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Évaluation de Requêtes Top-k Continues
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Abstract

In the era of the real-time web, online news media aggregators, like Google

News, and social media sites, like Twitter, strive for effective and efficient filtering

of large volumes of information for millions of users. Given the vast diversity and

burstiness of information published on the web each minute, filtering, ranking

and delivering content streams to interested users becomes a challenging task.

Moreover, feedback signals on the content, such as clicks or shares, provide useful

information on content importance, but also require more complex manipulation

techniques for filtering these streams. Scoring functions in this context consider

both static and dynamic ranking factors, such as profile relevance, recency of

information and dynamic feedback signals. Existing works for the real-time web

fail to handle such dynamic scoring functions in an online way and rather adapt

an approach of iterative execution of snapshot queries.

In this thesis, we are interested in efficient evaluation techniques of contin-

uous top-k queries over text and feedback streams featuring generalized scoring

functions which capture dynamic ranking aspects. As a first contribution, we

generalize state of the art continuous top-k query models, by introducing a gen-

eral family of non-homogeneous scoring functions combining query-independent

item importance with query-dependent content relevance and continuous score

decay reflecting information freshness. Our second contribution consists in the

definition and implementation of efficient in-memory data structures for indexing

and evaluating this new family of continuous top-k queries. Our experiments

show that our solution is scalable and outperforms other existing state of the art

solutions, when restricted to homogeneous functions. Going a step further, in

the second part of this thesis we consider the problem of incorporating dynamic

feedback signals to the original scoring function and propose a new general real-

time query evaluation framework with a family of new algorithms for efficiently

processing continuous top-k queries with dynamic feedback scores in a real-time

web context. Finally, putting together the outcomes of these works, we present

MeowsReader, a real-time news ranking and filtering prototype which illustrates

how a general class of continuous top-k queries offers a suitable abstraction for

modelling and implementing continuous online information filtering applications

combining keyword search and real-time web activity.
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1
Introduction

1.1 Context: Web 2.0

The emergence of Web 2.0 technologies over the past decade has transformed the Web

into a vibrant information place of content exchange, collaboration and communication.

The first generation of the World Wide Web, often referred to as Web 1.0 , was designed

as a “read-only” environment of hyperlink-connected web pages and documents. While

the Web could be seen as a huge public library, the role of an end-user was limited to

accessing information through a browser by directly submitting a URL, following links

or by using a search engine. Web 2.0 has drastically changed this perception of the

Web by assigning an active role to end-users: from passive content consumers, they

can nowadays actively participate by generating content themselves and by expressing

their opinion and giving feedback on published information.

Social networks (e.g. Facebook1), blogs and microblogs (e.g. Twitter2), photo, mu-

sic and video sharing platforms (e.g. Flickr3, YouTube4) and review and rating websites

(e.g. Yelp5) are only a few examples of social media applications favoring user generated

content (Figure 1.1). Such applications become extremely popular since they enable a

human-centric sensing of a large spectrum of our everyday life activities in professional,

residential and public spaces, covering for example users needs for information, commu-

nication, entertainment and shopping. Statistics show that in 2014, social networking

and micro-blogging represent more than 40% of an average user’s online activities6.

At the same time, traditional sources of information, such as newspapers, televi-

sion and radio, have a strong presence on the Web. In fact, news reading remains

one of the most popular activities online, with users preferring online news media web-

sites to print press6. While vast amounts of user generated content becomes available

1www.facebook.com
2www.twitter.com
3www.flickr.com
4www.youtube.com
5www.yelp.com
6GlobalWebIndex: http://insight.globalwebindex.net/hs-fs/hub/304927/file-1414878665-pdf/Re-

ports/GWI Media Consumption Summary Q3 2014.pdf
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1.1. Context: Web 2.0

Figure 1.1: The Conversation Prism (conversationprism.com), depicting the most pop-
ular social media, categorized by their usage

every minute in social media, traditional information producers, provide users with

all necessary tools and encourage them to lively participate by commenting, sharing

and generally expressing their opinion over published information. This interaction is

mostly supported by social media applications, strongly or loosely coupled with news

media sites and provides valuable feedback to assess the importance of published infor-

mation. Additionally, adapting to the real-time web era, which requires information to

be made available immediately as it happens, online news media continuously publish

novel information and updates on real life events throughout the day.

2



Chapter 1. Introduction

1.2 Accessing information in Web 2.0

With large amounts of information and feedback on information being published each

minute and with millions of news and social media users expecting to receive novel

information in real-time, the initial role of the Web, that of accessing information, poses

new challenges. Figure 1.2 depicts the information overflow effect: more information

is published every minute that we can actually consume. While searching over Web

1.0 required answering queries over a slowly evolving database of static web pages,

nowadays the streaming nature of Web 2.0 contents creates a vital need for achieving

an effective, near real-time information awareness for millions of users. In this context

of searching over dynamic streams of Web 2.0 information, research issues that have

been raised include continuous information filtering [MP11, HMA10, VAC12], trends

detection [MK10, CDCS10, HMA12], content recommendation [MZL+11, ZXL+12] and

indexing of streaming data [CLOW11, WLXX13].

1.2.1 News aggregation and the RSS syndication

In the context of news media, back in Web 1.0, when a limited number of sources

was available online, it was feasible for simple users to visit directly the news websites

of their preference and read any news updates. Today, given the increasing number

of news sources and the high rates at which each of these publish information, this

approach is almost impossible.

Online news aggregation systems like Google News7, Yahoo! News8 or MSNBC

News9, but also blog search engines such as Google Blog Search10 undertake the role

of collecting these streams of information from a large number of sources, ranking

them and making them available for millions of users. More importantly, they can

provide personalized views over the streams, using information explicitly given by the

users, such as their interests (keyword queries) or implicitly collected by monitoring

their behavior (clicks, feedback). Personalization might go beyond user preferences and

take account of user background (e.g. friends in social networks) as well as contextual

7news.google.com
8news.yahoo.com
9www.msnbc.com

10www.google.com/blogsearch

3



1.2. Accessing information in Web 2.0

(a) (b)

Figure 1.2: User generated content each minute in (a) 2011 and (b) 2013
(source: https://www.domo.com/learn/data-never-sleeps-2 )

information in which a user interacts with the system (e.g. location, time and device

characteristics).

The RSS syndication (Really Simple Syndication or Rich Site Summary), which

became popular in the early 2000s, allowed the timely diffusion of streaming information

to users. The idea behind RSS is that the user should be notified about new information

as soon as it becomes available, instead of having to visit a website (e.g. an original news

source or an aggregator) and manually check for updates. An RSS feed is a document

containing several items, i.e. information chunks, each of which has a title, a summary

and some metadata, including the publication date and a link to the source. New items

are inserted in the RSS feed by the publisher, while older ones can be removed. Users

can subscribe to such feeds using an RSS reader (e.g. feedly11), which undertakes the

task of checking and delivering updates. RSS and Atom, a similar syndication for the

delivery of streaming data, are supported by the majority of news media and news

11www.feedly.com
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Chapter 1. Introduction

aggregators today.

While the RSS and Atom syndication provide the means for immediately notifying

users on fresh information, its use alone cannot provide personalized views on informa-

tion. The Publish/Subscribe messaging paradigm models the continuous approach of

filtering RSS, social media or other, similar data streams [EFGK03]. In the topic-based

variation, publishers categorize contents into predefined, static topics and insert each

item (e.g. news article item) in the corresponding feeds of its topics. For example, in an

American news media website, an article on Barack Obama making a statement on Eu-

rope, would probably be inserted in the feeds on “politics” and “international news”.

A user interested in either of these topics, can subscribe to the corresponding feeds

and receive related information. In the content-based variation of Publish/Subscribe,

instead of predefining topics of interest, users can subscribe by issuing queries of their

own choice. These queries, also called subscriptions, serve as filters for incoming infor-

mation. Chapter 2 gives a thorough overview of how subscriptions have be defined in

the literature and the models that have been proposed on how to filter them against

streaming information.

1.2.2 Real-time web

In the era of the real-time web, social media platforms such as Twitter, provide users

the means to instantly publish information on it emerges. The nature of messages on

Twitter (tweets), having a small length of less than 140 characters, and the ease of pub-

lishing them from any portable device, facilitate the real-time publication of events. It is

common today that information on real life events, such as an earthquake, is published

on Twitter by simple end-users, before it has been published in news media [SOM10].

The volume of information published on Twitter has drastically increased over the past

few years: from a publication rate of merely 200 tweets per minute in Twitter’s early

years (2008), Twitter reached 24,000 posts per minutes in 2010 and 236,000 in 2012.

Today, this number has exceeded the 340,000 tweets per minute.

While information is nowadays published on real-time, there is a vital need for

providing efficient and effective filtering over these streams. Additionally, feedback

on items, such as shares (retweets) and replies, provide useful information on content

5



1.3. Approach: Continuous top-k queries over text streams

importance, but also require more complex manipulation techniques for filtering the

streams. Scoring functions in this context, used for the ranking items for millions of

users, consider both static and dynamic ranking factors, like profile relevance, recency of

information and dynamic feedback signals. So far, works over real-time search, both in

the literature and in commercial systems, fail to handle such dynamic scoring functions

in an online way and rather adapt an approach of periodic execution of snapshot queries.

In Chapter 4 we will show how this kind of dynamic ranking scores can be handled online

with time and memory efficient techniques.

1.3 Approach: Continuous top-k queries over text

streams

In this thesis we are particularly interested in the continuous, scalable filtering of dy-

namic text streams for a large number of users. Similarly to the content-based filtering

in the Publish/Subscribe model, we consider that a user can issue a number of key-

word queries in order to retrieve information items of interest from different streams.

The system undertakes the task of storing these continuous queries and evaluates them

against arriving items. To perform this evaluation, we follow the continuous top-k tex-

tual query evaluation approach [MP11]: an underlying scoring function determines the

relevance for each query-item pair. Our goal is to maintain for each query the list of the

k most highly ranked items at every time instant. Additionally to incoming items, we

consider that feedback signals on items (events) also become available in the stream.

To effectively filter the stream and provide personalized views over it, the underlying

scoring function should consider for each item, both query-dependent content relevance

and query-independent item importance. Standard relevance scores are cosine similarity

and Okapi BM25 [RWJ+95]. Item importance can be estimated by static measures, like

information novelty [GDH04], source authority [DCGR05, HLLM06, MC10, MLY+10a],

content diversity [DSP09] or dynamic feedback signals, like user attention [WZRM08,

LDP10]. Moreover, to take into account information freshness, newer items are usually

considered as more important than older ones. This functionality is supported either

by using time decay functions [CSSX09] or by sliding window techniques.

6



Chapter 1. Introduction

For instance consider the example of news media streams. Suppose that a user is

interested in being informed about natural disasters and submits a continuous query

on “earthquakes”. When the earthquake struck Nepal in April 2015, thousands of news

media reported on the event and continuously published updates on its consequences.

These huge amounts of news articles could overwhelm the user, even though the in-

formation within was relevant to the submitted query. Following the continuous top-k

query evaluation approach, the user would only receive the items (news articles) that

at any time instant, were ranked in the top-k list of the query. The underlying scor-

ing function should consider the query-dependent textual relevance between the query

and the item, but also additional parameters like the source authority. For instance,

an article published in the New York Times should be considered as more important

than another one published in a newly created website with a small number of visitors.

While on the arrival of an item, we can have a first estimation of its importance, feed-

back signals from other users, e.g. clicks or shares, should additionally be exploited

to re-evaluate its query-independent item importance. Aiming at providing real-time

information, events on items should also be handled on their arrival.

Figure 1.3 depicts an abstract overview of our proposed functionality for the real-

time filtering of dynamic information streams. Each incoming query, item or feedback

event can trigger the update of a query, i.e. alter its top-k list of items. When a

query is initially issued, a query handler component evaluates it and returns to the

user the list of the k most highly ranked items. This query is also stored in an item

handler component. As new items are published in the stream, they are evaluated

against stored queries in the item handler component which retrieves potential query

updates and inserts the item to the corresponding queries’ top-k lists. An additional

event handler component undertakes the task of checking for potential updates when

the dynamic score of an item changes.

1.4 Contributions

In this thesis we aim at providing efficient and scalable solutions for the evaluation

of continuous text queries over item and feedback streams. In a nutshell our main

contributions are the following:
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Figure 1.3: Our proposed continuous query evaluation model

• As a first contribution, we have proposed a generic framework for defining different

families of continuous top-k queries, handling highly dynamic streams of items

and feedback signals. The core of this framework is a generic scoring function

which captures both static and dynamic ranking criteria like content relevance,

information freshness, source authority, information novelty, user feedback etc.

for filtering information over text streams.

• Based on this framework, we propose a new continuous top-k query evaluation

approach going beyond the state of the art solutions. Existing solutions [MP11,

HMA10] only consider content relevance (e.g. cosine similarity or Okapi BM25)

and do not support query-independent scoring parameters, like source authority

etc. On the other hand, existing real-time web filtering solutions [CLOW11,

BGL+12, WLXX13, MME+14, LBLT15], do consider dynamic scoring functions

as described previously, but fail to handle dynamic item and event streams in

an online way. They focus instead on the efficient indexing of new items (the

query handler component) and periodically execute snapshot queries in order to

handle long-running queries. Our solutions are based on novel algorithms, which

allow the definitions of search bounds which drastically prune the search space

8
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for processing items and feedback events. We also provide formal proofs for the

optimality and soundness of these bounds.

• We have implemented our continuous top-k query evaluation approach. In our

implementations, we adapt a number of in-memory data structures such as dic-

tionaries (i.e. inverted indexes), ordered lists and spatial indexes. We provide a

thorough experimental evaluation of these implementations using real data from

RSS feeds and from Twitter and compare their memory/matching time trade-offs.

We show the scalability of our approach over the number of stored queries and

the arrival rates of items and feedback signals. We also show that our methods

are more efficient than existing state of the art solutions on continuous queries.

• Finally, we present MeowsReader, an online news recommendation prototype

putting together the results of our work. The current running version of Me-

owsReader collects news article items from more than a thousand general and

specialized U.S. news media RSS feeds and converts user clicks and tweets from

Twitter’s public APIs into item feedback scores.

1.5 Organization of this thesis

The rest of this thesis is organized as follows:

Chapter 2 conducts a survey on the related work. We first present the filtering

techniques and ranking models that have been proposed so far in the literature and

applied in commercial systems for query filtering over information streams. Focusing

on the top-k ranking approach, we present the most important ranking parameters and

scoring functions employed in such contexts. We then, describe the state of the art

algorithms and data structures which are directly comparable to our work.

Chapter 3 describes our first approach on evaluating continuous top-k queries [VAC12].

Considering a generalised scoring function and extending state of the art solutions, we

present a novel method on tackling the continuous query evaluation problem. We exper-

imentally evaluate the performance of our proposed indexes and additionally propose a

probabilistic model over our solution, which can be exploited to provide an approximate

solution.
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In Chapter 4 we introduce our real-time search algorithms, implementing the Event

Handler component of our proposed model (Figure 1.3). To the best of our knowledge,

this is the first attempt of processing dynamic scores in a continuous setting. Our

experiments show that our proposed solution can handle the high arrival rates of a

real-time web system, such as Twitter.

Chapter 5 presents MeowsReader our news recommendation prototype putting to-

gether the results of this thesis [VAC14]. This prototype is available online (at gate-

way.lip6.fr:8080/meows/) and integrates our solutions with some additional features

like a simple trend detection mechanism.

Finally, in Chapter 6 we conclude our work and present a list of open scientific

questions and future work related to this thesis.
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2
Related Work
The main goal of this thesis is to propose in-memory data structures and algorithms for

the efficient, online evaluation of continuous (long running) queries over text streams.

Formulated in different ways, this problem has been studied and applied in a wide

spectrum of contexts ranging from relational databases to online news aggregators and

more recently, in real-time micro-blogging systems. The terms continuous queries,

subscriptions in the Publish/Subscribe model, alerts in commercial systems such as

Google News alerts1, and also real-time search, all refer to the same notion: the filtering

and dissemination of information from data streams to interested users, as soon as it

becomes available. In this chapter we present the state of the art solutions proposed

in the literature and applied in commercial systems. We make the distinction between

two main approaches: the continuous approach, in which user queries are indexed

and evaluated with information from the stream immediately on its arrival and the

periodic execution of snapshot queries approach, in which incoming information items

are indexed and periodically queried in the database.

A crucial factor in the formalization of the continuous query evaluation problem and

the solutions proposed, is the underlying filtering technique, i.e. the conditions under

which an item from the stream is inserted into a query’s result set. After presenting the

most important filtering techniques, we focus on the continuous top-k ranking model.

In this model, the definition of a scoring function assigning a score to each query-item

pair is also required. The definition of an adequate scoring function depends both on

the quality of information streams, but also on the expected value of obtained results

in concrete applications contexts. In order to propose a generic solution to the continu-

ous top-k query evaluation problem, we study several ranking parameters proposed to

accommodate specific application needs and abstract from these a generalized function

capturing both static and dynamic aspects of information arriving in streams.

This chapter is organized as follows: Section 2.1 presents the most important filter-

ing techniques employed over streams of information, ranging from the boolean model

to the continuous top-k ranking model. We also discuss the two main approaches in

1www.google.com/alerts
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capturing the temporal aspect of streaming information, namely data windows and

decay functions. In Section 2.2 we conduct a survey on the most important scoring

functions and ranking parameters proposed so far in the literature. Finally, in Section

2.3 we present the state of the art indexing techniques comparable to our work.

2.1 Filtering techniques and ranking models

Ever since its first definition, the continuous query evaluation problem has been applied

in several contexts. This section gives an overview of the most important filtering

techniques used over structured data, text and social media streams. Such techniques

include the boolean model, ranking models and recommender systems.

2.1.1 Filtering over structured data

The notion of continuous queries was first introduced in 1992 in Tapestry [TGNO92], an

email database system, to denote long-running, SQL-like queries over an append-only

relational database. The result of a continuous query was defined as “the set [union] of

data that would be returned if the query was executed at every instant in time”. Observe

that given this definition, once a tuple is inserted in a result set it will not be removed

at any future time instant, even if it no longer fulfills the query’s requirements.

In a simplified context, we can imagine that a tuple (item) can be tested against

stored continuous queries and potentially be inserted in their result set, only on its

arrival. In the following, we use the term simple filtering to refer to such methodologies

where each item is handled only on its arrival and results do not depend on previously

arriving content.

However, the general form of queries supported by Tapestry (Figure 2.1), using

time constraints, joins and the existential operator, goes beyond simple filtering: a

tuple can potentially fulfill a query’s requirements some time after its arrival. For

instance, consider a stream of emails and the continuous query “select emails with at

least one reply”: no email will be inserted in the query’s result set on its arrival, as it

obviously does not have any replies at that time. However, the arrival of a reply will

trigger the insertion of the original email in the results.
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select ...
from tbl1, tbl2, ...
where (C11 and C12 and ...) or

(C21 and C22 and ...) or ...

Figure 2.1: General form of continuous queries supported by Tapestry. Cij rep-
resent conditions such as comparisons (e.g. tb1.att > 4) or existential operators
(not exists(...))

Ranking models

The work in [TGNO92] marked the beginning of a new model of data processing:

the Data Streams Management Systems (DSMS), which generalized Database Manage-

ment Systems (DBMS) for the processing of continuous queries over structured data

streams [BBD+02]. However, it was not until 2005 that quality of results was also

considered [LYWL05]. Items that matched a continuous query were ranked and only

the “best matching” items from the stream would be included in the query’s result set.

The first ranking model proposed for the continuous queries context was given in

[LYWL05] and [TP06] where continuous skyline queries were introduced (Figure 2.2b).

Defining a query as a set of dimensions to optimize (e.g. maximize or minimize), the

skyline of a query is the set of tuples that are not dominated by any others w.r.t. that

query. We say that a tuple t dominates another tuple t′, if and only if t is preferable to

t′ in every dimension of the query. In other words, a tuple t belongs in the skyline of a

query if there exists no other tuple that is better than t in all the query’s dimensions.

The result of a continuous skyline query is the set of tuples that form its skyline at any

given time instant.

Going a step further, [MBP06] introduced the notion of continuous top-k queries

(Figure 2.2c). The ranking by skylines was replaced by a linear scoring function de-

termining the relevance between a query and an item. The continuous top-k query

evaluation problem was defined as the maintenance of the list with the k most highly

ranked items (top-k) w.r.t. each query at every time instant.
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Comparison

In the previous we have presented four categories of filtering techniques over streaming

structured data, namely the simple filtering , the SQL filtering of Tapestry and the

skyline and top-k ranking models . As we will see later, these and similar techniques are

also applied over text and social media streams.

Among these methodologies the most straightforward is the simple filtering tech-

nique: items are only considered on their arrival and since they do not affect the future

results of any query, they do not need to be indexed. However, given the restriction of

not relying on past items, the types of supported definitions of continuous queries are

limited. For example, in databases, joins cannot be supported.

The SQL approach proposed in Tapestry can support more complex queries by

considering the whole history of past items. Another difference of this approach w.r.t.

simple filtering and to ranking models, is that items can be inserted in result sets at

time instants future to the item’s arrival. Such insertions can be triggered, for example,

by the arrival of another item.

A main drawback of both simple filtering and the SQL filtering models is that

in case of high rates of arrival in the stream or bursts of information, users can be

overwhelmed with the number of results received, as all items matching their queries

are inserted in the result sets. The notion of ranking introduced in the skyline and

top-k ranking models, solves this problem by applying a further filtering of results:

additionally to fulfilling a query’s requirements, items need to be considered among the

“best matching” ones in order to be inserted in a query’s result set. Another difference

from previous techniques is that the goal is no longer the simple insertion of items in a

result set of a query, but rather its maintenance, as deletions might also occur.

A first difference between the continuous skyline and the continuous top-k ranking

models is on the number of results. While in the top-k approach the size of the re-

sult lists is bounded by the k parameter, in the skyline approach, this size can vary

depending on the values of items in each of the query’s dimensions. In terms of qual-

ity or results, the use of skyline queries implies that all dimensions of the query are

equally important. In top-k queries on the other hand, the underlying scoring function

determines the importance of each of the dimensions. For instance, in the case of lin-

ear scoring functions, the coefficients of the function determine the importance of each
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(a) Simple filtering (b) Skyline queries (c) Top-k queries

Figure 2.2: Filtering techniques: The result set of three queries over the (a) simple
filtering model and the (b) skyline and (c) top-k ranking models

variable (dimension). Finally, top-k queries provide a total order of results in the top-k

lists, while in skyline queries all items are considered to be in the same rank.

To illustrate the differences between these filtering methodologies, Figure 2.2 shows

an example of three queries q1, q2 and q3 and their results sets, right before and after

the arrival of an item i8 over the simple filtering model, the skyline (supposing there

are only two dimensions in the query) and top-k problem formulations. Item i8 is only

relevant to queries q1 and q3, so q2 is never affected by this item’s arrival. In the case

of simple filtering, both of these queries receive i8 in their result set. However, this is

not the case when a ranking model is applied. In continuous skyline queries, we can

see that i8 is dominated by both i5 and i7 which were already in the result set of q1, so

i8 will not be inserted. On the other hand, i8 belongs in the skyline of query q3, so it

is inserted in the corresponding result set, and also triggers the deletion of i5 which is

now dominated by i8. Finally, in the continuous top-k query evaluation scenario, only

the k most relevant items are stored for every query. For query q1, the new item i8

is ranked lower than item i7 and thus, is not inserted in the top-k list. For query q3,

however, i8 is ranked second, so it is inserted in the result set, and also triggers the

deletion of the previously ranked as k-th (second) element, i1. Observe that k can have

different values for different queries.
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2.1.2 Filtering over text streams

Soon after the first definition of continuous queries over relational databases, in [YGM94]

the authors proposed an adaptation of continuous queries over unstructured data:

streams of tuples are replaced by documents (items) streams and SQL (or SQL-like)

queries, by user defined text queries, also referred to as subscriptions . Initially, a boolean

model was employed: a query is defined using conjunction, disjunction and negation

operators over terms, and its result is the set of all matching items, without any ranking

among these.

This model was later extended in SIFT [YGM99] (further analyzed in Subsection

2.3.2) to consider text similarity between query-item pairs. For each query, a static

threshold score is assigned. An incoming item containing some of the terms of the

query (disjunction semantics) is inserted in the query’s result set if and only if the

similarity score exceeds the query’s threshold. Queries and items are represented using

the Vector Space Model (VSM) and cosine similarity is used to evaluate query-item

similarity. Observe, that despite the use of a scoring function between queries and

items, this is still a simple filtering problem: all items that match a given query and

exceed its threshold belong in its result set and the ranking implied by the scoring

function among items does not affect the results.

The development of Web 2.0 technologies and the need for filtering huge amounts

of information has encouraged the adaptation of existing filtering techniques over text

streams. The more recent work in RoSeS [CATV11] presents a general framework for

the filtering of continuous queries over semi-structured data. Aggregating a number of

different streams of information (RSS feeds), RoSeS supports continuous queries with

preferences on the sources (e.g. only accept BBC and New York Times as sources),

equality operators on given fields of RSS items (e.g. date=“17-09-2015”) and also joins

over items of different sources (e.g. pairs of items from BBC and New York Times

that have the same/a similar title). Going a step further, continuous queries can also

support conditions on textual information on the title or the description of an item

using the boolean model over terms (e.g. items that contain terms A and B).
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Ranking models

Also in the context of Web 2.0, [PZA08] proposed the use of the continuous top-k

ranking model over text streams. Similarly to the definitions over structured data, a

scoring function determines the relevance between any query-item pair and only the

top-k items of each query form its result set. This work, as well as several others

that followed [MP11, HMA10] (discussed in Section 2.3) considered cosine similarity to

define the relevance between a query and an item. Our work in [VAC12] (see Chap-

ter 3) also filters text streams using the continuous top-k approach and was the first

one to consider more generalized scoring functions supporting a wide range of ranking

parameters proposed in the literature.

The increasing popularity of the so-called real-time web [DFMGL12] over the past

few years and the massive amounts of information produced over such streams created

new challenges in filtering information for interested users. In an effort towards im-

proving quality of results, Twitter2, the most important commercial system providing

real-time search also employs a top-k ranking approach, but uses more complex scor-

ing functions additionally considering dynamic feedback signals available on the items,

such as the number of views, ‘favorites’ or shares (retweets) the item receives [BGL+12].

This approach is further discussed in Section 2.3.

Recommender systems

Recommender systems [GNOT92, Kar01] represent a different way of filtering informa-

tion, with queries being replaced by user profiles built by the system. User profiles,

which are based on each user’s past behavior (e.g. clicks) can be used independently to

filter content for this user (content-based filtering) or can be compared to the profiles

(behavior) of other users in the system in order to recommend to similar users, similar

items (collaborative filtering). Following this approach, [LDP10] proposed a collabora-

tive filtering mechanism based on users click behavior to filter news content over the

news aggregator, Google News3.

Recommender systems are generally based on machine learning techniques and the

2www.twitter.com
3news.google.com
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ranking of items is not exposed to the user. Another main difference from the continuous

top-k ranking model in the definition of a query: instead of a user explicitly defining,

e.g. a text query, the system builds the user profile, based on the behavior. Also observe

that, unlike queries, user profiles can dynamically evolve over time, as user behavior

changes.

2.1.3 Filtering over social media streams

Over the past decade, social media such as Twitter, Facebook4, Google+5 or LinkedIn6

have become increasingly popular. In the case of social networks, users create explicit

connections between them. In Facebook, for instance, users can add each other as

“friends” indicating, that generally7, when content is published by each of these users,

the other one can read and interact with it (e.g. ‘like’ or comment). Considering

users as nodes and connections as edges, this is often called a social graph. While on

Facebook the social graph is undirected, Twitter employs a directed graph approach,

with “followers” only receiving content from their “followees”.

In these systems, independently of its definition, the underlying social graph of user

connections can provide useful information for effectively filtering published results.

A straightforward approach in such systems would be to send to users all content

published by their connections. However, with the high popularity of social networks

and the huge amount of data published every day, users would be overwhelmed if no

further filtering was applied.

Ranking models

In Earlybird, the search tool of Twitter, a top-k ranking model is employed [BGL+12]:

users can send their queries to the system, which returns and periodically re-evaluates

for them the most highly ranked results. Additionally to a list of other parameters, the

social graph of a user (followers and followees) is also considered in the scoring function

4www.facebook.com
5plus.google.com
6www.linkedin.com
7Users can also express more complex privacy settings for a published item, like making it visible

by a subset of friends or to the whole web

18



Chapter 2. Related Work

when results are computed. Facebook, considering user profiles to filter information,

also considers a top-k modeling scheme for computing results sent to users. This func-

tion, called EdgeRank8 considers among others, the relevance between two users and

feedback signals on items.

The more recent work in [AVB15b] presents a general framework for handling con-

tinuous top-k queries over social network streams. The employed scoring function

considers content similarity between each query-item pair, a user-dependent score com-

puted over the social graph of the user, query and user independent item importance

and finally, temporal aspects of information with the use of a decay function. Adopt-

ing the Publish/Subscribe model they aim at handling incoming items and events on

items as they arrive. On the other hand, other types of incoming information or mod-

ifications, such as changes of connections in the social graph, are assumed to have a

smaller impact on the top-k query results and are only periodically processed. Some

preliminary results of this approach are presented in [AVB15a].

Recommender systems

Recommender systems [GNOT92, Kar01] represent, maybe the most popular approach

when filtering content over social networks: users expect to receive information based

on their profile and on content created and reviewed by their network. Collaborative

filtering, which relies on system-inferred user profiles, while additionally considering

similarity among users is commonly used in this case [KSJ09]. However, in the following,

we will not discuss in detail any collaborative filtering algorithms, as this type of filtering

goes beyond the scope of this thesis.

2.1.4 Continuous queries vs. periodic snapshot query

execution

There are two main strategies in answering long-running queries proposed in the lit-

erature and applied in commercial systems namely, the continuous approach, aiming

at maintaining the correct results of the query at any time instant, and the periodic

execution of the equivalent snapshot queries.

8sproutsocial.com/insights/facebook-news-feed-algorithm-guide/
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In the continuous approach, which is also the focus of this thesis, a push model is

employed: as incoming information arrives, it is immediately handled and correspond-

ing queries result sets are updated as necessary. In this event-driven model, query

results are always up-to-date and no results are missed. Additionally, it permits the

immediate (real-time) notification of users on fresh information items that have been

inserted in their queries result sets.

In the approach of periodic execution of snapshot queries , which is based on the pull

model , incoming information (items and feedback) is indexed and results of snapshot

queries are only retrieved on request. In this case, the system usually undertakes the

task of periodically executing users’ stored (long-running) queries and sending them

the new results from the top-k lists.

Twitter’s search and Alert systems (e.g. Goolge Alerts9) are examples of periodic

execution of snapshot queries. In the case of Twitter, once a user inputs a query, a

first list of results is immediately given as a response. This list is later periodically

updated with newer items (tweets). Based on observations on Twitter’s website, the

top-20 results of user queries are updated every 30 seconds. Google Alerts, can be used

over news streams (Google News10) or over research publications (Google Scholar11).

In both cases, a user subscribes giving a text query and is then periodically informed

(e.g. once daily) about fresh relevant items, i.e. news articles or scientific publications.

Even though strategies have been proposed in the literature on determining how

often a system should perform the updates (re-execute the snapshot queries) [HAA12],

there still cannot be any guarantee that when using the periodic execution approach,

no results will be missed (Figure 2.3). On the other hand, using a näıve strategy

of re-evaluating all stored queries’ results on every item arrival would be extremely

inefficient. On the contrary, the continuous approach on query evaluation guarantees

that no results will be missed and that all updates are retrieved immediately, on the

item’s arrival, and focuses on efficiently filtering the number of stored queries that

should be tested for potential updates by each arriving item.

9www.google.com/alerts
10news.google.com
11scholar.google.com
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Figure 2.3: The top-k results of a query at three different time instants, τ0, τ1, τ2. At
τ0 item i’ is inserted in the result set and is then removed at τ2, after the insertion of a
number of items i′j. Using the periodic snapshot query execution strategy, if the result
was evaluated only at τ0 and τ2, item i’ would never be retrieved.

2.1.5 Modelling recency of information

One of the most important quality dimensions of information arriving in stream is

freshness. In most application settings, old data is considered less important or relevant

and could skew results from new trends or conditions. As a matter of fact, delivering

the most highly ranked items from a stream to any query (or user), without considering

how recent these items are, the result set would at some point converge and no new

items would be inserted. Two main approaches have been proposed in the literature

for addressing old data in data streams, namely, data windows, in which items are

considered for processing as they appear and aging models, in which items are associated

with “weights” that decrease over time.

Data windows

A data window represents a finite interval of a data stream. As we can see in Figure 2.4a

only the most recent items from the stream are included in a data window for processing.

The result sets of all continuous queries stored in the system should only contain items

from the window, i.e. this set of recent items. In the sliding windows variation, older

items are continuously removed from the window, while new ones are inserted. In the

tumbling windows variation, the defined windows are disjoint. In either case, windows

can be time-base or count-based . In the first case, items published in the past w time

units are considered for the results, with w being some system pre-defined constant.
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In other words, items are assigned on their arrival, an expiration date after which they

should be removed from the result set of any query that contains it (if any). In count-

based windows, the idea is similar, but instead of considering time, the w last items

are always maintained in the window.

Window semantics have been widely used on streaming structured data [LYWL05,

TP06, MBP06, PZA08]. There are also a few works proposing algorithms and data

structures for the processing of continuous queries over text streams [MP11, HMA10].

A major advantage of this approach is that all scores assigned remain constant until

the item’s expiration, which simplifies their processing.

Decay functions

Decay functions consider recency of information by continuously decreasing all scores

after their initial assignment (Figure 2.4b). Unlike in the windows approach, items do

not expire, but rather “fade out” over time: as their score w.r.t. queries decreases, it

becomes easier for newer items to be ranked higher and less probable for older items to

appear in any result sets.

A large majority of works studying scoring functions over text streams, like news

streams [DCGR05, WZRM08] or real-time micro-blog streams [CLOW11], consider de-

cay functions when processing dynamic streams. This is due to the explicit handling

of the time “weight” of items compared to an implicit handling in data windows. To

better understand this, consider the example over news streams: suppose that an im-

portant real-life event occurs and many news articles are written on the subject over a

small period of time. Suppose also that the k most highly ranked items (articles) w.r.t.

a relevant query arrive in the very beginning, before all others. Using window seman-

tics, the query will receive these k items and the result set will temporarily converge.

The query will only receive the more recent articles with potentially fresh information

much later, when the previous k items expire. Decay functions, on the other hand,

consider time as part of the ranking function: in contexts like the news, where more

recent information should be considered as more important, decay functions provide a

tunable trade off between the importance of the content of an item and the importance

of its recency.

Of course the price to pay for this continuous scoring is the computational cost
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(a) Time-based sliding
window

(b) Exponential decay

Figure 2.4: The score of three items with respect to a single query over time. The red
lines shows the top-2 items at every time instant.

of updating frequently all scores and thus decay functions have been avoided when

processing of continuous queries. Our work in [VAC12] was the first algorithm proposed

over streaming information, incorporating decay functions instead of data windows, in

the continuous top-k ranking model in an efficient way.

2.2 Scoring functions over text streams

In this section and in the rest of this chapter we focus on the continuous top-k ranking

model over text streams. As discussed earlier, in the case of continuous top-k queries,

the underling scoring function is of very high importance, since it determines not only

the quality of results, but also the complexity of solving the query evaluation problem.

In the following we present a number of scoring function parameters proposed in the

literature, mainly in the context of online media and real-time streams. These can be

classified in three main categories:

• query dependent parameters (Squ(q, i)), like text similarity functions, which de-

termine the relevance of a given query w.r.t. a given item. Such parameters

guarantee that results sent are relevant to the submitted queries.

• static, query independent parameters (Ssta(i)), like source authority or novelty of

information. Such parameters estimate the overall importance of a given item

independently to any single query or user. For instance, the authority of the
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source can be estimated given the PageRank [PBMW99] of the website or the

number of past views on this source.

• dynamic, query independent parameters (Sdyn(i)), like user feedback on a given

item. Similarly to the previous category, these parameters are also query-independent,

but dynamically alter the score of an item over time. For instance, the feedback

received on a given item can increase or decrease its score and thus, provoke its

insertion or deletion at some time after the item’s arrival.

Generally, in the literature these three categories are linearly combined to compute

a total score (Stot(q, i)) between a query (q) and an item (i):

Stot(q, i) = α · Squ(q, i) + β · Ssta(i) + γ · Sdyn(i) (2.1)

The coefficients α, β and γ are determined based on the system’s requirements.

A decay function is usually applied on the resulting value in order to consider

freshness of information (see Subsection 2.1.5).

2.2.1 Text similarity

When ranking an item w.r.t a query, their textual similarity is undoubtedly a very im-

portant factor as it represents a straightforward measure of relevance of their contents.

To model this query-dependant parameter, in majority of systems, both queries and

items are represented using the Vector Space Model (VSM): each term t of a query q

(item i) is assigned a weight wq,t (wi,t) and the query (item) is represented as a vector of

these weights. Many weighting schemes have been proposed, with tf-idf term weighting

being one of the most common ones. Based on the VSM, the main similarity functions

commonly used are cosine similarity :

cos(q, i) =

∑
t∈q∩iwq,t · wi,t√∑

t∈q w
2
q,t ·

√∑
t∈iw

2
i,t

(2.2)

which is usually formulated in a simplified version (supposing appropriate normal-
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ization of term weights):

cos(q, i) =
∑
t∈q∩i

wq,t · wi,t (2.3)

and Okapi BM25 [RWJ+95]:

bm25(q, i) =
∑
t∈q∩i

wq,t · idf(t) · wi,t(k1 + 1)

wi,t + k1 · (1− k2 + k2 · |i|
avgi′∈I(|i′|)

)
(2.4)

Even though text similarity captures the relevance between a query and an item, the

use of a cosine or Okapi BM25 function alone is not sufficient for an effective filtering

of the incoming streams. The following parameters proposed in the literature aim at

estimating the importance of an item, independently to any query.

2.2.2 Item and item’s source authority

In every modern search engine, the so-called authority of a web page plays a very

important role in ranking documents. The measure used to capture this measure is

usually PageRank [PBMW99] and it relies on hyperlinks towards a given web page to

estimate its authority.

Techniques similar to PageRank have been proposed in the context of news, to

measure the authority of a given item [DCGR05, HLLM06, MC10, MLY+10b]. Since

it is rather infrequent to have links towards newly published information, these works

create a graph of virtual links, which are in fact similarity connections between items.

The proposed solutions also consider the temporal dimension of news. [MC10] bases its

ranking on the T-Rank algorithm [BVW04], a variation of PageRank considering time.

The source authority is also considered as an important ranking parameter, espe-

cially in works over social network. [CLOW11] proposed the use of the social network’s

underlying user graph to estimate the PageRank of a user (represented by a node in this

graph). This authority estimation is then used to assign an initial score of importance

on the information the user publishes.

Depending on their definition, these measures can be either static or dynamic query-

independent factors: they are considered as static if they are assigned to the item at

the time of its arrival and never updated in any future time instant.

25



2.2. Scoring functions over text streams

2.2.3 Media focus

In the context of news streams, in order to decide on the importance of an article, it

is crucial to determine the importance of the real-world event it refers to. To do that,

several studies propose clustering of articles in stories, i.e. sets of articles referring to

the same real-world event. The more articles are added the a story, the more important

the story is considered [DCGR05, MC10, WZRM08]. The intuition of this measure is

that if the real-world event at which the articles refer to is important, then there should

be a large number of sources referring to it. Once more, depending on its definition,

this measure can be considered as a dynamic or static query-independent parameter.

2.2.4 Results’ diversity

Also in the context of news, diversity of information has also been pointed out as

an important factor when ranking items [DSP09, AAYI+13, AK11, MSN11]. In some

cases, and especially when important real-world events occur, many articles may be

published on the same information. In this case, it is essential to send to users articles

with some diversity, i.e. articles that contain additional information w.r.t. what the

user has already received.

2.2.5 User attention and feedback signals

Another important factor in ranking information deriving from streams, for both news

streams and real-time streams, is the feedback received by other users. Such indications

of users’ attention include explicit feedback, with the use of a “like” button, sharing

or commenting on the information, or implicit feedback, such as the number of page

views. In the context of news streams, [WZRM08] proposes assigning higher scores to

items read by more users. [DDGR07] also proposes using users click behavior over the

Google News12 commercial news aggregator in order to measure the importance of an

article modeling the problem as a recommender system.

12news.google.com
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2.2.6 Freshness of information

An important aspect when considering streaming information is the temporal dimen-

sion. As discussed in Section 2.1 either sliding windows or decay functions are usually

employed over streaming information. Although there are a few works over text streams

based on sliding windows [LDP10], decay functions have been more broadly used. De-

cay functions commonly employed include exponential [DCGR05, VAC12, SGFJ13],

linear, polynomial [CLOW11] and sigmoid [WZRM08] decay.

2.3 Indexing and query evaluation algorithms

Based on the continuous top-k ranking model and the scoring functions discussed pre-

viously, in this section we present the most important algorithms and data structures

proposed so far in the literature. We make the distinction between the two main

approaches, namely the continuous approach, presented in Subsection 2.3.2 and the

periodic execution of snapshot queries approach, presented in Subsection 2.3.3.

2.3.1 Preliminaries

The majority of algorithms on filtering text information rely on the baseline structure

of dictionaries and on the Threshold Algorithm [FLN03]. Before explaining the most

important algorithms proposed using either the continuous or the periodic snapshot

queries approach, we explain in the following these baseline notions.

Dictionaries

A dictionary , a.k.a. inverted index (Figure 2.5a) is the most commonly used baseline

data structure for the filtering of textual information. They represent a mapping from

a term (word) to its posting list , i.e. the set of elements that contain it. When filtering

queries over a set of documents, a dictionary stores for each term, the corresponding

set of documents. In the case of continuous top-k queries, where documents (items)

are evaluated over stored queries, the posting lists contain the set of queries with a

given term. In a straightforward, näıve implementation for the continuous top-k query

evaluation problem, queries would be indexed on all their terms and incoming items
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would be evaluated by checking all queries in the posting lists corresponding to the

item’s terms.

Threshold Algorithm (TA)

TA [FLN03] was invented in 200313 and its goal is to efficiently retrieve the top-k

documents for any given snapshot query. It supposes the use of the Vector Space Model

to represent queries and documents and the use of cosine similarity as the underlying

scoring function for query-item pairs (Equation 2.3). Documents are indexed in a

dictionary, mapping each term to the set of elements containing it. Instead of being

unordered sets, the posting lists of the dictionary are sorted based on the descending

order of the documents’ term weights. This order allows the definition of early stopping

conditions when retrieving the top-k list. Every time a query is submitted, the posting

lists corresponding to its terms are retrieved and only partially scanned to find the

k best matching results. The order in the posting lists and the stopping conditions

defined, guarantee that there will be no false negatives, i.e. the resulting top-k list of

the query will be correct.

This algorithm presents the basis for numerous works proposed in the field of In-

formation Retrieval and of Databases. Majority of the state of the art solutions on the

continuous top-k query evaluation problem are also adaptations of the TA.

2.3.2 Continuous top-k query evaluation over text streams

SIFT [YGM99] was the first system proposed in the literature evaluating continuous

queries over text streams. Although filtering was based on textual similarity between

queries and items, the result was not based on the actual ranking. Several years later,

the Incremental Threshold [MP11] and the COL-Filter [HMA10] were the first two sys-

tems to propose algorithms and data structures for the evaluation of continuous queries

applying the continuous top-k ranking model. Both these systems considered the cosine

similarity scoring function without being able to capture any static or dynamic query-

independent scoring signals. Our work in [VAC12] was the first one to support more

generalized scoring functions, capturing both textual similarity of query-item pairs and

13TA was in fact, an optimized version of an earlier algorithm of Fagin [Fag02]
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query independent parameters. Additionally, this work was the first one to introduce

decay functions, instead of data windows to capture the temporal aspect of the stream.

The more recent works in [SGFJ13] and [RCCT14] also considered only textual sim-

ilarity for the ranking of items w.r.t. queries. Figure 2.5 shows an abstract overview

over the aforementioned systems. Starting from the baseline idea of dictionaries, we

analyze in the following the aforementioned systems and their limitations.

SIFT

SIFT [YGM99] (Figure 2.5b) modelled the continuous query evaluation problem in the

following way: a static threshold was set per query. Using the Vector Space Model to

represent queries and items, and cosine similarity as the scoring function, an arriving

item would be inserted in a query’s result set if the similarity score exceeded the query’s

threshold. In the proposed solution, a query would be indexed in the dictionary on only

a subset of its terms, called “significant”, that had a high term weight. The intuition

was that if an item contained only non-indexed terms, their weights would not be

sufficient for the document to update them. In any other case, the document would be

found in the posting of an indexed term and sent to the query.

The use of this optimization was valid in the case of a static threshold, however, in

the continuous top-k ranking model it cannot be applied: the threshold of each query

is the minimum score of its last (k-th) element and is, thus dynamic as well as the list

of the potentially significant terms. Another limitation of the SIFT system is that all

queries in the posting lists of each item’s terms need to be checked for updates, without

using any early stopping condition.

Incremental Threshold

The Incremental Threshold algorithm [MP11] (Figure 2.5c) was the first one to use

the continuous top-k ranking model over text streams and it considered sliding window

semantics. In the proposed solution two dictionaries are maintained, one over the

queries and one over the items. The item’s dictionary only contain the most recent

items, i.e. the ones that belong in the data window: on arrival, an item is inserted in

the items’ dictionary, while on expiration it is removed. The posting list of any term is
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q1 = {a(0.34), b(0.09), c(0.12), d(0.45)}
q2 = {a(0.76), b(0.24)}
q3 = {a(0.13), b(0.56), e(0.31)}

(a) A term to queries dictio-
nary

(b) SIFT [YGM99]

(c) Incremental Thresh-
old [MP11]

(d) COL-Filter [HMA10]

(e) GIS [RCCT14] (f) Our proposed solution [VAC12]
presented in Chapter 3

Figure 2.5: Overview of a simple dictionary (a) and systems proposed for the continuous
top-k query evaluation problem (b-f).
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sorted in descending order by the term weight assigned to the corresponding item and

for the given term, exactly like in the Fagin’s Threshold Algorithm (TA). In the second

dictionary, built over the stored continuous queries, the posting lists are sorted by a

value θq,t, where t is the corresponding term of the posting list and q is a query that

contains it.

At query insertion, for the initial computation of the top-k list, the first data struc-

ture is used, by directly applying TA. Recall that TA algorithm, based on the ordering

of the postings, can guarantee an early stopping condition while iterating through the

lists, so that not all entries need to be scanned. Once the top-k list of the new query

is calculated, the θq,t values are initialized and their value indicates the minimum doc-

ument term weight for term t that could influence the top-k result of the given query.

On arrival, each item is inserted in the items’ dictionary. Then, using the queries

dictionary, the updated queries are retrieved: Knowing the term weight for each term

in the item, we retrieve from the posting list of queries, those where the value of θq,t

is lower than the items term weight, as according to q,t definition, these are the ones

that could be updated by the item. This condition guarantees that there will be no

false negatives.

One main drawback of this solution is the need for continuous updates on the in-

verted index of items on item publications and expirations, which create a high system

overload. Due to this, and despite the definition of an early stopping condition, exper-

imental evaluation in [HMA10] shows that the Incremental Threshold solution requires

up to 60% more time than the näıve solution on item evaluation.

COL-Filter

The COL-Filter algorithm (Figure 2.5d), proposed in [HMA10], is the first solution

achieving a significantly better performance, in terms of item evaluation time, compared

to the näıve solution. Like the Incremental Threshold algorithm, it assumes sliding

windows and also uses a variation of TA to retrieve the set of updated queries. In

COL-Filter a single dictionary is maintained over stored queries. In the posting list of

each term t, all queries q are sorted in descending order on a value wq,t/Smin(q), where

wq,t is the term wait of a query q for an item i and Smin(q) is the score of the k-th item
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in the top-k list of q. Notice that the value Smin(q) sets a threshold score for an item

to be inserted in the query’s result set.

At query insertion, the query has an zero minimum score Smin(q) so, the query is al-

ways inserted in the beginning of the posting list. On query update, i.e. when the value

Smin(q) is changed, the query is re-indexed with the posting list. On item matching,

the posting lists of all terms of the arriving item are retrieved. Then, in a round-robin

way the queries in the lists are visited and checked for potential updates. The authors

in [HMA10] have proven a stopping condition over this iteration, guaranteeing that

after a given condition, it is safe to stop the algorithm, without any false negatives, i.e.

without missing any queries that should be updated.

The main limitation of both COL-Filter and Incremental Threshold is that the as-

sumed scoring function considers only textual similarity between the query and the

item, and cannot include query-independent item scores. More precisely the Incremen-

tal Threshold algorithm assumes cosine similarity, while COL-Filters assumes a more

general form using a combination of monotonic, homogeneous functions. As defined

in [HMA10] a function f(x1, ..., xm) is monotonic iff f(x1, ..., xm) ≤ f(x′1, ..., x
′
m) when

xj ≤ x′j for every value of j. A function is homogeneous if it preserves the scalar mul-

tiplication operation: f(αx1, ..., αxm) ≤ alpharf(x1, ..., xm). Consequently, functions

such as cosine similarity (Equation 2.3) or Okapi-BM25 (Equation 2.4) can be used.

However, these only correspond to the query dependent part of the scoring function

and cannot support query-independent parameters (see Section 2.2).

GIS

In the GIS algorithm [RCCT14] (Figure 2.5e), a graph connecting continuous queries

is the principal data structure stored by the system. A connection from one query to

another indicates a subset relationship between their term sets. Using these semantics,

an initial graph of queries is created when all continuous queries are stored in the

system. A simplified directed acyclic graph (DAG) is then created by removing some

edges. On item arrival, this graph is traversed from root-nodes towards the leaves,

while under a number of conditions the algorithm can terminate early.

A key disadvantage of the GIS algorithm, is that it employs a simplified term weight-

ing scheme where all query weights are equal to 1. Furthermore, it works under the
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assumption that no query insertions or deletions can be performed after the initial

graph has been computed, making this algorithm inadequate for modern, highly dy-

namic applications.

2.3.3 Real-time search over Twitter

The so-called real-time web has received significant commercial and research atten-

tion over the past few years. While Twitter remains today the most popular way of

publishing real-time information, major search engines like Google14 and Bing15, hav-

ing signed appropriate deals, have complete access on Twitter’s streams and provide

real-time results, i.e. recent tweets, for queries they receive on trending topics.

In the literature, Twitter Index [CLOW11] was the first real-time search algorithm

proposed over the Twitter’s stream. A year later, [BGL+12] presented some insights on

how Twitter’s Search actually works. Several works that followed [WLXX13, MME+14,

LBLT15] also focus on providing efficient real-time search. However, none of the pro-

posed algorithms relies on a continuous top-k evaluation approach and only focus on

the snapshot query scenario. As explained in Chapter 1 the goal of these solutions is to

efficiently index incoming information items (tweets) and they define real-time search

as “the ability to ingest content rapidly and make it searchable immediately, while con-

currently supporting low-latency, high throughput query evaluation.” [BGL+12]. With

this approach corresponding to the functionality of the query handler component (see

Figure 1.3), long-running queries can only be supported by periodically executing the

equivalent snapshot queries. Twitter’s Search applies this approach and re-retrieves

the top-20 items every 30 seconds. The drawbacks of this approach w.r.t. continuous

queries have been discussed in Subsection 2.1.4.

Although through our work, we do not focus on the query handler component and

the support of (periodic) snapshot queries, in the following we present Twiiter Index

(TI) [CLOW11] and Earlybird [BGL+12], the most important works in the context of

real-time search.

14searchengineland.com/google-twitter-deal-live-221148
15blogs.bing.com/search/2011/03/25/bing-feature-update-bing-news-with-real-time-twitter-feed-

and-enhanced-entertainment-sharing/
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TI: Twitter index.

TI [CLOW11] was the first work focusing on the efficient indexing of real-time web

content published on Twitter, in order to make it immediately available through user

snapshot queries. For each arriving query, the aim is to retrieve the top-k items (tweets).

A scoring function similar to the one defined in Equation 2.1 is employed, using a

linear combination of textual similarity and both static and dynamic query-independent

parameters. Cosine similarity is used to estimate the textual similarity between queries

and items. “User PageRank”, a measure capturing the authority of the user, represents

the static estimation of the item’s importance. Replies on tweets are considered as

positive feedback events and increase the tweet’s dynamic query-independent score.

Finally, a rational decay function is applied on the result to capture the freshness of

information (Stot(q, i)/∆τ , where Stot(q, i) is the initial query-item score and ∆τ is the

time difference since the publication of the item).

The TI algorithm maintains both in-memory and secondary storage data structures

in order to deal with the huge memory requirements for storing data deriving from a

stream (due to decay, old tweets can eventually be removed). To optimize the perfor-

mance of their overall system, they distinguish between the noisy and the significant

tweets. The tweets classified as noisy, are considered as less likely to appear on any fu-

ture query result set and indexed using a slower, batch processing approach. Significant

tweets, on the other hand, are immediately indexed.

To answer incoming snapshot queries, an inverted index of recent tweets is main-

tained and its posting lists are ordered based on the arrival time of the tweet. This

order permits the definition of an early stopping condition on query evaluation: sup-

posing that while traversing the posting lists of the query’s terms, k items have been

found with a query-item score greater than a value smin, the scanning of the posting

lists can stop, iff smin is greater than the maximal value any tweet can have given that

it is published at the exact same time as the one currently being checked. This maximal

value is given based on the score decay function. Due to ordering of tweets imposed by

the algorithm, it is easy to prove that the stopping condition is correct and that the

top-k list of tweets will be accurate for any given query.
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Earlybird

Earlybird [BGL+12] is a work published by Twitter and presents the actual system’s ar-

chitecture, along with an abstract description on how Twitter’s Search actually works.

There, also, the main components of the scoring function are text similarity, query-

independent (static and dynamic) item importance parameters and information fresh-

ness (using a decay function). Additionally, they also consider other user-related pa-

rameters, such as their followers or followees.

Like in TI, the posting lists of the inverted tweets index maintained by Earlybird

are sorted in chronological order so as to easily access recent tweets. To achieve effi-

cient indexing of incoming tweets, Earlybird used compression techniques for tweets’

contents and for long posting lists, multithreaded algorithms and resources allocation

optimizations. Although the query evaluation algorithm is not explained in detail, the

authors say that a variation of Lucene’s algorithm16 is used.

16lucene.apache.org/core/
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3
Query Filtering over Text Streams

In this chapter we are interested in the scalable processing of content filtering queries

over text item streams. In particular, we aim at generalizing state of the art solu-

tions with scoring functions combining query-independent item importance with query-

dependent content relevance. While such complex ranking functions are widely used in

web search engines this is the first scientific work studying their usage in a continuous

query scenario. Our main contribution consists in the definition and the evaluation of

new efficient in-memory data structures for indexing continuous top-k queries based on

an original two-dimensional representation of text queries. We are exploring locally-

optimal score bounds and heuristics that efficiently prune the search space of candidate

top-k query results which have to be updated at the arrival of new items. Finally,

we experimentally evaluate the memory and matching time trade-offs of these index

structures. In particular we experimentally illustrate their linear scaling behavior with

respect to the number of indexed queries.

With respect to our proposed functionality presented in Chapter 1 (see Figure 1.3),

in this chapter we focus on the Item Handler component as shown in Figure 3.1: for each

item, we perform the matching operation immediately as it arrives from the stream,

against stored queries. We suppose that the query-independent item score is static

and thus, there are no feedback signals on items. Chapter 4 describes our approach

in dealing with dynamic item scores and presents our solutions for implementing the

Event Handler component.

The rest of the chapter is organized as follows. Section 3.1 gives a formal definition

of the problem. Section 3.2 presents our proposed inverted query indexing and pruning

techniques. Then, Section 3.3 describes a number of index implementations that apply

these techniques. In Section 3.4 we present a probabilistic model for the definition of

an approximate solution with maximum error guarantees. Related work is presented in

Section 3.5 and Section 3.6 provides the experimental evaluation. Finally, Section 3.7

summarizes the main contributions of this work.

The results of the work presented in this chapter have been published in [VAC12].

The source code of all the implementations is publicly available as an open source
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Figure 3.1: Focusing on the Item Handler component. Submitted queries are stored in
the item handler. Incoming items are matched against them and potential updates in
the query’s top-k lists are retrieved

project1.

3.1 Problem statement

This section presents a formal definition of the problem of continuous top-k queries com-

bining query-dependent and query-independent scores for ranking items from textual

data streams.

3.1.1 Queries, items and scores

We follow the traditional Vector Space Model approach [MRS08] for the definition of

items, queries and content similarity.

Definition 1 (queries and items). A vocabulary of terms V defines a |V |-dimensional

space R|V | where each dimension corresponds to a term t in V . Each vector �ω in R|V |

1code.google.com/p/continuous-top-k/
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represents either a query q or a text item i over V . We denote by ωq,t and ωi,t the

weight of term t in query (vector) q and item (vector) i respectively.

Term weights can be assigned to queries and items using any weighting scheme,

such as the tf-idf scheme [SB88]. Without loss of generality, we assume that query and

item weights are both normalized, i.e. the sum of the weights for each query and each

item is equal to 1. Finally, we say that a query q or an item i is relevant (irrelevant) to

some term t if the corresponding weight ωq,t or ωi,t respectively, is greater than (equal

to) 0. This definition allows us to use a simplified set semantics for terms and items

and to write t ∈ q or t ∈ i to denote that t is relevant to q or i respectively.

Our goal is to rank items with respect to queries by combining query-dependent

similarity scores with query-independent item scores [ZSYW10] (see discussion in Sec-

tion 2.2:

Definition 2 (total scores). Let Q be a possibly infinite set of queries and I be a possibly

infinite set of items. We define three ranking functions:

• Squ : Q× I → [0, 1] is a query-dependent score representing the textual similarity

between a query q and an item i, called query score of q and i. We present our

approach using cosine similarity:

Squ(q, i) =
∑
t∈V

ωq,t · ωi,t

However, more complex score functions like Okapi BM25 could also be applied.

Our approach essentially works for any kind of vector-based similarity scores ap-

plying a monotonic aggregation function (sum) over a set of scores obtained by a

monotonic weight combination function (multiplication).

• Site : I → [0, 1] is a static, query-independent score called item score of i ∈ I.

It can reflect any combination of ranking parameters like novelty of informa-

tion [GDH04], source authority [DCGR05, HLLM06, MC10, MLY+10a] or user

attention [WZRM08, LDP10]. However, it cannot reflect any dynamic parame-

ters, such user attention (see Section 2.2).
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• Stot : Q× I → [0, 1] is called total score of q and i and is defined as the weighted

sum of Squ(q, i) and Site(i):

Stot(i, q) = α · Site(i) + β · Squ(q, i) (3.1)

where α is a non-negative constant in the interval [0, 1] and β = 1 − α. The

aforementioned score values constraints guarantee that Stot(i, q) ∈ [0, 1].

3.1.2 Item streams and score decay

So far, we have considered a possibly infinite set of items I. This set is published in

form of a stream I(τ) of items published until time instant τ : I(τ) ⊆ I(τ ′) ⊆ I for all

time instants τ < τ ′. Let Q be a finite set of queries and Stot : Q × I(τ) → [0, 1] be a

ranking function which computes for each item i ∈ I(τ) and query q ∈ Q a static total

score Stot(i, q)2.
Freshness of information is an important aspect for ranking items deriving from a

stream. In most applications publishing content streams, it is natural to appreciate

more recently published pieces of information as more important than older ones. The

two strategies most commonly employed over streams in order to guarantee freshness

of information are sliding data windows and aging models which employ time decay

functions. While sliding windows has been a methodology widely used for ranking tuple

based streams [LYWL05, TP06, MBP06, PZA08], more recent approaches on ranking

text streams propose using aging models which continuously decay scores instead (see

Subsection 2.1.5). We also follow the aging models approach in this work.

Definition 3 (decay function). A function decay : R × R → R is a function applied

on a score s ∈ R after some time interval ∆τ ∈ R iff decay(s, 0) = s and decay(s,∆τ)

is monotonically decreasing for increasing ∆τ :

∆τ ≥ ∆τ ′ ⇒ decay(s,∆τ) ≤ decay(s,∆τ ′)

2Observe that Stot(i, q) is undefined until the publication of item i in stream I(τ) and remains
constant after its initial definition.
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Definition 4 (decayed score). Let constant τi denote the publication date of item i and

τ be some time instant after τi. The decayed score S(i, q, τ) of item i with respect to

q at some time instant τ is then defined as the decay of the total score Stot(i, q) with

respect to the age τ − τi of item i:

S(i, q, τ) = decay(Stot(i, q), τ − τi) (3.2)

3.1.3 Continuous top-k queries

Continuous top-k queries and results over a stream are defined as follows.

Definition 5 (top-k query and result). The top-k result R(q, τ, k) of some (top-k) query

q ∈ Q at some time instant τ with respect to some decayed ranking function S(i, q, τ) is

an ordered subset of maximally k items i ∈ I(τ) such that i shares at least one term with

query q and there exists no item i′ ∈ (I(τ)−R(q, τ, k)) where S(i′, q, τ) > S(i, q, τ).

Less formally, R(q, τ, k) contains at each time instant τ the subset of the k most

relevant items for a query q. Based on the previous definition we can state the following

general continuous top-k query evaluation problem:

Problem 1 (continuous top-k query evaluation). Given a set of queries Q, a decayed

ranking function S and an item stream I(τ), maintain for each query q ∈ Q its top-k

result R(q, τ, k) at any time instant τ .

At a processing level this general problem is solved by a system which adds each

new stream item i in all relevant top-k results R(q, τi, k) and maintains the results by

removing and replacing items due to score changes on scores over time. These two

problems can be defined separately.

The first problem can be solved by a transactional system where each item arrival

triggers a transaction maintaining the top-k lists of all relevant queries in Q. Updates

are atomic actions isolated from each other.

Sub-problem 1 (query filtering problem). We denote by Smin(q, τ) the score of the

last item in R(q, i, k) at time instant τ . Given a set of queries Q and an item i arriving
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at some time instant τi, update the top-k result for all queries q ∈ Q where

Stot(i, q) > Smin(q, τi) (3.3)

Observe that decay does not need to be applied on the score of the newly arriving

item, as the time interval since its publication is of zero length. We will denote by U(i)

the set of all queries whose top-k result will be updated by item i at the arrival time

instant τi:

U(i) = {q|Stot(q, i) ≥ Smin(q, τi)} (3.4)

It is easy to show that the complexity of the query filtering problem depends on the

number of queries |Q| and the ranking function Stot. A trivial solution to this problem

is to compute at the arrival of each new item i at some time instant τi its score Stot(i, q)
and compare it to the minimal score Smin(q, τi) of all queries which share at least one

term with the item. However, this solution obviously does not scale in the size of the

items, i.e. number of terms it contains, and in the number of queries relevant to these

terms. A better solution then is to define appropriate index structures that prune the

search space and avoid searching all queries q ∈ U(i) for potential updates. In this

work we are concerned by the increased complexity of the filtering problem introduced

by non-homogeneous ranking functions (see subsection 3.1.1). This is to our knowledge

the first scientific work in this direction.

The second sub-problem derives from the application of decay on the scores, which

adds a temporal dimension to the query filtering results: as time goes by, all scores

change due to decay and even without the arrival of new items, top-k results can

potentially change. We will call this the result maintenance problem.

Sub-problem 2 (result maintenance problem). Given a decayed ranking function

S(i, q, τ), maintain for each query q ∈ Q its top-k result R(q, τ, k) for any time in-

stant τ .

The complexity of result maintenance problem obviously depends on the decay

function. We can essentially distinguish between two kinds of decay functions:

1. Order-preserving functions, which guarantee that the relative position between

two scores at any time instant τ remains the same at any other time instance t′
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in the future or the past.

2. Non order-preserving decay functions, which do not fulfill the previous property.

More formally, order preserving decay guarantees that for all time instants τ , τ ’, all

items i, i’ and all queries q, if S(i, q, τ) < S(i′, q, τ) then S(i, q, τ ′) < S(i′, q, τ ′). In this

case, the continuous top-k query problem is limited to query filtering, as top-k results

can only be altered by the arrival of new items. In the second non order-preserving case

the top-k results might change independently to the arrival of new items, making the

result maintenance problem much more difficult. It is worth noticing that most of the

recent works on streams of news or blogs consider linear [WZRM08] and exponential

decay functions [DCGR05, MC10], which are order-preserving , rather than the opposite

as in the case of Sigmoid functions[HLLM06]. Note also that sliding window could be

defined as a non order-preserving decay function. In this work we do not consider the

problem of result maintenance generated by non-order preserving decay functions.

Homogeneous versus non-homogeneous ranking functions Ranking functions

employed by web search engines [ZSYW10] are in general more complex than those

considered by existing continuous top-k query evaluation algorithms [MP09, HMA10,

MP11, HMA12]. They essentially combine different query-dependent and query-

independent scores which go beyond the monotonic and homogeneous text similarity

scores like cosine similarity. More precisely, a ranking function sim : R|V | × R|V | → R
over some vector space R|V | is homogeneous of degree i if sim(n ·x, n · y) = nisim(x, y)

for all non-zero n ∈ R and vectors x, y ∈ R|V |. It is easy to see that this property

holds for functions like cosine similarity, but not for our definition of total score with

non-zero α. Homogeneity and monotonicity are two necessary conditions for existing

threshold-based algorithms for defining a total order over items (snapshot query set-

ting) or queries (continuous query setting). Contrary to these works, we are interested

in continuous queries featuring non-homogeneous ranking functions. As we will see in

the following section, this extension raises new challenges to the query filtering problem.
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3.2 Query filtering

In this section we present a new approach for processing large collections of continuous

top-k queries over item streams. From a processing point of view the query filtering

problem consists in identifying for each new item i all queries U(i) which must add

item i to their top-k result. The main optimization goal is to reduce this search space

and to compute a smallest possible number of candidate queries containing U(i). Our

solution works for non-homogeneous ranking functions which makes it more general

than other continuous top-k query filtering solutions that are restricted to monotonic

and homogeneous functions for computing item scores [MP11, HMA10, HMA12]. This

generalization is achieved by replacing a total ordering of queries with a two-dimensional

query representation. Based on this search space representation, we then introduce a

number of linear constraints spatially characterizing different sets of candidate queries.

Later, in Section 3.3, we present and compare a different index implementations for

efficiently evaluating these conditions.

3.2.1 Query filtering without decay

For the sake of simplicity, we first abstract the notion of time and decay by consider-

ing that all scores are computed for a fixed time instant τ0 (all variables referring to

time instants or time periods disappear from the corresponding definitions). Later, in

Section 3.2.2 we will show how decay can be added to this scenario.

For each term t in the vocabulary of terms V , we define a set of points in a two-

dimensional space called the inverted query index of t and denoted P (t):

Definition 6 (inverted query index). The inverted query index P (t) of a term t over

a set of queries Q is the set:

P (t) = {(Smin(q), ωq,t)|q ∈ Q ∧ ωq,t > 0} (3.5)

where Smin(q) = Smin(q, τ0).

Observe that each inverted query index P (t) contains all queries that are relevant

for term t. Equivalently, for finding all candidate queries of an item i it is sufficient to
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explore the inverted query indexes P (t) of all terms t ∈ i.

Figure 3.2: Query representation

For example, let q be a query containing two terms, t and t’. As we can see in

Figure 3.2, q is stored in the corresponding indexes P (t) and P (t′) and positioned in

the coordinates defined by the term weights and minimum score at that time instant.

The right part of the image zooms into P (t) index. All queries q′ in this index contain

term t with a positive weight.

Starting from this search space representation we define three linear upper bound

conditions filtering for each new item i and for any term t ∈ i a subset of P (t) containing

candidate queries whose top-k result is potentially updated by i. For performance

reasons, apart from knowledge on the item, each condition should depend only on

information available locally for all queries q in the inverted query index P (t) of a term

t, i.e. the query term weight ωq,t and the minimal top-k list score Smin(q). This locality

reduces the precision of search space pruning conditions, but as other inverted file data

structures it facilitates implementations that scale in the number of queries and the

number of terms.

45



3.2. Query filtering

Local Upper Bound (LUB) In the following, we focus on the problem of bounding

the query score Squ(q, i). Obviously, it is impossible to compute the precise value of

Squ(q, i) for any query q without aggregating information from all query indexes P (t)

of terms t in i. However, we can estimate for each term t a value M(q, i, t) which is an

upper bound for the term-query weight product sum of the other terms in i as shown

in the following equation:

Squ(q, i) =
∑
t′∈V

ωq,t′ · ωi,t′ = ωq,t · ωi,t +

M(q,i,t)︷ ︸︸ ︷∑
t′∈V,t6=t′

ωq,t′ · ωi,t′

Let ωi,t = max{ωi,t′|t′ ∈ V ∧ t′ 6= t} be the maximum item weight of all terms t’ in i

different from t. Observe that ωi,t = 0 for all items containing exactly one term (which

is rather an exception). Then we can prove that M(q, i, t) ≤ ωi,t · (1−ωq,t) which leads

to the following upper bound condition for Squ(q, i):

Squ(q, i) ≤ ωq,t · ωi,t + ωi,t · (1− ωq,t) (3.6)

By replacing Squ(q, i) in equation 3.1, we obtain the following first upper bound

condition over P (t) denoted LUB:

LUB : Smin(q) < α · Site(i) + β · (ωq,t · ωi,t + ωi,t · (1− ωq,t))

Condition LUB defines a subset of queries CLUB(i, t) of candidate queries in P (t)

as shown in figure 3.2. The only parameters are the item score Site(i) and both item

weights ωi,t and ωi,t.

Theorem 1 (Correctness of LUB). For all items i and all queries q ∈ U(i), q appears

in the candidate set CLUB(i, t) of all terms t shared between q and i.

Proof: For proving the correctness of LUB(theorem 1) we can show that q appears

in the candidate list of all terms t shared by q and i.

Suppose that q ∈ U(i) and t is a term shared by query q and item i. Let ωi,t =

max{ωi,t′|t′ 6= t} be the maximal weight of all terms different from t in item i(if i

contains only term, then ωi,t = 0).
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Then, we only have to show that∑
t′∈V,t6=t′

ωq,t′ · ωi,t′ ≤ ωi,t · (1− ωq,t) = M(q, i, t) (3.7)

Since query term weights are normalized and ωi,t ≥ ωi,t′ for all terms, we know that∑
t′∈V,t6=t′

ωq,t′ · ωi,t′ ≤
∑

t′∈V,t6=t′
ωq,t′ · ωi,t (3.8)

and ∑
t′∈V−{t}

ωq,t′ = 1− ωq,t (3.9)

Inequality 3.7 directly follows from equation 3.8 and equation 3.9. �

From Theorem 1 directly follows that condition LUB is safe:

U(i) ⊆
⋃
t∈V

CLUB(i, t)

Theorem 2 (Local Optimality of LUB). If item i contains only one term t then

CLUB(i, t)=U(i). Otherwise, for each query q ∈ CLUB(i, t) we can define a query q′

which is indistinguishable from q in P (t) (ωq′,t = ωq,t and Smin(q′) = Smin(q)) such

that q′ ∈ U(i).

Proof: We will prove that Condition LUB is locally optimal within the query index

P (t) of a given term t (theorem 2 ). To do that, we will show that any query q within

the bounds of Condition LUB could potentially be updated. More formally, we will

prove that for all queries q ∈ CLUB(i, t) there might exist a query q′ ∈ U(i) which is

undistinguishable from q in P (t) (ωq′,t = ωq,t and Smin(q′) = Smin(q)).

Let q’ be a query with two terms {t, t} where

t = arg max
t′
{ωi,t′ |t′ ∈ V ∧ t′ 6= t}
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Then, the total score of query q′ is:

Stot(q′, i) = α · Site(i) +

β · (ωq′,t · ωi,t + ωq′,t · ωi,t)

By hypothesis, ωq′,t = ωq,t and since query term weights are normalized ωq′,t =

1− ωq′,t = 1− ωq,t. Then we can rewrite the previous equation as follows:

Stot(q′, i) = α · Site(i) +

β · (ωq,t · ωi,t + (1− ωq,t) · ωi,t)

From the initial hypothesis that LUB holds for query q and Smin(q) = Smin(q′) follows

that Smin(q′) < Stot(q′, i), i.e. q′ ∈ U(i). �

Theorem 1 states that each query q ∈ U(i) appears as a candidate in CLUB(i, t) of all

terms shared between q and i. This introduces some redundancy in the query matching

algorithm. In the following we define two additional conditions which can each be safely

added to CLUB(i, t) by conjunction to restrict the number of candidates for each term

(however it is not possible to add both conditions without obtaining false negatives).

The main idea is to exploit extra knowledge about the maximal query length and the

query score distribution for still guaranteeing that each query candidate appears in the

candidate set of at least one term.

Extreme Cases We can show that (1) LUB returns exactly the set of queries to be

visited, i.e. U(i) = CLUB(i, t) for items of length 1 and (2) all queries q of length 1 in

CLUB(i, t) have to be updated for any item i and any term t:

1. Let t be the only term of item i and q ∈ CLUB(i, t). According to the definition

of LUB, ωi,t = 0 and we obtain the following condition:

Smin(q) < α · Site(i) + β · (ωq,t · ωi,t)

Since term t is the only term in the intersection of item i and query q, this last

inequality immediately means that q ∈ U(i)
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2. Since term weights are nomalized we know that ωq,t = 1 for all queries q of length

1. Thus, (1 − ωq,t) = 0 in equation 3.2.1 and we obtain the same upper bound

condition and conclusion as before: q ∈ U(i).

�

Higher Than Average (HTA) The first condition exploits the fact that for any

query q ∈ U(i), there exists at least one item/query weight product greater or equal to

the average per term query score. This condition takes account of the maximal number

of terms a query can share with some item. Since queries are in general shorter than

items, this bound, denoted by λ, can be defined by the maximum query length. Then

we define the following constraint on the query score for queries q ∈ U(i) and for at

least one term t:

Squ(q, i) ≤ λ · ωq,t · ωi,t (3.10)

and the corresponding condition:

HTA : α · Site(i) + β · λ · ωq,t · ωi,t > Smin(q)

Condition HTA defines a subset of queries CHTA(i, t) of candidate queries in P (t) as

shown in figure 3.2.

Theorem 3 (Correctness of HTA). For all queries q, all items i and all ranking func-

tions Stot(q, i), if q ∈ U(i) then there exists at least one term t shared by q and i, such

that q ∈ CHTA(i, t).

Proof: It is easy to show that there exists a term t where ωq,t · ωi,t ≥ ωq,t · ωi,t for

all terms t. Then, by definition of λ, we can show that condition (3.10) holds:

Squ(q, i) =
∑
t∈V

ωq,i · ωi,t ≤ λ · ωq,t · ωi,t

Maximum Query Weight (MQW) Since item weights are normalized, we can show

that there exists at least one term t where the following condition is true:

Squ(q, i) ≤ ωq,t (3.11)
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This leads to the corresponding upper bound condition and candidate set CMQW(i, t):

MQW : α · Site(i) + β · ωq,t > Smin(q)

Theorem 4 (Correctness of MQW). For all queries q, all items i and all ranking

functions Stot(q, i), if q ∈ U(i) then there exists at least one term t shared by q and i,

such that q ∈ CMQW(i, t).

Proof: Let t be the term shared by q and i with the maximum query weight ωq,t.

Then, by the fact that all item weights are normalized, we can proof condition (3.11) :

Squ(q, i) =
∑
t∈V

ωq,t · ωi,t ≤ ωq,t ·
∑
t∈V

ωi,t = ωq,t

Theorem 5 (global correctness). For all items i and all queries q ∈ U(i),

1. there exists at least one term t shared by q and i such that condition LUB ∧ HTA

is satisfied by q, and

2. there exists at least one term t’ shared by q and i such that condition LUB∧MQW

is satisfied by q.

Proof: Conditions (1) and (2) directly follow from theorems 1, 3 and 4 respectively.

Terms t and t’ are not necessarily identical. Equivalently, the intersection of all

candidate queries obtained by LUB and HTA over all terms contain all queries to be

updated :

U(i) ⊆
⋃
t∈i

(CLUB(i, t) ∩ CHTA(i, t))

U(i) ⊆
⋃
t∈i

(CLUB(i, t) ∩ CMQW(i, t))

Finally, we also can show by a simple counter-example that it is not possible to

combine all three conditions without “loosing” queries to be updated.

Figure 3.2 shows two additional constraints corresponding to the light blue and light

green areas. The left blue rectangle contains all queries q where Smin(q) < α · Site(i)
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for item i. The green area adds all queries q where Smin(q) < α · Site(i) + β · ωq,t · ωi,t.
Both conditions are sufficient but not necessary for a query to be updated.

3.2.2 Filtering with decay

The query indexing techniques and upper bound conditions described in Subsec-

tion 3.2.1 do not take account of the decay function. Recall that we only consider

order-preserving decay functions where the decayed score S(i, q, τ) of all items i in the

top-k result R(q, τ, k) continuously drops for all queries q, promoting newly arriving

items over older ones. A direct interpretation of decay in our query representation

consists in continuously moving the points in each index P (t) towards lower values

(towards the left) parallel to the minimum score axis (x-axis). Recall that decay does

not change the item order which allows us to apply the decay function directly on the

minimum score value of each query without considering its top-k result.

To avoid continuously updating P (t) we apply the backwards decay technique pro-

posed in [CSSX09]. This solution computes, stores and compares all scores with re-

spect to some fixed reference time instant τ0 used as a landmark. In particular, all

query indexes P (t) are maintained with respect to a constant time instant τ0 and all

queries in these indexes are only updated when their minimal scores change. The ba-

sic idea to achieve this is the following: Suppose that a new item i is published at

time instant τi. The total score of a query q at τi is Stot(i, q). In order to use this

score with the corresponding query indexes, we have to calculate the inverse decayed

score decay−1(Stot(i, q), τi−τ0)), which corresponds to the hypothetical score value that

should have been assigned to the query-item pair at time instant τ0:

decay(decay−1(Stot(i, q), τi − τ0), τi − τ0)) = Stot(i, q)

Observe that the inverse decay function, always increases score values. This also

implies that the minimum scores of items will always increase in time, since these, too,

are computed with respect to the landmark τ0. Projecting all scores and constraints

on a given time instant τ0 allows us to immediately compare and decide whether an

arriving item updates or not a given query. We will see in Section 3.3 the practical

impact of this solution on the underlying data structures.
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3.3 Indexes

In this section we propose a number of in-memory index structures based on the two-

dimensional representation and the linear constraints presented in Section 3.2. All

indexes are designed by taking into account particular data characteristics and a com-

mon processing scheme. First, in order to be able to manage large term vocabularies,

we follow a traditional inverted file approach mapping each term to a corresponding

inverted grid of queries (we use the term grid opposed to the term list in the one-

dimensional case). Second, each query q is encoded in the inverted grid of each terms

t ∈ q by a couple (Smin(q), ωq,t). Since ωq,t is constant, queries (data points) only move

horizontally on the Smin(q)-dimension. This simplifies the update process and favors

the decomposition of the two-dimensional space into a list of horizontal grid lines for

optimizing update cost. Observe, also, that each query minimal score update has to

be done in all inverted grids of all remaining query terms. This obviously increases

the importance of using data structures optimizing updates. Finally, as argued in Sec-

tion 3.2.2, decay is computed with respect to a fixed landmark and does not cause any

updates. However, this also leads to a monotonic unbounded increase of the indexing

space – the minimal score of a query monotonically increases in time – which leads to

the need for more dynamic data structures and incremental memory allocation. We

will discuss this problem separately for each implementation.

Following the previous observations, the query filtering process can be summarized

as follows. On item arrival, the corresponding inverted grids are retrieved for all item

terms through the inverted file (hashtable). Then, for each grid, we start scanning

its grid lines from the left to the right until the corresponding linear upper bound

constraints presented in Section 3.2. For each candidate query q visited in this way,

the system computes its total score and checks if its top-k list is updated by the new

item. If this is the case, the minimal score of q increases (due to the insertion of the

new item) and q is moved to its new position of all inverted grids corresponding to the

query terms. Observe that, for the same item, a query can be visited several times, but

it cannot be moved twice.

In the following we will describe four solutions for implementing inverted grids.

The differences between these solutions lie in the choice of the data structures for
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Figure 3.3: Query indexes

implementing grid lines. They can be compared following the standard evaluation

criteria for data indexes: evaluation cost (including scanning, filtering), memory size

and index update cost. All data structures are illustrated in Figure 3.3 and described

in more detail below. Observe that all sub-figures contain the same queries and have

been split into the same number of grid lines of constant height.

3.3.1 Rectangular Grid

RectGrid is a two-dimensional array of equally sized cells as shown in Figure 3.3. Each

cell is implemented as an unsorted set of queries called a bucket. For each item term
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we can directly identify the array positions of all cells (buckets) that intersect with the

constraint lines and which contain the right-most candidate queries. Moving updated

queries is efficient in RectGrid since the bucket corresponding to the new position

of an updated query can be calculated in constant time. Observe also that the change

of the minimal scores might not necessarily change the position of a query in the grid.

Concerning decay, since all scores are computed with respect to a fixed landmark time

instant, the minimum (backward) scores of updated queries monotonically increase in

time. Since this score increase is unbounded, it is not possible to define a static maximal

array size. A solution consists in periodically recomputing all scores with respect to

a new time instant, which might become very costly (lazy evaluation solutions might

decrease this cost but are also more complex to be implemented). A better solution is

to introduce more dynamic data structures as shown below.

3.3.2 Sorted Buckets

SortBuck introduces dynamic memory allocation by implementing grid lines as sorted

lists of fixed sized buckets which contain at least one query. Buckets are ordered by

their position in the grid (Figure 3.3). This data structure is obviously less efficient for

updates since it is not possible to identify the bucket corresponding to a particular cell

in constant time. In order to increase efficiency, the sorted lists are implemented as a

Red-Black tree structure (the variation of B+ Trees optimized for main memory usage)

obtaining a logarithmic update cost.

Notice that not all queries in the intersecting buckets of RectGrid and SortBuck

are candidate queries and must be filtered individually. The cost influence of this

precision loss (marked in red in figure 3.3) over the global matching cost might become

important under certain distributions of term weights and minimal scores. Whereas

decreasing the grid width increases this matching precision, it also increases the number

of index updates.

3.3.3 Sorted Queries

In order to reduce matching precision loss, SortQuer directly maintains a list of

queries sorted by their minimum scores (Figure 3.3). Query filtering is straightforward.
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Updates are done in a similar way as for SortBuck and can be achieved in logarithmic

time over the number of queries (using a tree structured ordered list implementation).

An advantage of SortQuer is that a query’s position only needs to be updated if its

score gets higher than the minimal score of the next query. Observe, also, that this

solution avoids the garbage collection cost generated by empty buckets.

3.3.4 Density Buckets

In RectGrid and SortBuck, buckets are of fixed width. Since we cannot make

any assumption on the distribution of minimum score values (distribution depends on

decay, term frequency, etc.), we obtain inhomogeneous collections of dense and sparse

buckets. As discussed before, such biased distributions might have an important effect

on matching preciseness. DensBuck adjusts bucket widths dynamically in order to

maintain a minimum and maximum constant number of queries per bucket. Initially,

all lines contain a single bucket of infinite width. After some time, these buckets will

be split into sorted lists of buckets partitioning the whole inverted index space. This

list is maintained dynamically similar to the nodes in a B-Tree structure (split and

merge). Updates are performed in logarithmic time over the number of buckets. This

solution better distributes queries within the buckets and it is equivalent to the previous

solutions in terms of indexing and search complexity. Decreasing bucket density reduces

search cost by improving precision but also leads to higher query update cost, as smaller

buckets require more frequent split and merge operations. On the other hand, increasing

density leads to the opposite effect (higher search cost against lower update cost). Our

experiments in Section 3.6 confirm this trade-off between search cost and update cost

and a low overall performance of the DensBuck index compared to the other index

structures.

3.4 Approximate solution: a probabilistic model

The aforementioned representation and linear constraints determine, on item arrival,

the candidate queries set and allow accurate retrieval of all updated queries. As an

extension of our work in [VAC12], we have further analyzed the properties of the two-
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dimensional representation and estimated the probability that an arriving item will

update some candidate query given its position in a query index. Such knowledge can

be exploited in order to improve performance by reducing the accuracy and provide

an approximate solution to the query update problem where candidate queries with

low update probability will not be examined. The value of the error introduced can be

computed through the estimated update probability.

Let Q be the set of all queries stored in the system and U(i) be the set of queries

that item i will update.

Problem 2 (Update Probability Estimation). Given an item i, a term t0 ∈ i and

the values Smin(q) and ωq,t0 of any query q not necessarily in Q, find the probability

Pr (q ∈ U(i)).

In other words, given any position in the query index of t0, we want to compute the

probability that any query q in that position will be updated by i.

On item arrival, when considering the query index of a term t of an item i, we have

knowledge on the item score Site(i), as well as on the term weight and minimum score

of any query in the index, given its position (Smin(q), ωq,t). Given only this information

we can infer that the update condition defined in Equation 3.3 is always true for the

case where:

α · Site(i) + β · ωq,t · ωi,t > Smin(q)

This condition defines the light blue and green areas in Figure 3.2 where the update

probability is 1. Furthermore, condition LUB defines an area where no queries will be

updated (dark gray area in Figure 3.2). Consequently, we can immediately conclude

that the update probability is 0 for that area.

All positions in the query indexes not included in these two areas (forming a triangle)

have a non-zero and lower than 1 probability that they will be updated.

From the update condition we can directly conclude that:

q ∈ U(i)⇔
∑

∀t∈q∩i−{t0}

ωq,t · ωi,t > c (3.12)

where c can be computed in constant time given the Site, ωi,t0 and the position of q

in the query index of t0. Representing the unknown weights ωq,t as random variables,
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with yj = ωq,tj , the estimation of the probability can be formulated as:

E[P (q ∈ U(i))] =

∫ 1

0

...

∫ 1

0

fY (y1, ..., y|q∩i|−1)P (y1, ..., y|q∩i|−1) dy1...dy|q∩i|−1

where fY (y1, ..., y|q∩i|−1) is the joint probability density function (PDF) of the random

vector Y and P (y1, ..., y|q∩i|−1).

Despite the numerous studies that have been published on the estimation of the

weighted sum of random variables, the problem has not yet been solved for its general

case. In [DK68] and in a more recent work in [SH09] the authors give a mathematical

proof for the calculation of the value of the above formula making however, among

others, the assumption that the random variables are uniformly distributed in [0, 1], an

assumption which is not valid in this work. In our problem definition, we have not made

any assumptions on the way term weights are assigned and thus, no assumptions on their

distribution. Moreover, even if we did force a term weighting function with some given

distribution, it can easily be proven that it is impossible to have a uniform distribution

of normalized weights with query length different than 2. Although there are also a

few works on the weighted sum of non-uniformly distributed random variables (Arcsin

and Cauchy distribution [VA87], power distribution [Hom12]) they are all focusing on

the case where there are exactly 2 variables y1 and y2.

Given the difficulty of solving this mathematical problem, we try instead to find

the result using a sampling methodology, based on the Monte Carlo approach [JR83].

In particular, for every position in the query index we compute the constant c used in

equation 3.12. Then, for a given number of repetitions we do the following: we replace

in equation 3.12 each of the ωi,t variables with the actual term weights of the given item

and a random number in [0, 1] for the ωq,t based on the actual term weights distribution

on the stored query workload. Finally, we compute the percentage of these repetitions

where the inequality of equation 3.12 was found to be valid. This percentage actually

represents the probability of an error in case we do not check a query in that position.

The result of probabilities in the grid found after this experiment for some given item

is shown in Figure 3.4
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Figure 3.4: The update probability of queries found in some position (Smin(q), ωq,t0)

3.5 Related work

3.5.1 Continuous top-k textual query processing

The algorithms most closely related to this work are the Incremental Threshold [MP11]

and COL-Filter [HMA10]. A more thorough description of both these works can be

found in Subsection 2.3.2.

Both Incremental Threshold and COL-Filter rely on monotonic and homogeneous

ranking functions and use sliding window semantics without decay. Incremental Thresh-

old is essentially a variation of the Threshold Algorithm (TA) [FLN03] and uses two

inverted lists: (a) the first for coherently indexing the N most recently published items

(sliding window) and (b) the second for indexing all registered top-k queries. This

algorithm has been proven to be quite expensive in maintaining a valid view on the

sliding window because of frequent index updates. As experimentally demonstrated

in [HMA10], the Incremental Threshold’s cost of retrieving candidate queries is most of

the times worse than a näıve solution, where all queries containing the item terms are
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scanned without any stopping condition. To overcome this limitation, COL-Filter de-

fines a single inverted list of queries ordered by an appropriate one-dimensional ranking

criteria that guarantees an effective early stopping condition.

Item importance has only been considered recently for query filtering [HMA12].

Item importance is estimated by applying a particular weighting scheme taking into

account the frequency of terms in the queries. The total score of an item with respect to

a given query then depends on its importance and its similarity. Whereas this reminds

our definition of non-homogeneous total score, the way of how item importance is

defined in [HMA12] makes the total scoring function again homogeneous for applying

COL-Filter. Our work can accommodate the need for content-independent item scores

resulting in non-homogeneous ranking functions, while its scalability gains even for the

homogeneous case as presented in Section 3.6.

3.5.2 Multi-dimensional indexing

As we have seen in Section 3.3, retrieving candidate queries through our constraints

is a spatial filtering problem in a two-dimensional space. Any incoming item defines

a polygon for which all contained points of candidate queries need to be retrieved.

Since, query updates affect the minimum score per result list they essentially redefine

the position of a candidate query point by moving it towards to the right while keep-

ing the same vertical position. Spatial indexes, such as Rectangular Grids, R-Trees,

QuadTrees and k-d Trees, have be used in a similarly dynamic setting for retrieving

moving objects continuously contained in a target area [KPH04]. However, these works

rely on the strong assumption that the target search areas are known a priory. This

is not the case of our spatial filtering where the polygons of interest are also con-

tinuously redefined based on the incoming items. Other spatial indexes proposed for

moving objects either assume fixed velocity of the points [SJLL00], or compromise on

the system’s accuracy [CKP04]. Unlike these works in our setting (a) points frequently

change positions and (b) points move only in a particular direction. For these reasons

we have designed four indexes that take into account the peculiarities of points move

and vertically partition in advance our two-dimensional space for all indexes.
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3.5.3 Query dependent and independent scores in IR

Last but not least several pruning techniques for the inverse problem of top-k snapshot

queries have been proposed in [LS03] using a ranking function for documents equivalent

to ours. As queries arrive, the top-k documents are retrieved using knowledge on the

weights of their terms as well as their PageRank [MRS08] score which is the equivalent

of item importance in our work. In particular, reliable pruning technique proposed

in [LS03] splits the collection of documents into two groups based on whether their term

weight is higher than a threshold. Each of these groups is then sorted by the PageRank

score. Results for arriving queries are then retrieved using a condition similar to LUB.

Adapting this technique to our setting consists in split the queries into two groups

depending on the query term weights and then sort them by the queries’ minimum

score. The SortQuer index can be seen as generalization of such a solution for more

than two groups of queries.

3.6 Experiments

In this section we present an experimental evaluation over the indexes proposed in Sec-

tion 3.3. We evaluate their performance under three different settings. We will start

with the most simple scenario which considers only query dependent scores without

decay (homogeneous score without decay). We will show the trade-off between match-

ing time and memory cost over different index tuning parameters and compare our

solution to the current state of the art solution (COL-Filter). We will then explore

the effect of introducing decay on the matching performance (homogeneous score with

decay). Our experiments terminate with the most general setting with decayed scores

combining query similarity and query independent item scores (non-homogeneous score

with decay).

3.6.1 Experiments setup

In order to run our experiments we use a real-world data collection and generate a

corresponding set of queries. To the best of our knowledge there is no test-bed publicly

available, including a stream of time-stamped items and user defined queries over the
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same vocabulary and period. We ran our experiments over a dataset of 13, 000 RSS

items extracted from the RoSeS testbed [HVT+11] which contains items from 8, 155

RSS feeds, including press, blog, forum feeds etc., collected from March 2010 to October

2010. Before running experiments we applied standard stemming, stop-word removal

and HTML tag removal on the item contents. Observe that the size of the dataset

(number of items) is not a scaling parameter in our setting which assumes a stream

processing scheme where each item is processed in one pass and discarded afterwards.

We then generated a synthetic query workload based on the vocabulary of our dataset.

Using set of terms semantics for the items, we generated the queries by computing term

co-occurrence and finding the most frequent combinations of 2 to 4 terms appearing in

the dataset, aiming at evaluating index performance over a workload with many query

relevant items. The final query workload was created by uniformly selecting the most

frequent combinations of each query size.

For both, queries and items, we used the standard tf-idf weighting scheme with

normalized weights. All experiments started by a warm-up matching period of 3, 000

items in order to initialize the top-k results and minimum scores. The time measure-

ments represent the average matching time required per item, over the remaining 10, 000

items. The average matching time takes account of the time necessary for filtering all

candidate queries (query filtering), updating the top-k results (query update) and up-

dating the index according to the change of the minimal scores (index update). The k

parameter, determining the size of the top-k results was set to 1. Higher values increase

the number of query updates by decreasing the Smin(q) without any other particular

effect on the index.

All algorithms were implemented in Java 6. Experiments were carried out on an

Intel Core 2 Quad Q6600 @2.4 GHz, with 32-bit Windows 7 operating system, using

1GB of Java heap space.

3.6.2 Homogeneous score without decay scenario

In this first set of experiments we suppose a static environment (no decay), considering

only query dependent scoring functions (α is set to 0). This simplification makes our

problem statement compatible with existing continuous top-k query processing scenar-
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Figure 3.5: Trade-off between matching
time and memory cost

Figure 3.6: Matching time require-
ments over increasing number of in-
dexed queries

ios. In particular, under this scenario we can compare our work to COL-Filter [HMA10],

which is the state of the art solution and achieves better performance than the Incre-

mental Threshold algorithm [MP09, MP11].

Besides comparing our solution with COL-Filter, we tune the four indexes proposed

in Section 3.3 and evaluate the influence of their configuration parameters on matching

time performance and memory cost. These configurations parameters are: (i) the

number of lines (horizontal partitioning) for all four indexes (ii) the number of columns

(vertical partitioning) for RectGrid and SortBuck and (iii) the bucket density for

DensBuck.

As mentioned in section 3.3, increasing the degree of partitioning decreases the can-

didate filtering error (red zone in Figure 3.3), but at the same time this also increases

update cost (updated queries move more frequently between buckets) and memory re-

quirements (empty buckets, data structure overhead). In our first experiment (Figure

3.5), we capture this trade-off between matching time and memory cost. First we must

notice that for all four indexes increasing the number of divisions (lines/columns) nat-

urally led to better matching time requirements, but after some point this performance

was worsening. This is explained by the fact that after a certain partitioning thresh-

old, the performance gain from the higher candidate filtering precision cannot absorb

the performance loss due to empty buckets and/or internal data management overload.

Figure 3.5 therefore, represents for each index the skyline of the optimal matching

time and memory requirements pairs, after varying the tuning parameters. Differently
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formulated, each point (x, y) reflects the best average per item matching time y the

index can achieve using not more than x MB of memory. Finally, note that COL-Filter

has no particular configuration parameters which might influence memory usage and is

therefore represented by a single point.

RectGrid requires more memory than all other indexes to achieve the same per-

formance and COL-Filter uses less memory than all other indexes however, with non-

optimal time performance (single cross on the left). The additional space required by

RectGrid can be explained by the static memory overhead of the underlying array

structure which is which independent to the actual number of indexed queries and non-

empty buckets. SortBuck has a more clever dynamic usage of space, depending only

on the buckets created. The goal of DensBuck was to obtain a better control over the

number of queries per bucket (bucket density) which improves memory cost. However,

as shown in the figure, the time performance results are disappointing compared to the

other solutions. In this index, changing bucket density introduces a trade-off between

filtering accuracy (search cost) and the number of time consuming bucket split and

merge operations (update cost). In both cases, the additional time requirements lead

to poor overall performance.

Finally, we can see SortQuer index, which directly generates lists of queries

achieves the best matching performance with low memory. For this same reason, COL-

Filter has slightly less memory requirements than even SortQuer (10-15%). Recall

that COL-Filter does not consider two dimensions, but only stores sorted lists to main-

tain the equivalent of a grid in our solutions. Finally, we can see that all our index

structures (except DensBuck) can achieve an average matching time performance gain

of 50% (with respect to COL-Filter) under different memory constraints.

For the rest of the experiments we have initialized all index parameters with the

optimal values leading to the best matching time performance independently to their

memory usage (as shown in figure 3.5, adding more memory has no performance benefit

after a certain threshold). Table 3.1 summarizes these optimal values for each index.

Figure 3.6 shows the scaling performance of our four indexes, as well as that of

COL-Filter over the number of queries stored in the system. We can observe that the

average per item matching time of all indexes increases linearly with the number of

indexed queries. Since each subset of queries is an unbiased sample with the same term
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lines columns density memory (MB)
RectGrid 20 1800 - 47.14
SortBuck 20 4000 - 22.57
SortQuer 20 - - 14.09
DensBuck 3 - 16 13.98
COL-Filter - - - 11.22

Table 3.1: Tuning parameters used on the experiments

distribution as the original set, this curve also reflects the scaling behavior with respect

to the candidate queries. We can see that the matching performance of SortBuck

and SortQuer are more or less equivalent whereas SortBuck requires 60% more

memory than SortQuer. Grouping queries in buckets reduces the number of position

updates required after minimum score changes on the queries, but it also leads to a loss

of preciseness in query candidate filtering. Finally, COL-Filter performance decreases

with a higher linear rate and requires up to 125% more average matching time than

RectGrid and up to 70% more than SortBuck and SortQuer. DensBuck clearly

has the worst performance.

3.6.3 Homogeneous score with decay scenario

In the following set of experiments we evaluate the behavior of the indexes when apply-

ing linear and exponential decay. As explained in Section 3.3, all indexes are maintained

with respect to a reference time instant τ 0 by using a backward decay function. This

has as a side effect that the minimal score of a query is monotonically increasing in

time. In our query index representation, this results in a time dependent unbound

query point distribution on the minimal score.

Due to this dynamic change of the indexed space RectGrid, which is based on a

statically bound array structure, cannot be combined with our backward decay solution.

We also exclude from the tests COL-Filter, which is based on sliding windows for

reflecting information freshness. As before, in this experiment, the value α is set to

zero and only query dependent scores are considered.

Generally, faster decay means that the item scores (including the minimal score)

in the top-k list of a query decrease more rapidly with respect to a new item and
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Figure 3.7: Time requirements over
faster decay of scores(linear decay)

Figure 3.8: Time requirements over
faster scores’ decay (exponential decay)

arriving items are more likely to update relevant queries. Equivalently, when decay is

applied to our constraints model, the three constraint lines continuously move toward

the right and more queries have to be checked for updates. Figure 3.7 depicts the time

requirements as scores decay faster, using a linear decay function. The x-axis in the

diagram represents the continuous average score decrease per day. The chosen interval

of values ([0.001, 0.01]) corresponds to 5 up to 20 updates on average per query per

day. The behavior of the three indexes is linear on the decay rate / number of more

updates on queries caused by the items. This indicates that even though more queries

are scanned due to decay, the average cost in time per update over the whole set of

queries remains more or less constant.

In Figure 3.8 we can see the equivalent diagram for exponential decay. The x-axis

of the diagram represents the time required (in hours) in order to divide scores by 2

(half-life period). As before, values were chosen so as to have on average between 5

and 20 updates per query per day. For exponential decay, too we also observe that

the behavior of the systems is proportional to the number of queries updated. Here, as

well, no changes are observed in the relative position of the indexes performance, with

DensBuck requiring twice the time of SortBuck and SortQuer having almost the

same time performance as SortBuck.
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Figure 3.9: Time requirements over in-
creasing α values, using linear decay

Figure 3.10: Time requirements over
increasing α values, using exponential
decay

3.6.4 Non-homogeneous scores with decay scenario

In the previous experiments we assumed homogeneous ranking function (α = 0). In

this final set of experiments we observe the behavior of the three index implementation

over different values for α with linear and exponential decay. Item scores are generated

as random values in [0, 1] with uniform distribution. Decay was fixed to an average

of 10 updates per query per day with homogeneous score α = 0 (the final number of

updates depends on α).

Figure 3.9 shows the performance of the three indexes over different values of α while

applying linear decay. The time behavior shown, directly reflects the average number

of candidate queries, but also of the ones updated per item. We can observe that for all

indexes, switching from the homogeneous total score (α = 0) to the non-homogeneous

score (α > 0) immediately increases the number of candidate queries per item. After

this first peak, increasing α has the opposite effect, i.e. the number of candidate queries

continuously decreases. The initial peak can be explained by properties of the scoring

function employed. Generally there are many query-item pairs for which a low query-

dependent score is assigned and which is not sufficient to lead to an update in the case

of α = 0. However, when item score is considered, a random number for the item

score (in [0, α]) is added to the total score, increasing the expected total scores and the

probability of queries to be updated. The fact that after the first peak, the number of

query updates decreases can be explained by the properties of the linear decay function:

all scores (higher and lower) decrease by the same amount after a given time period,
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forcing lower scores to go faster to a zero minimum score and thus, be updated by any

relevant item (we have a higher number of updates when the average total score is low).

From the way we have selected the item score, item scores are generally higher than

similarity scores, so higher values of α (weight of item score) lead to higher values of

total scores, and as explained, in a higher number of updates. Similar observations can

be made on Figure 3.10 where exponential decay is applied.

3.6.5 Conclusions on the experiments

Our experiments show that depending on the amount of available memory, we can

choose between SortQuer which achieves good performance with low memory and

RectGrid for a 10-20% performance gain with a high memory cost (SortBuck is

situated between these two indexes). Compared to COL-Filter (which only works for

homogeneous ranking functions), SortQuer is up to 50% faster using only 15% more

memory. We have also observed that partitioning the space in more homogeneously

sized partition (in terms of number of queries), as it is done by DensBuck, does

not improve per item, neither time performance nor memory cost. All three indexes

supporting decay scale linearly with the number of queries. Matching time increases

proportionally to the number of top-k list updates and is not affected neither by the

decay rate nor by the linear combination of the query-independent and the query-

dependent scores (α). Consequently, once the desired update rate for the users’ queries

has been fixed, the total scoring and the decay function, which affect immediately the

results retrieved by the users, can be freely chosen without affecting the performance of

the system. A final observation is that grouping of queries in buckets does not lead to a

better performance. This observation is also confirmed by the experiments conducted

in [HMA10] comparing COL-Filter and POL-Filter.

3.7 Summary

In this chapter we have introduced a new class of continuous top-k textual queries fea-

turing dynamic non-homogeneous total ranking functions which combine information

freshness, query dependent text similarity and item importance scores. Existing con-
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tinuous top-k textual query processing systems [MP09, HMA10, MP11, HMA12] are

based on variations of the Threshold Algorithm [Fag02] and a one-dimensional order-

ing of queries which can only be defined by using monotonic and homogeneous ranking

functions. In this respect, the main contributions of this work are the following:

• Based on a new two-dimensional inverted query indexing scheme, we have ex-

plored efficient score bounds which drastically prune the search space of all can-

didate query top-k lists that are updated by the arrival of a new item. We have

also proven the local optimality and soundness of these bounds.

• We have then introduced and compared different in-memory index structures

implementing our spatial filtering conditions over dynamic query scores. Similarly

to spatial indexes for moving objects [SJLL00, KPH04, CKP04], we have taken

into account the particular moving behavior of query points to vertically partition

in advance the two-dimensional search space in the design of our indexes.

• We have provided a thorough experimental evaluation of the memory/matching

time trade-offs implied by these index implementations. An important result

is that all four solutions exhibit a linear scaling behavior with respect to the

number of queries matching an item, independently of the used ranking function.

More importantly we have shown that all our proposed indexes scale linearly with

respect to the number of updates (results). We have also shown that the index

structures presented generalize state of the art solutions for the homogeneous case

(COL-Filter), with our SortQuer index achieving 50% less time requirements

while using only 15% more memory.
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4
Real-Time Search Considering Feedback

In Chapter 3 we have focused on the online filtering of streaming information and have

proposed a number of solutions for implementing the Item Handler component [VAC12],

supposing that the query-independent item importance is assigned on the item’s arrival

and remains static. This assumption, however, is no longer valid if feedback signals on

items, like ratings or shares, are additionally considered. Attempting to re-use our

proposed solutions for the Item Handler to maintain query results over feedback signal

streams would lead to a rather inefficient solution. It would, in fact, require the re-

evaluation of each item i after every event (i.e. feedback signal) it receives, regardless of

how small its impact will be. Even for a small number of additional updates, it would

require the re-computation of all queries that should contain it, including the ones that

already do. Consequently, applying this approach in a highly dynamic environment with

massive amounts of feedback information, would lead to a poor overall performance.

In this chapter, we focus on the Event Handler component of our proposed architec-

ture (Figure 4.1). More precisely, we consider the evaluation of continuous top-k queries

over both web information and real-time feedback signals, based on generalized scoring

functions considering text relevance, user interaction on published information and time

decay. We will first show that current top-k query processing techniques presented in

the literature are not designed for highly dynamic scores taking account of real-time

web signals generated by user feedback. We will then propose a new generic archi-

tecture and a family of adaptive algorithms for efficiently processing continuous top-k

queries with highly dynamic scores. We experimentally evaluate these algorithms over

a real-world dataset of 23 million tweets and retweets collected during a 5-month period

and compare the influence of dynamic scores in the performance of our algorithms on

different workloads.

The rest of the chapter is organized as follows. Section 4.1 gives a formal definition

of the problem. Section 4.2 presents our proposed solution and pruning techniques

for event matching. Then, Section 4.3 describes a number of index implementations

that apply these techniques. Section 4.4 provides the experimental evaluation. Finally,

Section 4.5 summarizes the main contributions of this work.
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Figure 4.1: Focusing on the Event Handler component. Incoming events are handled
in the Event Handler component which retrieves potential updates

4.1 Problem statement

In this section we formally define the notion of continuous real-time top-k queries with

feedback signals. In fact, we extend our problem formulation for the Item Handler,

presented in Section 3.1, to additionally consider event streams and dynamic scoring

functions.

4.1.1 Query, item and event streams

The general data model builds on a set of items I (tweets), a set of search queries Q

and a set of events E (feedback signals). Each event e ∈ E concerns exactly one item i

called the target of event e and denoted by target(e). The set of all events concerning

an item i is denoted by E(i).
To take account of information flow and real-time signals, we also assume a time-

stamping function

ts : I ∪ E ∪Q → T
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which annotates each item, event and query with their creation timestamp. This func-

tion formally transforms all sets I, E and Q into streams. For the sake of simplicity,

we assume in the following that I, Q, E denote the sets of all items, queries and events

that have been published until a fixed time instant τ .

4.1.2 Scoring functions

In this chapter, we extend the scoring function studied in Chapter 3, considering static

query-item relevance (Squ(q, i)) and static query-independent item scores (Site(i)), with

a dynamic, query-independent aggregated event score which reflects the score changes

to an item i triggered by the arrival of events E(i) that have i as target. We denote

by Sev(e) the score of a given event e for its target item i. This score can reflect for

example, the importance of the type of event (e.g. if it is a comment, a share or a

click), the importance of the user that issued it etc. Then we can define the aggregated

event score Sdyn(i) of an item i as the sum of all event scores of events e ∈ E(i) with

target i (known at the fixed instant τ):

Sdyn(i) =
∑
e∈E(i)

Sev(e) (4.1)

Like in the definitions of Chapter 3, we also assume that the query, item and event

scores are positive and static. The dynamicity of the aggregated event score Sdyn(i),

and therefore the total score, as well, derives for the arrival of new events, with i as

target.

The a total score combines the query, item and aggregated event score into a dy-

namic function: Stot(q, i, τ) considering the event scores received up to time instant τ

for item i:

Stot(q, i, τ) = α · Site(i) + β · Squ(q, i) + γ · Sdyn(i) (4.2)

Observe that events affect the scores of items independently of the queries.
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4.1.3 Score decay

To take account of the freshness of information, we assume the use of a decay function.

Similarly to our definition for the Item Handler component (see Subsection 3.1.2), we

consider the use of an order-preserving decay function over the query-item scoring

function of Equation 4.2:

S(q, i, τ) = decay(Stot(q, i), τ − τi)

As discussed in Subsection 3.2.2, it is possible to avoid continuously updating the

scores, changing due to time decay, by using backwards decay techniques: all scores

are computed, stored and compared with respect to some fixed reference time instant

τ0 used as a landmark. This technique allows us to immediately compare all scores

without performing any additional transformation.

4.1.4 Continuous top-k queries

Similarly to our definitions in Chapter 3, this total score Stot(q, i, τ) defines the result

(semantics) of each query q ∈ Q. More precisely, the top-k result of some continuous

query q (at a fixed time instant τ), denoted R(q, τ, k), is a subset of maximally k items

i ∈ I with a strictly positive query score Squ(q, i) > 0 and with a maximal global score

Stot(q, i, τ), i.e. there exists no other item i′ ∈ I outside the result with a higher global

score Stot(q, i′, τ) > Stot(q, i, τ).

We can now state the following general problem that has to be solved :

Problem 3. [continuous real-time top-k query evaluation] Given a set of

queries Q, a global score function Stot, an item stream I and an event stream E, main-

tain for each query q ∈ Q its continuous top-k result R(q, τ, k) at any time instant

τ .

Let Smin(q, τ) denote the (unique) minimal score of query q (at time instant τ):

Smin(q, τ) = min({Stot(q, i, τ)|i ∈ R(q, τ, k)}). Then, under certain constraints (order

preserving decay function), the previous result maintenance problem can be decom-

posed into two (discrete) continuous item and event matching problems taking only

account of the arrival of new items and events:
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Problem 4. [continuous top-k item matching] Given a set of queries Q and

a global score function Stot, identify for each new item i all queries U(i) where i 6∈
R(q, τ, k) and Stot(q, i, ts(i)) ≥ Smin(q, ts(i)). We will call U(i) the updates triggered by

item i.

Problem 5. [continuous top-k event matching] Given a set of queries Q and

a total score function Stot identify for each new event e all queries U(e, τ) respectively

where target(e) 6∈ R(q, τ, k) and Stot(q, target(e), ts(e)) ≥ Smin(q, ts(e)). We will call

U(e, τ) (or for simplicity U(e)) the updates triggered by event e .

Problem 3 has already been extensively studied in literature in the field of Infor-

mation Retrieval and Problem 4 has been addressed in Chapter 3. In the rest of this

chapter we will mainly concentrate on Problem 5.

Example 1. Figure 4.2 shows the evolution of the top-2 result of some q for item

set I = {a, b, c, d}. The score evolution of each item is represented by a step-wise

monotonically increasing line where each increase corresponds to the arrival of some

event (aggregated event score). The minimum score of q is represented by a bold line.

Each item has an initial positive query score and the query result is updated seven times:

at the arrival of a new item (item match at τa, τb and τd) as well as at the arrival of a

new event (event match at τ1, τ2, τ3 and τ4). Observe that the arrival of a new items

does not necessarily trigger a query update (e.g. arrival of c) and an item can disappear

and reappear in the result (item b disappears at τd and reappears at τ3).

Since we consider only positive event scores, we can ignore events on items i ∈
R(q, τ, k) in the top-k result of q. Whereas these events can change the minimal score

of q, this score can only increase and the top-k result does not change as long as there

are no events on other items.

4.2 Event Handler algorithms

Figure 4.1 presents our target overall functionality consisting of a Query Handler com-

ponent, answering queries as they arrive, an Item Handler, updating query results on
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[b,c] [c,b] [c,d] [c,b] [c,d][b,a][a]R(q, τ, 2)

Stot(i, q, τ)

time τ
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Figure 4.2: Top-2 result evolution of query q

item arrival, and an Event Handler, retrieving updates triggered by events. In Chap-

ter 3 we have presented a general representation of continuous queries and a number

of solutions for implementing the Item Handler component. In the following we focus

on the Event Handler and describe two event matching algorithms which enable the

efficient evaluation of feedback events on a real-time search system.

4.2.1 The AR algorithm

The first algorithm is called All Refresh (AR, see Algorithm 1). In this first näıve

approach, we consider the evaluation of all incoming events in the Item Handler com-

ponent: for each incoming event e, we increase the query-independent score of the

corresponding item target(e) by the value designated by e and re-evaluate the item as

if it was a newly published one (see Figure 4.3). This evaluation will actually retrieve a

superset of the desired result: it will additionally retrieve queries that already contain

target(e) on their top-k result set. On a last step of the event evaluation procedure of

AR, we iterate through the results and remove such queries, thus obtaining the correct

result set of updates.

Function EH.matchEventSimple of algorithm AR computes the updates triggered

by event arrivals by increasing the dynamic score of the corresponding item and

re-evaluate it in the Item Handler (through function IH.processItem). Function

RTS.update is responsible for updating a set of queries by a given item (a newly pub-
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Algorithm 1: The AR algorithm

1 IH.processItem(i: Item)

2 Q(i) := ∅;
3 U(i) := IH.matchItem(i);
4 RTS.update(U(i), i);

5 EH.processEvent(e: Event)
6 i := target(e);
7 U(e) := EH.matchEventSimple(e);
8 RTS.update(U(e), i);

9 RTS.update(U(i): set(Query), i: Item)

10 for q ∈ U(i) do
11 ik := R(q, τ, k)[k];
12 R(q, τ, k) := R(q, τ, k) + i− ik;
13 Q(i) := Q(i) + q;
14 Q(ik) := Q(ik)− q;

15 IH.matchItem(i: Item)

16 as implemented in [VAC12]

17 EH.matchEventSimple(e: Event)
18 i := target(e);
19 Sdyn(i)+ = Sev(e);
20 return IH.matchItem(i)−Q(i);

lished item or the target item of an event).

Looking into more detail Algorithm AR, each new item i is processed by procedure

IH.processItem which initializes the set of matching queries Q(i) (line 2). It then

matches all queries to be updated calling function IH.matchItem (line 3) and finally

calls function RTS.update to update these queries. We do not detail IH.matchItem

here and suppose that we can use any continuous top-k algorithm, similar to the one

presented in our work in [VAC12] (Chapter 3), which is able to evaluate the global

scoring function Stot. Function RTS.update identifies and removes for each query q to

be updated, the last item ik in the query result (lines 11 and 12), adds the new item

(line 12) and updates the matching query sets Q(i) and Q(ik) of i and ik (lines 13 and

14).

75



4.2. Event Handler algorithms

(a) Evaluation of item i at its publication
time τi

(b) Evaluation of event e with target(e) = i
at its publication time τe on the Item Handler

Figure 4.3: (a) The arrival of an item i triggers the update of three queries (in green)
which are moved into their new positions. (b) Supposing the evaluation of an incoming
event e for item i (target(e) = i) in the Item Handler, three new updates are retrieved
(in orange). Observe that the new constraint lines for the item re-evaluation are the
ones of the first evaluation of i at τi, moved on the right by a distance of γ · Sev(e).
Updates caused by the arrival of an event e can be in any position of the grid designated
in yellow.

Theorem 6. Algorithm AR is correct for positive event scores.

Proof. We have to show that both functions, IH.processItem and EH.processEvent,

guarantee that all items i and all queries q ∈ Q, if Stot(q, i) > Smin(q), then q ∈ Q(i)

(condition AlgCorr).

We first show that for a given item i there exists no query q ∈ Q −
Q(i) where Stot(q, i) > Smin(q) after the execution of (1) IH.processItem(i)

and (2) EH.processEvent(e) processing an event e with target item i. For (1)

IH.processItem(i), by definition, the item matching function IH.matchItem returns
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all queries where Stot(q, i) > Smin(q) and after processing RTS.update (i), Q(i) contains

all these queries these. The same argument holds for EH.processEvent(e) which also

calls IH.matchItem (through function EH.matchEventSimple and then RTS.update (i)

after the update of the dynamic score. We can then show that condition AlgCorr holds

for item i until to its next event. This is easy to show by the fact that Stot is mono-

tonically increasing (positive event scores). First, either q is never removed from Q(i)

(trivial). Second, if q is removed from Q(i) (line 14), we know that Stot(q, i) < Smin(q).

Since Smin(q) is monotonically increasing and Stot(q, i) only can be updated by an event

with target i, the last condition holds until to the next event.

Although the AR algorithm might have an acceptable performance on a system

where events are quite rare, compared to the item’s arrival rate, it would be quite

inefficient on a real-time system with much user feedback signals, such as Twitter. In

such a dynamic setting, with events arriving at high rates, we would expect that a single

event on an item, e.g. a single retweet or favorite, will have, on average, a small impact

on the set of queries that would receive it. However, by re-evaluating the item through

the Item Handler, we would have to re-compute a potentially long list of queries that

have already received i.

A more efficient solution would be to directly compute the required result set (with-

out the old updates) which is equivalent to the set U(e) = {q ∈ Q|Smin(q) ∈ (s0, s1]}
where s0 and s1 correspond to the global scores before and after adding the event score.

Unfortunately, such an operation is not supported and cannot directly be implemented

in an efficient way on the Item Handler implementation of Chapter 3. Observe for in-

stance Figure 4.3: assuming that it would be sufficient to check only the righter part of

the yellow region (the part that was not visited at τi in i’s first evaluation), is mistaken.

Updates can be found in any part at the left side of the constraint lines: those were

queries that caused false positives in the original item evaluation (at τi).

In the following we propose instead a new algorithm which is implemented in the

Event Handler component for efficiently processing incoming events independently to

the Item Handler’s implementation.
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4.2.2 The R2TS Algorithm

The main task of the Event Handler is to perform the event matching operation, i.e.

retrieve all updates triggered by an arriving event. The efficient implementation of this

task is based on the following observations:

• each item i has limited number of relevant queries q (with Squ(q, i) > 0) which

might be updated by future events;

• each event increases the score of a single item and triggers a limited number of

updates;

• the maximum aggregated score of an item depends on the scoring function and

the number of events it will receive.

Based on these observations, we propose the Real Real-Time Search (R2TS) algorithm,

which is based on the following idea for matching an incoming event. As we have

seen before, it is not efficient to trigger the Item Handler for recomputing all updates

U(e). In R2TS instead, on the initial evaluation of an item i on the Item Handler, we

additionally retrieve a number of query candidates for i, i.e. queries for which the total

query-item score is not sufficient for them to be updated by i, but could potentially

receive it in the future, if an adequate number of events increase the aggregated item

score of i. In other words, the query candidates of an item are, ideally, the queries with

a higher probability of being updated by that item due to incoming events.

The definition of query candidates highly depends on the query-item scoring function

and more precisely on the way the events affect the total score. Given our scoring

function (Equation 4.2) we observe that each incoming event increases by a additional

value to the item’s score. This leads us to a straight-forward way of choosing the

candidates, which is by setting a threshold θi for each item i, indicating our prediction

on the dynamic score i will receive by future events.

Definition 7. Given a positive value θi, the candidates Ci ⊂ Q of an item i is the set

of queries: Ci = {q ∈ Q|Smin(q) ∈ (S(q, i), S(q, i) + γ · θi]}).
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Definition 8. θi-condition: On event e arrival, we say that the θi-condition holds for

the corresponding item i iff the dynamic score of the item does not exceed the defined

value θi: Sdyn(i) + Sev(e) < θi.

For example, in Figure 4.3(b) if candidate queries are computed for the item i on

its arrival (at τe) and given that the assigned value θi is greater than the score Sev(e),
it is guaranteed that the three queries in orange, i.e. those updated due to event e, will

be in the candidates set.

Thus, as long as the θi-condition holds for an item i, we know that the updates

triggered by any event e for i are in the candidate set Ci, stored in the Event Handler.

If however, the θi-condition does not hold, the set of candidates is no longer valid and

needs to be recalculated through the Item Handler. The re-evaluation is similar to the

one described for the näıve solution.

The overall candidates approach of R2TS is presented in Algorithm 2 can is summa-

rized in the following. Each new item i is assigned with an initial threshold θi (line 5)

and refresh counter r(i) (line 6). Threshold θi represents the maximal score change in

the item’s dynamic score due to future events between two refresh operations. Item iθi
is a copy placeholder of item i (line 28) with a virtual aggregated event score corre-

sponding to the future event score of i before the next refresh. iθi is then used to find

all candidate queries, additionally to the updates, until the next refresh.

When a new event arrives, function EH.matchEvent computes the update set U(e).

It increases the target item’s aggregate score and first checks if it necessary to refresh

the candidates (lines 27 to 30). As long as threshold Sdyn(i) > r(i) · θi, the result

is obtained by the näıve solution and the candidate list is refreshed with the new

aggregated threshold. When Sdyn(i) ≤ r(i) · θi, EH.matchEvent copies all candidate

queries q where the minimum score of q is strictly smaller than the global score of i to

the update set U(e) (lines 31 to 34).

Theorem 7. Algorithm R2TS is correct for positive event scores.

Proof. We have to show that both functions, IH.processItem and EH.processEvent,

guarantee that for all items i and all queries q ∈ Q, if Stot(q, i) > Smin(q), then q ∈ Q(i)

(condition AlgCorr).
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Algorithm 2: The R2TS algorithm

1 IH.processItem(i: Event)
2 U(i) := IH.matchItem(i);
3 Q(i) := ∅;
4 RTS.update(U(i), i);
5 EH.initThreshold(θi);
6 r(i) := 0;

7 EH.processEvent(e: Event)
8 U(i) := EH.matchEvent(e);
9 RTS.update(U(i), i);

10 RTS.update(U(i): set(Query), i: Item)

11 for q ∈ U(i) do
12 ik := R(q, τ, k)[k];
13 R(q, τ, k) := R(q, τ, k) + i− ik;
14 Q(i) := Q(i) + q;
15 Q(ik) := Q(ik)− q;
16 C(ik) := C(ik) + q;
17 C(i) := C(i)− q;

18 EH.matchEvent(e: Event)
19 if θi = 0 then
20 i := target(e);
21 Sdyn(i)+ = Sev(e);
22 return IH.matchItem(i)−Q(i);

23 else
24 i := target(e);
25 Sdyn(i)+ = Sev(e);
26 if Sdyn(i) > r(i) · θi then
27 r(i)+ = Sdyn(i)/θi + 1;
28 iθi := i;
29 Sdyn(iθi) := r(i) · θi;
30 C(i) := IH.matchItem(iθi)−Q(i);

31 U(e) := ∅;
32 for q ∈ C(i) do
33 if Stot(q, i)>Smin(q, ts(i)) then
34 U(e)+ = q;

35 return U(e);
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We already have shown that the correctness condition holds for some item i and all

queries q after the execution of function IH.processItem (proof of Theorem 6).

We first show that it also holds after the execution of function EH.processEvent.

For θi = 0 we can use the same argument as in Theorem 6 (if Stot(q, i) > Smin(q), then

q ∈ C(i)).
For a positive threshold θi > 0, let

Sstat(q, i) = α · Site(i) + β · Squ(q, i)

be the static query-item score of item i for query q. We know after executing lines 27

to 30 that

Sdyn(i) ≤ r(i) · θi (4.3)

and the candidate set C(i) of i contains all queries q ∈ Q−Q(i) where

Smin(q) ≤ Sstat(q, i) + γ · r(i) · θi (4.4)

To finish, it is sufficient to prove that the obtained candidate set contains all queries

q′ which have to be updated: U(e) ⊆ C(i). By definition, for all queries q′ to be updated

holds

Smin(q′) < Stot(q′, i) = Sstat(q′, i) + γ · Sdyn(i) (4.5)

Then since Sdyn(i) ≤ r(i) · θi and (Equation 4.5),

Smin(q′) ≤ Stot(q′, i) ≤ Sstat(q′, i) + γ · r(i) · θi (4.6)

which means that q′ ∈ C(i).
Then, similarly to the algorithm AR, we can show that condition 33 holds for item

i until its next event. First, it is easy to see that q is never removed from Q(i) ∪ C(i)
(trivial from lines 17 to 15). Second, we know that Stot(q, i) < Smin(q). Since Smin(q)

is monotonically increasing and Stot(q, i) only can be updated by an event with target

i, the last condition holds until to the next event.
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The challenge arising from this algorithm is twofold. Identify optimal threshold

values θi for each item (see Subsection 4.2.3) and index the obtained candidate queries

in a way that allows efficient retrieval of updates during the event matching operation

(lines 31 to 34) (see Section 4.3).

4.2.3 Cost analysis

The choice of θi value controls the number of candidate refresh (item match) opera-

tions and has an important impact on the overall performance of the system. Before

discussing the trade-offs between high and low values of θi, let us consider two extreme

cases, where θi = 0 and θi = +∞.

θi = 0 when threshold θi is set to zero, C(i) is empty and set U(e) is computed by

the Item Handler on each event arrival (näıve solution).

θi = +∞ A positively infinite threshod θi = +∞ results in storing as candidates for

i, the set of all relevant queries except Q(i). This approach means that the candidates

will never be refreshed by the Item Handler. However, this also results in a high

overhead for storing, matching and updating query candidates in the Event Handler

because of the potentially high number of false positives in the matching phase (lines 31

to 34). Observe also, even if there is no refresh phase, the candidate list of an item

might be very often updated by procedure RTS.update.

From the previous observations, we can easily understand that higher values of θi

minimizes the number of candidate re-evaluations through the Item Handler but also

might generate candidate lists with a lot of false positive query candidates which will

never receive the item as their update. On the other hand, low values of θi lead to

more frequent costly candidate re-evaluations on the Item Handler. In our experiments

in Section 4.4 we show that the total execution time for item and event evaluation on

Twitter’s stream can differ to up to an order of magnitude, based on the choice of θi.

Both solution might be efficient if the number of events is low (low number of refresh

and small candidate list respectively).

Ideally, a perfect estimation on the dynamic score the item will receive will enable

the evaluation of the item only once through the Item Handler and then, all incoming
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events could be matched in the Event Handler. However, this ideal solution might

still not be optimal due to the higher average matching and maintenance cost for large

candidate lists (this will also be illustrated by our experiments).

Formal cost model and optimization

In the following we show how the optimal value of θi for an item i can be determined

based on an estimation on the final item’s dynamic score and on the number of events

the item will receive.

Let cost(i, θi) denote the total aggregated execution time for some threshold value θi.

We denote by Ni = |E(i)| the estimated total number of events and by rθi the number of

necessary item match operations executed by function EH.matchEvent: rθi = dθmaxi /θie
for θi > Sev(e) and rθi = Ni for θi = 0. Observe that if 0 > θi > Sev(e), we only know

that rθi < dθmaxi /θie.
We will try find the optimal value for θi that minimizes this local cost function

for each item. Under the assumption that items are independent, since each event

corresponds to only one item, locally optimizing cost(i, θi) for every item i leads to a

globally optimized evaluation cost.

The local cost value cost(i, θi) is the sum of the aggregated item matching cost (Item

Handler), denoted costIH(i, θi), the aggregated event matching cost (Event Handler),

denoted costEH(i, θi). More precisely,

• costIH(i, θi): Each item is matched in the Item Handler index rθi times: once for

computing the initial update Q(i) (independently of θi) and at each candidate list

refresh, i.e. when the first event arrives and each time a new event arrives and θi

events have been processed since the last refresh. The cost of every item matching

operation depends on costM(i) of finding the updates and the extra cost costC(i,

θi) of retrieving and creating the candidate list in the Event Handler:

costIH(i, θi) = rθi · (costM(i) + costC(i, θi)) (4.7)

• costEH(i, θi): Each event is matched in the Event Handler as long as there is

no refresh, i.e. Ni − rθi + 1 times. The cost of every call to the event matching
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operation depends on the number of candidates Cθi(i) and on the (constant) cost

costT of checking for an update in a single query-item pair. Supposing there is

no early stopping condition when checking the candidates we obtain:

costEH(i, θi) = (Ni − rθi + 1) · Cθi(i) · costT (4.8)

Observe that we do not take account of the cost for maintaining the candidate list.

It is quite obvious that this cost also depends on the size of the candidate list (threshold

θi) and we will show in Section 4.3 that the choice of the used index data structures

might strongly influence this cost, in particular when the index is ordered for obtaining

early stopping conditions during event matching.

Case 1: No candidates When θi = 0, no candidates are maintained and all events

are matched in the Item Handler. Since, for θi = 0, rθi = Ni, costC(i, θi) = 0 and

Cθi(i) = 0 we obtain:

• costIH(i, θi) = Ni · costM(i)

• costEH(i, θi) = 0

Case 2: One refresh When θi = θmaxi , all event evaluations are performed on the

Event Handler (rθi = 1):

• costIH(i, θmaxi ) = costM(i) + costC(i, θi)

• costEH(i, θmaxi ) = Ni · Cθi(i) · costT

Finding the optimal θi

The value of Cθi(i) depends on the distribution of query minimum scores. In the follow-

ing we determine the optimal value of θi based on the assumption of a uniform query

candidate distribution over all refresh iterations: Cθi(i) = a · θi, where a is a positive

constant. We also assume that the candidate creation costC(i, θi) depends linearly on

θi: costC(i, θi) = b · θi. These assumptions simplify the calculation of the optimal θi,

nevertheless, similar analysis can be performed assuming different distributions.
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Given rθi = θmaxi /θi (we consider here the real value instead of the integer floor

value), Equations (4.7) and (4.8) the total cost(i, θi) can be written as:

cost(i, θi) =
1

θi
·

c1︷ ︸︸ ︷
θmaxi · costM(i)

+θi ·
c2︷ ︸︸ ︷

(Ni + 1) · a · costT

+

c3︷ ︸︸ ︷
θmaxi · (b+ a · costT )

We can minimize the cost function using the first derivative:

d(cost(i, θi))

dθi
= − c1

(θi)2
+ c2

We can easily see that with θi ∈ (0, θmaxi ] the derivative is negative when θi <
√
c1/c2

and positive when θi >
√
c1/c2. Consequently, function cost is monotonically de-

creasing in the interval (0,
√
c1/c2) and increasing in (

√
c1/c2, θ

max
i ], thus making

θi =
√
c1/c2 the optimal value:

θopti =

√
θmaxi · costM(i)

(Ni + 1) · a · costT

This equation essentially shows that θopti increases with the ratio costM(i)/costT

between the item matching cost and the event test cost.

4.3 Candidate indexing

The Event Handler stores query candidates (computed in the Item Handler) and

matches incoming events against them, given that the θi-condition holds. In the fol-

lowing we refine the requirements for the operations of an Event Handler index and

then, propose three categories of indexing schemes of the Event Handler and aim at

optimizing the execution time of both storing and retrieval operations.
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(a) (b) (c)

Figure 4.4: The (a) simple, (b) ordered and (c) item partitioning indexes.

4.3.1 Refining operation requirements

The main task of the Event Handler is to perform the event matching operation, i.e.

retrieve updates triggered by any arriving event. Since each event e increases the score

of a single item target(e), the updates it triggers will only concern this item and a subset

of its candidate queries. Thus, naturally, the building block of all following proposed

indexes is a dictionary from each item to its set of candidates. The proposed indexes

aim at organizing the posting lists, i.e. the candidates sets in a way that decreases the

number of false positives encountered during event matching.

Besides the matching operation, it is also important for the index to efficiently

support insertions and deletions. Candidate insertions can occur as the result of either

the item evaluation or a query update detected in either the Item Handler or the Event

Handler(Figure 4.5). In the first case, the Item Handler detects the query candidates

for an arriving (or re-evaluated) item i which lead to an insertion in the posting list of

i, in the Event Handler. In the case of updates, each change in the top-k list of a query

leads to a deletion of the item with the lowest score, supposing that the list already

contains k items. Let q be the query that is updated by an item i, and let ik be the

item that is deleted from the tok-k list of q as a result of the update. Observe that this

leads to an insertion of q as a candidate of ik in the Event Handler.

Candidate deletions can occur during event matching under two possible conditions.

If a query update is detected while iterating through the candidates set, this query
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(a) An item i (1) is evaluated in the Event Handler and a set of candidates is computed
(2). This set is inserted in the Event Handler. The updates U(i) are also retrieved (3). The
insertion of i in a query q triggers the deletion of another item i’ from its top-k list (4). If i’
fulfills the θi-condition, then q is inserted as its candidate (5).

(b) An event e (1) is evaluated in the Event Handlerand the set of updates is computed (2).
As before, any deleted item i’ (3) can potentially be inserted in the Event Handler (4). At
the same time, since i is inserted in the top-k list of q, q is no longer its candidate and has to
be removed (5)

Figure 4.5: Insertion and deletions of query candidates
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should be deleted, as it is no longer a candidate. A second case, is when a candidate q

is found to have a minimum score higher than the θi threshold of the item i: This means

that i needs to receive a dynamic score greater than θi for this query to be updated

by i. If at some point, however, after the arrival of an event, i reaches a dynamic

score Sdyn(i) > θi, due to the θi-condition failure, i will be re-evaluated in the Item

Handler and a new, valid candidates set will be retrieved. Consequently, it is safe to

remove q from the candidates set. Although deletion in both cases in not necessary

for the correctness of the result, maintaining these queries as candidates would lead

to an unnecessary number of false positives, deteriorating the overall event-matching

performance for following event evaluations.

Figure 4.5 shows an example of the aforementioned insertions and deletions that

can occur in the candidate lists.

4.3.2 Simple Event Handler

A straightforward implementation of the Event Handler posting lists is to maintain an

unordered set of candidates. Assuming a dynamic array implementation of this index

insertions and deletions of candidates can be performed in (amortized) constant time.

On event matching, however, it is not possible to apply any early stopping condition,

and all candidate queries need to be checked for updates.

Recall, however, that the candidates set computed for an item is valid for as long as

the θi-condition holds, and potentially for a big number of arriving events. Therefore,

even though the candidates posting list might contain a large number of candidates,

only a small fraction of these might actually be updated after the arrival of a single

event. An efficient implementation of the Event Handler index should be able to have

an early stopping condition so as to avoid false positives or optimally, directly retrieve

only those queries that will be updated.

4.3.3 Ordered Event Handler

Following the Fagin’s Threshold Algorithm [FLN03] approach we try to define an or-

dering of the candidates that will allow us to define an early stopping condition and
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avoid visiting all candidates in the set. Before defining the candidates order and the

stopping condition, let us first discuss the update conditions.

As defined in Section 4.2 a query q is a candidate of an item i if Smin(q)−S(q, i) ∈
(0, θi]. In fact, the value diff(q, i) = Smin(q) − S(q, i) represents the dynamic score

i should receive, for q to be updated by i. So, if we order candidates by the value

diff(q, i), on event arrival, we need to update the item’s dynamic score and only visit

candidates with a negative value of diff(q, i). Notice that this set of visited candidates

does not only guarantee that no updates will be missed: it also guarantees that the

correct set of updates is retrieved without any false positives.

Nevertheless, maintaining this order is a non-trivial problem: from the moment a

query is indexed as a candidate of an item i, until the moment of an event evaluation

for i, the minimal scores of indexed candidates has potentially changed. The value of

Smin(q) might have changed due to updates by other items or, more frequently, due to

events received by their k-th item, changing the item’s dynamic score and consequently

the Smin(q) score of the query.

It thus becomes obvious that in a such dynamic environment it is difficult to main-

tain this order. In the following, we consider the consequences of maintaining the

accurate order, as well as two heuristic approaches lazily re-ordering the candidates.

Exhaustive Index

In this solution, we consider accurately maintaining the order of query candidates by

the score difference diff(q, i). To achieve this, we need to make all necessary re-orderings

on each Smin(q) change, independently to whether it is due to an event or an item. And

these re-orderings need to be made in all postings of items that q is a candidate.

To better understand the high cost of maintenance in this index, consider that

an event e arrives and is matched through the Event Handler. Since the ordering is

correct, we can immediately detect the correct list of updates. However, to maintain

the invariant of the index we need to find all queries q that currently contain this item

i as their k-th element (determining the Smin(q)). For each such query q, we need to

find all items i’ where q is a candidate and then re-order them. The same procedure

needs to be followed also when a query q is updated by an item i.
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Thus, it becomes obvious that the performance gain from avoiding false positives

is outperformed by the time wasted on the order maintenance. The two following

solutions follow lazy re-ordering approaches, in an effort towards achieving a good

trade-off between the cost caused by false positives and the cost due to re-orderings of

candidates. In both solution, we consider that for each candidate, we store an additional

value representing the difference value, at the time instant of the candidates indexing.

Static-order Index

This solution considers an initial ordering of the candidates that is never altered. More

precisely, after the evaluation of an item in the Item Handler, all candidates detected for

this item are indexed based on the defined order: increasing order of diffq,i. As described

in the beginning of this section, additional insertions of candidates might follow this

first computation of candidates, after query updates. These queries are lazily inserted

in the beginning of the ordered lists, independently to the diffq,i value. All Smin(q)

changes are also ignored. On event arrival, we need to visit all candidate queries for

which the indexed (and not the actual) difference score is lower than the item’s dynamic

score, i.e. the score change of the item from the time of its last evaluation in the Item

Handler.

This lazy approach allows the definition of an early stopping condition and avoids

the cost of re-orderings, however due to this lack of re-orderings, the index converges

towards the simple solution.

Lazy re-ordering Index

The two previous approaches either have a very high maintenance cost due to frequent

re-ordering operations (Exhaustive), or an inefficient event matching due to lack of

maintenance of this order (Static-order). The Lazy approach lies between these two

solutions by following an “on false-positive” heuristic. Given an item i, any order

changes caused by events on other items is temporarily ignored. When an event having

i as target arrives, all false positives encountered until the stopping condition are re-

ordered as (and if) necessary.
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The intuition behind this heuristic is that the re-orderings imposed by the Exhaus-

tive solution might never be exploited, e.g. because a candidate of an item i might be

re-positioned several times before actually being visited on an event arrival. Therefore,

the Lazy approach minimizes the number of re-orderings, it introduces however, a num-

ber of false positives on event matching. Given that in the general case the complexity

of re-ordering an element in a sorted list has a logarithmic complexity, while the cost of

a false positive, is of constant complexity, it is safe to assume that the Lazy approach

is bound to be more efficient than the Exhaustive one. A false positive occurs when we

check for the update condition on that is not actually updated.

4.3.4 Item Partitioning Event Handler

The main drawback of a ordered-based indexes is the high dynamicity of the diff(q, i)

metric. When considering the exhaustive index solution, we have noted that frequent

re-orderings in the posting lists can lead to a rather inefficient performance. Even in

the more efficient, Lazy solution, the logarithmic complexity of re-orderings can result

to a poor performance in cases of a high number of false positives.

The Item Partitioning solution is based on the following observation: given two

queries q1 and q2 that are both candidates of an item i and have both another item i’

as their k-th element in the top-k list, their relative order in the candidates list of i

will never change: the events received by i’ or i, will change the scores diff(q1, i) and

diff(q2, i) by the exact same value (the event score of arriving events) and thus, their

relative order in the list remains the same. Based on this observation, in the Item

Partitioning solution, we organize the query candidates of each item, with respect to

their k-th element. The order assigned in each such group on their insertion remains

constant for as long as their k-th element remains the same, i.e. as long as they do not

receive any updates.

For instance, in Figure 4.4, item i has 5 candidate queries, two of which (q2 and

q5) have i’ as their k-th element. These queries are grouped together in a sorted list,

(ordered using the diff function). For as long as i’ remains the k-th element of both

these candidate queries, the ordering of the list is static.

On event arrival, the matching operation checks each one of these groups if the
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corresponding item, until reaching false negative or until the end of the list. In case of

an update, however, of a query q by an item, q has to be re-indexed in a the group of

its new k-th element in all items where it is a candidate. Despite the additional cost

on the query update operation, as we will see later in Section 4.4, the minimization of

both re-orderings (only on the case of updates) and false positives leads to an overall

better performance than the previous approaches.

4.4 Experiments

In this section we give an experimental evaluation of the algorithms presented in Sec-

tion 4.2 and the data structures proposed in Section 4.3, over a real dataset collected

from Twitter’s public streams. Through these experiments we evaluate the performance

of the proposed implementations of the R2TS algorithm against the näıve approach of

the AR algorithm over a number of parameters, like the total number of stored con-

tinuous queries, and query-related (k) and scoring function-related (γ) parameters.

Additionally, we assess the effect of the θi tuning parameter over the overall system

performance. For all experiments, we present the time requirements to evaluate the

items and event signals and also, the filtering achieved by each implementation over

the list of candidates, as the percentage of visited queries, before meeting the stopping

condition requirements.

Implementations The implementations tested in this section are the näıve event

evaluation presented in algorithm AR (Naive), the simple candidates index (Simple),

the lazy ordering (LazyOrder) and finally the item partitioned (ItemPart).

The implementation used for the Item Handler was a slightly modified version of

the algorithm presented in [VAC12] and available as an open source library online1.

The main functionality of item evaluation, was changed so as to additionally detect

candidate queries given a value of θi.

1continuous-top-k: https://code.google.com/p/continuous-top-k/
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#items #events min events/item avg events/item
DS1 10 676 097 13 787 349 1 1.29
DS5 (default) 201 581 2 013 427 5 9.99
DS10 56 417 1 105 639 10 19.60

Table 4.1: Number of items and events in each dataset

4.4.1 Experiments setup

Experiments were conducted using an Intel Core i7-3820 CPU@3.60. Algorithms were

implemented in Java 7 and executed using an upper limit of 8GB of main memory (-

Xmx8g). Only one core was used during execution. All times presented are the average

values of 3 identical runs after an initial warm-up execution. All queries were stored

before any item or event evaluation and their insertion time is not included in the

results.

Datasets For all experiments, real-world datasets of items and events have been used,

collected from the Twitter Stream API in a period of 5 months (from March to August

2014). From this set we have filtered out non-English tweets, as well as those without

any retweets, leading to a dataset of more than than 23 million tweets and retweets

(DS1). Two additional datasets, subsets of the original one, were created by only

considering tweets (and corresponding retweets) with at least 5 (DS5) or 10 retweets

(DS10) per item. The DS5 dataset is the default one for the experiments and contains

2.2 million retweets. In our model, an original tweet corresponds to an item and a

retweet to a feedback signal, i.e. an event for the original item (Table 4.1).

Queries were generated by uniformly selecting the most frequent n-grams of 1, 2 or

3 terms from the tweet and retweet dataset leading to an average length of 1.5 terms

per query.

Experimental parameters In each of the following experiments we change one

parameter within a given range, while all system parameters remain constant. Table 4.2

shows the default values for each parameter, as well as the range of each parameter

used for the corresponding experiments.
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parameter default value range

#queries 900 000 [100 000, 900 000]
α 0.3 (1− γ)/2
β 0.3 (1− γ)/2
γ 0.4 [0.05, 0.95]
k 1 [1, 20]

θi strategy θmaxi /2 [0, 0.2] or [0, θmaxi ]

Table 4.2: Experimental parameters

4.4.2 Experiment: on θmaxi

Figure 4.6a experimentally confirms our theoretical results over the cost model function

presented in Subsection 4.2.3. For the needs of this experiment we have assumed

accurate knowledge on the maximal value of the aggregated event score (Equation 4.1)

an item i will receive θmaxi , but no knowledge on the number of events (rθi)it will receive.

For each arriving item, we have assigned its θi value as a percentage of its θmaxi value

(horizontal axis), from 0 to 100%. The vertical axis represents the time required to

match the items and events of the dataset DS5. For the Naive solution the θi value is

not defined, its value is a constant line.

We can immediately observe a particular pattern in this graph: time requirements

tend to be low for the values 1, 0.5, 0.33, 0.25 etc., i.e. for the values θi = θmaxi /N ,

where N is a natural number. To understand this form, consider for example the case

of θi = 0.5 · θmaxi . On the first evaluation of any given item i, the list of candidates

with a difference up to θi is computed. Since θi corresponds to half the maximal value

of the aggregated item score, the item will be re-evaluated through the Item Handler

a second time, and there will be no need for a third evaluation. When a higher value

is chosen, e.g. 0.6 · θmaxi , two evaluations in the Item Handler would also be required,

with the difference that some extra, unnecessary candidates would be retrieved. This

results in an additional cost to a) compute the unnecessary candidates and b) probably

a higher number of false positives on event matching in the Event Handler.

Note that in the special case of θi = 0 all solutions converge to the Naive one:

θi = 0 implies that no candidates will be maintained and thus, all event evaluations

will be performed in the Item Handler, which is exactly the behavior of the Naive
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index.

Comparing the four indexes, we can see that the ItemPart solution outperforms the

other three, while the LazyOrder one has higher time requirements than the Simple,

despite the definition of an early stopping condition. The relatively good performance

of Simple can be explained by the lack of need for re-orderings (low maintenance

cost) and the use of the dynamic vector data structure, which guarantees fast access,

insertions and deletions. These factors compensate for the lack of an early stopping

condition. The LazyOrder and ItemPart on the other hand, use much “heavier”

data structures and need to achieve a filtering of a large portion of the candidates lists

in order to outperform the Simple solution.

Figure 4.6b shows the average percentage of candidates lists visited, until the stop-

ping condition. The Simple solution always visits 100% of the lists due to the lack of

a stopping condition. Comparing this figure to the one on the time performance, we

can observe that ItemPart has lower time requirements of about 20% with merely

visiting 5% of the lists.

4.4.3 Experiment: on the exact value of θi

The previous experiment supposed a perfect estimation of the θmaxi value, which is a

rather difficult or even impossible task in a real-time environment. In this experiment

we consider another extreme scenario: without using any knowledge or estimation on

the θmaxi per item, we simply assign the same θ value to all items. Figure 4.7a shows,

for each value θ assigned to all items, the time required to evaluate the whole dataset

(DS5).

A general observation over the indexes Simple, LazyOrder and ItemPart is that

as the value of θi increases from 0, there is a quick improvement in the performance,

while after the exceeding the optimal θi point, it deteriorates with a smaller slope: For

very small values of θ, the candidates lists become invalidated frequently (when the θi-

condition no longer holds) and a large number of arriving events need to be evaluated in

the Item Handler. This explains the first phase where the time requirements decrease.

As values of θ become much bigger, this means that the candidates lists become too big:

computing the candidates is more costly and more false positives are likely to appear.
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(a)

(b)

Figure 4.6: Event Handler: Experiment on θmaxi

96



Chapter 4. Real-Time Search Considering Feedback

Unlike in the previous setting, here except from the Naive solution, the other three

have similar performance with no more than 5% of difference in time requirements.

This behavior is justifiable when observing the average percentage of candidates visited

on each event evaluation in Figure 4.7b: in the best case for the ItemPart an average

of 10% of candidates is visited. This filtering is barely sufficient to make the ItemPart

and Simple solutions have the same time requirements for the evaluation. The reason

why both LazyOrder and ItemPart fail to achieve an earlier stopping condition and

thus, a small percentage of visited queries, is due to the arbitrary assignment of the

same θ value to all items. For some items this value can be large w.r.t. θmaxi and thus

spend unnecessary time for finding candidate queries which will never be used. On the

other hand, a small value of the θi w.r.t. θmaxi means that there will be to many costly

evaluations of events in the Item Handler.

4.4.4 Experiment: on the number of queries

In this experiment, we test the time requirements when increasing the number of con-

tinuous queries stored in the system. All queries are inserted before evaluating items

and events and their indexing time in not measured in the experiment.

From the results, presented in Figure 4.8a we can see that all four solutions scale

linearly over the number of continuous queries: as more queries stored, the size of

posting lists, in the Item Handler and of candidate queries lists also increases demand-

ing more time to iterate through the indexes to retrieve the updates. Compared to

the other three indexes, the ItemPart index demonstrates better scalability: over

100, 000 queries it requires 50% of the corresponding time for the Naive index, while

over 900, 000 it only requires 36%. The low slope of ItemPart indicates the good

performance of its stopping condition managing to filter out more candidate queries

over increasing size of the list. This observation can also be made by looking at the

average the percentage of candidates that are visited shown in Figure 4.8b gradually

decreasing from 12 to 7%.

In terms of throughput, over 900,000 continuous queries, the ItemPart solution

would be able to handle an average of 3.2 million items (tweets) or events (retweets)

per minute. Given that Twitter receives today an average of 340 thousand tweets (or
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(a)

(b)

Figure 4.7: Event Handler: Experiment on a global θ
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retweets) every minute our system, using a single CPU core could support an order of

magnitude more tweets than Twitter actually receives. Over a total of 100,000 stored

continuous queries the throughput would go to 10.9 million items and events per minute.

4.4.5 Experiment: on the γ value

In this experiment, presented in Figure 4.9a we test the performance of the indexes

over different values of the γ parameter in our underlying scoring function presented in

Equation 4.2. Recall that the γ parameter determines the importance of the aggregated

event score, i.e. the dynamic part of the query-independent item score. Over small

values of γ, each arriving event has minimal impact on the total score and only a

small number of queries are updated by the corresponding target items of the incoming

events.

In the Naive index, we observe that its performance improves for values of γ up to

0.2 and then presents a constant behavior. The other three indexes on the other hand

show a different behavior, with time requirement increasing for high values of γ. In

fact, when γ approaches the maximal value of 1, the initial static score between queries

and items is soon invalidated and the score changes due to any single event becomes

more significant. As a side-effect, the candidate lists computed on item evaluation are

soon invalidated as it is more likely for the indexed candidate queries minimal score to

have changed. This leads to an increasing number of false positives and explains the

increase in time performance. However, for the cases of values in [0.1, 0.5] (which are

more likely to be applied in a real-time web system) the performance difference of any

of these three systems to their optimal value is of less than 10%.

4.4.6 Experiment: on the k value

Figure 4.10a shows the performance of the four indexes over different values of the k

parameter, i.e. the number of items present at any time instant in the queries’ result

sets. Higher values of k, result in lower value of minimal scores for the stored queries

and consequently increase the number of item updates received by the queries. We can

observe that all four systems scale linearly on the value of k and that the ItemPart
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(a)

(b)

Figure 4.8: Event Handler: Experiment on the number of queries
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(a)

(b)

Figure 4.9: Event Handler: Experiment on the γ parameter
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and Simple have a better performance of about 20% than the other two indexes when

the k = 20.

4.4.7 Experiment: on the number of events per item

In this experiment we test the overall performance of the four systems over the three

datasets DS1, DS5 and DS10 (see Table 4.1). The main difference among these is the

average number of events each of the items receives: DS1 has an average of only 1.29

events per item while DS10 has 19.60.

Figure 4.11 shows the average (not the total) execution time for the evaluation of

each item or event in the corresponding dataset. The figure also represents the average

number of updates (#updates) provoked by each of these items or events. Initially, we

can observe that for all indexes the execution time increases proportionally w.r.t. the

number of updates: the more queries need to be retrieved as updates, the more time

is required to retrieve them. A second, more important observation is that the perfor-

mance of the three indexes based on the R2TS algorithm (Simple, LazyOrder and

ItemPart) have a better performance than the Naive index as the number of events

per items increases. Over the DS1 dataset (with the smallest number of events/item),

the ItemPart, which is the best performing index, needs 68% of the time required

by Naive, while over DS10 it only requires 29,8%. It thus becomes evident that our

system performs better over highly dynamic environments with high numbers of events

per published item.

4.4.8 Conclusions on the experiments

Our experiments demonstrate that the ItemPart and Simple solutions outperform

the Naive and LazyOrder ones over all settings, with ItemPart having a slight edge

over Simple of about 5%. Comparing the stopping conditions, ItemPart manages to

filter with the defined stopping condition a big percentage of the candidate lists and

on most cases only had to visit about 10% of the candidates before having correctly

identified all updates and stopping the algorithm. However, the heavy data structures

maintained for each item (an unsorted set of sorted lists) only allows ItemPart to
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(a)

(b)

Figure 4.10: Event Handler: Experiment on the k parameter
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Figure 4.11: Event Handler: Experiment on the number of events per item

require from 50 to 35% the time used by the Naive index, which always visits all

stored candidates.

4.5 Summary

In this chapter we have further generalized our proposed model of Chapter 3 by intro-

ducing a general class of dynamic scoring functions additionally considering feedback

signals over real-time streams, arriving at high rates. Defining a list of candidate queries

for each incoming items, we manage to efficiently evaluate incoming events as they ar-

rive. Using an analytic model we have theoretically proven the approach to determine

the optimal way of computing the candidate queries for each item. We have proposed

three general categories of in-memory indexes and heuristic-based variations on these

for storing the candidates and retrieving the updates triggered by events.

Our experimental evaluation shows the good performance of our proposed algo-

rithm. As a general, important conclusion of these experiments, we can see that all

three indexes based on candidate maintenance (Simple, LazyOrder and ItemPart)

achieve a high throughput of items and events, with ItemPart managing to handle
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3.2 million signals in a single minute, over 900 thousand stored continuous queries.

Finally, we have shown that our solutions are much faster w.r.t. the näıve solution over

high loads of events. These experimental results demonstrate the great efficiency of our

R2TS algorithm and the proposed solutions, which make them capable of answering

continuous queries over highly dynamic environments with real-time web information.
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5
MeowsReader: A Feedback Enabled

Ranking & Filtering Prototype
This chapter presents MeowsReader, a real-time news ranking and filtering prototype,

putting together the outcomes of our work presented in Chapter 3 and Chapter 4. Users

express their interests by simple text queries and continuously receive the best matching

results, deriving from U.S. news media, in an alert-like environment. Additionally, a

trend detection mechanism automatically generates trending entities from the input

streams, which can smoothly be added to user profiles in form of keyword queries.

Our prototype demonstrates that real-time search, considering news media infor-

mation coupled with social media feedback, can be formally defined and efficiently

implemented using an expressive framework supporting continuous top-k queries with

generalized scoring functions as presented in Chapter 3 and Chapter 4. The key com-

ponent that differentiates MeowsReader from existing real-time search systems based

on periodic query evaluation (e.g. Twitter Search), is the top-k filtering module which

continuously processes the incoming stream of items, through the Item Handler (see

Chapter 3) and feedback signals, through the Event Handler (see Chapter 4) for im-

mediately identifying for each new item or signal the relevant top-k query results that

have to be updated.

The MeowsReader prototype continuously aggregates news articles from more than

1,200 RSS feeds deriving from U.S. news media sources, retrieving on average 50 newly

published articles per minute. At the same time MeowsReader collects micro-blog

posts (tweets) from Twitter using the public Streaming1 and Search2 APIs. Among

the retrieved tweets, those that contain links towards our underlying news sources

serve as feedback signals on the corresponding news articles. Additionally, clicks of

MeowsReader users on articles are also used as a source of positive feedback. Modeling

news articles as items and both tweets and clicks as events, MeowsReader employs our

proposed functionality and architecture (Figure 5.1) and offers real-time filtering and

ranking of incoming information for thousands of stored continuous queries.

1dev.twitter.com/streaming/
2dev.twitter.com/rest/public/search
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Figure 5.1: Real-time search with user feedback

The rest of this Chapter is organized as follows. Section 5.1 we present the general

framework adapted by MeowsReader. Section 5.2 presents the architecture and main

components of this prototype. Section 5.3 presents the User Interface of our application

and finally, Section 5.4 summarizes the main outcomes of this work.

The prototype presented in the chapter has been published in [VAC14] and an online

demonstration of MeowsReader is accessible at http://gateway.lip6.fr:8080/meows.

5.1 Framework

The MeowsReader demonstration implements our continuous top-k query framework for

real-time search over multiple Web 2.0 textual streams. It simultaneously handles three

streams of input: queries, items and events. The queries stream contains information

on the insertion and deletion of continuous text queries and immediately updates the

query index maintained in the Item Handler. Notice however, that due to the lack of

a Query Handler component (see Figure 1.3) the inserted queries are not immediately

evaluated and their result sets are initially empty. Incoming items, arriving from more

than a thousand sources, are merged into a single streams and are linearly treated in

the Item Handler as explained in Chapter 3. Event streams, are already processed

clicks and tweets concerning a single item and are handled in the Event Handler (see

Chapter 4).
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A core component of MeowsReader is our underlying scoring function presented

in Section 4.1 and in the Equation 4.2 that takes into account query-dependent text

similarity (cosine similarity), static (article’s source authority) and dynamic (tweets

and clicks) query-independent item importance and recency of information using an

exponential decay function.

The main goal of the top-k filtering module is to detect for each new incoming item

or event the top-k query results to be updated. Figure 5.1 illustrates the general idea

of the overall query processing model. The Item Handler processes all incoming items

i and immediately detects all queries q which have to be updated according to the

static similarity and static item score (the dynamic item score is by definition equal to

0 at item arrival). The Event Handler processes incoming events, i.e. tweets or clicks

concerning a given item, and continuously decides if a query result has to be updated

because of the corresponding item score change.

5.2 The MeowsReader architecture

In this section we describe the architecture of MeowsReader, a complete Web 2.0 news

aggregation prototype featuring non-homogeneous scoring functions which can take

account of social media focus and user feedback streams for item filtering and ranking.

The overall system architecture of MeowsReader relies on a Publish/Subscribe in-

teraction scheme as presented in Figure 5.2. On the back-end, the system collects

information items and feedback signals as described in Section 5.1. The Stream aggre-

gation module crawls an extensible collection of RSS/Atom feeds published in online

media sources and generates a unique stream of information items i. Feedback sig-

nals are collected by the Feedback manager module from the real-time web (Twitter)

and by capturing user clicks on MeowsReader interface. Among the collected tweets,

we consider in particular those containing a link towards news items that are already

registered in the system. These tweets represent feedback signals on items and cause

the dynamic item score (Sdyn(i) in Equation 4.2) to increase. The score change is a

linear combination of the tweet related information (retweets, favorites) and author

information (number of followers) similar to [CLOW11].

The front-end of the system is composed of a Web user interface and the Subscrip-
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Figure 5.2: MeowsReader Architecture

tion manager. The Web user interface (see the Appendix page and the online demon-

stration) enables users to express and register their interest on incoming information

items through keyword queries. It also collects user click behavior for the Feedback

manager. The Subscription manager module takes care of the interaction between the

top-k filtering module and the user interface.

New items are simultaneously processed by the Top-k filtering module (Figure 5.1)

and the Trend detection module which extracts entities from the contents of items and

detects those entities whose frequency in recent items has a bursty behavior. A certain

number of such “popular” entities are transformed into trend queries qt, automatically

registered in the top-k Query index (Figure 5.1) and proposed to users through the

Web user interface (see below for more details).

All the core components of MeowsReader are implemented in Java 7. The user

interface is implemented using JSP, javascript and general HTML 5 technologies, like

WebSockets, permitting the immediate update of the users web page in cases of notifi-

cations on item updates.
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5.2.1 Top-k filtering

A major feature of our framework is the tight and efficient integration of a continuous

top-k filtering technique with a real-time web based ranking approach (see Section 5.1).

The implementation of this core component is an extension of the solutions presented

in Chapter 3 [VAC12]3 and a simplified version of the algorithms presented in Chap-

ter 4. Its main role is to match new items against queries which can be trends, user

subscriptions or both. The generated result is a stream of query-item pairs (q, i) where

i is added to the top-k result of q. All subscriptions to a given query simultaneously

generate the same stream which is pushed to the Subscription Manager module for

user notification. All detected query-item pairs are maintained in a top-k result cache

for immediately generating a result for new subscriptions to existing user-defined or

system generated trend queries. This architecture simplifies the whole process and in

particular the query processing task which becomes independent of the number of user

subscriptions.

5.2.2 Trend detection

Trend detection is an important feature of online Web 2.0 media applications. The

goal of this module is to automatically generate potential future subscriptions reflect-

ing the contents of recently published information. The usage of trends is twofold.

Trends indicate to users important news that might interest them and that they could

potentially miss if they only observe a static set of subscriptions. What is more, once

detected, trends are handled by the system as if they were user subscriptions and as

such, matched item results are maintained in the top-k cache. Thus, trend queries

always generate non-empty results and simulate ad-hoc query behavior (observe that

any other new user-defined query starts from an initially empty stream of results). In

MeowsReader we apply a straightforward trend detection mechanism based on named

entity frequency statistics. MeowsReader uses the OpenCalais 4 service for extracting

semantic entity phrases from incoming item contents. MeowsReader presents as trend

queries those named entity phrases, whose terms show the most bursty behavior. Bursty

3The source code is available online at http://code.google.com/p/continuous-top-k
4http://www.opencalais.com/
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behavior of a term is detected by comparing the relative difference between the total

term frequency observed so far and the recent term frequency observed in a sliding

window over the input item stream.

5.3 MeowsReader user interface

MeowsReader is based on a large collection of more than a thousand general and special-

ized U.S. news media RSS feeds and from related feedback continuously collected using

Twitter Search and Stream APIs. Users can directly access the online MeowsReader

application using the MeowsReader Web user interface on any Javascript enabled web

browser client. They can immediately access and explore a representative collection of

trends related to events taking place at that moment. In addition, users can subscribe

to queries defined in an ad-hoc manner or by refining existing trend queries. User

interaction with the platform, i.e. clicks, are registered by the system and influences

the dynamic item score values. In order get more insights about the functionality, the

collected feedback signals and other statistics are visible through the user interface.

Figure 5.3 shows a screenshot of the MeowsReader user interface. It is decomposed

into three frames which provide access to all broker services. In the main central frame,

users can see a personalized view of a selection of the most highly ranked recent articles

produced by all their subscriptions. Users can view and edit these subscriptions on the

left frame, where subscriptions are categorized into topics (e.g. Politics, Sports, ...)

for facilitating subscription and result monitoring. Selecting a topic or a subscription

generates a specialized view of top-k results in the main frame. On the right frame,

MeowsReader displays a random subset of the current trends as sample subscriptions,

which the user can accept, edit or remove.

All user categories, subscription and other preferences are locally stored in the

browser. This local storage and the usage of a low-level web socket protocol without

the necessity of cookies protects privacy as no personal data are exchanged with the

server and selected subscriptions are only known to the server while the user stays

online.

112



Chapter 5. MeowsReader: A Feedback Enabled Ranking & Filtering Prototype

Figure 5.3: The MeowsReader User Interface: Users can search through keyword-based
queries (top), manage their existing subscriptions (left), view articles as ranked and
filtered by the system (center) and view trending entities (right).

5.4 Summary

In this Chapter we have presented MeowsReader, our Java-implemented news reader,

aggregating news articles form more than 1,200 U.S. online sources and filtering them

using the continuous top-k query approach. An additional stream of feedback signals,

deriving from Twitter and from clicks on the online MeowsReader website, is exploited

to improve quality of results at real-time. We have additionally implemented a trend

detection module, discovering trending entities and proposing them to users as potential

subscriptions.

Overall, this work provides a second working application of our proposed general

framework on continuous queries. While on Chapter 4 we have considered tweets as

items and re-tweets as feedback signals here, published news articles represent the

information items to be ranked, while tweets (and retweets, favorites) and also clicks

represent the feedback events.
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Figure 5.4: As new item-updates become available for a user’s existing subscription, a
notification appears (yellow circle). By selecting the subscription, the user can see the
updates (shown by the arrow).

Figure 5.5: A user can select any trend, which immediately displays the cached re-
sult. Trends can also be modified and added to one or more user defined subscription
categories.
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Figure 5.6: The MeowsReader Sandbox User Interface: users can compare the result
of different score function configurations. As an example, for query “Barack Obama”
Strategy 1 (Social media attention) promotes the dynamic item scores (high γ param-
eter), while Strategy 2 (Information recency) changes the decay function and conse-
quently favors more recent items in the top-k result.
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6
Conclusions

6.1 Research Summary

In this thesis, we have studied the problem of continuous query filtering over dynamic

text streams. Given the massive amounts of user generated contents being published

in Web 2.0 applications, in conjunction with content from traditional information pro-

ducers, such as online news media, accessing information becomes a challenging task.

In this context, our goal is to achieve effective, near real-time information awareness

for millions of users.

To filter such streams of information, we employ the continuous top-k query eval-

uation approach. Users issue keyword queries, which are used to provide personalized

views over the streams of items (e.g. of news articles or micro-blog messages). An

underlying scoring function estimates the importance of items in the stream w.r.t.

queries. The problem of continuous top-k query evaluation is defined as the mainte-

nance of the k most highly ranked items w.r.t a given (continuous) query at each time

instant. In our proposed model, we have employed a general class of scoring functions,

considering query-dependent content relevance (e.g. with cosine similarity or Okapi

BM25), query-independent item importance (considering parameters such as informa-

tion novelty, diversity, feedback signals etc.) and also taking into account freshness of

information (using aging models and decay functions).

Existing solutions on continuous top-k query evaluation assume the use of scoring

functions that cannot support any dynamic or static query-independent ranking pa-

rameters. On the other hand, works on the real-time web which do consider highly

dynamic scoring functions over long-running queries, fail to handle the streams in an

online way and follow, instead, an approach of periodic execution of snapshot queries.

Our main contribution through this thesis is the definition of novel algorithms and

data structures for the efficient processing of continuous top-k text queries over highly

dynamic streams of items and feedback signals. Our experiments, conducted over real

collections of news media and social media data, show that our proposed solutions are

scalable and can be applied in the highly demanding context of real-time web streams.
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MeowsReader, our publicly available news recommendation prototype, demonstrates

an example application of our approach which, using minimal resources, is capable of

filtering thousands of news article per day for thousands of stored queries over dynamic

feedback streams of clicks and real-time web streams.

6.2 Perspectives

6.2.1 Employing dynamic continuous queries

In our work we have considered that the stored continuous queries are user defined

and remain static. In practice, however, most modern commercial search engines, like

the Google search engine or Twitter search, additionally consider user profiles when

answering queries, i.e. users past interaction with the system (e.g. clicks) or their

social network (e.g. followees in Twitter) [BGL+12]. The use of social and news media

by millions of users and the increasing amount of time spent by each user in such online

systems makes user profiles highly dynamic and thus, their continuous evaluation over

streams of information becomes an non trivial problem.

In our proposed problem formulation, user profiles could be represented by contin-

uous queries which evolve in time. The evolution of a continuous query might be seen

as a replacement of an old version by a new one or as a modification of its definition

(insertion/deletion of terms and/or change of term weights). In both cases, the query

index structure we proposed in Chapter 3 should be adapted to accommodate these

updates. In particular, indexed query points then might move ”vertically” in the two

dimensional inverted query index of a given term. While our current implementations

do not exclude this kind of updates, they might require new optimizations for avoiding

performance loss for high update frequency.

Spatial queries is another motivating example for supporting dynamic queries using

the continuous top-k evaluation approach. For instance, Google Now1, an application

recommending to mobile users popular places, traffic and public transport updates,

breaking news etc. bases its results on the location of users additionally to their profiles.

1www.google.com/landing/now/
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To the best of our knowledge, there are no existing solutions following the continuous

top-k query evaluation approach that consider such dynamic user profiles.

6.2.2 Internet of things

During the past decade, we have witnessed the transformation of the web from a static

environment to a vibrant information place. We are nowadays traversing the era of

Web 2.0 and of the real-time web, with massive amounts of user-generated information

and feedback becoming available at high rate streams. So, one could wonder: what is

next?

The vision of the Internet of Things (IoT) [Kop11] lies in enabling objects, such as

health monitor devices, drones2, smart watches or even simple lamps, to be connected

on the Internet and be able to transmit information. In information filtering, IoT

opens yet another dimension on content generation. It enables a real-time monitoring

and sensing of the physical world and not only the digital world [CP15]. Moreover, it

allows the construction of far more dynamic user profiles for real-time context aware

recommendation [Gup15] and data filtering [FGL+13]. Research questions that rise in

this context, include the modeling of information filtering in such novel environments

and providing efficient, scalable and personalized filtering in real-time.

The framework we proposed in this thesis combines queries, information items and

feedback signals. In this setting, users are interested in personalizing massive informa-

tion flows via continuous queries. Our underlying assumption is that textual items are

produced and consumed by users, while their diffusion is constantly assessed by a large

community through shares, likes, etc. In a different context, IoT information ranges

from raw data produced by sensors (e.g. measurements) to high level data produced by

analytic applications (e.g. events) while user feedback becomes more and more implicit

regarding items (e.g., users attention can be inferred by the duration of the activities

involving an item or the observed emotional affective state, etc.), of both the digital

and physical worlds.

We argue that current state of the art techniques mainly based on the extensive

storage of all data and the execution of snapshot queries are not a viable solution in the

2Drones: unpiloted aerial vehicles, remotely controlled
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context of real-time IoT applications. Our work lays the foundation for an alternative

continuous filtering and data processing architecture able to manage the traditional

trade-off between expressivity and performance, based on new indexing and pruning

techniques for reducing memory and processing costs. One direction of future work is to

generalize the proposed continuous top-k filtering model to other kinds of data sharing

between humans and machines, where scoring functions and real-time filtering play a

crucial role. Another perspective is to study dynamic scoring functions for complex

event processing as a common filtering functionality of real-time analytics applications

in Internet of Things (IoT) [PZCG14, GSJM14].
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