
HAL Id: tel-01366509
https://theses.hal.science/tel-01366509

Submitted on 14 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Routin in wireless sensor networks
Michal Krol

To cite this version:
Michal Krol. Routin in wireless sensor networks. Réseaux et télécommunications [cs.NI]. Université
Grenoble Alpes, 2016. Français. �NNT : 2016GREAM004�. �tel-01366509�

https://theses.hal.science/tel-01366509
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 7 août 2006

Présentée par

Michał KRÓL

Thèse dirigée par Andrzej Duda, Franck Rousseau

préparée au sein de UMR 5217 - LIG - Laboratoire d’Informatique

de Grenoble

et de École Doctorale Mathématiques, Sciences et Technologies

de l’Information, Informatique (EDMSTII)

Routing in Wireless Sensor Net-
works

Thèse soutenue publiquement le 15 Mars 2016,

devant le jury composé de :

Mr Serge Fdida

Professeur, UPMC, Rapporteur

Mr Olivier Festor

Professeur, Université de Lorraine, Telecom Nancy, Rapporteur

Mr Eric Fleury

Professeur, ENS Lyon, Examinateur

Mr Franck Rousseau

Maitre de Conférences, Grenoble INP – Ensimag, Directeur de thèse

Mr Andrzej Duda

Professeur, Grenoble INP – Ensimag, Directeur de thèse

iii

Acknowledgments

I would like to thank most especially my supervisor and mentor Prof. Andrzej

Duda. You taught me a great deal about how to do research. Thank you for your

trust and freedom in exploring different research directions. I would like to express

my gratitude for your contributions to this work including sleepless nights before

deadlines and your invaluable support in my future projects.

I am also very grateful to Dr. Franck Rousseau for your guidance, patience, and

encouragement at the early stage of my research. Thanks for all that I have learnt

from you.

I am also thankful to my friends and colleagues from the Drakkar team, espe-

cially to Maciej, Nazim, Iza, Ana, Tristan, Pierre, Gabriele and many others.

I would like to thank my great flatmates Claire, Melissa, Coline, Coralie and

Marlene, my ”Grenuls” friends Camille, Julie, Martin, Champion, Marion, mem-

bers of the polish family Gosia, Julian, Justyna, Nico, Asia, Rafa�l, Audrey, Artur,

Tomek, Liv, Radek, Sophie and others Arnaud, Julien. Thank you for sharing good

and slightly worse moments, for being there when I needed it and making my stay

in Grenoble a wonderful experience.

Finally, my deepest gratitude goes to my parents, sister, aunt and grandpar-

ents for your unconditional love, endless support throughout my entire life, and

understanding of my decisions.

v

Abstract

The Internet of Things (IoT) paradigm envisions expanding the current Internet

with a huge number of intelligent communicating devices. Wireless Sensor Networks

(WSN) deploy the devices running on limited energy supplies and measuring en-

vironmental phenomena (like temperature, radioactivity, or CO2). Popular WSN

applications include monitoring, telemetry, and natural disaster prevention. Major

WSN challenges are energy efficiency, overcoming impairments of wireless medium,

and self-organisation. WSN integrating IoT will rely on a set of open standards

striving to offer scalability and reliability in a variety of operating scenarios and

conditions. Nevertheless, the current state of the standards present interoperability

issues and can benefit from further improvements. The contributions of the thesis

are the following:

We perform an extensive study of Bloom Filters and their use in encoding node

characteristics in a compact form in IP addresses. Different techniques of

compression and variants of filters allowed us to develop an efficient system

closing the gap between feature-routing and classic approaches compatible

with IPv6 networks.

We propose Featurecast, a routing protocol/naming service for WSN. It allows to

query sensor networks using a set of characteristics while fitting in an IPv6

packet header. We integrate our protocol with RPL and introduce a new

metric that increases routing efficiency. We validate its performance in both

extensive simulations and experimentations on real sensors on a large-scale

Senslab testbed [1]. Large-scale simulations demonstrate the advantages of

our protocol in terms of memory usage, control overhead, packet delivery

rate, and energy consumption.

We introduce WEAVE, a routing protocol for networks with geolocation. Our

solution does not use any control messages and learns its paths only by ob-

serving incoming traffic. Several mechanisms are introduced to keep a fixed-

size header, bypass both small as well as large obstacles, and support efficient

communication between nodes. We performed simulations on a large scale in-

volving more than 19 000 nodes and real-sensor experimentations on the FIT

IoT-lab testbed. Our results show that we achieve much better performance

than other protocols, especially in large and dynamic networks, without in-

troducing any control overhead.

Key words: Wireless Sensor Networks, 6LoWPAN, RPL, self-organization,

routing, data-centric, georouting, experimental study.

vi

Résumé

Le paradigme d’Internet des objets (IoT) envisage d’étendre l’Internet actuel

avec un grand nombre de dispositifs intelligents. Les réseaux de capteurs sans fil

(WSN) sont déployés sous forme d’équipements autonomes en énergie disséminés

dans l’environnement pour y collecter des mesures de phénomènes physiques, comme

la température, la radioactivité, ou le taux de CO2. Des applications typiques des

WSN sont la surveillance, la télémétrie, la prévention des catastrophes naturelles.

Les défis majeurs des WSN sont l’efficacité énergétique, la robustesse aux faib-

lesses des communications sans fil, et le fonctionnement de manière auto-organisée.

L’intégration des WSN dans l’IoT reposera sur des standards ouverts s’efforçant

d’offrir évolutivité et fiabilité dans une variété de scénarios et de conditions de fonc-

tionnement. Néanmoins, en l’état actuel, les standards présentes des problèmes

d’interopérabilité et peuvent bénéficier d’améliorations certaines. Les contributions

de la thèse sont les suivantes :

Nous avons effectué une étude approfondie des filtres de Bloom et de leur utilisation

pour le codage des caractéristiques des nœud dans l’adresse IP. Différentes

techniques de compression et variantes de filtres nous ont permis de développer

un système efficace qui comble l’écart entre le routage par caractéristiques et

l’approche classique compatible avec les réseaux IPv6.

Nous proposons Featurecast, un protocole de routage / service de nommage pour

WSN. Il permet d’interroger les réseaux de capteurs en utilisant un ensemble

de caractéristiques, tout en restant compatible l’entête de paquet IPv6. Nous

intégrons notre protocole dans RPL et introduisons une nouvelle métrique,

ce qui augmente l’efficacité du routage. Nous vérifions ses performances par

des simulations approfondies et des expérimentations sur des capteurs réels

sur la plate-forme d’expérimentation à grande échelle Senslab [1]. Les simu-

lations démontrent les avantages de notre protocole en termes d’utilisation de

la mémoire, de surcharge de contrôle, de taux de livraison de paquets et de

consommation d’énergie.

Nous introduisons WEAVE, un protocole de routage pour les réseaux avec géolo-

calisation. Notre solution n’utilise pas de messages de contrôle et apprend

ses chemins seulement en observant le trafic en transit. Plusieurs mécanismes

sont introduits pour garder une en-tête de taille fixe, contourner à la fois

les petits et les grands obstacles, et fournir une communication efficace entre

les nœuds. Nous avons effectué des simulations à grande échelle impliquant

plus de 19 000 noeuds et des expériences avec des capteurs réels sur la plate-

vii

forme d’expérimentation FIT IoT-lab [2]. Nos résultats montrent que nous

atteignons de bien meilleures performances que les autres protocoles, en par-

ticulier dans les grands réseaux dynamiques, cela sans introduire de surcharge

de contrôle.

Mots clés: réseaux de capteurs sans fil, 6LoWPAN, RPL, auto-organisation,

routage, approche orientée données, routage géographique, étude expérimentale.

Contents

I Introduction . 7

1 Organization of the Thesis . 9

1.1 Wireless Sensor Networks . 9

1.2 Internet of Things . 11

1.3 Overview of the thesis . 12

II State of the Art . 15

2 WSN Characteristics . 17

3 Routing Issues in Wireless Sensor Networks 23

3.1 Classification of Routing Protocols 24

4 Network Layer Routing Protocols . 27

4.1 RPL Routing Protocol . 27

4.1.1 Upward Routing Topological Structure 28

4.1.2 DODAG Rank . 28

4.1.3 DODAG Rank Types . 29

4.1.4 DODAG Construction Process 29

4.1.5 DODAG Maintenance . 30

4.1.6 Downward Paths . 30

4.2 RRPL . 31

4.3 Trickle: a Network-Wide Broadcast Protocol 32

4.4 Summary . 33

5 Geographic Routing . 35

5.1 Greedy and Face Routing . 35

5.2 S4: a Small State and Small Stretch Routing Protocol 36

5.3 GDSTR and GDSTR-3D . 37

5.4 Binary Waypoint Routing . 39

5.5 Multi-hop Delaunay Triangulation 40

5.6 Summary . 42

6 Application Layer Protocols in Wireless Sensor Networks 45

6.1 CoAP . 45

6.1.1 RESTful Interface . 47

6.1.2 Resource Directory . 47

6.2 Directed Diffusion . 48

6.3 Logical Neighborhoods . 50

6.4 CCN – Content-Centric Networking 52

6.5 Summary . 54

x Contents

III Featurecast: a Group Communication Service for WSN 57

7 Rationale . 59

8 Principles of Featurecast . 63

8.1 Featurecast Addresses . 63

8.2 Constructing Routing Tables . 65

8.2.1 Creating a routing structure. 65

8.2.2 Advertising Features . 67

8.3 Forwarding . 67

8.4 Topology Maintenance . 68

9 Compact Representation of Features . 69

9.1 Bloom Filters . 69

9.2 Solution1: Straight Bloom Filters 70

9.3 Solution 2: Fixed Size Filter with Compression 70

9.4 Solution 3: Position List in the Address, Filter in the Routing Tables 73

9.5 Solution 4: Bloom Filter in Addresses and a Bit Position List in the

Routing Table . 73

9.6 Comparison of Solutions . 74

9.7 Computational Overhead. 74

9.8 Routing Entry Aggregation. 75

10 Implementation and Evaluation . 77

10.1 Evaluation Setup . 77

10.2 Scenarios . 77

10.2.1 Building Control . 78

10.2.2 Random Topology . 78

10.3 Results: Memory Footprint in the Building Control Scenario 78

10.4 Results: Message Overhead in the Building Control Scenario 79

10.5 Results: Random Topology Scenario 83

10.6 Discussion of Packet Drops Due to Inexistent Addresses 86

11 Conclusion . 87

IV WEAVE: Efficient Geographical Routing in Large-Scale Net-

works . 89

12 Rationale . 91

13 Principles of the WEAVE Protocol . 95

13.1 Protocol Overview . 95

13.2 Packet Structure . 97

13.3 Principles of Packet Forwarding . 98

13.4 Learning Partial Routes . 99

13.5 Address Space Partitioning . 100

Contents xi

13.6 Constructing Routing Tables . 102

13.7 Details of Packet Forwarding . 102

13.8 Checkpoint Creation . 104

13.9 Path Exploration and Backtracking 108

13.10 Refreshing Routing Information . 108

13.11 A note on the backtracking mechanism 109

13.12 Loop-freeness . 110

14 Evaluation . 113

14.1 Experiments on a Testbed . 113

14.2 Simulations . 115

14.3 Initial Simulation Comparisons . 115

14.4 Learning Phase . 119

14.5 Dynamic networks . 120

14.6 Concave Obstacles . 123

14.7 Realistic Geographic Topology . 124

14.8 Comparison with Standard Routing 125

15 Conclusion . 127

V Conclusion and Future Work . 129

16 Overall Conclusions and Future Work . 131

16.1 Summary of the Results and Final Conclusions 131

16.2 Future Work . 132

17 Publications . 135

Bibliography . 137

List of Figures

2.1 Radio energy consumption in comparison to CPU. 19

2.2 Energy consumption for different motes. 20

2.3 Traffic types in WSN . 21

4.1 Difference between DAG and DODAG 28

4.2 RRPL Link Reversal mechanism . 32

5.1 Greedy and Face Routing . 36

5.2 Hull tree in GDSTR . 38

5.3 Routing in GDSTR . 39

5.4 Space division in Binary Waypoint Routing 40

5.5 Routing in Binary Waypoint Routing 41

5.6 An example of a Delaunay triangulation graph 41

5.7 A wireless network with physical connections and a DT graph built

on top of it. 42

6.1 Abstract layering of CoAP . 46

6.2 Architecture of Resource Directory system. 48

6.3 Reinforcing the best path. Sink S starts to receive the same data

from many neighbors. It then decides to reinforce only one path to

reduce the overhead. Without reinforcement, other paths time out

and S receives the data from only one neighbor. 50

6.4 CCN network stack in comparison with the IP stack. 53

6.5 Interest and Data packet structure in CCN. 53

8.1 Creating a Featurecast address. 64

8.2 Multiple DODAGs deployed in the same network for better connec-

tivity. 65

8.3 Comparision of Of0 and Featurecast metric. 66

8.4 Routing tables. 67

8.5 Forwarding packets. 68

9.1 Solution 1. Bloom Filters used both for the destination address and

the routing table. 71

9.2 Solution 2. Output size of compressed filters with the different num-

ber of features. 71

2 List of Figures

9.3 Solution 3. Bloom Filters in the destination address and a list of

elements in the routing table. 72

9.4 Solution 4. Bloom Filters in the destination address and a list of

hashed elements in the routing table. 72

10.1 Memory usage for Featurecast

(1, 2, 3 DODAGs) and LN. 79

10.2 Number of relayed messages needed by the sink to access all nodes

in a given group. 80

10.3 Number of relayed messages needed by a member node to access all

nodes in a given group. 81

10.4 Energy consumption, with and without traffic. 81

10.5 Number of relayed messages for random communications. 83

10.6 Number of nodes involved in the communication process. 83

10.7 Delivery rate for different packet loss rates. 84

12.1 Geographical forwarding . 92

13.1 Principles of WEAVE . 96

13.2 WEAVE packet structure for hl = 2. 97

13.3 Principle of packet forwarding . 99

13.4 Learning partial routes . 100

13.5 Quadtree address space partitioning 101

13.6 Packet forwarding . 103

13.7 Without checkpoints . 104

13.8 With checkpoints . 105

13.9 Waypoint forwarding . 106

13.10 Learning checkpoints . 107

13.11 Backtracking and waypoint refreshment. 109

13.12 Backtracking and path exploration 110

14.1 Packet delivery during the learning phase, Senslab 113

14.2 Hop stretch during the learning phase, Senslab 114

14.3 Energy consumption in time, Senslab 114

14.4 Header size of tested protocols. 116

14.5 Packet delivery rate, network with 800 nodes. 116

14.6 Hop stretch, network with 800 nodes 117

14.7 Packet delivery rate for various network size. 117

14.8 Hop stretch for various network size. 118

14.9 Standard deviation of number of packets forwarded by each node . 118

List of Figures 3

14.10 Packet delivery rate upon the learning phase. 120

14.11 Hop stretch during the learning phase. 120

14.12 Packet delivery rate with 10% nodes off. 121

14.13 Packet delivery rate with 10% nodes off and 50% dynamic for various

network size. 122

14.14 Hello interval impact on packet delivery 122

14.15 Concave obstacle - GDSTR-3D . 123

14.16 Concave obstacle - MDT . 123

14.17 Concave obstacle - WEAVE . 124

14.18 Partial map of Grenoble used in experiments. 125

List of Tables

2.1 Characteristics of popular motes . 17

6.1 Logical Neighborhoods - an example of a Routing Table 52

9.1 Comparison of all solutions. m = number of elements in the address,

n = number of elements in the routing table. 74

10.1 Topology maintenance cost for different set of disconnected nodes. . 82

10.2 Summary of results: the gain of Featurecast compared to other solu-

tions. 85

14.1 Summary of the results for networks with concave obstacles. 124

14.2 Summary of the results for the city network. 125

14.3 Memory usage of routing tables for different network sizes. 126

Part I

Introduction

Chapter 1

Organization of the Thesis

Contents

1.1 Wireless Sensor Networks . 9

1.2 Internet of Things . 11

1.3 Overview of the thesis . 12

1.1 Wireless Sensor Networks

Wireless Sensor Networks have recently become one of the research domains that

develop the most. A lot of interest from the scientific community as well as from

the industry result in a rapid development of new types of devices, technologies,

and protocols. Indeed, the ease of deployment and the large amount of possible

uses justify such a great interest.

Wireless Sensor Networks consist of many small nodes communicating through

a wireless channel. They can provide some valuable data sensing the environment

as well as interact with their surrounding through actuators. The small size and

low cost allow sensors to be easily integrated in the environment, providing a non-

intrusive way to make our lives easier and improve industrial processes. Intended

large scale deployments (we can even read about hundred thousands or millions of

devices) will be made possible by a low price of WSN devices[3] [4]. WSN nodes

(also called motes) are embedded systems with limited resources: low-power, low-

range, low-bandwidth communications, small memory, and finally, a small battery

or an energy harvesting device. Moreover, the characteristics of WSN radio chips

such as 802.15.4 or Bluetooth Low Energy (BLE) are far inferior compared to the

popular 802.11 WiFi technology, especially when it comes to the emitted power and

coverage. The original idea for deploying nodes over a large area combined with a

small radio range leads to the multihop operation of WSN.

WSN motes may have various characteristics. Within the same base platform,

they can integrate many types of sensors (temperature, light, humidity, cameras, ac-

celerometers, etc.) or actuators (air conditioning, door control, alarms, etc.). WSN

10 Chapter 1. Organization of the Thesis

can thus be used in many different scenarios. Environment surveillance can track

animals, helping to understand their migrations. A WSN can easily detect a fire

and alert a fire brigade. The concept of intelligent buildings becomes more and

more popular. Temperature/humidity sensors can cooperate with the air condition

systems to maintain optimal conditions and save energy. Movement detection sen-

sors connecting to a identification system can turn on/off the light when needed

and prevent unauthorized access to restricted areas.

Many cities adopt WSN to improve the quality of life of their citizens. Barcelona

creates BCN Smart City [5] providing smart parking spots, a service for elderly

people needing help, a network of smart buses and many more.

We can distinguish between several ways of interacting with sensor networks.

The first one is a ”pull mode”, where to get data we need to query our network.

In the second one, a sensor node automatically reports data to the sink. The

communication can be triggered by a timer (time driven) or an observed phenomena

(event-driven). All those modes can be useful in different scenarios and require a

suitable way of communication.

The great interest in WSN led to the development of many different operating

systems for motes. The most popular TinyOS [6] and Contiki [7] as well as RIOT

[8], MANTIS [9] or Nano-RK [10] provide different programming models, scheduling

systems, memory management and communication protocol stacks. With such a

variety of systems, developers can easily construct applications.

As WSN contain a large number of nodes, routing becomes an important chal-

lenge. Classical IP networks have a static structure, which allows to introduce some

kind of hierarchy and benefit from address aggregation. In WSN, the topology may

change rapidly because of link/nodes failures and a possibility of nodes to be mobile,

so such approach is not suitable. A WSN is thus usually a flat multihop network

difficult to organise, especially with a limited amount of resources. A routing algo-

rithm needs to be developed carefully to introduce a minimal overhead and ensure

equal and minimal energy consumption.

Sensors are often deployed in places difficult to reach or where human inter-

vention can be challenging. Therefore, we want to apply a ”deploy and forget”

approach, where sensors are placed and then they remain autonomous. A network

needs to discover all its parts, organize the communication and efficiently deliver

data. The tasks can be extremely difficult to accomplish with a high probability

of node failures, frequent topology changes and the influence of the environment

difficult to predict. A WSN needs to perform efficient self-organize and self-healing

processes.

At the same time, wireless networks can exhibit some unexpected and varying

1.2. Internet of Things 11

behaviour. The impact of obstacles such as buildings, furniture, trees, is difficult to

predict during a simulation process and results in asymmetric links, important fad-

ing, or unstable communication, which routing protocols need to take into account.

Nowadays, sensor nodes can be powered in different ways. A battery is still

the most popular way, but main powered motes can also be a possibility. ”Green

sensors” gain more and more interest allowing to recharge the battery using har-

vesting technologies such as solar panels. However, in all those cases, the energy

consumption remains the critrical concern for WSN developers influencing directly

the network lifetime.

All those constraints make the WSN a challenging technology that requires a

careful and complex design, and makes the development process difficult.

1.2 Internet of Things

With the rapid development of embedded systems and WSN, we witness the

emergence of the Internet of Things (IoT). Under this term, all ”things” such as

sensors, electronic devices, computers, despite different technologies, are connected

to a single, global network, where every device can reach every other device. IPv6

provides enough addressing space to uniquely identify all such devices, which is

necessary for the Internet of Things to work. The Internet of Things allows to access

many different devices using the same protocol with the well-known communication

interface. It enables new attractive applications, simplifies the development process,

reduces costs, and makes the physical environment accessible for almost everyone.

Application examples are numerous. Health surveillance systems will be able to

check the status of our body, compare it with our records in databases and notify a

doctor if necessary. An intelligent fridge will be able to automatically order food for

the whole family. The Internet of Things can also become a core part of intelligent

vehicle systems able to easily exchange information to get us safe to our destination.

The research on WSN contribute to the development of the Internet of Things and

enables large deployments of sensor nodes in various domains (smart homes, smart

cities, smart grids, environmental sensing, critical infrastructure surveillance, etc.).

However, this concept also raises many new problems and challenges. Unlike in

classic IPv4 networks, a large number of nodes in the Internet of Things can be

mobile or connected only from time to time. So, it may be impossible to maintain

a fixed structure that allows to aggregate addresses and simplify routing. We also

have to deal with a much larger number of nodes that require much resources. It

is a problem especially for embedded devices, whose resources are very limited. As

routing protocols exchange more information, they need more and more bandwidth

12 Chapter 1. Organization of the Thesis

and control traffic may even exceed data traffic. It can be a serious issue, especially

in wireless scenarios, where the available bandwidth is also limited.

1.3 Overview of the thesis

This thesis considers routing and naming schemes in WSN and provides two

major contributions. First, we propose Featurecast, a new protocol allowing to

efficiently query a sensor network. Featurecast is easy for users to use, outperforms

already existing solutions, and remains compatible with classical IPv6 networks.

Our second contribution targets networks with nodes knowing their positions.

For such networks, we propose WEAVE, a new protocol for geographic routing.

We have validated the feasibility and performance of all proposed schemes through

detailed simulations and evaluation on experimental testbeds.

The thesis is organized as follows.

The second part presents the state of the art including all relevant related work

according to the studied communication layers. We present an overview of routing

protocols in WSNs, focusing notably on distance-vector (gradient) and geographic

routing. We conclude this part by a detailed discussion on the utility of the cross-

layer and data-centric approaches, and their application to address challenges of

the IoT paradigm.

The third part presents the concept of Featurecast with addressing and routing

based on node features defined as predicates. For instance, we can send a packet

to the address composed of features temperature and Room D to reach all nodes

with a temperature sensor located in Room D. Each node constructs its address

from the set of its features and disseminates it in the network so that intermediate

nodes can build routing tables. In this way, a node can send a packet to a set of

nodes matching given features. We also present a routing system based on RPL

[11], which allows to forward packets in Featurecast network in an efficient way. Our

experiments and evaluation of this scheme show very good performance compared

to Logical Neighborhoods (LN) [12] and IP multicast with respect to the memory

footprint and message overhead.

The fourth part presents WEAVE, a geographic routing protocol. With the

development of geolocation as well as virtual coordinate systems, a large part of

nodes in a network is able to determine their positions. WEAVE uses a quad-tree

algorithm to divide the network space and select a set of waypoints that can be used

to route packets. WEAVE does not use any control messages nor central nodes

forwarding more traffic than the others and introduces only a minimal overhead

adding a small header to the forwarded packets. With a fixed-size header, the

1.3. Overview of the thesis 13

protocol can be easily integrated into already existing geographical routing protocols

to improve their performance. WEAVE proves to be as efficient as traditional

routing protocols, while using a much lower amount of memory and limiting the

bandwidth usage.

The fifth part terminates this thesis by summarizing the main contributions.

The final remarks provides motivation for further possible research directions that

could stem out from our work.

Part II

State of the Art

Chapter 2

WSN Characteristics

The goal of this part is to give a general overview of the tremendous research

efforts in WSN that led to the standardization of protocols that are becoming the

building stone of the Internet of Things (IoT). In particular, we will focus our

attention on routing protocols and naming services for WSN, the domains closely

related to the subject of our research. We first present classical routing approaches

in Low power and Lossy Networks (LLN) based on 6LoWPAN [13]—an adaptation

layer for IPv6. Then, we describe different techniques based on geographic routing,

content-centric forwarding, and different types of flooding.

A mote in a WSN has usually very limited resources and capacity. The low

amount of RAM, programmable flash, and CPU power is far from the coresponding

resources of laptop computers or even mobile devices such as smartphones. Table 2.1

presents some characteristics of popular motes [14] [15] [16] [17] [18]. The amount

of memory usually does not exceed 32KB and can even be smaller. The constraints

require a careful development of protocols, systems, and applications that should

minimize resource consumption.

Mote Architecture[b] RAM[KB] Flash[KB] CPU

MicaZ 8 4 128 8MHz

TelosB 16 16 48 16MHz

OpenMote 32 32 512 32 MHz

GreenNet 32 32 512 32 MHz

Table 2.1: Characteristics of popular motes

Motes communicate through a wireless channel provided by diverse technologies.

In some scenarios, it can be advantageous to use one of the standards from the

802.11 family [19] that are also used in most of modern laptop computers. 802.11

can provide significant bandwidth and a range of around hundred meters, however

the energy consumption is usually too high for battery-powered motes. IEEE works

on the development of a low power variant—802.11ah [20] for machine-to-machine

18 Chapter 2. WSN Characteristics

communications that aims at extending the range to cover larger distances while

consuming litlle energy.

Some motes use the Bluetooth technology [21]. It provides similar characteristics

to the 802.11 standards, but with a lower range, while being oriented more towards

directly connecting two peers (master/slave mode). It limits its use in scenarios

in which we need to broadcast data. Nevertheless, the recent BLE technology

(Bluetooth Low Energy) is appearing as an interesing variant for low power motes.

IEEE developed a specific standard for Low Power and Lossy Networks: 802.15.4

[22] that provided the PHY and MAC layers to the ZigBee protocol stack [23].

802.15.4 offers a medium range (around 50m), low data rates (up to 250kb/s),

achieves low energy consumption, and benefits from low manufacture costs. All

these characteristics make 802.15.4 particularly suitable for WSN. It is currently

the most popular standard solution supported by modern motes. Because of a

small communication range in 802.15.4 networks, nodes cannot directly access all

peers in a given topology. In such multi-hop networks, packets need to be forwarded

several times before reaching their destination. This way of operation requires the

use of routing protocols for establishing end-to-end connectivity.

Recently, several initiatives have considered bringing long-range communica-

tions to energy constrained IoT motes. Good examples are LoRa (Long Range

Low Rate) [24] [25] and SIGFOX [26]. LoRa targets machine-to-machine commu-

nications within a 10km range with a support for up to millions of nodes with a low

energy consumption. SIGFOX offers very small rates between 100 b/s and 1000

b/s with an announced rqnge of 40km in open space. SIGFOX devices can only

transmit a limited number of small messages per day. In spite of the interest spawn

by the technologies, their deployment is still at its beginning and they are far away

from being available on existing motes.

Even in technologies designed for low energy consumption, communication may

require a significant amount of energy compared to other sources of energy con-

sumption. The radio, while being active, consumes several times more energy than

the CPU or sensors (cf. Fig. 2.1) [14]. We can observe the energy required for

communication in Fig. 2.2) [14] [15] [16] [17] [18]. Reception in some devices may

require even more energy than transmissions (cf. Fig. 2.2) [14] [15] [16] [17] [18].

Note that the active radio circuit that waits for a reception consumes the same

amount of energy, which has led to the development of duty cycling protocols. In

duty-cycling protocols, a node maintains its radio in a sleep mode to save energy

and will turn it on only if it wants to send or receive a packet. Such a solution

allows to significantly reduce the energy consumption, as the radio is inactive for

the most of the time.

19

 0

 5

 10

 15

 20

Radio MCU Sensors

E
n
e
rg

y
 C

o
n
s
u
m

p
ti

o
n
[m

A
]

Figure 2.1: Radio energy consumption in comparison to CPU.

While activating the radio before transmitting is easy, because the sender knows

the instant at which it should operate, the receiver does not know when it may

receive a packet. There are many different proposals to solve this deafness problem

such as Preambule Sampling, where nodes wake up periodically to check if there is

a node transmitting to them (e.g. ContikiMac [27]) or Scheduled Listening, where

nodes synchronise their active periods and communicate in bursts (e.g. T-MAC

[28]). There are also many proposals for the MAC layer operation trying to benefit

from both techniques at the same time or organize nodes in clusters to better manage

the traffic [29] [30] [31].

Duty cycling allows saving a significant amount of energy, but makes the inter-

action between nodes more complex. In some cases, broadcasting becomes much

more difficult, as a node needs to send a unicast packet to all nodes in the range, or

it should continuously transmit the broadcast frame so that all neighbor nodes that

may wake at different instants will receive it. This is why it is extremely important

to decrease the number of control messages used by protocols running on nodes.

In particular, periodic updates and ”hello” messages used in many classic routing

protocols can greatly decrease performance of a network and may lead to higher

energy deplation.

The lossy nature of the wireless communication, duty cycling, and a significant

probability of mote failures make that most of the time, a subset of nodes is not

accessible. Quite often we can observe asymmetric links where communication

experience different packet transmit probabilites in opposite directions. Such an

20 Chapter 2. WSN Characteristics

 0

 5

 10

 15

 20

 25

M
IC

A
z

T
e
lo

s
B

O
p
e
n
M

o
te

G
re

e
n
N

e
t

S
m

a
rt

M
e
s
h
IP

E
n
e
rg

y
 c

o
n
s
u
m

p
ti

o
n
 [

m
A

]

Tx
Rx

CPU

Figure 2.2: Energy consumption for different motes.

environment may experience imortant network dynamics and unstable topology.

This is also the reason for which routing protocols designed for classic IP networks

may perform in an insufficient way in WSN.

Because of the broadcast nature of the wireless medium, motes cannot structure

the network with subnetwork prefixes and use address aggregation to reduce the

size of routing tables, which results in the need of using host routes. Nevertheless,

it is possible to create some clusters with coordination nodes, but such solutions

increase the control message overhead and cause unequal energy consumption, thus

decreasing the network lifetime.

Routing protocols must also take into account the type of traffic in a given sensor

network. We distinguish several types of communication (cf. Fig. 2.3).

• Multipoint-to-point (MP2P)—the most common WSN traffic pattern in a

large number of cases, also known as upward forwarding or convergecast : sens-

ing devices report their readings to a centralized processing and storing unit

called a sink.

• Point-to-Multipoint (P2MP)—downward routing that can be seen as a form

of data polling where the sink requests specific data or control readings from

a single node or a group of nodes.

• Point-to-point (P2P)—an arbitrary pair of nodes that communicate. An ex-

ample from building automation might illustrate the case: a sensor detecting

21

MP2P

P2MP

P2P

Sink

A

B

Figure 2.3: Traffic types in WSN

a particular car at the building entrance can turn on the lights at the corre-

sponding parking space.

Different networks need different types of communication and routing protocols

must take it into account.

Chapter 3

Routing Issues in Wireless

Sensor Networks

Contents

3.1 Classification of Routing Protocols 24

Routing is the key element of all networks. The process of forwarding packets

from a source to a destination allows nodes to exchange data. The topic was well

investigated during many years of research resulting in many efficient and robust

protocols for classical IP networks ([32], [33], [34]). However, a rapid development

of wireless technologies, mobile devices and rapid growth of the number of users

changed many features of modern networks. With new characteristics, we need new

routing protocols able to deal with emerging challenges [35] [36]. This is especially

true in Wireless Sensor Networks, which in many ways are different from classic

networks. A good routing protocol must achieve:

• Low control traffic overhead: the amount of control messages shall be

limited to reduce the energy consumption.

• High packet delivery rate: retransmitting lost packets consumes significant

amount of energy, reducing network lifetime.

• Optimal routing: routing protocols shall create the shortest path to the

destination, the shortest in the sense of some metric.

• Low memory consumption and processing cost: a routing protocol is

only a part of the whole system installed on motes, so it cannot consume too

many resources.

• Ability to deal with network dynamics: routing protocols must be able

to update outdated paths and create new ones.

24 Chapter 3. Routing Issues in Wireless Sensor Networks

3.1 Classification of Routing Protocols

Classification of routing protocols is a difficult task, because of a large number

of proposed solutions. They can be divided using different criteria:

• with/without paths – protocols with paths construct routes along which

packets will be forwarded. Usually, they require more resources/control mes-

sages to maintain paths than protocols without them, but then, routing is

more efficient. Protocols without paths do not use routes. Nodes forward

packets based on the characteristics of their neighbors and/or the information

contained in packets.

• proactive/reactive – proactive protocols establish and maintain routes to

every destination in the network from the beginning. Reactive ones establish

paths ”on demand”, only when a node wants to reach a given destination.

• end-point/data-centric – end-point protocols focus on reaching target nodes

identified by a unique identifier or address. The data-centric approach focuses

on data rather than on identifier/addresses.

• single/multipath – multipath protocols establish multiple paths to destina-

tions. They can be used to increase protocol robustness, load-balancing, or

performance.

• flat/hierarchical – hierarchical protocol are often based on clustering. By

choosing cluster heads and establishing inter-cluster communication only be-

tween them, we can significantly reduce memory usage and simplify routing

process. However, managing a cluster requires much more energy consump-

tion on cluster heads, which can shorten the network lifetime.

• single/cross layer – usually, routing only resides in the 3rd layer of the

OSI/ISO model. However, close cooperation with other layers (especially the

MAC layer), can bring significant benefits to the routing efficiency and is used

by many protocols for WSN. The wrawback is that each such dependency

limits the flexibility of the protocol and its ability to coexist with different

technologies.

• traffic mode – protocols can be classified based on the type of supported

communication, such as: unicast, multicast, many-to-one, etc.

Different surveys on routing protocols used different classification methods de-

pending upon chosen protocols. However, more and more protocols combine dif-

ferent techniques and cannot be easily classified. Having this in mind, in the rest

3.1. Classification of Routing Protocols 25

of this part, we divide the protocols into three categories: pure structure building

WSN routing protocols (focusing only on establishing paths between destinations),

geographic routing protocols, and application layer protocols including naming sys-

tems/grammars helping to exchange data.

Chapter 4

Network Layer Routing

Protocols

Contents

4.1 RPL Routing Protocol . 27

4.1.1 Upward Routing Topological Structure 28

4.1.2 DODAG Rank . 28

4.1.3 DODAG Rank Types . 29

4.1.4 DODAG Construction Process 29

4.1.5 DODAG Maintenance . 30

4.1.6 Downward Paths . 30

4.2 RRPL . 31

4.3 Trickle: a Network-Wide Broadcast Protocol 32

4.4 Summary . 33

We start with the description of the routing protocols that reside only in 3rd

OSI/ISO layer. Such protocols usually construct a routing structure and follow

classical approaches (distance vector or link state). We present RPL, a distance

vector protocol for WSN and its enhancements.

4.1 RPL Routing Protocol

Routing Protocol for Low-Power and Lossy Networks (RPL) is a distance-vector

routing protocol to support a variety of network traffic patterns already mentioned

in the previous sections (cf. Fig. 2.3). Before the standardisation of RPL, a special

working group called ROLL strived to cover a comprehensive number of various use

cases: Home Automation [37], Commercial Building Automation [38], Industrial

Automation [39], Urban Environments [40]. Anticipating the IoT, ROLL requires

the interoperability with IPv6 and 6LoWPAN as well the compliance with a vari-

ety of link layers, supporting both wireless and PLC (Power Line Communication).

28 Chapter 4. Network Layer Routing Protocols

DAG DODAG

Figure 4.1: Difference between DAG and DODAG

Nowadays, RPL consist of several RFCs describing the protocol itself a list of sup-

ported metrics, energy optimization, and stability mechanisms. Nevertheless, there

is still a lot of space left for improvement, especially when it comes to practical

mechanisms, and P2MP/P2P traffic pattern [41] [42] [43] [44]. We will provide

more details about these aspects in the rest of the section.

4.1.1 Upward Routing Topological Structure

RPL organizes a topology as a Directed Acyclic Graph (DAG) that is partitioned

into one or more Destination Oriented DAGs (DODAGs). Each sink present in the

network has its own DODAG (cf. Figure 4.1). Such a routing structure provide an

efficient way to report data do the sink (MP2P) without cycles. Each node, except

the root, has a preferred parent used to forward upward traffic. Nodes maintain

also a list of backup parents, that can be used in case of a failure of the preferred

one.

However, with the emergence of the Internet of Things, we can observe more and

more networks built on the P2P model. In such a scenario, even close nodes can

be forced to communicate through the sink, instead of directly exchanging packets

(cf. Figure 2.3).

Each DODAG is uniquely identified with an unique DODAG Id (usually an IPv6

address of the root). Nodes in the network can only belong to a single DODAG

inside the same RPL Instance.

4.1.2 DODAG Rank

To avoid loops RPL introduces a term of ranks. The rank of a node is a scalar

representation of the location of that node within a DODAG, represents the distance

to the root and indicates the node relative position to others. As the protocol was

4.1. RPL Routing Protocol 29

designed to be generic, the exact calculation of the rank is left to custom Objective

Functions (OF). However, it must always monotonically decrease as gradients flow

towards the DODAG destination.

4.1.3 DODAG Rank Types

The node rank can serve as a routing constraint (a way of pruning potential

forwarders not satisfying specific properties, e.g. use only paths traversing main

powered nodes). It can also serve as an additive metric (a way of estimating the

route cost, e.g. use the path that minimizes the energy consumption). OF ranks

can be divided into two mains classes:

• Node type – takes into account node properties to calculate a rank value.

A rank can map node state (ability to aggregate the data, high workload);

node enegy (type of power source, remaining energy); or a simple hop count

indicating the distance to the DODAG root.

• Link type – takes into account the properties of a linke between a node and

its neighbor. Nodes can advertise recently estimated throughput (or range

of supported values), observed latency, link reliability (using either the Link

Quality Level [LQL] or the Expected Transmission Count [ETX] metric), or

link color (a set of custom flags allowing the use of user defined rules).

The network sink (DODAG root) can construct multiple DODAGs, using dif-

ferent OF s in order to optimize paths for various use cases. Once a component

of the metric changes, the rank needs be recalculated. However, due to unstable

links, it is recommended to use a threshold while advertising those changes in the

network. Too frequent notifications can increase energy consumption and impact

the stability of the network.

4.1.4 DODAG Construction Process

In order to construct a new DODAG a root start sending DIO (Destination

Information Object) packets to link-local multicast. The DIO packet contains in-

formation allowing to identify the DODAG (RPLInstanceId, DODAGId), a type of

rank used by the OF, version number and additional control information. Upon

receiving a DIO packet each node will add its sender to the candidate neighbor set.

A restricted subset of the candidate neighbor set, containing nodes with lower rank

forms a parent set. Finally, the node chooses a preferred parent optimizing the OF

goal. The node can then start sending its own DIO messages adding its own metric

to the one, advertised by the parent. Recent studies show that the convergence

30 Chapter 4. Network Layer Routing Protocols

time does not depend on the number of nodes present in the network, but rather

on the number of hops between the root and the furthest nodes [45].

4.1.5 DODAG Maintenance

RPL requires an external mechanism to monitor the connectivity between neigh-

bors. Typical choices or that task are Neighbor Unreachability Detection (NUD) or

Bidirectional Forwarding Detection (BFD). Some recent studies show, that level 2

mechanism can perform significantly better in many cases[46]. If the preferred par-

ent gets disconnected, it must be replace by another one from the list. However, if

the parent set is empty the disconnected node poisons its subtree with infinite rank.

To restore the connectivity we can use global or local repair mechanisms. Global

repair mechanism is initiated by the DODAG root. It increments the DODAG ver-

sion and floods the network with new DIO messages. Global repair is the most sure

technique, but introduces significant message overhead, requires a lot of time and is

inefficient with frequent topology changes. Local repair mechanisms rebuild only a

small part of the DODAG using much less resources, but can construct suboptimal

paths [47].

As each node belonging to a DODAG periodically sends DIO packets to an-

nounce its rank, RPL sends DIO packets using the Trickle timer [48]. The Trickle

timer is explained in more details further in this section.

4.1.6 Downward Paths

RPL uses Destination Advertisement Object (DAO) messages to establish Down-

ward routes.and support P2MP and P2P traffic. Each node can send a DAO in order

advertise its address. The packet is sent to the parents and forward to the sink,

filling up the routing tables. While sending DIO messages is based on well-defined

Trickle timer, there are no specification for sending DAO packets. The most natural

way would be to resend them just after they expire. However, it was proven that

in networks experiencing packet looses it can be more beneficial to send multiple

messages in a short period of time in order to increase the probability of establishing

a path [41].

RPL supports two modes of downward routing:

• Storing – all nodes maintain downward routing tables for their sub-DODAG

• Non-storing- all packets between nodes are forwarded to the root, which

stores complete routing tables and uses source forwarding to deliver the pack-

ets.

4.2. RRPL 31

Unfortunately, storing mode is often impossible to deploy due to memory con-

straints and non-storing mode increases header size and load on nodes located near

the DODAG root [49]. To better support P2MP routing, IETF proposed a RPL

extension for Reactive Discovery of Point-to-Point Routes in Low-Power and Lossy

Networks [50]. It allows any node to construct its own DAG using modified DAO

messages to reach targets. However, differently from upward routing, this DAG is

temporary and can contain constraints that the discovered routes must satisfy (i.e.

maximum hop count). Such a mechanism needs to flood the network in order to

establish communication, as stated in the RFC, and may or may not create better

routes than the ones along a global DAG [50].

Contrary to efficient, simple, and well detailed (all necessary IPv6 compatible

mechanisms are described) upward routing, RPL lacks maturity when it comes

to P2P and P2MP routing. The biggest problem lies in the lack of scalability and

high control traffic overhead, which limits the use of those mechanisms in real world

scenarios.

4.2 RRPL

Authors of RRPL proposed two modifications increasing RPL performance [51].

The first one, called Link Reversal, allows to speed up local repair process after a

link failure. To achieve this, the authors introduced Temporal Order T , which is

another metric assigned to every node in the network, additional to the classical

rank R.

Link Reversal uses two additional messages:

• UPD (DODAG Update) – used to send DODAG information upon request,

to trigger a link reversal process or to acknowledge UPD that indicates a link

reversal from a neighbor.

• CLR (DODAG Clear) – used to stop the repair process upon detection of

a network partition.

While constructing a DODAG, all T values are set to 0 on each node. After

loosing all uplinks, a node can increase its T value and send an UPD to its neighbor.

A sensor having higher T value is always considered as a downlink regardless its

rank R. Neighbors receiving an UPD should recompute their uplink and downlink

set. If a neighbor does not have any uplinks after this operation it shall update its

own T with the value advertised in the UPD. If the nodes starting the process detect

that the network has been partitioned and there is no uplink to the DODAG root,

they stop the repair process with a CLR message. Figure 4.2 shows a traditional

32 Chapter 4. Network Layer Routing Protocols

DODAG (a) in comparision with RRPL DODAG (b) with Temporal Order T . After

a link failure between the sink and node B (c), nodes A and B increase their T and

can reach the sink through node C.

Figure 4.2: RRPL Link Reversal mechanism

The second contribution of RRPL adopts a mechanism known from LOADng

[52] to RPL networks to support Point-to-Multipoint and Point-to-Point traffic.

To accomplish this, each node in the network can send a RREQ (Route Request)

message. It contains the source address, the destination address, and a sequence

number. The message traverses the DODAG looking for a node with a given address.

Each node forwarding the message stores the previous hop in its routing table. Upon

receiving a RREQ, the target node responds with a RREP (Route Reply) message,

which is forwarded back to the source.

RRPL allows to significantly decrease the network local repair time and control

message overhead, while allowing Point-to-Point communication between any nodes

in the network, which is costly in a large network with the classical version of RPL

[53].

4.3 Trickle: a Network-Wide Broadcast Protocol

Trickle was designed as a network-wide broadcast protocol to distribute a com-

mon content to all nodes in the network [54]. Because of its simplicity, Trickle

4.4. Summary 33

achieves really good performance and quite commonly becomes a comparison point

to many unicast protocols [55]. However, it is sometimes less costly to broadcast

data to all nodes than maintaining a routing topology using more sophisticated

routing protocols. Trickle is now the IETF standard [48] and is a part of the RPL

protocol.

Trickle uses a ”polite gossip” protocol. It assumes that data exchanged in the

network has its own global version/sequence number, so that the protocol is able

to determine which one is newer. Each node keeps a sequence number of the last

packet it has received and the content of several last packets themselves. Nodes

divide time into small intervals. During each interval, nodes broadcast a metadata

packet with the last sequence number received. However, nodes are ”polite” and do

not send the metadata packet if they overhear at least k other nodes advertising the

same sequence number. If a node overhears another node that advertises a smaller

sequence number, it rebroadcasts its last packets to put it up to date. In the

same way, a node overhearing a larger sequence number, rebroadcasts its metadata,

to invoke packet retransmission. Eventually, all nodes in the network receive the

propagated content with a minimal overhead.

4.4 Summary

So far, we have introduced some background information on routing protocols

for Wireless Sensor Networks. The described protocols belong to Layer 3, they only

focus on packet forwarding, and require additional mechanisms for naming/address

resolution. Classical solutions such as RPL usually work well in many-to-one com-

munication scenarios, but scale badly because all nodes need to exchange control

messages. It becomes a major problem while experiencing network dynamics. The

routing structure needs to be constantly updated with every single change in the

topology. Also, one-to-many and many-to-many communication is somewhat lack-

ing and difficult to introduce with a limited amount of resources. Trickle, being the

only presented protocol without routing structure, does not generate any control

messages, but requires flooding the whole network, which limits its use in unicast

communication. In the next chapter, we introduce geographic layer protocols ben-

efiting from node locations.

Chapter 5

Geographic Routing

Contents

5.1 Greedy and Face Routing . 35

5.2 S4: a Small State and Small Stretch Routing Protocol 36

5.3 GDSTR and GDSTR-3D . 37

5.4 Binary Waypoint Routing . 39

5.5 Multi-hop Delaunay Triangulation 40

5.6 Summary . 42

Because of possible node failures and the lack of the backbone infrastructure,

Wireless Sensor Networks cannot benefit from address aggregation. Protocols based

on clustering and a hierarchy usually introduce a lot of control traffic and can

cause unequal energy consumption. The development of cheaper and less complex

localisation systems as well as new protocols calculating virtual coordinates allow to

use node positions in the routing system. Geographic routing usually requires less

memory usage, control traffic, and presents an interesting alternative to classical

routing protocols. In this section, we briefly present the most popular geographic

routing protocols being used in 2D and 3D environments.

5.1 Greedy and Face Routing

The basic scheme of geographic routing is Greedy Routing. Each node in the

network maintains a list of its neighbors. To forward a packet to destination d,

a node looks into its neighbor table and chooses a node whose distance to d is

the smallest. Greedy Routing, besides neighbor discovery, does not require any

control messages nor routing tables. It requires almost no modification to work in

3D environments. However, its efficiency is quite limited—Greedy Routing cannot

deal with local minima (the nodes that do not have any neighbor with the smaller

distance to the destination) and will drop packets without trying to bypass obstacles

[56] [57]. Many protocols presented later in this section use use greedy forwarding

until a packet is stuck in a concave node and then try to go around a void or an

36 Chapter 5. Geographic Routing

obstacle. This approach may result in not optimal routes, because forwarding may

start in a wrong direction and then is forced to make a detour.

The first solution to guarantee stateless packet deliv- ery in two dimensions

(2D) under some assumptions was face routing: GFG (Greedy-Face-Greedy) [9]

and GPSR [10]. Nodes do not maintain any non local infor- mation to successfully

forward packets from sources to destinations.

Face Routing is a solution initially proposed in GFG [58] and GPSR [59]. With

the same assumptions as in Greedy Routing, it guarantees packet delivery, but re-

quires the planar graph of wireless connectivity. When encountering an obstacle,

Face Routing tries to bypass it clockwise or counter-clockwise.

SS DD

Greedy Routing

Optimal Path

SS DD

Face Routing

Optimal Path

Figure 5.1: Greedy and Face Routing

Face routing requires the construction of a planar graph (a graph with no cross-

ing edges), which is difficult in real wireless environments and may result in sub-

optimal routes [60]. Stateless face routing protocols operate under heavy unrealistic

assumptions, hence they do not work in real networks and a graph planarization

process, like installing some state information in Cross Links Detection Protocol

(CLDP) [61], is required.

5.2 S4: a Small State and Small Stretch Routing Pro-

tocol

S4 is a geographical routing protocol based on compact routing schemes [62].

At the beginning, a random set of
√
N nodes is chosen as beacons. Then, each

node establishes its local cluster Ck(s). Such a cluster of node s contains all nodes

that are closer to s than the closest beacon L(s) and is local for every node in the

network. Nodes knows the shortest path to each node in their local clusters and

to every beacon in the network. When trying to send a packet to destination d, a

node checks if it belongs to its local cluster. If not, the packet is sent to the closest

beacon to d. To use such routing scheme, nodes in S4 need to maintain:

• a local cluster table,

5.3. GDSTR and GDSTR-3D 37

• shortest paths to every beacon in the network.

To accomplish the first task, nodes use Scoped Distance Vector (SDV). Each

node s keeps a tuple for every destination in its local cluster containing:

• d - destination id,

• n - id of the next hop toward the destination,

• m(s, d) - distance to d,

• seqno - sequence number,

• scope(d) - the distance between d and its closest beacon.

Each node propagates the information stored in its routing table. However, an

update about destination d will be retransmitted only by neighbors who are closer

to d than its closest beacon. Sequence numbers allow to suppress retransmission

of entries that were not modified. Both mechanisms allow to significantly decrease

the amount of updates in the network.

To maintain connectivity between clusters, each beacon creates a spanning tree

to every node in the network done by simple flooding. To enhance broadcast re-

liability, S4 applies a simple system where packets are retransmitted until a node

overhears its retransmission by a certain number of neighbors.

The last component of S4 deals with node and link failures. If node s does not

receive an acknowledgement within a given number of retransmissions, it broadcasts

failure recovery request. Each neighbor receiving such a request calculates its

priority p based on its position and distance from the destination. A node with the

highest priority is chosen as a next hop, replacing the failed node.

As the name indicates, S4 offers low hop stretch and low memory usage. How-

ever, it requires a significant amount of control traffic. With a large number of

beacons, there is a lot of broadcast transmissions in the network, which can cause

high energy consumption especially in duty cycled networks.

5.3 GDSTR and GDSTR-3D

Greedy Distributed Spanning Tree Routing (GDSTR) is a geographic routing

protocol for wireless networks [63]. The major contribution of this protocol is the

concept of a hull tree. It is derived from the spanning tree, where each node stores

the integrated information about a convex hull containing its children (cf. Fig. 5.2).

Each node computes the smallest region containing all its children and their sub-

trees. This information is then forwarded to its parent in the spanning tree, which

38 Chapter 5. Geographic Routing

aggregates the information and continues the process. Each region is represented as

a 5-point convex hull. With such a representation, GDSTR requires a small amount

Figure 5.2: Hull tree in GDSTR

of memory to store the routing information. To forward packets, GDSTR basically

uses greedy routing. When a packet reaches a local minimum, where it can no longer

be forwarded, GDSTR switches to a tree mode. A node checks whether it has a child

whose convex hull contains the target node. If it is the case, the packet is forwarded

to this child. If not, the packet is forwarded to the node parent. This process is

repeated until we find a node whose child convex hull contains the target node or

until we reach the root node. If the root node does not have any children with a

convex hull containing the target node, it is considered as unreachable. Every time

a node switches to the tree mode, it records its position in the packet. If traversing

the tree we reach a node that is closer to our destination, GDSTR switches back

to Greedy Routing. In Figure 5.3, node S tries to send a packet to D. At first,

it greedily forwards the packet to A, which cannot deliver it. The packet is then

forwarded to R, which has a child containing D in its convex hull and finally its

destination.

In GDSTR, it is possible to create multiple hull trees. In such a case, a node

uses the one whose root is closer. By doing so, we obtain paths that are closer to

the optimal ones.

As GDSTR was designed to work in a 2D environment, the authors of GDSTR-

3D [64] proposed to adapt it to 3D networks. The main difference lies in the

representation of convex hulls. Authors tested the following solutions: a sphere, two

2D convex hulls, and three 2D convex hulls. The two last solutions usually achieve

5.4. Binary Waypoint Routing 39

R

D

S

A

Figure 5.3: Routing in GDSTR

much better results than a sphere. GDSTR-3D uses a 2-hop Greedy Routing as

its routing base, where nodes store the information about their 2-hop neighbors to

determine the best hop. This solution significantly increases the delivery rate, but

also increases memory usage.

Both solutions present an interesting approach characterised by small memory

usage and low hop stretch. However, as both solutions use a spanning tree, they

are not resistant to network dynamics and can generate large amounts of control

traffic during node failures, especially for nodes located near the tree root.

5.4 Binary Waypoint Routing

The key element of Binary Waypoint Routing [65] consists of Waypoints, specific

nodes used to forward packets. At the beginning, each node divides the space of the

network on subregions using Binary Space Partitioning represented in Fig. 5.4. At

each step, a node divides a subspace into two, the one in which it lies and the other

one. During the first step, node A divides the whole space into S0 (where it lies)

and S1. At the second step, the subspace S0 is further divided into S00 and S01.

This process continues until our node can directly reach all nodes in its subspace.

Each node divides the whole space in a similar way.

Nodes try to have one node as a Waypoint and a complete path to reach it

for every subspace. Waypoints can be learned by observing incoming packets. If

the routing tables are empty, nodes use greedy routing to forward packets. The

complete path from the source to its final destination is recorded in each packet

40 Chapter 5. Geographic Routing

A

S1

S01

S001

S0001

Figure 5.4: Space division in Binary Waypoint Routing

header. A node forwarding a packet checks its source. If it lies in a subspace for

which it still does not have any Waypoint, it stores the complete path in its routing

table.

If a node wants to send a packet to a destination and it has a Waypoint for the

same subspace, it puts it into the header with a complete path to it. The packet is

then forwarded using this path. Each intermediary node can however replace the

waypoint if it has one that lies closer to the destination. Fig. 5.5 shows the process.

Source S sends a packet to destination D. It has W1 as its Waypoint for subspace

S0. The packet is forwarded to node A that has Waypoint W2 that lies closer to

D. A replaces W1 by W2, the packet is forwarded to W2 and finally reaches its

destination.

Binary Waypoint Routing represents an interesting approach: it does not need

any control messages, achieves good packet delivery rate, and creates path close to

the optimal ones. However, it requires to store whole paths for every Waypoint in

the forwarded packets (source routing), which makes it difficult to process by nodes,

increase routing overhead, and requires variable header length.

5.5 Multi-hop Delaunay Triangulation

The authors of Multi-hop Delaunay Triangulation (MDT) [66] presented an

interesting protocol able to route packets in any n-dimensional space. The key

concept of the protocol lies in Delaunay triangulation (DT) graphs. It is proven

that for such graphs, greedy routing always finds the packet destination [67] [68].

5.5. Multi-hop Delaunay Triangulation 41

S

D

A W1

W2

Figure 5.5: Routing in Binary Waypoint Routing

Delaunay triangulation for set P of points in a plane is a triangulation DT (P) such

that no point in P is inside the circumcircle of any triangle in DT (P) (cf. Fig. 5.6).

Figure 5.6: An example of a Delaunay triangulation graph

However, in wireless networks, because of obstacles and unequal signal propaga-

tion, physical connections between nodes do not form DT graphs. Fig. 5.7 presents

a wireless networks with physical connections (solid lines) and connections in a DT

graph (dashed lines). While forwarding packets, MDT only uses physical connec-

tions that belong to the DT graph. For DT neighbors that do not have a direct

physical connection, MDT creates virtual links.

42 Chapter 5. Geographic Routing

Figure 5.7: A wireless network with physical connections and a DT graph

built on top of it.

A node joining a network, first discovers its physical neighbor and than looks

for its DT neighbor using greedy forwarding. MDT contains several mechanisms

allowing to deal with network dynamics. Nodes periodically query a subset of peers

in the network to determine whether all paths are still valid. If it is not the case,

they launch a repair mechanism.

MDT achieves low hop stretch, almost 100% packet delivery rate, low stor-

age cost, and presents the ability to forward packets in any n-dimensional space.

However, maintaining all virtual links can consume a significant amount of energy,

especially in dynamic networks.

5.6 Summary

Geographic routing protocols, while being a lightweight alternative for wireless

networks, raise a whole new set of problems. The main issue remains the high hop

stretch. Almost all solutions use greedy routing as the default forwarding mecha-

nism. Packets may get stuck in dead-ends and protocols try to recover bypassing

them, which results in paths far from the optimal ones.

Another issue remains unequal load share. Protocols using beacons/cluster

heads forward more traffic to this ”special nodes” causing increased energy con-

sumption and thus decreasing network lifetime.

Also, maintaining a routing structure, similarly to the protocols presented in

the previous chapter, requires a significant amount of control messages increasing

with unstable links.

5.6. Summary 43

Some protocols require strong assumptions on the underlying network graph

such as the unit disk or a planar graph, which limits their use.

In the next chapter, we introduce application layer protocols, providing naming

schemes for nodes, usually in addition to a routing protocol.

Chapter 6

Application Layer Protocols in

Wireless Sensor Networks

Contents

6.1 CoAP . 45

6.1.1 RESTful Interface . 47

6.1.2 Resource Directory . 47

6.2 Directed Diffusion . 48

6.3 Logical Neighborhoods . 50

6.4 CCN – Content-Centric Networking 52

6.5 Summary . 54

While routing is the key element of each network, using IDs to query the network

is impractical. Instead of communicating with single nodes, WSN users often need

to access a given chunk of data (”temperature on the first floor”) on contact mul-

tiple nodes providing those informations. This chapter describes already existing

solutions allowing such a functionality.

6.1 CoAP

In 2014, IETF proposed a new standard: Constrained Application Protocol

(CoAP) [69] corresponding to Hypertext Transfer Protocol (HTTP) in Machine-

to-Machine scenarios. It is thought easy to perform a translation between the two

protocols. CoAP is an application layer protocol providing a request/response

REST interaction model between application endpoints designed to have low over-

head and support some specialized requirements such as multicast support.

CoAP supports asynchronous message exchanges on top of UDP, which means

that it does not guarantee packet delivery. The standard allows however an optional

module providing reliability. To use it, a message needs to be marked as Con-

firmable. Such a message will be retransmitted by the sender with a timeout and

46Chapter 6. Application Layer Protocols in Wireless Sensor Networks

Application

Requests/Responses

 Messages

UDP

C

o

A

P

Figure 6.1: Abstract layering of CoAP

exponential back-off until being acknowledged. Each message contains an ID allow-

ing the association between messages and acknowledgements to prevent receiving

duplicated messages. CoAP uses 4 basic message types inspired by HTTP:

• GET - retrieving a representation or the information that currently corre-

sponds to the resource identified by the request URI.

• POST - requesting that the representation enclosed in the request be pro-

cessed.

• PUT - requesting that the resource identified by the request URI be updated

or created with the enclosed representation.

• DELETE - requesting that the resource identified by the request URI be

deleted.

Upon receiving a request message of a given type, an endpoint responds with a

reply message indicating the result of the operation and/or some data. The are 3

classes of response codes indicating the result:

• 2 - Success: the request was successfully received, understood, and accepted.

• 4 - Client Error: the request contains bad syntax or cannot be fulfilled.

• 5 - Server Error: the server failed to fulfill an apparently valid request.

6.1. CoAP 47

To reduce the bandwidth usage, CoAP can use caching for resources with spec-

ified freshness parameter. In such a case, intermediary nodes store data being

forwarded and send it to the requesting node instead of the target node if the

information is still valid.

CoAP can contain some additional features defined in additional documents.

A good example is the ”Observe” option [70]. It allows to subscribe for a given

resource and receive updates after a fixed time interval.

6.1.1 RESTful Interface

In the classic approach, each node becomes a CoAP server and shares its re-

sources as web-services. To name the resources, CoAP uses URIs [71]. Similarly

to HTTP, it specifies the host, port number, and resource name (cf. Alg. 1).

Algorithm 1 CoAP URI scheme with an example

”coap:” ”//” host [”:” port] path-abempty [”?” query]

coap://example.com:5683/ sensors/temp.xml

To allow resource discovery, the RESTful interface specifies a special path ”/.well-

known/core” [72]. After performing a GET command on this resource, a server will

reply with a description of its resources, specifying the path to a resource and the in-

terface as shown in Alg. 2. The resource description can contain several attributes

Algorithm 2 CoAP resource discovery exchange

REQ: GET /.well-known/core

RES: 2.05 Content </sensors/temp>;if=”sensor”, </sensors/light>;if=”sensor”

such as resource type (rt) or interface type (if) simplifying the identification and

registrations process.

After discovering the resources, a node can directly execute CoAP commands

on discovered URIs.

6.1.2 Resource Directory

As WSN may have a large number of nodes that can be asleep/down, it can be

difficult or non cost-efficient to perform resource discovery directly on nodes, even

using multicast. To solve this problem, IETF proposed to use a Resource Directory

[73]. The Resource Directory allows endpoints to register their available resources

and allows clients to discover them without querying the nodes (cf. Alg.2).

All entries in the Resource Directory are soft-state and need to be refreshed

periodically. To register its resource, the CoAP server sends a POST request to

48Chapter 6. Application Layer Protocols in Wireless Sensor Networks

Resource
Directory

register lookup

Endpoints

Client

Figure 6.2: Architecture of Resource Directory system.

”/.well-known/core” on the Resource Directory attaching a resource description as

in classic resource discovery. Resource Directory confirms the registration with a

unique identifier assigned to a resource that can be later used to update or delete

the entry.

A client willing to query a Resource Directory shall invoke a GET method on

”/rd-lookup”, which will return all entries stored in the directory. If a client wants

to retrieve only a part of the store resource, it can specify additional attributes to

refine its query. It is possible to specify the resource type, endpoint, domain, port

number etc. to get only the resources corresponding to our query.

6.2 Directed Diffusion

Directed Diffusion [74] was the first content-centric approach proposed for Wire-

less Sensor Networks that gained a lot of interest. Users can query the network using

interests expressed as a set of attributes: type=value pairs (3).

Algorithm 3 Directed Diffusion interest packet

type = vehicle //detect vehicle location

interval = 20ms //send events every 20ms

duration = 10s //for the next 10 second

rect = [-100, 100, 200, 400] //area

6.2. Directed Diffusion 49

Each line represents a desirable feature of the data. The interest presented in

Alg. 3 requests spotted vehicles in a given area (attribute rect), events shall be

generated every 20ms and the interest is valid for 10s. Every node in the network

can generate such an interest becoming a sink. An interest is then sent to node

neighbors that repeat the process of flooding the network. Each node stores received

interests associated with neighbors that have sent them. Each interest is ”soft-state”

and must be refreshed or otherwise it will be removed from the memory after some

duration. If a node has already a copy of a received interest in the memory, it only

updates the interval and duration fields. If a node can provide the data described

in an interest, it starts to produce data packets (cf. Alg. 4). Data packets contain

Algorithm 4 Directed Diffusion data packet

type = vehicle

instance = truck //instance of this type

location = [125, 220] //node location

intensity = 0.6 //signal amplitude measure

confidence = 0.85 //confidence in the match

timestamp = 01:20:40 //event generation time

the timestamp field allowing to take into account the most recent events. Events

are transmitted to every neighbor that has sent a corresponding interest. With

every node repeating the process the sink will eventually receive required data. In

such a scenario, nodes can receive multiple packets with the same data. A sink can

choose only one of its neighbors to deliver the data. It is done by sending the same

interest with a lower interval value to a chosen neighbor (cf. Fig.6.3). The process is

repeated by other nodes. Interests sent to other neighbors will eventually time out

creating a single path delivering the data to the sink. The preferred neighbor can

be chosen based on reliability, latency, or link quality depending on the application

requirements. A sink can continue to send ”exploring interests” to every neighbor

to detect new sources and respond to network dynamics.

Directed Diffusion allows to have many sources and sinks in the network and

provides a flexible way to express user queries. However, the network must be

flooded frequently to discover new sources and establish optimal paths, which makes

routing inefficient.

50Chapter 6. Application Layer Protocols in Wireless Sensor Networks

A
S

A
S

Lower interval

value interest

A
S

Figure 6.3: Reinforcing the best path. Sink S starts to receive the same data

from many neighbors. It then decides to reinforce only one path

to reduce the overhead. Without reinforcement, other paths time

out and S receives the data from only one neighbor.

6.3 Logical Neighborhoods

Logical Neighborhoods [12] is a programming abstraction for Wireless Sensor

Networks. The authors proposed a programming language called Spidey allowing

to query nodes that comes with a routing system. Similarly to Directed Diffusion,

each node declares its capacity using static and dynamic features. Each description

is based on a template as shown in Alg. 5. Each node advertises its description in

Algorithm 5 Description in Logical Neighborhoods

node template Device

static Function

static Type

static Location

dynamic Reading

dynamic Battery

create node ts from Device

Function as ”sensor”

Type as ”temperature”

Location as ”room1”

Reading as getTempReading()

Battery as getBatteryPower()

the network, which fills the routing tables. Sensors can be queried using sets called

neighborhoods. Just as the node descriptions, neighborhoods are created based on a

template and represent a set of nodes fulfilling all the requirements. While defining

6.3. Logical Neighborhoods 51

a neighborhood, we can use features defined by nodes brought together by logical

operators such as AND, OR, and NOT (cf. Alg. 6).

Algorithm 6 A sample LN query

neighborhood template HighTempSens (threshold)

with Function = ”sensor” and

Type = ”temperature” and

Reading > threshold

create neighborhood hts100

from HighTempSens(threshold : 100)

max hops 2

credits 30

Logical Neighborhoods propose a special routing system allowing Spidey to work

efficiently. As mentioned before, each node advertises its capabilities in special Pro-

fileAdv messages that contain a node description. Nodes receiving such a message

check whether they already have information about the advertised features. If not

or if the advertised cost is lower that the one present in the memory, the routing

tables are updated and the message is rebroadcasted. Fig. 6.1 presents a sample

routing table. Each entry contains:

• Id - identifying the entry

• Attribute,Value - an attribute and its value

• Cost - cost of reaching the closest node with an attribute

• Links - indicating with which other entries the given entry is connected. Such

a representation allows to reduce the memory usage. Instead of storing every

combination of attributes, we only store single features and connect them

using the Links field.

• DecPath - decreasing path. A neighbor advertising the smallest cost to reach

a given attribute.

• IncPaths - increasing paths. Neighbors advertising a higher cost to reach a

given attribute.

• Source - a node whose information has been inserted in the ProfileAdv mes-

sage.

52Chapter 6. Application Layer Protocols in Wireless Sensor Networks

Id Attribute Value Cost Links DecPath IncPaths Source

1 Function sensor 5 2, 3 N37 N98, N99 N8

2 Type acoustic 4 1,3 N37 N98, N99 N8

3 Location room123 3 1,2 N37 N98, N99 N8

Table 6.1: Logical Neighborhoods - an example of a Routing Table

While sending a packet, we need to specify a neighborhood using a set of at-

tributes and a number of credits that can be spent. A node checks whether such

combination of features is present in the routing table using Links fields. For each

packet, the cost of sending it through a descending path equals the highest attribute

cost defined in the neighborhood. For the routing table in Table 6.1, if we want to

contact ”acoustic sensors in room123”, the cost of sending the packet is 5, as it is

the highest cost from all attributes defined in the packet. A node can spend credits

defined during sending the packet on a descending path as described above or on

an exploring path. Following only descending paths leads to local minima and does

not ensure the delivery to the whole defined neighborhood. This is why nodes can

decide to use increasing paths spending an additional number of credits looking for

other regions fulfilling the requirements in the packet.

Logical Neighborhoods, just as Directed Diffusion, provides a flexible way to

define neighborhoods. However, a description in the text form is difficult to process

by routers and introduces high overhead. Moreover, Logical Neighborhoods does

not ensure delivering packets to all destinations and needs to be tuned with credits

parameter, for every single packet, which makes its use difficult.

6.4 CCN – Content-Centric Networking

Content-Centric Networking (CCN) [75] was one of the first mature proposals

of data-centric routing for the Internet. CCN focuses on data instead of commu-

nicating end-points. Users request a piece of data and do not care from which a

node will receive it. CCN uses a modified IP stack (cf. Fig. 6.4). The core element

of CCN is the ”Content chunks” layer responsible for naming and receiving chunks

of data. It implies less demands on layer 2 than IP layer, it can be thus used with

every MAC layer able to cooperate with IP networks. It can be also easily tunnelled

using IP, thus allowing an easy transition between those two systems.

The key elements of CCN are the Interest and Data. Each Data chunk has a

unique hierarchical name that can be used for identification. It is similar to the

URL system, where elements are separated with ”\” character. A typical CCN

6.4. CCN – Content-Centric Networking 53

Figure 6.4: CCN network stack in comparison with the IP stack.

name contains parts specifying a domain/publisher, the type of the content, but

also a timestamp, chunk, and version numbers (cf. Fig. 6.5). Such a system allows

to identify and request the newest version of a given web page, or a chunk of a video

file. It also allows to replace the sequence numbers present for example in TCP.

However, as CCN chunk names are global, they can be used by every peer in the

network significantly increasing the content sharing rate.

Content Name

Selector

Nonce

Content Name

Signature

Signed Info

Data

example.com/videos/film.mpg/_v<timestamp>/_s3

Figure 6.5: Interest and Data packet structure in CCN.

The CCN forwarding engine consists of three main components:

• Content Store (CN) – a cache storing Data packets. If another user requests

the same piece of data, the forwarding node consults its own CN and replies

with the stored version.

• Pending Interest Table (PIT) – keeps tracks of forwarded Interest packets.

54Chapter 6. Application Layer Protocols in Wireless Sensor Networks

Upon receiving an Interest, each node records it and maintains a list of inter-

faces from which the packet was received, creating a reverse path for incoming

data. Thus, when a Data packet is received, it can use this path to reach all

requesting nodes.

• Forwarding Information Base (FIB) – is an equivalent to a routing table in

the classical IP approach and is used to forward Interest packets. It maintains

the information about possible sources of the requested data. Unlike in the

classical IP routing table, a FIB routing entry can contain multiple outgoing

interfaces, through which we can send Interests in parallel.

To get the data, users send Interests with a description of the requested data.

A forwarding node uses its FIB to forward the packet and records it in its PIT. If

another user requests the same data, its interface is simply added to the PIT entry.

A node having the requested data sends a Data packet using the reverse path

created by the Interest. Data packets traversing the network consume the Interests

from the PIT and are stored in the CN. Eventually, all users requesting a given

chunk of data receive it, PITs are cleaned, and CNs caches the copy of the data

chunk.

Changing the paradigm from the end-point-oriented to the data-oriented also

changes the way of securing data. Instead of securing a connection as we do in the

classical IP networks, CCN secures the payload in messages, which is much easier

to process by intermediate nodes.

CCN was initially designed for classic wired networks. However, WSN due

to the type of exchanged data, can also benefit from such an approach. In its

original form, CCN requires too much resources to be directly deployed in WSN.

Several authors proposed multiple approaches adapting the protocol to the limited

capacities of motes [76] [77] [78].

CCN presents an interesting approach that significantly improves the perfor-

mance of sharing data. However, some current use cases of modern networks such

as accessing a distant server, still require an endpoint approach. Routing is not a

straightforward task either. Text-form chunk names with different sizes are much

more difficult to process than fixed-size IP addresses. Naming all generated data

also requires to exchange and store a large amount of control traffic that can limit

the overall performance of the network.

6.5 Summary

We have presented application layer protocols for Wireless Sensor Networks.

Most of the presented solutions, while providing a naming scheme for sensors, also

6.5. Summary 55

include a layer 3 routing protocol allowing to exchange packets. However, closely

coupled OSI/ISO layers limit the use of the proposed protocols in various scenarios.

CoAP, the de facto standard application layer protocol for WSN, introduces a very

inefficient approach with a central server storing all the information about motes in

the network.

Pure content-centric approach presented by CCN can be efficient while delivering

data to many recipients. However, it limits its use in many scenarios including using

actuators. Also, limited amount of mote resources and big volumes of generated

information, makes naming and caching data difficult.

Both Logical Neighborhoods and Directed Diffusion suffer from routing sys-

tems introducing a significant amount of unnecessary traffic. What is more, both

solutions are difficult to integrate into existing networks because of custom gram-

mars/naming schemes.

In the next part, we introduce an IPv6 compliant routing protocol allowing

for content-centric names without using any translation or naming service. The

further part proposes a geographic routing protocol with equal load share, no control

message overhead, and paths close to optimal ones.

Part III

Featurecast: a Group

Communication Service for

WSN

Chapter 7

Rationale

Wireless sensor networks need to support specific traffic patterns related to

sensor applications. One of their most important goals is to forward collected data

to one or several sinks. They also have to support downward traffic from a sink to

all or some sensor nodes. This traffic pattern results from the need for configuring

nodes, querying sensors, or transmitting commands to actuators. Sensor nodes

may require communication with other nodes, for instance for aggregating data or

collaborating on a common reaction to local events.

In addition to the standard unicast communication, many sensor network ap-

plications may benefit from multicasting to forward packets to a group of nodes or

report data to multiple sinks [79, 80, 81]. Multicasting results in a reduced number

of packets forwarded in the network, which in turn limits energy consumption—

compared to unicast, nodes transmit less packets when using multicast, because

packets are only replicated when needed.

Unicast and multicast are address-centric communication modes in which source

and destination addresses identify endpoint nodes. Such modes are suitable for

structured addresses that result in small routing tables. Data or content-centric

routing focuses on the packet content instead of communication endpoints. In the

context of sensor networks, Directed Diffusion was one of the first proposals for

sensor data dissemination based on this approach [74, 82]: sensor nodes attach at-

tributes (name-value pairs) to generated data, consumers specify interests for sensor

data in terms of attributes, and sensors send unicast data packets to consumers.

The data-centric paradigm is appealing for sensor networks, because it fits very

well their data-oriented nature, however the approach incurs significant overhead

by attaching attributes to data, which is prohibitive in energy constrained networks.

Directed Diffusion uses flooding to disseminate interests for sensor data, which is

inefficient in wireless networks. Moreover, it does not scale well in networks with

many sinks that transmit many different queries [83].

Logical Neighborhoods (LN) proposed a similar abstraction, but at the appli-

cation layer: a node declaratively specifies the characteristics of its neighbors in

terms of attributes and the cost of reaching them [12]. A template specifies the

attributes of a node. Nodes broadcast their attributes to neighbors that store the

60 Chapter 7. Rationale

information in a table and re-broadcast them if there is a change in the existing

state created by the advertisement. The propagation of advertisements creates a

state distributed over the nodes that contains the cost of reaching the closest node

with a given attribute. To find a node with an attribute, a node broadcasts an

application message containing the neighborhood template. The approach suffers

from significant overhead of transmitting attributes and templates. The overhead

in terms of the number of transmitted messages is also important compared to the

ideal multicast routing based on the minimum spanning tree rooted at the sender.

Finally, all solutions based on data-centric approach require a specific grammar

that may be difficult to process by sensors and significantly slows down the routing

process.

In this paper, we propose Featurecast, a network layer communication mode

well suited for sensor networks. One of our main design goals was to create a

system able to cooperate with already existing IPv6 networks. Unlike Directed

Diffusion, Featurecast is address-centric, but it uses a data-centric approach to

create addresses and operate routing: addresses correspond to a set of features

characterizing sensor nodes. Features are predicates, not attributes, which allows

us to represent them in a compact way in address fields of packets and in routing

tables.

Nodes disseminate Featurecast addresses in the network following a structure

usually constructed for routing standard unicast packets such as a Collection Tree

(CT) [84] or a DODAG (Destination Oriented Directed Acyclic Graph) [11]. Inter-

mediate nodes merge the features of nodes reachable on a given link and construct

a compact routing table for further packet forwarding. Based on the routing tables,

a packet can reach all nodes characterized by a given set of features. Our proposal

does not define any specific grammar for features, which makes it extremely flexible

and easy to use. We propose a specific compact encoding allowing for fitting a Fea-

turecast address into the standard multicast IPv6 address field. To the best of our

knowledge, Featurecast is the only protocol able to take advantage of a data-centric

approach in traditional IPv6 networks.

We have implemented Featurecast and the proposed scheme for routing in Con-

tiki OS [85] and integrated them within its uIPv6 (micro Internet Protocol) stack.

The implementation provides Featurecast at the network layer unlike other propos-

als that use application layer overlays. To evaluate Featurecast, we have simulated

in Cooja an application scenario developed for CoAP group communications [86]

with several sensors placed across buildings, wings, and rooms. We have compared

Featurecast with Logical Neighborhoods (LN) [12] and IP multicast with respect to

the memory footprint and message overhead. Featurecast results in a significantly

61

smaller memory footprint and a lower average number of messages for updating

routing tables compared to other schemes.

Chapter 8

Principles of Featurecast

We want to provide a new communication mode for wireless sensor networks to

designate relevant sensor nodes or data destinations by means of their characteristics

and not with some low level identifiers or node addresses. For instance, we may

want to get the“average temperature on the 1st floor”or“turn off all the lights in the

building”. Such reasoning is close to applications that take advantage of sensors and

actuators. Obviously, we could support such messages by associating a multicast

group with each query, however, the number of such groups may quickly become

too large, because of all possible combinations of characteristics.

We introduce below the notion of Featurecast addresses, present the construction

of routing tables, and the forwarding process.

8.1 Featurecast Addresses

We assume that each sensor defines a set of its features, for instance its capabil-

ity of sensing the environment (temperature, humidity), location (sector 5, 1st

floor), state (low-energy), or some other custom features (my favorite nodes).

Features are predicates, i.e., statements that may be true or false (in the previous

examples, we explicitly state features that are true). Predicates are commonly used

to represent the properties of objects and we use them here to represent the proper-

ties of sensors: if f is a predicate on sensor X, we say that f is a property of sensor

X. Note that features are not attributes (i.e., name:value pairs), which allows us

to represent them in a much more compact way without loosing any flexibility (cf.

8.1). We assume that there is no coordination in defining features, but all features

are known and each node can define its features at will.

A sensor node derives its Featurecast address from its features—more formally,

a node address is the set:

A = {f1, f2, ..., fn}, fi ∈ F , (8.1)

where fi is a feature predicate and F is the set of all possible features with car-

dinality of N . Features in the network may evolve in time and nodes may change

their features, for instance the location of a node may change when it moves or a

64 Chapter 8. Principles of Featurecast

sensor may define a state of high temperature when exceeding a given threshold.

Note that N , the total number of features in the network does not depend on the

number of nodes, but rather on applications that define node characteristics.

Figure 8.1: Creating a Featurecast address.

The destination address may contain a subset of features—we say that itmatches

a node address, if the node address contains the destination address:

D = {f1, f2, ..., fk}, fi ∈ F , D matches A, if D ⊂ A

For instance, a packet to temperature, 1st floor will match nodes defining both

temperature and 1st floor in their addresses. The conjunction seems the right

way of representing nodes of interest for most sensor network applications. In the

real world, somebody can describe an object with a set observed features. Such an

approach is thus a very natural way of designating objects.

We can consider the node address as a representative of all possible multicast

groups that would be created based on the node features to make it reachable for

any combination of features using the traditional multicast groups, which gives
�n

k=0C
k
n = 2n addresses for n features.

8.2. Constructing Routing Tables 65

Note that such an addressing schemes allows other useful communication pat-

terns, for example, a node addressing a packet using its own location can reach all

sensor in the same room/floor/building without creating any dedicated multicast

group.

8.2 Constructing Routing Tables

Forwarding packets based on Featurecast addresses requires the construction

of routing tables that contain the features reachable through a given neighbor.

To create routing tables, nodes can advertise features along an existing routing

structure for unicast such as a DODAG or a Collection Tree. However, in our

implementation, we have used our proper way of constructing a DODAG described

below (Featurecast can also operate along any protocol that creates such a structure,

e.g. RPL).

Figure 8.2: Multiple DODAGs deployed in the same network for better con-

nectivity.

8.2.1 Creating a routing structure.

Using only one routing structure may be inefficient, because two nodes on dif-

ferent branches need to communicate by passing through the root. We can alleviate

this problem by deploying multiple DODAGs or Collection Trees in the network

(cf. Figure 8.2). Each node stores the information about all DODAGs present in

the network, but to send a packet, it uses only one DODAG, the one with the root

66 Chapter 8. Principles of Featurecast

closest to the node. Multiple DODAGs deployed in the network result in nodes that

are close to any root, which improves communication efficiency.

We also propose to construct each DODAG in a way similar to RPL, but with a

modified metric that takes Featurecast into account. The root starts the DODAG

construction process by broadcasting route advertisements with the distance set to

0. Each node receiving such a message checks if it knows a node closer to the root. If

not, it sets the message sender as its preferred parent and rebroadcast the message

with a modified distance d that takes into account the similarity of nodes—a node

receiving a route advertisement from a neighbor compares a set of features with its

own adds the result to the advertised metric:

d = h− (|Fn ∩ Fs|)/(|Fn|+ 1), (8.2)

where h is the hop count (original metric of RPL OF0), Fn is the set of node

features, and Fs is the set of the sender features. Note that h+ 1 > d.

By grouping similar sensors, we decrease the overall cost of forwarding Fea-

turecast messages, because a packet addressed to a given group of nodes will be

duplicated less often. Moreover, nodes are much more likely to find a common an-

cestor thus reducing communication overhead (cf. 8.3). In the rest of the paper, we

will refer to this routing structure as the Featurecast DODAG.

 0

 50

 100

 150

 200

 250

 300

 350

 20 40 60 80 100 120 140 160 180 200 220 240

N
u
m

b
e
r

o
f

m
e
s
s
a
g
e
s

Number of nodes

Featurecast metric
Of0

Figure 8.3: Comparision of Of0 and Featurecast metric.

8.3. Forwarding 67

Node2: A B

Node1: A C

Node3: D E

Neighbor Features Neighbor Features

Node4

Node2: A B

Node1: A C

Node3: D E

Neighbor Features

1 AC

2 AB

Neighbor Features

Node4

Node2: A B

Node1: A C

Node3: D E

Neighbor Features

1 AC

2 AB

Neighbor Features

1 ABCDE

Node4

Figure 8.4: Routing tables.

8.2.2 Advertising Features

The process of advertising features starts at leaf nodes that send their features

to their preferred parent. Parents obtain the features from their children nodes,

add their own features, and forward the list of features reachable through them to

their own parent. The process continues up to the root of the DODAG. Finally,

the root node obtains the list of all features in the network and it can use it to

forward packets to relevant neighbors. The sink can also initialize the process in

the reverse direction by sending its features to children nodes, which speeds up

machine-to-machine communication.

When a node receives a feature already in its routing table, it does not forward

it to its neighbors and ignores subsequent advertisements, so most of the changes in

features will only result in localized transmissions, as shown in Section 10. Even if

a single node fails, other nodes may have defined the same feature and the routing

tables may remain valid.

The process is showed in Fig. 8.4. Nodes 1 and 2 advertise their features

to Node 3. It aggregates those entries, adds its own features and send an single

advertisement to Node 4, which creates only one entry in its routing table.

8.3 Forwarding

When nodes have created routing tables, they can send packets with the desti-

nation addresses containing set of features that intermediate nodes match against

the routing tables and forward to all neighbors having the matching entry. As a

result, the destination will receive a given packet if its address contains all features

in the destination address.

An example is shown in 8.5. Nodes 4 receives a packet addressed with features ”A

and B”. It consults its routing table and forward the packet to Node 3. Eventually,

the packet is delivered to Node 2, which is the only one defining both features

present in the address.

68 Chapter 8. Principles of Featurecast

Node2: A B

Node1: A C

Node3: D E

Neighbor Features

1 AC

2 AB

Neighbor Features

1 ABCDE

Node4

AB

Node2: A B

Node1: A C

Node3: D E

Neighbor Features

1 AC

2 AB

Neighbor Features

1 ABCDE

Node4

Figure 8.5: Forwarding packets.

8.4 Topology Maintenance

It is possible that some neighbors of a sensor node disconnect due to topology

changes, node failures, or battery depletion. For detecting disconnected peers and

maintain a valid topology, Featurecast relies on hello messages and RPL local and

global repair mechanisms. In case of neighbor disconnection, a node checks the set

of features advertised by other connected neighbors—if they provide all the features

advertised by the disconnected node, there is no need for an update. Otherwise, the

node informs its parent node about the absence of the features available through

the disconnected neighbor. The parent node will do the same with respect to its

neighbors and the process continues until the root node if necessary.

It is also possible to delay sending the advertisement about missing features

until the node receives a packet using them. A node changing its parent node or

changing its set of features, advertises the change as explained in Sect. 8.2.

Chapter 9

Compact Representation of

Features

We have followed several design guidelines for the compact representation. First,

we want an open network able to accept any feature defined on nodes. Second,

the addressing scheme should not depend on the number of features defined in

the network—we do not want to force the user to define a hierarchy of features.

Most of data-centric approaches use a grammar exchanged in a text form. Such an

approach is often a problem while integrating such solutions into real life scenarios.

We want our solution to still use user-friendly addresses, while being easily stored

and processed by nodes. We then need fixed-size addresses for efficient forwarding

and possibility to integrate Featurecast within the standard IPv6 addressing scheme

with 112 bits in the multicast IPv6 address. Such integration will show that a data-

centric approach may have the same overhead as address-centric solutions and lead

to easy integration with existing networks. A part of such an IPv6 address can

be used for a global prefix and routed in the Internet. Finally, we want to take

into account resource constraints (memory size) of sensor nodes for storing routing

tables.

We also want to avoid global synchronization mechanisms disseminating a map-

ping between features and their binary representation. Such a solution would result

in a significantly higher volume of communications and could delay packet forward-

ing during the feature update. For these reasons, we have decided to use hash

functions and a structure allowing to efficiently store many hashes—a Bloom filter.

9.1 Bloom Filters

A Bloom filter is a probabilistic structure allowing for efficient storage of a set

of elements. A typical filter contains an array of m bits. At the beginning all bits

are set to 0. There are k hash functions that map an element to a bit position in

the array. When inserting an element into a filter, we compute k hash functions on

the element and set all the resulting bits to 1. If a bit was already set to 1, we do

not change it. To check whether an element belongs to a set, we compute the same

70 Chapter 9. Compact Representation of Features

hash functions on the element and check if all corresponding bit positions are set

to 1. If not, we are sure that the element does not belong to the set.

False positives may occur in Bloom filters: it is possible that all bits correspond-

ing to the hash functions on a tested element are set to 1 by other stored elements,

even if the element does not belong to the set. The probability of false positives

depends on the number of stored elements n and the size of the filter (m and k):

p ≈ (1− e−km/n)k. (9.1)

To maintain the same false positive rate with a growing number of elements, we

need to increase the number of bits and hash functions, which results in larger

memory consumption and increased computational overhead.

9.2 Solution1: Straight Bloom Filters

The first possible solution is to use Bloom filters of the same size to represent

a set of features in the destination address and in the routing table entry for each

neighbor (cf. Fig. 9.1). To decide where to forward the packet, we only have to

verify if all bits set in the address are also set in the routing entry for a given

neighbor.

However, such a solution limits the number of possible features to store in the

routing tables.

If n is the number of elements in the filter (features in our case) and p is the

required probability of false positives, the minimum number of bits m for the filter

is m ≥ n log2(e) × log2(1/p). To achieve the probability of 2%, we need 5 bits

per feature. To fit 112 bits available in IPv6 address, we would be able to store

only 22 features with 2% of false positives, the value we consider as sufficient for

the packet destination address (as we store features for only one sensor or a group

of sensor), but insufficient for routing tables in which we would need to store all

features defined in the network in the worst case. Enhanced versions of the Bloom

filter such as Compressed Bloom Filters can only slightly reduce the size of the filter

while introducing some computational overhead [87].

9.3 Solution 2: Fixed Size Filter with Compression

We need a much bigger Bloom filter in the routing tables to be able to store

many features. A 1024 bit filter can store 128 elements with the probability of

false positives p128 ≈ 3%. However, we do not have 1024 bits available in the IPv6

address field. One way to use such big filters is to compress them. The filters in

9.3. Solution 2: Fixed Size Filter with Compression 71

00 01010001 01 10110101

Feature 2Feature 1

1 010100110

01 01101101

Routing Table

Node 1

Node 2

Node 3

Packet Address

Bloom Filter

Bloom Filter

Bloom Filter

Bloom Filter

Figure 9.1: Solution 1. Bloom Filters used both for the destination address

and the routing table.

the address contain only few features, so it is sparse in comparison with the one

present in the routing tables.

We have used Adaptive Arithmetic Coding, which allows to obtain a compression

rate close to the theoretic limits.

Fig. 9.2 presents the size of a compressed filter for different sizes of input filters.

This approach allows to compress a filter with 768 elements to fit it in 112 bits of

the IPv6 address field. In such a case, we cannot represent 128 elements, but only

77 with the probability of false positives of p77 ≈ 2%

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8 9 10

S
iz

e
 o

f
c
o
m

p
re

s
s
e
d
 fi

lt
e
r

[b
]

Labels in address

Filter size = 256
Filter size = 512
Filter size = 768

Filter size = 1024

Figure 9.2: Solution 2. Output size of compressed filters with the different

number of features.

To store a 1024 bits filter, we need more than 120 bits in the address field, which

exceeds our requirements.

72 Chapter 9. Compact Representation of Features

1

104

5

00 10110111

Feature 2

Feature 1

0 111101011

01 01101101

Routing Table

Node 1

Node 2

Node 3

Packet Address

Bloom Filter

Bloom Filter

Bloom Filter

Features
coded

separately as
positions in
Bloom Filter

Figure 9.3: Solution 3. Bloom Filters in the destination address and a list of

elements in the routing table.

Routing Table

2 600 01010001

Feature 2Feature 1

Packet Address

Bloom Filter 9 10

1 5

2 7

3 4

Node 1 Node 3

Node 2

Node 3

Node 1

Node 2

Node 2 Node 3

Node 3

Features coded
separately as
positions in
Bloom Filter

Figure 9.4: Solution 4. Bloom Filters in the destination address and a list of

hashed elements in the routing table.

9.4. Solution 3: Position List in the Address, Filter in the Routing
Tables 73

9.4 Solution 3: Position List in the Address, Filter in

the Routing Tables

To support a larger amount of elements in the routing tables, we propose to use

a Bloom Filter of the size allowing to store all elements with a low false positives

rate. As such a filter has a large size, we cannot store it in the address field in the

same way. An element put in the filter sets k bits to 1, where k is the number of

hash functions.

We can thus represent the position of each bit in the address field instead of

using a Bloom Filter (cf. Figure 9.3). Knowing the position of bits set to 1, we can

compare it with the corresponding bits in the Bloom Filter present in the routing

table. The size of each represented element depends on the size of the Bloom Filter

and the number of hash functions s = k log2(m). For a Bloom Filter with 1024 bits

et 2 hash functions, s = 20, so we can represent up to 5 features in 112 bits of the

header.

9.5 Solution 4: Bloom Filter in Addresses and a Bit

Position List in the Routing Table

We describe here the proposed compact representation of features that satis-

fies our requirements: being able to represent around 10 features in a destination

address limited to 112 bits with a small false positive probability and potentially

representing all features in the network in the routing tables with a small memory

footprint.

The proposed solution consists of using a different feature representation in the

routing tables: nodes represent a single feature in the routing table as the positions

of bits set in the Bloom filter. For example, we represent a feature that sets bits on

positions 5 and 76 in the Bloom Filter with the two numbers in the routing table

(cf. Figure 9.4). Nodes use a Bloom filter in the address field as described above.

The probability of two different features having the same representation in the

routing table is: pN = N/mk, where N is the number of features in the network

and m is the size of the Bloom filter in bits. The size of each represented feature

in an address depends on the Bloom filter size and the number of hash functions:

s = k log2(m).

Taking into account Eq. 9.1, this solution allows supporting 200 different fea-

tures in the routing table with the probability of false positives less than 2%, which

satisfies our requirements. As we want to use a 112 bit long Bloom filter and 2 hash

functions, we only need 2 bytes to store a feature in the routing table, which results

74 Chapter 9. Compact Representation of Features

Table 9.1: Comparison of all solutions. m = number of elements in the ad-

dress, n = number of elements in the routing table.

Sol. 1 Sol. 2 Sol. 3 Sol. 4

Max items in the address 10 10 5 10

Bits/item in the address 10 10 18 10

Max items in the table 10 102 102 unlimited

Bits/item in the table 10 10 10 12

Computational complexity O(1) O(1) O(m) O(n)

in the routing table of only 400 bytes for 200 features.

9.6 Comparison of Solutions

Table 9.1 presents a comparison of solutions described above. All variants

achieve similar results in terms of storing items in the address. Solution 3 per-

forms worse supporting only 5 features and requiring 18 bits to store one of them.

The main difference is visible while comparing the number of possible items in the

routing table. Solution 4 outperforms all the other solutions with unlimited number

of features and only slightly higher memory usage per entry. A possibility to deploy

any number of features in the network is crucial in our design. It allows to support

various scenarios and shape the naming scheme to make the communication as effi-

cient as possible. However, this advantage comes with an increased computational

complexity (O(n)) discussed below. We introduced Solution 4 into Featurecast and

used this method in all further simulations.

9.7 Computational Overhead.

Our representation of the routing tables requires iterating through all present

features to forward a packet, which makes the operation limited by O(n), where

n is the number of features. However, with n features, we are able to construct

g = 2n groups, which means that in a well constructed system, the computational

complexity in terms of the number of groups g is O(log(g)). As nodes already store

features in a hashed form, each comparison only requires few bitwise operations

to check the corresponding bit in the source address Bloom filter, which does not

introduce a significant computational overhead, especially by contrast with text

comparisons used in many data centric solutions.

To further speed up the forwarding process, we have developed several opti-

mization techniques. First of all, we do not have to iterate through features present

9.8. Routing Entry Aggregation. 75

at every neighbor. This modification significantly reduces the overhead especially

at nodes close to the root, which have many such features. Second, we start the

forwarding process from features being present at only one neighbor. If any of them

is present in the source address, we just need to check if this neighbor defines all

required features without iterating through the whole table.

9.8 Routing Entry Aggregation.

As Featurecast may operate over multiple DODAGs, we aggregate the same

routing entries from multiple DODAGs: for features defined on the same set of

neighbors in different DODAGs, we only keep a single entry, which results in a

reduced amount of memory without introducing any computational overhead during

forwarding.

Chapter 10

Implementation and Evaluation

We have implemented Featurecast in Contiki OS (ver. 2.6) [85]. For performance

evaluation, we have run simulations in Cooja, a simulator that emulates both the

software and hardware of sensor nodes. As an execution platform, we have used

Sky Motes with CC2420 2.4 GHz radio and ContikiMAC at Layer 2.

Contiki supports the RPL routing protocol to build a DODAG that takes into

account the distance to the sink in terms of the number of hops, the metric defined

by Objective Function Zero (OF0). We have modified the metric for constructing

the Featurecast DODAG to reflect similarity of stored features (cf. Sect. 8.2).

10.1 Evaluation Setup

We have compared Featurecast with Logical Neighborhoods (LN) [12], which

proposes a similar abstraction, but at the application layer, and the traditional IP

Multicast as it is the recommended solution for group communications in WSN

[86]. We have set the parameters of LN (exploration parameter E and the number

of credits) to the values used in the LN evaluation [12]. Note that LN does not

guarantee packet delivery for a small amount of credits, so we have used the LN

recommended values [12].

As there is no implementation of any multicast routing protocol in Contiki (ver.

2.6), we have implemented a simple routing protocol in which nodes willing to join

a multicast group just send a message towards their parents in the RPL DODAG

using UDP. Each sensor, after receiving the message, waits for an advertisement

from its children, adds its own advertisement, and sends it up through the DODAG.

We use the number of control messages exchanged for maintaining Featurecast or

multicast routing as the main comparison index. They directly influence the energy

consumption of nodes and the network lifetime.

10.2 Scenarios

We consider two scenarios: i) the building control application developed for

CoAP group communication [86] and ii) a random topology of nodes with random

features.

78 Chapter 10. Implementation and Evaluation

10.2.1 Building Control

The building control scenario uses a deployment scheme in which sensor nodes

are placed in several buildings across multiple floors, wings, and rooms. The scenario

considers sensor nodes of multiple types (e.g. measuring temperature, humidity,

luminosity, etc.). CoAP clients communicate with sensor nodes by means of URLs

with a hierarchical structure that encodes the node location and its capabilities using

the following format: node_type.room.wing.floor.building. If qi is a number of

elements on each level, then to be able to access any set of nodes, we need to define

a label for each feature at each level (u being the number of levels in the URL):
�u

i=1 qi.

We need the same amount of features for LN expressed in the form of attributes.

If we use IP multicast in the same scenario, we have to define a multicast group

for each combination, which results in
�u

i=1 qi. If we want to use the URLs that do

not contain all the defined levels (e.g. bldg1.all_nodes), the number of multicast

groups is even higher:
�u

i=1(qi + 1).

10.2.2 Random Topology

In the second scenario, we evaluate communication performance in a random

topology. Each node chooses its address as a set of 10 random features. After

establishing the routing infrastructure, we choose a random node to send a packet

to a randomly chosen group. We vary the network size from 50 to 500 nodes and

average the results from 100 different runs. A UDP packet with 100B payload is

generated every 30s.

10.3 Results: Memory Footprint in the Building Con-

trol Scenario

First, we perform our evaluation in the building control scenario with 128 sensor

nodes across 2 buildings (Building 1 and 2), 2 floors in each building (Floor 1 and

2), 2 wings (East, West), 4 rooms in each wing (Room 1 to 4), and 2 sensor types

(light, temperature). We place 2 temperature and 2 light sensors in each room.

We place nodes at regular intervals on a 16x8 matrix and assign the right features

simulating the given scenario. Featurecast and LN require 12 features or attributes

to in this scenario, while with IP multicast, we need 405 groups. We place the sink

in the center of the network. We also evaluate Featurecast with 2 and 3 DODAGs

(Featurecast2 and Featurecast3 respectively).

We can note that in this scenario, Featurecast is extremely scalable. If we want

to connect another building with a similar infrastructure, we need to add only one

10.4. Results: Message Overhead in the Building Control Scenario 79

new feature (e.g. Building 3), while with IP multicast, we need to add 135 new

groups. LN maintains associations between attributes, so with every new added

attribute, the amount of memory per item increases. Figure 10.1 presents the

routing table memory usage for Featurecast and LN. We reduce x axis to 30 new

features for better readability.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30

M
e
m

o
ry

 u
s
a
g
e
 [

k
B

]

Features added

Featurecast
Featurecast 2
Featurecast 3

LN

Figure 10.1: Memory usage for Featurecast

(1, 2, 3 DODAGs) and LN.

We also omit the results for IP Multicast: because of an extremely large number

of the required groups and high memory usage per address, IP Multicast needs

6480B (over 67 times more then Featurecast) with only 12 unique features.

Then, we add features at each level of the hierarchy defined in the scenario

[86] (one building, one floor etc.). Featurecast performs more then 5 times better

(96B vs. 544B) than in our original scenario. Each new item in LN adds some new

information to all existing entries, which requires much larger amount of memory per

item. With 100 new features added to the network, Featurecast requires more then

26 times less memory (654B vs 17044B). Note that even the topologies with multiple

DODAGs (Featurecast 2, Featurecast 3) consume much less memory than LN due

to entry aggregation (1064B and 1323B, respectively, for 100 added features).

10.4 Results: Message Overhead in the Building Con-

trol Scenario

To establish the forwarding topology and guarantee connectivity, Featurecast

needed to exchange only 248 messages per DODAG. In comparison, IP Multicast

used 4992 messages to construct a DODAG for each multicast group. LN requires

226 messages, which is slightly better then Featurecast. However, the LN mes-

80 Chapter 10. Implementation and Evaluation

sages are on the average 5 times bigger than the ones of Featurecast, so even for 3

DODAGs, our system requires 2 times less bandwidth.

To evaluate routing performance after constructing the forwarding structure, we

consider two cases: i) the sink sends packets to a given group of sensors, ii) a node

communicates with another node.

 0

 20

 40

 60

 80

 100

 120

 140

 160

ty
p
e

ro
o
m

flo
o
r

w
in

g

b
ld

g

s
e
t_

1

s
e
t_

2

s
e
t_

3

R
e
la

y
e
d
 m

e
s
s
a
g
e
s Multicast

Featurecast
Featurecast3

LN

Figure 10.2: Number of relayed messages needed by the sink to access all

nodes in a given group.

Figure 10.2 presents the results of the first case: the average number of relayed

messages (how many times intermediate nodes forward a message before it reaches

the destination). We also present the results for 3 different sets of features: Set1

(type, floor), Set2 (building, wing, floor), and Set3 (building, wing, floor, room,

type). IP Multicast creates a minimal spanning tree for each destination group,

which gives a bound for this type of traffic. Featurecast only creates one common

Featurecast DODAG for all possible groups, but performs only slightly worse. The

version with 3 DODAGs achieves almost the same performance as the optimal

solution. LN requires however much more messages on the average to reach all

destination nodes. It explores routes not present in the routing tables trying to

quit local minima, which introduces an additional overhead.

Figure 10.3 shows the results of the second case (node-to-node communication).

Multicast IP exhibits the best performance that sets a theoretical bound. We can

observe that Featurecast also requires a small number of messages. The Featurecast

DODAG connects similar nodes thus allowing to find a common nearby ancestor.

Introducing additional DODAGs decreases the gap even more. A LN node is never

sure if a minimum is local or global, so even after reaching all target nodes, it

performs a search of external paths thus increasing the number of messages.

10.4. Results: Message Overhead in the Building Control Scenario 81

 0

 20

 40

 60

 80

 100

 120

 140

 160

ty
p
e

ro
o
m

flo
o
r

w
in

g

b
ld

g

s
e
t_

1

s
e
t_

2

s
e
t_

3

R
e
la

y
e
d
 m

e
s
s
a
g
e
s Multicast

Featurecast
Featurecast3

LN

Figure 10.3: Number of relayed messages needed by a member node to access

all nodes in a given group.

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 1
0

0
0

 1
2

0
0

 1
4

0
0

 1
6

0
0

 1
8

0
0

 2
0

0
0

C
u
rr

e
n
t[

m
A

]

Time[s]

Featurecast no traffic
Featurecast3 no traffic

Featurecast3
LN no traffic
Featurecast

LN

Figure 10.4: Energy consumption, with and without traffic.

To evaluate the cost of maintaining routing tables, we progressively disconnect

random nodes from the network and compare the performance of Featurecast, IP

Multicast, and LN. A LN node broadcasts a complete node description every 15s.

However, if the underlying MAC layer is duty cycled such as ContikiMAC, the node

needs to transmit each broadcast message separately to all neighbors (or it may use

ContikiMAC broadcast, but it requires sending a frame during the whole check

interval, which consumes a lot of energy). In both Featurecast and IP Multicast,

we rely on small hello messages to check the connectivity between neighbors and

send the required route update only if it is necessary. IP Multicast and Featurecast

try to repair the topology only when detecting a neighbor failure. Without any

topology changes, LN sends a constant amount of 507 messages every 15s with the

82 Chapter 10. Implementation and Evaluation

Discon- FC FC 3 Mcast LN

nected

type 3 4 240 4

room 6 7 672 6

wing 18 18 1239 19

floor 12 15 2991 14

building 13 13 2721 13

Table 10.1: Topology maintenance cost for different set of disconnected nodes.

average size of 106B. Our implementation of IP Multicast and Featurecast sends on

the average 384 hello messages of 4B each. The lower number of messages results

from maintaining connectivity only with neighbors in the DODAG. In total, LN

transfers 53742B while Featurecast and IP Multicast only 1536B, which is more

than 34 times less.

To analyze the behaviour of all solutions in a dynamic configuration, we shut

down a single node placed further from the sink, then 2 nodes of the same type in

the same room, a group of nodes in one room, all nodes in a wing, all nodes on a

floor, and finally all nodes in a building. Table 10.1 presents the average number of

additional messages needed to update the routing tables. When disconnecting single

nodes, all approaches do not send any messages, because there is another node be-

longing to the same group that allows maintaining the DODAG. Disconnecting both

nodes of a given type in a room only causes a small number of message exchanges in

both Featurecast and LN, as there are other nodes defining the same features in the

neighborhood. In IP Multicast, disconnecting the same nodes causes changes in sev-

eral multicast groups (bldg1.floor1.west.room4.temp, bldg1.floor1.west.room4.*,

bldg1.floor1.west.*.temperature, etc.), and some part of this information needs

to be transmitted to the sink causing a lot of traffic. Disconnecting a larger number

of nodes causes more multicast group deletions and more control traffic. Shutting

down the whole floor or building deletes a lot of multicast groups, but nodes re-

sponsible for sending the updates are directly connected to the sink, which lowers

the number of exchanged messages.

In all cases, IP Multicast results in a large amount of control traffic due to a

much larger number of groups and no group aggregation, which makes it unsuitable

for implementation in sensor networks. Featurecast and LN send a much smaller

number of messages in all considered scenarios. However, Featurecast messages are

on the average 5 times smaller due to the compact feature representation.

10.5. Results: Random Topology Scenario 83

10.5 Results: Random Topology Scenario

We have evaluated communication performance in the random topology sce-

nario. Figure 10.5 presents the number of relayed messages. Featurecast with a

common DODAG has almost the same performance as LN.

 1000

 2000

 3000

 4000

 5000

 6000

 50 100 150 200 250 300 350 400 450 500

R
e
la

y
e
d
 m

e
s
s
a
g
e
s

Network size

Featurecast 3
Featurecast 2

Featurecast
LN

Figure 10.5: Number of relayed messages for random communications.

We have also tested Featurecast over 2 and 3 DODAGs in the network. To send

packets, a node uses a DODAG with the closest root. Both cases with 2 and 3

DODAGs, significantly outperform other approaches.

 30

 40

 50

 60

 70

 80

 50 100 150 200 250 300 350 400 450 500

N
o
d
e
s
 i
n
v
o
lv

e
d
 [

%
]

Network size

Featurecast 3
Featurecast 2

Featurecast
LN

Figure 10.6: Number of nodes involved in the communication process.

We have also evaluated the number of nodes involved in communication in the

random topology scenario (cf. Figure 10.6). We consider a node involved in com-

munication if it receives or sends a message at the MAC layer. We can observe that

84 Chapter 10. Implementation and Evaluation

Featurecast with only one DODAG performs better than LN for a small number

of nodes and involves the same number of nodes in larger networks. However, Fea-

turecast with 2 or 3 DODAGs performs significantly better for all tested network

sizes. Note that such a scenario is equivalent to having many sinks in the network.

The results show that we do not need one DODAG per sink and several sinks can

share one DODAG with only slight drop of performance.

Fig. 10.4 presents energy consumption measured every 60s using PowerTrace.

Featurecast consumes significantly less energy, due to smaller messages and main-

taining communication only with neighbors in the DODAGs and not with all nodes

in the radio range. Note that Featurecast does not send hello messages separately

for each DODAG, but only once for each neighbor present in any deployed DODAG.

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30 35 40

D
e
li
v
e
ry

 r
a
te

 [
%

]

Packet Loss [%]

Multicast
Featurecast

Featurecast3
LN

Figure 10.7: Delivery rate for different packet loss rates.

To evaluate protocol robustness, we have measured the packet delivery rate for

different packet loss rates in a network with 300 nodes. We have performed 1000

random transmissions for each rate. Figure 10.7 presents the results: with small

packet loss rates, the MAC layer can retransmit packets if necessary, so almost all

protocols are close to 100% delivery rate. LN even without packet loss cannot find all

destination nodes because of the limited number of credits. Featurecast constructs

slightly longer paths and performs slightly worse than the optimal solution, however

during the tests with 3 DODAGs, the difference is less than 1%. For packet loss

rates greater than 15%, the performance of all protocols significantly decreases.

Table. 10.2 summarizes all results.

10.5. Results: Random Topology Scenario 85

Aspect Featurecast Featurecast-3 LN Multicast

Memory 1x (96B) 2.15x (206B) 5.67x

(544B)

67.5x

(6480B)

(12 features)

Memory 1x (654B) 2.02x (1323B) 26.06x

(17KB)

1711156x

(111MB)

(100 features)

sink→nodes 1x (345) 1x (345) 1.99x (687) 0.96x (331)

node→node 1x (367) 0.86x (316) 1.58x (579) 0.82 (299)

hello (msgs) 1x (384) 1.1x (422) 1.32x (507) 1x (384)

hello (B) 1x (1536B) 1.1x (1688B) 34.99x

(53742B)

1x (1536B)

after disconnection 1x (52) 1.56x 81 1.08x 56 151.21x

(7863)

(msgs)

after disconnection 1x (624B) 1.56x (972B) 5.41x

(3374B)

252x

(157KB)

(B)

energy, no traffic 1x

(15.1mA)

1.05x

(15.9mA)

1.2x

(18.2mA)

—

energy, with traffic 1x

(19.9mA)

1.04x

(20.7mA)

1.27x

(25.3mA)

—

random (msgs) 1x (23557) 0.67x (15668) 1.11x

(26227)

—

random (nodes) 1x (401) 0.59x 235 1.17x 468 —

Table 10.2: Summary of results: the gain of Featurecast compared to other

solutions.

86 Chapter 10. Implementation and Evaluation

10.6 Discussion of Packet Drops Due to Inexistent Ad-

dresses

Finally, we have investigated packet drops due to non-existent conjunction of

features. The drops result from the aggregation of features in routing tables and

not keeping more information about their compositions. If Sa is a set of features in

an address, Si
t a set of features in the routing table for neighbor i, and Sn a set of

features defined by a node, the packet drop occurs when:Sa ⊂ Si
t ∧ �Sn, Sa ⊂ Sn.

In our scenario, the packet drop may occur if an address contains a combination

of features that are not defined by any node, for example Building 1 and Build-

ing 2. In this case, the packet can be routed through nodes that may have both

features available through the same neighbor. Eventually, it will be dropped by a

sensor node that routes packets to this group through different nodes. Creating an

invalid address with the location feature usually will not cause a lot of unnecessary

traffic, however putting for instance only temperature and light into an address

will cause global network flooding even if there is no node defining both features.

To alleviate this problem, a packet drop may be signaled by an ICMP packet,

so that the user can avoid sending packets with the address in the future. An-

other problem arises if there are nodes defining for instance both temperature and

light, but the rest of nodes defines only one of them. In such a case, a new fea-

ture temperature_light shall be defined allowing to efficiently query both types

of nodes. However, the problem heavily depends on applications and will not occur

in a well configured network (as indicated above).

Chapter 11

Conclusion

We presented Featurecast, a group communication protocol for Wireless Sensor

Networks. Unlike CCN [75], Featurecast is end-point centric, but creates addresses

using a content-centric approach. Nodes are named using a set of their features,

which can describe node location (”room1”), capacity (”temperature sensor”), state

(”low energy”) or any other characteristic. Name translation is based on hashing.

Such an approach eliminates the need for a translation service and allows to easily

add/delete features, both being costly in networks using CoAP.

While providing a group communication scheme, Featurecast remains fully com-

pliant with classic IPv6 networks, making it easy to deploy. It only requires a

designated range of addresses indicated by a 16-bit prefix. This feature makes

our approach different from multiple group communication protocols [74] [12] un-

able to fit into an existing infrastructure or requiring costly tunnelling. Bringing

human-friendly names into IPv6 networks was possible thanks to an innovative use

of modified Bloom Filters, which, to the best of our knowledge, was never used like

this before.

Featurecast creates a routing structure based on RPL DODAG. Protocols using

a some kind of distribution trees usually suffer from costly communication in M2M

communication scenarios. In our solution, we keep the node description in its

address. It allows us to use new metrics connecting similar nodes in the network

and thus making direct node communication more efficient.

Routing tables only store the sets of available features without their combina-

tions. Such an approach reduces memory usage and control message overhead. Our

simulations show that our protocol outperforms similar approaches, such as Logical

Neighborhoods, in terms of almost all tested metrics.

Part IV

WEAVE: Efficient Geographical

Routing in Large-Scale

Networks

Chapter 12

Rationale

We consider routing in large-scale networks that forward traffic in a multi-hop

way and exhibit dynamic behavior—links may go up and down, nodes may join and

leave the network. Good examples are wireless ad hoc, mesh, and sensor networks.

The last type of wireless networks is becoming increasingly important for cyber

physical systems and the future Internet of Things. Such networks significantly dif-

fer from the multi-hierarchical organization of the current Internet: their structure

is flat, they may include a large number of nodes having constrained processing

power and connectivity, and links between them may have similar characteristics.

In many cases, the knowledge of their location is important and nodes may be

placed in a 3D space of the real world.

Traditional MANET routing protocols that rely on topology or route discovery

such as OLSR, AODV, DSDV, DSR [88, 89, 90, 91], be they reactive or proactive, do

not properly work in this context; due to the lack of hierarchy, the routing protocols

need to disseminate a lot of topology information or route discovery requests and

host routes managed by the protocols resulting in large routing tables.

In such large-scale dynamic networks, geographical routing appears as an in-

teresting alternative approach. Instead of disseminating topology information and

computing state information stored in nodes to support routing, nodes are addressed

using their geographic coordinates. This approach becomes particularly attractive

for devices that come with GPS. In the absence of GPS, the location information

can be obtained from relative or virtual positioning based on estimation of the sig-

nal strength. When nodes know their geographic locations, it is straightforward to

route packets using greedy forwarding simply by locally computing distances: a node

forwards an incoming packet to the neighbor closest to the final destination [92, 93].

Greedy forwarding is simple, it does not require any topology information nor

routing tables, but it only works in networks with sufficient density without cover-

age defects such as voids or obstacles. Otherwise, a concave node that has no further

neighbors closer to the destination has to drop packets [56, 57]. To improve packet

delivery ratio, most geographical forwarding protocols proceed in two phases: they

use greedy forwarding until a packet is stuck in a concave node and then try to

go around a void or an obstacle. This approach may result in not optimal routes,

92 Chapter 12. Rationale

because forwarding may start in a wrong direction and then is forced to make a

detour. The first solution to guarantee stateless packet delivery in two dimensions

(2D) under some assumptions was face routing : GFG (Greedy-Face-Greedy) [58]

and GPSR [59]. Nodes do not maintain any non local information to successfully

forward packets from sources to destinations. Figure 12.1 illustrates how the com-

bination of greedy routing and face routing may result in routes far from optimal.

�

�

�����������������

������������

���������������������

����

��������������������

������������

�� ��

Figure 12.1: Geographical forwarding

Face routing requires the construction of a planar graph (a graph with no cross-

ing edges), which is difficult in real wireless environments and may result in sub-

optimal routes [60]. Stateless face routing protocols operate under heavy unrealistic

assumptions, hence they do not work in real networks and a graph planarization

process like installing some state information in CLDP [61] is required—CLDP

maintains small portions of information at each node.

Another research issue was the extension of 2D protocols to 3D spaces. Zhou et

al. extended the previous 2D geographical protocols (CLDP/GPSR and GDSTR)

to the 3D case [64]. GDSTR-3D favorably compares with other protocols that may

operate in 3D spaces such as CLDP/GPSR, GDSTR, AODV, VRR [94], and S4

[95] from the point of view of the performance, route stretch, and memory usage.

In this part, we propose WEAVE, a geographical protocol that composes rout-

ing information out of segments of routes obtained from observing the traces of

incoming packets. Our proposal builds on several approaches that take advantage

of intermediate nodes or locations: Intermediate Node Forwarding [96], Anchored

Geodesic Packet Forwarding [97], Landmark Guided Forwarding (LGF) [98], or Bi-

nary Waypoint [99]. Unlike Binary Waypoint [99], it does not require unbounded

packet traces nor source routing. Unlike many variants of face routing, it is suitable

for routing in 3D networks.

The idea of WEAVE is to learn and maintain routes to a small number of

nodes called waypoints and use them to forward packets to any destination. By

93

observing partial traces (a few last hops) of incoming packets, a node learns routes

to waypoints. As each node forwards a packet through a sequence of waypoints

approaching the destination, it finally reaches its destination. The volume of routing

information in any node remains very small compared to the size of the whole

network, because the number of waypoints grows as O(logN) with the network

size.

In the initial phase of operation, nodes without waypoint information forward

packets with greedy routing or its variants (GFG, GPSR, etc.) while taking ad-

vantage of partial traces in received packets to find waypoints. Each intermediate

router on the route to a waypoint tries to optimize the path by forwarding a packet

to its waypoint, which may be closer to the destination.

Unlike other protocols, WEAVE does not maintain any routing structure such

as a distribution tree [64] or beacon nodes [95], which results in lower memory re-

quirements. Moreover, the protocol is easily implementable, because it only requires

a constant size of information per packet so for instance IPv6 header extension can

support its implementation.

WEAVE does not require any strong assumptions on the underlying network

graph such as the unit disk or a planar graph. It relies on the assumption of

symmetrical links (if a node receives a packet on a route, this means that it can

send a packet in the reverse direction). However, we can easily meet this constraint

in the real networks by carefully choosing the neighbors of a node to benefit from

symmetrical links.

We compare WEAVE with greedy routing and GDSTR-3D [64] through sim-

ulations for various network sizes and through measurements on a sensor network

testbed. WEAVE achieves high packet delivery ratios along with a low route stretch.

The rest of the chapter is organized as follows. We introduce the principles of

WEAVE illustrated with some examples (Section 13). Section 13.12 shows some

properties of the proposed protocol and Section 14 evaluates its performance in

large-scale dynamic networks. Then, we present some conclusions (Section 15).

Chapter 13

Principles of the WEAVE

Protocol

This section starts with a high-level overview of the protocol and corresponding

subsections provide more details.

13.1 Protocol Overview

We adopt usual assumptions in geographical routing protocols: we assume that

nodes know their coordinates and can exchange packets with some neighbors. How-

ever, unlike previous approaches such as face routing, we do not require any Unit

Disk assumptions nor other properties of the underlying network graph (e.g. Planar

Graph). The only requirement concerns the knowledge of neighboring nodes with

whom a node has symmetrical links. The discovery of neighbors and symmetrical

links of good quality depends on an underlying metric at the link layer that can be

based on well studied approaches such as ETX [100]. The issue of the most suitable

metric for constructing a symmetric neighborhood is out of the scope of this work.

For simplicity, we present the routing protocol principles for the simpler 2D

case, however generalization to 3D is straightforward. Thus, we assume that each

node lies inside a finite square address space:

A = [xmin, xmax]× [ymin, ymax] (13.1)

and knows its geographical position an = (xn, yn), a pair of coordinates such that

xmin ≤ xn ≤ xmax and ymin ≤ yn ≤ ymax. In the rest of the paper, we denote a

node by its address an.

As shown in Figure 13.1, each node an builds a partition of the address space,

resulting in disjoint subsets Pj
n called regions. Farther regions are bigger. Nodes

maintain the information about one or several waypoints per region. A waypoint

will serve as an intermediary node to reach destination ad in a given region. Nodes

choose regions and waypoints independently so they may be different for each node

in the network.

96 Chapter 13. Principles of the WEAVE Protocol

�a
w�
�����������

�a
c
�����������

���������������a���a���a��
���������

������������ �������������

�

a
w�
�����������

a
w�
�����������

�����a
n

���������
�����������������a

d

�����������

�������������

�����������������������a
n

�a
waypoint

�����������
�a

checkpoint
�����������

���������������a���a���a��
����

��������������

� 00

n � 1
n

� 1
n

� 2
n � 2

n

� 3
n

� 01

n

� 02

n
� 03

n

a
n

a
da

w� a
w�

� 03
n

a
c

Figure 13.1: Principles of WEAVE

At the beginning, routing tables are empty and nodes forward packets using

greedy forwarding. Every packet keeps a trace of hl last hops (cf. routing header in

Figure 13.1). A node receiving the packet can take its source node as the waypoint

for the region of the source node and record its partial route in the routing entry

for the region.

Waypoints stored in the routing tables can then be used to forward traffic. Each

node sending a packet checks whether it has a waypoint in the same region as the

destination. In such a case, it stores the waypoint with its partial route in the

packet header. The packet will be then forwarded using the partial route. Each

intermediary node can update the partial route or change the waypoint if it has

a better one. For instance, node an in Figure 13.1 sends a packet to destination

ad lying in region P1
n by using waypoint aw1

and the routing information about

partial route a1, a2, a3 towards aw1
. Then, the packet follows the partial route and

each intermediary node can refresh or improve the waypoint or the partial route,

so the packet gets closer to the destination. A node uses greedy routing as a fall-

back when it does not have the information on a waypoint and a partial route.

To improve efficiency in large-scale networks, we introduce checkpoints that act

as “bread crumbs”. Checkpoints are chosen among nodes that lie on the border

between different regions.

The subsections below present the details of the protocol: WEAVE packet struc-

ture (Section 13.2), the principles of packet forwarding (Section 13.3), learning

routes from traffic (Section 13.4), the address space partitioning scheme used to

create a set of regions for every node (Section 13.5), the collection of waypoints and

the construction of routing tables (Section 13.6), the optimized forwarding (Sec-

13.2. Packet Structure 97

tion 13.7), checkpoint creation (Section 13.8), path exploration and backtracking

(Section 13.9).

13.2 Packet Structure

TThe header of WEAVE packets contains the source node, a partial route (used

for forwarding) and a partial trace of the last hl hops (used for learning routes)

(cf. Fig. 13.2). An intermediate node that forwards a packet can use the partial

trace to fill its routing table. It fills the partial route with the information from the

routing table if available. When the routing table of a node is empty or it does not

contain a valid waypoint for a given destination, the node leaves the partial route

field empty. Nodes also use checkpoints stored in packets. We further explain this

mechanism in Section 13.8.

Waypoint
position

Hop
count

Checkpoint
position

Hop
count

Hop +1 Hop +2

3B 1B 1B

Partial route -
forwarding

Partial trace -
learning

1B3B 1B

Waypoint
position

Hop
count

Checkpoint
position

Hop
count

Hop -1 Hop -2

3B 1B 1B1B3B 1B

Figure 13.2: WEAVE packet structure for hl = 2.

The comparison between WEAVE header and other protocols can be found in

Section 14.1. For each protocol, we assume a 3B field to store geographic locations.

Note that in WEAVE, 1B fields are sufficient to store the hop ID (cf. Fig. 13.2),

as it is a local identifier known by direct neighbors of a node.

In the paper, we sometimes distinguish between ”learning”and ”working”phases

for simplicity reasons. The ”learning phase” stands for the initial stage of WEAVE

operation, when most of routing tables are empty and nodes use greedy routing

to forward packets. The ”working phase” stands for the later stage, when routing

tables are filled and WEAVE can efficiently forward packets using partial routes.

Nevertheless, there is no distinction in the protocol between these phases: WEAVE

always uses waypoints if it finds one and never stops learning by trying to update

routing tables looking for better routes.

98 Chapter 13. Principles of the WEAVE Protocol

13.3 Principles of Packet Forwarding

Algorithm 7 shows the operation of a node that forwards packets. When the

node receives a packet, it first looks up its routing table for a better waypoint (closer

to the destination) to replace the one included in the packet. If it does not find

such a waypoint, it looks up for a checkpoint present in the packet to replace the

partial route that runs out with a longer one heading in the same direction. If

it is unsuccessful, the node uses greedy routing to forward the packet towards its

checkpoint, its waypoint, or the destination node. Finally, if the node still cannot

forward the packet, it uses path exploration and backtracking that are detailed later

on.

Algorithm 7 WEAVE forwarding algorithm

if better waypoint found in routing table then
update the information in the routing header:

(waypoint, checkpoint, partial route)

else if the same checkpoint found in routing table then
update partial route in the routing header

if partial route is not ∅ then
next hop ←− first node in partial route

else if packet has checkpoint then
next hop ←− greedy(checkpoint)

else if packet has waypoint then
next hop ←− greedy(waypoint)

else
next hop ←− greedy(destination)

if next hop is ∅ then
pathExploration() backtracking()

Fig. 13.3 illustrates the principle of packet forwarding. A node maintains one or

several waypoints as representatives of regions in the address space. When a node

has a packet to forward to destination ad, it determines which of its waypoints is the

closest one to ad. In our example, source as knows aw1
as the waypoint to reach ad,

so it sends the packet towards aw1
along the stored partial route. Intermediate node

ai1 knows waypoint aw2
as a representative of the region where the final destination

ad lies, and since it is closer to ad, it changes the packet direction to aw2
. The

same operation happens at intermediate node ai2 , and finally, the packet reaches

the destination.

13.4. Learning Partial Routes 99

�����������������

�����������������

����������������������
���������������

�

����������������������

�������������
������������������

a
s

a
d

��������

a
w�

a
w�

a
w�

a
i�

a
i�

���
���
����
����
���

�����������������
�����������

�����������

Figure 13.3: Principle of packet forwarding

13.4 Learning Partial Routes

Fig. 13.4 illustrates the principle of learning partial routes. When nodes do

not have yet sufficient information on waypoints (e.g. at the beginning of their

operation), they use greedy geographical forwarding.

Each packet registers a partial trace r: a list of nodes limited to the last hl

hops. hl is a protocol parameter set to a small value (e.g. it varies from 3 to 5 in

our simulations). A packet also contains counter hc strictly increasing at every hop

alongside the route. Consider an example of a packet sent from aw1
that reaches as

at some point after going through six intermediate nodes ai, i = 1, . . . , 6. Assume

that hl = 3. The partial trace is (aw1
) at a1, (aw1, a1, a2) at a3, and (a1, a2, a3) at

a4. Note that node a3 has deleted aw1 from the trace and added itself, because the

trace size is limited to 3 nodes. as may choose aw1 as a waypoint for the region

in which aw1 lies and stores the trace contained in the packet. The fact that as

receives the packet guarantees that it can reach aw1, because we only use symmetric

links for packet forwarding: if a node receives a packet from aw1, it can reach aw1

on the reverse route.

Note that storing only the last hop in the a partial trace can be insufficient. It is

possible that the previous node already had another waypoint for a given subspace

and did not register the one a node puts in its routing tables. Storing several last

hops does not introduce significant overhead and greatly increase routing efficiency

(cf. Sec. 14).

100 Chapter 13. Principles of the WEAVE Protocol

h����
r���������a

w�
�

h����
r������������

��������

a
w�

a�

a�

a�

a�

a�

a�
a�

h����
r���a

w�
��a���a��

h����
r���a���a���a��

h����
r���a���a���a��

Figure 13.4: Learning partial routes

13.5 Address Space Partitioning

To manage waypoints, nodes split the address space into regions and assign

waypoints to every region. In 2D, every node ai applies a quadtree partitioning

process Pquadtree to partition the address space A into a set of disjoint subsets Pj
i :

Pquadtree (A) →













P1
i ,P

2
i ,P

3
i

P01
i ,P02

i ,P03
i

...

P0...0
i













(13.2)

These subsets cover the whole address space:
�

j P
j
i = A. In 3D, the process is

octree partitioning and subsets Pj
i are cubes. Notice that this partitioning scheme

is essential for forwarding to checkpoints (cf. Sec 13.8).

At the beginning, each node ai discovers its neighborhood denoted as Neighborhood[ai]—

a set of all directly reachable neighbors—and estimates its neighborhood diameter

dl used as the termination criterion. dl is defined as twice the geographical distance

to the farthest neighbor or ∞ if the neighborhood is empty (the node does not have

any neighbor):

dl =

�

2max
aj

|ai, aj | , aj ∈ Neighborhood [ai]

∞, Neighborhood [ai] = ∅
(13.3)

13.5. Address Space Partitioning 101

� 3

� 1

� 2

� 0

a
i

�

(x
l
,y

l
) (x

m
,y

l
)

(x
m

,y
l
) (x

m
,y

m
)

i i

ii

Figure 13.5: Quadtree address space partitioning

Fig. 13.5 illustrates the first step of the partitioning process in which node ai

divides A into four regions: P0
i that contains node ai and three other regions P1

i ,P
2
i ,

and P3
i . Next, the node repeats partitioning of P0

i , if Edge
�

P0
i

�

> dl, which results

in P00
i and P01

i ,P02
i ,P03

i , and so on. The process continues until Edge
�

P0...0
i

�

≤ dl.

Note that every node has its own view of the address space: although the

symbolic hierarchy is the same, the physical regions assigned to the Pquadtree (A)

hierarchy may be different for every node ai. Node ai will consider all nodes outside

P0
i as reachable through waypoints in each region P1

i , P
2
i , P

3
i . Nodes inside P0

i ,

will be reachable through waypoints in subregions at the lower level, recursively,

e.g. P01
i , P02

i , P03
i , and so on.

With this construction, every node builds a scalable representation of the geo-

graphical address space, has a coarse grain representation of distant regions, more

precise information of the regions that are closer, and a fine grain representation of

its surroundings. To extend our protocol to 3D case, we only need to use octree-

partitioning in which subsets P i are cubes and add z coordinate to node positions.

The partitioning scheme is essential for forwarding to checkpoints (cf. Sec. 13.8).

Note that this representation is different from approaches taken by hierarchical

protocols that build a single common global hierarchy for the whole network.

102 Chapter 13. Principles of the WEAVE Protocol

13.6 Constructing Routing Tables

To forward packets, each node maintains a routing table containing up to L

waypoint routing entries per region—node ai has to know the waypoint to use for

destination address ad that lies in a given region P�

i . When node ai receives a

packet from source as ∈ P�

i with partial trace r, checkpoint ac, and hop counter

hc, it creates a waypoint routing entry w = (aw, Hw, hc, rw, ac) containing five

fields: waypoint address aw = as, waypoint metric Hw = |ai, aw| /hc, partial route

rw = r−1, and checkpoint ac described later on.

MetricHw reflects the“quality”of a waypoint: we want to keep a set of waypoint

entries with the largest Hw, because in this case, packets cross long distances per

hop count. Note that the shortest path between as and ad computed by OSPF

would have the maximal value of Hw for this pair of nodes. The metric allows to

memorize and route along OSPF-like paths, which is good, because it improves the

routing performance, i.e. route stretch is small. We have tested other waypoint

metrics such as: min |ai, aw|, max |ai, aw|, no metric (we just store last L entries).

In all cases, we have obtained a lower reachability ratio and longer routes than for

Hw.

Note also that maximizing Hw does not mean that nodes will suffer from poor

performance due to long wireless links of low quality [101]: in our case, metric Hw

is only applied to routes and not to links—nodes discover their neighbors using a

link layer metric and choose only good quality symmetrical links.

A node may store several waypoint entries WP�

i
= {w1, . . . , wk}, k ≤ L for each

region P�

i and we have ∀wj ∈ WP�

i
: awj

∈ P�

i . The number of waypoint entries to

store for each region is a protocol parameter L. Each node may store up to L best

waypoints with maximal Hw values and it discards other potential waypoint entries.

Only one entry per aw may exist in the node routing table. A packet forwarded

more than once by a node can only generate a single entry at this node the first

time it crosses the node, when its hc value is small and thus Hw is large.

13.7 Details of Packet Forwarding

To forward a packet, a node inserts the address of the best waypoint routing

entry into the packet header—a single fixed size field is sufficient—and sends it to

the next hop defined in the partial route rw. If there is no waypoint for a destination,

the node uses greedy routing.

Fig. 13.6 presents the following example. Assume that node ai receives a packet

whose waypoint field is empty and final destination is ad. Waypoint entry wk is

selected from WP�

i
= {w1, . . . , wn} found in the routing table, such that ad ∈ P�

i ,

13.7. Details of Packet Forwarding 103

a
i

� 1
i

� 0
i

a
s a

w�
a

da
w�

a
w�

�
a

i'

� 1
i'

� 0
i'

a
s a

w��
a

d

a
w��

a
w��

i i'

Figure 13.6: Packet forwarding

where P�

i is unique by construction and ∀wj �= wk ∈ WP�

i
: |awj

, ad| ≥ |awk
, ad|.

This means that node ai optimizes the choice of a route to ad by selecting among

its waypoints the one that is the closest to the destination.

Node ai inserts awk
into the packet and sends it to the next hop in rwk

. The next

forwarding node ai� may have a different set of waypoint entries and it applies the

same rules with the difference that it chooses the closest waypoint to ad belonging

to its own P�

i� such that ad ∈ P�

i� .

To guarantee loop-free forwarding, node ai� applies the waypoint optimization

principle—it replaces the waypoint in the packet with a better one if available: if

∃w�

l ∈ WP�

i�
such that |awk

, ad| > |aw�

l
, ad|, it inserts waypoint aw�

l
into the packet.

Fig. 13.6 illustrates the operation of node ai on the path between source as to

destination ad (we assume hl = 2 hops in this example). A packet sent by source as

arrives after some hops in ai. Let us assume that the waypoint field in the packet

header is empty. Node ai first identifies the region that contains the destination

address: ad ∈ P1
i and the set of waypoint entries associated with P1

i : w1, w2, w3

at locations aw1
, aw2

, aw3
∈ P 1

i . Node ai can choose between three different partial

routes rw1
, rw2

, rw3
towards three waypoints aw1

, aw2
, aw3

, respectively. Assume that

the node chooses waypoint entry w2, because aw2
is the closest to the destination:

∀wi �= w2 : |ad, awi
| ≥ |ad, aw2

|, so it inserts waypoint entry w2 into the packet and

forwards it to ai� , the next hop in rw2
. Note that the partial route is valid up to

hl = 2 hops.

The lower part of Fig. 13.6 shows what happens next at node ai� that has a

different set of waypoint entries corresponding to the same region (note that in the

example, both nodes ai and ai� have the same partitioning of the address space).

Node ai� chooses w3� = w2, the best one among its waypoint entries. As the partial

route in the packet is still valid, i.e. ai� is in the previously selected partial route,

ai� can extend the route by replacing the waypoint entry in the packet with its best

104 Chapter 13. Principles of the WEAVE Protocol

waypoint w3� . In a similar way as previously, it forwards the packet to the next hop

defined by this waypoint entry. Greater hl means that the protocol keeps larger

traces, but because of that, a forwarding node can use its own waypoint entries and

waypoint entries stored at hl − 1 predecessors, which is good, because a forwarding

node has sufficient information to continue forwarding along a certain trajectory or

change to a new, more efficient one.

We can observe that even if each node only knows some partial information

about paths—partial routes to known waypoints, successive nodes construct the

whole path between a source and a destination. Also note that each node keeps

the waypoint entries having the largest value of Hw metric. As the whole path

(as, . . . ad) is a concatenation of small pieces (partial routes), the waypoint metric

computed at the destination ad : Hw = |as, ad|/h is also large, which means that the

resulting path is close to the shortest one and the protocol constructs it without

the need of any global information, a graph structure, or a graph optimization

algorithm.

13.8 Checkpoint Creation

a
w

a
s

a
d

a�

Figure 13.7: Without checkpoints

Loop-freeness of the forwarding scheme (cf. Sec. 13.7 and 13.12) imposes strict

conditions on the update of partial routes and raises a problem of inefficient packet

forwarding for small hl. The reason is twofold. First, each node only records

13.8. Checkpoint Creation 105

a
c�

a
w'a

c�

a
w

a
s

a
d

a�

a�

Figure 13.8: With checkpoints

a small number waypoints in comparison to the large number of nodes in large

regions. Second, every forwarding node optimizes the packet route by using its

closest waypoint towards the destination. Subsequent forwarding nodes do not

necessarily store the same waypoint (too many candidates) causing path extension

impossible. The situation is illustrated in an example in Fig. 13.7. Node as sends a

packet to ad using aw as its waypoint. However, at a1 the partial route is finished

and subsequent forwarding nodes have to use greedy forwarding to advance towards

aw, which may lead to a drop at an obstacle. The situation results in a dramatic

performance loss that we evaluate later on (cf. Fig. 14.5, 14.7).

To solve the problem, we have observed that in typical topologies, the number

of nodes at the region edge is small compared to the region interior. The idea

is therefore to group waypoints on a forwarding node with respect to so called

checkpoints (bread crumbs, region entry points) residing at the region edge. If on

the forwarding node, the packet partial route ends, we extend it by borrowing the

partial route belonging to another known waypoint on the node sharing the regional

checkpoint with the packet waypoint. Let us consider the example in Fig. 13.8. This

time, the packet contains a regional waypoint checkpoint, so instead of falling back

to greedy forwarding when the partial route expires, the forwarding node sends the

packet to ac1. If a1 has a partial route to ac1 then uses it, otherwise runs greedy

routing to get there. In both cases, the packet advances in the right direction, but

the information on nodes still scales as O(logN), because a checkpoint is just a

106 Chapter 13. Principles of the WEAVE Protocol

a
bw�

a
w'a

bw�

a
w

a
s

a
d

a�

a�

Figure 13.9: Waypoint forwarding

label attached to a waypoint in the routing table.

Notice that due to quadtree partitioning, all nodes residing together within a cer-

tain region share the routing table organization for external regions. Using this ob-

servation, we have discovered a local procedure to compute the checkpoint on a for-

warding node for the source of an incoming packet (becoming a waypoint) associated

with its corresponding region. For this purpose, a packet has a source checkpoint

field (initially set to the source node as) being part of the routing header. Note that

each packet contains both source checkpoint used for learning and checkpoint field

used for forwarding to borrow partial routes from other waypoints. The forwarding

node finds the corresponding region of the current checkpoint ac ∈ P(c) and the last

hop last hop ∈ P(lh) according to the local routing tables. If size(P(c)) = size(P(lh)),

the node updates the packet checkpoint with the last hop. The packet now contains

a candidate waypoint (as) with the associated checkpoint for region P(c). Notice

that due to this procedure, only nodes at the borders of ever growing (or equally

sized regions) update checkpoints. Other nodes share the same global partitioning

at a large scale and do not modify previously established checkpoints.

Fig. 13.10 presents an example process of learning checkpoints and storing them

in routing tables. First, as sends a packet to ad. At the beginning, the source

checkpoint field in the routing header is set to as. a1 does not update this field

as the packet does not cross any region. After receiving the packet, a2 sets as as

the waypoint for region R22 (in this example, we denote regions with R and keep

13.8. Checkpoint Creation 107

the same numbering scheme for all nodes for simplicity reasons). As the previous

hop lies in another region, a2 sets a1 as the checkpoint. Then, between a2 and a3,

the packet crosses larger regions R2 and R1 so the source checkpoint field is set to

a2, which is valid for every node in R1. Note that when transmitting the packet

between a3 and a4, nodes do not update the source checkpoint field, because the

crossed regions are smaller than the ones already crossed. Nodes then update the

source checkpoint field only when crossing the border between R0 and R1 as well

as between R3 and R0. The last part of Fig. 13.10 shows all chosen checkpoints:

a9 for nodes in R3, a6 for nodes in R0, a2 for nodes in R1, and a1 for nodes in R21.

a
d

a
s

�0 �1

�21�3

�22

a�
a�

�12

�2
�13

a
d

a
s

�0 �1

�3

a�a�
a�

a�

a�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 13.10: Learning checkpoints

Nodes use checkpoints as targets in greedy routing or to extend partial routes

to waypoints. Fig. 13.9 explains how nodes use checkpoints in forwarding. In this

example, as sends a packet to ad so it includes waypoint aw, checkpoint ac1, and

partial route raw in the packet header and sends it to the first node in raw. When

the packet reaches a1, the node runs out of the partial route. We assume that a1

does not have any information in its routing table to forward the packet to the

waypoint so it uses greedy routing towards ac1 instead of aw. When the packet

108 Chapter 13. Principles of the WEAVE Protocol

arrives in ac1, ac1 clears the checkpoint field in the header, updates the header with

a new partial route, and sets the checkpoint field to ac2. Upon arriving in a2, the

node runs out of the partial route, but this time a2 has aw� in its routing table.

As waypoint aw in the packet and waypoint aw� in the routing table have the same

checkpoint ac2, the node inserts the partial route to ac2 from the routing table into

the header and forwards the packet. After reaching ac2, the packet continues its

way to waypoint aw and finally to the destination.

13.9 Path Exploration and Backtracking

When a packet reaches a concave node that does not have any waypoint to use

for forwarding, it uses path exploration to find a potential route. In path exploration,

a node forwards a packet tagged as exploring to a node that is not closer to the

destination, but is the farthest from the previous hop. Such forwarding is possible

only if the node sending the packet is still in the packet trace (in our simulations it

means 3 or 5 hops). A node removes the exploring tag from a packet, if it is closer

to the destination than the tagging node. It finds a node with the same waypoint,

as the one in the packet, but with lower hop count, or it finds a waypoint closer

to the destination than the one in the packet. When a node removes the tag, the

packet continues its way based on the waypoint mechanism.

When none of these conditions are fulfilled, a forwarding node uses backtracking

to explore other potential routes: it sends the packet backwards (to the previous

node in the packet trace) tagging it as reverse. Upon receiving a reverse packet,

a node repeats the selection process of the next hop by avoiding the node chosen

previously as the next hop. Nodes can send packets backwards until there are no

more nodes in the trace. If a node receives a reverse packet with a waypoint or a

checkpoint from its routing table, it considers it as invalid and drops it.

Although both mechanisms are quite simple, they complement the main mech-

anism based on waypoints and checkpoints, which leads to achieving very good

results presented in Section 14. The system of checkpoints provides global leads on

paths, while path exploration and backtracking allows to deal with small obstacles

and network dynamics, closing the gap between partial paths.

13.10 Refreshing Routing Information

Finally, we address the issue of dynamic adaptation to changing topology. In a

large-scale network, to deal with a substantial part of nodes that may join and leave

the network, we use route ageing. Each routing entry has an associated timestamp

13.11. A note on the backtracking mechanism 109

1

2

3

4

5

6

7

8
9

11

10

12

13

14

15

Figure 13.11: Backtracking and waypoint refreshment.

that a node takes into account in the choice of the suitable partial route: the node

may prefer slightly longer, but more reliable partial routes to the partial routes not

refreshed for a long time. Such a refreshing mechanism is sufficient in our case to

deal with the network dynamics, because a node only stores the information on short

partial routes (3 or 5 next hops) that indicate the direction of the complete route, so

even if some nodes leave or join the network, the routing entries remain valid. Nodes

close to the change in the network will learn about the modification through the

backtracking mechanism. Figure 13.11 presents this mechanism. 1 sends a packet

to 11, using 10 as its waypoint. However, 6 goes down. Nodes use Backtracking

mechanism, the packet is transferred back to 5, which deletes waypoint 10 from its

routing table and chooses another one from the same subspace (15). Other nodes

1− 4 will soon replace 10 in their routing tables due to the ageing process. In Fig.

13.12 4 and 5 do not have any other waypoint or neighbor closer to the destination.

4 invokes Path Exploring to bypass the obstacle and deliver the packet. Note that

such mechanisms are much more efficient, than dropping a packet, reconstructing

the routing structure and resending the packet again and significantly decrease the

delay.

13.11 A note on the backtracking mechanism

It is possible to replace both Path Exploration and Backtracking by one of

the face routing candidates, i.e., GPSR, GOAFR+, CLDP, GDSTR, GDSTR-3D.

Such a solution does not influence WEAVE performance (as it is used only in

1-2% cases) and guarantees full connectivity in the network. However, GPSR,

110 Chapter 13. Principles of the WEAVE Protocol

1

Path Exploring

Backtracking
2

3

4

5

6

7

8
9

11
10

Figure 13.12: Backtracking and path exploration

GOAFR, GOAFR+ require planar graph assumption, while CLDP (only 2D),

GDSTR, GDSTR-3D come with huge protocol overhead for removing crossed edges

(CLDP) or maintaining a global convex hull tree (GDSTR, GDSTR-3D). Currently,

we implement WEAVE with Path Exploration/Backtracking as it achieves a high

packet delivery rate (cf., Sec. 14). Notice also, that the combination of face rout-

ing and WEAVE will increase overhead as WEAVE consumes some space in packet

headers (c.f., Sec. 13.2), while CLDP, GDSTR, GDSTR-3D send signaling messages

to describe the global topology of the network.

13.12 Loop-freeness

In this section, we discuss some properties of WEAVE. For simplicity reasons,

we omit the concept of checkpoints, which does not change the main conclusions of

our observations.

Theorem 1. Loop free property for unbounded traces.

In the hl = ∞ case (packet traces are unbounded), the protocol is loop free, so

it always uses finite routes.

Proof. The number of possible waypoints in a network is finite, because any node

may be considered as a waypoint and we assume a finite number of nodes. When

a node selects a waypoint, all waypoints placed equally distant or farther from the

packet destination will not be used. In the case of unbounded traces, if a node sends

a packet to a waypoint, it will eventually reach it by using the inverse trace towards

the waypoint. Intermediate forwarding nodes may apply waypoint optimization

13.12. Loop-freeness 111

and each replacement of a waypoint by a better one reduces the number of still

valid waypoints by at least 1. The number of possible waypoint replacements is

also finite. This contradicts the condition for obtaining loops and infinite routes:

an infinite number of waypoint replacements is necessary to create an infinite route

from partial routes of finite length.

Theorem 2. In the hl < ∞ case, the protocol is also loop free and it provides finite

routes.

Proof. Let us assume that there is a loop, so there are three possibilities. First, the

waypoint is regularly replaced with a better one closer to the destination, but then

the same argument as above applies: in this case, the number of legitimate way-

points is decreasing, which is in contradiction with the presence of a loop. Second,

the path to the current waypoint is extended on the way by a forwarding node. Due

to the fact that forwarding node can only extend the route if and only if the current

hc to the waypoint is lower than the waypoint hc in the packet, the path cannot

be extended indefinitely. Third, if the path extension to the current waypoint does

not exist nor a closer waypoint was found, the procedure switches back to greedy

forwarding, which does not result in loops.

Chapter 14

Evaluation

We have chosen greedy routing, MDT, and GDSTR-3D as reference protocols,

because previous evaluations already showed their good performance in compari-

son with other proposed protocols for geographic routing in 3D networks such as

CLDP/GPSR, GDSTR, AODV, VRR [94], and S4 [95]. To make our comparisons

fair, we use single hop greedy routing for all protocols. We configured GDSTR-3D

to use two 2D hulls to approximate a 3D hull (2x2D). We use MDT for both 2D

and 3D networks. We evaluate two variants of WEAVE: with the size of the partial

routes hl = 3 (WEAVE3) and hl = 5 (WEAVE5). In parts of our evaluations, we

show the impact of checkpoints and evaluate a version without them (Waypoint3

and Waypoint5). In sec. 14.8, we compare our solution against RPL [11] to show

the benefits of using geographic routing.

14.1 Experiments on a Testbed

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

P
a
c
k
e
ts

 d
e
li
v
e
re

d
[%

]

Packets sent

Greedy
WEAVE3
WEAVE5

GDSTR-3D
MDT

Figure 14.1: Packet delivery during the learning phase, Senslab

To validate the performance of WEAVE in real world conditions, we have run

experiments on the Senslab testbed [1] with 256 WSN430 nodes placed in a 3D grid.

The testbed supports both operating systems used in our evaluations (TinyOS and

114 Chapter 14. Evaluation

 0

 0.5

 1

 1.5

 2

 100 200 300 400 500 600 700 800 900 1000

H
o
p
 s

tr
e
tc

h

Packets sent

Greedy
WEAVE3
WEAVE5

GDSTR-3D
MDT

Figure 14.2: Hop stretch during the learning phase, Senslab

 13.2

 13.3

 13.4

 13.5

 13.6

 3100 3200 3300 3400 3500 3600 3700 3800 3900

Time[s]

 17.4

 17.7

 18

 18.3

 18.6
GDSTR/D

Greedy
MDT

GDSTR
MDT/D

WEAVE3
WEAVE5

Figure 14.3: Energy consumption in time, Senslab

Contiki) and the code required for different protocols (GDSTR-3D on TinyOS and

Contiki for other protocols). We have used a low transmission power to create a

topology with multiple hops. For each test we performed at least 10 000 transmis-

sions between random source and destination with 50B UDP packet.

Figs. 14.1 and 14.2 show the packet delivery rate and the hop stretch during the

learning phase. All protocols experience some packet loss caused by unreliable radio

communication. WEAVE achieves very similar delivery rate and a significantly

lower hop stretch than other protocols. After the learning phase, nodes send one

50B packet every 15s to measure the energy consumption. We have measured

the energy consumption of GDSTR-3D and MDT also during the update of the

topology (denoted as GDSTR/D and MDT/D respectively). WEAVE3, MDT and

14.2. Simulations 115

GDSTR-3D have similar header sizes (8B/4B difference), so energy consumption

for transmissions is almost the same. Increasing the trace size to 5 in the WEAVE5

variant, increases the header size and thus energy consumption, but less than 1%.

During topology modifications, GDSTR-3D consumes 30% more energy to send

updates to every neighbor in the spanning tree. MDT requires even more control

traffic to discover all DT neighbors.

14.2 Simulations

To evaluate WEAVE for a larger parameter space, we have run simulations using

the following tools:

ns-3: greedy routing, GDSTR-3D, MDT and WEAVE for large-scale networks

(> 1000 nodes).

Cooja(v.2.6): greedy routing, MDT and WEAVE for small networks (≤ 1000

nodes). We have used Sky Motes as the execution platform with CC2420 2.4 GHz

radio and ContikiMAC at Layer 2.

TOSSIM(v.2.1): GDSTR-3D for small networks (≤ 1000 nodes), Micaz Motes

with an ideal radio channel as the execution platform. The source code from the

authors [64].

There are multiple reasons for using three different simulators. First, ns-3 uses a

simplified representation of lower layers, so we can test the behavior of the protocols

in large-scale networks. Second, through Cooja and TOSSIM, we study a real

protocol stack implementation executed in a controlled simulated environment, but

the number of simulated nodes is highly limited. As GDSTR-3D is implemented on

TinyOS, TOSSIM is required to run the code. Other protocols were implemented

in Cooja under Contiki. We argue, however, that the performance of a routing

protocol is only marginally affected by the type of the operating system and lower

layer protocols.

Unless stated differently in all our simulations we used the same packet loss rate,

as experienced during test on Senslab Testbed (1%). For each set of parameters we

randomly generated at least 20 topologies, performed at least 10 000 transmission

between random pairs of nodes for each of them and took the average result. Hop

stretch is calculated only for packets reaching the destination.

14.3 Initial Simulation Comparisons

Figure 14.4 presents a comparison between data packet header sizes of tested

protocols. We assume 3B coordinates (x, y, z) for packet source and destination.

116 Chapter 14. Evaluation

 0

 5

 10

 15

 20

 25

 30

 35

 40

H
e
a
d
e
r

s
iz

e

Greedy
WEAVE3/learning

WEAVE3
WEAVE5/learning

WEAVE5
GDSTR-3D

MDT

Figure 14.4: Header size of tested protocols.

 0

 20

 40

 60

 80

 100

 4 5 6 7 8 9 10 11 12

P
a
c
k
e
ts

 d
e
li
v
e
re

d
[%

]

Average node degree

Greedy
WEAVE3

WAYPOINT3
WEAVE5

WAYPOINT5
GDSTR-3D

MDT

Figure 14.5: Packet delivery rate, network with 800 nodes.

WEAVE need partial trace part (cf. Fig. 13.2) only to update routing tables. So

in stables network it does not have to be present for packet forwarding. In dynamic

scenarios only certain percentage of traffic need to include this part. WEAVE

header is only few bytes larger than GDSTR-3D header, while in forwarding only

version it is even smaller. MDT achieves significantly smaller header size than both

other protocols. However, WEAVE header is the only overhead introduced by the

protocol, while all other protocols (except greedy routing) use a significant amount

of additional control traffic to fill and maintain the routing tables.

We continue with the evaluation of the packet delivery rate in a network with

800 nodes for different network densities (cf. Fig. 14.5) in the stable state after

the learning phase. For each network configuration, we have generated at least 10

14.3. Initial Simulation Comparisons 117

 0

 0.5

 1

 1.5

 2

 4 5 6 7 8 9 10 11 12

H
o
p
 s

tr
e
tc

h

Average node degree

Greedy
WEAVE3

WAYPOINT3
WEAVE5

WAYPOINT5
GDSTR-3D

MDT

Figure 14.6: Hop stretch, network with 800 nodes

 0

 20

 40

 60

 80

 100

0.5 0.6 0.7 0.8 0.9 1 5 6 7 8 9 10

P
a
c
k
e
ts

 d
e
li
v
e
re

d
[%

]

Network size [in thousands]

Greedy
WEAVE3

WAYPOINT3
WEAVE5

WAYPOINT5
GDSTR-3D

MDT

Figure 14.7: Packet delivery rate for various network size.

random networks. As expected, both GDSTR-3D and MDT achieve 97-99% for all

tested networks. WEAVE achieves 95% delivery rate for low density networks and

almost 100% for networks with a higher average node degree. The versions without

checkpoints perform significantly worse, especially in sparse networks. Note that in

WEAVE, the routing tables are constantly being updated. If a route is not found,

it does not mean that there is no connectivity between two nodes . Re-sending

the same packet, after a short period of time, usually results in successful delivery.

During our simulations, we did not observe any pair of nodes without connectivity.

Fig. 14.6 presents the hop stretch (the ratio between the length of a route for

a given protocol and the shortest path) in the same configuration. For low density

networks, both MDT and GDSTR-3D perform almost twice worse than the shortest

118 Chapter 14. Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

0.5 0.6 0.7 0.8 0.9 1 5 6 7 8 9 10

H
o
p
 s

tr
e
tc

h

Network size [in thousands]

Greedy
WEAVE3
WEAVE5

GDSTR-3D
MDT

Figure 14.8: Hop stretch for various network size.

path. By default, GDSTR-3D performs greedy routing and tries to recover using a

spanning tree so the protocol may go into a local minimum and then look for another

route, which increases the hop stretch. MDT uses its virtual links to connect a DT

neighbor, which creates routes far from optimal, especially for sparse networks.

After the learning phase, WEAVE directly uses routes close to the shortest ones

trying to avoid local minima. Removing checkpoints slightly reduces the hop stretch,

as only packets with shorter paths are successfully delivered. Greedy routing has

an almost constant hop stretch.

 0

 0.5

 1

 1.5

 2

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Greedy
Waypoint3
Waypoint5

WEAVE3

WEAVE5
GDSTR-3D

MDT

Figure 14.9: Standard deviation of number of packets forwarded by each node

Next, we evaluate the packet delivery rate for constant network density (aver-

age node degree of 7) for different network sizes (cf. Fig. 14.7). GDSTR-3D and

14.4. Learning Phase 119

MDT maintain 98% delivery rate while WEAVE3 slightly degrades to 92% in the

largest networks and WEAVE5 keeps its delivery rate at 97%. The version without

checkpoints, once again, achieves much lower delivery rate, as partial routes are

not enough to deliver all packets, especially in larger networks. With longer routes,

the efficiency of greedy routing drops to 20% for the largest networks. In further

experiments, for better readability, we present only WEAVE results for the version

with checkpoints, as they always perform significantly better.

In large networks, we can observe an important increase of the hop stretch for

GDSTR-3D (cf. Fig. 14.8), because the protocol enters more often local minima.

The root of the spanning tree is also farther away, so the recovery process takes

more time. MDT more often uses longer virtual links, which also increases the hop

stretch. Both versions of WEAVE obtain much lower hop stretch growth that does

not exceed 1.7 (WEAVE3) and 1.4 (WEAVE5). Greedy routing results in almost

constant hop stretch for all tested networks.

To test the distribution of energy consumption over nodes, we have measured the

number of packets forwarded by each node (cf. Fig. 14.9. In WEAVE, each node

chooses its waypoints independently, so the distribution is balanced. Moreover,

in most cases, waypoints are not reached by packets. Intermediary nodes keep

changing waypoints for better ones to forward a packet to its final destination.

Also checkpoints do not tend to attract more traffic than ordinary nodes. In MDT,

the end of virtual links and nodes near obstacles forward much more packets than

the others. GDSTR-3D nodes placed near the tree root also receive significantly

more control and data packets, which can reduce the network lifetime.

14.4 Learning Phase

In this section, we evaluate WEAVE during the learning phase . Fig. 14.10

presents the delivery rate for the first 1000 packets exchanged in the network (800

nodes, average node degree of 6). At the beginning, the routing tables for WEAVE

are empty and the both versions of WEAVE obtain more than 90% delivery rate.

The result comes from the path exploration and backtracking mechanisms. Never-

theless, their drawback is an increased hop stretch during the initial phase when ex-

changing the first few hundred packets (cf. Fig. 14.11. Nevertheless, the hop stretch

for both WEAVE versions decreases rapidly while the performance of GDSTR-3D

and MDT remains at the same level (1.8).

120 Chapter 14. Evaluation

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

P
a
c
k
e
ts

 d
e
li
v
e
re

d
[%

]

Packets sent

Greedy
WEAVE3
WEAVE5

GDSTR-3D
MDT

Figure 14.10: Packet delivery rate upon the learning phase.

14.5 Dynamic networks

To evaluate the performance in dynamic networks, we switch off a given amount

of random nodes (off nodes) and specify the change frequency—50% change fre-

quency means that with every packet forwarded in the network, there is a 50%

probability to turn off one of the working nodes and turn on one of the nodes that

were shutdown.

 0

 0.5

 1

 1.5

 2

 100 200 300 400 500 600 700 800 900 1000

H
o
p
 s

tr
e
tc

h

Packets sent

Greedy
WEAVE3
WEAVE5

GDSTR-3D
MDT

Figure 14.11: Hop stretch during the learning phase.

Fig. 14.12 presents the packet delivery rate for different change frequencies. In

this scenario, the performance of GDSTR-3D significantly decreases. Every time

a node is turned on or off, the protocol needs to rebuild its spanning tree. If a

forwarded packet happens to be in the part of the tree being rebuilt, the packet is

14.5. Dynamic networks 121

dropped to avoid loops. The same thing happens for MDT: the protocol needs to

maintain connections between DT neighbors and cannot keep the communication if

some of intermediary nodes are down. WEAVE does not maintain complete routes

so it can deal even with frequent node churn, which results in an almost constant

packet delivery rate.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
a
c
k
e
ts

 d
e
li
v
e
re

d
[%

]

Change frequency

Greedy
WEAVE3
WEAVE5

GDSTR-3D
MDT

Figure 14.12: Packet delivery rate with 10% nodes off.

Fig. 14.13 presents the results for a fixed amount of nodes turned off, fixed fre-

quency, and different network sizes. Even for a constant frequency, the performance

of GDSTR-3D decreases with the network size. Topology changes, especially near

the tree root, affect a larger part of the network, which causes more packet losses.

MDT virtual links get longer and easier to break by a shutdown of a random node.

As in the previous scenario, the results for both versions of WEAVE remain almost

unaffected by the network size.

All protocols need to use a hello message mechanism to discover direct neighbors.

Usually, the time interval between sending those messages needs to be carefully

adjusted. Sending too many of them increases the protocol overhead, while sending

too few, delays the protocol reaction to topology changes. However, while it is

crucial for GDSTR-3D and MDT to maintain a valid spanning tree/virtual links,

WEAVE can just update its neighbor table when a node does not succeed to send

a packet, thus, it is not affected by the hello timer interval.

Fig. 14.14 illustrates this phenomenon: for given network dynamics parame-

ters (10% nodes off and 20% frequency), the performance of GDSTR-3D and MDT

decreases for the increasing hello interval. WEAVE remains unaffected by the inter-

val, so nodes can choose large hello intervals to reduce energy consumption. Note

also that with each topology change, both MDT and GDSTR-3D generate a signif-

122 Chapter 14. Evaluation

 0

 20

 40

 60

 80

 100

0.5 0.6 0.7 0.8 0.9 1 5 6 7 8 9 10

P
a
c
k
e
ts

 d
e
li
v
e
re

d
[%

]

Network size [in thousands]

Greedy
WEAVE3
WEAVE5

GDSTR-3D
MDT

Figure 14.13: Packet delivery rate with 10% nodes off and 50% dynamic for

various network size.

icant amount of the control traffic, while WEAVE does not exchange any control

messages.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

P
a
c
k
e
ts

 d
e
li
v
e
re

d
[%

]

Hello message interval

Greedy
WEAVE3
WEAVE5

GDSTR-3D
MDT

Figure 14.14: Hello interval impact on packet delivery

14.6. Concave Obstacles 123

Figure 14.15: Concave obstacle - GDSTR-3D

Figure 14.16: Concave obstacle - MDT

14.6 Concave Obstacles

To make the routing more difficult we test several 2D and 3D networks with

carefully placed nodes and large concave obstacles in the middle of the topology.

We tried to introduce a big amount of local minima, so that greedy routing almost

always fails and all protocols need to use their mechanisms to deliver packets. We

observe sending packets between any two pairs chosen at random. By default,

GDSTR-3D uses greedy routing that forwards packets toward local minima and

then tries to recover using a spanning tree. It results in longer paths as shown in

Fig 14.15 for a chosen pair of the source and the destination. MDT also performs

greedy forwarding between DT neighbors, which can result in non optimal detours

(cf. Fig. 14.16). On the other hand, our protocol uses waypoints with the lowest

124 Chapter 14. Evaluation

Figure 14.17: Concave obstacle - WEAVE

Aspect Greedy WEAVE3 WEAVE5 MDT GDSTR-3D

Delivery rate 46% 98% 99% 99% 99%

Hop stretch 1.0 1.06 1.02 1.6 1.7

Table 14.1: Summary of the results for networks with concave obstacles.

metric, which creates almost optimal paths (cf. Fig. 14.17). Table 14.1 summarizes

the results for the scenario. WEAVE delivers almost 100% of packets while having

a much lower hop stretch than GDSTR-3D. When packets under greedy routing

arrive at the destination, they use the optimal route, so the hop stretch is 1.

14.7 Realistic Geographic Topology

We have generated a 2D topology based on a map of a city by placing a node in

all buildings and adjusting the distances between them to obtain a fully connected

graph (cf. Fig. 14.18). The resulting network contains 18144 nodes. Table 14.2

presents the results for all protocols. Even for such a large-scale network, WEAVE

achieves a high delivery rate while maintaining very low hop stretch. We have

repeated our tests with some network dynamics (5% nodes off, 50% frequency),

which significantly decreases the GDSTR-3D and MDT performance, while leaving

the results of WEAVE almost unaffected. WEAVE also requires less memory and

does not use any control messages.

14.8. Comparison with Standard Routing 125

Figure 14.18: Partial map of Grenoble used in experiments.

Aspect Greedy WEAVE3 WEAVE5 MDT GDSTR-3D

Delivery rate 36% 91% 96% 98% 98%

Delivery rate(dynamic) 36% 94% 98% 80% 83%

Packet stretch 1.19 1.7 1.5 1.8 2.4

Packet stretch(dynamic 1.19 1.74 1.6 3.2 3.5

Overhead(per node) 0B 0B 0B 1850B 1600B

Memory used(per node) 0B 800B 1060B 980B 1400B

Table 14.2: Summary of the results for the city network.

14.8 Comparison with Standard Routing

Compared to classical routing protocols, geo-routing requires node locations,

which may introduce some additional overhead, like retrieving or computing co-

ordinates. However, a standard routing protocol such as RPL uses huge amounts

of memory to store routing tables when address aggregation is infeasible. Table

14.3 presents memory usage for different network sizes. Even for relatively small

networks (800 nodes), RPL requires more than 25kB of storage per node for the

routing table. For our biggest tested topology, WEAVE uses more than 700 times

less memory.

126 Chapter 14. Evaluation

Table 14.3: Memory usage of routing tables for different network sizes.

Size(nodes) WEAVE3 WEAVE5 MDT GDSTR-3D RPL

800 83B 99B 96B 112B 25600B

5000 178B 202B 189B 240B 160000B

18144 800B 1060B 980B 1400B 580608B

Chapter 15

Conclusion

In this part, we have presented WEAVE, a geographical routing protocol for

large-scale dynamic multi-hop wireless networks. The solution focuses on forwarding

packets between nodes and does not provide any naming scheme nor position/id

translation system. Our protocol does not use whole paths to destinations or use

any control messages. It fills up routing tables with hints only by observing incoming

traffic. Such a property makes it very different from a whole bunch of protocols

[88, 89, 64] that introduce a significant control overhead and need to maintain

a routing structure. It becomes important especially while experiencing network

dynamics, so common in lossy wireless networks. WEAVE does not require to

update its routing tables with every topology change.

Instead of maintaining the information on whole routes, WEAVE constructs

them out of partial routes to waypoints. The key element of WEAVE is a system

of checkpoints used as “bread crumbs”. Partial paths are enough to maintain low

hop stretch in contrast to solutions based on face routing [58] [59].

Waypoints and checkpoints are selected randomly by every node, which leads

to equal traffic load and eliminates issues with ”special nodes” that forward more

packets than others, a common problem of protocols introducing some kind of a

hierarchy [95].

Such a design makes WEAVE highly resistant to network dynamics and allows

achieving very good performance results with small overhead. The volume of the

routing information at any node remains very small compared to the size of the

whole network, because the number of waypoints grows logarithmically with the

network size. In this way, the protocol achieves good scalability.

We have compared WEAVE against greedy routing, MDT [66], and GDSTR-3D

[64] through measurements on a sensor network testbed and simulations for various

network sizes. Our results show that WEAVE achieves a high packet delivery rate,

low stretch, and balanced energy consumption.

Part V

Conclusion and Future Work

Chapter 16

Overall Conclusions and Future

Work

The problem of routing has received a lot of attention from the research com-

munity and could be considered a kind of a ”solved problem”. However, emerging

wireless technologies, miniaturization and new communication models have intro-

duced many new requirements for routing protocols especially in the domain of IoT.

The aim of this dissertation is to enrich the state of the art in routing protocols for

WSN/IoT. We have elaborated our contributions as addressing real world problems

expressed both by industry as well as academia. This chapter concludes the the-

sis by summarizing the main contributions, the results, and hinting some research

perspectives.

16.1 Summary of the Results and Final Conclusions

Our first contribution consists of Featurecast – a routing/naming system for

WSN. We have developed an extremely simple, flexible and yet powerful grammar

based on sensor characteristics, which allows us to specify destinations and query

groups of sensors. To the best of our knowledge, Featurecast is the first system

allowing to use characteristic-based routing in IPv6/6LoWPAN networks.

We have integrated our system with RPL to make it more interoperable and

easy to use. The integration was preceded by an extensive study and comparisons

of Bloom Filters and different techniques allowing to squeeze many features into

routing tables without limiting their capacity. Thanks to node features inside the

address, we were able to use a new metric that compares sensor characteristics and

groups the similar ones. This solution allowed to increase the routing efficiency and

eliminate some of the well-known problems with distribution trees. The complete

system was tested against both classic and recently proposed solutions in many

simulation scenarios as well as on a real sensor tested. Memory usage is significantly

lower than for any other compared solution, while achieving high packet delivery

and lower control message overhead.

132 Chapter 16. Overall Conclusions and Future Work

The second contribution isWEAVE, a geographic routing protocol for WSN/IoT.

We have based our solution on Binary Waypoint Routing and adapted it to fit the

required information into a fixed size header. We have developed the concept of

”Checkpoints” that reflect a path taken by packets during the learning phase. ”Path

Exploration”and ”Reverse Packet” increase the protocol robustness and allow to by-

pass local obstacles. The protocol also consists of several mechanisms preventing

routing loops. WEAVE does not involve any control message overhead. It learns

only from looking at the forwarded packet and learns new path to reach destina-

tions. WEAVE achieves very good packet delivery rate. Its advantage is even more

visible in scenarios with large or dynamic networks. As WEAVE does not create

complete paths to destinations, but maintains only approximate and partial route

information, which makes it much more resistant to node failures and topology

changes.

16.2 Future Work

Featurecast proves itself useful in querying local networks. However, global com-

munication using such a system still needs to be investigated. We can consider

both cooperation with traditional multicast protocols that can interconnect

different domains as well as developing an autonomous system providing both

global and local communications.

We have developed a simple metric connecting nodes with similar sets of features.

However, our solution is simple and treats all features in the same way. We

can go much further and test node similarity with more sophisticated met-

rics (features based on node location can be considered as more important).

A deeper insight on impact of such metrics can be beneficial also for net-

works that does not use Featurecast, but can still benefit from having more

information about nodes in addresses.

To evaluate Featurecast, we have used scenarios proposed by IETF [86]. However,

it would be interesting to evaluate the protocol in already deployed, intelli-

gent building environments and to compare the results with previously used

industrial solutions.

Featurecast performance heavily depends on proposed the feature scheme. Using a

flat structure without any hierarchy can significantly increase memory usage,

while well balanced structure can push the benefits to the maximum. We

can consider evaluating the protocol in the worst and best case scenarios to

prepare a list of hints for users creating a Featurecast routing structure.

16.2. Future Work 133

Featurecast achieves good routing performance compared to other existing solu-

tions. However, it is still based on a distribution tree, which can become an

issue in some scenarios. Developing a better system that does not introduce

a fixed routing structure can be an interesting idea. New possibilities open

when we could combine feature-based networks with georouting. Mapping fea-

tures on given regions, while maintaining connectivity using a protocol such

as WEAVE, can provide some new interesting results.

WEAVE provides an efficient geographic routing system. However, it cannot guar-

antee a 100% packet delivery, which may be crucial in some scenarios. A solu-

tion to this issue can be merging WEAVE and some other routing techniques

such as Face Routing. Our protocol already achieves high packet delivery rate

(close to 100%), so the addition would only be used in few cases without a

significant impact on path stretch or message overhead.

WEAVE was evaluated using a point-to-point communication pattern. However,

with small modification, it can provide an efficient way in one-to-many and

many-to-many scenarios. Using already established waypoints and check-

points can bring some interesting results.

WEAVE is able to deliver packets even if the position of the destination node is

not accurate. Some protocols are also able to do it [66], while others cannot

[64]. It could be interesting to compare WEAVE with other protocols in such

scenarios and evaluate the influence of the localization accuracy on routing

performance.

Chapter 17

Publications

• Micha�l Król, Franck Rousseaux, Andrzej Duda, “Weave: Efficient Geograph-

ical Routing in Large-Scale Networks”, pages 1-13, EWSN’16 (the scope of

the EWSN Conference was broaden to International Conference on Embed-

ded Wireless Systems and Networks organized in cooperation with ACM

SIGBED), 2016 - accepted for publication (acceptance ratio of full papers:

30.4%).

• Henry-Joseph Audéoud, Micha�l Król, Martin Heusse, and Andrzej Duda,“Low

Overhead Loop-Free Routing in Wireless Sensor Networks”, pages 1-8, IEEE

WiMob’15, Abu Dhabi, UAE.

• Micha�l Król, Franck Rousseaux, Andrzej Duda, “Featurecast - group commu-

nication service for WSN”, pages 1-11, IETF Internet-Draft.

• Micha�l Król, Franck Rousseaux, Andrzej Duda, “Featurecast: Lightweight

Data-Centric Communications for Wireless Sensor Networks”, pages 1-16,

EWSN’15 (European Conference on Wireless Sensor Networks), 2015 (accep-

tance ratio of full papers: 21.5%).

• Micha�l Król, Franck Rousseaux, Andrzej Duda, “Compact address represen-

tation for feature routing” (”Représentation compacte des adresses pour le

routage par caractéristiques”), pages 1-4, ALGOTEL’14.

Bibliography

[1] Cément Burin des Rosiers et al. SensLAB: Very Large Scale Open Wireless

Sensor Network Testbed. In Proc. 7th TridentCOM Conference, Shanghai,

Chine, April 2011. v, vi, 113

[2] Olivier Fambon, E Fleury, Gaëtan Harter, Roger Pissard-Gibollet, and

Frédéric Saint-Marcel. Fit iot-lab tutorial: hands-on practice with a very

large scale testbed tool for the internet of things. 10èmes journées franco-

phones Mobilité et Ubiquité, UbiMob2014, 2014. vii

[3] Wint Yi Poe and Jens B Schmitt. Node deployment in large wireless sensor

networks: coverage, energy consumption, and worst-case delay. In Asian

Internet Engineering Conference, pages 77–84. ACM, 2009. 9

[4] Stavros Toumpis and Leandros Tassiulas. Optimal deployment of large wire-

less sensor networks. Information Theory, IEEE Transactions on, 52(7):2935–

2953, 2006. 9

[5] Tuba Bakıcı, Esteve Almirall, and JonathanWareham. A smart city initiative:

the case of barcelona. Journal of the Knowledge Economy, 4(2):135–148, 2013.

10

[6] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin White-

house, Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, et al.

Tinyos: An operating system for sensor networks. In Ambient intelligence,

pages 115–148. Springer, 2005. 10

[7] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki-a lightweight

and flexible operating system for tiny networked sensors. In Local Computer

Networks, 2004. 29th Annual IEEE International Conference on, pages 455–

462. IEEE, 2004. 10

[8] Emmanuel Baccelli, Oliver Hahm, Mesut Gunes, Matthias Wahlisch, and

Thomas C Schmidt. Riot os: Towards an os for the internet of things. In

Computer Communications Workshops (INFOCOM WKSHPS), 2013 IEEE

Conference on, pages 79–80. IEEE, 2013. 10

[9] Shah Bhatti, James Carlson, Hui Dai, Jing Deng, Jeff Rose, Anmol Sheth,

Brian Shucker, Charles Gruenwald, Adam Torgerson, and Richard Han. Man-

tis os: An embedded multithreaded operating system for wireless micro sensor

platforms. Mobile Networks and Applications, 10(4):563–579, 2005. 10

138 Bibliography

[10] Anand Eswaran, Anthony Rowe, and Raj Rajkumar. Nano-rk: an energy-

aware resource-centric rtos for sensor networks. In Real-Time Systems Sym-

posium, 2005. RTSS 2005. 26th IEEE International, pages 10–pp. IEEE, 2005.

10

[11] T. Winter and P. Thubert. Rpl: Ipv6 routing protocol for low power and lossy

networks. Technical Report version 4, IETF draft, October 2009. 12, 60, 113

[12] L. Mottola and G. Picco. Logical Neighborhoods: A Programming Abstrac-

tion for Wireless Sensor Networks. In Proc. IEEE DCOSS, 2006. 12, 50, 59,

60, 77, 87

[13] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of

IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944 (Proposed Standard),

September 2007. Updated by RFCs 6282, 6775. 17

[14] MicaZ Datasheet. 17, 18

[15] TelosB Datasheet. 17, 18

[16] OpenMote Datasheet. 17, 18

[17] GreenNet Datasheet. 17, 18

[18] SmartMeshIP Datasheet. 17, 18

[19] IEEE 802.15.11a/b/n/g standard http://standards.ieee.org/about/get/

802/802.11.html. 17

[20] TONI Adame, Albert Bel, Boris Bellalta, JAUME Barcelo, and Miquel Oliver.

Ieee 802.11 ah: the wifi approach for m2m communications. Wireless Com-

munications, IEEE, 21(6):144–152, 2014. 17

[21] IEEE 802.15.1 -2002 standard http://standards.ieee.org/findstds/

standard/802.15.1-2002.html. 18

[22] IEEE 802.15.4. WPAN task group 4. http://www.ieee802.org/15/pub/

TG4.html, 2006. 18

[23] ZigBee Alliance. Zigbee specification, 2006. 18

[24] LoRa Alliance Website. Accessed on 2015-10-16. 18

[25] Semtech. SX1272 LoRa Datasheet. Accessed on 2015-10-16. 18

[26] SigFox Website. Accessed on 2015-10-16. 18

Bibliography 139

[27] Adam Dunkels. The contikimac radio duty cycling protocol. 2011. 19

[28] Tijs Van Dam and Koen Langendoen. An adaptive energy-efficient mac pro-

tocol for wireless sensor networks. In Proceedings of the 1st international con-

ference on Embedded networked sensor systems, pages 171–180. ACM, 2003.

19

[29] Michael I Brownfield, Kaveh Mehrjoo, Almohonad S Fayez, and Nathaniel

J Davis Iv. Wireless sensor network energy-adaptive mac protocol. 2006. 19

[30] Cristina Cano, Boris Bellalta, Anna Sfairopoulou, and Jaume Barceló. A

low power listening mac with scheduled wake up after transmissions for wsns.

Communications Letters, IEEE, 13(4):221–223, 2009. 19

[31] Pei Huang, Li Xiao, Soroor Soltani, Matt W Mutka, and Ning Xi. The evolu-

tion of mac protocols in wireless sensor networks: A survey. Communications

Surveys & Tutorials, IEEE, 15(1):101–120, 2013. 19

[32] K. Lougheed and Y. Rekhter. Border Gateway Protocol (BGP). RFC 1105

(Experimental), June 1989. Obsoleted by RFC 1163. 23

[33] J. Moy. OSPF Version 2. RFC 2328 (INTERNET STANDARD), April 1998.

Updated by RFCs 5709, 6549, 6845, 6860. 23

[34] D. Oran. OSI IS-IS Intra-domain Routing Protocol. RFC 1142 (Historic),

February 1990. Obsoleted by RFC 7142. 23

[35] John A Stankovic. Research challenges for wireless sensor networks. ACM

SIGBED Review, 1(2):9–12, 2004. 23

[36] Jamal N Al-Karaki and Ahmed E Kamal. Routing techniques in wireless

sensor networks: a survey. Wireless communications, IEEE, 11(6):6–28, 2004.

23

[37] A. Brandt, J. Buron, and G. Porcu. Home Automation Routing Requirements

in Low-Power and Lossy Networks. RFC 5826 (Informational), April 2010.

27

[38] J. Martocci, P. De Mil, N. Riou, and W. Vermeylen. Building Automation

Routing Requirements in Low-Power and Lossy Networks. RFC 5867 (Infor-

mational), June 2010. 27

[39] K. Pister, P. Thubert, S. Dwars, and T. Phinney. Industrial Routing Re-

quirements in Low-Power and Lossy Networks. RFC 5673 (Informational),

October 2009. 27

140 Bibliography

[40] M. Dohler, T. Watteyne, T. Winter, and D. Barthel. Routing Requirements

for Urban Low-Power and Lossy Networks. RFC 5548 (Informational), May

2009. 27

[41] Thomas Clausen and Ulrich Herberg. Some Considerations on Routing in Par-

ticular and Lossy Environments. IETF Workshop on Interconnecting Smart

Objects with the Internet, 2011. 28, 30

[42] Thomas Clausen, Ulrich Herberg, and Matthias Philipp. A critical evalua-

tion of the ipv6 routing protocol for low power and lossy networks (rpl). In

Wireless and Mobile Computing, Networking and Communications (WiMob),

2011 IEEE 7th International Conference on, pages 365–372. IEEE, 2011. 28

[43] JeongGil Ko, Stephen Dawson-Haggerty, Omprakash Gnawali, David Culler,

and Andreas Terzis. Evaluating the performance of rpl and 6lowpan in tinyos.

In Workshop on Extending the Internet to Low Power and Lossy Networks

(IP+ SN). Citeseer, 2011. 28

[44] N Accettura, LA Grieco, G Boggia, and P Camarda. Performance analysis

of the rpl routing protocol. In Mechatronics (ICM), 2011 IEEE International

Conference on, pages 767–772. IEEE, 2011. 28

[45] Olfa Gaddour, Anis Koubaa, Shafique Chaudhry, Miled Tezeghdanti, and

Mohamed Abid. Simulation and Performance Evaluation of DAG Construc-

tion with RPL. In Third International Conference on Commmunications and

Networking (COMNET’2012), Hammamet, Tunisia, 29 Mars, 1 April, April

2012. 30

[46] H.R. Kermajani and C. Gomez. Route change latency in low-power and lossy

wireless networks using rpl and 6lowpan neighbor discovery. In Computers

and Communications (ISCC), 2011 IEEE Symposium on, pages 937 –942, 28

2011-july 1 2011. 30

[47] J. P. Vasseur J. Tripathi, J. C. de Oliveira. A performance evaluation study

of rpl: Routing protocol for low power and lossy networks. Conference on

Information Sciences and Systems (CISS), 2010. 30

[48] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko. The Trickle Algorithm.

RFC 6206 (Proposed Standard), March 2011. 30, 33

[49] W. Xie, M. Goyal, H. Hosseini, J. Martocci, Y. Bashir, E. Baccelli, and

A. Durresi. A performance analysis of point-to-point routing along a directed

acyclic graph in low power and lossy networks. In Proceedings of the 2010

Bibliography 141

13th International Conference on Network-Based Information Systems, NBIS

’10, pages 111–116, Washington, DC, USA, 2010. IEEE Computer Society. 31

[50] M. Goyal, E. Baccelli, M. Philipp, A. Brandt, and J. Martocci. Reactive

Discovery of Point-to-Point Routes in Low-Power and Lossy Networks. RFC

6997 (Experimental), August 2013. 31

[51] Chi-Anh La, Martin Heusse, and Andrzej Duda Grenoble. Link reversal and

reactive routing in low power and lossy networks. In Personal Indoor and Mo-

bile Radio Communications (PIMRC), 2013 IEEE 24th International Sympo-

sium on, pages 3386–3390. IEEE, 2013. 31

[52] G. Montenegro S. Yoo K. Kim, S. D. Park and N. Kushalnagar. Internet

Draft, work in progress - 6LoW- PAN Ad Hoc On-Demand Distance Vector

Routing (LOAD), 2007. 32

[53] Adnan Aijaz, Hongjia Su, and A Hamid Aghvami. Enhancing rpl for cognitive

radio enabled machine-to-machine networks. In Wireless Communications

and Networking Conference (WCNC), 2014 IEEE, pages 2090–2095. IEEE,

2014. 32

[54] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-regulating

algorithm for code propagation and maintenance in wireless sensor networks.

In Proceedings of the USENIX Symposium on Networked Systems Design &

Implementation (NSDI), March 2004. 32

[55] M Milosh Stolikj, TMM Meyfroyt, PJL Cuijpers, and JJ Lukkien. Improving

the performance of trickle-based data dissemination in low-power networks.

2014. 33

[56] I. Stojmenovic. Position-Based Routing in Ad Hoc Networks. IEEE Commu-

nications Magazine, 40(7):128–134, Jul 2002. 35, 91

[57] N. Arad and Y. Shavitt. Minimizing Recovery State in Geographic Ad Hoc

Routing. IEEE Transactions on Mobile Computing, 8(2):203–217, Feb 2009.

35, 91

[58] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with Guaranteed

Delivery in Ad Hoc Wireless Networks. In DIAL’M, pages 48–55, Seattle,

USA, 1999. 36, 92, 127

[59] Brad Karp and H. T. Kung. Greedy Perimeter Stateless Routing for Wireless

Networks. In Proc. of MOBICOM, Boston, USA, August 2000. 36, 92, 127

142 Bibliography

[60] Young-Jin Kim, Ramesh Govindan, Brad Karp, and Scott Shenker. Lazy

Cross-Link Removal for Geographic Routing. In Proc. of SENSYS, pages

112–124, 2006. 36, 92

[61] Y.J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic Routing Made

Practical. In Proc. NSDI, pages 112–124, 2005. 36, 92

[62] Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings of

the thirteenth annual ACM symposium on Parallel algorithms and architec-

tures, pages 1–10. ACM, 2001. 36

[63] Ben Leong, Barbara Liskov, and Robert Morris. Geographic routing without

planarization. In Proceedings of the 3rd Conference on Networked Systems

Design & Implementation - Volume 3, NSDI’06, pages 25–25, Berkeley, CA,

USA, 2006. USENIX Association. 37

[64] Leong B. Zhou J., Chen Y. Practical 3D Geographic Routing for Wireless

Sensor Networks. In Proc. SenSys, pages 337–350, New York, NY, USA, 2010.

38, 92, 93, 115, 127, 133

[65] Eryk Schiller, Paul Starzetz, Franck Rousseau, and Andrzej Duda. Binary

waypoint geographical routing in wireless mesh networks. In Proceedings of

the 11th International Symposium on Modeling, Analysis and Simulation of

Wireless and Mobile Systems, MSWiM ’08, pages 252–259, New York, NY,

USA, 2008. ACM. 39

[66] Simon S Lam and Chen Qian. Geographic routing in d-dimensional spaces

with guaranteed delivery and low stretch. In Proceedings of the ACM SIG-

METRICS joint international conference on Measurement and modeling of

computer systems, pages 257–268. ACM, 2011. 40, 127, 133

[67] Prosenjit Bose and Pat Morin. Online routing in triangulations. In Algorithms

and Computation, pages 113–122. Springer, 1999. 40

[68] D-Y Lee and Simon S Lam. Protocol design for dynamic delaunay triangula-

tion. In Distributed Computing Systems, 2007. ICDCS’07. 27th International

Conference on, pages 26–26. IEEE, 2007. 40

[69] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol

(CoAP). RFC 7252 (Proposed Standard), June 2014. 45

[70] K. Hartke. Observing Resources in CoAP. Internet Draft, December 2014.

47

Bibliography 143

[71] Z. Shelby. Constrained RESTful Environments (CoRE) Link Format. RFC

6690 (Proposed Standard), August 2012. 47

[72] M. Nottingham and E. Hammer-Lahav. Defining Well-Known Uniform Re-

source Identifiers (URIs). RFC 5785 (Proposed Standard), April 2010. 47

[73] C. Bormann Z. Shelby. CoRE Resource Directory. Internet Draft, November

2014. 47

[74] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed Diffusion: a Scal-

able and Robust Communication Paradigm for Sensor Networks. In Proc. of

MOBICOM, pages 56–67, 2000. 48, 59, 87

[75] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,

Nicholas H. Briggs, and Rebecca L. Braynard. Networking named content.

In Proceedings of the 5th International Conference on Emerging Networking

Experiments and Technologies, CoNEXT ’09, pages 1–12, New York, NY,

USA, 2009. ACM. 52, 87

[76] Younes Abidy, Bilel Saadallahy, Abdelkader Lahmadi, and Olivier Festor.

Named data aggregation in wireless sensor networks. In Network Operations

and Management Symposium (NOMS), 2014 IEEE, pages 1–8. IEEE, 2014.

54

[77] Zhong Ren, Mohamed Ahmed Hail, and Horst Hellbruck. Ccn-wsn-a

lightweight, flexible content-centric networking protocol for wireless sensor

networks. In Intelligent Sensors, Sensor Networks and Information Process-

ing, 2013 IEEE Eighth International Conference on, pages 123–128. IEEE,

2013. 54

[78] Jan Pieter Meijers, Marica Amadeo, Claudia Campolo, Antonella Molinaro,

Stefano Yuri Paratore, Giuseppe Ruggeri, and Marthinus J Booysen. A two-

tier content-centric architecture for wireless sensor networks. In Network Pro-

tocols (ICNP), 2013 21st IEEE International Conference on, pages 1–2. IEEE,

2013. 54

[79] Qingfeng Huang, Chenyang Lu, and Gruia-Catalin Roman. Spatiotemporal

Multicast in Sensor Networks. In Proc. ACM SenSys, pages 205–217, New

York, NY, USA, 2003. ACM. 59

[80] Roland Flury and Roger Wattenhofer. Routing, Anycast, and Multicast for

Mesh and Sensor Networks. In IEEE INFOCOM, May 2007. 59

144 Bibliography

[81] Lu Su, Bolin Ding, Yong Yang, Tarek F. Abdelzaher, Guohong Cao, and

Jennifer C. Hou. oCast: Optimal Multicast Routing Protocol for Wireless

Sensor Networks. In Proc. of ICNP, pages 151–160, 2009. 59

[82] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva.

Directed Diffusion for Wireless Sensor Networking. IEEE/ACM Trans. Netw.,

11(1):2–16, 2003. 59

[83] Peter Hebden and Adrian Pearce. Data-Centric Routing Using Bloom Filters

in Wireless Sensor Networks. In Proc. of ICISIP-06, pages 72–78, 2006. 59

[84] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection tree

protocol. In Proc. ACM SenSys, Berkeley, CA, USA, 2009. 60

[85] A. Dunkels, B. Grönvall, and T. Voigt. Contiki—a Lightweight and Flexible

Operating System for Tiny Networked Sensors. In IEEE EMNETS, Tampa,

Florida, USA, November 2004. 60, 77

[86] A. Rahman and E.O. Dijk. Group Communication for CoAP. IETF draft-

ietf-core-groupcomm-07, May 2013. 60, 77, 79, 132

[87] Michael Mitzenmacher. Compressed Bloom Filters . In Proceedings of PODC

’01, volume 1, pages 144–150. ACM, 2001. 70

[88] Thomas Clausen and Philippe Jacquet. Optimized Link State Routing Pro-

tocol (OLSR). RFC 3626, IETF, October 2003. 91, 127

[89] Charles E. Perkins, Elisabeth M. Belding Royer, and Samir R. Das. Ad hoc

on-demand distance vector (AODV) routing. RFC 3561, IETF, July 2003.

91, 127

[90] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris. A Scalable

Location Service for Geographic Ad Hoc Routing. In Proc. MOBICOM, pages

120–130, Boston, Massachusetts, August 2000. 91

[91] R. Jain, A. Puri, and R. Sengupta. Geographical Routing Using Partial In-

formation for Wireless Ad Hoc Networks. IEEE Personal Comm., February

2001. 91

[92] H. Takagi and L. Kleinrock. Optimal Transmission Ranges for Randomly

Distributed Packet Radio Terminals. IEEE Transactions on Communications,

32(3):246–257, Mar 1984. 91

Bibliography 145

[93] G. G. Finn. Routing and Addressing Problems in Large Metropolitan-Scale

Internetworks. Technical Report ISI/RR-87-180, Information Sciences Insti-

tute, Mars 1987. 91

[94] Matthew Caesar, Miguel Castro, and Edmund B. Nightingale. Virtual Ring

Routing: Network Routing Inspired by DHTs. In In Proc. of ACM SIG-

COMM, pages 351–362, 2006. 92, 113

[95] Yun Mao, Feng Wang, Lili Qiu, Simon S. Lam, and Jonathan M. Smith. S4:

Small State and Small Stretch Routing Protocol for Large Wireless Sensor

Networks. In Proc. of the Usenix NSDI Conference, 2007. 92, 93, 113, 127

[96] D. S. J. De Couto and R. Morris. Location Proxies and Intermediate Node

Forwarding for Practical Geographic Forwarding. Technical Report MIT-

LCS-TR-824, MIT Laboratory for Computer Science, June 2001. 92

[97] L. Blazevic, J.-Y. Le Boudec, and S. Giordano. A Location-Based Routing

Method for Mobile Ad Hoc Networks. IEEE Transactions on Mobile Com-

puting, 4(2):97–110, 2005. 92

[98] M. Lim, A. Chesterfield, J. Crowcroft, and J. Chesterfield. Landmark Guided

Forwarding. In ICNP, pages 169–178, 2005. 92

[99] E. Schiller, P. Starzetz, F. Rousseau, and A. Duda. Binary Waypoint Geo-

graphical Routing in Wireless Mesh Networks. In Proc. ACM MSWiM, 2008.

92

[100] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris.

A High-Throughput Path Metric for Multi-Hop Wireless Routing. In Proc.

MOBICOM, pages 134–146, New York, NY, USA, 2003. 95

[101] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari. Energy-Efficient

Forwarding Strategies for Geographic Routing in Lossy Wireless Sensor Net-

works. In Proc. SenSys, pages 108–121, 2004. 102

146 Bibliography

