andRn

out represent the rates of data transmission achieved in downlink and
uplink through the channel between base stationn and the base station connected to the UE.

∆cluster=
N

max
n=1

(Wn f−1
n +

Nn
in

Rn
in
+

Nn
out

Rn
out

) (2.18)

Fiber and microwave backhaul

For fiber and microwave backhaul, the latency of a transmission is assumed to be load independent
because of the high throughput than can be achieved using these technologies. A categorization
of non-ideal backhaul latency based on operator inputs can be found in [11]. Therefore, in both
cases the total cluster latency can be formulated as the following:

∆cluster=
N

max
n=1

(Wn f−1
n +2δTx,bh) (2.19)

2.5.2.3 Tree Topology

In the tree topology case, for the data to reach base stationn at level ln, it should be transmitted
throughln base stations (The serving small cell is considered of levell = 0). Therefore, the total
cluster latency can be formulated as:

∆cluster=
N

max
n=1

(Wn f−1
n +

ln

∑
l=1

δTx,bh(n)+
ln

∑
l=1

δr
Tx,bh(n)) (2.20)

Wireless LTE backhaul

For LTE wireless backhaul,δTx,bh andδr
Tx,bh depend respectively on the number of bits to be sent

in uplink and downlink, and on the channel capacity at the transmission time.

∆cluster=
N

max
n=1

(Wn f−1
n +

ln

∑
l=1

Nn
in

Rl
in

+
ln

∑
l=1

Nn
out

Rl
out

) (2.21)

whereRl
in andRl

out are the transmission rates in downlink and uplink at the basestation backhauling
the traffic at levell .

Fiber and microwave backhaul

For fiber and microwave backhaul cases, as the transmission latency is constant, (δTx,bh(n) =
δr

Tx,bh(n) = δTx,bh ), the total latency can be represented as:

∆cluster=
N

max
n=1

(Wn f−1
n +2lnδTx,bh) (2.22)
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2.5.2.4 Ring Topology

In the ring topology case, the total cluster latency can be formulated as:

∆cluster=
N

max
n=1

(Wn f−1
n +

hn

∑
h=1

δTx,bh(n)+
hn

∑
h=1

δr
Tx,bh(n)) (2.23)

wherehn is the number of hops needed for HSC of indexn to reach the SSC. Similar to the tree
topology case, LTE wireless backhaul latency depends on thedata load and channel conditions,
and for fiber and microwave backhaul backhaul transmission time is constant.

Wireless LTE backhaul

So the equation for LTE wireless can be written as:

∆cluster=
N

max
n=1

(Wn f−1
n +

hn

∑
h=1

Nn
in

Rh
in

+
hn

∑
h=1

Nn
out

Rh
out

) (2.24)

Fiber and microwave backhaul

And for fiber and microwave backhaul:

∆cluster=
N

max
n=1

(Wn f−1
n +2hnδTx,bh) (2.25)

Given the latency formulas for different backhaul topologies, we can distribute the computa-
tional load across the distributed cloud in order to minimize latency. In all previous cases, for any
set of computational ratesfn and channel states, the optimization problem can be cast as:

minimize
x

N
max
n=1

(Wn f−1
n +Ln)

subject to:
N

∑
n=1

Wn =W

Wn≥ 0

(2.26)

WhereLn is the delay associated to communications across the computing nodes.

2.5.3 Power Consumption Models

Another important issue in the formation of the small cell cloud cluster, is the power consumption.
Cloud computing leads to an increase in network traffic, and thus, in power consumption and EMF
exposure. Power consumption in transport and switching canbe a significant percentage of total
power consumption in cloud computing [80]. This section presents power consumption models
for data transport inside the SSC cluster. The cluster powerconsumption depends on the number
of base stations within, the backhaul technology, and topology. All traffic from the base stations
is assumed to be backhauled through the SSC, playing the roleof a hub node. If more than one
backhaul link originates at any node, the base station is assumed to be equipped with a switch.
The equations in this section are based on the study done in [12]. The equations below assume
that the backhaul topologies are height balanced (formed with the lowest possible level depth).
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2.5.3.1 Wireless LTE Backhaul

For LTE wireless backhaul transmissions between base stations, the total power consumption is
expressed as [9]:

P=
N

∑
n=1

Nn
ant

∑
j=1

(P0+∆pPn, j
Tx ) (2.27)

In this equation,Nn
ant is the number of active antennas at SSCn, P0 the base station power

consumption at zero load,∆p is the slope of the load-dependent power consumption, andPn, j
Tx the

transmission power used to transmit at base stationn through antennaj.
Considering constant transmission powerPTx for all base stations, the total power consumption

for the different types of backhaul topology is modeled differently for every topology.

Full mesh topology:

The base station connected to UE will transmit to all theN−1 base stations in the cluster, that will
transmit back once computing tasks are accomplished. Then,the total number of transmissions in
this case is 2(N−1), and the power consumption can be formulated as:

P= 2(N−1)(P0+∆pPTx) (2.28)

Tree topology:

The number of base stations that will transmit through two antennas to two different base stations
is ⌊N−1

2 ⌋, and thus, the number of base stations that will transmit through only one antenna is(N−
1)−2⌊N−1

2 ⌋, which is equal to 1 ifN is even and 0 if odd. All(N−1) base stations transmit back
when computing tasks are accomplished. Therefore, the total power consumption is expressed as:

P=

{

(2⌊N−1
2 ⌋+N)(P0+∆pPTx), if N is odd

(2⌊N−1
2 ⌋+N−1)(P0+∆pPTx), if N is even

(2.29)

Ring topology:

Only the SSC will transmit through two antennas to two different base stations. In addition,
N−1 base stations will transmit back after accomplishing computing tasks. The total number of
transmissions in this case is 2(N−1), and the total cluster power consumption is:

P= 2(N−1)(P0+∆pPTx) (2.30)

2.5.3.2 Fiber Backhaul

For fiber backhaul, the communication power consumption in the small cell cluster is formulated
as:

P= NULPUL +NDLPDL +
N

∑
n=1

Nn
s Ps (2.31)

with Nn
s =

{

0 if Nn
ant = 1;

⌈ Nn
ant

maxdl
⌉ otherwise

whereNn
s is the number of switches needed at base stationn andmaxdl is the maximum number
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of interfaces available at one switch. For the different types of backhaul topology considered here,
the total power consumption can be modeled as follows:

Full mesh topology:

P= (N−1)(PDL +PUL)+ ⌈
N

maxdl
⌉Ps (2.32)

Tree topology:

P= (N−1)(PDL +PUL)+ ⌊
N−1

2
⌋⌈

2
maxdl

⌉Ps (2.33)

2.5.3.3 Ring topology

P= (N−1)(PDL +PUL)+ ⌈
2

maxdl
⌉Ps (2.34)

2.5.3.4 Microwave Backhaul

For microwave backhaul, the communication power consumption in the small cell cluster is for-
mulated as [12]:

P=
N

∑
n=1

Nn
ant

∑
j=1

(Pn, j
agg(Cn, j)+Pn

ss) (2.35)

Pn, j
agg(Cn, j) =

{

Plow−c, if Cn, j ≤ Thlow−c

Phigh−c, otherwise

Pn
ss =

{

0, if Nn
ant = 1

Ps⌈
Cn, j

CMAX
switch
⌉, otherwise

WherePn, j
agg is the power consumption for trans-

mitting and receiving the aggregate backhaul traffic through base stationn via antennaj. This
power consumption is modulated as a two steps function that depends on whether the backhauled
capacity traffic through the same antenna (Cn, j ) is low or high. The capacity traffic is considered
as high if it exceeds a defined threshold (Thlow−c), and considered as low otherwise.Pn

ss is the
function that accounts the necessary switch power consumption that depends on the backhauled
capacity and the maximum capacity of a switch (CMAX

switch).

2.6 Numerical Evaluation

We evaluate the backhaul cluster latency and communicationpower consumption, using the mod-
els proposed in Sections 2.5.2 and 2.5.3. Our evaluations compare latency and power consumption
for the different considered backhaul technologies and topologies, with respect to the cluster size.
We adopt the same system model described in Section 2.5.1, considering a single user (K = 1) at
the cell edge of its serving base station. AllN small cells are assumed to have the same compu-
tational ratef = 2.107 CPU cycles/sec. We assume that computational load is equally distributed
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on the cluster small cells. Tables 2.1,2.2, and 2.3 resume the parameters used for LTE wireless,
fiber, and microwave backhaul respectively.

B [MHz] β N0 Tc[s] PTx[W] P0[W] ∆p

20 5 10−3 1 1 6.8 4

Table 2.1: LTE wireless backhaul parameters [9] [10].

δTx,bh[ms] PDL[W] PUL[W] Ps[W] maxdl

5 2 1 300 12

Table 2.2: Fiber backhaul parameters [11] [12].

δTx,bh

[ms]

Plow−c

[W]

Phigh−c

[W]

Thlow−c

[Mbps]

Pss

[W]

CMAX
switch

[Gbps]
15 37 37 500 53 36

Table 2.3: Microwave backhaul parameters [11] [12].

As assumed in section 2.5.3, backhaul topologies are assumed to be balanced. For the whole
mesh topology, we assume that a cluster ofN is formed with the SSC and theN−1 closest HSCs.
We consider three different sizes of application CPU cyclesW corresponding to 1MB, 50MB, and
100MB traffic, representing low, medium, and high traffic load scenarios.

2.6.1 Cluster Latency

As already shown in Eq. (2.18), the cluster latency for the LTE wireless backhaul depends on
the traffic load. In both tree and ring topologies, the cluster latency for wireless LTE backhaul
will be greater than the full mesh case. In fact, not every small cell is reachable via a direct link,
and thus, cluster nodes will have to backhaul traffic for farther base stations which increases the
overall cluster latency. We show simulation results on the effect of traffic load on cluster latency
only for a full mesh topology (Figure 2.12). As the assumption in our simulations is to always
form the cluster with the closest SSC to the UE, the cluster latency will be subject to a brutal
increase with the increase of cluster radius (distance between the SSC connected to the user and
the farthest HSC in the cluster).We notice that for low load scenarios, including more nodes in the
cluster will not have an effect on the latency since the computation time with only one small cell
is already low. However, for higher load scenarios, including more HSCs in the femtocell cluster
will decrease the overall latency since the tasks are distributed on different computing entities.

In the cases of fiber and microwave backhaul, as can be seen in Eq. (2.19), (2.22), and (2.25),
the cluster communication latency does not depend on the traffic load. The load will only have an
effect on the computation latency in the cluster throughWn f−1

n .
Figure 2.13 shows cluster latency for medium traffic load fordifferent backhaul topologies and

technologies. As can be seen, wireless LTE backhaul is the most time costly for lower cluster sizes.
Full mesh is the topology less time consuming for both fiber and microwave backhaul, followed
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Figure 2.12: Wireless LTE full mesh backhaul cluster latency for different traffic loads.

by tree and then ring topologies. As the tree and ring topologies are assumed height balanced,
we can see a step when a level is added to the topology (every 2 small cells for ring topology,
every 2n for tree topology). We notice that we always gain in latency for a cluster of sizeN over a
cluster of sizeN−1 when the addition of theN’s base station does not increase the cluster radius.
However, adding too much base stations can result in more time consuming as can be seen for
the fiber ring backhaul. In fact, when the number of base stations increases, the task computation
delays at each node decrease. When computing delay becomes less than the transmission time
between two nodes, the addition of new base stations to the cluster will increase the total latency.

Figure 2.14 compares between the adopted assumption of equal load distribution and the op-
timal load distribution among cluster base stations for full mesh wireless LTE and tree fiber back-
haul. Same kind of results goes for other technologies and topologies. We notice that the optimal
load distribution is optimal for the fiber tree backhaul, andcan outperform equal load distribution
in the case of wireless LTE backhaul. This is due to the fact that in the latter case the transmission
latency is highly affected by the distance, whereas it is notthe case of fiber backhaul. The Major
difference of performance is noticed when the cluster radius changes. This graph shows that op-
timal load distribution in a cluster with wireless intra-cluster communication improves the cluster
performance and is thus necessary.

2.6.2 Cluster Communication Power Consumption

The cluster communication power consumption for the wireless LTE backhaul depends on the
transmission powerPTx. If this transmission power is kept constant, as in our simulations, traf-
fic transport power consumption will be a linear function of the number of HSCs in the cluster,
however, it will consume more time as seen in 2.6.1.

For the microwave backhaul, the communication power consumption depends on the traffic
load through Eq. (2.35). For this reason, a full mesh topology in this case would be the most
interesting. Indeed, a previous study on microwave backhaul power consumption in [12] shows
that the ring topology is the most costly in terms of power, followed by the tree topology. Figure
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Figure 2.13: Cluster backhaul latency for different backhaul technologies and topologies for

medium traffic load.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Cluster size

La
te

nc
y 

(s
)

 

 

Wireless LTE, Full mesh, ELD
Wireless LTE, Full mesh, OLD
Fiber,Tree, ELD
Fiber, Tree, OLD

Figure 2.14: Equal load distribution (ELD) and optimal loaddistribution (OLD) comparison.
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2.15 shows the variation of power with respect to the number of base stations. In the case of
low traffic load the nodes are always operating in the low consumption regime (Plow−c) and the
total consumption is a linear function of the number of HSCs in the cluster. In the case of high
and medium traffic loads, we notice that the power consumption is reduced when the cluster size
exceeds the values of 9 and 19 small cells. This is due to the fact that the traffic backhauled through
each base station decreases with the increase of the clustersize. And at a certain point, the traffic
backhauled through each base station gets lower thanThlow,c, and thus, the base stations switch
from operating at a higher power consumptionPhigh−c to a lower power consumptionPlow−c.
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Figure 2.15: Microwave backhaul traffic power consumption for different traffic loads.

In the case of fiber backhaul, the communication power consumption in the cluster does not
depend on the traffic load. As shown in Eq. (2.32), (2.33), and(2.34) it depends on the number
of small cells in the cluster. Figure 2.16 shows the power consumption for the three topologies for
fiber backhaul, and for the full mesh topology for microwave backhaul. It can be seen that fiber
backhaul consumes less power than microwave backhaul in a full mesh topology. Fiber backhaul
power consumption for a full mesh topology increases by a step eachmaxdl base stations, because
an extra switch is needed. Ring topology is the less consuming since it requires the least number
of switches which consumes the major part of the total power consumption. For the tree topology,
at each addition of two base stations an additional switch isneeded. For this reason, it is the most
power consuming.

A comparison of different backhaul technologies characteristics are summarized in table 2.4.

2.7 Conclusion

Mobile cloud computing can be implemented through various and different architectures. In this
chapter, we presented in details the adopted mobile cloud computing architecture. It is based on
a mobile edge computing scenario case where the cloud functionalities are offered by the small
cells base stations serving the mobile users. The small cells are endowed with computational
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Criterion Wireless LTE Fiber Microwave

Load dependent latency Yes No No

Load dependent power consumption Yes No Yes

Topology with lowest latency Full mesh Full mesh Full mesh

Topology with lowest power consumption Full mesh Ring Full mesh

Latency classification ⋆ ⋆⋆⋆ ⋆⋆

Power consumption classification ⋆ ⋆⋆⋆ ⋆⋆

Table 2.4: Comparison of backhaul technologies.(⋆⋆⋆ -the best,⋆ -the worst)
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Figure 2.16: Cluster backhaul power consumption for different backhaul topologies and technolo-

gies.

and storage capacities. A cluster of small cell can be formedfor distributing the execution of of-
floaded requests. We refer to this paradigm as the small cell cloud cluster. We also described the
use case scenario we consider by specifying the assumptionswe fix for our work. We consider
wireless intra-cluster communication, and therefore we presented the trade-offs that are faced in
a mobile edge computing with clustering possibility in a wireless scenario. We then focused on
the trade-offs that can be specifically encountered in the considered architecture and scenarios.
We discussed energy efficiency from both devices ad system perspectives. We showed the rela-
tionships that joins latency, cluster size, power consumption, and EMF exposure. The presented
trade-offs overview shows clearly how edge cloud computingshifts the paradigm of HetNets op-
eration optimization to include additional computing-related parameters. Edge cloud computing,
and notably, computation clustering, adds a new level of trade-offs that control both network
service performance and users perceived service quality. We presented as well the impact of the
backhaul technologies and topologies on the small cell cluster characteristics. The set of trade-offs
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are a main basis for our contributions in this thesis.
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3.1 Introduction

3.1.1 Motivation

The services offered by mobile devices have shifted from communication only to computing, stor-
age, sensing, and communicating. This is a new revolution ofInternet where people and smart
objects live connected in smart environments. Today, mobile handsets are the platform used for
launching and running abundant and various services and applications [47]. Indeed, new mobile
applications are integrating the market, producing tsunami of data traffic and imposing high re-
sources requirements. Handset battery lifetime is henceforth reduced due to communication, but
also computational tasks that are run over the equipment hardware. Offloading computational
tasks from mobile handsets to the ‘cloud’ is seen as an effective solution to limit computing en-
ergy consumption at the handsets side. Mobile cloud computing offers the potential of increasing
mobile devices computational and storage capabilities, and extending their battery lifetime. Nev-
ertheless, computation offloading comes at the expense of generating extra communication load,
the offloading traffic (uplink, intra-cloud, and downlink traffic). Uplink communication costs vary
with the distance between the handset and the cloud gateway and the wireless channel condi-
tions. On another hand, computation tasks are generally constrained by time limits and memory
requirements. The first proposed mobile computation offloading decision algorithms are mainly
based on the energy trade-off between local computation at the mobile device and computation
offloading to the serving cloud. However, mobile users’ Quality of Experience (QoE) must be
taken into account in the offloading decision process. The energy minimizing decision does not
necessarily deliver the best QoE. On one side, all applications requirements should be respected
(latency constraints, memory requirements, tasks offloadability). On the other side, offloading de-
cision should allow to minimize energy consumption on the mobile side without losing experience
quality. Hence, energy consumption is not the only parameter that affects the offloading decision.
Integrating all parameters that affect offloading decisionis fundamental to guarantee a good QoE
while minimizing the offloading process cost. In this chapter, we look into computation offloading
decision from the mobile devices to the cloud with a single hop wireless communication.

3.1.2 Related Work

Several studies related to offloading decisions for mobile cloud computing frameworks have been
proposed. Nevertheless, the majority of existing work proposes offloading decision processes
and algorithms based on the energy trade-off without considering all parameters that affect the
offloading decision [49,81–86].

Maui [81], CloneCloud[83], andThinkAir [82] are frameworks that enable mobile compu-
tation offloading to the cloud. BothMaui andCloneCloudpropose to solve the problem of op-
timizing applications partitioning between local execution and offloading, with quite similar op-
timization targets: maximize energy savings forMaui, and minimize execution time or energy
consumption forCloneCloud. Both framework architectures include solver and profiler entities,
but they differ in implementation. InMaui, the profiler monitors program and network character-
istics continuously at runtime, no persistent result is stored across multiple runs, and the solver is
periodically run at runtime. WhereasCloneCloudcreates device clones operating on the cloud.
It profiles and solves, before the partitioned application begins, by assuming different running
conditions, and profiling results are used to generate partition configuration files. Nevertheless,
building profiles at runtime is energy consuming for the mobile handset and offline profiling does
not easily cover all possible running conditions.
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Chenet at. propose an offloading decision process based on communication, compilation
and communication energies comparison [84]. With the goal of conserving energy on the mobile
client, the decision process is launched when a method is invoked. It consists in comparing differ-
ent energy consumption values corresponding to different of task interpreting strategies (remotely,
locally, through an interpreter), and choosing the alternative with the lowest energy cost. Energy
cost takes into account estimated energies for bytecode interpretation through local computation
or remote execution, and parameters representing communication power, the size of data to be sent
and received in case of remote computation, and the complexity of local execution. Communica-
tion power, data size, and computation complexity are predicted as weighted average of current
and past values. Various execution strategies are considered in Chen’set al. work. A decision
is made over both the computation granularity (bytecode form or with code compilation) and the
computation location (remote or local). The decision aims at reducing energy consumption at the
mobile side, but it does not take into account latency constraints of each method or task. In fact, a
local execution of a method can be more energy saving in some cases but it could require a period
of time larger than the latency constraint of that task. Focusing only on energy consumption does
not guarantee mobile users’ QoE. In addition, no memory requirements are taken into account.

Another study by Kumaret al. shows that the energy saved by computation offloading depends
on the wireless bandwidth and the amount of computation to beperformed [49]. The authors
also discuss some offloading challenges such as security, reliability, and real time data. This
study concludes that not all applications are energy efficient when offloaded if additional energy
overhead for security and reliability is considered. The energy saving is represented with respect
to the system bandwidth and the amount of computation.

Related work algorithms incorporate only the energy consumption in the mobile offloading
decision algorithms. However, many other parameters and conditions could be introduced in the
algorithm in order to solidify decisions and adapt them to the system conditions. If an offloading
decision only depends on energy saving, the chosen computation strategy (local or remote) could
violate, among others, latency and memory constraints. Indeed, mobile handsets limitations, other
than energy consumption, have an influence the offloading decision. In addition to the limited
battery lifetime, mobile handsets have limited computational capacity and memory space. Fur-
thermore, the offloading decision depends strongly on the application to be offloaded. Mobile
applications are characterized by latency constraints, computation complexity, and memory re-
quirements that should all be met. Therefore, an optimization trade-off approach that is based on
a single parameter does not guarantee meeting the users’ expected. Additionally, not all tasks can
be offloaded. Some computational tasks require the use of specific information available on the
mobile handset, and/or the use of mobile devices hardware.

Other related work in literature proposes mobile offloadingdecision algorithms that take into
consideration more than one parameter [10, 87–90]. Barbarossaet al. propose a joint offloading
decision and resource allocation solution [10], . The offloading decision process takes into account
both latency constraints of the tasks, and computation queues state. Computation queues repre-
sent a buffer on the mobile side where all computations that are not yet executed are stored. First,
the set of users that are able to transmit data in a defined block of time lower than the imposed
latency limits is identified. This set is reduced in order to satisfy the global condition of the sum of
the allocated computation capacities for all task is smaller than the total surrogate computational
capacity. Reducing the set consists in removing mobile users, i.e., forbidding some users from
offloading computations in the considered time block. Userswith larger queues are prioritized to
remain in the set in order to minimize the cases of queues instability at the mobile side. Users that
are removed from the set execute their tasks at the mobile handset. For users admitted to transmit,
transmit power and allocated computational capacity at thecloud side are jointly optimized. Joint
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optimization helps taking advantage of all the server capacity in order to meet latency constraint
while minimizing as much as possible the transmission power. The joint optimization is formu-
lated as a convex optimization problem. The optimization problem solutions takes full advantage
of the server computation capacities in order to meet the latency constraints while minimizing the
transmission power which varies according to the channel state. This approach could also lead in
case of bad channels conditions to an increase in the transmission power.
Gu et al. propose a fuzzy control approach that consists on initiating an offloading decision pro-
cess whenever the mobile handset memory status is critical [88]. The available memory space is
represented with three linguistic fuzzy states:low, moderateandhigh. When memory availability
is low, an offloading decision process is triggered. The offloading decision optimization is based
on a multi-criteria decision function which takes into account bandwidth, delay and memory. The
initiation of the offloading decision process in this approach does not include other important pa-
rameters such as mobile battery level, latency constraints, and available computational capacity.
Gaoet al. propose a strategy where time and energy are evaluated for both local and offloading
computations [89]. A computational task is allowed to be offloaded when offloading is less time
and energy consuming than local computing. After taking an offloading decision for a task, a tasks
clustering algorithm is called. The clustering algorithm aims at taking similar decisions for the
tasks that communicate with each other, in order to reduce communication energy consumption.
Even though both energy and time are considered as decision parameters, memory requirements
and availability is ignored.
Kovachevet al. [90] consider energy, memory, and execution time in a multi-criteria utility func-
tion. The multi-criteria function is introduced to avoid the complexity of solving an optimization
problem that jointly optimizes all the criteria. However, multi-criteria utility functions require
a fine tuning of the weights associated to each parameter in this function. The multi-parameter
optimization complexity is twofold. First, the problem itself is complex to solve, and second the
decision needs to be refreshed whenever system conditions change.

3.1.3 Contribution

In this chapter, we tackle the problem of multi-parameters optimization complexity, which is a
major bottleneck of classical multi-parameters optimization techniques. We propose a novel Se-
quential Multi-Parameters Offloading Decision algorithm under the name of SM-POD . We adopt
a sequential approach where decisions are sequentially made according to a decision tree. The
proposed approach introduces a multitude of parameters in the decision process while keeping
it simple to implement. We propose indeed to approach the multi-parameters optimization with
a multi-fold task classification. We define successive and nested classifications of tasks at the
mobile handset. Calvanese Strinatiet al. propose a single parameter classification to improve
downlink packet scheduling [91], . Following the same intuition, we introduce a multi-parameters
classification. In the proposed approach, we adapt the offloading decision to the current state of
the system that is defined through the series of classifications. We classify computational tasks
into virtual buffers each of which is associated with an offloading decision. Requested tasks that
are offloadable are classified and buffered depending on the criticality of their latency constraints.
Time critical tasks are to be executed immediately, either locally or at the server. According to the
application requirements and mobile available resources (computational capacity, memory space,
battery life), the offloading decision is made. In order to keep high user QoE, time critical tasks
are prioritized for offloading, regardless the offloading costs. Less time critical offloadable tasks
are allowed to be offloaded if the offloading communication cost low. The proposed approach is a
solution for incorporating several parameters in the computation offloading decision at the mobile
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side without imposing complex optimization solving. Note that the offloading decision concerns
the single hop communication between MUEs and their servingcell. The proposed algorithm does
not propose a resource allocation algorithm at the mobile edge cloud. The novelty of this work is
based on a patent [P2] and a conference paper [C1].

3.2 System Model

We consider a system withK users served by either a macro base station or a small cell base sta-
tion (femtocell), within a distanced. We consider uplink connection, between MUE (mobile user
equipment) and the serving base station, with a bandwidthB. Instantaneous uplink bit rate is max-
imized based on adaptive modulation and coding scheme (AMC)[78]. We adopt a non-ergodic
Rayleigh channel model with path loss exponentβ, noise powerN0, and fading channel coefficient
hk. We assume perfect estimation of the channel coefficientshk. The channel is assumed constant
for a whole transmission period, with a coherence timeTc. A parameterΓ in the channel model
indicates the Signal to Noise Ratio (SNR) margin to guarantee the minimum error rate. We con-
sider a constant transmission powerPTx through the defined channel. The maximum information
rate that can be achieved through this channel is calculatedusing the following equation:

RTx = B× log(1+aPTx) wherea=
|hk|

2

ΓdβN0
(3.1)

Indeed,RTx determines the maximum number of tasks that can be transmitted through the
wireless link in one time slot.

Each MUE is characterized by a set of parameters summarized in Table 3.1.

Parameter Description

F CPU computational capacity [CPU cycles/sec]

TotE Total energy capacity of the mobile handset [Wh]

EPI Energy consumption per cycle [J/CPU cycle]

Mav Current amount of available memory [MB]

Blev Available battery level percentage

Table 3.1: Mobile Handset Characteristics.

Applications are launched by the user at the mobile handset.The applications arrival is mod-
eled as a Poisson process with a rateλ, whereλ represents the number of launched applications in
a time windowTw. We consider that an application call generates a burst of tasks to be computed.
Each generated task is a set of instructions requiringW CPU cycles that has to be executed with a
required memorym, and a maximum latency∆. A parameterρ indicates if the task is offloadable
(ρ = 1) or not (ρ = 0). The percentage of tasks that cannot be offloaded is definedby a parameter
αno. In case the task is offloadable, a parameterW′ indicates the number of bits to send to the
small cell. Table 3.2 resumes applications related parameters.

We compute energy consumption relative to each task. For thetasks that are computed locally,
the mobile handset energy consumption is evaluated as the product of the number of executed
CPU cycles and the energy consumption per cycle:

Elocal [J] =W×EPC [J/CPU cycle] (3.2)
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For the tasks that are offloaded, the energy consumption of the mobile handset is evaluated based
on the mobile user power consumption model proposed by Jensen et al. [92]. In the adopted
model, the consumed energy for transmission is evaluated as:

Eo f f loading= PTx,C+PTx,BB+PTx,RF +Pcon (3.3)

PTx,C: Power consumption of active transmission chain.
PTx,BB: Power consumption of the baseband (BB) components. It depends on the uplink data rate
RTx as the following equation:

PTx,BB[mW] = 34.5+0.87RT x[Mbits/s] (3.4)

PTx,RF: Power consumption of radio RF components. It depends on thetransmission powerSTx

as the following equation:

PTx,RF[mW] =−943+117ST x[dBm] (3.5)

Pcon: Average power consumption in connected mode. It is equal to1.35W, according to [92].

Parameter Description

λ Applications arrival rate

ρ Application offloadability∈ {0,1}

αno Ratio of non-offloadable tasks

ω Task number of CPU cycles

m Task memory requirement

∆ Application maximum tolerated latency

W Number of bits to be sent in case of offloading

Table 3.2: Applications and tasks Characteristics.

3.3 Problem Statement

Consider a setK = {1, · · · ,K} of K users served by a setN = {1, · · · ,N} of small cells. Mobile
usersk ∈ K have computational tasks to accomplish. Each task is characterized by a maximum
tolerated latency and memory requirements. MUEs offload their computation through sending the
computation requests to their serving cell. In order for MUEto make offloading decisions for each
of the tasks, many parameters are taken into account. The first application characteristic that is
considered is the tasks the ability of the task to be offloaded, or itsoffloadability. Not all computa-
tional tasks are offloadable. Many tasks require launching embedded sensors and hardware on the
mobile phone. Tasks that require using the microphone, or using the hart beat sensor embedded
in some handsets are examples of tasks that cannot be offloaded to the cloud. Furthermore, the
possibility of computing tasks locally is subject to the availability of sufficient resources of compu-
tation, memory, and battery life. Offloading decision algorithms in literature are mainly based on
energy consumption comparison between local computation and offloading. Energy saving is in-
deed an important aspect at mobile handsets; however, minimizing the energy consumption should
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not affect the perceived QoE by mobile end users. Therefore,applications latency constraint is an
important parameter to consider in the offloading decision process. In addition, offloading tasks
requires wireless transmission of data to the cloud gateway. Wireless channel quality affects both
transmission latency and handsets power consumption, and thus, should be included in the offload-
ing decision. To the best of our knowledge, any offloading decision algorithm that considers this
variety of parameters and keeping low complexity have been proposed. Keeping low complexity
of computation offloading decision algorithms is importantin case the algorithm is executed at the
mobile handsets. Engaging the handsets in complex computations for making an offloading deci-
sion is both time and energy penalizing. Hence, to find a quick, effective, and low energy consum-
ing offloading decision, we propose an algorithm based on successive and nested classifications—
SM-POD. The SM-POD algorithm can be easily implemented on handsets, has low complexity,
and helps increasing handsets battery lifetime. The algorithm exploits the delays imposed by each
application to find theright momentto offload or compute tasks without violating any constraint,
and keeping low the mobile handset energy consumption.

3.4 Proposed Offloading Decision Algorithm: SM-POD

We propose to perform a series of classifications that joins amultitude of parameters, without
including them in a complex optimization problem. Each of the tasks classifications is based on a
characteristic of either the mobile handset, the computational task, or the communication channel.
At the end of the successive classifications, tasks will be classed in variousvirtual buffers. By
virtual bufferwe refer to a set of computational tasks that share the same offloading decision. The
novelty of this work is twofold. First, the offloading decision process complexity is reduced while
a dependency on a variety of parameters is considered. SM-DOP trades complex optimization
problem solving with a series of successive and nested tasksclassifications. Second, mobile en-
ergy consumption is reduced by offloading tasks depending ontime criticality, handset available
resources, and channel conditions.

At each time slot, the algorithm of mobile application offloading decision is run on the set of
tasks generated by the launched applications. The proposedSM-POD algorithm is summarized as
follows:

Step 1: Offloadability classification

First step of the proposed offloading decision algorithm is to divide tasks that are offloadable and
ones that are not. To this end, in a first classification, computational tasks are classified into two
distinct sets. The classification is based on the tasks characteristic ρ that specifies if the task is
offloadable or not (see Figure 3.1). The first set,“Off” , includes all tasks that have the possibility
to be offloaded (ρ = 1). The second,“NOff” , includes all tasks that cannot be offloaded by
characteristics definition (ρ = 0).

Step 2: Urgency classification

Then, the algorithm classifies tasks in both setsOff andNOff asurgentandnot urgenttasks as
shown in Figure 3.1.

• Off set: An offloadable task is labeled asurgent when the remaining latency is less than
a predefined percentage∆th of the original latency constraint∆. Computational latency
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Figure 3.1: First and Second classification steps of the proposed algorithm.

constraints are seen as Time To Live (TTL) limits beyond which the service delivery fails.
Computational tasks are set asurgentwhen a TTL margin is reached, in other terms when
∆th% percent of the initial TTL∆ have passed. The adopted margin is either set as a constant,
or updated according to the current system state. Communication channel conditions and the
number of bits to transmitted, as well as statistics over thecomputation offloading success
can be used for adapting the TTL margin. We consider a constant ν that takes into account
the current system state parameters. Then computations areclassified asurgent if:

∆th.∆+ν≥ ∆R (3.6)

where∆R is the time remaining to reach the maximum latency constraint (current TTL).
This classification divides theOff set into two parts: theurgentoffloadable tasks set referred
to as“OffUrg” and thenon-urgentoffloadable set referred to as“OffNUrg” .

• NOff set: Tasks in theNOff set cannot benefit from computation offloading, they must be
computed locally at the MUE. Even for local computation, we classify tasks are urgent or
not. To make such a classification, we account on the mobile handset computational capac-
ity. We check if allNOff tasks can be computed at once while meeting each task latency
constraints. The check is done for equal computational capacity distribution among all tasks.
Total available computation capacity at the MUE is defined bythe parameter (MHcap). Each

task is then given a computational capacity ofF =
MHcap

|NO f f| where|NO f f| is theNO f f set
cardinal number. Tasks that cannot be executed with the allocated computational capacity
are identified through the following classification criterion:

∆ <
W
F

+ ε (3.7)

whereW is the task computational load. Tasks that verify this condition are set aslocally
urgentand are added to the not offloadable urgent set referred to asNOffUrg. TheNOffUrg
tasks must be computed locally and therefore local resources are allocated. The remaining
tasks, that do not verify the above condition, can be differed and are added to the set referred
to asNOffNUrggrouping not offloadable not urgent tasks.
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Step 2 allows then to allocate resources for tasks that are the most demanding in terms of compu-
tational capacity first. This step can be seen as a schedulingprocess that prioritizesurgenttasks.

Step 3: Resources availability check

The third SM-POD step concerns the offloadable urgent tasks represented by theOffUrg set. Ba-
sically, each of these tasks has the possibility to be offloaded (ρ = 1) and is not prevented from
being computed locally (ρ 6= 0). However, local computation of some of these tasks may notbe
possible due to a lack in available resources at the mobile handset. In this case, the tasks have to
be offloaded. This classification aims to find the tasks that have to be offloaded, i.e., it finds tasks
for which resources demands are higher than what the mobile handset can offer. This decision is
based on a series of tests taking into account computationalcapacity, memory requirements, and
mobile battery consumption.

A task is classified as “shouldbe offloaded” if any of the following conditions is satisfied:

• Mobile is battery level is critical (lower than a predefined thresholdBLevo f f ).

• The task consumes more than a predefined percentage of the available battery levelBATo f f .

• Task memory requirements surpass the allowed percentage ofavailable memory at the mo-
bile handsetMEMo f f .

• The task requires a computational capacity greater than a predefined percentage of the total
locally available capacityCAPo f f .

The offloading thresholdsBLevo f f , BATo f f , MEMo f f , andCAPo f f are parameters that can be
defined by the user through its mobile equipment operating system.

The set of tasks verifying one of these conditions is referred to as“SOffUrg” in reference to
offloadable urgent tasks that should be offloaded. The remaining tasks form a set that we refer to
as“COffUrg” in reference to offloadable urgent tasks that could be eitheroffloaded or computed
locally. This classification is represented in Figure 3.2.

Step 4: Energy consumption comparison

Each of the tasks inCOffUrg is checked for whether it can be computed locally applying the
same conditions in section Step 3. If the task is allowed to becomputed locally, then two options
are available: offloading or local computation. In order to take a final decision between both
options, the mobile handset energy consumption is investigated.Elocal, the energy spent in case of
local computation of this task using Equation (3.2) and the energyEo f f loading spent at the mobile
handset in case of offloading using Equation (3.3) are compared. If Elocal < Eo f f loading, the task is
computed locally and transferred to theNOffUrg set, otherwise, the task is offloaded. In case of a
local computation decision, memory and capacity resourcesare allocated to the task in question.
Tasks that are decided to be offloaded are added to the setSOffUrgwhich represents the set of
tasks whose offloading is necessary. This classification is also shown in Figure 3.2.

Step 5: Resources aware decision for non urgent tasks

SOffUrgis the set of tasks to be offloaded. The number of bits that should be sent radio link from
MUE to the cloud is known.
The transmission power isSTx and the transmission rate isRTx. In the case where data rate does
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Figure 3.2: Third and fourth classification steps of the proposed algorithm.

not allow the transmission of all of the tasks offloading traffic, tasks with lowest latencies are
prioritized. The mobile will offload as much tasks as possible, and the remaining tasks will be
differed to a posterior time slot.
In the case where the number of bits to be sent is less than whatthe channel capacity offers, we
refer to the transmission channel conditions. The channel coefficient is compared to a statistical
average channel coefficient calculated and updated over time. If the current channel realization
is above this average, it is considered that the channel is ina relativelyopportunisticstate. The
novelty in this case is to include current channel conditions in the decision process. Opportunistic
channel conditions allow data transmission at a lower cost.Indeed, better the channel conditions
allow having greater aggregated throughput, and thus higher energy efficiency. This is seen as an
opportunity to offload non urgent offloadable tasks from the setOffNUrg. Priority is given to tasks
in OffNUrg that have lower latencies.

Offloading non-urgent offloadable tasks can be seen not only as an opportunistic utilization of
the radio link, but also as a tool to alleviate the system in the future so it would not faceurgent
tasks too often.

The set of tasks that are going to be computed locally is identified (NOffUrg). Therefore, the
remaining mobile resources can be computed. Following the same conditions as in 3.4 to the set
NOffNUrg, we assign more tasks to be computed locally with the remaining available resources.
Tasks that could not be computed are deferred, i.e. no decision is anticipated for these tasks,
they will be re-classified in the next time slot. Thenon-urgencyof these tasks permits deferring
the decision to a future time slot, since the algorithm guarantees that whenever the task become
urgent, it will be associated to an execution decision. This step isillustrated in Figure 3.3.
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Figure 3.3: Last steps of the proposed algorithm.

The proposed SM-POD algorithm can be seen as a smart buffering process. The algorithm
distributes the tasks at the mobile side into four differentvirtual buffers. Each of these buffers
is associated with an offloading decision. Table 3.3 summarizes the virtual tasks buffers and the
associated offloading decision. Figure 3.4 shows the whole algorithm steps and indicates the
corresponding buffers to each of the decisions.

Buffer Offloading Decision

NO f fUrg Instant local computation

SO f fUrg Instant task offloading

DLE Deferred local task execution

DD Deferred offloading decision

Table 3.3: Computation offloading virtual buffers labels and decisions

3.5 Numerical Evaluation

In this section we investigate the offloading efficiency achieved with the proposed SM-POD algo-
rithm. Our evaluation highlights cost reduction in terms ofhandset battery life, memory, compu-
tational capacity, and tasks latency violation. We adopt the same parameters as the system model
described in Section 3.2, considering a single user served by a femtocell base station, within a dis-
tanced= 5m from the serving station. The considered uplink bandwidth is ofB= 20MHz (which
is among the standard LTE uplink bandwidths), the path loss coefficientβ = 5 that complies with
a multi-level building scenario [93], and the noise power asN0 = 10−3.We consider a transmission
power ofPTx = 0.2W. The simulations are averaged over approximately 2.105 channel instances
per hour.

The mobile handsetEPI is estimated between 17nJ and 19nJ which is in line with some Intel
processors EPI (Pentium, Pentium Pro, Dual Core) [94], its total energy capacity between 4Wh
and 8Wh, its available memory ofMav = 5MB.
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Figure 3.4: Successive classifications of the offloading decision proposed algorithm.
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We consider application calls that generate a burst of tasks(10 tasks). Each task is character-
ized by a required memory 1KB≤m≤ 1MB, a number of bits to be offloaded 1KB≤N≤ 20KB,
a latency constraint 90ms≤ L ≤ 300ms and a number of CPU cycles to be executed that varies
with each task and different scenario assumptions.

The application arrival modeled as a Poisson distribution with a rateλ= 2 for a time window of
Tw = 10ms. The percentage of tasks that cannot be offloaded isαno= 40%. The constraints defined
in section 3.4 are set as:BLevo f f = 20%,BATo f f = 30%,MEMo f f = 70% andCAPo f f = 50%.

According to the work by Kumaret al., the offloading decision must be to never offload when
large amount of communication is needed with relatively small amount of computation, and must
be to always offload when large amount of computations is needed with relatively small amount of
communication [49]. The offloading decision is based on energy consumption. To benchmark the
proposed algorithm, we run simulations for different scenarios that represents scenarios for which
we are in neither of the cases above. In such scenarios, Kumaret al. state that the decision depends
on the available bandwidth (Figure 1.10). We use this offloading decision criterion to benchmark
the proposed SM-POD algorithm. The adopted scenarios vary in channel conditions and amounts
of computation per task. Each scenario is defined by a combination of two parameters defining the
channel conditions and the average computation size of the requested tasks. The set of parameters
are defined as follows:

• {αmin,αav,αmax} representing respectively alow, randomandgoodchannel coefficient av-
erage. Forlow channel coefficient we consider the lowest 20% of a random Rayleigh chan-
nel coefficients generation. Forrandomchannel we adopt a random generation of Rayleigh
channel. Forgoodchannel coefficient average, we consider the highest 20% of the random
coefficients.

• {TCmin,TCmix,TCmax} representing respectively asmall, mixedandlarge amounts of com-
putation for each task.

We show numerical results for the three following representative scenarios:
Scenario 1 -Max-Max: good channel conditions (αmax) and large amounts of computation per
task (TCmax). For good channel conditions, we select the best 20% of the generated channel in-
stances.
Scenario 2 -Min-Min : bad channel conditions (αmin) and small amounts of computation per task
(TCmin). For bad channel conditions, we select the worst 20% of the generated channel instances.
Scenario 3 -Mix-Mix : random channel conditions (αmix) and mixed amounts of computation per
task (TCmix). For random channel conditions, no selection over the generated channel instances is
made.

In order to evaluate the algorithm performance, we compare to the following reference algorithms:
No Offloading Tasks are never offloaded.
Total Offloading Offloadable tasks (ρ = 1) are always offloaded.
Energy Reference Offloading Decision (EOD)Task offloading is based on the offloading energy
trade-off between local computation energy cost and offloading cost.

Elocal ≶ Eo f f loading (3.8a)

EUE,loc ≶ EUE,o f f +Ef emto (3.8b)

whereEUE,loc is the energy spent at the mobile handset for locally computing the requested
task. EUE,o f f is the energy spent at the mobile handset for sending the necessary information to
the small cell where the task will be offloaded.Ef emto=W. f is the energy spent at the femtocell
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for computing the requested tasks.W is the number of cycles to be executed at the femtocell, and
f is the computation capacity accorded to the execution of thecycles. This entity depends on var-
ious components such as system implementation, femtocell clusterisation, CAC (Call Admission
Control) at base stations, etc. Two approaches are possible: The first one compares the energy
of the whole system in order to decide on offloading. In this case,Ef emto 6= 0. Another possible
approach, which is adopted in this work, is the user centric approach. In this case, the mobile
handset searches only for reducing its own energy consumption, and the decision does take into
account the whole system energy efficiency. It consists on comparing the energy spent only by the
mobile handset for the cases of both offloading and local computation. In this case,Ef emto= 0 and
the trade-off equation will be reduced to:

EUE,loc ≶ EUE,o f f (3.9)

On figures 3.5, 3.6, and 3.7, blue curves withplus marks represent battery level in the case
where the proposed SM-POD algorithm is applied. Black curves with point marks represent the
case of energy reference offloading decision algorithm (EOD). Greencircle marked and reddia-
mondmarked lines represent, respectively, the cases of total offloading and no offloading.

Figure 3.5 shows the mobile handset battery discharge forMax-Max . In this case, offloading
is beneficial, supported by good channel conditions. Data transmission, in case of offloading, is
done through high capacity links. The graph shows that the solution that computes all tasks lo-
cally costs the most in terms of handset energy. Reference offloading and total offloading share
the same results because this is an extreme case where offloading is less battery consuming than
local computing in this scenario and thus the algorithm based on the energy trade-off will always
decide to offload the requested tasks. Figure 3.5 also shows that SM-POD algorithm outperforms
all other algorithms in terms of handset battery lifetime. In fact, taking advantage of good channel
conditions to deal with non-urgent tasks prevents the system from having a large amount of urgent
tasks to deal with in the future time slots. Therefore, by opportunistic transmission of some tasks
on better channel conditions, data is sent using lower transmission power, and thus energy is saved
and battery lifetime is prolonged. Using SM-DOP, battery lifetime is 2.3 times longer compared
to the total offloading case, and approximately 1.5 times longer compared to full local computing.
Table 3.4 resumes the battery lifetime, CPU memory overflow,and CPU capacity outage results.
It shows that the proposed algorithm prevents the system from having CPU memory or capacity
outage while respecting latency constraints. For other algorithms, local CPU resources have ex-
perienced outage in at least 4.3% of the times, while achieving lower battery lifetime. Including
CPU memory and computational capacity in the decision process prevents the outage use case
from taking place.

For Min-Min scenario, offloading tasks is not beneficial. Considering the extreme case of
bad channel conditions, offloading data is both time and energy consuming. Figure 3.6 shows the
battery discharge in such conditions. Results show that thealgorithm that does not allow offloading
outperforms the total offloading algorithm. In this case, the EOD algorithm that is based on the
energy trade-off gives results that are close to the no offloading algorithm decisions, which are
less energy consuming. SM-POD is more energy consuming thanthe reference offloading and
the no offloading algorithms. This is due to the fact that the proposed algorithm decide to offload
offloadable tasks that are assigned asurgentregardless of the channel conditions. This affects the
energy consumption of the mobile handset, but on the other hand will guarantee a good user QoE.
As it is shown in Table 3.4, latency constraints are violatedonly for the case of total offloading
up to 3%,due to bad channel conditions. The proposed algorithm trades the outage situations that
occur in both the No offloading and EOD use cases by increasingenergy consumption.
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Figure 3.5: Max-Max Scenario: Mobile battery discharge dueto tasks computation/offloading for

all considered algorithms
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Figure 3.6: Min-Min scenario: Mobile battery discharge dueto tasks computation/offloading for

all considered algorithms
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Mix-Mix scenario results are shown on Figure 3.7. The figure shows that even in this random
case scenario, the proposed algorithm outperforms the reference EOD algorithm. The latter is
clearly seen as less energy consuming than the no offloading and the total offloading algorithms.
The ability of both algorithms to adapt the decision to the current situation results in better per-
formance and prolonged battery life. However, the flexibility of SM-POD and the fact that it
encompass a multitude of parameters, allows it to achieve higher end performance. It adapts the
offloading decision to current system parameters considering at the same time the application re-
quirements, the handset available resources and the radio channel quality. The proposed algorithm
prolonged the battery life 1.45 times in these random conditions scenario compared to worst case
scenario (No offloading)
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Figure 3.7: Mix-Mix scenario: Mobile battery discharge dueto tasks computation/offloading for

all considered algorithms

In addition of energy savings at the mobile handset, SM-POD prevents the mobile from suf-
fering of CPU memory overflow and computational capacity outage and allows the user to always
have good QoE by respecting each task latency constraint. Those benefits are also validated by
simulations (see Table 3.4).

The proposed algorithm, allows, thanks to its flexible structure, the integration of several pa-
rameters in the offloading decision. By simple classifications and comparison steps, it guarantees
a user good quality of experience, even if sometimes this comes at the cost of increased energy
consumption and thus shorter battery lifetime. Nevertheless, in the random scenario case, it proved
that it could adapt to the changing situations and exploit different latency constraints and varying
channel conditions to save energy consumption and extend battery lifetime.

3.6 Conclusion

With the proliferation of mobile-enabled applications, and the computations they require, mobile
computation offloading has a grown as an effective solution for enabling handsets to do more.
Mobile devices have access to greater computational resources, and larger storage space, if they
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Scenario Algorithm

Battery

Lifetime

[mn]

CPU

memory

overflow

(%)

CPU

capacity

outage

(%)

Latency

Viola-

tion

(%)

SM-POD Proposed

algorithm
223.9 0 0 0

Max-

Max
No offloading 97.86 2.61 5.02 0

scenario EOD Reference algorithm 144.77 0.17 4.31 0

(1) Total offloading 144.77 0.17 4.31 0

SM-POD Proposed

algorithm
235.64 0 0 0

Min-Min No offloading 263.19 1.29 0 0

scenario EOD Reference algorithm 277.8 0.17 4.31 0

(2) Total offloading 231.02 0 0 0

SM-POD Proposed

algorithm
223.96 0 0 0

Mix-Mix No offloading 153.09 0.3 0 0

scenario EOD Reference algorithm 187.09 0.02 0 0

(3) Total offloading 158.87 < 0.01 0 3

Table 3.4: Simulations results for scenarios 1, 2, and 3

offload computational tasks to the cloud. However, in this chapter, we show how computation
offloading is not always beneficial for mobile users. In mobile cloud computing, offloading re-
quired sending computational data to the cloud. The energy consumption of the data transmission
varies with the size of the data to be sent, and the transmission channel conditions. A computation
offloading decision strategy that incorporates all the aspects that affects the decision, is needed.
Basically based on a simple energy comparison, proposed decision algorithms do not consider all
the parameters that could affect the offloading decision. Such observations have led to the design
of a novel multi-parameter offloading decision algorithm, characterized by a series of successive
and nested low complexity classification operations to be executed at the mobile side. In this
chapter, we propose an approach that exploits multi-fold task classification to deal with multi-
parameters optimization. No complex optimizations or multi-criteria utility function based linear
programs optimization are needed. The proposed algorithm classifies the computational tasks in
virtual buffers, each of which is associated with an offloading decision. Classifications depend on
several parameters including tasks offloadability, time criticality, handsets resources availability,
energy consumption, and radio channel conditions. The classifications lead to one of the following
offloading decisions: instant offloading, instant local computation, deferred local execution, and
deferred offloading decision. Furthermore, opportunisticcomputing and offloading are integrated
in the process. Identifying the tasks that should be offloaded, and when it should be done, is a step
forward that permits achieving higher computation offloading gains.
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The proposed algorithm is seen as a smart buffering process where distinct virtual buffers join
tasks that are associated with the same offloading decision.The buffers output orders depend on
the system conditions and are subject to quality of experience based or opportunity scheduling.

Simulation results proved that the proposed algorithm is able to achieve extended battery life-
time while preventing any CPU memory overflows and capacity outage, and while keeping users’
quality of experience by always respecting the imposed latency constraints.

We note that the proposed algorithm constitutes a base for algorithms variants that can be de-
signed by varying the classification hierarchy. As future work, it would be interesting to investigate
the impact of the classification order on the computation offloading gain.
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4.1 Introduction

4.1.1 Motivation

Edge cloud computing is a combination of cloud computing andmobile Internet paradigms. As in
cloud computing, computations are offloaded and processed on remote servers. Future 5G ubiq-
uitous mobile Internet allows mobile users to be always connected and have access to centralized
resources pool that can handle offloaded computation. Mobile cloud computing has evolved dur-
ing the past years and has adopted various architectures definitions. A first architecture definition
of MCC is where mobile devices reach the remote cloud server directly through the Internet. The
major bottleneck of this architecture is the cloud access latency. Mobile devices are connected to
the cloud through a Wide Area Network (WAN) with uncontrollable access delay. Furthermore,
energy consumption for accessing the cloud through the radio network can be significant. This
also causes a major drawback for using MCC. Edge cloud consists in moving the mobile compu-
tation process to the edge of the logical extremes of a network. A novel edge cloud architecture
was proposed in the European Project TROPIC. It consists of joining the emerging paradigm of
mobile cloud computing with the ever-evolving trend of heterogeneous networks creating thus a
local cloud in close proximity to MUEs [70]. Small cells (SCs) are small sized low-power base sta-
tions, some of which powered by mobile subscribers (femtocells). Even if small cells are endowed
storage space and computational capacities, they cannot becompared to remote cloud servers. For
this reason, small cell cloud proposes to enable cells federation in what we call a ‘computation
cluster’. MUEs send computational requests to their serving small cell (SSC) and get the compu-
tation results from that cell as well. The MUEs communicate with the Edge cloud only through a
single hop communication with the serving cell. Serving small cells have the ability of distributing
the computation load among neighbor small cells. The set of SCs in which the SSC and helper
small cells (HSCs) participate in the computation is thus called SCs computation cluster. In this
case, the second hop (and more if necessary) is between the SSC and HSCs. The SC cluster acts
as a local cloud and delivers cloud services to the mobile user, always through its SSC. In fact,
mobile users will not have to establish various communication links with several SCs. It is the
SSC that sets the strategy for handling users’ requests. Thewhole process is transparent to mobile
users whose only interest is perceiving the desired QoE, here considered as respecting the services
delay constraints.

Joining a set of small cells in one computation cluster is possible through virtualization, par-
allelization and Virtual Machines (VMs) deployment. The small cell cloud architecture assumes
the presence of a virtual entity named Small Cell Manager (SCM). One of the SCM responsibil-
ities is to handle VM deployment and manage small cell cloud resources. The computation load
is distributed among the cluster cells. The distribution depends on both computational resources
availability at each small cell, and communication channelquality between SSCs and HSCs.

The main motivation of this chapter is to extend the potential of MEC from one-hop offloading
between MUEs and the SSCs, to multi-hop coordinated offloading, in which we exploit small cell
clustering. The SSCs handle MUEs offloaded computational tasks and distribute computational
load within the cluster. As computation requests are often subject to latency constraints, time
limits should be respected for offering high quality of service to mobile users. At the same time,
the offloading and computation process should be applied in an energy efficient way in order to
reduce the system power consumption. The small cell clusters should then be set up such that
service is efficiently delivered to all mobile users.



4.1. INTRODUCTION 99

4.1.2 Related Work

Several works in literature investigate the problem of cloud resources management. Cloud re-
sources management in MCC can be classified according to several criteria.

Many offloading strategies and methodologies focused on application partitioning for offload-
ing decision purposes. The decision for each partition is either to be computed locally (at the
mobile device that launched the application) or to be offloaded to local cloudlet or distant cloud.
This kind of strategies can be classified according to the adopted partition model and the of-
floading objective. Mobile applications are modeled, partitioned, and attributed to a computing
host. Application partitioning has taken different forms.Graph-based models are used to show
the computation components context and relationships [95–97]. Using this model, computation
components are identified as to be computed locally or offloaded. Other works used linear pro-
gramming to cast the partitioning problem through linear equations [10,79,98–100]. Add to that,
many heuristics have been proposed in order to deal with highcomplexity situations and to include
a larger set of decision parameters [101–103]. Heuristics help dealing with scalability problems
and decision computation delay.

Other works focus on partitioning for computation on the cloud. In [104], Vermaet al. pre-
sented an algorithm for VM placement in virtualized systems. The goal was to design a cost aware
dynamic VM placement controller. Two types of costs were considered: power costs (activa-
tion and computation) and migration costs. The problem was identified as a bin-packing problem
which is NP-hard. The proposed solutions were three algorithms based on a FFD (First-Fit De-
creasing) policy. VM are ordered according to a specific metric, and each is accorded with the
first server that can accommodate it. Three different implementations are considered. In the first
the goal is to minimize the power consumed by all servers. Therefore, VM are sorted by size.
This strategy does not lead to global allocation optimality. Solutions are only locally optimal.
An additional strategy is proposed in order to minimize VM migration cost. This strategy aims
at minimizing the number of VM migrations. A third strategy joining both power and migration
cost is proposed. It is based on comparing two VM placements and identifies VM migrations
that allow the passage from one placement to another. These migrations are sorted by power per
unit migration cost, and the most energy efficient are selected only if the power cost decrease is
higher that the migration cost. In [105] a similar approach based on a BFD (Best-Fid Decreasing)
strategy is adopted. A heuristic based on allocating each VMto the server that can guarantee the
least power consumption is adopted. VM are sorted by decreasing CPU utilization. These works
are part of the family of proposed heuristics that are approaching the problem as a bin-packing
problem with differently sized bins [104–108]. Costs that are considered are all related to power.
Time cost has not been considered in these works, despite thefact that computation latency is a
of great importance especially for the current emergence ofreal-time applications and augmented
reality.

Another point of view, is formalizing the problem as a MarkovDecision Process (MDP) [109–
111]. An MDP approach is proposed in [111] where the goal is tooptimize long term system
performance. The work tackles specifically the small cell cloud platform and assumes the presence
of a SCM that manages cloud resources through VM placement. The MDP optimization problem
has the objective of minimizing resources offloading, network delay, and VM migration costs.
The factors that are taken into consideration in the processare each SC load, the network delay
for sending and receiving data, and the migration cost. The costs are expressed in time. A final
conclusion lead to the fact that allocating computational resources, i.e. deploying virtual machines,
at the SSC of each mobile user is the best choice since it is hasthe lowest cost in terms of network
delay. This conclusion is only true because a single VM destination is assumed per user, or in
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other words, each user is assigned a single VM. If a user request could be assigned more than one
VM, the conclusion is not always true since deploying additional virtual machine may accelerate
the process through computation parallelization, and thuscells clustering. In addition, only time
costs were taken into account in this work.

MAPCloud, a hybrid tiered cloud architecture, has been proposed by Rahimi et al. for com-
putation load distribution [102]. In this work both local and public clouds are considered in a
2-tier cloud architecture. It is a service oriented framework where users call for services at mobile
devices or on the cloud. Each service is characterized by a utility metric that depends on the user’s
and service location, service price, delay, and power consumption. Maximizing the utility over the
set of possible services allocation solutions is a NP-hard problem. An annealing based heuristic
under the name of CRAM (Cloud Resource Allocations for Mobile applications) is proposed. In
CRAM, an iterative approach over increasing distance is used to progressively include more ser-
vices in the search process. For each iteration, a set of services is randomly chosen according to
four different metrics that are normalized price, power, delay, and QoS. A good possible solution is
found through simulated annealing. In [103], a very similarapproach is adopted, this time consid-
ering users mobility. Instead of a location based work-flow as in [102], a location-time work-flow
is proposed. For introducing the mobility aspect, a center of interest location is computed for each
user. The iterative annealing algorithm is then applied over increasing distance from the center of
interest location of each user instead of its static position as in [102].

Multi-user edge cloud computing clustering has not been extensively investigated yet. Of the
few existing work that investigate the multi-users case is of Yang et al. [99]. This work assumes
that the cloud does not have unlimited computing resources.In case of multiple simultaneous
users’ requests, cloud resources should be jointly allocated in order to guarantee good QoE for
all users. The problem is formulated as a Multiple Integer Linear Programming (MILP). The
objective function is to minimize the average application delay for all the users. Scheduling is
considered in order not to allow servers to compute more thanone module at the same time. Users
requests are assumed to be formed of several components, each of which can be computed at a
different location: either locally on the mobile device, oron a cloud server. Two heuristics based
on greedy algorithms are proposed in order to approach the optimal solution. A first algorithm
computes the optimal resource allocation for each user alone, as if it was a single user case.
This leads to overloaded allocation at servers. Allocationis adjusted by slightly increasing the
average application delay. This is assured by searching forthe module which adjusting leads
to lowest increase in overall average latency. Another alternative proposal is based on sorting
requests modules by non-increasing ready time. The same order is used to allocating resources
for each module at the server that minimizes the extra delay.This work presents an interesting
formulation of the problem. However, an important aspect isnot taken in consideration, which is
power consumption. Furthermore, connection between VMs isconsidered as infinite.

In [112] the partition problem is studied for the multi-users case where mobile devices can
share communication bandwidth. The goal is to maximize system throughput in data stream ap-
plications. Mobile users also share cloud computational resources. The optimization problem is
formulated and addressed in terms of a genetic algorithm.

4.1.3 Contribution

Most of the works that tackled computation offloading were based on offloading decision for
energy saving at the mobile handsets. In Chapter 3 we proposed our own offloading decision al-
gorithm. The algorithm is studied for a single user - single cloud scenario where a mobile user
is connected to the cloud through its serving base station. However, it can be easily extended
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to a multi-user case - single cloud case since it is decentralized and implemented at the hand-
sets side. In this chapter, we tackle a cloud clustering set up paradigm. We study the cluster
set up optimization by choosing which small cells contributes in the computational clusters, as
well as the resource allocation and load distribution. In this chapter, we adopt the local small cell
cloud paradigm. We assume that small cell base stations communicate and exchange data through
wireless links. Active mobile users are connected and associated with one SC. Users have the pos-
sibility of offloading computation tasks to serving SCs. We focus on resources management inside
the small cells cluster. Resources management consists of load distribution, radio resource allo-
cation, power allocation, and computational capacities assignment. Proposed solutions are based
on a joint resource allocation of computational and communication resources, in addition to joint
computational load distribution. The approaches we propose are centralized, and can be computed
by a small cell cluster managing unit. We note that the centralized control functionality can be
implemented at any of the network small cells as well. In order to form the cluster, we assume
that the SSC distributes the computational load on a set of HSCs. According to the adopted com-
munication technologies and topologies, the cluster can beformed by multi-hop communications
between SSCs and HSCs. However, in wireless intra-cluster communication, routing protocols
should then be considered in order to optimize the computational data delivery. In our work, we
consider only the special case of two-hop MEC computing. Thefirst being between MUEs and
the SSCs, and the second, between SSC and HSCs in the computation cluster.

Our contribution in this chapter is x-fold.
First, for the single user multi-cloud use case, we propose three different novel approaches of small
cells clustering via optimization of computational load distribution between small cells. The first
approach is the optimization of the load distribution with agoal of minimizing the cluster latency.
The second consists in optimizing the cluster overall powerconsumption, and the third consists in
minimizing the power consumption from a small cell centric point of view under the condition of
respecting imposed latency constraints. In addition, we propose a clustering strategy that exploits
the trade-off between the perceived latency and the clustersize. This trade-off, discussed in Sec-
tion 2.4.5, increase system energy efficiency by using less small cells operating at higher load. The
energy gain is at the cost of an increased perceived latency.We propose a clustersparsification
approach that reduces the size of the cluster without violating the latency constraints.

Then, we tackle the case of multi-user multi-cloud use case where computation clusters should
be formed for all requests of all users. We propose a multi-user clusters optimization that allocates
jointly communication and computation resources. We focuson respecting imposed latency con-
straints and the minimization of the clusters communication power consumption. A first novel
aspect of the solution we propose, is the cluster scalability according to the computation requests
requirements. In fact, small cell cloud has always been considered in previous works as an es-
tablished set with known characteristics. Our proposed solution allows the cluster to have adap-
tive size, load distribution, and intra-cluster communication and computation resource allocation.
Computation clusters should be built so that all users are satisfied, i.e. have their computation
request handled without violating the imposed latency constraints. Hence, the second novel ap-
proach, which is to jointly form clusters such that all active users’ requests simultaneously in
order to better distribute computation and communication resources for a better users’ QoE. We
formulate the clustering problem for multiple users as an optimization problem. We distribute
the computation load of all requests among the active small cells in the network. And we jointly
allocate transmission powers for each of the small cells, and the computational capacity allocated
for each user. The objective of the optimization problem is to minimize the clusters power con-
sumption while respecting the imposed latency constraintsof each user request.

The novelty of this work is based on a journal paper [J1] and conference papers [C3] and [C5].
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4.2 System Model

We consider a multi-user indoor scenario where a setN of N small cells are deployed. A set
K of K mobile users are served each by a small cell denoted bySk. The set of SSCs is denoted
by S . The set of devices associated to the small cells is denoted byKs. Every devicek in K

sends a computational requests(Wk,∆k) to its SSCSk. Wk and∆k denote for the number of CPU
cycles to execute and the maximum latency imposed by the application, respectively. Note that
the relationship between the number of instructions and thenumber of CPU cycles depends on
the instructions type. Computational requests are characterized by the number of input and output
bits, which are the bits to be sent to the computing small celland back to the user. Each small cell
n in N is characterized by a computational capacity ofFn CPU cycles per second. Each small cell
can serve multiple devices simultaneously by according a part of its computational capacity, say
fkn, to each userk. We consider that the computation requests are already sentto the SSC. Each of
the SSC forms a computation cluster for each of the requests it received. The computation load of
each requestWk is distributed among the small cells (SSC and HSCs) of the computation cluster.
Each small celln is accordedWkn of user’sk request. We assume high granularity, and we split
computational load over CPU cycles. The SSC sends the necessary input bits to the cluster small
cells. The number of input bits is equal toθULWkn. The cluster small cells processes the bits and
sends back the output bit to the SSCSk. The number of output bits to be sent is equal toθDLWkn.
We consider point-to-point wireless backhaul connection between serving and helper small cells.
The transmission power used to send input and output bits between the SSCs and a helper small
cell n is psn. The information rate that can be achieved through the wireless channel link between
small cells, taking into account packet retransmission is:

Rsn= Bsnlog(1+
σc|hsn|

2psn

(1−PER)ΓdβN0
) (4.1)

whereσc is the shadow fading coefficient of the adopted Rayleigh channel model. The channel
fading is assumed constant for a whole transmission period.We assume perfect estimation of the
coefficientshsn of the channel between small cellss∈ S andn ∈ N . PER is the target packet
error rate,Γ indicates the SNR margin to guarantee a minimum bit error rate BER (Γ(BER) =

−2log(5BER)
3 ), d represents the distance betweens andn, β indicates the path loss exponent which

depends, in an indoor environment, on the number of walls separating the two communicating
SCs [113], andN0 is the noise power. Equation 4.2 details the path loss model,whered is the
distance between the transmitter and the receiver,d2D,indoor is the two dimensional separation
between the transmitter and the receiver,n is the number of penetrated floors,q is the number of
walls that separate the transmitter and the receiver small cells, andLiw is the penetration loss of
walls.

PL(dB) =38.46+20log10d+0.3d2D,indoor

+18.3n(n+1)/(n+2)−0.46+q.Liw
(4.2)

We adopt the small cells deployment model for urban scenarios proposed in the 3GPP frame-
work [113]. This model represents a single floor building with 10m x 10m apartments in a 5 x 5
grid. Each apartment is assumed to be equipped with a deployed small cell. Parameterρ indicates
the deployment ratio of SCs, which is the percentage of apartments in which the deployed base
station is active. In the adopted system model we only consider a single floor, therefore,n= 0 and
d = d2D,indoor in Equation 4.2.
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P∗ =

{

P0+∆pPTx+Pcomp, 0< PTx < Pmax;

Psleep, PTx = 0.
(4.3)

wherePcomp= EPC×W represents the computation power consumption which is proportional
to the number of CPU cyclesW executed by the SC characterized by an energy consumption per
cycle equal toEPC.

4.3 Single-user Multi-cloud Use Case

4.3.1 Problem Statement

We consider at first a single user case scenario, where a mobile user terminal offloads a computa-
tion request to its SSC (see Figure 4.1). We do not tackle the problem of user association with a
small cell. Users are already connected to one small cell to which they can send their computation
requests. Furthermore, we do not deal with the offloading decision process at the mobile handset
side. We assume that mobile handsets have already an offloading decision process that takes into
account offloading related parameters. Note that by making this assumption we do not link the
cluster set up with the computation offloading at the mobile side. It is a realistic scenario since
MUEs only expect the service to be delivered with no additional delay, regardless if it is computed
on the MUE, SSC, or in a SSC. However, incorporating the offloading decision and the SSC is
possible by sending all requests to the SCM. The SCM computesthan the offloading decisions
and reports back to the MUEs. In this case, SCM can jointly optimize the set of offloaded com-
putations and their computing clusters. In this section, weconsider that the SSC (SSC) receives

Figure 4.1: Single-user small cell cloud scenario.

a computation request from one of its connected mobile devices. The computation request is de-
fined as a set of CPU cycles/instructions to be executed/computed under some latency constraint
defined by the application. The goal of the SSC is to compute the user request without violating
the imposed latency constraint. Depending on the system state and its available resources, SSC
may decide to either compute users’ requests locally (i.e. using its own computational resources),
or build a cluster of small cells in order to distribute computation on the small cell cluster. In
case of computation distribution on a cluster of small cells, load distribution should be optimized
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along with computation resources at each of the cluster small cells. Furthermore, communication
resources for sending computation data from SSC to HSCs should also be adequately allocated in
order to guarantee tolerable data delivery time and communication power consumption.

We consider a set ofN small cells each endowed with a total computational capacity of Fn

[CPU cycles/sec]. Serving small cells receives a computation request for runningW CPU cycles.
The maximum processing time allowed is set by the application parameter∆app. Therefore,∆app

is the latency constraint to respect for the computation delay in order to serve the mobile user’s
request. The SSCshas the choice of either computing the request with its own local resources, or
establishing a small cells computation clustering.

For the computation request to be satisfied, defined by(W,∆app), by using only local resources
on SSCs, the following condition should hold:

W
Fs
≤ ∆app (4.4)

The left term of this equation represents the minimum computation time that can be achieved at
the SSC. In this case, the totality of computational capacity Fs at the SSC should be allocated
for the computation of the request. If equation (4.4) does not hold, then the SSC forms a small
cells computation cluster in order to distribute the computation load. Each of the HSCs in the
computation cluster is accorded a fraction of the computation load. However, to guarantee service
delivery to the mobile user, resources should be adequatelyoptimized. The SSC has the following
tasks: (i) Choose which small cell to include in the computation cluster and distribute computa-
tional load on the chosen HSCs. (ii) Allocate computationalresources at each HSC. (iii) Manage
communication resources for sending and retrieving necessary data to and from SCC to HSCs. We
consider that small cells communicate through point-to-point wireless backhaul connection (5G,
4G, 3G, WiFi, WiGig, etc.). For formulations and simulations, we adopt a wireless communica-
tion over Rayleigh non ergodic channels. Nevertheless, SSCmay optimize a clustering process to
compute the request in question even if the condition in equation (4.4) is verified. This decision
depends on the strategy adopted for computing each user request. In the following of this section,
several strategies for small cells clustering are proposed. The variety of proposed strategies covers
different type of applications and user requirements.

For notations simplification, and since this section tackles the single user case, the indexk of
all notations is omitted since it always refers to the singleuser we consider.

4.3.2 Latency Minimization

In this section, the goal is to compute the mobile user request while minimizing the service latency.
In general, the total overall service latency is measured from the moment the request is received by
the SSC until all components are computed and received at theSSC. The total latency expression
can be written as follows:

∆ = max
n∈{1,...,N′}

(∆comm(n)+∆comp(n)) (4.5)

whereN′ is the number of HSCs that can be part of the computation cluster. ∆comm is the time
needed for sending necessary data to and from HSCs. It is thencomposed of two components:
∆UL and∆DL. ∆UL is the transmission time from SSC to HSC, and∆DL is the transmission time
from HSC to SSC. In the case of the SSC (i.e. whenn = s) there is no communication delay
and∆comm= 0. ∆DL and∆UL depend respectively on the number of bitsNn

DL andNn
UL to be sent
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and received at HSCs. They are related to the load distribution and to the computation loadWn

allocated at each HSCn through the following equations:

Nn
DL = WnθDL

Nn
UL = WnθUL

whereθDL and θUL are constants that account respectively for the overhead due to the uplink
and downlink communications and for the ratio between output and input bits associated to the
execution ofWn CPU cycles at HSCn. We note that parametersθDL andθUL vary according to
the application type. Indeed, different classes of applications give rise to different sets of values
for the pair(N,W). Not all applications are equally amenable for computationoffloading. The
classes of computation more suitable for offloading are the ones where, for a given computational
loadW, the number of bitsN to be exchanged to enable the transfer of the program execution is
low [49].

The total transmission time can then be written as:

∆n
comm = ∆DL +∆UL

=
WnθDL

(1−PER)Bs,nlog(1+as,nps,n)
+

WnθUL

(1−PER)Bs,nlog(1+as,nps,n)

=
Wnθ′

(1−PER)Bs,nlog(1+as,nps,n)
(4.6)

with θ′ = θUL+θDL
1−PER , Bs,n is the bandwidth used for transmitting data between SSCs and HSC

n; ps,n is the power spent for transmitting this data which in this case takes the maximal value;

as,n =
σc|hs,n|

2

Γ(BER)dβN0
, whereh is the channel coefficient,σc the shadow fading coefficient,Γ(BER)

the SNR margin for meeting a targetBER, d the distance between SSCs and HSCn, β the path
loss coefficient, andN0 the noise power. 1

1−PER the average number of retransmissions assuming
independent errors on each packet for a packet error ratePER. The packet error rate is determined
by the bit error rate BER and the transmission packet sizepsdetermined by the used modulation
and coding scheme for each transmission:

PER= 1− (1−BER)ps.

We consider, for simplicity, that both SSC and HSC transmit with the same optimized power
ps,n. Otherwise, the transmission delay in downlink from HSC to SSC cannot be estimated unless
it is fixed a priori.

∆comp is the time required to compute the load accorded to the smallcells. This term depends
on the load distribution in the cluster, and on the computational capacity allocated at each small
cell of the cluster. Withfn the allocated computational capacity, andWn the computation load at
HSCn, ∆comp(n) is defined as follows:

∆comp(n) =
Wn

fn
. (4.7)

The first strategy consists in minimizing the cluster latency that is the time that is consumed
for load distribution, computation at the cluster nodes, and the computation results reporting to
the SSC. This kind of strategies could be requested by the user in order to increase his QoE.
This strategy does not impose power consumption constraints nor cluster size limitations. For
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these reasons, the system is forced to include all of the active and reachable small cells in the
computation cluster. Since we consider point-to-point communication between small cells, the
overall cluster latency is the maximum latency as defined in (4.5). This latency depends on the
computational load through the computation time at the small cell, and on the channel quality
through both communication latency in uplink and downlink.For this strategy, we consider that
the SSC communicates with all other HSCs in the cluster with the same transmission powerps,n =
Pmax. All transmission links are fully used in order to maximize effective throughput and decrease
the total experienced latency.

The optimization problem is formulated as follows:

min
{Wn}

N′
n=1

max
n={1,...,N′}

AnWn

s.t. Wn≥ 0, n= 1, . . . ,N′,
N′

∑
n=1

Wn =W

(P B1)

where we defineAn ,
1
fn
+

θ′

log(1+as,nPmax)
. The conditions inP B1 guarantee the totality of

the computation block is distributed among the cluster small cells. The solution of this optimiza-
tion problem leads to a load distribution among all active base stations in a way that unifies the
experienced latency at each small cell. This is intuitive: if two small cells do not have the same
experienced latencies, then we can always adjust the load distribution in order to decrease the
higher latency and increase the lower one in order to have a smaller maximal value.

ProblemP B1 is a non-smooth problem. However to find its optimal solution, by introducing a
slack (real positive) variablet = max

n={1,...,N′}
AnWn we can solve the following equivalent problem:

min
t,{Wn}

N′
n=1

t

s.t. Wn≥ 0, n= 1, . . . ,N′,
N′

∑
n=1

Wn =W

AnWn≤ t, n= 1, . . . ,N′.

(P B1)

Theorem 1. The convex problemP B1 is equivalent toP B1 and its optimal solution is given by

Wm =W

(

N′

∑
n=1

Am

An

)−1

and Wn =
Am

An
·Wm, ∀n 6= m. (4.8)

Proof. First observe that problemP B1 is convex, then any local optimal point is a global opti-

mal solution satisfying the KKT conditions (note that Slater’s condition holds true). Given the

Lagrangian function defined as

L(t,W), t−
N′

∑
n=1

λnWn−ν

(

N′

∑
n=1

Wn−W

)

+
N′

∑
n=1

µn(AnWn− t)

(4.9)
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whereW = [W1, . . . ,WN′ ] andλn, ν, µn are the Lagrangian multipliers, the KKT conditions can be

written as

(a):
∂L

∂t
= 1−

N′

∑
n=1

µn = 0,

(b):
∂L

∂Wn
=−λn−ν+µnAn = 0, ∀n,

(c): ν ∈ R,
N′

∑
n=1

Wn−W = 0,

(d): 0≤ λn ⊥Wn≥ 0, ∀n,

(e): 0≤ µn ⊥ (t−AnWn)≥ 0, ∀n.

(KKT P B1
)

To find the optimal solution of this system, observe that at least one multiplierλn has to be null,

sinceλn > 0 for all n leads from (d) toWn = 0 and this contradicts condition
N′

∑
n=1

Wn =W. Then

let us suppose that there exists at least a positive multiplier λn > 0. From (d) we getWn = 0 and

from (b)−ν+µnAn > 0. Hence using (e) it resultst > 0 sincet = 0 impliesWm = 0, ∀m and this

contradicts condition (c). Therefore it followst > 0 and from e)µn = 0 so that to meet condition

−ν+µnAn > 0 it results−ν > 0, ∀n. On the other hand to satisfy (c) it exists at least a value of

Wm > 0 for which we yield from d)λm = 0 and from (b)−ν+µmAm = 0. This is an absurdum

since−ν > 0. Then it resultsλn = 0 andν = µnAn, ∀n. Let us now focus on the multiplierµn.

Note that if there exits a valueµn = 0 this leads toν = 0= µm for eachm and then condition in

(a) never holds. It follows thatµn > 0 for all n and from (e)t = AnWn = AmWm for eachn 6= m or

Wn =
AmWm

An
. Hence from (c) we get

N′

∑
n=1

Wn =
N′

∑
n=1

AmWm

An
=W so that the optimal solution ofP B1

is

Wm =W

(

N′

∑
n=1

Am

An

)−1

and Wn =
Am

An
·Wm, ∀n 6= m. (4.10)

Note that this strategy may in some cases result in assigningvery small computation loads to
some HSCs that either experience a very bad communication channel quality with the SSC, or are
very far from the SSC and subject to severe path loss, or both.In these situations, HSCs in bad
conditions will consume the major part of the time for receiving and transmitting data. Even if
energy consumption is not in the goal of this strategy, this kind of situations pushes the energy-
latency trade-off to its extent. It consumes a lot of energy for a very small amount of computation,
and thus system energy efficiency can be improved. This problem could be solved by adding a
pre-selection step that limits the number of participatingHSCs. This could be done by setting a
threshold on channel quality, distance, or both. However, if the sole goal is to guarantee a QoE
and to server the users’ requests regardless of the cost,P B1 is able to deliver the optimal solution.
For improving local cloud clusters energy efficiency, we propose a clustering strategy that reduces
the cluster size while keeping the QoE guaranteed.
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4.3.3 Cluster Sparsification

Forcing a small cell exclusion rule at the beginning of the clustering process may result in service
delivery failure. If we exclude too many small cells, the computational and communication re-
sources of the considered HSCs may not be enough for computing a request. And since the top
objective is to serve the user’s request, increasing the cost but guaranteeing the service is a better
solution than reducing the cost and failing at delivering the service. In this section, we base on
the solution of the previous latency minimizing strategy. The objective is to remove nodes that
are accorded very small computational tasks in order to reduce the cluster size, and eventually
its energy consumption. The main goal is to keep the service guarantee while trying to exclude
costly HSCs. This may be seen as an exploitation of the latency/power consumption and cluster
size/latency trade-offs. We propose to reduce the size of the SSC, by distributing higher loads on
less small cells. Some small cells will then have no computational load, while others will have
more. To minimize the size of the cluster, a cost is imposed for each used HSC. Minimizing the
size of the cluster is equivalent to minimizing the number ofsmall cells that are accorded compu-
tational load. The optimal cost function to use is thel0 norm, which associates a zero cost to every
non used HSC and a unit cost for used HSCs. Minimizingl0 norm costs is minimizing the size of
cluster as much as possible. In this case, the optimization problem can be cast as follows:

min
W

||W||0

s.t.
Wn

fn
+

Wnθ′

log(1+as,nPmax)
≤ ∆app, n= 1, · · · ,N′

Wn≥ 0, n= 1, · · · ,N′

N′

∑
n=1

Wn =W

(P B l0)

whereW = [W1, · · · ,WN′ ]. Unfortunately, implementing the minimization of al0 norm is not
an easy task due to the discontinuous nature of its objectivefunction. Therefore, we replace thel0
norm by a cost function with similar properties. For having the same behavior of thel0 norm, the
cost function should be null at zero and positive otherwise.We propose the following function:

F2(x) =
α|x|

1+α|x|
(4.11)

with α a parameter that sets the sharpness of the function. Figure 4.2 shows the variation ofF2(x)
as a function ofα.

If x represents the percentage of computation load accorded to each HSC,F2 penalizes more
HSCs with higher computational load. As seen in Figure 4.2, the higherα is, the moreF2(x)
approaches the form of thel0 norm. However, in some cases, the solution could lead to advocating,
if possible, many HSCs with low load for a lower cost. This is caused by the continuity of theF2

and depends on its sharpness. If the solver is sensitive enough to capt the weak gradient that exists
even for high values ofα, then the solution risks to be driven toward low load HSCs. Even though
this case is less probable to happen with small scale scenarios, it is more likely to occur with a
large scale system.

For this reason, we propose a second cost function that is null at zero, continuous, and that
associates lower cost for high loaded HSCs. The function is designed in a way that drives the
solver for assigning higher loads at each considered HSCs. It is designed to inverse the gradient
variation with the load increase comparing toF2. The cost function we propose is the following:

F3(x) = 1+(10γ|x|−1)e−γ|x|−
|x|
2

(4.12)
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Figure 4.2: Cost functionF2(x) variation withα

whereγ also sets the sharpness of the function as can be seen in Figure 4.3.
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Figure 4.3: Cost functionF3(x) variation withγ

As it is shown in Figure 4.3, the cost function sharpness increases for high values ofγ. This
enormously decreases the chances that the solution deriveslow load HSCs. In addition, it is clear
that lower costs are given to higher load HSCs. This further helps the solution to tend toward
high loaded HSCs, and thus, to smaller cluster size.F3 does not have the property of thel0 norm
of associating a value of 1 to the non-zero elements. However, as explained above, this function
could help achieve the required solution while speeding up the optimization process. Indeed, the
slope inF3 cost function will accelerate the convergence to a solution. Both F2 andF3 can thus
be used as cost functions for reducing the computation cluster size. They have similar behavior at
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small scale scenarios, withF3 giving a higher cost for higher loaded HSCs. For both cases ofF2

andF3 as cost functions, the optimization problem is cast as follows:

min
{Wn}

N′
n=1

N′

∑
n=1

Fi(Wn), i = 2,3

s.t.
Wn

fn
+

Wnθ′

log(1+as,nPmax)
≤ ∆app, ∀n= 1, · · · ,N′

Wn≥ 0, ∀n= 1, · · · ,N′

N′

∑
n=1

Wn =W.

(P B i)

The first condition inP B i guarantees the respect of the application latency constraint by each
of the HSCs, and the SSC. The second and third conditions guarantee that the whole task com-
ponents will be computed. The solution of this problem, regardless of the cost function, tends to
include HSC that are close to the SSC to the computation cluster. The closer the HSC, the higher,
in general, is the channel achievable rate. Therefore, closer HSCs have lower latencies that farther
HSCs and can be accorded larger computation tasks.

4.3.4 Minimization of Cluster Power Consumption

Both proposed strategies in 4.3.2 and 4.3.3 deal with the clustering optimization problem from a
latency minimization and cluster size reduction point of views. These strategies do not account
for the cluster power consumption. Power consumption is an important issue in local MEC and
especially in small cell cloud since the local cloud serversare typical cellular network base sta-
tions. Both first strategies aimed at achieving latency gainand good experience quality. Another
approach to the problem, is based on the fact that the latencyconstraint given by each application
(∆app) should be respected, but not necessarily anticipated. Indeed, if a computation is executed
and delivered to the user before∆app seconds, this does not necessarily increase MUEs perceived
QoE. What is necessary, is service delivery within — at most —∆app. Users’ experience quality
won’t be affected if this constraint is respected. Even if nolatency gain over∆app is achieved,
users will still be able to receive the required service in time. The main idea is to exploit the
latency-power consumption trade-off in local MEC in order to reduce the small cells cluster power
consumption while keeping a good QoE. The following strategies stress on power consumption
minimization, constrained by latency limitations.

The computation power consumption can be formulated as the product of the number of pro-
cessed CPU cycles and the Energy Per CPU cycle (EPC) of the small cell processor,

Pcomp=
W.EPC
∆comp

= fn.EPC. (4.13)

In the following, we focus on communication power consumption considering that the sum
of computing power consumption is fixed for each task independently of the load distribution.
Communication power consumption can be optimized according to the channel quality, the com-
putational capacity offered by each HSC and the applicationlatency constraint. If no limitations
were imposed by the offered computational capacities and the latency constraints, the problem
would be similar to water-filling [114]. However, with the additional constraints, the problem
is a joint optimization of the transmission powerps,n and of the percentage of computationWn

accorded to each HSC. Since the optimization problem aims atminimizing the communication
power consumption, the optimal solution would be to computethe request at the SSC. Indeed, the
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SSC allocates all of its computational capacity to compute amaximum load within the latency
constraints, with any communication cost (ps,s = 0). If computational resources at the SSC are
sufficient for computing the whole request without violating the latency constraint, then no opti-
mization problem solving is needed and the load is accorded to the SSC. This is true only for the
case wherefs∆app≥W. Otherwise, in the case wherefs∆app<W, the SSC will compute as much
as its resources allow in a∆app time. The SSC load will be equal toWs = fs∆app. Then, for the
remaining computational load, the optimization problem can be cast as follows:

min
p,W

N′

∑
n=1,n6=s

ps,n

s.t. (a) Wn≥ 0, ∀n= 1, · · · ,N′;n 6= s

(b)
N′

∑
n=1,n6=s

Wn =W−Ws,

(c)
Wn

fn
+

Wnθ′

log(1+as,nPs,n)
≤ ∆app, n= 1, · · · ,N′;n 6= s

(d) 0≤ ps,n≤ Pmax, n= 1, · · · ,N′;n 6= s.

(P B4)

ProblemP B4 is non-convex, due to the non-convexity of the delay constraint (c). In the following
we caseP B4 into a convex equivalent problem. The delay constraint in (c) is equivalent, for
ps,nWn > 0 and under the feasibility condition∆app fn >Wn, to:

− log(1+as,nps,n)+
fnWnθ′

∆appfn−Wn
≤ 0 (4.14)

Note that the delay constraint in (4.14) is convex, as can be easily proven by showing that its
Hessian is a semi-definite positive matrix. Therefore, the problemP B4 can be reformulated as:

min
p,W

N′

∑
n=1,n6=s

ps,n

s.t. Wn ≥ 0, n= 1, . . . ,N
′
;n 6= s,

N
′

∑
n=1,n6=s

Wn =W−Ws

0≤ ps,n≤ Pmax, n= 1, . . . ,N
′
;n 6= s

−log(1+as,nps,n)+
fnWnθ′

∆appfn−Wn
≤ 0, n= 1, . . . ,N

′
;n 6= s,

Wn−∆appfn < 0, n= 1, . . . ,N
′
;n 6= s.

(P B4)

ProblemP B4 has the following properties:

Theorem 2. Given problemP B4 andP B4, the following hold:

(i) Necessary condition forP B4 to be feasible is:

Ws+
N′

∑
n=1,n6=s

∆app
1
fn
+ θ′

log(1+as,nPmax)

≥W; (4.15)

(ii) P B4 is a convex problem, then any local optimal solution is a global optimal minimum;

(iii) P B4 andP B4 are equivalent
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Proof. To prove point (i) of Th. 2 observe that Equation (4.15) is a global condition that can be

easily derived from (b), (c) and (d) inP B4. For proving point (ii), observe that problemP B4 is

convex since the objective function as well as all the constraints are convex. Then any stationary

point is aglobal optimal solution of the problem. As for point (iii), since for P B4 the Slater’s

constraint is verified, any optimal solution satisfies the KKT conditions ofP B4. The Lagrangian

function associated toP B4 is:

L(p,W),
N′

∑
n=1,n6=s

ps,n−
N′

∑
n=1,n6=s

βnWn+λ

(

N′

∑
n=1,n6=s

Wn− (W−Ws)

)

+
N′

∑
n=1,n6=s

µnps,n+
N′

∑
n=1,n6=s

αn (ps,n−Pmax)

+
N′

∑
n=1,n6=s

τn

(

−log(1+as,nps,n)+
Wn fnθ′

∆appfn−Wn

)

+ηn(Wn−∆appfn)

(4.16)

whereβn, λ, µn, αn, τn, andηn are the Lagrangian multipliers. The KKT conditions can be written

as:

(a):
∂L

∂ps,n
= 1+αn−µn− τn

as,n

1+as,nps,n
= 0, ∀n 6= s,

(b):
∂L

∂Wn
= λ−βn+ τn

f 2
n ∆appθ′

(∆app fn−Wn)2 +ηn = 0, ∀n 6= s,

(c): λ ∈ R,
N′

∑
n=1,n6=s

Wn− (W−Ws) = 0,

(d): 0≤ βn ⊥Wn≥ 0, ∀n 6= s,

(e): 0≤ αn ⊥ (Pmax− ps,n)≥ 0, ∀n 6= s,

(f): 0≤ µn ⊥ ps,n≥ 0, ∀n 6= s,

(g): 0≤ τn ⊥

(

−log(1+as,nps,n)−
Wn fnθ′

∆appfn−Wn

)

≥ 0, ∀n 6= s,

(h): 0≤ ηn ⊥ (∆appfn−Wn)> 0, ∀n 6= s.

(KKT P B4
)

wherea⊥ bstands for〈a,b〉= 0. From the complementary condition (h) we getηn= 0,∀n 6= s.

We study these two cases separately: i)τn > 0 and ii)τn = 0. Under assumption i), it follows from

(g) that the delay constraint is always active. Therefore, if ps,n > 0 thenWn > 0 and we have a one

to one relationship established between the transmission power and the computational load. From

(d) we have thatβn = 0, then from (b) it results thatλ < 0. Finally, assume thatτn > 0 andps,n = 0,

then the solutionps,n = 0,Wn = 0 is achievable according to the one to one established relationship

betweenps,n andWn. We now consider the case ii= whereτn = 0. Under this assumption (b)

reduces toλ = βn which contradicts the fact thatλ < 0 and this leads to an absurdum.

The optimal strategy tends to assign the high computation loads to small cells with larger
computational capacities and better communication channels.
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4.3.5 Minimization of Small Cell Selfish Power Consumption

The previous optimization targets the minimization of the overall communication power consump-
tion. This may lead to that some small cells hold greatly higher energy costs than others. This hap-
pens, for example, when a certain HSC has very high computational capacity. This small cell will
then be allocated very high load which leads to increasing its communication power consumption
compared to other HSCs. In this problem, we address selfish minimization of the communication
power consumption, i.e., each small cell in the cluster tends to reduce its own energy consumption.
The power minimization should always take into account the application latency constraints. For
the same reasons as inP B4, the SSCs will be assigned a load equal tof s∆app. The optimization
problem can be set as follows:

min
p,W

max
n={1,...,N′}

ps,n

s.t.
Wn

fn
+

Wnθ′

log(1+as,nps,n)
≤ ∆app, ∀n= {1, · · · ,N′};n 6= s,

Wn≥ 0, ∀n= {1, · · · ,N′},
N′

∑
n=1

Wn =W,

0≤ ps,n≤ Pmax, ∀n= {1, · · · ,N′},
ps,s = 0,
Ws = min{ fs∆app,W}.

(P B5)

The solution will tend to accord to all small cells an equal power consumption. The same reasoning
of P B1 applies. If any small cell has a greater power consumption than the others, the load
distribution can be modified, if possible, to decrease the maximal power consumption value. This
policy will most likely increase the overall cluster power consumption comparing toP B4.

4.3.6 Numerical Evaluation

We presented four different strategies for small cells clustering in the concept of local mobile
computing through computation offloading to SSCs. These strategies differ in their optimization
objective, and therefore form different clusters. As proved in [111], in a cluster of size 1, the less
costly solution for small clustering is to compute the tasksat the SSC. For the latency minimizing
strategies, this is clearly not the case when we can include more than one computation server. For
the power minimizing strategies, it is the most beneficial tocompute the totality of the tasks at
the SSC. By doing so, there is no communication cost. But thisis not always possible due to the
limited computational capacities at small cells.

In this section, we compare the solution ofP B1 andP B4 in a 3GPP 5× 5 apartments grid
scenario.ρ is the ratio of apartments where active small cells are deployed. For simplicity we
consider a static user connected to the small cell in the center of the grid (see Figure 4.4). Direct
neighbors HSCs (separated of SSC by a maximum of 2 walls) are referred to as Near HSCs.χNear

determines the percentage of Near HSCs among active small cells.
Figure 4.5 shows how much load can be allocated to the SSC withboth latency and power

minimizing strategies. The computational load ration of SSC, near HSCs, and far HSCs (∑Wn
W ) are

reported with respect to the ratio of near HSCs with respect to the number of active HSCs in the
grid (Ξnear). Simulation parameters are listed in table 4.1

P B1 solution tends to give larger computation tasks to far HSCs thanP B4, despite the fact that
they are subject to an average weak transmission channels due to larger distance from SSC. This
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Figure 4.4: 3GPP apartment grid with small cells emplacement

Table 4.1: Simulation parameters values
Parameter value Parameter value

Runs 3000 ρ 0.25

B 20MHz σc 10

N0 -118.4 [dB/Hz] BER 10−6

W [108;2.108] ∆app [5;8]

fn [106;2.106] θUL 1

θDL 0.2 Pmax 1 [W]

P0 10.1 [W] ∆p 15
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Figure 4.5: Comparison of load distribution to each HSC set and SSC for latency and power

consumption minimization

strategy allows the cluster to reduce its latency.P B1 takes advantage of all active HSCs, especially
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Near HSCs to which it allows a greater computation load in order to achieve a lower overall latency
since they normally have better channel conditions and are subject to lower path loss. The solution
of P B4, which objective is to minimize the cluster power consumption, assigns more computation
load to the SSC when possible, because it has no communication power consumption. This comes
at the cost of increasing the cluster latency since computational load is not distributed in a way
that guarantees faster cluster computations. InP B1 load is distributed such that all small cells in
the cluster have the same overall latency of receiving, computing, and sending back the results
to the SSC. Whereas inP B4, the load is not distributed according to perceived latency, and thus
some small cell with higher loads, notably SSC, will consumemore time for tasks execution that
others, and therefore, increase the overall cluster perceived latency. As it is shown in Figure 4.6,
P B1 has the largest latency gain, as expected. It shows also thatthe optimizations that target the
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Figure 4.6: Latency gain of different strategies comparingto ∆app

minimization of the power consumption, i.e.P B4and P B5 do not achieve almost any latency
gain. In fact, these strategies take advantage of all the available time delay in order to further
reduce power consumption. Transmitting with lower transmit power increases the bit duration,
and thus the communication time. They push the latency-power consumption trade-off to its limits
defined by assuring QoE. Figure 4.6 also shows that when we tend to sparsify the solution in order
to eliminate HSCs with very low computation tasks (P B i), we can lose up to 15% in terms of
latency. However, this gain in latency is traded with power consumption as can be seen in Figure
5.7. As it is shown in the graph,P B i achieves the higher power consumption gain comparing to
the consumption ofP B1. This gain is between 50% and 60% for allχnear value, i.e. the gain in
power consumption is considerable for all HSCs distribution in the apartments grid. We notice that
for the case where the power minimization is HSC centric, thegain decreases of approximately
10% for scenarios where far HSCs are dominant, and it decreases less when the majority of HSCs
are in the Near HSCs set. As forP B3 where the solution of latency minimization is sparsified,
it is shown that we can increase the power consumption gain from 0% in the case ofP B1 up
to 33% for deployments where far HSCs dominate. In fact, whenfar HSCs are numerous, the
chances of being in a situation where far HSCs are accorded very low computation load increase.
Therefore, more gain can be achieved in such scenarios. Since in the case ofP B3 we assumed



116 CHAPTER 4. SMALL CELLS CLUSTERING FOR MEC: F ROM SINGLE -USER TO M ULTI -USER

that transmission power is constant and equal toPmax, the gain in power consumption comes only
from the reduction of the cluster size. ForP B i andP B4, transmission power consumption can
be controlled. For this reason, the power consumption gain in these cases is a result of both
transmission power adaptation and cluster size reduction.Figure 4.8 shows the ratio of used HSCs
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Figure 4.7: Power consumption gain for different strategies comparing to the maximum power

consumption

to form the cluster among the total number of active small cells. This plot shows that all strategies
that gained in power consumption own a part of it to the cluster size reduction.P B i is the strategy
that uses the smallest cluster size. Moreover, it tends to use more HSCs whenever they are in the
Near HSCs set. This can be seen from the gain decrease when theχnear increases. We notice
that (P B4), which has higher power consumption gain thanP B3, achieves almost the same gain
in cluster size. Additional power gain is then due to power control and load distribution. The
difference of power consumption gain betweenP B i andP B4 is also due to the load distribution
since the first minimizes the overall power consumption and the second does an HSC centric power
consumption. Power consumptions are compared in Figure 4.9that shows the power consumption
distribution over the HSCs set. It is clear that the HSC centric approach allocates more power to
far HSCs to be able to lower the power allocation for Near HSCs. This will balance the power
consumption over the cluster HSCs. But as seen in Figure 5.7,this comes at the expense of higher
overall cluster power consumption.

4.4 Multi-user Multi-cloud Use Case

In this section, we extend the cluster set up optimization problem in a local MEC, to the muli-user
case (See Figure 4.10). Each of the SSC will form clusters forits own requests. SSC will then
share HSCs and their computational capacities. This requires a joint and simultaneous set up of
the computations clusters. Almost all previous work considers that computational capacities at the
cloud are always sufficient for computing users’ requests. Such an assumption is not always true,
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Figure 4.8: Ratio of used HSCs for different strategies
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Figure 4.9: Power consumption distribution for power saving strategies

especially in local small cell cloud. SSCs cells are small base stations with limited power and
computational capacities. In the case where there are a lot of users, SSCs may receive concurrent
requests at the same time. The load distribution and computational resource allocation should
be jointly assigned for all users in order to guarantee QoE for all users. The offloading decision
would be far more interesting if done with a global view on allactive users in the system. If we
consider that each user allocates its own resources with a selfish behavior where each SSC forms
its own cluster without taking into account the presence of other users’ requests, then, not all users



118 CHAPTER 4. SMALL CELLS CLUSTERING FOR MEC: F ROM SINGLE -USER TO M ULTI -USER

Figure 4.10: Multi-user small cell cloud scenario.

will have enough resources to compute their own tasks. Even if the system resources are sufficient
for computing all requested tasks, non-coordinated resource allocation by various SSC can cause
system overload. Instead of distributing the load in order to satisfy all requests, SSC may ask for
the same resources at the same HSCs, which results in failurein requests computation due to lack
of resources.

We study the multi-user computation partitioning and cloudresource allocation problem under
application latency constraints. In our work, we consider an idealistic approach where transmis-
sions between small cells are orthogonal. In this thesis, wedo not tackle interference management
techniques in small cell computation clustering. The idea is to jointly allocate communication
and computation resources in the novel proposed edge cloud architecture under considered system
characteristics. The goal here is to set a main insight aboutwhat can be done in cluster-based
distributed edge cloud platforms. The proposed solutions and concepts can be upgraded to be
interference-aware, and to adapt cluster set up to radio interference map. Interference aware small
cell clustering in edge cloud computing is indeed an interesting step that can be considered as an
advanced in-depth future investigation of small cell clustering solutions. For example, cluster set
up can target interference limitation goals. Interferencein general can be tackled through various
mechanisms such as orthogonalization (frequency, time, orspace duplexing), diversity increase
through repetition coding and MIMO systems for example, coordinated multi-points transmis-
sions, colored graph techniques, and interference margins.

For simplifying notations, we refer to the set of active small cells asN .
We adopt the system model described in 4.2, and we denote byp, (pk

sn)∀n,s,k, f , ( fkn)∀k,n,
w , (wkn)∀k,n respectively, the transmit powers, computational rates and computational loads
associated to each mobile user.

4.4.1 Multi-user Clustering Optimization

We consider a multi-user MEC scenario, where SSC set up computational clusters with the ob-
jective of reducing intra-cluster communication power consumption. Our proposed solutions is an
extension ofP B4 solution of Section 4.3.4 to the multi-user case. In the caseof multiple users,
we propose to formulate the problem with the objective of minimizing the sum of transmission
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powers inside the cluster. Under the constraints of resources availability at each small cell, the
transmission power budget limitation, and the respect of latency constraints, the problem is set as
follows:

min
p,f,W

∑
s∈S

∑
k∈Ks

∑
n∈N,n6=s

pk
sn

s.t. (a) wkn≥ 0, fkn≥ 0, ∀k∈ K ,n∈N

(b) ∑
n∈N

wkn =Wk, ∀k∈ K

(c) 0≤ pk
sn≤ Pmax, ∀s∈ S ,k∈ Ks,n∈N ,n 6= s

(d) ∑
k∈K

fkn≤ Fn, ∀n∈N

(e) ∆k
sn(p

k
sn, fkn,wkn)≤ ∆k, ∀n,s∈ S ,k∈ Ks

(P )

where we define the delay function

∆k
sn(p

k
sn,wkn),























wkn
fkn

+ wknθ
Rk

sn(pk
sn)

if pk
sn. fkn.wkn > 0,∀n 6= s

0 if pk
sn. fkn.wkn = 0,∀n 6= s

wkn
fkn

if fkn > 0,n= s

0 if wkn. fkn = 0,n= s

(4.17)

with θ = θUL + θDL andRsn = Bsnlog(1+ σc|hsn|
2Psn

(1−PER)ΓdβN0
). Note that the delay defined as in

(4.17) means that: i) for all the non SSCs, the delay functionis forced to be strictly positive only
if the transmit power, the computational rate and load assigned to the mobile user are non-zero;
ii) in case of computation at the SSC, i.e. forn= s, the transmit powerpk

sn is null then the delay
constraint is reduced to a computation time constraint. We note that in the multi-user case, we
assume orthogonal transmission and thus we do not consider interference. We are aware that the
model stays simple, however, the objective in this thesis was to overview edge cloud architecture
to explore what solutions can be found for cluster-based edge cloud computing. We consider the
proposed solutions, with the adopted model, as a starting point for devising further in-depth inves-
tigations of edge cloud computing implementation. Unfortunately problemP is non-convex, due
to the non-convexity of the delay constraints (e). Nevertheless, in the following we castP into
a convex equivalent problem. To this end, observe that the delay constraint can be equivalently
rewritten forpk

sn. fkn.wkn > 0,n 6= sand under the feasibility condition∆k fkn > wkn, as

gk
sn(p

k
sn, fkn,wkn),−Bsnlog2(1+ak

snpk
sn)+

wkn fknθ
∆k fkn−wkn

≤ 0 (4.18)

whereak
sn ,

σc|hk
sn|

2

(1−PER)ΓdβN0
. Note that the delay constraint in (4.18) is convex as can be easily

verified by proving that the Hessian ofgk
sn is a semi-definite positive matrix. The delay condition

(e), which imposes a non-convex constraint to our optimization problem, can be reduced forfkn >
0,n= s, to the linear convex constraintwks≤ ∆k fks. Hence, problemP can be reformulated as:
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min
p,f,W

∑
s∈S

∑
k∈Ks

∑
n∈N,n6=s

pk
sn

s.t. (a) wkn≥ 0, fkn≥ 0, ∀k∈K ,n∈N

(b) ∑
n∈N

wkn =Wk, ∀k∈K

(c) 0≤ pk
sn≤ Pmax, ∀s∈ S ,k∈ Ks,n∈N ,n 6= s

(d) ∑
k∈K

fkn≤ Fn, ∀n∈N

(e) gk
sn(p

k
sn, fkn,wkn)≤ 0, ∀s∈ S ,k∈ Ks,n∈N ,n 6= s

(f) wkn−∆k fkn < 0, ∀s∈ S ,k∈ Ks,n∈N ,n 6= s
(g) wks−∆k fks< 0, ∀s∈ S ,k∈ Ks

(Pc)

ProblemPc enjoys some desirable properties as stated in the followingtheorem.

Theorem 3. Given problemP andPc, the following hold:

(i) Necessary conditions forP to be feasible are:

Wk

∑
n∈N

Fn
≤ ∆k, Wk ≤

N

∑
n=1

∆k
1
Fn
+ θ

Rk
sn(Pmax)

; (4.19)

(ii) Pc is a convex problem then any local optimal solution is a global optimal minimum;

(iii) P andPc are equivalent.

Proof. To prove point (i) of Th. 1 observe that from the constraint (b) it exists∀k at least a server

n for which wkn > 0. Then from (e) inP , we can writewkn < ∆k fkn which leads to the first

condition in (4.19). This implies that the maximum delay imposed by the application∆k cannot

be less than the minimum execution time which can be achievedby a single equivalent server with

computational capacity equal to that of the overall network, i.e. ∑
n∈N

Fn. The second condition

in (4.19) is a global condition which can be easily derived from (e) inP . To prove point (ii) in

Th. 1 it is sufficient to observe that problemPc is convex since the objective function and all the

constraints are convex. Then any stationary point is aglobal optimal solution of the problem. It

remains to prove point (iii). since forPc the Slater’s constraint qualification holds true, any optimal

solution satisfies the KKT conditions ofPc. The Lagrangian function associated toPc is:

L(p, f,w), ∑
s∈S

∑
k∈Ks

∑
n∈N ,n6=s

pk
sn+

K

∑
k=1

λk(
N

∑
n=1

wkn−wk)

−
N

∑
n=1

K

∑
k=1

βk
snwkn+ ∑

s∈S
∑

k∈Ks

∑
n∈N ,n6=s

[αk
sn(p

k
sn−Pmax)

−µk
snpk

sn+ τk
sn(−Rk

sn(p
k
sn)+

wkn fkn

∆k fkn−wkn
)

+ηk
sn(wkn−∆k fkn)]+ ∑

n∈N

γn(
K

∑
k=1

fkn−Fn)

− ∑
n∈N

K

∑
k=1

ρkn fkn+ ∑
s∈S

∑
k∈Ks

κks(wks−∆k fks)
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where the non negative variablesαk
sn,µ

k
sn,τk

sn,ηk
sn,βkn,ρkn,γn,κks andλk∈R are the Lagrangian

multipliers. The KKT conditions are:

(a’):
∂L

∂pk
sn

= 1+αk
sn−µk

sn− τk
sn

Bsnak
sn

1+ak
snpk

sn
= 0, ∀s∈ S ,k∈ Ks,n∈N ,n 6= s,

(b’):
∂L

∂ fkn
= γn− τk

sn
w2

knθ
(∆k fkn−wkn)2 −ρkn−ηk

sn∆k = 0, ∀s∈ S ,k∈ Ks,n∈N ,n 6= s,

(c’):
∂L

∂wkn
= λk−βkn+ τk

sn
f 2
kn∆kθ

(∆k fkn−wkn)2 +ηk
sn= 0, ∀s∈ S ,k∈ Ks,n∈N ,n 6= s,

(d’): ∂L
∂ fks

= γs−κks∆k−ρks= 0, ∀s∈ S ,k∈Ks,

(e’): ∂L
∂wks

= λk−βks+κks= 0,∀s∈ S ,k∈Ks, ∀s∈ S ,k∈ Ks,

(f’): λk ∈R,∀k, ∑nwkn−wk = 0,

(g’): 0≤ βkn⊥ wkn≥ 0, ∀k,n,

(h’): 0≤ αk
sn⊥ (Pmax− pk

sn)≥ 0, ∀k,n 6= s,

(i’): 0 ≤ µk
sn⊥ pk

sn≥ 0, ∀k,n 6= s

(l’): 0 ≤ γn⊥ (Fn−∑K
k=1 fkn)≥ 0, ∀n,

(m’): 0≤ ρkn⊥ fkn≥ 0, ∀k,n,

(n’): 0≤ τk
sn⊥ (Rk

sn(p
k
sn)−

wkn fknθ
∆k fkn−wkn

)≥ 0, ∀k,n 6= s,

(o’): 0≤ ηk
sn⊥ (∆k fkn−wkn)> 0, ∀k,n 6= s,

(p’): 0≤ κks⊥ (∆k fks−wks)≥ 0, ∀k,s
(KKT P B4

)

wherea⊥ b stands for〈a,b〉 = 0. Observe that from the complementary condition (o’) we

get ηk
sn= 0,∀k,n 6= s. Let us first considern 6= s by studying separately the two cases i)τk

sn> 0

and ii) τk
sn= 0. Under assumption i), it follows from the complementaritycondition (n’) that the

delay constraint is always active. Hence ifpk
sn> 0 thenwkn fkn > 0 and conditions (g’) and (m’)

lead toβkn= ρkn= 0. Then from (b’) we getγn > 0,∀k,n so that the computational rate constraint

holds with equality and from(c’) it resultsλk < 0,∀k,n. Finally, assumeτk
sn> 0 andpk

sn= 0. then

wkn > 0, fkn > 0 is not an admissible solution since it contradicts the constraint qualification (n’)

being the delay constraint always active. On the other hand,wkn > 0, fkn > 0 lean to an absurdum

since from (c’) one getsλk = 0 while it must always beλk < 0. Under assumption i), it remains

to check if the solutionpk
sn= 0,wkn = 0 is achievable. In this point conditions (b’) and (c’) reduce

respectively toγn = ρkn andλk−βkn+ τk
sn= 0. The conditionγn = ρkn implies fkn = 0 sinceγn is

always positive. It is important to remark that albeit the feasible set ofPc does not include the all

zeros solution, the admissible solutionpk
sn= wkn = 0 leads tofkn = 0. This permits to reach along

gradient directions for which the KKT conditions are not violated, the null delay point enclosed

through (4.17) inP .

Let us consider now the case ii), i.e.n 6= s,τk
sn = 0. From (c’) one getsλk = βkn and this

contradicts the fact thatλk < 0.

The only case left to study isn= s. Under this assumption, observe thatκks= 0 is not admitted

since from (e’)λk could not be strictly negative. Then let us considerκks> 0. From the comple-

mentary condition (p’)wks= ∆k fks andwks, fks can assume non-negative values while meeting the
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KKT conditions. This implies that according to (4.17), the delay can assume the zero value for

wks= fks= 0.

It is important to remark thatP is a hard to be handled problem due to the discontinuous non-

convex delay constraints. Nevertheless as stated in Th. 1, we can find out its optimal solution by

solving the equivalent convex problemPc.

We note that Eq 4.19 could represent a form of admission control, in the sense that only when
that condition is satisfied for all users, then all users’ requests are accommodated. When Eq.
4.19 is not met, the solution would require some admission control strategy that decides which
users’ requests should be accommodated and which ones should be discarded. The admission
control process optimization is not addressed in this work,but the theory developed here can be
the starting point for devising an admission control strategy that identifies a proper priority of
users’ requests and selects which users to serve and when. For performance evaluation of the
proposed theory, we consider that, in case not all requests could be accommodated, SCM discards
request that requires the highest computational capacity (in cycles/sec).

4.4.2 Numerical Evaluation

For evaluating the performance of the joint clustering optimization, we compare it to the case
where all requests are handled by the SSC (‘No Clustering’),the case where a static clustering
rule of equal load distribution between active neighbor small cells is imposed (‘Static Cluster-
ing’), and the case where clusters are formed for each user successively (‘Successive Clusters
Optimization’). Comparing to the ‘No Clustering’ case shows the gain that is introduced by al-
lowing computations execution on small cell clusters instead of a single cell cluster, the SSC.
‘Static Clustering’ represents the case where a fixed cluster is associated to every SSC. Our so-
lution brings a dynamic approach to the cluster setup, wherethe number of small cells and their
choice is QoE aware and depends on the current system load, computations characteristics. The
‘Successive Clusters Optimization’ allows each SSC to dimension its clusters for computing its
own task. However, the clusters set up for different SSCs is not done jointly. Every SSC sets up
its cluster with remaining computational resources. Comparing successive clustering to our pro-
posed solution shows the gain of jointly optimizing multiple users’ clusters for a better resource
allocation resulting in higher QoE. The simulations parameters are resumed in Table 4.2. First

Table 4.2: Simulation parameters values for the multi-usercase
Parameter value Parameter value

ρa 0.5 ρs 0.32

B 20MHz σc 10

N0 -118.4 [dB/Hz] BER 10−6

W [2.106;10.106] ∆app [0.5;3.5]

Fn [10.106;15.106] Pmax 1 [W]

θDL 0.2 θUL 1

of all, we show how the small cells are chosen to participate in the computational clusters. The
solution of problemPc jointly forms computation clusters for all users. In a single user case, the
optimal power minimizing strategy would be to allocate as much computational load as possible
to SSC as seen in Section 4.3.2. Furthermore, power minimizing solutions for a single user case
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tend to allocate more computational capacities to near HSCsin order to reduce the transmission
cost. Figure 4.11 shows how the clusters are formed in the multi-user case where computational
capacities are shared. With an increasing number of users per SSC, each user is allowed to use
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Figure 4.11: Cluster load distribution according small cells distance to SSC

less of the SSC computational capacity and offload more computation to HSCs. Furthermore, we
observe that far HSCs are used in the clusters nearly as much as near HSCs. This strategy allocates
more computational load to far HSCs when possible in order toincrease the system performance
and achieve higher satisfaction ratio. Figure 4.12 shows the percentage of satisfied users. A user
is satisfied if its computation request result is delivered without violating the imposed latency con-
straint. In order to evaluate this percentage, we try to solve the optimization problem with the total
number of active users in the network. In case of failure of reaching a cluster solution, requests
with highest computation loads are dropped one by one until all considered users are satisfied. The
satisfied users ratio is evaluated for the considered clustering strategies with respect to the number
of served users per SSC.

On Figure 4.12 we show how the joint clustering strategy for all users greatly outperforms all
other strategies. The fact of taking into account all the active devices in the system allows better
distribution and allocation of both computation and communication resources, and thus, higher
QoE.

On Figure 4.13 we observe the average power consumption in the computation clusters. With
theno clusteringcase, no data transmissions take place so there’s no computation offloading, no
communication power consumption but extremely low QoE. Relating with the extremely low sat-
isfaction ratio offered by this strategy (figure 4.12), thisstrategy is obviously not a suitable choice
as soon as the number of devices per small cells increases. Inthe case ofstatic clustering, the
power consumption in the computation clusters is higher than in the proposed joint optimization.
Despite the fact that in static clustering the SSC communicates with its close neighbors small
cells that are subject to better channel quality, we observehigh power consumption. With a fixed
number of computing small cells in the cluster, the aggregated computational capacity that can be
offered is limited. Therefore, the SSC may end up increasingits power consumption for a faster
transmission of input data in order to assure the tasks computation without any latency violation.
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Figure 4.12: Users satisfaction ratio in dependence on number of users per small cell

This leads to higher power consumption for lower users’ satisfaction ratio. This figure also shows
that thejoint clusters optimizationconsumes more transmission power thansuccessive cluster-
ing with the goal of increasing the satisfaction ratio through more adapted resource allocation.
Our proposed solution achieves much higher performance while managing to keep a lower power
consumption than the static clustering strategy.
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Figure 4.13: Average power consumption per user in dependence on the number of users per small

cell

Even though the objective function of the joint clustering optimization problem targets power
consumption minimization, we notice that it achieves some gain in the cluster latency. This is
mostly due to the cases where local computation resources atthe SSC are enough for computing
its users’ requests. In this case, local computational capacity is accorded to the users’ power
consumption free, and a latency gain can be achieved. It is clear thatjoint clusters optimization,



4.5. CONCLUSION 125

compared tosuccessive clustering, exploits the latency gain and trades it with higher satisfaction
ratio.

Different latency trade-offs can be exploited, where we trade latency for higher gains on other
optimization dimensions, such as, cluster cells energy efficiency, cluster size, reduced EMF ex-
posure, and power consumption. Such trade-offs are discussed in Chapter 2. For example, we
could reduce the cluster size by means of sparsification and exclude some small cells in order to
put them in an idle state for lower equipment power consumption. The computation load of some
small cells could be redistributed to others at the cost of increasing the experienced latency.
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Figure 4.14: Average user latency gain in dependence on the number of users per small cell

The proposed joint clustering optimization might not give the ultimate optimal solution for
the multi-user computation clusters establishment problem. This is due to the fact that the small
cells are in a computation idle state, i.e. not performing any computation, during the time they are
receiving input data. The data transmission time depends itself on the cluster characteristics and
parameters, and especially on load distribution and transmission powers. Computing idle time is
seen as a loss of computational resources that could eventually be used for serving local devices
at each small cell. In addition, when clusters are formed andcomputational loads distributed, it
is possible that some computations execution finish before the others and thus some small cells
will have free computational capacities. These capacitiesare not re-used or re-integrated in the
computation process, and can thus be seen as wasted resources. Our proposal is based on a single
one shotoptimization that does not update the load distribution when computational resources are
freed. The computational resources that are gradually liberated are however used for the follow-
ing clusters set up. A possible way to overcome this problem would be to launch the optimization
problem with a different starting point of the system state that allows better exploitation of compu-
tational resources. However, and despite its non-optimality, the proposed method achieves relevant
gains comparing to static strategies where each computation cluster is predefined.

4.5 Conclusion

In this chapter, we consider scenarios where edge cloud small cells are empowered with compu-
tational and storage capacities. Small cells have then the ability to act as a local cloud through
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small cells cooperation through clustering for computational purposes. The pools of resources
thereby created are to be shared among the mobile subscribers connected to the set of small cells.
We tackled the issue of load distribution and resource allocation inside the clusters in the small
cells local cloud. We started by studying the single-user case where only one computational task
is requested at a SSC. The optimal cluster depends on the computational task requirements, the
network capabilities and the desired cluster characteristics. First of all, we propose a solution for
setting up a computational cluster that can offer the fastest service time, i.e. cluster latency is min-
imized. Then, we proposed two additional cluster set-up strategies that aim at reducing the cluster
power consumption. In a further step, we introduce a novel concept of cluster sparsification. We
propose a strategy that aims at reducing computation cluster size, without violating computational
requirements especially in terms of time limitations. The proposed solutions in the single user case
are based on efficient load distribution between participating small cells in order to guarantee the
service delivery to the mobile users. In the multi-user case, the load distribution is more complex.
The formulated joint resource allocation and load distribution optimization problem is not convex.
Our solution is based on theconvexificationof the formulated problem. We wrote a convex equiv-
alent problem and we proved that it can converge to the solution if it exists. Our proposed solution
is based on the trade-off of leveraging overall users satisfaction on user centric QoE. Indeed, if
each of the mobile subscribers act selfishly by setting-up its own optimal cluster using one of the
proposed single-user solutions, pooled resources will be fought over by several clusters which
will dramatically lower the overall users satisfaction ratio. The proposed solution was shown to
outperform existing policies by achieving a higher satisfaction ratio. However, the computation of
such a solution requires a powerful server with high computational capacities since the complexity
scales with both the number of mobile users and small cells. We assumed wireless communica-
tion between small cells with known channel characteristics and known characteristics of every
small cell. In practice, a signaling system would be necessary for the central unit that computes
the solution can collect such information. Furthermore, the proposed solution is a one shot opti-
mization. However, computations do not have neither same time limitations nor are all completed
simultaneously. Thus, some computational resources are freed as soon as some computations are
done. The proposed solution does not include a strategy for re-using these capacities.

We note that the presented work can be applied to current third generation cellular wireless
mobile networks and its future evolutions (5G, 4G, 3GPP LTE,3GPP LTE A, WiFi, LiFi, WiGiG,
WiMAX, etc.) with the modification of the adopted transmission and deployment models. This is
because the proposed methods do not request changes in the current standards to be implemented.



Chapter 5

Small Cells Clustering Approaches for

MEC

127



128 CHAPTER 5. SMALL CELLS CLUSTERING APPROACHES FOR MEC

5.1 Introduction

5.1.1 Motivation

In this chapter, we address the same context as Chapter 4. however, we aim at designing low
complexity clustering algorithms, that do not contain complex optimization problems solving.

We tackle the computing cluster set up paradigm for mobile edge cloud. In MEC, MUEs
have the possibility to offload their computation to be executed at the local edge cloud. In the
architecture we adopt, the cloud functionalities are deployed at network edge small cells in close
proximity to mobile users. MUEs send offloading computationrequests to their SSC. The SSC sets
up a computing cluster for executing the received requests.Computation load is distributed among
the small cells participating in the cluster. In order to respect the latency constraints imposed by
the offloaded tasks, the cluster should consider jointly theallocation of both computational and
communication resources, and load distribution within thecluster. In this chapter, we propose
heuristic small cell clustering algorithm that also considers joint communication and computation
resource allocation.

The clustering optimization solution proposed in Chapter 4, for both single user and multi-user
use cases, are based on joint optimization of cloud cluster resources formulated as an optimization
problem. The proposed solution proved to be efficient and guarantee high users’ satisfaction ratio,
i.e. guarantee the service of a high number of users without violating the latency constraints. For
the single-user case, the optimization problem is simple tosolve. In some cases, as in the case of
cluster latency minimization, a closed form solution can befound. However, in the multi-user case,
the optimization problem is more complex, and non-convex. Even though we proposed a solution
to compute a clustering solution using an equivalent convexoptimization problem, the number of
parameters to optimize increases with the number of users and the number of small cells. In small
scale scenarios, this solution can be implemented and guarantee better QoE. On the contrary,
in medium or large scale scenarios, the number of parametersto optimize becomes very large.
Solving the optimization problem in this case can be time, and computational capacity consuming,
which may have a negative impact on finding a feasible solution. In cases where the solution
computing time is not negligible, the delay is omitted from the computational time tolerance, and
thus reducing aggregated resources. The number of variables to optimize is equal to 3×N×K
whereN andK are the number of considered small cells and users respectively. Therefore, the
implementation of such a solution requires a powerful smallcell manager that can derive the
solution without affecting the feasibility of the derived solution. In Chapter 4, the challenge was
to find a clustering solution that jointly optimizes computational and communication resources,
and distributes the load, while guaranteeing a high QoE. In this chapter, the challenge is different.
The motivation of this chapter is to relax the cluster set up complexity for avoiding the implication
of small cells in complex clustering set up calculations. Hence, alternative algorithms with low
complexity are needed for solving the cluster set up problem.

5.1.2 Related Work

The topic of small cells clustering for computing purposes in the MEC is relatively new and very
few solutions have been proposed in the literature. In addition to the related work reported in
Section 4.1.2, we report the following related work. Three resource allocation algorithms,‘Path’,
‘Comp’, and ‘ACA’ for SCC clustering are proposed as part of the solution that TROPIC pro-
pose [115]. The first algorithm,‘Path’, is based on transmission quality between UEs (Users’
Equipments) and SCs. The SCs with the best ‘path’ quality areselected for participating in the



5.1. INTRODUCTION 129

computation process. The‘Comp’ algorithm is based on the computational power available at each
SC. It is the SCs with the highest computational power at the estimated data delivery time that par-
ticipates in the computation process. In addition, a combination of both algorithms is proposed
under the name of‘ACA’ algorithm. By estimating the computational load to be executed (accord-
ing to the application type), an overall delay is computed taking into account both path quality and
available computational power. SCs with lowest overall delay are selected for participating in the
computation process. Tasks are handled in all of these algorithms in a FIFO (First In First Out)
manner. Indeed, for simplicity, no scheduling policy is considered. Treating tasks as FIFO may
not always be the best scheduling solution especially in thecase where tasks characteristics vary
in latency constraints and computation load. Furthermore,the proposed algorithms are applied in
a scenario where the number of participating SC is predefined. On the contrary, with our proposed
approaches, the SCC size is adapted to the need and dimensioned to satisfy the computational
requests.

Niyato et al. propose a game theoretic modeling of cooperation in mobile cloud computing
[116]. However, the addressed cooperation is between different service providers data centers,
which are separated from the radio access points. The idea isto allow multiple providers of mobile
cloud services to cooperate and create a resource pool and serve a higher number of users, and
support a higher number of applications instances. This work addresses the computation part at
the computing data centers coalitions as well as the communication part between MUEs and radio
access points. Wireless access points communicate with computing servers through wired links.
It proposes an admission control method enabling the users to access the resource pool owned
by the coalition (cluster) of mobile service providers. In order distribute communication and
computation resources of base stations and data centers among mobile users, an admission control
mechanism is proposed. An optimization problem is formulated to obtain the maximum number
of supported users by base station and data center. The goal of this optimization is to maximize
the revenue of data center providers. The coalition of data centers is assumed to be chosen a
priori, and any coalition algorithm is proposed or presented. However, a distributed algorithm that
allows the data centers and base station to increase the amount of resources used in the cluster
is proposed. Base stations and data center have the option ofincreasing their participation in the
cluster in order to maximize their revenue, but once they arepart of a coalition, they are forced
to participate in the computation cluster since it is considered that this participation will generate
revenue for the service providers. However, in the context of small cell cloud where the data
centers are users’ deployed small cells, more strict privacy policies, security concerns, or cost
reduction strategies may be encountered. Therefore, forcing participation in a coalition is not
always possible, and it depends on adopted small cells deployment models (open access, closed
access, hybrid access) [117].

Garget al. tackle computational capacity and resource allocation on acloud data center [107].
Even though the authors do not consider the same context of small cell cloud computing, their
work shows different policies to allocate resources on a computing entity that we also use in the
proposed joint clustering and resource allocation algorithm. It considers an admission control
and scheduling policy that allow virtual machines to run on servers while minimizing the penalty
resulting from the violation of Service Level Agreement (SLA). SLA is modeled as a time limit
for computing requests. The admission control policy consists in estimating the amount of avail-
able resources at each server based on an Artificial Neural Network (ANN) forecasting model that
predicts future demands of computational tasks. Requests are admitted based on the resources es-
timation. As for the scheduling policy, two different resource allocation strategies are considered.
The first resource allocation strategy consists in giving applications the total amount of computa-
tional resources they require. The second strategy consists in allocating computational resources
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to applications within the limits of availability at each server. This means that applications are
given the maximum between required and available resourcesat the server. If available resources
are lower than required by the application, computation delay is larger, and a SLA violation may
occur. Then, for minimizing the SLA violation penalty, resources are redistributed inside each
server according to the need of the running applications.

5.1.3 Contribution

In this Chapter, we approach the problem of small cell clustering for computation purposes with
two different algorithms. We propose two novel solutions, which both aim at keeping advantages
of dynamic clustering and adapting cluster size according to current users’ demands. We focus on
managing resources for the set of small cells forming the local small cell cloud. Furthermore, we
do not consider the cloud as an established entity — as opposed to the state-of-the-art. Instead, we
dynamically set up the computation clusters by choosing which small cells to include and how to
distribute the load among them.

Our first proposition is based on a sequential algorithm thatcan be split into two phases: local
computation resource allocation and small cell cluster establishment. The first phase consists in
scheduling computational tasks and the second in setting upthe clusters for computation. Three
different implementations of the algorithm are proposed. They differ in scheduling metrics and
cluster optimization objectives. Details are given in Section 5.3.

Our second proposition is based on an iterative clustering algorithm. The process is divided
into two phases: A first phase in which serving small cells computes their clustersselfishly, and a
second in which the small cell manager validates or correctsthe clusters of each SSC. Details are
given in Section 5.4.

As computational resources are shared by the set of serving small cells, their allocation should
be coordinated between small cells. Allowing each small cell to set up its own cluster without tak-
ing into account the presence of other computational requests will lead to a problem of resources
management. Some small cells will be overloaded, while others will have unallocated available
resources. Load balancing is required in order to minimize the number of dropped requests. In
both proposed algorithms, we rely on the low complexity of the single-user multi-cloud cluster op-
timization. The designed algorithms introduce cluster setup coordination between various SSCs
in order to efficiently distribute computational load and resources among computational requests.

The novelty of this chapter is based on a patent [P4] and two conference papers [C4] and [C6].

5.2 System Model

In this Chapter, we adopt the same system model of Chapter 4. We consider a multi-user scenario
where the set of usersK are served by a set of small cellsN . Computation offloading requests
are defined by the pair(Wk,∆k) that represent the number of CPU cycles to execute and latency
constraints. Note that the relationship between the numberof instructions and the number of CPU
cycles depends on the instructions type. We assume high granularity, and we split computational
load over CPU cycles. SSCs communicate with HSCs through direct point-to-point wireless. The
full system model details can be found in Section 4.2.

As for simulations, we consider also a femtocell deploymentin a grid of 25 10m× 10m apart-
ments, which is known as the 3GPP grid urban deployment model[113]. Simulation parameters
can be found in Table 4.2 of Section 4.4.2.
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5.3 Small Cell Cloud Clustering: A Scheduling Approach

5.3.1 General Algorithm

In this approach, we propose a novel five steps clusters establishment procedure. We propose to
split the resource allocation process into two major phases: local computational resource allocation
and small cell cluster establishment. The general scheme ofthe algorithm is described through the
following steps resumed in Figure 5.1.

Figure 5.1: Scheduling aware clustering proposed algorithm scheme

Step 1: Local computational resource allocation

First, local computational resources are allocated at serving small cells. Local resources at the
SSCs are allocated for users that are served by this cell represented by the set of users{k|Sk = s}.

• Step 1.a)- Scheduling at SSCEach serving SC accords priorities for tasks received from
its connected users, according to a specified metric such as latency constraint, computation
load, minimum required computational capacity, minimum required energy efficiency, or ar-
rival time. The priority assignment defines the scheduling rule for local resource allocation.
Some examples are the following: (i) sorting according to latency constraint corresponds
to an Earliest Deadline First scheduling (EDF) [118]; (ii) sorting according to the order off
arrival corresponds to a First In First Out (FIFO) scheduling; (iii) sorting according to each
user service rate corresponds to a Proportional Fairness (PF) scheduling [119]. This step
gives different priorities to users’ requests depending onthe adopted sorting metric or the
scheduling policy.

• Step 1.b)- resource allocation at SSCServing small cell computational resources are al-
located to users’ requests following the ordered list established in step 1.a. The resource
allocation policy may have different objectives: increasing latency gain, or increasing re-
sources availability time. For example, users can be accorded the maximum amount of re-
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sources and thus computation are done in a minimal duration.Or, conversely, lower amount
of resource allocation can be allocated over a larger time window.

Step 2: Small cell cluster establishment

As local computational resources are limited, only a limited number of requests can be served with
SSC local resources. Whenever the local SSC has insufficientresources to serve the user, unserved
remaining requests are handled using a small cell cluster. To this end, a computing cluster is set
up by the SSC to comply with their specific requirements.

• Step 2.a)- Requests updateInformation on requests to be offloaded and remaining actual-
ized computational capacities remaining at each serving small cell is reported to the small
cell manager (SCM). Note that this step does not introduce additional overhead comparing
to traditional centralized solutions. In fact, all centralized algorithms and solutions suppose
the presence of a small cell cloud control entity that receives and stores system parameters
and requests requirements.

• Step 2.b)- Scheduling at SCM Unserved requests of all SCs are classified at the SCM
according to a specific metric or a scheduling rule. Note thatthe scheduling policy can be
the same or not as in step 1.a. As the first scheduling on mobilehandsets depends on the
policy of the device in computing tasks, in this step it depends on the small cell clustering
policy and the desired clusters characteristics.

• Step 2.c)- Clusters set upComputation cluster are built for each of the unserved requests
following the scheduling order established in step 2.b. Clusters are built for each request
independently of the other requests presence. Possible single-user cluster policies that can
be adopted in this step are proposed in Section 4.3. Setting up computation clusters for one
request at a time reduces the complexity of the clustering process. For guaranteeing a lower
outage probability, i.e. a lower number of unserved requests, the focus is then on choosing
the best scheduling policy and clustering policy. When clusters are set up successively
for the scheduled requests at SCM, some small cells computational capacities will be fully
allocated. These small cells are excluded from the following cluster set ups. Optimization
search space is indeed reduced. Moreover, small cells that have computational resources
released will be added to the cluster optimization search space. Computational resources
are then allocated to as long as necessary and reused when released.

5.3.2 Algorithm Implementations

These general algorithm steps constitute a customizable sequence for small cell clustering for a
multi-user scenario. Several versions can be built using this algorithm by varying the scheduling
metrics and resource allocation and clusters set up policies. We consider three different imple-
mentations of the algorithm EDF-PC, EDF-LAT, CS-LAT where the notations refer to the local
scheduling rule and the clustering optimization objective.

(i) EDF-PC
EDF-PC is based on an Earliest Deadline First scheduling on SSC, and a power consump-
tion minimizing clustering strategy.[1.a] The requests are sorted in ascending order of
latency constraints. This choice of sorting metric imposesan EDF (Earliest Deadline First)
scheduling. Priority is given to tasks with tightest latency constraints. FIFO, used for testing
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algorithms in [115], is not an adequate scheduling policy for the specific case of our adopted
testing scenario because FIFO scheduling does not take intoaccount QoE parameters. Our
objective is to associate the scheduling policy with a clustering policy for achieving higher
QoE.[1.b] Local resources are allocated following a policy that blocks the minimal required
computational capacity for each request. This capacity canbe expressed as the ratio between
the computation load and the latency constraint (Wk

∆k
). We refer to this policy ashorizontal

allocation (see Figure 5.2(a)
[2.b] Unserved requests are sorted in ascending order of available latency.
[2.c] Clusters are formed for users with the objective of minimizing overall clusters com-
munication power consumptions. The problem formulation used for this clustering strategy
is cast for userk served by SCs P B4 of Section 4.3.4 of Chapter 4.

(ii) EDF-LAT
EDF-LAT is based on an Earliest Deadline First scheduling onSSC, and a latency mini-
mizing clustering strategy. This implementation has the same steps ofEDF-PC except for
step 2.c where clusters are formed with the objective of minimizing overall cluster latency.
The latency minimizing clustering problem is cast for userk served by SCsas described in
Section 4.3.2 of Chapter 4.

(iii) CS-LAT
CS-LAT is based on alargest computation firstscheduling on SSC, and a latency minimizing
clustering strategy.[1.a]: Requests are sorted in decreasing order of requested computations
size.
[1.b] Local resources are allocated following a policy that blocks the maximal computa-
tional capacity available for each request. This will blocklocal resources for smaller time
periods and achieving higher latency gains. We refer to thispolicy asvertical allocation
(see Figure 5.2(b)
[2.a] Unserved requests are sorted in ascending order of latency tolerance.
[2.c] Clusters are formed for users with the objective of minimizing overall clusters latencies
using the optimization problemP B1 of Section 4.3.2 of Chapter 4.

(a) Horizontal Allocation (b) Vertical Allocation

Figure 5.2: Resource blocks allocations of several requests r of delay constraint∆r with horizontal

and vertical allocations.
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5.4 Small Cell Cloud Clustering: An Iterative Approach

Our second proposal takes the form of an iterative algorithmthat is based on a novel strategy for
radio access points based on two management layers: decentralized and centralized. This strategy
allows to reduce cluster management time, through its decentralized layer, and maintain mobile
users’ QoE through the centralized layer by guaranteeing the respect of latency constraints. We
assume homogeneous data generation of computational data at set of mobile devicesK , i.e. all
generated requests have the same range of latency constraints. The decentralized part of the algo-
rithm requires a form of signaling between the network SCs. It consists onselfishclustering at each
serving small cell, where each small cell forms its own optimal computation cluster. Serving small
cells interrogates neighbor small cells about their available computational capacity. According to
link qualities and available computational rates, the serving small cells builds its own computa-
tional cluster. As for the centralized part, it requires thepresence of a cluster management unit
that has knowledge of the SCs characteristics in terms of both available computational capacities
and channel link qualities between SCs. SCs available resources are reported by SCs to the SCM
at a regular basis. As for channel link qualities, either statistical or instantaneous knowledge can
both be considered. Each serving small cell sends its clusters load distribution to the central man-
agement unit, which acknowledges the global load distribution. If any SC has been accorded more
computational load that it can offer, the management unit re-distributes the excess of allocated
load among serving small cells. Management unit reports back the remaining computation load
to serving small cells. This process is repeated until the entire computation load is distributed, or
until the system has reached the maximum computation capacity that can be offered. A maximum
delay or power consumption cost can also be used as stopping criteria for the algorithm.

The novelty of this proposal is indeed threefold. First, we propose to exploit optimization
solutions for the single user case, and we propose to performa first guess of resource allocation
per user neglecting that there are other concurrent requests from other users. We will refer to
this case asselfishfor which optimization is performed without considering the presence of other
users’ requests. Second, we propose to introduce a supervisor which verify the feasibility of the
union ofselfishusers’ requests. Third, we propose to inform/notify user equipment on excess of
demands which are computed with the proposedselfishapproach. Users are informed if they are
or not in offloading request excess. Therefore, the supervisor checks the combination of available
resources and their cost in terms of connectivity. More details will be given in the algorithm
description that follows hereafter.

The proposed iterative algorithm is represented on Figure 5.3, it has several steps described as
follows:

A . Decentralized management layer steps

• Step 1: Update of available computing capacity of neighbor small cells
Each serving SCs∈ S with a computation task demand, requests neighbor SCsn ∈
N ,n 6= s, using special form of signaling, to report available computational capacity.

• Step 2: One user guessselfishoptimal allocation
Each serving SCscomputes its optimal computational cluster for each request of user
k ∈ Ks, independently of other parallel allocations requested bydifferent SSCs. The
optimal cluster is computed by using the optimization problem P B4 whose objective
is to minimize the communication power consumption in the cluster. This problem has
been studied in 4.4 of Chapter 4.

• Step 3: Cluster reporting to central management unit
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Each serving SCs reports its cluster load distribution and resource allocation variables
Wkn, pkn, and fkn to the central management unit. Failure of building a computation
cluster, if occurred, is also reported.

B . Centralized management layer steps

• Step 4: Central Unit Check on Feasibility of distributed allocation requests
In this steps there are two possibilities:

(a) No failure of clustering has been reported

(b) Failure of clustering has been reported

It could happen that SSCs are not able to set up their clusters. This could be a reason
of lack of computing resources, errors in resources availability information, or low
connectivity with neighbor small cells. Therefore depending if we are in the case (a)
or case (b) we have different sub-steps in the proposed algorithm. Hereafter, we refer
to steps with ‘.a’ when referring to case (a) and ‘.b’ when referring to case (b).

Case (a): No failure of clustering has been reported
In this case, all serving small cells have found at least oneselfishsolution (allocation that
does not consider potential resources allocated by other serving small cells forming their
own clusters).

• Step 4.a: ComputeWn: total aggregated allocated load at each SC

Wn =
K

∑
k=1

wnk (5.1)

• Step 5.a: Update available computing capacity (F ′n) and load excess (Xn) at each
SC
Update available computational capacity at each SCn as:

F ′n = (Fn−
K

∑
k=1

fkn)
+ (5.2)

and compute excess of allocated computationX at each SCn∈N

Xn = (Wn−Thn)
+ (5.3)

whereThn is the maximum computation load that can be allocated at eachSC,Thn≤
Fn∆.

• Step 6.a: Redistribute available resources excess
In this step of the algorithm, the proposed optimization distributes the excess of load
on users that has the best opportunity of computing the remaining CPU cycles with
available resources. Indeed we propose to redistribute theexcess of computational
load allocation at each SCb ∈ N /Xb > 0. This excess of load is distributed among
mobile devices that includen in their computing cluster. The redistribution follows the
following rules:
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min
w′

∑
n∈N

∑
k∈K

w′nkbptnk

s.t. 0≤ w′nk≤ wbk ∀n,k
w′nk = 0 ∀k/wbk = 0
w′nk = 0 ∀n/F ′n = 0

∑
n∈N

∑
k∈K

w′nk = Xb

(P ′)

wherebptnk is the minimum bit processing time (transmission and computation) that
SCn can offer for user’sk request as:

bptnk =
1
F ′n

+
1

Rmax(Pmax)

whereRmax is the maximum bit rate that can be achieved. This optimization distributes
the excess of load on usersk that has the best opportunity to execute remaining CPU
cycles. The first condition guarantees that redistributed load does not exceed the allo-
cated load. The second condition limits requests that can bere-allocated to the set of
requests that were served byn′. The third condition forbids re-allocation to SCs that
have no available computational capacity. The last condition guarantees distribution
of all excess of computation load.

• Step 7.a: Centralized controller reportW′ and F ′ to SCs
ReportW′ andF′ to SCs.

• Iteration.a
Repeat from Step 2 with computation load requestW′ and system computational ca-
pacityF′.

Case (b): Failure of clustering has been reported
In this case at least one serving small cell has not found in its selfishresource allocation
guess enough resources to serve offloading remands within the required QoE.

• Step 4.b: Drop requests in excess
Drop non-served computation request with the highest required bit processing time
defined byWk

∆ .

• Step 5.b: Update computing capacity at each SCs (F ′)
After the drop of a request, some allocated computing resources are then freed. There-
fore we update the available computational capacity in the system asF ′n←F ′n+ fnk,∀n,
wherek is the index of the eliminated request.

• Step 6.b: Centralized controller report W′ and F ′ to SCs
ReportW′ andF ′ to SCs that serve the dropped userk. The task drop decision is then
sent to userk.

• Iteration.b
Go back to Step 2 with updated computation load requestW′ and system computa-
tional capacityF ′.

The algorithm is run until one or more of the considered stopping criteria occur:

(i) all requests are either successfully computed or eliminated

(ii) a fixed maximum number of iterations is reached
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Figure 5.3: Proposed iterative clustering algorithm scheme

(iii) maximum algorithm delay tolerance is reached

(iv) maximum algorithm power budget is reached

The proposed management method joins benefits of both centralized and decentralized man-
agement. The central management unit does not solve heavy problems since clusters are com-
puted individually at SSCs for a single user request. This reduces management time loss, since
single-user clustering solutions are rapid to compute. At the same time, SCs report to one central
managing unit and not to each other; this reduces the feedback signaling overhead. The presence
of the central managing unit can be seen as a control check that readjusts clusters composition
whenever decentralization fails, which increases QoE.

5.5 Numerical Evaluation

In this section, we evaluate the proposed strategies of small cell clustering in computation clusters.
We provide numerical evaluation considering the case of femtocell deployment for urban scenarios
model of the 3GPP framework [113]. This scenario is represented by a single floor building of a
25 apartment grid. In each of these apartments a femtocell isdeployed. Parameterρa determines
the ratio of active femtocells in the grid. Parameterρs determines the ratio of active femtocells that
are connected to mobile users (serving femtocells). We adopt the same system model described in
Section 5.2 with parameters values listed in Table 5.1.

In the following, we benchmark our proposed strategies algorithms with four different clus-
tering strategies that we define below:No Clustering: all requests are handled by the serving
SC, there is no computation offloading. There is no cluster formation. The comparison with this
strategy shows the benefits of small cells clustering for mobile edge computing.
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Table 5.1: Simulation parameters values
Parameter value Parameter value

ρa 0.5 ρs 0.32

B 20MHz σc 10

N0 -118.4 [dB/Hz] BER 10−6

W [2.106;10.106] ∆app [0.5;3.5]

Fn [10.106;15.106] Pmax 1 [W]

θDL 0.2 θUL 1

Static Clustering: a static clustering with a fixed set of small cells contributing in the clusters.
Equal load distribution is applied among the cluster cells.Each small cells has in its computation
cluster neighbor small cells only (separated by 1 wall). This imposes then the size of the cluster,
which is not dynamically adapted to the computation demands.
One shot optimization: dynamic clustering with one shot optimization. This strategy is the one
we proposed in Section 4.4. It consists in computing all computation clusters for all computation
requests simultaneously. Computation requests parameters (number of instructions, number of
CPU cycles, delay constraints, requesting user, etc.) are sent by SSCs to the managing unit, SCM,
that has the role of jointly allocating resources for all requests computation.
Successive clustering: dynamic clustering where each serving SC computes its own computation
clusters after gathering necessary information from neighbor SCs. Interrogated SCs wait for the
serving SC feedback in order to update system state information before engaging in a new com-
putation cluster. Clusters are computed successively at serving SCs starting with requests with
highest computational capacity demand.

We start by comparing the performance of the three implementations of the first approach
described in Section 5.3 and resumed in Table 5.2.

Table 5.2: Algorithm implementation metrics and policies

Step Step description EDF-PC EDF-LAT CS-LAT

1.a
Local scheduling

at SSC

Latency

(ascending)

Latency

(ascending)

Computation size

(ascending)

Step 1.b
Local resource

allocation policy
Horizontal Horizontal Vertical

2.b
Tasks scheduling at

SCM

Latency

(ascending)

Latency

(ascending)

Latency

(ascending)

2.c Clustering policy

Power

consumption

minimizing

Latency

minimizing

Latency

minimizing

Figure 5.4 shows the users’ satisfaction ratio for considered algorithms (number of users
served without violating latency constraints) with respect to the maximal number of users simul-
taneously offloading computation requests to the same serving small cell.

With increasing number of users and incoming requests, pooled resources are to be shared
by SSCs to serve a larger number of offloaded computational requests. Thus, due to the lack
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Figure 5.4: Users satisfaction ratio in dependence on number of users per small cell

of computational resources, satisfying all users becomes harder and, in some cases, impossible.
In the case where each small cell computes the requests of itsown users (No clustering), the
users satisfaction ratio drops decreases almost linearly with the increasing number of users as
seen in Figure 5.4. It is important to note on the figure, the low performance achieved by the
static clustering strategy where computation load is equally distributed on neighbor small cells.
This shows that clustering can be a inadequate solution if not adaptively orchestrated. All of the
three variants of the proposed method show important gain insatisfaction ratio even for a high
number of users per small cell. We can see that EDF-PC and EDF-LAT can maintain over 95% of
satisfaction ratio for up to 4 users per femtocell. Classical usage of femtocells is about an average
of 4 mobile users [120]. We extend our numerical evaluation for up to 8 users considering that
a larger number of femtocells connected users can be foreseen in the future. Since both of these
algorithms schedule the users based on latency urgency, they manage to serve a larger portion
of users compared to the CS-LAT, which aims at achieving larger latency gain. Nevertheless,
CS-LAT manages to keep a satisfaction ratio of at least 90% for less than 4 users per femtocell.

In Figure 5.5 we also compare performance of the iterative proposed algorithm proposed in
Section 5.4 with the EDF-PC implementation and other considered clustering strategies.

The centralizedone shot optimizationoutperforms all other strategies. Since the central man-
aging unit is fully aware of the system state, and since it jointly computes clusters for all requests,
it yields to better performance in terms of satisfaction ratio. Nevertheless, this comes at the cost
of higher complexity since larger optimization problems need to be solved. Furthermore, in this
strategy, if all requests cannot be satisfied with aone shot optimization, the central management
unit drops a request and runs again the optimization until a solution is found. In this particular
case, the time complexity is almost multiplied by the numberof solved optimization. The pro-
posed algorithm achieves lower satisfaction ratio than thecentralizedone shot optimization, but
it clearly outperforms thesuccessive clusteringand no clusteringstrategies. It approaches the
performance of centralized strategy especially at low number of users per small cell with less than
10% performance degradation for less than 3 users per small cell and less than 20% for up to
6 users per small cell. The gain comparing tosuccessive clusteringandno clusteringbecomes
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Figure 5.5: Users satisfaction ratio in dependence on the number of users per small cell

of more importance with higher number of users per small cell. It is shown that even with high
number of users per small cell, the proposed strategy can guarantee a minimum of 75% of satisfac-
tion ratio. On Figure 5.5, it is important to notice thatsuccessive clusteringcan have even lower
performance than computation at the SSC (no clustering). Successive clustering, will allocate the
SSC computational capacities to If we comparesuccessive clusteringand no clustering, we notice
that no clusteringhas, in some cases, a better performance. This shows that clustering is only a
good solution when we use a good strategy that is adapted to the system conditions.

In Figure 5.6 we show the average latency gain per user versusthe number of users per small
cell. The latency gain for each user is defined as the ratio between the experienced latency for
computing the request and the imposed latency constraint. We designed the iterative algorithm
to minimize cluster power consumption (P B4). This means that the cluster will trade the delay
allowed by the computation requests in order to reduce energy consumption. Therefore, in this
case, no latency gains are observed.As shown in Figure 5.6, the CS-LAT algorithm achieves the
highest average latency gain. This due to both local and cluster resource allocation. In fact, in
this algorithm, the local serving femtocell allocates its full computational capacity to compute
the requests, which results in completing the task with the lowest possible latency. Furthermore,
clusters are formed for unserved requests with the objective of minimizing the overall cluster
latency. On the other hand, the EDF-LAT latency gain is a result of latency minimizing clustering
strategy. As a matter of fact, serving femtocell local resource allocation policy exploits all the
available time for each computation request by allocating the minimal required computational
capacity. The more users are connected to the femtocells, the more requests are received by the
SSC, and the fewer requests are able to be computed locally onthe serving femtocell. Therefore,
higher latency gain can be achieved with this algorithm withthe increasing number of users since
more requests are handled to latency minimizing clusters, as can be seen on Figure 5.6.

The high increase in latency gain achieved by algorithm witha latency minimizing clustering
policy comes at the cost of increasing the communication power consumption in the cluster. This
is due to the basic wireless communication trade-off between power consumption and latency (see
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Figure 5.6: Average latency gain in dependence on number of users per small cell

Section 2.4.5). Figure 5.7 shows the average power consumption per user request for the com-
pared algorithms. For the case ofno clustering, no data is sent between small cells and therefore
there is no communication power cost. An interesting resultis the very low communication power
consumption for the EDF-PC algorithm even for high number ofusers per femtocell. This shows
the convenience in the choice of bothstep 1andstep 2metrics and rules. This algorithm can
in fact achieve high energy efficiency while keeping a very high quality of service. It is a very
good solution to implement whenever latency minimization is not an issue. In fact, when traffic is
elastic, optimization could focus on respecting the elasticity limits instead of minimizing latency.
Even though EDF-LAT and CS-LAT implement both latency minimizing clusters, which imply
high power consumption, it is clearly seen that CS-LAT is less power consuming. In fact, since
CS-LAT schedules requests instep 1based on their computation size instead of adopting and EDF
rule, it can serve more users’ request locally communication cost free. This comes at the cost
of lower users satisfaction ratio as can be seen in Figure 5.4since users with high requirements
of computational capacity (computation size and latency ratio) can be found dropped using such
strategy. We also notice a difference in the average power consumption between theone shot
optimizationsolution and EDF-PC. This difference is potentially due to several factors: (i) the
difference in satisfaction ratio shows that theone shot optimizationserves more users, and thus
exploits the QoE-power consumption trade-off to its limitsby increasing the consumed power for
achieving higher QoE. (ii) EDF-PC schedules computationaltasks on the SSC based on latency
constraints. Requests with the earliest deadlines are computed locally on the SSC. Computed on
the SSC, there is no intra-cluster wireless exchange of dataand thus no transmission power con-
sumption. The minimization of offloaded tasks increases theavailability of computing resources
at nearby small cells, i.e. at a small cost. These resources can be exploited by users that are less
urgent, and thus can further reduce their power consumptionby opting a lower transmit power.
(iii) as computational resources are allocated locally andon the edge cloud following and EDF
rule, then freed resources on both sides can be re-used for the computing tasks with higher delay
tolerance. It is especially the re-use of local computational capacities at the SSC and then at nearby



142 CHAPTER 5. SMALL CELLS CLUSTERING APPROACHES FOR MEC

HSCs with high throughput connection links that achieves this gain of power consumption.
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Figure 5.7: Average power consumption per user in dependence on number of users per small cell

An important aspect to evaluate in the iterative algorithm is the number of iterations that are
necessary to compute all clusters solutions. Each iteration imposes signaling between SSCs and
the SCM. However, the signaling amount at each iteration decreases comparing to previous iter-
ations, since SSC that have their clusters established do not need to report back to the SCM. The
cumulated signaling overhead increases with the number of iterations, and therefore the whole
system resources and power consumption. Note that the signaling data to be exchanged between
SSC and SCM can be detailed as follows:

(i) SSCs send their computed clusters parameters that consists of the participant small cells,
and, for each cell, the computational capacity allocated, and the number of CPU cycles to
execute. In case of clustering failure, a negative acknowledgment (NACK) is sent.

(ii) SCM response to SSC is (i) in case no modifications on the cluster are required, an ac-
knowledgment (ACK); (ii) in case of necessary cluster adjustment, small cells that have
been overloaded, and the number of CPU cycles (instructions) that should be re-allocated to
another small cell; (iii) in case of a dropped request, a NACK.

Since the SSC population that participate in the cluster setup algorithm decreases at every itera-
tion, the signaling delay varies linearly with the number ofiterations — in the worst case scenario.

A study on the number of iterations required for establishing a clustering solution is repre-
sented in Figure 5.8.

Figure 5.8 shows the average, 25th, and 75th percentiles of number of iterations needed with
respect to the number of users per small cell. On each box, thecentral line is the median. The edges
of the boxes are the 25th and 75th percentiles. The most extreme data points are delimited by the
whiskers. Red cross marks represent outliers. Blue, red andgreen curves represent respectively
the maximum, median, and minimum number of iterations for different number of users per small
cell. It is shown that the median number of iterations does not exceed 4 iterations for less than 4
mobile users per small cell. For a higher number of users per small cell, the number of iterations
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Figure 5.8: Average Number of Iterations Needed for ClusterEstablishment

is mostly limited between 4 and 8 iterations. The variance ofthe number of iterations increases
with the number of users per SC. Figure 5.9 shows the cumulative distribution function of the
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Figure 5.9: CDF of the Number of Iterations Needed for Cluster Establishment

necessary number of iterations for a varying maximum numberof users per small cell. It shows
again that a solution is faster derived for a small number of users. It is important to notice that
even for high number of users per small cell, a large population reaches a clustering solution with
a small number of iterations. For example, for the most extreme case of 8 users per small cell,
50% of users have a clustering solution in 5 iterations and less. At each iteration, a set of users
is served. This means that at each iteration less optimization problems need to be computed than
the previous one. Therefore, the complexity, which is already low because of distributed cluster
optimization, further decreases for each iteration.



144 CHAPTER 5. SMALL CELLS CLUSTERING APPROACHES FOR MEC

5.6 Conclusion

In this chapter, we proposed two heuristic algorithms as a solution for the small cell clustering
problem. The benefit is low complexity and the low implementation cost it can offer. As most
of the joint computation and communication resource allocation for mobile cloud computing are
formulated as NP-hard problems, they are usually solved either by an approximation of the real
problem, by loosening a constraint, or by proposing heuristic algorithms. In a previous chapter we
opted for the optimization solution after loosening the scheduling and resources re-use constraint.
In this chapter, we took resources re-use into consideration, as well as tasks scheduling. We
proposed two heuristic with several implementation.

A first approach based on resources scheduling at the SSC and resource allocation of the SSC
as a first step. In a second step, unserved request are sent to asmall cell managing unit which
schedules the tasks and then sets up computing clusters for each of them. Three implementations
that differ in scheduling and clustering metrics and policies are then derived from the main algo-
rithm. We compared the EDF-PC, EDF-LAT, and CS-LAT implementations in terms of achieved
QoE, power consumption, and latency gain.

In the second part of this chapter, we proposed an iterative clustering and resource allocation
algorithm for distributed mobile cloud computing environment. The algorithm consists on dis-
tributed roles between SSCs and the SCM. SSCs form their own clusters that are then managed
and controlled by the SCM. In other words, the algorithm proposes to:

(i) Set up the clusters of small cells serving computation offloading requests from multiple
users, having potentially each request accommodated to an ad hoc established cloud. This
exploits combined centralized and distributed approach.

(ii) Perform DistributedSelfishGuess: The distributed part of the cluster set up algorithm con-
siders all users’ requests asselfishplayers that propose to a centralized unit their preferred
allocation (and associated serving cluster) based onselfishinterests (own minimization of
delay, energy, etc). Note that while singleselfishuser clustering set up procedure is optimal,
scalable, practical, and is of a low complexity, for the multi-user case it can drive to notable
losses of system performance.

(iii) Centralized Feasibility Check: The centralized unitsupervises which requests can be granted
as requested and which must be modified. This is needed to check if the set ofselfishre-
quests can be accommodated by the system.

(iv) Centralized Correction Evaluation: The central unit evaluates which serving small cell
presents excess of requests based on union ofselfishrequests. The central unit classifies
requests as ‘granted as demanded’ and ‘to be corrected’. All‘granted as demanded’ are
allocated, available computing capacities of small cells updated. The centralized units in-
forms SSCs on remaining request to be re-computed and relative correction values.

(v) SSCs of unserved requests, set up new cluster for computing these requests and sends the
cluster guess details to SCM (iteration).
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A performance evaluation of the iterative algorithm has been presented. An analysis of the num-
ber of iterations required to converge towards a clusteringsolution for all users has also been
discussed. The algorithm achieves guarantees a QoE for at least 75% of mobile users, in the case
of 8 users per small cell.

We note that the presented work can be applied to current third generation cellular wireless
mobile networks and its future evolutions (5G, 4G, 3GPP LTE,3GPP LTE A, WiFi, LiFi, WiGiG,
WiMAX, etc.) with the modification of the adopted transmission and deployment models. This is
because the proposed methods do not request changes in the current standards to be implemented.
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6.1 Introduction

6.1.1 Motivation

In previous chapters we studied and proposed resource allocation solution for small cell clusters-
based Mobile Edge Cloud. The majority of the proposed solutions aim at minimizing the SCC
power consumption, while maintaining QoE, and delivering requested services to users, without
violating any of the imposed latency constraints. To this end, communication and computation are
jointly allocated, and load distribution is adequately balanced. In addition to resource allocation
and scheduling, resource provisioning can bring major benefits into the MEC computing context.
In Chapters 4 and 5 we proposereactivesolutions for resources management. In this kind of solu-
tions, communication and computation resources are allocated according to the current requested
load — ademand and computeoperation mode. In this chapter, we introduce the concept of
caching to the computation cluster. We propose to allow storing computations in cache memories
of small cells. Conversely to what caching has traditionally referred to, we propose caching tasks
computation results instead of caching communication datafiles. Hence, we exploit caching for
computing storage and not data storage. If the cached task isrequested again, it is then retrieved
from cache and not computed. This approach shifts the MEC to asearch and downloadoperation
mode.
We propose the computation caching in small cell cloud according to the following motivations:

• In the context of edge computing, small cells are endowed with computational and storage
capacities. These resources can be exploited for both usersand system usage. Computa-
tional resources are exploited for executing computationsrequested by mobile users. The
idea is to also exploit available storage space for storing mobile users related computational
data.

• Mobile data traffic has been recognized as predictable, correlated, and can be identified
to patterns [121] [122]. Furthermore, several tools for data prediction and traffic statisti-
cal pattern learning exist. Partial traffic information knowledge can help improve caching
efficiency by choosing the right files to cache. Caching prevents the system from being
overloaded and saturated in computational capacity. Redundant computation of the same
tasks is reduced, and more computational capacity is available.

• Caching computations at small cells reduces the computation costs in terms of power con-
sumption, or energy efficiency. Small cells power consumption while computing is higher
than in idle mode. If fewer computations are executed, then less computational power is
consumed.

• Delay is a very critical aspect of mobile users QoE. Caching computation results will prevent
their computation when they are requested. This can reduce experienced latency, since data
is only sent from the SC where it is cached to the SSC, then to the user.

• Caching some computation results prevents their repetitive computation. It also prevents
sending necessary computational data to the computing entity. Data sent from SSC to HSCs
is, generally, larger than computational results sent backfrom HSCs to SSC. Thus, caching
not only minimizes computation power consumption, but can reduce communication energy
consumption and EMF radiation and exposure.

• With the increase of uplink traffic and the consequences it has on wireless networks (see
Section 1.4), computation caching can help reducing uplinktraffic. Computation caching
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limits uplink requests by reducing uplink sending of data for computational offloading. In
case of computation caching, requests can consist in sending only a label for example.

In this chapter, we address the challenge of further enhancing the performance of cluster-
enabled MEC, by reducing perceived latency and power consumption. To this end, we propose to
exploit cache memories at small cells for caching popular computation offloading requests.

6.1.2 Related Work

Distributed cache systems

Cache servers were initially introduced to reduce the processing load of web servers. Distributed
caching is presented as a solution for the problem of overloading centralized cache servers and
decreasing their performance. Normally, every cache server serves users connected to it. To further
improve the system performance, cache servers can exchangefiles in order to achiever higher hit
ratio over the whole system. Two important characteristicsof distributed caching are (i) caching
of the same files at different cache servers; (ii) adopting a light request search process. For the
Internet Cache Protocol (ICP) [123] all cache servers are searched for finding the requests, which is
not suitable for large scale networks. Kataokaet al. propose a centralized cache server controller,
that can provide contents cached in any of the caching servers [124]. The server controller keeps
a list of cachedurls and their cached server ID. Cache control server is responsible for sending an
instruction to the cache server that has a cached copy of the requested file. This instruction consists
of a request to send the file to the user who requested it. An extension of splitting the load, i.e., the
content list, on several (three) cache control servers is discussed. In this case, a cache cooperation
router is needed to forward requests to the right cache control server.
Zhanget al. propose a distributed cache systems for real-time cloud services [125] . Cache
services are organized in a Peer-to-Peer (P2P) style, and use a Distributed Hash Tables (DHT).
The distributed storage process relies on creating three replicas of the requested data files in the
cache system. When a request is received, and is not entirelyfound at the distributed cache system,
the hash value of the file is calculated, and two nodes from DHTare chosen to store replicas of
the file. File distributed system in wired network do not tackle the problem of connection between
cache servers, nor do they discuss the costs in terms of delayand energy consumption.

Data caching in cellular networks

In this section, we discuss some related work to data cachingin mobile network. Data caching is
linked to data storage at cache memories of network entities, such as base stations. Anandharaj
and Anitha propose a cache management for mobile hosts in thecontext of cloud computing [126].
Base stations are assumed to be connected to database servers. Files are stored at the mobile clients
according to a weight metric that is based on the available bandwidth, the CPU speed, access
latency and cache hit ratio. A cache discovery algorithm is presented, in which, if a requested
file is not found in local cache, a broadcast request is sent toactive clients. The client with
the most updated version of the file is selected to transmit the file to the requesting client. A
replacement algorithm is as well developed. It replaces files with lowestRelevant Value, which
is a metric based on the access probability, the number of hops between requesting client and
responding client, and the file size. This caching process proved to outperform the Least Recently
Used (LRU) algorithm [127] by achieving higher download traffic and lower delays. Bastuget
al. propose a caching system for cellular networks where users’files are stored at small cells base
stations [128]. The authors propose an algorithm for choosing the files to be cached, based on the
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files popularities (popularity matrix). The algorithm stores the most popular files, i.e. files with
highest popularities, at each base station until cache memory is full. If files are not found they
are downloaded using small cells backhaul. Performance of this algorithm is compared to random
caching, and it proved to achieve better performance and lower backhaul load.

In [129], Bastuget al. follow the same concept, with modifications in the popularity matrix
generation distribution . In the first proposal ( [128]), thepopularity matrix is randomly generated
and assumed fully known. Whereas in the second ( [129]), the authors introduce a training and
placement strategy for the matrix, to be more realistic. Furthermore, they introduce a social-aware
caching through the modeling of social content dissemination between users. Request probability
of content is affected by the number of previous content requests within the same community. The
higher the number of the same content request in a same community, the more D2D file sharing
is leveraged, instead of downloading files from the network.Gu et al. proposed in [130] an MDP
decision process for cache replacement in base stations cache memory. The strategy is based on
Q-learning and replaces cached data taking into consideration both service popularities and the
transmission cost between base stations.

The presented work tackles the paradigm of data caching in cellular networks. Our proposal
is to exploit cache memories in edge network entities in order to store also computation data.

Computation caching

Computation caching means storing computation related information, which can be used when
needed by a computation. The main issues of computation caching are what to cache, how to link
request to cached information. Linking the computational request to the search action can be done
either using DHTs as in the data caching case, or using other techniques similar to Information
Centric Networking (ICN), for example. Computation caching has been proposed in the context
of Named Function Networking (NFN) in [131]. In this proposal, the network is able to cache not
only data but also computation results. The proposal is based on the network recognition of the
function by a naming definition. ICN offers names for functions, enabling users to say what result
they need by writing expressions that refer to data and function names. The network substrate
would then be in charge of finding out how these results can be obtained, either by computing
them, or by looking them up in case it was already computed by others. Three scenarios are de-
scribed. First, the cached result is entirely available andthus downloaded. Second, data is partly
processed, downloaded, and then remaining code is downloaded and executed. Third, program is
not cached, then it is fully computed and the result is downloaded.

Another paradigm of computation caching is to decide what tocache. Of the existing solu-
tions, Waterlandet al. propose to cache the act of computation, so that it is applicable later in the
same or different contexts [132]. Caches are used to avoid re-computation by storing the results
of computations. The proposal is based on caching theact of computation instead of the results
because computing can be dynamic. The function is cached along with actual executions results
and predicted possible executions as well. Furthermore, they consider an approach that uses se-
mantic information about the relationship between the function and the desired computation value.
This way only the value can be matched and not the function. Ifthe function is found in cache,
the computation is speed up and forwarded to the final state (results). The idea is exploitable in a
network of computers or servers, that collaborate by sharing model parameters and cache entries
without middleware problems. If the act is stored, it can be applied repeatedly in new contexts.
Another option would be to store computational results, or entire (or parts) of the computational
codes, as proposed in [131]. In our work, we adopt a solution that caches computational results,
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but that treats the problem from both perspectives of computational caching at the level of com-
puted instructions, and how to retrieve the information. None of the discussed work proposes to
form information retrieval ad hoc clusters, even in distributed caching systems. We exploit the
distributed caching in local edge cloud in order to change the set up of the cluster to take into
account computational caching.

6.2 Contribution

In this chapter we propose a novel paradigm to further reduceboth power consumption, and time
delay, of mobile computation offloading to the edge cloud. Aswe suppose that small cells are
equipped with computational and storage capabilities, we propose to use their storage space for
computation caching. Computation caching consists in caching popular computations, in order
to prevent re-executing the same instruction blocks. More concretely, if the same computation is
asked for several times, the small cells do not need to compute it at every request. If the compu-
tation is cached, the results are retrieved from the edge cloud. The benefits of this paradigm are
two-fold. First, it allows users to have faster response to computational requests service. Second,
it prevents small cells from consuming energy, time, and computational capacity for computing
the same tasks repeatedly. The two main contributions of this chapter are the proposal of a com-
putation caching algorithm in the context of edge cloud computing with small cells clusters, and a
cluster search reduction (sparsification) method including computational caching empowerment.
In the first contribution, we propose a caching algorithm forthe small cell edge cloud paradigm.
The algorithm is based on computing a caching metric that is afunction, not only of the computa-
tion popularities, but also the computation size, and latency constraints. The proposed algorithm
is described and compared to state-of-the-art algorithms.

When a SSC searches for a cached computation, it may search onits own cache memory, but
also on HSCs caches. However, cache searching algorithms impose time complexity. In addition
to our first proposal of clustering small cell for serving computational requests, we propose, in
this chapter, to form clusters for cache searching. We shiftthe cluster set up paradigm from a joint
communication and communication aware clustering, and adda caching aware clustering. Search-
ing a cache memory where it is not likely to find the desired files increases the costs of the cache
search operation. Hence, our second contribution consistsin reducing the set of small cells caches
that are searched for finding the requested computations. Werefer to the set of searched small cells
as the search cluster. We therefore propose to identify the set of eligible small cell candidates, for
which the probability of finding the requested files meets a specified target. Obviously, reducing
the search cluster by focusing on a selection of small cells reduces the cache search process costs.

6.3 System Model and Notations

We consider a scenario ofK mobile users, each connected to a SSC from theN active small
cells in the network. Each small celln is characterized by a computational capacity ofFn [CPU
cycles/sec]. The set of small cells communicate through a backhaul connection. Parameterρ
indicates the connectivity ratio between small cells. A connectivity matrix X shows available



152 CHAPTER 6. COMPUTATION CACHING IN CLUSTER-BASED CLOUD COMPUTING

connections between small cells as follows:

X =











x1,1 . . . x1,N

x2,1 . . . x2,N
...

...
...

xN,1 . . . xN,N











∈ {0,1}N×N (6.1)

wherexn,n′ = 1 if small cellsn andn′ can communicate through a direct backhaul link.

In our model, we adopt the same concept of probability matrixproposed by Bastuget al. [128].
We therefore consider that a matrixP gives the probability of a computationc to be offloaded to
SCn. A set of a maximum ofC popular computations is considered. The computation probability
matrix is then defined as follows:

P=











p1,1 . . . p1,C

p2,1 . . . p2,C
...

...
...

pN,1 . . . pN,C











∈ [0,1]N×C (6.2)

wherepn,c is the probability of computationc to be requested at small celln. Note that the sum of
each row ofP is equal to 1. MatrixP serves as an input for a caching algorithm that decides which
computation to cache at which small cells. The algorithm returns is a caching matrixa such that:

D =











D1,1 . . . D1,C

D2,1 . . . D2,C
...

...
...

DN,1 . . . DN,C











∈ {0,1}N×C (6.3)

whereDn,c = 1 if computationc is cached at small celln, andDn,c = 0 if not. Each of theC
computations is characterized by an offloading request(Wc,∆c), which consists of the computation
of Wc instructions in a maximum time of∆c seconds. We assume that the number of bitsNUL and
NDL to be transmitted to each small cell in uplink and downlink, respectively, is related to the
number of CPU cyclesW as follows:

NUL = W.θUL

NDL = W.θDL (6.4)

whereθUL andθDL are constants that account, respectively, for the overheaddue to the uplink and
downlink communications. The formulation in Equation 6.4 is valid for both UE to SSC and SSC
to HSC communications.

The intra-cluster communication assumptions and models are the same as described in Section
4.2.

6.4 Computation Caching for Edge Computing

We adopt the concept of MEC described in Section 2.1. It consists on deploying cloud services
at the edge of the network, in our case, in small cells. Mobilehandsets offload computation tasks
by communicating only with their serving small cell (SSC). SSCs take the role of computing the
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requested tasks without violating the latency constraintsimposed by each task. SSCs form com-
puting clusters with a set of its neighbor HSCs in order to compute received tasks. Computational
load is distributed among the cluster nodes. The process of small cells clustering is transparent
to mobile users; however the perceived cluster computing delay affects the users’ QoE. Cluster-
ing steps, that affect the perceived cluster computing latency and energy consumption, can be
resumed as follows: (i) uplink computation request transmission from MUE to SSC (ii) computa-
tional load distribution on the cluster SSC and HSCs (iii) computation execution at each small cell
of the cluster (iv) computational results transmission back to the SSC (v) downlink computation
response transmission from SSC to MUE. All of these components depend directly on the quan-
tity of data bits to be transmitted or processed. Even with high data transmission energy efficiency
in Joules/bit, the consumed energy will always scale with the number of bits. The same applies
on computational power consumption which is linked to each processor EPC (Energy Per CPU
cycle). Thus, with higher number of instructions to compute, energy consumption increases.

In this chapter, we propose a new paradigm that allows further reducing the computation of-
floading process costs. We merge computation with caching ina new paradigm that allows small
cells to store popular computations. If a computational request is already cached, the SSC will only
have to retrieve it from the cache location. This will reducethe quantity of transmitted data since
only computation results are to be exchanged. Computing cluster set-up is thus not required, and
consequently, no computations are to be executed. Computation caching will also allow sparing
computational resources, and therefore using these capabilities to satisfy more users. An obser-
vation that further supports such a proposal, is the fact that human behavior is highly predictable
and correlated. Human behavior prediction may not be able (yet) to predictexactactions at exact
locations and moments, but statistical patterns may be observed [128]. An example of statistical
patterns is the requests popularity distribution. Popularity is a matrix that associates each file with
a popularity value that translates the probability of it being requested. We also consider in this
work the presence of a known computation popularity matrix that we use for caching popular re-
quests. Whenever a computation request is sent to a SSC, it searches for a cached copy. If found,
the computation details are fetched and downloaded. Otherwise, a computing cluster is set up by
the SSC and the computations are run inside the cluster.

The general scenario is the following:

• Step 1 - Offloading request:
Serving small cell (SSC) receives an offloading request(Wk,∆k) from mobile userk.

• Step 2 - Local search:
SSC searches for the computation in its own local cache memory. If found, results are sent
to UE.

• Step 3 - Search & Download:
If computation is not found on local cache, SSC sends a searchrequest for reachable helper
small cells in the network. If found, the file is downloaded from thebestHSC. After that,
results are forwarded to the UE.

• Step 4 - Cluster computation:
In case a cached version of the computation is not found, SSC forms a computation cluster
and distributes the load on participating small cells.
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The total costs components of the cluster computing processcan be written as follows:

Ctot =CUL
TX +Cclustering,T x+Ccomp+CDL

Tx (6.5)

whereCtot is the total cost of the process,CUL
T X andCDL

Tx are the communication cost between UE and
SSC for uplink and downlink respectively,Cclustering,T x is the cost of intra-cluster communication
for sending and receiving computational load and results, and finallyCcomp is the computing cost
at the SSC and HSCs. We note thatCclustering,T x andCcompare the sum of costs relative to all small
cells participating in the computation cluster:

Cclustering,T x = ∑
n∈cluster;n6=SSC

(CUL
SSC,n+CDL

SSC,n)

Ccomp= ∑
n∈cluster

Cn
comp

(6.6)

Costs in equations above can represent both energy and latency costs. For transmission costs,
both, energy and time, scale with the number of bits to be sent. We note that UL, DL, and cluster
communication depend on both transmission and overhead costs, that both increase with data
load. The same applies for computing cost, where the computation time is computed according
to the processor speed, and the computing energy consumption according to the processor energy
consumption per cycle. Indeed, computation time at each small cell n is computed as∆n

comp=
Wn
fn

and energy cost asEn
comp= EPC(n).Wn

The costs details allow us to assume that computation caching can severely reduce offloading
costs, and that by greatly reducing the size of that data to betransmitted and processed.

6.5 Proposed Caching Algorithm

The scenario described in the previous section assumes the knowledge of matrixD (see Section
6.3). In this section, we propose a novel caching algorithm that we nameClusterCaching, which
takes into account several parameters of the requested computations. In [128], the authors pro-
pose a caching algorithm for data under the name ofPropCachingfor caching files at femto base
stations, with the objective of maximizing the satisfaction ratio defined by finding the files at the
base station cache. The algorithm is based on caching the most popular files at each base stations.

We propose a caching policy metric and a caching algorithm adopted for the context of com-
putational caching. We re-engineer the same approach of data files popularity for exploiting cache
clustering for computational data. We propose a caching algorithm in which the common point
with the state of the art [128] is the exploitation of the concept of popularity matrix. Nevertheless,
our work is based on computational instructions results caching and not user data files. Further-
more, we design a multi-parameter caching metricλ that does not only takes into account the tasks
popularity as in state of the art. We introduce additional parameters in the caching metric, which
will adopt the caching policy to dynamic ad-hoc clusters setup for computation fetching. The aim
of the proposed caching algorithm is to adapt the caching policy to achieving higher energy gain
(lower mean energy consumption per computational request)when instructions results are fetched
in cache memory using ad-hoc clusters that include caching resources. In our work, and in the con-
text of mobile computation offloading, we define the users satisfaction ratio as the percentage of
mobile users that have a response of their offloaded requests, without any violation of the latency
constraint∆k. We propose a novel caching algorithm whose objective is to increase users satisfac-
tion while reducing the cost of the local edge cloud computing process. The proposed algorithm
takes into account, not only computation popularities, butalso other characteristics, such as, data
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size, latency constraint, and the mean of data rates with which cached copies can be retrieved. In
fact, our algorithm does not target a high hit ratio in cache memories. Instead, we find the right
computations to cache at the right place (small cell) that will allow us to reduce the edge comput-
ing and offloading costs. Our policy will provision computing and communication resources by
caching the most resources demanding computations. Following this policy, more resources will
be free to be used by small cells for executing other tasks andcomputations requested by mobile
users.

We define the parameterλ as:

λ =
pn,cWc|N (n)|
Lc ∑

m∈N (n)
Rn,m

(6.7)

whereN (n) is the set of neighbor small cells connected ton, defined as the set of SCs{m|C(n,m)=
1}, and|N (n)| its cardinal number. As noticed in its definition,λ increases with the computation
popularity pn,c and with the required computational capacity, defined byWc

Lc
. Caching computa-

tions according toλ gives priority to popular computations requiring high computational capac-
ities. By giving priority to higher capacity requiring computations, higher amounts of computa-
tional capacities can be provisioned. Furthermore,λ is inversely proportional to the intra-cluster
communication mean rate with which the cell is connected to its neighbors ( ∑

m∈N (n)
Rn,m/|N (n)|).

The caching matrixD is then obtained by applying Algorithm 1. This algorithm computes
parameterλ for each pair (small cell, computation request), and then stores computations with the
highestλ, until small cells cache memory, of storage capacity denoted asZn, are full. We denote
asYc the amount of data to be stored on the cache memory for a computation requestc.

Algorithm 1 ClusterCaching algorithm
1: for n= 1, · · · ,N do

2: computeλλλn according to (6.7)

3: end for

4: aN×C← 0N×C

5: zN×C← 0N×C

6: for n= 1, · · · ,N do

7: [λ̂λλ,s]← sort(λλλn)

8: for c= 1, · · · ,C do

9: ĉ← sc

10: if ẑn+Yĉ≤ Zn then

11: ẑn← ẑn+Yĉ

12: an,c← 1

13: else

14: break

15: end if

16: end for

17: end for
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6.6 Caching Algorithm Evaluation

In this section, we first evaluate, and then benchmark, the computation caching paradigm along
with the proposedClusterCachingalgorithm. We consider a scenario where in a time window of
lengthT, a set ofQ users computation requests are randomly generated. Users communicate with
their SSC through a wireless link of a delivery rate fixed toRuk,n. The generated requests are chosen
from a set of selectedC popular requests. TheQ requests are also randomly distributed among the
N active small cells in the network. The number of active smallcells is determined by the small
cell activation ratioα. Each of the small cells has a computational capacityFn randomly generated,
and a computing power consumption ofPcomp= 10W. Small cells communicate through wireless
links of a capacity ofR fn,n′ . The simulation parameters values are listed in Table 6.1.

Table 6.1: Simulation parameters values
Parameter Value Parameter Value

N 25 α 0.8

ρ 1 T 1024

Q 60×T Ru 5 Mb/time slot

Rf 5 Mb/time slot C 128

Wc [2,10] Mb ∆c [0.3,3.5] s

Yc Wc Fn [10,15]MIPS

θUL 1 θDL 1

As for the storage of small cells, we consider different values of cache memory capacities. We

defineSC as the total storage space available at each SC.
C
∑

c=1
Yc is the required storage space at one

small cell to store allC requests. We defineµ as the storage ratio at each small cell defined by:

µ=
Sc

C
∑

c=1
Yc

(6.8)

However, considering that small cells have access to each others cache through clustering, lower
memory space thanSc may be needed for each SC to have access to cached copy of each com-
putation. This comes at the cost of backhauling communication. Consequently, the amount of
required storage space depends on the connectivity betweensmall cells. Indeed, when small cells
are inter-connected through high capacity and ubiquitous availability backhaul, each node can
store or cache a smaller set of tasks, knowing that non-cached tasks can be easily retrieved from
neighbor small cells through intra-cluster communication. Nevertheless, when cluster connec-
tivity is lows, small cells have lower chances of retrievingcached computation from a neighbor
small cell due to the low number of available and reachable neighbor small cells. A cluster with
high connectivity ratio lead to a better aggregation and exploitation of neighbor small cell cache
memory, and thus, lower storage space is required for accessing all cached tasks.

Figure 6.1 shows the ratio of cached and accessible files in function of both the small cells
connectivity ratio and the cache memory size. We notice indeed that we can achieve the same ratio
of cached and accessible requests, in a well-connected network, by using lower cache memory
space. In Figure 6.2, we compare bothPropCachingandClusterCachingalgorithms in terms of
cached requests. We show the probability of a request being found in the SSC cache in function of
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Figure 6.1: Cached requests ratio for different connectivity levels and memory space

its popularity at the same SSC. This plot shows howPropCachingclearly gives caching priority
to most popular requests andClusterCachingdoes not. For example, as indicated by the double
arrow shown on the graph, a file with a popularity ofp= 0.05 will be found on a cache memory
with a probability of 80% in the case ofPropCaching, and only 26% forClusterCaching. The
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Figure 6.2: Cached requests probability in function of popularity

objective ofClusterCachingis to minimize the computation cluster energy in the contextof local
cloud computing. Choosing the right requests to cache is imperative in order to achieve higher
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energy efficiency. To this end, we show on Figure 6.3 the energy consumption per request with
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Figure 6.3: Energy consumption of different caching algorithms

respect to cache memory storage space. We evaluate the energy consumption in cases of no cache
clustering, i.e. SSC only searches for the computation results locally on its own cache, and in
case of unit size cluster, i.e. if not found on local cache, SSC downloads the computation results
from a single small cell cache source. Solid and dotted lineson Figure 6.3 represent cases with
and without cache download clustering, respectively. We compare the energy consumption of our
proposed algorithm to the state of the artPropCachingalgorithm. We also proposed anenhanced-
PropCachingwhere we include clustering possibility for thePropCachingalgorithm. Square
marked red lines represent state of the art and reference algorithm; while circle marked blue lines
represent the proposed algorithm. Two important observations from 6.3 are important. First,
comparing solid and dotted lines, we see the energy consumption gain brought by small cells
cache clustering. Indeed, having the possibility to download computational results, even if not
from the SSC, leads to savings in energy consumption when thedownload cost is lower than tasks
computing costs. As shown on Figure 6.3, the energy for computing the set of requests costs 5
times more the energy comparing to the case of computation caching, in the considered scenario
and parameters. Second, it is shown thatClusterCachingachieves higher energy savings than
PropCachingalgorithm comparing to the case where there is no caching. Note that the no caching
case is represented by a zero cache memory size on all small cells. We notice thatClusterCaching
is more adapted to the cache clustering scenario, since it exploits, in addition to computations
popularity, the cost of computation and download for choosing which tasks to cache. By caching
results of computations that imposes high execution or download costs, even if lesspopular, the
proposed algorithm reduces thesearch and downloadcost. Figure 6.4 shows the percentage of
energy savings comparing to the state of the art (PropCachingwith no clustering). On this figure,
we distinguish three regions with different behavior.

1. Very low cache storage space: In this case, where cache space is very low comparing to the
considered computations population (0.25-0.5%), we notice that both algorithms have al-
most the same behavior, with a slightly better performance for enhanced-PropCaching. This
can be explained by the fact thatPropCachingstores the most popular tasks, whileCluster-
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Figure 6.4: Energy consumption gain of different caching algorithms

Cachingcaches the computations based on a multi-parameter metric that depends, among
others, on the computation size. Therefore, with very low cache memories,clusterCaching
is able to store less computational tasks, that can be less popular, thanPropCaching. Hence,
PropCachingachieves a higher cache hit ratio and lower average energy consumption per
request.

2. Moderate cache storage space: It is in this case that we notice higher gains for both the
cache clustering and the proposedClusterCachingalgorithm. When cache memory space
is not very low, and not large enough to contain all the computations considered popula-
tion, ClusterCachingoutperforms the reference algorithm for up to a gain of 70%. Cluster
caching brings forPropCachingalgorithms a gain that goes up to 80%. Finally, combining
the effects of bothClusterCachingand cache clustering, a gain of 98% can be achieved.
This clearly shows that the proposed algorithm is adapted tothe cache clustering mecha-
nism. Even ifPropCachingcan achieve higher cache hit ratio,ClusterCachingachieves
higher energy gain with lower cache hit ratio, because it stores popular computations that
are the most energy consuming.

3. Cache storage excess: In this case, cache storage space oneach small cell is high enough to
contain a cached copy of all the considered computation population. In this case, computa-
tional results are always found at the SSC cache. The cachingalgorithm has no impact on
energy consumption in this case.

It is important to note that energy consumption in the considered scenarios depend on several
parameter, most importantly the communication channels condition and the computing processors
power consumption that can vary by tens of watts. The resultsshown in this chapter are for
a specific set of parameters. While energy consumption values can vary and the energy gain
percentage depend on the correlation between popularity and tasks size, the analysis of these
results remains general, and the relationships between cache memory space, computation size,
and popularities hold up even in the case of different systemparameters.
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6.7 Search Cluster Sparsification

6.7.1 Motivation

Computation caching is a way of reducing the computation cluster perceived costs in terms of
latency and power consumption, and of increasing resourcesutilization efficiency.

A first problem identified in the concept of computation caching, is the complexity of the
cache search process. In medium and large scale networks, the search algorithm can be severely
penalizing in terms of time complexity. Small cells processors could be overloaded with search
jobs, which can reduce the availability, and the efficiency of computational capacities. SSC has
interest in reducing its decision set, and hence, reducing the size of the cache clusters. Neverthe-
less, the cache cluster size reduction must not eliminate candidates of having the requested cached
file. Indeed, the larger the cluster, the more small cells caches it has, and the higher the probability
of finding the required files since the search space is bigger.Search cluster sparsification should
be designed in order to reduce the number of searched small cells while guaranteeing a minimum
cache hit probability. The reduction of the search cluster set should not prevent the SSC from
finding and retrieving the required files and cached computations. The excluded small cells from
the search cluster should not hold the required files in theircache memories. Distributing the list
of cached files on every small cells into the network results in extensive overhead, especially that
the cache update mechanism can be dynamic and very frequent.In addition, the main motivation
for introducing computation caching is to enable further latency and energy consumption of small
cell clusters. These objectives have to be maintained in order to keep the gain imported by compu-
tational caching. Occupying small cells resources in cachesearch jobs may result in low resources
utilization efficiency.

There is a trade-off between reducing the search cluster andguaranteeing the required files
retrieval in the discussed computation caching scenario. To overcome this existing trade-off, we
propose a method that reduces the cluster size, while guaranteeing a target cache hit probability.

6.7.2 Contribution

We already introduced an additional resource to the clustering process which is the cache storage
space. The idea we propose now, is to exploit the popularity matrix for interconnecting small cells
in cloud connected cache system.

Exploiting the popularity matrix, we can reduce the search or decision space without nega-
tively affecting the search results, i.e. we can performsafesearch cluster sparsification.

We note asCs the decision space that contains all SCs with cache storage space. If each of
these small cells (n∈ Cs) storedM computations in its cache memory, then the search algorithm
will have to go overNM files. The complexity of the search algorithm (linear search) is of θ(NM).
However, the searched file may not be cached in all of theN small cells inCs. We defineC ′s as the
set ofN′ small cells where the computation is cached (C ′s ⊆ Cs). The small cells follow a policy
to cache computations defined by the caching algorithm. Thispolicy depends on the popularity of
each request at each small cell (Examples are in Section 6.5). Establishing a relationship between
popularity and caching will help identify possible cachinglocation of the requested computation.
If we exploit the knowledge of both the popularity matrix andthe caching policy, we can reduce
the cache cluster size without removing possible small cells candidates. The decision space will
thus be reduced fromCs to Ca ⊆ Cs. The sparsified clusterCa should include at least one cached
copy of the required files. The required and necessary condition for Ca to be asafesparsification
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of the search space is:

Ca∩C ′s 6= /0, where/0 represents an empty set (6.9)

Figure 6.5 shows a graphical explanation of the decision space size reduction.Ca is the image
of Cs by popularity matrix aware transformation. If the searchesin Cs andCa have the same results,
then the decision space reduction includes no loss in the search process. We propose a process that
defines this popularity aware transformation that can guarantee a minimum intersection withC ′s.
The implementation of this idea is possible thanks to (i) theintroduction of computation caching;
(ii) the existing relationship between popularity and caching location.

The ultimate case for optimal size reduction is the knowledge of exact locations (small cells)
where the request is cached, i.e. theN′ small cells inC ′s can be perfectly identified andCa∩C ′s=C ′s.

(a) Valid sparsification (Ca∩C ′s 6= /0) (b) Non-valid sparsification (Ca∩C ′s = /0)

Figure 6.5: Search space reduction use cases

We propose a method for reducing the search cluster set basedon the knowledge, at each small
cell, of the files popularity and the caching policy. We referto the list of computations cached on a
small cell as thecache inventory. If all the network small cells are aware of the cache inventory of
all other small cells, the requested computation cached copy can be localized. However, the cache
inventory at each small cell changes at a high pace, up to the frequency of computations requests.
Indeed, at each computation request, the caching policy mayresult in replacing older requests
with the newly requested. Diffusing the cache memory inventory to small cells in the network
results in excessive overhead. Furthermore, even if a smallcell can collect the cache inventory
of others, it will still have to search through the inventories. We propose to exploit thein cache
probability, defined in Section 6.5, in order to efficiently reduce the size of the search clusters.
We define anin cacheprobability matrix that associates to each popularity, a probability of being
cached at the small cell in question. This matrix is diffusedto the network small cells. Thein
cacheprobability matrix, does not require frequent update as thecache inventory. The former
depends on the caching policy of the small cells, whereas thelatter depends on the computational
traffic. in cacheprobability drastic update occurs rarely, for example, when a small cell changes its
caching policy. Furthermore, since it is a matrix built fromstatistical observation, it can converge
to a final representative matrix. An additional element, other than thein cacheprobability is
eventually required to be shared among small cells: the computational requests popularity. The
requests popularity is also a statistical observation and distribution that is built by observation of
the requested computation traffic. Its update is not required to be instantaneous at every change
of a file’s popularity. Thresholds may be put in order to launch popularity information diffusion
between small cells. For instance, whenp(c) > p0(c)+ ε, wherep(c) is the current popularity of
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computation requestc and p0(c) is the initial popularity value which is equal to the last diffused
request popularity of requestc.

In addition, we propose a classification of computational requests that reduces the set of re-
quests to which a search cluster is set up. The idea is to prevent a cluster search set up for requests
that arenot worth searching forbecause they will, most probably, not be found.

We propose a method to reduce both the number of clusters thatare set up, and the size
of search clusters fromCs to Ca. The proposed method allows adapting the search cluster size,
exploiting the search space vs cache hit probability trade-off.

The novelty of this method is based on patent [P5].

6.7.3 Concepts and Notations

We consider a MEC scenario, where a set of small cells co-exist and can form computational clus-
ter for satisfying mobile users’ computational offloading requests. We refer to the set of deployed
small cells as the hyper-cluster. We define the following elements and concepts that we use to
introduce and explain our search cluster sparsification in the following sections of this chapter.

6.7.3.1 Notations Definition

The connectivity matrix ΘΘΘ:
In the hyper-cluster, small cells can be connected through different and various technologies
(Fiber, WiFi, Microwave, mmW, LTE, etc.). The communication quality and the aggregated
throughput on the links between every small cell couple is not necessarily identical over time
and space. According to the small cells backhaul technologyand topology, the communication
link existence and reliability may depend on several factors such as the distance between small
cells, the deployment scenario (urban, dense, LOS, NLOS, etc.), the backhaul congestion, and the
channel quality in wireless scenarios. The connectivity matrix ΘΘΘ at each small celln is a matrix
that contains the connection quality between every small cell couple.
ΘΘΘ is a generic of the connectivity matrixX defined in Section 6.3.ΘΘΘ represents normalized con-
nection quality between each small cell couple, whereasX is a binary matrix that specifies if the
small cells are connected or not.X can be obtained fromΘΘΘ by a thresholding operation.

Popularity matrix P:
The popularity matrix is defined in Section 6.3. It gives the popularity of computational requests
at each small cell. We do not tackle the problem of building and updating the popularity matrix.
We assume that it is built according to statistical observation over time, of the number of each
request occurrence at each small cell.

Caching policy metric λ:
Based on the popularity matrix, a metricλ can be built for each couple (request, small cell) in order
to choosewhatto cache, andwhereto cache it. This metric can also take into consideration system
conditions (wired/wireless connection, available memory, etc.), context, small cells connectivity,
etc. λ is associated to a caching policy or algorithm that places the requests in cache memories.
Various policies with different objectives can be designedand adopted.ClusterCachingandProp-

Cachingare two examples of caching policies described in Section 6.5 usingλ =
pn,cWc|N (n)|
Lc ∑

m∈N (n)
Rn,m

and

p - the files popularity - as a caching metric, respectively.
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Distributed cache matrix D:
Caching metric and policy are used at each small cell to decide over the caching of computational
requests. A binary matrixD defined in Section 6.3 keeps track of the cached requests at each small
cell.

In cache probability matrix ΓΓΓ:
Exploiting cache matrixD, and popularity matrixP, an in cacheprobability matrixΓΓΓ can be
computed. Since the caching metric depends on the popularity matrix, a relationship between the
requests popularities and their caching decision can be established. It helps locating requested
tasks in cache in function of their caching probability, which can be deduced from the popular-
ity. ΓΓΓ gives for each request popularity (popularity intervals),the probability of the request being
cached at each small cell.

ΓΓΓ =











γ1,1 . . . γ1,Q

γ2,1 . . . γ2,Q
...

...
...

γN,1 . . . γN,Q











∈ [0,1]N×Q (6.10)

WhereQ is the number of considered intervals of popularity.ΓΓΓ can represent eithernominativeor
cumulativeIn cache probability.
Nominative in cacheprobability is defined as:

γ(n,q) = P(dn,c = 1|p1(q)< pc≤ p2(q)) (6.11)

where[p1, p2] is theq popularity interval in whichpc is.
Cumulative in cacheprobability is defined as:

γ(n,q) = P(dn,c = 1|pc ≤ p2) (6.12)

6.7.3.2 Traffic Classification

Computational requests launched at mobile users’ device can be classified according to various
characteristics. One classification is based on computation offloadability. This classification is
used in the offloading decision algorithm proposed in Chapter 3. Examples of tasks that cannot
be offloaded are tasks that use mobile devices hardware such as cameras and microphones. Non
offloadable tasks have to be executed locally on the mobile devices. As for the offloadable tasks,
we propose to classify them intoPrivateandCommon. By Privatewe refer to computations that
are unique for the user that requested them. They may depend on a local metric such as location,
or serving small cell. APrivate computation, can be any computation component that does not
yield to the same results if requested by different users. Ingeneral,Privatecomputations are not
able to be shared among different users.

By Commonwe refer to computation that can be requested by any user and yields to the same
result (total or partial). We refer asCommoncomputations to the ones that have the possibility to
be saved in cache memory somewhere in the network.

Private traffic: Private computations are not cached. However, an offloading decision process
decides if they will be computed locally at the mobile deviceor offloaded to the small cell where
a computation cluster is formed (See Chapter 3).

Common traffic: Common computations have the possibility to be saved in cache memory some-
where in the network. Therefore, before any computation is made, a ‘search’ for computation
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results is launched. If the requested computation is cached, it is retrieved (with the assumption
that retrieval costs< computation cost). Otherwise, a computation cluster is formed for comput-
ing the request. The popularity matrix can then be updated accordingly.

6.7.4 Proposed Search Cluster Sparsification Method

In this section, we detail the cluster search sparsificationmethod that we propose. After having
identified the necessary elements for introducing our proposal, we detail the method in a series of
successive steps.

• Step 0: Initialization
We assume that, at each small cell, are available:

(i) relative popularity matrixP(1×C), whereC is the number of considered computations.
In addition to their own popularity matrix, small cells exchange popularity matrices,
and thus, each small cell has access to its own popularity matrix, and to the matrices
received from neighboring small cells. The size of the popularity matrix available at
each small cell is then equal to(Nr ×C), whereNr ≤ N is the number of small cells
which popularity matrix is received by the small cell in question.

(ii) relative connectivity matrixΘΘΘ(1×N) that reports normalized connection quality with
neighbor small cells.

(iii) relative distributed cache inventoryD(1×C) of the cached computations at the small cell
in question.

(iv) In cacheprobability matricesΓΓΓ of the small cell in question, and of the neighbor small
cells that diffused their own. The size ofΓΓΓ depends on the popularity quantification
sizeδq= p2(q)− p1(q). Here, there is a trade-off between the quantification granu-
larity and the overhead. Indeed, the smaller the popularityquantification stepδq, the
more accurate and reliable is the associatedin cacheprobability. On the other hand,
small popularity quantification steps result in largerin cachematrix, and thus more
network overhead, sinceΓΓΓ matrices are shared between network small cells.

• Step 1: Computations classification
In this step, the mobile devices run through the received computational requests and classify
them as offloadable or not offloadable. Non offloadable requests are executed on the mobile
devices. Local computational resources are allocated for the execution of these tasks.

• Step 2: Private/Common classification
Offloadable tasks are classified asPrivateor Common. We distinguish three types ofPrivate
computations.

(i) Least private: computations are user-private but can be offloaded to the SSC. A com-
putation cluster can be set up by the SSC for the execution of the task.

(ii) Medium private: computations can be offloaded to the SSC, but no computationcluster
can be set up for their execution. Tasks can then be computed either locally at the
mobile devices, or at the serving small cell.

(iii) Utmost private: Computations cannot be offloaded to the serving small cell.They
are executed at the mobile devices. Non offloadable tasks area subset of the utmost
private computations.
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Offloading decision algorithm is called forMedium privateandLeast privatecomputations.
According to the offloading decision and the computation type, either local computation
resources are allocated, or joint computation and communication resource allocation takes
place in case of cluster set up necessity.

As for Commoncomputations, they have the possibility to be found in cachememories of
the SSC or neighbor HSCs in the network. If anyCommoncomputations are requested, they
are offloaded to the SSC, and the following algorithm steps are executed.

• Step 3: In cache probability quantification
In cacheprobability matrixΓΓΓ is available at each small cell. For each computationc of
the set ofCommonrequestsC we identify the popularitypc. We create a binary matrixΓΓΓ′′′

where each line represents a fixedin cacheprobabilityη, and each column represents small
cells whosein cacheprobability matrix is known. The size ofΓΓΓ′′′ depends on thein cache
probability quantization step and/or number of levels. Note that the probability quantization
can be linear or non-linear. We denote asH the number of probability quantization levels,
and thusΓΓΓ′′′ will be a matrix of(H×Nr +1). ΓΓΓ′′′ is defined as follows:

ΓΓΓ′′′ =











γ′1,1 . . . γ′1,Nr+1
γ′2,1 . . . γ′2,Nr+1

...
...

...
γ′H,1 . . . γ′H,Nr+1











∈ {0,1}H×Nr+1 (6.13)

where

γ′(η,s) =

{

1 if γ(s,q) ≤ η(q), whereq= {q/p1(q)< pc≤ p2(q)}

0 otherwise
(6.14)

ΓΓΓ′′′ identifies, for each targetin cacheprobability η, the set of small cells where the proba-
bility of finding a cached copy of the request is at least equalto η.

• Step 4: Reachability weighting
In the previous step, the created matrixΓΓΓ′′′ allows to identify the set of small cells that
hold the requested file with a certain probability. However,the file existence in a small
cell’s cache is not sufficient for retrieving it. Since computational requests are associated
to latency constraints, the connection quality between theSSC,ss, and HSC ,s, where the
computation is cached is important to consider. The cached copy should be retrieved from
the cache while respecting the latency constraints. Furthermore,ΓΓΓ′′′ identifies the possible
location of a cached copy of the computation without identifying the best location from
which it should be downloaded.
In this step, the elements ofΓΓΓ′′′ are weighted with the connectivity between small cells.
Therefore, we weight the elements of each column ofΓΓΓ′′′ by the connectivity of the small
cell with the SSC. The weights are the elements of the SSC connectivity in matrix ΘΘΘ. A
matrix ΓΓΓ′′′′′′ is then defined as follows:

ΓΓΓ′′′′′′ =











γ′′1,1 . . . γ′′1,Nr+1
γ′′2,1 . . . γ′′2,Nr+1

...
...

...
γ′′H,1 . . . γ′′H,Nr+1











∈ [0,1]H×Nr+1 (6.15)
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where
γ′′(η,s) = γ′(η,s)θ(ss,s) (6.16)

In ΓΓΓ′′′′′′, lines represent the probability of finding the cached request in small cells, while the
matrix element values show the download link quality.

• Step 5: Truncating
According to requests constraints in terms of latency, a minimum downlink quality can be
set in order to respect these constraints. In addition to latency, eliminating weak communi-
cation link reduces power consumption. Resources management policies at SSCs and HSCs
contribute then in setting a threshold on the link quality tobe used for cached request down-
load. Settingζ as the link quality threshold and applying it toΓΓΓ′′′′′′ will result in having a
binary matrixΓΓΓ′′′′′′ttt that identifies the cached request locations with a minimum download link
quality of ζ. ΓΓΓ′′′′′′ttt is defined as follows:

ΓΓΓ′′′′′′ttt =











γ′′t 1,1 . . . γ′′t 1,Nr+1
γ′′t 2,1 . . . γ′′t 2,Nr+1

...
...

...
γ′′t H,1 . . . γ′′t H,Nr+1











∈ {0,1}H×Nr+1 (6.17)

where

γ′′t (η,s) =

{

1 if γ′′(s,q) ≥ ζ
0 otherwise

(6.18)

• Step 6: Uplink requests set up
ΓΓΓ′′′′′′ttt allows to locate cached requests possible locations. According to the desired search clus-
ter size, and/or latency and power consumption policies, a search cluster can be identified
usingΓΓΓ′′′′′′ttt . Indeed, each line ofΓΓΓ′′′′′′ttt represents a set of small cell that form a search cluster
with a defined probability of retrieving the file. For each line q of ΓΓΓ′′′′′′ttt , the search cluster
includes the set of small cells defined by{s|γ′′t (q,s) = 1}. The minimum probability of
finding the request in at least one of the cluster small cells is:

P(c∈ cluster) = 1−P(c /∈ cluster) (6.19)

≥ 1−
Nr+1

∏
s=1

γ′′t (q,s)(1−η(q))

≥ 1− (1−η(q))||γγγ
′′
t (q)||0

whereγγγ′′t (q) is theqth line array ofΓΓΓ′′′′′′ttt , and ||.||0 is the l0 norm, which is the number of
non-zero elements in the array.||γγγ′′t (q)||0 determines the search cluster size, which can also
be an important metric in the cluster set up decision.
If there is a maximal search cluster size limitNmax, the clusterq′ that maximizes the cache
hit probability is defined by the lineq′ of ΓΓΓ′′′′′′ttt where

q′ = {min
q
| ||γγγ′′t (q)||0 ≤ Nmax} (6.20)

If there is a minimum cache hit probabilityξ, then the smallest cluster is defined by

q′ = {max
q
|(1−η(q))||γγγ

′′
t (q)||0 ≥ ξ} (6.21)
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Table 6.2: Computation and SSC association
Computation Serving SC

c1 SC1

c2 SC3

c3 SC4

We note that the smaller the value ofq′ is, the larger the cluster. When a cluster size limit is
set, the proposed method allows to identify the search cluster that achieves the highest per-
ceivedin cacheprobability, with a cluster of that size Whereas, when a cache hit minimum
probability is set, the method identifies the smallest cluster that can achieve thein cache
probability target.

6.7.5 Numerical Example of Search Cluster Sparsification

We consider a hyper-cluster of 6 small cells. We consider that computational requests have already
been classified and offloading decisions have been made. The offloading computational request
of type Commonare received at the serving small cells. A set of 3 tasks is considered. Table
6.7.5 reports the association of each task with its SSC. The small cells connectivityΘΘΘ and the
computations probabilityP matrices are defined as follows:

ΘΘΘ(6×6) =

















1 0.9 0.3 0.4 0.2 0
0.9 1 0.9 0.1 0.4 0.3
0.3 0.9 1 0.3 0 0
0.4 0.1 0.3 10.9 0.8
0.2 0.4 0 0.9 1 0.8
0 0 0.3 0.8 0.8 1

















(6.22)

P(6×3) =

















0.05 0.05 0.02
0.01 0.02 0.01
0.02 0.55 0.06
0.01 0.05 0.04
0.03 0.07 0
0.08 0 0.02

















(6.23)

Small cellsSC1,SC2, andSC3 follow the ClusterCachingpolicy andSC4, SC5, andSC6 follow the
PropCachingclustering policy (See section 6.5). The cumulativein cacheprobability matrixΓΓΓ of
each of the small cells are represented in Figure 6.2, with a cache memory ratio ofµ= 1/12. We
adopt a linearin cacheprobability quantization of 10 levels. Therefore, fromStep 3, we will have
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the following matrices:

ΓΓΓ′′′c1
=

































1 0 1 0 1 1
1 0 0 0 1 1
1 0 0 0 1 1
1 0 0 0 1 1
1 0 0 0 1 1
1 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

































, ΓΓΓ′′′c2
=

































1 1 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

































, ΓΓΓ′′′c3
=

































1 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 0 0

































(6.24)

For Step 4, we weight the matricesΓΓΓ′′′c1
, ΓΓΓ′′′c2

, andΓΓΓ′′′c3
with θθθ′′′1, θθθ′′′2, andθθθ′′′3, respectively. We

therefore obtain the followingΓΓΓ′′′′′′ matrices:

ΓΓΓ′′′′′′c1
=

































1 0 0.3 0 0.2 0
1 0 0 0 0.2 0
1 0 0 0 0.2 0
1 0 0 0 0.2 0
1 0 0 0 0.2 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

































, ΓΓΓ′′′′′′c2
=

































0.9 1 0.9 0.5 0.4 0.3
0.9 0 0.9 0.5 0.4 0.3
0.9 0 0.9 0.5 0.4 0.3
0.9 0 0.9 0.5 0.4 0.3
0.9 0 0.9 0.5 0.4 0.3
0.9 0 0.9 0 0 0
0 0 0.9 0 0 0
0 0 0.9 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

































, ΓΓΓ′′′′′′c3
=

































0.4 0 0.3 1 0 0
0 0 0.3 1 0 0
0 0 0.3 1 0 0
0 0 0.3 1 0 0
0 0 0.3 1 0 0
0 0 0.3 1 0 0
0 0 0.3 1 0 0
0 0 0.3 1 0 0
0 0 0.3 1 0 0
0 0 0 0 0 0

































(6.25)
In Step 5, we setzeta, the truncating threshold for link quality, asζ = 0.3. The truncated

matrices are as follows:

Γ′′t c1
=

































1 0 1 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

































, Γ′′t c2
=

































1 1 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

































, Γ′′t c3
=

































1 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 0 0

































(6.26)
For the cluster set up inStep 6, we consider the following constraints at each of the SSCs:

SC1: Maximum cluster size = 1
SC3: Minimum search cluster hit probability of 80%
SC4: Maximum cluster size = 3

The lines (q) of each matrix represent the small cells that guarantees a minimum hit probabil-
ity of η = 0.1q.
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Table 6.3:In cacheprobability of search clusters
q P(c2 ∈ cluster) q P(c2 ∈ cluster)

1 0.47 6 0.84

2 0.67 7 0.7

3 0.83 8 0.8

4 0.92 9 0

5 0.97 10 0

For c1 at SC1, the maximum cluster size is equal to 1. Therefore, we identify the search clus-
ter as the lowest line with a single 1 value. This means that wechose the single cell cluster that
guarantees the highest cache hit probability. Indeed,η increases withq and thus,P(c1 ∈ cluster)
defined in Eq. 6.20 increases. The chosen cluster is showed inthe equation below, with:P(c1 ∈
cluster) ≥ 1− (1−0.1q)1 = 1− (1−0.6) = 0.6

Γ′′t c1 =

1 0 1 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0













































































(6.27)

In the case where the lowest line of the matrix has more small cells than the maximum limit, any
subset of small cells can be chosen. Indeed, the lowest line represents the guaranteed locations of
the requested file. Even if the small cells are aware of some guaranteed locations, it may happen
that a minimum number of download sources are required for achieving lower delivery time.

In addition, we note that if the computation request is cached on the SSC itself, the SSC is
always included in the cluster. This is because no connectivity constraints are imposed in this
case.

Forc2 atSC3 a minimumP(c1∈ cluster) of ξ = 0.8 is required. If we compute this probability
for each line of the matrix using Eq. 6.20, we obtain the results showed in table 6.7.5 According
to the table, the eligible search clusters are those ofq= 3,4,5, ,, and 8. The proposed method will
choose the highestq according to 6.21. The chosen cluster is the smallest cluster that achieves the
desired in cache probability target. Forq= 5 (dark purple highlight),P(c1 ∈ cluster) > ξ as well,
but the cluster size is of 5. the chosen cluster achievesξ = 0.8 with cluster size of 1 (light green
highlight).
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Γ′′t c2 =

1 1 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0













































































(6.28)

6.8 Conclusion

Mobile edge computing is a solution for allowing mobile users’ devices to have access to a pool
of resources that are at high proximity. Computation offloading to the edge cloud allow faster
execution and at lower latencies, power consumption, and energy costs. Edge cloud small cell
clustering is proposed in this thesis, and joint computational and communication resource allo-
cation policies are presented, discussed, and evaluated. Proposed policies varied in clustering
objectives. While some focused on increasing the cluster delivered QoE by reducing the perceived
computation latency from users’ perspective, others focused on reducing the computation cluster
power consumption. In this chapter, we propose a novel concept that allows further improvement
of computation clusters performance and resource allocation efficiency in terms of both perceived
latency and power consumption. The novelty of the work presented in this chapter is twofold.

First, we introduce the concept of computation caching in the edge cloud. We exploit the cloud
enabled network edge, not only to execute computational tasks using computation resources, but to
cache computations using storage space available at the edge cloud. We shift the paradigm of edge
cloud clustering, currently used asdemand and computeinto search and download. Indeed, the
current vision of small cells clustering for computing is tochoose the best nodes that can contribute
in the execution of computational tasks and guaranteeing a QoE that respects the imposed latency
constraints. The cost of the computation offloading and edgecloud computing through clustering
is highly dependent on the computational load to be computed, and the size of computational data
to be transmitted. Reducing the computations size and the size of data to be exchanged reduces
the computation offloading costs. With the computation caching paradigm, tasks will besearched
for anddownloadedif possible. This prevents the edge cloud network from computing the same
computations repeatedly, and reduces the size of exchangeddata. For choosing the computations
to be cached, we propose a caching algorithm based on the computations popularity. We exploit
the computations popularity at each node of the edge cloud tocreate a caching metric that depends
on the computation popularity, but also on the computation load and the required computational
capacity. The caching metric helps identifying the computations that areworth caching, since it
selects the popular computations that can generate higher costs reduction. The main idea is to
store computations that arepopular, but that also impose high computation and communication
load, in the goal of reducing the edge cloud computing costs.We compare the average energy in
an edge cloud computing scenario for the cases with no caching, with caching using the proposed
algorithm, and with caching that uses files popularity as caching metric. The latter algorithm
stores the most popular computations regardless of their load and demanded capacity. Numerical



6.8. CONCLUSION 171

evaluation showed that not only the size of available cache memory plays a role in reducing the
costs, but also the used caching metric. The proposed caching metric proved to achieve lower
energy costs for executing and/or downloading computations through an edge cloud platform with
small cells clustering.

Second, we propose a search cluster establishment and sparsification method. The goal is
to exploit the knowledge of computations popularity at edgecloud small cells for identifying
possible locations for cached copies of the computation. Computation cached copies locations are
not known by the edge cloud small cells. Indeed, diffusing the cache computation at each small
cell in the edge cloud imposes severe overhead. Cached computations are frequently updated, and
maintaining knowledge of each small cell cache contents is not practical. Therefore, we introduce
the newin cacheprobability concept, which derives from the relationship between the computation
popularity and its probability of being cached. This depends of course on the adopted caching
policy. We exploit this information at serving small cells and weight it with the connectivity
between small cells. This allows to evolve fromin cacheprobability to in cacheprobability and
reachability. By doing so, we identify possiblereachablelocation of cached computation copies.
The proposed method reduces the search space for cached elements by exploiting the relationship
between request popularities and their possibility of being cached and reachable. Reducing the
search space increases the edge computing performance by reducing cluster search delay, and its
computational costs as well.
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Conclusions and Future Work

In this thesis, we have looked into joint communication and computation resource allocation, and
load distribution solutions and algorithms, for local mobile Edge cloud computing.

The Cloud has integrated wireless networks architecture through mobile cloud computing. The
Edge cloud paradigm brings cloud-offered functionalitiesand services to the edge of the cloud, at
a close proximity to mobile users. In this thesis, we focusedon local Edge cloud, where operator
network small cells, usually used for delivering communication services, are also able to deliver
cloud services, such as computing and storage. Unlimited services and applications, in numerous
domains, are henceforth accessible through mobile networks. Consequently, the foreseen increase
in the number of connected devices and in generated traffic reveals a challenge to mobile networks
for coping with the ever-increasing requirements.

First, we discussed requirements, and enabling technologies of future 5G networks, the next
evolution in wireless networks. In order to keep deliveringhigh QoS and QoE, 5G networks de-
sign is based on breakthrough technologies, including the integration of cloud-based technologies.
We presented the evolution of cloud-enabled networks, and showed the progressive integration
of the cloud concept into wireless networks. We discussed advantages and challenges of each of
the cloud-based architectures including Cloud-RAN, mobile cloud computing, mobile edge cloud,
and fog computing.

In this thesis, we adopted mobile edge cloud architecture. We proposed the novel concept of
local cloud computing through small cell clustering. In literature, the cloud is mostly considered
as an established entity that can deliver computational services to mobile users. Our approach
is based on forming a local cloud where small cells cooperatefor delivering cloud services to
mobile users. We discussed the existing trade-offs in this architecture. More precisely, we tack-
led energy efficiency, from both devices and system perspectives, and delay related trade-offs. A
deeper investigation on the impact of the adopted backhaul technology and topology for intra-
cluster communication is presented. By analyzing different backhaul models, we showed that
both computation and communication resource allocation are affected by the adopted backhaul
models. As the backhaul has an impact on both cluster perceived latency and power consumption,
communication and computation resources, the cluster size, and the load distribution, should be
jointly allocated and optimized in order not to violate imposed delay constraints, or power budgets.

We proceeded to focus on the joint resource allocation in local mobile edge computing, in the

173



174 CONCLUSIONS AND FUTURE WORK

context of small cell computation clustering. We considered a system where mobile users launch
computational requests, consisting of an instruction block to be computed in a maximum imposed
time delay. We considered QoE as a performance metric throughout our work. Mobile users
are satisfied if the results of their computational requestsare delivered without violating latency
constraints. After the analysis of the trade-offs between energy efficiency, perceived latency, and
cluster size, among others, we have identified three research directions to increase the efficiency
of mobile computation offloading, and improve the number of satisfied users requests. We divide
the problem into two sub-problems, that we tackled respectively.

First, we considered the single user - single cloud case, where a mobile handset decides be-
tween executing computational requests locally and offloading the computations to the cloud.
Computation offloading from mobile handsets to their serving small cell represents the first-hop
communication in the adopted local edge cloud computing paradigm. We assumed that mobile
handsets offload the computational requests to the cloud by sending the request to their associated
serving small cell. We investigated the computation, handsets, and system parameters that affect
the computation offloading decision. More precisely, we proposed a multi-parameter computa-
tion offloading decision that is executed at mobile handsets, SM-POD. The algorithm takes into
account, not only energy consumption comparison of computation offloading and local comput-
ing, but also the offloadability of the computational request, handsets available resources (battery
level, available memory space, computational capacity), tasks urgency, and communication chan-
nel quality. The algorithm joins offloading decision and scheduling while taking into account all
the listed parameters, in order to take the offloading decision that guarantees users QoE. Simu-
lation results showed how the proposed algorithm, SM-POD, helps increase the mobile handsets
battery lifetime, and prevents any handset CPU capacity outage and memory overflow. This re-
sult can be justified by the adaptation of the offloading decision to handsets and system status. In
opportunistic communication channel quality, the handsetoffloadsnon-urgentrequests in order to
save energy consumption. As a result of this research, we concluded that the computation offload-
ing decision to edge cloud should be based on the multitude ofparameters that affect not only the
offloading decision energy consumption, but that also contribute in delivering high QoE to mobile
users.

A second research direction to improve mobile users QoE and the efficiency of the local edge
cloud computing paradigm, led us to investigate the small cells cluster set up to efficiently dis-
tribute computational load, and allocated computational and communication resources. In partic-
ular, we considered the case where serving small cells have to form small cell clusters to execute
the received computational requests from mobile users. Serving small cells distribute the load on
neighbor small cells, through a second-hop communication in the edge computing process. The
challenge of small cell cluster set up is the joint communication and communication resource al-
location that guarantees the respect of tasks latency constraints. Jointly allocating communication
and computation resources is indeed required since both affect the perceived overall computation
process latency. We start by studying the single-user multi-cloud scenario case. We proposed vari-
ous small cells cluster optimizations with different objectives: latency minimization, cluster power
consumption minimization, small cell centric power consumption minimization, and a cluster size
reducing strategy. Cluster size reduction, or cluster sparsification, is based on exploiting the la-
tency/power consumption trade-off. We proposed to modify the computation load distribution on
less small cells, in order to allow the switching off of excluded small cell. Cluster sparsification
increases the system energy efficiency, but results in increased perceived latency. We compared
the proposed strategies and showed their impact on the perceived cluster latency and power con-
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sumption.

We extended the problem formulation to the multi-user multi-cloud case. As the joint resource
allocation and load distribution optimization problem is non-convex, we re-wrote an equivalent
problem and proved it to be convex The solution of the optimization is derived. Simulation re-
sults proved that the proposed solution is able to serve a higher number of users comparing to a
successive single user clustering, and static clustering.However, the proposed solution does not
take into account tasks or resource scheduling, which can result in non-optimal resource allocation
efficiency. With an objective of decreasing the cluster set up complexity, we proposed two differ-
ent heuristic algorithms. A first algorithm consists of tasks scheduling at serving small cells, and
assigning serving small cell computational resources as a first step. As a second step, unserved re-
quests are sent to a centralized cluster manager unit that sets up computational clusters, using one
of the proposed single-user multi-cloud clustering solutions. Three variants of the algorithms are
proposed. The second proposed algorithm is based on an iterative approach, where each serving
small cell sets up computational clusters, and ask for the small cell manager validation. The small
cell manager verifies the possibility of the cluster establishment, and reports back to the serving
small cells. In case of an excess allocation of computational resources at any of the small cells,
the load excess is reported to the serving small cell for reassignment. Simulation results compared
our three proposed multi-user cluster set up strategies andevaluated the loss of performance for
heuristic solutions. The results proved that the joint resource allocation and load distribution in
small cells cluster can guarantee service QoE with an outageprobability of less than 5%, for up
to 8 users per small cell. A gain of 55% comparing to successive clustering with no scheduling
is achieved. As for the proposed scheduling aware and iterative heuristics, they can achieve up to
40% and 35 % gain of satisfaction ratio, respectively. Theseresults prove that small cell clustering
for mobile edge computing increases the cloud capabilities, and creates pooled resources at a close
proximity to mobile users. However, in order to efficiently exploit available resources, small cells
cluster should be optimized, communication and resources jointly allocated, computational tasks
scheduled, and computational load adequately distributed.

Finally, in order to further reduce the costs of small cell cloud computing, we proposed a novel
concept ofcomputation cachingfor edge computing. After exploiting small cells computingre-
sources for executing mobile users’ requests, we proposed to exploit small cells storage space, to
cache users’ computational requests. In order to identify the computations to be cached at small
cells cache memories, we proposed a caching algorithm,ClusterCaching. The algorithm identifies
requests to be cached, while aiming at reducing the cost of small cell cloud computing. The pro-
posed concept shifts the small cell edge cloud computing paradigm from ademand and compute
approach, tosearch and download. Then, in order to reduce the search space, i.e. small cells that
are searched for finding a cached copy of the requested computation, we propose a search cluster
set up method. The proposed method exploits the caching policy in order to establish a relation-
ship between computations popularity and their probability of being cached. This relationship is
then exploited, along with the small cells connectivity level, in order to identify possible locations
with a reachable cached version of the requested computation. The proposed contributions allow
caching the right files at the right small cell, and propose a method for identifying the search space
for guaranteeing a minimum cache hit probability. Numerical results proved that computation
caching in edge cloud can bring major benefits, especially interms of computation energy cost
reduction. We conclude, that it is important to adapt the caching policy to the system storage
capacity, and to cache the right files in accessible cache locations, for further increasing the edge
cloud computing performance.
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This thesis tackled the clustering techniques in the small cell local edge cloud computing
paradigm. Three main research axes were investigated: (i) computation offloading decision; (ii)
small cells clustering solutions; (iii) computational caching and cache cluster solutions.

Much research can be carried out in the following directions.

In Chapter 3, the proposed offloading decision algorithm takes into account a multitude of
handset and applications parameters. It would be interesting to include an access control at the
cloud side into the offloading decision. Possible ways of integrating the cloud in the offloading
decision, without increasing the decision complexity, is to consider statistical value of the offered
computational capacity by the edge cloud. This informationcould have a positive impact on the
algorithm performance, especially in bad communication channels quality where the proposed al-
gorithm offloads computation without guaranteeing their execution on the cloud.

In Chapter 4, we formulated the joint resource allocation optimization problem, without in-
cluding tasks or resources scheduling. A challenging step would be to formulate the problem, and
design a solution proposal for the joint resource allocation, load distribution, and tasks schedul-
ing. In doing so, computational resources are more efficiently used, and thus, more computational
tasks can be served, increasing the overall satisfaction ratio.
Further investigation can also be done in intra-cluster communication, especially the multi-user
case, for integrating interference in the cluster set up process. Intra-cluster interference sets a
novel challenge in edge cloud small cell clustering, and unblocks a series of possible solutions.
For example, the cluster set up process can designed to minimize intra-cluster interference by us-
ing colored graph or interference classification techniques.

The proposed clustering solution in Chapters 4 and 5 are based on centralized approaches that
include a small cell managing unit to compute or control the clusters set up parameters. A very
interesting research area to investigate is the design of a decentralized small cell clusters set up
algorithm. The algorithm should be light in terms of signaling and time complexity. Special forms
of signaling can be used in order to reduce the intra-clusteroverhead. We investigated, during this
thesis, a special form on signaling, based on signaling response time, in order to pass cluster set
up parameters without increasing signaling overhead. The idea has been investigated, and evolved
to be the subject of a patent proposal [P3].

Mobile edge computing is the subject of a vivid research activity. Whereas the majority of the
work focuses on the computing functionalities optimization of local cloud, the proposed compu-
tation caching concept is a novel paradigm that will gain attention in the near future. Computation
caching is a research area that we would like to keep investigating in the near future. Studying
both reactive and pro-active caching in small cell cloud networks, designing adaptive caching al-
gorithms, and investigating cache search and computation retrieval algorithms, are possible leads
for future work.

Finally, in this thesis, we proposed small cells clusteringconcepts and solutions in the edge
cloud computing paradigm in cellular networks. A very interesting future work direction is to
extend the proposed concepts of clustering for cloud functionalities into different contexts such as
sensor networks, internet of things, device to device, and smart cities paradigms. The potential
brought by the general approach brought by this thesis is indeed exploitable in various scenarios
and paradigms. As millions of resource limited devices and sensors will be connected per cell,
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clustering solutions can be seen as a very promising solutions for data aggregation, processing,
caching, and computation services delivery. As a further step, computing clusters can also include
hybrid types of computing entities, such as base stations, end devices, routers, and switches, which
opens the possibility of a new form of inter-network cooperation for cloud services.
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Abstract: Mobile Edge Cloud brings the cloud closer to mobile users by moving the cloud computational efforts from the internet to

the mobile edge. We adopt a local mobile edge cloud computingarchitecture, where small cells are empowered with computational and

storage capacities. Mobile users’ offloaded computationaltasks are executed at the cloud-enabled small cells. We propose the concept

of small cells clustering for mobile edge computing, where small cells cooperate in order to execute offloaded computational tasks. A

first contribution of this thesis is the design of a multi-parameter computation offloading decision algorithm, SM-POD.The proposed

algorithm consists of a series of low complexity successiveand nested classifications of computational tasks at the mobile side, leading to

local computation, or offloading to the cloud. To reach the offloading decision, SM-POD jointly considers computationaltasks, handsets,

and communication channel parameters. In the second part ofthis thesis, we tackle the problem of small cell clusters setup for mobile

edge cloud computing for both single-user and multi-user cases. The clustering problem is formulated as an optimization that jointly

optimizes the computational and communication resource allocation, and the computational load distribution on the small cells partici-

pating in the computation cluster. We propose a cluster sparsification strategy, where we trade cluster latency for higher system energy

efficiency. In the multi-user case, the optimization problem is not convex. In order to compute a clustering solution, wepropose a convex

reformulation of the problem, and we prove that both problems are equivalent. With the goal of finding a lower complexity clustering

solution, we propose two heuristic small cells clustering algorithms. The first algorithm is based on resource allocation on the serving

small cells where tasks are received, as a first step. Then, ina second step, unserved tasks are sent to a small cell managing unit (SCM)

that sets up computational clusters for the execution of these tasks. The main idea of this algorithm is task scheduling at both serving

small cells, and SCM sides for higher resource allocation efficiency. The second proposed heuristic is an iterative approach in which

serving small cells compute their desired clusters, without considering the presence of other users, and send their cluster parameters to

the SCM. SCM then checks for excess of resource allocation atany of the network small cells. SCM reports any load excess toserving

small cells that re-distribute this load on less loaded small cells. In the final part of this thesis, we propose the concept of computation

caching for edge cloud computing. With the aim of reducing the edge cloud computing latency and energy consumption, we propose

caching popular computational tasks for preventing their re-execution. Our contribution here is two-fold: first, we propose a caching

algorithm that is based on requests popularity, computation size, required computational capacity, and small cells connectivity. This

algorithm identifies requests that, if cached and downloaded instead of being re-computed, will increase the computation caching energy

and latency savings. Second, we propose a method for settingup a search small cells cluster for finding a cached copy of therequests

computation. The clustering policy exploits the relationship between tasks popularity and their probability of beingcached, in order

to identify possible locations of the cached copy. The proposed method reduces the search cluster size while guaranteeing a minimum

cache hit probability.

Résuḿe: Cette thèse porte sur le paradigme “Mobile Edge cloud” qui rapproche le cloud des utilisateurs mobiles et qui déploie

une architecture de clouds locaux dans les terminaisons du réseau. Les utilisateurs mobiles peuvent désormais décharger leurs tâches

de calcul pour qu’elles soient exécutées par les femto-cellules (FCs) dotées de capacités de calcul et de stockage.Nous proposons

ainsi un concept de regroupement de FCs dans des clusters de calculs qui participeront aux calculs des tâches décharg´ees. A cet effet,

nous proposons, dans un premier temps, un algorithme de décision de déportation de tâches vers le cloud, nommé SM-POD. Cet

algorithme prend en compte les caractéristiques des tâches de calculs, des ressources de l’équipement mobile, et dela qualité des liens de

transmission. SM-POD consiste en une série de classifications successives aboutissant à une décision de calcul local, ou de déportation

de l’exécution dans le cloud. Dans un deuxième temps, nousabordons le problème de formation de clusters de calcul à mono-utilisateur

et à utilisateurs multiples. Nous formulons le problème d’optimisation relatif qui considère l’allocation conjointe des ressources de

calculs et de communication, et la distribution de la chargede calcul sur les FCs participant au cluster. Nous proposonségalement une

stratégie d’éparpillement, dans laquelle l’efficacitéénergétique du système est améliorée au prix de la latence de calcul. Dans le cas

d’utilisateurs multiples, le problème d’optimisation d’allocation conjointe de ressources n’est pas convexe. Afin de le résoudre, nous

proposons une reformulation convexe du problème équivalente à la première puis nous proposons deux algorithmes heuristiques dans le

but d’avoir un algorithme de formation de cluster à complexité réduite. L’idée principale du premier est l’ordonnancement des tâches de

calculs sur les FCs qui les re coivent. Les ressources de calculs sont ainsi allouées localement au niveau de la FC. Les tˆaches ne pouvant

pas être exécutées sont, quant à elles, envoyées à uneunité de contrôle (SCM) responsable de la formation des clusters de calculs et de

leur exécution. Le second algorithme proposé est itératif et consiste en une formation de cluster au niveau des FCs netenant pas compte

de la présence d’autres demandes de calculs dans le réseau. Les propositions de cluster sont envoyées au SCM qui évalue la distribution

des charges sur les différentes FCs. Le SCM signale tout abus de charges pour que les FCs redistribuent leur excès dans des cellules

moins chargées. Dans la dernière partie de la thèse, nousproposons un nouveau concept de mise en cache des calculs dans l’Edge cloud.

Afin de réduire la latence et la consommation énergétiquedes clusters de calculs, nous proposons la mise en cache de calculs populaires

pour empêcher leur réexécution. Ici, notre contribution est double : d’abord, nous proposons un algorithme de mise en cache basé, non

seulement sur la popularité des tâches de calculs, mais aussi sur les tailles et les capacités de calculs demandés, et la connectivité des FCs

dans le réseau. L’algorithme proposé identifie les tâches aboutissant à des économies d’énergie et de temps plus importantes lorsqu’elles

sont téléchargées d’un cache au lieu d’être recalculées. Nous proposons ensuite d’exploiter la relation entre lapopularité des tâches et

la probabilité de leur mise en cache, pour localiser les emplacements potentiels de leurs copies. La méthode proposée est basée sur ces

emplacements, et permet de former des clusters de recherchede taille réduite tout en garantissant de retrouver une copie en cache.


