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Doctorat de l’université Pierre et Marie Curie – Paris 6
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Rapporteurs : Thierry Goudon Directeur de recherche INRIA Sophia Antipolis
Mohammed Lemou Directeur de recherche CNRS, Université de Rennes 1
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École Doctorale, Sciences Mathématiques de Paris Centre Laboratoire Jacques-Louis Lions





Résumé

La modélisation d’expériences de fusion par confinement inertiel fait intervenir des équations
cinétiques dont la discrétisation peut être très coûteuse. La recherche de modèles simplifiés
permet de réduire la taille et donc la complexité de ces systèmes. La justification mathématique
de ces modèles simplifiés devient alors un enjeu central.

Dans ce travail nous étudions plusieurs modèles réduits pour l’équation du transfert radiatif
dans différents contextes, tant du point de vue théorique que du point de vue numérique. En
particulier nous étudions l’équation du transfert radiatif relativiste dans le régime de diffusion
hors équilibre, et nous montrons la convergence de la solution de cette équation vers la solution
d’une équation de drift diffusion, dans laquelle les effets Doppler sont modélisés par un terme
de transport en fréquence. Cette équation de transport est discrétisée par une nouvelle classe
de schémas ”bien équilibrés” (well-balanced), pour lesquels nous montrons que ces nouveaux
schémas sont consistants lorsque la vitesse d’onde tends vers zero, par opposition aux sché-
mas de type Greenberg-Leroux [GL96]. Nous étudions également de nouveaux modèles réduits
pour le scattering Compton (collision inélastique photon-électron). Une hiérarchie d’équations
cinétiques non linéaires généralisant l’équation de Kompaneets [KOM57] pour des distributions
anisotropes sont dérivées et leurs propriétés étudiées. Les modèles aux moments de type P1 et
M1 sont dérivés à partir de l’une de ces équations, et nous montrons que la prise en compte
de l’anisotropie du rayonnement peut modifier le phénomène de condensation de Bose expliqué
par Caflisch et Levermore [CL86]. Ce manuscrit se termine avec les comptes rendus de deux
projets. Le premier est une preuve technique de la convergence uniforme du schéma de Gosse-
Toscani [GT02] sur maillages non structurés. Ce schéma est ”asymptotic preserving”, au sens ou
il preserve au niveau discret la limite de diffusion pour l’équation de la chaleur hyperbolique, et
cette preuve de convergence uniforme sur maillage non structurés en 2D est originale. Le second
concerne la dérivation d’un modèle cinétique pour le Bremsstrahlung électron-ion qui préserve
la limite thermique.

Mots-clés: Equation de transfert, équations cinétiques, modèles réduits, schémas well-balanced
et asymptotic preserving, scattering Compton, équation de Kompaneets, équation de Fokker-
Planck, Bremsstrahlung électron-ion.

Abstract

The modeling of inertial confinement experiments involves kinetic equations whose discretiza-
tion can become very costly. The research of reduced models allows to decrease the size and the
complexity of these systems. The mathematical justification of such reduced models becomes
an important issue.

In this work we study several reduced models for the transfer equation in several contexts,
from the theoretical and numerical point of view. In particular we study the relativistic transfer
equation in the non-equilibrium diffusion regime, and we prove the convergence of the solution



of this equation to the solution of a drift diffusion equation, in which the Doppler effects are
modeled by a frequency transport term. This transport equation is discretized by a new class
of well-balanced schemes, and we show that these schemes are consistant as the wave velocity
tends to zero, by opposition to the Greenberg-Leroux type schemes [GL96]. We also study
several original reduced models for the Compton scattering (inelastic electron-photon collision).
A hierarchy of nonlinear kinetic equations generalizing the Kompaneets equation [KOM57] for
anisotropic distributions are derived and their properties are studied. The M1 and P1 angular
moments models are derived from one of these equations, and we show that the anisotropic part
of a radiation beam can modify the Bose condensation phenomena observed by caflisch and Lev-
ermore [CL86]. This work ends with the reports of two side projects. The first one is a technical
proof of the uniform convergence of the Gosse-Toscani’s [GT02] scheme on unstructured meshes.
This scheme is asymptotic preserving, since it preserves at the discrete level the diffusion limit
of the hyperbolic heat equation, and this proof on unstructured meshes in 2D is original. The
second one is devoted to the derivation of a kinetic model for the electron-ion Bremsstrahlung
that preserves the thermal limit.

Keywords: Transfer equation, kinetic equations, reduced models, well-balanced and asymp-
totic preserving schemes, Compton scattering, Kompaneets equation, Fokker-Planck equations,
electron-ion Bremsstrahlung.
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Glossary

Physical quantities

• fγ is the density distribution function of the photons,

• I is the specific intensity, defined in (1.1),

• T is the fluid temperature,

• B(ν, T ) is the Planck function, defined in (1.2),

• fµ(ν) are the Bose-Einstein distributions, defined in (1.3),

• c is the speed of light,

• u is the fluid velocity.

• σs is the scattering coefficient,

• σa is the emission absorption coefficient.

Notations

• LTE: local thermodynamic equilibrium,

• AP: asymptotic preserving,

• WB: well-balanced

1
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Introduction

Introduction

This work focuses on the derivation of reduced models for kinetic equations applied to photon
transport. This kind of equations arises in the modeling of laser transport, radiotherapy and
more generally in astrophysics. These physical processes involve several interactions, such as
emission absorption and scattering. The simulation of such interactions is a complicated issue.
For instance the coupling between the light and the gas involves nonlinear operators, which
increases the difficulty of the mathematical study. Moreover, in the case of inertial confinement
fusion experiments, Rayleigh-Taylor instabilities appear, due to the variation of density between
the successive layers of the sphere. The numerical study is complicated by the fact that very
different time scales are involved, the velocity of the gas often being much smaller that the speed
of light.

To fix the problem, we consider in this work a gas of photons interacting with a plasma (mixture
of electrons and atomic nucleus with global electric neutrality) via several kind of interactions.
From a mathematical point of view, these interactions are described by two Boltzmann equa-
tions: one for the distribution function of the photons and one for the distribution function of
the electrons. In this work we do not consider the evolution of the atomic nucleus, assuming
that they are motionless. The equation on the photons may be nonlinear if the induce effects
(Pauli principle, quantum effects) are taken into account, leading to mathematical difficulties.
The corresponding collision operators may be very complicated to approximate, which justifies
the study of reduced models. Since in this work we are more interested in the description of the
transport of light, we often deeply simplify the matter description by using only an equation
describing the evolution of its macroscopic temperature.

An important issue in the derivation of reduced models is the preservation of the physical
properties of the Boltzmann equation. Indeed, the situation that we want to model with math-
ematical tools satisfies several properties. For example the physical entropy of the system can
not go down (non reversibility), the distribution function of the photons remains non negative...
These properties have to be satisfied by the simpler model, as a necessary (but not necessarily
sufficient) condition for the model to be valid.

Objectives of the study

The objectives of this work are multiple, but can all be explained in term of derivation and
justification of reduced models, either theoretical or numerical. The main lines that we follow
are: given a model, can we study its mathematical structure, and prove some theoretical results
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(maximum principle, existence...)? When a new model is derived from a former one, does it
preserves its physical properties (entropy, non negativity...)? Is it possible to justify rigorously,
in a sense that has to be specified, the derivation of the model? We will come back to these
questions for each model.

Main results

This work led to several original results. In particular the convergence result (theorem 2.8) of
the solution of the relativistic transfer equation (2.1) to the solution of the drift diffusion system
(2.11) in the non-equilibrium diffusion regime obtained in chapter 2 involves an innovating
comparison principle (theorem 2.1). In chapter 3 is derived and studied a new class of well-
balanced schemes for transport equations. Contrary to the Greenberg-Leroux type schemes
[GL96], these schemes are proved to be uniformly convergent as the wave velocity tends to zero
(lemma 3.6). Finally, in chapter 5 a multigroup angular moment model (frequency dependent
P1 model 5.10) is derived from an anisotropic kinetic model describing Compton scattering. In
the homogeneous case, this model can be seen as an anisotropic extension of the Kompaneets
equation. It is shown in lemma 5.2 that the anisotropic part of the radiation beam modifies the
well-known long time behavior of the solution of the Kompaneets equation [CL86].

We now give some further details on the models we are about to study.

Chapter 1

In a first part (chapter 1) are recalled the basic concepts in radiation hydrodynamics. In partic-
ular we introduce the main physical quantities of interest, the Boltzmann equation for photons
and the modeling of interactions with matter. Since they are widely used throughout this thesis,
the main reduced models for the transfer equation are presented. In particular we explain the
notion of equilibrium and non-equilibrium diffusion regimes and the angular moments methods
(PN , MN ).

Chapter 2

In chapter 2 is studied the influence of a gas of photons on a moving fluid, interacting via
isotropic scattering and emission absorption. The relativistic transfer equation coupled to an
equation describing the fluid temperature is studied, and we prove a maximum principle and
an existence result. In a second part we study the non-equilibrium diffusion regime. Indeed,
in physical literature [MWM99, WIN95], one can find a modeling of the Doppler effects by a
frequency drift term ∇.u(ν∂νρ), where ρ, the zero-th order moment of the specific intensity I,
satisfies a diffusion equation. We provide a justification of this equation, as the limit in the
non-equilibrium diffusion regime of the relativistic transfer equation.

Chapter 3

In chapter 3 we design and study several costless numerical schemes for the (homogeneous in
space) non-equilibrium diffusion regime obtained in chapter 2. Even if this equation is rather
simple, it contains a lot of the involved physics. Indeed, the frequency drift term depends
on the divergence of the fluid velocity, which may vanish, and the equation also depends on
the absorption coefficient, which in known to be highly irregular with respect to the velocity.
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Design a numerical scheme, well-balanced, consistent as ∇.u tends to 0 and costless even for
these nonlinear absorption coefficient is thus an interesting issue. In a first step we study a
scheme constructed according to the Greenberg-Leroux method [GL96]. Despite well-balanced,
this scheme is not consistent with respect to the speed of the waves, which is a problem for our
applications. We thus designed a new scheme, called spectrally well-balanced (SWB), which is
proved to be uniformly convergent. Various numerical tests are performed to illustrate this from
a numerical point of view.

Chapter 4

The chapter 4 deals with the derivation of a hierarchy of anisotropic kinetic models for the
Compton scattering. This is a generalization of the derivation of the Kompaneets equation by
M. Escobedo and co-authors [EMV03] for anisotropic distribution functions. It leads to nonlinear
anisotropic Fokker-Planck type equations, which we study by proving theoretical results for one
of them, such as a H-theorem and the conservation of the non negativity of the distribution
function. In a second time this model is coupled to an equation describing the evolution of the
electronic temperature, and the equilibrium and non-equilibrium diffusion regimes are studied.

Chapter 5

The chapter 5 deals with the derivation of angular moments methods for the coupled model
derived in chapter 5. In particular we show that the P1 model leads to an extension of the
Kompaneets equation, perturbed by a Burgers type term on the first order moment. The
difference between this P1 model and the Kompaneets equation is studied, and we show that
the introduction of an anisotropic part in a radiation beam may modify the stationary states.
We also study the M1 model. The introduction of the Compton scattering is shown to not
modify the long time range in comparison with the classical isotropic scattering, characterized
by the convergence of the radiation temperature to the electronic temperature, but modifies
the convergence to this equilibrium. This grey M1 model will be particularly studied since it is
widely used in the context of our applications. Finally, an hybrid P1 −M1 model is derived.

Chapter 6

In chapter 6 is presented a side project concerning the electron ion Bremsstrahlung. This work
has been initiated during the Cemracs 2014 (French summer school on plasma physics) with S.
Brull, B. Dubroca and R. Duclous and continued for several months after the summer school.
This work includes the derivation of a kinetic model describing the electron-ion Bremsstrahlung,
the derivation of the corresponding M1 model and the construction of an analytic expression of
the corresponding cross section. Several test cases are given in the context of the radiotherapy.
The application of this work is the destruction of cancerous tumor by powerful electron beams.

Chapter 7

In chapter 7 is studied the Gosse-Toscani’s scheme [GT02] for the hyperbolic heat equations,
and its 2D extension [FRA12,JL96]. The hyperbolic heat equations corresponds to the P1 model
applied on the transfer equation in the case of no coupling with matter and isotropic scattering.
In the non-equilibrium diffusion regime (rescaling of the equations with a small parameter), the
solution of the hyperbolic heat equations converges to the solution of a diffusion equation. The
Gosse-Toscani’s scheme is asymptotic preserving (AP), which means that the limit of the scheme
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as the parameter goes to zero is a consistent scheme with the diffusion equation. A proof of
its uniform convergence (with respect to the small parameter) is provided, which is original for
unstructured meshes, even in 1D. The proof in 1D on regular mesh was provided by L. Gosse
and G. Toscani in [GT02].
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Chapter 1

Reduced models for photon
transport

1.1 Introduction

In this chapter are presented the basic concepts of radiation transport, the interaction between
light and matter and the better known reduced models. The aim of this chapter is not to give
an exhaustive list of all existing methods and models in radiative transfer, but to present an
introduction on simple cases of reduced models and technics which are used in this work in more
complicated situations.

This chapter is organized as follows. The section 2 is devoted to the presentation of the main
models used to describe photons-electrons interactions. After presenting the physical quantities
of interest, we introduce the Boltzmann equation for photons. The corresponding collision opera-
tor is given for classical interactions, such as scattering, emission absorption and Bremsstrahlung.
We recall in particular the main simplified scattering (Compton, Thomson, isotropic...). After a
brief introduction to the relativistic case, we introduce the gas equations by means of a hierarchy
of models, from a Boltzmann equation for the distribution function of the electrons to a simple
equation on the gas macroscopic temperature.

The section 3 is devoted to the presentation of the main reduced models in radiative transfer.
We present two different methods. The first one consists to eliminate the angular dependence.
We give the example of the diffusion approximations (equilibrium and non-equilibrium diffusion
regimes), the angular moments methods and the discrete-ordinate methods. The second one
consists to simplify the collision operator. We present in particular the case of the Compton
scattering, whose collision operator can be approximated by the well-known nonlinear Kompa-
neets equation.

Finally, in section 4 are presented some numerical issues which will be studied in this work.
In particular the notion of well-balanced scheme is recalled through the example of Greenberg-
Leroux [GL96] type schemes, which are studied in chapter 3. We also discuss about asymptotic
preserving (AP) schemes by presenting the Gosse-Toscani’s scheme [GT02], which is studied in
chapter 7.
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1.2 The Boltzmann equation for photons

1.2.1 Physical quantities

As a starting point we present the main physical quantities that take place in the description of
the radiation. We are interested in the description of the evolution of the density distribution
function of the photons fγ . It is defined such that the number of photons ∆N at time t, position
x and momentum p in a volume ∆x∆p is given by

∆N = fγ(t,x,p)∆x∆p.

With these notations, the total number of photons is

N(t) =

∫

R3

∫

R3

fγdxdp.

Since the radiation momentum p is related to the photons frequency ν and its direction Ω by
the relation

p =
hν

c
Ω,

where h is the Planck constant, for any density distribution function f := f(p), the integral
over momentum can be changed as

∫

R3

f(p)dp =
h

c

∫

R+

∫

S2

f(ν,Ω)ν2dΩdν.

This change of variables will often be used along this work. Another physical important quantity
is the specific intensity I, defined from the density distribution function by

I =
2h

c2
ν3fγ . (1.1)

The specific intensity is homogeneous to an energy. The attention of the reader is drawn to the
fact that we adopt here the mathematical notations. Indeed in physical literature what we call
the density distribution function fγ is denoted nγ , the photon occupation number. The notation
nγ is used in chapter 6 in which a kinetic model describing the electron-ion Bremsstrahlung is
derived.

At the local thermodynamic equilibrium (ETL), the emission spectrum of the matter is given
by the Planck function, also called the Black body radiation

B(ν, T ) =
2h

c2
ν3

e
hν

kBT − 1
, (1.2)

where h is once again the Planck constant, kB is the Boltzmann constant and T is the matter
temperature. This quantity is very important since when the radiation interacts with matter,
this often leads to an equilibrium state defined by

∫

R+

∫

S2

IdΩdν =

∫

R+

∫

S2

B(ν, T )dΩdν = aT 4,
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where a = 4σR, with σR the Stefan Boltzmann constant. This explains the fact that one often
refers to a radiation temperature TR, which tends to the matter temperature to the power four.
The Planck function is also linked to the Bose-Einstein distributions fµ, defined by

fµ(ν) =

[
exp

(
h

kBT

(
µ+ ν

))
− 1

]−1

. (1.3)

One thus has B(ν, T ) = 2h
c2
ν3f0(ν). The Bose-Einstein distributions are the equilibrium states

of the Boltzmann equation when the collision kernel describes Compton scattering. If emission
absorption processes are taken into account, the set of equilibrium states reduces to f0(ν).

Since in this work we are interested in the mathematical structure of the transfer equation,
we work we dimensionless quantities. To this end we always take h = kB = 1, and we consider
the ”normalized” specific intensity I = ν3fγ and ”normalized” Planck function

B(ν, T ) =
ν3

eν/T − 1
.

1.2.2 The Boltzmann equation

From a general point of view, the equation describing the evolution of the density distribution
function of the photons fγ , which depends on the time t ∈ [0, T f ], 0 < T f < +∞, the position
x ∈ R

3
x of the photon, its frequency ν ∈ R

+
ν and its direction Ω ∈ S2, interacting with electrons

of density distribution function fe is described by the Boltzmann equation for photons

1

c
∂tfγ + Ω.∇xfγ = Q(fγ , fe). (1.4)

The collision operator Q(fγ , fe) describes the interactions between the photons and the electrons.
These interactions usually involve scattering, emission absorption and Bremsstrahlung. The
scattering describes the diffusion processes appearing during a collision. It might involves energy
exchange (Compton scattering) or only a change of direction (Thomson or isotropic scattering).
The emission absorption and the Bremsstrahlung processes describe the creation and absorption
of photons. We thus decompose the collision operator Q(fγ , fe) as the sum of three operators

Q(fγ , fe) = Qabs(fγ , fe) +Qscat(fγ , fe) +Qbrem(fγ , fe)

The next parts detail the expression of these operators for the most usual interactions.

Scattering

We introduce the expression of the collision operator for the scattering of photons by electrons.
We start from the most general case, and through several level of simplifications we explain the
derivation of the Compton, Thomson and isotropic scattering.

We consider the collision between a photon of momentum p with an electron of momentum
p∗, leading to another photon of momentum p′ and another electron of momentum p′∗ (figure
7.6). From a very general point of view, the collision operator Q(fγ , fe), where fe is the density
distribution function of the electrons is given by [EMV03]

Qscat(fγ , fe) =

∫

R3

∫

R3

∫

R3

W (p, p∗, p
′, p′∗)

(
f ′γf

′
e∗(1 + τfγ)(1 + τ ′fe∗)

− fγfe∗(1 + τf ′γ)(1 + τ ′f ′e∗)

)
dp′dp∗dp

′
∗,

(1.5)
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Figure 1.1: Diagram of photon-electron scattering

where fe∗ = fe(p∗), f ′e∗ = fe(p
′
∗) and f ′γ = fγ(p

′). The parameters τ , τ ′ ∈ {0, 1} model the
induce effects (quantum effects), whose value is 1 if they are taken into account and 0 otherwise.
In this work we always take τ ′ = 0, i.e. no induce effects for the electrons. The quantity
W (p, p∗, p′, p′∗) is the probability of collision leading to the transition from the state (p, p∗) to
the state (p′, p′∗), whose expressions are linked by the conservation of momentum and energy





p + p∗ = p′ + p′∗,

|p|+ |p∗|
2

2m
= |p|′ + |p

′
∗|2

2m
,

(1.6)

where m is the mass of the electron at rest. We now present the expression of the collision
operator Qscat(fγ , fe) in simplified models.

Compton scattering

In the case of the Compton scattering, the transition rate W (p, p∗, p′, p′∗) is given by [EMV03]

W (p, p∗, p
′, p′∗) =

σs(x, p, p
′)

|p||p′| δΣ, (1.7)

where δΣ is the manifold of 4-uplets (p, p∗, p′, p′∗) satisfying (1.6) and σs(x, p, p
′) is given by the

Klein-Nishina formula [EV55,POM73]. In this work we consider a simplified model describing
the Compton scattering. This model is said to be simplified since in this description, we assume a
simplified expression of the scattering kernel σs(x, p, p

′) = σ̄s(x)(1+ cos2 θ), where cos θ = Ω.Ω′

is the cosine of the scattering angle.

From a physical point of view, the Compton scattering have been widely studied [FKM85,
PL97,POM73]. On the other hand few mathematical results exist in the literature. We may cite
the important papers of Escobedo and Mischler [EM01,EM99]. They considered the following
Boltzmann equation modeling the Compton scattering

ν2∂tf =

∫

R+

(
f ′(1 + f)B(ν ′, ν)− f(1 + f ′)B(ν, ν′)

)
dν ′. (1.8)

This expression of the collision operator can be obtained from the general operator (1.5) by using
the expression (1.7) of the transition rate, by assuming the isotropy of the distribution function of
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the photons and that the electrons are at local thermodynamic equilibrium (ETL). This equation
satisfies several physical properties. In particular it preserves the total number of photons
N(f) =

∫
R+ ν

2fdν, it preserves the Boltzmann stationary states fµ(ν) = (eµ+ν − 1)−1 and the
(mathematical) entropy H(f) =

∫
R+ ν

2(f log f − (f +1) log(f +1)+ νf)dν decreases. Escobedo
and Mischler studied the existence of solutions, and the long time range of these solutions
(see also [LY77, LY78] for the Dirac masses formation). This result may be stated as follows
[EM01,EM99]. Assume that the initial datum of equation (1.8) is of the form F in = ν2f in+αinδ0,
with 0 ≤ f in ≤ f0 (f0 defined in (1.3)) and αin ≥ 0. Then, under physical assumptions on the
kernel B,

• There exists an entropy solution to equation (1.8) F = ν2f +αδ0 ∈ C([0, T ),E1), where E1

is the set of distributions F ∈ (Cb(R
+))′ such that F ≥ 0 and

∫
R+ d(e

νF ) <∞. Moreover,
0 ≤ α(t) ≤ αin, 0 ≤ ν2f(t, .) ≤ ν2f in, ∀t ≥ 0 and the total number of photons is preserved.

• Denoting F ∈ C([0,∞); (Cb(R
+))′) the solution of equation (1.8) and m =

∫
R+ d(F

in),
they proved that

F (t, .) ⇀ Bm, weakly ⋆ in (Cb(R
+))′,

lim
t→∞
‖ν2f(t, .)− ν2fµ‖L1(ν0,∞) = 0,∀ν0 > 0,

where Bm, the Bose Einstein condensate, is defined by

Bm = ν2fµ + αδ0, with




α = 0 and µ ≥ 0 such that

∫

R+

ν2fµdν = m if m ≤ N0,

µ = 0 and α = m−N0 if m > N0,

Moreover if m ≤ N0, we can take ν0 = 0.

In this work we are particularly interested in the description of anisotropic distribution functions.
We thus need a more general expression of the collision operator for Compton scattering. Let
us explain the main lines. We assume that the electrons are at thermodynamical equilibrium,
and thus their distribution function is given by a Maxwellian of temperature T

fe(p
′
∗) = e−

|p′∗|
2

2mT = e−c
|p|−|p′|

T e−
|p∗|

2

2mT

Under these assumptions, the integrals over the pre and post-collisions electrons momentum can
be achieved in (1.5) and (1.7), and one finds [EMV03], taking into account the induce effects
(τ = 1),

Qscat(fγ , fe) = Qscat(fγ) =

∫

R+

∫

S2

ν ′

ν
b(x, ν, ν ′, θ)e

ν′

cT q(fγ)dν
′dΩ′, (1.9)

where 



b(x, ν, ν ′, θ) = σs(x)
(
1 + cos2 θ

)
|ω|−1e

−A2mc2

2T |ω|2 ,

A = ν ′ − ν +
|ω|2
2mc

,

ω =
1

c

(
ν ′Ω′ − νΩ

)
,

cos θ = Ω.Ω′,

(1.10)
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and

q(fγ) = e−
ν

cT fγ(ν
′,Ω′)

(
1 + τfγ(ν,Ω)

)
− e− ν′

cT fγ(ν,Ω)
(
1 + τfγ(ν

′,Ω′)
)
.

This equation will be studied in details in chapter 4, and several Fokker-Planck equations will
be derived from it. The Boltzmann equation (1.8) used in [EM01,EM99] can be obtained from
(1.9) by assuming the isotropy of the distribution and by denoting

B(ν, ν′) = νν ′eν
′−ν
∫

S2

∫

S2

b(x, ν, ν ′, θ)dΩ′dΩ.

Simplified scattering

We present several simpler and more classical expression of the collision operator. Let us first
assume that the electrons distribution function be constant, i.e. fe(p∗) = fe(p

′
∗) = fe. One finds

from the general collision operator (1.5) by denoting

σs(p, p
′) =

∫

R3

∫

R3

feW (p, p∗, p
′, p′∗)dp∗dp

′
∗

and by taking τ = 0 for simplicity the following expression of the collision operator

Qscat(fγ) =

∫

R3

σs(p, p
′)
(
fγ(p

′)− fγ(p)
)
dp′.

Since the momentum p of a photon is linked to its frequency ν and its direction Ω by the
(normalized) relation p = νΩ, this expression can also be written

Qscat(fγ) =

∫

R+

∫

S2

σs(ν, ν
′,Ω.Ω′)

(
fγ(ν

′,Ω′)− fγ(ν,Ω)
)
dΩ′dν ′.

Here we used the fact that the scattering coefficient σs depends only on the cosine of the scatter-
ing angle Ω.Ω′. The simplest expression of the kernel σs(p, p

′) is obtained when the scattering
is coherent, i.e. there is no energy exchange during the collision. In this case, the scattering
coefficient is given by σs(ν, ν

′,Ω.Ω′) = σ̄s(Ω.Ω
′)δν′=ν , and the collision operator reduces to

Qscat(fγ) =

∫

S2

σ̄s(Ω.Ω
′)
(
fγ(ν,Ω

′)− fγ(ν,Ω)
)
dΩ′.

By taking σ̄s(Ω.Ω
′) = 1 + (Ω.Ω′)2, one finds the classical Thomson scattering [POM73]. If

one takes σ̄s(Ω.Ω
′) = 1, one finds the classical isotropic scattering, which is often used in

mathematical models [BGPS88,DOG01].

Emission absorption

In this part we describe the collision operator in the case of emission absorption. The process of
emission can be separated in two different ways. First, an electron attached to an atomic nucleus
can loss energy by emitting a photon, whose energy corresponds to the difference of potential
energy between the two energy levels (Einstein principle). Inversely, an electron can increase its
potential energy level by absorbing a photon. The second physical process leading to emission
of photon is the electron-ion Bremsstrahlung. This phenomena is due to the Coulomb potential
of an atomic nucleus, which slows down an ingoing electron which in turn emits a photon.
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”Classical” emission absorption

Let us present here the simplest model of emission absorption. We consider that the matter
is at local thermodynamic equilibrium (ETL), which means that the distribution function of the
electrons is given by a Maxwellian of temperature T , where T is the macroscopic temperature
of the matter. As explain in the introduction, the matter emits photons through the Planck
function at temperature T . On the other hand the matter also absorbs photons, and the rate
of absorption is given by the absorption coefficient σa. The emission absorption operator thus
reads

Qabs(fγ , T ) = σa(ν, T )
(
B(ν, T )− ν3fγ

)
. (1.11)

The absorption coefficient is in general highly nonlinear with respect to the frequency, and its
behavior with respect to the electron temperature may be singular as T → 0. The mathemat-
ical study of such models is thus a complicated issue. For example, in [BGPS88] the authors
considered the Cramer’s opacity

σa(ν, T ) =
1− e− ν

T

ν3
√
T

.

In [GS08], the authors proved the existence of solutions in the grey case (no frequency depen-
dence) by simply assuming that the absorption term satisfies

lim
T→0

σa(T ) = +∞, lim
T→+∞

σa(T ) = 0.

Due to this temperature dependence, these works were performed without the use of semi-
groups contraction. In this work, except in the chapter 5 and the study of the electron-ion
Bremsstrahlung, we always assume that the absorption coefficient σa does not depend on the
temperature T , but only on the frequency. In the case of the relativistic transfer equations (chap-
ter 2), this allows us to prove the existence of solutions by using the semigroups theory [PAZ83].

Electron-ion Bremsstrahlung in kinetic transport theory

The electron-ion Bremsstrahlung effect describes the emission of a photon by an electron slow-
ing down in presence of an electric field created by an atomic nucleus (figure 1.2). This photon

Figure 1.2: Diagram of Bremsstrahlung emission

might be absorbed in a second time by the environment. The conservation of energy yields
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εγ = ε0e − εe ≥ 0, where εγ is the energy of the emitted photon, ε0e (resp εe) is the energy of the
pre (resp post) collision electron. One also defines the pre and post-collisional electron momen-
tum p0

e and pe. The Bremsstrahlung is often decomposed as direct and inverse Bremsstrahlung,
the inverse Bremsstrahlung being seen as the absorption of a photon by an electron. The
equations describing the electron-ion Bremsstrahlung are derived by considering all the possible
transformation (Feynman’ diagram, figure 1.3). In this diagram σB (resp σIB) represents the

Figure 1.3: Feynman’ diagram of electron-ion Bremsstrahlung

probability of direct Bremsstrahlung (resp inverse Bremsstrahlung). The derivation of these
differential cross sections is performed in chapter 6, in which a kinetic model describing the
electron-ion Bremsstrahlung is studied.

If one assumes that the electrons are at local thermodynamic equilibrium, and that the emit-
ted photons are given by a Planck function of temperature T , then the Bremsstrahlung op-
erator reduces to the classical emission absorption operator (1.11) (also referred as thermal
Bremsstrahlung).

1.2.3 Relativistic case

In this part we introduce the relativistic transfer equation. We thus consider a gas of photons
interacting with a moving fluid. The velocity of the fluid u is assumed to satisfy |u|/c < 1,
which is physically relevant. Due to the velocity of the fluid, the physical quantities can be
computed in several frames. In this work we consider two frames: the laboratory frame and the
fluid frame, also called the co-mobile frame. The quantities computed in the co-mobile frame
are denoted with a subscript 0. From a general point of view, the Boltzmann equation (1.4) in
the relativistic case writes [MWM99,POM73]

1

c
∂tI + Ω.∇I = Λ−2

(
Q(I, g)

)

0

, (1.12)

where Λ is a relativistic coefficient

Λ =
1 + Ω.u/c√
1 + |u2|/c2

.
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In this equation g refers to the description of the fluid. According to the considered model,
g can be the distribution function of the electrons in the most general case, or for example
the fluid temperature in a simplified case. For ease of notations we introduce the Lorentz factor

γ =
√

1 + |u2|/c2−1
. Let us assume for simplicity that the interactions are described by classical

isotropic scattering and emission absorption (with a fluid temperature T ). One thus finds for
the collision operator

(
Q(I, T )

)

0

= σs(x)

(∫

S2

I0(Ω
′
0)dΩ

′
0 − I0

)
+ σa(ν0)

(
B(ν0, T )− I0

)
.

The relation that links the radiative intensity in the laboratory and in the co-mobile frames is
given by

I = Λ−3I0

In the same way, the relation between the frequency in the laboratory and in the co-mobile
frames is given by

ν = Λ−1ν0

The scattering operator can be computed in the laboratory frame [BD04,LMH99], which yields

σs(x)

(∫

S2

I0(Ω
′
0)dΩ

′
0 − I0

)
= σs(x)Λ

(∫

S2

Λ′

Λ3
I(ν ′,Ω′)dΩ′ − I

)
,

where Λ′ = γ(1 −Ω′.u/c) and ν ′ = Λ
Λ′ ν. Here we see the influence of the fluid velocity to the

frequency of the radiation, which is called the Doppler effects. Indeed the radiative intensity
over the angular integral is computed at the frequency ν ′, which goes to 0 with |u|/c, but can
be non negligible, depending once again on the value of |u|/c.

The relativistic transfer equations has been studied by various authors. In particular the equi-
librium and non equilibrium regimes have been studied in the grey case, in the context of a
coupling with the Euler equations [BD04], and with a simpler coupling but with stronger results
in [GLG05]. In chapter 2 we prove the strong convergence in the non equilibrium regime of the
solution of the relativistic transfer equation (1.12) coupled to a fluid equation to the solution of
a drift diffusion equation.

1.2.4 Coupling with the fluid equations

Let us now consider the equations describing the evolution of the fluid. In the same spirit than
in the previous section, the evolution of the electrons distribution function fe is governed by the
following Boltzmann equation

∂tfe + ve.∇fe = Q̄(fe, fγ),

where the collision operator Q̄(fe, fγ) models the interaction between electrons and others par-
ticles (electrons, photons, atomic nucleus...). The collision operator has been widely stud-
ied in the case of the Coulomb correction. The case of the interactions with atomic nucleus
(Bremsstrahlung) will be studied in chapter 6. In the case of the interaction with photons by
scattering, one could ask that the total energy be conserved, which would leads to the relation

∫

R3

νQ(fγ , fe)dp+

∫

R3

|ve|2Q̄(fe, fγ)dve = 0. (1.13)
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Euler equations

As in the classical theory of fluid equations, reduced models can be derived to simplify this
equation. Let us assume for simplicity that this collision operator satisfies mass, momentum

and energy conservation, i.e. Q̄(fe, fγ)
(
1,ve, |ve|2

)T
= 0 (this is the case for example for the

collision operator modeling the Coulomb interactions between electrons). We define the moments
(with respect to the velocity) of the electrons distribution function fe by





ρ =

∫

R3

fedve,

ρu =
1

ρ

∫

R3

vefedve,

ρE =
1

ρ

∫

R3

|ve|2
2

fedve,

and the pressure as p =
∫

R3(ve−u)⊗ (ve−u)fedve. Integrating the Boltzmann equation (1.13)
with respect to the velocity ve yields

∂tρ+∇.
(
ρu
)

= 0,

which is the mass conservation equation. Multiplying equation (1.13) by ve and integrating with
respect to the velocity gives

∂t
(
ρu
)

+∇.
∫

R3

ve ⊗ vefedve = 0.

Writing ve ⊗ ve = (ve − u) ⊗ (ve − u) + u ⊗ u + 2(ve − u) ⊗ u and using the fact that∫
R3(ve − u)⊗ udve = 0, one obtains

∂t
(
ρu
)

+∇.
(
ρu⊗ u + p

)
= 0,

which is the momentum conservation equation. Now multiplying equation (1.13) by 1
2 |ve|2 and

integrating with respect to the velocity, one has

∂t
(
ρE
)

+∇.
∫

R3

|ve|2
2

vefedve = 0.

Once again, one remarks that

∫

R3

|ve|2
2

vefedve =
1

2

∫

R3

|ve − u|2(ve − u)fedve +
u

2
tr(P ) + ρu

|u|2
2

+ pu,

where tr(P ) is the trace of the matrix P . Since |ve|2 = |ve − u|2 + |u|2 + (u,ve − u), one gets

ρE = 1
2 tr(P ) + ρ |u|

2

2 , one finally obtains

∂t
(
ρE
)

+∇.
(
ρEu + pu

)
= −1

2
∇.
∫

R3

|ve − u|2(ve − u)fedve.

Killing the term at the order 3 with respect to ve − u on the right hand side, one recover the
classical Euler equations 




∂tρ+∇.(ρu) = 0,

∂t(ρu) +∇.(ρu⊗ u + pI) = 0,

∂t(ρE) +∇.
(
ρEu + pu

)
= 0.
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Defining the internal energy as ρe = 1
2 tr(P ) =

∫
R3 |ve − u|2fedve, one can write the equation

satisfied by ρe by subtracting to the equation on the total energy the momentum equation
multiplied by u, which yields

∂t
(
ρe
)

+∇.
(
ρeu

)
+ p∇.u = 0.

Let us now consider the coupling between the Euler equations for the fluid with the Boltzmann
equation (1.4) for the photons. The conservation of momentum and energy lead to the following
system, known as the radiation hydrodynamic system [BD04]





∂tρ+∇.(ρu) = 0,

∂t(ρu) +∇.(ρu⊗ u + pI) = −
∫

R+

∫

S2

Q(fγ , fe)ν
3ΩdνdΩ,

∂t(ρE) +∇.(ρEu + pu) = −c
∫

R+

∫

S2

Q(fγ , fe)ν
3dνdΩ,

1

c
∂tfγ + Ω.∇fγ = Q(fγ , fe),

(1.14)

where, with an abuse of notations, the dependence with respect to the fluid in the collision
operator Q is denoted by fe. This model can be seen as a first level of simplification, but for a
lot of applications it remains too costly. Indeed, in most applications the velocity of the fluid u
is very small compared to speed of light c. From a numerical point of view, for each radiation
time step will corresponds thousands of hydrodynamical steps. This explains why one often
used a model describing only the evolution of a macroscopic quantity for the fluid, typically the
internal energy or the fluid temperature, as explained in the next part.

Simplified models

These models are derived as follows [GLG05]. One first assumes that the fluid density ρ and the
fluid velocity u are given quantities. In a second step one writes the total energy of the fluid E
as the sum of its internal energy e and its kinetic energy |u|2/2: E = e + |u|2/2. Subtracting
to the equation on the total energy the equation on the momentum (second equation of (1.14))
multiplied by u yields the following equation on the internal energy

∂t(ρe) +∇.(ρeu) + p∇.u = −c
∫

R+

∫

S2

(
1− Ω.u

c

)
Q(fγ , fe)ν

3dνdΩ.

Denoting E = ρe and taking the hydrodynamic pressure as p = ΓE , where Γ is the adiabatic
constant lead to

∂tE +∇.(E u) + ΓE∇.u = −c
∫

R+

∫

S2

(
1− Ω.u

c

)
Q(fγ , fe)ν

3dνdΩ.

This system will be considered in chapter 2 in a relativistic context. Finally, the simplest coupling
of radiation and hydrodynamics is obtained by considering a static fluid, i.e. u = 0. It yields

∂tE = −c
∫

R+

∫

S2

Q(fγ , fe)ν
3dνdΩ.

If one now consider the radiative transfer equation in the simple case of isotropic scattering and
thermal Bremsstrahlung, one finds





1

c
∂tfγ + Ω.∇fγ = σs

(∫

S2

fγ(Ω
′)dΩ′ − fγ

)
+ σa(ν)

(
f0 − fγ

)
,

∂tE = −c
∫

R+

∫

S2

σa(ν)
(
B(ν, T )− ν3fγ

)
dνdΩ.

(1.15)
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This model is considered for example in [DOG01,GP86,GS08]. A widely used simplification is to
consider the grey case, i.e. when the absorption coefficient σa does not depend on the frequency
ν. The integrability of the Planck function leads to

∫

R+

B(ν, T )dν =

∫

R+

ν3

e
ν
T − 1

dν = T 4

Multiplying the first equation of (1.15) by ν3 and integrating it over the frequency ν ∈ R, one
finds by defining E =

∫
R+ fγν

3dν the following grey model





1

c
∂tE + Ω.∇E = σs

(∫

S2

E(Ω′)dΩ′ − E
)

+ σa
(
T 4 − E

)
,

∂tE = −cσa
(
T 4 −

∫

S2

EdΩ

)
.

A simpler model can be obtained by assuming that the internal energy E only depends on the
electrons temperature T . Then

∂t
(
E (T )

)
=
∂E

∂T
∂tT

One often denotes CV = ∂E

∂T . In this work we will often take CV = 1, simplifying the resolution
of the equation on the temperature T . One can obtain a linearized but unphysical model by
assuming that CV = 4T 3. Denoting Θ = T 4, it leads to the linearized system





1

c
∂tE + Ω.∇E = σs

(∫

S2

E(Ω′)dΩ′ − E
)

+ σa
(
Θ− E

)
,

∂tΘ = −cσa
(

Θ−
∫

S2

EdΩ

)
.

1.3 Reduced models for the transfer equation

For many applications, the Boltzmann equation for photons (1.4) and (1.5) is too costly to be
discretized directly. Indeed, on the one hand the phase space is of dimension 7 (time, space, angle
and frequency). On the second hand the collision operator is an integral over R

9 in the general
case. This explains the motivation to derive reduced models. There is two main directions,
which can be used in the same time. The first one is to remove the angular dependence, either
by diffusions approximations, either by angular moments methods. The second way consists to
simplify the source terms (collision operator). For instance in the case of Compton scattering,
the Boltzmann equation can be approximate by the Kompaneets equation [COO71,KOM57]. In
the next parts are explained the principles of these approximations.

1.3.1 Elimination of the angular dependence

There is two main classes of simplification of the angular dependence. The first one, the diffusion
approximations, is explained in a first part. The second part is devoted to the famous angular
moments methods.
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Diffusions approximations

This part is devoted to the diffusions approximations. The basic concept of these approximations
is to assume that some physical parameters are small compared to others. Rescaling the system
with a small parameter and passing to the limit as this parameter goes to zero, one obtains a
diffusion equation on the zero-th order moment of the distribution function. In the case of the
radiative transfer, there are two main regimes. The equilibrium diffusion, in which the emission
absorption is assumed to be large compared to the scattering, and the non-equilibrium diffusion
regime in which the scattering is assumed to be large compared to the emission absorption.

To illustrate our subject, let us consider a simpler coupling between a fluid, described by an
equation on its temperature, and a gas of photons, satisfying a Boltzmann equation, and inter-
acting via isotropic scattering and emission absorption. The absorption coefficient σa is assumed
to be constant (grey assumption) and we take CV = 1





1

c
∂tI + Ω.∇I = σs

(∫

S2

I(Ω′)dΩ′ − I
)

+ σa
(
B(ν, T )− I

)
,

∂tT = −cσa
∫

R+

∫

S2

(
B(ν, T )− I

)
dνdΩ.

(1.16)

Dimension analysis

Let us follow [BD04,GLG05]. We consider typical time scale T and length scale L from which
a typical velocity u∞ is defined by u∞ = L/T . We then define dimensionless time t∗ and length
x∗ such that {

t = Tt∗,

x = Lx∗.

Since the scattering (resp the absorption) coefficient depends on the inverse of a mean free path
ls (resp la), we define the new coefficients σ̄s = σs/ls and σ̄a = σa/la. Inserted in (1.16), it yields





u∞
c
∂t∗I + Ω.∇x∗I =

L

ls
σ̄s

(∫

S2

I(Ω′)dΩ′ − I
)

+
L

la
σ̄a
(
B(ν, T )− I

)
,

u∞
c
∂t∗T = −L

la
σ̄a

∫

R+

∫

S2

(
B(ν, T )− I

)
dνdΩ.

Denoting C = u∞/c, Ls = L/ls, La = L/la and dropping the bars and the stars for ease of
notations, one finds the following dimensionless system





1

C
∂tI + Ω.∇I = Lsσs

(∫

S2

I(Ω′)dΩ′ − I
)

+ Laσa
(
B(ν, T )− I

)
,

1

C
∂tT = −Laσa

∫

R+

∫

S2

(
B(ν, T )− I

)
dνdΩ.

The following paragraphs deal with the two limiting cases 1/C → 0 and La →∞ (equilibrium
diffusion) on the one hand, and 1/C → 0 and Ls →∞ (non-equilibrium diffusion) on the second
hand.
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Equilibrium diffusion

In this part we study the so-called equilibrium diffusion regime, also called the Rosseland ap-
proximation [BGP87, BGPS88, DOG01, GLG05]. The main assumption is to assume that the
speed of light is large compared to a typical velocity of the problem, and that the emission ab-
sorption is large compared to the scattering. One thus introduce a parameter ε ∈ (0, 1], ε << 1
such that

ε =
1

C
=

1

La
= Ls.

It yields the following system





∂tI
ε +

1

ε
Ω.∇Iε = σs

(∫

S2

Iε(Ω′)dΩ′ − Iε
)

+
σa
ε2
(
B(ν, T ε)− Iε

)
,

∂tT
ε = −σa

ε2

∫

R+

∫

S2

(
B(ν, T ε)− Iε

)
dνdΩ.

(1.17)

The following result deals with the limit, as ε→ 0, of the solution of (1.17).

Lemma 1.1 (Equilibrium diffusion). A first order approximation of the system (1.17) is

∂t
(
Tm + CT 4

m

)
− C∇.

(∇T 4
m

3σa

)
= 0,

where C =
∫

R+ ν
3(eν − 1)−1dν.

Proof. We perform a formal Hilbert (also called Chapman-Enskog) expansion of the unknown
Iε and T ε, that is {

Iε = I0 + εI1 + ε2I2 + ...,

T ε = T 0 + εT 1 + ε2T 2 + ....

Injecting these expressions in the system (1.17), we study each terms of same orders. At order
1/ε2, one finds

I0 =
(
B(ν, T ε)

)0
.

A Taylor expansion of the Planck function B(ν, T ε) formally shows that

B(ν, T ε) = B(ν, T 0) + ε
(
T 1 + εT 2 + ...

)∂B
∂T

(ν, T 0) + ...

One thus obtains
(
B(ν, T ε)

)0
= B(ν, T 0), which yields I0 = B(ν, T 0), and thus I0 does not

depend on the angle, i.e. is isotropic. At the order 1/ε, one has

Ω.∇I0 = σa

((
B(ν, T ε)

)1 − I1

)
.

The same arguments than for the zero-th order term of the Planck function yield
(
B(ν, T ε)

)1
=

T 1 ∂B
∂T (ν, T 0). It yields

I1 = −Ω.∇I0

σa
+ T 1∂B

∂T
(ν, T 0).

20



Finally, at the order 1/ε0, one finds




∂tI
0 + Ω.∇I1 = σs

(∫

S2

I0(Ω′)dΩ′ − I0

)
+ σa

((
B(ν, T ε)

)2 − I2
)
,

∂tT
0 = −σa

∫

R+

∫

S2

((
B(ν, T ε)

)2 − I2
)
dνdΩ.

First, the scattering term vanishes since I0 is isotropic. Using the previous equation of I1,
integrating the first equation on R

+ × S2 and adding the second equation, one writes

∂t

∫

R+

I0dν + ∂tT
0 +

∫

R+

∫

S2

Ω.∇
(
− Ω.∇I0

σa
+ T 1∂B

∂T
(ν, T 0)

)
dΩdν = 0.

One has
∫
S2 Ω ⊗ΩdΩ = 1

3 . Moreover, the term depending on T 1 vanishes since
∫
S2 ΩdΩ = 0.

Finally, one has
∫

R+ I
0dν =

∫
R+ B(ν, T 0)dν = C(T 0)4. Denoting Tm = T 0, one finds the

announced equation, which is referred as the equilibrium diffusion. This name comes from the
fact the radiation temperature equilibrates with the electrons temperature to the power four.

Non-equilibrium diffusion

In this part we study the so-called non-equilibrium diffusion regime, also called the Rosseland
approximation [DOG01,GLG05]. The main assumption is to assume that the speed of light is
large compared to a typical velocity of the problem, and that the scattering is large compared
to the emission absorption. One thus introduce a parameter ε ∈ (0, 1], ε << 1 such that

ε =
1

C
=

1

Ls
= La.

It yields the following system




∂tI
ε +

1

ε
Ω.∇Iε =

σs
ε2

(∫

S2

Iε(Ω′)dΩ′ − Iε
)

+ σa
(
B(ν, T ε)− Iε

)
,

∂tT
ε = −σa

∫

R+

∫

S2

(
B(ν, T ε)− Iε

)
dνdΩ.

(1.18)

The following result deals with the limit, as ε→ 0, of the solution of (1.18).

Lemma 1.2 (Non-equilibrium diffusion). A first order approximation of the system (1.18) is





∂tρ−∇.
(∇I0

3σs

)
= σa

(
B(ν, Tm)− ρ

)
,

∂tTm = −σa
∫

R+

(
B(ν, Tm)− ρ

)
dν.

Proof. As we did for the equilibrium regime, we perform a formal Hilbert expansion of the
unknown Iε and T ε, that is {

Iε = I0 + εI1 + ε2I2 + ...,

T ε = T 0 + εT 1 + ε2T 2 + ....

Injecting these expressions in the system (1.18), we study each terms of same orders. At order
1/ε2, one finds

I0 =

∫

S2

I0(Ω′)dΩ′,

21



which means that I0 is isotropic. At order 1/ε1, one has

Ω.∇I0 = σs

(∫

S2

I1(Ω′)dΩ′ − I1

)
,

which yields

I1 = −Ω.∇I0

σs
+

∫

S2

I1(Ω′)dΩ′.

This expression of I1 is kept despite it does not give an analytical value of I1. At the order
1/ε0, one has





∂tI
0 + Ω.∇I1 = σs

(∫

S2

I2(Ω′)dΩ′ − I2

)
+ σa

(
B(ν, T 0)− I0

)
,

∂tT
0 = −σa

∫

R+

∫

S2

(
B(ν, T 0)− I0

)
dνdΩ.

First, since I is isotropic, the equation on the temperature reduces to

∂tT
0 = −σa

∫

R+

(
B(ν, T 0)− I0

)
dν.

Integrating the photon transport equation over the angle and using the expression of I1, one
finds

∂tI
0 +

∫

S2

Ω.∇
(
− Ω.∇I0

σs
dΩ +

∫

S2

I1(Ω′)dΩ′
)

= σa
(
B(ν, T 0)− I0

)
.

For the first integral, one has

∫

S2

Ω.∇
(

Ω.∇I0

σs

)
dΩ = ∇.

(
1

σs

(∫

S2

Ω⊗ΩdΩ

)
∇I0

)
= ∇.

(∇I0

3σs

)

Since the second integral vanishes, one finds by denoting ρ = I0 and Tm = T 0 the announced
system, known as the non-equilibrium diffusion regime.

Angular moments models

In this part we describe the angular moments methods. They are widely used in practice since
they are known to be precise for a large range of applications. We focus on the two main models,
which are the PN and theMN models. They are both constructed by taking the angular moments
of the transfer equation. For simplicity we restrict ourself to the case N = 1 and we consider
once again a simple radiative transfer system, given by





1

c
∂tI + Ω.∇I = σs

(∫

S2

I(Ω′)dΩ′ − I
)

+ σa
(
B(ν, T )− I

)
,

∂tT = −cσa
∫

R+

∫

S2

(
B(ν, T )− I

)
dνdΩ.

(1.19)

The two first angular moments of the specific intensity I are defined by




U =

∫

S2

IdΩ,

V =

∫

S2

ΩIdΩ.
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As we will see, taking the two first moments of the radiative intensity in equation (1.19) will lead
to a system of two equations for 3 unknowns. The difference between the P1 and M1 models
comes from the choice of the closure, i.e. the expression of the second order moment in term of
the zero-th and first order moments. Let us construct the equation satisfied by U and V. First,
integrating equation (1.19) over S2 leads to

1

c
∂tU +∇.V = σa

(
B(ν, T )− U

)
.

In the same way, multiplying equation (1.19) by Ω and integrating equation (1.19) over S2 lead
to

1

c
∂tV +∇.Qr = −σsV,

where Qr =
∫
S2 Ω⊗ΩIdIdΩ, where Id stands as the identity matrix. The system composed on

the two first angular moments is thus given by





1

c
∂tU +∇.V = σa

(
B(ν, T )− U

)
,

1

c
∂tV +∇.Qr = −σsV,

∂tT = −cσa
∫

R+

(
B(ν, T )− U

)
dν.

One thus needs a closure to close this system, i.e. a relation between the second order moment
Qr and the two first moments U and V. One can also consider the grey angular moments by
defining the grey angular moments of the specific intensity I





E =

∫

R+

∫

S2

IdΩdν,

F =

∫

R+

∫

S2

IΩdΩdν.

(1.20)

The corresponding system satisfied by the two first grey angular moments and the temperature
is 




1

c
∂tE +∇.F = σa

(
T 4 − E

)
,

1

c
∂tF +∇.Pr = −σsF,

∂tT = −cσa
(
T 4 − E

)
dν,

where Pr =
∫

R+

∫
S2 Ω⊗ΩIIdΩdν. In the two coming paragraphs we explicit the expression of

the P1 and M1 models.

PN models

The PN models [BRU00,BRU02,HLM10] consists of assuming that the distribution I is poly-
nomial with respect to the angle. For the P1 model, it means that one assume the existence I0

and I1, which do not depend on Ω, such that

I(t,x, ν,Ω) = I0(t,x, ν) + Ω.I1(t,x, ν).
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The link between the two first moments U , V and I0, I1 is trivially obtained, since

U =

∫

S2

(
I0(t,x, ν) + Ω.I1(t,x, ν)

)
dΩ = I0,

and

V =

∫

S2

(
I0(t,x, ν) + Ω.I1(t,x, ν)

)
ΩdΩ =

1

3
I1,

which yields I(t,x, ν,Ω) = U + 3Ω.V. The second order moment (closure) can also easily be
obtained by the relation

Pr =

∫

S2

(
I0(t,x, ν) + Ω.I1(t,x, ν)

)
Ω⊗ΩdΩ =

1

3
IdI

0.

Finally, the P1 model writes





1

c
∂tU +∇.V = σa

(
B(ν, T )− U

)
,

1

c
∂tV +

1

3
∇U = −σsV,

∂tT = −cσa
∫

R+

(
B(ν, T )− U

)
dν.

(1.21)

If one takes σa = 0, one finds the well-known hyperbolic heat equations. The P1 model will be
considered in this work in the context of approximate Compton scattering (anisotropic Kompa-
neets equation).

The PN models are in practice widely used since their polynomial dependence to Ω allows
an easy increasing in the number of moments. On the other hand, these models does not sat-
isfy in general some physically relevant properties, such as the increase of the entropy and the
preservation of the realizability domain, defined as the set of solutions (U,V) ∈ R

4 of (1.21)
satisfying U ≥ 0 and |V|/U < 1.

Note also that it is possible to consider the grey P1 model by integrating the previous P1 model
with respect to the frequency. It yields





1

c
∂tE +∇.F = σa

(
T 4 − E

)
,

1

c
∂tF +

1

3
∇E = −σsF,

∂tT = −cσa
(
T 4 − E

)
.

MN models

The MN models are another class of angular moments models [DF99, MBD15, MBD14]. As
for the PN models, the idea is to prescript the angular behavior of the radiative intensity. On
the contrary to the PN models, this behavior is nonlinear. The specific intensity is assumed to
be given by

I(t,x, ν,Ω) = ν3

[
exp

(
ν

a(t,x)

(
1 + b(t,x).Ω

))
− 1

]−1

(1.22)
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This expression is obtained by solving an entropy minimization problem under the constraint
of solving the moments (1.20) [LEV84, DF99], a and b being the Lagrange multipliers of the
minimization problem. On the contrary to the P1 model, the two cases frequency dependent /
grey models are very different. Indeed, in the frequency dependent case the two first moments
U and V can not be analytically given in term of the Lagrange multipliers a and b. The same
problem arises for the closure, i.e. the second order moment Qr.

On the contrary, in the grey case the calculations can be achieved. This is due to the inte-
grability with respect to the frequency of the specific intensity (1.22). Let us explain this by
calculating the zero-th order moment E. By definition,

E =

∫

R+

∫

S2

ν3

[
exp

(
ν

a(t,x)

(
1 + b(t,x).Ω

))
− 1

]−1

dΩdν

Removing the space and time dependence for ease of notations, one finds by performing the
change of variables ν 7→ ν

a (1 + b.Ω)

E = a4

∫

S2

dΩ

(1 + b.Ω)4
×
∫

R+

ν3

eν − 1
dν =

15

4π5

∫

R+×S2

ν3fdΩdν = a4 3 + ‖b‖2

3
(
1− ‖b‖2

)3

For the first order moment F, one finds F = −4a4b/3(1 − ‖b‖2)3. Finally, the second order
moment Pr is given by [TUR05,BD04]

Pr =

∫

R+×S2

Ω⊗ΩIdνdΩ =

((
1− χ)Id +

(
3χ− 1

)g ⊗ g

‖g‖2
)
E,

where g = F/E is the normalized flux and χ = (3+4‖g‖2)/(5+2
√

4− 3‖g‖2) is the Eddington
factor [LEV84].

In the frequency dependent case, a generalization of this closure has been proposed by R. Tur-
pault [TUR05,TUR12] in the context of a multigroup discretization. In this work we consider
the grey M1 model in the context of the Compton scattering, leading to nonlinear source terms.

Angular discretization: the SN methods

In this part we make a brief introduction to the SN methods [GJL99, JL91]. The idea is to
discretize directly the transfer equation with respect to the angle. Let us explain it on a simple
transfer equation without matter coupling

1

c
∂tI + Ω.∇I = σs

(∫

S2

I(Ω′)dΩ′ − I
)
.

Let us define a discretization of the sphere S2 by N vectors Ωi, i ∈ {1, N}. One defines Ii as an
approximation of I(t,x, ν,Ωi). The angular integral is approximated with a quadratic formula

∫

S2

I(Ω′)dΩ′ =
N∑

i=1

ωiIi,

where the ωi are the quadratic weights. One thus obtains

1

c
∂tIi + Ωi.∇Ii = σs

( N∑

j=1

ωjIj − Ii
)
, 1 ≤ i ≤ N.
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To obtain the correct diffusion equation is the equilibrium regime, the weights must satisfy
[FRA12]

N∑

i=1

ωiΩi ⊗Ωi =
1

3
I.

1.3.2 Source terms reductions: the case of the Compton scattering

Since it takes an important part of this thesis, we present the Kompaneets equation [KOM57]

ν2∂tf =
∂

∂ν

[
ν4

(
T
∂

∂ν
f + f(1 + f)

)]
,

where T is the macroscopic temperature of the electrons. The classical flux condition

lim
ν→0

ν4

(
T
∂

∂ν
f + f(1 + f)

)
= lim

ν→∞
ν4

(
T
∂

∂ν
f + f(1 + f)

)
= 0, (1.23)

are considered. This equation approximates the Boltzmann equation (1.4) (1.7) under the as-
sumption of small energy exchange during the collision. Historically derived by A. S. Kom-
paneets [KOM57], this equation has been widely studied, from the numerical point of view
[BC03, CL86, CC70] as well as from the mathematical point of view [EHV98, EM01, KAV02].
The Kompaneets equation preserves several physical properties of the Boltzmann equation,
such as the conservation of the total number of photons, the Boltzmann equilibrium states, the
positivity of the distribution function and the growth of the physical entropy. On the other
hand, Escobedo and co-authors [EHV98] show that the flux condition (1.23) may be broken in
finite time at ν → 0.

Let us explain the derivation of this equation performed by Escobedo and co-authors in [EMV03].
Starting from the Boltzmann equation (1.4), with the collision operator given by (1.9), one first
assumes that the distribution function of the photons f is isotropic. Due to this assumption,
the collision operator is now only an integral operator with respect to the outgoing photons
ν ′ ∈ R

+. They assume that the energy of the ingoing and outgoing photons is small compared
to the energy of the electron at rest mc2, i.e. ν << mc2 and ν ′ << mc2. They perform a Taylor
expansion of f(ν ′) around the frequency ν. Inserted in the collision operator Q(fγ) (where we
removed the dependence with respect to the electrons since they are assumed to be given), the
collision operator now only depends on integrals of the kernel b (1.10) multiplied by power of
|ν ′ − ν|. These integrals do not depend on the distribution function f . What is interesting in
this derivation is that the computation of integrals is explicitly given.

Extensions of the Kompaneets equation to anisotropic distributions exist in the physical lit-
erature [BPR69,FKM85,PL97,POM73]. We propose a generalization of the Escobedo [EMV03]
approach to anisotropic distributions.

1.4 Numerical issues

As explained in the introduction, the Boltzmann equation may be too costly to be discretized
in its general form. Some work can be nevertheless found in this direction [BC03]. From a
general point of view, we study two particular types of numerical schemes: the well-balanced
schemes (part 1) and the asymptotic preserving schemes (part 2). These two kind of numerical
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schemes can be of great interest in the case of the radiative transfer. Firstly, as explained in
the introduction, the coupling between radiation and hydrodynamics involved very different
velocities, the light often travelling much faster that the gas. One can thus expect the radiation
to go quickly to a stationary state. The well-balanced schemes are thus interesting, since they
will exactly capture this stationary state. Secondly we have seen that in radiative transfer issues,
diffusion approximations can be used in different regimes. These diffusion equations are simpler
to approximate, since the distribution function no longer depends on the photons direction Ω.
It is thus interesting to design schemes that solve the kinetic equation is general, and only the
diffusion equation when it is possible. This is the aim of the asymptotic preserving schemes.

1.4.1 Well-balanced schemes

The well-balanced schemes [JIN99, JIN10] are, by definition, schemes which preserves the sta-
tionary states, i.e. will exactly capture numerically the stationary states of the equation. They
are justifed in our case since as explain above, the coupling between the hydrodynamics and
radiation involve different time scale. Thus, for each hydrodynamic time step, the radiation
quickly goes to an equilibrium state, which is exactly captured by a well-balanced scheme. Let
us present here the Greenberg-Leroux method [GL96] in a simple transport equation in 1D, with
source and dumping terms {

∂tf + a∂νf = σa(B(ν)− f),

f(0, ν) = f in(ν),
(1.24)

where B(ν) is the Planck function (with a temperature T = 1), a ∈ R
∗ is a transport coefficient

and σa is a non negative coefficient. The design of well-balanced schemes requires the knowledge
of the stationary solution associated to (1.24). We thus consider the following problem

{
a∂ν f̄ = σa(B(ν)− f̄),

f̄(ν∗) = f̄∗,
(1.25)

whose analytical solution is given by

f̄(ν; f̄∗, ν∗) = f̄∗e−
σa
a

(ν−ν∗) +
σa
a

∫ ν

ν∗
B(s)e

σa
a

(s−ν)ds.

Considering a cartesian frequency mesh, the Greenberg-Leroux schemes that we study in this
work are defined by





fn+1
i − fni

∆t
= −af

n
i − f̄(νj ; f

n
i−1; νi−1)

∆ν
, a > 0,

fn+1
i − fni

∆t
= −af̄(νj ; f

n
i+1; νi+1)− fni

∆ν
, a < 0.

(1.26)

Despite being well-balanced, this kind of schemes are not consistent as the wave velocity a tends
to zero. Such a scheme will be designed and studied in chapter 3 in the context of the non
equilibrium regime for the relativistic transfer equation.

1.4.2 Asymptotic preserving schemes

The second wide class of costless numerical scheme is the asymptotic preserving schemes. Let
us explain the main idea in the simple case of the grey P1 model, the hyperbolic (uncoupled)
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heat equations derived above (where we removed the 1/3 for simplicity). Arguing like above,
one can study the non-equilibrium diffusion regime for this system. Assuming that σs >> 1 and
c >> 1, on writes the rescaled system

(P ε) :





∂tE +
1

ε
∇.F = 0,

∂tF +
1

ε
∇E = −σs

ε2
F.

(1.27)

One finds, in the regime ε→ 0, the following diffusion equation

(P 0) :
1

c
∂tE −∇.

(∇E
σs

)
= 0. (1.28)

Numerically, this equation is much simpler to discretize, since the angular dependence has been
removed and there is only one unknown. Thus, if a part of the physical domain satisfies the
above assumptions, it would be interesting to solve only the diffusion equation. This is the idea
of asymptotic preserving schemes. These are schemes defined for system (1.27), which depends
on the parameter ε and denoted P εh . The important point is that the limiting scheme P 0

h , as
ε = 0, is a scheme consistent with equation (1.28) (see figure 1.4). We illustrate this point with

Figure 1.4: The AP diagram

the Gosse-Toscani’ scheme [GT02], whose uniform convergence on unstructured meshes will be
proved in chapter . In 1D and for a uniform mesh, this scheme is defined by





d

dt
Ej +M

Fj+1 − Fj−1

2ǫ∆x
−MEj+1 + Ej−1 − 2Ej

2ǫ∆x
= 0

d

dt
Fj +M

Ej+1 − Ej−1

2ǫ∆x
−MFj+1 + Fj−1 − 2Fj

2ǫ∆x
= − σ

ǫ2
MFj ,

(1.29)

where the coefficient M is defined by M = 2ǫ
2ǫ+σ∆x . On the one hand, if ∆x/ε → 0, one finds

M → 1 and it is an easy matter to check that this scheme is consistent with system (1.27). On
the other hand, let us now assume that ε/∆x→ 0. We study the behavior of the scheme (1.29)
by mean of the modify equation, i.e. we write the scheme as





∂tEj +
M

ε

(
∂xF

)
j
−∆x

M

2ε

(
∂xxE

)
j

= 0

∂tFj +
M

ε

(
∂xE

)
j
−∆x

M

2ε

(
∂xxF

)
j

= − σ
ǫ2
MFj ,

(1.30)
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From the second equation of (1.30), one formally writes

Fj = − ε

σs

(
∂xE

)
j
+ O(ε),

which yields in the first equation of (1.30)

∂tEj −M
(

1

σs
+

∆x

2ε

)(
∂xxE

)
j

= 0.

Here the importance of the coefficient M is highlighted. Indeed, since 1
σs

+ ∆x
2ε = 1

σsM
, one

obtains

∂tEj −
1

σs

(
∂xxE

)
j

= 0.

A complete chapter of this document will be dedicated to the study of the Gosse-Toscani’ scheme
in 1 and 2D.
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Chapter 2

Relativistic transfer equations:
maximum principle and convergence

to the non-equilibrium diffusion
regime

This chapter is taken from a published article [LER15].

2.1 Introduction

We study some mathematical properties of a system describing the coupling between the rel-
ativistic transfer equation for photons and an equation describing the temperature of a fluid
moving at the velocity u. This kind of models was historically derived by physicists ( [MWM99,
POM73]) and some mathematical properties as existence, uniqueness and a maximum principle
have been proved in the non relativistic case [GP86]. The system writes





1

c
∂tI + Ω.∇xI = Qt in [0, T f ]×X × R

+
ν × S2,

∂tT +∇.(Tu) + ΓT∇.u = −c
∫

ν,Ω

Λ

γ
QtdνdΩ in [0, T f ]×X,

(2.1)

where I = I(t, x, ν,Ω) is the radiative intensity, T = T (t, x) the fluid temperature, u = u(x)
the fluid velocity, t ∈ [0, T f ] for a given 0 < T f < +∞ is the time, x ∈ X is the position of the
photons, where X ⊂ R

3 is a bounded domain, ν ∈ R
+
ν is the frequency of the photons, Ω ∈ S2

is the direction of the photons, c is the speed of light and Γ > 0 is the adiabatic constant. The
operator Qt = Qs + Qa is composed of a scattering operator Qs and an emission absorption
operator Qa, and describes the interactions between the light and the fluid. The Lorentz factor
γ and the relativistic coefficient Λ are given by





γ =
1√

1− |u|2/c2
,

Λ =
1−Ω.u/c√
1− |u|2/c2

.

(2.2)

Due to the velocity of the fluid, the physical quantities defined previously can be computed in
several frames. The derivation of the radiation hydrodynamics equations from the Lorentz
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transformations and the relations between the different frames is a major issue, discussed
in [POM73, MWM99]. In this work we consider two frames: a reference frame (typically the
laboratory frame) and the fluid frame, in which the velocity of the fluid is zero. The fluid is
considered as non relativistic (see [BD04] for a presentation of the Euler equations in the rela-
tivistic case), and thus only the measure of the physical quantities relative to the photons, that
is the frequency ν, the direction Ω and the radiative intensity I, are different according to the
considered frame.

We adopt the following notations. The quantities measured in the moving frame are denoted
with a subscript 0, while the notations without subscripts are relative to quantities measured
in the reference frame. With these notations, the relation between the frequency ν of a photon
measured in the reference frame and its frequency ν0 measured in the moving frame is [POM73]

ν0 = Λν. (2.3)

In the same way, the relation between the direction Ω of a photon in the reference frame and
its direction Ω0 in the moving frame is

Ω0 =
ν

ν0

(
Ω− γ

c
u

(
1− Ω.u

c

γ

γ + 1

))
. (2.4)

A fundamental property is the invariance by change of frame of the photons density distribution
function f = aI/ν3, where a is a physical constant. This leads to a relation between the radiative
intensity I measured in the reference frame and I0 measured in the moving frame

I(ν,Ω) = Λ−3I0(ν0,Ω0). (2.5)

As usual, the operator Qt is the sum of a scattering operator Qs and an emission absorption
operator Qa. The scattering operator models the diffusion phenomena between the light and
the fluid. We assume that the scattering is coherent (no energy exchange) and isotropic (in the
fluid frame). Under these assumptions, Qs is defined by

Qs = σs(x)Λ

(∫

S2

Λ′

Λ3
I(ν ′,Ω′)dΩ′ − I

)
, (2.6)

where, for ease of notations, we defined Λ′ = γ(1 − Ω′.u/c) and the measure dΩ′ such as∫
S2 dΩ

′ = 1. The frequency ν ′ quantifies the Doppler effects and is defined as ν ′ = Λ
Λ′ ν. The

coefficient σs is the scattering cross section and is assumed to depends only on the position x.
We define Qs,0 as the scattering operator measured in the moving frame

Qs,0 = Λ2Qs = σs(x)

(∫

S2
0

I0dΩ0 − I0
)
, (2.7)

where, again, the measure dΩ0 is such that
∫
S2

0
dΩ0 = 1. One recognizes in this expression the

classical non relativistic scattering operator. Although the scattering is isotropic in the moving
frame, i.e.

∫
S2

0
Qs,0dΩ0 = 0, this is not true in the reference frame, due to the relativistic effects.

The operator Qa is the emission absorption operator. It is defined by

Qa = σa
(
Λν
)
Λ

(
B(Λν, T )

Λ3
− I
)
, (2.8)
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where B(ν, T ) = ν3
(
eν/T − 1

)−1
is the (normalized) Planck function. The coefficient σa is the

emission absorption coefficient and is assumed to depend only on the frequency ν. The emission
absorption measured in the moving frame is

Qa,0 = Λ2Qa = σa(ν0)

(
B(ν0, T )− I0

)
. (2.9)

Once again, one recognizes in (2.9) the classical non relativistic emission absorption operator.
It quantifies the gap between the radiation and the Planck function, which corresponds to the
stationary states of the transfer equation in the non relativistic regime and at the local ther-
modynamical equilibrium (ETL). It shows in particular that the relativistic effects modify the
stationary states of the transfer equation, from I = B(ν, T ) in the non relativistic case to
I = Λ−3B(Λν, T ) in the relativistic case.

The derivation of system (2.1) from the coupling between the Euler equations and the rela-
tivistic transfer equation is explained for example in [GLG05]: assuming a given fluid density ρ
and a given velocity field u, the equation of the internal energy is obtained by deducting to the
equation on the total energy the equation on the kinetic energy. An important consequence of
the absence of kinetic energy balance is that this system does not preserve the physical energy∫
IdxdνdΩ +

∫
Tdx. Indeed, one has

d

dt

(∫

x,ν,Ω
I dxdνdΩ +

∫

x
T dx

)
+ Γ

∫

x
T∇.u dx =

∫

x,ν,Ω
(Ω.u)Qt dxdνdΩ.

The first remaining term comes from the hydrodynamic pressure. The second one corresponds
to the variation of the kinetic energy of the fluid, which is not taken into account by assuming
a given velocity. Due to this non conservation of the energy, the maximum principle proved by
F. Golse and B. Perthame in [GP86] for the non relativistic transfer equation does not hold any
more, and this leads to mathematical issues.

Despite a simple modelling of the hydrodynamic of the fluid, the system (2.1) can be used
as a first approach to model the expansion of stellar atmospheres or inertial confinement fusion
(ICF) experiments. In this last case, the shocks created by the bombardment of a small ball of
gas struck by powerful photons beam eject a part of the gas. It is known that if the relativistic
effects are not considered, a part of the physics, and in particular the radiative pressure, is not
taken into account. This explains the importance of the relativistic correction terms, even for
a non relativistic fluid. As a remark, the classical non relativistic transfer equations as studied
in [DOG01,GP86] can be obtained from (2.1) by taking the limit |u|/c→ 0.

In this chapter we prove two main results. In section 2, we prove a comparison principle for the
system (2.1) by means of a suitable modification of the Golse and Perthame approach [GP86].
This result enables to write the system (2.1) as a Lipschitz perturbation of a linear transport
equation, from which existence and uniqueness of a solution is obtained. Since our aim is to study
the influence of a moving fluid on the radiative intensity, the coefficients σa, σs and u in the sys-
tem (2.1) will be taken as smooth as necessary. Several theoretical results for more realistic emis-
sion absorption coefficient can be found in the non relativistic case in [GP86,BGP87,BGPS88]
(see also [YS14] in the context of radiation hydrodynamics). The second main result (section
3) is the proof of convergence with respect to a small parameter ε, formally equal to |u|/c, of
the solution of the system (2.1) to the solution of a drift diffusion system in the non-equilibrium
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diffusion regime. This regime is obtained by assuming that the scattering is dominant in com-
parison with the emission absorption, and that the speed of light is large in comparison with
the fluid velocity. After rescaling with a small parameter ε, it yields the following system





∂tI
ε +

1

ε
Ω.∇xIε =

1

ε2
Qεs +Qεa in [0, T f ]×X × R

+
ν × S2,

∂tT
ε +∇.(T εu) + ΓT ε∇.u = −

∫

ν,Ω

Λε

γε

(
1

ε2
Qεs +Qεa

)
dνdΩ in [0, T f ]×X,

(2.10)

with obvious notations for Qεs and Qεa, and where γε =
√

1− ε2|u|2−1
and Λε = γε

(
1− εΩ.u

)
.

The drift diffusion system writes





∂tρ−∇.
( ∇ρ

3σs(x)

)
+∇.

(
ρu
)

=
∇.u
3
ν∂νρ+ σa(ν)

(
B(ν, T )− ρ

)
in [0, T f ]×X × R

+
ν ,

∂tT +∇.(Tu) + ΓT∇.u = −
∫

ν
σa(ν)

(
B(ν, T )− ρ

)
dν in [0, T f ]×X,

(2.11)
where ρ = lim

ε→0

∫
S2 I

εdΩ is the first angular moment of the radiative intensity. This equation

has been formally derived by D. Mihalas and B. Weibel Mihalas in [MWM99]. The drift term
∇.u
3 ν∂νρ that models the Doppler effects is also involved in an equation proposed by A. Winslow

in [WIN95]. To our knowledge, the mathematical justification of the diffusion system (2.11) that
is provided by means of a convergence result with respect to ε is original.

To obtain this convergence result some assumptions will be done on the regularity of the pa-
rameters. In particular the emission absorption coefficient will be assumed to belong to L2(R+

ν ),
which has no physical meaning, but for technical reasons this assumption is necessary to obtain
the convergence in L2. Indeed, the L1 norm would be more natural since the quantities we are
interested in, namely I and T , are homogeneous to energies. We make use of the L2 norm since
a priori estimates for the solution of the drift diffusion system (2.11) are much easily obtained
in this norm. In return the proof of convergence is technical, which explains the division of this
proof in several steps (section 3).

In the chapter we will use the following notations. The angular integral will be denoted < . >,
i.e. < f >=

∫
S2 fdΩ. The space variable x belongs to X, the frequency variable ν to R

+
ν and

the time t ∈ [0, T f ], for a given 0 < T f < +∞. We denote by ‖.‖Lp
x,ν,Ω

(respectively ‖.‖Lp
t,x

) the

classical Lp norm on X × R
+
ν × S2 (respectively on [0, T f ] ×X), for a given 1 ≤ p ≤ +∞. We

define the function sgn+ as

sgn+(f) =

{
1 f > 0,

0 f ≤ 0,
(2.12)

and the positive part f+ of a function f as f+ = fsgn+(f). The measure in integrals will not
be written, i.e.

∫
x . =

∫
X . dx,

∫
ν . =

∫
R

+
ν
. dν,

∫
Ω . =

∫
S2 . dΩ, ...

The chapter is organized as follows. In the next section we prove a comparison principle (theorem
2.1) for the relativistic transfer equation (2.1), from which the existence of solutions is obtained
(lemma 2.2). The section 3 is devoted to the study of the non-equilibrium diffusion regime and
is divided in two main parts. In the first part the drift diffusion system is obtained by means
of formal Hilbert expansion of the solution of the transfer equations (2.1). In the second part
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we prove a priori estimates for the drift diffusion system (2.11), such as a comparison principle
(lemma 2.6) and several regularity results (lemma 2.7). We also introduce the main result, which
is the theorem 2.8 of convergence of the solution of the relativistic transfer equations (2.10) to
the solution of the drift diffusion system (2.11). The end of the second part deals with the proof
of convergence, based on a reconstruction procedure, an original comparison principle and an
appropriate weight in the lemma 2.12. The chapter ends with two appendices containing some
technical results.

2.2 A comparison principle for the relativistic transfer equa-
tions

In this section we prove several results for the relativistic transfer equations (2.1). The main
result is the following comparison principle (theorem 2.1), from which the existence result (lemma
2.2) follows easily using classical technics. To prove this comparison principle we need some
assumptions

• (H1) Smoothness of the velocity field: u ∈ W 1,∞([0, T f ] × X). Moreover, u∗ = ‖u‖L∞
t,x

satisfies u∗ < c, where c is the speed of light.

• (H2) Smoothness of the scattering coefficient: σs ∈W 1,∞(X) and σs > 0.

• (H3) Smoothness of the emission absorption coefficient: σa ∈ L∞(R+
ν ) and σa ≥ 0.

• (H4) There exists two bounded and positive constants l∗ and L∗ which are respectively the
infimum and the supremum of the temperature at the initial time: l∗ ≤ T (t = 0) ≤ L∗.
Besides the radiative intensity at the initial time satisfies B(ν0, l∗) ≤ I0(t = 0) ≤ B(ν0, L∗).

• (H5) We consider periodic boundary conditions.

• (H6) The velocity field is smooth u ∈ C 1([0, T f ]×X) and the emission absorption coeffi-
cient σa is integrable, i.e. σa ∈ L1(R+

ν ).

The assumption (H6) is used only to prove that the relativistic transfer system (2.1) is a Lipschitz
perturbation of a C 0 semigroup (lemma 2.2). In the forthcoming proofs, we will often use the
following bounds, which easily come from the previous assumption on the velocity field, and
where the constants Λ∗,Λ∗ ≥ 0 only depends on u∗

0 < Λ∗ ≤ Λ(t, x,Ω) ≤ Λ∗, ∀(t, x,Ω) ∈ [0, T f ]×X × S2. (2.13)

We introduce the first main result.

Theoreme 2.1 (Comparison principle). We assume that hypotheses (H1)-(H5) are satisfied.
Then, for all (t, x, ν) ∈ [0, T f ]×X × R

+
ν , one has the a priori estimates l(t) ≤ T (t) ≤ L(t) and

B(ν0, l(t)) ≤ I0(t) ≤ B(ν0, L(t)), where




l(t) = l∗ exp

{
− t
[(

Γ + 1
)
‖u‖

W 1,∞
t,x

+ 2
‖u‖

W 1,∞
t,x

Λ∗
√

1− (u∗/c)2

(
1 +

2

c

‖u‖
W 1,∞

t,x

1− (u∗/c)2

)]}
,

L(t) = L∗ exp

{
t

[(
Γ + 1

)
‖u‖

W 1,∞
t,x

+ 2
‖u‖

W 1,∞
t,x

Λ∗
√

1− (u∗/c)2

(
1 +

2

c

‖u‖
W 1,∞

t,x

1− (u∗/c)2

)]}
.

(2.14)
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This result shows that although the system does not conserve the total energy, due to the
absence of kinetic energy balance, energy does not blow up in finite time, and one can give lower
and upper bounds on the radiative energy and on the fluid temperature. As a remark, the Golse
and Perthame result [GP86] can be obtained by setting u = 0.

Proof. Since the arguments are the same, we only show the proof for the upper bound. This
result is a suitable modification of the maximum principle proved by F. Golse and B. Perthame
[GP86] in the non relativistic case. The method is based on varying bounds for which the point
is to get the equations that define these bounds. In order to simplify the notations, we denote
B0,L = B(ν0, L(t)). The system (2.1) can be simplified. Indeed, using the invariance of the
measure νdνdΩ and the isotropy of the scattering operator in the fluid frame, one has

∫

ν,Ω

Λ

γ
Qt =

∫

ν,Ω

1

Λγ
Qt,0 =

∫

ν0,Ω0

1

γ
Qa,0, (2.15)

and thus system (2.1) reduces to




1

c
∂tI + Ω.∇xI = Qt in [0, T f ]×X × R

+
ν × S2,

∂tT +∇.(Tu) + ΓT∇.u = − c
γ

∫

ν0,Ω0

Qa,0 in [0, T f ]×X.
(2.16)

Multiplying the first equation of (2.1) by cΛ
γ sgn+(I0 − B0,L), integrating over R

+
ν × S2 and

reminding that I(ν,Ω) = Λ−3I0(ν0,Ω0), one can deduce
∫

ν,Ω

sgn+(I0 −B0,L)

Λ2γ

(
∂tI0 + cΩ.∇I0

)

+

∫

ν,Ω
sgn+(I0 −B0,L)I0

Λ

γ

(
∂tΛ
−3 + cΩ.∇Λ−3

)
= c

∫

ν,Ω

Λsgn+(I0 −B0,L)

γ
Qt.

By expanding the derivatives of Λ−3 and by using the invariance of the measure νdνdΩ, one
gets after algebraic manipulations

∫

ν,Ω

(
∂t

(I0 −B0,L)+

Λ2γ
+ cΩ.∇(I0 −B0,L)+

Λ2γ

)

+

∫

ν,Ω

sgn+(I0 −B0,L)

Λ2γ

(
∂tB0,L + cΩ.∇B0,L

)

−
∫

ν,Ω
(I0 −B0,L)+

(
∂t

1

Λ2γ
+ cΩ.∇ 1

Λ2γ

)
− 3

∫

ν,Ω

(I0 −B0,L)+

Λ3γ

(
∂tΛ + cΩ.∇Λ

)

− 3

∫

ν,Ω
B0,L

sgn+(I0 −B0,L)

Λ3γ

(
∂tΛ + cΩ.∇Λ

)
=
c

γ

∫

ν0,Ω0

sgn+(I0 −B0,L)Qt,0.

Regrouping the terms of the second line together, it yields after rearrangements
∫

ν,Ω

(
∂t

(I0 −B0,L)+

Λ2γ
+ cΩ.∇(I0 −B0,L)+

Λ2γ

)

−
∫

ν,Ω
(I0 −B0,L)+Λ−3

(
∂t

Λ

γ
+ cΩ.∇Λ

γ

)

=

∫

ν,Ω

sgn+(I0 −B0,L)

Λ2γ

{
3B0,L

(
∂tΛ

Λ
+ c

Ω.∇Λ

Λ

)
− ∂tB0,L − cΩ.∇B0,L

}

+
c

γ

∫

ν0,Ω0

sgn+(I0 −B0,L)Qt,0.
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We remind that B(ν0, L(t)) =
ν3
0

eν0/L(t)−1
= (Λν)3

eΛν/L(t)−1
. It yields

∂tB(ν0, L(t)) =
3Λ2ν3∂tΛ

eν0/L(t) − 1
− νL∂tΛ− ν0∂tL

L2

eν0/L(t)

eν0/L(t) − 1

ν3
0

eν0/L(t) − 1
,

which can be written

∂tB(ν0, L(t)) = B(ν0, L(t))

(
3∂t(log Λ)− ν0

L(t)

∂t(log Λ)− ∂t(logL(t))

1− e−ν0/L(t)

)
.

The same manipulations lead to

∇B(ν0, L(t)) = B(ν0, L(t))

(
3∇(log Λ)− ν0

L(t)

∇(log Λ)

1− e−ν0/L(t)

)
.

The previous equation thus becomes

∫

ν,Ω
∂t

(I0 −B0,L)+

Λ2γ
+

∫

ν,Ω
cΩ.∇(I0 −B0,L)+

Λ2γ
=
c

γ

∫

ν0,Ω0

sgn+(I0 −B0,L)Qt,0

+

∫

ν,Ω

sgn+(I0 −B0,L)

L(t)Λ2γ

ν0B0,L

1− e−ν0/L(t)

(
∂t(log Λ) + cΩ.∇(log Λ)− ∂t(logL(t))

)

+

∫

ν,Ω
(I0 −B0,L)+Λ−3

(
∂t

Λ

γ
+ cΩ.∇Λ

γ

)
.

(2.17)

The key of the proof relies on the fact that the second line of this equality is non positive.
Indeed, the definition of Λ (2.2) yields

∂tΛ =
Ω.∂tu/c√
1− |u|2/c2

+

(
1−Ω.

u

c

)
u.∂tu/c

2

√
1− |u|2/c23 .

Simple computations using the assumption (H1) on the velocity field and the estimate (2.13)
lead to

∂t(log Λ) ≤
‖u‖

W 1,∞
t,x

/c

Λ∗
√

1− (u∗/c)2

(
1 + 2

‖u‖
W 1,∞

t,x
/c

1− (u∗/c)2

)
.

The same manipulations for the space derivatives of Λ give us

∂t(log Λ) + cΩ.∇(log Λ) ≤ 2
‖u‖

W 1,∞
t,x

Λ∗
√

1− (u∗/c)2

(
1 +

2

c

‖u‖
W 1,∞

t,x

1− (u∗/c)2

)
.

Now using the definition of L(t) (2.14), one has

∂tL(t)

L(t)
=
(
Γ + 1

)
‖u‖

W 1,∞
t,x

+ 2
‖u‖

W 1,∞
t,x

Λ∗
√

1− (u∗/c)2

(
1 +

2

c

‖u‖
W 1,∞

t,x

1− (u∗/c)2

)
.

In particular,

∂tL(t)

L(t)
≥ 2

‖u‖
W 1,∞

t,x

Λ∗
√

1− (u∗/c)2

(
1 +

2

c

‖u‖
W 1,∞

t,x

1− (u∗/c)2

)
,

which yields
∂t(log Λ) + cΩ.∇(log Λ)− ∂t(logL(t)) ≤ 0.
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We can write from equation (2.17)
∫

ν,Ω
∂t

(I0 −B0,L)+

Λ2γ
+

∫

ν,Ω
cΩ.∇(I0 −B0,L)+

Λ2γ
=
c

γ

∫

ν0,Ω0

sgn+(I0 −B0,L)Qt,0

+

∫

ν,Ω
(I0 −B0,L)+Λ−3

(
∂t

Λ

γ
+ cΩ.∇Λ

γ

)
.

(2.18)
We now study the equation describing the evolution of the temperature. We make the same
manipulations than for the equation of the radiative intensity I: multiplying it by sgn+(T−L(t))
yields

∂t(T − L(t))+ + sgn+(T − L(t))

(
∂tL(t) +∇.(Tu) + ΓT∇.u

)
= − c

γ

∫

ν0,Ω0

sgn+(T − L(t))Qa,0.

In order to write the term in the brackets in terms of
(
T − L(t)

)+
and L(t), one remarks that

∇.(Tu) + ΓT∇.u = (T − L(t))∇.u + u.∇(T − L(t)) + Γ(T − L(t))∇.u + L(t)∇.u + ΓL(t)∇.u,

which yields

sgn+(T − L(t))
(
∇.(Tu) + ΓT∇.u

)
= ∇.

(
(T − L(t)

)+
+ Γ(T − L(t))+∇.u

+ sgn+(T − L(t))(Γ + 1)L(t)∇.u.

We thus have

∂t(T − L(t))+ + Γ(T − L(t))+∇.u +∇.
(
(T − L(t)

)+

+ sgn+(T − L(t))

(
∂tL(t) + (Γ + 1)∇.uL(t)

)
= − c

γ

∫

ν0,Ω0

sgn+(T − L(t))Qa,0.
(2.19)

Once again, the key of the proof relies on the fact that ∂tL(t) + (Γ + 1)∇.uL(t) is non negative.
Indeed, the definition of L(t) (2.14) yields

∂tL(t)

L(t)
=
(
Γ + 1

)
‖u‖

W 1,∞
t,x

+ 2
‖u‖

W 1,∞
t,x

Λ∗
√

1− (u∗/c)2

(
1 +

2

c

‖u‖
W 1,∞

t,x

1− (u∗/c)2

)
,

≥
(
Γ + 1

)
‖u‖

W 1,∞
t,x

.

We can write from equation (2.19)

∂t(T − L(t))+ + Γ(T − L(t))+∇.u +∇.
(
(T − L(t)

)+
= − c

γ

∫

ν0,Ω0

sgn+(T − L(t))Qa,0. (2.20)

We now study the source terms involved in the inequality (2.18). By definition of the scattering
operator (2.7), one has

∫

ν0,Ω0

sgn+(I0 −B0,L)Qs,0 = σs(x)

∫

ν0,Ω0

sgn+(I0 −B0,L)

(∫

Ω′
0

I0(~Ω
′
0)− I0

)
,

which we write
∫

ν0,Ω0

sgn+(I0 −B0,L)Qs,0 = −σs(x)
∫

ν0

(〈
(I0 −B0,L)+

〉
0

−
〈
I0 −B0,L

〉
0

〈
sgn+(I0 −B0,L)

〉
0

)
,
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where the notation
〈
.
〉
0

means
∫
S2

0
.dΩ0. Given a function X ∈ L1 and denoting X− its non pos-

itive part, one has < X >=< X+ +X− >≤< X+ >=< Xsgn+(X) >. Multiplying this identity
by < sgn+(X) > and using < sgn+(X) >≤ 1, one obtains < X >< sgn+(X) >≤ < X+ >,
which yields, using the positivity of the scattering coefficient (assumption (H2)), the identity∫
ν0,Ω0

sgn+(I0−B0,L)Qs,0 ≤ 0. We now turn to the terms containing the emission absorption co-

efficients, both in equalities (2.18) and (2.20). By definition of the emission absorption operator
(2.9), one has

∫

ν0,Ω0

(
sgn+(I0 −B0,L)− sgn+(T − L(t))

)
Qa,0

=

∫

ν0,Ω0

σa(ν0)
(
B0,T − I0

)(
sgn+(I0 −B0,L)− sgn+(T − L(t))

)
.

(2.21)

The proof that this term is non positive is done in [GP86,DOG01]. Actually, the equation (2.21)
can be written

∫

ν,Ω

(
sgn+(I0 −B0,L)− sgn+(T − L(t))

)
Qa,0

= −
∫

ν0,Ω0

σa(ν0)

(
(I0 −B0,L)+ − (I0 −B0,L)

)
sgn+(T − L(t))

−
∫

ν0,Ω0

σa(ν0)

(
(T − L(t))+ − (T − L(t))

)
sgn+(I0 −B0,L),

and thus this term is non positive since the function T 7→ B(ν, T ) is non decreasing and since the
emission absorption coefficient σa is non negative (assumption (H3)). Adding the inequalities
(2.18) and (2.20) and integrating over X, one gets, using all these results and the assumption
(H5) on the boundary conditions

d

dt

∫

x

(∫

ν,Ω

(I0 −B0,L)+

Λ2γ
+ (T − L(t))+

)

≤ −Γ

∫

x
(T − L(t))+∇.u +

∫

x,ν,Ω
(I0 −B0,L)+Λ−3

(
∂t

Λ

γ
+ cΩ.∇Λ

γ

)
,

≤ max

(∥∥∥∥
∂t(Λγ

−1) + cΩ.∇(Λγ−1)

Λ3

∥∥∥∥
L∞

x,Ω

, Γ‖∇.u‖L∞
x

)

×
∫

x

(∫

ν,Ω
(I0 −B0,L)+ + (T − L(t))+

)
.

(2.22)
Integrating this inequality between 0 and t and using the positivity of the coefficients Λ and γ
(estimate (2.13) and assumption (H1)) yield

min
(
(Λ∗)−2inf

t,x
γ−1, 1

) ∫

x

(∫

ν,Ω
(I0 −B0,L)+(t) + (T − L)+(t)

)

≤
∫

x

(∫

ν,Ω

(I0 −B0,L)+(0)

Λ2γ
+ (T − L)+(0)

)

+

∫ t

0
C

∫

x

(∫

ν,Ω
(I0 −B0,L)+ + (T − L)+

)
.
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The Gronwall lemma gives

∫

x

(∫

ν,Ω

(
I0 −B0,L

)+
(t) +

(
T − L

)+
(t)

)

≤ C2

∫

x

(∫

ν,Ω

(I0 −B0,L)+(0)

Λ2γ
+ (T − L)+(0)

)
e
t
‖C‖L∞

t
C2 ,

where C2 = min
(
(Λ∗)−2inf

t,x
γ−1, 1

)−1
. The assumption (H4) on the initial conditions thus yields

the non positivity of the left hand side, which is the result of the claim. The proof of the minimum

principle is similar. Writing the evolution equation satisfied by
∫
x

( ∫
ν,Ω

(B0,l−I0)+

Λ2γ
+ (l − T )+

)
,

the claim relies on the following inequalities satisfied by l(t)





∂tl(t)

l(t)
≤ −(Γ + 1)‖u‖

W 1,∞
t,x

,

∂tl(t)

l(t)
≤ −

‖u‖
W 1,∞

t,x

Λ∗
√

1− (u∗/c)2

(
1 +

2

c

‖u‖
W 1,∞

t,x

1− (u∗/c)2

)
.

To obtain existence of solutions of (2.1), one can use the semigroup theory for problem
written as Lipschitz perturbation of semigroup operators. In the following lemma the notion of
strong and classical solution is the one used by A. Pazy [PAZ83].

Lemma 2.2 (Existence of solutions). Assume that hypotheses (H1)-(H6) are satisfied. Then
system (2.1) has a unique solution (I, T ) ∈ C 0([0, T f ];Lp(X × R

+
ν × S2))× C 0([0, T f ];Lp(X)).

The solution is strong in the case 1 < p < +∞ and classical in the case p = 1.

Proof. Let us rewrite the system (2.1) as an evolution system involving several operators, that
is {

∂t(T, I) +Q(T, I) = Qlips(T ),

(T, I)(t = 0) = (T in, Iin)
(2.23)

where Q(T, I) = A(T, I)−Qlin(T, I) and





A(T, I) =

(
u.∇T ; cΩ.∇I

)
,

Qlin(T, I) =

(
− (1 + Γ)T∇.u +

c

γ

∫

ν,Ω

σa(ν0)

Λ
I0 ; cQs − c

σa(ν0)

Λ2
I0

)
,

Qlips(T ) = c

(
−
∫

ν,Ω

σa(ν0)

γΛ2
B(ν0, T ) ;

σa(ν0)

Λ2
B(ν0, T )

)
,

where Q is the generator of the semigroup and Qlips is the perturbation. The result of the claim
is a consequence of the two following lemmas. In lemma 2.3 we prove that Q is the infinitesimal
generator of a C 0 semigroup on Lp(X)×Lp(X×R

+
ν ×S2) and in lemma 2.4 we prove that Qlips

is a Lipschitz operator from Lp(X) × Lp(X × R
+
ν × S2) into itself. One then applies theorems

6.1.2 and 6.1.6 of [PAZ83] in the case 1 < p < +∞ and theorems 6.1.2 and 6.1.5 of [PAZ83] in
the case p = 1. The difference comes from the fact that Lp is a reflexive Banach space only in
the case 1 < p < +∞.
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Lemma 2.3. Assume that hypotheses (H1)-(H6) are satisfied. Then, for all 1 ≤ p < +∞, the
operator Q = A − Qlin is the infinitesimal generator of a C 0 semigroup on Lp(X) × Lp(X ×
R

+
ν × S2).

Proof. It is known (see [DL83], chapter 21) that A is the infinitesimal generator of a C 0 semi-
group on Lp(X)×Lp(X ×R

+
ν ×S2). We need to prove that Qlin is a linear continuous operator

from Lp(X)×Lp(X×R
+
ν ×S2) into itself. Using the inequality ∀a, b ≥ 0, (a+b)p ≤ 2p−1(ap+bp),

we just need to estimate each components of Qlin in Lp. We start with the first component of
Qlin. For the first term, one easily obtains ‖(1 + Γ)T∇.u‖Lp

x
≤ (1 + Γ)‖∇.u‖L∞

x
‖T‖Lp

x
. For the

second term, the relation I0 = Λ3I and the estimate (2.13) give

∥∥∥∥
c

γ

∫

ν,Ω

σa(ν0)

Λ
I0

∥∥∥∥
p

Lp
x

≤ cp(Λ∗)2p‖γ−p‖L∞
x

∫

x

(∫

ν,Ω
σa(ν0)I

)p
.

By assumption (H1) on the velocity field, one has γ−1 ≤ 1. Using the Hölder inequality, we get

∥∥∥∥
c

γ

∫

ν,Ω

σa(ν0)

Λ
I0

∥∥∥∥
Lp

x

≤ cΛ∗2‖σa‖
L

p
p−1
ν

‖I‖Lp
x,ν,Ω

, (2.24)

which is bounded thanks to the estimate (2.13) on Λ and to the assumptions (H3) and (H6)
on the regularity of the emission absorption coefficient. The second component is a little more
complicated. We remind that

Qs = σs(x)Λ

(∫

Ω′

Λ′

Λ3
I(ν ′,Ω′)− I

)
.

Thus, a Cauchy Schwarz inequality and the estimate (2.13) yield

‖Qs‖pLp
x,ν,Ω
≤ ‖σs‖pL∞

x
(Λ∗)p

((
Λ∗

Λ3∗

)p ∫

x,ν,Ω
Ip(ν ′,Ω′) + ‖I‖p

Lp
x,ν,Ω

)
.

Making the change of variable ν̄ = Λ
Λ′ ν in the integral, we find

‖Qs‖pLp
x,ν,Ω
≤ ‖σs‖pL∞

x
(Λ∗)p

((
Λ∗

Λ3∗

)p+1

+ 1

)
‖I‖p

Lp
x,ν,Ω

,

which yields ‖Qs‖Lp
x,ν,Ω

≤ C‖I‖Lp
x,ν,Ω

. The second term of the second component is similar

to (2.24). We deduce that if we denote F = (T, I), there exists a constant C ≥ 0 such that
‖Qlin(F )‖Lp

x×Lp
x,ν,Ω
≤ C‖F‖Lp

x×Lp
x,ν,Ω

. There just remains to apply the theorem 3.1.1 of [PAZ83]

to conclude.

We study the operator Qlips. We have the

Lemma 2.4. Under hypotheses (H1)-(H6), there exists a constant C ≥ 0 such that for all T1,

T2 ∈
(
Lp(X) ∩ L∞(X)

)+
, the following estimate holds :

‖Qlips(T1)−Qlips(T2)‖Lp
x×Lp

x,ν,Ω
≤ C‖T1 − T2‖Lp

x
.
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Proof. Studying the expression of Qlips(T1) − Qlips(T2), the control of the second component
relies on the control of ‖B(ν0, T1) − B(ν0, T2)‖Lp

x,ν,Ω
. Using a Taylor expansion with integral

remainder of the function T 7→ B(ν0, T ), one gets

|B(ν0, T2)−B(ν0, T1)|p =

∣∣∣∣
∫ T2

T1

∂TB(ν0, s)ds

∣∣∣∣
p

≤ |T2 − T1|p
∣∣∣∣

1

|T2 − T1|

∫ T2

T1

∂TB(ν0, s)ds

∣∣∣∣
p

.

The Jensen inequality yields

|B(ν0, T2)−B(ν0, T1)|p ≤ |T2 − T1|p
1

|T2 − T1|

∫ T2

T1

|∂TB(ν0, s)|pds. (2.25)

By definition of the Planck function, one has ∂TB(ν0, s) =
ν4
0e

ν0/s

s2(eν0/s−1)2
. Integrating (2.25) on

R
+
ν and making the change of variable ν → ν0/s lead to

∫

ν
|B(ν0, T2)−B(ν0, T1)|pdν ≤ |T2 − T1|p

1

Λ

1

|T2 − T1|

∫ T2

T1

s2p+1ds×
∫

ν

ν4pepν

(eν − 1)2p
dν.

Since there exists a constant C such that
∫
ν

ν4pepν

(eν−1)2pdν ≤ C, this expression reduces to

∫

ν
|B(ν0, T2)−B(ν0, T1)|pdν ≤ |T2 − T1|p

C

Λ(2p+ 2)

T 2p+2
2 − T 2p+2

1

|T2 − T1|
.

Using the formula an − bn = (a− b)
∑n−1

k=0 a
kbn−1−k, one finds a constant C, which depends on

max(T1, T2)
2p+1, such that

‖B(ν0, T2)−B(ν0, T1)‖Lp
x,ν,Ω
≤ C‖T2 − T1‖Lp

x
.

For the first component of Qlips(T1) − Qlips(T2), a Hölder inequality together with the change
of variable ν 7→ Λν yield

∫

x

∣∣∣∣
∫

ν,Ω

cσa(ν0)

γΛ2

(
B(ν0, T2)−B(ν0, T1)

)∣∣∣∣
p

≤ cp

Λ3p−1
∗
‖σa‖p

L
p

p−1
ν

‖B(ν0, T2)−B(ν0, T1)‖pLp
x,ν,Ω

.

The previous result and the assumption (H5) on the emission absorption coefficient give the
result.

2.3 Non-equilibrium diffusion regime

In this section we study the so called non-equilibrium diffusion regime. This regime has already
been studied in the grey case with relativistic coefficients in [GLG05] and with non relativistic
coefficients in [DOG01] (see also [BN14]). The idea is to assume that the speed of light c is very
fast compared to the velocity field u, i.e. |u|/c << 1 and that the scattering coefficient is stiff
compared to the emission absorption coefficient, i.e. σs/σa >> 1. We thus introduce a coefficient
ε, 0 < ε ≤ 1, formally equal to the ratio of a characteristic speed of the fluid by the velocity
of light (a rigorous derivation of the equations can be found for example in [GLG05, BD04]).
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Rescaling the emission absorption coefficient as σa = εσ̂a, the scattering coefficient as σs = σ̂s/ε,
where σ̂a, σ̂s = O(1) with respect to ε, and the speed of light as c = 1/ε lead, after dropping the
hats for ease of notations, to the following system





∂tI
ε +

1

ε
Ω.∇xIε =

Qεs
ε2

+Qεa,

∂tT
ε +∇.(T εu) + ΓT ε∇.u = −

∫

ν,Ω

Λε

γε
Qεa,

(2.26)

where γε =
(
1 − ε2|u|2

)−1/2
and Λε = γε

(
1 − εΩ.u

)
. We introduce (ρ, T̄ ) the solution of the

following drift diffusion system:




∂tρ−∇.
( ∇ρ

3σs(x)

)
+∇.

(
ρu
)

=
∇.u
3
ν∂νρ+ σa(ν)(B(ν, T̄ )− ρ),

∂tT̄ +∇.(T̄u) + ΓT̄∇.u = −
∫

ν
σa(ν)(B(ν, T̄ )− ρ).

(2.27)

This section is devoted to the proof of convergence of the solution (Iε, T ε) of the relativistic
transfer equations (2.26) to the solution of the drift diffusion system (2.27) as ε→ 0. The proof
will be done in several steps, following C. Dogbe [DOG01] or G. Allaire and F. Golse [AG12].
The idea is in a first time (part 2.3.1) to find formally the limit, as ε→ 0, of the solution (Iε, T ε)
using formal Hilbert expansions. In a second time (part 2.3.3), we prove the strong convergence
in L2. To this end we prove a comparison principle and several a priori estimates for the solution
of the drift diffusion system (2.27) (part 2.3.2). The end of this section deals with the proof of
the convergence result, and uses a function, reconstructed from the truncated Hilbert expansion,
solution of the system (2.26) with a remainder. Finally, we conclude by using a priori estimates
on the solution of the drift diffusion system (2.27) and a stability result for the system (2.26).

As a remark, we do not consider the open problem of existence and uniqueness of a solution
for the drift diffusion system (2.27). Indeed the equation on ρ is parabolic degenerate, since
there is no frequency diffusion. A possible solution could be to introduce a small dissipation in
frequency, apply the semi-group theory for the modified problem and then use similar a priori
estimates than (2.47) to gain compactness. In this work we assume the existence of a solution
for the system (2.27).

2.3.1 Formal asymptotic of the radiative transfer equations

In this part the drift diffusion system (2.27) will be obtained formally, using formal Hilbert
expansions of the radiative transfer equations (2.26). Indeed, we prove the following lemma.

Lemma 2.5. The drift diffusion system (2.27) is a first order approximation of the radiative
transfer equations (2.26).

Proof. The proof is divided in two steps. In a first one the scattering and emission absorption
operators will be expanded in power of ε. In a second part the solution of the radiative transfer
equations (2.26) will also be expanded, leading formally to the drift diffusion system (2.27).

First step: Study of the source terms

In order to simplify the next step, concerning the Hilbert expansion of the solution (Iε, T ε) of
the system (2.26), the scattering and the emission absorption operators are expanded in power
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of ε. Since it is of order ε−2, the study of the scattering operator will be more complicated,
while the expansion of the emission absorption operator will be rather simple. We start with
the scattering operator. Given a function I : [0, T f ]×X × R

+
ν × S2 → R

+, it is defined by

Qεs(I) = σs(x)Λ
ε

(∫

S2

Λε
′

(Λε)3
I(νε

′
,Ω′)dΩ′ − I

)
,

where νε
′
= (Λε/Λε

′
)ν. We expand it in power of ε: given N ∈ N, we write

Qεs(I) =
∑

0≤i≤N
εiQis(I) + εN+1Q̄εs,N (I).

Due to the Doppler shift, the radiative intensity I is computed at the frequency ν ′, and a Taylor
expansion with integral remainder will be performed. In order to simplify the notations we
remove the dependence in ε in the coefficients Λε,Λε

′
and νε

′
. Since il will be useful in the next

part, expansions at order 2,1 and 0 with respect to ε of the scattering operator are performed.

Expansion of Qεs at order 2

In this part the scattering operator is written as

Qεs(I) = Q0
s(I) + εQ1

s(I) + ε2Q2
s(I) + ε3Q̄εs,2(I),

with 



Q0
s(I) = σs(x)(< I > −I),

Q1
s(I) = σs(x)

(∫

S2

(
νλ5∂νI(ν,Ω

′) + λ3I(ν,Ω
′)

)
dΩ′ + λ1σs(x)(< I > −I)

)
,

Q2
s(I) = σs(x)

∫

S2

(
ν(λ6 + λ3λ5)∂νI(ν,Ω

′) +
ν2

2
λ2

5∂
2
νI(ν,Ω

′) + λ4I(ν,Ω
′)

)
dΩ′

+ σs(x)λ1

∫

S2

(
νλ5∂νI(ν,Ω

′) + λ3I(ν,Ω
′)

)
dΩ′ + σs(x)λ2(< I > −I),

and



Q̄εs,2(I) = σs(x)

∫

S2

(
RI,2 + λ3

(
νλ6∂νI(ν,Ω

′) +
ν2

2
λ2

5∂
2
νI(ν,Ω

′) + εRI,2

))
dΩ′

+ σs(x)

∫

S2

(
λ4
I(ν ′,Ω′)− I(ν,Ω′)

ε
+R Λ′

Λ3 ,2
I(ν,Ω′)

)
dΩ′

+ σs(x)λ1

∫

S2

(
νλ6∂νI(ν,Ω

′) +
ν2

2
λ2

5∂
2
νI(ν,Ω

′) + εRI,2

)
dΩ′

+ σs(x)λ1

∫

S2

(
λ3
I(ν ′,Ω′)− I(ν,Ω′)

ε
+ (λ4 + εR Λ′

Λ3 ,2
)I(ν,Ω′)

)
dΩ′

+ σs(x)λ2

∫

S2

I(ν ′,Ω′)− I(ν,Ω′)
ε

dΩ′

+ σs(x)λ2

∫

S2

( Λ′

Λ3 − 1

ε

)
I(ν ′,Ω′)dΩ′

+ σs(x)RΛ,2

(∫

S2

Λ′

Λ3
I(ν ′,Ω′)dΩ′ − I(ν,Ω)

)
,

(2.28)
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where all the coefficients involved in this system are given below. These coefficients come
from two different contributions: a part of them comes from the expansion of the relativistic
coefficients and the others come from the Taylor expansion of I(ν ′) around the frequency ν.
We start with the expansion of the relativistic parameters involved in the expression of the
scattering operator. Using a Taylor expansion with integral remainder, the coefficient Λ can be

written as Λ = 1 − εΩ.u + ε2 |u|
2

2 + ε3RΛ,2, which we write Λ = 1 + λ1ε + λ2ε
2 + ε3RΛ,2, with

λ1 = −Ω.u, λ2 = |u|2
2 and

RΛ,2 =
1

ε3
√

1− ε2|u|2

∫ 1

1−ε2|u|2

1− ε2|u|2 − s
4

1

s
√
s
ds+

|u|2
2
√

1− ε2|u|2

(
ε
|u|2
2
−Ω.u

)
.

In the same way, one has Λ′

Λ3 = 1+ε(3Ω−Ω′).u+ε2(3(Ω,u)(2Ω−Ω′,u)−|u|2)+ε3R Λ′

Λ3 ,2
, which

we write Λ′

Λ3 = 1+λ3ε+λ4ε
2 + ε3R Λ′

Λ3 ,2
, with λ3 = (3Ω−Ω′).u, λ4 = 3(Ω,u)(2Ω−Ω′,u)−|u|2

and

R Λ′

Λ3 ,2
=

1− |u|2
(1− εΩ.u)3

(
3Ω′.u− 3ε(Ω,u)2 + 2ε2(Ω,u)3

− 3(Ω,u)2
(
3Ω.u− 3ε(Ω,u)2 + ε2(Ω,u)3

))

− |u|2
((

3Ω−Ω′,u
)

+ 3εΩ.u
(
2Ω−Ω′,u

))
.

Finally, we have Λ
Λ′ = 1 + ε(Ω′ − Ω).u + ε2Ω′.u(Ω′ − Ω).u + ε3R Λ

Λ′ ,2
, which we write Λ

Λ′ =

1 + λ5ε+ λ6ε
2 + ε3R Λ

Λ′ ,2
, with λ5 = (Ω′ −Ω).u, λ6 = Ω′.u(Ω′ −Ω).u and

R Λ
Λ′ ,2

=
(Ω′,u)2(Ω′ −Ω,u)

1− εΩ′.u .

We now expand the expression of I(ν ′) around the frequency ν. Using ν ′ − ν =
(

Λ
Λ′ − 1

)
ν, a

Taylor expansion with integral remainder of I yields

I(ν ′,Ω′) = I(ν,Ω′) + νλ5ε∂νI(ν,Ω
′) + ε2

(
νλ6∂νI(ν,Ω

′) +
ν2

2
λ2

5∂
2
νI(ν,Ω

′)

)
+ ε3RI,2,

with

RI,2 = νR Λ
Λ′ ,2

∂νI(ν,Ω
′) +

ν2

2ε3

(
(
Λ

Λ′
− 1)2 − (ελ5)

2

)
∂2
νI(ν,Ω

′)

+
1

ε3

∫ ν′

ν

(ν ′ − s)2
2

∂3
νI(s,Ω

′)ds,

and this ends the definition of all the coefficients involved in the expansion at order 2 of the
scattering operator.

Expansion of Qεs at order 1

In this part the same expansion of the scattering operator is performed, but we stop at or-
der 1. The method is the same. We write the scattering operator as

Qεs(I) = Q0
s(I) + εQ1

s(I) + ε2Q̄s,1(I),
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with




Q0
s(I) = σs(x)(< I > −I),

Q1
s(I) = σs(x)

(∫

S2

(
νλ5∂νI(ν,Ω

′) + λ3I(ν,Ω
′)

)
dΩ′ + σs(x)λ1(< I > −I)

)
,

Q̄εs,1(I) = σs(x, ν)

∫

S2

(
λ3λ5ν∂νI(ν,Ω

′) +RI,1 +R Λ′

Λ3 ,1
I(ν)

)
dΩ′

+ σs(x)λ1

∫

S2

(
I(ν ′)− I(ν)

ε
+ (λ3 +R Λ′

Λ3 ,1
)I(ν ′)

)
dΩ′

+RΛ,1

(∫

S2

Λ′

Λ3
I(ν ′,Ω′)dΩ′ − I(ν,Ω)

)
.

(2.29)

Obviously the terms Q0
s(I) and Q1

s(I) are the same than for the expansion at order 2. The
only difference with the previous expansions comes from the remainders of the expansions of the
coefficients. Again, we have, Λ = 1− εΩ.u+ ε2RΛ,1, which we write Λ = 1 + λ1ε+ ε2RΛ,1, with





λ1 = −Ω.u,

RΛ,1 =
1−

√
1− ε2|u|2

ε2
√

1− ε2|u|2

(
1− εΩ.u

)
.

We also have Λ′

Λ3 = 1 + ε(3Ω−Ω′).u + ε2R Λ′

Λ3 ,1
, which we write Λ′

Λ3 = 1 + λ3ε+ ε2R Λ′

Λ3 ,1
, with





λ3 = (3Ω−Ω′).u,

R Λ′

Λ3 ,1
=

(3Ω−Ω′,u)

ε

1− (1− εΩ,u)3

(1− εΩ,u)3
−
(
(Ω,u)2 − (Ω,u)3

)(
1− |u|2

)

(1− εΩ,u)3
.

Finally, we have Λ
Λ′ = 1 + ε(Ω′ −Ω).u + ε2R Λ

Λ′ ,1
, which we write Λ

Λ′ = 1 + λ5ε+ ε2R Λ
Λ′ ,1

, with





λ5 = (Ω′ −Ω).u,

R Λ
Λ′ ,1

= (Ω′,u)
(Ω′ −Ω,u)

1− εΩ′.u .

We now make a Taylor expansion, with respect to ν, of I

I(ν ′,Ω′) = I(ν,Ω′) + νλ5ε∂νI(ν,Ω
′) + ε2RI,1,

with RI,1 = νR Λ
Λ′ ,1

∂νI(ν,Ω
′) + 1

ε2

∫ ν′
ν (ν ′ − s)∂2

νI(s,Ω
′)ds.

Expansion of Qεs at order 0

In this part we make the same development of the scattering operator but we stop at order
0. The method is the same. We write the scattering operator as

Qεs(I) = Q0
s(I) + εQ̄s,0(I).
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with

Q̄εs,0(I) = σs(x)

∫

S2

(
RI,0 +R Λ′

Λ3 ,0
I(ν ′,Ω′)

)
dΩ′

+RΛ,0

(∫

S2

Λ′

Λ3
I(ν ′,Ω′)dΩ′ − I(ν,Ω)

)
.

(2.30)

Obviously the term Q0
s(I) is the same than for the expansions at order 1 and 2. Once again,

the only difference comes from the remainders. We have Λ = 1 + εRΛ,0, with

RΛ,0 =
1− εΩ.u−

√
1− ε2|u|2

ε
√

1− ε2|u|2
.

We also have Λ′

Λ3 = 1 + εR Λ′

Λ3 ,0
, with

R Λ′

Λ3 ,0
=

1− ε2|u|2
ε

1− εΩ.u− (1− εΩ.u)3

(1− εΩ.u)3
.

Finally, we have Λ
Λ′ = 1 + εR Λ

Λ′ ,0
, with R Λ

Λ′ ,0
= (Ω′−Ω,u)

1−εΩ′.u . We make a Taylor expansion, with

respect to ν, of I
I(ν ′,Ω′) = I(ν,Ω′) + εRI,0,

with RI,0 = 1
ε

∫ ν′
ν ∂νI(s,Ω

′)ds.

Expansion of the emission absorption operator

As for the scattering operator, a Hilbert expansion with exact residual term of the emission
absorption operator is performed. The study is much simpler than for the scattering operator
since the scaling is less severe. We recall here the definition of the emission absorption operator.
Given two function T : [0, T f ]×X → R

+ and I : [0, T f ]×X × R
+
ν × S2 → R

+, it is defined by

Qεa(I, T ) =
σa(ν

ε
0)

Λε2

(
B(νε0, T )− (Λε)3I

)
. (2.31)

Dropping the ε in the coefficients Λε and νε0 for ease of notations, we write

Qεa(I, T ) = Q0
a(I, T ) + εQ̄εa(I, T ), (2.32)

with




Q0
a(I, T ) = σa(ν)

(
B(ν, T )− I

)
,

Q̄εa(I, T ) =
1− Λ2

εΛ2
σa(ν0)

(
B(ν0, T )− I0

)
+
σa(ν0)− σa(ν)

ε

(
B(ν0, T )− I

)

+ σa(ν)
B(ν0, T )−B(ν, T )

ε
+ σa(ν0)

I − I0
ε

.

(2.33)

Second step: Formal Hilbert expansion of the transport equation

In this part we find the formal asymptotic limit of the relativistic transfer equation in the
non-equilibrium diffusion regime using a formal Hilbert expansion, that is

{
Iε = I0 + εI1 + ε2I2 + O(ε3),

T ε = T 0 + O(ε).
(2.34)
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The limit will only be formal, in the sense that the remainders in (2.34) are not explicitly
bounded in some norm. This will be performed in the next section. Recall that in the notations,
the subscript 0 refers to quantities computed in the moving frame, while the power 0 refers to
the first order term in the expansion in power of ε.

The choice of the scaling is driven by the fact that the temperature T is only involved in
O(1) terms in (2.26), while I is involved in O(ε−2) terms. Since the scattering operator Qs is
linear, one has Qεs(I

ε) = Qεs(I
0) + εQεs(I

1) + ε2Qεs(I
2) + O(ε3). We use the expansion at order

2 of the scattering operator for the zero-th order term I0, the expansion at order 1 for the first
order term I1 and the expansion at order 0 for the second order term I2. It yields





Qεs(I
0) = Q0

s(I
0) + εQ1

s(I
0) + ε2Q2

s(I
0) + ε3Q̄εs,2(I

0),

Qεs(I
1) = Q0

s(I
1) + εQ1

s(I
1) + ε2Q̄εs,1(I

1),

Qεs(I
2) = Q0

s(I
2) + εQ̄εs,0(I

2).

The previous expansion (2.32) of the emission absorption operator yieldsQεa(I
ε, T ε) = Q0

a(I
ε, T ε)+

Q̄εa(I
ε, T ε). Moreover, the expansions (2.34) of the unknowns Iε and T ε and a Taylor expansion

of the Planck function B(ν, T ε) formally lead to Q0
a(I

ε, T ε) = Q0
a(I

0, T 0) + O(ε). It yields,
taking into account all the remainders Q̄s,i, i = 0, 1, 2 and Q̄a as O(ε) terms,





∂t(I
0 + εI1 + ε2I2) +

1

ε
Ω.∇x(I0 + εI1 + ε2I2) =

Q0
s(I

0)

ε2
+
Q1
s(I

0) +Q0
s(I

1)

ε
+Q2

s(I
0) +Q1

s(I
1) +Q0

s(I
2) +Q0

a(I
0, T 0) + O(ε),

∂tT
0 +∇.(T 0u) + ΓT 0∇.u = −

∫

ν,Ω
Q0
a(I

0, T 0) + O(ε).

We now study all the terms with the same power of ε. In the forthcoming computations,

the formula
∫
Ω(Ω,u)2 = |u|2

3 will be often used. First, in 1
ε2

, one has Q0
s(I

0) = 0, that is
σs(x)(I

0 −
∫
Ω I

0) = 0, and thus I0 is independent of the angular direction Ω. At the order 1
ε ,

one has Ω.∇xI0 = Q0
s(I

1) +Q1
s(I

0), which yields

Ω.∇xI0 = σs(x)

(∫

Ω′

I1(Ω′)− I1

)
+ σs(x)

(∫

Ω′

λ5ν∂νI
0 +

∫

Ω′

λ3I
0

)
.

Using the relations
∫
Ω′ λ5 = −Ω.u and

∫
Ω′ λ3 = 3Ω.u, one finds

σs(x)

(
I1 −

∫

Ω′

I1(Ω′)

)
= −Ω.∇xI0 − σs(x)Ω.uν∂νI0 + 3σs(x)Ω.uI

0 (2.35)

This kind of equation is studied in [AG12], and we recall here the main lines. We introduce
K : φ 7→

∫
Ω φ, which is an Hilbert Schmidt operator, and we study the auxiliary equation





(Id −K )bj(Ω) = Ωj ,∫

Ω
bj = 0.
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Since
∫
Ω Ωj =

( ∫
Ω Ω

)
j

= 0, the Fredholm theory gives the existence of a solution I1. In

particular, it can be shown, see [AG12], that there exists a unique solution bj(Ω) ∈ Ker(Id−K )⊥.
The solutions of equation (2.35) are the functions of the form

I1 = − 1

σs(x)
Ω.∇xI0 −Ω.uν∂νI

0 + 3Ω.uI0 + C1(t, x, ν), (2.36)

where C1(t, x, ν), constant in Ω, is an arbitrary solution of the homogeneous equation (K −
Id)C1 = 0. Finally, at the order 0, one has





∂tI
0 + Ω.∇xI1 = Q0

s(I
2) +Q1

s(I
1) +Q2

s(I
0) +Q0

a(I
0, T 0),

∂tT
0 +∇.(T 0u) + ΓT 0∇.u = −

∫

ν
Q0
a(I

0, T 0).
(2.37)

We have, using the definitions of the λi (part 2.3.1.0) and I1,

Q1
s(I

1) =− ν
∫

Ω
(Ω,u)(Ω,∇∂νI0)− σs(x)

|u|2
3

(
ν∂νI

0 + ν2∂2
νI

0
)

+ σs(x)|u|2ν∂νI0

+

∫

Ω
(Ω,u)(Ω,∇I0) + σs(x)

|u|2
3
ν∂νI

0 − σs(x)|u|2I0 − (Ω,u)(Ω,∇I0)

− σs(x)(Ω,u)2ν∂νI
0 + 3σs(Ω,u)2I0 + σs(x)(Ω,u)(3C1 − ν∂νC1).

In the same way, one has

Q2
s(I

0) = −2(Ω,u)2σs(x)ν∂νI
0 + σs(x)

ν2

2
∂2
νI

0

( |u|2
3

+ (Ω,u)2
)

+ σs(x)I
0

(
3(Ω,u)2 − |u|2

)
,

and Q0
s(I

2) = σs(x)
( ∫

Ω I
2 − I2

)
. We thus obtain





∂tI
0 + Ω.∇xI1 = −ν

∫

Ω
(Ω,u)(Ω,∇∂νI0) + σs(x)ν∂νI

0

(
|u|2 − 3(Ω,u)2

)

+ σs(x)ν
2∂2
νI

0

(
(Ω,u)2 − |u|

2

3

)
+

∫

Ω
(Ω,u)(Ω,∇I0)− (Ω,u)(Ω,∇I0)

+ 2σs(x)I
0

(
3(Ω,u)2 − |u|2

)
+Q0

a(I
0, T 0) + σs(x)(Ω,u)(3C1 − ν∂νC1)

+ σs(x)

(∫

Ω
I2 − I2

)
,

∂tT
0 +∇.(T 0u) + ΓT 0∇.u = −

∫

ν
Q0
a(I

0, T 0).

(2.38)

The first equation can be rewritten σs(x)(K − Id)I2 = ∂tI
0 − g, with an obvious definition of

the function g. Using once again the Fredholm theory, this equation has a solution if and only
if the compatibility condition ∂tI

0 − g ∈ Ker(K − Id)⊥, i.e.
∫
Ω(∂tI

0 − g) = ∂tI
0 −

∫
Ω g = 0 is

satisfied. This gives us ∂tI
0 =

∫
Ω g and thus I2 satisfy σs(x)(K − Id)I2 =

∫
Ω g − g. Using the
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same arguments than for the computation of I1, the solution of this equation is of the form

I2 =

(
(Ω,u)2 − |u|

2

3

)(
6I0 − 3ν∂νI

0 + ν2∂2
νI

0

)

+
1

σ2
s(x)

∑

i,j

(
ΩiΩj −

∫

Ω
ΩiΩj

)
∂xj∂xiI

0 − 1

σs(x)
(Ω,∇C1) + C2(t, x, ν)

+
1

σs(x)

∑

i,j

(
ΩiΩj −

∫

Ω
ΩiΩj

)((
ν∂νI

0 − 3I0
)
∂xjui +

(
ν∂ν∂xjI

0 − 3∂xjI
0
)
ui

)

−
∑

i,j

(
ΩiΩj −

∫

Ω
ΩiΩj

)
ui∂xjI

0 + (Ω,u)
(
3C1 − ν∂νC1

)
,

(2.39)

where, C2(t, x, ν) is an arbitrary solution of the homogeneous equation (K −Id)C2 = 0. Setting
ρ = I0 and T̄ = T 0, integrating the first equation of (2.38) on S2 and computing all the terms,
we find





∂tρ−∇.
( ∇ρ

3σs(x)

)
+∇.

(
ρu
)

=
∇.u
3
ν∂νρ+ σa(ν)(B(ν, T̄ )− ρ) + O(ε),

∂tT̄ +∇.(T̄u) + ΓT̄∇.u = −
∫

ν
σa(ν)(B(ν, T̄ )− ρ) + O(ε).

Finally, dropping formally all the O(ε) terms, we find the following drift-diffusion equation





∂tρ−∇.
( ∇ρ

3σs(x)

)
+∇.

(
ρu
)

=
∇.u
3
ν∂νρ+ σa(ν)(B(ν, T̄ )− ρ),

∂tT̄ +∇.(T̄u) + ΓT̄∇.u = −
∫

ν
σa(ν)(B(ν, T̄ )− ρ),

(2.40)

which ends the proof of lemma 2.5.

2.3.2 A priori estimates for the drift diffusion system

In this part are introduced several new assumptions, which are different from the assumptions
H done in the previous section, due to the fact that we need additional regularity on the coef-
ficients σa, σs and u. We prove a priori estimates, such as a comparison principle and several
regularity results for the solution of the drift diffusion system (2.27) (lemma 2.6). These results
are important to prove the convergence result (theorem 2.8) in the next part.

We assume additional regularity on the parameters u, σs and σa than in the previous sec-
tion. This is summarized here, where the assumptions (H1)− (H4) are related to the regularity
of the coefficients σa, σs, u and on the parameter ε, and the assumption (H5) (respectively
the assumption (H6)) is related to the initial (respectively to the boundary) conditions of the
solution of the drift diffusion system (2.27).

• (H1) The velocity field satisfies u ∈W 4,∞([0, T f ]×X).

• (H2) The coefficients ε and u∗ = ‖u‖L∞ are such that there exists ε∗ < 1 such that
u∗ε ≤ ε∗. It yields the positivity of 1 − ε2|u|2 involved in the expression of the Lorentz
coefficient γε.
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• (H3) Smoothness of the scattering coefficient: σs ∈W 3,∞(X) and σs > 0.

• (H4) Smoothness of the emission absorption coefficient: σa ∈ W 3,∞(R+
ν ) ∩ L2(R+

ν ) and
σa ≥ 0.

• (H5) The initial conditions (ρin, T̄ in) of the drift diffusion system (2.27) are such that

νk∂k+qν ∂lxj
ρin ∈ L2(X × R

+
ν ), k, l, j ∈ (0, 1, 2, 3), k ∈ {0, 1} and ∂kxj

T̄ in ∈ L2(X), k, j ∈
(0, 1, 2, 3). Moreover, there exists two bounded and positive constants T̄∗ and T̄ ∗ such that
∀(x, ν) ∈ X × R

+
ν , T̄∗ ≤ T̄ in(x) ≤ T̄ ∗ and 0 < B(ν, T̄∗) ≤ ρin(x, ν) ≤ B(ν, T̄ ∗).

• (H6) We consider periodic boundary conditions in space and we assume that the solution of
the drift diffusion system (2.27) satisfies lim

ν→0
νq∂qν∂lx1

∂mx2
∂nx3

∂pt ρ = lim
ν→∞

νq∂qν∂lx1
∂mx2

∂nx3
∂pt ρ =

0, q, l,m, n ∈ (0, 1, 2, 3), and p ∈ {0, 1}.

The assumption (H2) yields in particular the positivity of the Lorentz factor γε. Moreover, this
assumption together with the assumption (H1) lead to an equivalent of the estimates (2.13) for
the relativistic coefficient Λε

0 < Λ∗ = 1− ε∗ ≤ Λε(t, x,Ω) ≤ Λ∗ =
1 + ε∗√
1− (ε∗)2

, ∀(t, x,Ω) ∈ [0, T f ]×X × S2, (2.41)

where the notation Λ∗ and Λ∗ have been kept for simplicity. The regularity assumed on the
emission absorption coefficient in assumption (H4), which stipulates that the emission absorp-
tion coefficient satisfies σa ∈ L2(R+

ν ), on the initial conditions in assumption (H5) and at the
boundaries ν → 0 and ν → ∞ in assumption (H6) are purely technical, in the sense that they
are only used to prove that the solution (ρ, T̄ ) and its derivatives belong to L∞t (L2

x,ν)×L∞t (L2
x).

They are due to the particular aspect of the proof, which uses a priori estimates (lemma 2.7).
For example assumption (H6) holds with p = l = m = n = 0 and q ∈ (0, 1, 2, 3) for ρ = B(ν, T̄ ),
the Planck function. We assume that the solution of the drift diffusion system (2.27) satisfies
this condition.

The end of this section deals with a priori estimates and with our main result. First (lemma
(2.6)), a comparison principle is proved for the solution of the drift diffusion system (2.27), using
the same tools than for the radiative transfer equations (theorem 2.1) together with a trick to
treat the diffusion term. Secondly (lemma 2.7), a regularity result is provided for the solution
of the drift diffusion system (2.27), whose proof is postponed to the appendix.

Lemma 2.6 (Comparison Principle). Assume that hypotheses (H1)-(H6) are satisfied. Then
∀(t, x, ν) ∈ [0, T f ]×X×R

+
ν , the solution of the drift diffusion system (2.27) satisfies the a priori

estimates T̄∗(t) ≤ T̄ (t, x) ≤ T̄ ∗(t) and B(ν, T̄∗(t)) ≤ ρ(t, x, ν) ≤ B(ν, T̄ ∗(t)), with




T̄∗(t) = T̄∗e

−t(Γ+ 4
3
)‖∇.u‖L∞

t,x ,

T̄ ∗(t) = T̄ ∗e
t(Γ+ 4

3
)‖∇.u‖L∞

t,x ,
(2.42)

where the constants T̄∗ and T̄ ∗ are defined in assumption (H5).

Proof. Since the arguments are similar, we only show the proof for the upper bound. We denote
B∗ν = B(ν, T̄ ∗) for ease of notations. The proof is mainly the same than for the relativistic
transfer equations (2.1), except that we need to treat the second order derivative. To achieve
this we use a method of Carrillo et al [CRS08], which is to introduce a function sgn+

α , where
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0 < α ≤ 1 is a small parameter, defined as a non decreasing regularization of the sgn+ function
defined in (2.12).

Using algebraic manipulations, one can write from the first equation of the drift diffusion (2.27)
the following equation

∂t
(
ρ−B∗ν

)
−∇.

(∇ρ
3σs

)
+∇.

((
ρ−B∗ν

)
u

)
+

(
∂tB

∗
ν +B∗ν∇.u−

∇.u
3
ν∂νB

∗
ν

)

=
∇.u
3
ν∂ν
(
ρ−B∗ν

)
+ σa(ν)(B(ν, T̄ )− ρ)

(2.43)

The proof relies on the non negativity of the term ∂tB
∗
ν + B∗ν∇.u − ∇.u3 ν∂νB

∗
ν . Indeed, the

definition of the Planck function yields

∂tB
∗
ν +B∗ν∇.u−

∇.u
3
ν∂νB

∗
ν =

ν

T̄ ∗
B∗ν

1− e−ν/T̄ ∗

(
∂tT̄

∗

T̄ ∗
+
∇.u
3

)
,

which is non negative by definition of T̄ ∗ (2.42). The equation (2.43) can be simplified to

∂t
(
ρ−B∗ν

)
−∇.

(∇ρ
3σs

)
+∇.

((
ρ−B∗ν

)
u

)
≤ ∇.u

3
ν∂ν
(
ρ−B∗ν

)
+ σa(ν)(B(ν, T̄ )− ρ) (2.44)

Multiplying this equation by sgn+
α

(
ρ−B∗ν

)
and integrating over R

3
x × R

+
ν yield

∫

x,ν
sgn+

α

(
ρ−B∗ν

)(
∂t
(
ρ−B∗ν

)
+∇.

((
ρ−B∗ν

)
u

)
− ∇.u

3
ν∂ν
(
ρ−B∗ν

))

−
∫

x,ν
sgn+

α

(
ρ−B∗ν

)
∇.
(∇ρ

3σs

)
≤
∫

x,ν
sgn+

α

(
ρ−B∗ν

)
σa(ν)(B(ν, T̄ )− ρ).

An integration by parts yields

−
∫

x,ν
sgn+

α

(
ρ−B∗ν

)
∇.
(∇ρ

3σs

)
=

∫

x,ν

(
sgn+

α

)′(
ρ−B∗ν

) |∇ρ|2
3σs

≥ 0,

due to the non decreasing behavior of the sgn+
α function, to the fact that T̄ ∗ does not depend

on the space variable x and since the scattering coefficient is positive by assumption (H3). One
thus obtains

∫

x,ν
sgn+

α

(
ρ−B∗ν

)(
∂t
(
ρ−B∗ν

)
+∇.

((
ρ−B∗ν

)
u

)
− ∇.u

3
ν∂ν
(
ρ−B∗ν

))

≤
∫

x,ν
sgn+

α

(
ρ−B∗ν

)
σa(ν)(B(ν, T̄ )− ρ).

We now pass to the limit as α→ 0 in this inequality, where only the sgn+
α function depends on

α. It yields

∫

x,ν
sgn+

(
ρ−B∗ν

)(
∂t
(
ρ−B∗ν

)
+∇.

((
ρ−B∗ν

)
u

)
− ∇.u

3
ν∂ν
(
ρ−B∗ν

))

≤
∫

x,ν
sgn+

(
ρ−B∗ν

)
σa(ν)(B(ν, T̄ )− ρ).

(2.45)
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As for the proof of the comparison principle for the transfer equations (theorem 2.1), we write

an inequality satisfied by
∫
x,ν

(
ρ−B∗ν

)+
. From the equation (2.45), one easily obtains by using

integration by parts and the boundary conditions (assumption (H6))

d

dt

∫

x,ν

(
ρ−B∗ν

)+ ≤ −
∫

x,ν

∇.u
3

(
ρ−B∗ν

)+
+

∫

x,ν
σa(ν)

(
B(ν, T̄ )− ρ

)
sgn+

(
ρ−B∗ν

)
. (2.46)

We keep this expression and study the equation satisfied by
(
T̄ − T̄ ∗

)+
, where T̄ is the solution

of the drift diffusion equation (2.27). Using the same arguments than for the derivation of the
equation (2.19) (proof of the comparison principle for the transfer equations (2.1)), one finds

∂t(T̄ − T̄ ∗)+ +∇.
((
T̄ − T̄ ∗

)+
u

)
+ Γ

(
T̄ − T̄ ∗

)+∇.u + sgn+(T̄ − T̄ ∗)
(
∂tT̄

∗ + (Γ + 1)T̄ ∗∇.u
)

= −
∫

ν
sgn+(T̄ − T̄ ∗)σa(ν)(B(ν, T̄ )− ρ).

Once again, the key of the proof is that by definition of T̄ ∗ (2.42), one has ∂tT̄
∗+(Γ+1)T̄ ∗∇.u ≥

0, which yields

∂t(T̄ − T̄ ∗)+ +∇.
((
T̄ − T̄ ∗

)+
u

)
+ Γ

(
T̄ − T̄ ∗

)+∇.u ≤ −
∫

ν
sgn+(T̄ − T̄ ∗)σa(ν)(B(ν, T̄ )− ρ).

Adding this inequality integrated over X with the inequality (2.46), one gets by introducing

H(t) =
∫
x,ν

(
ρ−B(ν, T̄ ∗)

)+
+
∫
x

(
T̄ − T̄ ∗)

)+
and by using the boundary conditions (assumption

(H6))

H ′(t) ≤
(

Γ +
1

3

)
‖∇.u‖L∞

x
H(t) +

∫

x,ν
σa(ν)

(
B(ν, T̄ )− ρ

)(
sgn+

(
ρ−B∗ν

)
− sgn+(T̄ − T̄ ∗)

)
.

Using the same reasoning than for the proof of the maximum principle for the relativistic transfer
equation (see equation (2.21)), one has

σa(ν)
(
B(ν, T̄ )− ρ

)(
sgn+

(
ρ−B∗ν

)
− sgn+(T̄ − T̄ ∗)

)
≤ 0,

and the Gronwall lemma gives the result.

We now turn to a regularity result for the solution of the drift diffusion system (2.27), which
is needed for the proof of convergence in the next part. We have the

Lemma 2.7 (Regularity of the solution of the drift diffusion system). Under assumptions (H1)-
(H6), there exists a constant C such that the solution of the drift diffusion system (2.27) satisfies





∑

0≤p≤1

∑

0≤q,l,m,n≤3

∥∥∥∥ν
q∂qν∂

l
x1
∂mx2

∂nx3
∂pt ρ

∥∥∥∥
L∞

t (L2
x,ν)

≤ C,

∑

0≤p≤1

∑

0≤l,m,n≤3

∥∥∥∥∂
l
x1
∂mx2

∂nx3
∂pt T̄

∥∥∥∥
L∞

t (L2
x)

≤ C,
(2.47)

with the convention ∂0
ξ = Id, ξ = x, t or ν.

Proof. The proof of this lemma is long and tedious, and thus we postpone it to the appendix.
It mainly uses the linearity of the equation on ρ and the comparison principle to treat the
nonlinearity of the equation on T̄ .

53



2.3.3 A rigorous proof of convergence

This part is devoted to the proof of convergence of the solution (Iε, T ε) of the relativistic trans-
fer equations (2.26) to the solution of the drift diffusion system (2.27) as ε → 0. Contrary to
the previous section, in which the limit was obtain formally (lemma 2.5), the remainders of the
source terms expansions are shown to be bounded in L∞t (L2

x,ν) (lemmas 2.9 and 2.10). The main
result (theorem 2.8) deals with the proof of strong convergence in L2 of the difference between
the solution of the transfer equations (2.26) and the solution of the drift diffusion system (2.27).

The convergence result is

Theoreme 2.8 (Convergence in the non-equilibrium diffusion regime). Under assumption (H1)-
(H6), there exists two constants C and C1, which do not depend on ε, such that the solution of
the relativistic transfer system (2.26) and the solution of the drift diffusion system (2.27) satisfy
the following estimate, where 0 ≤ t ≤ T f ,

‖Iε(t)− ρ(t)‖L2
x,ν,Ω

+ ‖T ε(t)− T̄ (t)‖L2
x
≤ C1

(
‖Iε(0)− ρ(0)‖L2

x,ν,Ω
+ ‖T ε(0)− T̄ (0)‖L2

x
+ ε

)
eCt.

As a remark, the exponential in time in this result comes from the use of the Gronwall lemma.
The end of the chapter is devoted to the proof of this convergence result. Since it is rather
technical, it is divided in three steps. In a first one, the regularity needed on the solution
of the drift diffusion system (2.27) to control the remainders of the expansions of the source
term (part 2.3.1.0) is highlighted. In a second part, a function constructed from the truncated
Hilbert expansion performed in the part 2.3.1.0, is proved to be solution of the radiative transfer
equations (2.26) with a remainder, which is proved to be small with respect to ε. Finally, in a
last part, the difference between this solution and the solution of the radiative transfer equations
(2.26) is shown to tends to 0 with ε in L2. In particular a suitable weight is used to conclude
the proof.

First step: control of the remainders of the expansions of the source term

In the last section, the scattering and emission absorption operators (see part 2.3.1.0) have
been expanded in power of ε, but no attention was given to the remainders Q̄εs,i, for i = 0, 1, 2

defined respectively in section (2.30), (2.29) and (2.28) and to Q̄εa defined in (2.33). This is the
purpose of this part. The following results are important, in the sense that they highlight the
regularity needed on the solution of the drift diffusion system to control these remainders. The
proofs of these results are postponed to the appendix.

Lemma 2.9. Assume that J is a given function. Under assumptions (H1)-(H4), there exists
a constant C ≥ 0 which does not depend on ε, such that the following inequality holds

‖Q̄εs,i(J)‖L∞
t (L2

x,ν,Ω) ≤ C
i+1∑

k=0

‖νk∂kνJ‖L∞
t (L2

x,ν,Ω), i = 0, 1, 2.

with the convention ∂0
ν = Id.

In the same way, the following lemma shows the regularity needed on given functions J and G
to control the remainder Q̄εa of the emission absorption operator.
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Lemma 2.10. Assume that G and J are two given functions. Under assumptions (H1)-(H4),
there exists a constant C ≥ 0 which depends on the L∞([0, T f ] × X) norm of G, but does not
depend on ε such that the following inequality holds

‖Q̄εa(J,G)‖L∞
t (L2

x,ν,Ω) ≤ C
(
‖G‖L∞

t (L2
x) + ‖J‖L∞

t (L2
x,ν,Ω) + ‖νJ‖L∞

t (L2
x,ν,Ω)

)
.

Second step: reconstruction of the solution

In this part is reconstructed a pair (Îε, T̂ ) constructed from the formal Hilbert expansion, so-
lution to (2.26) with a remainder, which is shown to be small with respect to ε in some norm.
These functions are defined by {

Îε = ρ+ ερ1 + ε2ρ2,

T̂ = T̄ ,
(2.48)

where ρ, ρ1, ρ2 and T̄ are constructed as follow: (ρ, T̄ ) is the solution of the drift-diffusion
equation (2.40),

ρ1 =
1

σs(x)
Ω.∇xρ−Ω.uν∂νρ+ 3Ω.uρ, (2.49)

and

ρ2 =

(
(Ω,u)2 − |u|

2

3

)(
6ρ− 3ν∂νρ+ ν2∂2

νρ

)
+

1

σ2
s(x)

∑

i,j

(ΩiΩj− < ΩiΩj >)∂xj∂xiρ

+
1

σs(x)

∑

i,j

(ΩiΩj− < ΩiΩj >)

((
ν∂νρ− 3ρ

)
∂xjui +

(
ν∂ν∂xjρ− 3∂xjρ

)
ui

)

−
∑

i,j

(ΩiΩj− < ΩiΩj >)ui∂xjρ.

(2.50)

Obviously ρ1 and ρ2 are related to the definition of I1 (2.36) and I2 (2.39). In this part is proved
the following lemma, which shows that (Îε, T̂ ) is solution of the radiative transfer equations (2.26)
with remainders Rε and Sε.

Lemma 2.11. Under assumptions (H1)-(H6), the pair (Îε, T̂ ) previously constructed is solution
of the following system





∂tÎ
ε +

1

ε
Ω.∇xÎε =

1

ε2
Qεs(Î

ε) +Qεa(Î
ε, T̂ ) + εRε,

∂tT̂ +∇.(T̂u) + ΓT̂∇.u = −
∫

ν,Ω

Λε

γε
Qεa(Î

ε, T̂ ) + εSε,
(2.51)

where Rε and Sε are such that there exists a constant C which does not depend on ε such that
‖Rε‖L∞

t (L2
x,ν,Ω) ≤ C and ‖Sε‖L∞

t (L2
x) ≤ C.

Proof. Using the results of the previous section, it is easy to see that





Q0
s(ρ) = 0,

Ω.∇ρ = Q0
s(ρ1) +Q1

s(ρ),

∂tρ+ Ω.∇ρ1 = Q0
s(ρ2) +Q1

s(ρ1) +Q2
s(ρ) +Q0

a(ρ, T̂ ).
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We write Qεs(Î
ε) as

Qεs(Î
ε) = Q0

s(ρ) + ε
(
Q0
s(ρ1) +Q1

s(ρ)
)

+ ε2
(
Q0
s(ρ2) +Q1

s(ρ1) +Q2
s(ρ)

)

+ ε3
(
Q̄εs,2(ρ) + Q̄εs,1(ρ1) + Q̄εs,0(ρ2)

)
.

Using algebraic arguments, we obtain the system (2.51), where




Rε = ∂tρ1 + ε∂tρ2 + Ω.∇ρ2 −
(
Q̄εs,2(ρ) + Q̄εs,1(ρ1) + Q̄εs,0(ρ2)

)

+
Q0
a(ρ, T̂ )−Qεa(Îε, T̂ )

ε
,

Sε =
1

ε

∫

ν,Ω

(Λ
γ
Qεa(Î

ε, T̂ )−Q0
a(ρ, T̂ )

)
.

(2.52)

We now study the remainders Rε and Sε. First, using the lemma 2.9, one has
∥∥∥∥Q̄

ε
s,2(ρ) + Q̄εs,1(ρ1) + Q̄εs,0(ρ2)

∥∥∥∥
L∞

t (L2
x,ν,Ω)

≤ C
( 3∑

k=0

‖νk∂kνρ‖L∞
t (L2

x,ν,Ω)

+

2∑

k=0

‖νk∂kνρ1‖L∞
t (L2

x,ν,Ω) +

1∑

k=0

‖νk∂kνρ2‖L∞
t (L2

x,ν,Ω)

)
.

The definitions of ρ1 (2.49) and ρ2 (2.50) yield, with another constant C,

‖Rε‖L∞
t (L2

x,ν,Ω) ≤ C
( ∑

0≤p≤1

∑

0≤q≤3

∑

1≤i,j,k≤3
0≤l,m,n≤3

∥∥∥∥ν
q∂qν∂

l
xi
∂mxj

∂nxk
∂pt ρ

∥∥∥∥
L∞

t (L2
x,ν,Ω)

+

∥∥∥∥
Q0
a(ρ, T̂ )−Qεa(Îε, T̂ )

ε

∥∥∥∥
L∞

t (L2
x,ν,Ω)

)
.

The first term is uniformly bounded thanks to the lemma 2.7. For the second one, one has

Q0
a(ρ, T̂ )−Qεa(Îε, T̂ )

ε
= −Q̄εa(Îε, T̂ ) + σa(ν)

(
ρ1 + ερ2

)
,

where Q̄εa is defined in (2.33). Since a comparison principle has been provided, the lemma 2.10
can be applied to control the first term of the right member. Using the definition of ρ1 (2.49),
ρ2 (2.50) and the lemma 2.7 to control the other ones, one easily gets

∥∥∥∥
Q0
a(ρ, T̂ )−Qεa(Îε, T̂ )

ε

∥∥∥∥
L∞

t (L2
x,ν,Ω)

≤ C,

where the constant C is uniform in ε. It yields, with another (uniform in ε) constant C,

‖Rε‖L∞
t (L2

x,ν,Ω) ≤ C. (2.53)

We now look at the term Sε. One can rewrite it as

Sε =
1

ε

∫

ν,Ω

(
Λ

γ
− 1

)(
σa(ν0)

(
B(ν0, T̂ )− Îε

))
:= Sε1

− 1

ε

∫

ν,Ω

(
Λ

γ
− 1

)(
σa(ν)

(
B(ν, T̂ )− ρ

))
:= Sε2

+
1

ε

∫

ν,Ω

(
σa(ν0)B(ν0, T̂ )− σa(ν)B(ν, T̂ )

)
:= Sε3

+
1

ε

∫

ν,Ω

(
σa(ν)ρ− σa(ν0)Î

ε

)
:= Sε4
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We study each term separately. By definition, Λγ−1 − 1 = ε(Ω,u). The relation (a + b)2 ≤
2(a2 + b2) yields

‖Sε1‖2L2
x
≤ 2‖u‖2L∞

x

{∫

x

(∫

ν
σa(ν0)B(ν0, T̂ )

)2

+

∫

x

(∫

ν,Ω
σa(ν0)Î

ε

)2}
.

A Cauchy Schwarz inequality in the second term gives

‖Sε1‖2L2
x
≤ 2‖u‖2L∞

x

{
‖σa‖2L∞

x

∫

x

(∫

ν
B(ν0, T̂ )

)2

+ ‖σa‖2L2
ν
‖Îε‖2L2

x,ν,Ω

}
,

which is bounded thanks to the assumption (H4) on the emission absorption coefficient. The defi-
nition of the Planck function, together with the change of variable ν 7→ ν0/T̂ , yield

∫
ν B(ν0, T̂ ) =

T̂ 4
∫
ν ν

3
(
eν−1

)−1 ≤ CT̂ 4. The comparison principle for the solution of the drift diffusion system

(2.27) (lemma 2.6) yields in particular
∫
x

( ∫
ν B(ν0, T̂ )

)2 ≤ C‖T̂‖L2
x
. Finally, the definition of

Î in terms of ρ, ρ1 and ρ2 (2.48) and the regularity of the solution of the drift diffusion system
(lemma 2.7) yield ‖Sε1‖L2

x
≤ C. The same arguments give ‖Sε2‖L2

x
≤ C. The control of the term

Sε3 is a little more technical. In order to use the fact that ν0 − ν is of order ε, we decompose it
as

Sε3 =
1

ε

∫

ν,Ω

((
σa(ν0)− σa(ν)

)
B(ν0, T̂ ) +

(
B(ν0, T̂ )−B(ν, T̂ )

)
σa(ν)

)

= Sε3,1 + Sε3,2.

The relations σa(ν0)− σa(ν) =
∫ ν0
ν σ′a(s)ds and ν − ν0 = (1− Λ)ν yield

‖Sε3,1‖2L2
x
≤ ‖σa‖2W 1,∞

sup
t,x
|1− Λ|2

ε2

∫

x

(∫

ν
νB(ν0, T̂ )

)2

.

The definition of the Planck function, together with the change of variable ν 7→ ν0/T̂ give us∫
ν νB(ν0, T̂ ) = Λ−2T̂ 5

∫
ν ν

4
(
eν−1

)−1 ≤ CT̂ 5. Finally, the relation |1−Λ| ≤ Cε, the assumption
(H4) on the regularity of the emission absorption coefficient and the comparison principle (lemma
2.6) lead to ‖Sε3,1‖2L2

x
≤ C. For the term Sε3,2 the relation B(ν0, T̂ )−B(ν, T̂ ) =

∫ ν0
ν ∂νB(s, T̂ )ds

gives

‖Sε3,2‖2L2
x

=
1

ε2

∫

x

(∫

ν,Ω

∫ s=ν0

s=ν
σa(ν)∂νB(s, T̂ )

)2

.

The Fubini’s theorem yields
∫
ν

∫ s=Λν
s=ν σa(ν)∂νB(s, T̂ ) =

∫
s

∫ ν=s
ν=s/Λ σa(ν)∂νB(s, T̂ ). One thus

finds, using the estimate (2.41)

‖Sε3,2‖2L2
x
≤

sup
t,x
|1− Λ|2

ε2
‖σa‖L∞

ν

Λ∗

∫

x

(∫

ν
ν∂νB(ν, T̂ )

)2

.

The definition of the Planck function gives ν∂νB(ν, T̂ ) = (3− (1− e−ν/T̂ )−1ν/T̂ )B(ν, T̂ ). Once
again, the change of variable ν 7→ ν0/T̂ give us

∫
ν ν∂νB(ν, T̂ ) ≤ C, which yields, with another

constant C, ‖Sε3,2‖L2
x
≤ C. The same arguments give ‖Sε4‖L2

x
≤ C, which concludes the proof.
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Third step: end of the proof

In this part we end the proof of the theorem 2.8. The following lemma shows that for all
t ∈ [0, T f ], the function ‖Iε(t)− Îε(t)‖L2

x,ν,Ω
+ ‖T ε(t)− T̂ (t)‖L2

x,
tends to 0 with ε. The impor-

tant point of the proof is the use of a well chosen weight to overcome the fact that the scattering
operator is of order ε−2.

Lemma 2.12. Under assumptions (H1)-(H6), there exists two constants C and C1, which do
not depend on ε such that (Iε − Îε, T ε − T̂ ) satisfies the following estimate, where 0 ≤ t ≤ T f ,

‖Iε(t)− Îε(t)‖L2
x,ν,Ω

+ ‖T ε(t)− T̂ (t)‖L2
x
≤ C1

(
‖Iε(0)− Îε(0)‖L2

x,ν,Ω
+ ‖T ε(0)− T̂ (0)‖L2

x
+ ε

)
eCt.

Proof. We denote Eε = Iε − Îε and F ε = T ε − T̂ . Using the lemma 2.11, the couple (Eε, F ε)
satisfies the following system :




∂tE

ε +
1

ε
Ω.∇xEε =

1

ε2
Qεs(E

ε)− εRε + U ε,

∂tF
ε +∇.(F εu) + ΓF ε∇.u = −εSε + V ε,

(2.54)

with 



U ε = Qεa(I
ε, T ε)−Qεa(Îε, T̂ ),

V ε = −
∫

ν,Ω

Λ

γ

(
Qεa(I

ε, T ε)−Qεa(Îε, T̂ )

)
.

Let us first prove that the L2
x,ν norm of U ε and the L2

x norm of V ε are controlled by the L2
x,ν

norm of Eε and the L2
x norm of F ε. The definition of the emission absorption operator (2.31)

yields

U ε = Λ−2σa(ν0)

((
B(ν0, T

ε)−B(ν0, T̂ )
)
− Λ3

(
Iε − Îε

))

The triangular inequality together with the estimate (2.41) yield

‖U ε‖L2
x,ν,Ω
≤ Λ−2

∗ max
(
1,Λ∗3

)
‖σa‖L∞

x

(
‖B(ν, T ε)−B(ν, T̂ )‖L2

x,ν
+ ‖Iε − Îε‖L2

x,ν,Ω

)
.

The same arguments than in the proof of the lemma 2.4 give ‖B(ν, T ε)−B(ν, T̂ )‖L2
x,ν
≤ C‖T ε−

T̂‖L2
x
, which yields

‖U ε‖L2
x,ν,Ω
≤ C

(
‖Eε‖L2

x,ν,Ω
+ ‖F ε‖L2

x

)
. (2.55)

We turn to the control of V ε. By definition of the operator Qεa (2.8), one has

V ε =

∫

ν,Ω

Λ2

γ
σa(ν0)

(
B(ν0, T̂ )−B(ν0, T

ε)

Λ3
+ Iε − Îε

)
.

We treat these terms separately. For the first one, the estimate 2.41, the assumption (H4) on
the regularity of the emission absorption coefficient and the arguments used to control U ε (2.55)
give ∥∥∥∥

∫

ν,Ω

Λ2

γ
σa(ν0)

B(ν0, T̂ )−B(ν0, T
ε)

Λ3

∥∥∥∥
L2

x

≤ (Λ∗)−1C‖T̂ − T ε‖L2
x
,
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For the second one, a Cauchy Schwarz inequality yields
∥∥∥∥
∫

ν,Ω

Λ2

γ
σa(ν0)

(
Iε − Îε

)∥∥∥∥
L2

x

≤ C‖σa‖L2
ν
‖Iε − Îε‖L2

x
.

It finally yields, with another constant C

‖V ε‖L2
x
≤ C

(
‖T ε − T̂‖L2

x
+ ‖Iε − Îε‖L2

x,ν,Ω

)
. (2.56)

To obtain the proposed result, we need a stability result for the modified transfer system (2.54).
The problematic term comes from the scattering operator, which is of order ε−2. Since the
scattering operator is isotropic in the moving frame, we multiply the first equation of (2.54) by
the weight Λγ−1Eε0, with an obvious notation Eε0 = Λ3Eε and we integrate it on X × R

+
ν × S2.

This gives us

1

2

d

dt

∫

x,ν,Ω
γ−1Λ4(Eε)2 =

∫

x,ν,Ω
γ−1Λ4Eε

(
− εRε + U ε

)

+
1

ε2

∫

x
γ−1σs(x)

∫

ν,Ω

1

Λ
Eε0
(〈
Eε0
〉
0
− Eε0

)
+

1

2

∫

x,ν,Ω
(Eε)2

(
∂tγ
−1Λ4 +

1

ε
Ω.∇γ−1Λ4

)
,

(2.57)

where we remind that< Eε0 >=
∫
Ω0
Eε0. Using the invariance of the measure νdνdΩ = ν0dν0dΩ0,

one has ∫

ν,Ω

1

Λ
Eε0
(〈
Eε0
〉
0
− Eε0

)
=

∫

ν0

(〈
Eε0
〉2
0
−
〈
Eε20

〉
0

)
,

which is non positive thanks to a Cauchy-Schwarz inequality, and it shows the importance of
the chosen weight. Adding equation (2.57) with the second equation of (2.54) multiplied by F ε

and integrated on R
3
x, we get

1

2

d

dt

(∫

x,ν,Ω
γ−1Λ4(Eε)2 +

∫

x
(F ε)2

)
≤ 1

2

∫

x,ν,Ω
(Eε)2

∣∣∣∣∂tγ
−1Λ4 +

1

ε
Ω.∇γ−1Λ4

∣∣∣∣

+

∫

x
(F ε)2|∇.u|

(
1

2
+ Γ

)
+

∫

x,ν,Ω
γ−1Λ4|Eε|

∣∣U ε + εRε
∣∣+
∫

x
|F ε|

∣∣V ε + εSε
∣∣.

We need to control the two last terms. Using the inequalities ab ≤ 1/2(a2 + b2) and (a+ b)2 ≤
2(a2 + b2), one has

∫

x,ν,Ω
γ−1Λ4|Eε|

∣∣U ε + εRε
∣∣ ≤ Λ∗4

(
1

2
‖Eε‖2L2

x,ν,Ω
+ ‖U ε‖2L2

x,ν,Ω
+ ε2‖Rε‖2L2

x,ν,Ω

)
.

Using the estimate (2.55), one finally finds
∫

x,ν,Ω
γ−1Λ4|Eε|

∣∣U ε + εRε
∣∣ ≤ C

(
‖Eε‖2L2

x,ν,Ω
+ ‖F ε‖2L2

x,ν
+ ε2‖Rε‖2L2

x,ν,Ω

)
,

where the constant C is uniform in ε. One also has
∫

x
|F ε|

∣∣V ε + εSε
∣∣ ≤ 1

2
‖F ε‖2L2

x
+ ‖V ε‖2L2

x
+ ε2‖Sε‖2L2

x
,

which gives us, together with estimate (2.56)
∫

x
|F ε|

∣∣V ε + εSε
∣∣ ≤ C

(
‖F ε‖2L2

x
+ ‖Eε‖2L2

x,ν
+ ε2

)
.
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This gives us

1

2

d

dt

(∫

x,ν,Ω
γ−1Λ4(Eε)2 +

∫

x
(F ε)2

)
≤ C

(∫

x,ν,Ω
(Eε)2 +

∫

x
(F ε)2 + ε2

)
,

where the constant C is uniform in ε. Integrating this inequality between 0 and t and using the
Gronwall lemma, one gets a constant C1 such that

‖Eε(t)‖L2
x,ν,Ω

+ ‖F ε(t)‖L2
x
≤ C1

(
‖Eε(0)‖L2

x,ν,Ω
+ ‖F ε(0)‖L2

x
+ ε

)
e2Ct,

where the constant C1 depends (linearly) on the time t and on min
(
1 , inf

t,x,ν,Ω
γ−1Λ4

)−1
. Using

the estimate (2.41), and the assumption (H2), which yields the positivity of the Lorentz factor
γ, one sees that inf

t,x,ν,Ω
γ−1Λ4 > 0, and this concludes the proof.

2.4 Appendix

2.4.1 Appendix A: scattering and emission absorption operator’s expansion

In this part we prove the lemma 2.9, which deals with the control of the remainders Q̄εs,i,
i = 0, 1, 2 of the expansion of the scattering operator at order i defined respectively in section
(2.30), (2.29) and (2.28), and the lemma 2.10, which deals with the control of the remainder
Q̄εa of the expansion of the emission absorption operator defined in (2.33). These proofs need
the following lemmas. The first one (lemma 2.13) provides integrability results for Planck type
function, while the second (lemma 2.14) concerns the regularity of the coefficients λi (study of
Qεs in section 2.3.1.0) and the remainder of their expansions.

Lemma 2.13. For any given function T ∈ L∞(X) ∩ L2(X) and for all α ∈ N, there exists a

constant C ≥ 0 such that the following estimate holds ‖ναB(ν, T )‖L2
x,ν
≤ C‖T‖α+ 5

2
L∞

x
‖T‖L2

x
.

Proof. We remind that B(ν, T ) = ν3
(
eν/T − 1

)−1
. The change of variable y 7→ ν/T leads to

‖ναB(ν, T )‖2L2
x,ν

=

∫

x,ν

ν6+2α

(
eν/T − 1

)2dνdx =

∫

x
T 7+2α

∫

y

y6+2α

(
ey − 1

)2dydx.

If we denote f(y) = y6+2α
(
ey − 1

)−2
, one has f(0) = 0 and f has an exponential decay as

y → +∞. Thus, there exists a bounded constant C such that ‖f‖L1
ν

= C. It yields the existence

of a constant C such that ‖ναB(ν, T )‖L2
x,ν
≤ C‖T‖α+ 5

2
L∞

x
‖T‖L2

x
, which is the announced result.

We prove the following lemma, which shows that under assumptions on the coefficients ~u, σs, σa
and ε, the coefficients λi (study of Qεs in section 2.3.1.0) are uniformly bounded in L∞.

Lemma 2.14. Under assumptions (H1)-(H4), there exists a constant C ≥ 0, which does not
depend on ε, such that the following estimates holds

∀i ∈ [1, 6], ‖λi‖L∞
t,x,Ω,Ω′

≤ C, ‖R Λ
Λ′ ,2
‖L∞

t,x,Ω,Ω′
≤ C, ‖R Λ′

Λ3 ,2
‖L∞

t,x,Ω,Ω′
≤ C , ‖RΛ,2‖L∞

t,x,Ω,Ω′
≤ C.
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Proof. Using the expression of the λi, i ∈ [1, 6], the first point is obvious. One has R Λ
Λ′ ,2

=

(Ω′,u)2(Ω′−Ω,u)
1−εΩ′.u , and thusR Λ

Λ′ ,2
∈ L∞t,x,Ω,Ω′ using assumptions (H1)-(H2) on u and ε. Furthermore,

on has

R Λ′

Λ3 ,2
=

1− |u|2
(1− εΩ.u)3

(
3Ω′.u− 3ε(Ω,u)2 + 2ε2(Ω,u)3 − 3(Ω,u)2

(
3Ω.u− 3ε(Ω,u)2 + ε2(Ω,u)3

))

− |u|2
((

3Ω−Ω′,u
)

+ 3εΩ.u
(
2Ω−Ω′,u

))

And thus R Λ′

Λ3 ,2
∈ L∞t,x,Ω,Ω′ using assumptions (H1)-(H2) on u and ε. We remind that

RΛ,2 =
1

ε3
√

1− ε2|u|2

∫ 1

1−ε2|u|2

1− ε2|u|2 − s
4

1

s
√
s
ds+

|u|2
2
√

1− ε2|u|2

(
ε
|u|2
2
−Ω.u

)

We have |RΛ,2| ≤ ε|u|4
4(1−ε2|u|2)2

+ |u|2
2
√

1−ε2|u|2

(
ε |u|

2

2 −Ω.u

)
, and thus one can see that it is bounded

in L∞t,x,Ω,Ω′ uniformly with respect to ε.

We now prove the lemma 2.9. Since the arguments are similar, the proof is provided only for
the remainder Q̄s,2 of the expansion of the scattering operator at the order 2.

Proof of lemma 2.9. Studying the expression of Q̄εs,2(I) (2.28), one can see that the only
complicated terms come from RI,2 and I(ν ′,Ω′)− I(ν,Ω′). For the first one, one has

RI,2 = νR Λ
Λ′ ,2

∂νI(ν,Ω
′) +

ν2

2ε3

(
(
Λ

Λ′
− 1)2 − (ελ5)

2

)
∂2
νI(ν,Ω

′) +
1

ε3

∫ ν′

ν

(ν ′ − s)2
2

∂3
νI(s,Ω

′)ds

First, one can check that ( Λ
Λ′−1)2−(ελ5)

2 ≤ Cε3. We have to estimate
∫
Ω′

∫ ν′
ν

(ν′−s)2
2 ∂3

νIε(s,Ω
′)ds

in L2
x,ν,Ω. Using a Hölder inequality, the definition ν ′ = (Λ/Λ′)ν and the estimate Λ/Λ′−1 ≤ Cε,

∫

x,ν,Ω

∣∣∣∣
∫

Ω′

∫ ν′

ν

(ν ′ − s)2
2

∂3
νI(s,Ω

′)ds

∣∣∣∣
2

≤ ε5

4

∫

x,Ω,Ω′

∫

ν

∫ ν′

ν
ν5
∣∣∂3
νI(s,Ω

′)
∣∣2dsdν

Using Fubini’s theorem, we get
∫

x,ν,Ω

∣∣∣∣
∫

Ω′

∫ ν′

ν

(ν ′ − s)2
2

∂3
νI(s,Ω

′)ds

∣∣∣∣
2

≤ ε5

4

∫

x,Ω,Ω′

∫

s

∫ s

(Λ′/Λ)s
ν5
∣∣∂3
νI(s,Ω

′)
∣∣2dνds

This gives us ∫

x,ν,Ω

∣∣∣∣
∫

Ω′

∫ ν′

ν

(ν ′ − s)2
2

∂3
νI(s,Ω

′)ds

∣∣∣∣
2

≤ Cε6‖ν3∂3
νI‖2L2

x,ν,Ω

Thus, ∥∥∥∥
∫

Ω′

∫ ν′

ν

(ν ′ − s)2
2

∂3
νI(s,Ω

′)ds

∥∥∥∥
L∞

t (L2
x,ν,Ω)

≤ Cε3‖ν3∂3
νI‖L∞

t (L2
x,ν,Ω)

Using the same arguments, one can see that
∥∥∥∥
∫

Ω′

I(ν ′,Ω′)− I(ν,Ω′)
ε

∥∥∥∥
L∞

t (L2
x,ν,Ω)

≤ C‖ν∂νI‖L∞
t (L2

x,ν,Ω)

Using these estimates, the assumption (H3) on the scattering coefficient σs and the lemma 2.14,
one easily finds the result

61



We now turn to the proof of lemma 2.10, which deals with the control of the remainder Q̄εa of
the expansion of the emission absorption operator.

Proof of the lemma 2.10. We recall here the remainder Q̄εa




Q̄εa(I, T ) =
1− Λ2

εΛ2
σa(ν0)

(
B(ν0, T )− I0

)
+
σa(ν0)− σa(ν)

ε

(
B(ν0, T )− I

)

+ σa(ν)
B(ν0, T )−B(ν, T )

ε
+ σa(ν0)

I − I0
ε

.

We start with the first term. One can see that |1−Λ2| ≤ Cε, where C is bounded in L∞([0, T f ]×
X × S2) uniformly in ε. One thus has
∥∥∥∥
1− Λ2

εΛ2
σa(ν0)

(
B(ν0, T )− I0

)∥∥∥∥
L∞

t (L2
x,ν,Ω)

≤ C

Λ∗
‖σa‖L∞

ν

(
‖B(ν0, T )‖L∞

t (L2
x,ν,Ω) + ‖I0‖L∞

t (L2
x,ν,Ω)

)
.

Using the change of variable ν → Λν and the relation I0 = Λ3I, one finds a new constant C
such that

∥∥∥∥
1− Λ2

εΛ2
σa(ν0)

(
B(ν0, T )− I0

)∥∥∥∥
2

L∞
t (L2

x,ν,Ω)

≤ C
(
‖B(ν, T )‖L∞

t (L2
x,ν,Ω) + ‖I‖L∞

t (L2
x,ν,Ω)

)
.

Finally, the lemma 2.13 on the integrability of the Planck function (lemma 2.13) yield, with
another constant C,

∥∥∥∥
1− Λ2

εΛ2
σa(ν0)

(
B(ν0, T )− I0

)∥∥∥∥
L∞

t (L2
x,ν,Ω)

≤ C
(
‖T‖L∞

t (L2
x) + ‖I‖L∞

t (L2
x,ν,Ω)

)
.

We now look at the second component of Q̄εa. One has, using the relation σa(ν0) − σa(ν) =∫ ν0
ν σ′a(s)ds and a Cauchy-Schwarz inequality,

∫

ν

(
(σa(ν0)− σa(ν))

(
B(ν0, T )− I

))2

≤ ‖∂νσa‖2L∞
ν

∫

ν

(
B(ν0, T )− I

)2
(ν − ν0)

2.

By definition ν0 − ν = ν(Λε − 1) and thus there exists a constant C such that |ν0 − ν| ≤ Cεν.
This estimate, together with a Cauchy-Schwarz inequality and the lemma 2.13 give us, with
another constant C,

∥∥∥∥
σa(ν0)− σa(ν)

ε

(
B(ν0, T )− I

)∥∥∥∥
L∞

t (L2
x,ν,Ω)

≤ C‖∂νσa‖L∞
ν

(
‖T‖L∞

t (L2
x) + ‖νI‖L∞

t (L2
x,ν,Ω)

)

We turn to the third term of Q̄εa. One has, using a Taylor expansion, a Cauchy-Schwarz inequality
and the Fubini’s theorem,
∫

ν
(B(ν0, T )−B(ν, T ))2dν ≤

∫

ν

∫ ν0

ν
|ν0 − ν||∂νB(s, T )|2dsdν ≤ Cε

∫

s
|∂νB(s, T )|2

∫ s

s
Λ

νdνds

As previously, on has s(1− 1
Λ) ≤ Cεs and thus

∥∥∥∥σa(ν)
B(ν0, T )−B(ν, T )

ε

∥∥∥∥
L∞

t (L2
x,ν,Ω)

≤ C‖σa‖L∞
ν
‖ν∂νB‖L∞

t (L2
x,ν,Ω)
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One has ν∂νB(ν, T ) = 3B(ν, T ) − ν
TB(ν, T )

(
1 − e−ν/T

)−1
. Using the same kind of arguments

than for the lemma 2.13, one finds ‖ν∂νB‖L∞
t (L2

x,ν,Ω) ≤ C‖T‖L∞
t (L2

x) . For the last term, the

relations I0 = Λ3I and 1− Λ3 = Cε yield

∥∥∥∥σa(ν0)
I − I0
ε

∥∥∥∥
L∞

t (L2
x,ν,Ω)

≤ C‖I‖L∞
t (L2

x,ν,Ω),

which ends the proof.

2.4.2 Appendix B: regularity of the solution of the drift diffusion system

In this part we prove the lemma 2.7, which deals with the regularity of the solution of the drift
diffusion system. The proof mainly uses the linearity of the equation on ρ and the maximum
principle to overcome the difficulties coming from the nonlinearity of the equation on T. The
proof consists to estimate each terms of the sum in (2.47). Since the proof of the estimates of
these terms is rather similar, we only show the development for some of them.

Lemma 2.15. Under assumptions (H1)-(H6), there exists a constant C0 such that the solution
(ρ, T̄ ) of the drift diffusion system (2.40) satisfies the following estimate

‖ρ(t)‖L2
x,ν

+ ‖T̄ (t)‖L2
x
≤ eC0t, 0 ≤ t ≤ T f .

Proof. Multiplying the first equation of (2.40) by ρ, integrating on X × R
+
ν , multiplying the

second by T , integrating on X and adding, we get

1

2

d

dt

(∫

x,ν
ρ2 +

∫

x
T̄ 2

)
+

∫

x,ν

|∇ρ|2
6σs(x)

+

∫

x,ν

ρ2

2
∇.u +

(
Γ +

1

2

) ∫

x
T̄ 2∇.u

= −
∫

x,ν

∇.u
3

ρ2

2
+

∫

x,ν
σa(ν)

(
B(ν, T̄ )− ρ

)
(ρ− T̄ ).

We study the last term. One has

∫

x,ν
σa(ν)

(
B(ν, T̄ )−ρ

)
(ρ−T̄ ) =

∫

x,ν
σa(ν)B(ν, T̄ )ρ+

∫

x,ν
σa(ν)T̄ ρ−

∫

x,ν
σa(ν)B(ν, T̄ )T̄−

∫

x,ν
σa(ν)ρ

2,

and we study successively each of those terms. For the first one, the Cauchy-Schwarz inequality
yields ∫

x,ν
σa(ν)B(ν, T̄ )ρ ≤ 1

2
‖σa‖L∞

ν

(
‖B(ν, T̄ )‖2L2

x,ν
+ ‖ρ‖2L2

x,ν

)
.

The relation ‖B(ν, T̄ )‖L2
x,ν
≤ C‖T̄‖L2

x
(lemma 2.13) and the assumption (H4) on the regularity

of the emission absorption coefficient finally give a constant C such that

∫

x,ν
σa(ν)B(ν, T̄ )ρ ≤ C

(
‖T̄‖2L2

x
+ ‖ρ‖2L2

x,ν

)
.

The second one is a litle more complicated. The inequality ab ≤ 1
2(a2 + b2) yields

∫

x,ν
σa(ν)T̄ ρ ≤

1

2
‖T̄‖2L2

x
+

1

2

∫

x

(∫

ν
σa(ν)ρ

)2

,
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and a Cauchy Schwarz inequality gives

∫

x,ν
σa(ν)T̄ ρ ≤

1

2
‖T̄‖2L2

x
+

1

2
‖σa‖2L2

ν
‖ρ‖2L2

x,ν
. (2.58)

For the third one, one has
∫
x,ν σa(ν)B(ν, T̄ )T̄ ≤ ‖σa‖L∞

ν

∫
x T̄
∫
ν B(ν, T̄ ). The lemma 2.13 and the

assumption (H4) on the regularity of the emission absorption coefficient finally give a constant
C such that

∫
x,ν σa(ν)B(ν, T̄ )T̄ ≤ C‖T̄‖2L2

x
. This gives us, using the assumption (H3) on the

positivity of the scattering coefficient and the assumption (H1) on the regularity of the velocity
field u a constant C such that

1

2

d

dt

(∫

x,ν
ρ2 +

∫

x
T̄ 2

)
≤ C

(∫

x,ν
ρ2 +

∫

x
T̄ 2

)
.

The Gronwall lemma and the assumption (H5) on the initial conditions give the expected result.

The following lemma deals with the control of νρ in L2
x,ν .

Lemma 2.16. Under assumptions (H1)-(H6), there exists a constant C such that the solution
ρ of the first equation of the drift diffusion system (2.40) satisfies the following estimate

‖νρ(t)‖L2
x,ν
≤ C, 0 ≤ t ≤ T f .

Proof. Multiplying the first equation of (2.40) by ν2ρ, integrating it on X×R
+
ν , we get, denoting

h = νρ,
1

2

d

dt

∫

x,ν
h2 +

∫

x,ν

|∇h|2
6σs(x)

= −
∫

x,ν
h2∇.u

2
+

∫

x,ν
σa
(
νhB(ν, T̄ )− h2

)

We look at the last term. One has,

∫

x,ν
σa
(
νhB(ν, T̄ )− h2

)
≤ 1

2
‖σa‖L∞

ν

(
‖h‖2L2

x,ν
+ ‖νB(ν, T̄ )‖2L2

x,ν

)
.

Using the lemma 2.13 and the maximum principle (lemma 2.6), one has ‖νB(ν, T̄ )‖2L2
x,ν
≤

C‖T̄‖2L2
x
. This gives us, with another constants C1 and C2 depending on the L2

x norm of T̄

(lemma 2.15), d
dt

∫
x,ν h

2 ≤ C1

∫
x,ν h

2 +C2. The Gronwall lemma and the assumption H5 on the
initial conditions give the result.

We now turn to the estimate of ν∂νρ. One has the

Lemma 2.17. Under assumptions (H1)-(H6), there exists a constant C such that the solution
ρ of the first equation of the drift diffusion system (2.40) satisfies the following estimate

‖ν∂νρ(t)‖L2
x,ν
≤ C, 0 ≤ t ≤ T f .

Proof. We differentiate the equation of the drift diffusion system (2.40) with respect to ν, we
multiply it by ν2∂νρ and we integrate it on X × R

+
ν . Denoting h = ν∂νρ, we get

1

2

d

dt

∫

x,ν
h2+

∫

x,ν

|∇h|2
6σs(x)

= −2

3

∫

x,ν
h2∇.u+

∫

x,ν
∂νσa

(
νB(ν, T̄ )−νρ

)
h+

∫

x,ν
σa

(
ν∂νB(ν, T̄ )h−h2

)
.
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Using a Cauchy-Schwarz inequality, the assumptions (H1) on the velocity field, (H3) on the pos-
itivity of the scattering coefficient, (H4) on the regularity of the emission absorption coefficient
and the lemma 2.16 on the control of νρ in L2

x,ν , one gets a constant C such that

1

2

d

dt
‖h(t)‖L2

x,ν
≤ C

(
‖h(t)‖2L2

x,ν
+ ‖νB(ν, T̄ )‖L2

x,ν
+ ‖ν∂νB(ν, T̄ )‖L2

x,ν

)
.

Once again, the lemma (2.13) yields ‖νB(ν, T̄ )‖2L2
x,ν
≤ C‖T̄‖2L2

x
. Furthermore, one has ν∂νB(ν, T̄ ) =

3B(ν, T̄ )− ν
T̄

(
1− e−ν/T̄

)−1
B(ν, T̄ ). The same arguments than for the proof of the lemma (2.13)

yields ‖ν∂νB(ν, T̄ )‖2L2
x,ν
≤ C‖T̄‖2L2

x
. The Gronwall lemma and the assumption (H5) on the initial

conditions finally give the result.

Using exactly the same arguments, one can prove under assumptions (H1)-(H6), that ∀t ∈
[0, T f ], ν2∂2

νρ(t) and ν3∂3
νρ(t) belong to L2(R3

x × R
+
ν ). We now turn to the control of the space

derivatives of the solution of the diffusion system (2.40). One has the

Lemma 2.18. Under assumptions (H1)-(H6), there exists a constant C such that the solu-
tion (ρ, T̄ ) of the drift diffusion system (2.40) satisfies the following estimate: ‖∇ρ(t)‖L2

x,ν
+

‖∇T̄ (t)‖L2
x
≤ C, 0 ≤ t ≤ T f .

proof. Differentiating the first equation of (2.40) with respect to xj , multiplying the obtained
equation by ∂xjρ and integrating on X × R

+
ν , we get

1

2

d

dt

∫

x,ν
|∂xjρ|2 +

∫

x,ν

|∇∂xjρ|2
6σs(x)

+
1

3

∫

x,ν
∇(∂xjρ).∇ρ∂xjσ

−1
s +

∫

x,ν
∂xjρ∇.(ρ∂xju) =

− 2

3

∫

x,ν
|∂xjρ|2∇.u +

1

3

∫

x,ν
∂xjρν∂νρ∇.(∂xju) +

∫

x,ν
σa∂xjρ∂xj

((
B(ν, T̄ )− ρ

))

One has ∇(∂xjρ).∇ρ = 1
2∂xj |∇ρ|2. Furthermore,

∂xjρ∇.(ρ∂xju) =
1

2
∂xjρ

2∇.∂xju + ∂xjρ
∑

i

∂xiρ∂xiui

This gives us

1

2

d

dt

∫

x,ν
|∂xjρ|2 +

∫

x,ν

|∇∂xjρ|2
6σs(x)

+
1

6

∫

x,ν
∂xj |∇ρ|2∂xjσ

−1
s +

1

2

∫

x,ν
∂xjρ

2∇.∂xju +
∑

i

∫

x,ν
∂xjρ∂xiρ∂xiui

= −2

3

∫

x,ν
|∂xjρ|2∇.u +

1

3

∫

x,ν
∂xjρν∂νρ∇.(∂xju) +

∫

x,ν
σaρ∂xj∂xj

((
B(ν, T̄ )− ρ

))

Making the sum of this equation for j = 1, 2, 3, using integration by parts, Cauchy Schwarz
inequalities, the assumptions (H1), (H3) and (H4) on the regularity of the coefficients u, σs and
σa and the lemmas 2.15 and 2.16 on the integrability of ρ and νρ in L2

x,ν , we get a constant C
such that

1

2

d

dt

∫

x,ν
|∇ρ|2 ≤ C

(
1 +

∫

x,ν
|∇ρ|2

)
+
∑

j

∫

x,ν
σa∂xjρ∂xj

((
B(ν, T̄ )− ρ

))

We need to control the last term. One has

σa∂xjρ∂xj

((
B(ν, T̄ )− ρ

))
= σa

(
∂xjρ∂xjB(ν, T̄ )− |∂xjρ|2

)
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Using the definition of B(ν, T̄ ), one has ∂xjB(ν, T̄ ) = ∂xj T̄
ν
T 2 ν

4eν/T̄
(
eν/T̄ −1

)−2
. Thus, one has

∑

j

∫

x,ν
σa∂xjρ∂xjB(ν, T̄ ) ≤ 1

2
‖σa‖L∞

ν

(∫

x,ν
|∇ρ|2 +

∫

x

|∇T̄ |2
T̄ 4

∫

ν

ν8e2ν/T̄
(
eν/T̄ − 1

)4
)
.

The change of variable y = ν
T̄

leads to

∫

x

|∇T̄ |2
T̄ 4

∫

ν

ν8e2ν/T̄
(
eν/T̄ − 1

)4 =

∫

x
|∇T̄ |2T̄ 5

∫

R+

y8e2y
(
ey − 1

)4 .

The maximum principle (lemma 2.6) together with the same idea than in the proof of the lemma
2.13 shows that ∫

x
|∇T̄ |2T̄ 5

∫

y

y8e2y
(
ey − 1

)4 ≤ C‖∇T̄‖
2
L2

x
.

Finally, one finds another constant C such that

∑

j

∫

x,ν
∂xjρ∂xj

(
σa
(
B(ν, T̄ )− ρ

))
≤ C

(∫

x
|∇T̄ |2 +

∫

x,ν
|∇ρ|2

)
.

This gives us, with another constants C1 and C2,

1

2

d

dt

∫

x,ν
|∇ρ|2 ≤ C1

(∫

x
|∇T̄ |2 +

∫

x,ν
|∇ρ|2

)
+ C2. (2.59)

We turn to the equation on T̄ in (2.40). Differentiating this equation with respect to xj , multi-
plying it by ∂xj T̄ , integrating on X and taking the sum for j = 1, 2, 3, we get

1

2

d

dt

∫

x
|∇T̄ |2+

(
1

2
+Γ

)∫

x
|∇T̄ |2+

∑

j

∫

x
(∂xjT )T̄∇.(∂xju) = −

∑

j

∫

x,ν
σa∂xj T̄ ∂xj

((
B(ν, T̄ )−ρ

))
.

One has
∑

j

∫
x,ν σa∂xj T̄ ∂xjB =

∑
j

∫
x,ν σa|∂xj T̄ |2∂TB. Once again, the same arguments than

for the lemma 2.13 on the integrability of the Planck function show that ∂TB(ν, T ) ∈ L1
ν .

One finds a constant C such that
∑

j

∫
x,ν ∂xj T̄ ∂xj

(
σaB

)
≤ C‖σa‖L∞

ν
‖∇T̄‖2L2

x
. Moreover, the

Cauchy-Schwarz inequality together with the inequality ab ≤ 1
2(a2 + b2) yield

∑

j

∫

x,ν
σa∂xj T̄ ∂xjρ ≤

1

2
‖σa‖2L2

ν
‖∇T̄‖2L2

x
+

1

4
‖∇ρ‖2L2

x,ν
. (2.60)

Finally, an integration by parts yields
∑

j

∫
x(∂xj T̄ )T̄∇.(∂xju) ≤ 1

2‖u‖W 2,∞
x
‖∇T̄‖2L2

x
. This gives

us another constants C1 and C2 such that

1

2

d

dt

∫

x
|∇T̄ |2 ≤ C1

(∫

x
|∇T̄ |2 +

∫

x,ν
|∇ρ|2

)
+ C2,

This result, together with the inequality (2.59), yields another constants C1 and C2 such that

1

2

d

dt

(
‖∇T̄‖2L2

x
+ ‖∇ρ‖2L2

x,ν

)
≤ C1

(
‖∇T̄‖2L2

x
+ ‖∇ρ‖2L2

x,ν

)
+ C2.

The Gronwall lemma and the assumption (H5) on the initial conditions give the result.

We do not give the proof of the remaining terms in (2.47) since it uses the same arguments.
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Chapter 3

Well-balanced schemes for the
non-equilibrium diffusion regime

This chapter is taken from two articles [LBD14,LER14].

3.1 Introduction

Our aim in this chapter is to design costless numerical schemes for the non-equilibrium diffusion
regime (2.27) obtained in chapter 1 from the relativistic transfer equation. For simplicity, we
only study the homogeneous case. The equation on the density distribution function of the
photons writes

∂tρ =
κ

3
ν∂νρ+ σ(ν)(B(ν, T )− ρ), (3.1)

Here ρ = ρ(t, ν) represents the density of photons and we denoted κ the divergence of the
fluid velocity for simplicity. The coefficient σ is the absorption coefficient. It is known to be
very irregular with respect to the frequency. The function B is the Planck’s function, given by
B(ν) = ν3(eν/T − 1)−1.

On the one hand, the model problem (3.1) is also representative of asymptotic preserving issues,
due to the parameter κ. The limit system is

∂tρ = σ(ν)(B(ν)− ρ) (3.2)

Since κ represents the divergence of the fluid velocity, this parameter may vanish. It is impor-
tant that the scheme be consistent with this limit equation as κ → 0. On the other hand, the
emission absorption coefficient is highly irregular, and plays an important role from the physical
point of view. It is thus necessary that the scheme be accurate even for this kind of opacities.
In a first approach a very fine mesh could be used, but it is not possible in general in photon
transport. Indeed the distribution function of the photons is often rather peaked in frequency.
In this context and due to the frequency shift, the classical upwind scheme is not accurate enough.

We propose in this chapter a new well-balanced scheme for the transport equation (3.1), which
handle the consistency problem of the classical well-balanced scheme (3.14) as the velocity speed
tends to 0. We prove that this scheme is uniformly convergent (with respect to the speed velocity
κ, theorem 3.6). The long time behavior of the spectrally well-balanced scheme is study for sev-
eral irregular opacities, including highly peaked emission absorption coefficient and the Cramer’s
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opacity. In particular we prove that the well-balanced property of the scheme is preserved, and
we study numerically the consistency of the scheme as the velocity speed κ tends to 0 for these
opacities. The case κ < 0 is study, and the numerical results agree with the theoretical result
(lemma 3.6). Finally, the advantage of the SWB scheme with respect to the upwind scheme is
shown in two test cases for different values of the coefficients κ and σ.

Numerical methods for the coupling between hydrodynamics and the transfer equations have
been extensively studied (see for example [BD06,LMH99,TUR12]) and are still an active field of
research. Indeed, the different time scales and the nonlinearity involved in this kind of coupled
system make the design of costless numerical schemes a complicated issue. To treat the issue of
the irregular and peaked behavior of the opacities in which we are interested, a method has been
proposed in [RIP14]. Instead of discretizing the opacity σ on frequency bands, i.e. considering
the set of {σi}, σi being constant on the frequency band [νi− 1

2
, νi+ 1

2
], the author considered a

discretization of the value of the opacity, i.e. the sets {αi± 1
2
} such that σ(ν) ∈ [αi− 1

2
, αi+ 1

2
]. It

can be understood as the replacement of a Riemann integral by a Lebesgue integral. In this
work we do not consider this treatment.

Since radiative phenomena are very fast compared to hydrodynamic ones, well-balanced schemes
are a possible solution. As we explain in section 3, system (3.1) has stationary solutions, and
our aim is to design numerical schemes which preserve these solutions. This could be interesting
for kinetic equations for which the frequency discretization is known to be very costly.

A first approach consists to use Greenberg-Leroux [GL96] type schemes. These schemes are
well-balanced, but we show in this chapter that they are not consistent in the limit regime
κ → 0. We propose a new scheme, called spectrally well-balanced (SWB) for which we prove
a uniform (according to the parameter κ) convergence result. The proof of this results needs
regularity assumptions on the absorption coefficient (σ ∈ W 2,∞(R+)), but the numerical tests
shows that these assumptions are purely technical, in the sense that σ ∈ L∞(R+) is the only
necessary assumption for the scheme to be stable.

The behavior of the spectrally well-balanced scheme is studied for several irregular opacities,
and its numerical solution is compared with the Greenberg Leroux and upwind schemes. In
particular numerical tests are performed with a coefficient σ constructed as the sum of a regular
part and peaked functions, which seems to be realistic, and with the so called Cramer’s opac-
ity. The well-balanced property and the consistency as κ → 0± of the spectrally well-balanced
scheme are shown to be preserved for such opacities.

This chapter is organized as follows. In the first section, the transport equation for photons
(3.1) is coupled to an equation describing the evolution of the fluid temperature. The aim of
this section is to compute analytical solution for this coupled system. These analytical solutions
could be used to validate some numerical schemes. In the remaining sections we focus only
on the photon transport equation. The section 3 focuses on the transport equation (3.1). In
particular we study the influence of the parameters κ and σ on the evolution of the L1 norm
of the solution. The beginning of the section 4 deals with the study of the stationary equation
associated to (3.1). This is indeed important to construct well-balanced schemes. The section 4
is then divided in three steps. In a first one is constructed the Greenberg-Leroux type scheme.
After explaining its derivation, we show its well-balanced property and explain why this scheme
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in not consistent as the wave velocity κ tends to 0. The second step is devoted to the spectrally
well-balanced scheme. We explain the derivation and show the L2 stability and uniform (with
respect to the parameter κ) convergence of this scheme. Finally, the third step deals with the
upwind scheme, which will be used as a comparison point in the numerical tests. The last part
(section 5) is devoted to the numerical comparison of the schemes. Several numerical tests are
performed to highlight the uniform convergence of the spectrally well-balanced scheme, its well-
balanced property and its advantages with respect to the up-wind scheme, all this with several
more of less regular expressions of the opacity σ.

3.2 Analytical solutions

The aim of this section is to study the analytical solutions of a system composed of equation
(3.1) for the photons and an equation describing the evolution of the internal energy of the fluid,
in such a way that the total energy is preserved. The system writes





∂tρ =
κ

3
ν∂νρ+ σ(ν)(B(ν, T )− ρ),

d

dt
E(t) =

∫

R
+
ν

(
κ

3
+ σ(ν)

)
ρdν −

∫

R
+
ν

σ(ν)B(ν, T )dν.

In order to compute analytical solutions of the coupled system (3.1), we make two (unphysical)
assumptions, which yields a linear equation on the macroscopic temperature of the fluid. These
assumptions are first that the absorption coefficient σ is constant, and secondly that E = T 4.
Since

∫
R

+
ν
B(ν, T )dν = aT 4, where a =

∫
R

+
ν
ν3(eν − 1)−1dν, the fluid equation is now described

by a linear equation on Θ = T 4





∂tρ =
κ

3
ν∂νρ+ σ(B(ν, T )− ρ),

d

dt
Θ =

(
κ

3
+ σ

)∫

R
+
ν

ρdν − aσΘ,
(3.3)

where the notation T has been kept in the equation on the density distribution function of the
photons for ease of notations. This part is devoted to the proof of the following lemma, which
is concerned by the analytical solution of system (3.3).

Lemma 3.1 (Analytical solution). Let us denote (ρin,Θin) the initial conditions associated to
the system (3.3). The analytical solution is given by





Θ(t) = Θin

(
σ + κ

3

(a+ 1)σ + κ
3

+
aσ

σ(a+ 1) + κ
3

e−
(
(a+1)σ+κ

3

)
t

)

+ ‖ρin‖L1

(
σ +

κ

3

)
1− e−

(
(a+1)σ+κ

3

)
t

(a+ 1)σ + κ
3

ρ(t, ν) = ρin(νe
κ
3
t)e−σt +

∫ t

0
σB
(
νe

κ
3
(t−s),Θ(s)

1
4
)
e−

3
κ
σ(t−s)ds,

(3.4)

where we recall that a =
∫

R
+
ν
ν3(eν − 1)−1dν.
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Proof. Instead of proving this result by inserted this expression in the system (3.3), it seems
more interesting to show the method that leads to this solution. We start with the density
distribution function of the photons ρ. We use the method of characteristic. The characteristic
field is defined by: {

X ′(t) = κ
3X(t),

X(0) = ν

This gives us X(t, ν) = νe
κ
3
t. We make the change of variables ν 7→ X(t, ν) in the first equation

of (3.3). We thus find:

∂t

(
ρ
(
t,X(t, ν)

))
= −σρ

(
t,X(t, ν)

)
+ σB

(
X(t, ν), T

)
.

Solving this ODE, we find

ρ(t,X(t, ν)) = ρin(ν)e−σt +

∫ t

0
σB(X(s, ν), T (s))e−σ(t−s).

Making the change of variables y = νe−
κ
3
t and then put y = ν, we find the expression of the

density distribution function of the photons for any temperature T

ρ(t, ν) = ρin(νe
κ
3
t)e−σt +

∫ t

0
σaB(νe

κ
3
(t−s), T (s))e−σ(t−s),

which is the announced expression for ρ. Let us turn to the equation on the temperature in
(3.4). Inserted the expression of ρ juste obtained, one has to solve the following equation

d

dt
Θ(t) =

(
κ

3
+ σ

)∫

R
+
ν

(
ρin(νe

κ
3
t)e−σt +

∫ t

0
σB(νe

κ
3
(t−s), T (s))e−σ(t−s)ds

)
dν − aσΘ. (3.5)

Let us study each term under the integral. First, one easily finds by a change of variables
ν → νe

κ
3
t ∫

R
+
ν

ρin(νe
κ
3
t)e−σtdν = eσte

κ
3
t‖ρin‖L1 .

To treat the second one, the idea is to integrate first in frequency and to use the integrability of
the Planck function, that is

∫

R
+
ν

∫ t

0
B(νe

κ
3
(t−s), T (s))e−σ(t−s)dsdν =

∫ t

0
e−σ(t−s)

∫

R
+
ν

B(νe
κ
3
(t−s), T (s))dνds.

The change of variables ν → νe
κ
3
(t−s) yields

∫

R
+
ν

B(νe
κ
3
(t−s), T (s))dν = aT 4(s)e−

κ
3
(t−s) = aΘ(s)e−

κ
3
(t−s).

Finally, equation (3.5) becomes

d

dt
Θ(t) =

(
κ

3
+ σ

)(
‖ρin‖L1e−

(
σ+κ

3

)
t + aσ

∫ t

0
Θ(s)e−

(
σ+κ

3

)
(t−s)ds

)
− aσΘ. (3.6)

This is a linear integro-differential equation. One of the method to solve this kind of equation
is the Laplace transform L. It is define, for any given function f : R

+ → R, by

L(f)(y) =

∫

R+

e−ytf(t)dt.
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Let us construct the equation satisfied by L(Θ). Multiplying equation (3.6) by e−yt and inte-
grating over R

+ yields
∫

R+

e−yt∂tΘ(t)dt = −Θin + yL(Θ)

=

(
κ

3
+ σ

)(
‖ρin‖L1

∫

R+

e−
(
y+σ+κ

3

)
tdt+ aσ

∫

R+

e−yt
∫ t

0
Θ(s)e−

(
σ+κ

3

)
(t−s)dsdt

)

− aσL(Θ).

We now study each integrals. For the first one, a direct computation yields

‖ρin‖L1

(
κ

3
+ σ

)∫

R+

e−
(
y+σ+κ

3

)
tdt = ‖ρin‖L1

κ
3 + σ

y + κ
3 + σ

.

We use Fubini’s theorem to invert the two integrals in the second integral.
∫

R+

e−
(
y+σ+κ

3

)
t
∫ t

0
Θ(s)e

(
σ+κ

3

)
sdsdt =

∫

R+

Θ(s)e

(
σ+κ

3

)
s
∫ +∞

s
e−
(
y+σ+κ

3

)
tdtds

=
L(Θ)

y + κ
3 + σ

.

One thus obtain the relation

−Θin + yL(Θ) = ‖ρin‖L1

κ
3 + σ

y + κ
3 + σ

+ aσ

(
κ

3
+ σ

) L(Θ)

y + κ
3 + σ

− aσL(Θ),

which yields

L(Θ) =

Θin

(
y + κ

3 + σ

)
+ ‖ρin‖L1

(
κ
3 + σ

)

y

(
y + κ

3 + σ(1 + a)

)

In order to be able to find the inverse Laplace transform of this expression, it is necessary
to write this term as a sum of terms for which this transformation is known. The relation
L−1

( y+c
(y+a)(y+b)

)
= de−at + (1 − d)e−bt, d = c−a

b−a t ≥ 0 yields the announced result, and this
concludes the proof.

3.3 Transport equation

In this section we focus on the frequency transport equation for photons. To this end we consider
the following problem 



∂tρ =

κ

3
ν∂νρ+ σ(ν)(B(ν, T )− ρ),

ρ(t = 0, ν) = ρin(ν),
(3.7)

where the temperature T > 0 is assumed to be given. This is a very simple transport equation
which contains nevertheless several physical processes. Indeed the coefficient κ models the
divergence of the fluid velocity, and σa represents the emission absorption rate. We aim here
to understand the influence of these two parameters on the transport of photons. For equation
(3.7), the analytical solutions given by the lemma (3.1) reduce to

ρ(t, ν) = ρin(νe
κ
3
t)e−

3
κ

R νe
κ
3 t

ν σ(τ)τ−1dτ +

∫ t

0
σ
(
νe

κ
3
s
)
B
(
νe

κ
3
s
)
e−

3
κ

R νe
κ
3 s

ν σ(τ)τ−1dτds. (3.8)
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From this expression it is clear that for all (t, ν) ∈ [0, T f ]× R
+ and for all κ ∈ R, ρ(t, ν) is non

negative. We assume for simplicity a constant opacity. Making the change of variables y = νe
κ
3
s

in the integral, one gets

ρ(t, ν) = ρin(νe
κ
3
t)e−σt +

3σ

κ

∫ νe
κ
3 t

ν

B(y)

y
e−

3σ
κ

log(y/ν)dy. (3.9)

We aim to study the time evolution of the L1 norm of ρ, the L1 norm being chosen for simplicity.
One has the following result

Proposition 3.2. The L1 norm of the solution of the transport equation (3.7) satisfies

• if κ
3 + σ > 0, then lim

t→∞
‖ρ(t)‖L1 = σ

κ
3
+σ‖B‖L1 ,

• if κ
3 + σ < 0, then the L1 norm of ρ diverges exponentially with time,

• if κ
3 + σ = 0, then the L1 norm of ρ diverges linearly with time.

Proof. Since ρ is non negative, one gets from the expression (3.9)

‖ρ(t)‖L1 = e−σt
∫

R+

ρin(νe
κ
3
t)dν +

3σ

κ

∫

R+

∫ νe
κ
3 t

ν

B(y)

y
e−

3σ
κ

log(y/ν)dydν,

which we write ‖ρ(t)‖L1 = I1(t) + I2(t). Firstly, a change of variables y = νe
κ
3
t in the first

integral yields

I1(t) = e−(σ+κ
3
)t‖ρin‖L1 .

Secondly, we get by applying the Fubini’s theorem on the second integral

I2(t) =
3σ

κ

∫

R+

B(y)

y
e−

3σ
κ

log(y)

∫ y

ye−
κ
3 t
e

3σ
κ

log(ν)dνdy.

Integrating the integral with respect to ν and using several algebraic manipulations yield

I2(t) = σ
1− e−(κ

3
+σ)t

3
κ + σ

∫

R+

B(y)dy.

We finally get

‖ρ(t)‖L1 = e−(σ+κ
3
)t‖ρin‖L1 + σ

1− e−(κ
3
+σ)t

κ
3 + σ

‖B‖L1 .

From this expression the expected result is easily obtained in the case κ
3 + σ 6= 0. In the case

κ
3 +σ = 0, the result is obtained by using a Taylor expansion of e−X near zero, and this concludes
the proof.

This shows that the transport equation (3.7) might be more complicated to solve numerically
in the case κ

3 + σ ≤ 0. For this reason and to simplify the problem we consider in this chapter
mainly the case κ > 0.
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3.4 Numerical schemes

For technical reasons, we restrict the frequency domain to D = [ε, ν∗], for given 0 < ε < ν∗ <
+∞. The parameter ε is introduced due to the fact that in this chapter we will consider opacities
with singularity as ν → 0. Since we want to design well-balanced schemes, we are interested in
the stationary solutions of (3.1). We thus solve the following Cauchy problem





κ

3
ν∂νρ+ σ(ν)(B(ν)− ρ) = 0,

ρ(ν̂) = ρ̂.
(3.10)

If the parameter κ is positive, this is a transport of the photons toward the frequency ν = ε.
On the other hand if the parameter κ is negative this is a transport of the photons toward the
frequency ν = ν∗. The frequency ν̂ is thus defined by ν̂ = ε if κ > 0 and ν̂ = ν∗ if κ < 0. This
is a simple O.D.E., and one can find the analytical solution, given by

ρ
(
ν; ρ∗, ν∗

)
= ρ∗e−

3
κ

R ν∗

ν
σ(s)

s
ds +

3

κ

∫ ν∗

ν

σ(s)B(s)

s
e−

3
κ

R s
ν

σ(τ)
τ
dτds. (3.11)

Since one of the regimes we are interested in is the behavior of the scheme as κ = 0, we study the

limit of this solution in this regime. Noting that 3σ(s)(sκ)−1e−
3
κ

R s
ν

σ(τ)
τ
dτ = − d

ds(e
− 3

κ

R s
ν

σ(τ)
τ
dτ ),

one finds

lim
κ→0

ρ
(
ν; ρ∗, ν∗

)
= B(ν). (3.12)

For 1 ≤ j ≤ N , we consider an irregular mesh defined by (N + 1) points 0 < ε = ν 1
2
< ... <

νN+ 1
2

= ν∗. We define νj as the middle of the j-th frequency band, i.e. νj = (νj− 1
2

+ νj+ 1
2
)/2

and we denote ∆νj its length. We also define the dual (j + 1
2)-th frequency band as the cell

[νj , νj+1], which length is denoted ∆νj+ 1
2

. We denote h = max
j

∆νj . We assume that there

exists a constant C such that ∀j ∈ {1, ..N} , 0 < Ch ≤ ∆νj .

In the following parts we adopt the following notations. We define ρex(t) = (ρ(t, νj))1≤j≤N
as the projection of the analytical solution of (3.1) over the mesh. For any vector V ∈ R

N , we
define the following discrete L2 norm

‖V ‖L2
d

=

√√√√
N∑

j=1

∆νj+ 1
2
V 2
j . (3.13)

In the next section we make some assumptions:

• (H1) The initial data satisfies ρin ∈ H2(D).

• (H2) The emission absorption coefficient satisfies σa ∈W 2,∞(D). Moreover, there exists a
constant σ∗ > 0 such that ∀ν ∈ D, σ(ν) ≥ σ∗.

The assumption (H2) may be not satisfied by some physical opacities (Cramer’s opacity, part
3.5.3), but for technical reasons is necessary to prove some theoretical results for the well-
balanced schemes studied in the next parts.
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3.4.1 A first class of well-balanced schemes

As presented in the introduction, we study a class of well-balanced schemes in the spirit of what
was introduced by Greenberg-Leroux [GL96] (see [GOS13] for a recent state of the art on the
topic). It consists to localized the source term at the interfaces and to use a Godunov method to
construct a scheme for the resulting equation. For equation (3.1), it yields the following scheme,
denoted as WB1 in the following





d

dt
ρj =

κ

3
νj
ρ(νj ; ρj+1; νj+1)− ρj

∆νj+ 1
2

, 1 ≤ j ≤ N − 1, κ > 0,

d

dt
ρj =

κ

3
νj
ρj − ρ(νj ; ρj−1; νj−1)

∆νj− 1
2

, 2 ≤ j ≤ N, κ < 0,

(3.14)

with the natural boundary conditions ρN (t) = ρ(t, νN ) in the case κ > 0 and ρ1(t) = ρ(t, ν1)
in the case κ < 0, where ρ(t, ν), defined in (3.31) is the analytical solution of equation (3.1).
Considering a classical explicit Euler discretization of the time derivative, the CFL is given by

∆t ≤ max
j

3∆νj
|κ|νj

. (3.15)

It is interesting to note that the CFL of this scheme does not depend on σ, but depends on
the wave velocity κ. We now prove several properties for this scheme, and we start with the
well-balanced property. In the following lemmas 3.3 and 3.4 we consider the case κ > 0.

Lemma 3.3 (Well-balanced property). The WB1 scheme defined in (3.14) is well-balanced, i.e.
preserves the stationary solutions.

Proof. We consider a stationary state of equation (3.1). By definition (3.11), this solution may
be written on the form ρ(ν) = ρ(ν; ρ∗, ν∗), and thus ρj+1 = ρ(νj+1; ρ

∗; ν∗). The semigroup
property yields

ρ(νj ; ρj+1; νj+1) = ρ(νj ; ρ(νj+1; ρ
∗; ν∗); νj+1) = ρ(νj ; ρ

∗; ν∗) = ρj ,

and thus d
dtρj = 0, which is the expected result.

Let us now study the convergence of the WB1 scheme. The main point is that the WB1
scheme is convergent for any fixed and non zero κ, but is not convergent as κ tends to zero. For
simplicity, we consider the case κ > 0. Without loss of generality we assume that ρj(t = 0) =
ρ(νj , t = 0), where ρ(ν, t) is the solution of equation (3.1).

Lemma 3.4 (Convergence for κ 6= 0). Assume that the parameter is fixed and positive. Under
assumptions (H1)-(H2), there exists a constant C := C(‖σ‖W 1,∞ , κ−1, ε−1, ν∗), where ε is the
edge of the mesh, such that the solution ρh = (ρj)1≤j≤N of the well balanced scheme (3.14) and
the solution ρex = (ρ(νj))1≤j≤N of the equation (3.1) satisfy the following estimate

‖ρh(t)− ρex(t)‖L2
d
≤ Ch

(
‖B‖H1 + ‖ρex(0)‖H2

)
, 0 < t < T.

Proof. The proof is decomposed in two steps. In a first time the WB1 scheme is written as the
sum of two contributions: a part consistent with the equation (3.1), and a remainder which is
proved to tends to zero with h. In a second time the result is proved by mean of a an error
estimate between the solution of the WB1 scheme and the solution of the equation (3.1). To
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obtain a consistent expression of the WB1 scheme, let us perform a Taylor expansion with
integral remainder of the exponential formula contained in the expression of the stationary
solution ρ(νj ; ρj+1; νj+1), that is

e
− 3

κ

R νj+1
νj

σ(s)
s
ds

= 1− 3

κ

∫ νj+1

νj

σ(s)

s
ds+

∫ − 3
κ

R νj+1
νj

σ(s)
s
ds

0

(
− 3

κ

∫ νj+1

νj

σ(s)

s
ds− γ

)
eγdγ

Another Taylor expansion of the function ν 7→ σ(ν)/ν around the frequency νj yields

e
− 3

κ

R νj+1
νj

σ(s)
s
ds

= 1− 3σ(νj)

κνj
∆νj+ 1

2
+R1,

where

R1 = −3

κ

∫ νj+1

νj

∫ s

νj

(
σ(γ)

γ

)′
dγds+

∫ − 3
κ

R νj+1
νj

σ(s)
s
ds

0

(
− 3

κ

∫ νj+1

νj

σ(s)

s
ds− γ

)
eγdγ. (3.16)

In the same way, one writes

3

κ

∫ νj+1

νj

σ(s)B(s)

s
e
− 3

κ

R s
νj

σ(τ)
τ
dτ
ds =

3

κ

∫ νj+1

νj

σ(s)B(s)

s
ds+

3

κ

∫ νj+1

νj

σ(s)B(s)

s

(
1− e−

3
κ

R s
νj

σ(τ)
τ
dτ
)
ds

=
3σ(νj)B(νj)

κνj
∆νj+ 1

2
+R2

where

R2 =
3

κ

∫ νj+1

νj

∫ s

νj

(
σ(γ)B(γ)

γ

)′
dγds+

3

κ

∫ νj+1

νj

σ(s)B(s)

s

(
1− e−

3
κ

R s
νj

σ(τ)
τ
dτ
)
ds. (3.17)

It is now possible to rewrite the WB1 scheme (3.14) as

d

dt
ρj =

κ

3
νj
ρj+1 − ρj
∆νj+ 1

2

+ σ(νj)
(
B(νj)− ρj+1

)
+
κ

3
νj
ρj+1R1 +R2

∆νj+ 1
2

.

We keep this expression and we now study the solution of the equation (3.1). Evaluating this
solution at the frequency νj yields ∂tρ(νj) = κ

3νj∂νρ(νj) + σ(νj)(B(νj) − ρ(νj)). Using the
expression ∂νρ(νj) = (ρ(νj+1) − ρ(νj))∆ν−1

j+ 1
2

+ ∆ν−1
j+ 1

2

∫ νj+1

νj
(s − νj+1)∂

2
νρ(s)ds, one writes this

equation as

∂tρ(νj) =
κ

3
νj
ρ(νj+1)− ρ(νj)

∆νj+ 1
2

+ σ(νj)(B(νj)− ρ(νj)) +R3,

where

R3 =
κ

3

νj
∆νj+ 1

2

∫ νj+1

νj

(s− νj+1)∂
2
νρ(s)ds (3.18)

Denoting ej(t) = ρj(t) − ρ(νj , t) and removing the time dependence for ease of notations, one
finds

d

dt
ej =

κ

3
νj
ej+1 − ej
∆νj+ 1

2

+ σ(νj)(ρ(νj)− ρj+1) +
κ

3
νj
ρj+1R1 +R2

∆νj+ 1
2

−R3
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To obtain the equation satisfied by the discrete L2 norm of ej , we multiply this equation by
∆νj+ 1

2
ej and we sum on all the cells. This leads to

1

2

d

dt
‖eh‖2L2

d
=

1

2

d

dt

N∑

j=0

∆νj+ 1
2
e2j =

κ

3

N∑

j=0

νj(ej+1 − ej)ej +

N∑

j=0

σ(νj)(ρ(νj)− ρj+1)∆νj+ 1
2
ej

+

N∑

j=0

(
κ

3
νj
ρj+1R1 +R2

∆νj+ 1
2

−R3

)
∆νj+ 1

2
ej

(3.19)
We study each of these terms. First, a reindexation of the sum yields

κ

3

N∑

j=0

νj(ej+1 − ej)ej =
κ

3

N∑

j=0

νjej+1ej −
κ

6

N∑

j=0

νje
2
j −

κ

6

N∑

j=0

νj+1e
2
j+1 −

κ

6
ν0e

2
0 +

κ

6
νN+1e

2
N+1.

The last term vanishes due to the boundary condition of the WB1 scheme. Rearranging some
terms, one finds

κ

3

N∑

j=0

νj(ej+1 − ej)ej = −κ
6

N∑

j=0

νj(ej − ej+1)
2 − κ

6

N∑

j=0

∆νj+ 1
2
e2j+1 −

κ

6
ν0e

2
0 ≤ 0

We now turn to the second term of the right member of (3.19). One can writes this term as

N∑

j=0

σ(νj)(ρ(νj)− ρj+1)∆νj+ 1
2
ej =

N∑

j=0

σ(νj)(ρ(νj)− ρ(νj+1))∆νj+ 1
2
ej −

N∑

j=0

σ(νj)ej+1∆νj+ 1
2
ej

For the first term of the right member, a Cauchy-Schwarz inequality together with a Taylor
expansion with integral remainder of the function ν 7→ ρ(ν) and the inequality ab ≤ 1

2(a2 + b2)
yield

N∑

j=0

σ(νj)(ρ(νj)− ρ(νj+1))∆νj+ 1
2
ej ≤

1

2
‖σ‖L∞

(
‖eh‖2L2

d
+ h2‖∂νρex‖2L2

)
.

The second term is trivially controlled as

−
N∑

j=0

σ(νj)ej+1∆νj+ 1
2
ej ≤ C‖σ‖L∞‖eh‖2L2

d
,

where the constant C depends on the mesh. The proof now only relies on the control of the
term depending on R1, R2 and R3 in (3.19). Let us start with the term containing R1. One has,
by definition of R1 (3.16)

κ

3
νjR1 =

κ

3
νj

(
− 3

κ

∫ νj+1

νj

∫ s

νj

(
σ(γ)

γ

)′
dγds+

∫ − 3
κ

R νj+1
νj

σ(s)
s
ds

0

(
− 3

κ

∫ νj+1

νj

σ(s)

s
ds− γ

)
eγdγ

)
,

A direct computation yields

κ

3
νjR1 ≤ ∆ν2

j+ 1
2

‖σ‖W 1,∞

[(
1 +

1

νj

)
+

3

κνj
‖σ‖W 1,∞

]
.
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It yields

N∑

j=0

κ

3
νjρj+1R1ej =

N∑

j=0

κ

3
νjej+1R1ej +

N∑

j=0

κ

3
νjρ(νj+1)R1ej

≤ C
(

(1 + h)‖eh‖2L2
d
+ h2‖ρex‖2L2

d

)
,

where C := C(‖σ‖W 1,∞ , κ−1, ε−1), ε is edge of the mesh. We now turn to the term containing
R2. One has, by definition of R1 (3.17)

κ

3
νjR2 = νj

∫ νj+1

νj

∫ s

νj

(
σ(γ)B(γ)

γ

)′
dγds+ νj

∫ νj+1

νj

σ(s)B(s)

s

(
1− e−

3
κ

R s
νj

σ(τ)
τ
dτ
)
ds.

Using a Taylor expansion to treat the term 1− e−
3
κ

R s
νj

σ(τ)
τ
dτ

, a direct computation yields

κ

3
νjR2 ≤ ∆ν

3
2

j+ 1
2

‖σ‖W 1,∞‖B‖H1

(
2 +

1

νj
+

3

κνj
‖σ‖W 1,∞

)
,

which leads to
N∑

j=0

κ

3
νjR2ej ≤ C

(
‖eh‖2L2

d
+ h2‖B‖2H1

)
,

where, once again, C := C(‖σ‖W 1,∞ , κ−1, ν−1
j ). Finally, there remains to control the term

containing R3 (3.18), for which one easily obtains

N∑

j=0

R3∆νj+ 1
2
ej ≤

κ

3
ν∗
(
‖eh‖2L2

d
+ h2‖∂2

νρex‖2L2

)
.

Using all these results in (3.19), one obtains

1

2

d

dt
‖eh‖2L2

d
≤ C

(
(1 + h)‖eh‖2L2

d
+ h2(‖B‖2H1 + ‖ρex‖2H2)

)
,

where C := C(‖σ‖W 1,∞ , κ−1, ν−1
j , ν∗). One easily gets from equation (3.1) the estimate ‖ρex(t)‖H2 ≤

C‖ρex(0)‖H2 . The expected result is obtained by applying the Gronwall lemma.

This result shows that the WB1 scheme (3.14) is convergent for any fixed and non zero
κ. Indeed the constant C in this result depends on κ−1, and it is not possible to remove this
singularity. Indeed, taking into account the limit as κ tends to 0 of the analytical stationary
solution (3.12), one finds for this scheme

lim
κ→0

d

dt
ρj = 0,

which obviously is not a consistent discretization of the limit equation (3.2). We propose a new
construction strategy to avoid this consistency problem.
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3.4.2 Spectrally Well-Balanced Scheme

In this part we study and prove several properties for the following scheme, denoted as the
spectrally well-balanced (SWB) scheme:





d

dt
ρj =

σ(νj)

1−M(νj+1; νj)

(
ρ
(
νj ; ρj+1, νj+1

)
− ρj

)
, 1 ≤ j ≤ N − 1, κ > 0,

d

dt
ρj =

σ(νj)

1−M(νj−1; νj)

(
ρ
(
νj ; ρj−1, νj−1

)
− ρj

)
, 2 ≤ j ≤ N, κ < 0,

(3.20)

where the boundary conditions are the same than for the WB1 scheme (3.14). Considering once
again a classical explicit Euler discretization of the time derivative, the CFL is given by





∆t ≤ max
j

1−M(νj+1; νj)

σ(νj)
, κ > 0,

∆t ≤ max
j

1−M(νj−1; νj)

σ(νj)
, κ < 0.

(3.21)

On the contrary to the previous scheme, the CFL of the SWB scheme strongly depends on the
L∞ norm of the opacity σ. Indeed, one has

lim
σ→∞

∆t = 0.

The scheme is built using the integrating factor. It is defined, for an arbitrary ν0 ∈ D, by

M(ν; ν0) = e
− 3

κ

R ν
ν0

σ(s)
s
ds

. Multiplying equation (3.1) by 3σ(ν)M(ν; ν0)/κν = −M ′(ν; ν0) yields

−M ′(ν; ν0)∂tρ = σ(ν)

(
∂ν
(
M(ν; ν0)ρ

)
+

3σ(ν)

κν
M(ν; ν0)B(ν)

)
.

Integrating this equation between νj and νj+1 and discretizing each term conveniently, one finds

−
[
M(ν; ν0)

]νj+1

νj

d

dt
ρj = σ(νj)

([
M(ν; ν0)ρ

]νj+1

νj

+

∫ νj+1

νj

3σ(s)

κs
M(s; ν0)B(s)ds

)
.

Taking ρ(νj+1) = ρj+1, ρ(νj) = ρj and dividing this equation by M(νj ; ν0) and 1−M(νj+1; νj),
one finds, using the relation M(ν; ν0)/M(s; ν0) = M(ν; s),

d

dt
ρj =

σ(νj)

1−M(νj+1; νj)

(
M(νj+1; νj)ρj+1 − ρj +

∫ νj+1

νj

3σ(s)

κs
M(s; νj)B(s)ds

)
.

The definition of the stationary solution

ρ
(
νj ; ρj+1, νj+1

)
= M(νj+1; νj)ρj+1 +

∫ νj+1

νj

3σ(s)

κs
M(s; νj)B(s)ds

yields the SWB scheme (3.20). The same argument than for the WB1 scheme (3.14) shows that
this scheme is well-balanced. We prove a uniform (in κ) convergence result for this scheme.
We keep the same notations than in the previous part, that is ρh = (ρj)1≤j≤N and ρex =
(ρ(νj))1≤j≤N . We need the following stability result
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Lemma 3.5 (L2 Stability). Assume that the parameter κ is non negative. Under the assump-
tions (H1)-(H2), the following estimate holds, where the constant C depends on all the parame-
ters and the boundary condition but is uniform in κ ∈ (0, κ∗]

‖ρh(t)‖L2
d
≤ C

√
1 + ‖ρh(0)‖2

L2
d
, 0 < t < T.

Proof. Since the proof is rather classical, we only develop the main ideas. We want to reveal in
the SWB scheme (3.20) a consistent discretization of equation (3.1). Injecting the expression of
the stationary solution (3.11), one can write it as

d

dt
ρj =

κ

3
νj
ρj+1 − ρj
∆νj+ 1

2

+ σ(νj)
(
B(νj)− ρj

)
+ σ(νj)

(
ρj+1 − ρj

)
Rj,1 +Rj,2, (3.22)

with 



Rj,1 =
1

1−M(νj+1; νj)
− κνj

3σ(νj)∆νj+ 1
2

− 1,

Rj,2 =
σ(νj)

1−M(νj+1; νj)

∫ νj+1

νj

3σ(s)

κs
M(s; νj)

(
B(s)−B(νj)

)
ds,

(3.23)

where we used, by definition of M(s; νj),
∫ νj+1

νj

3σ(s)
κs M(s; νj)ds = 1−M(νj+1; νj). We introduce

Bh = (B(νj))1≤j≤N . Using the positivity of the coefficients κ and σ and the Cauchy-Schwarz
inequality, one finds by multiplying equation (3.22) by ∆νj+ 1

2
ρj and adding on all the cells a

positive constant C such that,

d

dt
‖ρh‖2L2

d
≤ C

(
1 + max

j
|Rj,1|

)
‖ρh‖2L2

d
+ ‖σ‖L∞‖B‖2L2

d
+ ‖Rj,2‖2L2

d
+
κ

6
ρ2
N+1. (3.24)

We thus need to control Rj,1 and the L2
d norm of Rj,2. Denoting zj = 3

κ

∫ νj+1

νj

σ(s)
s ds and using

the definition of M(νj+1; νj), one can write Rj,1 as

Rj,1 =

(
1

1− e−zj
− 1

zj

)
− 1 +

(
1

zj
− κνj

3σ(νj)∆νj+ 1
2

)
.

For the first term one has 1
1−e−zj

− 1
zj
≤ 1. Using a Taylor expansion of the function ν 7→ σ(ν)ν−1

at the frequency νj , one finds

max
j
|Rj,1| ≤ C

κ

3

‖σ‖W 1,∞

σ2∗
, (3.25)

where the constant C depends on the mesh but is independent of κ. We now turn to the term
Rj,2. A Taylor expansion of the function ν 7→ B(ν) shows

|Rj,2| ≤ ∆νj+ 1
2
‖B′‖L∞

σ(νj)

1−M(νj+1; νj)

∫ νj+1

νj

3σ(s)

κs
M(s; νj)ds.

Using the relation
∫ νj+1

νj

3σ(s)
κs M(s; νj)ds = 1−M(νj+1; νj), one finds

‖Rj,2‖L2
d
≤ h
√
ν∗‖B′‖L∞‖σ‖L∞ . (3.26)
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Using all these results in (3.24), one finds a constant C such that

d

dt
‖ρh(t)‖2L2

d
≤ C

(
1 +

κ

3

‖σ‖W 1,∞

σ2∗

)
‖ρh(t)‖2L2

d
+ ‖σ‖L∞‖B‖2L2

d
+ h2ν∗‖B′‖2L∞‖σ‖2L∞

+
κ

6
ρ2
N+1.

The Gronwall lemma finally gives the result.

The key point was to prove a uniform estimate for the consistency errors Rj,1 and Rj,2.
Actually, estimates (3.25) and (3.26) are no longer true for the WB1 scheme (3.14). We now
turn to the uniform (in κ) convergence result of the scheme (3.20). Without loss of generality,
we assume that ∀j, ρj(0) = ρ(νj , 0).

Lemma 3.6 (Uniform convergence). Assume that the parameter κ is non negative. Under
the assumptions (H1)-(H2), the numerical solution of the scheme (3.20) satisfies the following
estimate, where the constant C is uniform in κ ∈ (0, κ∗]

‖ρex(t)− ρh(t)‖L2
d
≤ Ch, 0 < t < T.

Proof. Evaluating the solution of the P.D.E. (3.1) at the frequency νj and using a Taylor ex-
pansion of the function ν 7→ ρ(t, ν) with integral remainder, one has

d

dt
ρ(t, νj) =

κ

3
νj

(
ρ(t, νj+1)− ρ(t, νj)

∆νj+ 1
2

−
∫ νj+1

νj

νj+1 − s
∆νj+ 1

2

∂2
νρ(t, s)ds

)

+ σ(νj)

(
B(νj)− ρ(t, νj)

)
.

(3.27)

We obtain an equation on the unknown ej(t) := ρj(t)− ρ(t, νj) by deducting to the expression
(3.22) of the SWB scheme this equation. Multiplying the obtained equation by ∆νj+ 1

2
ej(t) and

adding on all the cells, one gets

1

2

d

dt
‖eh(t)‖2L2

d
=
∑

j

∆νj+ 1
2
ej(t)Sj(t) +

∑

j

∆νj+ 1
2
ej(t)σ(νj)

(
ρ(νj+1)− ρ(νj)

)
Rj,1

+
∑

j

∆νj+ 1
2
ej(t)Rj,2 +

∑

j

∆νj+ 1
2
ej(t)

∫ νj+1

νj

νj+1 − s
∆νj+ 1

2

∂2
νρ(t, s)ds,

(3.28)

where Sj(t) = κ
3νj

ej+1(t)−ej(t)
∆ν

j+1
2

+ σ(νj)
(
ej+1(t) − ej(t)

)
Rj,1 − σ(νj)ej(t) and Rj,1 and Rj,2 are

defined in (3.23). We control successively each of these terms. First, the term Sj(t) has already
been studied. Using the estimate (3.25), one has

∑

j

∆νj+ 1
2
ej(t)Sj(t) ≤ C

κ

3

‖σ‖2W 1,∞

σ2∗
‖eh(t)‖2L2

d
,

where the constant C depends on the mesh but is independent of κ. The term Rj,2 have also
been controlled in the previous part. The estimate (3.26) and the inequality ab ≤ (a2 + b2)/2
gives ∑

j

∆νj+ 1
2
ej(t)Rj,2 ≤

1

2
‖eh(t)‖2L2

d
+

1

2
h2ν∗‖B′‖2L∞‖σ‖2L∞ .
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Similar arguments associated to a Taylor expansion of the function ν 7→ ρ(t, ν) lead to

∑

j

∆νj+ 1
2
ej(t)σ(νj)

(
ρ(νj+1)− ρ(νj)

)
Rj,1 ≤ C

(
‖eh(t)‖2L2

d
+ h2‖∂νρ(t)‖2L2(D)

)
,

where, once again, the constant C is independent of κ. In the same way, one has for the last
term

∑

j

∆νj+ 1
2
ej(t)

∫ νj+1

νj

νj+1 − s
∆νj+ 1

2

∂2
νρ(t, s)ds ≤

1

2

(
‖eh(t)‖2L2

d
+ h2‖∂ννρ(t)‖2L2(D)

)
.

As ρ is solution of a simple linear P.D.E., one easily controls its H2 norm. Actually, using the
regularity of σ (assumption (H2)), one finds a constant C such as ‖∂νρ(t)‖2L2 ≤ C

(
1+‖∂νρ(0)‖2L2

)

and ‖∂ννρ(t)‖2L2 ≤ C
(
1 + ‖∂ννρ(0)‖2L2

)
. Using all these results in (3.28), one finds another

constant C, once again uniform in κ, such that

d

dt
‖eh(t)‖2L2

d
≤ C

(
‖eh(t)‖2L2

d
+ h2

)
.

As before, the Gronwall lemma and the assumption on the initial data gives the announced
result.

3.4.3 Upwind scheme

In all the forthcoming numerical results, the numerical solutions of the well-balanced schemes
(3.14) and (3.20) are compared to the following classical upwind scheme





d

dt
ρj =

κ

3

ρj+1 − ρj
∆νj

νj+ 1
2

+ σ(νj)
(
B(νj)− ρj

)
, 1 ≤ j ≤ N − 1, κ > 0,

d

dt
ρj =

κ

3

ρj − ρj−1

∆νj
νj− 1

2
+ σ(νj)

(
B(νj)− ρj

)
, 2 ≤ j ≤ N, κ < 0,

(3.29)

where once again the boundary conditions are the same than for the WB1 scheme (3.14). Con-
sidering once again a classical explicit Euler discretization of the time derivative, the CFL is
given by 




∆t ≤ 3 max
j

∆νj
κνj+ 1

2
+ 3∆νjσ(νj)

, κ > 0,

∆t ≤ 3 max
j

∆νj
−κνj− 1

2
+ 3∆νjσ(νj)

, κ < 0.

(3.30)

As for the previous SWB scheme, the CFL of the upwind scheme strongly depends on the L∞

norm of σ. Obviously the upwind scheme is consistent in both regimes ∆νj → 0 and κ→ 0±.

3.5 Numerical results

In this section numerical results are presented for the “classical” well-balanced scheme WB1
(3.14), the spectrally well-balanced scheme SWB (3.20) and the upwind scheme (3.29) in several
configurations of the coefficients κ and σ. This section is divided in three parts, one for each
considered opacities (constant, highly irregular and Cramer formula. For each opacities, the long
time behavior and the consistency as κ → 0± of the schemes of interest are studied. The main
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point is that the SWB scheme exactly captures the numerical solution as time goes on and is
consistent as κ→ 0±. A last part is dedicated to the study of configurations of the parameters
κ and σ in which the relative L1 error of the upwind scheme is maximized, highlighting the
interest of the SWB scheme.

Since this study involves a very simple model, the analytical solution of equation (3.1) can
be computed, and its expression is given by

ρ(t, ν) = ρin(νe
κ
3
t)e−

3
κ

R νe
κ
3 t

ν σ(τ)τ−1dτ +

∫ t

0
σ
(
νe

κ
3
s
)
B
(
νe

κ
3
s
)
e−

3
κ

R νe
κ
3 s

ν σ(τ)τ−1dτds, (3.31)

Since one of the regime of interest is |κ| << 1, it is numerically necessary to use a non singular
form of this analytical solution. To this end one remarks that the expression under the integral
can be integrated by parts. One finds

ρ(t, ν) = B(ν) +

(
ρin(νe

κ
3
t)−B

(
νe

κ
3
t
))
e−

3
κ

R νe
κ
3 t

ν σ(τ)τ−1dτ

+
κ

3
ν

∫ t

0
e

κ
3
sB′
(
νe

κ
3
s
)
e−

3
κ

R νe
κ
3 s

ν σ(τ)τ−1dτds,

(3.32)

which is no longer singular in κ. The same procedure is applied to treat the singularity in the
stationary solution (3.11). The following relative L1 error is introduced, where the final time T f

will be defined for each test case
‖ρj(t)− ρ(νj , t)‖
‖ρ(νj , T f )‖

. (3.33)

For all the numerical tests a random mesh composed of 50 cells is considered. The domain is
D = [ε, 30], where ε varies between 0 and 10−1 according to the different opacities. The initial
conditions are taken as ρin(ν) = B(ν − 15) if κ > 0 and ρin(ν) = 0 if κ < 0 and the boundary
conditions are given by the analytical solution (3.32).

3.5.1 Constant σ

In this part the numerical tests are performed for the very simple case where σ is constant equal
to 1. In figure 3.1 we displayed the relative L1 error between the numerical solutions of the
schemes and the analytical solution, with N = 50 cells and κ = 1. As expected, the SWB
scheme and the WB1 scheme converge toward the analytical solution as time goes on. As we
have seen previously, the WB1 scheme is not consistent in the regime κ → 0. Figure 3.2 plots
on the left side the evolution, as κ tends to 0 and at time t = 2, of the L1 error between the
solutions of the WB1, SWB and upwind schemes and the numerical solution of the following
scheme, consistent with equation (3.2):

d

dt
ρj = σ(νj)

(
B(νj)− ρj

)
, (3.34)

and confirms the theoretical study. On the right side we plotted the L1 norm in a Log-Log scale
between the analytical solution and the numerical solution of the schemes at time t = 2 and
with κ = 1.
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Figure 3.1: Evolution of the L1 relative error between the analytical solution (3.31) and the
numerical solutions of the WB1, SWB and upwind schemes, computed with N=50, κ = 1

Figure 3.2: Left: L1 error between the numerical solution of (3.34) and the numerical solutions
of the WB1, SWB and upwind schemes versus K with N=50 and t=2. Right: L1 error between
the analytical solution (3.31) and the numerical solutions of the WB1, SWB and upwind schemes
versus N in a Log-Log scale plan, with t=2 and κ=1.

3.5.2 Highly irregular σ

Many physical contexts imply highly irregular emission absorption coefficient σ, whose frequency
dependence is sometimes regular and sometimes very peaked. The numerical study of such
opacities is thus interesting. Numerically, the coefficient σ is constructed as the sum of a regular
part and peaked functions (cf figure 1)

σ(ν) =
150

1 + ν
+

∑

1≤j≤20

Pj , (3.35)

where the peaked functions are distributed regularly on the mesh. In this part ε is taken equal
to 0, so the domain is [0, 30]. The choice of σ (3.35) yields an exact numerical integration of all
the integrals in the analytical solution (3.32). In the same way, the integrals in the expression
of the stationary solutions (3.11) are numerically computed exactly. The first property to verify
numerically is the well-balanced property of the SWB (and WB1) scheme. In figure 3.4 are
displayed the time evolution of the relative L1 error of the SWB, WB1 and upwind scheme for
κ = 1 and κ = −1. As expected, both the SWB and the WB1 schemes exactly capture the
stationary solution, but it is interesting to notice that the WB1 scheme is much slower than
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Figure 3.3: Irregular emission absorption coefficient

the SWB scheme. As explained in the previous section, the SWB scheme is uniformly (in κ)

Figure 3.4: Relative L1 error of the SWB, WB1 and upwind schemes versus time, T f = 6. Top:
κ = 1, bottom: κ = −1. Pictures on the right side are zoom of the pictures on the left side.

convergent, and this property has to be checked numerically for this choice of σ. Figure 3.5
displays the evolution, as κ → 0±, of the L1 error between the solutions of the SWB, WB1
and the upwind schemes and the numerical solution of the following scheme, consistent with
equation (3.1) as κ = 0:

d

dt
ρj = σ(νj)

(
B(νj)− ρj

)
. (3.36)

Figure 3.6 displays, in a (Log,Log) scale, the L1 error of the schemes with respect to the number
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Figure 3.5: L1 error between the numerical solution of (3.34) and the numerical solutions of the
WB1, SWB and upwind schemes versus versus κ. Left: κ > 0, t=0.1. Right: κ < 0, t=0.02

of cells. It shows that as expected, all the schemes are of order 1.

Figure 3.6: L1 error of the SWB, WB1 and upwind schemes versus N , (Log,Log) scale. Left:
κ > 0, t=0.1. Right: κ < 0, t=0.02

3.5.3 Cramer’s opacity

In this part we study the behavior of the schemes with the Cramer’s opacity:

σ(ν) =
1− e−ν
ν3

. (3.37)

This opacity leads to σ(ν)B(ν) = e−ν , and has a singularity as ν → 0. For this coefficient
the analytical value of the integrals in the expression of the solutions of (3.1) and (3.10) can
no longer be computed analytically. Numerically, they are computed by classical five points
Gaussian quadratures. In this part and due to the singularity of the opacity, ε is taken equal
to 10−1 and thus the domain is [10−1; 30]. The same study than for the previous opacity is
performed, and as before the long time behavior of the numerical solutions of the schemes is
studied. In figure 3.7 are displayed the time evolution of the relative L1 error of the schemes.
Once again and as expected, the SWB and WB1 schemes exactly capture the stationary solution,
while the relative error of the upwind scheme is 18% for κ = 1 and 7% for κ = −1. As before,
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Figure 3.7: Relative L1 error of the SWB, WB1 and upwind schemes versus time. Left: κ = 1,
T f = 25, right: κ = −1, T f = 50

the behavior of the schemes for κ → 0± is studied. Figure 3.8 displays the error between the
schemes and the numerical solution of the scheme (3.36) as κ → 0±. It shows that the SWB
scheme is consistent with equation (3.1), even for small coefficient κ.

Figure 3.8: L1 error of the SWB, WB1 and upwind schemes versus κ. Left: κ > 0, t=0.5. Right:
κ < 0, t=2

3.5.4 SWB vs upwind

In this part the advantage of the SWB scheme compared with the upwind scheme is highlighted.
Indeed, for certain values of κ and σ, the upwind L1 error can become significant. In the previous
part, for σ defined in (3.35) and κ = ±1, the upwind relative L1 error was of order 1%. On the
other hand we have seen that for the Cramer’s opacity and for κ = 1, the relative L1 error of the
upwind scheme reaches 18%, which is non negligible. Two test cases are presented here in which
the upwind relative L1 error is significant. In both the case we take σ as a piecewise constant
function. In the first following one, the discontinuity is placed at the middle of the mesh (figure
3.9). Figure 3.10 displays the relative L1 error of the schemes as the time increases for several
value of κ. The initialization is such that ρin(ν) = B(ν− 15). It shows that while increasing the
coefficient κ, the relative L1 error of the upwind scheme also increases, and reach roughly 35%
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Figure 3.9: Piecewise constant emission absorption coefficient

in the case κ = 10. In figure 3.11 are displayed the corresponding solutions at T f = 30. In the

Figure 3.10: Relative L1 error of the SWB, WB1 and upwind schemes versus time.

picture the curves of the analytical solution and the numerical solutions of the SWB and WB1
schemes are merged, due to the fact that the error of the SWB and WB1 schemes are close to
the computer zero. The peak of the analytical solution si not well retranscribed by the upwind
scheme. For the second test case the emission absorption coefficient is still taken as a piecewise
constant function but we took a negative κ. The initial condition are such that ρj(0) = 0. In
figure 3.12 are displayed the evolution of the relative L1 error as time goes on, for several value
of κ. As previously, we see that the relative L1 error of the upwind scheme increases with κ,
and reaches roughly 20% for κ = −10. The corresponding solutions at T f = 30 are displayed
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Figure 3.11: Corresponding numerical solutions of the SWB, WB1 and upwind schemes at t=30.
The curves of the SWB and WB1 numerical solutions and the analytical solutions are merged.

Figure 3.12: Relative L1 error of the SWB, WB1 and upwind schemes versus time.

in figure 3.13. Once again, the curves of the analytical solution and the numerical solutions of
the SWB and WB1 schemes curves are merged, and the upwind scheme does not retranscribe
faithfully the behavior of the analytical solution.
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Figure 3.13: Corresponding numerical solutions of the SWB, WB1 and upwind schemes at t=30.
The curves of the SWB and WB1 numerical solutions and the analytical solutions are merged.
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Chapter 4

Compton scattering (I): anisotropic
kinetic models

4.1 Introduction

The aim of this chapter is the study of a hierarchy of anisotropic kinetic models describing
the Compton scattering. On the one hand, several kinetic models have been derived from the
Boltzmann equation by physicists [BPR69,PL97,POM73,FKM85], leading to several anisotropic
Fokker-Planck type equations. On the second hand, Escobedo et al [EMV03] recently derived
from the Boltzmann equation for photons the Kompaneets equation [KOM57,EHV98], which is
a nonlinear Fokker-Planck type equation, by assuming the isotropy of the distribution function
and by using several original technics. The main goal of this chapter is to present a generalization
of this approach for anisotropic distribution functions. This leads to Fokker-Planck equations,
whose structure can be seen as anisotropic Kompaneets type equations.

The Compton scattering describes the change of energy and direction of a photon, of momen-
tum pγ interacting with an electron, of momentum pe, leading to another photon and another
electron of momentum p′γ and p′e respectively (figure 4.1). The Compton scattering between

Figure 4.1: Photon-electron interaction by Compton scattering

photons and electrons can be described by a Boltzmann equation for the density distribution
function of the photons. Since the induce effects (quantum effects) are taken into account for the
photons, the collision operator is quadratic with respect to the distribution function. Assuming
that the electrons are at thermodynamic equilibrium, their distribution function is given by a
Maxwellian, and the equation describing the evolution of the density distribution of the photons
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f , which depends on the time t, on the frequency of the photon ν ∈ R
+, on its space position

x ∈ R
3 and on its direction Ω ∈ S2, is given by [EMV03]

1

c
∂tf + Ω.∇f =

∫

R+×S2

ν ′

ν
b(x, ν, ν ′, θ)e

ν′

T q(f)dν ′dΩ′, (4.1)

where 



b(x, ν, ν ′, θ) = σs(x)
(
1 + cos2 θ

)
|ω|−1e

−A2mc2

2T |ω|2 ,

A =
ν ′

c
− ν

c
+
|ω|2
2mc

,

ω =
ν ′

c
Ω′ − ν

c
Ω,

cos θ = Ω.Ω′,

(4.2)

and

q(f) = e−
ν
T f(ν ′,Ω′)

(
1 + f(ν,Ω)

)
− e− ν′

T f(ν,Ω)
(
1 + f(ν ′,Ω′)

)
,

where the space dependence has been removed for ease of notations and where T is the temper-
ature of the electrons, which is assumed positive and bounded. The parameter σs is a scattering
coefficient and is assumed to depend only on the space variable x. The parameter ω represents
the transfer of impulsion and θ is the angle between the incoming and outgoing photon. The
conservation of impulsion and energy during the collision is expressed through the following
relations 




ν

c
Ω + p∗ =

ν ′

c
Ω′ + p′∗,

ν +
|p∗|2
2m

= ν ′ +
|p′∗|2
2m

,

(4.3)

in which p∗ (resp. p′∗) is the impulsion of the electron before (resp. after) collision. This
equation has important properties. Firstly, the kernel b satisfies the following relation, known
as the detailed balance law

b(x, ν, ν ′, θ)eν/T = b(x, ν ′, ν, θ)eν
′/T , (4.4)

which can be easily verified from the definition of the kernel b (4.2). The stationary solutions of
the Boltzmann equation (4.1) are given by the Bose-Einstein distributions, defined by

fµ(ν) =

(
e(µ+ν)/T − 1

)−1

, (4.5)

where µ is a constant and non negative parameter. One remarks that ν3f0(ν) = B(ν), where B is
the Planck function and is the equilibrium state of the transfer equation under the assumption of
local thermodynamic equilibrium (ETL) [MWM99]. Secondly, the Boltzmann equation preserves
the total number of photons, whose proof directly comes from the detailed balance law (4.4). It
is expressed by the following relation, where N(f) is the total number of photons.

d

dt
N(f) =

d

dt

[ ∫

R3×R3

fdpdx

]
= 0. (4.6)

We now turn to another important property of the Boltzmann equation, which is the H-theorem
and express the non reversibility of the physical process [BC03,CRS08].
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Theoreme 4.1 (H-Theorem). Consider the (mathematical) entropy

H(t) =

∫

R3×R3

(
f log f − (f + 1) log(f + 1) +

ν

T
f

)
dpdx. (4.7)

Assume that the distribution of the photons f is non negative. Then the entropy H is monotone
non increasing, i.e.

H ′(t) ≤ 0.

A simpler model than the Boltzmann equation (4.1) is the following Fokker-Planck type
equation, named Kompaneets equation and historically derived by J. A. Kompaneets [KOM57]
and widely studied in the literature [COO71,POM73,EHV98,EMV04,KAV02]

∂tf = ν−2 ∂

∂ν

[
ν4

(
T∂νf + f(1 + f)

)]
. (4.8)

Such an equation satisfies a H-theorem, preserves the non negativity of the distribution func-
tion and preserves the total number of photons under flux conditions at ν = 0 and ν = +∞
(see [EHV98] for a complete study). The main disadvantage of this equation is that by assump-
tion, the distribution function is isotropic, which is not satisfied in the applications we have in
mind.

The idea of the Fokker Planck approximation that we derive in this chapter from the Boltz-
mann equation (4.1) is to assume that the exchange of kinetic energy between the incoming and
outgoing electrons during the Compton scattering is small compared to their temperature and
that the energy of the incoming and outgoing photon is small compared to the energy of the
electrons at rest, i.e. ν << mc2 and ν ′ << mc2. Under these assumptions, we show in this
chapter that in this regime, the solution of the Boltzmann equation tends, at least formally, to
the solution of the following anisotropic Kompaneets type equation

1

c
∂tf + Ω.∇f =

σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′

+
σs

16πmc2
ν2

∫

S2

(
1 + cos2 θ

)(
1− cos θ

)(
∂νf

′(1 + f
)
− ∂νf

(
1 + f ′

))
dΩ′

+
σs

16πmc2

∫

S2

(
1 + cos2 θ

)(
1− cos θ

)
ν−2 ∂

∂ν

[
ν4

(
T∂νf

′ + f
(
1 + f ′

))]
dΩ′.

(4.9)
In this equation one recognizes in the first term of the right hand side the classical Thomson
scattering. The third term of the right hand side can be seen as an anisotropic Kompaneets type
term. This equation can be simplified to get a simpler structure by evaluating all the terms of
order 1/mc2 at the angle Ω (isotropic assumption). It yields the following equation

1

c
∂tf + Ω.∇f =

σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′ + σs

ν−2

3mc2
∂

∂ν

[
ν4

(
T∂νf + f

(
1 + f

))]
. (4.10)

In this work we prove that this equation satisfies the same properties that the Boltzmann
equation expressed above, namely a H-theorem, the conservation of the Boltzmann stationary
states, the conservation of the total number of photons and the conservation of the non negativity
of the distribution function. In a second time this equation is coupled to an equation describing
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the evolution of the temperature of the electrons T in the following way





1

c
∂tf + Ω.∇f =

σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′ + σa(ν)

(
f0(ν, T )− f

)

+
σs

3mc2
ν−2 ∂

∂ν

[
ν4

(
T∂νf + f

(
1 + f

))]
,

CV ∂tT −∇.(D∇T ) = − 1

4π

∫

R+×S2

σa(ν)

(
B(ν, T )− ν3f

)
dνdΩ

+
1

4π

σs
3mc2

∫

R+×S2

ν4

(
T∂νf + f

(
1 + f

))
dνdΩ.

(4.11)

In this system CV and D are non negative coefficients, σa is the emission absorption coefficient
and B(ν, T ) = ν3f0(ν, T ) is the Planck function, where f0 is the Bose-Einstein distribution
(4.5) with µ = 0. A H-theorem is proved for this system and the so-called equilibrium and
non-equilibrium diffusion regimes are studied. The idea of these approximations is to assumed
that some of the physical process involved are large compare to others. Rescaling the system
with a small parameter and letting this parameter tends to 0, one obtains diffusion equations.
The non-equilibrium diffusion regime (scattering large compared to the emission absorption) is
in the case of our system very interesting, since it shows that the Compton scattering leads to
additional terms compared to the case of classical Thomson scattering.

This chapter is organized as follows. In section 2 is derived from the Boltzmann equation
(4.1) the anisotropic Kompaneets type equation (4.9), which is proved to preserve the station-
ary states of the Boltzmann equation and the total number of photons. In a second time this
equation is simplified to obtain equation (4.10). The final equation (4.10) is proved to satisfy a
H-theorem and the conservation of the non negativity of the distribution function, which both
are very important properties for the applications of this work. In section 3 equation (4.10)
is coupled to an equation describing the evolution of the temperature of the electrons and the
obtained system is studied.

For simplicity we always assume that the distribution function f vanishes at the limits |x| → +∞,
ν → 0 and ν →∞. The assumption that f vanishes at the limit ν → 0 may be more problem-
atic since it has been proved that there exists initial data such that the flux condition for the
Kompaneets equation does not hold in finite time [EHV98,EM01]. This is still an open problem,
and in this chapter we do not consider this issue, in the sense that we restrict this study to the
generalization of the approach performed in [EMV03] for anisotropic distributions by means of
formal expansions.

4.2 Kinetic models

In this section our aim is to derive Fokker-Planck approximations of the Boltzmann equation
for anisotropic distributions. This is a generalization of the approach of Escobedo, Mischler &
Valle [EMV03] for anisotropic distributions. In a first part (part 4.2.1) is derived the equation
(4.9) (lemma 4.2), which is proved to preserves the total number of photons (lemma 4.3). In
a second part (part 4.2.2), the equation (4.9) is simplified to obtain the equation (4.10). The
end of this part deals with the proof of theoretical results, such as the conservation of the non
negativity of the distribution function (lemma 4.4), a H-theorem (theorem 4.5) and a comparison
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principle (lemma 4.6).

In this section we assume that the electron temperature T is positive and bounded, and
does not depend on the other physical parameters. The attention of the reader is drawn on the
relation that links the momentum of the photon p and its direction Ω and frequency ν. Since
p = hν

c Ω, one has for any density distribution function f

∫

R3

f(p)dp =
h

c

∫

R+×S2

f(ν,Ω)ν2dνdΩ.

This relation will be used in this section to switch between the momentum on the one hand, and
the direction and frequency on the other hand.

4.2.1 Derivation of anisotropic Kompaneets equations

We make the following assumptions

• (H1) The electron kinetic energy exchange during a collision is small compared to their
temperature T , i.e.

1

2m

∣∣∣∣|p
′
∗|2 − |p∗|2

∣∣∣∣ << T.

• (H2) The energy of the incoming and outgoing photons is small compared to the energy
of the electrons at rest , i.e. ν << mc2 and ν ′ << mc2.

From equation (4.3) the assumption (H1) is equivalent to the fact that the energy exchange
between the pre and post-collision photons is small compared to the temperature of electrons
T , i.e. |ν − ν ′| << T . Let us introduce two parameters ε and ε̄, 0 < ε, ε̄ < 1 such that





ε =
1

2mT

(
|p′∗|2 − |p∗|2

)
,

ε̄ =
ν

mc2
.

(4.12)

The assumption (H1) and (H2) are formally equivalent to ε << 1 and ε̄ << 1.

Lemma 4.2. Under assumptions (H1)-(H2), a first order approximation of the Boltzmann
equation (4.1) is

1

c
∂tf + Ω.∇f =

σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′

+
σs

16πmc2
ν2

∫

S2

(
1 + cos2 θ

)(
1− cos θ

)(
∂νf

′(1 + f
)
− ∂νf

(
1 + f ′

))
dΩ′

+
σs

16πmc2

∫

S2

(
1 + cos2 θ

)(
1− cos θ

)
ν−2 ∂

∂ν

[
ν4

(
T∂νf

′ + f
(
1 + f ′

))]
dΩ′.

(4.13)

Proof. The proof is composed of two main steps. In a first one, the distribution functions
f(ν ′,Ω′) in the transfer term q(f) of the Boltzmann equation (4.1) are expended around the
frequency f(ν,Ω′) using formal Taylor expansion, justified by the assumption (H1). The integral
over the frequency of all the outgoing photons ν ′ ∈ R

+ in the collision operator of the Boltzmann
equation (4.1) will only relies on integrals of the kernel b multiplied by power of ν − ν ′, which
will be performed in a second step.
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First step: Fokker-Planck expansion

In order to simplify the following study, we introduce the dimensionless frequency ν = ν
T and we

rescale the time and the space in such a way that t̄ = Tt and x̄ = Tx. Denoting g(ν) = f(νT )
and dropping the bars, equation (4.1) writes

1

c
∂tg + Ω.∇g =

∫

R+×S2

ν ′

ν
b
(
Tν, Tν ′, θ

)
q(g)eν

′
dν ′dΩ′. (4.14)

This change of variables together with the assumption (H1) and the definition of ε yield ν ′ =
ν + T−1ε. We perform a formal Taylor expansion of the functions g(ν ′) around the frequency ν

g(ν ′,Ω′) = g(ν,Ω′) + (ν ′ − ν)∂νg(ν,Ω′) +
1

2
(ν ′ − ν)2∂2

νg(ν,Ω
′) + O(ε3).

In the same way, one writes

e−ν
′
= e−ν

(
1 + (ν − ν ′) +

1

2
(ν ′ − ν)2

)
+ O(ε3).

It yields, omitting the dependence in ν in the notation for simplicity and denoting simply g′ for
g(Ω′),

q(g) = e−ν
{
g′ − g + (ν ′ − ν)

(
∂νg
′ + g

(
1 + g′

))

+
1

2
(ν ′ − ν)2

(
∂2
νg
′ + 2g∂νg

′ − g
(
1 + g′

))}
+ O(ε3).

An important point in the derivation of the model is to write this equation as

q(g) = e−ν
{
g′ − g +

1

2
(ν ′ − ν)2

(
∂νg
′(1 + g

)
− ∂νg

(
1 + g′

))

+
1

2
(ν ′ − ν)2∂ν

(
∂νg
′ + g

(
1 + g′

))

+

(
(ν ′ − ν)− 1

2
(ν ′ − ν)2

)(
∂νg
′ + g

(
1 + g′

))}
+ O(ε3).

Introducing this expression of q(g) in equation (4.14), one sees that the derivation of the model
relies on the computation of the following integrals of the kernel b multiplied by power of ν − ν ′





I1 =

∫

R+

b
(
Tν, Tν ′, θ

)
ν ′eν

′
dν ′,

I2 =
1

2

∫

R+

(ν ′ − ν)2b
(
Tν, Tν ′, θ

)
ν ′eν

′
dν ′,

I3 =

∫

R+

(
(ν ′ − ν)− 1

2
(ν ′ − ν)2

)
b
(
Tν, Tν ′, θ

)
ν ′eν

′
dν ′.

If moreover we introduce R = ∂νg
′ + g

(
1 + g′

)
, equation (4.14) writes

1

c
∂tg + Ω.∇g =

∫

S2

e−ν

ν

{(
g′ − g

)
I1 +

(
∂νg
′(1 + g

)
− ∂νg

(
1 + g′

))
I2

}
dΩ′

+

∫

S2

e−ν

ν

(
I2∂νR+ I3R

)
dΩ′ + O(ε).

(4.15)
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At this point, the closure of equation (4.15) relies on the computation of three unknowns,
namely the integrals I1, I2 and I3, but the integral I3 can not be computed analytically due
to the unsigned term (ν ′ − ν). The difficulty is removed by the algebraic nature of the term
I2∂νR+ I3R

e−ν

ν

(
I2∂νR+ I3R

)
= ν−2d(ν)

∂

∂ν

[
α(ν)

(
∂νg
′ + g

(
1 + g′

))]
,

with 



α(ν) = exp

(∫ ν

0
I3/I2ds

)
,

d(ν) = νe−νI2 exp

(
−
∫ ν

0
I3/I2ds

)
.

Equation (4.15) now writes

1

c
∂tg + Ω.∇g =

∫

S2

e−ν

ν

{(
g′ − g

)
I1 +

(
∂νg
′(1 + g

)
− ∂νg

(
1 + g′

))
I2

}
dΩ′

+

∫

S2

ν−2d(ν)
∂

∂ν

[
α(ν)

(
∂νg
′ + g

(
1 + g′

))]
dΩ′ + O(ε).

(4.16)

Second step: computation of the integrals

To ensure the conservation of the total number of photons N(f) =
∫
x,ν,Ω fν

2, being regard-
less on the contribution of the right member of the first line, it is sufficient to impose d constant.
It yields in particular α = d−1νe−νI2, and the closure of equation (4.16) now only relies on
the computation of I1 and I2. To this end we use the assumption (H1) to simplify the kernel
b. Indeed, the definition of ω yields (taking care that we performed the change of variables
ν → ν/T )

|ω|2 =
ν2

c2
T 2 +

ν ′2

c2
T 2 − 2

νν ′

c2
T 2 cos θ = 2

ν2

c2
T 2(1− cos θ) + O(ε).

Let us introduce ν0 = ν − T
mc2

ν2
(
1 − cos θ

)
, from which |ω|2 can be written |ω|2 = 2mT (ν −

ν0) + O(ε). It yields in particular the following expression of A

A =
ν ′T
c
− νT

c
+
|ω|2
2mc

=
νT

c
− ν ′T

c
− T

c
(ν − ν0) + O(ε) =

T

c
(ν0 − ν ′) + O(ε).

One formally writes the kernel b as

b(Tν, Tν ′) = σs
(
1 + cos2 θ

) c
T

e
− |ν′−ν0|

2

4|ν−ν0|

ν
√

2(1− cos θ)
+ O(ε).

We are now able to find an approximation of the integrals I1 and I2. The integral I2 has been
computed by Escobedo et al [EMV03] in the following way. First, the previous expression of the
kernel formally gives

I2 =
1

2

∫

R+

(ν ′ − ν)2b(Tν, Tν ′)ν ′dν ′

=
(
1 + cos2 θ

) cσs

2Tν
√

2(1− cos θ)

∫

R+

(ν ′ − ν)2e−
|ν′−ν0|

2

4|ν−ν0| ν ′dν ′ + O(ε).
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The assumption (H2) and the definition of ε̄ (4.12) yield ν0 = ν + O(ε̄), and in particular

I2 =
(
1 + cos2 θ

) cσs

2Tν
√

2(1− cos θ)

∫

R+

(ν ′ − ν0)
2e
− |ν′−ν0|

2

4|ν−ν0| ν ′dν ′ + O(ε) + O(ε̄)

= cσs
(
1 + cos2 θ

) |ν − ν0|
3
2

2Tν
√

2(1− cos θ)

∫

R+

1√
|ν − ν0|

(ν ′ − ν0)
2

|ν − ν0|
e
− |ν′−ν0|

2

4|ν−ν0| ν ′dν ′ + O(ε) + O(ε̄).

Denoting h(x) = x2e−x
2
, we have an expression of the form 1

γh(x/γ), with γ =
√
|ν − ν0|. One

thus has

lim
ν→ν0

1

|ν − ν0|
(ν ′ − ν0)

2

|ν − ν0|
e
− |ν′−ν0|

2

4|ν−ν0| = C1δν′=ν0 ,

where C1 =
∫

R
r2e−r

2
dr. This yields, together with the definition of ν0,

I2 = σs
(
1 + cos2 θ

)
C1

√
T

c2m
3
2

ν3

2
√

2

(
1− cos θ

)
+ O(ε) + O(ε̄),

and thus

α = σs
(
1 + cos2 θ

)
C1

√
T

c2m
3
2

d−1 ν4

2
√

2

(
1− cos θ

)
+ O(ε) + O(ε̄).

There just remains to compute the second integral I1. Using the same idea, one has

I1 =

∫

R+

b(Tν, Tν ′)ν ′eν
′
dν ′

=
(
1 + cos2 θ

) cσs

Tν
√

2(1− cos θ)

∫

R+

e
− |ν′−ν0|

2

4|ν−ν0| ν ′eν
′
dν ′ + O(ε)

= cσs
(
1 + cos2 θ

)
√
|ν − ν0|

Tν
√

2(1− cos θ)

∫

R+

1√
|ν − ν0|

e
− |ν′−ν0|

2

4|ν−ν0| ν ′eν
′
dν ′ + O(ε).

Again, one has

lim
ν→ν0

1√
|ν − ν0|

e
− |ν′−ν0|

2

4|ν−ν0| = C2δν′=ν0 ,

where C2 =
∫

R
e−r

2
dr = 2C1. This yields

I1 = cσs
(
1 + cos2 θ

) C1√
mT

2√
2
νeν + O(ε) + O(ε̄).

We thus obtain

1

c
∂tg + Ω.∇g = σsCT

3
2C1

2√
2m

∫

S2

(
1 + cos2 θ

)(
g′ − g

)
dΩ′ + O(ε) + O(ε̄)

+ σsC
T

5
2

c2m
3
2

C1
ν2

2
√

2

∫

S2

(
1 + cos2 θ

)(
1− cos θ

)(
∂νg
′(1 + g

)
− ∂νg

(
1 + g′

))
dΩ′

+ σsC
T

5
2

c2m
3
2

C1
1

2
√

2

∫

S2

(
1 + cos2 θ

)(
1− cos θ

)
ν−2 ∂

∂ν

[
ν4

(
∂νg
′ + g

(
1 + g′

))]
dΩ′.
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Performing the change of time variable t→ CT
3
2

8πC1√
2m
t, the model writes

1

c
∂tg + Ω.∇g =

σs
4π

∫

S2

(
1 + cos2 θ

)(
g′ − g

)
dΩ′ + O(ε) + O(ε̄)

+
σsT

16πmc2
ν2

∫

S2

(
1 + cos2 θ

)(
1− cos θ

)(
∂νg
′(1 + g

)
− ∂νg

(
1 + g′

))
dΩ′

+
σsT

16πmc2

∫

S2

(
1 + cos2 θ

)(
1− cos θ

)
ν−2 ∂

∂ν

[
ν4

(
∂νg
′ + g

(
1 + g′

))]
dΩ′.

(4.17)

We want to turn back to the equation on the distribution function f. We remind that g(ν) =
f(νT ). Making the change of variable ν = νT yields, dropping the bars for ease of notations
and all the O(ε) and O(ε̄) terms,

1

c
∂tf + Ω.∇f =

σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′

+
σs

16πmc2
ν2

∫

S2

(
1 + cos2 θ

)(
1− cos θ

)(
∂νf

′(1 + f
)
− ∂νf

(
1 + f ′

))
dΩ′

+
σs

16πmc2

∫

S2

(
1 + cos2 θ

)(
1− cos θ

)
ν−2 ∂

∂ν

[
ν4

(
T∂νf

′ + f
(
1 + f ′

))]
dΩ′.

which is the announced result.

The equation (4.13) is the sum of the classical Thomson scattering plus perturbations of
order 1 with respect to ν/mc2. It is the same model (up to a renormalization of mc2) than the
one obtained in a different way in [BPR69,POM73,FKM85,PL97]. This can be seen by differ-
entiating all the terms in the Kompaneets type term. This model preserves the total number of
photons and the stationary states of the Boltzmann equation. Moreover, a generalization of the
derivation of such models for more complicated differential cross section, and in particular for
the Klein-Nishina cross section [EV55], could be obtained without any particular difficulties.

Let us prove the properties of this model announced above. The conservation of the stationary
states of the Boltzmann equation is trivial. Indeed, the Bose-Einstein distributions are defined

by fµ(ν) =
(
e

µ+ν
T − 1

)−1
. Since these distributions are isotropic, the first and second terms of

the right member of (4.13) vanish, and so do the Kompaneets type term since these distributions
satisfy T∂νf + f

(
1 + f

)
= 0. The conservation of the total number of photons is proved in the

following

Lemma 4.3. The equation (4.13) preserves the total number of photons, i.e.

d

dt
N(t) =

d

dt

∫

R3×R+×S2

fν2dνdΩdx = 0.

Proof. Multiplying equation (4.13) by ν2 and integrating over R
+ × S2, one finds

d

dt
N(t) =

σs
4π

∫

R3×R+

ν2

∫

S2

∫

S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′dΩdνdx

+
σs

16πmc2

∫

R3×R+

ν4

∫

S2

∫

S2

(
1 + cos2 θ

)(
1− cos θ

)(
∂νf

′(1 + f
)
− ∂νf

(
1 + f ′

))
dΩ′dΩdνdx.

(4.18)
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Since cos θ = Ω.Ω′, a change of variable Ω→ Ω′ yields
∫

S2

∫

S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′dΩ =

∫

S2

∫

S2

f ′
(

(1 + (Ω.Ω′)2)− (1 + (Ω′.Ω)2)

)
dΩ′dΩ = 0.

The same manipulation in the second term of the right member of (4.18) gives the result.

4.2.2 A simplified model

Despite equation (4.13) is indeed interesting, since it gives a first description of the anisotropic
part of the distribution function, we chose to simplify this equation to obtain a simpler model
still containing anisotropic terms. The resulting model satisfies a H-theorem, what we do not
succeed to prove for the equation (4.13). Indeed, the attempt to control the entropy defined in
(4.7) for equation (4.13) leads to a sum of several terms, some of them being unsigned.

The simplification is the following: the terms of order 1 with respect to ν/mc2 in (4.13) are
assumed to be isotropic. Since 1

16π

∫
S2

(
1 + cos2 θ

)(
1 − cos θ

)
dΩ′ = 1

3 , it yields the following
model

1

c
∂tf + Ω.∇f =

σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′ + σs

ν−2

3mc2
∂

∂ν

[
ν4

(
T∂νf + f

(
1 + f

))]
. (4.19)

This equation is the sum of the classical Thomson scattering plus a Kompaneets term. In this
part we prove several theoretical results for this equation, such as the conservation of the non
negativity of the distribution function (lemma 4.4) and a H-theorem (lemma 4.5). With these
results, equation (4.19) owns all the properties of the Boltzmann equation expressed in the in-
troduction, properties that we wanted to keep while deriving simplified models.

The end of this section deals with the proof of several mathematical properties of this model.
The most important one is the proof of a H-theorem, which ensures the growth of the physical
entropy of the model and thus the non reversibility of the process. We need to make the following
assumptions

• (H1) Initial conditions: the distribution function is non negative, i.e. ∀(x, ν,Ω), f(0,x, ν,Ω) ≥
0.

• (H2) The scattering coefficient σs is non negative.

The equation (4.19) inherits of some of the properties of the equation (4.13). In particular
it preserves the total number of photons and the stationary states of the Boltzmann equation
(4.1). Since the H-theorem uses the logarithm of the solution of (4.19), one needs to prove that
it remains non negative. This is done in the

Lemma 4.4 (Non negativity). Under assumptions (H1) − (H2), equation (4.19) preserves the
non negativity of the distribution function, i.e. f(0,x, ν,Ω) ≥ 0 =⇒ f(t,x, ν,Ω) ≥ 0, for all
0 < t < T .

Proof. We mainly follow the proof of Carrillo et al [CRS08], that is to introduce a regular-
ized monotone increasing approximation sgnε of the sgn function and to define a regularized
approximation |f |ε of the absolute value function |f | via the primitive of sgnε(f):

|f |ε =

∫ f

0
sgnε(g)dg. (4.20)
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We also define a regularized approximation of the negative part of a function f as f−ε = (|f |ε −
f)/2. Multiplying equation (4.19) by ν2sgnε(f) and integrating over R

3
x × R

+
ν × S2, one has

1

c

d

dt

∫

R3×R+×S2

|f |εν2dνdΩdx =
σs
4π

∫

R3×R+×S2

sgnε(f)
(
1 + cos2 θ

)(
f ′ − f

)
ν2dΩ′dΩdνdx

+
σs

3mc2

∫

R3×R+×S2

sgnε(f)
∂

∂ν

[
ν4

(
T∂νf + f

(
1 + f

))]
dνdΩdx,

since the transport term Ω.∇f vanishes. The conservation of the total number of photons

d

dt

∫

R3×R+×S2

fν2dνdΩdx = 0 =
d

dt

∫

R3×R+×S2

(
|f |ε − 2f−ε

)
ν2dνdΩdx

leads in particular to

2

c

d

dt

∫

R3×R+×S2

f−ε ν
2dνdΩdx =

σs
4π

∫

R3×R+×S2

sgnε(f)
(
1 + cos2 θ

)(
f ′ − f

)
ν2dΩ′dΩdνdx

+
σs

3mc2

∫

R3×R+×S2

sgnε(f)
∂

∂ν

[
ν4

(
T∂νf + f

(
1 + f

))]
dΩdνdx.

Let us denote P1 the first term of the right hand side and P2 the second one. The invariance by
change of variable Ω→ Ω′ of cos θ yields

P1 = − σs
4π

∫

R3×R+×S2

(
1 + cos2 θ

)(
f ′ − f

)(
sgnε(f

′)− sgnε(f)

)
ν2dΩ′dΩdνdx.

The non decreasing monotonicity of the function sgnε(f) thus yields P1 ≤ 0. For the term P2,
one has, using an integration by parts

P2 = − σs
3mc2

∫

R3×R+×S2

ν4 sgn′ε(f)

(
T |∂νf |2 + f

(
1 + f

)
∂νf

)
dΩdνdx.

As pointed out by Carrillo et al, one has sgn′ε(f)f∂νf = ∂ν
(
fsgnε(f)−|f |ε

)
and sgn′ε(f)f2∂νf =

∂ν
(
f2sgnε(f)− f |f |ε

)
. Passing to the limit as ε→ 0, it yields P2 ≤ 0 and finally

∫

R3×R+×S2

f−(t)ν2dνdxdΩ ≤
∫

R3×R+×S2

f−(0)ν2dνdxdΩ = 0,

which ends the proof.

We now turn to the main result:

Theoreme 4.5 (H-Theorem). Assume that assumptions (H1)− (H2) are satisfied and consider
the function φ(f) = f log(f)− (f + 1) log(f + 1) + ν

T f . The following inequality holds

H ′(t) =
d

dt

∫

R3×R+×S2

φ(f)ν2dνdΩdx ≤ 0.

The function φ is the sum of the (mathematical) entropy of the photons f log(f) − (f +
1) log(f + 1) and a term ν

T f which is needed to prove the monotone non increasing behavior of
H. In the next section, in which we couple equation (4.19) with an equation for the electrons,
it will become clear that this term is in fact the entropy of the electrons.
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Proof. Let us decompose equation (4.19) as

1

c
∂tf + Ω.∇f = Psym + Pkomp,

where 



Psym =
σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′

Pkomp =
σs
3

ν−2

mc2
∂

∂ν

[
ν4

(
T∂νf + f

(
1 + f

))]
.

It yields, by definition of the entropy H

H ′(t) = c

∫

R3×R+×S2

(
log

(
f

f + 1

)
+
ν

T

)(
Psym + Pkomp −Ω.∇f

)
ν2dνdΩdx.

We thus have to estimate three terms. For the first one, one has by definition of Psym

∫

R3×R+×S2

Psymφ
′(f)ν2dνdΩdx = − σs

4π

∫

R3×R+×S2

(
1+cos2 θ

)(
f ′−f

)(
log

(
1+

1

f

)
+
ν

T

)
ν2dνdΩdΩ′dx.

The same arguments than for the proof of lemma 4.3 yield

∫

R3×R+×S2

(
1 + cos2 θ

)(
f ′ − f

)
ν3

T
dνdΩdΩ′dx = 0.

Using the invariance by change of variable Ω→ Ω′ of cos θ = Ω.Ω′, one can write the remaining
term as
∫

R3×R+×S2

Psymφ
′(f)ν2dνdΩdx = − σs

8π

∫

R3×R+×S2

(
1 + cos2 θ

)
f ′f

(
1

f ′
− 1

f

)

×
{

log

(
1 +

1

f ′

)
− log

(
1 +

1

f

)}
ν2dνdΩdΩ′dx.

The monotone increasing behavior of the function X 7→ log(1 + X) and the non negativity of
the distribution function (lemma 4.4) yield

∫

R3×R+×S2

Psymφ
′(f)ν2dνdΩdx ≤ 0.

We now turn to the Kompaneets type term Pkomp. This term has already been studied for
a slightly different Fokker-Planck equation in [CRS08] (see also [BC03]). One has, using an
integration by parts,

∫

R3×R+×S2

Pkompφ
′(f)ν2dνdΩdx = − σs

3mc2

∫

R3×R+×S2

(
∂νf

f(f + 1)
+

1

T

)
ν4

(
T∂νf+f

(
1+f

))
dνdΩdx.

It thus yields

∫

R3×R+×S2

Pkompφ
′(f)ν2dνdΩdx = − σs

3mc2

∫

R3×R+×S2

T

f(f + 1)
ν4

(
∂νf +

f
(
1 + f

)

T

)2

dνdΩdx.
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Once again, the non negativity of the distribution function gives
∫
Pkompφ

′(f)ν2dνdΩ ≤ 0. There
remains the term coming from the photon transport Ω.∇f . Let us introduce PTrans defined by

Ptrans = −c
∫

R3×R+×S2

Ω.∇f
(

log

(
f

f + 1

)
+
ν

T

)
ν2dνdΩdx.

One easily sees that
∫

R3×R+×S2 Ω.∇fν3dνdΩdx = 0. For the second one, an integration by
parts gives

Ptrans = c

∫

R3×R+×S2

fΩ.∇
[

log

(
f

f + 1

)]
ν2dνdΩdx.

The relation f∇
(
log(f/(f +1))

)
= ∇

(
log(f +1)

)
finally yields Ptrans = 0, which concludes the

proof.

Finally, we prove a comparison result

Lemma 4.6 (Comparison principle). Assume that f and g are two solutions of (4.19) that
satisfied the assumptions H1-H2 and f(t = 0) ≥ g(t = 0). Then for all 0 < t < T , f(t) ≥ g(t).
Proof. Once again, we follow [CRS08]. Since f and g are both solutions of (4.19), one can write
the equation satisfies by h = f − g:
1

c
∂th+ Ω.∇h =

σs
4π

∫

S2

(
1 + cos2 θ

)(
h′ − h

)
dΩ′ +

σs
3mc2

ν−2 ∂

∂ν

[
ν4

(
T∂νh+ h+ h

(
f + g

))]
,

Multiplying this equation by sgnε(h)ν
2 and using the conservation of the total number of pho-

tons, one gets, with the same notations than in the previous lemma (positivity, lemma 4.4),

1

c

d

dt

∫
h−ε ν

2dνdxdΩ =
σs
4π

∫
sgnε(h)ν

2
(
1 + cos2 θ

)(
h′ − h

)
dΩ′

+
σs

3mc2

∫
sgnε(h)

∂

∂ν

[
ν4

(
T∂νh+ h+ h

(
f + g

))]
.

The relation sgn′ε(h)h(f + g)∂νh = (f + g)∂ν
(
hsgnε(h) − |h|ε

)
together with the previous pro-

cedure (lemma 4.4) gives
∫
h−ε (t)ν2dνdxdΩ ≤

∫
h−ε (0)ν2dνdxdΩ = 0

thanks to the initial conditions, and this gives the announced result.

4.3 Coupling electrons photons

In this section we couple the equation obtained in the previous section (equation (4.19)) with
an equation describing the evolution of the temperature of the electrons. The system is the
following





1

c
∂tf + Ω.∇f =

σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′ + σa(ν)

(
f0(ν, T )− f

)

+
σs

3mc2
ν−2 ∂

∂ν

[
ν4

(
T∂νf + f

(
1 + f

))]
,

CV ∂tT −∇.(D∇T ) = − c

4π

∫

R+×S2

σa(ν)

(
B(ν, T )− ν3f

)
dνdΩ

+
1

4π

σs
3mc

∫

R+×S2

ν4

(
T∂νf + f

(
1 + f

))
dνdΩ,

(4.21)
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where B is the planck function B(ν, T ) = ν3
(
eν/T − 1

)−1
, f0(ν, T ) =

(
eν/T − 1

)−1
is the Bose-

Einstein distribution (4.5) for µ = 0, CV is a non negative constant coefficient, D is a non
negative diffusion coefficient and σa is the emission absorption coefficient. It is important to
notice that the coupling term σa(ν)

(
f0(ν, T ) − f

)
does not change the stationary states but

selected them, in the sense that not all the Bose-Einstein distributions are solutions but only
the ones with µ = 0. The choice of this coupling also leads in particular to

d

dt

(
1

4π

∫

R3×R+×S2

fν3dνdΩdx + CV

∫

R3

Tdx

)
= 0, (4.22)

which expressed the conservation of the total energy. Finally, the total number of photons is
trivially preserved.

One of the aim of this section is to compare the system (4.21) with respect to the classical
radiative transfer model in which the Kompaneets terms are cancelled, and in particular the
convergence of the radiative temperature to the electron temperature. To this end we study the
equilibrium and non-equilibrium diffusion regimes.

This section is organized as follows. A first part (part 4.3.1) is entirely dedicated to the proof
of a H-theorem. This result is important to validate the model, in the sense that it ensures
the non reversibility of the system, which is a basic physical principle, satisfied by the system
(4.21). In a second part (part 4.3.2), we study the so-called equilibrium and non-equilibrium
diffusion regimes for the system (4.21). We show that the Compton scattering does not change
the equilibrium diffusion regime (lemma 4.8), since the obtained diffusion equation is the same
than in the case of classical Thomson scattering, but that the Compton scattering changes the
non-equilibrium diffusion regime (lemma 4.9). Indeed, in this regime, the obtained system is a
diffusion system in which the Kompaneets terms σs

3mc2
ν−2 ∂

∂ν (ν
4(T∂νf + f(1 + f))) remains.

4.3.1 H-Theorem

In this part we prove a H-theorem for the coupled system (4.21). What is interesting in this
result is that it becomes clear that the term ν

T f , needed in the case of the uncoupled anisotropic
Kompaneets equation (4.19) to prove a H-theorem was in fact the entropy of the electrons.

Theoreme 4.7. Consider the total physical entropy

H(t) =
1

4π

∫

R3×R+×S2

(
(f + 1) log(f + 1)− f log f

)
ν2dνdΩdx + CV

∫

R3

log Tdx, (4.23)

which is the sum of the entropy of the photons and the entropy of the electrons. Assume that the
distribution of the photons f and the temperature of the electrons T are non negative functions.
Then H satisfies H ′(t) ≥ 0.

Proof. Let us write the system (4.21) as





1

c
∂tf + Ω.∇f = Taniso + Tkomp + Te,a

CV ∂tT −∇.(D∇T ) = − c

4π

∫

R+×S2

(
Tkomp + Te,a

)
ν3dνdΩ,

(4.24)
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where 



Taniso =
σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′,

Tkomp = σa(ν)
(
f0(ν, T )− f

)
,

Te,a =
1

3mc2
ν−2 ∂

∂ν

[
ν4

(
T∂νf + f

(
1 + f

))]
.

(4.25)

By definition of H (4.23), one has

H ′(t) =
1

4π

∫

R3×R+×S2

log

(
f + 1

f

)
∂f

∂t
ν2dνdΩdx + CV

∫

R3

1

T

∂T

∂t
dx (4.26)

Using the system (4.24), one writes equation (4.26) as H ′(t) = Sp +A+K + EA, with




Sp = − c

4π

∫

R3×R+×S2

log

(
f + 1

f

)
ν2Ω.∇fdνdΩdx +

∫

R3

∇.(D∇T )
1

T
dx,

A =
c

4π

∫

R3×R+×S2

log

(
f + 1

f

)
ν2TanisodνdΩdx,

K =
c

4π

∫

R3×R+×S2

(
log

(
f + 1

f

)
− ν

T

)
ν2TKompdνdΩdx,

EA =
c

4π

∫

R3×R+×S2

(
log

(
f + 1

f

)
− ν

T

)
ν2Te,adνdΩdx.

Let us prove that each of these terms are non negative. For the first one, the relation∇f/(f+1) =
∇ log(f + 1) together with an integration by parts yield

ESp = − c

4π

∫

R3×R+×S2

∇f
f + 1

.Ων2dνdΩdx +

∫

R3

D
|∇T |2
T 2

dx =

∫

R3

D
|∇T |2
T 2

dx ≥ 0.

The second one, which corresponds to the anisotropic part, has already been signed in the
previous part (taking care that here we consider the physical entropy). A symmetrization of
this term leads to

A =
cσs
8π

∫

R3×R+×S2

(
1 + cos2 θ

)
ff ′
{

log

(
1 +

1

f

)
− log

(
1 +

1

f ′

)}(
1

f
− 1

f ′

)
ν2dνdΩdx ≥ 0.

We now turn to the Kompaneets type term. The idea is still the same as for the uncoupled
Kompaneets equation. By definition, one has

K =
1

4π

1

3mc

∫

R3×R+×S2

(
log

(
f + 1

f

)
− ν

T

)
∂

∂ν

[
ν4

(
T∂νf + f

(
1 + f

))]
dνdΩdx.

An integration by parts yields

K =
1

4π

1

3mc

∫

R3×R+×S2

(
∂νf

f(f + 1)
+

1

T

)
ν4

(
T∂νf + f

(
1 + f

))
dνdΩdx

=
1

4π

1

3mc

∫

R3×R+×S2

(
T∂νf + f

(
1 + f

))2

Tf(f + 1)
dνdΩdx ≥ 0.

There just remains to treat the emission absorption term EA. By definition, one has

EA =
c

4π

∫

R3×R+×S2

(
log

(
f + 1

f

)
− ν

T

)
ν−1σa(ν)

(
B(ν, T )− I

)
dνdΩdx,
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where by definition I = ν3f . This term has already been studied in [BD04]. Introducing the

monotone non decreasing function g(x) = log
(
x
ν3

(
x
ν3 + 1

)−1)
, one has − ν

T = g
(
B(ν, T )

)
. EA

thus writes

EA =
c

4π

∫

R3×R+×S2

(
g
(
B(ν, T )

)
− g(I)

)
ν−1σa(ν)

(
B(ν, T )− I

)
dνdΩdx ≥ 0,

and the proof is completed.

4.3.2 Diffusion approximations

In this part are studied the equilibrium [BGP87,BGPS88] and non-equilibrium diffusion regimes
[BD04,GLG05]. As explained in chapter 1, the main idea of these approximations is to remove
the angular dependence by assuming different scaling on the physical parameters. We assume
in the whole part that σa does not depend on the frequency ν (grey assumption). We show in
particular that the equilibrium diffusion regime for the system (4.21) is the same that in the case
of classical isotropic scattering (no Kompaneets terms). On the contrary, the non-equilibrium
diffusion regime exhibits new terms due to the Compton scattering.

Equilibrium diffusion

The equilibrium regime is a diffusion approximation of the previous coupled system (4.21), in
which the emission absorption is assumed to be large compared to the scattering phenomena,
i.e. σs/σa << 1 and the velocity of light c is very large. We thus introduce new variables





c = ε−1c,

σa = ε−1σa,

σs = εσs,

in which ε is a small parameter 0 < ε < 1. It yields, dropping the bars for ease of notations




1

c
∂tf

ε +
1

ε
Ω.∇fε =

σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′ε − fε

)
dΩ′ +

σa
ε2

(
f0(ν, T

ε)− fε
)

+
ε2σs
3mc2

ν−2 ∂

∂ν

[
ν4

(
T ε∂νf

ε + fε
(
1 + fε

))]
,

CV ∂tT
ε −∇.(D∇T ε) = − c

ε2
σa
4π

∫

R+×S2

(
B(ν, T ε)− ν3fε

)
dνdΩ

+
1

4π

ε2σs
3mc

∫

R+×S2

ν4

(
T ε∂νf

ε + fε
(
1 + fε

))
dνdΩ.

(4.27)

Lemma 4.8 (Equilibrium diffusion regime). A first order approximation of the system (4.27)
in the equilibrium diffusion regime is

∂t

(
C̄vTm + T 4

m

)
−∇.

(
D̄∇Tm +

c

3σa
∇T 4

m

)
= 0, (4.28)

where C̄V = 15/π4CV and D̄ = 15/π4D and

Tm = lim
ε→0

T ε = lim
ε→0

15

4π5

∫

R+×S2

ν3fεdνdΩ.
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Proof. Let us expend the solution (fε, T ε) of system (4.27) in power of ε, that is
{
fε = f0 + εf1 + ε2f2 + ...

T ε = T 0 + εT 1 + ε2T 2 + ...

Take care to the fact that for the distribution function of the photons f the superscript refer
to the Hilbert expansion while the subscript refer to the Bose-Einstein distributions. Since the
Bose-Einstein distributions are nonlinear with respect to the temperature, one makes a Taylor
expansion with respect to T :

f0(ν, T
ε) = f0(ν, T

0) + ε
(
T 1 + ε2T 2

) ∂
∂T

f0(ν, T
0) + ... (4.29)

At the order ε−2, one has
f0 = f0(ν, T

0),

and thus the zero-th order term, equal to the Bose-Einstein distribution, does not depend on
the angular Ω. If with classical notation we denote E = 15

4π5

∫
R+×S2 ν

3fdνdΩ, one finds

E0 =
15

4π5

∫

R+×S2

ν3f0dνdΩ = (T 0)4, (4.30)

where we used the relation
∫
ν B(ν, T ) = π4

15T
4. At the order ε−1, one finds Ω.∇f0 = σa

(
(f0(ν, T

ε))1−
f1). The previous expansion (4.29) of the Bose-Einstein distributions thus yields

f1 = −Ω.∇f0

σa
+ T 1 ∂

∂T
f0(ν, T

0). (4.31)

Finally, at the order ε0, one finds





1

c
∂tf

0 + Ω.∇f1 = σa

(
T 2 ∂

∂T
f0(ν, T

0)− f2

)
,

CV ∂tT
0 −∇.(D∇T 0) = −cσa

4π

∫

R+×S2

ν3

(
T 2 ∂

∂T
f0(ν, T

0)− f2

)
dνdΩ.

Integrating the first equation on R
+ × S2 multiplied by 15ν3/4π5 and multiplying the second

equation by 15/π4, one finds by using the link between f0 and E0 (4.30) and the definition of
f1 (4.31)





1

c
∂t(T

0)4 +
15

4π5

∫

R+×S2

ν3Ω.∇
(
− Ω.∇f0

σa
+ T 1 ∂

∂T
f0(ν, T

0)

)
dνdΩ

= σa
15

4π5

∫

R+×S2

ν3

(
T 2 ∂

∂T
f0(ν, T

0)− f2

)
dνdΩ,

15

π4
CV ∂tT

0 − 15

π4
∇.(D∇T 0) = −cσa

15

4π5

∫

R+×S2

ν3

(
T 2 ∂

∂T
f0(ν, T

0)− f2

)
dνdΩ.

Since
∫

R+×S2 ν
3Ω.∇T 1 ∂

∂T (f0(ν, T
0))dνdΩ = 0, due to the fact that f0 does not depend on Ω,

the announced result is obtained by adding the two equations.

This result shows that the Kompaneets term in equation (4.21) does not change the equilib-
rium regime, in the sense that the obtained equation is the same diffusion equation than in the
case with no Compton scattering [BD04].
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Non-equilibrium diffusion

We now turn to the study of the non-equilibrium diffusion regime. This regime is formally valid
when the scattering coefficient σs is large compare to the emission absorption coefficient σa and
when the speed of light c is large. The scaling is the following





c = ε−1c,

σa = εσa,

σs = ε−1σs,

It yields the following system, in which we dropped the bars for ease of notations




1

c
∂tf

ε +
1

ε
Ω.∇fε =

1

ε2
σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′ε − fε

)
dΩ′ + σa

(
f0(ν, T

ε)− fε
)

+
σs

3mc2
ν−2 ∂

∂ν

[
ν4

(
T ε∂νf

ε + fε
(
1 + fε

))]
,

CV ∂tT
ε −∇.(D∇T ε) = −cσa

4π

∫

R+×S2

(
B(ν, T ε)− ν3fε

)
dνdΩ

+
1

4π

σs
3mc

∫

R+×S2

ν4

(
T ε∂νf

ε + fε
(
1 + fε

))
dνdΩ.

(4.32)
We prove the

Lemma 4.9 (Non-equilibrium diffusion regime). A first order approximation of the system
(4.32) in the non-equilibrium diffusion regime is





1

c
∂tf −∇.

(∇f
4σs

)
= σa

(
f0 − f

)
+

σs
3mc2

ν−2 ∂

∂ν

[
ν4

(
T∂νf + f

(
1 + f

))]

CV ∂tT −∇.(D∇T ) = −cσa
4π

∫

R+

(
B(ν, T )− ν3f

)
dν +

1

4π

σs
3mc

∫

R+

ν4

(
T∂νf + f

(
1 + f

))
dν.

Proof. Once again, we performed a formal Hilbert expansion of the unknowns:
{
fε = f0 + εf1 + ε2f2 + ...

T ε = T 0 + εT 1 + ε2T 2 + ...

At the order ε−2, one finds f0 = f ′0, and thus f0 is isotropic. At the order ε−1, one finds

Ω.∇f0 =
σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′1 − f1

)
dΩ′,

which yields

f1 1

4π

∫

S2

(
1 + cos2 θ

)
dΩ′ =

1

4π

∫

S2

(
1 + cos2 θ

)
f ′1dΩ′ − Ω.∇f0

σs
.

Since
∫
S2

(
1 + cos2 θ

)
dΩ′ = 4

3 , one finally finds

f1 = −3

4

Ω.∇f0

σs
+

3

16π

∫

S2

(
1 + cos2 θ

)
f ′1dΩ′.
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At the order ε0, one has





1

c
∂tf

0 + Ω.∇f1 =
σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′2 − f2

)
dΩ′ + σa

(
f0(ν, T )− f0

)

+
σs

3mc2
ν−2 ∂

∂ν

[
ν4

(
T 0∂νf

0 + f0
(
1 + f0

))]
.

CV ∂tT
0 −∇.(D∇T 0) = −cσa

4π

∫

R+×S2

(
B(ν, T 0)− ν3f0

)
dνdΩ

+
1

4π

σs
3mc

∫

R+×S2

ν4

(
T 0∂νf

0 + f0
(
1 + f0

))
dνdΩ.

Integrating the first equation on S2, using the previous expression of f1 and denoting f =∫
S2 f

0dΩ and T = T 0, one finds the following system, known as the non-equilibrium diffusion
regime





1

c
∂tf −∇.

(∇f
4σs

)
= σa

(
f0 − f

)
+

σs
3mc2

ν−2 ∂

∂ν

[
ν4

(
T∂νf + f

(
1 + f

))]

CV ∂tT −∇.(D∇T ) = −cσa
∫

R+

(
B(ν, T )− ν3f

)
dν +

σs
3mc

∫

R+

ν4

(
T∂νf + f

(
1 + f

))
dν.

As a remark, one sees that on the contrary to the equilibrium regime, in which the Kompa-
neets term did not plays any role, it now stands as a O(1) term in the limit. As a second remark,
one sees that the diffusion coefficient for the photons is 4σs, whereas in the case of an isotropic
scattering operator Qs =

∫
S2(f

′ − f)dΩ′, the coefficient is 3σs. This system has already been
used in [WIN95] in the context of a moving fluid, in which the Doppler effects, modeled by the
term (∇.u/3)ν∂νf , studied in chapter 2, was added.
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Chapter 5

Compton scattering (II): angular
moments methods

5.1 Introduction

The aim of this chapter is to construct and study several angular moments models for the
anisotropic kinetic model derived in the previous chapter





1

c
∂tf + Ω.∇f =

σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′ + σa(ν)

(
f0(ν, T )− f

)

+
σs

3mc2
ν−2 ∂

∂ν

[
ν4

(
T∂νf + f

(
1 + f

))]
,

CV ∂tT = − c

4π

∫

R+×S2

σa(ν)

(
B(ν, T )− ν3f

)
dνdΩ

+
c

4π

σs
3mc2

∫

R+×S2

ν4

(
T∂νf + f

(
1 + f

))
dνdΩ,

(5.1)

where we took D = 0, the diffusion coefficient in the equation on the electron temperature for
simplification. We recall here that this system preserves the total energy, i.e.

d

dt

[ ∫

R3×R+×S2

fdxdνdΩ +

∫

R3

CV Tdx

]
= 0. (5.2)

The angular moments methods are very used in practice and they have been widely studied in
several contexts [BRU02,MBD15]. In this chapter we study the P1, M1 and an hybrid P1 −M1

angular moments models in the grey and frequency dependent case for this coupled system. Due
to the nonlinearity of the anisotropic Kompaneets system (5.1), some of these models can not
be closed since integrals of the distribution function to the square have to be given in terms of
the moments.

The first aim of this chapter is to the study the P1 model. In the case of no coupling (σa = 0
and given temperature T), the obtained frequency dependent P1 model after a renormalization
is given by 




1

c
∂tU +∇.V = ν−2 ∂

∂ν

[
ν4

(
T∂νU + U + U2 + 3(V,V)

)]
,

1

c
∂tV +

1

3
∇U = ν−2 ∂

∂ν

[
ν4

(
T∂νV + V + 2UV

)]
− αV,

(5.3)
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where α = 4mc2 stands for an absorption coefficient. This system is indeed interesting, since
the classical Kompaneets equation (P0 model, with V = 0) is perturbed by a Burgers type term
∂νν

4(V,V), where V satisfies a Fokker-Planck type equation. Since several papers studied the
long time behavior of the solution of the Kompaneets equation [CL86, EHV98, EMV04], it is
interesting to study the influence of the anisotropic part of a radiation beam on the solution
of the zero-th order moment U , in comparison with the solution of the Kompaneets equation.
This is performed in the section 2. In particular we show (lemma 5.2) that in the limit case
α = 0, the long time range of the solution of the frequency dependent P1 model exhibits new
solutions in comparison with the Bose condensate result of Caflisch and Levermore [CL86] for
the Kompaneets equation.

In this chapter we also study the M1 model. For this model the distribution function is obtained
by solving an entropy minimization problem [DF99,LEV84], and the obtained distribution has
the form of a generalized Planck distribution. It yields a nonlinear closure, but the correspond-
ing models are known to satisfy some relevant physical properties, such as the conservation of
the positivity of the distribution function and a H-theorem.

For the coupled system (5.1), the grey M1 model is given by





1

c
∂tE +∇.F = σa

(
T 4 − E

)
+

4σs
3mc2

E

(
T − E 1

4QE(‖g‖)
)

1

c
∂tF +∇.Pr = −

[
4

3
σs + σa +

4σs
3mc2

(
E

1
4QF (‖g‖)− T

)]
F,

∂tT = cσa
(
E − T 4

)
+

4σs
3mc

E

(
E

1
4QE(‖g‖)− T

)
,

(5.4)

where Pr, the second order moment of the distribution function f is given by Pr =
(1−‖b‖2

3+‖b‖2 Id +

3+‖b‖2
4 g ⊗ g

)
E, with g = F/E. The operators QE and QF are defined by





QE(‖g‖) =

(
2 +

√
4− 3‖g‖2

) 5
4

4

4 + ‖g‖2
4− ‖g‖2 + 2

√
4− 3‖g‖2

(
2 +

√
4− 3‖g‖2 − ‖g‖2
1− ‖g‖2

) 1
4

,

QF (‖g‖) =

(
2 +

√
4− 3‖g‖2

) 1
4

4

20 + ‖g‖2
4 + ‖g‖2 + 2

√
4− 3‖g‖2

(
2 +

√
4− 3‖g‖2 − ‖g‖2
1− ‖g‖2

) 1
4

.

Despite nonlinear and rather complicated, it shows in particular that the Compton scattering
can be simply used in numerical grey M1 models by adding source terms. We show in this
chapter that the Compton scattering does not change the equilibrium states, in the sense that
the electron temperature T still equilibrates with the radiation temperature TR = T 4, but can
modify the transitional states, depending on the value of σs/mc

2 compared to σa. The equilib-
rium and non-equilibrium diffusion regimes are studied for this grey M1 model.

This chapter is organized as follows. In section 2 is studied the frequency dependent P1 model
as presented in (5.3), and its solutions in the case of no coupling are compared to the solutions
of the Kompaneets equation. In section 3 is derived and studied the grey M1 model. In partic-
ular the equilibrium and non-equilibrium diffusion regimes are studied and the relaxation to the
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electronic temperature are studied. Finally in a last part is studied an hybrid P1 −M1 model.
Indeed, the study of the P1 and M1 models shows that according to the assumed expression
of the distribution function, the construction of the frequency dependent and grey angular mo-
ment model is possible or not. It appears that it is possible to construct an expression for the
distribution function f , constructed from a mix of the expression of M1 and P1 expressions of
f , which allows to construct both the frequency dependent hybrid model (lemma 5.6), which is
indeed exactly the P1 frequency dependent model, and the grey hybrid model (lemma 5.7).

5.2 P1 approximation

We derive here the so-called P1 approximation [BRU00,BRU02,HLM10] for the system (5.1).
The P1 approximation consists of assuming that the distribution f writes

f(t, x, ν,Ω) = f0(t, x, ν) + Ω.f1(t, x, ν), (5.5)

i.e. is polynomial with respect to Ω. The main advantages of the P1 approximation is that the
moments equations are easily constructed. Moreover, due to the polynomial angular dependence
of f , an increase of the order of the approximation is easily achieved. Moreover and as we will see
in this part, even if the source terms are nonlinear (quadratic in our case), they can be expressed
in terms in the moments. We Introduce the two first angular moments of the distribution function
f 




X(t,x, ν) =
1

4π

∫

S2

f(t,x, ν,Ω)dΩ,

Y(t,x, ν) =
1

4π

∫

S2

f(t,x, ν,Ω)ΩdΩ,

(5.6)

The following lemma is concerned by the frequency dependent P1 model

Lemma 5.1 (Frequency dependent P1 model). The frequency dependent P1 model for the cou-
pled system (5.1) writes





1

c
∂tX +∇.Y = ν−2 ∂

∂ν

[
ν4

(
T∂νX +X +X2 + 3(Y,Y)

)]
+ σa(f0 −X),

1

c
∂tY +

1

3
∇X = ν−2 ∂

∂ν

[
ν4

(
T∂νY + Y + 2XY

)]
− αY − σaY,

∂tT = c

∫

R+

ν4

(
T∂νX +X +X2 + 3(Y,Y)

)
dν − σa

∫

R+

(
B(ν, T )− ν3X

)
dν,

(5.7)

where α = 4mc2.

Proof. The definition of X and Y together with the property
∫

ΩdΩ = 0 yields

{
f0 = X,

f1 = 3Y.
(5.8)

Integrating equation (5.1) over S2 and dividing by 4π, we write the equation satisfied by X:

1

c
∂tX +∇.Y =

σs
3mc2

ν−2 ∂

∂ν

[
ν4

(
T∂νX +X +

1

4π

∫

S2

f2dΩ

)]
+ σa(f0 −X).
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Equations (5.5) and (5.8) gives

1

4π

∫

S2

f2dΩ = X2 + 3(Y,Y),

and thus the equation on X is

1

c
∂tX +∇.Y =

σs
3mc2

ν−2 ∂

∂ν

[
ν4

(
T∂νX +X +X2 + 3(Y,Y)

)]
+ σa(f0 −X). (5.9)

We now turn to the equation on Y. Multiplying the first equation of (5.1) by Ω and integrating
on S2, one has

1

c
∂tY +∇

(
1

4π

∫

S2

Ω⊗ΩIdfdΩ

)
=

σs
16π2

∫

S2×S2

(
1 + cos2 θ

)
Ω
(
f ′ − f

)
dΩ′dΩ

+
σs

3mc2
ν−2 ∂

∂ν

[
ν4

(
T∂νY + Y +

1

4π

∫

S2

Ωf2dΩ

)]
− σaY.

Once again, equations (5.5) and (5.8) gives





∇
(

1

4π

∫

S2

Ω⊗ΩIdfdΩ

)
=

1

3
∇X,

1

16π2

∫

S2×S2

(
1 + cos2 θ

)
Ω
(
f ′ − f

)
dΩ′dΩ = −4

3
Y,

1

4π

∫

S2

Ωf2dΩ = 2XY.

The equation on the temperature is trivially obtained from the equation on X. Rescaling the
time and the space as t = 3mc2

σs
t̄, x = 3mc2

σs
x̄ and σs

3mc2
σ̄a lead to, dropping the bars for ease of

notations,





1

c
∂tX +∇.Y = ν−2 ∂

∂ν

[
ν4

(
T∂νX +X +X2 + 3(Y,Y)

)]
+ σa(f0 −X),

1

c
∂tY +

1

3
∇X = ν−2 ∂

∂ν

[
ν4

(
T∂νY + Y + 2XY

)]
− αY − σaY,

∂tT = c

∫

R+

ν4

(
T∂νX +X +X2 + 3(Y,Y)

)
dν − σa

∫

R+

(
B(ν, T )− ν3X

)
dν,

(5.10)

where α = 4mc2, which is the announced result.

It is easy to see that this P1 model preserves the stationary states of the Boltzmann equation,
the Bose-Einstein distributions f0 defined in (4.5). Indeed for such distributions one has V = 0
and U = f0, and these distributions satisfy T∂νf0 +f0 +f2

0 = 0. The Bose-Einstein distributions
are restricted to the case µ = 0 due to the emission absorption term σa(f0 − f). From now on
and until the end of this section, we take c = 1 in the transport term. This isotropic case V = 0
can be seen as the P0 model, and reduces to the Kompaneets equation in the case of no coupling

∂tf = ν−2 ∂

∂ν

[
ν4

(
T∂νf + f

(
1 + f

))]
. (5.11)
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We are interested in the comparison of the solution of this equation with the solution of the
homogeneous P1 model in the case of no coupling and in the 1D case. The system writes





∂tX = ν−2 ∂

∂ν

[
ν4

(
T∂νX +X +X2 + 3Y 2)

)]
,

∂tY = ν−2 ∂

∂ν

[
ν4

(
T∂νY + Y + 2XY

)]
− αY

(5.12)

The end of this section deals with the comparison between the solution of the Kompaneets
equation (P0 model, equation (5.11)) and the solution of the homogeneous P1 model (5.12). In
a first time (part 5.2.1) are recalled the main result concerning the long time behavior of the
Kompaneets equation. In a second time (part 5.2.2) are studied the difference between this two
models. In particular we show that the anisotropic part of the radiation decreases the energy of
the system, and that the stationary states in long time range are modified in the limiting case
α = 0 (lemma 5.2), which is an unexpected result.

It is interesting to note that despite we are able to construct the frequency dependent P1 model,
the grey P1 model can not be constructed analytically. Indeed, considering the moments of ν3f ,
integration by parts of equations (5.1) will lead to integrals of terms like ν4f and ν4f2, which
we can not analytically compute in terms of the moments. This is the purpose of the section 4,
in which an hybrid P1 −M1 model is constructed.

5.2.1 A review of the Kompaneets equation

In this part we recall the main results concerning the Kompaneets equation, which writes

(P0)




∂tf = ν−2 ∂

∂ν

[
ν4

(
T∂νf + f + f2

)]
,

f(t = 0) = f in,

(5.13)

with the boundary conditions

ν4

(
T∂νf + f + f2

)
= 0 at ν = 0 and ν =∞. (5.14)

In the following we denote N(f0) the number of photons associated to the Bose-Einstein distri-
bution with µ = 0, defined by

N(f0) =

∫

R+

ν2

eν/T − 1
dν,

where T is the electronic temperature. More generally, we define for any function f its associated
number of photons by

N(f) =

∫

R+

∫

S2

fν2dνdΩ.

On the one hand Caflisch and Levermore [CL86] studied and observed numerically the Bose
condensation phenomena, recalled thereafter

• If N(f in) ≤ N(f0), then ∃µ ≥ 0 s. t. lim
t→∞

ν2f(t, .) = ν2fµ(.).

• Else if N(f in) > N(f0), then lim
t→∞

ν2f(t, .) = ν2f0(.) +
(
N(f in)−N(f0)

)
δ0.

(5.15)
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The parameter µ > 0 in the proof is such that N(f in) = N(fµ). This result is referred to the
Bose condensation phenomena; when the number of photons at the initial time is larger than a
critical number, the excess of photons is concentrated at the origin. This is illustrated in picture
5.2. The Kompaneets equation is numerically solved for two different initial datum (picture 5.1):
the first one satisfies N(f in) < N(f0), the second one N(f in) > N(f0). The curves represent

Figure 5.1: Initial conditions for the Kompaneets equation (5.11), written as ν2f

the quantity ν2 multiplied by the distribution function (and not the distribution function itself).
This result was proved in [CL86] without discussions about the flux conditions (5.14).

On the other hand Escobedo and co-authors proved in [EHV98,EHV99] that there exists smooth
nonnegative solutions of the Kompaneets equation, with arbitrarily small values of N(f in), that
may develop singularities near ν = 0 in finite time, so that the flux condition (5.14) at ν = 0 is
lost. They also proved that if one replaces the flux condition at ν = 0 (5.14) by an estimate of
the form

0 ≤ f(ν, T ) ≤ C

ν2
, as ν → 0, C > 0,

then the corresponding modified problem has a unique solution for all times t > T .

The question of existence and uniqueness of global solutions is still an open problem. In this
work our aim is to discuss from the numerical point of view the apparition of Bose condensation
for new models, which permits to find back the issues discussed in [CL71] for these new models.
Secondly, we aim to show that in certain cases the study of P1 models reduces to two decoupled
Kompaneets equations, which allows to extend all these previous results to our systems. We
show in particular that the anisotropic part (first order moment Y) changes the value of the
threshold from which the Bose condensation appears.

5.2.2 P0-P1 comparison

The goal of this part is to study the difference between the solution of the Kompaneets equation
(5.11) and the solution of the multigroup P1 model (5.12). Indeed, the question that we wish to
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Figure 5.2: Numerical solutions of the Kompaneets equation (5.11) versus frequency ν. Conver-
gence to a Planck function (full line) in the case N(f in) < N(f0), and to a Planck function plus
a Dirac function concentrated near ν = 0 (dashed line) in the case N(f in) > N(f0).

answer is how the anisotropic part of the radiation, modeled by the first moment Y, modifies the
zero-th order moment U . On the one hand, it is clear that if Y(t = 0) = 0, one has for all t ≥ 0
X(t) = f(t), where f is the solution of the Kompaneets equation. Moreover, if α >> 1, one can
expect Y to tends quickly vers 0 and thus obtain lim

t→∞
X(t) = f(t). One the other hand, the long

time behavior of the solution of the P1 model for α ≈ 1 or α << 1 is not straightforward. This
is the purpose of the forthcoming study. In particular we show in lemma 5.2 that in the limit
case α = 0 there exists solutions of the P1 model such that the number of photons at the initial
stage is lower than the critical number N(f0) and such that a Bose condensation nonetheless
appears in long time range.

Let us emphasize some properties of the P1 model. Firstly and as for the Kompaneets equation,
the model (5.12) preserves the number of photons. Indeed, the number of photons is defined by

N(t) =

∫

R+×S2

f(t, ν,Ω)ν2dνdΩ.

Since for the P1 model f = X + 3Y.Ω, one easily obtains by using the P1 model (5.12)

d

dt
N(t) =

d

dt

[ ∫

R+

X(t, ν)ν2dν

]
= 0,

assuming the correct flux conditions. What appears as a new property is the variation of the
energy of the P1 model in comparison with the P0 model. The energy is defined by

E(t) =

∫

R+×S2

f(t, ν,Ω)ν3dνdΩ.
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Using the P1 model (5.7) and an integration by parts, one gets

d

dt
E(P1) =

d

dt

[ ∫

R+

X(t, ν)ν3dν

]
= −

∫

R+

(
T∂νX +X +X2

)
ν4dν − 3

∫

R+

(Y,Y)ν4dν.

This equation is recast as

d

dt
E(P1) =

d

dt
E(P0)− 3

∫

R+

(Y,Y)ν4dν,

with an obvious definition of E(P0). This shows that the anisotropic part of the radiation does
not modify the number of photons, but decreases the energy of the radiation.

We now turn to the main result of this part, which is concerned by the long time behavior
of the solution of the P1 model (5.12) in the case α = 0. In the 1D case, the model writes





∂tX = ν−2 ∂

∂ν

[
ν4

(
T∂νX +X +X2 + 3Y 2)

)]
,

∂tY = ν−2 ∂

∂ν

[
ν4

(
T∂νY + Y + 2XY

)]
.

(5.16)

We prove the following lemma, which shows that the anisotropic part of the radiation exhibits
different stationary solutions in comparison with the Kompaneets equation in long time range.
In the following N(f0) still refers to the number of photons of the Bose-Einstein distribution
with µ = 0. This comes from the very simple remark that one can find a new set of variables,
namely Z± = X ±

√
3Y , which satisfies the Kompaneets equation.

Lemma 5.2 (Asymptotic behavior of the P1 model in the case α = 0). There exists solutions
of the P1 model (5.16), whose total number of photons at the initial time is less than the critical
number of photons N(f0), such that a condensation phenomena appears in long time range. For
example if the initial conditions for the P1 model (5.16) are chosen such that





N(Xin) =
3

4
N(f0),

N(Y in) =
1

2
√

3
N(f0),

(which yields N(f in) = N(Xin + 3Ω.Y in) = N(Xin) < N(f0)) then in long time range one has





lim
t→∞

X(t, .) = ν2 f0 − fµ
2

+
N(f0)

8
δ0,

lim
t→∞

Y (t, .) = ν2 f0 − fµ
2
√

3
+
N(f0)

8
√

3
δ0,

although N(Xin) < N(f0), where the parameter µ is such that N(fµ) = N(f0)/4.

Proof. We set Z± = X ±
√

3Y . Multiplying the second equation of (5.16) by
√

3 and adding
and subtracting to the first equation, one sees that Z± satisfies the Kompaneets equation

∂tZ
± = ν−2 ∂

∂ν

[
ν4

(
T∂νZ

± + Z±
(
1 + Z±

))]
.
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The initial conditions for Z± are defined by (Z±)in = Xin±
√

3Y in. Using the definition of Xin

and Y in, one gets N
(
(Z+)in

)
= 5

4N(f0) > N(f0). In the same way one obtains N
(
(Z−)in

)
=

1
4N(f0) < N(f0). One applies the result 5.14 on Z+ and Z−, and gets





lim
t→∞

ν2Z+(t, .) = ν2f0 +
N(f0)

4
δ0,

lim
t→∞

ν2Z−(t, .) = ν2fµ, µ > 0 s. t. N(fµ) =
N(f0)

4
.

From the definition of Z±, one has X =
(
Z+ + Z−

)
/2 and Y =

(
Z+ − Z−

)
/2
√

3, which yields




lim
t→∞

X(t, .) = ν2 f0 − fµ
2

+
N(f0)

8
δ0,

lim
t→∞

Y (t, .) = ν2 f0 − fµ
2
√

3
+
N(f0)

8
√

3
δ0, µ > 0 s. t. N(fµ) =

N(f0)

4
,

which is the announced result.

Numerical illustration

We present here the numerical scheme (inspired from [LLPS84], see also [DWLM09]) designed
for the frequency dependent P1 model. Numerical results concerning the apparition of Dirac
masses can be found in [ST95, ST97]. For a given 0 < ν∗, the frequency domain is [0, ν∗]. For
1 ≤ j ≤ N , we consider an irregular mesh defined by (N + 1) points 0 = ν 1

2
< ... < νN+ 1

2
= ν∗.

We define νj as the middle of the j-th frequency band, i.e. νj = (νj− 1
2

+ νj+ 1
2
)/2 and we denote

∆νj its length. We also define the dual (j + 1
2)-th frequency band as the cell [νj , νj+1], which

length is denoted ∆νj+ 1
2

. Since we consider the homogeneous (in space) case, we consider the

1D case, and thus the first moment Y is a scalar.

Due to the term ν−2 in front of the right hand side of the P1 model (5.12), it appears to
be easier to work on the variables U = ν2X and V = ν2Y . Using this set of variables, the
frequency dependent P1 model writes





∂tU =
∂

∂ν

[
T

(
∂ν
(
ν2U

)
− 4νU

)
+ U

(
ν2 + U

)
+ 3V 2

)]
,

∂tV =
∂

∂ν

[
T

(
∂ν
(
ν2V

)
− 4νV

)
+ V + 2UV

)]
− αV.

(5.17)

We use a classical finite volume scheme with explicit Euler discretization of the time derivatives,
defined by 




Un+1
j − Unj

∆t
=
Un
j+ 1

2

− Un
j− 1

2

∆νj
,

V n+1
j − V n

j

∆t
=
V n
j+ 1

2

− V n
j− 1

2

∆νj
− αV n

j ,

(5.18)

where the fluxes are defined by




Un
j+ 1

2

= T

(
ν2
j+1U

n
j+1 − ν2

jU
n
j

∆νj+ 1
2

− 4νjU
n
j

)
+ Unj+1

(
ν2
j+1 + Unj+1

)
+ 3
(
V n
j+1, V

n
j+1

)
,

V n
j+ 1

2

= T

(
ν2
j+1V

n
j+1 − ν2

j V
n
j

∆νj+ 1
2

− 4νjV
n
j

)
+ V n

j+1

(
ν2
j+1 + 2Unj+1

)
.

(5.19)
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Numerically, the conservation of the total number of photons is obtained by setting Un
N+ 1

2

=

Un1 = 0, for all n. To obtain the CFL condition, we write the system (5.17) as a drift diffusion
system on the variable W = (U, V ), that is

∂tW = ν2T

(
1 0
0 1

)
∂2
νW+

(
ν2 + 2U 6V

2V ν2 + 2U

)

︸ ︷︷ ︸
A

∂νW+

(
2(ν − T ) 0

0 2(ν − T )− α

)

︸ ︷︷ ︸
R

W. (5.20)

Studying the eigenvalues of the matrix A and R, denoted respectively Λ±A and Λ±R, one easily
finds 




Λ±A = ν2 + 2U ± 2
√

3V,

Λ+
R = 2(ν − T ),

Λ−R = 2(ν − T )− α,

The stability of the scheme is obtained under the following CFL condition

∆t sup
1≤j≤N

(
Tν2

j

∆ν2
j

+
max

(∣∣Λ±A,j
∣∣)

∆νj
+ max

(∣∣Λ±R,j
∣∣)
)
≤ 1,

with obvious notations of Λ±A,j and Λ±R,j .

In the following, we compare the solution of the P1 model with the solution of the P0 model for
several value of the absorption coefficient α. Each test cases are initialized with the same values,
depicted in figure 5.3 and we take for the electron temperature T = 1. The mesh is composed

Figure 5.3: Initialization of the P0 (Kompaneets) and P1 model.

of 800 cells. With the choice of the variables (U, V ), the number of photons at the initial stage
is simply

∫
R+ Udν = 1 ≤ N(f0) ≈ 2.4. The long time behavior of the P0 model is thus a regular

Planck distribution, and our aim is to understand the influence of the first order moment V in
the transitional and long time behavior of the zero-th order moment U .
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Case α = 1

In this part we solve the P1 system with α = 1 and we compare the zero-th order moment
to the solution of the P0 equation. The picture 5.4 displays the zero-th order moment U and
the solution of the Kompaneets equation at different time. It shows that in the case α = 1,
the anisotropic part of the radiation does not sensibly modify the solution of the Kompaneets
equation. Figure 5.5 displays the evolution of the first order moment V . The absorption term is

Figure 5.4: Zero-th order moments (P0 and P1) versus frequency ν at different times, α = 1.
The curves are almost merged, as expected due to the strong relaxation. The P0 and P1 models
converge toward the same Planck distribution.

dominant in comparison to the Fokker-Planck term. Figure 5.6 presents the time evolution of the
total energy of the P0 and P1 models. As expected (see equation (5.2.2)), the anisotropic part of
the radiation decreases the energy, in comparison with the Kompaneets equation. Nevertheless,
and since the first order moment V is small in comparison with the zero-th order moment, the
variation in the total energy due to the anisotropic part is negligible.

Case α = 0.1

In this part we perform the same study than in the previous part, but we take for the absorption
coefficient α = 0.1. The picture 5.7 displays the zero-th order moment U and the solution of the
Kompaneets equation at different time. It shows in particular a different transitional regime.
Contrary to the solution of the P0 model, some photons are concentrated at the origin in a
first time, a gain energy in a second time to equilibrate at the same Planck function than the
solution of the Kompaneets equation (picture 5.7). This can be explained by studying the first
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Figure 5.5: First order moment V versus frequency ν at different times, α = 1. The first order
moment has a Planck profile, decreasing with time due to the relaxation (α = 1).

Figure 5.6: Evolution of the total energy versus time, α = 1. Due to the strong relaxation,
the anisotropic part does not sensibly modifies the energy, in comparison with the Kompaneets
equation.

order moment V , whose time evolution is displayed in picture 5.8. Indeed, we see a competition
between the thermalization term (Fokker-Planck term) and the absorption term −αV . In long
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Figure 5.7: Zero-th order moments (P0 and P1) versus frequency ν at different times, α = 0.1.
A significant difference between the P0 and P1 models appears in a transitional regime. In long
time, the P0 and P1 converge toward the same Planck distribution.

time, the absorption takes over for the thermalization, and one gets lim
t→∞

V = 0, and the P1 model

then reduces to the Kompaneets equation. This explains that one obtains lim
t→∞

U = f , where

f is the solution of the Kompaneets equation. This transitional regime explains the significant
difference in the time evolution of the total energy between the P0 and P1 model displayed in
picture 5.9.

Case α = 0

In this part we perform the same study than in the previous part, but we take for the absorption
coefficient α = 0. Since the initial conditions (figure 5.3) satisfy the properties of the lemma 5.2,
we expect to observe numerically the conclusion of this lemma, that is the convergence in long
time of the zero-th order moment U toward a Planck distribution plus a Dirac at the frequency
ν = 0. As for the previous numerical tests (α = 1 and 0.1), we study the evolution, as time goes
on, of the zero-th order moment U , compared to the solution of the Kompaneets equation, and
the first order moment V .

Figure 5.10 displays the evolution of the solution of the Kompaneets equation (P0) and the
zero-th order moment of the P1 model. It shows the expected result, that is the convergence of
the zero-th order moment of the P1 model toward a Dirac function plus a Planck distribution.
In the same way, the figure 5.11 shows the convergence of the first order moment of the P1

model toward a Dirac function plus a Planck function. Finally, the figure 5.12 shows the time
evolution of the total energy for both the Kompaneets equation and the P1 model. It shows in
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Figure 5.8: First order moment V versus frequency ν at different times, α = 0.1. In short time
range, there is a small concentration near ν = 0. In long time the first order moment V tends
to zero.

Figure 5.9: Evolution of the total energy versus time, α = 0.1. The significant modification
observed in the transitional regimes between the P0 and P1 models leads to a decrease of energy
for the P1 model.

particular that in this limit case α = 0, the introduction of an anisotropic part in the radiation
modified the stationary state in long time range.
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Figure 5.10: Zero-th order moments (P0 and P1) versus frequency ν at different times, α = 1.
The first order moment of the P1 model converges to a different solution with respect to the
Kompaneets equation. We observe that this solution is composed of the sum of a Planck type
distribution and a concentration of photons near ν = 0.

5.3 M1 model

In this part we study the M1 model for the system (5.1). The M1 approximation consists of
assuming that the distribution f writes

f(t,x, ν,Ω) =

[
exp

(
ν

a(t,x)

(
1 + b(t,x).Ω

))
− 1

]−1

, (5.21)

which is obtained by solving an entropy minimization problem under the constraints of pre-
serving the moments [DF99,BD04]. The quantities a and b are the Lagrange multipliers and
must satisfy a > 0 and |b| < 1 to preserve the non negativity of the distribution function. The
distribution function f as defined by (5.21) can be seen as a generalized Planck distribution, in
the sense that for b = 0 and a = T , the electron temperature, one finds back the Planck distri-
butions. The MN methods are famous since they are known to preserve the non negativity of
the distribution function and the growth of the (physical) entropy. The cost of these advantages
is that since the distribution function is nonlinear with respect to Ω, an increase in the number
of moments can be complicated to obtain, and in the particular case of our nonlinear source
terms (Kompaneets terms), the expression of these terms in terms of the moments is not easily
obtained. This is why the construction of the M1 and more generally the MN models mainly
relies on the computations of integrals.

As for the P1 approximation, we define the two first angular moments of the distribution function
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Figure 5.11: First order moment V versus frequency ν at different times, α = 0. The first order
moment converges toward the sum of a Planck type distribution and a concentration near ν = 0.

Figure 5.12: Evolution of the total energy versus time, α = 0. There is a substantial decrease of
the energy of the P1 model in comparison with the Kompaneets equation, and the convergence
of the numerical solution toward a different stationary solution.

f as 



X(t,x, ν) =
1

4π

∫

S2

f(t,x, ν,Ω)dΩ,

Y(t,x, ν) =
1

4π

∫

S2

f(t,x, ν,Ω)ΩdΩ.

(5.22)
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Contrary to the P1 approximation, in which the dependence with respect to the angle Ω is linear,
the nonlinearity of the distribution function f (5.21) prevents us to compute the quadratic terms
in the model in terms of the two first moments X and Y, i.e. to close the system. Indeed the
same manipulations than for the P1 model yield





1

c
∂tX +∇.Y =

σs
3mc2

ν−2 ∂

∂ν

[
ν4

(
T∂νX +X +

1

4π

∫

S2

f2dΩ

)]
+ σa(f0 −X),

1

c
∂tY +∇

(
1

4π

∫

S2

Ω⊗ΩIdfdΩ

)
= −4

3
σsY − σaY

+
σs

3mc2
ν−2 ∂

∂ν

[
ν4

(
T∂νY + Y +

1

4π

∫

S2

f2ΩdΩ

)]
,

CV ∂tT = −cσa
∫

R+

(
B(ν, T )− ν3X

)
dν +

σs
3mc

∫

R+

ν4

(
T∂νX +X +

1

4π

∫

S2

f2dΩ

)
dν.

(5.23)
The main problem here is that the integrals in (5.23) can not be formally computed in terms
of the moments X and Y. It could be achieved by numerical procedures (see [TUR05,TUR12]
for a multigroup discretization of the second order moment), but this is not the purpose of this
work. We show in this chapter that these computations can be achieved in the case of the grey
M1.

5.3.1 Derivation of the grey M1 model

We introduce the two first moments of ν3f





E(t,x) =
15

4π5

∫

R+×S2

ν3f(t,x, ν,Ω)dΩdν,

F(t,x) =
15

4π5

∫

R+×S2

ν3f(t, x, ν,Ω)ΩdΩdν,

(5.24)

where we still assume that f is given by (5.21). The choice of taking the moments of ν3f is
not insignificant. Indeed, ν3f is proportional to the specific intensity I and is thus a physical
quantity. As a remark, one could take the moments on νNf , with an arbitrary choice of N ∈ N

∗.
Our choice is driven by the fact that we aim to study we exchange between E and the fluid
temperature T , homogeneous to an energy. The following lemma is concerned by the grey M1

model.

Lemma 5.3 (Grey M1 model). The grey M1 model for the system (5.1) is given by





1

c
∂tE +∇.F = σa

(
T 4 − E

)
+

4σs
3mc2

(
T − E 1

4QE(‖g‖)
)
E

1

c
∂tF +∇.Pr = −

(
4

3
σs + σa

)
F +

4σs
3mc2

(
T − E 1

4QF (‖g‖)
)
F

C̄V ∂tT = −cσa
(
T 4 − E

)
− 4σs

3mc2

(
T − E 1

4QE(‖g‖)
)
E,

(5.25)
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where the operators QE and QF are defined by





QE(‖g‖) =

(
2 +

√
4− 3‖g‖2

) 5
4

4

4 + ‖g‖2
4− ‖g‖2 + 2

√
4− 3‖g‖2

(
2 +

√
4− 3‖g‖2 − ‖g‖2
1− ‖g‖2

) 1
4

QF (‖g‖) =

(
2 +

√
4− 3‖g‖2

) 1
4

4

20 + ‖g‖2
4 + ‖g‖2 + 2

√
4− 3‖g‖2

(
2 +

√
4− 3‖g‖2 − ‖g‖2
1− ‖g‖2

) 1
4

,

and Pr is the second order moment of f and is given by the Eddington formula [LEV84,DF99,
BD04]

Pr =
15

4π5

∫

R+×S2

Ω⊗Ωfν3dνdΩ =

((
1− χ)Id +

(
3χ− 1

)g ⊗ g

‖g‖2
)
E. (5.26)

with g = F/E, b = − 3√
4−3‖g‖2+2

g, C̄V = 15/π4CV and χ = (3 + 4‖g‖2)/(5 + 2
√

4− 3‖g‖2) is

the Eddington factor.

Proof. Multiplying the first equation of (5.1) by ν3 and integrating over R
+ × S2 yield, using

an integration by parts

1

c
∂tE +∇.F =

4T

3mc2
σsE −

5σs
4π5

∫

R+×S2

ν4

mc2
(
f + f2

)
dνdΩσa

(
T 4 − E

)
. (5.27)

In the same way, multiplying the first equation of (5.1) by ν3Ω and integrating over R
+ × S2

leads to

1

c
∂tF +

15

4π5
∇.
(∫

R+×S2

Ω⊗Ωfν3dνdΩ

)
=

4

3

(
T

mc2
− 1

)
σsF− σaF

− 5σs
4π5

∫

R+×S2

ν4

mc2
Ω
(
f + f2

)
dνdΩ.

(5.28)

We thus need to determine five integrals in terms of the moments E and F. Let us define

I1 =
5

4π5

∫

R+×S2

ν4fdνdΩ.

Using the definition of f (5.21) and the change of variable y 7→ (ν/a)(1 + b.Ω), one has

I1 =
5a5

4π5

∫

S2

1

(1 + b.Ω)5
dΩ×

∫

R+

ν4

eν − 1
dν.

First, one has
∫

R+
ν4

eν−1dν = 24ζ(5), where ζ is the zeta Riemann function. The integral over S2

can be computed by using the spherical coordinates (θ, φ) ∈ [0, π]× [0, 2π], where θ is chosen as
the angle between b and Ω. This frame is chosen such that b = (0, 0, ‖b‖)T . This gives, with
the change of variables µ = cos θ

I1 = ζ(5)
60a5

π4

∫ 1

−1

1

(1 + µ‖b‖)5dµ = ζ(5)
120a5

π4

1 + ‖b‖2
(
1− ‖b‖2

)4 .

We then define

I2 =
5

4π5

∫

R+×S2

ν4f2dνdΩ =
5a5

4π5

∫

S2

1

(1 + b.Ω)5
dΩ×

∫

R+

ν4

(eν − 1)2
dν.

128



Once again, one has
∫

R+
ν4

(eν−1)2
dν = −24ζ(5) + 4π4/15. Using the same technics than for the

integral I1, one finds

I2 =

(
− 120

π4
ζ(5) +

4

3

)
a5 1 + ‖b‖2
(
1− ‖b‖2

)4 . (5.29)

We finally finds

− 5

4π5

∫

R+×S2

ν4
(
f + f2

)
dνdΩ = −a5 4

3

1 + ‖b‖2
(
1− ‖b‖2

)4 .

We now turn to the integrals in the equation of F. We define

I3 =
5

4π5

∫

R+×S2

ν4ΩfdνdΩ.

Once again, one has

I3 =
15× 24

π4
ζ(5)

a5

12π

∫

S2

Ω

(1 + b.Ω)5
dνdΩ.

It yields

I3 = −140ζ(5)

3π4
a5 5 + ‖b‖2
(
1− ‖b‖2

)4b. (5.30)

In the same way, we define

I4 =
5

4π5

∫

R+×S2

ν4Ωf2dνdΩ,

and finds

I4 = −5a5

3π4

(
− 24ζ(5) +

4π4

15

)
5 + ‖b‖2
(
1− ‖b‖2

)4b. (5.31)

It yields

− 5

4π5

∫
ν4Ω

(
f + f2

)
dνdΩ =

4a5

9

5 + ‖b‖2
(
1− ‖b‖2

)4b.

Finally, the second order moment Pr can also be computed

Pr =
15

4π5

∫

R+×S2

Ω⊗Ωfν3dνdΩ =

((
1− χ)Id +

(
3χ− 1

)g ⊗ g

‖g‖2
)
E,

where g = F/E and χ = (3 + 4‖g‖2)/(5 + 2
√

4− 3‖g‖2) is the Eddington factor. The equation
on the temperature T is trivially obtained by multiplying the last equation of (5.23) by 15/π4

since it involves the same terms as in the equation of the zero-th order moment E. We thus find
the following grey M1 model, where C̄V = 15/π4CV





1

c
∂tE +∇.F = σa

(
T 4 − E

)
+ σs

T

mc2
4

3
E − 4σsa

5

3mc2
1 + ‖b‖2
(
1− ‖b‖2

)4 ,

1

c
∂tF +∇.Pr =

4

3

(
T

mc2
− 1

)
σsF− σaF +

4σsa
5

9mc2
5 + ‖b‖2
(
1− ‖b‖2

)4b,

C̄V ∂tT = −cσa
(
T 4 − E

)
− T

mc

4

3
σsE +

4σsa
5

3mc

1 + ‖b‖2
(
1− ‖b‖2

)4 .

(5.32)
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It remains to find the relation between (a,b) and (E,F). The definition of E and F (5.24),
together with the expression of f (5.21) yield





E(t,x, ν) =
15

4π5

∫

R+×S2

ν3fdΩdν = a4 3 + ‖b‖2

3
(
1− ‖b‖2

)3 ,

F(t,x, ν) =
15

4π5

∫

R+×S2

ν3fΩdΩdν = −4a4 b

3
(
1− ‖b‖2

)3 .
(5.33)

Let us compute the expression of the coefficients a and b in terms of E and F. The relations
(5.33) yield g = F/E = −4 b

3+‖b‖2 . One thus has ‖g‖2(3+‖b‖2)2 = 16‖b‖2. Solving this second

order equation (with respect to ‖b‖2), one finds ‖b‖2± = ‖g‖−2(8−3‖g‖2±4
√

4− 3‖g‖2). Both
these solutions are non negative, but only the one with the minus root is consistent with the
fact that ‖b‖ has to be lesser than 1. It yields for the coefficients a and b





a = 2E
1
4
(
2 +

√
4− 3‖g‖2) 1

4

(
1− ‖g‖2

2 +
√

4− 3‖g‖2 − ‖g‖2

) 3
4

,

b = − 3√
4− 3‖g‖2 + 2

g.

(5.34)

Using these relations, we can write the source terms in (5.32) in terms of E and F instead of a
and b, which yields the announced system.

5.3.2 Diffusion approximations

Since these regimes are of great interest in radiative transfer, we study the equilibrium and
non-equilibrium diffusion regimes for the grey M1 model.

Equilibrium diffusion

In this part we study the equilibrium diffusion regime for the M1 grey model. Our aim is to check
that we recover the same diffusion equation than in the lemma 4.8 for the kinetic coupled system
(5.1), since in this regime the radiative temperature equilibrates to the electrons temperature
to the power 4. For ease of notations we drop the bars in the notations of CV . Once again we
rescale the system (5.25) for σs/σa << 1 and c >> 1, which yields





1

c
∂tE

ε +
1

ε
∇.Fε = ε2

4σs
3mc2

Eε
(
T ε − (Eε)

1
4QεE(‖gε‖)

)
+
σa
ε2
(
(T ε)4 − Eε

)

1

c
∂tF

ε +
1

ε
∇.Pε

r = ε2
4σs
3

(
T − (Eε)

1
4QεF (‖gε‖)
mc2

− 1

)
Fε − σa

ε2
Fε,

CV ∂tT
ε = −cσa

ε2

(
(T ε)4 − Eε

)
− ε2 4σs

3mc
Eε
(
T ε − (Eε)

1
4QεE(‖gε‖)

)

(5.35)

We prove the
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Lemma 5.4 (Equilibrium diffusion regime for the grey M1 model). A first order approximation
of the grey M1 model (5.35) in the equilibrium regime is

∂t

(
CV Tm + T 4

m

)
−∇.

(∇T 4
m

3σa

)
= 0

Proof. As before, we perform a Hilbert expansion of the unknowns





Eε = E0 + εE1 + ε2E2 + ...

Fε = F0 + εF1 + ε2F2 + ...

T ε = T 0 + εT 1 + ε2T 2 + ...

At the order ε−2, one finds {
E0 = (T 0)4,

F0 = 0.
(5.36)

For the order ε−1, one finds

{
∇.F0 = σa

(
4(T 0)3T 1 − E1

)
,

∇P0
r = −σaF1.

The third order moment Pr is defined by the Eddington factor (5.26) and one thus finds, using
the relation between a and b (5.33)

P0
r =

1

3
E0.

It yields in particular

F1 = −∇E
0

3σa
.

Finally, one finds by denoting Tm = T 0 and by adding the equations at the order ε0 satisfied by
Eε and T ε

∂t

(
CV Tm + T 4

m

)
−∇.

(∇T 4
m

3σa

)
= 0,

which is exactly the diffusion equation obtained in the lemma 4.8 for the system (5.1) and which
is the expected result.

Non-equilibrium diffusion regime

In this part we study the non-equilibrium diffusion regime of the grey M1 moment model (5.25).
Like in the beginning of this section, we perform the following scaling





c = ε−1c,

σa = εσa,

σs = ε−1σs.
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The moment model thus becomes




1

c
∂tE

ε +
1

ε
∇.Fε = σa

((
T ε
)4 − Eε

)
+

4σs
3mc2

(
T ε −

(
Eε
) 1

4QεE(‖gε‖)
)
Eε,

1

c
∂tF

ε +
1

ε
∇.Pε

r = −4σs
3ε2

Fε − σaFε +
4σs

3mc2

(
T ε −

(
Eε
) 1

4QεF (‖gε‖)
)
Fε,

CV ∂tT
ε = −cσa

((
T ε
)4 − Eε

)
− 4σs

3mc

(
T ε −

(
Eε
) 1

4QεE(‖gε‖)
)
Eε.

(5.37)

We prove the

Lemma 5.5 (Non-equilibrium diffusion regime for the grey M1 model). A first order approxi-
mation of the grey M1 model (5.37) in the non-equilibrium diffusion regime is





1

c
∂tE −∇.

(∇E
4σs

)
=

(
T − E 1

4

)(
σs

4E

3mc2
+ σa

(
T + E

1
4
)(
T 2 + E

1
2
))
,

CV ∂tT = −
(
T − E 1

4

)(
σs

4E

3mc
+ cσa

(
T + E

1
4
)(
T 2 + E

1
2
))
.

(5.38)

One remarks that the obtained system can be seen as the classical non-equilibrium diffu-
sion regime in the case of Thomson scattering perturbed by the term σs

4E
3mc2

coming from the
Compton scattering. It is important to notice that the Compton scattering do not modify the
equilibrium state E = T 4, but can modify the convergence rate to the equilibrium, depending
to the value of σs

4E
3mc with respect to cσa

(
T + E

1
4

)(
T 2 + E

1
2

)
.

Proof. We perform an Hilbert expansion of the unknowns E,F,Pε
r,g

ε and T , that is




Eε = E0 + εE1 + ε2E2 + ...

Fε = F0 + εF1 + ε2F2 + ...

Pε
r = P0

r + εP1
r + ε2P2

r + ...

gε = g0 + εg1 + ε2g2 + ...

T ε = T 0 + εT 1 + ε2T 2 + ...

Obviously the coefficients of the Hilbert expansion of Pε
r are directly linked to Eε and Fε by

the Eddington relation (5.26). In the same way, the coefficients of the Hilbert expansion of gε

are given by the coefficients of the Hilbert expansion of Eε and Fε. At the order ε−2, one finds
F0 = 0, which yields in particular g0 = 0 and b0 = 0 (where b is given in (5.34) in terms of E
and F. At the order ε−1, one finds

∇.P0
r = −σs

4

3
F1.

Since g0 = 0 and b0 = 0, one finds by using the relation (5.26) ∇.P0
r = 1

3E
0. One thus finally

finds F1 = − 1
4σs
∇E0. At the order ε0, one has





1

c
∂tE

0 +∇.F1 = σs
4T 0

3mc2
E0 + σa

(
(T 0)4 − E0

)
− σs

4(E0)
5
4

3mc2

CV ∂tT
0 = −σs

4T 0

3mc
E0 − cσa

(
(T 0)4 − E0

)
+ σs

4(E0)
5
4

3mc
.
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It yields, denoting E = E0 and T = T 0 and using the expression of F1





1

c
∂tE −∇.

(∇E
4σs

)
= σs

4E

3mc2

(
T − E 1

4

)
+ σa

(
T 4 − E

)
,

CV ∂tT = −σs
4E

3mc

(
T − E 1

4

)
− cσa

(
T 4 − E

)
.

Since T 4 − E =
(
T − E 1

4

)(
T + E

1
4

)(
T 2 + E

1
2

)
, one finds the announced system.

5.3.3 Case of an isotropic distribution

Since the grey M1 model (5.25) derived in the previous part is rather complicated, since it
involves highly nonlinear source terms, it can be interesting to study some particular situations.
In particular the case of an isotropic distribution, which often arises in long time range, can be
considered. In this case, one has F = 0 and the system reduces to





1

c
∂tE = σa

(
T 4 − E

)
+

4σs
3mc2

(
T − E 1

4
)
E,

C̄V ∂tT = −cσa
(
T 4 − E

)
− 4σs

3mc

(
T − E 1

4
)
E.

(5.39)

It is interesting to notice that this system corresponds to the non-equilibrium diffusion regime
(5.38) in the homogeneous (in space) case.

5.3.4 Numerical illustration

In this part we study numerically the greyM1 model (5.25). The main issue here is to understand
how the introduction of the Kompaneets terms in the coupled model (5.1) may/do modify the
long time behavior of the classical situation of isotropic scattering with emission absorption. Let
us explain it by considering this classical system composed of isotropic scattering and a basic
emission absorption operator





1

c
∂tf + Ω.∇f =

σs
4π

∫

S2

(
1 + cos2 θ

)(
f ′ − f

)
dΩ′ + σa

(
f0(ν, T )− f

)
,

CV ∂tT = −cσa
4π

∫

R+×S2

(
B(ν, T )− ν3f

)
dνdΩ.

(5.40)

For this system, the grey M1 model writes





1

c
∂tE +∇.F = σa

(
T 4 − E

)
,

1

c
∂tF +∇.Pr = −

(
4

3
σs + σa

)
F,

C̄V ∂tT = −cσa
(
T 4 − E

)
,

(5.41)

and it is known that in long time range, the radiative temperature TR = E4 equilibrates with
the electron temperature, i.e.

lim
t→∞

TR = T.
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On the other hand, denoting α = 1/3mc2, the grey M1 model (5.25) writes




1

c
∂tE +∇.F = σa

(
T 4 − E

)
+ 4ασs

(
T − E 1

4QE(‖g‖)
)
E

1

c
∂tF +∇.Pr = −

(
4

3
σs + σa

)
F + 4ασs

(
1− E 1

4QF (‖g‖)
)
F

C̄V ∂tT = −cσa
(
T 4 − E

)
− 4ασs

(
T − E 1

4QE(‖g‖)
)
E,

(5.42)

where the operators QE and QF are defined by





QE(‖g‖) =

(
2 +

√
4− 3‖g‖2

) 5
4

4

4 + ‖g‖2
4− ‖g‖2 + 2

√
4− 3‖g‖2

(
2 +

√
4− 3‖g‖2 − ‖g‖2
1− ‖g‖2

) 1
4

QF (‖g‖) =

(
2 +

√
4− 3‖g‖2

) 1
4

4

20 + ‖g‖2
4 + ‖g‖2 + 2

√
4− 3‖g‖2

(
2 +

√
4− 3‖g‖2 − ‖g‖2
1− ‖g‖2

) 1
4

.

It is thus interesting to study the solution of this grey M1 model with respect to α, and to
compare its solution with the classical grey M1 model (5.41).

To this end we restrict ourself to the 1D case and we consider a domain D = [0, 10]. For
1 ≤ j ≤ N , we consider an irregular mesh defined by (N + 1) points 0 = x 1

2
< ... < xN+ 1

2
= x∗.

We define xj as the middle of the j-th cell , i.e. xj = (xj− 1
2

+ xj+ 1
2
)/2 and we denote ∆xj its

length. We also define the dual (j + 1
2)-th cell as the cell [xj , xj+1], which length is denoted

∆xj+ 1
2
. In all the numerical tests we consider periodic boundary conditions. The discretization

of the grey M1 model is performed by using a Roe type scheme [ACCD02] for the radiation
transport (zero-th order moment E and first order moment F ) and an explicit Euler discretiza-
tion of the time derivatives. We consider a fully explicit discretization of the source terms. For
simplicity the coefficients in the system (5.25) are taken as CV = σs = c = 1, and the opacity
σa changes according to the test case. The mesh is composed of 100 cells.

The section is organized as follows. In a first part we explain our procedure to get the sta-
tionary solution, either from an analytical or numerical expression. The end of the section
presents two test cases to illustrate the influence of the Kompaneets terms in our grey M1 model
(5.42) in comparison with the classical grey M1 model (5.41). In the first test case the initial
conditions are tuned to obtained an analytical stationary solution. In the second test case,
the stationary solution is obtained from a numerical procedure. The coefficient σa is chosen to
increase the difference between the two models.

Stationary solutions

Since we are interested in the long time behavior of the solution of the grey M1 model (5.25),
and more precisely in the relaxation of the radiative temperature to the electron temperature,
it is important to be able to compute the convergence rate of the solution. This can be achieved
by using the energy conservation (5.2) satisfied by the system (5.1). For all t ≥ 0, one has

∫

D

(
E(t) + T (t)

)
dx =

∫

D

(
Ein + T in

)
dx.

134



Since, as t → ∞, the solution (E, T ) converges to a stationary state satisfying E∞ = (T∞)4,
one finds the following relation between the energy at initial time and the stationary solution

E∞ + (E∞)4 =
1

|D|

∫

D

(
Ein + T in

)
dx. (5.43)

There exists particular cases for which analytical solutions can be obtained. For example, if
for all x ∈ [0, x∗], Ein(x) + T in(x) = 2, one easily finds E∞ = T∞ = 1. This class of initial
conditions is used in the following first test case. In the second one, this equation is solved
numerically with a small enough error.

First test case: piecewise constant initial conditions

In a first test case we consider piecewise constant initial conditions satisfying for all x ∈ [0, x∗],
Ein(x) + T in(x) = 2. As explained at the end of the previous part, the stationary solutions
in long time range can be computed and one finds E∞ = T∞ = 1. More precisely, we assume
that the distribution at initial time is isotropic, i.e. F in = 0, and the initial zero-th order
moment and the initial electron temperature are displayed in picture 5.13. The opacity σa is

Figure 5.13: Initial conditions versus space. Left: zero-th order moment, right: electron tem-
perature

taken equal to one. We are interested in the relaxation of the radiative temperature to the
electron temperature, and more precisely to the influence of the Kompaneets terms with respect
to the classical scattering case. We fix a final time T f = 200 and we let the system move on
for several values of the parameter α. Figure 5.14 shows the zero-th order moment (left), the
electron temperature (right) and the first order moment (bottom) at time t = 0.1 for three
values of the parameter α, namely α = 0, 0.5 and 1, the case α = 0 being the solution of the
classical system (5.41). It shows that the Kompaneets terms modify the transitional state. In
particular remaining that the equilibrium state is defined by E∞ = T∞ = 1, we see that in the
case α = 1, the solution at time t = 0.1 is closer, in some sense, to the stationary state. The
same solutions are displayed in picture 5.15 at time t = 1. The knowledge of the stationary
states for given initial conditions allows to compute the time evolution of the numerical error
between the numerical solution at time t and the stationary states. To this end we define the
following L1 error

E (t) =

∫

D

(
|E(t, x)− E∞|+ |T (t, x)− T∞|

)
dx. (5.44)
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Figure 5.14: Numerical solutions of (5.42) versus space for several values of the parameter α at
time t = 0.1. Top left: zero-th order moment, top right: electron temperature, bottom zero-
th order moment. The Kompaneets terms modify the transitional regime with respect to the
classical isotropic scattering.

Figure 5.16 displayed this numerical error with respect to the time for the three values of the
parameter α in a log scaled plan. As observed in the previous pictures, it shows that in this test
case the Kompaneets terms increase the rate of convergence toward equilibrium.

Second test case: crenel initial conditions

In this part we still aim to compare the solution of the grey M1 model (5.42) and the solution
of the classical grey M1 model (5.41) for different values of the parameter α. To increase the
difference between the two solutions, we consider an isotropic distribution and we take for the
opacity σa = 0.1, σs being kept equal to one. In this case, the model reduces to (5.39) (case of
an isotropic distribution). In particular the convergence speed is related only to σa(T

4 − E) in
the case of the classical grey M1 model (no Kompaneets terms), while a competition between
the parameters σa and σs drives this convergence rate in the other case.

The initial conditions are taken as follows (picture 5.17). The first order moment is taken
as zero and the zero-th order moment and the electron temperature are taken as

Ein(x) =

{
2 if 3.25 ≤ x ≤ 3.75,

10−14 elsewhere
and T in(x) =

{
2 if 6.25 ≤ x ≤ 6.75,

10−14 elsewhere

For this initial conditions, the stationary solution is given by
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Figure 5.15: Numerical solutions of (5.42) versus space for several values of the parameter α at
time t = 1. Top left: zero-th order moment, top right: electron temperature, bottom zero-th
order moment.

Figure 5.16: Numerical error E (t), defined in (5.44), versus time in a log scaled plan for several
values of the parameter α. The Kompaneets terms increase the rate of convergence toward the
equilibrium.

{
E∞ = 0.00340129681,

T∞ = 0.24149666237.
(5.45)
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Figure 5.17: Initial conditions of the grey M1 model (5.42) versus space. Left: zero-th order
moment E, right: electron temperature T .

This solution, obtained as a numerical approximation of (5.43), is correct a order 10−10. Once

Figure 5.18: First order moment E versus space for several values of the parameter α at different
times. The picture at the bottom right corner also displays the stationary solution E∞ defined
in (5.45). The Kompaneets terms in the grey M1 model (5.42) bring a significant correction
with respect to the classical case (model (5.41)).

again, we let the system move on for several values of the parameter α. Picture 5.18 displays for
three values of the parameter α (α = 0, 0.5 and 1) the first order moment E at several times. It
shows that the junction of the two bumps generated by the particular choice of initial conditions
takes a longer time when the Compton scattering (Kompaneets terms) is taken into account.
The time evolution of the electron temperature Y is depicted on picture 5.19 for several values
of the parameter α. Once again, some significant difference are observed between the case α = 0
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Figure 5.19: Electron temperature T versus space for several values of the parameter α at
different times. The picture at the bottom right corner also displays the stationary solution T∞

defined in (5.45).

Figure 5.20: Numerical error E (t), defined in (5.44), versus time in a log scaled plan for several
values of the parameter α.

(isotropic scattering) and α = 0.5 or 1 (Compton scattering). In particular at time t = 2.7 the
magnitude of the first bump of is five times greater in the case α = 1 than is the case α = 0.
Once again, the important quantity is the time evolution of the numerical error E(t) defined
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in (5.44). Picture 5.20 displays the evolution of this numerical error. On the contrary to the
previous test case, in which the Kompaneets terms increased the rate of convergence, the curves
cross each other at two times. Picture 5.21 shows a zoom of this in the time region of interest.

Figure 5.21: Numerical error E (t), defined in (5.44), versus time in a log scaled plan¡ for several
values of the parameter α.

5.4 Hybrid P1 −M1 angular moments model

From the preceding two parts, concerning the P1 and M1 models, one remarks that the choice
of a particular expression for the distribution function, (5.5) in the case of the P1 model and
(5.21) in the case of the M1 model, allows us to compute the frequency dependence model in
the case of the P1 model and the grey model in the case of the M1 model. This comes from the
fact that for the P1 model the distribution function is assumed to be linear with respect to the
angle Ω, and thus the frequency dependent model can be derived, even with the quadratic (with
respect to f) terms. Since no particular behavior with respect to the frequency ν is assumed
for the distribution function, the quadratic terms can not be analytically computed in terms of
the moments in the grey case. On the other hand, in the case of the M1 model, the dependence
of the distribution function is nonlinear with respect to the angle Ω, and thus the frequency
dependent model can not be computed. But since a particular behavior with respect to the
frequency is assumed, the grey case can be derived.

From this discussion it appears that one can modify the assumed expression of the distribu-
tion function in the case of the P1 model (expression (5.5)) by assuming a ”M1 kind” frequency
dependence, i.e. assuming that the distribution function is given by an expression of the form

f(t,x, ν,Ω) =
1 + b(t,x).Ω

exp
(

ν
a(t,x)

)
− 1

. (5.46)
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As previously, we define





U(t,x, ν) =
1

4π

∫

S2

f(t,x, ν,Ω)dΩ,

V(t,x, ν) =
1

4π

∫

S2

f(t,x, ν,Ω)ΩdΩ,

(5.47)

We prove the

Lemma 5.6 (Frequency dependent hybrid P1 −M1 model). The frequency dependent hybrid
model for system (5.1) is exactly the same than the P1 frequency dependent model, i.e. is given
by





1

c
∂tU +∇.V =

σs
3mc2

ν−2 ∂

∂ν

[
ν4

(
T∂νU + U + U2 + 3(V,V)

)]
+ σa(f0 − U),

1

c
∂tV +

1

3
∇U = −4

3
σsV +

σs
3mc2

ν−2 ∂

∂ν

[
ν4

(
T∂νV + V + 2UV

)]
− σaF,

CV ∂tT = −σa
∫

R+

(
B(ν, T )− ν3U

)
dν − σs

3mc2
ν−2 ∂

∂ν

[
ν4

(
T∂νU + U + U2 + 3(V,V)

)]
.

(5.48)

Proof. As before, we integrate the first equation of (5.1) over the two first angular moments,
which yields





1

c
∂tU +∇.V =

σs
3mc2

ν−2 ∂

∂ν

[
ν4

(
T∂νU + U +

1

4π

∫

S2

f2dΩ

)]
+ σa(f0 − U),

1

c
∂tV +∇

(
1

4π

∫

S2

Ω⊗ΩIdfdΩ

)
=

σs
3mc2

ν−2 ∂

∂ν

[
ν4

(
T∂νV + V +

1

4π

∫

S2

f2ΩdΩ

)]

−
(

4

3
σs + σa

)
V,

CV ∂tT = −σa
∫

R+

(
B(ν, T )− ν3U

)
dν +

σs
3mc2

∫

R+

ν4

(
T∂νU + U +

1

4π

∫

S2

f2dΩ

)
dν.

As before, we need to compute several integrals. Since the distribution function is assumed to
be linear with respect to Ω, the computation of these integrals can be carried out and one finds





1

4π

∫

S2

f2dΩ =
1

4π

∫

S2

(
1 + b.Ω

eν/a − 1

)2

dΩ =

(
1 +
‖b‖2

3

)(
eν/a − 1

)−2

= U2

(
1 +
‖b‖2

3

)
,

1

4π

∫

S2

f2ΩdΩ =
1

4π

∫

S2

(
1 + b.Ω

eν/a − 1

)2

ΩdΩ =
2

3

(
eν/a − 1

)−2

b = 2UV.

In the same way, the second order moment can be computed and one finds

1

4π

∫

S2

Ω⊗ΩIdfdΩ =
1

4π

∫

S2

1 + b.Ω

eν/a − 1
Ω⊗ΩdΩ =

1

3

(
eν/a − 1

)−1

=
1

3
E,
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which is exactly the closure of the P1 model. It yields





1

c
∂tU +∇.V =

σs
3mc2

ν−2 ∂

∂ν

[
ν4

(
T∂νU + U + U2

(
1 +
‖b‖2

3

))]
+ σa(f0 − U),

1

c
∂tV +

1

3
∇E = −4

3
σsV +

σs
3mc2

ν−2 ∂

∂ν

[
ν4

(
T∂νV + V + 2UV

)]
− σaV,

CV ∂tT = −σa
∫

R+

(
B(ν, T )− ν3U

)
dν +

σs
3mc2

∫

R+

ν4

(
T∂νU + U + U2

(
1 +
‖b‖2

3

))
dν.

Since b = 3V/U , one finds exactly the P1 frequency dependent model (5.7).

Since a ”M1 kind”frequency behavior is assumed for the distribution function, the grey model
can be derived. Once again, we define





E(t,x) =
15

4π5

∫

R+×S2

ν3f(t,x, ν,Ω)dΩdν,

F(t,x) =
15

4π5

∫

R+×S2

ν3f(t, x, ν,Ω)ΩdΩdν,

We prove the following lemma.

Lemma 5.7 (Grey hybrid P1−M1 model). The grey hybrid P1−M1 model for the system (5.1)
is defined by





1

c
∂tE +∇.F = σa

(
T 4 − E

)
+

4T

3mc2
σsE −

4σs
3mc2

E
5
4

{
1 + 3‖g‖2

(
1− 90

π4
ζ(5)

)}
,

1

c
∂tF +

1

3
∇E =

4

3

(
T

mc2
− 1

)
σsF− σaF−

4σs
3mc2

E
1
4

(
2− 90

π4
ζ(5)

)
F,

CV ∂tT = −σa
(
T 4 − E

)
− 4T

3mc2
σsE +

4σs
3mc2

E
5
4

{
1 + 3‖g‖2

(
1− 90

π4
ζ(5)

)}
.

(5.49)

where g = F/E and ζ is the zeta Riemann function ζ(z) =

∞∑

k=1

k−z.

It is remarkable to see that the structure of this model is the same that the grey M1 model
(5.25), only the nonlinear terms and the closure are different.

Proof. Taking the two first moments of system (5.1) and multiplying the temperature equation
by 15π4, one writes by denoting once again CV = 15/π4CV and D = 15/π4D





1

c
∂tE +∇.F = σa

(
T 4 − E

)
+

4T

3mc2
σsE −

5σs
4π5mc2

∫

R+×S2

ν4
(
f + f2

)
dνdΩ,

1

c
∂tF +

15

4π5
∇.
(∫

R+×S2

Ω⊗Ωfν3dνdΩ

)
=

4

3

(
T

mc2
− 1

)
σsF− σaF

− 5σs
4π5mc2

∫

R+×S2

ν4Ω
(
f + f2

)
dνdΩ,

CV ∂tT = −σa
(
T 4 − E

)
− 4T

3mc2
σsE +

5σs
4π5mc2

∫

R+×S2

ν4
(
f + f2

)
dνdΩ
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As for the previous angular moments models, the proof mainly relies on the computation of
integrals. The definition of f yields

1

4π

∫

R+×S2

(f + f2)ν4dνdΩ =
1

4π

∫

R+×S2

(
1 +

1 + b.Ω

eν/a − 1

)
ν4

eν/a − 1
(1 + b.Ω)dνdΩ,

which yields

1

4π

∫

R+×S2

(f + f2)ν4dνdΩ = a5

(
1 +
‖b‖2

3

)∫

R+

ν4

(eν − 1)2
dν + a5

∫

R+

ν4

eν − 1
dν.

These integrals have already been computed during the derivation of the greyM1 model. Indeed,
one finds

∫
R+

ν4

(eν−1)2
dν = −24ζ(5) + 4π4/15 and

∫
R+

ν4

eν−1dν = 24ζ(5). It gives us

1

4π

∫

R+×S2

(f + f2)ν4dνdΩ = a5

{(
1 +
‖b‖2

3

)(
− 24ζ(5) +

4π4

15

)
+ 24ζ(5)

}
,

which we write

1

4π

∫

R+×S2

(f + f2)ν4dνdΩ = a5

{
4π4

15
+
‖b‖2

3

(
− 24ζ(5) +

4π4

15

)}
,

At this point, one sees that one the differences with the grey M1 model is the presence of the

term ‖b‖2
3 . Let us compute the integrals in the equation of F. One has, using the definition of

f (5.46)

1

4π

∫

R+×S2

(f + f2)Ων4dνdΩ =
a5

3

{∫

R+

ν4

eν − 1
dν + 2

∫

R+

ν4

(eν − 1)2
dν

}
b,

which yields

1

4π

∫

R+×S2

(f + f2)Ων4dνdΩ =
a5

3

{
24ζ(5) + 2

(
− 24ζ(5) +

4π4

15

)}
b.

We write this expression

1

4π

∫

R+×S2

(f + f2)Ων4dνdΩ =
a5

3

(
8π4

15
− 24ζ(5)

)
b.

In the same way, the two first moments E and F can be computed in terms of a and b




E =
15

4π5

∫

R+×S2

1 + b.Ω

eν/a − 1
ν3dνdΩ = a4 15

π4

∫

R+

ν3

eν − 1
dν = a4,

F =
15

4π5

∫

R+×S2

1 + b.Ω

eν/a − 1
Ων3dνdΩ =

a4

3
b

15

π4

∫

R+

ν3

eν − 1
dν =

a4

3
b,

which yields a = E
1
4 and b = 3F

E = 3g. One thus gets




1

c
∂tE +∇.F = σa

(
T 4 − E

)
+

4T

3mc2
σsE −

4σs
3mc2

E
5
4

{
1 + 3‖g‖2

(
1− 90

π4
ζ(5)

)}
,

1

c
∂tF +

1

3
∇E =

4

3

(
T

mc2
− 1

)
σsF− σaF−

4σs
3mc2

E
1
4

(
2− 90

π4
ζ(5)

)
F,

CV ∂tT = −σa
(
T 4 − E

)
− 4T

3mc2
σsE +

4σs
3mc2

E
5
4

{
1 + 3‖g‖2

(
1− 90

π4
ζ(5)

)}
.
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It is interesting to notice that this model has the same structure than the grey M1 model
(5.25) but the nonlinear sources terms are simpler. Obviously, the equilibrium regime of the
grey hybrid P1−M1 model (5.49) is the same than the equilibrium of the grey M1 model (5.25)
since the terms coming from the emission absorption are the same. Even if it also true for the
non-equilibrium diffusion regime, it is not so obvious. This comes from the fact that in this
regime, ‖g‖ → 0 and thus the terms which are different with the grey M1 model vanish.
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Chapter 6

A deterministic model for the
electron-ion Bremsstrahlung:
application to radiotherapy

This chapter is taken from a joint work with R. Duclous (CEA), S. Brull (Bordeaux 1 University)
and B. Dubroca (CEA) at the Cemracs 2014 (Couphomom project).

6.1 Introduction

The aim of this chapter is to derive and validate a deterministic model for the electron-ion
Bremsstrahlung that allows a smooth transition between the thermal and non thermal limits.
The Bremsstrahlung process arises when an electron gets close to an ion. Due to the Coulomb
potential of the ion, the electron slows down and emits a photon (figure 6.1). The context
of this work is the radiotherapy, and in particular the bombardment of cancerous tumor by
fast electrons. As explained in the part 6.5.2, the slowing down of electrons is due both to

Figure 6.1: Schematic representation of electron-ion Bremsstrahlung

the electron-electron collisions and to the electron-ion Bremsstrahlung. This later contribution
increases with the incoming electron’s energy. For instance the electron-ion Bremsstrahlung
slowing down becomes non negligible from 1 Mev, and dominates the electronic collision slowing
down from roughly 60 Mev in the case of water. Since in the case of radiotherapy the energy
range is [0, 20] Mev, the electron-ion Bremsstrahlung brings a non negligible contribution to
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the slowing down. This model could also be used in astrophysics or inertial confinement fusion
(ICF), in which hard X-ray emission from Bremsstrahlung can bring significant modification in
the photon spectrum [DOP12].

In the whole chapter we assume that there is no energy absorbed by the ion. It yields in particu-
lar the following energy conservation relation εγ = hν = ε0e− εe, where h is the Planck constant,
ν the photon’s frequency, ε0e (resp εe) is the energy of the incoming (resp outcoming electron).
The momentum transferred to the ion, denoted q, satisfies the relation q = p0

e − pe − pγ . In
the following we denote Σ the 4-uplets of

(
q,pγ ,pe,p

0
e

)
that satisfy this conservation, i.e. Σ is

defined by

Σ =

{
(
q,pγ ,pe,p

0
e

)
∈ R

12

∣∣∣∣

{
q = p0

e − pe − pγ ,

εγ = ε0e − εe.

}
(6.1)

The probability of emission of a photon of energy εγ from an ingoing electron of energy ε0e,
leading to an electron of energy εe, is related to the quantity

dσB

dεγdΩγdΩe

(
ε0e → εe

)
. (6.2)

This quantity is called the differential cross section, and its derivation will be discussed in section
6.4. The probability of the inverse transformation, called the inverse Bremsstrahlung, which is
concerned by the absorption of a photon of energy εγ by an ingoing electron of energy ε0e, leading
to an electron of energy εe, is related to the quantity

dσIB

dεγdΩγdΩe

(
ε0e → εe

)
. (6.3)

In practice, models and numerical codes require the angular integrated expression of these cross
sections. In the case of plasmas, there is an additional dependance on the ionization degree and
on the plasma temperature. Such dependance can be taken into account by analytical expres-
sions [BET34,KM59]. This explains the extensive use of tabular values, as given for example
in [SB85]. Despite precise, the numerical computation of the angular moments of the differential
cross sections may take some unaffordable times.

This chapter is organized as follows. In section 2 we derive a kinetic model for the electron-
ion Bremsstrahlung (system (6.16)). Since we consider the ions as fixed, we only consider an
equation for the electrons and a equation for the photons. We prove that our model preserves
the total energy (lemma 6.1) and the total number of electrons (lemma 6.2). We also explain
how the thermal Bremsstrahlung can be obtained as the limit of our model in the regime of
local thermodynamic equilibrium (LTE). Finally, we use the continuous slowing down approx-
imation, developed by Pomraning [POM83, POM92], which is used to simplify the electrons’
equations. This approximation can be seen as the grazing collisions approximation used in the
case of electrons-electrons collisions (Boltzmann Landau equation [LP81]). In section 3 the an-
gular M1 model [DF99] is derived from our model, and we present the energy discretization.
We also prove that the numerical scheme preserves the total energy (lemma 6.4). In section 4
we focus on analytical electron-ion Bremsstrahlung differential cross sections. Finally, in section
5 we present some numerical results. After a validation of the differential cross section from a
comparison with tabulated values [SB85], we present a test case of dose deposition which arise
in radiotherapy.
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We end this section by introducing the main physical quantities of interest used in this chapter.
Firstly, we chose to compute the population of electrons from their angular flux, which is defined
from their distribution function fe by the relation

ψe(t, x, εe,Ωe) = ve(εe)fe(t, x, εe,Ωe), (6.4)

where ve is the absolute value of the electrons’ velocity. We also define the photon angular flux
by the relation

ψγ(t, x, εγ ,Ωγ) =
Iν(t, x, εγ ,Ωγ)

hεγ
, (6.5)

where Iν is the radiative intensity, h is the Planck constant and εγ = hν is the photons’ energy.
The photon occupation number nγ is defined by

nγ(t, x, εγ ,Ωγ) =
c2h2

2

Iν(t, x, εγ ,Ωγ)

ε3γ
. (6.6)

The attention of the reader is drawn to the fact that the occupation number defined here is the
same quantity that the density distribution function fγ defined in the chapter 1. We define the
number of electrons per unit volume by

ρe(t, x) =

∫ ∞

0
dεe

∫

S2

dΩefe(t, x, εe,Ωe).

The number of electrons at time t is thus defined by

Ne(t) =

∫

R3

dxρe(t, x) =

∫

R3

dx

∫ ∞

0
dεe

∫

S2

dΩefe(t, x, εe,Ωe). (6.7)

In this chapter the impulsion (resp the energy) is expressed in mc (resp in mc2) unit, i.e we
define p := p/mc and ε := ε/mc2.

6.2 Kinetic models for electron-ion Bremsstrahlung

In this section we present our kinetic model for electron-ion Bremsstrahlung (system (6.16)).
This model is constructed from the master equations, satisfies an energy conservation result
(lemma 6.1) and preserves the total number of electrons (lemma 6.2). In a second step, we
apply the continuous slowing down approximation on the electrons equation. This approximation
makes use of the peak of the differential cross section at low energy exchanges to expand the
function evaluated at (ε0e,Ω

0
e) around (εe,Ωe), obtaining a drift diffusion equation in energy and

angle [POM83,POM92].

6.2.1 Model derivation from the master equations

The aim of this section is to derive a model from the master equations. The derivation of this
model is performed by considering all the possible transformations produced by the electron-
ion Bremsstrahlung (Feynman’s diagram, picture 6.2). There is two possible ways. One can
consider photon emission (resp. absorption). Either an incoming electron can lose (resp. gain)
energy by emitting (resp. absorbing) a photon. In addition to the differential cross sections

dσB

dεγdΩγdΩe

(
ε0e → εe

)
and dσIB

dεγdΩγdΩe

(
ε0e → εe

)
defined respectively in (6.2) and (6.3), we define
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Figure 6.2: Feynmam’s diagram for electron-ion Bremsstrahlung

the probability for the reverse Bremsstrahlung (top right in the Feynmann diagram figure 6.2)
and reverse inverse Bremsstrahlung (bottom right in the Feynmann diagram figure 6.2), whose
quantities refer respectively to the probability of emission of a photon by an electron of energy
εe and the absorption of a photon by an electron of energy εe. The conservation of the total
energy for each separated process (direct and inverse Bremsstrahlung) implies a link between all
these probabilities, namely





dσIB

dεγdΩγdΩe

∣∣∣∣
rev(

εe → ε0e
)

=
dσB

dεγdΩγdΩe

(
ε0e → εe

)
,

dσIB

dεγdΩγdΩe

(
ε0e → εe

)
=

dσB

dεγdΩγdΩe

∣∣∣∣
rev(

εe → ε0e
)
.

(6.8)

Nevertheless, we keep the entire notations in the next parts since it highlights the origin of each
terms.

We consider a Boltzmann equation for the electrons and the photons. Since we are only inter-
ested in the electron-photon interactions, we do not consider the electron-electron interactions.
Moreover, we assume that the ions are fixed. The derivation of the electron equation is per-
formed first (part 6.2.1.0), and the derivation of the photon equation comes in a second step
(part 6.2.1.0).

Electrons equation

The Boltzmann equation for the electrons is composed of a classical transport term and a collision
operator. As shown in the Feynman’s diagram (picture 6.2), this collision operator involves two
gain terms and two loss terms, coming from direct and inverse Bremsstrahlung. One thus obtains
the general Boltzmann equation

1

ve
∂tψe(εe,Ωe) + Ωe · ∇ψe(εe,Ωe) = QBe −QB|reve +QIBe −QIB|reve , (6.9)
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where we removed the time and space dependence in the angular flux for ease of notations. The

collision operators QBe , Q
B|rev
e , QIBe and Q

IB|rev
e are obtained as follows. The collision operator

for direct Bremsstrahlung QBe is obtained by integrating over all the photons energy εγ and
direction Ωγ , over all the ingoing electrons energy ε0e and direction Ω0

e and over all the ion
impulsion q, the probability for direct Bremsstrahlung multiplied by the electrons angular flux
distribution ψe, the ionic density ρi and a Dirac function δΣ that ensures the conservation of
energy and impulsion (whose set in defined in (6.1))

QBe = ρi(t, x)

∫

R3

d3q

∫ ∞

0
dεγ

∫

S2

dΩγ [1 + nν(εγ ,Ωγ)]

×
∫ ∞

εe

dε0e

∫

S2

dΩ0
eψe(ε

o
e,Ω

o
e)

dσB

dεγdΩγdΩe

(
ε0e → εe

)
δΣ.

The integral over the ingoing electrons is performed on the interval [εe,∞] (and not [0,∞]) since
the ingoing electron must have a higher energy than the ingoing electron (ε0e = εe + εγ > εe).
The factor 1 + nγ , where nγ is the photons occupation number defined in (6.6), models the
induced effects (quantum effects). Since the integration of the Dirac function over the impulsion
p and over the photons energy εγ vanishes, one obtains

QBe = ρi(t, x)

∫

S2

dΩγ [1 + nν(εγ ,Ωγ)]

∫ ∞

εe

dε0e

∫

S2

dΩ0
eψe(ε

o
e,Ω

o
e)

dσB

dεγdΩγdΩe

(
ε0e → εe

)
.

(6.10)

In the same way, the Bremsstrahlung operator Q
B|rev
e for the reverse path is obtained by inte-

grating over all the photons energy εγ and direction Ωγ , over all the outgoing electrons energy
ε0e and direction Ω0

e and over all the ion impulsion q, the transition probability multiplied by
the electron angular flux distribution ψe and by the Dirac function δΣ

QB|reve = ρi(t, x)ψe(εe,Ωe)

∫

R3

d3q

∫ ∞

0
dεγ

∫

S2

dΩγ [1 + nν(εγ ,Ωγ)]

×
∫ εe

0
dε0e

∫

S2

dΩ0
e

dσB

dεγdΩγdΩe

∣∣∣∣
rev (

ε0e → εe
)
δΣ.

The integral over the outgoing electrons is performed on the interval [0, εe] since the outgoing
electron (in this case ε0e) must have a lower energy than the ingoing electron. Once again, this
expression can be simplified to get

QB|reve = ρi(t, x)ψe(εe,Ωe)

∫

S2

dΩγ [1 + nν(εγ ,Ωγ)]

∫ εe

0
dε0e

∫

S2

dΩ0
e

dσB

dεγdΩγdΩe

∣∣∣∣
rev (

ε0e → εe
)
.

(6.11)

Using the same reasoning, one obtains for the inverseQIBe and reverse inverseQ
IB|rev
e Bremsstrahlung

operators the following expressions




QIBe = ρi(t, x)

∫

S2

dΩγnν(εγ ,Ωγ)

∫ εe

0
dεoe

∫

S2

dΩ0
eψe(ε

o
e,Ω

o
e)
veD (εe)

voeD (εoe)

dσIB

dεγdΩγdΩe

(
ε0e → εe

)
,

QIB|reve = ρi(t, x)ψe(εe,Ωe)

∫

S2

dΩγnν(εγ ,Ωγ)

∫ ∞

εe

dεoe

∫

S2

dΩ0
e

voeD (εoe)

veD (εe)

dσIB

dεγdΩγdΩe

∣∣∣∣
rev (

ε0e → εe
)
.

(6.12)
The process of inverse Bremsstrahlung involves the absorption of photons, and the corresponding
collision operators must be directly proportional to the photons population. This explain the
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coefficient nγ (and not 1 + nγ) in the expression of the inverse Bremsstrahlung operators. In
these expressions ve is the electrons’ velocity and D, defined by

D(εe) =

√
εe
mec2

(
εe
mec2

+ 2

)(
εe

mec
2 + 1

)
,

is the density of state. The coefficient vo
eD(εo

e)
veD(εe)

is introduced to ensure the correct thermal regime

at the local thermodynamic equilibrium (LTE), in which case the electron angular flux is given

by ψe(εe) = ve
ρe

mc2
βe−β

K2(β)D (εe) e
−εe/kBT , where T is the electrons’ temperature at equilibrium,

kB the Boltzmann constant (see the part 6.2.3), K2 is the modified Bessel function of the first
kind and β = mc2/kBT .

Photon equation

As shown in the Feynman diagram (figure 6.2), the collision operator in the photons’ equation
is composed of a gain term coming from direct Bremsstrahlung QBγ and a loss term coming from

inverse Bremsstrahlung QIBγ . We thus obtain the general Boltzmann equation

1

c
∂tψγ(εγ ,Ωγ) + Ωγ · ∇ψγ(εγ ,Ωγ) = QBγ −QIBγ . (6.13)

In the same way than for the electron equation, the collision operator for direct Bremsstrahlung
QBγ is obtained by integrating over all the energy and direction of the ingoing and outgoing
electron and over all the ionic impulsion q the probability of direct Bremsstrahlung multiplied
by the electron’s angular flux distribution ψe, the ionic density ρi and the Dirac function δΣ

QBγ = ρi(t, x) [1 + nν(εγ ,Ωγ)]

∫

R3

d3q

∫ ∞

0
dεe

∫ ∞

εγ

dεoe

∫

S2

dΩo
eψe(ε

o
e,Ω

o
e)

∫

S2

dΩe

dσB

dεγdΩγdΩe

(
ε0e → εe

)
δΣ.

The integral over all the ingoing electrons ε0e is performed on the interval [εe,∞] (and not [0,∞])
since the energy of the ingoing electron must be higher than the energy of the outgoing electron.
Since the integration of the Dirac function over the ion impulsion q and over the outgoing
electrons is equal to 1, one obtains the following expression

QBγ = ρi(t, x) [1 + nν(εγ ,Ωγ)]

∫ ∞

εγ

dεoe

∫

S2

dΩo
eψe(ε

o
e,Ω

o
e)

∫

S2

dΩe

dσB

dεγdΩγdΩe

(
ε0e → εe

)
. (6.14)

The same reasoning is performed to obtain the expression of the inverse Bremsstrahlung operator
QIBγ . The differences come from the integration domain on the ingoing and outgoing electrons,

from the induced effects and from the introduction of the factor vo
eD(εo

e)
veD(εe)

. Indeed, in this case the

outgoing electron has a higher energy ε0e than the ingoing electron. The integration domain is
thus ε0e ∈ [εe,∞]. The induced effects should here be taken into account with a factor nγ (and
not 1 + nγ). One obtains

QIBγ = ρi(t, x)nν(εγ ,Ωγ)

∫

R3

d3q

∫ ∞

0
dεe

∫ ∞

εγ

dεoe

∫

S2

dΩeψe(εe,Ωe)
voeD (εoe)

veD (εe)
∫

S2

dΩo
e

dσIB

dεγdΩγdΩe

∣∣∣∣
rev (

ε0e → εe
)
δΣ,
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which, as previously, simplified as

QIBγ = ρi(t, x)nν(εγ ,Ωγ)

∫ ∞

εγ

dεoe

∫

S2

dΩeψe(εe,Ωe)
voeD (εoe)

veD (εe)

∫

S2

dΩo
e

dσIB

dεγdΩγdΩe

∣∣∣∣
rev (

ε0e → εe
)
.

(6.15)

General model

Finally, using (6.9), (6.10), (6.11), and (6.12) for the electrons and (6.13), (6.14) and (6.15) for
the photons and the link between the different differential cross sections (6.8), one obtains the
following general model for electron-ion Bremsstrahlung





1

ve
∂tψe(εe,Ωe) + Ωe · ∇ψe(εe,Ωe)

= ρi(t, x)

∫

S2

dΩγ [1 + nν(εγ ,Ωγ)]

∫ ∞

εe

dε0e

∫

S2

dΩ0
eψe(ε

o
e,Ω

o
e)
dσB(ε0e → εe)

dεγdΩγdΩe

− ρi(t, x)ψe(εe,Ωe)

∫

S2

dΩγ [1 + nν(εγ ,Ωγ)]

∫ εe

0
dε0e

∫

S2

dΩ0
e

dσB(εe → ε0e)

dεγdΩγdΩe

+ ρi(t, x)

∫

S2

dΩγnν(εγ ,Ωγ)

∫ εe

0
dεoe

∫

S2

dΩ0
eψe(ε

o
e,Ω

o
e)
veD (εe)

voeD (εoe)

dσIB(εe → ε0e)

dεγdΩγdΩe

− ρi(t, x)ψe(εe,Ωe)

∫

S2

dΩγnν(εγ ,Ωγ)

∫ ∞

εe

dεoe

∫

S2

dΩ0
e

voeD (εoe)

veD (εe)

dσIB(ε0e → εe)

dεγdΩγdΩe

,

1

c
∂tψγ(εγ ,Ωγ) + Ωγ · ∇ψγ(εγ ,Ωγ)

= ρi(t, x) [1 + nν(εγ ,Ωγ)]

∫ ∞

εγ

dεoe

∫

S2

dΩo
eψe(ε

o
e,Ω

o
e)

∫

S2

dΩe

dσB(ε0e → ε0e − εγ)
dεγdΩγdΩe

− ρi(t, x)nν(εγ ,Ωγ)

∫ ∞

εγ

dεoe

∫

S2

dΩeψe(εe,Ωe)
voeD (εoe)

veD (εe)

∫

S2

dΩo
e

dσIB(ε0e → ε0e − εγ)
dεγdΩγdΩe

.

(6.16)
For simplicity we only kept the dependence with respect to the ingoing and outgoing electrons
in the expressions of the differential cross sections.

6.2.2 Properties of the model

In this part are summarized the properties of the model (6.16), which are the conservation of
the total energy (lemma 6.1) and the conservation of the total number of electrons (lemma 6.2).
The conservation of the total energy is given in the following lemma.

Lemma 6.1 (Energy conservation). Assuming that the photons’ and electrons’ angular fluxes
ψe and ψγ vanish at the limit |x| → ∞ and that the differential cross sections satisfy the relation
(6.8), the model for direct and inverse electron-ion Bremsstrahlung defined in (6.16) preserves
the total energy, i.e.

d

dt
E(t) =

d

dt

[ ∫

R3

dx

∫ ∞

0
dεe

∫

S2

dΩe
εe
ve
ψe +

∫

R3

dx

∫ ∞

0
dεγ

∫

S2

dΩγ
εγ
c
ψγ

]
= 0.
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Proof. By definition of the model, the variation of the total energy is given by

d

dt
E(t) =

∫

R3

dx

[ ∫ ∞

0
dεe

∫

S2

dΩeεe

(
QBe −QB|reve +QIBe −QIB|reve

)

+

∫ ∞

0
dεγ

∫

S2

dΩγεγ

(
QBγ +QIBγ

)]
.

Since both the direct and inverse Bremsstrahlung processes preserve the energy, it is sufficient
to prove that





∂tE
B(t, x) =

∫ ∞

0
dεe

∫

S2

dΩeεe
(
QBe −QB|reve

)
+

∫ ∞

0
dεγ

∫

S2

dΩγεγQ
B
γ = 0,

∂tE
IB(t, x) =

∫ ∞

0
dεe

∫

S2

dΩeεe
(
QIBe −QIB|reve

)
+

∫ ∞

0
dεγ

∫

S2

dΩγεγQ
IB
γ = 0.

We start with the direct Bremsstrahlung. Using the definition of QBe , Q
B|rev
e and QBγ defined in

(6.10), (6.11) and (6.14), one has

∂tE
B(t, x) = ρi(t, x)

(
EBe,1 + EBe,2 + EBγ

)
,

where




EBe,1 =

∫ ∞

0
dεe

∫ ∞

εe

dε0e

∫

S6

dΩ
[
1 + nγ(ε

0
e − εe,Ωγ)

]
εeψe(ε

0
e,Ω

0
e)
dσB(ε0e → εe)

dεγdΩγdΩe
,

EBe,2 = −
∫ ∞

0
dεe

∫ εe

0
dε0e

∫

S2

dΩ
[
1 + nγ(εe − ε0e,Ωγ)

]
εeψe(εe,Ωe)

dσB(εe → ε0e)

dεγdΩγdΩe
,

EBγ =

∫ ∞

0
dεγ

∫ ∞

εγ

dε0e

∫

S2

dΩ [1 + nγ(εγ ,Ωγ)] εγψe(ε
0
e,Ω

0
e)
dσB(ε0e → ε0e − εγ)

dεγdΩγdΩe
,

where we used the notation dΩ = dΩγdΩ
0
edΩe for ease of notations. We need to invert the two

energy integrals in the expression of EBe,2. The Fubini theorem yields

EBe,2 = −
∫ ∞

0
dε0e

∫ ∞

ε0e

dεe

∫

S2

dΩ
[
1 + nγ(εe − ε0e,Ωγ)

]
εeψe(εe,Ωe)

dσB(εe → ε0e)

dεγdΩγdΩe
.

Now inverting the notation (εe,Ωe)↔ (ε0e,Ω
0
e), one finds by adding with the expression of EBe,2

EBe,1 + EBe,2 =

∫ ∞

0
dεe

∫ ∞

εe

dε0e

∫

S6

dΩ
[
1 + nγ(ε

0
e − εe,Ωγ)

] (
εe − ε0e

)
ψe(ε

0
e,Ω

0
e)
dσB(ε0e → εe)

dεγdΩγdΩe
.

Using once again the Fubini’s theorem to invert the two integrals, one finds

EBe,1 + EBe,2 =

∫ ∞

0
dε0e

∫ ε0e

0
dεe

∫

S6

dΩ
[
1 + nγ(ε

0
e − εe,Ωγ)

] (
εe − ε0e

)
ψe(ε

0
e,Ω

0
e)
dσB(ε0e → εe)

dεγdΩγdΩe
.

Making the change of variables εγ = ε0e − εe, one gets

EBe,1 + EBe,2 = −
∫ ∞

0
dε0e

∫ ε0e

0
dεγ

∫

S6

dΩ [1 + nγ(εγ ,Ωγ)] εγψe(ε
0
e,Ω

0
e)
dσB(ε0e → ε0e − εγ)

dεγdΩγdΩe
.
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Finally, the Fubini’s theorem yields EBe,1 +EBe,2 = EBγ , which is the result of the claim. We turn
to the terms containing the inverse Bremsstrahlung. Once again, one writes

∂tE
IB(t, x) = ρi(t, x)

(
EIBe,1 + EIBe,2 + EIBγ

)
,

where





EIBe,1 =

∫ ∞

0
dεe

∫ εe

0
dε0e

∫

S2

dΩnγ(εe − ε0e,Ωγ)εeψe(ε
0
e,Ω

0
e)
veD (εe)

v0
eD (ε0e)

dσB(εe → ε0e)

dεγdΩγdΩe
,

EIBe,2 = −
∫ ∞

0
dεe

∫ ∞

εe

dε0e

∫

S2

dΩnγ(ε
0
e − εe,Ωγ)εeψe(εe,Ωe)

v0
eD
(
ε0e
)

veD (εe)

dσB(ε0e → εe)

dεγdΩγdΩe
,

EIBγ = −
∫ ∞

0
dεγ

∫ ∞

εγ

dε0e

∫

S2

dΩnγ(εγ ,Ωγ)εγψe(ε
0
e − εγ ,Ωe)

v0
eD
(
ε0e
)

ve(ε0e − εγ)D(ε0e − εγ)

× dσB(ε0e → ε0e − εγ)
dεγdΩγdΩe

.

As for the direct Bremsstrahlung, the point is two associate the integrals EIBe,1 and EIBe,2 , and to

obtain the expression of the integral EIBγ after manipulations. Using the same arguments than
for the direct Bremsstrahlung, the Fubini’s theorem and the change of variables εγ = ε0e − εe
lead to the following expression for EIBe,1

EIBe,1 =

∫ ∞

0
dεe

∫ ∞

εe

dε0e

∫

S2

dΩnγ(ε
0
e − εe,Ωγ)ε

0
eψe(εe,Ωe)

v0
eD
(
ε0e
)

veD (εe)

dσB(ε0e → εe)

dεγdΩγdΩe
.

Adding with EIBe,2 , one gets

EIBe,1 + EIBe,2 =

∫ ∞

0
dεe

∫ ∞

εe

dε0e

∫

S2

dΩnγ(ε
0
e − εe,Ωγ)(ε

0
e − εe)ψe(εe,Ωe)

v0
eD
(
ε0e
)

veD (εe)

dσB(ε0e → εe)

dεγdΩγdΩe
.

Using once again the Fubini’s theorem and introducing εγ = ε0e − εe, one writes this expression
as

EIBe,1 +EIBe,2 =

∫ ∞

0
dε0e

∫ ε0e

0
dεγ

∫

S2

dΩnγ(εγ ,Ωγ)εγψe(εe,Ωe)
v0
eD
(
ε0e
)

ve(ε0e − εγ)D (ε0e − εγ)
dσB(ε0e → ε0e − εγ)

dεγdΩγdΩe
.

The expression of EIBγ is obtained by using the Fubini’s theorem, which concludes the proof.

Another important property of the model is that it preserves the number of electrons. This
is demonstrated in the following lemma.

Lemma 6.2 (Conservation of the electron number). Assuming that the photon and electron
angular fluxes ψe and ψγ vanish at the limit |x| → ∞, the model for direct and inverse electron-
ion Bremsstrahlung defined in (6.16) preserves the number of electrons defined in (6.7), i.e.

d

dt
Ne(t) =

d

dt

[ ∫

R3

dx

∫ ∞

0
dεe

∫

S2

dΩe
1

ve
ψe

]
= 0.
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Proof. By definition of the model, the variation of the number of electrons is given by

d

dt
Ne(t) =

[ ∫

R3

dx

∫ ∞

0
dεe

∫

S2

dΩe

(
QBe −QB|reve +QIBe −QIB|reve

)]
= 0.

As for the energy conservation, each direct and inverse Bremsstrahlung processes preserve the
number of electrons. It means that it is sufficient to prove that both the terms in the parenthesis
vanish, i.e. 




d

dt
Ne,1(t) =

∫

R3

dx

∫ ∞

0
dεe

∫

S2

dΩe

(
QBe −QB|reve

)
= 0,

d

dt
Ne,2(t) =

∫

R3

dx

∫ ∞

0
dεe

∫

S2

dΩe

(
QIBe −QIB|reve

)
= 0.

(6.17)

We start with the first term Ne,1. The definition of QBe and Q
B|rev
e , defined in (6.10) and (6.11),

yield

d

dt
Ne,1(t) =

∫

R3

dxρi(t, x)

∫ ∞

0
dεe

∫ ∞

εe

dε0e

∫

S2

dΩ
[
1 + nγ(ε

0
e − εe,Ωγ)

]
ψe(ε

0
e,Ω

0
e)
dσB(ε0e → εe)

dεγdΩγdΩe
,

−
∫

R3

dxρi(t, x)

∫ ∞

0
dεe

∫ εe

0
dε0e

∫

S2

dΩ
[
1 + nγ(εe − ε0e,Ωγ)

]
ψe(εe,Ωe)

dσB(εe → ε0e)

dεγdΩγdΩe
,

where we used once again the notation dΩ = dΩγdΩ
0
edΩe for ease of notations. Using the

Fubini’s theorem, the second integral can be written

∫

R3

dxρi(t, x)

∫ ∞

0
dεe

∫ εe

0
dε0e

∫

S2

dΩ
[
1 + nγ(εe − ε0e,Ωγ)

]
ψe(εe,Ωe)

dσB(εe → ε0e)

dεγdΩγdΩe
,

=

∫

R3

dxρi(t, x)

∫ ∞

0
dε0e

∫ ∞

ε0e

dεe

∫

S2

dΩ
[
1 + nγ(εe − ε0e,Ωγ)

]
ψe(εe,Ωe)

dσB(εe → ε0e)

dεγdΩγdΩe
,

and the first equation in (6.17) is obtained by making the change of variables (εe,Ωe)↔ (ε0e,Ω
0
e).

The second equation is obtained by using the same arguments, which concludes the proof.

6.2.3 Link with thermal Bremsstrahlung

In this part our aim is to find back from our model (6.16) the general expression of thermal
Bremsstrahlung introduced in chapter 1 and used in chapter 2 in a relativistic context. This
expression is given by

QBT = σa(ν, T )

(
f(ν, T )− nγ(εγ ,Ωγ)

)
, (6.18)

where f is the Planck function at temperature T , whose expression is given by f(ν, T ) =(
ehν/kBT − 1

)−1
, where kB is the Boltzmann constant, nγ is the photon occupation number

and σa is the absorption coefficient. This simplified expression of the Bremsstrahlung is known
to be valid at or close to the local thermodynamic equilibrium (LTE). We thus assume that the
electrons are given by a Maxwell distribution at temperature T

ψe(t, x, εe) = CveD(εe)e
−εe/kBT ,
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where C = ρe

mc2
βe−β

K2(β) Using this expression in the direct and inverse collision operator for photons

defined in (6.16), one gets the simplified expression





QBγ = Cρi(t, x) [1 + nγ(εγ)]

∫ ∞

εγ

dε0e

∫

S2

dΩ0
e

∫

S2

dΩev
0
eD(ε0e)e

−ε0e/kBT
dσB(ε0e → ε0e − εγ)

dεγdΩγdΩe
,

QIBγ = −Cρi(t, x)nγ(εγ)
∫ ∞

εγ

dε0e

∫

S2

dΩ0
e

∫

S2

dΩee
−(ε0e−εγ)/kBT v0

eD
(
ε0e
) dσB(ε0e → ε0e − εγ)

dεγdΩγdΩe
.

Now assuming in the emission term QBγ that the photons are given by a Planck function f(ν, T ),
which is justified by the fact that close to the equilibrium, the emission spectrum is a Planck dis-
tribution, one gets the relation 1 + nγ(εγ) = f(ν, T )ehν/kBT . Defining the absorption coefficient
by

σa(ν, T ) = Cρi(t, x)

∫ ∞

εγ

dε0e

∫

S2

dΩ0
e

∫

S2

dΩee
−(ε0e−εγ)/kBT v0

eD
(
ε0e
) dσB(ε0e → ε0e − εγ)

dεγdΩγdΩe
,

one obtains the expression of classical thermal Bremsstrahlung, as defined in (6.18).

6.2.4 CSD approximation

In this part we use the well known continuous slowing down (CSD) approximation to simplify
the electrons’ equation. The idea of this approximation, developed by Pomraning in [POM83,
POM92], is to use the fact that the differential cross section is peaked at the small energy
exchanges (this point concerning the differential cross section will be discussed in section 6.4).
One thus has εγ = ε0e − εe << 1. Expanding the function of (ε0e,Ω

0
e) around (εe,Ωe) in the two

gain terms of the electrons’ collision operators (6.10) and (6.12), one obtains by stopping the
expansion at the order 1 with respect to |ε0e − εe|,

1

ve
∂tψe(εe,Ωe) + Ωe · ∇ψe(εe,Ωe) =

∂

∂εe

[(
SB (εe) + SIB (εe)

)
ψe(εe,Ωe)

]

+

(
LB (εe) + LIB (εe)

)
∇Ωe

·
[

(I−Ωe ⊗Ωe) · ∇Ωe

]
ψe(εe,Ωe)

(6.19)

The important point in this approximation is that although the differential cross section dσB/dεγdΩγdΩe

is singular at the limit ε0e → εe, |ε0e − εe|dσB/dεγdΩγdΩe is not singular. All the coefficients
(defined below) in the energy drift terms of this equation involve power of |ε0e − εe| multiply-
ing the differential cross section. The angular diffusion operators involve terms of the form
(1 − Ωe · Ω0

e)dσ
B/dεγdΩγdΩe. This term is not singular neither since in this approximation

(1−Ωe ·Ω0
e) is of the same order than |ε0e − εe| (small deviation angle).

The operators SB and SIB are the stopping power coefficients. The one for the direct Bremsstrahlung
is non negative and corresponds to a slowing down of the electrons. On contrary, the one for
the inverse Bremsstrahlung is non positive and corresponds to an acceleration of the electrons.
These operators are defined by




SB(εe) = ρi(t, x) [1 + nν(t, x)]

∫ εe

0
dεoe(εe − εoe)

∫

S2

dΩo
e

∫

S2

dΩγ
dσB(εe → ε0e)

dεγdΩγdΩe
,

SIB(εe) = ρi(t, x)nν(t, x)

∫ ∞

εe

dεoe(ε
o
e − εe)

voeD(εoe)

veD(εe)

∫

S2

dΩo
e

∫

S2

dΩγ
dσB(ε0e → εe)

dεγdΩγdΩe

(6.20)
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Finally, the operator defined by the third line of (6.19) is an angular diffusion operator. The
coefficients LB and LIB are defined by





LB(εe) =
ρi(t, x)

2
[1 + nν(t, x)]

∫ εe

0
dεoe

∫

S2

dΩo
e

(
1−Ωe ·Ω0

e

) ∫

S2

dΩγ
dσB(εe → ε0e)

dεγdΩγdΩe
,

LIB(εe) =
ρi(t, x)

2
nν(t, x)

∫ ∞

εe

dεoe
voeD(εoe)

veD(εe)

∫

S2

dΩo
e

(
1−Ωe ·Ω0

e

) ∫

S2

dΩγ
dσB(ε0e → εe)

dεγdΩγdΩe
.

(6.21)

6.3 M1 angular moment model and numerical scheme

The aim of this section is to derive an M1 angular moment model and a numerical scheme from
our kinetic model. We use the continuous slowing down approximation derived in the previous
section for the electrons and the same equation for the photons (second equation of (6.16). Since
we now focus only on radiotherapy application, we consider the stationary case and we do not
consider the induced effects. This mean that we do not consider inverse Bremsstrahlung and
that the coefficient 1 + nγ is the direct Bremsstrahlung operators are replaced by 1. This is
justified since in the considered energy range, the induced effects can be neglected. The model
thus reduces to





Ωγ · ∇ψγ (εγ ,Ωγ) = ρi(t, x)

∫ ∞

εγ

dεoe

∫

S2

dΩo
eψe(ε

o
e,Ω

o
e)

∫

S2

dΩe

dσB(ε0e → ε0e − εγ)
dεγdΩγdΩe

,

Ωe · ∇ψe(εe,Ωe) =
∂

∂εe

[
S̄B (εe)ψe(εe,Ωe)

]

+ L̄B (εe)∇Ωe
·
[

(I−Ωe ⊗Ωe) · ∇Ωe

]
ψe(εe,Ωe),

(6.22)

where the operators S̄B and L̄B are defined by





S̄B = ρi(t, x)

∫ εe

0
dεoe(εe − εoe)

∫

S2

dΩo
eKe(εe, ε

0
e,Ωe ·Ω0

e)

L̄B =
ρi(t, x)

2

∫ εe

0
dεoe

∫

S2

dΩo
e

(
1−Ωe ·Ω0

e

)
Ke(εe, ε

0
e,Ωe ·Ω0

e).

(6.23)

The end of this section is organized as follows. In a first part the M1 approximation for the
system (6.22) is derived. In a second part its energy discretization is presented. We prove that
the resulting scheme preserves the total energy (lemma 6.4).

For the sake of clarity we introduce Ke (resp Kγ and Kγ,2) defined as the integral over the
all the photons angle Ωγ (resp over the ingoing and outgoing electrons angle Ωe and Ω0

e).





Ke(ε
0
e, εe,Ωe ·Ω0

e) =

∫

S2

dΩγ
dσB

dεγdΩγdΩe
(ε0e → εe),

Kγ(ε
0
e, εe,Ωγ ·Ω0

e) =

∫

S2

dΩe
dσB

dεγdΩγdΩe
(ε0e → εe).

(6.24)

This important point is that the resulting expression depends only on a scattering angle.
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6.3.1 M1 angular moment model

In this section we derive the M1 angular moment model [DF99] for the previous model (6.22).
This model is widely used in practice since it is known to preserve the realizability domain,

defined as the set of {ψ(i)
α , i = 0, 1} such that ψ

(0)
α > 0 and |ψ(1)

α | < ψ
(0)
α . The compensation is

that the closure (the expression of the second order moment ψ
(2)
α in terms of the previous ones)

is nonlinear. This last point is not detailed in this part since it has been studied in chapter 5.

We define the angular moments as

ψ(i)
α (ε) =

1

4π

∫

S2

dΩαψα(ε)Ωi
α,

with α = e, γ and i ∈ {0, 1, 2}. The M1 model is given in the following lemma.

Lemma 6.3 (M1 model). Under the assumption that the induce effects are isotropic, the angular
M1 model for the system (6.22) writes





∇ψ(1)
γ =

∫ ∞

εγ

dε0eψ
(0)
e (ε0e)σγ,1(ε

0
e, εγ),

∇ψ(2)
γ =

∫ ∞

εγ

dε0eψ
(1)
e (ε0e)σγ,2(ε

0
e, εγ),

∇ψ(1)
e =

∂

∂εe

[
ψ(0)
e (εe)S̄B (εe)

]
,

∇ψ(2)
e =

∂

∂εe

[
ψ(1)
e (εe)S̄B (εe)

]
− 2L̄B (εe)ψ

(1)
e (εe) ,

(6.25)

where 



σγ,1(ε
0
e, εγ) = 2πρi(t, x)

∫ 1

−1
dµKe(ε

0
e, ε

0
e − εγ , µ),

σγ,2(ε
0
e, εγ) = 2πρi(t, x)

∫ 1

−1
µKγ(ε

0
e, ε

0
e − εγ , µ).

Proof. We start with the photons’ equation, the electrons’s equation being treated in a second
step.

Moments equations for the photons

Integrating the photons equation (6.22) over S2, one finds

∇ · ψ(1)
γ (εγ) =

∫

S2

dΩγQ
B
γ .

We need to compute these two integrals. Using the definition of the direct Bremsstrahlung
operator Q̄Bγ (6.23), one has

∫

S2

dΩγQ
B
γ = ρi(t, x)

∫ ∞

εγ

dε0e

∫

S2

dΩ0
eψe(ε

0
e,Ω

0
e)

∫

S2

dΩeKe(ε
0
e, ε

0
e − εγ ,Ωe ·Ω0

e).
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The point is to remark that
∫
S2 dΩeKe(ε

0
e, ε

0
e − εγ ,Ωe ·Ω0

e) does not depend on Ω0
e. Indeed, we

fix Ω0
e and we choose a polar coordinate system such that Ωe = (sin θ cosφ, sin θ sinφ, cos θ)T

and Ωe ·Ω0
e = cos θ, i.e. θ is the angle between Ωe and Ω0

e. It yields, denoting µ = cos θ,

∫

S2

dΩ0
eψe(ε

0
e,Ω

0
e)

∫

S2

dΩeKe(ε
0
e, ε

0
e − εγ ,Ωe ·Ω0

e) = 2π

∫

S2

dΩ0
eψe(ε

0
e,Ω

0
e)

∫ 1

−1
dµKe(ε

0
e, ε

0
e − εγ , µ),

= ψ(0)
e (ε0e)2π

∫ 1

−1
dµKe(ε

0
e, ε

0
e − εγ , µ).

For the equation on the second order moment, one gets by integrating over S2 the first equation
of (6.22) multiplied by Ωγ

∇ · ψ(2)
γ (εγ ,Ωγ) =

∫

S2

dΩγΩγQ
B
γ .

The definition of the direct Bremsstrahlung operator Q̄Bγ (6.23) yields

∇ · ψ(2)
γ (εγ) = ρi(t, x)

∫ ∞

εγ

dε0e

∫

S2

dΩ0
eψe(ε

0
e,Ω

0
e)

∫

S2

dΩγΩγKγ(ε
0
e, ε

0
e − εγ ,Ω0

e ·Ωγ).

Using once again polar coordinates, one finds

∫

S2

dΩγΩγKγ(ε
0
e, ε

0
e−εγ ,Ω0

e·Ωγ) = 2π




0
0∫ 1

−1 dµµKγ(ε
0
e, ε

0
e − εγ , µ)


 = 2πΩ0

e

∫ 1

−1
dµµKγ(ε

0
e, ε

0
e−εγ , µ).

One thus obtains

∇ · ψ(2)
γ (εγ) = 2πρi(t, x)

∫ ∞

εγ

dε0eψ
(1)
e (ε0e)

∫ 1

−1
µKγ(ε

0
e, ε

0
e − εγ , µ).

Moments equations for the electrons

Integrating the electrons equation (6.22) over S2, one finds

∇ψ(1)
e (εe,Ωe) =

∫

S2

dΩeQ
SP
e +

∫

S2

dΩeQ
AD
e ,

where the stopping power QSPe and the angular diffusion QADe operators are defined by





QSPe =
∂

∂εe

[
S̄B (εe)ψe(εe,Ωe)

]

QADe = L̄B (εe)∇Ωe
·
[

(I−Ωe ⊗Ωe) · ∇Ωe

]
ψe(εe,Ωe).

(6.26)

Using the definition of S̄B (6.23), one finds

S̄B = 2πρi(t, x)

∫ εe

0
dεoe(εe − εoe)

∫ 1

−1
dµKe(εe, ε

0
e, µ),
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which yields

∫

S2

dΩeQ
SP
e = 2πρi(t, x)

∂

∂εe

[
ψ(0)
e (εe)

∫ εe

0
dεoe(εe − εoe)

∫ 1

−1
dµKe(εe, ε

0
e, µ)

]
,

We now turn to the zero-th order moment of the angular diffusion operator. One has by definition
of QADe and since the diffusion coefficient LB does not depend on the electrons’ angle Ωe

∫

S2

dΩeQ
AD
e = L̄B (εe)

∫

S2

dΩe∇Ωe
·
[

(I−Ωe ⊗Ωe) · ∇Ωe

]
ψe(εe,Ωe).

We use once again polar coordinates: we introduce µ ∈ [−1, 1] and φ ∈ [0, 2π] such that
Ωe = (

√
1− µ2 cosφ,

√
1− µ2 sinφ, µ)T . It yields

∫

S2

dΩeQ
AD
e = L̄B (εe)

∫ 2π

0
dφ

∫ 1

−1
dµ

[
∂

∂µ

((
1− µ2

) ∂

∂µ

)
+

1

1− µ2

∂2

∂2φ

]
ψe(εe, µ, cosφ, sinφ),

= L̄B (εe)

{∫ 2π

0
dφ

∫ 1

−1
dµ

∂

∂µ

((
1− µ2

) ∂

∂µ

)
ψe(εe, µ, cosφ, sinφ)

+

∫ 1

−1
dµ

1

1− µ2

∫ 2π

0
dφ

∂2

∂2φ
ψe(εe, µ, cosφ, sinφ)

}
,

and an integration by parts for each of these integrals yields
∫
S2 dΩeQ

AD
e = 0. We turn to the

equation on the second order moment ψ
(2)
e . Multiplying the second equation of (6.22) by Ωe

and integrating over S2, one finds

∇ψ(2)
e (εe,Ωe) =

∫

S2

dΩeΩeQ
SP
e +

∫

S2

dΩeΩeQ
AD
e .

For the first integral, one easily finds by using the definition of QSPe (6.26)
∫

S2

dΩeΩeQ
SP
e =

∂

∂εe

[
S̄B (εe)ψ

(1)
e (εe)

]
.

The second integral is a little more complicated. By definition of QADe (6.26), one has
∫

S2

dΩeΩeQ
AD
e = L̄B (εe)

∫

S2

dΩeΩe∇Ωe
·
[

(I−Ωe ⊗Ωe) · ∇Ωe

]
ψe(εe,Ωe).

Using once again polar coordinates, one finds
∫
S2 dΩeΩeQ

AD
e = Dφ +Dµ, with





Dφ = L̄B (εe)

∫ 1

−1
dµ

1

1− µ2

∫ 2π

0
dφ




√
1− µ2 cosφ√
1− µ2 sinφ

µ


 ∂2

∂2φ
ψe

Dµ = L̄B (εe)

∫ 2π

0
dφ

∫ 1

−1
dµ




√
1− µ2 cosφ√
1− µ2 sinφ

µ


 ∂

∂µ

((
1− µ2

) ∂

∂µ

)
ψe.

We treat the term Dφ first. Two successive integration by parts on the variable φ leads to

Dφ = −L̄B (εe)

∫ 1

−1
dµ

1

1− µ2

∫ 2π

0
dφ




√
1− µ2 cosφ√
1− µ2 sinφ

µ


ψe.
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We keep this expression and we turn to the computation of Dµ. An integration by parts yields

Dµ = L̄B (εe)

∫ 2π

0
dφ

∫ 1

−1
dµ



−µ
√

1− µ2 cosφ

−µ
√

1− µ2 sinφ(
1− µ2

)


 ∂

∂µ
ψe.

A second integration by parts gives

Dµ = −L̄B (εe)

∫ 2π

0
dφ

∫ 1

−1
dµ




1−2µ2√
1−µ2

cosφ

1−2µ2√
1−µ2

sinφ

2µ


ψe.

Adding the expression of Dφ, one gets

Dφ +Dµ = −2L̄B (εe)

∫ 2π

0
dφ

∫ 1

−1
dµ




1√
1−µ2

cosφ

1√
1−µ2

sinφ

0


ψe = −2L̄B (εe)ψ

(1)
e (εe) ,

which concludes the proof.

6.3.2 Numerical scheme

In this part we detail the numerical scheme used in the numerical tests in section 6.5. We are
mostly interested here in the energy discretization. We do not detail the space discretization,
which is performed in practice with an Aregba Natallini scheme [AN00]. We thus consider
only the semi-discrete scheme. We consider a supremum (resp infimum) in energy εmax (resp
εmin) and a cartesian energy discretization mesh defined by N points εj , j ∈ {1, N} such that
εj = εmax − j∆ε, where the mesh step is such that εN = εmax −N∆ε = εmin. In the following
we set εmin = 0.

Définition 6.1 (Numerical scheme). The semi-discrete numerical scheme writes, for i = 1, 2,




∇ψ(i)
γ,j =

j∑

k=1

∆εσγ,i(εk, εj)ψ
(i)
e,k,

∇ψ(i)
e,j =

j∑

k=1

∆εσe(εk, εj)ψ
(i)
e,k − δi2L̄B (εj)ψ

(1)
e (εj)

1 ≤ j ≤ N, (6.27)

where

σe(εk, εj) =





− S̄B(εj)/∆ε
2 if k = j,

S̄B(εj−1)/∆ε
2 if k = j − 1,

0 elsewhere.

The discretization of the stopping power operator S̄B is performed through a first order approx-
imation

S̄B(εj) = ρi(t, x)

N∑

k=j+1

∆ε(εj − εk)
∫

S2

dΩo
eKe(εj , εk,Ωe ·Ω0

e) 1 ≤ j ≤ N − 1 ,

S̄B(εN ) = 0.

(6.28)
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The main point here is to understand that the proposed scheme is a consistent discretization
of theM1 model (6.25). The discretization of the photons equation is obvious, since it simply uses
a first order approximation of the energy integral. For the electrons’ equations, the definition of
σe yields

∇ψ(i)
e,j =

S̄B(εj−1)ψ
(i)
e,j−1 − S̄B(εj)ψ

(i)
e,j

∆ε
.

Reminding that the we consider a decreasing energy discretization mesh (εi ≤ εj for i ≥ j), we
obtain a consistent discretization of the energy drift term ∂/∂ε(S̄Bψe). The second important
point is the discretization of the stopping power operator S̄B. Indeed there is at least two choices
of first order approximation, consisting to use either the left or the right value in each cell. The
left value gives the conservation of energy, which is not true is we use a discretization from the
right value. This is proved in the following lemma.

Lemma 6.4 (Energy conservation). Define the energy E(t, x) as the sum of the photons’ energy
Eγ(t, x) and the electrons’ energy Ee(t, x), where





Eγ(t, x) =

N∑

j=1

εj∆ε∇ψ(1)
γ ,

Ee(t, x) =

N∑

j=1

εj∆ε∇ψ(1)
e .

Then, under the boundary conditions ψ
(0)
α (ε0) = ψ

(0)
α (εN ) = 0, for α = e, γ, the scheme (6.27)

preserves the total energy, i.e.

∂tE(t, x) = 0.

Proof. Using the discrete equation for the electrons (6.27), one has

∂tEe(t, x) =

N∑

j=1

∆ε2
j∑

k=1

εjσe(εk, εj)ψ
(0)
e,k ,

and the definition of σe yields

∂tEe(t, x) =

N∑

j=1

εj

(
S̄B(εj−1)ψ

(0)
e,j−1 − S̄B(εj)ψ

(0)
e,j

)
.

Rearranging the terms to get a sum on S̄B(εj)ψ
(0)
e,j , one finds

∂tEe(t, x) = −
N∑

j=1

∆εS̄B(εj)ψ
(0)
e,j + ε1S̄B(ε0)ψ

(0)
e,0 − εN+1S̄B(εN )ψ

(0)
e,N .

Due to the definition of S̄B at the edge of the mesh εN (6.28) and the boundary conditions, the
two last terms vanish. Now using the definition of S̄B, one gets

∂tEe(t, x) = −ρi(t, x)∆ε2
N∑

j=1

N∑

k=j+1

(εj − εk)
∫

S2

dΩo
eKe(εj , εk,Ωe ·Ω0

e)ψ
(0)
e,j . (6.29)
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Since the mesh is cartesian, the energy εj − εk corresponds to a grid point, say εl. From the
definition of the mesh, the indice l is defined by l = N + j − k. Making this change of indices
in (6.29), one finds

∂tEe(t, x) = −ρi(t, x)∆ε2
N∑

j=1

N−1∑

l=j

εl

∫

S2

dΩo
eKe(εj , εj − εl,Ωe ·Ω0

e)ψ
(0)
e,j .

Using a discrete version of the Fubini’s theorem, one has

N∑

j=1

N−1∑

l=j

f(εj , εl) =

N−1∑

l=1

l∑

j=1

f(εj , εl). It

yields

∂tEe(t, x) = −ρi(t, x)
N−1∑

l=1

∆εεl

l∑

j=1

∆ε

∫

S2

dΩo
eKe(εj , εj − εl,Ωe ·Ω0

e)ψ
(0)
e,j .

Finally, and since ψ
(0)
e,N = 0, one finds

∂tEe(t, x) = −ρi(t, x)
N∑

l=1

∆εεl

l∑

j=1

∆ε

∫

S2

dΩo
eKe(εj , εj − εl,Ωe ·Ω0

e)ψ
(0)
e,j

︸ ︷︷ ︸
∇ψ(0)

γ,j

,

which concludes the proof.

6.4 Differential cross sections

This part is devoted to the derivation of a differential cross section for electron-ion Bremsstrahlung.
In a first part (part 6.4.1) we give the general expression that can be found in physical literature
both in the relativistic and non relativistic regimes. It is important to notice that the relativis-
tic case is not a simplification of the non relativistic case. Indeed, the relativistic differential
cross section (6.30) is derived from the Dirac equation, while the non relativistic differential
cross section (6.31) is derived from the Schrödinger equation. In a second part (part 6.4.2),
we explain the way the screening effects are taken into account in the differential cross section.
These screening effects model the interaction between the ingoing electron and the electrons of
the ion. Finally, in part 6.4.3 we give the analytical differential cross section that is used in the
numerical tests in section 6.5.

6.4.1 General expression

The inspection of available theoretical works on the Bremsstrahlung differential cross sections in
energy and angles, shows that one cannot expect more than qualitative behavior from analytical
formulae [LKPT76, SB85, TSE89]. A quantitative assessment should result from partial-wave
calculations. Having mentioned that point, we nevertheless use analytical formulae [TPL79,
TSE89,HAU08] that are legitimate in some regimes, and fail in reasonable proportion with re-
spect to what is considered the best available data set [SB85]. As a matter of fact, this increases
our knowledge and confidence while crossing data sets, and enables us to validate our numerical
schemes at a lower cost.
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As presented in the introduction, we denote by
d4σB

dεγdΩγdΩe
the Bremsstrahlung fourth differ-

ential cross section with respect to the photon energy and solid angle dΩ ≡ sin θodθo sin θdθdφ.
In the Born approximation (plane waves), we obtain the expression [KM59]

d4σB

dεγdΩγdΩe
= αfZ

2
( r0

2π

)2 (1− F (q))2

q4
1

|εoe − εe|
p

po

×
[

p2 sin2 θ

(εe − p cos θ)2
(
4εoe

2 − q2
)

+
po2 sin2 θo

(εoe − po cos θo)2
(
4εe

2 − q2
)

− 2pop sin θo sin θ cosφ

(εoe − po cos θo) (εe − p cos θ)

(
4εoeεe − q2

)

+
2k2

(
po2 sin2 θo + p2 sin2 θ − 2pop sin θo sin θ cosφ

)

(εoe − po cos θo) (εe − p cos θ)

]
,

q2 = po2 + p2 + k2 − 2popΩo
e ·Ωe − 2pokΩo

e ·Ωγ + 2pkΩe ·Ωγ

(6.30)

where cos θo = Ωo
e ·Ωγ (resp. cos θ = Ωe ·Ωγ) is the pitch angle between the emitted photon

momentum and the ingoing (resp. outgoing) electron momentum. φ is the angle between the
plane (p,k) and (po,k). q = po − p + k is the momentum transferred to the ion.

In the non relativistic limit, the differential cross section (6.30) reduces to [KM59,BMO70]

d4σB

dεγdΩγdΩe
= αfZ

2
( r0

2π

)2 (1− F (q))2

q4
1

|εoe − εe|
p

po

(
p2 sin2 θ + po2 sin2 θo

− 2pop sin θo sin θ cosφ

)
,

q2 = po2 + p2 − 2pop (cos θo cos θ + sin θo sin θ cosφ) .

(6.31)

6.4.2 Analytical screening: plasma effects and partial ionization treatment
in the cross sections

Again, a quantitative evaluation of screening effects requires partial-wave calculations. An ana-
lytical evaluation can be obtained with the introduction of a form factor F (q) in the differential
cross sections. It is related to the Fourier transform of the electron-ion potential, V(q), with the
Poisson equation

−αfZ
2π2

1− F (q)

q2
= V(q) ≡ 1

(2π)3

∫

S2

V (r) exp (iq · r) dr .

The form factor accounts for electric field screening, whether Thomas-Fermi or Debye, in solids or
plasmas. A combination of at least two Yukawa potentials is then required for the interpolation.
The following potential can be chosen, for instance [ROZ79]

V (r) = −αfZ
[(

1− Z∗

Z

)
1

r
exp(−r/lTF ) +

Z∗

Z

1

r
exp(−r/λD)

]
, (6.32)

where r is the radius vector from a center, lTF the Thomas-Fermi length, and λD the Debye
length. Z∗ is the effective atomic number for free plasma electrons. In this Section, the distancies
are expressed in units of the Compton wavelength [KM59]. The momentum transfer to the ion,
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q, is expressed in mec units, and the potential is expressed in mec
2 units.

When Fourier transformed, the potential becomes

V(q) = −αfZ
2π2

[(
1− Z∗

Z

)
l2TF

l2TF q
2 + 1

+
Z∗

Z

l2D
l2Dq

2 + 1

]

The injection of the potential (6.32) in the form factor of the cross sections introduces new non-
linearities, because the cross sections are proportional to the square of the Fourier transformed
potential. A brute force method would require the computation of all the new differential cross
sections with this potential. However, this is not always straightforward. Moreover, the inter-
polation of the potential (6.32) comes from a linearization (valid at relatively high temperature
and low density), so a possible path to circumvent the difficulty is proposed in [LOB15], where
an effective screening length, l∗, is employed. It encompasses the two limit regimes, where refer-
ences can be obtained, while preserving the analytical expressions of the cross sections available
in the literature.

6.4.3 Analytical expression

In the following we denote by εγ
dσB

dεγ
the differential cross section integrated over momentum q

and angles Ωγ and Ωe, i.e.

εγ
dσB

dεγ
=

∫

S2

dΩe

∫

S2

dΩγ

∫

R3

dq3εγ
d4σB

dεγdΩγdΩe
.

The method used to compute the momentum integrals is detailed in [BET34]. One obtains
different expressions according to the relativistic (derived from the Dirac equation) or non rela-
tivistic (derived from the Schrödinger equation) regimes. The expression given below are valid
under the Born (plane wave) approximation. This approximation is valid if 2πZαf << β0

e and
2πZαf << βe, where βe := β(εe) = 1− (1+εe/mc

2)−2, Z is the atomic number and αf = 1/137
is the fine structure constant.

Non relativistic case

In the non relativistic regime, the Schrödinger equation can be used to derive the Bremsstrahlung
cross section. In [TSE89], a partial-wave analysis is performed to obtain the differential cross
section in electron recoil angle and energy.
In the Born approximation, analytical Bremsstrahlung coefficients can be expressed from the
integration of equation (6.31). The integration procedure from [BMO70] is applied and gives

εγ
dσBNR
dεγ

(εoe, εe) =
16

3

r2oαfZ
2

poe
2

1

2

[
ln

(
k2

+l
∗2 + 1

k2
−l∗

2 + 1

)
+

1

k2
+l
∗2 + 1

− 1

k2
−l∗

2 + 1

]
(6.33)

In this expression k± = p0
e ± pe, where pe is the ingoing electron momentum, and is defined by

pe = mc

√
εe
mc2

(
εe
mc2

+ 2).

The constant αf is the fine structure constant, and is defined by αf = 1/137, Z is the atomic
number, r0 is the electron’ radius and l∗ is the screening length. As explained in the part
6.4.2, it can be either the Thomas-Fermi length lTF (solid), the Deby length lD (plasma), or an
interpolation of these two length.
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Relativistic case

Even in the Born approximation, the analytical computation of the Bremsstrahlung coefficients
in the relativistic regime is a challenge. For instance, in [BOR72], a unique analytical integra-
tion is made, which is far from the three integrations required to reach an analytical formula-
tion. Thus, it seems that we are compelled to introduce new assumptions, and adopt those of
Bethe [BET34], considering high ingoing and outgoing electron energies compared to the rest
energy. In this limit very simple analytical expressions can be obtained.

In the relativistic regime, the significant values of the cross section are restricted to the small
scattering angles between photons and electrons [DBM54, HOU48]. In the case of a Thomas-
Fermi ion model, two limiting cases may be distinguished, depending on the quantity [KM59]

γ =
100εγ

EoeEeZ
1/3

, (6.34)

where Ee = 1 + εe. These are labelled I and II, and correspond to ”high” and ”small” energy
regions (though both relativistic).

• limiting case I: γ = 0 (high energy)
Coulomb corrections to the Born approximation need to be included in case I only, while
screening effects can be neglected. The corrected cross sections are available in [DBM54,
BET34].

• limiting case II: 1≪ γ (small energy)
In the case II, the Born approximation is valid, but screening effects must be taken into
account.

The photon energy differential cross section, with arbitrary screening, is expressed by formula
(50) in [BET34]. It is valid for the cases I and II, and intermediate regimes as well:

εγ
dσBR
dεγ

(εγ , ε
o
e) = 4r20αfZ

2

[([
1 +

E2
e

Eoe
2

]
(I1 + f(Z))− 2

3

Ee
Eoe

(I2 + f(Z))

)]
, (6.35)

where a(Z) = Ze2/~c = αfZ and f(Z) =

∞∑

ν=1

a2(Z)

ν(ν2 + a2(Z))
is the Coulomb correction that

becomes non-negligible in the ultra-relativistic regime (domain I) [DBM54]. This correction can
be evaluated, for a(Z) < 2/3, as [DBM54]

f(Z) ≃ a2
[(

1 + a2
)−1

+ 0.20206− 0.0369a2 + 0.0083a4 − 0.002a6
]
.

In the general case of an arbitrary atomic form factor F , we have





I1 =

∫ 1

δ
(q − δ)2(1− F (q))2

dq

q3
+ 1,

I2 =

∫ 1

δ
(q3 − 6δ2q ln

q

δ
+ 3δ2q − 4δ3)(1− F (q))2

dq

q4
+

5

6
,

(6.36)

where δ = poe−pe−k and δ ≃ εγ/ 2EoeEe if Eoe , Ee ≫ 1. Following [LOB15], analytical expressions
for I1 and I2 can be obtained if the nucleus is considered as a punctual charge, ρn(r) = Zeδ(r).
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In this case, the nucleus form factor is Fn =
1

Z

∫

ω
4πρn exp(iq ·r)dr ≃ 1. Then using the Fourier

transformed Poisson equation [HAU08], together with the screened Yukawa potential screened
at a effective length l∗, we obtain





1− Fe =
l∗2q2

l∗2q2 + 1
,

I1 = l∗δ arctan(l∗δ) +
1

2
ln

(
1 + l∗2

1 + l∗2δ2

)
− l∗δ arctan(l∗)− l∗2

2

(1− δ)2
1 + l∗2

+ 1 ,

I2 = 2l∗3δ3 arctan(l∗δ) +
1

2
(1 + 3l∗2δ2) ln

(
1 + l∗2

1 + l∗2δ2

)
+

3l∗4δ2

1 + l∗2
ln δ − 2l∗3δ3 arctan(l∗)

+
1

2

l∗2(δ − 1)(δ + 1− 4l∗2δ2)

1 + l∗2
+

5

6
.

In this expression l∗ is the screening length. As explained in the part 6.4.2, it can be either the
Thomas-Fermi length lTF (solid), the Deby length lD (plasma), or an interpolation of these two
length.

Composite formula

We define our differential cross section as the maximum of the relativistic and non relativistic
expression, i.e.

dσB

dεγ
(εoe, εe) = max

(
dσBNR
dεγ

(εoe, εe) ,
dσBR
dεγ

(εoe, εe)

)
. (6.37)

6.4.4 Cross section validation

The aim of this part is to validate qualitatively the analytical expression (6.37) obtained in the
previous section. The strategy consists to compare this expression to tabulated values obtained

Figure 6.3: Integral of the cross sections versus incident electrons’ energy
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by Seltzer [SB85]. To this end we consider the dimensionless integrated in photons’ energy cross
section, normalized as

φ(ε0e) =
αfr

2
0Z

2

1 + ε0e

∫ ε0e

0
dεγεγ

dσ

dεγ
(ε0e, ε

0
e − εγ).

Figure 6.3 displays, for Z = 6 (carbon), the function φ versus the incident electrons’ energy for
the non relativistic expression (6.33) (black curve), the relativistic expression (6.35) (blue curve)
and the maximum of the two expressions (6.37) (red curve). We also displayed the Seltzer values
(black curve). It shows a good agreement in both the non relativistic range ε0e ∈ [0 : 500Kev]
and in the ultra relativistic case ε0e ≥ 2Mev. The intermediate zone is rather unknown. Never-

Figure 6.4: Integral of the cross sections versus incident electrons’ energy; (log-log) plan

theless, the maximum of the relativistic and non relativistic curves remains qualitatively correct.
The figure 6.4 displays the same quantities in a (log-log) plan.

The previous validation has also been performed in the case Z = 10 (for example water). From
now on we consider our cross section as validated, keeping in mind that the derivation, and in
particular the Born approximation, in only valid for small atoms.

6.5 Numerical tests

This section is devoted to numerical tests. TheM1 model (6.27) is implemented in a radiotherapy
code, that aims to model an electrons beam. Several kind of interactions take place together
with the Bremsstrahlung. In particular the electrons-electrons interactions also imply a stopping
power coefficient SQ. It is thus important to make a comparison between these two coefficients
SQ and SB defined in (6.28) for the Bremsstrahlung. This is performed in a first part 6.5.1. The
second part 6.5.2 presents a test case of dose deposition for several values of the electrons beam.
It computes the energy deposited by the fast electrons to the thermal electrons.
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6.5.1 Electron-electron vs Bremsstrahlung slowing down

As explain above, the Bremsstrahlung is one of the considered effects. Indeed, the electrons
act to each other by collisions. The model used has the same structure than for electron-ion
Bremsstrahlung. The resulting model for electrons writes, neglecting the angular diffusion terms

∇ψe =
∂

∂ε

((
SQ + S̄B

)
ψe

)
,

where SQ ≥ 0 is a slowing down operator. The (normalized) dose D is defined by

D(x) =
1

Dmax

∫ εmax

0
SQ(ε)ψ(0)

e (ε)g(ε)dε,

where, for a given εseuil > 0, g(ε) = ε if ε ≤ εseuil and g(ε) = εseuil elsewhere and Dmax is the
maximum of D on the space domain.

In particular the stopping power due to Bremsstrahlung S̄B does not acts directly on the compu-

tation of the dose, but can of course modify the electrons’ zero-th order distribution ψ
(0)
e , which

in turns can modify the dose. It is thus interesting to compare the values of the slowing down
due to electron-electron collisions, and the slowing down due to the electron-ion Bremsstrahlung.
We recall here the expression of the electron-ion Bremsstrahlung coefficient

S̄B = ρi(t, x)

∫ εe

0
εγ
dσB(εoe, ε

o
e − εγ)

dεγ
dεoe.

Figure 6.5 displays in a (log-log) plan the electron-electron (black curve) and Bremsstrahlung
(red curve) stopping power versus the incident energy. The sum SQ + S̄B is also displayed (blue
curve). It shows that in the range of energy ε ∈ [0, 0.1Mev], the Bremsstrahlung stopping power

Figure 6.5: Stopping power coefficients (Mev.cm−1) versus energy (Mev); (log-log) plan

is negligible in comparison with the electron-electron stopping power. On the other hand, in the
range of energy ε ≥ 1Mev, the Bremsstrahlung stopping power start to be comparable to the
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Figure 6.6: Electron-electron and total stopping power coefficients (Mev.cm−1) versus energy
(Mev); (log-log) plan

electron-electron stopping power, and become preponderant. Figure 6.6 presents a zoom in on
this range of energy, plotting only the electron-electron and total stopping power coefficients,
which highlights this phenomena. This will help the comprehension of the variation in the
dose deposition observed when the Bremsstrahlung is activated, according to the energy of the
electrons beam.

6.5.2 Test-case: dose deposition

The test case that is presented in this part is concerned by the deposition of energy by fast
electrons to the electrons of the medium (thermal electrons). In this context, the important
quantity is the dose D , whose expression is recalled here

D(x) =
1

Dmax

∫ εmax

0
SQ(ε)ψ(0)

e (ε)g(ε)dε,

where, for a given εseuil > 0, g(ε) = ε if ε ≤ εseuil and g(ε) = εseuil elsewhere and Dmax is the
maximum of D on the space domain.

For the test cases, we consider a cartesian energy discretization mesh defined on the inter-
val [10−15, ε+2]Mev, where ε is the energy of the incident electron beam, discretized with 1000
cells. The space discretization is performed with a cartesian mesh of 100 cells on an interval
[0, xmax], where xmax depends on the energy value of the incident electron beam.

We consider a source of electron beam at the left edge of the space domain (x = 0). The
domain is composed of water (Z = 10) and we compute the dose deposition with and without
Bremsstrahlung for several values of the incident electron beam energy, from 0.1 Mev to 20 Mev.
According to the previous part 6.5.1, we expect that the bremsstrahlung does not modify the
dose deposition in the case ε = 0.1 Mev. On the other hand, we expect a slight slowing down
in the case ε ∈ [1, 5] Mev and a substantial modification in the case ε > 10 Mev. Figure 6.7
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Figure 6.7: Normalized dose D with (blue) and without (red) Bremsstrahlung versus space (cm)
for an electron beam of 0.1 Mev

displays the dose curves with and without Bremsstrahlung in the case of an incident electron
beam of ε = 0.1 Mev. As expected, the two curves are merged. In this case the slowing down
due to the Bremsstrahlung is negligible in comparison with the electron-electron stopping power.

We now consider incident electron beams of 1 and 5 Mev. Considering figure 6.6, in this energy
range the Bremsstrahlung slightly modifies the total slowing down of the electrons. We thus

Figure 6.8: Normalized dose D with (blue) and without (red) Bremsstrahlung versus space (cm)
for an electron beam of 1 Mev

expect the curves of dose deposition with Bremsstrahlung to be more ”on the left” of the domain,
since the electron beams start at the left edge of the space domain, and this should be more
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Figure 6.9: Normalized dose D with (blue) and without (red) Bremsstrahlung versus space (cm)
for an electron beam of 5 Mev

significant for the 5 Mev beam. Figure 6.8 (respectively figure 6.9) shows the curves of dose de-
position with and without Bremsstrahlung for an incident electron beam of 1 Mev (respectively
5 Mev). The expected behavior is observed, and we see in particular that the Bremsstrahlung
introduces non negligible modification is the spatial distribution of the dose.

We conclude this chapter by studying the dose in the case of high energy incident electron
beam, namely ε ∈ [10, 20] Mev. From the previous numerical results and the previous part
6.5.1, and in particular from figure 6.6, it is clear that the Bremsstrahlung will considerably

Figure 6.10: Normalized dose D with (blue) and without (red) Bremsstrahlung versus space
(cm) for an electron beam of 10 Mev
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slow down the electron beam. Figure 6.10 (respectively figure 6.11) shows the curves of dose de-
position with and without Bremsstrahlung for an incident electron beam of 10 Mev (respectively
20 Mev). The figure 6.11 for an incident electron beam of 20 Mev is particularly interesting.

Figure 6.11: Normalized dose D with (blue) and without (red) Bremsstrahlung versus space
(cm) for an electron beam of 20 Mev

Indeed, in addition to modify the slope of the dose curve, the introduction of the bremsstrahlung
also modifies the peak of the dose, which is now closer to the electrons’ source.

172



Chapter 7

Proof of uniform convergence for a
cell-centered AP discretization of the
hyperbolic heat equation on general

meshes

This work is taken from a submitted article [BDFL14]

7.1 Introduction

We address the convergence analysis on unstructured meshes of diffusion asymptotic preserving
schemes for the discretization of a problem with a stiff parameter denoted as 0 < ε ≤ 1. The
model problem considered in this work is the hyperbolic heat equation in the domain t ≥ 0 and
x ∈ Ω ⊂ R

n

P ε :





∂tp
ε +

1

ε
div(uε) = 0, pε ∈ R,

∂tu
ε +

1

ε
∇pε = − σ

ε2
uε, uε ∈ R

n

(7.1)

discretized with first order finite volume schemes. This problem is representative of many trans-
port problem such as transfer and neutron transport, for which the small parameter ε is the ratio
of two very different sound velocities and σ is the absorption or the opacity. For simplicity both
ε and σ > 0 are kept constant in space in this study. The system (7.1) can also be introduced
as a specific linearization of a pressure-velocity system of partial differential equations in the
acoustic regime. In this work we will need the following well known energy estimates concerning
the solution Vε of the Cauchy problem for the partial differential equation (7.1).

Proposition 7.1. If Ω = R
n or Ω = T

n, then

||Vε||Hp(Ω) ≤ ||Vε(0)||Hp(Ω) (7.2)

and moreover
σ

ε2
||uε||2L2([0,T ];Hp(Ω)) ≤ ||Vε(0)||2Hp(Ω). (7.3)
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We will consider well prepared data in the sense that: pε(t = 0) is independent of ε and is
sufficiently smooth; the initial velocity satisfies the equality in the second equation of (7.1) at
leading order. It writes

pε(t = 0) = p0 and uε(0) = − ε
σ
∇p0. (7.4)

For such well prepared data, it can be easily shown that the formal limit of P ε for small ε is

P 0 : ∂tp−
1

σ
∆p = 0. (7.5)

Remarque 7.1. We do not consider the regime σ → 0, since it introduces a singularity both in
the initial data of the hyperbolic heat equation and in the limit parabolic equation.

7.1.1 Precision of AP discretizations

Before addressing the main difficulty of this work which is the discretization on unstructured
meshes, we briefly recall the now well known notion of an asymptotic preserving technique
[JIN99]- [JIN10] which is illustrated in the figure 7.1. For the simplicity of the presentation,
we will consider mainly semi-discrete numerical methods, this is why the time step does not
show up in the graphic. The parameter h designs a numerical method with characteristic length
h ≤ 1: that is we assume a numerical method P εh for the discretization of P ε.

Définition 7.1 (Uniform AP). If P εh is consistent with P ε uniformly with respect to ε, then we
say that the scheme P εh is uniformly AP (uniformly asymptotic preserving).

However the design of such methods and the numerical proof of this property is difficult.
This is why it has been proposed in [JIN99] to rely on the simpler necessary condition, where
the limit as ε→ 0 of P εh is called the limit diffusion scheme P 0

h .

ε→ 0
P0
h

Pε

h→ 0

P0

ε→ 0

h→ 0

Pε
h

Figure 7.1: The AP (asymptotic diagram) diagram

Définition 7.2 (AP). If P 0
h is consistent with the limit model P 0, then we say that the scheme

P εh is AP (asymptotic preserving).

This property is simpler to analyze than the uniform AP. It explains why it has been very
fruitful in the past. In 1D, many AP schemes have been designed for some PDE and physical
problems: S. Jin, C. D. Levermore [JL96] or L. Gosse, G. Toscani [GT02] for the hyperbolic
heat equation, M. Lemou, L. Mieussens, N. Crouseilles [LM08]- [CL11]- [CR13] for some kinetic
equations, L. Gosse [GOS11], C. Buet and co-workers [BCLM02] or S. Jin and C. D. Levermore
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[JL91] for SN equations and C. Berthon, R. Turpault [BCT07]- [BLT13]- [BT11] for generic
systems and a non linear radiative transfer model. Recently some asymptotic preserving schemes
for linear systems and non linear radiative transfer model have been designed in 2D [BDF12-
1]- [BDF12-2]- [BDF11]. Other application to non linear hyperbolic systems of conservation
laws with stiff diffusive relaxation is to be found is [NP00]. Relaxation systems are treated in
[FR13]. More general situation for transport and discrete velocity systems are in [JPT00,JPT98].
However for this type of schemes it is difficult to obtain convergence estimates due to the
competition between the two parameters ε and h. To our knowledge this type of proof are only
given for uniform grids [BDF12-1] (consistence and stability, Lax theorem), [GT02] (L1 and BV
estimates), [LM10] (L2 estimates). The goal of this work is to prove the uniform AP property
on unstructured grids.

To this end we adapt a strategy developed in [GJL99] in a slightly different context. It relies
on the derivation of a priori estimates attached to the AP diagram in figure 7.1. To have a more
global perspective on this strategy, let us assume some natural abstract a priori estimates for a
given norm which is in our work based on ‖f‖ = ‖f‖L2([0,T ]×Ω) or ‖f‖ = ‖f‖L∞([0,T ];L2(Ω)) where
T > 0 is a given final time, Ω = R, in 1D or Ω = [0, 1]2 with periodic boundary conditions in 2D.
We assume five constants a, b, c, d, e > 0 and four additional constants ↓C,C→, C←, C↓ > 0 > 0
such that the error attached to the branches of the AP diagram can be bounded like

‖P εh − P ε‖naive ≤ ↓Cε
−bhc, (7.6)

‖P εh − P 0
h‖ ≤ C→εe. (7.7)

‖P 0
h − P 0‖ ≤ C↓hd, (7.8)

‖P ε − P 0‖ ≤ C←εa, (7.9)

The first inequality is the naive error bound which typically blows up for small ε. The second
inequality for ‖P εh − P 0

h‖ is assumed to have a form similar to the last one which expresses that
P 0 is the limit of P ε. The third inequality corresponds to the usual AP property.

Proposition 7.2. Assume that all these inequalities are at hand and that d ≥ c and e ≥ a.

Then the uniform AP holds with a rate at least O
(
h

ac
a+b

)
.

Proof. The triangular inequality writes

‖P εh − P ε‖ ≤ min
(
‖P εh − P ε‖naive, ‖P εh − P 0

h‖+ ‖P 0
h − P 0‖+ ‖P ε − P 0‖

)

which yields, using min(x, y + z) ≤ min(x, y) + min(x, z), d ≥ c and e ≥ a,

‖P εh−P ε‖ ≤ C
(
min

(
ε−bhc, εe

)
+ hd + min

(
ε−bhc, εa

))
≤ C

(
2 min

(
ε−bhc, εa

)
+ hd

)
(7.10)

with C = max (↓C,C→, C↓, C←). We define a threshold value εthresh by ε−bthreshh
c = εathresh. So

either ε ≤ εthresh so that

min
(
ε−bhc, εa

)
≤ εathresh = h

ac
a+b ,

or ε ≥ εthresh and the same bound is obtained by taking the other term as the minimum. And
since d ≥ c, one gets the abstract bound ‖P εh − P ε‖ ≤ 3Ch

ac
a+b which ends the proof.
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7.1.2 Organization of the proof

The structure of these inequalities explains our strategy: that is we prove separately each of
these inequalities (7.9-7.7) with care, so that the inequalities d ≥ c and e ≥ a are true. This
part of the proof relies on specific hyperbolic and parabolic numerical methods. Even if it is
technical, the first three inequalities (7.9-7.8) do not yield additional difficulties with respect
to the state of the art. The proof of inequality (7.7) is provided in 1D, and can be probably
be generalized straightforwardly on cartesian meshes in 2D and 3D. On the other hand our
researches on proving (7.7) for ‖P εh −P 0

h‖ show a fundamental obstruction in dimension greater
than one on unstructured meshes which was not expected initially. Since the main difficulty
is related to P 0

h , it motivates the definition of a new diffusion scheme. To this end we remark
that another diffusion scheme is naturally defined from P εh by killing the derivative ∂tvh in
the discrete version of the second equation of (7.1). Killing at the continuous level the ∂tv is
absolutely equivalent to taking the formal limit ε → 0+. But at the discrete level, it appears
that it generates a new family of diffusion schemes, where both parameters h and ε are present.
We call them Diffusion Asymptotic schemes, DAεh. By construction P 0

h = limε→0DA
ε
h. This is

summarized in figure 7.2. Finally since the scheme DAεh is still an accurate discretization of P 0,
our proof of the uniform AP property is based on the new AP diagram displayed in figure 7.3.

∂tvh = 0
Pε
h

DAε
h

P
0
h

ε→ 0

Figure 7.2: Definition of the diffusion asymptotic scheme DAεh.

Our main theorem 7.26 in dimension 2 is based on this structure and it may be stated as
follows: The so-called JL-(b) scheme defined in [BDF12-1] for the discretization of
the hyperbolic heat equation (7.1) (the scheme is cell-centered with nodal based
fluxes) is uniformly AP on unstructured meshes, with a rate of convergence at least

O(h
1
4 ) for sufficiently smooth initial data. This is an improvement with respect to [BDF12-

1] where only AP was proven. To our knowledge this is the first time that such a result is
obtained on general unstructured multidimensional meshes. More precisely the convergence
estimate can be written as

error ≤ Cmin

(√
h

ε
, εmax

(
1,

√
ε

h

)
+ h+ ε

)

where the first argument in the min function comes from the hyperbolic analysis and the second
argument comes from the parabolic analysis. Some natural regularity assumptions are never-
theless imposed on the mesh in the hypothesis 7.3, this is not very restrictive. For example
meshes with angles greater than 90 degrees are allowed. If the mesh is made with triangles, the
hypothesis is fulfilled if all angles are greater than 12 degrees, see [BDF12-1]. It is interesting to

notice that the rate of uniform convergence is O(h
1
3 ) in dimension one. The difference essentially

comes from the estimate of the reconstruction of the initial velocity which is needed to rewrite
a diffusion scheme as a non homogeneous hyperbolic scheme: it is much simpler in dimension
one (see equation (7.23)) than in dimension two (see proposition (7.23)). In this work we con-
sidered mainly semi-discrete numerical schemes, since it simplifies a lot the notations and allow
to focus on the main difficulties, but the final estimates of convergence can be generalized to
fully discrete schemes, using the a priori estimates developed in [DES04]. For explicit schemes,
these estimates add a term proportional to the square root of the maximal time step allowed by
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the CFL condition. Since our problem is an hyperbolic+relaxation problem, with a limit which
is parabolic, this additional term can be computed and is of the order between h (for purely
hyperbolic) to h2 (for purely parabolic). We refer to [BDF12-1] for the detail of CFL condition
in 1D and 2D. Concerning the implicit fully discrete version of the semi-discrete scheme which
is unconditionally stable and well adapted to the test problem analyzed at the end of this work,
the same kind of error terms can be analyzed. We will obtained the following result in dimension
two.

Theorem 7.1. With some usual regularity assumptions on the mesh, the error between our
cell-centered finite volume corner-based-flux implicit discretization Pε

h,∆t and the exact solution
is

‖Vε
h(tn)−Vε(tn)‖L2(Ω) ≤ C

(
h

1
4 + ∆t

1
2

)
‖p0‖H4(Ω), tn = n∆t ≤ T.

The constant is independent of h, ε and ∆t and behaves less than T
3
2 for large T .

The proof is an easy add-on on the space estimate O(h
1
4 ) of theorem 7.26, by means of an

abstract method [DES04] which gives a general bound O(∆t
1
2 ) of the difference between the

semi-discrete scheme and the implicit Euler scheme. This will be explained at the end of this
work. The rate of convergence is confirmed by the numerical results of section 7.5, which show
an even better rate of convergence.

d

dt
vε

h
= 0

P0
Pε

Pε
h

h→ 0

DAε
h

ε→ 0

h→ 0

P
0
h

Figure 7.3: The new AP diagram, where the previous branch is still displayed in dashed lines.

We think that some of our results can have an interest for the development and use of such
methods in research or industrial codes with complex non linear physics on unstructured meshes.
Indeed for such codes cell-centered Finite Volume schemes are a natural solution in terms of data
structure. The point is the following: the scheme studied in this work is the only cell-centered
one we know in 2D to compute the solutions of problems which admit diffusion limits in certain
regimes and for which it is possible to prove the AP property. Since the structure of this cell-
centered scheme is nodal based, it strongly questions the ability of standard Finite Volume
methods with edge-based fluxes to recover asymptotic diffusion regimes. As demonstrated in
this work, nodal based Finite Volume techniques do not suffer from this drawback. For linear
wave equation the nodal scheme can be understand as some 1D Riemann problem written in
some direction around each node, so can be interpreted as an approximation of the 2D Riemann
problem [GOS14].
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7.1.3 Organization of the work

This work is organized as follows. Section 7.2 is dedicated to the discretization of the model
problem in dimension one on irregular grids. The convergence is proved in theorem 7.11 with
order h

1
3 in the L2 space-time norm. In the next section, the nodal solvers for the hyperbolic

equation are defined, and the various a priori estimates proved. The main theorem of uniform AP
for the JL-(b) scheme with a rate O(h

1
4 ) is proved at the end of the section. Section 7.5 provides

numerical results that sustain the fact that the convergence order depends on the relative value
of ε and h, and so is mixed hyperbolic/parabolic. Our final remarks will be gathered in a
conclusion. All our results and numerical methods in 2D can be generalized in 3D provided a
convenient definition of the nodal corner vector is used as in [DES10].

7.2 Analysis in 1D

The model problem in dimension one writes

P ε :

{
∂tp

ε + 1
ε∂xu

ε = 0,
∂tu

ε + 1
ε∂xp

ε = − σ
ε2
uε.

(7.11)

As stressed already in (7.4), we consider well-prepared data pε(t = 0) = p0 and uε0 = − ε
σ∂xp0.

The equations (7.11) admit the formal diffusion limit when ε tends to 0:

P 0 : ∂tp−
1

σ
∂xxp = 0. (7.12)

A useful variable will be the scaled gradient

v = − 1

σ
∂xp. (7.13)

7.2.1 Notations

We denote xj+1/2 the nodes, the cells j are the intervals [xj−1/2, xj+1/2], thus ∆xj = xj+1/2 −
xj−1/2, xj is the center of the cell j that is xj = 1

2(xj+1/2 + xj−1/2), and ∆xj+1/2 = xj+1− xj =
1
2(∆xj+1 + ∆xj). Natural assumptions on the mesh are summarized below:

Hypothèse 7.3 (Regularity of the mesh in 1D and constant CM). We consider that there exists
a universal constant 0 < CM ≤ 1 independent of the mesh size h = supj∈Z ∆xj which controls
the mesh from below

CMh ≤ ∆xj ≤ h ∀j ∈ Z. (7.14)

The semi-discrete JL(b) scheme, derived in [BDF12-1] in 2D, can also be written in 1D on
irregular meshes as

P εh :





d

dt
pεj +

uε
j+ 1

2

− uε
j− 1

2

ε∆xj
= 0,

d

dt
uεj +

pε
j+ 1

2

− pε
j− 1

2

ε∆xj
= − σ

ε2

uε
j+ 1

2

+ uε
j− 1

2

2
,

(7.15)

with the fluxes pε
j+ 1

2

and uε
j+ 1

2

are the solutions of the well-posed linear system

j ∈ Z :





pε
j+ 1

2

+ uε
j+ 1

2

+
σ∆xj

2ε
uε
j+ 1

2

= pεj + uεj ,

−pε
j+ 1

2

+ uε
j+ 1

2

+
σ∆xj+1

2ε
uε
j+ 1

2

= −pεj+1 + uεj+1.

(7.16)
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This scheme is the same as the Gosse-Toscani scheme1. Other equivalent forms of P εh can be
obtained by various manipulations, as in (7.29). We use another formulation of the Gosse-
Toscani obtained using the Jin-Levemore scheme [JL96] and a discretization of the source term
which uses the fluxes. Contrary to the Gosse-Toscani scheme which uses Riemann problem, this
formulation based an elementary algebraic computation is easier to write in 2D on unstructured
meshes (the design is detailed in [BDF12-1]). The natural pointwise initialization is chosen

pεj(0) = p0(xj) and uεj(0) = − ε
σ
∂xp0(xj) for all j ∈ Z. (7.17)

When ε tends to 0, the scheme P εh admits the diffusion limit scheme P 0
h

P 0
h : ∆xj

d

dt
pj −

1

σ

(
pj+1 − pj
∆xj+ 1

2

− pj − pj−1

∆xj− 1
2

)
= 0 (7.18)

with the pointwise initialization

pj(0) = p0(xj) for all j ∈ Z. (7.19)

Other quantities are the reconstructed gradient




vj+ 1
2

= − 1

σ

pj+1 − pj
∆xj+ 1

2

,

vj =
vj+ 1

2
+ vj− 1

2

2
.

(7.20)

We denote by Vε(t, x) = (pε(x, t), uε(x, t)) the solution of the hyperbolic heat equations P ε. We
reconstruct similar quantities from the diffusion scheme: it yields Wε(t, x) = (p(x, t), εv(x, t))
which is the solution of the diffusion limit (7.12)-(7.13). The indicatrix function of the interval
(xj−1/2, xj+1/2) is denoted as 1j(x) = 1 if x ∈ (xj−1/2, xj+1/2) and 1j(x) = 0 in the other

case. With this notation we note Vε
h(t, x) =

(∑
j∈Z

pεj(t)1j(x),
∑

j∈Z
uεj(t)1j(x)

)
the solution

1A long and tedious computation shows that the scheme is strictly equivalent to the Gosse-Toscani’s scheme,
described in [GT02] but only for uniform meshes, which writes in terms of wε, vε = pε

± uε

8

>

>

<

>

>

:

dwj

dt
+

Mj− 1
2

ε

wε
j − wε

j−1

∆xj
=

1

ε∆xj
(1 − Mj− 1

2
)(vε

j − w
ε
j ) = Mj− 1

2

∆xj− 1
2

∆xj

σ

2ε2
(vε

j − w
ε
j ),

dvε
j

dt
−

Mj+ 1
2

ε

vε
j+1 − vε

j

∆xj
=

1

ε∆xj
(1 − Mj+ 1

2
)(wε

j − v
ε
j ) = Mj+ 1

2

∆xj+ 1
2

∆xj

σ

2ε2
(wε

j − v
ε
j )

with Mj+ 1
2

= 2ε
σ∆x

j+ 1
2

+2ε
and ∆xj+ 1

2
=

∆xj+∆xj+1

2
. By writing

(

Mj− 1
2
(wε

j−1 − wε
j ) = Mj− 1

2
wj−1 − Mj+ 1

2
wj + (Mj+ 1

2
− Mj− 1

2
)wε

j

Mj+ 1
2
(vε

j+1 − vε
j ) = Mj+ 1

2
vε

j+1 − Mj− 1
2
vε

j − (Mj+ 1
2
− Mj− 1

2
)vε

j

then in terms of pε an uε we have evidently

8

>

>

>

>

>

<

>

>

>

>

>

:

dpε
j

dt
+

1

ε

Mj+ 1
2
uε

j+ 1
2

− Mj− 1
2
uε

j− 1
2

∆xj
= 0,

duε
j

dt
+

1

ε

Mj+ 1
2
pε

j+ 1
2

− Mj− 1
2
pε

j− 1
2

∆xj
= −

1

2

 

Mj+ 1
2

∆xj+ 1
2

∆xj

σ

ε2
+ Mj− 1

2

∆xj− 1
2

∆xj

σ

ε2

!

u
ε
j +

Mj+ 1
2
− Mj− 1

2

ε∆xj
p

ε
j

with the fluxes given by pε
j+ 1

2

=
pε

j+pε
j+1

2
+

uε
j−uε

j+1

2
and uj+ 1

2
=

uε
j + uε

j+1

2
+

pε
j − pε

j+1

2
.
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of the JL-(b) scheme P εh . Finally we note Wε
h(t, x) =

(∑
j∈Z

pj(t)1j(x), ε
∑

j∈Z
vj(t)1j(x)

)
the

solution of the diffusion scheme P 0
h (7.18)-(7.20).

For simplicity we choose a final time T > 0. All error estimates will be given for t ≤ T ,
either in the norm ‖f(t)‖L∞([0,T ];L2(R)), or mostly in the norm ‖f‖L2([0,T ]×R).

Hypothèse 7.4 (Regularity of the initial data and constant CA). We consider that there exists
a universal constant CA > 0 which controls all kind of approximations/interpolations/projections
on the mesh of exact functions. We will write for example the error estimates at the initial time
under the form

‖Vε
h(0)−Vε(0)‖L2(R) ≤ CAh‖p0‖H2(R) (7.21)

and

‖Wε
h(0)−Wε(0)‖L2(R) ≤ CAh‖p0‖H2(R). (7.22)

The second inequality in the hypothesis can be related to the sharper inequality

∥∥∥∥
∑

j

(
uεj(0)− εvj(0)

)
1j

∥∥∥∥
L2(R)

≤ CAhε‖p0‖H2(R). (7.23)

The other technical constants used to bound the errors of the left, top, right and bottom branches
of the AP diagram 7.1 will be denoted as ↓C, C→, C↓ and C←.

7.2.2 Study of ‖P ε − P 0‖
In this section we prove a natural error estimate [GJL99] between the solution of the hyperbolic
heat equations (7.11) and the solution of the diffusion limit equation (7.12).

Lemma 7.5. One has the estimate

‖Vε −Wε‖L2([0,T ]×R) ≤ C← ε‖p0‖H3(R), C← =
T

3
2

σ2
. (7.24)

Proof. We redefine v = − ε
σ∂xp with p the diffusion solution of (7.12) and introduce Rε such

that the solution of the diffusion equation satisfies

{
∂tp+ 1

ε∂xv = 0,
∂tv + 1

ε∂xp+ σ
ε2
v = Rε

(7.25)

where Rε = ∂tv = − ε
σ∂txp = − ε

σ2∂xxxp. Note that ‖Rε(t)‖L2(R) ≤ ‖Rε(0)‖L2(R) ≤ ε
σ2 ‖p0‖H3(R).

Denoting eε = p− pε, fε = v − uε, we make the difference between the systems (7.11) et (7.25)

{
∂te

ε + 1
ε∂xf

ε = 0,
∂tf

ε + 1
ε∂xe

ε + σ
ε2
fε = Rε.

(7.26)

Since data are well-prepared, one has eε(0) = fε(0) = 0. Consider ‖Vε−Wε‖2L2(R) = ‖eε‖2L2(R)+

‖fε‖2L2(R). Adding the first equation of (7.26) multiplied by eε and the second multiplied by fε

and integrating on R, we find out that: 1
2
d
dt‖Vε −Wε‖2L2(R) ≤

∫
R
Rεfεdx ≤ ‖Rε‖L2(R)‖Vε −

Wε‖L2(R). One gets a bound of ‖Vε−Wε‖L∞([0,T ];L2(R)) by integration between 0 and T. Finally

‖Vε −Wε‖L2([0,T ]×R) ≤
√
T‖Vε −Wε‖L∞([0,T ];L2(R)) which ends the proof.
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7.2.3 Stability estimates for P ε
h and P 0

h

The estimates (7.27-7.28) and (7.31) characterize the dissipation rate of both schemes.

Proposition 7.6. The scheme P εh is stable in L2 norm. Moreover,

√∫ T

0

(∑
∆xj+ 1

2
(uε
j+ 1

2

)2
)
dt ≤ ε√

σ
‖Vε

h(0)‖L2(R) (7.27)

and √√√√√
∫ T

0



∑

j∈Z

(uε
j+ 1

2

− uεj)2 +
∑

j∈Z

(uε
j− 1

2

− uεj)2

 dt ≤

√
ε‖Vε

h(0)‖L2(R). (7.28)

Remarque 7.2. The strategy of the proof of many estimates in this work consists in analyzing
the balance between the dissipation of the fluxes and the physical dissipation (all source terms
like − σ

ε2
u) on the one hand, and some truncation errors on the other hand. This is why it is

convenient to reformulate P εh so that the pressure fluxes pε
j+ 1

2

and pε
j− 1

2

are eliminated in the

second equation of (7.15). This elimination is technically convenient since all dissipation terms
are expressed using the same variable, namely u. It will simplify a lot the comparisons between
all kinds of dissipation terms and other errors terms.

Proof. According to the above remark we obtain the formulation (7.29) which is equivalent to
P εh 




∆xj
d

dt
pεj +

uε
j+ 1

2

− uε
j− 1

2

ε
= 0,

∆xj
d

dt
uεj −

uε
j+ 1

2

+ uε
j− 1

2

ε
+

2

ε
uεj = 0,

(
2 +

σ∆xj+ 1
2

ε

)
uε
j+ 1

2

= pεj − pεj+1 + uεj + uεj+1.

(7.29)

Consider now the discrete quadratic energy E(t) = 1
2

∑
j ∆xj((p

ε
j)

2 + (uεj)
2). Multiplying the

first equation of (7.29) by pεj and the second equation by uεj and adding on all the cells, one
finds

E′(t) = −
∑

j∈Z

uε
j+ 1

2

− uε
j− 1

2

ε
pεj +

∑

j∈Z

uε
j+ 1

2

+ uε
j− 1

2

ε
uεj −

2

ε

∑

j

(uεj)
2.

Since
∑

j(u
ε
j+ 1

2

− uε
j− 1

2

)pεj =
∑

j u
ε
j+ 1

2

(pεj − pεj+1), one has by using the third equation of (7.29)

and rearranging the terms

E′(t) +
∑

j∈Z

(uε
j+ 1

2

− uεj)2

ε
+
∑

j∈Z

(uε
j− 1

2

− uεj)2

ε
+
σ

ε2

∑

j∈Z

∆xj

(uε
j+ 1

2

)2 + (uε
j− 1

2

)2

2
= 0. (7.30)

Integrating (7.30) between 0 and t, one finds E(t) ≤ E(0), that is the L2 stability of P εh . The
estimate (7.27) comes from ∆xj+ 1

2
= 1

2(∆xj + ∆xj+1). The estimate (7.28) is directly deduced

from (7.30).
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Some similar bounds hold for the quantities related to the diffusion scheme (7.18). First,
multiplying the diffusion scheme by pj and adding on all the cells, one has the L2 stability in
the sense

1

2

d

dt

∑

j

∆xjp
2
j = − 1

σ

∑

j

(pj+1 − pj)2
∆xj+ 1

2

.

Thus the following estimate holds for the function v̄h =
(
vj+ 1

2

)

j
defined by (7.20)

‖v̄h‖L2([0,T ]×R) =

√√√√
∫ T

0

∑

j

∆xj+ 1
2
(vj+ 1

2
)2 ≤

√
σ

2
‖ph(0)‖L2(R), C > 0. (7.31)

7.2.4 Study of ‖P ε
h − P ε‖naive

In this section we prove the convergence of P εh to P ε. We still denote V ε(t) = (pε, uε).

Lemma 7.7. There exists a constant ↓C > 0 independent of h, ε, CM, with at most a linear
growth in time, such that the following estimate holds

‖Vε
h −Vε‖L2([0,T ]×R) ≤ ↓C√

CM

√
h

ε
‖p0‖H2(R) . (7.32)

Proof. We use the method introduced by C. Mazeran [MAZ07] in his PhD thesis. It starts with
an estimate for the time derivative of E = 1

2‖Vε
h−Vε‖2L2(R). For the sake of simplicity, q′ stands

indifferently for d
dtq or ∂tq for any quantity q. One has

E ′(t) =
1

2

∫

R

((pεh)
2 + (uεh)

2)′dx
︸ ︷︷ ︸

D1

+
1

2

∫

R

((pε)2 + (uε)2)′dx
︸ ︷︷ ︸

D2

+

∫

R

(−(pεh)
′pε − (uεh)

′uε)dx
︸ ︷︷ ︸

D3

+

∫

R

(−pεh(pε)′ − uεh(uε)′dx
︸ ︷︷ ︸

D4

We will successively estimate each of those terms, the fundamental idea being that D1 ≤ 0 and
D2 ≤ 0 are used to control spurious contributions in D3 and D4. First D1 corresponds to the
entropy production of the scheme. Thanks to (7.30), one has

D1 = −1

ε

∑

j∈Z

(uε
j+ 1

2

− uεj)2 −
1

ε

∑

j∈Z

(uε
j− 1

2

− uεj)2 −
σ

ε2

∑

j∈Z

∆xj

(uε
j+ 1

2

)2 + (uε
j− 1

2

)2

2
≤ 0.

One also directly obtains

D2 = −
∑

j∈Z

∆xj
σ

ε2

(
1

∆xj

∫ x
j+1

2

x
j− 1

2

(uε)2dx

)
≤ 0.

For D4, one gets directly

D4 =
∑

j∈Z

pεj
uε(xj+ 1

2
)− uε(xj− 1

2
)

ε
+
∑

j∈Z

uεj
pε(xj+ 1

2
)− pε(xj− 1

2
)

ε
+
∑

j∈Z

σ

ε2
uεj

∫ x
j+1

2

x
j− 1

2

uε(x)dx
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In this method the third term D3 is more complicated to study

D3 =
∑

j∈Z

uε
j+ 1

2

− uε
j− 1

2

ε

(
1

∆xj

∫ x
j+1

2

x
j− 1

2

pε(x)dx

)
+
∑

j∈Z

pε
j+ 1

2

− pε
j− 1

2

ε

(
1

∆xj

∫ x
j+1

2

x
j− 1

2

uε(x)dx

)

+
∑

j∈Z

∆xj
σ

ε2

uε
j+ 1

2

+ uε
j− 1

2

2

(
1

∆xj

∫ x
j+1

2

x
j− 1

2

uε(x)dx

)
.

It is decomposed in several pieces. We add and subtract in each fluxes the value of the unknowns
in the cell. We also add and subtract to the two first integrals the value of the unknowns on the

edge. Denoting by δ±j (g) = 1
∆xj

∫ xj+1
2

x
j− 1

2

g(x)dx− g(xj± 1
2
), one gets after rearrangements

D3 =
∑

j∈Z

uε
j+ 1

2

− uεj
ε

δ+j (pε) +
∑

j∈Z

uεj − uεj− 1
2

ε
δ−j (pε)

+
∑

j∈Z

pε
j+ 1

2

− pεj
ε

δ+j (uε) +
∑

j∈Z

pεj − pεj− 1
2

ε
δ−j (uε)

−
∑

j∈Z

uε(xj+ 1
2
)− uε(xj− 1

2
)

ε
pεj −

∑

j∈Z

pε(xj+ 1
2
)− pε(xj− 1

2
)

ε
uεj

+
∑

j∈Z

∆xj
σ

ε2

uε
j+ 1

2

+ uε
j− 1

2

2

(
1

∆xj

∫ x
j+1

2

x
j− 1

2

uε(x)dx

)

Using the fluxes’ definition (7.16), one can eliminate the pressure fluxes. With a Young’s in-
equality ab ≤ αa2 + 1

4αb
2 where α > 0, one gets

∑

j∈Z

pε
j+ 1

2

− pεj
ε

δ+j (uε) =
∑

j∈Z

1

ε
(uεj − uεj+ 1

2

)δ+j (uε)− σ

2ε2

∑

j∈Z

∆xju
ε
j+ 1

2

δ+j (uε)

≤ α
∑

j∈Z

(uε
j+ 1

2

− uεj)2

ε
+

(
1

4αε
+

σ

2ε2

)∑

j∈Z

δ+j (uε)2 +
σ

8ε2

∑

j∈Z

∆x2
j

(
uε
j+ 1

2

)2
.

Using this expression in D3 and using again Young’s inequality, one gets for arbitrary α > 0

D3 ≤ α
∑

j∈Z

(uε
j+ 1

2

− uεj)2

ε
+ α

∑

j∈Z

(uε
j− 1

2

− uεj)2

ε

+
∑

j∈Z

((
1

2αε
+

σ

2ε2

)(
δ+j (uε)2 + δ−j (uε)2

)
+
δ+j (pε)2 + δ−j (pε)2

2εα

)

+
∑

j∈Z

1

8ε
σ∆x2

j

(uε
j− 1

2

)2 + (uε
j+ 1

2

)2

ε
+
∑

j∈Z

∆xj
σ

ε2

uε
j+ 1

2

+ uε
j− 1

2

2

(
1

∆xj

∫ x
j+1

2

x
j− 1

2

uε(x)dx

)

−
∑

j∈Z

uεj
pε(xj+ 1

2
)− pε(xj− 1

2
)

ε
−
∑

j∈Z

pεj
uε(xj+ 1

2
)− uε(xj− 1

2
)

ε
.
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We now sum all bounds contributing to E ′(t) and we get:

E
′(t) ≤ (−1 + α)

∑

j∈Z

(uε
j+ 1

2

− uεj)2 + (uε
j− 1

2

− uεj)2

ε

+
∑

j∈Z

((
1

2αε
+

σ

2ε2

)(
δ+j (uε)2 + δ−j (uε)2

)
+
δ+j (pε)2 + δ−j (pε)2

2εα

)

+
∑

j∈Z

1

8ε
σ∆x2

j

(uε
j− 1

2

)2 + (uε
j+ 1

2

)2

ε

+
∑

j∈Z

∆xj
σ

ε2

uε
j+ 1

2

+ uε
j− 1

2

2

(
1

∆xj

∫ x
j+1

2

x
j− 1

2

uε(x)dx

)
−
∑

j∈Z

∆xj
σ

2ε

(uε
j− 1

2

)2 + (uε
j+ 1

2

)2

ε

+
∑

j∈Z

∆xj
σ

ε2
uεj

(
1

∆xj

∫ x
j+1

2

x
j− 1

2

uε(x)dx

)
−
∑

j∈Z

∆xj
σ

ε2

(
1

∆xj

∫ x
j+1

2

x
j− 1

2

(uε)2(x)dx

)
.

We now examine the sum of all terms in the two last lines of the RHS of the above inequality ,
which we denote S. One finds

S = −
∑

j∈Z

∆xj
σ

2ε2




uε

j− 1
2

− 1

∆xj

∫ x
j+1

2

x
j− 1

2

uε(x)dx




2

+


uε

j+ 1
2

− 1

∆xj

∫ x
j+1

2

x
j− 1

2

uε(x)dx




2


+
σ

2ε2

∑

j∈Z

(∫ x
j+1

2

x
j− 1

2

uε(x)dx

)(
uεj − uεj+ 1

2

+ uεj − uεj− 1
2

)

≤ σ

2ε2

∑

j∈Z

(∫ x
j+1

2

x
j− 1

2

uε(x)dx

)(
uεj − uεj+ 1

2

+ uεj − uεj− 1
2

)
.

Using another Young’s inequality, one has for all α̂ > 0

S ≤ σ2

8α̂ε3

∑

j∈Z

(∫ x
j+1

2

x
j− 1

2

uε(x)dx

)2

+ α̂
∑

j∈Z

(uεj − uεj+ 1
2

)2 + (uεj − uεj− 1
2

)2

ε
.

For example by choosing α = 1
2 and α̂ = 1

2 , and coming back to E ′(t) we get

E
′(t) ≤

∑

j∈Z

((
1

ε
+

σ

2ε2

)(
δ+j (uε)2 + δ−j (uε)2

)
+

1

ε

(
δ+j (pε)2 + δ−j (pε)2

))
(7.33)

+
∑

j∈Z

1

8ε
σ∆x2

j

(uε
j− 1

2

)2 + (uε
j+ 1

2

)2

ε
+
σ2

4ε3

∑

j∈Z

(∫ x
j+1

2

x
j− 1

2

uε(x)dx

)2

. (7.34)

To estimate the contributions on the first line we use the following fact: for any quantity q,

one can use q(xj− 1
2
) = q(x) +

∫ xj− 1
2

x
d
dsq(s)ds and integrate this expression in the cell ∆xj ; we

get
∑

j∈Z
δ±j (q)2 ≤ h‖q‖2H1(R). Therefore the first terms on the right hand side of (7.33) can be

estimated as
(

1

ε
+

σ

2ε2

)∫ t

0

∑

j∈Z

(
δ+j (uε)2 + δ−j (uε)2

)
dt ≤ 2h

(
1

ε
+

σ

2ε2

)
‖uε‖2L2([0,t]:H1(R)).
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Since ‖uε‖2L2([0,t]:H1(R)) ≤ t‖Vε(0)‖2H1(R) and also σ
ε2
‖uε‖2L2([0,t]:H1(R)) ≤ ‖Vε(0)‖2H1(R) by (7.2)

and (7.3), one gets that

(
1

ε
+

σ

2ε2

)∫ t

0

∑

j∈Z

(
δ+j (uε)2 + δ−j (uε)2

)
dt ≤ 2h

(
t

ε
+

1

2

)
‖Vε(0)‖2H1(R). (7.35)

A similar and simpler formula for the next terms is

1

ε

∫ t

0

∑

j∈Z

(
δ+j (pε)2 + δ−j (pε)2

)
≤ 2

ht

ε
‖pε‖2H1(R) ≤ 2

ht

ε
‖Vε(0)‖2H1(R). (7.36)

Next, using the assumption (7.3) on the mesh and the estimate (7.27), one controls the next
term by

∫ T

0

∑

j∈Z

1

8ε
σ∆x2

j

(uε
j− 1

2

)2 + (uε
j+ 1

2

)2

ε
≤ h

4CM
‖Vε(0)‖2L2(R). (7.37)

Finally the last term in (7.34) can be bounded as

σ2

4ε3

∑

j∈Z

(∫ x
j+1

2

x
j− 1

2

uε(x)dx

)2

≤ σ2

4ε3
h‖uε‖2L2(R)

so that

σ2

4ε3

∫ t

0

∑

j∈Z

(∫ x
j+1

2

x
j− 1

2

uε(x)dx

)2

≤ σ2

4ε3
h‖uε‖2L2([0,t]×R) ≤

σ

4ε
h‖Vε(0)‖2L2(R) (7.38)

by means of the energy identity. We note that

‖Vε(0)‖Hp(R) ≤ (1 + ε/σ)‖p0‖Hp+1(R) ≤ (1 + 1/σ)‖p0‖Hp+1(R) ∀p ∈ N. (7.39)

So using (7.35-7.38) we obtain for all time t ≤ T

E (t) ≤ E (0) +

(
t

ε
+

1

2
+
t

ε
+

1

4CM
+
σ

4ε

)
h‖Vε(0)‖2H1(R)

≤ (1 + 1/σ)

(
C2
Ah+

2t

ε
+

1

2
+

1

4CM
+
σ

4ε

)
h‖p0‖2H2(R)

where the initialization stage is estimated using (7.21). One obtains after integration

‖Vε
h −Vε‖L2([0,T ]×R) ≤

√
T

(√
1 + 1/σ ×

√
C2
Ahε+ 2T +

ε

2
+

ε

4CM
+
σ

4

)√
h

ε
‖Vε(0)‖H1(R).

The constant in parentheses is
√
T
√

1 + 1/σ
√
C2
AhεCM + 2TCM + ε

2CM + ε
4 + σ

4CM/
√
CM ≤

↓C√
CM

with

↓C =
√
T
√

1 + 1/σ ×
√
C2
A + 2T +

1

2
+

1

4
+
σ

4
.

The proof is ended.
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7.2.5 Study of ‖P 0
h − P 0‖

We first recall a fundamental error estimate [EGH00] for the diffusion limit scheme (7.18-7.19).

Lemma 7.8. There exists a constant C↓ > 0 independent of h, ε, CM, with a linear growth in
time, such that the following estimate holds

‖Wε
h −Wε‖L2([0;T ]×R) ≤

C↓√
CM

h‖p0‖H2(R). (7.40)

Proof. We use a method that one can find in Eymard-Gallouet-Herbin [EGH00]. It is based on
a notion of consistency for finite volumes schemes. We set

sj = ∂xxp(xj)−
∂xp(xj+ 1

2
)− ∂xp(xj− 1

2
)

∆xj
and rj+ 1

2
= ∂xp(xj+ 1

2
)− p(xj+1)− p(xj)

∆xj+ 1
2

,

so that one has the identity

d

dt
p(xj)−

1

σ∆xj

(
p(xj+1)− p(xj)

∆xj+ 1
2

− p(xj)− p(xj−1)

∆xj− 1
2

)
=
sj
σ

+
rj+ 1

2
− rj− 1

2

σ∆xj
.

We next introduce the difference ej = p(xj)− pj which satisfies

d

dt
ej −

1

σ∆xj

(
ej+1 − ej
∆xj+ 1

2

− ej − ej−1

∆xj− 1
2

)
=
sj
σ

+
rj+ 1

2
− rj− 1

2

σ∆xj

with ej(0) = 0 for all j. By multiplying this equation by ej and denoting by ‖eh‖2L2(R) =∑
j ∆xje

2
j , one finds that

1

2

d

dt
‖eh‖2L2(R) +

1

σ

∑

j

(ej+1 − ej)2
∆xj+ 1

2

=
1

σ

∑

j

∆xjsjej +
1

σ

∑

j

rj+ 1
2
(ej − ej+1).

The Cauchy-Schwarz inequality yields

∑

j

rj+ 1
2
(ej − ej+1) ≤

1

2

∑

j

(ej+1 − ej)2
∆xj+ 1

2

+
1

2

∑

j

∆xj+ 1
2
r2
j+ 1

2

.

One finds out with natural notations

1

2

d

dt
‖eh‖2L2(R) +

1

2σ

∑

j

(ej+1 − ej)2
∆xj+ 1

2

≤ 1

σ
‖sh‖L2(R)‖eh‖L2(R) +

1

2σ
‖rh‖2L2(R). (7.41)

Using the definitions of the truncation error sh, one easily obtains by using classical arguments
‖sh‖L2([0,T ]×R) ≤

√
2h‖∂xxxp‖L2([0,T ]×R): since p satisfies the diffusion equation (7.12), one gets

‖∂xxxp‖L2([0,T ]×R) ≤
√
σ/2‖∂xxp0‖L2(R); one gets ‖sh‖L2([0,T ]×R) ≤

√
σh‖∂xxp0‖L2(R). The same

manipulations on the second truncation error rh yield

‖sh‖L2([0,T ]×R) + ‖rh‖L2([0,T ]×R) ≤
√
σh‖p0‖H2(R). (7.42)

One gets the bound from (7.41)

‖eh‖2L2(R)(t) ≤ eh‖2L2(R)(0) +

∫ t

0

1

σ
‖sh‖L2(R)‖eh‖L2(R) +

1

2σ
‖rh‖2L2([0,T ]×R).
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The use of the lemma (7.34), which is a corrolary of the Bihari’s inequality, gives us:

‖eh‖2L2([0,T ]×Ω) ≤
1

2
T

(
2

√
‖eh‖2L2(Ω)

(0) +
1

σ
‖rh‖2L2([0,T ]×Ω)

+
1

σ

√
T‖sh‖L2([0,T ]×Ω)

)2

. (7.43)

The initial value is bounded using (7.22) and taking into account (7.42) we obtain

‖eh‖L2([0,T ]×Ω) ≤
√
T

2

(
2

√
CA +

1√
σ

+

√
T

σ

)
h‖p0‖ = B h‖p0‖. (7.44)

We also deduce from (7.41)

∫ T

0

∑

j

(ej+1 − ej)2
∆xj+ 1

2

≤
(
‖sh‖L2([0,T ]×R) + ‖rh‖L2([0,T ]×R)

)2
+ ‖eh‖2L2([0,T ]×R)

≤
(
σ +B2

)
h2‖p0‖2H2(R)

The other term that we must bound in (7.40) is fh = ε (v(xj)− vj) 1j(x) = −ε
(
∂xp(xj)

σ + vj

)
1j(x)

with vj defined in (7.20). It yields

‖fh‖L2([0;T ]×R) =
ε

2σ



∫ T

0

∑

j

∆xj

∣∣∣∣
pj+1 − pj
∆xj+ 1

2

− ∂xp(xj) +
pj − pj−1

∆xj− 1
2

− ∂xp(xj)
∣∣∣∣
2



1
2

(7.45)

where the definition of ej yields
pj+1−pj

∆x
j+1

2

−∂xp(xj) =
(
∂xp(xj+ 1

2
)− ∂xp(xj)

)
+

(
ej+1−ej

∆x
j+1

2

)
−rj+ 1

2
.

One gets from the triangular inequality



∫ T

0

∑

j

∆xj+ 1
2

(
pj+1 − pj
∆xj+ 1

2

− ∂xp(xj)
)2



1
2

≤



∫ T

0

∑

j

∆xj+ 1
2

(
∂xp(xj+ 1

2
)− ∂xp(xj)

)2



1
2

+
[
σ +B2

] 1
2 h‖p0‖H2(R) + ‖rh‖L2([0,T ]×R).

Since
(∫ T

0

∑
j ∆xj+ 1

2

(
∂xp(xj+ 1

2
)− ∂xp(xj)

)2) 1
2 ≤ h

√
σ
2 ‖p0‖H1(R) and the estimate (7.42) holds,

one gets



∫ T

0

∑

j

∆xj+ 1
2

(
pj+1 − pj
∆xj+ 1

2

− ∂xp(xj)
)2



1
2

≤
([
σ +B2

] 1
2 +

√
σ

2
+
√
σ

)
h‖p0‖H2(R). (7.46)

Taking into account that the weight ∆xj (7.45) is different from the weight ∆xj+ 1
2

in (7.46),
one gets

‖fh‖L2([0;T ]×R) ≤
ε√
CM

([
σ +B2

] 1
2 +

√
σ

2
+
√
σ

)
h‖p0‖H2(R) ≤

1√
CM

([
σ +B2

] 1
2 +

√
σ

2
+
√
σ

)
h‖p0‖H2(R),

(7.47)
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since ε ≤ 1. Finally, the difference ‖Wε
h −Wε‖2L2([0;T ]×R) = ‖eh‖2L2([0;T ]×R) + ‖fh‖2L2([0;T ]×R) is

bounded using (7.44) and (7.47)

‖Wε
h −Wε‖L2([0;T ]×R) ≤

C↓√
CM

h‖p0‖H2(R)

and the constant C↓ with the definition of B by (7.44), has, at most, a linear growth in time. It
ends the proof.

7.2.6 Study of ‖P ε
h − P 0

h‖
In this section we prove an error estimate between the solution of the scheme (7.29) and the
solution of the diffusion scheme (7.18). It is necessary to use some comparison estimates between
the initial data of P εh and P 0

h .

Lemma 7.9. There exists a constant C→ > 0 independent of h, ε, CM and growth as T
3
2 for

large T such that the following estimate holds

‖Vε
h −Wε

h‖L2([0,T ]×R) ≤
C→

CM
ε‖p0‖H2(R). (7.48)

Proof. For practical reasons we use the formulation (7.29) of the hyperbolic scheme which is
equivalent to (7.15-7.16) and we reformulate the diffusion scheme (7.18-7.20) as





∆xj
d

dt
pj +

uj+ 1
2
− uj− 1

2

ε
= 0,

∆xj
d

dt
uj −

uj+ 1
2

+ uj− 1
2

ε
+

2

ε
uj = ∆xjRj ,

pj − pj+1 + uj + uj+1 = 2uj+ 1
2

+ σ∆xj+ 1
2

uj+ 1
2

ε
+ ∆xj+ 1

2
Sj+ 1

2
,

uj+ 1
2

= − ε
σ

pj+1 − pj
∆xj+ 1

2

,

uj =
uj+ 1

2
+ uj− 1

2

2
,

(7.49)

where the error terms are Rj and Sj+ 1
2
. A simple computation using the last two identities in

(7.49) yields

Rj =
d

dt
uj and Sj+ 1

2
=

1

∆xj+ 1
2

(
uj + uj+1 − 2uj+ 1

2

)
.

One has from the triangular inequality applied to uj =
u

j+1
2
+u

j− 1
2

2

∥∥∥∥
d

dt
uh

∥∥∥∥
L2([0,T ]×R)

=

√√√√
∫ T

0

∑

j∈Z

∆xj

∣∣∣∣
d

dt
uj

∣∣∣∣
2

≤ 1√
CM

√√√√
∫ T

0

∑

j∈Z

∆xj+ 1
2

∣∣∣∣
d

dt
uj+ 1

2

∣∣∣∣
2

=

√
ε

CM

√√√√
∫ T

0

∑

j∈Z

∆xj+ 1
2

∣∣∣∣
d

dt
vj+ 1

2

∣∣∣∣
2

.
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Since the scheme is invariant with respect to the time variable, one can apply (7.31) to the
derivative with respect to time. It yields

√√√√
∫ T

0

∑

j∈Z

∆xj+ 1
2

∣∣∣∣
d

dt
vj+ 1

2

∣∣∣∣
2

≤
√
σ

2

∥∥∥∥
d

dt
ph(0)

∥∥∥∥
L2(R)

≤ 1√
2σ
‖p0‖H2(R)

where the last inequality is from the well preparedness of the initial data, as detailed in propo-
sition 7.10. So one has the bound

‖R‖L2([0,T ]×R) ≤
ε√

2σCM
‖p0‖H2(R). (7.50)

Using the definitions of uj (7.49), Sj+ 1
2

can be written in terms of d
dtpj and d

dtpj+1

Sj+ 1
2

=
ε

2

(
∆xj

∆xj+ 1
2

d

dt
pj −

∆xj+1

∆xj+ 1
2

d

dt
pj+1

)
.

Using the technical proposition 7.10, one finds out that S = (Sj+ 1
2
)j∈Z satisfies

‖S‖L2([0,T ]×R) ≤
ε

CM

∥∥∥∥
d

dt
p

∥∥∥∥
L2([0,T ]×R)

≤ ε
√
T

σCM
‖p0‖H2(R). (7.51)

We now introduce the differences

ej = pj − pεj , fj = uj − uεj and fj+ 1
2

= uj+ 1
2
− uε

j+ 1
2

. (7.52)

Let us look at the difference between the scheme (7.29) and (7.49). We get





∆xj
d
dtej +

f
j+1

2
−f

j− 1
2

ε = 0,

∆xj
d
dtfj −

f
j+1

2
+f

j− 1
2

ε + 2
εfj = ∆xjRj ,

ej − ej+1 + fj + fj+1 − 2fj+ 1
2
− σ∆xj+ 1

2

f
j+1

2
ε = ∆xj+ 1

2
Sj+ 1

2
.

We use the notation ‖Vε
h −Wε

h‖2L2(R) =
∑

j ∆xj(e
2
j + f2

j ). Using the same kind of proof than

for the L2 stability of proposition 7.6, one gets that

1

2

d

dt
‖Vε

h −Wε
h‖2L2(R) ≤

∑

j

∆xjRjfj −
∑

j

∆xj+ 1
2

fj+ 1
2

ε
Sj+ 1

2
− σ

ε2

∑

j∈Z

∆xj+ 1
2
f2
j+ 1

2

.

Using a Young’s inequality on the second term of the right side of this inequality, one finds out
that

1

2

d

dt
‖Vε

h −Wε
h‖2L2(R) ≤

∑

j

∆xjRjfj +
1

4σ

∑

j

∆xj+ 1
2
S2
j+ 1

2

. (7.53)

Using the Cauchy-Schwarz inequality, we have

d

dt
‖Vε

h −Wε
h‖2L2(R) ≤ ‖R‖L2(R) ‖Vε

h −Wε
h‖L2(R) +

1

2σ
‖S‖2L2(R).
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Integrating in time on [0, t]

‖Vε
h(t)−Wε

h(t)‖2L2(R) ≤
(∫ t

0
‖Vε

h(t)−Wε
h(t)‖L2(R) ‖R‖L2(R) +

1

2σ
‖S‖2L2([0,T ]×R) + ‖Vε

h(0)−Wε
h(0)‖2L2(R)

)
.

Another use of the Bihari’s inequality, lemma (7.34), yields

‖Vε
h−Wε

h‖2L2([0,T ]×R) ≤
1

2
T


2

√

‖Vε
h(0)−Wε

h(0)‖2
L2(R)

+

∫ T

0

1

2σ
‖S‖2

L2([0,T ]×R)
+
√
T‖R‖2L2([0,T ]×R)




2

Finally, using the previous estimates on R, S, the well-preparedness of the data (7.23) one
gets

‖Vε
h −Wε

h‖2L2([0,T ]×R) ≤
1

2
T

(
2

√
(CAhε)2 +

ε2T 2

4σ3C2
M

+
√
T

ε2

2CM

)2

‖p0‖2H2(R)

The proof is ended.

Proposition 7.10 (Technical result). The bound
√∑

j ∆xj(
d
dtpj)

2(t) ≤ σ−1‖p0‖H2(R) holds at

any time.

Proof. By linearity of the diffusion scheme, zh = d
dtph is solution of P 0

h :

∆xj
d

dt
zj −

1

σ

(
zj+1 − zj
∆xj+ 1

2

− zj − zj−1

∆xj− 1
2

)
= 0,

with initial condition

zj(0) =
d

dt
p0(xj) =

1

∆xjσ

(
p0(xj+1)− p0(xj)

∆xj+ 1
2

− p0(xj)− p0(xj−1)

∆xj− 1
2

)
. (7.54)

One gets from a Taylor expansion with integral residue that

∣∣∣∣∣
p0(xj+1)− p0(xj)

∆xj+ 1
2

− ∂xp0(xj)

∣∣∣∣∣ ≤
∫ xj+1

xj

|∂xxp0(y)| dy.

Similarly one has the bound

∣∣∣∣
p0(xj)−p0(xj−1)

∆x
j+1

2

− ∂xp0(xj)

∣∣∣∣ ≤
∫ xj

xj−1
|∂xxp0(y)| dy. Therefore |zj(0)| ≤

1
∆xjσ

∫ xj+1

xj−1
|∂xxp0(y)| dy from which the bound

√∑
j ∆xjz2

j (0) ≤ σ−1‖p0‖H2(R) is deduced. Since

the scheme P 0
h is stable in L2, this bound is true at any time. Considering (7.54) the discrete

second derivative attached to P 0
h is bounded at any time, which ends the proof of the claim.

7.2.7 End of the proof of uniform AP property

Theoreme 7.11. Assuming a sufficiently smooth well prepared initial data, the scheme P εh
converges to P ε at order at least 1

3 in L2([0, T ]× R), uniformly with respect to ε
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Proof. All the previous estimates show that (7.9-7.8) are true with a = 1, b = c = 1
2 and d = 1.

More specifically, estimates (7.32), (7.48), (7.40) and (7.24) shows that

‖Vε −Vε
h‖L2([0,T ]×R) ≤ Cmin

(√
h

ε
, h+ 2ε

)
‖p0‖H3(R)

where

C = max

[
↓C√
CM

,
C→

CM
,
C↓√
CM

, C←

]

and behaves less than T
3
2 for large T . Using the general method described at the beginning of this

work in proposition 7.2, one obtains the convergence estimate ‖Vε
h −Vε‖L2([0,T ]×R) ≤ C(T )hq

with the order of convergence q = ac
a+b = 1

3 .

7.3 The 2D case

In this section we prove the uniform convergence of the solution of the diffusion AP scheme
introduced in [BDF12-1] to the solution of the hyperbolic heat equation. The structure of our
proof is globally the same as in the previous section. However two major difficulties will be
treated: a) the first one consists in the adaptation to our problem of a combination of specific
finite volumes techniques for hyperbolic and parabolic equations; b) the second one is to derive
new bounds for the scheme DAε

h.

The model problem is the hyperbolic heat equation in the domain Ω =]0, 1[2 with periodic
boundary conditions and well-prepared data

Pε :





∂tp
ε +

1

ε
div(uε) = 0,

∂tu
ε +

1

ε
∇pε = − σ

ε2
uε,

pε(t = 0) = p0, uε(t = 0) = uε0 = − ε
σ∇p0.

When ε tends to zero, this problem admits the following diffusion limit

P0 : ∂tp−
1

σ
div(∇p) = 0, p(t = 0) = p0.

The rescaled gradient is v = − 1
σ∇p. We will admit the following proposition, the proof of which

can be easily obtained by a method similar to the one of proposition 7.5.

Proposition 7.12. The error between the two solutions can be upper bounded by

‖pǫ − p‖L∞([0,T ];Hn(Ω)) + ‖v‖L∞([0,T ];Hn(Ω)) ≤
T

σ2
ε‖p0‖H3+n(Ω), n ∈ N. (7.55)

Proof. The structure of the proof in the L∞([0, T ];L2(Ω)) norm is the same as the one of
proposition 7.5. Since the coefficients of the problem are constant, similar bounds are obtained
at any order of derivation which proves the estimate for any n > 0.
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7.3.1 Definition of Pε
h

Let us consider an unstructured mesh in dimension 2. The mesh is defined by a finite number
of vertices xr and cells Ωj . We denote xj a point chosen arbitrarily inside Ωj . For simplicity we
will call this point the center of the cell. By convention the vertices are listed counter-clockwise
xr−1,xr,xr+1 with coordinates xr = (xr, yr). We note ljrnjr the vector as follows

ljr =
1

2
dist (xr−1,xr+1) and njr =

1

2ljr
(xr+1 − xr−1)

⊥ . (7.56)

This notion of a corner vector can be rigorously introduced also in any dimension using the
definition [DES10]. The scalar product of two vectors is denoted as (x,y).

x j

xr+1

xr−1

xr

Cell Ω j

Cell Ωk

l jrn jr

Figure 7.4: Notation for node formulation. The corner length ljr and the corner normal njr
are defined in equation (7.56). The point xj is an arbitrary point inside the cell, typically the
centroid of the cell or an averaged of the corners.

The numerical approximation of the problem Pε that we study is the JL-(b) scheme defined
in [BDF12-1]

Pε
h :





| Ωj |
d

dt
pεj +

1

ε

∑

r

ljr(u
ε
r,njr) = 0

| Ωj |
d

dt
uεj +

1

ε

∑

r

ljrnjrp
ε
jr = − σ

ε2

∑

r

β̂jru
ε
r,

(7.57)

with for simplicity point wise initial data pεj(0) = p0(xj) and uεj(0) = −εσ−1∇p0(xj). The fluxes
are defined by the so-called corner problem

{
pεjr − pεj = (njr,u

ε
j − uεr)−

σ

ε
(xr − xj ,u

ε
r),∑

j ljrp
ε
jrnjr = 0.

(7.58)

This corner problem has been introduced in [BDF12-1] as a multidimensional version of the 1D
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Jin-Levermore technique [JL96]. Its solution is provided by the solution of the linear system


∑

j

α̂jr +
∑

j

σ

ε
β̂jr


uεr =

∑

j

ljrp
ε
jnjr +

∑

j

α̂jru
ε
j , (7.59)

where the geometry of the mesh is used to define the matrices α̂jr and β̂jr

α̂jr = ljrnjr ⊗ njr, and β̂jr = ljrnjr ⊗ (xr − xj). (7.60)

We will use the notations Aj =
∑

r α̂jr, Ar =
∑

j α̂jr and Br =
∑

j β̂jr. By comparison with
the scheme P εh in dimension one, one sees that the multi-dimensional scheme (7.57-7.60) is more
tricky than the 1D scheme (7.15-7.16).

Starting from (7.57) and taking into account of the definitions of the fluxes (7.58) and also
the identity

∑
r ljrnjr = 0, the scheme Pε

h can also be rewritten as

Pε
h :





| Ωj |
d

dt
pεj +

1

ε

∑

r

ljr(u
ε
r,njr) = 0

| Ωj |
d

dt
uεj +

1

ε

∑

r

ljr(njr,u
ε
r − uεj)njr = 0

(7.61)

When ε→ 0 the scheme Pε
h, see (7.57) or (7.61), admits the limit diffusion scheme P0

h

P0
h :





|Ωj |
d

dt
pj +

∑

r

ljr

(
vr,njr

)
= 0,

vr =
1

σ
B−1
r

∑

j

ljrpjnjr,
(7.62)

with Br =
∑

j ljrnjr ⊗ (xr − xj). We define additionally vj by a kind of mean

(
∑

r

α̂jr

)
vj =

∑

r

α̂jrvr.

This is well defined since the matrix
∑

r α̂jr is symmetric positive by definition of the α̂jr.

7.3.2 Definition of DAε
h

We define now that is call thereafter the ”diffusion approximation” scheme. We just neglect the
time derivative in the second equation, that we make ∂tu

ε
j = 0 for (7.61). It leads to the scheme

DAε
h :





| Ωj |
d

dt
pεj +

1

ε

∑

r

(ljru
ε
r,njr) = 0

1
ε

∑
r ljr(njr,u

ε
r − uεj)njr = 0


∑

j

α̂jr +
∑

j

σ

ε
β̂jr


uεr =

∑

j

ljrp
ε
jnjr +

∑

j

α̂jru
ε
j

(7.63)

This scheme depends of two parameters, the size of the mesh h and the small parameter ε. We
notice that DAε

h 6= P0
h for ε > 0, and that limε→0+ DAε

h = P0
h. The point wise initial data for

(7.63) is pεj(0) = p0(xj). There is no need of initial data for (uεj(0)), which will be obtained as a
function of (pεj(0)) by solving a linear system.
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x j

x 1

2

xr

x
j− 1

2

Vr

Figure 7.5: Definition of the control volume Vr around vertex xr. The control volume around
the vertex xr is defined by the closed loop that joins the center of the cells (xj ’s) and the middle
of the edges (xj+ 1

2
’s).

7.3.3 Mesh assumptions

The characteristic length of the mesh is h = maxj (diam(Ωj)), so that

{
ljr ≤ h, ∀j, r,
|Ωj | ≤ h2, ∀j.

(7.64)

The control volume Vr around the vertex xr is defined by the closed loop . . . ,xj− 1
2
,xj ,xj+ 1

2
, . . . .

Here the xj ’s are the center of the cells, and the xj+ 1
2
’s are the middle of the edges around the

vertices xr. A typical example is depicted in figure 7.5.
Additional geometrical assumptions are always necessary in dimension greater than one to

guarantee some minimal regularity of the mesh. We make the usual assumptions listed below
from 1 to 3. The last items are more specific.

Hypothèse 7.13. Our geometrical assumptions will be the following

1. The numbers of cells which share a node r is bounded independently of h, which means
there exists P ∈ N independent of h such that

∑

j

δjr ≤ P. (7.65)

For example, for a structured mesh of quadrangular cells P = 4.
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2. For each cell of the mesh, the number of edges is bounded independently of h, or equivalently
the numbers of vertices for a cell is bounded independently of h.

3. The mesh is regular in the sense that there exists a universal constant CM > 0 such that
the inverse inequalities hold:

CMh ≤ ljr, ∀j, r uniformly with respect to h (7.66)

where xr is a vertex of the cell Ωj, and

CMh
2 ≤ |Ωj | , ∀j uniformly with respect to h. (7.67)

and

CMh
2 ≤ |Vr| ≤ Ph2, ∀r uniformly with respect to h. (7.68)

We recall that Vr is the volume control (centered on xr) and Ωj is the cell j. The inequality
|Vr| ≤ Ph2 is immediate to check on the figure 7.5.

4. A consequence of the items 1-3 is that there exists a constant α > 0 such that

(Aju,u) ≥ αh(u,u), Aj =
∑

r

α̂jr. (7.69)

It can be proved with a geometrical identity that we borrow from [DES10] (proposition 8).

5. The matrix Br =
∑

j β̂jr is positive in the sense that

(Bru,u) = (Bs
ru,u) ≥ α|Vr|(u,u), (7.70)

where Bs
r = 1

2(Br + Bt
r) is the symmetric part of Br, and α is the same constant as in

(7.69). Square meshes satisfy (7.70). This assumption is however not trivial to check in
the general case. We point out [BDF12-1] where sufficient conditions such that (7.70)
is satisfied can be found; in particular it is shown that triangular meshes with all angles
greater than 12 degrees satisfy it.

7.3.4 Norms and error measurements

The quadratic norms below are usual integral norms. It yields for any cell centered quantity

f = (fj)j∈Cells: ‖f‖L2(Ω) =
√∑

j |Ωj ||fj |2. For vertex based quantity g = (gr)r∈Vertices, we use

‖g‖L2(Ω) =
√∑

r |Vr||gr|2: it is more a convention. Useful quantities are

• Vε
h(t,x) =

(∑
j∈Cells p

ε
j(t)1Ωj (x),

∑
j∈Cells u

ε
j(t)1Ωj (x)

)
which is the solution of Pε

h.

• Vε(t,x) = (pε,uε) (t,x) which is the solution of Pε,

• Wε
h(t,x) =

(∑
j∈Cells p

ε
j(t)1Ωj (x),

∑
j∈Cells u

ε
j(t)1Ωj (x)

)
which is the solution of DAε

h.

Notice that an abuse of notations is made with the solution of Pε
h.

• Wε(t,x) =
(
p,− ε

σ∇p
)
(t,x) which is the solution of P0.
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As in dimension one, the differences between these quantities are characterized at the initial
time with a universal constant CA > 0 which indicates it can be related to the approxima-
tion/interpolation/projection of a smooth function on the mesh. We will use for example some
bounds that can be obtained as by-product or corollary of the first technical inequality below.

{
‖Vε(0)−Vε

h(0)‖L2(Ω) ≤ CAh‖Vε(0)‖H2(Ω) ≤ CAh‖V1(0)‖H2(Ω),

‖Wε(0)−Wε
h(0)‖L2(Ω) ≤ CAh‖Wε(0)‖H2(Ω).

(7.71)

We will need additional technical estimates for the corner based Finite Volume scheme Pε
h.

These technical estimates can be formulated as follows. Let f be a regular function. We define
δj,r(f) = 1

|Ωj |
∫
Ωj
fdx − f(xr) which is the interpolation error term that compares mean value

in a cell Ωj and point values at a vertex xr of the same cell. Let Γj,r = [xr,xr+1] be the
edge oriented toward the outside of the cell j, with length |Γj,r|. We define also δ̃j,r(h) =

1
|Γj,r|

∫
Γj,r

hds − h(xr)+h(xr+1)
2 which is another interpolation error contribution that compares

the mean value and the mid sum, on the edge.

Proposition 7.14. One has the technical inequalities

|δjr(f)| ≤ CA‖f‖H2(Ωj) (7.72)

and
|δ̃jr(f)| ≤ CAh‖f‖H3(Ωj) (7.73)

Proof. These non optimal inequalities are consequences of classical approximations results. We
will not prove them. However one can notice that the scaling is correct. That if a function f
has its third derivatives bounded in L∞(Ωj), then ‖f‖H2(Ωj) = O(h) because the problem is 2D:

this is compatible with the fact that δjr is a first order difference. Similarly h‖f‖H3(Ωj) = O(h2)

is compatible with the fact that δ̃jr is a second order difference. An alternative proof is by
assuming that f is in Hp(Ω) for a sufficiently large p. Then by the Sobolev embeddings, all
derivatives up to fourth order are in L∞ which is enough to prove that (7.72) is a first order
interpolation error term, and that (7.73) is a second order interpolation error term. In this case
it also explains very simply why the constant CA is independent of the mesh size.

The first technical inequality is actually true for any points in the cell. So it allows to com-
pare the mean value and the point value in the cell. This is why it yields (7.71) after summation
over all cells and redefinition of CA.

As in dimension one, we will use constants ↓C, C→, C↓ and C← in the errors bounds for
the four branches of the new AP diagram. The important point is that these constants are
independent of h and ε. They have of course some dependence with respect to other parameters
such as the constant of the mesh CM for example, but we will not keep track of these dependence
in order to simplify the notations. Nevertheless the interested reader can compare with the same
estimates in dimension one where the dependence with respect to the mesh constant is indicated.
A first result is the inequality (7.55) which yields the basic estimate for the lower branch of the
AP diagram. It can be formalized as follows.

Lemma 7.15. One has the estimate

‖Wε −Vε‖L2([0,T ]×Ω) ≤ C←ε‖p0‖H4(Ω) (7.74)

where the constant C← is independent of h and ε, with a growth in time less than T
3
2 by com-

parison with (7.55).
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7.3.5 Study of ‖Pε
h −Pε‖naive

In this part, we exploit the hyperbolic nature of both Pε and Pε
h to obtain the main bound. As

one will see below, the convergence estimate (7.75) is not trivial. It indicates that, for a problem

with O(ε−2) terms, a scheme converges, with h, with at rate O(ε−
1
2 ) with respect to ε.

Lemma 7.16 (Naive estimate). There exists a constant ↓C independent of h and ε, with a
linear growth in time, such that the following estimate holds

‖Vε
h −Vε‖L∞([0,T ]:L2(Ω)) ≤ ↓C

√
h

ε
‖p0‖H4(Ω). (7.75)

The norm is slightly stronger than the L2([0, T ]× Ω) needed to complete the proof.

Stability

We first prove the L2 stability of the scheme P εh defined in (7.57,7.58).

Proposition 7.17 (Stability). The semi-discrete general JL-(b) scheme defined by (7.57,7.58)
is stable in the L2 norm in the sense that d

dt ||Vε
h(t)|| ≤ 0. Moreover we have the bounds

σ

ε2
||uεr||L2([0,T ]×Ω) ≤

1

α
||Vε

h(0)||L2(Ω), (7.76)

∫ T

0

∑

j

∑

r

ljr(njr, (u
ε
j − uεr))

2dt ≤ ε||Vε
h(0)||2L2(Ω). (7.77)

Proof. We define the functions pεh and uεh by pεh = pj and uεh = uj on Ωj . We set for convenience
E(t) = ||Vε

h(t)||2. One has

E
′
(t) =

1

2

∫

Ω

d

dt
(| pεh |2 +(uεh,u

ε
h)) =

∫

Ω
pεh
d

dt
pεh + (uεh,

d

dt
uεh) =

∑

j

|Ωj | pεj
d

dt
pεj + (uεj ,

d

dt
uεj).

Using the definition of scheme

E
′
(t) = −1

ε

∑

j

∑

r

ljrp
ε
j(u

ε
r,njr)−

1

ε

∑

j

∑

r

(ljrp
ε
j,rnjr,u

ε
j)−

σ

ε2

∑

j

∑

r

(β̂jru
ε
r,u

ε
j). (7.78)

Using (7.58) we expand the second term of the previous equation

∑

j

∑

r

(ljrp
ε
j,rnjr,u

ε
j) =

∑

j

∑

r

ljrp
ε
j(u

ε
j ,njr) +

∑

j

∑

r

(α̂jr(u
ε
j −uεr),u

ε
j)−

σ

ε

∑

j

∑

r

(β̂jru
ε
r,u

ε
j).

(7.79)
Since

∑
r ljrnjr = 0 the first term of (7.79) is zero. Summing on r the second equation of (7.58)

and permuting the sums, we show that 0 =
∑

j

∑

r

ljrpjr(ur,njr) which yields that

0 =
∑

j

∑

r

ljrp
ε
j(u

ε
r,njr)−

∑

j

∑

r

((α̂jr +
σ

ε
β̂jr)u

ε
r,u

ε
r) +

∑

j

∑

r

(α̂jru
ε
j ,u

ε
r). (7.80)

Plugging (7.79) and (7.80) in (7.78) and permuting the sums in E′(t) gives

E
′
(t) = −1

ε

∑

j

∑

r

(α̂jr(u
ε
j − uεr),u

ε
j − uεr)−

σ

ε2

∑

r

∑

j

(β̂jru
ε
r,u

ε
r)
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which gives

E
′
(t) +

1

ε

∑

r

∑

j

ljr(njr, (u
ε
j − uεr))

2 +
σ

ε2

∑

r

(Bru
ε
r,u

ε
r) = 0. (7.81)

By geometrical assumption (7.70) we have E
′
(t) ≤ 0, that is the L2 stability, and by integrating

this equality on [0, T ] we obtain

E(T ) +

∫ T

0

1

ε

∑

r

∑

j

ljr(njr, (u
ε
j − uεr))

2 +

∫ T

0

σ

ε2

∑

r

(Bru
ε
r,u

ε
r) = E(0)

Using again the geometrical assumption (7.70) for the terms (Bru
ε
r,u

ε
r) we have

E(T ) +

∫ T

0

1

ε

∑

r

∑

j

ljr(njr, (u
ε
j − uεr))

2 + α

∫ T

0

σ

ε2

∑

r

|Vr| |uεr|2 ≤ E(0)

which gives (7.76) and (7.77). The proof is ended.

Main estimate

Our goal now is to prove the lemma 7.16 as the consequence of propositions 7.18 to 7.32. This
part is the more technical one of the paper, but is essential to be able to use the general strategy
of proposition 7.2 with convenient exponents. Like in 1D, we use the method introduced by
Mazeran [MAZ07] and decompose the proof in several steps. We introduce E (t) = 1

2‖Vε −
Vε
h‖2L2(Ω). As for the 1D proof and for the sake of simplicity, for any quantity q, q′ stands

indifferently for d
dtq or ∂tq.

Proposition 7.18. One has the formula

E
′(t) = −1

ε

∑

j,r

lj,r(nj,r,u
ε
j − uεr)

2 + E1 + E2 + E3 (7.82)

where

E1 =
1

ε

∑

j

∑

r

(
lj,r(u

ε
r − uεj),nj,r

)
δj,r(p

ε) +
1

ε

∑

j

∑

r

(
lj,rnj,r(p

ε
jr − pεj) , δj,r(uε)

)
,

E2 =
1

ε

∑

j

∑

r

|Γj,r|pεj(nj,r, δ̃j,r(uε)) +
1

ε

∑

j

∑

r

|Γj,r|
(
uεj ,nj,r δ̃j,r(p

ε)

)

E3 =
σ

ε2

∑

r

∑

j

(
β̂j,ru

ε
r ,

1

|Ωj |

∫

Ωj

uεdx

)
+
σ

ε2

∑

j

(
uεj ,

∫

Ωj

uεdx

)

− σ

ε2

∑

j

∫

Ωj

(uε,uε)dx− σ

ε2

∑

r

(Bru
ε
r,u

ε
r).

Proof. We first consider the time derivative

E ′(t) =

∫

Ω
(pεh(p

ε
h)
′ + (uεh, (u

ε
h)
′))dx

︸ ︷︷ ︸
D1

+

∫

Ω
(pε(pε)′ + (uε, (uε)′))dx

︸ ︷︷ ︸
D2

+

∫

Ω
(−(pεh)

′pε − ((uεh)
′,uε))dx

︸ ︷︷ ︸
D3

+

∫

Ω
(−pεh(pε)′ − (uεh, (u

ε)′))dx
︸ ︷︷ ︸

D4

.
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One has thanks to (7.81)

D1 = −1

ε

∑

j,r

lj,r(nj,r,u
ε
j − uεr)

2 − σ

ε2

∑

r

(Bru
ε
r,u

ε
r).

One also directly has

D2 = − σ
ε2

∫

Ω
(uε,uε)dx = − σ

ε2

∑

j

∫

Ωj

(uε,uε)dx.

Then, using the definition (7.57,7.58) of the scheme we have

D3 =
1

ε

∑

j

∑

r

(
lj,ru

ε
r,nj,r

)
1

|Ωj |

∫

Ωj

pεdx

+
1

ε

∑

j

(∑

r

ljrnjrp
ε
j,r +

σ

ε

∑

r

β̂j,ru
ε
r ,

1

|Ωj |

∫

Ωj

uεdx

)

Since
∑

r ljrnjr = 0, we can write

D3 =
1

ε

∑

j

∑

r

(
lj,r(u

ε
r − uεj),nj,r

)
1

|Ωj |

∫

Ωj

pεdx

+
1

ε

∑

j

(∑

r

ljrnjr(p
ε
j,r − pεj) ,

1

|Ωj |

∫

Ωj

uεdx

)

+
σ

ε2

(∑

r

∑

j

β̂j,ru
ε
r ,

1

|Ωj |

∫

Ωj

uεdx

)
.

One gets

D3 =
1

ε

∑

j

∑

r

(
lj,r(u

ε
r − uεj),nj,r

)
δj,r(p

ε) +
1

ε

∑

j

∑

r

(
ljrnjr(p

ε
j,r − pεj) , δj,r(uε)

)

+
1

ε

∑

j

∑

r

(
lj,r(u

ε
r − uεj),nj,r

)
pε(xr) +

1

ε

∑

j

∑

r

(
ljrnjr(p

ε
j,r − pεj) , uε(xr)

)

+
σ

ε2

(∑

r

∑

j

β̂j,ru
ε
r ,

1

|Ωj |

∫

Ωj

uεdx

)
.

We have the identities
∑

j,r ljrnjr = 0 and
∑

j ljrnjrp
ε
j,r = 0 by definition (7.58). Therefore one

can simplify the third and fourth term in the previous expression and get

D3 =
1

ε

∑

j

∑

r

(
lj,r(u

ε
r − uεj),nj,r

)
δj,r(p

ε) +
1

ε

∑

j

∑

r

(
ljrnjr(p

ε
j,r − pεj) , δj,r(uε)

)

− 1

ε

∑

j

∑

r

(
lj,ru

ε
j ,nj,r

)
pε(xr)−

1

ε

∑

j

∑

r

(
lj,rp

ε
jnj,r , uε(xr)

)

+
σ

ε2

(∑

r

∑

j

β̂j,ru
ε
r ,

1

|Ωj |

∫

Ωj

uεdx

)
.
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We now look at D4. By definition, one has

D4 =
1

ε

∑

j

pεj
∑

r

∫

Γj,r

(uε, ñj,r)dσ +
1

ε

∑

j

(
uεj ,

(∑

r

∫

Γj,r

pεñj,rdσ +
σ

ε

∫

Ωj

uεdx

))

where ñj,r is the normal to the edge Γj,r = [xr,xr+1] oriented toward the outside of the cell
j. This expression needs an important manipulation which is to approximate the integral on
edges by corner values. This necessary manipulation is one of the ideas that was introduced
in [MAZ07] in order to proceed to the numerical analysis of such corner based finite volume

schemes. This is why interpolation terms δ̃j,r(h) = 1
|Γjr|

∫
Γj,r

h − h(xr)+h(xr+1)
2 are introduced.

One gets after an algebraic manipulation

D4 =
1

ε

∑

j

∑

r

|Γj,r|pεj
(
ñj,r, δ̃j,r(u

ε)

)
+

1

ε

∑

j

∑

r

|Γj,r|
(
uεj , ñj,r δ̃j,r(p

ε)

)
+
σ

ε2

∑

j

(
uεj ,

∫

Ωj

uε
)

+
1

ε

∑

j

∑

r

|Γj,r|pεj
(
ñj,r,

uε(xr) + uε(xr+1)

2

)
+

1

ε

∑

j

∑

r

|Γj,r|
(
uεj , ñj,r

pε(xr) + pε(xr+1)

2

)

By definition (7.56), njrljr =
ñj,r|Γj,r|+ñj,r−1|Γj,r−1|

2 , so one can see that

∑

j

∑

r

|Γj,r|pεj
(
ñj,r,

uε(xr) + uε(xr+1)

2

)
=
∑

j

∑

r

ljrp
ε
j

(
njr,u

ε(xr)
)
.

It yields a slightly simpler expression

D4 =
1

ε

∑

j

∑

r

|Γj,r|pεj
(
ñj,r, δ̃j,r(u

ε)

)
+

1

ε

∑

j

∑

r

|Γj,r|
(
uεj , ñj,r δ̃j,r(p

ε)

)
+
σ

ε2

∑

j

(
uεj ,

∫

Ωj

uε
)

+
1

ε

∑

j

∑

r

ljrp
ε
j

(
njr,u

ε(xr)
)

+
1

ε

∑

j

∑

r

ljrp
ε(xr)

(
njr,u

ε
j

)

One can now compute the sum D3 +D4

D3 +D4 =
1

ε

∑

j

∑

r

(
lj,r(u

ε
r − uεj),nj,r

)
δj,r(p

ε) +
1

ε

∑

j

∑

r

(
lj,rnj,r(p

ε
j,r − pεj) , δj,r(uε)

)

+
1

ε

∑

j

∑

r

|Γjr|pεj
(
nj,r, δ̃j,r(u

ε)

)
+

1

ε

∑

j

∑

r

|Γjr|
(
uεj ,nj,r δ̃j,r(p

ε)

)

+
σ

ε2

(∑

r

∑

j

β̂j,ru
ε
r ,

1

|Ωj |

∫

Ωj

uεdx

)
+
σ

ε2

∑

j

(
uεj ,

∫

Ωj

uεdx

)
.

One finally gets after rearrangement the final result (7.82) for E ′(t) = D1 +D2 +D3 +D4.

The proof of the dissipative identity relies on a careful and technical evaluation of E1, E2

and E3. Using the damping of the first term in (7.82), it is sufficient to obtained the desired
result. We refer the reader to the appendix for all details.
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7.3.6 Study of ‖DAε
h −P0‖

This main result in this section is the following.

Lemma 7.19. There exists a constant C↓ independent of h and ε, with a growth in time less

than T
3
2 such that one has the estimate

‖Wε
h −Wε‖L2([0,T ]×Ω)) ≤ C↓(h+ ε)‖p0‖H4(Ω). (7.83)

This result, which is merely a consequence of (7.96) and (7.97) in proposition 7.22, will
be obtained after studying in details the well-posedness, stability and consistency of the new
diffusion asymptotic scheme rewritten after a convenient rescaling. The proof is provided just
after the proof of the proposition. Additional technical results will be derived at the end of the
section.

Rescaling of the equations

We rescale the semi-discrete diffuse asymptotic scheme DAε
h (7.63) wherein for convenience we

made the following change of unknowns

uεr =
uεr
ε

and uεj =
uεj
ε
. (7.84)

In order to keep a simple notation we dropped the superscript ε and the bars. Thus the scheme
(7.63) is now written as:





| Ωj |
d

dt
pj +

∑

r

(ljrur,njr) = 0

∑
r ljr(njr,ur − uj)njr = 0(
ε
∑

j α̂jr + σBr

)
ur =

∑
j ljrpjnjr + ε

∑
j α̂jruj

(7.85)

Remarque 7.3. If wet set ε = 0 we naturally recover the limit diffusion scheme (7.62).

This way of writing the system is much better to help the intuition, since it is can be naturally
interpreted as the discretization of a diffusion equation.

Well-posedness

What we mean about well-posedness is the following: if we are able to write the last two relations
of (7.85) as a non singular linear system with the ur’s and uj ’s as unknowns, then we have a
unique solution in terms of the pj ’s. This notion is the relevant one for numerical discretization.

Let us denote Y = ({uj}, {ur}) the vector of unknowns. We can write the last two relations
of (7.85) as MY = b where M is a (J +R)2 square matrix, J is the number of cells and R. One
can observe that unless ε = 0, M is not a blockwise triangular matrix. One has

(MY, Y ) =
∑

r

(σBrur,ur) + ε
∑

j

∑

r

ljr (ur − uj ,njr)
2

Assume (MY, Y ) = 0: in this case the geometrical assumption (7.70) implies that all the ur are
null and therefore it remains to study

∑
j

∑
r ljr (uj ,njr)

2 = 0 that is
∑

j (uj , Cjuj) = 0 where
Cj =

∑
r ljrnjr ⊗ njr. Since the Cj are all invertible unless the mesh is degenerate, all the uj

are null: we have proved the invertibility of the matrix M and thus the scheme (7.85) exists and
is uniquely defined.
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Stability

We note E(t) =
1

2

∑

j

|Ωj |p2
j . The initial data is ph(0) = (pj(0))j∈Cells.

Proposition 7.20. Under the geometrical assumption (7.70), the diffusion approximation scheme
(7.85) is stable in the L2 norm, in the sense that E′(t) ≤ 0. One has

||ur||L2([0,T ]×Ω) ≤
1

α
‖ph(0)‖L2(Ω) (7.86)

and

ε

∫

[0,T ]

∑

j

∑

r

ljr(njr, (uj − ur))
2 ≤ ‖ph(0)‖L2(Ω) . (7.87)

Proof. One has

E
′
(t) =

∑

j

|Ωj |pj
d

dt
pj = −

∑

j

pj
∑

r

(ljrur,njr) =
∑

r


ur,

∑

j

ljrnjrpj


 .

With the last equation of (7.85), one findsE
′
(t) = −∑r

(
ur,
(
ε
∑

j α̂jr + σBr

)
ur − ε

∑
j α̂jruj

)
.

We expand the right hand side E
′
(t) = −∑r (σBrur,ur) − ε

∑
r

(
ur,
∑

j α̂jr(ur − uj

)
. Per-

muting the sums in the second term of the right hand side , we show that

E
′
(t) = −

∑

r

(σBrur,ur)− ε
∑

j

∑

r

(ur, α̂jr(ur − uj)) . (7.88)

Using the definition of the uj , second line of (7.85), one has

∑

j

(
uj ,
∑

r

α̂jr(ur − uj)

)
= 0. (7.89)

Combining (7.89)×ε with (7.88) and using the definition of the matrices α̂jr one has finally

E
′
(t) = −

∑

r

(σBrur,ur)− ε
∑

j

∑

r

ljr (ur − uj ,njr)
2 .

By the geometrical assumption (7.70) we have E
′
(t) ≤ 0, that is the L2 stability. By integrating

this equality on [0, T ] we obtain

E(T ) +

∫ T

0

∑

r

(σBrur,ur) +

∫ T

0
ε
∑

j

∑

r

ljr (ur − uj ,njr)
2 = E(0)

Using again the geometrical assumption (7.70) for the terms (Brur,ur) we have

E(T ) + α

∫ T

0

∑

r

|Vr| ‖ur‖2 +

∫ T

0
ε
∑

j

∑

r

ljr (ur − uj ,njr)
2 ≤ E(0)

which gives (7.86) and (7.87).
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Consistency

For convenience we set

p̄j = p(xj , t) ūj = − 1

σ
∇p(xj , t) ūr = − 1

σ
∇p(xr, t) (7.90)

where p(x, t) is the solution of the diffusion equation. We define three consistency errors by
inserting these quantities into the three equations of (7.85) which are also rescaled by a factor

1
|Ωj | ,

1
h and 1

|Vr| . It yields





aj =
d

dt
p̄j +

1

| Ωj |
∑

r

(ljrūr,njr),

bj =
1

h

∑

r

ljr(njr, ūr − ūj)njr,

cr =
1

|Vr|


σBrūr −

∑

j

ljrp̄jnjr + ε
∑

j

α̂jr(ūr − ūj)


 .

Proposition 7.21. There exists a constant Cc > 0 independent on h and ε such that the
following estimates hold

‖ah‖L∞([0,T ]:L2(Ω)) ≤ Cch‖p0‖H4(Ω), (7.91)

‖bh‖L∞([0,T ]:L2(Ω)) ≤ Cch‖p0‖H3(Ω), (7.92)

and

‖ch‖L∞([0,T ]:L2(Ω)) ≤ Cc(h+ ε)‖p0‖H3(Ω). (7.93)

Proof. The proof uses the inequalities of proposition 7.14. For example one has

aj =
1

σ




∆p(xj , t)−
∫
Ωj

∆p(x, t)dx

|Ωj |︸ ︷︷ ︸
=d1j




+
1

σ|Ωj |




∫

∂Ωj

∂npdτ −
∑

r

ljr (njr,∇p(xr, t))
︸ ︷︷ ︸

=d2j



.

The first term is |d1
j | ≤ C ‖p‖H4(Ωj)

by virtue of the first inequality of the proposition (7.14)

with xr changed into xj . The second term d2
j can be rearranged. Indeed by definition of ljrnjr

one has

∑

r

ljr (njr,∇p(xr, t)) =
∑

k

∫

∂Ωjk



∇p
(
x+
jk

)
+∇p

(
x−jk

)

2
,nj


 dτ

where nj = ñj,r defined in the previous part and the nodes x+
jk and x−jk are the end of the edge

∂Ωjk = Ωj
⋂

Ωk, with the relation ∂Ωj =
⋃
∂Ωjk. Therefore

d2
j =

∑

k

∫

∂Ωjk


∇p−

∇p
(
x+
jk

)
+∇p

(
x−jk

)

2
,nj


 dτ.
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The second inequality of the proposition 7.14 yields |d2
j | ≤ CAh2‖p‖H4(Ωj) Therefore one can

write aj ≤ C̃‖p0‖H4(Ωj) where the constant is uniform with respect to j. It yields

‖ah‖L2(Ω) =

√∑

j

|Ωj |a2
j ≤

√∑

j

|Ωj |C2‖p‖2
H4(Ωj)

≤ Ch‖p‖H4(Ω) ≤ Ch‖p0‖H4(Ω). (7.94)

Since it is true at any time t, it yields the first bound (7.91). The second inequality can be
obtained with the same argument. Consider the decomposition

∇p(xr)−∇p(xj) =

(
∇p(xr)−−

∫
Ωj
∇p(x)dv

|Ωj |

)
−
(
∇p(xj)−−

∫
Ωj
∇p(x)dv

|Ωj |

)
.

Each parenthesis can be estimated with the first inequality of proposition 7.14. The rest of the
proof of the second bound (7.92) is immediate since ljr is neutralized by the 1

h . The third bound
is analyzed as follows. We write cr = car + cbr with

car =
1

|Vr|




σ

∑

j

ljrnjr ⊗ (xr − xj)



(
− ∇p(xr, t)

σ

)
−
∑

j

ljrnjrp(xj , t)




=
1

|Vr|
∑

j

((
xj − xr,∇p(xr, t)

)
− p(xj , t)

)
ljrnjr

=
1

|Vr|
∑

j

((
xj − xr,∇p(xr, t)

)
− p(xj , t) + p(xr, t)

)
ljrnjr

and cbr = ε
σ|Vr|

(∑
j ljrnjr ⊗ njr (∇p(xj , t)−∇p(xr, t))

)
. The first interpolation of proposition

7.14 can be used to evaluate the difference of point values in cbr. It yields |cbr| ≤ C ε
h‖p‖H3(Ωj).

Concerning car we notice that

(
xj − xr,∇p(xr, t)

)
− p(xj , t) + p(xr, t) =

(
1

|xr − xj |

∫ xr

xj

∇p(x)dτ −∇p(xr),xr − xj

)

where the integral in along the chord between xj and xj . The first term in the scalar product is
the comparison between a mean value and a point value. So it can be estimated as in proposition
7.14. It yields similarly

∣∣∣∣∣

(
1

|xr − xj |

∫ xr

xj

∇p(x)dτ −∇p(xr),xr − xj

)∣∣∣∣∣ ≤ Ch‖p‖H3(Ωj). (7.95)

Thus |car | ≤ Ch‖p‖H3(Ωj). After summation of the cars and cbrs, one gets the last inequality of
the claim. The constant Cc is the maximum of the three constants that show up in the three
inequalities.

Convergence

We study the numerical error between the solution of the diffusion asymptotic scheme written
as (7.85) and the point values of the exact solution (7.90). Let us define three error variables

ej = pj − p̄j , fr = ur − ūr and gj = uj − ūj

204



Proposition 7.22. There exists constants C1 > 0, C2 > 0, C3 > 0 and C4 > 0 independent of
h and ε, bounded for any time T and growing at most as T

3
2 , such that

‖eh‖L∞([0,T ]:L2(Ω)) ≤ C1(h+ ε)‖p0‖H4(Ω), (7.96)

‖fh‖L2([0,T ]×Ω) ≤ C2(h+ ε)‖p0‖H4(Ω), (7.97)

and

‖gh‖L2([0,T ]×Ω) ≤ C3(h+ ε)

√
(1 +

h

ε
)‖p0‖H4(Ω). (7.98)

Moreover √√√√ε

∫ T

0

∑

j

∑

r

ljr (fr − fj ,njr)
2 ≤ C4(h+ ε)‖p0‖H4(Ω). (7.99)

Proof. By construction





| Ωj | e′j +
∑

r

(ljrfr,njr) = − | Ωj | aj
∑

r

ljr(njr, fr − fj)njr = −hbj ,

ε
∑

j

α̂jr + σBr


 fr −

∑

j

ljrejnjr − ε
∑

j

α̂jrfj = − | Vr | cr.

The errors are measured with E(t) = 1
2‖eh‖2L2(Ω), F (t) = ‖fh‖2L2([0,t]×Ω) =

∫ t
0

∑
r |Vr| |fr|2 and

‖gh‖2L2([0,t]×Ω) =
∫ t
0

∑
j |Ωj | |fj |2. By proceeding as for the results of stability one has the

identity

E′(t) =
∑

j

|Ωj |eje′j =
∑

j

ej

(
−
(
∑

r

ljr (njr, fr)

)
− |Ωj | aj

)

= −
∑

r

∑

j

(ljrnjrej , fr)−
∑

j

|Ωj | ejaj

= −
∑

r


fr,


ε
∑

j

α̂jr + σBr


 fr − ε

∑

j

α̂jrfj


−

∑

j

|Ωj | ejaj −
∑

r

|Vr| (cr, fr)

= −
∑

r

(σBrfr, fr)− ε
∑

r


fr,

∑

j

α̂jr(fr − fj)


−

∑

j

|Ωj | ejaj −
∑

r

|Vr| (cr, fr)

= −
∑

r

(σBrfr, fr)− ε
∑

j

∑

r

ljr (fr − fj ,njr)
2 −

∑

j

|Ωj | ejaj −
∑

r

|Vr| (cr, fr) + ε
∑

j

h(bj , fj).

Using Young’s inequality and assumptions (7.67) and (7.70), one gets

E′(t) ≤− ασ‖fh‖2L2(Ω) − ε
∑

j

∑

r

ljr (fr − fj ,njr)
2 +

√
2E(t)||ah||L2(Ω)

+

(
µ

2
||fh||2L2(Ω) +

1

2µ
||ch||2L2(Ω)

)
+

ε

2hCM

(
η||gh||2L2(Ω) +

1

η
||bh||2L2(Ω)

) (7.100)
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where µ, η > 0 are two arbitrary coefficients that will be specified later. Now using (7.69) and
(7.64), we have

|Ωj | |fj |2 ≤
h

α

∑

r

ljr(njr, fj)
2. (7.101)

Therefore

|Ωj | |fj |2 ≤
h

α

(
2
∑

r

ljr(njr, fj − fr)
2 + 2

∑

r

ljr|fr|2
)
,

which yields, using (7.68) and (7.65)

||gh||2L2(Ω) ≤
2h

α

∑

jr

ljr(njr, fj − fr)
2 +

2P

αCM
||fh||2L2(Ω). (7.102)

So from (7.100) we obtain

E′(t) ≤
√

2E(t)||ah||L2(Ω) +
1

2µ
||ch||2L2(Ω) +

(
µ

2
+

εPη

hC2
Mα
− σα

)
‖fh‖2L2(Ω)

+

(
η

CMα
− 1

)
ε
∑

j

∑

r

ljr (fr − fj ,njr)
2 +

ε

2hCMη
||bh||2, ∀µ, η > 0.

Let us choose the free coefficients µ and η so that

µ

2
+

εPη

hC2
Mα
− σα ≤ −σα

4
and

η

CMα
− 1 ≤ −1

2
.

Let us choose first µ = ασ
2 . The two inequalities reduce to

εPη

hC2
Mα

≤ σα

2
adn

η

CMα
≤ 1

2
.

A natural solution is η = CMα
2 min

(
1, ασhCM

εP

)
. So

E′(t) ≤
√

2E(t)||ah||L2(Ω) −
ασ

4
F ′(t)− ε

2

∑

j

∑

r

ljr (fr − fj ,njr)
2

+
1

ασ
||ch||2L2(Ω) +

ε

2hCMη
||bh||2L2(Ω).

By the consistency estimates (7.91-7.92-7.93), one has

1

2
||ah||2L2(Ω) +

1

ασ
||ch||2L2(Ω) +

ε

2hCMη
||bh||2L2(Ω)

≤ C2
c

(
1

2
h2 +

1

ασ
(h+ ε)2 +

ε

2hCMη
h2

)
‖p‖2L∞([0,T ]:H4(Ω))

≤ C2
c

(
1

2
h2 +

1

ασ
(h+ ε)2 +

ε

2hCMη
h2

)
‖p0‖2H4(Ω).

The last term in the parenthesis is

ε

2hCMη
h2 =

1

C2
Mα

εhmax (1, εP/(ασhCM))

≤ 1

C2
Mα

εh (1 + εP/(ασhCM)) =
1

C2
Mα

εh+
P

C3
Mα

2σ
ε2.
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So there exists a constant Ce independent of h and ε such that

E′(t) ≤
√

2E(t)− ασ

4
F ′(t)− ε

2

∑

j

∑

r

ljr (fr − fj ,njr)
2 + Ce(h+ ε)2‖p0‖2H4(Ω). (7.103)

Integrating (7.103), we find that for any for t ≤ T

E(t) +
ασ

4
F (t) +

ε

2

∫ t

0

∑

j

∑

r

ljr (fr − fj ,njr)
2 ≤ E(0) +

∫ t

0

√
2E(s)||ah||L2(Ω)ds+ tCe(h+ ε)2‖p0‖2H4(Ω).

(7.104)
that is

E(t) +
ασ

4
F (t) +

ε

2

∫ t

0

∑

j

∑

r

ljr (fr − fj ,njr)
2

≤ E(0) +

∫ t

0

√
2E(s)

√
Ce(h+ ε)ds+ TCe(h+ ε)2‖p0‖2H4(Ω).

(7.105)

With another use of the Bihari’s inequality, lemma (7.34), we obtain

∫ T

0
E(t) ≤ 1

2
T
(
2
√
E(0) + TCe(h+ ε)2‖p0‖2H4(Ω)

+ T
√

2Ce(h+ ε)‖p0‖H4(Ω)

)2
(7.106)

By construction E(0) ≤ C2
Ah

2‖p0‖2H2(Ω), which comes from inequality (7.71) which compares

mean value and point value. E(t) ≤ C2
1 (t)(h+ ε)2‖p0‖2H4(Ω), where the constant C1 is bounded

for any T and growing as T
3
2 . It gives (7.96), and one easily obtains (7.97) and (7.99) from (7.105)

and the constants C2 and C3 are bounded for any time T and behave as a linear polynomial in
T . Integrating (7.102) and using the estimates (7.97) and (7.99), one gets

∫ T

0
||g||2L2(Ω) ≤

2

α
h

∫ T

0

∑

jr

ljr(njr, fj− fr)
2 +

2P

αCM
||f ||2L2([0,T ]×Ω) ≤ C2

4 (h+ε)2(1+
h

ε
)‖p0‖H4(Ω),

where the constant C4 is uniform in h and ε and is bounded for any T with, at most, and behave
as a linear polynomial in T . The proof is finished.

Proof of lemma 7.19. The norm of the estimate in the lemma 7.19 can be bounded from the
sum of (7.96) and (7.98). However one must rescale back (7.98) since it corresponds to the scaled

variable (7.84). This is why (7.98) must be multiplied by ε. It eliminates the ε−
1
2 divergence in

(7.98). The constant C↓max(C1, C2) is bounded for any time T and behaves as T
3
2 for large T

since it is the case for C1. and ends the proof.

Technical estimates

These technical estimates are needed in the next section. These results compare two different
velocities at the initialization stage: on the one hand the velocity computed as the solution of
the linear system made of the two last equations of (7.85), on the other hand the exact point
wise velocity.
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Proposition 7.23. There exists a constant C independent of h and ε such that
∥∥∥∥
(
ur +

1

σ
∇p(xr)

)
(t = 0)

∥∥∥∥
L2(Ω)

≤ C
√
hmax(h, ε)‖p0‖H3(Ω) (7.107)

and ∥∥∥∥
(
uj +

1

σ
∇p(xj)

)
(t = 0)

∥∥∥∥
L2(Ω)

≤ C
√
h

ε
max(h, ε)‖p0‖H3(Ω). (7.108)

Proof. Let us write qr = ur + 1
σ∇p(xr) and sj = uj + 1

σ∇p(xj). These quantities are solution
of the system

{ (
ε
∑

j ljrnjr ⊗ njr + σBr

)
qr −ε

∑
j ljrnjr ⊗ njrsj = d1

r + d2
r , ∀r,

−ε
∑

r ljr(njr,qr)njr +ε
∑

r ljr(njr, sj)njr = dj , ∀j,

where the right hand sides are

d1
r =

∑

j

ljrp(xj)njr +
∑

j

ljr(xr − xj ,∇p(xr))njr,

d2
r = ε

∑

j

ljr (njr,∇p(xr)−∇p(xj))njr

and
dj = −ε

∑

r

ljr (njr,∇p(xr)−∇p(xj)) .

The right hand side d1
r can be interpreted as a consistency error. Indeed it can be rewritten as

d1
r =

∑

j

[p(xj)− p(xr) + (xr − xj ,∇p(xr)]) ljrnjr,

one obtains from (7.95) the bound |d1
r | ≤

∑
j neighboring r

[
C̃h‖p‖H3(Ωj)

]
h. It yields after sum-

mation
‖d1‖L2(Ω) ≤ Ch3‖p‖H3(Ω), C = C̃P. (7.109)

Taking the scalar product of the first line by qr and of the second line by sj , one gets the identity

σ
∑

r

(Brqr,qr) + ε
∑

jr

ljr (njr,qr − sj)
2

=
∑

r

(
d1
r ,qr

)
+ ε

∑

jr

ljr (njr,qr − sj) (njr,∇p(xr)−∇p(xj))

where d1 shows up explicitly. A Young’s inequality yields

σ
∑

r

(Brqr,qr) +
ε

2

∑

jr

ljr (njr,qr − sj)
2 ≤

∑

r

(
d1
r ,qr

)
+
ε

2

∑

jr

ljr (njr,∇p(xr)−∇p(xj))2 .

(7.110)
The first term in the right hand side is

∑

r

(
d1
r ,qr

)
=
∑

r

h2

(
1

h2
d1
r ,qr

)
≤ C 1

h2
‖d1‖L2(Ω)‖q‖L2(Ω) ≤ Ch‖p‖H3(Ω)‖q‖L2(Ω).
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A similar reasoning as for (7.109), which one more time can be viewed as a consequence of the
first technical inequality of proposition (7.14), is

∑

jr

ljr (njr,∇p(xr)−∇p(xj))2 ≤ Ch‖p‖2H3(Ω).

So (7.110) implies (after redefinition of the constants)

‖q‖2L2(Ω) ≤ C
(
‖q‖L2(Ω)‖p‖H3(Ω) + ε‖p‖2H3(Ω)

)
h.

It means that z =
‖q‖L2(Ω)

‖p‖H3(Ω)
is below the maximal root of the polynomial p(z) = z2−Chz−Cεh,

that is for some constant K > 0 z ≤ x+ = Ch+
√
C2h2+4Cεh

2 ≤ K
√

max(h2, hε). Noticing that
‖p‖H3(Ω) ≤ ‖p0‖H3(Ω), It finishes the proof of the first inequality (7.107). Concerning the second
inequality, we start from (7.101) to show that

‖s‖2L2(Ω) =
∑

j

|Ωj ||sj |2 ≤
h

α

∑

j

∑

r

ljr (njr, sj)
2

≤ 2
h

α

∑

j

∑

r

ljr (njr,qr)
2 + 2

h

α

∑

j

∑

r

ljr (njr,qr − sj)
2

≤ 2
1

CMα

∑

r

|Vr| |qr|2 + 2
h

α

∑

j

∑

r

ljr (njr,qr − sj)
2

≤ 2
1

CMα
‖q‖2L2(Ω) + 2

h

α

∑

jr

ljr (njr,qr − sj)
2 .

The first term is natural bounded bounded using (7.110). The crux of the estimate is the second
term which is naturally bounded by (7.107)

∑

jr

ljr (njr,qr − sj)
2 ≤ 2

ε

(
K
√

max(h2, hε)h+ Cεh
)
‖p0‖2H3(Ω) ≤ D(h+ε)

h

ε
‖p0‖2H3(Ω), D > 0.

We obtain therefore

‖s‖2L2(Ω) ≤ C
(

max(h2, hε) + h(h+ ε)
h

ε

)
‖p0‖2H3(Ω), C > 0.

The numbers h and ε can be considered less than 1. There are two cases: Either h < ε so
‖s‖2L2(Ω) ≤ C̃hε‖p0‖2H3(Ω) for another constant C̃; or ε ≤ h, so ‖s‖2L2(Ω) ≤ C̃ h3

ε ‖p0‖2H3(Ω) for

another constant C̃. So we can writes ‖s‖L2(Ω) ≤ C
√

h
ε max(h, ε) for a certain constant C > 0

independent of h and ε. The proof of (7.108) is ended.

Proposition 7.24. There exists a constant C independent of h and ε such that

∥∥∥∥
(
d

dt
ur

)∥∥∥∥
L2([0,T ]×Ω)

≤ Cmax

(
1,

√
ε

h

)
‖p0‖H3(Ω). (7.111)
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Proof. The proof is essentially a consequence of the previous proposition. Let us denote the
time derivative of any f as f̃ = ∂tf . By linearity of the system (7.85), one has





| Ωj |
d

dt
p̃j +

∑

r

(ljrũr,njr) = 0

∑
r ljr(njr, ũr − ũj)njr = 0(
ε
∑

j α̂jr + σBr

)
ũr =

∑
j ljrp̃jnjr + ε

∑
j α̂jrũj

The L2 stability property yields

‖p̃h‖2L∞([0,T ];L2(Ω)) +

∫ T

0

∑

r

(Brũr, ũr)dt ≤ ‖p̃h(0)‖2L2(Ω) (7.112)

where this last quantity can be estimated with the first equation of (7.85): the square of the
norm in (7.111) is also bounded by the same quantity. It remains to bound ‖p̃(0)‖L2(Ω)). Using

again the notation qr = ur + 1
σ∇p(xr), we consider at time t = 0 the relation

p̃j =
d

dt
pj = − 1

|Ωj |
∑

r

ljr(ur,njr) =
1

σ

1

|Ωj |
∑

r

ljr(∇p(xr),njr)
︸ ︷︷ ︸

=v1j

− 1

|Ωj |
∑

r

ljr(qr,njr)

︸ ︷︷ ︸
=v2j

.

One has v1
j = 1

|Ωj |
∑

r ljr(∇p(xr)−∇p(xj),njr). Using techniques which have been used many

times in this paper, one has |v1
j | ≤ C 1

h‖p‖H3(Ωj), which turns into

‖v1‖L2(Ω) =

√∑

j

|Ωj |(v1
j )

2 ≤ C‖p‖H3(Ω) ≤ C‖p0‖H3(Ω), C > 0.

The other term is naturally bounded by the norm of q, that is ‖v2‖L2(Ω) ≤ P
CMh‖q‖L2(Ω), P the

maximal number of vertices per cell. Going back to (7.107), one obtains

‖v2‖L2(Ω) ≤ C
1

h

√
hmax(h, ε)‖p0‖H3(Ω) ≤ C

√
max(1, ε/h)‖p0‖H3(Ω). (7.113)

The sum ‖v1‖L2(Ω) + ‖v2‖L2(Ω) yields the bound for p̃h(0) that was looked for. The estimate is
dominated by the worst term which is the right hand side of (7.113). Plugging in (7.112), the
proof is finished.

7.3.7 Study of ‖Pε
h −DAε

h‖
In this section we estimate the difference between the hyperbolic scheme Pε

h and the diffusion
asymptotic scheme DAε

h. Since the discrete of the discrete equations are very similar, this
proof is simple. This is where we get the clear benefit of the introduction of the new diffusion
asymptotic scheme.

Lemma 7.25. There exists a constant C→ independant of h and ε, with a linear growth in time,
such that the following estimate holds

‖Vε
h −Wε

h‖L2([0,T ]×Ω)) ≤ C→
(
h2 + εmax

(
1,

√
ε

h

))
‖p0‖H3(Ω). (7.114)
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Proof. We introduce Rj = d
dtuj such that the solution Vh of the diffusion scheme (7.63) satisfies





| Ωj |
d

dt
pj +

1

ε

∑

r

(ljrnjr,ur) = 0,

| Ωj |
d

dt
uj +

1

ε

∑

r

(ljrpjnjr + α̂jr(uj − ur)) = |Ωj |Rj ,

(
Ar +

σ

ε
Br

)
ur −

∑

j

ljrpjnjr −
∑

j

α̂jruj = 0.

(7.115)

By definition ‖R‖L2(Ω) = ‖ ddtuj‖L2(Ω). Using the second line of (7.63), one has uj = A−1
j

∑
r α̂jrur

and thus ‖ ddtuj‖L2(Ω) ≤ C‖ ddtur‖L2(Ω). Using (7.111) (and taking care that rescaling (7.84) by
a factor ε was systematically used in the previous section), one gets for a smooth initial data

‖R‖L2([0,T ]×Ω) ≤ Cεmax

(
1,

√
ε

h

)
‖p0‖H3(Ω).

We denote by ej = pj − pεj , fj = uj − uεj and fr = ur − uεr. One finds, making the difference
between the schemes (7.115) and (7.57):





| Ωj |
d

dt
ej +

1

ε

∑

r

(ljrnjr, fr) = 0,

| Ωj |
d

dt
fj +

1

ε

∑

r

(ljrejnjr + α̂jr(fj − fr)) = |Ωj |Rj ,

(
Ar +

σ

ε
Br

)
fr −

∑

j

ljrejnjr −
∑

j

α̂jrfj = 0.

We are going to write an inequality satisfied by E(t) = ‖e(t)‖2L2(Ω) + ‖f(t)‖2L2(Ω), knowing that

e(0) = 0. Using the same kind of proof than for the L2 stability of the JL-(b) scheme (proposition
7.17), one can show that

1

2

d

dt
E(t) ≤

∑

j

|Ωj |(Rj , fj) ≤ ‖f‖L2(Ω)‖R‖L2(Ω) ≤
√
E(t)‖R‖L2(Ω).

By integration, one has for t ≤ T
√
E(t) ≤

√
E(0) +

√
T‖R‖L2([0,T ]×Ω) = ‖f(0)‖L2(Ω) +

√
T‖R‖L2([0,T ]×Ω).

One has ‖f(0)‖L2(Ω) ≤ C
√
hεmax(h, ε)‖p0‖H3(Ω) by virtue of (7.108) (taking care that there is

a rescaling (7.84) by ε). We simplify a little ‖f(0)‖L2(Ω) ≤ C
(
h2 + ε2

)
‖p0‖H3(Ω), so

√
E(t) ≤ C

(
h2 + εmax

(
1,

√
ε

h

)√
T

)
‖p0‖H3(Ω), C > 0.

Since ‖Vε
h −Wε

h‖L2([0,T ]×Ω)) =
√∫ T

0 E(t)dt, the proof is ended with

C→ = CT

(
h2 + εmax

(
1,

√
ε

h

))
‖p0‖H3(Ω)

.
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7.3.8 Space estimate for uniform AP property in 2D

We have the following result of uniform convergence for a mesh satisfying the geometrical as-
sumptions (7.13).

Theoreme 7.26 (Space estimate). There exists a constant C¿0 independent of h and ε, in-

creasing at most as T
3
2 , such that the following estimate holds

‖Vε −Vε
h‖L2([0,T ]×Ω) ≤ Ch

1
4 ‖p0‖H4(Ω).

Proof. The proof is a slight adaptation of our initial proposition 7.2, where we use the norm
‖ · ‖ = ‖ · ‖L2([0,T ]×Ω)). From the triangular inequality applied to the AP diagram, one has

‖Vε
h −Vε‖ ≤ min (‖Vε

h −Vε‖naive, ‖Vε
h −Wε

h‖+ ‖Wε
h −Wε‖+ ‖Wε −Vε‖) .

All these norms are estimated with (7.75), (7.114), (7.83) and (7.74). Therefore one can write

‖Vε
h −Vε‖ ≤ Cmin

(√
h

ε
,

(
h2 + εmax

(
1,

√
ε

h

))
+ (h+ ε) + ε

)
‖p0‖H4(Ω), C > 0,

where

C = max

[
↓C√
CM

,
C→

CM
,
C↓√
CM

, C←

]

and behaves as T
3
2 for large T .

The parenthesis is

Z = min

(√
h

ε
,

(
h2 + εmax

(
1,

√
ε

h

))
+ (h+ ε) + ε

)

≤ min

(√
h

ε
, εmax

(
1,

√
ε

h

)
+ 2h+ 2ε

)
≤ min

(√
h

ε
, 3εmax

(
1,

√
ε

h

)
+ 2h

)
.

As in proposition 7.2, a threshold value is obtained by equating the more singular terms, that

is
√

h
εthresh

= εthresh

√
εthresh
h , with solution εthresh =

√
h. Two case occur. The first case is

ε ≥ εthresh. Then the first term in Z shows that Z ≤
√

h
εthresh

= h
1
4 . The second case is

ε ≤ εthresh. Then the second term in Z shows that Z ≤ 3εthresh

√
εthresh
h +2h = 3h

1
4 +2h ≤ 5h

1
4 .

In both case Z ≤ Ch 1
4 . The proof is ended.

7.4 Implicit discretization and proof of theorem 7.1

We explain hereafter how to compare the implicit scheme and the semi-discrete scheme, in a way
that produces immediately abstract error bounds. This technique comes from [DES04] where
applications to the numerical analysis of explicit schemes was the main goal. In what follows
we concentrate on implicit Euler discretization for two reasons. First reason is that the theory
is a little simpler to explain than for the explicit scheme, for which the interested reader may
nevertheless refer to the cited work. The very simple proof that is provided is new. Second
reason is that implicit discretization is somehow necessary to take into the account the intrinsic
stiffness of the problem. In particular the numerical tests have been performed with the implicit
method. With the explicit method the CFL condition is so restrictive that it makes impossible
the convergence study. The proof is a consequence of the abstract estimate (7.120) with the
technical estimate (7.126) for the initial data.
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7.4.1 An abstract estimate

The idea is to compare the solution Uh(t) of a semi-discrete scheme

Uh(t) = AhUh(t), Uh(0) = U ini
h (7.116)

with the solution of the corresponding implicit Euler scheme with time step ∆t

Un+1
h − Unh

∆t
= AhU

n+1
h , U0

h = U ini
h (7.117)

The operator depends on an abstract parameter h: with symbolic notation, this abstract pa-
rameter is h← (h, ε) in the case of our problem Pε

h. The question is to bound the difference of
these two uniformly with respect to ∆t and uniformly with respect to the abstract parameter h.

We assume a natural L2 norm denoted as ‖ · ‖ with the associated scalar product. For sim-
plicity we also assume that Ah is dissipative in the sense that

(Uh, AhUh) ≤ 0 for all Uh in the appropriate discrete space.

Taking the scalar product of (7.117) with Un+1
h , one deduces that ‖Un+1

h ‖ ≤ ‖Unh ‖ for all Unh .
Assuming the discrete space in finite (this is always true for discrete methods in a compact
domain), one gets the unconditional stability estimate

‖(Ih −∆tAh)
−1‖ ≤ 1 ∀∆t > 0 (7.118)

where Ih is the discrete identity operator and the norm is the induced one for operators. Note
that (7.118) ultimately shows that the matrix Ih −∆tAh is non singular. So the matrix of the
problem can be assemble and invert on a computer.

Let us define for convenience V n
h = Uh(n∆t) so that the semi-discrete scheme can be rewritten

as
V n+1
h − V n

h

∆t
−AhV n+1

h =
1

∆t

∫ (n+1)∆t

n∆t
U ′h(s)ds−AhUh((n+ 1)∆t)

=
1

∆t

∫ (n+1)∆t

n∆t
AhUh(s)ds−AhUh((n+ 1)∆t) = ∆tAhs

n+1
h

where the residual is sn+1
h = 1

∆t

∫ (n+1)∆t
n∆t

Uh(s)−Uh((n+1)∆t)
∆t ds. We notice that

‖snh‖ ≤ sup
0≤s≤T

‖U ′h(s)‖ ≤ ‖AhU ini
h ‖, n∆t ≤ T. (7.119)

Therefore this special residual is uniformly bounded provided ‖AhU ini
h ‖ is uniformly bounded.

This is actually true: it comes from the fact that Wh(t) = U ′h(t) is solution of W ′h(t) = AhWh(t)
and Wh(0) = AhU

ini
h . So the strong L2 stability of the semi-discrete scheme due to (7.121) yields

the bound (7.119).

Proposition 7.27 (Time estimate). Let T > 0 be a final time. Then there exists a constant C
independent of h, ε and ∆t, proportional to

√
T , such that

‖Unh − Uh(n∆t)‖ ≤ C
√

∆t‖AhU ini
h ‖, n∆t ≤ T. (7.120)
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Proof. The initial data is the same V 0
h = U ini

h . Let us define the error Enh = V n
h − Unh which is

solution of

En+1
h − Enh

∆t
= AhE

n+1
h + ∆tAhs

n+1
h , E0

h = 0. (7.121)

It yields (Ih − ∆tAh)E
n+1
h = Enh + ∆t2Ahs

n+1
h , that is En+1

h = (Ih − ∆tAh)
−1Enh + ∆t(Ih −

∆tAh)
−1∆tAhs

n+1
h . We obtain the representation formula (discrete Duhamel’s formula)

Enh = ∆t

n−1∑

p=0

[
(Ih −∆tAh)

−1
]n−1−p

(Ih −∆tAh)
−1∆tAhs

p+1
h . (7.122)

Let us define the operator Th = (Ih−∆tAh)
−1 which is bounded ‖Th‖ ≤ 1. One has the formula

Th−Ih = (Ih−∆tAh)
−1∆tAh and the formula

(
Ih − ∆t

2 Ah
)−1 Ih+Th

2 = (Ih −∆tAh)
−1. Plugging

in the discrete Duhamel’s formula, one obtains another representation

Enh = ∆t

n−1∑

p=0

[
(Ih −

∆t

2
Ah)

−(n−1−p)
][(

Ih + Th
2

)n−1−p
(Th − Ih)

]
sp+1
h . (7.123)

The first operator in brackets is bounded by 1 due to the stability (7.118). On the other hand
it is an easy exercise in number theory to show that for q ≥ 0

(
Ih + Th

2

)q
(Th − Ih) =

1

2q

∑

r

((
q

r − 1

)
−
(
q
r

))
T rh

where the binomial coefficients are

(
q
r

)
= q!

r!(q−r)! for 0 ≤ r ≤ q, otherwise zero. Therefore

∥∥∥∥
(
Ih + Th

2

)q
(Th − Ih)

∥∥∥∥ ≤
1

2q

∑

r

∣∣∣∣
(

q
r − 1

)
−
(
q
r

)∣∣∣∣ ≤
1

2q
2

(
q
r∗

)

where the last inequality is from a telescoping reasoning and r∗ is one of the closest entire
number to q/2, that is | q2 − r∗| ≤ 1. But there exists a universal constant, denoted K, such

that 1
2q−1

(
q
r∗

)
≤ K√

q+1
. Therefore

∥∥∥
(
Ih+Th

2

)q
(Th − Ih)

∥∥∥ ≤ K/
√
q + 1. Using this universal

estimate in (7.123) and the estimate on snh, we obtain ‖Enh‖ ≤ ∆t
∑n−1

p=0
K√

n−1−p+1
‖AhU ini

h ‖ =

∆t
∑n

p=1
K√
p‖AhU ini

h ‖. A basic bound shows that
∑n

p=1
1√
p ≤ K̃

√
n. Therefore

‖Enh‖ ≤ ∆tKK̃
√
n‖AhU ini

h ‖ ≤ (KK̃
√
T )
√

∆t‖AhU ini
h ‖, n∆t ≤ T.

The proof is ended.

To finish the proof of the theorem 7.1, it is now necessary and sufficient to show that
‖ ddtUh(0)‖ = ‖AhU ini

h ‖ is bounded independently of h for the initial data of Pε
h. This is the

purpose of the next section.
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7.4.2 Technical estimates

To prove the uniform on the initial data, we will use in a slightly different manner the esti-
mates for the initial data that have been obtained for the diffusion approximation scheme DAε

h.
However we will need an additional assumption of the mesh

(Aru,u) ≥ αh(u,u), Ar =
∑

j

α̂jr. (7.124)

This assumption is not restrictive so we do not comment on it. The following technical estimates
show two things. First in explains in what sense the corner velocity is a good approximation of
the gradient at the corner at initial stage. Second it provides in (7.126) a control of the time
derivative at time t = 0 uniformly with respect to h and ε, it immediately shows the boundedness
of the abstract quantity AhU

ini
h in (7.119). So it is possible to apply the above proposition and

the main theorem is proved. We now turn to the proof the technical estimates.

Proposition 7.28. There exists a constant C independent of h and ε such that the initial data
of Pε

h satisfies ∥∥∥uεr(0) +
ε

σ
∇p0(xr)

∥∥∥
L2(Ω)

≤ Chε‖p0‖H3(Ω). (7.125)

Proof. The corner problem (7.59) that defines ur = uεr(0) at initial time is rewritten as
(
Ar +

σ

ε
Br

)
ur =

∑

j

ljrp0(xj)njr −
ε

σ

∑

j

α̂jr∇p0(xj).

Let us defined d1
r =

∑
j ljr (p0(xj)− p0(xr)− (xj − xr,∇p0(xr)))njr, already defined and bounded

in (7.109). So elimination of p(xj) and simplification with
∑

j ljrnjrp(xr) = 0 yield

(
Ar +

σ

ε
Br

)
ur =

∑

j

ljr (xr − xj ,∇p0(xr))njr + d1
r

− ε
σ

∑

j

α̂jr∇p0(xr) +
ε

σ

∑

j

α̂jr (∇p0(xr)−∇p0(xj)) .

that is with the definition of the matrices
(
Ar +

σ

ε
Br

)(
ur +

ε

σ
∇p0(xr)

)
= d1

r +
ε

σ

∑

j

α̂jr (∇p0(xr)−∇p0(xj)) .

The coercivity (7.124) of the matrices Ar and Br yields

α

(
h+

σh2

ε

) ∣∣∣ur +
ε

σ
∇p0(xr)

∣∣∣ ≤ |d1
r |+

ε

σ

∑

j

α̂jr |∇p0(xr)−∇p0(xj)| .

With estimate of d1
r (7.109), estimate of the difference ∇p0(xr)−∇p0(xj), it yields

α

(
h+

σh2

ε

) ∣∣∣ur +
ε

σ
∇p0(xr)

∣∣∣ ≤ C(h2 +
ε

σ
h)‖p‖Ωj ,

with a constant uniform with respect to h, ε and the index of the cell j. That is

∣∣∣ur +
ε

σ
∇p0(xr)

∣∣∣ ≤ C

α
ε‖p‖Ωj .

After squaring and summation with respect to j, it yields the result.
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Proposition 7.29. There exists a constant C > 0 which do not depend on h and ε such that
the initial data of Pε

h satisfies

∥∥∥∥
d

dt
Vε
h

∥∥∥∥
L2(Ω))

≤ C‖p0‖H3(Ω). (7.126)

Proof. The Pε
h scheme (7.57) or (7.61) can be rewritten

Pε
h :





d

dt
pεj = − 1

ε|Ωj |
∑

r

ljr(u
ε
r − uεj ,njr)

d

dt
uεj = − 1

ε|Ωj |
∑

r ljr(njr,u
ε
r − uεj)njr.

(7.127)

At time t = 0 one has uεr − uεj =
(
uεr + ε

σ∇p0(xr)
)

+ ε
σ (∇p0(xj)−∇p0(xr)): the first term can

be estimated by (7.125) and the second one as usual. Therefore there exists constants such that

∥∥∥∥∥
1

ε|Ωj |
∑

r

ljr(u
ε
r +

ε

σ
∇p0(xr),njr)

∥∥∥∥∥
L2(Ω)

≤ C h

CMh2
Phε‖p0‖H3(Ω) ≤ Ĉ‖p0‖H3(Ω).

In a similar way

1

σ|Ωj |

∣∣∣∣∣
∑

r

ljr(∇p0(xr)−∇p0(xj),njr)

∣∣∣∣∣ ≤
h

σCMh2
C̃‖p0‖H3(Ωj) ≤

C

h
‖p0‖H3(Ωj).

Therefore ∥∥∥∥∥
1

σ|Ωj |
∑

r

ljr(∇p0(xr)−∇p0(xj),njr)

∥∥∥∥∥
L2(Ω)

≤ C‖p0‖H3(Ω).

It shows that
∥∥ d
dtp

ε(0)
∥∥
L2(Ω)

≤ C‖p0‖H3(Ωj). Considering (7.127) , a similar result for d
dtu

ε(0).

It shows
∥∥ d
dtV

ε
h(0)

∥∥
L2(Ω))

≤ C‖p0‖H3(Ω). The proof is ended.

7.5 Numerical illustration

To illustrate the theory and have a more quantitative version of the error estimates studied
in this work, we consider the academic square Ω = [0, 1]2 and discretize the hyperbolic heat
equation of a mesh made with random quads. A random quad mesh is made of quads where the
vertices are moved randomly around their initial position, by a factor between 10% and 30%.
We use the fully implicit time discretization version of the 2D scheme detailed in this work. The
solution of the linear systems is computed via an iterative GMRES algorithm, which converges
smoothly in our numerical experiments. The reference analytical solution used in our tests is
designed by separation of variables. A solution of (7.1) is

p = f +
ε2

σ
∂tf and u = − ε

σ
∇f,

with f solution of

∂tf +
ε2

σ
∂2
t f −

1

σ
∆f = 0. (7.128)
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Figure 7.6: The error is plotted in log scale versus the number of cells per direction for the test
problem described in section 7.5. Each curve corresponds to a value of τ ∈ {0, 1

4 ,
1
2 , 1, 2}, plus a

reference line for order one. One sees that the order of convergence is an increasing function of
τ .

We propose to construct a solution for a subset of small ε to validate the uniform convergence.
Firstly we consider that the solution is a periodic solution on the square [0, 2]×

[
0, 2

L

]
. For this

we use the separation of the variables. We consider the following function

f(t, x, y) = α(t) cos(Lπx)) cos(Lπy).

and we propose to find the function α(t) such that f(t, x, y) = α(t) cos(Lπx) cos(Lπy) is a
periodic solution of (7.128). The function α is determined as the solution of

α′(t) +
ε2

σ
α′′(t) +

2L2π2

σ
α(t) = 0

with α′(0) = 0 and α(0) = 1. For small ε, which is the case we are interested in, the solution is
computed as follows. First determine

λ1 = −
σ

(√
1− ε2

σ2 8L2π2 + 1

)

2ε2
and λ2 =

σ

(√
1− ε2

σ2 8L2π2 − 1

)

2ε2
.

Then

α(t) =
λ2

λ2 − λ1
eλ1t − λ1

λ2 − λ1
eλ2t

from which p(t) and u(t) are easily recovered.
We decide that an exact relation is enforced between ε and h = 1

N , so that the error can
be expressed as a function of h solely. The relation between ε and h writes ε = 0.01(40h)τ for
τ ∈ {0, 1

4 ,
1
2 , 1, 2}. The error between the exact solution and the numerical solution is computed

numerically in function of h = 1
N , for different values of τ , and the results of some of these

numerical experiments is displayed in figure 7.6. The results correspond to the time T = 0.02
using the time step ∆t = 0.2h2.

As predicted by the theory, the scheme is uniformly AP and the error behavior is a continuous
function of γ between the hyperbolic and parabolic limits. However the results are much better,
in the sense the order is greater than the theoretical prediction since the order is approximatively
1 for γ = 0 (hyperbolic limit) and 2 for γ = 2 (parabolic regime). We can find a closed result on
the second order convergence for the parabolic regime in the paper [ABN12] (1D linear problem).
The reason is probably that the theory is based on worst case estimates, as it is often the case
for the numerical analysis of finite volume schemes [EGH00].

7.6 Conclusion

The proof that was given of the uniform AP property is quite technical. It relies on specific
hyperbolic and parabolic estimates for linear nodal finite volume schemes on general meshes.
We observe that the multidimensional case yields an additional contribution in the error that
ultimately slightly degrades the convergence rate. It is an open problem to determine if these
inequalities are optimal. The numerical results indicate that it is probably not the case.
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7.7 Appendix A: detailed proof of the naive estimate (7.75)

Our aim is to now examine each term in the right hand side of the dissipative identity (7.82).
Its first term is already non positive.

Proposition 7.30. Let γ > 0 be a number which precise value will be determined further. There
exists a constant C1(γ) which depends on γ such that one has the bound for the second term of
the dissipative identity (7.82)

∫ T

0
E1(t)dt ≤

γ

ε

∫ T

0

∑

j,r

lj,r(nj,r,u
ε
j − uεr)

2 + C1(γ)
h

ε
√
CM
‖Vε(0)‖2H1(Ω). (7.129)

Proof. We use a Young’s inequality ab ≤ γ
2a

2 + 1
2γ b

2,with some positive constantγ which will be
defined later, for the second term and the definition of the fluxes (7.58) for the third term: we
get

E1 ≤
γ

2ε

∑

j,r

lj,r(nj,r,u
ε
j − uεr)

2 +
h

2γε

∑

j

∑

r

δj,r(p
ε)2

+
∑

j

∑

r

ljr(njr,u
ε
j − uεr)(njr, δj,r(u

ε))− 1

ε

∑

j

∑

r

(
σ

ε
β̂j,ru

ε
r , δj,r(u

ε)

)

Another use of Young’s inequality with the same coefficient γ for the third term yields

E1 ≤
γ

ε

∑

j,r

lj,r(nj,r,u
ε
j − uεr)

2 +
h

2γε

∑

j

∑

r

δj,r(p
ε)2

+
1

2γε

∑

j

∑

r

ljr|δj,r(uε)|2 −
1

ε

∑

j

∑

r

(
σ

ε
β̂j,ru

ε
r , δj,r(u

ε)

)

≤ γ

ε

∑

j,r

lj,r(nj,r,u
ε
j − uεr)

2 +
h

2γε

∑

j

∑

r

δj,r(p
ε)2

+
h

2γε

∑

j

∑

r

|δj,r(uε)|2 −
1

ε

∑

j

∑

r

(
σ

ε
β̂j,ru

ε
r , δj,r(u

ε)

)
.

We now look at the last term of this inequality W = −1
ε

∑
j

∑
r

(
σ
ε β̂j,ru

ε
r , δj,r(u

ε)

)
. By

definition (7.60) of β̂j,r, one has
∣∣∣β̂j,r

∣∣∣ ≤ h2. Therefore

|W | ≤ σh2

ε2

(∑

j

∑

r

∣∣∣∣u
ε
r

∣∣∣∣
2) 1

2
(∑

j

∑

r

|δj,r(uε)|2
) 1

2

≤ σh2

ε2

√
P

(∑

r

∣∣∣∣u
ε
r

∣∣∣∣
2) 1

2
(∑

j

∑

r

|δj,r(uε)|2
) 1

2

≤ σh

ε2

√
P

CM

(∑

r

|Vr|
∣∣∣∣u
ε
r

∣∣∣∣
2) 1

2
(∑

j

∑

r

|δj,r(uε)|2
) 1

2

≤ σh

2ε2

√
P

CM

(∑

r

|Vr|
(
uεr,u

ε
r

)
+
∑

j

∑

r

|δj,r(uε)|2
)
.
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It yields

E1 ≤
γ

ε

∑

j,r

lj,r(nj,r,u
ε
j − uεr)

2 +
h

2γε

∑

j

∑

r

δj,r(p
ε)2

+

(
h

2γε
+
σh

2ε2

√
P

CM

)
∑

j

∑

r

|δj,r(uε)|2 +
σh

2ε2

√
P

CM

∑

r

|Vr|
(
uεr,u

ε
r

)
.

(7.130)

Using the first interpolation result of proposition 7.14 and the assumption (7.65), one has

∑

j

∑

r

δj,r(p
ε)2 ≤ PC2

A||pε||2H2(Ω) and
∑

j

∑

r

|δj,ruε|2 ≤ PC2
A||uε||2H2(Ω).

So we obtain

∫ T

0
E1dt ≤

γ

ε

∫ T

0

∑

j,r

lj,r(nj,r,u
ε
j − uεr)

2dt+
PC2
Ah

2γε
||pε||2L2([0,T ];H2(Ω))

+ PC2
A

(
h

2γε
+
σh

2ε2

√
P

CM

)
||uε||2L2([0,T ];H2(Ω)) +

σh

2ε2

√
P

CM
‖uεr‖2L2([0,T ]×Ω).

Using energy estimate (7.2) for the the second term of the rhs of the above inequality, (7.3) for
the third term and (7.76) for the last term, one gets finally

∫ T

0
E1(t)dt ≤

γ

ε

∫ T

0

∑

j,r

lj,r(nj,r,u
ε
j − uεr)

2 (7.131)

+

(
T
PC2
Ah

2γε
+ PC2

A

(
h

2γε
+
σh

2ε2

√
P

CM

)
ε2

σ
+
σh

2ε2

√
P

CM

ε2

σα

)
‖Vε(0)‖2H2(Ω).

After a convenient definition os the constant C1(γ), it ends the proof.

Proposition 7.31. There exists a constant C2 such that the third term in the dissipative identity
(7.82) can be bounded as

∫ T

0
E2(t)dt ≤ C2

h

εCM
‖Vε(0)‖2H3(Ω). (7.132)

Proof. We decompose E2 in (7.82) in two terms. Making use of the second set of inequalities of
the proposition 7.14 and the assumptions (7.64) and (7.65), the first one can be bounded as

|A| =

∣∣∣∣∣∣
1

ε

∑

j

∑

r

|Γj,r|pεj(nj,r, δ̃j,r(uε))

∣∣∣∣∣∣
≤ CAP

ε
h2
∑

j

|pεj |‖Vε(t)‖H3(Ωj).

Using the inequality ab ≤ 1
2(a2 + b2), it yields |A| ≤ CAP

2ε h3
∑

j |pεj |2 + CAP
2ε h

∑
j ‖Vε(t)‖2H3(Ωj)

.

The assumption (7.67) yields

|A| ≤ CAP
2ε

h

CM
‖Vε

h(t)‖2L2(Ω) +
CAP
2ε

h‖Vε(t)‖2H3(Ω).
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The L2 stability (7.76) of the scheme Pε
h shows that

‖Vε
h(t)‖L2(Ω) ≤ ‖Vε

h(0)‖L2(Ω) ≤ ‖Vε(0)‖L2(Ω) +‖Vε
h(0)−Vε(0)‖L2(Ω) ≤ (1+CAh)‖Vε(0)‖H2(Ω)

where the last inequality comes from the initialization stage (7.71). With the basic energy
estimate (7.2), and since h is bounded, we obtain

∫ T

0
|A|dt ≤ T

(
CAP
2ε

h

CM
(1 + CAh) +

CAP
2ε

h

)
‖Vε(0)‖2H3(Ω).

The second contribution in E2 is B = 1
ε

∑
j

∑
r |Γj,r|

(
uεj ,nj,r δ̃j,r(p

ε)

)
. Almost the same calcu-

lations show the bound
∫ T

0
|B|dt ≤ T

(
CAP
2ε

h

CM
(1 + CAh) +

CAP
2ε

h

)
‖Vε(0)‖2H3(Ω).

Summing the two contributions, it concludes the proof after a convenient definition of C2.

Proposition 7.32. Let γ̂ > 0 be a number which precise value will be determined further. There
exists a constant C3(γ̂) which depends on γ̂ such that one has the bound for the last term of the
dissipative identity (7.82)

∫ T

0
E3(t)dt ≤

γ̂σ

2ε

∫ T

0

∑

r

∑

j

ljr

(
njr , u

ε
r − uεj

)2

dt+ C3(γ̂)
h

εCM
‖Vε(0)‖2H1(Ω). (7.133)

Proof. The definition of E3 in (7.82) is

E3 =
σ

ε2

∑

r

∑

j

(
β̂j,ru

ε
r ,

1

|Ωj |

∫

Ωj

uεdx

)
+
σ

ε2

∑

j

(
uεj ,

∫

Ωj

uε
)

− σ

ε2

∑

j

∫

Ωj

(uε,uε)dx− σ

ε2

∑

j

∑

r

(β̂ju
ε
r,u

ε
r).

Using the Cauchy-Schwarz inequality on the third term
∫

(uε,uε), one gets

E3 ≤
σ

ε2

∑

r

∑

j

(
β̂j,ru

ε
r ,

1

|Ωj |

∫

Ωj

uεdx

)
+
σ

ε2

∑

j

(
uεj ,

∫

Ωj

uε
)

− σ

ε2

∑

j

1

|Ωj |

(∫

Ωj

uεdx

)2

− σ

ε2

∑

j

∑

r

(β̂ju
ε
r,u

ε
r),

which can be written
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σ

ε2

∑

r

∑

j

(
β̂j,ru

ε
r , uεr −

1

|Ωj |

∫

Ωj
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)
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ε2

∑

j

(∫

Ωj

uεdx,
1

|Ωj |

∫

Ωj

uεdx− uεj

)

that is

E3 ≤−
σ

ε2

∑

r

∑

j

(
β̂j,r

(
uεr −

1

|Ωj |

∫

Ωj

uεdx

)
, uεr −

1

|Ωj |

∫

Ωj

uεdx

)

− σ

ε2

∑

r

∑

j

(
β̂j,r

1

|Ωj |

∫
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uεdx , uεr −
1

|Ωj |

∫
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uεdx

)

− σ

ε2

∑

j

(∫
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uεdx,
1

|Ωj |

∫
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uεdx− uεj

)
.
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One has, using the geometric identity
∑

r β̂jr = |Ωj |Id which can be found in [BDF12-1,DES10],

∑

r

∑

j

(
β̂j,r

1

|Ωj |

∫

Ωj

uεdx , uεr −
1

|Ωj |

∫

Ωj

uεdx

)
+
∑

j

(∫

Ωj

uεdx ,
1

|Ωj |

∫

Ωj

uεdx− uεj

)

=
∑

r

∑

j

(
β̂j,r

1

|Ωj |

∫

Ωj

uεdx , uεr − uεj

)
.

We thus get after simplification

E3 ≤−
σ

ε2

∑

r

∑

j

(
β̂j,r

(
uεr −

1

|Ωj |

∫

Ωj

uεdx

)
, uεr −

1

|Ωj |

∫

Ωj

uεdx

)

− σ

ε2

∑

r

∑

j

(
β̂j,r

1

|Ωj |

∫

Ωj

uεdx , uεr − uεj

)

∣∣∣∣∣∣∣∣∣∣

:= S1

:= S2

(7.134)

We add and subtract at each average on the cell the nodal value. We recall the notation
δj,r(u

ε) = 1
|Ωj |

∫
Ωj

uεdx− uε(xr). We get for the term under the first sum in (7.134)

(
β̂j,r

(
uεr −

1

|Ωj |

∫

Ωj

uεdx

)
, uεr −

1

|Ωj |

∫

Ωj

uεdx

)

=

(
β̂j,r

(
uεr − uε(xr)

)
, uεr − uε(xr)

)
−
(
β̂j,r

(
uεr − uε(xr)

)
, δj,r(u

ε)

)

−
(
β̂j,rδj,r(u

ε) , uεr − uε(xr)
)

+

(
β̂j,rδj,r(u

ε) , δj,r(u
ε)

)
. (7.135)

The first of these quantities is purely nodal: one has after summation

∑

j

∑

r

(
β̂j,r

(
uεr − uε(xr)

)
, uεr − uε(xr)

)

=
∑

r

(
Br

(
uεr − uε(xr)

)
, uεr − uε(xr)

)
≥ α

∑

r

|Vr||uεr − uε(xr)|2 (7.136)

with the help of (7.70). The second and third term in the identity (7.135) can be bounded by a
Young’s inequality with a convenient constant C = CMα

2P so that all terms containing uεr−uε(xr)
are controlled by (7.136). So we obtain concerning S1 defined in (7.134)

S1 ≤
(

1 +
2P

CMα

)
h2σ

ε2

∑

r

∑

j

|δj,r(uε)|2 .

Using the first interpolation result stressed in proposition 7.14, one has in dimension two
|δj,r(uε)| ≤ CA‖uε(t)‖H2(Ωj). So, taking into account energy estimate (7.3) we have for the
first term ∫ T

0
S1dt ≤ C2

AP

(
1 +

2P

CMα

)
h2‖Vε(0)‖2H2(Ω).

We now consider the second term called S2 in (7.134)

S2 = − σ
ε2

∑

r

∑

j

(
β̂j,r

1

|Ωj |

∫

Ωj

uεdx , uεr − uεj

)
.
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Using (~a⊗~b ~c, ~d) = (~b,~c)(~a, ~d), one has

S2 = − σ
ε2

∑

r

∑

j

ljr

(
(xr − xj),

1

|Ωj |

∫

Ωj

uεdx

)(
njr , uεr − uεj

)

Using the Young’s inequality ab ≤ bγε
2 a

2 + 1
2bγεb

2, we get

∫ T

0
S2dt ≤

γ̂σ

2ε

∫ T

0

∑

r

∑

j

ljr

(
njr,u

ε
r−uεj

)2

dt+

∫ T

0

σ

2γ̂ε3

∑

r

∑

j

ljr

(
(xr−xj),

1

|Ωj |

∫

Ωj

uεdx

)2

dt

Using one more time the energy estimate (7.3) the second term in the right hand side of the
above inequality is bounded by Ph

2CMbγε‖Vε(0)‖2L2(Ω). Thus

∫ T

0
E3(t)dt ≤

γ̂σ

2ε

∫ T

0

∑

r

∑

j

ljr

(
njr,u

ε
r−uεj

)2

dt+P

{
C2
A

(
1+

2P

CMα

)
h2+

h

2CMγ̂ε

}
‖Vε(0)‖2H2(Ω),

which is the expected result after convenient redefinition of the constant in front of the last
term.

End of the proof of the naive estimate of proposition (7.16). One gets

E (T ) ≤ E (0)− 1

ε

∫ T

0

∑

j,r

lj,r(nj,r,u
ε
j − uεr)

2 +

∫ T

0
E1(t)dt+

∫ T

0
E2(t)dt+

∫ T

0
E3(t)dt

where integrals are estimated in (7.129), (7.132) and (7.133). Using equation (7.71), one finds

E (T ) ≤ C2
0h

2‖Vε(0)‖2H2(Ω)

− 1

ε

∫ T

0

∑

j,r

lj,r(nj,r,u
ε
j − uεr)

2

+
γ

ε

∫ T

0

∑

j,r

lj,r(nj,r,u
ε
j − uεr)

2 + C1(γ)
h

ε
√
CM
‖Vε(0)‖2H1(Ω)

+ C2
h

εCM
‖Vε(0)‖2H3(Ω)

+
γ̂σ

2ε

∫ T

0

∑

r

∑

j

ljr

(
njr , uεr − uεj

)2

dt+ C3(γ̂)
h

εCM
‖Vε(0)‖2H2(Ω).

.

This estimate is fundamental, since it shows the competition between different kind of error
terms and the dissipation of the fluxes. Choosing by example γ̂ < 1

σ and γ < 1
2 , all terms like∫ T

0

∑
j,r lj,r(nj,r,u

ε
j − uεr)

2 vanish. All other terms can put together as E (T ) ≤ ↓C
2

h
ε ‖p0‖2H4(Ω),

where the constant ↓C has , as in 1D, has at most a linear growth in time. It ends the proof of
the naive estimate.

7.8 Appendix B: Bihari’s inequality and application

We recall a nonlinear generalization of the Gronwall-Bellman inequality known as Bihari’s in-
equality
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Lemma 7.33. If

y(t) ≤ a+

∫ t

0
b(s)g(y(s))ds, (7.137)

with a non negative constante, b(t) a positive function and g a positive non decreasing function
then, noting by G(x) an antiderivative of 1/g(x), one has

y(t) ≤ G−1

(
G(a) +

∫ t

0
b(s)ds

)
. (7.138)

The proof is trivial by setting Z = a +
∫ t
0 b(s)g(y(s))ds and and verifying that Z ′ ≤ bg(Z),

see [BI56]. In our work g(x) =
√
x. Moreover a, b(s)2 and y are square of L2(Ω) norms. More

precisely in our convergence’s proofs one ends to inequality of the type

‖Y ‖2L2(Ω)(t) ≤ ‖Y ‖2L2(Ω)(0) +

∫ t

0
‖A‖2L2(Ω) +

∫ t

0
‖B‖L2(Ω)‖Y ‖L2(Ω)ds. (7.139)

for Y , A and B functions of L2(Ω. Thus for all t ≤ T

‖Y ‖2L2(Ω)(t) ≤ ‖Y ‖2L2(Ω)(0) +

∫ T

0
‖A‖2L2(Ω) +

∫ t

0
‖B‖L2(Ω)‖Y ‖L2(Ω)ds, (7.140)

Using the Bihari’s inequality (7.138) and the Cauchy-Schwarz inequality one obtain for all t ≤ T ,

‖Y ‖2L2(Ω)(t) ≤
1

2


2
√
‖Y ‖2

L2(Ω)
(0) + ‖A‖2

L2([0,T ]×Ω)
+
√
t

√∫ t

0
‖B‖2

L2([0,T ]×Ω)
ds




2

, (7.141)

and majorizing t by T in the right-hand side

‖Y ‖2L2(Ω)(t) ≤
1

2

(
2
√
‖Y ‖2

L2(Ω)
(0) + ‖A‖2

L2([0,T ]×Ω)
+
√
T‖B‖L2([0,T ]×Ω)

)2
. (7.142)

Integrating in time that gives

‖Y ‖2L2([0,T ]×Ω) ≤
1

2
T
(
2
√
‖Y ‖2

L2(Ω)
(0) + ‖A‖2

L2([0,T ]×Ω)
+
√
T‖B‖L2([0,T ]×Ω)

)2
(7.143)

We can summarize these calculations by the lemma

Lemma 7.34. If Y , A and B are functions of L2(Ω) satisfying (7.139) then

‖Y ‖L2([0,T ]×Ω) ≤
√
T

2

(
2
√
‖Y ‖2

L2(Ω)
(0) + ‖A‖2

L2([0,T ]×Ω)
+
√
T‖B‖L2([0,T ]×Ω)

)
(7.144)

If ‖A‖L2(Ω) ≤ C et ‖B‖2L2(Ω) ≤ C, with C constant then the right-hande side behaves as T
3
2

for large time. If ‖A‖L2(Ω) ≤ C or
∫ T
0 ‖A‖L2(Ω) ≤ C and

∫ T
0 ‖B‖2L2(Ω) ≤ C, then the right-hand

side behaves now as T for large time.
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Conclusion and prospects

We conclude this study with a summary of the major results and the possible prospects of this
work.

First, the proof of convergence of the solution of the relativistic transfer equation to the solution
of a drift diffusion equation given in chapter 2 is original. In particular it involves a comparison
principle (theorem 2.1) that generalizes the maximum principle of Golse and Perthame [GP86]
for a moving fluid. The proof of this convergence result assumes that the opacity σa is regular
(belongs to W 3,∞(R+

ν ) ∩ L2(R+
ν )), which is rather unphysical and is the limit of this result. An

improvement could be obtained by proving the result using compactness arguments.

In chapter 3 has been derived a new class of well-balanced schemes for transport equations,
which are consistant as the wave velocity tends to zero. The uniform convergence of this scheme
in the context of the relativistic transfer equations has been provided, both from the theoretical
as from the numerical point of view. These new schemes may be generalized to construct well-
balanced schemes for more general transport equations. A work in this direction can be found
in [BD14] for the Friedrichs systems.

In chapter 4 several original anisotropic Fokker-Planck equations have been derived to model
the Compton scattering, generalizing the Kompaneets equation in the case of anisotropic distri-
butions. A rigorous mathematical justification of these equations, and in particular a H-theorem
for the equation (4.13) would improve this study. Several angular moments models, and in par-
ticular the M1 and P1 models have been derived from a simple anisotropic Kompaneets type
equation, leading to original models. The M1 model, derived in the grey case, could be extended
in the multigroup case by using the results of Turpault [TUR05,TUR12].

In chapter 5 a prospective study has been performed concerning the electron-ion Bremsstrahlung.
An energy conservative kinetic model and the corresponding M1 model have been derived, and
a numerical scheme implemented. The numerical results show a good agreement with stochastic
tests. The numerical tests have been performed in the case of cold matter, and a reflection
concerning inertial confinement fusion simulations is in progress.

Finally, the chapter 6 presents a proof of uniform convergence of the Gosse-Toscani’s scheme
for the hyperbolic heat equations on unstructured meshes in 2D. This result is original, and in-
volves a new diffusion scheme, called DA (diffusion approximation) scheme. Since the numerical
convergence rate (h = 1) is better than the theoretical convergence rate (h = 1/4), one could
expect an improvement of this theoretical rate.
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