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Coupling schemes and unfitted mesh methods
for fluid-structure interaction

Abstract: This thesis is devoted to the development and analysis of efficient nu-
merical algorithms for the simulation of mechanical systems involving the interaction
of a deformable thin-walled structure with an internal or surrounding incompressible
fluid flow.

In the first part, we introduce two new classes of explicit coupling schemes using
fitted fluid and solid meshes. The methods proposed combine a certain (parameter
free) Robin-consistency in the system with (i) a projection-based time-marching
in the fluid or (ii) second-order time-stepping in both the fluid and the solid. The
stability properties of the methods are analyzed within representative linear settings.
This part includes also a comprehensive numerical study in which state-of-the-art
coupling schemes (including some of the methods proposed herein) are compared
and validated against the results of an experimental benchmark.

In the second part, we consider unfitted mesh formulations. These approaches
are more versatile at simulating problems with large interface deflections and/or
topological changes. The spatial discretization in this case is based on variants of
Nitsche’s method with cut elements. Robustness with respect to arbitrary interface
intersections is guaranteed through suitable stabilization. For a fictitious domain
setting using overlapping meshes, we present two new classes of splitting schemes
which exploit the aforementioned interface Robin-consistency in the unfitted frame-
work. The semi-implicit or explicit nature of the splitting in time is dictated by the
order in which the spatial and time discretizations are performed. In the case of
the coupling with immersed structures, weak and strong discontinuities across the
interface are allowed for the velocity and pressure, respectively. Stability and error
estimates are provided, using energy arguments within a linear setting. A series of
numerical tests, involving static and moving interfaces, illustrates the performance
of the different methods proposed.

Keywords: Fluid-structure interaction, Coupling schemes, Partitioned algo-
rithms, Time-accurate schemes, Unfitted mesh methods, Nitsche’s method, XFEM,
Thin-walled solids.





Schémas de couplage et méthodes de maillage non compatibles
pour l’interaction fluide-structure

Resumé: Cette thèse est dédiée au développement et à l’analyse des algo-
rithmes numériques efficaces pour la simulation des systèmes mécaniques impliquant
l’interaction entre une structure mince déformable et un fluide incompressible in-
terne ou qui l’entoure.

Dans la première partie, nous introduisons deux nouvelles classes de schémas de
couplage explicites en utilisant des maillages compatibles pour le fluide et le solide.
Les méthodes proposées combinent une certaine consistance Robin dans le système
avec (i) un schéma à pas fractionnaire pour le fluide ou (ii) une discrétisation tem-
porelle d’ordre deux pour le fluide et le solide. Les propriétés de stabilité des méth-
odes sont analysées dans un cadre linéaire représentatif. Cette partie inclut aussi
une étude numérique exhaustive dans laquelle plusieurs schémas de couplage (dont
certains proposés ici) sont comparés et validés avec des résultats expérimentaux.

Dans la seconde partie, nous considérons des maillages non compatibles. Ces
approches sont plus versatiles quand il s’agit de simuler des problèmes avec des
grands déplacements et/ou des changements topologiques. La discrétisation spatiale
est basée, dans ce cas là, sur des variantes de la méthode de Nitsche avec éléments
coupés. La méthode est robuste par rapport à des intersections arbitraires entre
les maillages fluide et solide grâce à des termes de stabilisation appropriés. Dans
un contexte de domaine fictif avec des maillages superposés, nous présentons deux
nouveaux types de schémas de découplage qui exploitent la susmentionée condition
de Robin en utilisant des maillages incompatibles. Le caractère semi-implicite ou
explicite du couplage en temps dépend de l’ordre dans lequel les discrétisations
spatiales et temporelles sont effectuées. Dans le cas d’un couplage avec des structures
immergées, la vitesse et la pression discrètes permettent des discontinuités faibles et
fortes à travers l’interface, respectivement. Des estimations de stabilité et d’erreur
sont fournies en utilisant des arguments d’énergie dans un cadre linéaire. Une série
de tests numériques, avec des interfaces statiques et mobiles, illustre la performance
des différentes méthodes proposées.

Mots-clés: Interactions fluide-structure, Schémas de couplage, Algorithmes par-
titionnés, Méthodes de maillages non compatibles, Méthode de Nitsche, XFEM,
Structures minces.
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Introduction





Thesis general context

Mechanical systems involving the interaction of a deformable thin-walled struc-
ture with an internal or surrounding incompressible fluid flow appear in a wide
variety of scientific and engineering fields: from the aeroelasticity of sailing boats
and parachutes, to sloshing dynamics in tanks, heat exchangers design, micro-
encapsulation technology and the biomechanics of animal cells and physiological
flows (see, e.g., [LPQR12, TT12, ESM09, PPdL11, Poz10, YM10, HH11, MXA+12]).

An application of particular interest in this thesis is the numerical simulation of
blood flows. This includes, for instance, the interaction between blood and the vessel
wall in large arteries (see, e.g., [HH11, MXA+12]) or the opening and closing dynam-
ics of heart valves when blood is propelled into the arteries (see, e.g., [AGPT09]).
The underlying motivation is that, computer based simulations in patient-specific
geometries, can be used by the physicians to enhance diagnosis and therapy planing
(see, e.g., [TDK+99, FQV09]). Moreover, such simulations can also be a major ingre-
dient in the design and optimization of medical devices (see, e.g., [LJGO+03, SS04]).
These applications, together with the growing interest in addressing inverse prob-
lems for model personalization (see [PVV11, BMG12]), call for efficient and accurate
numerical methods.

Position of the thesis

The basic principle of this work is that, for efficiency, the numerical methods
must introduce a significant degree of splitting between the fluid and solid time-
steppings. In other words, they must avoid strong coupling (i.e., the fully implicit
treatment of the kinematic-dynamic coupling). This is a challenging problem since,
in incompressible fluid-structure interaction, the interface coupling can be extremely
stiff (see Section 1.4.3.3).

With regard to the spatial discretization, the numerical approximations of these
coupled systems are generally tailored to the amount of solid displacement within
the fluid. Hence, problems with low or moderate interface displacements are treated
by using a moving fitted mesh technique, based on an ALE (arbitrary Lagrangian-
Eulerian) description of the fluid. This enables a simple and accurate prescription of
the interface conditions. Since the beginning of this century, the development of effi-
cient splitting methods within this framework has been a very active field of research
and the subject of numerous achievements (see Section 1.3.2). In particular, uncon-
ditional stability and optimal first-order accuracy can be obtained via a specific
explicit Robin-Neumann treatment of the interface coupling (see Section 1.4.3.5).
This enables the full splitting of the fluid and solid time-marchings. In the first part
of this thesis, different (first- and second-order) time discretizations are investigated
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within this coupling paradigm, including some comparisons with experimental data.
For problems involving large structural deflections, with solids that might come

into contact or that might break up, the situation is much more delicate. In this
case, the ALE formalism becomes cumbersome. A favoured alternative is to combine
an Eulerian formalism in the fluid with an unfitted mesh discretization, in which
the fluid-structure interface deforms independently of a background fluid mesh (see
Sections 1.3.1.2-1.3.1.3). In general, these methods are known to be inaccurate
in space, e.g., because the space discretization does not allow for weak and strong
discontinuities across the immersed interface (sub-optimal convergence and spurious
oscillations). Moreover, the design and analysis of splitting schemes which avoid
strong coupling in this unfitted mesh framework have been rarely addressed in the
literature so far. These difficulties are addressed in the second part of the thesis.

Thesis outline and main contributions

We highlight below the contributions of this work chapter by chapter. For the
sake of completeness, they are recalled and motivated at the beginning of each
chapter.

Chapter 1. This is an introductory chapter. We present some standard mate-
rial regarding the mathematical modeling of fluid-structure interaction problems. A
review of the state-of-the-art on numerical techniques for fluid-structure interaction
is presented. For a representative linear model, the full discretization, using fitted
and unfitted meshes and different coupling schemes, is discussed. In particular, two
cornerstones of this thesis are described in detail: the Robin-Neumann explicit cou-
pling paradigm of [Fer13] and the unfitted Nitsche discretization using overlapping
meshes of [BF14b].

Part I. Fitted mesh methods

Chapter 2. This chapter shows how the Robin-Neumann coupling paradigm of
can be formulated with a projection-based time-marching in the fluid. The resulting
schemes enable (for the first time) a fully decoupled computation of the entire fluid-
solid state (velocity, pressure, displacement). For a linear coupled problem, we
present a priori energy estimates which guarantee unconditional stability for some
of the variants. The proposed fully decoupled schemes are also formulated within
a non-linear framework. A thorough numerical study, including the simulation of
blood flow within a patient-specific geometry under physiological conditions, shows
that the proposed methods preserve the stability and accuracy of the original Robin-
Neumann schemes.

Chapter 3. We investigate the extension of the explicit Robin-Neumann cou-
pling to deliver second-order time-accuracy through suitable time-stepping in the
fluid and solid subsystems. We present theoretical results which give some insight
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on the stability properties of the methods. Two second-order time-accurate methods
are presented and investigated numerically.

Chapter 4. We present a thorough numerical study in which a representative
sample of state-of-the-art coupling schemes for fluid-structure interaction (including
the schemes introduced in Chapter 2) are, for the first time, compared and validated
against the experimental results of a benchmark.

Part II. Unfitted mesh methods

Chapter 5. We address the formulation and the analysis of the Robin-
Neumann splitting in the unfitted mesh framework. Two new classes of semi-implicit
or explicit splitting schemes are derived, depending on the order in which the space
and time discretization are performed. For the first class of schemes, a complete
energy-based stability and a priori error analysis is presented. For the second class,
stability and a priori error estimates are presented for one of the variants. A numer-
ical study in a benchmark confirms that the stability and accuracy of the original
splitting is preserved in the unfitted framework.

Chapter 6. In this chapter we introduce an accurate and robust Nitsche-
XFEMmethod for the coupling of an incompressible fluid with immersed thin-walled
structures. The second contribution has to do with the time-discretization. Several
coupling schemes with different degrees of fluid-solid splitting are presented, some
of them based on the ideas reported in Chapter 5. A thorough numerical study,
involving static and moving interfaces, illustrates the performance of the methods
introduced. In particular, the proposed semi-implicit schemes (i) deliver superior
stability and accuracy with respect to alternative methods of explicit nature; (ii)
avoid the strong coupling of alternative coupling schemes without compromising
stability and accuracy.
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Chapter 1

Numerical methods for incompressible
fluid-structure interaction

In this chapter we present some standard material regarding the mathematical modeling
of fluid-structure interaction problems. Some of the available numerical techniques for this
type of problems are reviewed according to two classification criteria: the modeling frame-
work adopted and the degree of fluid-solid splitting. We present the detailed fully discrete
(space and time) treatment of a linear problem, using fitted and unfitted meshes and a range
of different coupling schemes.

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Fluid-structure interaction . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Fluid equations . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2 Structure equations . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3 Fluid-structure coupled problem . . . . . . . . . . . . . . . . 17

1.3 Numerical methods: State-of-the-art . . . . . . . . . . . . . . 21

1.3.1 Modeling frameworks . . . . . . . . . . . . . . . . . . . . . . 21

1.3.2 Coupling schemes . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Discretization of a model coupled problem . . . . . . . . . . 26

1.4.1 A linear model problem . . . . . . . . . . . . . . . . . . . . . 27

1.4.2 Space semi-discretization . . . . . . . . . . . . . . . . . . . . 28

1.4.3 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . 37

1.1 Introduction

In the following, it is assumed that the reader is familiar with the fundamen-
tals of continuum mechanics (kinematics of continuum media, conservation laws
and constitutive relations). We refer to [Mal69, Gur81] for introductory texts to
continuum mechanics. For general introductions to fluid-structure interaction, we
refer to [FFGQ09, Ast10] and the references therein. We refer also to [Nob01] for
an extensive discussion of the Arbitrary Lagrangian-Eulerian (ALE) formulation,
which is only briefly presented in this chapter. The reader interested in a more in-
depth discussion in the mathematical aspect of solid mechanics is referred to [Cia88].
The material reported in this chapter regarding the modeling of thin-walled solids
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is basically based on [CB11] and [FFGQ09]. Regarding the numerical treatment
of the coupled problem, introductory material can be found in [FG09]. See also
[HWL12, Fer11a] for recent reviews.

This chapter is organized as follows. Section 1.2 is devoted to the mathematical
modeling of fluid-structure interaction problems. A review of some of the state-
of-the-art numerical techniques for their approximation is presented in Section 1.3.
The full discretization of a model linear coupled problem is discussed, using both
fitted and unfitted meshes and different coupling schemes, in Section 1.4.

1.2 Fluid-structure interaction

We consider a mechanical system involving a deformable structure and a fluid
medium occupying, respectively, the domain Ωs(t) and Ωf(t) in their current config-
uration. Here, Ωs(t),Ωf(t) ⊂ Rd, d = 2, 3, for all t ∈ R+. The domain Ωf(t) evolves
in time according to the deformation of Ωs(t), but Ω

def
= Ωf(t)∪Ωs(t) is assumed to be

fixed for all t ∈ R+ (see Figure 1.1). The current configuration of the fluid-structure
interface is given by Σ(t)

def
= ∂Ωf(t)∩∂Ωs(t). We denote by Ωf∪Ωs a reference config-

uration of the system, which can be taken, for instance, as the initial configuration.
The reference fluid-structure interface is given by Σ

def
= ∂Ωf ∩∂Ωs. Furthermore, the

following partitions of the fluid and solid boundaries are considered,

∂Ωf = Γin ∪ Γout ∪ Γwall ∪ Σ, ∂Ωs = Γs
d ∪ Σ,

with Γin, Γout, Γwall and Γs
d remaining fixed during the evolution of the system (see

Figure 1.1). Finally, we denote by n and ns the outward normal vector of the fluid
and solid boundaries respectively, the same notation being used for the current and
reference configuration.

⌦f ⌦f(t)

⌦s(t)

�(·, t)

⌃(t)

⌦s

�s
d

⌃

A(·, t)

�in �out

�wall

Figure 1.1: Geometrical configuration.
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1.2.1 Fluid equations

The fluid, which is assumed to be homogeneous, incompressible and Newtonian,
is governed by the Navier-Stokes equations. This is a common modeling assumption
when describing blood in large (or medium size) arteries (see, e.g., [Thi08, FPQ09]).
In the sequel, we introduce these equations in the Eulerian and in the ALE frame-
work.

1.2.1.1 Eulerian formulation of the Navier-Stokes equations

The Navier-Stokes equations in the Eulerian frame reads: find the fluid velocity
u : Ωf(t)× R+ → Rd and the pressure p : Ωf(t)× R+ → R, such that

{
ρf
(
∂tu+ u ·∇u)− divσ(u, p) = 0 in Ωf(t),

divu = 0 in Ωf(t),
(1.1)

where ρf stands for the fluid density and σ(u, p)
def
= −pI + 2µε(u) for the fluid

Cauchy stress tensor, with µ the fluid dynamic viscosity and ε(u)
def
= 1

2

(∇u+∇uT
)

the strain rate tensor.
System (1.1) has to be complemented with an initial condition for the velocity,

u(0) = u0 in Ωf(0), and with suitable boundary conditions. For instance, Dirichlet
and Neumann boundary conditions can be prescribed on Γin, Γwall and Γout as
follows 




u = uin on Γin,

u = 0 on Γwall,

σ(u, p)n = −poutn on Γout,

(1.2)

where uin and pout denote, respectively, an inlet velocity and an outlet pressure
profile. The discussion regarding boundary conditions over Σ(t) is postponed until
Section 1.2.3.

1.2.1.2 ALE formulation of the Navier-Stokes equations

In the ALE framework, the moving fluid domain Ωf(t) is supposed to be
parametrized by a smooth injective map

A : Ωf × R+ → Rd, (x̂, t) −→ x = A(x̂, t),

such that Ωf(t) = A(Ωf , t) for all t ∈ R+ (see Figure 1.1), and which is given by the
relation A = IΩf + df , where df : Ωf × R+ → Rd is the fluid domain displacement.
The fluid domain velocity is denoted by

.̂
df def

= ∂tA. The deformation gradient and
Jacobian associated to the deformation At

def
= A(·, t) are given, respectively, by

F
def
= ∇At and J

def
= detF .

Any physical field q involved in the description of the fluid can be alternatively
evaluated on the reference configuration, adopting (x̂, t) as independent variables,
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or on the current configuration, adopting instead (x, t). Using the superscript ̂ to
indicate the former alternative, the relation between both formulations is given by

q̂(x̂, t)
def
= q(At(x̂), t) ∀x̂ ∈ Ωf ,

q(x, t)
def
= q̂(A−1

t (x), t) ∀x ∈ Ωf(t).
(1.3)

Along this chapter, if the same field appears evaluated on the reference and current
configuration, we adopt the superscript ̂ to distinguish between formulations. If a
field is defined always in the same configuration, there is no place for confusion, and
the superscript is not used.

The Navier-Stokes equations in the ALE frame reads: find the fluid velocity
û : Ωf × R+ → Rd and the pressure p̂ : Ωf × R+ → R, such that

{
ρf∂tu|A + ρf(u−

.
df) ·∇u− divσ(u, p) = 0 in Ωf(t),

divu = 0 in Ωf(t),
(1.4)

where ∂tu|A stands for the ALE time derivative. We recall that ∂̂tu|A def
= ∂tû.

As in the previous section, the system is complemented with the initial condition
u(0) = u0, with the boundary conditions (1.2) and with suitable coupling conditions
over Σ(t).

Remark 1.1 The benefits of formulation (1.4) with respect to (1.1), when working
with an evolving computational domain, comes from the presence of the ALE time-
derivative. This time-derivative can be naturally approximated when using moving
meshes, since incremental quotients in that case involve nodal values associated to
different spatial locations.

1.2.2 Structure equations

We suppose that an elastic material governed by the general d-dimensional non-
linear elastodynamics equations fills the domain Ωs(t). We use this model to write
the non-linear coupled fluid-structure problem in Section 1.2.3. Nevertheless, in
view of the prominent role played by thin-walled solid models in this work, we also
present different alternatives to describe the solid behavior in terms of equations
written in domains of co-dimension one (shell, plate or string models). This allows
to effectively reduce the full d-dimensional solid problem to a (d − 1)-dimensional
problem.

1.2.2.1 The elastodynamics equations

The solid domain Ωs(t) is supposed to be parametrized in terms of a smooth,
injective and orientation preserving mapping

φ : Ωs × R+ −→ Rd, (x̂, t) −→ x = φ(x̂, t)
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such that Ωs(t) = φ(Ωs, t) for all t ∈ R+ (see Figure 1.1). In the following, we denote
by d(x̂, t)

def
= φ(x̂)− x̂, x̂ ∈ Ωs, the solid displacement. Associated to φt

def
= φ(·, t),

we have the solid deformation gradient F s def
= ∇φt and the Jacobian J s def

= detF s.
The non-linear elastodynamics equations in the Lagrangian frame reads: find the
solid displacement d : Ωs ×R+ → Rd and the velocity

.
d : Ωs ×R+ → Rd, such that

{
ρs∂t

.
d− divΠ(d,

.
d) = 0 in Ωs,
.
d = ∂td in Ωs,

(1.5)

where ρs represents the solid density and Π the first Piola-Kirchhoff stress tensor
of the structure. We recall that Π

def
= J sσs(F s)−T , with σs the solid Cauchy stress

tensor. Here, we assume that

Π(d,
.
d)

def
= F sΣ(d) + β∂dΣ(0)

.
d, (1.6)

where the symmetric tensor Σ(d) stands for the elastic second Piola-Kirchhoff stress
tensor of the solid. In (1.6), the the tensors F sΣ(d) and β∂dΣ(0)

.
d describe,

respectively, the elastic and viscous behavior of the solid. Here, ∂dΣ(0) denotes the
Fréchet derivative of Σ at 0 and β > 0 is the damping coefficient.

System (1.5) has to be complemented with initial conditions for the displacement
and the velocity, d(0) = d0 and

.
d(0) =

.
d0, and with suitable boundary conditions.

For instance, the following homogeneous Dirichlet condition may be prescribed,

d = 0 on Γs
d.

The discussion regarding boundary conditions over Σ(t) is postponed until Sec-
tion 1.2.3.

The relation between Σ(d) and d is stablished through an appropriate consti-
tutive law (see, e.g., [Gur81, Cia88, LT94b]). For an hyper-elastic material, for
instance, we have

Σ(E) =
∂W

∂E

(
E
)
,

where
E

def
=

1

2

(
(F s)TF s − I

)
(1.7)

stands for the Green-Lagrange strain tensor and W : Rd×d → R+ is a given density
of elastic energy. For a homogenous isotropic material whose reference configuration
is the natural state, a simple example entering this framework is given by the Saint
Venant-Kirchhoff model, which corresponds to

W
(
E
)

=
L1

2

(
tr E

)2
+ L2 tr E2,

and, consequently, to
Σ
(
E
)

= L1

(
tr E

)
I + 2L2E. (1.8)
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Here, L1 and L2 denote the Lamé coefficients of the material. Relation (1.8) is also
known as generalized Hooke’s law. Usually the elastic properties of a material are
given in terms of its Young modulus E and Poisson ratio ν. Loosely speaking, E
measures the force (per unit area) that is needed to stretch (or compress) a material
sample whereas ν measures lateral contraction. These quantities are related to the
Lamé coefficients through the relations,

L1 =
Eν

(1− 2ν)(1 + ν)
, L2 =

E

2(1 + ν)
.

Let us recall that, under the hypothesis of infinitesimal strains (linear elasticity
theory), the Green-Lagrange strain tensor E can be approximated by the linearized
strain tensor

ε(d)
def
=

1

2

(∇d+ ∇dT
)
. (1.9)

The linearized stress-strain relation then reads

σs(d,
.
d)

def
= σe(d) + βσe(

.
d), σe(d)

def
= L1

(
tr ε(d)

)
I + 2L2ε(d). (1.10)

1.2.2.2 Thin-walled solid models

Along this work, different reduced structural models, defined on domains of co-
dimension one, will be intensively used. In that case, we consider that the solid
reference configuration Ωs is defined by its mid-surface Σ and its thickness ε > 0,
which we take as a constant for simplicity. Note that we refer to the solid mid-
surface as Σ, which is also used to denote the fluid-structure interface. The reason
for this abuse of notation will be justified in Section 1.2.3.

In general, thin-walled models may be used in cardiovascular simulations when-
ever the ratio thickness/size of the solid structure is small, as it is the case in cardiac
valve simulation (see, e.g., [DSGB08, AGPT09, KHS+15]).

We start this presentation of thin-walled solid models by considering a rather
general shell model. Afterwards, the consideration of simplifying modeling assump-
tions leads to the derivation of decreasingly complex thin-walled solid models. A
detailed presentation of the theory of shells is out of the scope of this introductory
chapter. We refer to [CB11, BBWR04] for general introductions. Furthermore, we
restrict the discussion herein to the linear theory of shells (infinitesimal deforma-
tions), although non-linear shell models will be used in Chapters 2 and 4. We refer
to [CB11, Chapter 9] (see also [LS05]) for texts discussing to the non-linear theory.

In the following we assume that d = 3. We consider a chart

ψ : ω ⊂ R2 −→ R3, (ξ1, ξ2) −→ ψ = ψ(ξ1, ξ2),

parametrizing the solid reference mid-surface, i.e., Σ = ψ(ω). The local covariant
basis are given by (a1,a2), with aα = ∂αψ = ∂ψ

∂ξα
, α = 1, 2. The corresponding
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⇠1

⇠2

a3(⇠)

⇠

!

a1(⇠)

a2(⇠)

R2

R3

⌃

Figure 1.2: The chart ψ and the triad {a1,a2,a3}.

contravariant basis are denoted by (a1,a2). The normal unit vector is defined as

a3 =
a1 × a2

|a1 × a2|
.

In the sequel, Greek indexes take values in {1, 2} and Latin indexes in {1, 2, 3}.
The Einstein summation convention for repeating indices is adopted. The surface
metric tensor, or first fundamental form, is given by aαβ = aα · aβ , with inverse
aαβ = aα · aβ . The second and third fundamental forms are given, respectively,
by bαβ = a3 · ∂αaβ and cαβ = bαγb

γ
β , with bγβ = aγλbλβ . Given a vector field

q = q(ξ1, ξ2) on the mid-surface, we denote by qα|β the surface covariant derivative
of its covariant component qα, defined as qα|β = ∂βqα−Γλαβqλ, where Γλαβ = aα ·∂βaβ
denote the Christoffel’s symbols. Finally, we consider the mapping

Ψ : Θ ⊂ R3 −→ R3, (ξ1, ξ2, ξ3) −→ Ψ(ξ1, ξ2, ξ3) = ψ(ξ1, ξ2) + ξ3a3(ξ1, ξ2),

with Θ
def
=
{

(ξ1, ξ2, ξ3) ∈ R3
/

(ξ1, ξ2) ∈ ω, ξ2 ∈ [− ε
2 ,

ε
2 ]
}
. The reference configu-

ration Ωs is assumed to be parametrized by Ψ, i.e, Ωs = Ψ(Θ).

Under the Reissner-Mindlin kinematic assumption [Rei45, Min51], a material
line orthogonal to the reference mid-surface is assumed to remain straight and un-
stretched during the deformation. The assumed displacement during loading is given
by

η(ξ1, ξ2, ξ3)
def
= d(ξ1, ξ2) + ξ3θλ(ξ1, ξ2)aλ(ξ1, ξ2), (1.11)

with d(ξ1, ξ2) the global infinitesimal displacement of the mid-surface and
θ(ξ1, ξ2)

def
= θλ(ξ1, ξ2)aλ(ξ1, ξ2) the rotation vector around the normal to the mid-

surface (see, e.g., [CB11, Section 4.1]). Assuming (1.11), a general viscoelastic
thin-walled solid is described by: find the solid displacement d : Σ× R+ → R3 and
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the rotation vector θ : Σ× R+ → R3, such that




ρsε∂t
.
d+Le

d(d,θ) +Lv
d(
.
d,

.
θ) = fΣ on Σ,

Le
θ(d,θ) +Lv

θ(
.
d,

.
θ) = 0 on Σ,

.
d = ∂td,

.
θ = ∂tθ on Σ,

d = θ = 0 on ΓΣ
d ,

(1.12)

with ΓΣ
d ⊂ ∂Σ and satisfying the initial conditions d(0) = d0, θ(0) = θ0,

.
d(0) =

.
d0

and
.
θ(0) =

.
θ0. The relation (1.12)2 represents the additional equation for the

rotations and fΣ denotes a given force per unit area. The surface operators
(
Le
d,L

e
θ

)

and
(
Lv
d,L

v
θ

)
represent the strong formulation of the thin-solid elastic and viscous

contributions, respectively. Since they are supposed to be linear, they admit the
following decomposition:

Le
d(d,θ)

def
= Ae

dd+Be
dθ, Lv

d(d,θ)
def
= Av

dd+Bv
dθ,

Le
θ(d,θ)

def
= Be

θd+Ae
θθ, Lv

θ(d,θ)
def
= Bv

θd+Av
θθ.

(1.13)

Remark 1.2 As usual in shell dynamic analysis, the rotational inertial term is
neglected in (1.12)1. The modeling of the viscous effects may be simplified by
considering Lv

d(
.
d,

.
θ) = Lv(

.
d) with Lv

θ = 0 (see Chapters 2 and 4).

In order to provide examples of the abstract operators involved in (1.13), we
must resort to constitutive laws giving the relationship between stresses and strains.
The actual setting being linear, the strain measures are given by the linearized
strain tensor (1.9). The components of the strain tensor (1.9) corresponding to the
displacement (1.11) are given, in curvilinear coordinates, by

εαβ = γαβ(d) + ξ3χαβ(d,θ)− ξ2
3καβ(θ),

εα3 = ζα(d,θ),

ε33 = 0,

where
γαβ(d) =

1

2

(
dα|β + dβ|α

)
− bαβd3,

χαβ(d,θ) =
1

2

(
θα|β + θβ|α − bλβdλ|α − bλαdλ|β

)
+ bαβd3,

καβ(θ) =
1

2

(
bλβθλ|α + bλαθλ|β

)
,

ζα(d,θ) =
1

2

(
θα + ∂αd3 + bλαdλ

)
.

The quantities γαβ(d), χαβ(d,θ) and ζα(d,θ) represent the covariant components
of the membrane, bending and shear strain tensors of the shell, respectively (see,
e.g., [CB11, Section 4.2.2] for further details).

As usual in shell modeling, we make the assumption of plane stresses (zero
stresses along the normal direction). The stress-strain relationship is given by
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Hooke’s law. In the following, the scalar product in L2(ω) is denoted by (·, ·)ω and
its norm by ‖ · ‖0,ω, with ω being a given domain or surface in R3. Considering the
standard variational formulation of a linear elastic problem (see Section 1.4.2.1 be-
low) written in curvilinear coordinates over the 3D domain Ωs, truncating the higher
order terms in ξ3 and integrating with respect to ξ3 (see [CB11, Section 4.2.1-4.2.2]
for the details), we obtain the following shear-membrane-bending model :

ρsε
(
∂t
.
d,w)Σ + ε

(
Cαβλξγαβ(d), γλξ(w)

)
Σ

+
ε3

12

(
Cαβλξχαβ(d,θ), χλξ(w,ϑ)

)
Σ

+ ε
(
Dαλζα(d,θ), ζλ(w,ϑ)

)
Σ

=
(
fΣ,w

)
Σ
, (1.14)

with arbitrary test functions (w,ϑ) vanishing on ΓΣ
d and

Cαβλξ def
=

E

2(1 + ν)

(
aαλaβξ + aαξaβλ +

2ν

1− ν a
αβaλξ

)
, Dαλ def

=
2E

1 + ν
aαλ,

In this framework, the abstract operators introduced in (1.13) are given by:

(
Ae
dd,w

)
Σ

= ε
(
Cαβλξγαβ(d), γλξ(w)

)
Σ

+
ε3

12

(
Cαβλξχαβ(d,0), χλξ(w,0)

)
Σ

+ ε
(
Dαλζα(d,0), ζλ(w,0)

)
Σ
,

(
Be
dθ,w

)
Σ

=
ε3

12

(
Cαβλξχαβ(0,θ), χλξ(w,0)

)
Σ

+ ε
(
Dαλζα(0,θ), ζλ(w,0)

)
Σ
,

(
Be
θd,ϑ

)
Σ

=
ε3

12

(
Cαβλξχαβ(d,0), χλξ(0,ϑ)

)
Σ

+ ε
(
Dαλζα(d,0), ζλ(0,ϑ)

)
Σ
,

(
Ae
θθ,ϑ

)
Σ

=
ε3

12

(
Cαβλξχαβ(0,θ), χλξ(0,ϑ)

)
Σ

+ ε
(
Dαλζα(0,θ), ζλ(0,ϑ)

)
Σ
.

(1.15)
Note that Ae

d,A
e
θ are symmetric and that Be

d is the adjoint of Be
θ (and vice versa).

The viscous operators Av
d,A

v
θ,B

v
d,B

v
θ introduced in (1.13) depend on the mod-

eling assumptions made on the shell physical dissipation. For instance, we may
consider the so-called Rayleigh damping, namely,

Lv
d(
.
d,

.
θ) = αρsε

.
d+ βLe

d(
.
d,

.
θ),

Lv
θ(
.
d,

.
θ) = βLe

θ(
.
d,

.
θ),

(1.16)

where α, β > 0 are given parameters (see, e.g., [Hug87]). The expression of the
operators Av

d,A
v
θ,B

v
d,B

v
θ follows straightforwardly from the relations (1.13), (1.15)

and (1.16). The terms multiplied by β in (1.16) corresponds to the Kelvin-Voigt
model, which is often used in arterial wall modeling (see, e.g., [KS08, ČTG+06,
VJBH+09]). The first term in (1.16)1 takes into account the dissipative effects of
external tissue on blood vessels (see [MXA+12]).

As a first step towards a simpler thin-walled solid model, we may consider plate
and shell models derived under the Kirchhoff-Love kinematic assumption (see, e.g.,
[Kir76, Lov27, CB11]). Under this assumption, a material line orthogonal to the
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reference mid-surface is assumed to remain straight, unstretched and orthogonal to
the mid-surface during the deformation. In terms of the displacement (1.11), this
assumption implies that

θα = −∂αd3 − bλαdλ. (1.17)

Owing to relation (1.17), we can effectively remove the rotation vector as unknown
in the solid problem. As a matter of fact, a general viscoelastic Kirchhoff-Love
model reads as: find the solid displacement d : Σ× R+ → Rd, such that





ρsε∂t
.
d+Led+Lv

.
d = fΣ on Σ,
.
d = ∂td on Σ,

d = 0 on ΓΣ
d ,

(1.18)

satisfying the initial conditions d(0) = d0 and
.
d(0) =

.
d0 and with the surface

operators Le and Lv representing the strong formulation of the thin-solid elastic
and viscous contributions, respectively. As an example of shell model entering this
framework, we consider the so-called membrane-bending model (see, e.g., [CB11,
Section 4.2.2]). For its derivation, note that under assumption (1.17), we have

ζα(d,θ) = 0 and χαβ(d,θ) = −ραβ(d) (1.19)

with
ραβ(d) = d3|αβ + bµα|βdµ + bµαdµ|β + bµβdµ|α − cαβd3.

Substitution of (1.19) into (1.14) yields

ρsε
(
∂t
.
d,w)Σ + ε

(
Cαβλξγαβ(d), γλξ(w)

)
Σ

+
ε3

12

(
Cαβλξραβ(d), ρλξ(w)

)
Σ

=
(
fΣ,w

)
Σ
. (1.20)

In this framework, the elastic surface operator Le is given by

(
Led,w

)
Σ

= ε
(
Cαβλξγαβ(d), γλξ(w)

)
Σ

+
ε3

12

(
Cαβλξραβ(d), ρλξ(w)

)
Σ

(1.21)

and the Rayleigh modeling of the damping gives

Lv
.
d

def
= αρsε

.
d+ βLe

.
d, (1.22)

with α, β > 0.

Further simplifications may be obtained by considering a cylindrical reference
domain. For instance, if we consider a cylindrical domain and make the additional
assumption of axi-symmetric displacements, the model (1.20) readily leads to the
well known cylindrical Koiter-type model (see, e.g., [FFGQ09, Section 3.4.3]). One
dimensional models may be obtained by considering a straight cylindrical config-
uration, assuming radial displacements and neglecting bending responses. In this
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work, we will often used the generalized string model, which is obtained by consid-
ering longitudinal sections (θ = const.) of a 2D cylindrical surface of radius R and
length L (rigorous derivations of this model can be found in [Cia04, FFGQ09]). In
2D, with the longitudinal and perpendicular direction lying on the x-axis and y-axis
respectively, the model is retrieved by considering

d =

(
0

η

)
, Led =

(
0

−λ1∂xxη + λ0η

)
, Lv

.
d =

(
0

αρsε
.
η − βλ1∂xx

.
η

)
, (1.23)

with
λ1

def
=

Eε

2(1 + ν)
, λ0

def
=

Eε

R2(1− ν2)
, α, β > 0

in (1.18).

1.2.3 Fluid-structure coupled problem

The dynamics of the solid and the fluid mediums are coupled through the so-
called kinematic and dynamic coupling conditions,

{
û = ∂td on Σ,

Π(d,
.
d)ns = −Jσ̂(u, p)F−Tn on Σ,

(1.24)

for all t ∈ R+, written here in the reference configuration and for the solid problem
(1.5). The first condition represents the fact that, due to its viscosity, the fluid
sticks perfectly to the fluid-structure interface (no-slip condition), while the second
accounts for the balance of stresses (Newton’s third law).

In the case of coupling with a thin-walled solid model, a widely used modeling
simplification (see, e.g., [CF03]) is to consider that the interface conditions (1.24)
are enforced on the shell mid-surface, instead of on the real fluid-solid interface. In
other words, the shell thickness is neglected in the interface coupling. For the model
(1.12) and (1.18), this approach leads to the coupling conditions

{
û = ∂td on Σ,

fΣ = −Jσ̂(u, p)F−Tn on Σ.
(1.25)

On the other hand, there is a geometrical compatibility condition between the
domains Ωs(t) and Ωf(t) that must be satisfied for all t ∈ R+. In terms of the ALE
formulation, this can be expressed as

df = d on Σ. (1.26)

Apart from the constrains (1.26) and df = 0 on Γin ∪ Γout (recall that we are
assuming Γin and Γout fixed), the definition of the ALE map A inside the domain
Ωf can be taken, at least from the theoretical point of view, rather arbitrarily. In the
sequel, we use Ext (d|Σ) to denote the operation of extending d|Σ over Ωf subjected
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to the aforementioned conditions on Γin ∪ Γout. We then set

df = Ext (d|Σ) on Ωf . (1.27)

Finally, note that condition (1.26) together with (1.24)1 yields u =
.
df on Σ(t).

Remark 1.3 It is noteworthy that, at the computational level, the choice of the
extension operator Ext (·) may have an important impact in the solution proce-
dure, even risking the feasibility of the simulations. Problems with large interface
deflections may require advanced moving mesh techniques (See Section 4.3.3 in
Chapter 4).

In this work, two different formulations of the fluid-structure interaction problem
will be considered: the ALE-Lagrangian and the Eulerian-Lagrangian formulations.

1.2.3.1 ALE-Lagrangian formulation of the coupled problem

Considering the ALE form of the Navier-Stokes equations (1.4), the non-linear
elastodynamics equations (1.5) and the interface coupling conditions (1.24) and
(1.27), we obtain the following problem: find the fluid domain displacement df :

Ωf × R+ → Rd, the fluid velocity û : Ωf × R+ → Rd, the fluid pressure p̂ : Ωf ×
R+ → R, the structure displacement d : Ωs × R+ → Rd and the structure velocity.
d : Ωs × R+ → Rd, such that





ρf∂tu|A + ρf(u−
.
df) ·∇u− divσ(u, p) = 0 in Ωf(t),

divu = 0 in Ωf(t),

u = uin on Γin,

u = 0 on Γwall,

σ(u, p)n = −poutn on Γout,

(1.28)





ρs∂t
.
d− divΠ(d,

.
d) = 0 in Ωs,
.
d = ∂td in Ωs,

d = 0 on Γs
d,

(1.29)





df = Ext (d|Σ) ,
.̂
df = ∂td

f , A = IΩf + df , Ωf(t) =A(Ωf , t),

û = ∂td on Σ,

Π(d,
.
d)ns = −Jσ̂(u, p)F−Tn on Σ,

(1.30)

with the initial conditions u(0) = u0, d(0) = d0 and
.
d(0) =

.
d0.

The coupling of the ALE Navier-Stokes equations with a thin-walled solid model,
through conditions (1.25) and (1.27), is considered in Chapter 2 (Section 2.3) and
Chapter 4 (Section 4.2.2.2).
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1.2.3.2 Eulerian-Lagrangian formulation of the coupled problem

The Eulerian-Lagrangian formulation of the coupled problem is better written
directly using the variational form of problem (1.5), taking W as the space of
admissible displacements (see Section 1.4.2.1 below). Hence, formally multiplying
(1.5) by w ∈ W , integrating by parts, using (1.24), and considering the Eulerian
form of the Navier-Stokes equations (1.1), we obtain the following problem: find
the fluid velocity u : Ωf(t) × R+ → Rd, the fluid pressure p : Ωf(t) × R+ → R, the
structure displacement d : Ωs ×R+ → Rd and the structure velocity

.
d : Ωs ×R+ →

Rd, such that




ρf
(
∂tu+ u ·∇u)− divσ(u, p) = 0 in Ωf(t),

divu = 0 in Ωf(t),

u = uin on Γin,

u = 0 on Γwall,

σ(u, p)n = −poutn on Γout,

(1.31)





d(t) ∈W ,
.
d = ∂td,

ρs
(
∂t
.
d,w

)
Ωs +

(
Π(d,

.
d),∇w)

Ωs = −
∫

Σ(t)
σ(u, p)n ·

(
w ◦ φ−1

t

)
∀w ∈W ,

(1.32)
{

Ωs(t) = φt(Ω
s), Ωf(t) = Ω\Ωs(t),

u =
.
d ◦ φ−1

t on Σ(t),
(1.33)

with the initial conditions u(0) = u0, d(0) = d0 and
.
d(0) =

.
d0.

In this work, an Eulerian-Lagrangian formulation of the coupled problem will be
considered in the case of coupling with immersed thin-walled structures (see Chap-
ter 6). For instance, let us consider a thin-walled solid model in the configuration
of Figure 1.1. We consider the partition Ω

def
= Ω1(t) ∪ Ω2(t) ∪ Σ(t) induced by the

fluid-structure interface, with n1 and n2 denoting, respectively, the outward nor-
mals on Σ(t) to Ω1(t) and Ω2(t). The situation is represented in Figure 1.3. In this

⌃(t)⌦1(t)

⌦2(t)

Figure 1.3: Geometrical configuration in the case of coupling with an immersed
thin-walled structure.
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case, the load on the structure - right hand side of (1.32) - is given by

−
∫

Σ(t)
Jσ(u, p)nK ·

(
w ◦ φ−1

t

)
,

with Jσ(u, p)nK def
= σ(u1, p1)n1 + σ(u2, p2)n2 denoting the jump of the hydro-

dynamic stress through the immersed solid. This results in pressure and velocity
solutions that are, respectively, strongly and weakly (gradient) discontinuous along
the moving fluid-structure interface (see Figure 1.4).

⌃(t)n

(a)

⌃(t)n

(b)

Figure 1.4: Strong discontinuity in the pressure field (a) and weak discontinuity in
the velocity field (b) through the interface.

1.2.3.3 Global energy balance

The interface coupling conditions guarantee a correct balance of the system
mechanical energy E(t), defined as

E(t)
def
=

∫

Ωf(t)

ρf

2
|u|2 +

∫

Ωs

ρs

2
|
.
d|2

︸ ︷︷ ︸
Kinetic

energy

+

∫

Ωs

W
(
Es(d)

)
,

︸ ︷︷ ︸
Elastic

potential energy

for all t ∈ R+. As a matter of fact, we have the following lemma, whose demonstra-
tion in the ALE-Lagrangian case can be found, for instance, in [FG09].

Lemma 1.1 Consider the coupled systems (1.28)-(1.30) and (1.31)-(1.33). Assume
that the structure is hyper-elastic (with energy density function W ) and that the
system is isolated, i.e., u = 0 on Γin ∪ Γout. Then, the following energy inequality
holds:

E(t) ≤ E(0).



1.3. Numerical methods: State-of-the-art 21

1.3 Numerical methods: State-of-the-art

In this section, we present a review of the state-of-the-art in numerical methods
for fluid-structure interaction according to two classification criteria: the modeling
framework adopted and the degree of fluid-solid splitting attained.

1.3.1 Modeling frameworks

In the approximation of fluid-structure interaction problems, the formulation
adopted (Lagrangian, Eulerian or Arbitrary-Lagrangian Eulerian) in each of the fluid
and solid subproblems, together with the way that the two formulations are coupled
at the interface, leads to different numerical solution procedures. In particular, the
modeling framework adopted may favor the use of fitted or unfitted meshes.

1.3.1.1 ALE-Lagrangian techniques

Solution procedures belonging to this category build on the ALE-Lagrangian
formulation of the coupled problem (see Section 1.2.3.1). The fluid subproblem is
effectively solved in a time evolving computational domain, following the motion of
the interface, while the solid subproblem is solved in a fixed reference domain. Note
that the Lagrangian framework is the one usually adopted in solid mechanics, being
the standard setting for legacy solid solvers. Among others, the ALE-Lagrangian
approach is adopted in the following studies [HLZ81, DGH82, BNV08, MXA+12].

(a) (b)

Figure 1.5: Fitted fluid and solid meshes.

At the computational level, this approach generally involves fitted fluid and solid
meshes (see Figure 1.5), with the fluid mesh being conveniently updated to track
the motion of the fluid-structure interface. Due to the fitted nature of the meshes,
an accurate computation of the transmission conditions (e.g., fluid loads on the
structure) is generally guaranteed. In the case of coupling with an immersed thin-
walled structure (see Figure 1.5 (b)), the discontinuous features of the fluid pressure
solution can be straightforwardly incorporated within this framework by duplicat-
ing the pressure degrees of freedom matching at the interface, creating an internal
discontinuous boundary, or crack, around the interface (see, e.g., Section 4.3.2 of
Chapter 4).
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The ALE-Lagrangian approach is the natural setting for situations with mod-
erate structural deformations. For instance, in the context of computational hemo-
dynamics, this approach is commonly used for blood-vessel interaction (see, e.g.,
[FFGQ09]). In situations with large interface deflections, however, maintaining fit-
ted meshes can only be guaranteed by using advanced mesh update techniques (see,
e.g., [STB04, YSH08, Wic11, Ala14, TTBA14]). Furthermore, this approach be-
comes cumbersome in situations with topological changes (e.g., due to contacting
solids).

1.3.1.2 Eulerian-Lagrangian techniques

Numerical techniques entering this category are based on the Eulerian-
Lagrangian description of the coupled problem (see Section 1.2.3.2). The approxima-
tion of the fluid subproblem is normally carried out by embedding the evolving phys-
ical domain into a larger fixed computational domain, or fictitious domain, whilst
the solid subproblem is solved in its Lagrangian reference configuration. Among
these approaches we can mention the immersed boundary methods (IB) (see, e.g.,
[Pes02, ZGWL04, Yu05, BCG11, BCG15]) and the fictitious domain methods (FD)
(see, e.g., [GPHJ99a, Baa01, DSGB08, AGPT09, KHS+15, RF15]).

(a) (b)

Figure 1.6: Unfitted fluid and solid meshes.

At the computational level, these procedures are generally implemented using
unfitted fluid and solid meshes (see Figure 1.6), with the fluid-structure interface
moving independently of the background, often fixed, fluid mesh. The position of the
interface is effectively tracked by displacing the solid mesh (see, e.g., [BCG15]) or by
capturing it through a level set method (see, e.g., [LCB06]). This unfitted framework
can involve, if not carefully designed, an inaccurate computation of the transmission
conditions, leading to leaking across the interface or inaccuracies in the computation
of the fluid loads. Furthermore, in the case of coupling with an immersed thin-
walled structure (see Figure 1.6 (b)), the original IB and FD methods are known
to be inaccurate in space due to the continuous nature of the fluid approximations
across the interface. Mesh adaptation can alleviate these issues (e.g., [HFCC13]),
but it does not cure the problem. The current trend to overcome these consistency
issues is to combine a local XFEM enrichment with a cut-FEM methodology and
a Lagrange multiplier treatment of the interface coupling (see, e.g., [LCB06, ZL08,
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GW08, ST11]). The price to pay, with respect to the original IB and FD methods,
is the need of a specific tracking of the interface intersections (see, e.g., [MGW09,
WGMF12, MLL13]) and a loss of robustness with respect to how the interface
intersects the background fluid mesh (see, e.g., [FB10, BCH+15]).

On the other hand, due to the unfitted nature of the meshes, these approaches are
more versatile at simulating problems with large interface deflections with potential
topological changes. In computational hemodynamics, these techniques have been
widely applied to blood - cardiac valve interaction simulation (see, e.g., [DSGB08,
AGPT09, KHS+15]).

1.3.1.3 Eulerian-Eulerian techniques

Techniques entering in this category have only recently been proposed in the
literature and they are based on the Eulerian formulation of both the fluid and solid
subproblems. The fully Eulerian framework seems to have been first considered
in [Dun06], and then it has been further investigated in several studies (see, e.g.,
[DR06, Dun07, CMM08, RW10, Wic13, Ric13]).

(a) (b)

Figure 1.7: A single mesh, comprising both the fluid and solid subdomains, with
the solid domain being captured by a level set method.

This approach leads to a single field system that, computationally, is solved in a
single mesh, comprising both the fluid and solid subdomains (see Figure 1.7). The
fluid-structure interface must be conveniently captured, using a level set method,
in order to localize the solid and fluid regions, in which the density, viscosity and
the entire constitutive tensor change. Situations with large interface deflections
and topological changes can, potentially, be addressed using this type of techniques.
Besides the numerical issues mentioned in Section 1.3.1.2, a major drawback of these
methods is that they could lead, if not carefully designed, to mass conservation
issues. Moreover, they require non-standard Eulerian solid solvers, which prevents
the reuse of well-stablished and developed legacy Lagrangian solvers for the solid.

1.3.2 Coupling schemes

At the fully discrete level, all the aforementioned techniques must conveniently
account for the coupling mechanism, which includes the kinematic and dynamic
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coupling conditions (1.24) and the geometrical compatibility (1.26) between the
fluid and solid subdomains. The way in which the kinematic-dynamic coupling
(1.24) is enforced between the fluid and solid time-marchings determines the so-
called coupling scheme: strongly coupled (also referred in this work as implicit, see
Remark 1.4), semi-implicit or explicit (see, e.g., [Fer11a, HWL12, Deg13] for recent
reviews).

Remark 1.4 In this work, we will always adopt an explicit treatment of the
geometric compatibility condition (1.26). Although the terminology "implicit" often
refers in the literature to approaches that treat both (1.24) and (1.26) in an implicit
manner, we will use it here (see, e.g., Section 1.3.2.1) for schemes combining the
aforementioned explicit treatment of (1.26) with an implicit treatment of (1.24).

1.3.2.1 Implicit or strong coupling

In a strongly coupled scheme no time lag exits between the fluid and solid time-
marchings. This can deliver unconditional stability and optimal accuracy, but at the
price of solving a computationally demanding coupled problem at each time-step.
The corresponding solution procedures are traditionally referred to in the literature
as: monolithic and partitioned.

Monolithic methods solve the coupled problem at each time-step as a single
system of equations (see, e.g., [BQQ08a, RW10, GKW11, CDFQ11, MMH12]). The
work flow of this approach is represented in Figure 1.8: we simultaneously solve,
in a single block, the fluid F(tn−1) and the solid S(tn−1) subproblems at time-step
tn−1 and then, we proceed to the next time-step tn.

F(tn)

S(tn)

F(tn�1)

S(tn�1)

. . . . . .

Figure 1.8: Monolithic solution of the coupled system.

Partitioned methods, on the contrary, exploit the heterogenous nature of the sys-
tem via (recurrent) separate solutions of the fluid and solid equations, with appropri-
ate interface conditions (see, e.g., [FM05, BNV08, DHV08, vB11, BK12, NPV14]).
The work flow is represented in Figure 1.9, where the dotted circle represents in-
ner iterations. Partitioned solution procedures are very appealing because of their
intrinsic modularity, which enables the reuse of independent efficient solvers. Such
an advantage comes however at a price, computational efficiency over a monolithic
approach is not necessarily guaranteed (see, e.g., [BQQ08a, GKW11]).
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Figure 1.9: Partitioned solution of the coupled system

1.3.2.2 Semi-implicit coupling

Stable and less computationally onerous alternatives to strong coupling are the
so-called semi-implicit coupling schemes, which enforce a specific explicit/implicit
treatment of the kinematic-dynamic coupling conditions. They often involve a
fractional-step time-marching in the fluid (see, e.g., [FGG07, QQ07, BQQ08b,
ACF09, AG10]) or in the solid (see, e.g., [GGCC09, Fer11b, BCG+13, LMRHZ13]).
The implicit part of the coupling (which, as above, can be solved in a monolithic or
a partitioned fashion) guarantees stability, while the explicit one reduces computa-
tional complexity.

As an example, we report in Figure 1.10 the work flow corresponding to the
projection semi-implicit scheme introduced in [FGG07]. This scheme is based on
the use of a a fractional-step time-marching in the fluid, which splits its solution into
an advection-diffusion FAD and a projection FP step. Afterwards, the advection-
diffusion step is coupled explicitly with the solid, whereas the projection step is
coupled implicitly with the solid (in a partitioned fashion in Figure 1.10).
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Figure 1.10: Semi-implicit projection solution of the coupled system (work flow
corresponding to [FGG07]).

1.3.2.3 Explicit coupling

Explicit coupling schemes (also termed loosely coupled) uncouple the fluid and
solid time-marchings via appropriate explicit discretizations of the interface condi-
tions. The resulting solution procedures are thus naturally partitioned (see Fig-
ure 1.11). The design and the analysis of stable and accurate explicit coupling
schemes for incompressible fluid-structure interaction problem is a challenging prob-
lem. This is due to the fact that the interface coupling can be extremely stiff. For
instance, it is well-known that the standard explicit Dirichlet-Neumann scheme be-
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comes unconditionally unstable whenever the added-mass effect in the system is large
(see Section 1.4.3.3 below). Stability in explicit coupling has been an open problem
for years (see [BF09]). The stabilized explicit scheme reported in [BF09, BF14a]
guarantees stability but at the expense of a degradation of accuracy, which requires
suitable correction iterations. In the case of the coupling with a purely elastic
thin-walled solid, unconditional stability is achieved with the explicit kinematically
coupled scheme introduced in [GGCC09], which is known to yield very poor accu-
racy (see [Fer11b, Fer13]). Numerical evidence suggests that enhanced accuracy can
be obtained with the variants recently reported in [BCG+13, LMRHZ13]. Unfor-
tunately, if physical damping is present in the structure equations, these coupling
schemes are no longer explicit. These issues are overcome by the explicit Robin-
Neumann schemes proposed in [Fer13, FMV13], which simultaneously deliver un-
conditional stability and optimal (first-order) time accuracy.

F(tn)

S(tn)

F(tn�1)

S(tn�1)

. . . . . .

Figure 1.11: Explicit solution of the coupled system (work flow corresponding to
[Fer13]).

Remark 1.5 Some of the schemes referred to in this section are applied to a linear
problem in Section 1.4.3 below. There, we provide the reader with some numerical
results regarding their stability and accuracy properties. Later on, in Section 4.3.1
of Chapter 4, some of these schemes are also considered in a non-linear framework,
where they are compared and validated against experimental data.

1.4 Discretization of a model coupled problem

In the following, we address the discretization of a linear coupled model problem,
involving either a thick or a thin-walled solid. Though simplified, this problem
retains all the added-mass effect numerical issues that appear in complex non-linear
incompressible fluid-structure interaction problems (see, e.g., [CGN05]). Remaining
within this linear framework, we are able to present the ideas in a unified framework
and provide the reader with some numerical stability and accuracy results. We
consider both fitted and unfitted mesh discretizations and some of the coupling
schemes referred to in Section 1.3.2. In particular, two fundamental concepts in the
forthcoming chapters are presented in detail: the Robin-Neumann explicit coupling
paradigm of [Fer11b, Fer13, FMV13] (Section 1.4.3.5 below) and the unfitted Nitsche
discretization using overlapping meshes of [BF14b] (Section 1.4.2.3 below).

The treatment of the non-linear problem (1.28)-(1.30), using conformal moving
meshes, is addressed in detail Chapter 4 (see also Section 2.3 in Chapter 2). The



1.4. Discretization of a model coupled problem 27

extension of the unfitted Nitsche discretization to the non-linear problem (1.31)-
(1.33), for the case of coupling with immersed thin-walled structures, is an important
contribution of this work and its presentation is postponed to Chapter 6.

1.4.1 A linear model problem

In this section we consider a linearized version of problem (1.28)-(1.30) or, for
what matters, of (1.31)-(1.33) (up to boundary conditions). Basically, we assume
that the solid undergoes infinitesimal strains and displacements. Thus, the fluid-
structure domain Ωf(t) ∩ Ωs(t) ≡ Ωf ∩ Ωs can be assumed to be fixed in time.
Furthermore, to ease the presentation, we consider the geometrical configuration
displayed in Figure 1.12(a), with the solid domain disposed in one of the external
boundaries of the fluid domain. The fluid and solid boundaries are partitioned as
∂Ωf = Γf ∪ Σ and ∂Ωs = Γs

d ∪ Σ, with Σ = Ωf ∪ Ωs the fluid-structure interface.
The solid constitutive law is given by (1.10) with β = 0. Finally, we consider a low
Reynolds regime in the fluid problem, which is described by the Stokes equations.
The linear coupled problem reads as: find the fluid velocity u : Ωf × R+ → Rd, the
fluid pressure p : Ωf × R+ → R, the structure displacement d : Ωs × R+ → Rd and
the structure velocity

.
d : Ωs × R+ → Rd, such that




ρf∂tu− divσ(u, p) = 0 in Ωf ,

divu = 0 in Ωf ,

u = 0 on Γf ,

(1.34)





ρs∂t
.
d− divσe(d) = 0 in Ωs,

.
d = ∂td in Ωs,

d = 0 on Γs
d,

(1.35)

{
u =

.
d on Σ,

σe(d)ns = −σ(u, p)n on Σ,
(1.36)

with the initial conditions u(0) = u0, d(0) = d0 and
.
d(0) =

.
d0.

⌃

⌦f

⌦s
�s

d

�f

(a)

⌃

⌦f

�f

(b)

Figure 1.12: Geometrical configuration with thick (a) and thin-walled (b) solid
model.
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We also consider the case of the coupling with a linear elastic Kirchhoff-Love
thin-walled structure (see Section 1.2.2.2). In that case, Σ ≡ Ωs (see Figure 1.12 (b))
and the relations (1.35)-(1.36) are replaced by





u =
.
d on Σ,

ρsε∂t
.
d+Led = −σ(u, p)n on Σ,

.
d = ∂td on Σ,

d = 0 on ∂Σ,

(1.37)

with Le the surface elastic operator (see Section 1.2.2.2).

Remark 1.6 For simplicity and without loss of generality, we assume homogenous
Dirichlet boundary conditions on the external boundaries of the coupled problem.
However, this has no significant impact on the theoretical results presented below.

1.4.2 Space semi-discretization

This section is devoted to the space semi-discretization of the coupled fluid-
structure problems (1.34)-(1.36) and (1.34),(1.37). The fluid and solid equations
are discretized by the finite element method. The solid domain Ωs is supposed to
be discretized using a conforming mesh, fitted to the boundary ∂Ωs. For the sake
of simplicity, we assume that Ωf and Ωs are polyhedral.

Firstly, we consider a discretization of the fluid domain Ωf , such that the solid
and fluid meshes are fitted at the interface (see Figure 1.14). This setting leads
to a standard conformal discretization of the coupled problem. In that case, the
kinematic coupling is strongly enforced and the dynamic coupling is treated weakly.
This guarantees stability and accuracy.

Afterwards, we remove the condition on the conformity of the meshes at the
interface, by letting the fluid mesh overlap the solid one (see Figure 1.15). The fluid
problem is then solved in a fictitious extended domain. In this unfitted setting,
the strong imposition of (1.36)1 (or (1.37)1) is no longer possible and other alter-
natives have to be considered to enforce the transmission conditions. A classical
alternative is the use of Lagrange multipliers. The Lagrange multiplier/Fictitious
Domain method, originally proposed in [GPP94], has been extensively used for
fluid-structure interaction problems, involving moving immersed rigid particles (see,
e.g., [GPHJ99b, GPH+01]) or more general immersed flexible structures (see, e.g.,
[Baa01, SDHBVdV04, DSGB08, AGPT09]). A well-known alternative to the dis-
crete treatment of the interface conditions via Lagrange multipliers is Nitsche’s
method (see, e.g., [Nit71, Ste95, Han05]). Because of its flexibility and mathemat-
ical soundness, the Nitsche’s mortaring has been applied to the design of numer-
ical methods for a number of interface problems, including robust and accurate
FD methods for elliptic and mixed problems [BH12, MLLR14, BH14]. Nitsche’s
method was first applied to fluid-structure interaction problems with fitted meshes
in [HHS04] and used to design stable explicit coupling (or loosely coupled) schemes
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in [BF09, BF14a]. In this section, we consider an extension of Nitsche’s method,
recently introduced in [BF14b], to fluid-structure interaction problems with unfitted
meshes.

1.4.2.1 Weak form of the linear problem

In the sequel, we consider the usual Sobolev spaces Hm(ω) (m ≥ 0), with norm
‖ · ‖m,ω and semi-norm | · |m,ω. For a given part Γ ⊂ ∂ω of the boundary ∂ω,
the closed subspace consisting of functions in H1(ω) with zero trace on Γ ⊂ ∂ω is
denoted by H1

Γ(ω). We recall that the L2-scalar product on ω is denoted by (·, ·)ω
and its norm by ‖ · ‖0,ω.

For the weak formulation of the solid problem (1.35), we consider W def
=

[H1
Γs

d
(Ωs)]d, as the space of admissible displacements, and the elastic bilinear form

as : W ×W → R defined as

as(d,w)
def
= L1

(
divd, divw

)
Ωs + 2L2

(
ε(d), ε(w)

)
Ωs ,

for all d,w ∈ W . In the case of coupling with a thin-walled structure, the elastic
bilinear form is instead given by the weak form of the (unbounded linear) surface
differential operator Le : D(Le) ⊂ [L2(Σ)]d → [L2(Σ)]d , namely,

as(d,w) = (Led,w)Σ (1.38)

for all d ∈ D(Le) and w ∈ W ⊂ [H1
∂Σ(Σ)]d, which is assumed to be symmetric,

coercive and continuous onW . We define the elastic energy norm by ‖·‖s def
= as(·, ·) 1

2 .
In the case of coupling with a thin-walled structure, the following continuity estimate
is also assumed

‖w‖2s ≤ βs‖w‖21,Σ, ∀w ∈W , (1.39)

with βs > 0. In what follows, the symbol (·, ·)∗ designates either ρs(·, ·)Ωs , or
ρsε(·, ·)Σ, depending on wether the coupling is with a thick or a thin-walled solid,
respectively. Similarly, ‖ · ‖∗ designates either ρs‖ · ‖Ωs or ρsε‖ · ‖Σ.

For the weak formulation of the fluid problem (1.34), we consider V def
=

[H1
Γf (Ω

f)]d and Q
def
= L2(Ωf), as velocity and pressure functional spaces, and the

standard Stokes bilinear forms a : V × V → R and b : Q× V → R, given by

a(u,v)
def
= 2µ

(
ε(u), ε(v)

)
Ωf , b(q,v)

def
= −(q, divv)Ωf . (1.40)

For the shake of conciseness, we use the notation

af
(
(u, p), (v, q)

) def
= a(u,v) + b(p,v)− b(q,u).

Formally, we obtain the weak formulation of the linear problems (1.34)-(1.36)
and (1.34),(1.37), by multiplying (1.34) by (v, q) ∈ V ×Q and (1.35) (or (1.37)) by
w ∈W , integrating by parts and adding the resulting equations. This leads to the
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following problem: find

(u(t), p(t),d(t),
.
d(t)) ∈ V ×Q×W ×W

such that
{
u|Σ =

.
d|Σ,

.
d = ∂td

ρf
(
∂tu,v

)
Ωf + af

(
(u, p), (v, q)

)
+
(
∂t
.
d,w

)
∗ + as(d,w) = 0

(1.41)

for all (v, q,w) ∈ V ×Q×W with v|Σ = w|Σ. For the well-posedness of this type
of linear fluid-structure coupled problems we refer to [LTM00, DGHL03].

Conforming mesh discretization of the solid domain Let {Th}0<h≤1 de-
note a generic (fluid or solid) family of triangulations. The subscript h ∈ (0, 1] refers
to the level of refinement, which is defined as h def

= maxK∈Th hK , with hK the diam-
eter of a simplex K ∈ Th. In the sequel, all the families of triangulations considered
are non-degenerate and, in order to simplify the presentation, quasi-uniform. This
implies

hK
ρK

< C, hK ≥ Cqh, ∀K ∈ Th, h ∈ (0, 1],

where ρK is the diameter of the largest ball inscribed in K and C,Cq > 0 are fixed
constants independent of h.

(a) (b)

Figure 1.13: Conforming discretization of the thick (a) and thin-walled (b) solid
domain.

Consider a family of conforming triangulations {T s
h }0<h≤1 of Ωs, i.e.,

Ωs =
⋃

K∈T s
h

(1.42)

(see Figure 1.13), and let Xs
h denote the standard space of continuous piecewise

affine functions associated to T s
h ,

Xs
h

def
=
{
vh ∈ C0(Ωs)

/
vh|K ∈ P1(K) ∀K ∈ T s

h

}
.
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The solid approximation space is chosen as

Wh
def
= [Xs

h]d ∩W . (1.43)

1.4.2.2 Fitted mesh spatial semi-discretization

Let {T̃ f
h}0<h≤1 denote a family of conforming triangulations of Ωf , i.e., Ωf =⋃

K∈T̃ f
h
, such that T̃ f

h matches at the interface with T s
h for all h ∈ (0, 1] (see Fig-

ure 1.14). We denote by X̃ f
h the standard space of continuous piecewise affine

(a) (b)

Figure 1.14: Matching fluid and solid meshes.

functions associated to T f
h ,

X̃ f
h

def
=
{
vh ∈ C0(Ωf)

/
vh|K ∈ P1(K) ∀K ∈ T̃ f

h

}
.

For the approximation of the fluid velocity and pressure, we consider the spaces
Ṽh

def
= [X̃ f

h]d ∩ V and Q̃h
def
= X̃ f

h ⊂ Q, respectively. Note that the fluid and solid
trace spaces on the interface coincide, i.e.,

{
vh|Σ

/
vh ∈ Ṽh

}
≡
{
wh|Σ

/
wh ∈Wh

}
. (1.44)

Remark 1.7 We use the superscript ˜ to refer to the fluid conforming meshes and
discretization spaces (i.e., T̃ f

h , X̃
f
h, Ṽh and Q̃h). The superscript will be dropped in

the non-conforming case of Section 1.4.2.3.

Since the standard inf-sup condition (see, e.g., [GR86]) is not satisfied by the
velocity/pressure pair Ṽh

/
Q̃h, we will resort to a stabilization technique. We con-

sider a symmetric pressure stabilization method (see [BF09, Fer13]), given in terms
of a positive and symmetric bilinear form s̃h : Q̃h × Q̃h → R, such that

c1µ
−1h2|qh|21,Ωf ≤ s̃h(qh, qh) ≤ c2µ

−1h2|qh|21,Ωf , (1.45)

for all qh ∈ Q̃h and with c1, c2 > 0. For instance, the classical Brezzi-Pitkäranta
bilinear form [BP84] may be used,

s̃h(ph, qh)
def
=

γph
2

µ
(∇ph,∇qh)Ωf (1.46)
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with γp > 0.
Property (1.44) of the discretization setting enables a conforming semi-discrete

approximation of (1.41): for t > 0, find
(
uh(t), ph(t),

.
dh(t),dh(t)

)
∈ Ṽh × Q̃h ×Wh ×Wh,

such that 



uh|Σ =
.
dh|Σ,

.
dh = ∂tdh,

ρf
(
∂tuh,vh

)
Ωf + af

(
(uh, ph), (vh, qh)

)
+ s̃h(ph, qh)

+
(
∂t
.
dh,wh

)
∗ + as(dh,wh) = 0

(1.47)

for all (vh, qh,wh) ∈ Ṽh × Q̃h ×Wh with vh|Σ = wh|Σ.
As starting point for partitioned approaches, it is convenient to reformulate the

monolithic formulation (1.47) in a partitioned Dirichlet-Neumann fashion. For that
purpose, we consider the space VΣ

def
= [H1

Σ(Ωf)]d and set VΣ,h
def
= Ṽh∩VΣ. Using the

standard fluid-sided discrete lifting operator Lh : Wh → Ṽh, such that, the nodal
values of Lhwh vanish out of Σ and (Lhwh)|Σ = wh|Σ for all wh ∈ Wh, we can
decompose the test space as follows

{
(vh,wh) ∈ Ṽh ×Wh

/
vh|Σ = wh|Σ

}
=
{

(vh,0)
/
vh ∈ VΣ,h

}

⊕
{

(Lhwh,wh)
/
wh ∈Wh

}
.

Thus, problem (1.47) equivalently reads as: for t > 0,

• Fluid subproblem: find
(
uh(t), ph(t)

)
∈ Ṽh × Q̃h, such that

{
uh|Σ =

.
dh|Σ,

ρf
(
∂tuh,vh

)
Ωf + af

(
(uh, ph), (vh, qh)

)
+ s̃h(ph, qh) = 0

(1.48)

for all (vh, qh) ∈ VΣ,h × Q̃h.

• Solid subproblem: find
( .
dh(t),dh(t)

)
∈Wh ×Wh, such that





.
dh = ∂tdh,(
∂t
.
dh,wh

)
∗ + as(dh,wh)

= −ρf
(
∂tuh,Lhwh

)
Ωf − a(uh,Lhwh)− b(ph,Lhwh)

(1.49)

for all wh ∈Wh.

Note that the fluid stress in (1.49) is given in terms of a variational residual
using the discrete lifting operator Lh.

The following result states the optimal accuracy of (1.47) in the energy norm.
In the sequel, the symbol . denotes inequality up to a multiplicative constant
independent of h.
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Theorem 1.1 Let (u, p,
.
d,d) be the solution of (1.34)-(1.36) (or (1.34),(1.37)).

and (uh, ph,
.
dh,dh) be given by (1.47). Assume that the interface Σ is flat. Then,

for regular enough solutions and t > 0, there holds:

ρf

2
‖(uh − u)(t)‖20,Ωf +

1

2
‖(

.
dh −

.
d)(t)‖2∗ +

1

2
‖(dh − d)(t)‖2s . h2.

Proof. The proof follows from the arguments of [DGHL03] (see also [Fer13]).

1.4.2.3 Unfitted mesh spatial semi-discretization

In this section, we let the fluid triangulations {T f
h}0<h≤1 be unfitted to the fluid

domain Ωf , overlapping the solid meshes {T s
h }0<h≤1 at the interface zone. More

precisely, we assume that:

(A1) Ωf (
⋃
K∈T f

h
, but for every simplex K ∈ T f

h , it holds K ∩ Ωf 6= ∅.

(A2) T f
h is fitted to Γf but, in general, not to Σ.

(a) (b)

Figure 1.15: Overlapping fluid and solid meshes.

A prototypical configuration is displayed in Figure 1.15. We denote by Ωh the
domain covered by T f

h (computational domain), by Gh the set of elements in T f
h that

are intersected by Σ and by FG the set of edges or faces of elements in Gh that do
not belong to ∂Ωh, that is,

Ωh
def
= int

(
∪K∈T f

h
K
)
,

Gh def
=
{
K ∈ T f

h

/
K ∩ Σ 6= ∅

}
,

FG def
=
{
F ∈ ∂K

/
K ∈ Gh, F ∩ ∂Ωh 6= F

}
.

(1.50)

For a simplex K ∈ Gh, we denote by ΣK the part of the interface intersecting K,
i.e, ΣK

def
= Σ ∩ K. The standard space of continuous piecewise affine functions

associated to T f
h reads as

X f
h

def
=
{
vh ∈ C0(Ωh)

/
vh|K ∈ P1(K) ∀K ∈ T f

h

}
.
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For the approximation of the fluid velocity and pressure spaces, we consider, respec-
tively,

Vh
def
=
{
vh ∈ [X f

h]d
/
vh|Γf = 0

}
, Qh

def
= X f

h. (1.51)

A pressure stabilization bilinear form sh : Qh × Qh → R, is used to treat the
instabilities associated to the inf-sup incompatible choice of fluid spaces. The sta-
bility condition (1.45) is required to hold over the whole computation domain Ωh,
i.e,

c1µ
−1h2|qh|21,Ωh ≤ sp(qh, qh) ≤ c2µ

−1h2|qh|21,Ωh , (1.52)

or all qh ∈ Qh and with c1, c2 > 0. This is crucial to gain control over the interfa-
cial pressure-velocity coupling. An extended version of (1.46) may be used in the
following form

sh(ph, qh)
def
=

γph
2

µ
(∇ph,∇qh)Ωh , (1.53)

with γp > 0.
To guarantee the robustness of the method irrespectively of the way the interface

intersects the fluid mesh, we make use of a ghost-penalty stabilization method [Bur10,
BH14], given in terms of a bilinear form gh : Vh × Vh → R. This operator brings
additional control over the velocity ghost values so that the following strengthened
stability holds

c̃g

(
µ‖ε(vh)‖20,Ωh + gh(vh,vh)

)
≤ µ‖ε(vh)‖20,Ωf + gh(vh,vh), (1.54)

for all vh ∈ Vh and with c̃g > 0. The ghost-penalty operator must satisfy cer-
tain weak consistency properties that are properly described in Section 5.2.2.2 of
Chapter 5. For the purpose of the presentation, and without loss of generality, we
consider the following operator

gh(uh,vh) = γgµh
∑

F∈FG

(
J∇uhKF , J∇vhKF

)
F
, (1.55)

where the symbol J·KF denotes the jump of a given quantity across the edge or
face F (see [BH14] for a proof of (1.54) in that case). We denote the total fluid
stabilization by

Sh
(
(uh, ph), (vh, qh)

) def
= sh(ph, qh) + gh(uh,vh), (1.56)

with associated semi-norm |(uh, ph)|S def
= Sh

(
(uh, ph), (vh, qh)

) 1
2 .

Remark 1.8 Following [BH14], we could have split the pressure stabilization into
a part defined over to Ωh/ Gh, to ensure the inf-sup condition, and a ghost-penalty
part over the interface zone Gh, to extend the stability up to the mesh boundary.
Here, we choose however to treat all the pressure stabilization in an unified way over
the whole computational domain Ωh (see also [BF14b]).
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The unfitted discretization proposed in [BF14b] of the linear problem (1.34)-
(1.36) (or (1.34),(1.37)) reads as follows: for t > 0, find

(
uh(t), ph(t),

.
dh(t),dh(t)

)
∈ Vh ×Qh ×Wh ×Wh,

such that
.
dh = ∂tdh and





ρf
(
∂tuh,vh

)
Ωf + af

(
(uh, ph), (vh, qh)

)
+ Sh

(
(uh, ph), (vh, qh)

)

+
(
∂t
.
dh,wh

)
∗ + as(dh,wh)−

(
σ(uh, ph)n,vh −wh

)
Σ︸ ︷︷ ︸

T1

−
(
uh −

.
dh,σ(vh,−qh)n

)
Σ︸ ︷︷ ︸

T2

+
γµ

h

(
uh −

.
dh,vh −wh

)
Σ︸ ︷︷ ︸

T2

= 0

(1.57)

for all (vh, qh,wh) ∈ Vh ×Qh ×Wh. Here, the term T1 guarantees the consistency
of the formulation, the term T2 is used to symmetrize the problem and the term T3

is a stabilization term added to guarantee the coercivity of the formulation, with
γ > 0 denoting the Nitsche’s penalty parameter.

Remark 1.9 Note that the fluid’s bulk terms are integrated over the physical
domain Ωf . From the implementation point of view, this requires non-standard
quadrature techniques for the approximation of integrals over cut elements (see
[MLL13, BCH+15]). This problem is addressed in this manuscript in Chapter 6
(Section 6.2.2.3).

Remark 1.10 The Nitsche’s coupling enforced in (1.57) was first introduced in
the fitted mesh context described in Section 1.4.2.2 (see [BF09, BF14a]). Formally,
the formulation in that case is equivalent to (1.57) with γg = 0.

As in the previous section, it is convenient to reformulate (1.57) in terms of two
coupled subproblems by successively taking wh = 0 and (vh, qh) = (0, 0) in (1.57).
This yields: for t > 0,

• Fluid subproblem: find
(
uh(t), ph(t)

)
∈ Vh ×Qh, such that




ρf
(
∂tuh,vh

)
Ωf + af

(
(uh, ph), (vh, qh)

)
+ Sh

(
(uh, ph), (vh, qh)

)

−
(
σ(uh, ph)n,vh

)
Σ
−
(
uh −

.
dh,σ(vh,−qh)n

)
Σ

+
γµ

h

(
uh −

.
dh,vh

)
Σ

= 0

(1.58)
for all (vh, qh) ∈ Vh ×Qh.

• Solid subproblem: find
( .
dh(t),dh(t)

)
∈Wh ×Wh, such that

.
dh = ∂tdh and

(
∂t
.
dh,wh

)
∗ + as(dh,wh) +

(
σ(uh, ph)n,wh

)
Σ

+
γµ

h

( .
dh − uh,wh

)
Σ

= 0

(1.59)

for all wh ∈Wh.
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Note that in (1.59), the variationally-consistent expression of the fluid load comprises
all the forcing terms coming from Nitsche’s method, including penalties.

For the purpose of the analysis, we will assume that

(A3) Σ is well resolved by T f
h (see, e.g., [BH14]),

so that the following trace inequality holds for functions in H1(K), for all K ∈ T f
h :

there exists a constant CT > 0, depending only on Σ, such that

‖v‖0,Σ∩K ≤ CT

(
h
− 1

2
K ‖v‖0,K + h

1
2
K‖∇v‖0,K

) (1.60)

for all v ∈ H1(K). The proof for this result follows from [HH02, Lemma 3]. In
particular, using (1.60) with a discrete inverse inequality, it follows

h‖ε(vh)n‖20,Σ ≤ CTI‖ε(vh)‖20,Ωh , (1.61)

for all vh ∈ Vh. Note that the above trace inequality holds irrespectively of the
interface position because the norm on the right-hand side is taken over the whole
computational domain Ωh. However, this control on the interfacial viscous flux can
not be bounded by the natural viscous dissipation of the fluid, which is only available
in the physical domain Ωf ⊂ Ωh. The strengthened stability (1.54) provided by the
ghost penalty operator, allows to extend to Ωh the coercivity of the spatial discrete
Stokes-Nitsche operator. This is stated in the following lemma from [BF14b], whose
proof is presented here for completeness.

Lemma 1.2 For γ > 0 sufficiently large, there exists a constant cg > 0 such that

cg

(
µ‖∇vh‖20,Ωh +

γµ

h
‖vh −wh‖20,Σ + |(vh, qh)|2S

)
≤

af
(
(vh, qh), (vh, qh)

)
+ Sh

(
(vh, qh), (vh, qh)

)
−
(
σ(vh, qh)n,vh −wh

)
Σ

−
(
vh −wh,σ(vh,−qh)n

)
Σ

+
γµ

h

(
vh −wh,vh −wh

)
Σ

for all (vh, qh) ∈ Vh ×Qh and wh ∈Wh.

Proof. First, we have

af
h

(
(vh, qh), (vh, qh)

)
−
(
σ(vh, qh)n,vh −wh

)
Σ

−
(
vh −wh,σ(vh,−qh)n

)
Σ

+
γµ

h
‖vh −wh‖20,Σ + |(vh, qh)|2S

= 2µ‖ε(vh)‖20,Ωf − 2
(
σ(vh, 0)n,vh −wh

)
Σ

+
γµ

h
‖vh −wh‖20,Σ + |(vh, qh)|2S .

Combining the Cauchy-Schwarz inequality with (1.61), we have

(
2σ(vh, 0)n,vh −wh

)
Σ
≤ 2
(hµ
γ

) 1
2 ‖ε(vh)n‖0,Σ

(γµ
h

) 1
2 ‖vh −wh‖0,Σ

≤ 8CTI

γ
µ‖ε(vh)‖20,Ωh +

1

2

γµ

h
‖vh −wh‖20,Σ.
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We conclude by using (1.54), taking

γ >
8CTI

c̃g
(1.62)

and using Korn’s inequality.

Remark 1.11 The proof of Lemma 1.2 provides a lower bound for the param-
eter γ > 0 through the relation (1.62). The constants therein could be estimated
automatically from the solution of generalized eigenvalue problems associated with
the inequalities (1.54) and (1.61). We refer to [HH92, Section 3] for an overview of
this approach, and to [RSÖ14, EDH10] for applications in the context of Nitsche’s
method.

For the convergence analysis of (1.57), a mild technical assumption has to be
considered (whose use will be made clear in Section 5.2.2.2). We assume that the
elements of T s

h with faces on Σ can be grouped in disjoint (d − 1)-dimensional
macropatches Pi, with meas(Pi) = O(hd) for the thick-walled solid (1.35)1 and
meas(Pi) = O(hd−1) in the case of the thin-walled solid (1.37)2. The restriction
of the patch Pi to Σ will be denoted by Fi

def
= Pi ∩ Σ. In the case of a thin-

walled solid, we have Fi ≡ Pi. Each macropatch is assumed to contain at least
one interior node and the union of Fi is assumed to cover Σ, that is, ∪iFi = Σ.
Under the above assumptions, the following result states that the formulation (1.57)
preserves the optimal convergence behavior of the conforming discretization (1.47)
(see Theorem 1.1).

Theorem 1.2 Let (u, p,
.
d,d) be the solution of (1.34)-(1.36) (or (1.34),(1.37))

and (uh, ph,
.
dh,dh) be given by (1.57). Assume that the interface Σ is flat and

γ > 0 is given by Lemma 1.2. Then, for regular enough solutions and t > 0, there
holds:

ρf

2
‖(uh − u)(t)‖20,Ωf +

1

2
‖(

.
dh −

.
d)(t)‖2∗ +

1

2
‖(dh − d)(t)‖2s

+ cg

∫ t

0

[
µ‖∇(uh − u)‖20,Ωf +

γµ

h
‖uh −

.
dh‖20,Σ

]
. h2.

Proof. We refer to [BF14b, Theorem 3.1] for a proof. The main ingredients for the
proof can also be found within this manuscript in Corollary 5.2 (there presented in
the fully discrete case).

1.4.3 Time discretization

We address now the fully discrete approximation of the linear problems (1.34)-
(1.36) and (1.34),(1.37). The time discretization is carried out with different implicit,
semi-implicit and explicit coupling strategies (see Section 1.3.2).
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In the following, the symbol τ > 0 denotes the time-step size, tn
def
= nτ , for

n ∈ N, and ∂τxn
def
=
(
xn − xn−1

)
/τ the first-order backward difference in time. In

addition, we will also make extensive use of the superscripts • and ? to respectively
indicate explicit extrapolations of order s ∈ {0, 1} and r ∈ {0, 1, 2}, namely,

xn,•
def
=

{
0 if s = 0,

xn−1 if s = 1,
, xn,?

def
=





0 if r = 0,

xn−1 if r = 1,

2xn−1 − xn−2 if r = 2.

1.4.3.1 Implicit scheme

A fully implicit time-discretization of (1.47), via an overall backward Euler dis-
cretization, leads to Algorithm 1.1. Note that, at the time semi-discrete level, Al-
gorithm 1.1 enforces an implicit treatment of the interface coupling conditions. For
instance, for the case of coupling with a thick solid, Algorithm 1.1 involves the
following time discretization of (1.36):

{
un =

.
dn on Σ,

σe(dn)ns = −σ(un, pn)n on Σ.

Algorithm 1.1 Implicit coupling scheme.
For n ≥ 1, find

(
unh, p

n
h,
.
dnh,d

n
h

)
∈ Ṽh × Q̃h ×Wh ×Wh, such that





unh|Σ =
.
dnh|Σ,

.
dnh = ∂τd

n
h,

ρf
(
∂τu

n
h,vh

)
Ωf + af

(
(unh, p

n
h), (vh, qh)

)
+ s̃h(pnh, qh)

+
(
∂τ

.
dnh,wh

)
∗ + as(dnh,wh) = 0

(1.63)

for all (vh, qh,wh) ∈ Ṽh × Q̃h ×Wh with vh|Σ = wh.

Algorithm 1.1 is unconditionally stable and delivers optimal accuracy in the
energy norm. In particular, by denoting

En
def
=

ρf

2
‖unh‖20,Ωf +

1

2
‖
.
dnh‖2∗ +

1

2
‖dnh‖2s ,

the total energy of the discrete system at time tn, and by

En def
=

(
ρf

2
‖unh − u(tn)‖20,Ωf +

1

2
‖
.
dnh −

.
d(tn)‖2∗ +

1

2
‖dnh − d(tn)‖2s

) 1
2

,

the energy norm of the approximation error, the following theorem holds.
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Theorem 1.3 Let {(unh, pnh,
.
dnh,d

n
h)}n≥1 be the sequence given by Algorithm 1.1.

Then, for n ≥ 1, there holds
En ≤ E0.

Moreover, for smooth enough solutions, the following a priori error estimate holds

En . h+ τ.

Proof. See [Fer13] for a proof.

Remark 1.12 An overall backward Euler discretization of (1.57) leads to the
implicit scheme reported in [BF14b, Algorithm 1]. In the case of coupling with
a thin-walled solid, the resulting scheme is also reported in Algorithm 5.1 (Chap-
ter 5). The approach delivers unconditionally stability and optimal accuracy (see
Remark 5.3 and Corollary 5.2 for a proof in the case of Algorithm 5.1).

These stability and accuracy properties are obtained at the price of solving prob-
lem (1.63) at each time-step, which can be computationally demanding, whether it is
solved in a monolithic or partitioned way. Reducing the complexity in fluid-structure
coupling has received a lot of research effort in the mathematical community over
the last decades. In the rest of this section, we consider schemes that provide differ-
ent degrees of fluid-solid splitting, thus effectively reducing the computational cost
of implicit coupling.

1.4.3.2 Projection-based semi-implicit schemes

Algorithm 1.1 involves a monolithic time-stepping in the fluid. A well known
alternative to the use of a monolithic time-discretization, is the use of a projection-
based time-marching. As a matter of fact, since the pioneering work by Chorin
and Temam (see [Cho68, Tem68]), projection methods have become one of the most
widespread techniques for the numerical solution of the Navier-Stokes equations in
primitive variables (see, e.g., [Pro97, BCM01, GMS06, BK11] and the references
therein). These methods segregate the computation of the velocity and of the pres-
sure in terms of two decoupled elliptic problems which make them very appealing
for large scale computations.

For the Stokes system (1.34), a projection method effectively uncouples viscous
diffusion and incompressibility effects. Assume that we enforce u = 0 on ∂Ωf in
(1.34). In the first step of the projection method, an intermediate velocity ũn is
computed using an approximation of the momentum equation in which the pressure
is treated explicitly:




ρf ũ

n − un−1

τ
− divσ(ũn, pn,•) = 0 in Ωf

ũn = 0 on ∂Ωf
(1.64)
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Afterwards, the end-of-step velocity un is obtained as the result of projecting ũn

into the space of divergence-free velocities:




ρf u
n − ũn
τ

+ ∇φn = 0 in Ωf ,

divun = 0 in Ωf ,

un · n = 0 on ∂Ωf

(1.65)

with φn def
= pn − pn,•. The choices s = 0, 1 in (1.64) and (1.65) correspond, respec-

tively, to the so-called non-incremental and incremental pressure-correction schemes
(see, e.g, [GMS06, Section 3]). Applying the divergence-free constraint (1.65)2 on
(1.65)1, we may rewrite the Darcy-step (1.65) in the following pressure-Poisson for-
mulation: 




− τ
ρf

∆φn = −divũn in Ωf ,

τ

ρf

∂φn

∂n
= 0 on ∂Ωf .

(1.66)

Moreover, the unknown un−1 can be eliminated in (1.64) via the relation:

ρf

τ
un−1 =

ρf

τ
ũn−1 −∇φn−1 in Ωf .

The projection semi-implicit scheme introduced in [FGG07] builds on the above
fractional-step time-marching of the fluid subproblem to reduce the strong fluid-
solid coupling of (1.63) without compromising stability. The resulting procedure is
reported in Algorithm 1.2.

In [FGG07, Theorem 1], the authors proved that Algorithm 1.2 with s = 0 is
stable under the condition

(
ρf hf

(hs)α
+ 2

µτ

hf(hs)α

)
. ρs, with α

def
=

{
0, if Ωs = Σ,

1, if Ωs 6= Σ,
(1.70)

where hf and hs are respectively the fluid and structure space discretization steps.
For s = 0, we refer to [AG10] for an a priori error analysis of Algorithm 1.2 which
ensures an overall O(τ

1
2 +hf +hs +(hf)l) convergence rate in the energy norm. Here,

l depends on the choice of interface matching operator.

Remark 1.13 In view of (1.66), the fluid projection problem (1.68) can be re-
placed by the following problem: find pnh ∈ Q̃h such that

τ

ρf

(∇φnh,∇qh
)

+ s̃h(pn,•h , qh) +
(
(
.
dn−1
h |Σ − ũnh) · n, qh

)
Σ

= b(qh, ũ
n
h)

for all qh ∈ Q̃h. Thereafter set pnh = φnh + pn,•h and unh = ũnh − τ
ρf ∇φnh.
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Algorithm 1.2 Projection semi-implicit schemes (from [FGG07]).

1. Fluid viscous substep: Find ũnh ∈ Ṽh such that



ũnh|Σ =

.
dn−1
h |Σ,

ρf

τ

(
ũnh − un−1

h , ṽh
)

+ a(ũnh, ṽh) +
(∇pn,•h , ṽh

)
= 0

(1.67)

for all ṽh ∈ ṼΣ,h.

2. Fluid projection with solid substep: Find (unh, φ
n
h,
.
dnh,d

n
h) ∈ Ṽh×Q̃h×Wh×Wh

such that



unh|Σ =

.
dnh|Σ,

ρf

τ

(
unh − ũnh,vh

)
+ b(φnh,v

n
h)− b(qh,unh) + s̃h(pn,•h , qh) = 0

(1.68)





.
dnh = ∂τd

n
h,

(
∂τ

.
dnh,wh

)
∗ + as(dnh,wh) = −ρ

f

τ

(
ũnh − un−1

h ,Lhwh

)
− a(ũnh,Lhwh)

− ρf

τ

(
unh − ũnh,Lhwh

)
− b(φnh,Lhwh)

(1.69)
for all (vh, qh,wh) ∈ ṼΣ,h × Q̃h ×Wh. Thereafter set pnh = φnh + pn,•h .

1.4.3.3 Dirichlet-Neumann explicit scheme

Although less computationally onerous than problem (1.63), Algorithm 1.2 still
involves the solution of the implicit coupled problem (1.68)-(1.69). The focus of
the rest of this section is on explicit coupling schemes, i.e., schemes that provide a
complete decoupling in the time-marching of the fluid and the solid subproblems.

The most elementary explicit coupling scheme is based on a Dirichlet-Neumann
explicit/implicit treatment of the kinematic and dynamic coupling conditions,
which, for (1.36), reads as

{
un =

.
dn−1 on Σ,

σe(dn)ns = −σ(un, pn)n on Σ.

This time-marching of the coupling conditions can be easily enforced, at the fully
discrete level and for a conforming discretization, using the partitioned formulation
given by (1.48)-(1.49). The resulting scheme, known as the Dirichlet-Neumann
explicit scheme, is reported in Algorithm 1.3.

Algorithm 1.3 is widely used in the aeroelasticity community (see, e.g., [PB01]).
However, as already mentioned, it becomes unconditionally unstable for problems
with a large added mass effect. Theoretical insight on this issue is given in [CGN05],
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Algorithm 1.3 Dirichlet-Neumann explicit coupling scheme.
For n ≥ 1 :

1. Fluid substep: find
(
unh, p

n
h

)
∈ Ṽh × Q̃h, such that

{
unh|Σ =

.
dn−1
h |Σ,

ρf
(
∂τu

n
h,vh

)
Ωf + af

(
(unh, p

n
h), (vh, qh)

)
+ s̃h(pnh, qh) = 0

(1.71)

for all (vh, qh) ∈ VΣ,h × Q̃h.

2. Solid substep: find
( .
dnh,d

n
h

)
∈Wh ×Wh, such that





.
dnh = ∂τd

n
h,(

∂τ
.
dnh,wh

)
∗ + as(dnh,wh)

= −ρf
(
∂τu

n
h,Lhwh

)
Ωf − a(unh,Lhwh)− b(pnh,Lhwh)

(1.72)

for all wh ∈Wh.

in which the following instability condition is established for Algorithm 1.3 in a
simplified framework:

ρsε

ρfµmax
< 1, (1.73)

where µmax is the largest eigenvalue of so-called added-mass operator (See Sec-
tion 3.3.1 of Chapter 3). The value of µmax only depends on geometrical quantities
and increases with the length of the domain. We can clearly see that (1.73) fails
to be satisfied whenever the fluid and solid densities are comparable or the domain
has a slender shape. In particular, since (1.73) is independent of the time-step size,
reducing it does not cure the instabilities.

1.4.3.4 Stabilized explicit coupling scheme

For problems with a large added mass effect, stability in explicit coupling de-
mands a different treatment of the interface coupling conditions. An explicit cou-
pling alternative is given by the Nitsche based stabilized explicit method introduced
in [BF09, BF14b], which corresponds to the explicit discretization of the partitioned
Nitsche formulation (1.59)-(1.58) reported in Algorithm 1.4.

Note that the following weakly consistent stabilization term

γ0h

γµ

(
pnh − pn−1

h , qh
)

Σ
, (1.76)

with γ0 > 0, has been added in the fluid step (1.75). This controls the temporal
interface pressure fluctuations induced by the fluid-solid splitting, curing the added-
mass stability issues. As a matter of fact, we have the stability result reported in
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Algorithm 1.4 Stabilized explicit coupling scheme (from [BF09, BF14b]).
For n ≥ 1:

1. Solid substep: find
( .
dnh,d

n
h

)
∈Wh ×Wh with

.
dnh = ∂τd

n
h and such that





(
∂τ

.
dnh,wh

)
∗ + as(dnh,wh) +

γµ

h

( .
dnh,wh

)
Σ

=
γµ

h

(
un−1
h ,wh

)
Σ
−
(
σ(un−1

h , pn−1
h )n,wh

)
Σ

(1.74)

for all wh ∈Wh.

2. Fluid substep: find (unh, p
n
h) ∈ Vh ×Qh such that





ρf
(
∂τu

n
h,vh

)
Ωf + af

(
(unh, p

n
h), (vh, qh)

)
+ Sh

(
(uh, ph), (vh, qh)

)

−
(
unh −

.
dnh,σ(vh,−qh)n

)
Σ

+
γµ

h

(
unh,vh

)
Σ

+
γ0h

γµ

(
pnh − pn−1

h , qh
)

Σ

=
γµ

h

( .
dnh,vh

)
Σ

+
(
σ(un−1

h , pn−1
h )n,vh

)
Σ

(1.75)
for all (vh, qh) ∈ Vh ×Qh.

Theorem 1.4.

Theorem 1.4 Let {(unh, pnh,
.
dnh,d

n
h)}n≥1 be the sequence given by Algorithm 1.4.

Then, under conditions γ & CTI/c̃g, γτ . h and γ0 & 1, there holds

En . E0 +

(
µ‖u0

h‖20,Σ + µ‖ε(u0
h)‖20,Ωh +

γ0h

γµ
τ‖p0

h‖20,Σ
)

for n ≥ 1.

Proof. The result follows by combining Lemma 1.2 with the arguments reported
in [BF09, Section 5.1] (see also [BF14b, Lemma 4.2]).

A major drawback of Algorithm 1.4 is that the explicit treatment of the Nitsche’s
penalty term

γµ

h

( .
dnh − un−1

h ,wh

)
Σ
,

in the solid substep (1.74), induces a deterioration of the accuracy. Specifically, the
truncation error induced by the splitting scales as

O
(τ
h

)

︸ ︷︷ ︸
Nitsche coupling

+ O
(

(hτ)
1
2

)

︸ ︷︷ ︸
pressure stabilization

, (1.77)

in the energy norm. Hence, to guarantee overall first-order accuracy one is
forced to take τ = O

(
h2
)
. Alternatively, to avoid this restrictive CFL con-
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straint, correction iterations with suitable extrapolations can be performed (see
[BF09, BF14a, BF14b]).

Remark 1.14 Since the fluid stresses are treated explicitly in (1.75), one could
be tempted to remove the symmetrizing term,

−
(
unh −

.
dnh,σ(vh, 0)n

)
Σ
,

in the fluid step. This simpler variant, which preserves the stability and accuracy
properties of Algorithm 1.4, enforces the following explicit Robin-Robin splitting of
the interface coupling (see [BF14a]):





σe(dn)ns +
γµ

h

.
dn =

γµ

h
un−1 − σ(un−1, pn−1)n on Σ,

σ(un, pn)n+
γµ

h
un =

γµ

h

.
dn + σ(un−1, pn−1)n on Σ.

1.4.3.5 Robin-Neumann explicit schemes

According to the discussion in the previous section, a fundamental difficulty in
explicit coupling is to guarantee stability without compromising optimal accuracy.
For the coupling with thin-walled solids, the Robin-Neumann methods proposed
in [Fer11b, Fer13, FMV13] achieve this purpose. In the sequel, we restrict the
discussion to the coupling with a linear viscoelastic Kirchhoff-Love shell (see Sec-
tion 1.2.2.2). That is, we couple (1.34) with





u =
.
d on Σ,

ρsε∂t
.
d+Led+Lv

.
d = −σ(u, p)n on Σ,

.
d = ∂td on Σ,

d = 0 on ∂Σ,

(1.78)

where Lv is given by (1.22). We consider the viscous bilinear form given by the
weak form of the (unbounded linear) surface differential operator Lv : D(Lv) ⊂
[L2(Σ)]d → [L2(Σ)]d, namely,

av
( .
d,w

)
=
(
Lv

.
d,w

)
Σ

for all
.
d ∈ D(Lv) and w ∈ W , which is assumed to be symmetric, coercive and

continuous on W .
A well-known salient feature of fluid-structure coupled problems involving a thin-

walled solid, is that they enforce an intrinsic interface Robin consistency (see, e.g.,
[NV08, GGCC09, Fer13, FMV13]). Indeed, from (1.78)1,2 it follows that

σ(u, p)n+ ρsε∂tu = −Led−Lv
.
d on Σ, (1.79)

which can be viewed as a Robin-like boundary condition for the fluid. The Robin-
Neumann methods exploit this relation and, instead of performing the fluid-solid
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time splitting in terms of a Dirichlet-Neumann coupling, as in Algorithm 1.3, they
enforce the following Robin-Neumann time-marching on the interface,




σ(un, pn)n+

ρsε

τ
un =

ρsε

τ

.
dn−1 −Ledn,? −Lv

.
dn,? on Σ,

ρsε∂τ
.
dn +Ledn +Lv

.
dn = −σ(un, pn)n on Σ.

(1.80)

Note that only the solid inertial effects are implicitly coupled with the fluid sub-
problem through the Robin boundary condition (1.80)1. This is enough to guarantee
added-mass free stability (see Theorem 1.5 below).

It is also worth noting that, considering the r-extrapolation of step (1.80)2, and
adding the resulting expression to (1.80)1, the coupling (1.80) can be reformulated
as



σ(un, pn)n+

ρsε

τ
un =

ρsε

τ

( .
dn−1 + τ∂τ

.
dn,?

)
+ σ(un,?, pn,?)n on Σ,

ρsε∂τ
.
dn +Ledn +Lv

.
dn = −σ(un, pn)n on Σ.

(1.81)

The advantage of this new expression is its intrinsic character, in the sense that it
avoids extrapolations of the solid viscoelastic terms within the fluid solver. In the
fitted mesh framework introduced in Section 1.4.2.2, this alternative leads to the
discretization of problem (1.34)-(1.78) given in Algorithm 1.5.

Algorithm 1.5 Robin-Neumann explicit schemes (from [Fer13, FMV13]).
For n > r:

1. Fluid step: Find (unh, p
n
h) ∈ Ṽh × Q̃h such that





ρf
(
∂τu

n
h,vh

)
Ωf + af

(
(unh, p

n
h), (vh, qh)

)
+ s̃h(pnh, qh)

+
ρsε

τ

(
unh,vh

)
Σ

=
ρsε

τ

( .
dn−1
h + τ∂τ

.
dn,?h ,vh

)
Σ

+ ρf
(
∂τu

n,?
h ,Lhvh

)
Ωf + a(un,?h ,Lhvh) + b(pn,?h ,Lhvh)

(1.82)

for all (vh, qh) ∈ Ṽh × Q̃h with vh|Σ ∈Wh.

2. Solid step: Find
( .
dnh,d

n
h

)
∈Wh ×Wh, such that





.
dnh = ∂τd

n
h,

ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) + av(
.
dnh,wh)

= −ρf
(
∂τu

n
h,Lhwh

)
Ωf − a(unh,Lhwh)− b(pnh,Lhwh)

(1.83)

for all wh ∈Wh.

Remark 1.15 For r = 1, 2, Algorithm 1.5 is a multi-step method which requires
initial data. This additional data is obtained by performing one step of the scheme
with r = 0 and then one step of scheme with r = 1.
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Remark 1.16 In the particular case of an undamped thin-walled solid (i.e., Lv =

0), Algorithm 1.5 with r = 0 yields the splitting scheme reported in [GGCC09],
which is known to deliver very poor accuracy (see [Fer13, FMV13]).

Remark 1.17 The Robin-Neumann time-marching (1.80) induces the following
incremental displacement-correction discretization (see [Fer13]) of the solid momen-
tum equation (1.78)2,





ρsε

τ

( .
dn−

1
2 −

.
dn−1

)
+Ledn,? +Lv

.
dn,? = −σ(un, pn)n on Σ,

ρsε

τ
(
.
dn −

.
dn−

1
2 ) +Le(dn − dn,?) +Lv(

.
dn −

.
dn,?) = 0 on Σ,

(1.84)

with the intermediate solid velocity
.
dn−

1
2 ∈W being given by

.
dn−

1
2 = un|Σ. (1.85)

In the fitted mesh framework described in Section 1.4.2.2, the relation (1.85) is
straightforwardly enforced thanks to (1.44), which allows to set

.
d
n− 1

2
h = unh|Σ, (1.86)

and embed (1.84)1 as a Robin boundary condition in the fluid step (1.82). How-
ever, in the unfitted mesh framework of Section 1.4.2.3, the identification (1.86)
is no longer possible and new strategies have to be designed in order to couple the
fractional-step time discretization (1.84) of the solid subproblem with the discretiza-
tion of the fluid subproblem (see Chapter 5).

Theoretical results on the stability and accuracy of Algorithm 1.5 have been re-
ported in [Fer13, FMV13]. A fundamental ingredient in the analysis of Algorithm 1.5
is the fact that it can be viewed as a kinematic perturbation of an underlying im-
plicit coupling scheme. More precisely, from [FMV13], we have that Algorithm 1.5
is equivalent to: for n > r, find

(
unh, p

n
h,
.
dnh,d

n
h

)
∈ Ṽh × Q̃h ×Wh ×Wh,

such that 



unh|Σ =
.
dnh +

τ

ρsε

(
Le
h(dnh − dn,?h ) +Lv

h(
.
dnh −

.
dn,?h )

)
,

.
dnh = ∂τd

n
h,

ρf
(
∂τu

n
h,vh

)
Ωf + af

(
(unh, p

n
h), (vh, qh)

)
+ s̃h(pnh, qh)

+ ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) + av
( .
dnh,wh

)
= 0

(1.87)

for all (vh, qh,wh) ∈ Ṽh × Q̃h ×Wh with vh|Σ = wh and where we have made use
of the discrete reconstructions, Le

h : W → Wh and Lv
h : W → Wh, of the elastic
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and viscous solid operators, defined by the relations

(Le
hw,wh)Σ = as(w,wh), (Lv

hw,wh)Σ = av(w,wh) (1.88)

for all (w,wh) ∈W ×Wh.
As a matter of fact, reformulation (1.87) of Algorithm 1.5 gives an implicit

discretization of problem (1.34)-(1.78), in which the kinematic coupling condition
(1.78)1 is perturbed by the last term in (1.87)1. The stability and accuracy prop-
erties of Algorithm 1.5 are driven by the impact that this perturbation has in the
underlying implicit scheme. Indeed, we have that Algorithm 1.5 is unconditionally
energy stable for r = 0 and r = 1. The scheme for r = 2 is energy stable under a
CFL-like condition. These results is stated in Theorem 1.5.

Theorem 1.5 Let {(unh, pnh,dnh,
.
dnh)}n≥r+1 be the sequence given by Algorithm

1.5. Assume that the schemes with extrapolation (r ≥ 1) are initialized following
the procedure of Remark 1.15. We have the following a priori energy estimates:

• For r = 0, 1 and n > r, there holds

En . E0,

unconditionally of the discretization parameters.

• For r = 2 and n > 2, there holds

En . exp

(
tnγ

1− τγ

)
E0 (1.89)

provided that (1.22) and the following conditions hold





α2τ2 + β2τ2 (ωs)4

h4
≤δ

4
,

τ5(ωs)6

h6
+ 2α

τ2(ωs)2

h2
+ 2βτ2 (ωs)4

h4
≤γ

2
,

τγ <1,

(1.90)

where ωs def
= Cinv

√
βs/(ρsε), Cinv denotes the constant of an inverse estimate,

0 ≤ δ ≤ 1 and γ > 0.

Proof. See [FMV13] for a proof.

Remark 1.18 As pointed out in [FMV13], the nature of the CFL-like condition
induced by (1.90) is dictated by the Rayleigh coefficient β of (1.22). If β = 0, a
6/5-CFL condition τ = O(h

6
5 ) is required to fulfill the relations (1.90). If β > 0,

the relations (1.90) are satisfied under a parabolic-CFL condition τ = O(h2).
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Regarding the accuracy, the error analysis shows that the splitting error induced
by the kinematic perturbation (1.87)1 scales as O(τ2r−1

). Thus, Algorithm 1.5 with
r = 1 or r = 2 yields an overall optimal first-order time-accuracy O(τ) in the energy-
norm, while a sub-optimal time convergence rate O(τ

1
2 ) is expected for the scheme

with r = 0. This is stated in the following theorem.

Theorem 1.6 Let (u, p,d,
.
d) be the solution of the coupled problem (1.34)-(1.78)

and {(unh, pnh,dnh,
.
dnh)}n>r be the discrete solution given by Algorithm 1.5 with prop-

erly chosen initial data (see [FMV13]). The initialization procedure of Remark 1.15
is considered for the schemes with with extrapolation (r ≥ 1). For the scheme with
r = 2 we assume, in addition, that (1.22) and the stability condition (1.90) hold.
Then, for regular enough exact solutions, we have the following error estimates, for
n > r such as nτ < T :

En . h+ τ + τ2r−1

Proof. See [FMV13] for a proof.
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Chapter 2

Fully decoupled time-marching schemes
for incompressible fluid/thin-walled

structure interaction

In this chapter we show how the explicit Robin-Neumann coupling paradigm of Sec-
tion 1.4.3.5 can be effectively combined with a projection based time-marching in the fluid.
The resulting schemes enable a fully decoupled sequential computation of the fluid-solid state
(velocity-pressure-displacement splitting). A priori energy estimates guaranteeing uncondi-
tional stability are established for some of the schemes. The accuracy and performance of
the methods proposed are illustrated by a thorough numerical study.

The results presented in this chapter have been reported in:

• M. A. Fernández, M. Landajuela, A fully decoupled scheme for the in-
teraction of a thin-walled structure with an incompressible fluid.
Comptes Rendus Mathématique, 351(3):161-164, 2013

• M. A. Fernández, M. Landajuela, M. Vidrascu, Fully decoupled time-
marching schemes for incompressible fluid/thin-walled structure in-
teraction. Journal of Computational Physics, 297:156-181, 2015.
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2.1 Introduction

The fundamental ingredient in the derivation of the explicit Robin-Neumann
schemes reported in Section 1.4.3.5, is the combination of the Robin condition (1.80)1
with a monolithic time-stepping in the fluid. The contribution of this chapter is to
effectively combine the aforementioned explicit Robin-Neumann coupling paradigm
for incompressible fluid/thin-walled structure interaction problems with a projection
based time-marching in the fluid. An approach in this direction, intended to deliver
second-order accuracy, has been recently reported in [BHS14]. It is however not clear
how to implement the interface splitting therein within a finite element framework.

The key idea of the schemes proposed in this chapter lies in the derivation of
an intrinsic fractional-step time-stepping of the interface Robin consistency fea-
tured by the coupled problem (see Section 1.4.3.5). This preserves the stability
and accuracy of the original Robin-Neumann splitting without compromising the
velocity/pressure uncoupling in the fluid time-marching. In particular, the resulting
solution procedures enable a fully decoupled computation of the whole fluid-solid
state. The velocity/pressure splitting in the fluid introduces additional perturba-
tions of the kinematic coupling which make the analysis much more intricate than
in Section 1.4.3.5. For a linear coupled problem involving the Stokes equations and
a general (Reissner-Mindlin type) viscoelastic shell model, a priori energy estimates
guaranteeing unconditional stability are derived for some of the variants. The pro-
posed fully decoupled schemes are also formulated within a non-linear framework,
involving the incompressible Navier-Stokes equations (in moving domains) and a
non-linear viscoelastic shell model. A thorough numerical study, based on different
linear and non-linear fluid-structure interaction examples, illustrates the accuracy
and performance of the methods proposed.

This chapter is organized as follows. Section 2.2 is devoted to the derivation and
the analysis of the methods within a linear representative setting. In Section 2.3, the
proposed fully decoupled schemes are formulated within a non-linear setting. The
numerical results are presented and discussed in Section 2.4. Finally, a summary of
the conclusions is given in Section 2.5.

2.2 Derivation and analysis in the linear case

We consider the coupling of the Stokes system (1.34) with the linear Reissner-
Mindlin shell model (1.12). The boundary of the fluid domain Ωf ⊂ R3 is partitioned
as ∂Ωf = Γf ∪ Σ (see Figure 2.1). For a given vector field v defined on the surface
Σ, the symbols v⊥

def
= (v · n)n and v‖

def
= v − v⊥ will denote, respectively, the

normal and tangential components of v (see Figure 2.1). The resulting coupled
problem reads as follows: find the fluid velocity u : Ωf × R+ → R3, the pressure
p : Ωf × R+ → R, the solid displacement d : Σ× R+ → R3 and the rotation vector



2.2. Derivation and analysis in the linear case 53

θ : Σ× R+ → R3, such that




ρf∂tu− divσ(u, p) = 0 in Ωf ,

divu = 0 in Ωf ,

σ(u, p)n = −pΓn on Γf ,

(2.1)





u =
.
d on Σ,

ρsε∂t
.
d+Le

d(d,θ) +Lv
d(
.
d,

.
θ) = −σ(u, p)n on Σ,

Le
θ(d,θ) +Lv

θ(
.
d,

.
θ) = 0 on Σ,

.
d = ∂td,

.
θ = ∂tθ on Σ,

d = θ = 0 on ∂Σ,

(2.2)

satisfying the initial conditions u(0) = u0, d(0) = d0, θ(0) = θ0,
.
d(0) =

.
d0 and.

θ(0) =
.
θ0. A given pressure data pΓ is prescribed on the fluid external boundary

Γf . In this section, the elastic and viscous solid operators,
(
Le
d,L

e
θ

)
and

(
Lv
d,L

v
θ

)
,

are supposed to be linear (see (1.13) together with (1.15) and (1.16) for an example
of suitable operators).

v

v?

vk

n

⌃

⌦f

�f �f

Figure 2.1: Geometrical configuration.

Remark 2.1 The external boundary conditions of the coupled problem have no
impact on the coupling schemes and theoretical results presented below.

2.2.1 Time semi-discretization: fully decoupled schemes

Recall that the symbol τ denotes the time-step length, tn
def
= nτ , for n ∈ N, and

∂τx
n def

=
(
xn − xn−1

)
/τ stands for the first order backward difference in time. In

the following, we will make extensive use of the superscripts • and ? to respectively
indicate explicit extrapolations of order s ∈ {0, 1} and r ∈ {0, 1, 2}, namely,

xn,•
def
=

{
0 if s = 0,

xn−1 if s = 1,
, xn,?

def
=





0 if r = 0,

xn−1 if r = 1,

2xn−1 − xn−2 if r = 2.

The use of these two different notations will be made clear below (see Remark 2.2).
This section is devoted to the time discretization of the coupled problem (2.1)-

(2.2). A fundamental feature of this coupled problem is that it enforces an intrinsic
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Robin consistency on the interface (see Section 1.4.3.5). More specifically, from
(2.2)1,2 it follows that

σ(u, p)n+ ρsε∂tu = −Le
d(d,θ)−Lv

d(
.
d,

.
θ). (2.3)

In Section 1.4.3.5, this notion of interface Robin consistency has been used to avoid
the infamous unconditional instability issues of standard Dirichlet-Neumann loosely
coupled schemes, without compromising optimal accuracy. Applied to this prob-
lem, the methods proposed there split the time-marching of (u, p) and (d,θ) by
combining a monolithic time-stepping of (2.1) with a specific time discretization of
(2.3). The purpose of this chapter is to show how this explicit coupling paradigm
can be effectively used with a projection method in the fluid. The resulting methods
enable a fully decoupled sequential computation of the whole fluid-solid state: u, p
and (d,θ).

The solution procedures proposed in this chapter build on the following three
fundamental ingredients:

1. Projection-based time-marching of the fluid:

(a) Viscous-step:



ρf ũ

n − un−1

τ
− divσ(ũn, pn,•) = 0 in Ωf ,

σ(ũn, pn,•)n = −pn,•Γ n on Γf .

(2.4)

(b) Projection-step:




ρf u
n − ũn
τ

+ ∇φn = 0 in Ωf ,

divun = 0 in Ωf ,

φn = pnΓ − pn,•Γ on Γf ,

(2.5)

with φn def
= pn − pn,•.

We recall that the choices s = 0, 1 correspond, respectively, to the so-
called non-incremental and incremental pressure-correction schemes (see Sec-
tion 1.4.3.2). The arguments below can be extended with ease to a velocity-
correction time-stepping (see, e.g, [GMS06, Section 4]) in the fluid.

2. Explicit interface conditions for (2.4) and (2.5), based on a specific fractional-
step time-marching of (2.3), which preserve the velocity/pressure splitting and
treat implicitly only the solid inertia contribution.

3. Fluid stresses are transmitted to the solid by solving the standard shell prob-



2.2. Derivation and analysis in the linear case 55

lem:




ρsε∂τ
.
dn +Le

d(dn,θn) +Lv
d(
.
dn,

.
θn) = −σ(ũn, pn)n on Σ,

Le
θ(dn,θn) +Lv

θ(
.
dn,

.
θn) = 0 on Σ,

.
d = ∂τd

n,
.
θn = ∂τθ

n on Σ,

dn = θn = 0 on ∂Σ.

(2.6)

We now further elaborate on the second point. To this purpose, we first note
that the projection-step (2.5) only contributes to the normal component of the
fluid-stress, that is, n · σ(u, p)n. This is consistent with the fact that, in (2.5),
only the normal component of the velocity has a well-defined trace on Σ. In terms
of interface coupling, this indicates that the projection-step only contributes to the
normal component of (2.3). Therefore, its tangential component has to be taken
into account in the viscous-step (2.4). This motivates the following two-stage time
discretization of (2.3):




σ(ũn, pn,•)n+
ρsε

τ
ũn =

ρsε

τ

.
dn−1 −Le

d(dn,?,θn,?)‖ −Lv
d(
.
dn,?,

.
θn,?)‖,

− φn +
ρsε

τ
un · n =

ρsε

τ
ũn · n−Le

d(dn,?,θn,?) · n−Lv
d(
.
dn,?,

.
θn,?) · n,

(2.7)

on Σ.
These interface relations preserve the original splitting of (2.4) and (2.5) and

enable the interface fluid-solid splitting through the explicit treatment of the solid
viscoelastic terms in (2.7). Besides, the viscoelastic extrapolations are performed
to control the perturbation of the kinematic coupling, which dramatically affects
accuracy in practice (see Remark 2.7 and the numerical evidence of Section 2.4).

Remark 2.2 From (2.4), (2.5) and (2.7) we can observe that the extrapolations
represented by the superscripts • and ? are respectively associated to the velocity-
pressure and fluid-solid splittings.

In summary, a three-stage splitting of the coupled problem (2.1)-(2.2) could
be performed by solving (2.4) with (2.7)1, then (2.5) with (2.7)2 and finally (2.6).
However, in the spirit of Section 1.4.3.5, in order to avoid the extrapolations of the
solid viscoelastic terms (which can be cumbersome in practice), we consider instead
of (2.7) the following equivalent interface relations




σ(ũn, pn,•)n+
ρsε

τ
ũn =

ρsε

τ

( .
dn−1 + τ∂τ

.
dn,?‖

)
+
(
2µε(ũn,?)n

)
‖ on Σ,

−φn +
ρsε

τ
un · n =

ρsε

τ
ũn · n− φn,? +

ρsε

τ

( .
dn,? − ũn,?

)
· n on Σ

(2.8)

for n > s+ r, whose derivation is detailed in the following. To this purpose, we first
note that, from (2.6)1, we have

−Le
d(dn,?,θn,?)−Lv

d(
.
dn,?,

.
θn,?) = ρsε∂τ

.
dn,? + σ(ũn,?, pn,?)n on Σ (2.9)
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for n > r. The tangential component of this expression writes

−Le
d(dn,?,θn,?)‖ −Lv

d(
.
dn,?,

.
θn,?)‖ = ρsε∂τ

.
dn,?‖ +

(
2µε(ũn,?)n

)
‖ on Σ,

for n > r. Hence, by inserting this expression into (2.7)1, we get (2.8)1. We now
proceed by taking the scalar product of (2.9) with n, which yields

−Le
d(dn,?,θn,?) · n−Lv

d(
.
dn,?,

.
θn,?) · n

= ρsε∂τ
.
dn,? · n+ 2µn · ε(ũn,?)n− pn,?. (2.10)

In addition, by taking the scalar product of (2.8)1 with n, we get

2µn · ε(ũn,?)n = (pn,•)? − ρsε

τ

(
ũn,? −

.
dn−1,?

)
· n on Σ

for n > s+ r. Hence, by inserting this expression into (2.10), it follows that

−Le
d(dn,?,θn,?) · n−Lv

d(
.
dn,?,

.
θn,?) · n

= ρsε∂τ
.
dn,? · n− pn,? + (pn,•)? − ρsε

τ

(
ũn,? −

.
dn−1,?

)
· n

= (pn,•)? − pn,? +
ρsε

τ

( .
dn,? − ũn,?

)
· n

for n > s+ r. We retrieve (2.8)2 by inserting this last identity into (2.7)2.
Finally, instead of the Darcy-step (2.5), we consider the equivalent pressure-

Poisson formulation complemented with the following interface Robin condition,
derived from (2.8)2:

τ

ρf

∂φn

∂n
= −(un − ũn) · n =

τ

ρsε
(φn,? − φn) +

(
ũn,? −

.
dn,?

)
· n on Σ.

The proposed fully decoupled schemes for problem (2.1)-(2.2) are reported in
Algorithm 2.1. A salient feature of these methods is their intrinsic partitioned
(or modular) character, in the sense that the overall fluid problem (2.11)-(2.12)
does not depend on the specific structure of the solid model, and viceversa. In
particular, the solid substep (2.13) is simply an implicit first-order time-discreti-
zation of the shell equations (2.2)2−5 with a known forcing term. Note also that the
interface Robin conditions (2.11)3 and (2.12)3 are nothing but consistent relaxations
of the kinematic compatibility (2.2)1. In this sense, it is worth recalling that for
pressure-correction projection methods, Dirichlet conditions on the velocity yield
homogeneous Neumann conditions for the pressure (see, e.g., [Gue96, GMS06]).

Remark 2.3 In the vein of Section 1.3.2, the work flow diagram of Algorithm 2.1
is given in Figure 2.2. Recall that FAD, FP and S stand for the fluid advection-
diffusion, fluid projection and solid solutions, respectively. Comparing Figure 2.2
with the work flow diagram of Algorithm 1.2 (reported in Figure 1.10), we can readily
see that Algorithm 2.1 goes further in the time-splitting of the coupled system with
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Algorithm 2.1 Fully decoupled schemes for (2.1)-(2.2).
For n > s+ r:

1. Fluid viscous substep: find ũn : Ωf → Rd such that




ρf ũ
n − un−1

τ
− divσ(ũn, pn,•) = 0 in Ωf ,

σ(ũn, pn,•)n = −pn,•Γ n on Γf ,

σ(ũn, pn,•)n+
ρsε

τ
ũn =

ρsε

τ

( .
dn−1 + τ∂τ

.
dn,?‖

)
+
(
2µε(ũn,?)n

)
‖ on Σ.

(2.11)

2. Fluid projection substep: find φn : Ωf → R such that




− τ
ρf

∆φn = −divũn in Ωf ,

φn = pnΓ − pn,•Γ on Γf ,

τ

ρf

∂φn

∂n
+

τ

ρsε
φn =

τ

ρsε
φn,? +

(
ũn,? −

.
dn,?

)
· n on Σ.

(2.12)

Thereafter set pn = φn + pn,•, un = ũn − τ
ρf ∇φn.

3. Solid substep: find dn : Σ→ R3 and θn : Σ→ R3 with θn⊥ = 0 and such that




ρsε∂τ
.
dn +Le

d(dn,θn) +Lv
d(
.
dn,

.
θn) = −σ(ũn, pn)n in Σ,

Le
θ(dn,θn) +Lv

θ(
.
dn,

.
θn) = 0 on Σ,

.
dn = ∂τd

n,
.
θn = ∂τθ

n on Σ,

dn = θn = 0 on ∂Σ.

(2.13)

respect to this other (also projection-based) scheme, by "breaking" the iterative
inner loop between the fluid projection and the solid subproblems.

S(tn�1)

FAD(tn�1)

FP(tn�1)

FAD(tn)

FP(tn)

S(tn)

. . . . . .

Figure 2.2: Work flow diagram of Algorithm 2.1.

Remark 2.4 It should be noted that, in contrast to the approach recently pro-
posed in [BHS14], the Robin splitting provided by (2.11)3 and (2.12)3 admits a
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mathematically sound variational setting and, hence, can be straightforwardly com-
bined with a finite element approximation in space (see Section 2.4).

Remark 2.5 For s > 1 or r > 1, Algorithm 2.1 is a multi-step method which
requires initial data at the time instants t1, . . . , tr+s. This additional data is obtained
by performing r+ s steps of Algorithm 2.1 with lower values of r or s, starting from
s = r = 0. For instance, if we consider Algorithm 2.1 with s = 1 and r = 2, we
proceed as follows:

• one step of Algorithm 2.1 with s = r = 0 to generate data at t1;

• one step of Algorithm 2.1 with s = 1 and r = 0 (or s = 0 and r = 1) to
generate data at t2;

• one step of Algorithm 2.1 with s = r = 1 to generate data at t3.

2.2.2 Stability analysis

In this section, energy estimates are derived for some of the schemes reported in
Algorithm 2.1.

2.2.2.1 Preliminaries

Let ω be a given domain or surface in R3. Recall that the scalar product in
L2(ω) is denoted by (·, ·)ω and its norm by ‖ · ‖ω. For the sake of simplicity, the
subscript Ωf is omitted in the rest of this chapter for the case ω = Ωf . Since the
elastic and viscous solid surface operators,

(
Le
d,L

e
θ

)
and

(
Lv
d,L

v
θ

)
, are supposed to

be linear, they admit the decomposition (1.13), that we repeat here for convenience:

Le
d(d,θ)

def
= Ae

dd+Be
dθ, Lv

d(d,θ)
def
= Av

dd+Bv
dθ,

Le
θ(d,θ)

def
= Be

θd+Ae
θθ, Lv

θ(d,θ)
def
= Bv

θd+Av
θθ.

Furthermore, we assume that the corresponding matrix operators

Qe def
=

[
Ae
d Be

d

Be
θ Ae

θ

]
, Qv def

=

[
Av
d Bv

d

Bv
θ Av

θ

]
,

are self-adjoint positive definite operators in [L2(Σ)]3 × [L2(Σ)]3. An example of
Reissner-Mindlin type shell model entering this abstract framework is given by the
shear-membrane-bending model introduced in Section 1.2.2.2, which corresponds to
the operators (1.15) and (1.16).

For the sake of conciseness, the following notation will also be used

y
def
=

[
d

θ

]
,

.
y

def
=

[ .
d.
θ

]
,
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as well as their corresponding elastic-energy and viscous-dissipation norms

‖y‖e
def
=
(
Qey,y

) 1
2
Σ
, ‖ .y‖v

def
=
(
Qv .y, .y

) 1
2
Σ
.

In order to ease the presentation, we will commit a slight abuse of notation by
settting Le

dy
def
= Le

d(d,θ) and Lv
d
.
y

def
= Lv

d(
.
d,

.
θ). The same applies to operators Le

θ

and Lv
θ.

2.2.2.2 A priori energy estimates

We define the time semi-discrete energy En and dissipation Dn, at time tn, as
follows:

En
def
=

ρf

2
‖un‖2 +

ρsε

2
‖
.
dn‖2Σ +

1

2
‖yn‖2e + s

τ2

2ρf
‖∇pn‖2,

Dn def
= 2µ‖ε(ũn)‖2 + ‖ .yn‖2v + (1− s) τ

2ρf
‖∇pn‖2.

The main result of this section is stated in the next theorem.

Theorem 2.1 Assume that the system is isolated, i.e., pΓ = 0 (free system) and
let the sequence

{
(ũn,un, pn,dn,

.
dn,θn,

.
θn)
}
n>r

be given by Algorithm 2.1 either
with s = 0 and r ∈ {0, 1}, or with s = 1 and r = 0. Then, the following a priori
energy estimate holds for n > s+ r:

En + τ
n∑

m>s+r

Dm ≤ E0. (2.14)

Proof. We first reformulate the second step of Algorithm 2.1 as the following
equivalent Darcy-problem:




ρf u
n − ũn
τ

+ ∇φn = 0 in Ωf ,

divun = 0 in Ωf ,

φn = 0 on Γf ,

−φn +
ρsε

τ
un · n =

ρsε

τ
ũn · n− φn,? +

ρsε

τ

( .
dn,? − ũn,?

)
· n on Σ.

(2.15)

Note that we have used the assumption that pΓ = 0. From (2.11)3, (2.13)1 and
(2.15)4, it follows that (2.7) holds for n > s + r. Thus, by adding (2.7)1 to (2.7)2
multiplied by n, we get

ρsε

τ

(
(ũn‖ + un⊥)−

.
dn−1

)
+Le

dy
n,? +Lv

d
.
yn,? = −σ(ũn, pn)n on Σ,

which, after subtraction from (2.13)1, yields the following fundamental
displacement-velocity correction reformulation of the solid step:

ρsε

τ

( .
dn −

(
ũn‖ + un⊥

))
+Le

d(yn − yn,?) +Lv
d(
.
yn − .

yn,?) = 0 on Σ (2.16)
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for n > s + r. As a result, from (2.7)2 and (2.16), we obtain the following discrete
kinematic relations on the interface Σ:





un · n = ũn · n+
τ

ρsε

(
φn −Le

dy
n,? · n−Lv

d
.
yn,? · n

)
,

ũn =
.
dn +

τ

ρsε

[
Le
d(yn − yn,?) +Lv

d(
.
yn − .

yn,?)
]

− τ

ρsε

[
φnn−

(
Le
dy

n,?
)
⊥ −

(
Lv
d
.
yn,?

)
⊥
]

(2.17)

for n > s+ r. We now proceed by taking the scalar product of (2.11)1 and (2.15)1
with ũn and un, respectively. Hence, after integration by parts over Ωf , application
of the boundary conditions (2.11)2 and (2.15)3, and summation of the resulting
expressions, we get

ρf

2τ

(
‖un‖2 − ‖un−1‖2 + ‖un − ũn‖2

)
+ 2µ‖ε(ũn)‖2

− (σ(ũn, pn,•)n, ũn)Σ − (pn,•, divũn) + (φn,un · n)Σ ≤ 0.

Equivalently, by using (2.15)1 and rearranging the interface terms, we obtain

ρf

2τ

(
‖un‖2 − ‖un−1‖2

)
+ 2µ‖ε(ũn)‖2 − (σ(ũn, pn)n, ũn)Σ

+ (pn, (un − ũn) · n)Σ +
τ

2ρf
‖∇φn‖2 − (pn,•, divũn)− (pn,•, (un − ũn) · n)Σ

︸ ︷︷ ︸
T1

≤ 0.

(2.18)

The term T1 can be controlled from (2.15)1−3, using integration by parts, which
yields

T1 =
τ

2ρf
‖∇φn‖2 − τ

ρf
(∆φn, pn,•)− (pn,•, (un − ũn) · n)Σ

=
τ

2ρf
‖∇φn‖2 +

τ

ρf

(∇φn,∇pn,•
)
− τ

ρf

(
∂φn

∂n
, pn,•

)

Σ

− (pn,•, (un − ũn) · n)Σ

=
τ

2ρf

(
‖∇pn‖2 − ‖∇pn,•‖2

)
.

Thus, by inserting this expression into (2.18), we get

ρf

2τ

(
‖un‖2 − ‖un−1‖2

)
+ 2µ‖ε(ũn)‖2 +

τ

2ρf

(
‖∇pn‖2 − ‖∇pn,•‖2

)

− (σ(ũn, pn)n, ũn)Σ + (pn, (un − ũn) · n)Σ ≤ 0,
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which, owing to the relation (2.17)1, yields

ρf

2τ

(
‖un‖2 − ‖un−1‖2

)
+ 2µ‖ε(ũn)‖2 +

τ

2ρf

(
‖∇pn‖2 − ‖∇pn,•‖2

)

− (σ(ũn, pn)n, ũn)Σ︸ ︷︷ ︸
T2

+
τ

ρsε

(
pnn, φnn− (Le

dy
n,?)⊥ − (Lv

d
.
yn,?)⊥

)
Σ
≤ 0. (2.19)

On the other hand, from (2.13)1 and (2.17)2, it follows that

T2 =
ρsε

2τ

(
‖
.
dn‖2Σ − ‖

.
dn−1‖2Σ + ‖

.
dn −

.
dn−1‖2Σ

)
+
(
Le
dy

n +Lv
d
.
yn,

.
dn
)

Σ︸ ︷︷ ︸
T2,1

+
τ

2ρsε

(
‖Le

dy
n +Lv

d
.
yn‖2Σ − ‖Le

dy
n,? +Lv

d
.
yn,?‖2Σ

)

+
τ

2ρsε
‖Le

d(yn − yn,?) +Lv
d(
.
yn − .

yn,?)‖2Σ




T2,2

+
( .
dn −

.
dn−1,Le

d(yn − yn,?) +Lv
d(
.
yn − .

yn,?)
)

Σ︸ ︷︷ ︸
T2,3

−
( .
dn −

.
dn−1, φnn−

(
Le
dy

n,?
)
⊥ −

(
Lv
d
.
yn,?

)
⊥

)
Σ︸ ︷︷ ︸

T2,4

− τ

ρsε

(
Le
dy

n +Lv
d
.
yn, φnn− (Le

dy
n,?)⊥ − (Lv

d
.
yn,?)⊥

)
Σ
.

(2.20)

In addition, thanks to (2.13)2, for the term T2,1 we have

T2,1 =
(
Le
dy

n +Lv
d
.
yn,

.
dn
)

Σ
+
(
Le
θy

n +Lv
θ
.
yn,

.
θn
)

Σ

=
(
Qe .yn,yn

)
Σ

+
(
Qv .yn, .yn

)
Σ

=
1

2τ

(
‖yn‖2e −

∥∥yn−1
∥∥2

e
+
∥∥yn − yn−1

∥∥2

e

)
+ ‖ .yn‖2v .

(2.21)

Thus, by inserting this identity into (2.20) and the resulting expression into (2.19),
we get the following energy inequality

ρf

2τ

(
‖un‖2 − ‖un−1‖2

)
+
ρsε

2τ

(
‖
.
dn‖2Σ − ‖

.
dn−1‖2Σ + ‖

.
dn −

.
dn−1‖2Σ

)

+
1

2τ

(
‖yn‖2e −

∥∥yn−1
∥∥2

e
+
∥∥yn − yn−1

∥∥2

e

)
+ ‖ .yn‖2v + 2µ‖ε(ũn)‖2

+
τ

2ρf

(
‖∇pn‖2 − ‖∇pn,•‖2

)
+ T2,2 + T2,3 + T2,4

+
τ

ρsε

(
pnn−Le

dy
n −Lv

d
.
yn, φnn−

(
Le
dy

n,?
)
⊥ −

(
Lv
d
.
yn,?

)
⊥
)

Σ
︸ ︷︷ ︸

T3

≤ 0 (2.22)
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for n > s+ r.

We now proceed by treating each case of extrapolation separately.

Algorithm 2.1 with s ∈ {0, 1} and r = 0. We have

T2,3 + T2,4 ≥−
ρsε

2τ
‖
.
dn −

.
dn−1‖2Σ −

τ

2ρsε
‖Le

dy
n +Lv

d
.
yn − φnn‖Σ,

T2,2 + T3 =
τ

2ρsε

(
‖pn‖2Σ − ‖pn,•‖2Σ

)
+

τ

2ρsε
‖Le

dy
n +Lv

d
.
yn − φnn‖2Σ

+
τ

2ρsε
‖Le

dy
n +Lv

d
.
yn‖2Σ.

Therefore,

T2,2 + T2,3 + T2,4 + T3 ≥ −
ρsε

2τ
‖
.
dn −

.
dn−1‖2Σ +

τ

2ρsε

(
‖pn‖2Σ − ‖pn,•‖2Σ

)

+
τ

2ρsε
‖Le

dy
n +Lv

d
.
yn‖2Σ. (2.23)

For s = 0, the estimate (2.14) follows by inserting this expression into (2.22), mul-
tiplication by τ and summation over m = 1, ..., n. For s = 1, we can only sum over
m = 2, ..., n, which yields

En + τ
n∑

m=2

Dm ≤ E1 +
τ2

2ρsε
‖p1‖2Σ. (2.24)

Since p1 is generated with one step of the scheme with s = r = 0 (see Remark 2.5),
the last term of (2.24) can be controlled by the extra dissipation provided by (2.23)
with s = 0 and n = 1. As a result, estimate (2.14) also holds for s = 1 and r = 0.

Algorithm 2.1 with s = 0 and r = 1. From (2.13)2, we have

T2,3 = τ2
(
∂τ

.
dn,Le

d
.
yn +Lv

d(∂τ
.
yn)
)

Σ
+ τ2

(
∂τ

.
θn,Le

θ
.
yn +Lv

θ(∂τ
.
yn)
)

Σ

= τ2 (Qe .yn, ∂τ
.
yn)Σ + τ2 (Qv∂τ

.
yn, ∂τ

.
yn)Σ

=
τ

2

(
‖ .yn‖2e −

∥∥ .yn−1
∥∥2

e
+
∥∥ .yn − .

yn−1
∥∥2

e

)
+ τ2 ‖∂τ .yn‖2v

for n ≥ 2. For the third term, we get

T2,4 ≥ −
ρsε

2τ
‖
.
dn −

.
dn−1‖2Σ −

τ

2ρsε
‖
(
Le
dy

n−1
)
⊥ +

(
Lv
d
.
yn−1

)
⊥ − p

nn‖2Σ.
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At last, the fourth term is estimated as follows

T3 =
τ

ρsε

(
pnn−Le

dy
n −Lv

d
.
yn, pnn−

(
Le
dy

n−1
)
⊥ −

(
Lv
d
.
yn−1

)
⊥
)

Σ

=
τ

ρsε

(
pnn−

(
Le
dy

n
)
⊥ −

(
Lv
d
.
yn
)
⊥, p

nn−
(
Le
dy

n−1
)
⊥ −

(
Lv
d
.
yn−1

)
⊥
)

Σ

=
τ

ρsε
‖pnn−

(
Le
dy

n−1
)
⊥ −

(
Lv
d
.
yn−1

)
⊥‖

2
Σ

− τ

ρsε

((
Le
d

(
yn − yn−1

))
⊥ +

(
Lv
d

( .
yn − .

yn−1
))
⊥, p

nn−
(
Le
dy

n−1
)
⊥ −

(
Lv
d
.
yn−1

)
⊥
)

Σ

≥ τ

2ρsε
‖pnn−

(
Le
dy

n−1
)
⊥ −

(
Lv
d
.
yn−1

)
⊥‖

2
Σ

− τ

2ρsε
‖
(
Le
d

(
yn − yn−1

))
⊥ +

(
Lv
d

( .
yn − .

yn−1
))
⊥‖

2
Σ.

Therefore, by collecting the above estimations, we get

T2,2 + T2,3 + T2,4 + T3 ≥ −
ρsε

2τ
‖
.
dn −

.
dn−1‖2Σ

+
τ

2

(
‖ .yn‖2e −

∥∥ .yn−1
∥∥2

e
+
∥∥ .yn − .

yn−1
∥∥2

e

)
+ τ2 ‖∂τ .yn‖2v

+
τ

2ρsε

(
‖Le

dy
n +Lv

d
.
yn‖2Σ − ‖Le

dy
n−1 +Lv

d
.
yn−1‖2Σ

)

+
τ

2ρsε

∥∥(Le
d

(
yn − yn−1

))
‖ +

(
Lv
d

( .
yn − .

yn−1
))
‖
∥∥2

Σ
.

Inserting this expression into (2.22), then multiplying by τ and summing over m =

2, ..., n, yields the estimate

En + τ

n∑

m=2

Dm ≤ E1 +
τ

2

∥∥y1 − y0
∥∥2

e
+

τ2

2ρsε
‖Le

dy
1 +Lv

d
.
y1‖2Σ. (2.25)

Owing to the initialization procedure (see Remark 2.5), y1 and .
y1 are obtained

from the scheme with s = r = 0. Hence, the right-hand side of (2.25) can be
bounded from (2.14), with s = r = 0, and the numerical dissipation provided by
(2.21) and (2.23) for n = 1. This completes the proof.

Theorem 2.1 guarantees the unconditionally energy stability of Algorithm 2.1
with:

• s = 0 (non-incremental pressure-correction) and r = 0, 1;

• s = 1 (incremental pressure-correction) and r = 0.

Similar energy estimates are obtained in Theorem 1.5 for the original Robin-
Neumann schemes with a monolithic time-stepping in the fluid and a simpler solid
model. This indicates that, at least for the above variants, the extensions proposed
in this chapter preserve their stability properties.
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Remark 2.6 The stability of Algorithm 2.1 with s = 0 and r = 2, or s = 1 and
r ∈ {1, 2}, is not covered by the previous analysis. In fact, it appears that the
arguments used in the proof above can not be straightforwardly adapted to cope
with these variants. Numerical evidence, reported in Section 2.4, indicates however
that these schemes deliver stable and accurate numerical approximations.

Remark 2.7 From (2.16) it follows that

ũn‖ + un⊥ =
.
dn +

τ

ρsε

[
Le
d(yn − yn,?) +Lv

d(
.
yn − .

yn,?)
]

on Σ. (2.26)

Hence, the kinematic constraint (2.2)1 in Algorithm 2.1 is enforced in terms of the
tangent, ũn‖ , and normal components, un⊥, of the intermediate and end-of-step fluid
velocities, respectively. Note that the consistency of (2.26) is given by the order
r ∈ {0, 1, 2} of the explicit extrapolations on the interface, irrespectively of the
non-incremental (s = 0) or incremental (s = 1) nature of the projection method
in the fluid. This indicates that the accuracy of the fluid-solid splitting induced by
Algorithm 2.1 is dictated by r ∈ {0, 1, 2}, while s ∈ {0, 1} drives the accuracy of the
time-marching in the fluid.

Remark 2.8 Besides the technical difficulties introduced by the projection method
in the analysis of Algorithm 2.1, the result of Theorem 2.1 makes a step for-
ward with respect to the stability analyses reported in Section 1.4.3.5, where the
solid model is assumed to be simply a membrane or a Koiter type shell (see also
[GGCC09, BCG+13, LMRHZ13, BHS14]). It is also worth recalling that, in con-
trast to Theorem 2.1, the stability result recently reported in [BHS14] relies on
modal analysis (in further simplified models and geometrical configurations) and
does not cover velocity/pressure splitting in the fluid.

2.3 The non-linear case

In this section, the splitting schemes reported in Algorithm 2.1 are formulated
in a non-linear framework. We consider the coupling of the ALE Navier-Stokes
equations (1.4) with a non-linear Reissner-Mindlin shell model (see, e.g., [CB11,
BBWR04]. The geometrical configuration is depicted in Figure 2.3.

⌦f ⌦f(t)

⌃(t)⌃�f �f

A(·, t)

Figure 2.3: Geometrical configuration.

Remark 2.9 In order to ease the presentation, the change of variables (1.3) will
not be specified in the following equations.
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The shell kinematics are entirely characterized by the displacement field of the
mid-surface d and the field of director vectors in the deformed configuration a,
i.e., the unit vectors that underlie the material lines originally orthogonal to the
midsurface in the undeformed configuration. We recall that Reissner-Mindlin kine-
matics assume that such material lines, originally aligned with n, remain straight
and preserve their length in the deformation (see, e.g., [DB84, CB11]).

The considered non-linear fluid-structure problem reads as follows: find the fluid
domain displacement df : Ωf × R+ → Rd, the fluid velocity u : Ωf × R+ → Rd, the
fluid pressure p : Ωf×R+ → R, the solid mid-surface displacement d : Σ×R+ → R3

and the director vector a : Σ× R+ → R3 of unit length |a| = 1, such that





df = Ext (d|Σ) ,
.
df = ∂td

f , A = IΩf + df , Ωf(t) = A(Ωf , t),

ρf∂t|Au+ ρf(u−
.
df) ·∇u− divσ(u, p) = 0 in Ωf(t),

divu = 0 in Ωf(t),

σ(u, p)n = −pΓn on Γf ,

(2.27)





u =
.
d on Σ,

ρsε∂t
.
d+Le

d(d,a) +Lv
.
d = −Jσ(u, p)(F )−Tn on Σ,

Le
a(d,a) = 0 on Σ,

.
d = ∂td, on Σ,

d = 0, a = n on ∂Σ,

(2.28)

hold for all t > 0. The surface differential operators Le
d and Le

a describe the
(possibly non-linear) elastic behavior of the shell, with Le

a = 0 representing, in
particular, the equilibrium of bending moments and shear stresses. The viscous
behavior is described by the term Lv

.
d.

Remark 2.10 A simple expression for the viscous operator Lv is given by the
generalized Rayleigh relation:

Lv
.
d = αρsε

.
d+ β∂dL

e
d(0,0)

.
d. (2.31)

Here, α, β > 0 are given parameters and ∂dLe(0,0) denotes the Fréchet derivative
of Le

d at (0,0). The above expressions are considered in the numerical experiments
of Section 2.4. It should be noted, however, that the numerical methods proposed
in this paper do not depend on a specific structure of the thin-walled solid operator
and, hence, more realistic viscoelastic models can be considered (see, e.g., [Hol00]).

Owing to the discussion of Section 2.2.1, the proposed time semi-discrete approx-
imations of (2.27)-(2.28) are reported in Algorithm 2.2. The fluid domain geometry
update is treated explicitly in the first step while the three subsequent steps perform
a fully decoupled sequential computation of un, pn and (dn,an).

Remark 2.11 The adoption of an explicit treatment of the geometric com-
patibility condition (2.27)1 (substep 1 of Algorithm (2.2)) significantly reduces
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Algorithm 2.2 Fully decoupled schemes for (2.27)-(2.28).
For n > s+ r:

1. Fluid domain update:

df,n = Ext(dn−1|Σ),
.
df,n = ∂τd

f,n, An = IΩf + df,n, Ωf,n = An
(
Ωf
)

and then set F n = ∇An, Jn = detF n.

2. Fluid viscous substep: find ũn : Ωf → R3 such that




ρf ũ
n − un−1

τ

∣∣∣∣
A

+ ρf
(
ũn−1 −

.
df,n

)
·∇ũn − divσ(ũn, pn,•) = 0 in Ωf,n,

σ(ũn, pn,•)n = 0 on Γf ,

Jnσ(ũn, pn,•)(F n)−Tn+
ρsε

τ
ũn =

ρsε

τ

( .
dn−1 + τ∂τ

.
dn,?‖

)

+2µ
(
Jε(ũ)F−Tn

)n,?
‖ on Σ.

(2.29)

3. Fluid projection substep: find φn : Ωf → R such that




− τ
ρf

∆φn = −divũn in Ωf,n,

φn = pΓ(tn)− pn,• on Γf ,

τ

ρf

∂φn

∂n
+

τ

ρsε
φn =

τ

ρsε
φn,? +

(
ũn,? −

.
dn,?

)
· n on Σ.

(2.30)

Thereafter set pn = φn + pn,•, un = ũn − τ
ρf ∇φn in Ωf .

4. Solid substep: find dn : Σ→ R3,
.
dn : Σ→ R3 and an : Σ→ R3 with |an| = 1,

such that




ρsε∂τ
.
dn +Le

d(dn,an) +Lv
.
dn = −Jnσ(ũn, pn)(F n)−Tn on Σ,

Le
a(dn,an) = 0 on Σ,

.
dn = ∂τd

n on Σ,

dn = 0, an = n on ∂Σ.

computational complexity without compromising stability and accuracy (see, e.g.,
[SS06, FGG07, BNV08, SM08, NPV13]).

2.4 Numerical experiments

In this section we investigate the performance of the proposed fully decoupled
schemes in several numerical examples. Section 2.4.1 focuses on the linear model



2.4. Numerical experiments 67

problem (2.1)-(2.2) with a simple two-dimensional geometry. The nonlinear problem
(2.27)-(2.28) and more complex geometries are considered in Sections 2.4.2-2.4.5.

The numerical tests of Section 2.4.1 are carried out using a computer imple-
mentation of Algorithm 2.1 based on FreeFem++ (see [Hec12]). The results of
Sections 2.4.2-2.4.5 are obtained with a parallel implementation of Algorithm 2.2.
A master/slave paradigm is used in which the master controls the data exchanges
across the interface and the slaves are the fluid and structure parallel solvers.
Different parallel approaches are used for the solid and the fluid. The parallel
structural solver uses the Newton method at each time-step. The resulting lin-
ear systems are solved with a balancing domain decomposition method (see, e.g.,
[Man93, LTV96, LT94a]). The key point in this algorithm is the construction of the
coarse space which, for robustness, is based on the stiffness matrix. The fluid solver
FELiScE (see [Fel]), based on PETSc (see [BAA+14a, BAA+14b, BGMS97]), uses
an additive Schwarz method (see, e.g., [SBG96]) with local ILU prenconditionners.
We will use the acronym "fds" (fully decoupled scheme) to refer to Algorithms 2.1
and 2.2 in the labels of the figures.

Remark 2.12 It should be noted that the worst-case scenario is considered for
the numerical solution of steps 2 and 3 in Algorithm 2.2, in the sense that no dedi-
cated preconditioners are used for each of them. The computational cost reductions
reported in Sections 2.4.2-2.4.5 below can hence be improved by considering more
efficient solvers for the projection schemes in the fluid.

2.4.1 Convergence study in a two-dimensional test-case

The first example simulates the propagation of a pressure-wave within an elastic
straight tube in two-dimensions. The test was originally proposed in [FGNQ02]
and it has now become a standard benchmark for testing fluid-structure interaction
techniques for blood flow simulation (see, e.g., [GGCC09, Fer13]). Basically, we
couple the Stokes system (2.1) with the generalized string model introduced in
Section 1.2.2.2, i.e., in (2.2) we take

d =

(
0

η

)
, θ = 0, Le

θ(d,θ) = 0, Lv
θ(
.
d,

.
θ) = 0,

Le
d(d,θ) =

(
0

−λ1∂xxη + λ0η

)
, Lv

d(
.
d,

.
θ) =

(
0

αρsε
.
η − βλ1∂xx

.
η

)
.

Recall that λ1
def
= Eε

2(1+ν) and λ0
def
= Eε

R2(1−ν2)
, where R is the radius of the tube an

E, ν denote, respectively, the Young modulus and the Poisson ratio of the solid.
Note that, in this simplified setting, the tangential contributions involved in (2.11)3
(or (2.7)1) vanish (see also [FL13]).

For the fluid we take ρf = 1.0 and µ = 0.035, and for the solid ρs = 1.1, ε =

0.1, E = 0.75 ·106, ν = 0.5, α = 1 and β = 10−3. All units are expressed in the CGS
system. The fluid domain is given by Ωf = [0, L]× [0, R] and the fluid-solid interface
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Figure 2.4: Snapshots of the fluid pressure and (exaggerated) solid displacement
at time instants t = 0.005, 0.01, 0.015 (from top to bottom). Algorithm 2.1 with
s = 0, r = 1, τ = 10−4 and h = 0.05.
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(b) s = 1.

Figure 2.5: Time-convergence history of the displacement at t = 0.015, with h =
O(τ), using the the non-incremental (a) and incremental (b) pressure-correction
variants in Algorithm 2.1, and the implicit-scheme.

by Σ = [0, L] × {R}, with L = 6 and R = 0.5. At t = 0, the whole system is at
rest. A sinusoidal pressure-wave (with maximum 2 · 104) is prescribed on the inlet
boundary x = 0 during 5 ·10−3 time instants. Zero pressure is imposed at x = L and
a slip condition is enforced on the lower boundary y = 0. For the solid we set η = 0

at x = 0, L. The spatial discretization of the fluid and of the structure is based on
piece-wise affine continuous finite elements. In the case s = 1, the Brezzi-Pitkäranta
pressure stabilization (1.46) is added to step (2.12) of Algorithm 2.1.

Figure 2.4 presents the snapshots of the pressure field and the solid displacement
(amplified by a factor 5) at the time instants t = 0.005, 0.01 and 0.015, obtained
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Figure 2.6: Comparison of the solid displacements at t = 0.015 for different levels of
(τ, h)-refinement, given by (2.32), using Algorithm 2.1 with s = 0 and the implicit-
scheme.

from Algorithm 2.1 with s = 0, r = 1, τ = 10−4 and h = 0.05. The scheme is able
to reproduce a stable pressure-wave propagation. Similar results, not reported here,
are obtained with s = 1.

In order to assess the overall convergence rate of Algorithm 2.1, we have uni-
formly refined in time and in space under a hyperbolic-CFL condition (τ = O(h)):

(τ, h) = {5 · 10−4/2i, 10−1/2i}4i=1. (2.32)

Figure 2.5 shows the relative elastic energy-norm error of the solid displacement,
at time t = 0.015, obtained with all the different variants of Algorithm 2.1. For
comparison purposes, the errors obtained with a fully implicit first-order scheme
involving a monolithic time-stepping in the fluid (Algorithm 1.1 with damping effects
in the solid) are also displayed. The reference solution has been computed with the
implicit scheme and high space-time resolution: h = 3.125 · 10−3 and τ = 10−6.
The results of Figure 2.5 indicate that the proposed fully decoupled schemes with
r = 1 or r = 2 are able to retrieve the optimal first-order convergence rate O(τ) of
the implicit scheme, irrespectively of the choice s = 0 or s = 1 in the fluid time-
stepping. Conversely, a sub-optimal overall rate O(τ

1
2 ) is observed for r = 0. We
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(b) i = 2.

0 1 2 3 4 5 6
x-coordinate

-0.005

0

0.005

0.01

0.015

0.02

ve
rti

ca
l d

is
pl

ac
em

en
t

reference
implict scheme
fds incr no-extrap
fds incr 1st-order extrap
fds incr 2nd-order extrap

(c) i = 3.

0 1 2 3 4 5 6
x-coordinate

-0.005

0

0.005

0.01

0.015

0.02

ve
rti

ca
l d

is
pl

ac
em

en
t

reference
implicit scheme
fds incr no-extrap
fds incr 1st-order extrap
fds incr 2nd-order extrap

(d) i = 4.

Figure 2.7: Comparison of the solid displacements at t = 0.015 for different levels of
(τ, h)-refinement, given by (2.32), using Algorithm 2.1 with s = 1 and the implicit-
scheme.

can also notice that the type of projection scheme in the fluid (i.e., s = 0, 1) has a
limited impact on the overall accuracy of Algorithm 2.1, which is mainly driven by
the choices of r (see Remark 2.7). Further numerical evidence on these observations
is given in Figures 2.6 and 2.7, which show the displacements at t = 0.015 obtained
with the implicit scheme and all the variants of Algorithm 2.1, for different levels of
space-time refinement.

A similar behavior in terms of r was observed in [FMV13] with the original
explicit Robin-Neumann schemes, hence indicating that the fully decoupled schemes
proposed in the present work preserve their accuracy properties.

Remark 2.13 For the sake of conciseness, and owing to the above discussion,
only the results obtained from Algorithm 2.2 with s = 0 will be reported in the next
sections. This will not be the case in Chapter 4, where we will consider the fully
decoupled coupling paradigm with s = 1.

2.4.2 Pressure wave propagation in a straight tube

The second numerical test is basically a three-dimensional non-linear version of
the previous example (see also, e.g., [FQV09]). The physical system is described
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by the non-linear coupled problem (2.27)-(2.28). Note that the shell model (2.28)
intrinsically involves, for its derivation, a Saint Venant-Kirchhoff constitutive rela-
tion.

Figure 2.8: Snapshots of the velocity field and fluid interface pressure at t =
0.005, 0.01, 0.015 (from left to right). Algorithm 2.2 with s = 0, r = 1, τ = 10−4

and h ≈ 0.1.
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(a) τ = 10−4, h ≈ 0.1.
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(b) τ = 7.5 · 10−5, h ≈ 0.07.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
time (s)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

di
sp

la
ce

m
en

t m
ag

ni
tu

de
 (c

m
)

implicit scheme
fds no-extrap
fds 1st-order extrap
fds no-extrap

(c) τ = 5 · 10−5, h ≈ 0.05.

Figure 2.9: Comparison of the solid displacements at t = 0.015 for different levels of
space-time refinement. Algorithm 2.2 with s = 0 and the implicit coupling scheme.

The fluid domain is a cylinder of radius R = 0.5 and length L = 5. All the
units are expressed in the CGS system. The physical parameters of the fluid are
ρf = 1.0 and µ = 0.035. For the structure we take ρs = 1.2, ε = 0.1, E = 3 · 106

and ν = 0.5. Damping effects in the solid are neglected in this case. A constant
pressure of 1.3332·104 is imposed on the inlet boundary during 5·10−3 time instants,



72

thereafter this values is set to zero. An homogeneous natural boundary condition
is prescribed on the outlet boundary. The whole fluid-solid system is initially at
rest. Both the velocity and the pressure are discretized in space using Q1 finite
elements. A streamline-upwind/Petrov-Galerkin (SUPG) stabilization is applied to
the viscous substep (2.29) of Algorithm 2.2. The shell equation is discretized in
space by quadrilateral MITC4 elements (see [CB11, Section 8.2.1]).

We first consider Algorithm 2.2 with s = 0, r = 1, τ = 10−4 and h ≈ 0.1.
Figure 2.8 shows the fluid velocity field and the solid deformation (amplified by
a factor 10) retrieved at the time instants t = 0.005 , 0.01 and 0.015. A stable
propagating pressure-wave is obtained.

We now turn the discussion back to the accuracy of the methods. For this pur-
pose, we have reported in Figure 2.9 the time history of the midpoint displacements
obtained from Algorithm 2.2 with s = 0 and a fully implicit first-order scheme for
different levels of space-time refinement, namely: τ = 10−4, h ≈ 0.1; τ = 7.5 · 10−5,
h ≈ 0.07; and τ = 5 · 10−5, h ≈ 0.05. The convergent behavior of the two extrapo-
lated explicit variants (i.e., r = 1 and r = 2) towards the implicit coupling solution
is clearly noticeable. On the contrary, the scheme with r = 0 delivers a much slower
convergent behavior. This confirms the convergence rates observed in Section 2.4.1.

Algorithm 2.2 Implicit scheme
τ = 10−4, h ≈ 0.1 1 10.5

τ = 7.5 · 10−5, h ≈ 0.07 3.8 31.1
τ = 5 · 10−5, h ≈ 0.05 12.4 80.6

Table 2.1: Elapsed CPU-time (dimensionless) for different space-time refinements.

In Table 2.1 we have reported the elapsed CPU-times (dimensionless) obtained
with Algorithm 2.2 (s = 0, r = 1) and the implicit scheme. For the latter, the
resulting coupled non-linear system at each time-step is solved in a partitioned
fashion using a Robin-Neumann iterative procedure (see [BNV08, FMV13]). We can
observe that, for a similar level of accuracy, Algorithm 2.2 (s = 0, r = 1) is about
8 times faster than the implicit solver in this case.

2.4.3 Damped structural instability with a fully enclosed fluid

We consider the example proposed in [KFW06] where an incompressible fluid is
confined within two curved thin-walled structures of different stiffness. The physical
system is described by the non-linear coupled problem (2.27)-(2.28). A Saint Venant-
Kirchhoff constitutive relation for the (undamped) shell is assumed. We take ρf =

1.0 and µ = 9 in the fluid problem and ρs = 500, ε = 0.1, Etop = 9 · 105, Ebottom =

9 · 108 and ν = 0.3. in the solid (the subscript notation indicates the bottom and
top structures). The units are expressed in the SI system. On the left and right
inflow boundaries, constant parabolic velocity profiles with maximal magnitudes 10

and 10.1 are, respectively, imposed. Homogeneous Dirichlet conditions are enforced
on the remaining fluid boundaries. A vertical force of unitary magnitude loads
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Figure 2.10: Snapshots of the fluid velocity at the time instants t =
0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 (from left to right and top to bottom). Algorithm 2.2
with s = 0, r = 1, τ = 0.005 and h ≈ 0.07.

downwards the fluid. We consider Algorithm 2.2 with the same spatial discretization
as in the previous example. The simulations are carried out in three-dimensions by
prescribing symmetry conditions on the extruded boundaries.

Figure 2.10 reports the fluid velocity magnitude at the time instants t = 0.5,
1, 1.5, 2, 2.5, 3, 3.5 and 4, using Algorithm 2.2 with s = 0, r = 1, τ = 0.005

and h ≈ 0.07. We can clearly observe that the excess of fluid mass causes first
the deflection of the upper (less stiff) structure. The fluid cavity continues to swell
along the upper boundary until the fluid pressure reaches a critical level at which
the (stiffer) lower structure is no longer able to resist and collapses. A similar
behavior was observed in [KFW06], using an implicit coupling solution method
based on partitioned Dirichlet-Neumann iterations and an augmented procedure,
which prescribes a volume constraint on the structural system. In Algorithm 2.2,
the Robin condition (2.30)3 removes the indetermination of the fully enclosed fluid
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(a) τ = 10−2, h ≈ 0.2.
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(b) τ = 5 · 10−3, h ≈ 0.07.
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(c) τ = 2.5 · 10−3, h ≈ 0.04.

Figure 2.11: Comparison of the bottom interface mid-point displacement vs. time
for different levels of space-time refinement. Algorithm 2.2 with s = 0 and the
implicit coupling scheme.

pressure.

For comparison purposes, we have reported in Figure 2.11 the interface mid-point
displacement magnitude of the lower structure obtained with Algorithm 2.2 (s = 0,
r = 0, 1, 2) and a first-order implicitly coupled scheme (including a monolithic time-
stepping in the fluid), for the following values of τ and h: τ = 10−2, h ≈ 0.2;
τ = 5 · 10−3, h ≈ 0.07 and τ = 2.5 · 10−3, h ≈ 0.04. The lack of accuracy for the
scheme with r = 0 is striking. Even after two space-time refinements, the unphysical
excess of mass-loss across the interface impedes the buckling of the bottom structure.
Conversely, the fully decoupled schemes with r = 1 and r = 2 are able to retrieve
the accuracy of the implicit scheme.

Algorithm 2.2 Implicit scheme
τ = 10−2, h ≈ 0.2 1 12.5

τ = 5 · 10−3, h ≈ 0.07 13.5 162
τ = 2.5 · 10−3, h ≈ 0.04 92.5 1200

Table 2.2: Elapsed CPU-time (dimensionless)
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In order to illustrate the efficiency of the proposed methods, the elapsed CPU-
times, for the above degrees of space and time refinement, are provided in Table 2.2.
We compare Algorithm 2.2 (s = 0, r = 1) and the implicit scheme solved, as in
the previous example, with a partitioned Robin-Neumann procedure. For a similar
level of accuracy (see Figure 2.11(b)), the speed-up provided by the fully decoupled
scheme is around 12 times faster than the implicit solver.

2.4.4 Blood flow in an abdominal aortic aneurysm

In this example we simulate the blood flow within an in-vitro abdominal aortic
aneurysm geometry (see, e.g., [SSCL06, ACF09, FMV13]). The physical system is

Figure 2.12: Snapshots of the fluid velocity field at the time instants t =
0.042, 0.168, 0.294 (from left to right). Algorithm 2.2 with s = 0, r = 1,
τ = 4.2 · 10−4 and h ≈ 0.2.

here described by the coupled problem (2.27)-(2.28), with a Saint Venant-Kirchhoff
constitutive relation for the aneurysm wall. The fluid-solid interface has a length of
22.95 and a uniform thickness of ε = 0.17. All units are expressed in the CGS system.
We take ρf = 1.0 and µ = 0.035 in the fluid and ρs = 1.2, E = 3·106, ν = 0.5, α0 = 1

and α1 = 10−3 in the solid. The fluid and structure are initially at rest. On the inlet
boundary, we impose a physiological flow rate waveform (see Figure 2.12) measured
at the level of the infrarenal aorta (see [OPR+97]). A resistance boundary condition
is enforced on the outlet boundary. The value of the resistance is set to Rout = 600.

We consider Algorithm 2.2 with the same spatial discretization as in the pre-
vious example. The simulations are performed over a full cardiac cycle (0.84 sec-
onds). For illustration purposes, the velocity field and the solid deformation at
t = 0.042, 0.168, 0.294, obtained from Algorithm 2.2 with s = 0, r = 1, τ = 4.2·10−4

and h ≈ 0.2 are displayed in Figure 2.12 (half the geometry), showing a stable nu-
merical approximation.

In Figure 2.13, the interface mid-point displacements are compared with those
obtained with a first-order implicit coupling scheme, for different values of τ and
h, namely: τ = 4.2 · 10−4, h ≈ 0.2; τ = 3 · 10−4, h ≈ 0.15 and τ = 2.1 · 10−4,
h ≈ 0.1. The low accuracy of the fully decoupled scheme with r = 0 is, once more,
striking: the numerical solution has an extremely poor accuracy, even with the
finest discretization, which makes the scheme useless in practice. On the contrary,
the convergent behavior of the variant with r = 1 is clearly visible and delivers much
more reasonable results (see Figure 2.13(b)). The fully decoupled scheme with r = 2

gives practically the same accuracy than the implicit scheme.
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(a) τ = 4.2 · 10−4, h ≈ 0.2.
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(b) τ = 3 · 10−4, h ≈ 0.15.
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(c) τ = 2.1 · 10−4, h ≈ 0.1.

Figure 2.13: Comparison of the solid displacements at t = 0.015 for different levels of
space-time refinement. Algorithm 2.2 with s = 0 and the implicit coupling scheme.

At last, in Table 2.3, we compare the performance of the proposed fully decou-
pled scheme (s = 0, r = 1) and the implicit scheme. Instead of the Robin-Neumann
iterative procedure considered in the previous examples, here the implicit scheme
is solved via a (parameter-free) Dirichlet-Neumann GMRES partitioned Newton
method (see, e.g., [FM05]). The reason is that, in this case, the convergence speed
of the Robin-Neumann iterations appeared to be highly sensitive to the value of the
Robin coefficient and, hence, required careful tuning. As shown in Table 2.3, the
savings in terms of computational effort are striking. For the finest discretizations,
for which we obtain comparable levels of accuracy, the fully decoupled scheme is
around 60 times faster than the implicit method.

Algorithm 2.2 Implicit scheme
τ = 4.2 · 10−4, h ≈ 0.2 1 41.8
τ = 3 · 10−4, h ≈ 0.15 3.4 192
τ = 2.1 · 10−4, h ≈ 0.1 10 671.7

Table 2.3: Elapsed CPU time (dimensionless).
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2.4.5 Blood flow in a patient-specific aorta

The last numerical example is devoted to the numerical simulation of blood flow
within a patient-specific thoracic aorta (with a mild coarctation) under physiological
rest conditions. The computational 3D geometry (see Figure 2.14) and the inlet fluid
flow rate are obtained from the data provided by the 2nd CFD Challenge organized
within the STACOM 2013 conference (see [STA]). In this example, the CGS system
is adopted for all the physical units.

(a) Given stressed configuration. (b) Inferred stress-free configuration.

Figure 2.14: Reference configurations for the ALE map (a) and solid (b).

⌦f ⌦f(t)

⌃(t)

A(·, t)

�f �f

⌃

d�0

Stressed configuration

Stress-free configuration

d

Figure 2.15: Geometrical configuration and mappings.

The mechanical interaction between blood and the aortic wall is modeled by the
coupled system (2.27)-(2.28). Note that (2.28) involves a Saint Venant-Kirchhoff
model as constitutive relation for the aortic wall. Furthermore, it assumes a stress-
free solid reference configuration Σ. The reconstructed aorta geometry, see Fig-
ure 2.14(a), corresponds to a deformed in vivo stress condition (obtained from mag-
netic resonance angiography). The ambient pressure for the rest state is 67000. In
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Figure 2.16: Snapshots of the fluid velocity at the time instants t = 0.1, 0.2, 0.3, 0.4
(from left to right and top to bottom). Algorithm 2.2 with s = 0 and r = 1.

order to perform the simulation with physiological pressure levels, a stress-free solid
reference configuration Σ is inferred from the provided configuration (Figure 2.14(a))
by solving an inverse solid problem (see, e.g., [GFW10, MXA+12]), in such a way
that the in vivo stressed configuration is retrieved when the rest ambient pressure
conditions are prescribed on the unknown stress-free reference configuration (see
Figure 2.14(b)). We refer to this reference displacement as dσ0 . A graphical il-
lustration of the situation is given in Figure 2.15. Note that, in this case, the set
∂Ωf\Γf in the ALE reference configuration, and the reference configuration Σ of
the solid problem, does not coincide. In practice, the ALE mapping is obtained by
extending the increment of the displacement on ∂Ωf\Γf defined as

δd(x) = d ◦ d−1
σ0

(x)− x on ∂Ωf\Γf ,
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Figure 2.17: Snapshots of the fluid pressure at the time instants t = 0.1, 0.2, 0.3, 0.4
(from left to right and top to bottom). Algorithm 2.2 with s = 0 and r = 1.

over the reference fluid domain Ωf .
The aortic wall is assumed to have uniform thickness and density of ε = 0.2

and ρs = 1.2, respectively, with the mechanical parameters set to E = 3 · 106, ν =

0.5, α0 = 1 and α1 = 10−3. The blood dynamic viscosity and density are µ = 0.04

and ρf = 1. On the inlet boundary (ascending aorta), we prescribe the physiological
fluid flow rate provided in [STA] for the rest condition. On the remaining outlet
boundaries (innominate, left carotid, left subclavian and descending aorta), explicit
RCR Windkessel 0D-models are used to take into account the effect of the surround-
ing vascular network. The Windkessel parameters are those reported in [PFGVC14].
The initial displacement of the structure equation (2.28) is set to d(0) = dσ0 . The
remaining fluid-structure system unknowns are initialized to zero.

All the fluid steps of Algorithm 2.2 are discretized in space using affine finite
elements. Triangular MITC3 elements are used for the shell problem (see [CB11,
Section 8.2.1]). The adapted fluid mesh (from [PFGVC14]) is made of 375149 tetra-
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Figure 2.18: Maximum displacement magnitude at sections (a), (b) and (c) of the
structure vs. time. Comparison of the implicit scheme, Robin-Neumann scheme
(from [FMV13, Algorithm 4]) with r = 0, and Algorithm 2.2 with s = r = 0.

hedra. The resulting matching solid mesh is made of 21752 triangles. We have
simulated 1.2 · 104 time-steps of size τ = 10−4, which corresponds to a full cardiac
cycle. Figures 2.16 and 2.17 present, respectively, some snapshots of the fluid ve-
locity and pressure fields obtained from Algorithm 2.2 s = 0 and r = 1 at four
different time instants of a cardiac cycle. A stable numerical solution is obtained
which shows physiological values in both the velocity and pressure fields. To the
best of our knowledge, this is the first time that such a blood flow simulation is
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Figure 2.19: Maximum displacement magnitude at sections (a), (b) and (c) of the
structure vs. time. Comparison of the implicit scheme, Robin-Neumann scheme
(from [FMV13, Algorithm 4]) with r = 1, and Algorithm 2.2 with s = 0 and r = 1.

performed with an explicit coupling scheme.

Implicit scheme Explicit Robin-Neumann schemes ([FMV13]) Algorithm 2.2
10 1.2 1

Table 2.4: Elapsed CPU time (dimensionless).

To illustrate the accuracy of the results, in Figures 2.18-2.20 we compare the
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Figure 2.20: Maximum displacement magnitude at sections (a), (b) and (c) of the
structure vs. time. Comparison of the implicit scheme, Robin-Neumann scheme
(from [FMV13, Algorithm 4]) with r = 2, and Algorithm 2.2 with s = 0 and r = 2.

maximum magnitude of the displacement, at three different sections of the aorta,
obtained with the implicit scheme, the original Robin-Neumann schemes (from
[FMV13, Algorithm 4]) and Algorithm 2.2 with s = 0 and r = 0, 1, 2, respectively.
For comparison purposes, the results of the implicit scheme are reported in the three
figures. We retrieve basically the same accuracy behavior than in the previous ex-
amples. Figure 2.18 shows that the Robin-Neumann schemes and Algorithm 2.2
with s = r = 0 are unable to retrieve the overall dynamics of the implicit solution
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and yield approximations with extremely poor accuracy. The variants with interface
extrapolations r = 1 and r = 2, whose results are shown in Figures 2.19 and 2.20,
give practically the same accuracy as the implicit scheme. The small differences
between the explicit Robin-Neumann schemes and Algorithm 2.2 are due to the dif-
ferent time-seppting of (2.3) in the fluid: monolithic and projection method (s = 0),
respectively. Once again, this confirms that the fully decoupled schemes reported
in Algorithm 2.2 preserve the accuracy properties of the original Robin-Neumann
schemes introduced in [FMV13].

The comparison of the elapsed-CPU times reported in Table 2.4, and the results
of Figures 2.19 and 2.20, plead in favor of the schemes proposed in the present paper
with r = 1 or r = 2.

2.5 Conclusion

In this chapter we have introduced a new class of numerical methods for fluid-
structure interaction problems involving an incompressible fluid and a general thin-
walled viscoelastic structure. The methods proposed allow a fully decoupled time-
marching of the complete fluid-solid state: fluid velocity, fluid pressure and solid
displacement. The basic ingredients of this new fluid-solid splitting paradigm are:

• projection method in the fluid;

• appropriate fractional-step time-marching of the interface Robin consistency
(2.3), which yields explicit interface Robin conditions for the fluid velocity
and pressure substeps. The implicit treatment of the solid inertia is enough
to guarantee stability;

• fluid stresses are transferred to the thin-walled structure in a standard fashion.

Unconditional stability has been proved for some of the variants (s = 0 and
r = 0, 1; s = 1 and r = 0) in a representative liner setting involving a general linear
viscoelastic shell model (Theorem 2.1). Though not covered by the stability analysis,
numerical evidence has shown that the remaining schemes are stable for a reasonable
range of the physical and discretization parameters. The numerical study indicates
also that the non-incremental (s = 0) or incremental (s = 1) nature of the projection
scheme in the fluid has a limited impact on the overall accuracy of the methods,
which is mainly driven by the consistency of the fluid-solid splitting (determined
by the extrapolation order r = 0, 1, 2). The best accuracy and robustness are
obtained with r = 1, 2, which retrieve the (optimal) first-order accuracy of the
implicit scheme. In particular, the results of Section 2.4.5 demonstrate, for the first
time, that physiological blood flow simulations can be effectively performed with an
explicit coupling paradigm.





Chapter 3

Second-order time-accurate coupling
schemes for incompressible

fluid/thin-walled structure interaction

In this chapter we investigate how the explicit Robin-Neumann coupling paradigm of
Section 1.4.3.5 can be extended to deliver second-order time-accuracy. In particular, we
show that this coupling procedure tolerates, in terms of stability, second-order time-stepping
in both the fluid and solid subproblems (viz., via Crank-Nicholson time-stepping). The
rationale of these fundamental stability properties is provided within a simplified setting.
Numerical experiments in a benchmark confirm those results and show that, for some of the
variants considered, the optimal second-order time-accuracy is retrieved.

Some of the results of this chapter have been reported in:

• M. A. Fernández, M. Landajuela, J. Mullaert, M. Vidrascu, Robin-
Neumann schemes for incompressible fluid-structure interaction.
In Domain Decomposition Methods in Science and Engineering XXII, Lec-
ture Notes in Computer Science (LNCS), Lugano, Switzerland, 2015, https:
// hal. inria. fr/ hal-01113088 .
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3.1 Introduction

Second-order time-accuracy in incompressible fluid-structure interaction can be
achieved via strongly coupled schemes (see, e.g., [NPV13]). However, the devel-
opment of explicit coupling schemes delivering such high-order accuracy appears
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to be an open problem. A fundamental difficulty that has to be faced is related
to the fact that the combination of second-order time-marching in each subsystem
with an enhanced consistency at the interface can spoil the stability properties of
the original first-order coupling scheme (see, e.g., [BF14a]). For purely elastic thin-
walled structures, some attempts have been presented in [LMRHZ13] by combining
a Strang operator splitting approach with the ideas reported in [GGCC09]. Though
the accuracy of the splitting is improved, second-order time-accuracy is still not
achieved.

In this chapter we focus on the coupling with a general viscoelastic thin-walled
structure. We combine the explicit Robin-Neumann coupling paradigm reported in
Section 1.4.3.5 with second-order time-stepping in the fluid and in the solid. Theo-
retical results in a simplified setting suggest that the stability properties of the orig-
inal Robin-Neumann schemes (Theorem 1.5) are not compromised. Two potentially
second-order time-accurate approaches are then considered: (i) second-order extrap-
olation and (ii) first-order extrapolation with one defect-correction. The resulting
schemes are investigated through a series of numerical studies in a benchmark.

This chapter is organized as follows. Section 3.2 is devoted to the derivation of
the methods. The stability properties of some of the proposed schemes are analyzed
within a representative simplified setting in Section 3.3. Section 3.4 is devoted to
the numerical experiments. We conclude in Section 3.5 with a summary of the
conclusions.

The model problem We consider the coupling of the Stokes equations (1.34)
with the linear Kirchhoff-Love shell model (1.18). The problem, which has been
already considered in Section 1.4.3.5, is repeated it here for the sake of convenience.
It reads: find the fluid velocity u : Ωf×R+ → Rd, the fluid pressure p : Ωf×R+ → R,
the solid displacement d : Σ × R+ → Rd and the solid velocity

.
d : Σ × R+ → Rd

such that




ρf∂tu− divσ(u, p) = 0 in Ωf ,

divu = 0 in Ωf ,

σ(u, p)n = −pΓn on Γf ,

(3.1)





u =
.
d on Σ,

.
d = ∂td on Σ,

ρsε∂t
.
d+Led+Lv

.
d = −σ(u, p)n on Σ,

d = 0 on ∂Σ,

(3.2)

complemented with the initial conditions u(0) = u0, d(0) = d0 and
.
d(0) =

.
d0.

Here, pΓ denotes a given inlet/outlet pressure on Γf . The linear solid operators
Le and Lv describe, respectively, the elastic and viscous behavior of the structure
model (we may consider, for instance, (1.21) and (1.22), respectively).
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3.2 Second-order time-stepping

In this section we address the time semi-discretization of the coupled problem
(3.1)-(3.2). The aim is to achieve second-order accuracy in time, hence time-stepping
of (at least) second-order is mandatory for both the fluid and solid subproblems. In
this chapter we will consider the Crank-Nicholson scheme. Alternatively, we may
also consider a second-order backward differentiation formula (or BDF2) for the
approximation of time derivatives in (3.1)-(3.2) (see Remark 3.3).

In the sequel, τ > 0 denotes the time-step size, tn
def
= nτ the current time-

instant, ∂τxn
def
=
(
xn − xn−1

)
/τ the first-order backward difference in time and

xn−
1
2

def
=
(
xn + xn−1

)
/2 the midpoint. We will also make extensive use of the

superscript n−
1
2
,? to indicate zeroth- (i.e., without), first-order or second-order ex-

trapolation from the previous time-steps to the midpoint xn−
1
2 , i.e.,

xn−
1
2
,? =





0 if r = 0,

xn−1 if r = 1,
3
2x

n−1 − 1
2x

n−2 if r = 2,

where r denotes the extrapolation order.
To achieve the full fluid-solid splitting while avoiding the infamous instabilities

related to the added mass effect, we follow the strategy of Section 1.4.3.5. The
starting point is the interface Robin consistency (1.79), which is repeated here for
the sake of completeness,

σ(u, p)n+ ρsε∂tu = −Led−Lv
.
d on Σ. (3.3)

The idea is to discretize in time (3.3) combining an explicit treatment of the solid
viscoelastic contributions (via extrapolations) and a strong fluid-solid hydrodynamic
coupling (viz., fluid stresses and solid inertia contributions are treated implicitly).
The former enables the fluid-solid splitting while the latter guarantees stability. If
Crank-Nicholson solvers are considered for problems (3.1) and (3.2), we propose to
discretize (3.3) as follows

σ(un−
1
2 , pn−

1
2 )n+

ρsε

τ
un =

ρsε

τ

.
dn−1 −Ledn−

1
2
,? −Lv

.
dn−

1
2
,? on Σ. (3.4)

The resulting schemes are displayed in Algorithm 3.1.

Remark 3.1 Note that (3.5) uniquely determines un, since u0 is given. For the
pressure, however, neither pn nor pn−1 is used in (3.5). Therefore, by working with
pn−1/2 as the pressure variable, we do not need to provide an initial condition for
the pressure. An approximation of pn may be obtained by extrapolation.

Remark 3.2 If we consider a pure elastic solid problem, we take r = 0 and
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Algorithm 3.1 Crank-Nicholson Robin-Neumann explicit schemes.
For n > 0 if r = 0, 1 or for n > 1 if r = 2:

1. Fluid step: Find un : Ωf × R+ → Rd and pn−
1
2 : Ωf × R+ → R such that





ρf∂τu
n − divσ(un−

1
2 , pn−

1
2 ) = 0 in Ωf ,

divun−
1
2 = 0 in Ωf ,

σ(un−
1
2 , pn−

1
2 )n = −pΓ

n− 1
2n on Γf ,

σ(un−
1
2 , pn−

1
2 )n+

ρsε

τ
un =

ρsε

τ

.
dn−1 −Ledn−

1
2
,? −Lv

.
dn−

1
2
,? on Σ.

(3.5)

2. Solid step: Find dn : Σ× R+ → Rd and
.
dn : Σ× R+ → Rd such that





.
dn−

1
2 = ∂τd

n on Σ,

ρsε∂τ
.
dn +Ledn−

1
2 +Lv

.
dn−

1
2 = −σ(un−

1
2 , pn−

1
2 )n on Σ,

dn = 0 on ∂Σ.

(3.6)

substitute (3.6)1 by .
dn + un

2
= ∂τd

n on Σ,

then Algorithm 3.1 yields the kinematic splitting algorithm presented in
[LMRHZ13], here with a Crank-Nicholson discretization of the fluid step. If viscous
effects are considered in the structure model, that work advocates for an implicit
treatment of the viscous terms in (3.3). Thus, instead of (3.5)4, the following Robin
condition is considered in [LMRHZ13],

σ(un−
1
2 , pn−

1
2 )n+

ρsε

τ
un +Lvun−

1
2 =

ρsε

τ

.
dn−1 on Σ.

As pointed out in [FMV13], this transmission condition leads to a coupling scheme
which is not explicit: it is semi-implicit. Moreover, the resulting solution procedure
is not partitioned either, since the solid viscous contribution Lv has to be embedded
within the fluid solver.

Remark 3.3 Recall that the BDF2 formula reads as ∂BDF2
τ xn

def
=
(
3xn − 4xn−1 +

xn−2
)
/2τ . If we consider a BDF2 scheme for the numerical integration of problems

(3.1) and (3.2), the interface Robin condition (3.3) must be accordingly discretized
as follows

σ(un, pn)n+
3ρsε

2τ
un =

2ρsε

τ

.
dn−1 − ρsε

2τ

.
dn−2 −Ledn,? −Lv

.
dn,? on Σ,

where the superscript n,? indicates zeroth- (i.e., without), first-order or second-order
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extrapolation from the previous time-steps to xn , i.e,

xn,? =





0 if r = 0,

xn−1 if r = 1,

2xn−1 − xn−2 if r = 2,

(3.7)

with r denoting the extrapolation order.

Remark 3.4 The discretization (3.6) of the solid problem can be regarded as a
particular realization of the Newmark method [New59], the so called trapezoidal
Newmark scheme, which is widely used in engineering for the time integration of
elastodynamic problems. For a review of time integration techniques for second-
order hyperbolic problems we refer to [BG10].

3.2.1 Defect-correction iterations

Similarly to (1.87) for Algorithm 1.5, Algorithm 3.1 can be regarded as an in-
terface kinematic perturbation of an underlying second-order implicit scheme, the
corresponding perturbation being

un =
.
dn +

τ

ρsε

[
Le
(
dn−

1
2 − dn− 1

2
,?
)

+Lv
( .
dn−

1
2 −

.
dn−

1
2
,?)
]

on Σ. (3.8)

In view of the error analysis performed in [Fer13, FMV13] (see Theorem 1.6),
the consistency errors induced by (3.8) scale as O(τ2r−1

). Thus, despite both the
fluid and structure solvers feature a quadratic-convergence rate when considering
separately, second-order accuracy in the splitting error is restricted to the case r = 2.

In order to enhance the overall accuracy when lower order extrapolations are
used, we follow the defect-correction approach (see [Ste78]). Basically, the idea is to
reduce the error between the solution obtained with Algorithm 3.1 and the one of
the underlying implicit scheme, by iteratively improving the perturbation (or defect)
induced by the former (i.e., the last term of (3.8)). In this way, for r = 1, taking
K > 0 defect-corrections, the perturbation of the kinematic constraint scales as
O(τK+1). Hence, one defect-correction iteration is required to achieve the second-
order accuracy of the global discretization error.

The resulting schemes are displayed in Algorithm 3.2, where K ≥ 0 denotes the
number of defect-correction iterations and xn−

1
2
,k def

=
(
xn,k +xn−1

)
/2 stands for the

midpoint between the previous value xn−1 and the k-step approximation xn,k+1 to
xn. The superscript n,? notation must be interpreted as in (3.7). Note that taking
K = 0 and r = 1, 2 in Algorithm 3.2, we recover the corresponding extrapolated
variants in Algorithm 3.1. According to the above discussion, in order to achieve
overall second-order time-accuracy, two approaches are investigated:

• Genuine explicit scheme: Algorithm 3.1 with r = 2, or equivalently, Algo-
rithm 3.2 with r = 2 and K = 0.
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Algorithm 3.2 Crank-Nicholson Robin-Neumann schemes with K ≥ 0 correc-
tions.
For n > 0 if r = 0, 1 or for n > 1 if r = 2:

1. Extrapolation: dn,0 = dn,?,
.
dn,0 =

.
dn,?.

2. For 0 < k ≤ K:

(a) Fluid step: Find un,k : Ωf × R+ → Rd and pn−
1
2
,k : Ωf × R+ → R such

that




ρf

τ

(
un,k − un−1

)
− divσ(un−

1
2
,k, pn−

1
2
,k) = 0 in Ωf ,

divun−
1
2
,k = 0 in Ωf ,

σ(un−
1
2
,k, pn−

1
2
,k)n = −pΓ

n− 1
2n on Γf ,

σ(un−
1
2
,k, pn−

1
2
,k)n+

ρsε

τ
un,k =

ρsε

τ

.
dn−1

+Ledn−
1
2
,k−1 +Lv

.
dn−

1
2
,k−1 on Σ.

(b) Solid step: Find dn,k : Σ× R+ → Rd and
.
dn,k : Σ× R+ → Rd such that





.
dn−

1
2
,k =

1

τ

(
dn,k − dn−1

)
on Σ,

ρsε

τ

( .
dn,k −

.
dn−1

)
+Ledn−

1
2
,k +Lv

.
dn−

1
2
,k =

−σ(un−
1
2
,k, pn−

1
2
,k)n on Σ,

dn,k = 0 on ∂Σ.

3. Solution update:

un = un,K , pn−
1
2 = pn−

1
2
,K , dn = dn,K ,

.
dn =

.
dn,K .

• Predictor-corrector scheme: Algorithm 3.2 with r = 1 and K = 1.

3.3 Stability analysis in a simplified setting

The aim of this section is to provide some insight into the stability properties
of Algorithm 3.1. We perform the type of analysis proposed in [CGN05] (see also
[BNV08]), where a simplified fluid-structure interaction model is considered. The
model is simple enough to enable a mathematical stability analysis but, at the same
time, complex enough to mimic more realistic situations. In particular, it reproduces
propagation phenomena and accounts for the added-mass effect.

The model problem concerns the coupling of an incompressible inviscid 2D fluid
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with the 1D generalized string model introduced in (1.23). The fluid computational
domain is the rectangle Ωf = [0, L] × [0, R] with left, right, lower and upper edge
given, respectively, by Γ1, Γ2, Γ3 and Σ (see Figure 3.1). The fluid-structure inter-
face is located on Σ. A symmetry condition is imposed on the lower edge Γ3. The
coupled problem reads as follows: find the fluid velocity u : Ωf×R+ → Rd, the fluid
pressure p : Ωf × R+ → R, the solid displacement η : Σ × R+ → R and the solid
velocity .

η : Σ× R+ → R such that




ρf∂tu+ ∇p = 0 in Ωf ,

divu = 0 in Ωf ,

p = 0 on Γ1 ∪ Γ2,

u · n = 0 on Γ3,

u · n =
.
η on Σ,

(3.9)





.
η = ∂tη on Σ,

ρsε∂t
.
η + Leη + Lv .η = p in Σ,

η = 0 on ∂Σ,

(3.10)

satisfying the initial conditions u(0) = u0, η(0) = η0 and .
η(0) =

.
η0. For the sake

of completeness, we recall that the string differential operators, defined in (1.23),
read as Leη = − c1∂xxη + c0η and Lv .η = −βc1∂xx

.
η + αρsε

.
η, with c1 = Eε

2(1+ν) ,
c0 = Eε

R2(1−ν2)
and β, α > 0.

⌃

⌦f�1 �2

�3

L

R

Figure 3.1: Geometrical configuration.

3.3.1 Preliminaries

For conciseness, we omit in the sequel the temporal superscript n−
1
2 in the ex-

trapolated quantities, i.e, the superscript ? must be interpreted as n−
1
2
,?. Application

of Algorithm 3.1 to problem (3.9)-(3.10) leads to the following explicit scheme:
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1. Fluid step: Find un : Ωf × R+ → Rd and pn−
1
2 : Ωf × R+ → R such that





ρf∂τu
n + ∇pn−

1
2 = 0 in Ωf ,

divun−
1
2 = 0 in Ωf ,

pn−
1
2 = 0 on Γ1 ∪ Γ2,

un · n = 0 on Γ3,

−pn− 1
2 +

ρsε

τ
un · n =

ρsε

τ
.
ηn−1 − Leη? − Lv .η? on Σ.

(3.11)

2. Solid step: Find ηn : Σ× R+ → R and .
ηn : Σ× R+ → R such that





.
ηn−

1
2 = ∂τη

n on Σ,

ρsε∂τ
.
ηn + Leηn−

1
2 + Lv .ηn−

1
2 = pn−

1
2 in Σ,

ηn = 0 on ∂Σ,

(3.12)

for n > 0 if r = 0, 1 or for n > 1 if r = 2.
Assuming that the solution is regular enough, the fluid step (3.11) can be con-

veniently reformulated as the following pressure Poisson problem:




−∆pn−
1
2 = 0 in Ωf ,

pn−
1
2 = 0 on Γ1 ∪ Γ2,

∂pn−
1
2

∂n
= 0 on Γ3,

∂pn−
1
2

∂n
= −ρf∂τu

n · n on Σ.

(3.13)

We denote by MA : H−
1
2 (Σ) → H

1
2 (Σ) the added-mass operator (Neumann-to-

Dirichlet map) defined, for w ∈ H− 1
2 (Σ), asMAw = Rw|Σ with Rw ∈ H1

Γ1∪Γ2(Ωf)

solution of 



−∆Rw = 0 in Ωf ,

Rw = 0 on Γ1 ∪ Γ2,

∂Rw
∂n

= 0 on Γ3,

∂Rw
∂n

= w on Σ.

Thus, the solution pn−
1
2 of (3.13) on the fluid-structure interface is given by

pn−
1
2 = −ρfMA

(
∂τu

n · n
)

on Σ. (3.14)

It can be shown that the operator MA is compact, self-adjoint and positive in
L2(Σ) (see [CGN05]). For the geometry at hand (Figure 3.1), the eigenvalues of
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MA are given by {
µi =

L

iπ tanh
(
iπR
L

)
}∞

i=1

,

with associated orthonormal eigenfunctions
{
gi =

√
2

L
sin

(
iπx

L

)}∞

i=1

. (3.15)

The largest eigenvalue is given by µmax = L
π tanh(πRL )

, which corresponds to i = 1.

3.3.2 Modal stability analysis

For the sake of simplicity, we assume that the α = β = 0 in (3.10), i.e., no
damping effect is considered in the solid problem. The results obtained can be
generalized to the case α 6= 0 or β 6= 0 (See Remark 3.5 below). The kinematic
perturbation (3.8) induced by the scheme (3.11)-(3.12) reads as

un · n =
.
ηn +

τ

ρsε
Le
(
ηn−

1
2 − η?

)
on Σ. (3.16)

According to (3.16) and (3.14), the solid problem (3.12) can be reformulated, for
n > 0 if r = 0, 1 or for n > 1 if r = 2, as




.
ηn−

1
2 = ∂τη

n on Σ,

(
ρsε+ ρfMA

)
∂τ

.
ηn + Leηn−

1
2 +

ρfτ

ρsε
MALe

(
∂τ (ηn−

1
2 − η?)

)
= 0 in Σ,

ηn = 0 on ∂Σ.

To investigate the stability of Algorithm (3.11)-(3.12), we consider expansions of
the solid solutions in the L2(Σ) orthonormal basis given by (3.15), i.e, ηn =

∑
i η
n
i gi

and .
ηn =

∑
i
.
ηni gi. Note that functions in (3.15) are also eigenfunctions of the

Laplace operator −∂xx on Σ, with corresponding eigenvalues
{
λi =

i2π2

L2

}∞

i=1

.

The Fourier coefficients ηni and .
ηni satisfy, for all i ∈ {1, . . . ,∞}, the following

recurrence relation




.
ηni +

.
ηn−1
i

2
=
ηni − ηn−1

i

τ
,

(
ρsε+ ρfµi

) .ηni −
.
ηn−1
i

τ
+ (c0 + c1λi)

ηni + ηn−1
i

2
+

ρf

ρsε
µi (c0 + c1λi)X

n
i,r = 0,

(3.17)
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for n > 1 if r = 0, 1 or for n > 2 if r = 2, and where

Xn
i,r =





ηni − ηn−2
i

2
if r = 0,

ηni + 2ηn−1
i − ηn−2

i

2
if r = 1,

ηni − 3ηn−1
i + 3ηn−2

i − ηn−3
i

2
if r = 2.

For r = 0 or r = 1, the following proposition establishes that the recurrence
relation (3.17) is stable, meaning that its solution converges to a fixed value, irre-
spectively of the physical and discretization parameters.

Proposition 3.1 Let {ηni }∞n=0 denote the sequence given by (3.17) for a fixed
i ∈ {1, . . . ,∞}. Then, if r = 0 or r = 1,

|ηni | −→n→+∞
0, ∀i ∈ {1, . . . ,∞},

irrespectively of the physical and discretization parameters.

Proof. For r = 0 or r = 1, the recurrence relation (3.17) can be conveniently
reformulated, for all i ∈ {1, . . . ,∞}, as

2(ρsε+ ρfµi)
ηni − 2ηn−1

i + ηn−2
i

τ2
+ (c0 + c1λi)

ηni + 2ηn−1
i + ηn−2

i

2

+
ρf

ρsε
µi (c0 + c1λi)Y

n
i,r = 0, (3.18)

for n > 2, with suitable initialization conditions and with

Y n
i,r

def
=





ηni + ηn−1
i − ηn−2

i − ηn−3
i

2
if r = 0,

ηni − ηn−1
i − ηn−2

i + ηn−3
i

2
if r = 1.

We now proceed by treating each case of extrapolation separately.
Case r = 0. The characteristic polynomial χi,0(x) ∈ P3 of the difference equation
(3.18) reads as

χi,0(x) =

(
1

2
(c0 + c1λi) +

(c0 + c1λi)µiρ
f

2ερs
+

2µiρ
f

τ2
+

2ερs

τ2

)
x3

+

(
(c0 + c1λi) +

(c0 + c1λi)µiρ
f

2ερs
− 4µiρ

f

τ2
− 4ερs

τ2

)
x2

+

(
1

2
(c0 + c1λi)−

(c0 + c1λi)µiρ
f

2ερs
+

2µiρ
f

τ2
+

2ερs

τ2

)
x− (c0 + c1λi)µiρ

f

2ερs
.

The recurrence relation (3.18) is stable if the roots of χi,0(x) lie in the complex unit
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circle
{
z ∈ C

/
‖z‖ < 1

}
. To demonstrate that this is indeed the case, we apply to

χi,0(x) the one-to-one transformation x = z+1
z−1 , which maps the complex left half

plane
{
z ∈ C

/
Re(z) < 0

}
into the unit circle, and multiply the resulting equation

by (z − 1)3, obtaining the polynomial

χ̂i,0(z) = 2 (c0 + c1λi) z
3 +

(
2 (c0 + c1λi) +

4 (c0 + c1λi)µiρ
f

ερs

)
z2

+
8
(
µiρ

f + ερs
)

τ2
z +

8
(
µiρ

f + ερs
)

τ2
.

Hence, the question about the stability of (3.18) comes down to discern whether or
not the roots of χ̂i,0(z) lie in the complex left half plane. To tackle this problem
we use the Routh-Hurwitz criterion (see [Rou77, Hur95]), which gives necessary and
sufficient conditions for all the roots of a polynomial (with real coefficients) to lie
in the complex left half plane. For a third-order polynomial P (s) = a3s

3 + a2s
2 +

a1s+ a0 = 0, these conditions are

a3 > 0, a2a1 > a3a0.

This is obviously the case for polynomial χ̂i,0(z) for all i ∈ {1, . . . ,∞}.
r = 1. We proceed as in the previous case. The corresponding polynomial χ̂i,1(z)

reads

χ̂i,1(z) = 2 (c0 + c1λi) z
3 + 2 (c0 + c1λi) z

2+
(

8
(
µiρ

f + ερs
)

τ2
+

4 (c0 + c1λi)µiρ
f

ερs

)
z +

8
(
µiρ

f + ερs
)

τ2
.

We conclude using the Routh-Hurwitz criterion.

Proposition 3.1 establishes that whenever the Fourier series expansion of ηn

is truncated (i.e., whenever the spatial discretization is fixed) the solution of Al-
gorithm 3.1, under the above assumptions, is stable with zeroth- and first-order
extrapolations. Thus, the stability of the original Robin-Neumann schemes, with
zeroth- and first-order extrapolations, is somehow preserved. For the second-order
extrapolated variant, a CFL-like condition is expected to guarantee stability (see
Theorem 1.5). The previous modal analysis is not able to capture this condition
since the effect of the spatial discretization is not taken into account.

Remark 3.5 If we consider damping effects (α 6= 0 or β 6= 0) on the structure
equation (3.10), then a viscous extrapolated contribution has to be added to (3.16).
It can be proven, under the same assumptions and in the same fashion as above,
that the corresponding solution sequence {ηni }∞n=0 for r = 0 or r = 1, is such that

|ηni | −→n→+∞
0, ∀i ∈ {1, . . . ,∞},
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irrespectively of the physical and discretization parameters. A parabolic-CFL con-
dition (see Remark 1.18) is expected for stability in the case r = 2.

3.4 Numerical experiments

In order to illustrate the accuracy of the proposed schemes, we consider the
problem of the pressure-wave propagation within an elastic tube described in Sec-
tion 2.4.1, which involves the generalized string model (3.10). Stabilized piece-wise
affine continuous finite elements are used for the discretization in space. The com-
putations have been performed with FreeFem++ [Hec12].

To provide evidence on the O(τ2) convergence behavior of the proposed schemes,
Figure 3.2 reports the time-convergence history, with h = 25 · 10−3 fixed, of the
solid displacement at time t = 0.015, in the relative elastic energy-norm, obtained
with Algorithms 3.1 and 3.2 and a fully implicit second-order scheme. We have
refined in time according to τ = 5 · 10−4/2i with i = 0, . . . , 4. The reference
solution has been generated using the implicit scheme with τ = 10−6 and the same h.
The corresponding displacements for the first four τ -refinement levels are provided
in Figure 3.3. In Figure 3.2, we can clearly see that the two variants proposed,
Algorithm 3.1 (Alg. 1 in the figure) with r = 2 and Algorithm 3.2 (Alg. 2 in the
figure) with r = 1 and K = 1, retrieve the second-order convergence in time of the
implicit scheme.
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Figure 3.2: Time-convergence history of the displacement at t = 0.015 with h =
25 · 10−3 fixed.

On the other hand, the results of Figures 3.2-3.3 corresponding to the zeroth-
and first-order extrapolated variants of Algorithm 3.1 are in agreement with the
stability analysis performed in Section 3.3.2. Regarding the case with second-order
extrapolation, the unstable approximation obtained in Figure 3.3 (a) for the larger
τ (the case i = 0) points towards the expected underlying parabolic-CFL condition
(see Remark 3.5).
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Figure 3.3: Comparison of the solid displacements at t = 0.015 for different levels
of τ -refinement, given by τ = 5 · 10−4/2i.

The h-uniformity for the zeroth- and first-order extrapolated variants is guar-
anteed by Figure 3.4, where we have refined both in time and space according to
h = O(τ2). Specifically, we consider τ = 5 · 10−4/2i, h = 0.1/4i for i = 0, 1, 2. The
reference solution has been now obtained with τ = 10−6 and h = 3 · 10−3. We do
not consider in this case the alternative given by Algorithm 3.1 with r = 2 since the
discretization parameters do no satisfy the aforementioned condition for stability.

In summary, Algorithm 3.1 with r = 2 provides a quadratic-convergence rate
in time (see Figure 3.2) whenever a parabolic-CFL condition is satisfied (see Fig-
ure 3.3 (a)). The alternative given by Algorithm 3.2 with K = 1 and r = 1 provides
second-order convergence (see Figure 3.2) irrespectively of the discretization pa-
rameters. Furthermore, the h-uniformity of this latter alternative is confirmed by
Figure 3.4.

3.5 Conclusion

We have introduced a class of time-accurate coupling schemes for fluid-structure
interaction problems involving an incompressible fluid and a general thin-walled
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Figure 3.4: Time-convergence history of the displacement at t = 0.015, with h =
O(τ2).

viscoelastic structure. The key ingredients in the derivation of these methods are:

• second-order time-stepping in both the fluid and solid subproblems;

• enhanced consistency in the explicit discretization (3.4) of (3.3) through
second-order extrapolation (Algorithm 3.2 with r = 2 and K = 0) or first-
order extrapolation with one defect-correction iteration (Algorithm 3.2 with
r = 1 and K = 1).

A stability analysis in a simplified setting (Proposition 3.1) has provided some insight
into the stability properties of these strategies. Numerical experiments in a bench-
mark have shown second-order convergence in time for both alternatives. The best
balance between accuracy and robustness is obtained with the predictor-corrector
scheme given by Algorithm 3.2 with r = 1 and K = 1.



Chapter 4

Coupling schemes for the FSI forward
prediction challenge: comparative study

and validation

In this chapter we present a numerical study in which several partitioned solution pro-
cedures, belonging to the three main families of coupling schemes discussed in Section 1.3.2,
are compared and validated against the results of an experimental FSI benchmark. We con-
sider, in particular, the splitting paradigm of Chapter 2. Very good agreement is observed
between the numerical and experimental results.

The results presented in this chapter have been reported in:

• M. Landajuela, M. Vidrascu, D. Chapelle, M. A. Fernández, Coupling
schemes for the FSI forward prediction challenge: comparative
study and validation. Submitted to International Journal for Numerical
Methods in Biomedical Engineering. https://hal.inria.fr/hal-01239931.
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4.1 Introduction

Numerical methods for fluid-structure interaction are generally validated and
compared between them using reference synthetic data, that is, generated via nu-
merical experiments (see, e.g., [KGF+09, THR+10, Fer11a, Deg13]). Comparisons
between numerical and experimental results are rare in the FSI literature, and
often limited to a single numerical method (see [PGYLS11, MXA+12, MBX+13,
BBG+14]).

The main objective of this chapter is to compare and validate some of the state-
of-the-art coupling schemes for fluid-structure interaction (see Section 1.3.2), includ-
ing the fully decoupled schemes introduced in Chapter 2, within the framework of
the FSI experimental benchmark presented in [Nor15]. All the solution procedures
discussed are partitioned and, from the coupling algorithm standpoint, parameter
free.

The chapter is organized as follows. Section 4.2 presents the mathematical mod-
els and formulations considered in this work. The numerical algorithms used to
simulate the benchmark experiments are described in Section 4.3. In Section 4.4,
the numerical results are discussed and compared with the experimental data. Fi-
nally, a summary of the conclusions is presented in Section 4.5.

4.2 Problem setting

This section presents the different mathematical models considered in this work.
Full details on the experimental setup are given in [Nor15]. The fluid, an aqueous
glycerol solution, is modeled by the ALE Navier-Stokes equations (1.4). The solid
filament, made of silicone, is described by a non-linear viscoelastic (3D or shell)
model.

4.2.1 Geometry

As reference configuration for the coupled system, we consider the domain Ωf∪Ωs

depicted in Figure 4.1(left). For all t ∈ R+, the current configuration of the solid
is denoted by Ωs(t), whereas the fluid is supposed to fill the moving control volume
Ωf(t). We denote by Σ(t)

def
= ∂Ωf(t) ∩ ∂Ωs(t) the current configuration of the fluid-

structure interface. Correspondingly, Σ
def
= ∂Ωf ∩ ∂Ωs stands for the reference fluid-

structure interface. The remaining parts of the fluid and solid boundaries ∂Ωf\Σ
and ∂Ωs\Σ are assumed to be independent of time and partitioned as

∂Ωf = Γtop ∪ Γbot ∪ Γout ∪ Γwall ∪ Σ, ∂Ωs = Γs
wall ∪ Σ,

respectively. In the succeeding text, n and ns refer to the outward normal vectors,
on either the current or reference configuration, of the fluid and solid boundaries
respectively. Furthermore, for a given vector field v defined on the surface Σ, the
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Figure 4.1: Reference and current geometrical configurations. Lengths are given in
millimetres.

symbols v⊥
def
= (v · n)n and v‖

def
= v − v⊥ denote, respectively, the normal and

tangential components of v.

The moving fluid domain Ωf(t) is parametrized as Ωf(t) = A(Ωf , t) where A :

Ωf × R+ → R3 stands for the ALE map (see Figure 4.1), given by the relation
A = IΩf + df in terms of the fluid domain displacement df : Ω × R+ → R3. The
symbol

.
df def

= ∂tA = ∂td
f denotes the fluid domain velocity, F def

= ∇A the gradient
of deformation and J def

= detF the Jacobian (see Section 1.2.1.2).

Remark 4.1 In order to ease the presentation, the change of variables (1.3) will
not be specified in the following equations.

4.2.2 The coupled fluid-structure problem

We will consider both cases in which the solid filament is modeled as a thick-
walled (3D) solid or as a thin-walled (shell) solid.

4.2.2.1 Coupling with 3D solid model

We consider the ALE-Lagrangian coupled problem presented in Section 1.2.3.1.
The coupled problem reads as follows: find the fluid domain displacement df :

Ωf × R+ → Rd, the fluid velocity û : Ωf × R+ → Rd, the fluid pressure p̂ : Ωf ×
R+ → R, the structure displacement d : Ωs × R+ → Rd and the structure velocity
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.
d : Ωs × R+ → Rd, such that





ρf∂tu|A + ρf(u−
.
df) ·∇u− divσ(u, p) = ρfg in Ωf(t),

divu = 0 in Ωf(t),

u = 0 on Γwall,

u = utop on Γtop,

u = ubot on Γbot,

σ(u, p)n = −poutn on Γout,

(4.1)





ρs∂t
.
d− divΠ(d,

.
d) = ρsg in Ωs,
.
d = ∂td in Ωs,

d = 0 on Γs
wall,

(4.2)





df = Ext (d|Σ) ,
.
df = ∂td

f , A = IΩf + df , Ωf(t) =A(Ωf , t),

u =
.
d on Σ,

Π(d,
.
d)ns = −Jσ(u, p)F−Tn on Σ.

(4.3)

The velocity profiles, utop and ubot, and the pressure field, pout, are assumed to
be given data on Γtop, Γbot and Γout, respectively. Here, we use the expression (1.6)
of the first Piola-Kirchhoff stress tensor, that we recall here for convenience,

Π(d,
.
d)

def
= Λ(d) + β∂dΛ(0)

.
d,

with β > 0 the damping coefficient. The coupled system (4.1)-(4.3) is complemented
with the following initial conditions

u(0) = 0, d(0) = d0,
.
d(0) = 0, (4.4)

where d0 denotes the displacement undergone by the solid in its hydrostatic equi-
librium, viz., solution of (4.1)-(4.3) with utop

in = ubot
in = 0 (no flow conditions).

4.2.2.2 Coupling with thin-walled solid model

We consider the non-linear Reissner-Mindlin shell model of Section 2.3 with
reference configuration given by the mid-surface of Ωs (see Figure 4.2). As described
in Section 1.2.3, we identify this mid-surface with the fluid-structure interface Σ and
neglect shell thickness effects in the interface coupling.

We denote by ΓΣ
wall the part of the boundary ∂Σ that lies in Γs

wall. The interface
Σ is assumed to be oriented by a unit surface normal vector field (pointing upwards)
denoted by ns. This defines a positive and a negative side in the fluid domain Ωf ,
with respective unit normals n+ def

= ns and n− def
= −ns on Σ. For a given continuous

scalar or tensorial field f defined in Ωf (possibly discontinuous across Σ), we define
its sided-restrictions to Σ, denoted by f+ and f−, as f+(x)

def
= limξ→0+ f(x+ ξn+)

and f−(x)
def
= limξ→0+ f(x+ ξn−) for all x ∈ Σ. We also define the following jumps
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across the interface Σ:

JfK def
= f+ − f−, JfnK def

= f+n+ + f−n−.

In this framework, the resulting coupled fluid-structure problem reads as follows:
find the fluid domain displacement df : Ωf × R+ → Rd, the fluid velocity u :

Ωf×R+ → Rd, the fluid pressure p : Ωf×R+ → R, the solid mid-surface displacement
d : Σ × R+ → R3 and the director vector a : Σ × R+ → R3 of unit length |a| = 1,
such that (4.1) and





ρsε∂t
.
d+Le

d(d,a) +Lv
.
d = f f + (ρs − ρf)εg on Σ,

Le
a(d,a) = 0 on Σ,

.
d = ∂td, on Σ,

d = 0, a = ns on ΓΣ
wall,

(4.5)





df = Ext (d|Σ) ,
.
df = ∂td

f , A = IΩf + df , Ωf(t) =A(Ωf , t),

u =
.
d on Σ,

f f = −JJσ(u, p)(F )−TnK on Σ,

(4.6)

hold for all t > 0. Physical damping is modeled through (2.31) with α = 0, viz.,

Lv
.
d

def
= β∂dL

e(0,0)
.
d,

with β > 0. Rotational inertia is neglected, and gravitational effects are taken into
account through the surface force ρsεg. Note that, since the solid is geometrically
assimilated to a surface, it does not displace any fluid and, hence, no buoyant force
is undergone by the structure. This is corrected by including the buoyant force in an
approximate static manner, namely, by adding the Archimedes surface force term
−ρfεg.

As pointed out in Section 1.2.3.2, the jump of the hydrodynamic stress through
the immersed solid results in pressure and velocity solutions that are, respectively,
strongly and weakly discontinuous along the moving fluid-structure interface. This
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requires a specific treatment at the discrete level (see Section 4.3.2).

4.2.3 Fluid

Two different experimental phases, corresponding to a stationary or a pulsatile
flow regime, are considered (see [Nor15]). In (4.1) we take g = −gey with g

def
=

9.80665 · 103 mm s−2. An hydrostatic pressure profile of the form

pout(y) = p0 − ρfg (y − y0) ,

is prescribed on the outlet boundary Γout, where p0 = 1782.7 Pa is a given pressure
value measured at point (30.00,−26.38, 160.20) (the red point in Figure 4.1).

4.2.3.1 Phase I experiment

During this phase, the fluid is pumped in the domain with a constant flow rate.
The z-components of the inlet velocity profiles utop and ubot are parabolic with a
peak velocity of 630 mm s−1 and 615 mm s−1, respectively. The other components
are set to zero. The density and dynamic viscosity of the fluid are given in Table 4.1.
These values were measured with the glycerol at a temperature of T = 23.6 ◦C (see
[Nor15]).

ρf µ

1.1633 · 10−3 g mm−3 12.5 · 10−3 g mm−1 s−1

Table 4.1: Fluid physical parameters (Phase I experiment).

4.2.3.2 Phase II experiment

In the second phase of the experiment, the fluid is pumped with a pulsatile flow
rate of frequency f = 1/6 s−1. The profiles of the x−, y− and z− components
of utop are parabolic with peak values over time given in Figure 4.3. The z− and
x− components of the bottom inlet velocity ubot are the same as in utop, but its
y−component is set to zero. The density and dynamic viscosity of the fluid are
given in Table 4.2. In this case, the measurements were obtained for the glycerol at
T = 22 ◦C (see [Nor15]).

ρf µ

1.164 · 10−3 g mm−3 13.37 · 10−3 g mm−1 s−1

Table 4.2: Fluid physical parameters (Phase II experiment).
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Figure 4.3: Measured peak values in the x−, y− and z− components of the inlet
velocity utop.

4.2.4 Solid

The silicone filament is assumed to be homogeneous. Its elastic properties are
described with the Saint Venant-Kirchhoff model (1.8). The density and damping
coefficient for the solid are given in Table 4.3.

ρs β

1.063 · 10−3 g mm−3 2.5 · 10−4 s−1

Table 4.3: Solid physical parameters (Phase I and II experiments).

4.2.4.1 Solid parameters estimation

Young’s modulus E and the Poisson ratio ν for the silicone were determined
from the data obtained in the uniaxial traction test (see [Nor15]). For each loading
step we computed the component of the second Piola-Kirchhoff stress tensor in the
traction direction, i.e., along the z-axis, the corresponding component of the Green-
Lagrange strain tensor (1.7), and the transverse component of this same strain
tensor. Retaining only the first 20 loading steps, linear regression was performed
to estimate Young’s modulus and the Poisson ratio, yielding the values given in
Table 4.4. Figure 4.4 compares the regressions with the experimental points of
the complete dataset. We can see that the linear regression is quite accurate for
extension rates of up to 25%, which justifies the use of a linear stress-strain law
- namely, the Saint Venant-Kirchhoff constitutive equation - for representing the
behavior of this material in the stress-strain ranges of practical interest in our study.

4.3 Numerical methods

This section presents the numerical methods considered in this chapter for
the approximation of the coupled problems (4.1)-(4.3) and (4.1), (4.5)-(4.6). Sec-
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E ν

2.1626 · 105 Pa 0.3151

Table 4.4: Estimated constitutive parameters (Young’s modulus E and Poisson ratio
ν) based on uniaxial traction data from [Nor15].
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Figure 4.4: Poisson ration and Young’s modulus regressions.

tion 4.3.1 is devoted to the discretization in time and to the fluid-solid splitting
schemes. Some ingredients of the spatial discretization are given in Section 4.3.2.
Finally, Section 4.3.3 presents the mesh update technique in the fluid, namely, the
discrete counterpart of the extension operator Ext(·).

4.3.1 Time discretization: coupling schemes

In what follows, the symbol τ > 0 denotes the time-step length, tn
def
= nτ ,

for n ∈ N and ∂τxn
def
=
(
xn − xn−1

)
/τ the first-order backward difference in time.

For the time discretization of the fluid subsystem (4.1) we will consider either the
following monolithic backward Euler scheme:




ρf∂τ |Aun + ρf(un−1 −
.
df,n) ·∇un − divσ(un, pn) = ρfg, in Ωf,n,

divun = 0 in Ωf,n,

un = 0 on Γwall,

un = untop on Γtop,

un = unbot on Γbot,

σ(un, pn)n = −pnoutn on Γout;

(4.7)

or the following incremental pressure-correction scheme:
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1. Fluid convective-viscous substep:




ρf ũ
n − un−1

τ

∣∣∣∣
A

+ ρf
(
ũn−1 −

.
df,n

)
·∇ũn − divσ(ũn, pn−1) = 0 in Ωf,n,

ũn = 0 on Γwall,

ũn = untop on Γtop,

ũn = unbot on Γbot,

σ(ũn, pn−1)n = −pn−1
out n on Γout,

(4.8)

2. Fluid projection substep:




− τ
ρf

∆φn = −divũn in Ωf,n,

τ

ρf

∂φn

∂n
= 0 on Γtop ∪ Γbot,

φn = pnout − pn−1 on Γout,

(4.9)

and thereafter we set pn = φn + pn−1, un = ũn − τ

ρf
∇φn in Ωf .

Note that a standard semi-implicit treatment of the convective term is employed in
(4.7) and in (4.8). For the solid, we consider a backward Euler time-stepping of the
3D solid subsystem (4.2),





ρs∂τ
.
dn − divΠn = ρsg in Ωs,

.
dn = ∂τd

n in Ωs,

dn = 0 on Γs
wall,

(4.10)

with the notation Πn def
= Λ(dn) + β∂dΛ(0)

.
dn. The shell subsystem (4.5) is also

discretized as




ρsε∂τ
.
dn +Le

d(dn,an) +Lv
.
dn = f f,n + (ρs − ρf)εg on Σ,

Le
a(dn,an) = 0 on Σ,

.
dn = ∂τd

n on Σ,

dn = 0, an = ns on ΓΣ
wall.

(4.11)

Remark 4.2 Second-order time-stepping may be considered in the solid. Prelim-
inary results (not reported here) showed, however, no significant differences with
respect to the first-order time-stepping adopted in (4.10) and (4.11).

In all the forthcoming solution procedures, we adopt an explicit treatment of the
geometric compatibility condition (4.3)1, namely,

df,n = Ext(dn−1|Σ),
.
df,n = ∂τd

f,n, An def
= IΩf + df,n, Ωf,n def

= An
(
Ωf
)

(4.12)
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and thereafter we set F n def
= ∇An and Jn

def
= detF n (see Remark 2.11). The

numerical methods presented in the next paragraphs mainly differ on the time-
stepping of the interface conditions (4.3)2,3.

4.3.1.1 Strongly coupled schemes

The first class of numerical methods considered in this paper performs a fully
implicit treatment of the kinematic and dynamic coupling conditions (4.3)2,3 and
(4.6)2,3. This yields the time-marching schemes reported in Algorithms 4.1 and 4.2.
We recall that schemes for which (4.13) or (4.14) hold are often referred to in the
literature as strongly coupled (See Section 1.3.2.1). Basically, their main advantage
lies in the fact that they induce a correct discrete energy balance across the interface
and, hence, guarantee energy stability (see, e.g., [SS06, BNV08, SM08, NPV13]).

Algorithm 4.1 Strongly coupled scheme (coupling with 3D solid).
For n ≥ 1:

1. Update fluid domain via (4.12);

2. Find un : Ωf → R3, pn : Ωf → R, dn : Ωs → R3 and
.
dn : Ωs → R3 satisfying

(4.7), (4.10) and
{

un =
.
dn on Σ,

Πnns = −Jnσ(un, pn)(F n)−Tn on Σ.
(4.13)

The price to pay for this superior stability is the resolution of a highly-coupled
nonlinear system at each time-step (Step 2 of Algorithms 4.1 and 4.2), which can be
computationally demanding in practice. In this work, we consider the partitioned
solution strategy proposed in [FM05], which involves interface Dirichlet-Neumann
GMRES iterations.

Algorithm 4.2 Strongly coupled scheme (coupling with thin-walled solid).
For n ≥ 1:

1. Update fluid domain via (4.12);

2. Find un : Ωf → R3, pn : Ωf → R, dn : Σ→ R3,
.
dn : Σ→ R3 and an : Σ→ R3

with |an| = 1, satisfying (4.7), (4.11) and
{

un =
.
dn on Σ,

f f,n = −JJnσ(un, pn)(F n)−TnK on Σ.
(4.14)



4.3. Numerical methods 109

4.3.1.2 Projection-based semi-implicit coupling schemes

In this section we consider a suitable non-linear formulation of the incremental
projection-based semi-implicit scheme reported in Section 1.4.3.2. The resulting
scheme avoids strong coupling without compromising stability and accuracy. The
fundamental idea consists in combining the fractional-step time-marching in the fluid
(4.8)-(4.9) with a specific explicit-implicit treatment of the kinematic and dynamic
coupling conditions (4.3)2,3 and (4.6)2,3. The solution procedures are detailed in
Algorithms 4.3 and 4.4.

Algorithm 4.3 Semi-implicit coupling scheme (coupling with 3D solid).
For n ≥ 2:

1. Update the fluid domain via (4.12);

2. Explicit step: find ũn : Ωf → R3 satisfying (4.8) and

ũn =
.
dn−1 on Σ.

3. Implicit step: find φn : Ωf → R, dn : Ωs → R3 and
.
dn : Ωs → R3, satisfying

(4.9), (4.10) and




τ

ρf

∂φn

∂n
=
(
ũn −

.
dn
)
· n on Σ,

Πnns = −Jnσ(ũn, pn)(F n)−Tn on Σ.

Algorithm 4.4 Semi-implicit coupling scheme (coupling with thin-walled solid).
For n ≥ 2:

1. Update the fluid domain via (4.12);

2. Explicit step: find ũn : Ωf → R3 satisfying (4.8) and

ũn =
.
dn−1 on Σ.

3. Implicit step: find φn : Ωf → R, dn : Σ→ R3 and an : Σ→ R3 with |an| = 1,
satisfying (4.9), (4.11) and





τ

ρf

∂φn

∂n
=
(
ũn −

.
dn
)
· n on Σ,

f f,n = −JJnσ(ũn, pn)(F n)−TnK on Σ.

The fluid convective-viscous step (4.8) is explicitly coupled with the solid, this
reduces computational complexity without compromising stability. On the other
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hand, the fluid projection step (4.9) is implicitly coupled to the solid to avoid added-
mass stability issues (see Section 1.4.3.2). Note that this implicit part of the coupling
(i.e., Step 3 of Algorithms 4.3 and 4.4) is less computationally onerous than Step 2
of Algorithms 4.1 and 4.2. In this work, the resulting pressure-solid systems are
solved via interface Neumann-Neumann GMRES iterations.

4.3.1.3 Explicit coupling chemes

In this section, we focus on the case of the coupling with a thin-walled solid
model, namely, the coupled problem (4.1), (4.5)-(4.6). We consider suitable non-
linear formulations of the Robin-Neumann explicit coupling scheme (with r = 1)
reported in Section 1.4.3.5 and of the fully decoupled scheme (with s = 1, r = 1)
introduced in Chapter 2. The resulting methods perform a complete splitting of the
fluid and solid time-steppings. The fundamental ingredient in the derivation of these
methods (see Sections 1.4.3.5 and 2.2) is the notion of interface Robin consistency.
For the problem at hand, it reads

JJσ(u, p)F−TnK + ρsε∂tu = −Le
d(d,a)−Lv

.
d+ (ρs − ρf)εg on Σ, (4.15)

owing to (4.5)1 and (4.6)2,3. The key idea is hence to perform the fluid-solid splitting
by discretizing in time (4.15) instead of (4.6)2. Then, owing to the dynamic coupling
condition (4.6)3, the resulting interface fluid stresses are transferred to the thin-
walled solid through the "Neumann"-like relation

f f,n = −JJnσ(un, pn)(F n)−TnK on Σ. (4.16)

Robin-Neumann explicit coupling scheme. Following Section 1.4.3.5, the consistent
interface relation (4.15) is discretized in time as

JJnσ(un, pn)(F n)−TnK +
ρsε

τ
un =

ρsε

τ

.
dn−1

−Le
d(dn−1,an−1)−Lv

.
dn−1 + (ρs − ρf)εg on Σ, (4.17)

which provides an explicit Robin condition for the fluid sub-system (4.7). Note that
the solid inertia is implicitly coupled to the fluid, via the Robin term in the left-hand
side of (4.17), while the solid viscoelastic terms are treated explicitly in (4.17). The
first guarantees (added-mass free) stability whereas the second enables the splitting
between the fluid and solid time-steppings.

Owing to (4.11) and (4.16), for n ≥ 2 the Robin condition (4.17) can be refor-
mulated in a more convenient fashion as follows

JJnσ(un, pn)(F n)−TnK +
ρsε

τ
un

=
ρsε

τ

( .
dn−1 + τ∂τ

.
dn−1

)
+ JJn−1σ(un−1, pn−1)(F n−1)−TnK on Σ.
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Algorithm 4.5 Robin-Neumann explicit coupled scheme.
For n ≥ 2:

1. Update the fluid domain via (4.12);

2. Fluid step: find un : Ωf → R3 and pn : Ωf → R satisfying (4.7) and

JJnσ(un, pn)(F n)−TnK +
ρsε

τ
un =

ρsε

τ

( .
dn−1 + τ∂τ

.
dn−1

)

+ JJn−1σ(un−1, pn−1)(F n−1)−TnK on Σ.

3. Solid step: dn : Σ → R3,
.
dn : Σ → R3 and an : Σ → R3 with |an| = 1,

satisfying (4.11) and

f f,n = −JJnσ(un, pn)(F n)−TnK on Σ.

Algorithm 4.6 Fully decoupled scheme (based on Chapter 2).
For n ≥ 2:

1. Update the fluid domain via (4.12);

2. Fluid viscous substep: find ũn : Ωf → R3 satisfying (4.8) and

JJnσ(ũn, pn−1)(F n)−TnK +
ρsε

τ
ũn =

ρsε

τ

( .
dn−1 + τ∂τ

.
dn−1
‖
)

+ 2µ
(
Jε(ũ)F−Tn

)n−1

‖ on Σ.

3. Fluid projection substep: find φn : Ωf → R satisfying (4.9) and

τ

ρf

∂φn

∂n
+

τ

ρsε
JφnK =

τ

ρsε
Jφn−1K +

(
ũn−1 −

.
dn−1

)
· n on Σ.

4. Solid step: find dn : Σ → R3,
.
dn : Σ → R3 and an : Σ → R3 with |an| = 1,

satisfying (4.11) and

f f,n = −JJnσ(ũn, pn)(F n)−TnK on Σ.

The complete explicit coupling scheme is reported in Algorithm 4.5.

Fully decoupled scheme. Using the arguments reported in Chapter 2, the above ex-
plicit Robin-Neumann paradigm can also be effectively combined with the fractional-
step fluid time-stepping (4.8)-(4.9). The resulting method is presented in Algo-
rithm 4.6. A salient feature of this solution procedure is that it enables a fully
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decoupled sequential computation of the whole fluid-solid state: un, pn and (dn,an).

4.3.2 Space discretization

In Phase I, we take advantage of the symmetry of the problem along the z−axis to
reduce the computational domain to half of the physical domain (see Figures 4.5(a)
and 4.6(a)). A symmetry boundary condition is enforced on the symmetry plane
Γsym

def
= {x = 0}:

u · n = 0, (σ(u, p)n)‖ = 0 on Γsym.

The entire physical domain is considered as computational domain in Phase II. The
fluid domain is discretized with a tetrahedral mesh Th (see Figures 4.5 and 4.6),
whereas a hexahedralHh or quadrilateral meshQh is considered for the solid domain,
depending on wether it is a volume (see Figure 4.5) or a surface (see Figure 4.6). The
meshes are built in such a way that the nodes lying on the interface are matching
(see [GVF05]). The current fluid mesh T nh of Ωf,n is obtained by displacing the
nodes of Th by df,n

h (see Section 4.3.3).

(a) Th: 485331 tetrahedra, Hh: 4000
hexahedra.

(b) Th: 624440 tetrahedra, Hh: 3840
hexahedra.

Figure 4.5: Meshes for 3D solid model.

(a) Th: 476810 tetrahedra, Qh: 1000
quadrilaterals.

(b) Th: 609752 tetrahedra, Qh: 1280
quadrilaterals.

Figure 4.6: Meshes for shell solid model.
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The fluid equations are discretized in space using P1 finite elements. As usual, we
use the subscript h to denote the discrete approximations. For Algorithms 4.1, 4.2
and 4.5, we resort to the SUPG/PSPG method to stabilize the velocity/pressure pair
and the convective effects (see, e.g., [Tez92]). Furthermore, a backflow stabilization
method is used in the outlet boundary (see, e.g., [MBH+11, BGH+09]). In summary,
we add the following stabilization terms to the fully discrete fluid problem:

∑

K∈T nh

∫

K
τK

(
ρf
(
un−1
h · ∇

)
vh +∇qh

)
·
(
ρf
(
un−1
h · ∇

)
unh +∇pnh − ρfg

)

+
ρf

2

∫

Γout

(unh · n)− u
n
h · vh,

(4.18)

where vh and qh are the velocity and pressure test functions, the symbol (un · n)−
denotes the negative part of un ·n and τK is the SUPG/PSPG stabilization param-
eter. For Algorithms 4.3, 4.4 and 4.6, we split the stabilization (4.18) in its veloc-
ity and pressure parts, adding the following SUPG contribution to the convective-
viscous substep (4.8):

∑

K∈T nh

∫

K

(
τKρ

f
(
ũn−1
h · ∇

)
vh

)
·
(
ρf
(
ũn−1
h · ∇

)
ũnh +∇pn−1

h − ρfg
)

+
ρf

2

∫

Γout

(ũnh · n)− ũ
n
h · vh,

and the following PSPG contribution to the projection step (4.9):

∑

K∈T nh

∫

K
τK∇qh ·

(
ρf
(
ũn−1
h · ∇

)
ũnh +∇pnh − ρfg

)
.

In Algorithms 4.2, 4.4-4.6, which involve the thin-walled solid model (4.5), dis-
continuous approximations of the pressure are allowed by duplicating the pressure
degrees of freedom matching at the interface, creating an internal discontinuous
boundary around the interface.

The space-discretization of the solid elastodynamics equations in Algorithm 4.1
is performed with Q1 finite elements. The shell equation in Algorithms 4.2 and
4.4-4.6, is discretized in space by quadrilateral MITC4 elements (see [CB11, Section
8.2.1]).

4.3.3 Mesh update technique

We adopt a mesh moving technique in which the displacement of the nodes is
based on the equations of linear elasticity. The Lamé parameters are chosen element-
wise in order to stiffen the smallest elements (see [STB03]), whose deformation can
potentially make the mesh invalid. In order to take into account the actual deforma-
tion of the mesh, the lifted displacement is computed on the current configuration
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of mesh by computing the incremental displacement. Given dn−1
h |Σ, we compute

(a) Horizontal perspective. (b) Detail of the deformed mesh.

Figure 4.7: Initial condition for the meshes. Application of the operator Ext (·).

the lifted displacement df,n
h = Ext

(
dn−1
h |Σ

)
by the following procedure:

1. Compute the solid displacement increment at the reference interface:

δdn−1
h = dn−1

h |Σ − dn−2
h |Σ.

2. Compute the extension δdf,n
h of the increment δdn−1

h solving the following
linear elasticity problem in the previous configuration Ωf,n−1:




δdf,n
h |Σn−1 = δdn−1

h ◦ (An−1
h )−1, δdf,n

h |Ωf,n−1/Σn−1 = 0,
∑

K∈T n−1
h

∫

K

(
L1,K div

(
δdf,n

h

)
divwh + 2L2,K ε(δdf,n

h ) : ε(wh)
)

= 0 ∀wh,

where the Lamé parameters L1,K , L2,K are defined element-wise as

L1,K =
L̃1

VK
, L2,K =

L̃2

VK
,

with L̃1, L̃2 > 0 given constants and VK the volume of the element K ∈ T n−1
h .

3. Update the fluid displacement in the reference configuration:

df,n
h = df,n−1

h + δdf,n
h ◦An−1

An example of deformed mesh (involving large interface defections) obtained with
this procedure (L̃1 = 1, L̃2 = 15) is displayed in Figure 4.7.

4.4 Comparison with experimental data

Experimental data of the solid displacement and fluid velocity was provided by
the challenge organizers (see [Nor15]). They used a combination of synchronized
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geometrical and flow scans with temporal resolution to carry out the measurements.
For Phase I experiment, the velocity was recorded at the cutting planes z = 10

and z = 30 (see Figure 4.8(a)). For Phase II, experimental measurements of the
fluid velocity components at different time-steps were obtained at the cutting planes
z = 3.5, z = 13.5, z = 23.5 and z = 33.5. (see Figure 4.8(b)).

z = 10

z = 30

(a) Phase I

z = 33.5z = 13.5

z = 23.5
z = 3.5

(b) Phase II

Figure 4.8: Scanning planes for Phase I and Phase II.

The numerical results presented below were generated with a partitioned mas-
ter/slave implementation of Algorithms 4.1-4.6. Data exchanges across the fluid-
solid interface are managed by a master code (based on PVM [GBD+94]), with the
slaves being the fluid and solid solvers (see, e.g., [GV03, LCY+06]). Different parallel
methods are used for the solid and the fluid. The parallel structural solver uses New-
ton iterations at each time-step. The resulting tangent systems are solved with a bal-
ancing domain decomposition method (see, e.g., [Man93, LTV96, LT94a]). The fluid
solver FELiScE (see [Fel]) is based on PETSc (see [BAA+14a, BAA+14b, BGMS97])
and uses an additive Schwarz algorithm (see, e.g., [SBG96]) with local ILU pren-
conditioning.

4.4.1 Initial configuration

According to (4.4), the Phases I and II experiments are initialized with the
solid configuration in its hydrostatic equilibrium d0. An approximation of this
configuration is used to initialize d0 in Algorithms 4.1-4.6. This approximation
can be obtained as the steady state solution provided by Algorithms 4.1-4.6 with
d0 = 0, untop = unbot = 0. Figure 4.9 reports the solid hydrostatic equilibrium
obtained with the implicit schemes (Algorithms 4.1-4.2). Similar results are also
obtained with the rest of the methods. Note that these results underestimate the
deflections measured in the experiment for Phases I and II, which are 29.5 mm and
25.65 mm, respectively. In particular, we do not observe such a difference between
the results for Phases I and II, despite the modifications introduced in the fluid
physical parameters (see Sections 4.2.3.1-4.2.3.2). Figure 4.9 also shows that the
thin-walled shell model provides slightly larger deflections.
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 Alg. 1, Phase I
 Alg. 2, Phase I
 Alg. 1, Phase II
 Alg. 2, Phase II

Figure 4.9: Initial conditions d0 for Phase I and Phase II obtained with Algo-
rithms 4.1-4.2.

4.4.2 Phase I experiment

The solid filament is initially at the hydrostatic equilibrium computed in Sec-
tion 4.4.1. The constant flow rate described in Section 4.2.3.1 is imposed on the
top and bottom inlet boundaries. We have simulated 6000 time-steps of constant
length τ = 2.5 · 10−3 s with Algorithms 4.1-4.6. After a brief transition phase, the
system reaches a steady state equilibrium with the filament deflected and holding a
stable position. Figure 4.10 shows the steady state velocity field magnitude and the
deformed solid configuration provided by Algorithm 4.1 (3D solid model) and Algo-
rithm 4.2 (shell solid model). Similar results are obtained with the rest of methods,
that are omitted here for the sake of conciseness.

(a) 3D solid model (Algorithm 4.1). (b) Shell solid model (Algorithm 4.2).

velocity (mm/s)

0.0 155 310 465 620

Figure 4.10: Steady state velocity magnitude and deformed solid configuration in
Phase I.

In Figure 4.11, we compare the measured final filament configuration and the
approximations provided by Algorithms 4.1-4.6. In order to better highlight the
differences, the y-range has been rescaled with respect to Figure 4.9. We can clearly
see that all the methods considered provide numerical solutions that are very close
to the experimental data. Moreover, the results obtained with Algorithms 4.1 and
4.3 (3D solid model) are practically the same. Similar behaviour is observed for
Algorithms 4.2 and 4.4-4.6 (shell solid model). This is clear indication that, in
this case, the choice of the coupling scheme has a limited impact on the quality of
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the approximation, which is mainly driven by the solid modelling assumptions. In
general, the 3D solid model gives slightly better results than the shell model, which
tends to overestimate the deflection of the filament.

 z (mm)
0 10 20 30 40 50 60

 y
 (

m
m

)

0

2
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16

18
 Experiment
 Alg. 1
 Alg. 2
 Alg. 3
 Alg. 4
 Alg. 5
 Alg. 6

Figure 4.11: Deflection of the silicone filament at steady state in Phase I. Compari-
son of the experimental data with the predictions obtained with Algorithms 4.1-4.6.

In Figure 4.12, we compare the experimental results for the fluid velocity compo-
nents with the numerical approximations obtained with Algorithm 4.1 (monolithic
fluid solver and 3D solid model) and Algorithm 4.6 (incremental pressure-correction
fluid solver and shell solid model). Very similar results were obtained with the rest
of algorithms. These results display a good agreement between the simulations and
the experimental data (irrespectively of the fluid-solver/solid-model used).
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(a) Experiment at z = 10.
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(b) Experiment at z = 30.
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(c) Algorithm 4.1 at z = 10.
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(d) Algorithm 4.1 at z = 30.
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(e) Algorithm 4.6 at z = 10.
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(f) Algorithm 4.6 at z = 30.

Figure 4.12: Fluid velocity components at steady state in Phase I. Comparison of
the experimental data with the predictions obtained with Algorithms 4.1 and 4.6.
Units are in mm s−1.

In order to provide some insight on the computational performance of the differ-
ent numerical methods, we have reported in Table 4.5 a comparison of the elapsed
CPU-times (dimensionless) obtained with Algorithms 4.1-4.6 during the first 10
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time-steps. The experiments were run in the same machine, with 16 and 8 pro-
cessors allocated for the fluid and the solid solvers, respectively. We can observe
that, when using a 3D solid model and for practically the same level of accuracy,
Algorithm 4.3 is about 6 times faster than Algorithm 4.1. An even higher speed-up
is observed when a shell solid model is used and we compare Algorithm 4.6 with
Algorithm 4.2. In that case, the former is 18 times faster than the latter.

Alg. 4.6 Alg. 4.5 Alg. 4.4 Alg. 4.3 Alg. 4.2 Alg. 4.1
1 2 2 3 17 18

Table 4.5: Elapsed CPU-time (dimensionless) for Algorithms 4.1-4.6 in Phase I.

4.4.3 Phase II experiment

The solid filament is initially in its hydrostatic equilibrium simulated in Sec-
tion 4.4.1. On the inlet boundaries, we impose the pulsatile flow profile described in
Section 4.2.3.2. We have simulated 6000 time-steps of constant length τ = 10−3 s

with Algorithms 4.1-4.6, which corresponds to a full cycle (6 s) of the pulsatile flow.

(a) t = 0.721 s (b) t = 1.153 s (c) t = 1.585 s

(d) t = 2.017 s (e) t = 2.449 s (f) t = 2.881 s

velocity (mm/s)

0.0 75 150 225 300

Figure 4.13: Snapshots of the fluid velocity magnitude and deformed solid configu-
ration in Phase II with Algorithm 4.1.

Figures 4.13 and 4.15 present some snapshots of the fluid velocity magnitude
at different time instants obtained with Algorithm 4.1 (3D solid model) and Algo-
rithm 4.2 (shell solid model), respectively. The fluid front hits the filament, and
makes it to deflect. As soon as the fluid flow diminishes, the filament returns to
its original position. For illustration purposes, Figures 4.14 and 4.16, report some
vortical structures obtained as iso-surfaces of the Q-criterion (see [HWM88]). The
rest of the algorithms deliver very similar results. We can clearly see in these figures
the initial deflection of the structure due to the impact of the fluid jet. Further
numerical results are displayed in Figure A.1 of Appendix A.
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(a) t = 0.721 s (b) t = 1.153 s (c) t = 1.585 s

(d) t = 2.017 s (e) t = 2.449 s (f) t = 2.881 s

velocity (mm/s)

0.0 75 150 225 300

Figure 4.14: Isosurface Q = 12 of the Q-criterion colored by the velocity magnitude
in Phase II with Algorithm 4.1.

(a) t = 0.721 s (b) t = 1.153 s (c) t = 1.585 s

(d) t = 2.017 s (e) t = 2.449 s (f) t = 2.881 s

velocity (mm/s)

0.0 75 150 225 300

Figure 4.15: Snapshots of the fluid velocity magnitude and deformed solid configu-
ration in Phase II with Algorithm 4.2.

Figure 4.17 presents a comparison of the measured deflections and the results
obtained with Algorithms 4.1-4.6 at different time-steps in [0, 3] (where the main
transient phenomena occur). Additional results over the whole cycle [0, 6] are dis-
played in Figure A.2 of Appendix A. Note that the experimentally measured de-
flection is truncated over x ∈ [0, 53.193], whereas the whole results are displayed
for the simulations. We can observe that all the numerical methods are able to
capture the main dynamics of the system. In order to provide further insight in
this comparison, Figure 4.18 displays the y-component of the point in the structure
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(a) t = 0.721 s (b) t = 1.153 s (c) t = 1.585 s

(d) t = 2.017 s (e) t = 2.449 s (f) t = 2.881 s

velocity (mm/s)

0.0 75 150 225 300

Figure 4.16: Isosurface Q = 12 of the Q-criterion colored by the velocity magnitude
in Phase II with Algorithm 4.2.
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(a) t = 0.721 s
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(b) t = 1.153 s
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(c) t = 1.585 s
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(d) t = 2.017 s
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(e) t = 2.449 s
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(f) t = 2.881 s

Figure 4.17: Deflection of the silicone filament in Phase II at different time instants
during the window [0, 3] s. Comparison of the experimental data with the predictions
obtained with Algorithms 4.1-4.6.

with coordinate x = 53.193 for all t ∈ [0, 6]. We can see that the first impact of the
fluid into the solid causes the main deflection of the filament at t = 1.153 s. The
instant in which the filament reaches this maximum deflection is perfectly predicted
by all the methods (see also Figure 4.17(b)). Afterwards, the solid starts to go up
due to the buoyant force and hits again the fluid jet at t = 1.585 s. Then, a second,
much more mitigated, bounce starts which is, however, captured with a delay in all
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the simulations. Figure 4.18 shows also the general tendency of the shell model to
overestimate the deflection of the filament, especially during the second half of the
cycle.
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Figure 4.18: Track of y-component of the point in the structure with coordinate
x = 53.193 for all t ∈ [0, 6] in Phase II.

Figure 4.19 shows the experimental results for the fluid velocity components
and the numerical approximations obtained, at two different time-steps, with Al-
gorithm 4.1 (monolithic fluid solver and 3D solid model) and Algorithm 4.6 (in-
cremental pressure-correction fluid solver and shell solid model) at z = 33.5 (the
furthest from the inlet boundary, which corresponds to the most difficult scenario).
Additional results over the four cutting planes of Figure 4.8(b) can be found in
Figures A.3, A.4, A.5 and A.6 of Appendix A. Although slightly diffusive, the
simulations are in good agreement with the experimental data (irrespectively of
the fluid-solver/solid-model used). In particular, the main patterns of the flow are
clearly captured. Similar results, not reported here for the sake of conciseness, were
obtained with the rest of methods.

Finally, in Table 4.6, we compare the performance of Algorithms 4.1-4.6 in terms
of the elapsed CPU-time during the first 10 time-steps. This is carried out in the
same machine, with 16 and 8 processors allocated for the fluid and the solid solvers,
respectively. As in the simulations of Phase I, superior performance is obtained with
the loosely coupled and semi-implicit methods.

Alg. 4.6 Alg. 4.5 Alg. 4.4 Alg. 4.3 Alg. 4.2 Alg. 4.1
1 2 2.5 2.5 18 17.5

Table 4.6: Elapsed CPU-time (dimensionless) for Algorithms 4.1-4.6 in Phase II.

4.5 Conclusion

Different partitioned solution procedures have been compared and validated us-
ing the experimental results of the FSI benchmark presented in [Nor15]. All the
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(a) Experiment at t = 1.153.
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(b) Experiment at t = 2.449.
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(c) Algorithm 4.1 at t = 1.153.
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(d) Algorithm 4.1 at t = 2.449.
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(e) Algorithm 4.6 at t = 1.153.
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(f) Algorithm 4.6 at t = 2.449.

Figure 4.19: Fluid velocity components in Phase II. Comparison of the experimental
data with the predictions obtained with Algorithms 4.1 and 4.6. Plane z = 33.5.
Units are mm s−1.

methods discussed are algorithmically parameter free and represent an important
sample of the state-of-the-art in coupling schemes for FSI.

The comparisons in Section 4.4 showed, in general, a very good agreement be-
tween the numerical and the experimental results, particularly, in Phase I where the
matching is excellent. A slight deviation is observed in the case of the coupling with
the shell model, which can be related to the approximation of the Archimedes force.

With regard to the computational efficiency, the comparisons indicate that the
best performance is obtained with the splitting schemes of Algorithms 4.3 and 4.6,
respectively, in the case of the coupling with a 3D and a shell solid model. It should
be noted also that these results confirm that strong coupling (Algorithms 4.1-4.2)
can be avoided via semi-implicit or explicit coupling (Algorithms 4.3-4.6) without
compromising both stability and accuracy, and at significantly reduced computa-
tional cost (see, e.g., Table 4.6).
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Chapter 5

Splitting schemes for incompressible
fluid/thin-walled structure interaction

using unfitted meshes

In this chapter we investigate how the explicit Robin-Neumann coupling paradigm of
Section 1.4.3.5 can be generalized to the unfitted mesh framework of Section 1.4.2.3. As
a result, two new classes of splitting methods (semi-implicit and explicit) are obtained.
Their semi-implicit or explicit nature is dictated by the order in which the spatial and time
discretizations are performed. Stability and optimal accuracy are achieved without restrictive
CFL conditions or correction iterations.

The results presented in this chapter have been reported in:

• M. A. Fernández, M. Landajuela, Splitting schemes for incompress-
ible fluid/thin-walled structure interaction with unfitted meshes.
Comptes Rendus Mathématique, 353(7):647-652, 2015

• M. A. Fernández, M. Landajuela, Unfitted formulations and splitting
schemes for incompressible fluid/thin-walled structure interaction.
Submitted to ESAIM: Mathematical Modelling and Numerical Analysis.
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5.1 Introduction

Over the last years, significant progress has been achieved in the development
and analysis of stable and accurate explicit coupling schemes for the approximation
of the coupled problem (1.34),(1.37) (see Section 1.4.3). Most of these studies (see,
e.g., [BF09, GGCC09, Fer13, FMV13, BF14a, BCG+13, LMRHZ13]) consider fitted
meshes (see Section 1.4.2.2). For much applications, it is well known however that
this assumption rapidly becomes cumbersome (see Section 1.3.1.1).

Within the unfitted mesh framework of Section 1.4.2.3, splitting schemes of
explicit nature are reported and analyzed in [BCG11] using the finite element im-
mersed boundary method, and in [BF14b] using an unfitted Nitsche’s method (see
Algorithm 1.4). A major drawback of these approaches is that either stability or
accuracy demands severe time-step restrictions (e.g., parabolic-CFL) or correction
iterations.

In this chapter, we present two new numerical methods (semi-implicit and ex-
plicit) which bypass these stability and accuracy issues. Their semi-implicit or
explicit nature depends on the order in which the spatial and time discretizations
are performed. These methods generalize (for the first time) the Robin-Neumann
splitting paradigm of Section 1.4.3.5 to the unfitted mesh framework. A complete
energy-based stability and a priori error analysis is presented for the semi-implicit
class of schemes. In particular, unconditional stability and optimal accuracy is ob-
tained with one of the variants. This type of analysis is only partially conducted for
the explicit class of schemes, showing unconditional stability and convergence for
one of the variants considered.

This chapter is organized as follows. Section 5.2 is devoted to the case in which
the space discretization is performed in the first place. The resulting semi-implicit
schemes are presented in Section 5.2.1, and their stability and convergence analysis
is addressed in Section 5.2.2. The alternative of performing the time discretization
in the first place is considered is Section 5.3. The resulting explicit schemes are
presented in Section 5.3.1. One of the explicit variants is analyzed in Section 5.3.2.
A thorough numerical study in a benchmark is presented in Section 5.4. The con-
clusions are summarized in Section 5.5.

The model problem We consider the coupled problem introduced in Sec-
tion 1.4.1, involving the Stokes system (1.34) and the thin-walled solid problem
(1.37). The problem, which we repeat here for the sake of convenience, reads: find
the fluid velocity u : Ωf × R+ → Rd, the fluid pressure p : Ωf × R+ → R, the struc-
ture displacement d : Σ × R+ → Rd and the structure velocity

.
d : Σ × R+ → Rd,

such that 



ρf∂tu− divσ(u, p) = 0 in Ωf ,

divu = 0 in Ωf ,

u = 0 on Γf ,

(5.1)
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u =
.
d on Σ,

ρsε∂t
.
d+Led = −σ(u, p)n on Σ,

.
d = ∂td on Σ,

d = 0 on ∂Σ,

(5.2)

complemented with the initial conditions u(0) = u0, d(0) = d0 and
.
d(0) =

.
d0. The

abstract surface operator Le : D(Le) ⊂ [L2(Σ)]d → [L2(Σ)]d describes the solid
elastic effects.

Recall that the L2-scalar product on ω is denoted by (·, ·)ω and its associated
norm by ‖ · ‖0,ω. For the weak formulation of the problem we consider the fluid and
solid spaces introduced in Section 1.4.2.1 for the case of coupling with a thin-walled
solid, viz.,

V = [H1
Γf (Ω

f)]d, Q = L2(Ωf), W ⊂ [H1
∂Σ(Σ)]d.

The weak formulation of (5.1)-(5.2) obtained in Section 1.4.2.1 reads: for t > 0, find

(u(t), p(t),d(t),
.
d(t)) ∈ V ×Q×W ×W

such that
{
u|Σ =

.
d,

.
d = ∂td,

ρf
(
∂tu,v

)
Ωf + af

(
(u, p), (v, q)

)
+ ρsε

(
∂t
.
d,w

)
Σ

+ as(d,w) = 0,
(5.3)

for all (v, q,w) ∈ V × Q × W with v|Σ = w. Recall that af is given by
af
(
(u, p), (v, q)

) def
= a(u,v)+b(p,v)−b(q,u), with a : V ×V → R and b : Q×V → R

the standard Stokes bilinear forms given in (1.40). The elastic bilinear form as is
given by (1.38). In particular, the continuity estimate (1.39), which we repeat here
for the sake of completeness, is assumed:

‖w‖2s ≤ βs‖w‖21,Σ, ∀w ∈W , (5.4)

with βs > 0 and ‖ · ‖s = as(·, ·) 1
2 .

5.2 First discretize in space and then in time

The first class of methods arises as the the result of performing the fractional-
step time-marching (1.84) to the unfitted mesh spatial approximation (1.57). In this
section, we present the method and address its stability and convergence analysis.
In particular, unconditional stability and optimal first-order accuracy is derived for
one of the variants considered. A salient feature of our analysis is that it also covers
the fully discretized implicit scheme presented in [BF14b, Algorithm 1].
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Unfitted mesh spatial semi-discretization For the sake of simplicity, we
assume that Ωf and Σ are polyhedral. We consider the unfitted mesh spatial semi-
discretization of problem (5.3) described in Section 1.4.2.3. Families of solid tri-
angulations {T f

h}0<h≤1, satisfying (1.42), and fluid triangulations {T s
h }0<h≤1, satis-

fying (A1)-(A3) in Section 1.4.2.3, are considered. See Figure 1.15(b) for a possi-
ble configuration. We assume that the elements of T s

h can be grouped in disjoint
(d− 1)-dimensional macropatches Pi, with meas(Pi) = O(hd−1). Each macropatch
is assumed to contain at least one interior node and the union of the Pi is assumed
to cover Σ, that is, ∪iPi = Σ.

Recall that we denote by Ωh the domain covered by T f
h (computational domain,

see (1.50)). The approximation spaces for the solid, Wh, and the fluid, Vh and
Qh, are defined in (1.43) and (1.51), respectively. We consider the space semi-
discretization (1.57), namely: for t > 0, find

(
uh(t), ph(t),

.
dh(t),dh(t)

)
∈ Vh ×Qh ×Wh ×Wh,

such that
.
dh = ∂tdh and





ρf
(
∂tuh,vh

)
Ωf + af

(
(uh, ph), (vh, qh)

)
+ Sh

(
(uh, ph), (vh, qh)

)

+ ρs
(
∂t
.
dh,wh

)
Σ

+ as(dh,wh)−
(
σ(uh, ph)n,vh −wh

)
Σ

−
(
uh −

.
dh,σ(vh,−qh)n

)
Σ

+
γµ

h

(
uh −

.
dh,vh −wh

)
Σ

= 0

(5.5)

for all (vh, qh,wh) ∈ Vh × Qh ×Wh. Here, γ > 0 denotes the Nitsche’s penalty
parameter and

Sh
(
(uh, ph), (vh, qh)

) def
= sh(ph, qh) + gh(uh,vh). (5.6)

In (5.6), the term sh(ph, qh) stands for the pressure stabilization bilinear form (e.g.,
(1.53)) and gh(uh,vh) for the ghost penalty interface stabilization (e.g., (1.55)).
These operators are supposed to enter the framework described in Section 1.4.2.3.
In particular, we assume that

c1µ
−1h2|qh|21,Ωh ≤ sp(qh, qh) ≤ c2µ

−1h2|qh|21,Ωh , (5.7)

or all qh ∈ Qh and with c1, c2 > 0, and that

c̃g

(
µ‖ε(vh)‖20,Ωh + gh(vh,vh)

)
≤ µ‖ε(vh)‖20,Ωf + gh(vh,vh), (5.8)

with c̃g > 0. Associated to the overall stabilization operator Sh, we define the
semi-norm

|(uh, ph)|S def
= Sh

(
(uh, ph), (vh, qh)

) 1
2 .
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5.2.1 Fully discrete formulation: semi-implicit coupling scheme
with unfitted meshes

As usual in this work, τ > 0 denotes the time-step length, tn
def
= nτ for n ∈ N,

and ∂τx
n def

= 1
τ

(
xn − xn−1

)
stands for the first-order backward difference. The

superscript n,? denotes the r-th order explicit extrapolations to xn, namely,

xn,?
def
=





0 if r = 0,

xn−1 if r = 1,

2xn−1 − xn−2 if r = 2.

(5.9)

In Section 1.4.3.4, we have considered an explicit discretization of (5.5) based
on the partitioned formulation (1.59)-(1.58). The stability of the resulting splitting
scheme (Algorithm 1.4) was stablished in Theorem 1.4. Unfortunately, as discussed
there, the accuracy of Algorithm 1.4 is non-uniform in h, requiring restrictive CFL-
like conditions or correction iterations.

A possible remedy is to consider the fully implicit time discretization of (5.5)
proposed in [BF14b, Algorithm 1] and reported here in Algorithm 5.1. As a mat-
ter of fact, Algorithm 5.1 is stable and delivers optimal first-order accuracy in the
energy norm (see Remark 5.3 and Corollary 5.2 below). However, this is achieved
at the price of solving system (5.10) at each time-step, which can be computa-
tionally demanding. Besides, general thin-walled solid models are known to yield
ill-conditioned stiffness matrices, requiring specific solvers.

Algorithm 5.1 Implicit coupling scheme.
For n ≥ 1, find

(
unh, p

n
h,
.
dnh,d

n
h

)
∈ Vh ×Qh ×Wh ×Wh, such that

.
dh = ∂τd

n
h and





ρf
(
∂τu

n
h,vh

)
Ωf + af

(
(unh, p

n
h), (vh, qh)

)
+ Sh

(
(unh, p

n
h), (vh, qh)

)

+ ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh)−
(
σ(unh, p

n
h)n,vh −wh

)
Σ

−
(
unh −

.
dnh,σ(vh,−qh)n

)
Σ

+
γµ

h

(
unh −

.
dnh,vh −wh

)
Σ

= 0

(5.10)

for all (vh, qh,wh) ∈ Vh ×Qh ×Wh.

In the fitted mesh framework of Section 1.4.2.2, an efficient alternative to avoid
implicit coupling without comprising stability an optimal accuracy, is given by the
Robin-Neumann coupling schemes introduced in Section 1.4.3.5. Recall that the
former schemes are based on the fractional-step time-marching (1.84) of the solid
subproblem. In this section, we consider the same fractional-step treatment for the
solid subproblem and discretize (5.5) with the following incremental displacement-
correction scheme, for n > 0 if r = 0, 1 or for n > 1 if r = 2:

1. Fluid with solid inertia substep: find
(
unh, p

n
h,
.
d
n− 1

2
h

)
∈ Vh × Qh ×Wh such
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that




ρf
(
∂τu

n
h,vh

)
Ωf + af

(
(unh, p

n
h), (vh, qh)

)
+ Sh

(
(unh, p

n
h), (vh, qh)

)

+
ρsε

τ

( .
d
n− 1

2
h −

.
dn−1
h ,wh

)
Σ

+ as(dn,?h ,wh)−
(
σ(unh, p

n
h)n,vh −wh

)
Σ

−
(
unh −

.
d
n− 1

2
h ,σ(vh,−qh)n

)
Σ

+
γµ

h

(
unh −

.
d
n− 1

2
h ,vh −wh

)
Σ

= 0

(5.11)
for all (vh, qh,wh) ∈ Vh ×Qh ×Wh.

2. Solid substep: find
( .
dnh,d

n
h

)
∈Wh ×Wh such that

.
dnh = ∂τd

n
h and

ρsε

τ

( .
dnh −

.
d
n− 1

2
h ,wh

)
Σ

+ as(dnh − dn,?h ,wh) = 0 (5.12)

for all wh ∈Wh.

Steps (5.11)-(5.12) give a partially segregated solution of problem (5.5). Note

that in (5.11), the intermediate solid velocity
.
d
n− 1

2
h is implicitly coupled to the fluid

through the solid inertial term. The remaining solid elastic contributions are treated
explicitly (or ignored) in (5.11) via extrapolation. This level of fluid-solid coupling
in enough to guarantee (added-mass free) stability (see Section 5.2.2.1 below), while
allowing a significant degree of fluid-solid splitting. The end-of-step solid velocity.
dnh is obtained by solving the solid correction step (5.12).

Remark 5.1 It should be noted that the intermediate solid-velocity
.
d
n− 1

2
h cannot

be eliminated in (5.11) and, hence, the coupling scheme is not explicit. This is a
major difference with respect to the case of fitted meshes and conformal discretiza-
tions considered in Section 1.4.3.5. In that case, we can take

.
d
n− 1

2
h = unh|Σ and

wh = vh|Σ in (5.11), which yields a standard fluid problem with an explicit Robin
condition on the interface Σ (see Remark 1.17).

In the spirit of Section 1.4.3.5, it is convenient to reformulate the solid correction
step (5.12) as a traction problem, by eliminating the quantities

.
d
n− 1

2
h and dn,?h in

(5.12). To this purpose, we observe that testing (5.11) with vh = 0 and qh = 0

yields

ρsε

τ

( .
d
n− 1

2
h −

.
dn−1
h ,wh

)
Σ

+as(dn,?h ,wh) = −
(
σ(unh, p

n
h)n,wh

)
Σ

+
γµ

h

(
unh−

.
d
n− 1

2
h ,wh

)
Σ

for all wh ∈Wh. Hence, by adding this expression to (5.12) we get

ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) = −
(
σ(unh, p

n
h)n,wh

)
Σ

+
γµ

h

(
unh −

.
d
n− 1

2
h ,wh

)
Σ

for all wh ∈Wh. In addition, for n > r, it follows that

as(dn,?h ,wh) = −ρsε
(
∂τ

.
dn,?h ,wh

)
Σ
−
(
σ(un,?h , pn,?h )n,wh

)
Σ

+
γµ

h

(
un,?h −

.
d
n− 1

2
,?

h ,wh

)
Σ
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for all wh ∈Wh. This relation gives an (intrinsic) expression of the elastic extrapo-
lations in (5.11), exclusively in terms of interface fluid quantities and solid velocities.
Owing to these observations, the considered fully discrete solution procedure is dis-
played in Algorithm 5.2.

Algorithm 5.2 Semi-implicit coupling schemes.
For n > r:

1. Fluid with solid inertia substep: find
(
unh, p

n
h,
.
d
n− 1

2
h

)
∈ Vh × Qh ×Wh such

that




ρf
(
∂τu

n
h,vh

)
Ωf + af

(
(unh, p

n
h), (vh, qh)

)
+ Sh

(
(unh, p

n
h), (vh, qh)

)

+
ρsε

τ

( .
d
n− 1

2
h − (

.
dn−1
h + τ∂τ

.
dn,?h ),wh

)
Σ
−
(
σ(unh, p

n
h)n,vh −wh

)
Σ

−
(
unh −

.
d
n− 1

2
h ,σ(vh,−qh)n

)
Σ

+
γµ

h

(
unh −

.
d
n− 1

2
h ,vh −wh

)
Σ

−
(
σ(un,?h , pn,?h )n,wh

)
Σ

+
γµ

h

(
un,?h −

.
d
n− 1

2
,?

h ,wh

)
Σ

= 0

(5.13)

for all (vh, qh,wh) ∈ Vh ×Qh ×Wh.

2. Solid substep: find
( .
dnh,d

n
h

)
∈Wh ×Wh such that

.
dnh = ∂τd

n
h and

ρsε

τ

(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) = −
(
σ(unh, p

n
h)n,wh

)
Σ

+
γµ

h

(
unh −

.
d
n− 1

2
h ,wh

)
Σ

for all wh ∈Wh.

Remark 5.2 It should be noted that for r = 1, 2 additional data is needed to
start the time-marching in Algorithm 5.2. In practice, this data can be obtained by
performing one step of the scheme with r = 0, this yields (u1

h, p
1
h,

.
d1
h), and then one

step of the scheme with r = 1, which gives (u2
h, p

2
h,

.
d2
h).

It is worth noting that the semi-implicit coupling scheme provided by Algo-
rithm 5.2 has a reduced computational complexity with respect to Algorithm 5.1.
Indeed, the solid contribution to (5.13) reduces to a simple interface mass-matrix,
which does not degrade the conditioning of the system matrix. This reduction in the
coupling complexity is particularly important when considering general shell mod-
els (see, e.g., [CB11]), whose elastic contributions incorporate additional unknowns
(e.g., rotations).

In the following sections, we show that Algorithm 5.2 preserves the stability and
accuracy properties of the explicit coupling schemes introduced in Section 1.4.3.5
with fitted meshes. Moreover, it overcomes the severe stability restrictions observed
in [BCG11] for the traditional time-marching schemes of the immersed boundary
method. It is worth noting that these stability conditions have been recently over-
come in [BCG15] by resorting to a full implicit treatment of the kinematic-dynamic



132

coupling (in the spirit of Algorithm 5.1), which yields a solution procedure much
more computationally demanding than Algorithm 5.2.

Algorithm 5.2 with r = 1 delivers unconditional optimal overall first-order accu-
racy. This is also significant progress with respect to Algorithm 1.4, whose accuracy,
as already mentioned, is non-uniform in h.

Kinematic perturbation of implicit coupling. We conclude this section by
pointing out a fundamental property of Algorithm 5.2. To this purpose, we will
make use of the discrete reconstruction Le

h : W →Wh of the elastic solid operator
introduced in (1.88). Owing to (1.88) and (5.12), we infer that

.
d
n− 1

2
h =

.
dnh +

τ

ρsε
Le
h(dnh − dn,?h ) (5.14)

for n > r. On the other hand, adding (5.11) and (5.12) yields




ρf
(
∂τu

n
h,vh

)
Ωf + af

(
(unh, p

n
h), (vh, qh)

)
+ Sh

(
(unh, p

n
h), (vh, qh)

)

+ ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh)−
(
σ(unh, p

n
h)n,vh −wh

)
Σ

−
(
unh −

.
d
n− 1

2
h ,σ(vh,−qh)n

)
Σ

+
γµ

h

(
unh −

.
d
n− 1

2
h ,vh −wh

)
Σ

= 0

(5.15)

for all (vh, qh,wh) ∈ Vh × Qh ×Wh and n > r. Thus, Algorithm 5.2 can be
regarded as a kinematic perturbation of the fully implicit time discretization given
by Algorithm 5.1. As a matter of fact, Algorithm 5.1 formally enforces (through
Nitsche’s method) the interface condition

unh '
.
dnh,

whereas (5.14)-(5.15) imposes

unh '
.
dnh +

τ

ρsε
Le
h(dnh − dn,?h ).

Note that the size of the perturbation depends on the extrapolation order r. The
basic idea in the forthcoming analysis is to investigate how the kinematic perturba-
tion (5.14) affects the stability and convergence of the underlying implicit coupling
scheme (Algorithm 5.1). Thus, this approach unifies, in the same framework, the
analysis of Algorithm 5.1 and Algorithm 5.2.

5.2.2 Stability and convergence analysis

We consider the following mesh-dependent semi-norms for function values f on
the interface Σ,

‖f‖21
2
,h,Σ

=
∑

K∈Gh

h−1
K ‖f‖20,ΣK , ‖f‖2− 1

2
,h,Σ

=
∑

K∈Gh

hK‖f‖20,ΣK .
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For the rest of the section, we assume that γ and cg are taken so that Lemma 1.2
holds. The following estimates involving the solid elastic operator will be used,

‖Le
hd‖0,Σ ≤‖Led‖0,Σ, (5.16)

‖wh‖2s ≤
βsC2

I

h2
‖wh‖20,Σ, (5.17)

‖Le
hwh‖s ≤

βsC2
I

h2
‖wh‖s, (5.18)

‖Le
hwh‖0,Σ ≤

(βs)
1
2CI

h
‖wh‖s, (5.19)

for all d ∈ D and wh ∈ Wh and with CI > 0 the constant of a discrete inverse
inequality. Estimates (5.16)-(5.19) follow readily from application of the Cauchy-
Schwarz inequality, the definition (1.88) and the continuity estimate (5.4) (see
[Fer13, Appendix A] for the details). Finally, the discrete Gronwall lemma (see,
e.g., [HR90]), which we collect here without a proof, will also be used.

Lemma 5.1 Let τ , B and am, bm, cm, ηm (for integers m ≥ 1) be nonnegative
numbers such that

an + τ
n∑

m=1

bm ≤ τ
n∑

m=1

ηmam + τ
n∑

m=1

cm +B

for n ≥ 1. Suppose that τηm < 1 for all m ≥ 1. Then, there holds

an + τ
n∑

m=1

bm ≤ exp

(
τ

n∑

m=1

ηm
1− τηm

)(
τ

n∑

m=1

cm +B

)

for n ≥ 1.

5.2.2.1 Stability analysis

At time-step tn, we define the total discrete energy by

Enh
def
=ρf‖unh‖20,Ωf + ρsε‖

.
dnh‖20,Σ + ‖dnh‖2s , (5.20)

and the dissipation as

Dn
h

def
=
ρf

τ
‖unh − un−1

h ‖20,Ωf +
ρsε

τ
‖
.
dnh −

.
dn−1
h ‖20,Σ +

1

τ
‖dnh − dn−1

h ‖2s

+ cg

(
µ‖∇unh‖20,Ωh + γµ‖unh −

.
d
n− 1

2
h ‖21

2
,h,Σ

+ |(unh, pnh)|2S
)
.

The following result states the energy stability of the semi-implicit schemes reported
in Algorithm 5.2. In the succeeding text, the symbol . indicates an inequality up to
a multiplicative constant (independent of the physical and discretization parameters
and of the fluid-interface intersection).
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Theorem 5.1 Let {(unh, pnh,
.
d
n− 1

2
h ,dnh,

.
dnh)}n>r be the sequence given by Algo-

rithm 5.2, with the initialization procedure of Remark 5.2 for r = 1, 2. Assume that
γ > 0 is given by Lemma 1.2. Then, we have the following a priori energy estimates:

• For r = 0, 1 and n > r, there holds

Enh + τ
n∑

m=r+1

Dm
h . E0

h, (5.21)

irrespectively of the discretization parameters.

• For r = 2 and n > 2, there holds

Enh + τ
n∑

m=3

Dm
h . exp

(
tnζ

1− τζ

)
E0
h, (5.22)

provided the following conditions hold

τ(ωs)
6
5 ≤ ζh 6

5 , τζ < 1, ζ > 0, (5.23)

with ωs def
= CI

√
βs/(ρsε).

Proof. The proof follows by combining arguments from [BF14b] and [Fer13]. We
first test (5.15) with

(vh, qh,wh) = τ(unh, p
n
h,
.
d
n− 1

2
h )

for n > r. This yields the following discrete energy equation,

ρf

2

(
τ∂τ‖unh‖20,Ωf + ‖unh − un−1

h ‖20,Ωf

)
+ 2µτ‖ε(unh)‖20,Ωf + τ |(unh, pnh)|2S

+ ρsετ
(
∂τ

.
dnh,

.
d
n− 1

2
h

)
Σ

+ τas(dnh,
.
d
n− 1

2
h ) + 2τ

(
σ(unh, 0)n,unh −

.
d
n− 1

2
h

)
Σ

+ γµτ‖unh −
.
d
n− 1

2
h ‖21

2
,h,Σ

= 0

for n > r. Hence, from Lemma 1.2, we have that

ρf

2

(
τ∂τ‖unh‖20,Ωf + ‖unh − un−1

h ‖20,Ωf

)

+ cgτ

(
µ‖∇unh‖20,Ωh + γµ‖unh −

.
d
n− 1

2
h ‖21

2
,h,Σ

+ |(unh, pnh)|2S
)

+ ρsετ
(
∂τ

.
dnh,

.
d
n− 1

2
h

)
Σ

+ τas(dnh,
.
d
n− 1

2
h ) ≤ 0
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and, owing to (5.14), we finally get the following fundamental energy inequality

ρf

2

(
τ∂τ‖unh‖20,Ωf + ‖unh − un−1

h ‖20,Ωf

)

+ cgτ

(
µ‖∇unh‖20,Ωh + γµ‖unh −

.
d
n− 1

2
h ‖21

2
,h,Σ

+ |(unh, pnh)|2S
)

+
ρsε

2

(
τ∂τ‖

.
dnh‖20,Σ + ‖

.
dnh −

.
dn−1
h ‖20,Σ

)
+

1

2

(
τ∂τ‖dnh‖2s + ‖dnh − dn−1

h ‖2s
)

+ τ2
(
∂τ

.
dnh,L

e
h(dnh − dn,?h )

)
Σ︸ ︷︷ ︸

T1

+
τ2

ρsε

(
Le
hd

n
h,L

e
h(dnh − dn,?h )

)
Σ

︸ ︷︷ ︸
T2

. 0 (5.24)

for n > r. The terms T1 and T2, introduced by the perturbed kinematic condition
(5.14), can be controlled as in [Fer13, Theorem 1] for each extrapolation order
r = 0, 1, 2. For the sake of completeness, the different estimates are briefly recalled
below.

Algorithm 5.2 with r = 0. In this case, using Young’s inequality, we have

T1 + T2 ≥ −
ρsε

3
‖
.
dnh −

.
dn−1
h ‖20,Σ +

τ2

4ρsε
‖Le

hd
n
h‖20,Σ (5.25)

for n > 0. Hence, the estimate (5.21) follows by inserting this expression into (5.24)
and summing over m = 1, . . . , n.

Algorithm 5.2 with r = 1. In this case we have

T1 =
τ2

2

(
τ∂τ
∥∥ .dnh

∥∥2

s
+
∥∥ .dnh −

.
dn−1
h

∥∥2

s

)
(5.26)

and

T2 =
τ2

2ρsε

(
τ∂τ
∥∥Le

hd
n
h

∥∥2

0,Σ
+
∥∥Le

h(dnh − dn−1
h )

∥∥2

0,Σ

)
(5.27)

for n > 1. Hence, by inserting this expression into (5.24) and summing over m =

2, . . . , n we get the estimate

Enh + τ
n∑

m=2

Dm
h . E1

h +
τ2

2
‖
.
d1
h

∥∥2

s
+

τ2

2ρsε

∥∥Le
hd

1
h

∥∥2

0,Σ
.

The last two terms, related to the initialization of the scheme (see Remark 5.2),
can be bounded using (5.21) with r = 0, n = 1 and the additional control given by
(5.25). This yields the estimate (5.21) in the case r = 1.

Algorithm 5.2 with r = 2. In this case, the term T1 in (5.24) reduces simply to

T1 = τ
( .
dnh −

.
dn−1
h ,Le(dnh − 2dn−1

h + dn−2
h )

)
Σ

= τ2
∥∥ .dnh −

.
dn−1
h

∥∥2

s
. (5.28)
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The term T2, which reads as

T2 =
τ3

ρsε

(
Le
hd

n
h,L

e
h(
.
dnh −

.
dn−1
h )

)
Σ
, (5.29)

is treated as in [Fer13, Page 38] using (5.17) and (5.18), which yields

T2 ≥− τ6 (ωs)6

h6
‖dnh‖2s −

ρsε

4
‖
.
dnh −

.
dn−1
h ‖20,Σ. (5.30)

We now proceed by inserting (5.28) and (5.30) into (5.24) and summing over m =

3, . . . , n. The last term of (5.30) is controlled by the numerical dissipation provided
by (5.24), while the first is handled via Lemma 5.1 under condition (5.23). This
yields the bound

Enh +

n∑

m=3

Dm
h . exp

(
tnζ

1− τζ

)
E2
h.

The estimate (5.22) for r = 2 then follows by using the energy estimate (5.21) with
r = 1 and n = 2, the additional control provided by (5.26) and (5.27), and the
stability condition (5.23).

Remark 5.3 Note that testing (5.10) with (vh, qh,wh) = τ(unh, p
n
h,

.
dnh) for n > 0,

equation (5.24) holds with
.
d
n− 1

2
h =

.
dnh and T1 = T2 = 0. Thus, for Algorithm 5.1,

the following energy estimate holds,

Enh + τ

n∑

m=1

Dm
h . E0

h

for n > 0 and γ > 0 given by Lemma 1.2, irrespectively of the discretization param-
eters.

5.2.2.2 Convergence analysis

In the following, we use the notation fn
def
= f(nτ) for a given time dependent

function f . We may consider then ∂τfn and fn,?, involving the quantities fn, fn−1

and fn−2. Furthermore, for the sake of the notation, we will use ∂tfn to denote
(∂tf)n.

Interpolation operators. In this section we assume that the interface Σ is flat.
Basically, the discrete interpolation operators are those used in [BF14b, Section 3.3]
for the error analysis of the space semi-discrete formulation (5.5). For the solid
displacement, we consider the elastic Ritz-projection operator πs

h : W →Wh defined
by the relation

as(w − πs
hw,wh) = 0
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for all wh ∈Wh, and for which there holds

‖w − πs
hw‖0,Σ . h2|w|2,Σ

for all w ∈ [H2(Σ)]d ∩W . Thus, from standard approximation theory, it holds

‖w − πs
hw‖0,Σ + h‖∇(w − πs

hw)‖0,Σ . h2|w|2,Σ (5.31)

for all w ∈ [H2(Σ)]d ∩W . Note also that owing to definition (1.88), we have

(Le
hπ

s
hw,wh)Σ = as(πs

hw,wh) = as(w,wh) = (Le
hw,wh)Σ,

and thus
Le
hπ

s
h = Le

h. (5.32)

For the solid velocity, we consider the operator Ih : W → Wh defined by the
relation

Ihw def
= πs

hw +
∑

i

αiϕi,

with αi ∈ R. The ϕi are functions with support in the macropatches Pi, such that

0 ≤ ϕi ≤ 1, ‖ϕi‖0,Pi . h
d−1

2

and take the value 1, component-wise, in the interior nodes of the associated patch
Pi. The scalars αi are chosen so that the following orthogonality condition holds

∫

Pi

(w − Ihw) · n = 0. (5.33)

We refer to [BF14b, BBH09] for the detailed construction of such an operator. It
can be shown (see [BF14b, Lemma 3.3]) that

‖w − Ihw‖0,Σ + h‖∇(w − Ihw)‖0,Σ . h2|w|2,Σ (5.34)

for all w ∈ [H2(Σ)]d ∩W .

Since the fluid physical solution is defined in Ωf and the discrete one in Ωh, with
Ωf ⊂ Ωh, we consider two linear continuous lifting operators E2 : H2(Ωf)→ H2(Rd)
and E1 : H1(Ωf) → H1(Rd), satisfying the bounds ‖E1v‖H1(Rd) . ‖v‖H1(Ωf) and
‖E2v‖H2(Rd) . ‖v‖H2(Ωf) (see, e.g, [Eva10]). To interpolate the resulting extended
fluid solution we consider the Scott-Zhang operator isz (see, e.g., [EG04]). Then it
holds (see [BF14b, Lemma 3.3]),

‖v − iszE2v‖0,Ωf + h‖∇(v − iszE2v)‖0,Ωf . h2|v|2,Ωf ,

‖q − iszE1q‖0,Ωf + h‖∇(q − iszE1q)‖0,Ωf . h|q|1,Ωf ,

‖σ(v − iszE2v, q − iszE1q)n‖− 1
2
,h,Σ . h

(
‖v‖2,Ωf + ‖q‖1,Ωf

) (5.35)
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for all v ∈ [H2(Ωf)]d and q ∈ H1(Ωf).
On the other hand, we assume that the stabilization operator (5.6) satisfies

∣∣(iszE2v, iszE1q
)∣∣
S
.h
(
µ

1
2 |v|2,Ωf + µ−

1
2 |q|1,Ωf

)
(5.36)

for all v ∈ [H2(Ωf)]d and q ∈ H1(Ωf). The pressure estimate follows readily from
(5.7), the H1-stability of the Scott-Zhang interpolant and the stability of the exten-
sion operator (see [BF14b]). For the estimate regarding the ghost penalty operator
(1.55) we refer to [BH12].

Finally, owing to (1.60),(5.35)1 and (5.34), the following result involving both
the fluid and solid velocity projections holds

‖v − iszE2v‖ 1
2
,h,Σ . h‖v‖2,Ωf ,

‖w − Ihw‖ 1
2
,h,Σ . h

3
2 ‖w‖2,Σ,

(5.37)

for all v ∈ [H2(Ωf)]d and w ∈ [H2(Σ)]d ∩W (see [BF14b, Lemma 3.3]).

A priori error estimates. We assume that the exact solution of problem (5.1)-
(5.2) has the following regularity, for a given final time T ≥ τ :

u ∈
[
H1
(
0, T ;H2(Ωf)

)]d
, u|Σ ∈

[
H1
(
0, T ;H2(Σ)

)]d
,

∂ttu ∈
[
L2
(
0, T ;L2(Ωf)

)]d
, ∂ttu|Σ ∈

[
L2
(
0, T ;L2(Σ)

)]d
,

p ∈ C0
(
[0, T ];H1(Ωf)

)
(5.38)

and

Led ∈
{[

C0
(
[0, T ];L2(Σ)

)]d if r = 0,
[
Hr
(
0, T ;L2(Σ)

)]d if r = 1, 2.
(5.39)

For the derivation of the error estimate, let us write the approximation errors for
the fluid as,

E2u
n − unh =E2u

n − iszE2u
n

︸ ︷︷ ︸
def
= θnπ

+ iszE2u
n − unh︸ ︷︷ ︸

def
= θnh

in Ωh,

E1p
n − pnh =E1p

n − iszE1p
n

︸ ︷︷ ︸
def
= ynπ

+ iszE1p
n − pnh︸ ︷︷ ︸

def
= ynh

in Ωh.
(5.40)

Similarly, for the solid we have

dn − dnh =dn − πs
hd

n

︸ ︷︷ ︸
def
= ξnπ

+πs
hd

n − dnh︸ ︷︷ ︸
def
= ξnh

in Σ,

.
dn −

.
dnh =

.
dn − Ih

.
dn︸ ︷︷ ︸

def
=

.
ξnπ

+Ih
.
dn −

.
dnh︸ ︷︷ ︸

def
=

.
ξnh

in Σ.
(5.41)
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Finally, the error in the intermediate solid velocity is split as

.
dn −

.
d
n− 1

2
h =

.
dn − Ih

.
dn︸ ︷︷ ︸

def
=

.
ξnπ

+Ih
.
dn −

.
d
n− 1

2
h︸ ︷︷ ︸

def
= χnh

in Σ.
(5.42)

In the sequel, the following equation, relating
.
ξnh and ∂τξnh, will be used

.
ξnh = ∂τξ

n
h + Ih

.
dn − πs

h∂τd
n

︸ ︷︷ ︸
def
= znh

. (5.43)

Similarly, the discrete error counterpart of (5.14) reads as

χnh = Ih
.
dn −

.
d
n− 1

2
h

= Ih
.
dn −

.
dnh −

τ

ρsε
Le
h(dnh − d?h)

=
.
ξnh +

τ

ρsε
Le
h(ξnh − ξn,?h )− τ

ρsε
Le
h(dn − dn,?)

(5.44)

for n > r, where we have used (5.32).
We first provide an a priori estimate for the discrete errors (θnh , y

n
h , ξ

n
h,
.
ξnh,χ

n
h).

We define the energy-norm of the discrete error at time step tn, as

Enh
def
= (ρf)

1
2 ‖θnh‖0,Ωf + (ρsε)

1
2 ‖
.
ξnh‖0,Σ + ‖ξnh‖s +

(
n∑

m=r+1

cgτµ‖∇θnh‖20,Ωf

) 1
2

+

(
n∑

m=r+1

cgτ |(θnh , ynh)|2S

) 1
2

+

(
n∑

m=r+1

cgτγµ‖θnh − χnh‖21
2
,h,Σ

) 1
2

for n > r.

Theorem 5.2 Let (u, p,d,
.
d) be the solution of the coupled problem (5.1)-(5.2)

and {(unh, pnh,
.
d
n− 1

2
h ,dnh,

.
dnh)}n>r be the approximation given by Algorithm 5.2 with

initial data
(
u0
h,d

0
h,

.
d0
h

)
=
(
iszE2u

0,πs
hd

0, Ih
.
d0
)
. The initialization procedure of

Remark 5.2 is considered for the schemes with r = 1, 2. Suppose that the exact
solution has the regularity (5.38)-(5.39). Assume that γ > 0 is given by Lemma 1.2.
For the scheme with r = 2 we assume, in addition, that the stability condition (5.23)
holds. Then, we have the following error estimates, for n > r and nτ < T :

Enh . c1h+ c2τ + c3τ
2r−1

. (5.45)

Here, the symbols {ci}3i=1 denote positive constants independent of h and τ , but
which depend on the physical parameters and on the regularity of (u, p,d,

.
d).

Proof. The proof combines some of the arguments reported in [BF14b] and [Fer13],
with following additional difficulties:
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• Only the spatial semi-discrete case is considered in [BF14b];

• The intermediate solid velocity
.
d
n− 1

2
h cannot be eliminated in terms of unh, as

in [Fer13], which requires the control of an extrapolation dependent term T2,r.

The spatial semi-discrete formulation (5.5) is weakly consistent with the coupled
problem (5.1)-(5.2). In fact, if we multiply (5.1)1 by vh ∈ Vh, (5.1)2 by qh ∈ Qh
and (5.2)1 by wh ∈Wh, integrate by parts and add the resulting equations, we get

ρf
(
∂tu,vh

)
Ωf + af

(
(u, p), (vh, qh)

)
+ ρsε

(
∂t
.
d,wh

)
Σ

+ as(d,wh)

−
(
σ(u, p)n,vh −wh

)
Σ
−
(
u−

.
d,σ(vh,−qh)n

)
Σ

+
γµ

h

(
u−

.
d,vh −wh

)
Σ

= 0

(5.46)

for all vh, qh,wh ∈ Vh × Qh ×Wh. Taking the difference between the continuous
problem (5.46) at time t = tn and the expression (5.15), we obtain, after adding and
subtracting ∂τun and ∂τ

.
dn, the following modified Galerkin orthogonality:

ρf (∂τ (un − unh),vh)Ωf + af
(
(un − unh, pn − pnh), (vh, qh)

)

+ ρsε
(
∂τ (

.
dn −

.
dnh),wh

)
Σ

+ as
(
dn − dnh,wh

)
−
(
σ(un − unh, pn − pnh)n,vh −wh

)
Σ

−
(
(un−unh)−(

.
dn−

.
d
n− 1

2
h ),σ(vh,−qh)n

)
Σ

+
γµ

h

(
(un−unh)−(

.
dn−

.
d
n− 1

2
h ),vh−wh

)
Σ

= −ρf
(
(∂t − ∂τ )un,vh

)
Ωf − ρsε

(
(∂t − ∂τ )

.
dn,wh

)
Σ

+ Sh
(
(unh, p

n
h), (vh, qh)

)
(5.47)

for all (vh, qh,wh) ∈ Vh×Qh×Wh. Hence, from (5.40)-(5.42), we infer the following
equation for the discrete errors θnh , y

n
h , ξ

n
h,
.
ξnh and χnh:

ρf
(
∂τθ

n
h ,vh

)
Ωf + af

(
(θnh , y

n
h), (vh, qh)

)
+ Sh

(
(θnh , y

n
h), (vh, qh)

)
+ ρsε

(
∂τ
.
ξnh,wh

)
Σ

+ as
(
ξnh,wh

)
−
(
σ(θnh , y

n
h)n,vh −wh

)
Σ
−
(
θnh − χnh,σ(vh,−qh)n

)
Σ

+
γµ

h

(
θnh − χnh,vh −wh

)
Σ

= −ρf
(
(∂t − ∂τ )un,vh

)
Ωf − ρf (∂τθ

n
π ,vh)Ωf

− ρsε
(
(∂t − ∂τ )

.
dn,wh

)
Σ
− ρsε

(
∂τ
.
ξnπ,wh

)
Σ
− as

(
ξnπ,wh

)

+ Sh
(
(iszE2u

n, iszE1p
n), (vh, qh)

)
− γµ

h

(
θnπ −

.
ξnπ,vh −wh

)
Σ

− af
(
(θnπ , y

n
π), (vh, qh)

)
+
(
σ(θnπ , y

n
π)n,vh −wh

)
Σ

+
(
θnπ −

.
ξnπ,σ(vh,−qh)n

)
Σ

(5.48)

for all (vh, qh,wh) ∈ Vh×Qh×Wh and n > r. Note that as
(
ξnπ,wh

)
= 0 due to the

definition of the solid projection operator πs
h. Taking (vh, qh,wh) = τ(θnh , y

n
h ,χ

n
h)

in (5.48), using Lemma 1.2, (5.43) and (5.44), yields the following energy inequality
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for the discrete errors:

ρf

2

(
τ∂τ‖θnh‖20,Ωf + τ2‖∂τθnh‖20,Ωf

)
+
ρsε

2

(
τ∂τ‖

.
ξnh‖20,Σ + τ2‖∂τ

.
ξnh‖20,Σ

)

+ cgτ
(
µ‖∇θnh‖20,Ωf

h
+ γµ‖θnh − χnh‖21

2
,h,Σ

+ |(θnh , ynh)|2S
)

+
1

2

(
τ∂τ‖ξnh‖2s + τ2‖∂τξnh‖2s

)
. −ρfτ

(
(∂t − ∂τ )un,θnh

)
Ωf − ρfτ (∂τθ

n
π ,θ

n
h)Ωf︸ ︷︷ ︸

T1

−ρsετ
(
(∂t − ∂τ )

.
dn,χnh)

)
Σ
− ρsετ

(
∂τ
.
ξnπ,χ

n
h)
)

Σ︸ ︷︷ ︸
T2

−τas(ξnh, z
n
h)︸ ︷︷ ︸

T3

+τSh
(
(iszE2u

n, iszE1p
n), (θnh , y

n
h)
)

︸ ︷︷ ︸
T4

−τ γµ
h

(
θnπ −

.
ξnπ,θ

n
h − χnh

)
Σ︸ ︷︷ ︸

T5

+τ
(
σ(θnπ , y

n
π)n,θnh − χnh

)
Σ︸ ︷︷ ︸

T6

−τaf
(
(θnπ , y

n
π), (θnh , y

n
h)
)

+ τ
(
θnπ −

.
ξnπ,σ(θnh ,−ynh)n

)
Σ︸ ︷︷ ︸

T7

−τ2
(
∂τ
.
ξnh,L

e
h(ξnh − ξn,?h )

)
Σ
− τ2

ρsε

(
Le
hξ

n
h,L

e
h(ξnh − ξn,?h )

)
Σ

︸ ︷︷ ︸
T8

+τ2
(
∂τ
.
ξnh,L

e
h(dn − dn,?)

)
Σ︸ ︷︷ ︸

T9

+
τ2

ρsε
(Le

hξ
n
h,L

e
h(dn − dn,?))Σ

︸ ︷︷ ︸
T10

(5.49)
for n > r. The terms T1−T4 stem from the time-stepping and stabilization methods.
The terms T5 − T7 come from Nitsche’s method. Finally, terms T8 − T10 are due to
the kinematic perturbation and depend on the extrapolation order. We proceed by
treating each term separately.

Term T1 can be bounded using a Taylor expansion, (5.35) and the Poincaré
inequality with constant CP. This yields

T1 ≤ ρfτ
(
‖∂tun − ∂τun‖0,Ωf + ‖∂τθnπ‖0,Ωf

)
‖θnh‖0,Ωf

≤ ρfτ
(
τ

1
2 ‖∂ttu‖L2(tn−1,tn;L2(Ωf)) + τ−

1
2 ‖∂tθπ‖L2(tn−1,tn;L2(Ωf))

)
‖θnh‖0,Ωf

≤ (ρfCP)2

2ε1µ

(
τ2‖∂ttu‖2L2(tn−1,tn;L2(Ωf)) + ‖∂tθπ‖2L2(tn−1,tn;L2(Ωf))

)
+ ε1τµ‖∇θnh‖20,Ωh

.
(ρfCP)2

2ε1µ
τ2‖∂ttu‖2L2(tn−1,tn;L2(Ωf)) +

(ρfCP)2

2ε1µ
h2‖∂tu‖2L2(tn−1,tn;H2(Ωf))

+ ε1τµ‖∇θnh‖20,Ωh ,
(5.50)

with ε1 > 0. Note that, by choosing ε1 small enough, the last term of (5.50) can be
absorbed by the left-hand side of (5.49).
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For term T2, using again a Taylor expansion we have

T2 ≤ ρsετ
(
‖(∂t − ∂τ )

.
dn‖0,Σ + ‖∂τ

.
ξnπ‖0,Σ

)
‖χnh‖0,Σ

≤ ρsετ
(
τ1/2‖∂ttu‖L2(tn−1,tn;L2(Σ)) + τ−1/2‖∂t

.
ξπ‖L2(tn−1,tn;L2(Σ))

)
‖χnh‖0,Σ

.
ρsεT

2ε2

(
τ2‖∂ttu‖2L2(tn−1,tn;L2(Σ)) + h2‖∂tu‖2L2(tn−1,tn;H2(Σ))

)
+ ε2τ

ρsε

T
‖χnh‖20,Σ

︸ ︷︷ ︸
T2,r

.

(5.51)
For the last term, using (5.44) and a triangular inequality, and since τ ≤ T , we have

T2,r ≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ + ε2

τ3

ρsεT
‖Le

h(ξnh − ξn,?h )‖20,Σ + ε2
τ3

ρsεT
‖Le

h(dn − dn,?)‖20,Σ

≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ + ε2

τ2

ρsε
‖Le

h(ξnh − ξn,?h )‖20,Σ + ε2
τ2

ρsε
‖Le

h(dn − dn,?)‖20,Σ.
(5.52)

The first term will be treated via Lemma 5.1 in (5.49). The remaining two terms
will, respectively, be controlled bellow via the numerical dissipation provided by
the fluid-solid splitting and a Taylor expansion. Since the bound depends on the
extrapolation order, we postpone the analysis of T2,r to treat it together with the
extrapolation-dependent terms T8 − T10.

For term T3 using (5.32), (5.4), a triangular inequality, a Taylor expansion and
approximation, we have

T3 =− τas
(
ξnh,Ih

.
dn − ∂τdn

)
≤ τ‖ξnh‖s‖Ih

.
dn − ∂τdn‖s

≤τT
(
‖Ih

.
dn −

.
dn‖2s + ‖

.
dn − ∂τdn‖2s

)
+

τ

2T
‖ξnh‖2s

.τh2βsT‖un‖22,Σ + τ2βsT‖∂tu‖2L2(tn−1,tn;H1(Σ)) +
τ

2T
‖ξnh‖2s ,

(5.53)

where the last term can be controlled via Lemma 5.1 in (5.49).

For term T4, using the weak consistency of the stabilization operator (5.36), we
observe that

T4 ≤τ
1

2ε4
|(iszE2u

n, iszE1p
n)|2S + τ

ε4

2
|(θnh , ynh)|2S

.τh2 1

ε4µ

(
µ‖un‖22,Ωf + µ−1‖pn‖21,Ωf

)
+ τ

ε4

2
|(θnh , ynh)|2S

(5.54)

where the third term in the right hand side is absorbed in the left-hand side of
(5.49), for ε4 > 0 sufficiently small.

The boundary penalty term T5 is handled using Cauchy-Schwarz inequality fol-
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lowed by (5.37),

T5 ≤ τ
1

2ε5
γµ‖θnπ −

.
ξnπ‖21

2
,h,Σ

+ τ
ε5

2
γµ‖θnh − χnh‖21

2
,h,Σ

. τh2γµ

ε5
(‖un‖22,Ωf + h‖

.
dn‖22,Σ) + τ

ε5

2
γµ‖θnh − χnh‖21

2
,h,Σ

.
(5.55)

Note that the second term can be absorbed in the left-hand side of (5.49), for ε5 > 0

small enough.

Similarly, for the consistency term T6, using (5.35)3, we have

T6 ≤τ
1

2ε6γµ
‖σ(θnπ , y

n
π)n‖2− 1

2
,h,Σ

+ τ
ε6

2
γµ‖θnh − χnh‖21

2
,h,Σ

.τh2 1

ε6γµ

(
‖un‖22,Ωf + ‖pn‖21,Ωf

)
+ τ

ε6

2
γµ‖θnh − χnh‖21

2
,h,Σ

.

(5.56)

Note that the first term has the right convergence order and the second term can
be absorbed in the left hand side of (5.49), for ε6 > 0 small enough.

To estimate T7, we split it into two parts as in [BF14b]. The velocity-velocity
coupling part can be easily handled by using approximation and the robust trace
inequality (1.61), as follows:

− τa(θnπ ,θ
n
h) + τ

(
σ(θnh , 0)n,θnπ −

.
ξnπ
)

Σ

≤ −τa(θnπ ,θ
n
h) + τµε7‖ε(θnh)n‖2− 1

2
,h,Σ

+ τµ
1

ε7
‖θnπ −

.
ξnπ‖21

2
,h,Σ

. τh2 µ

ε7CTI
‖un‖22,Ωf + τµ

2

ε7
h2
(
‖un‖22,Ωf + ‖

.
dn‖22,Σ

)
+ 2τε7µCTI‖∇θnh‖20,Ωh .

(5.57)
The last term can be, once again, absorbed in the left hand side of (5.49), for ε7 > 0

sufficiently small. For the velocity-pressure coupling part we write, using integration
by parts in the continuity equation,

− τb(ynπ ,θnh) + τb(ynh ,θ
n
π) + τ

(
σ(0,−ynh)n,θnπ −

.
ξnπ
)

Σ

= τ(ynπ , divθ
n
h)Ωf − τ(ynh , divθ

n
π)Ωf + τ

(
σ(0,−ynh)n,θnπ −

.
ξnπ
)

Σ

= τ(ynπ , divθ
n
h)Ωf︸ ︷︷ ︸

T7,1

+τ(∇ynh ,θ
n
π)Ωf︸ ︷︷ ︸

T7,2

−τ
(
ynhn,

.
ξnπ
)

Σ︸ ︷︷ ︸
T7,3

.

For the terms T7,1 and T7,2, using the Cauchy-Schwarz inequality, (5.35) and (5.36),
we have

T7,1 .τh2 1

2ε7,1µ
‖pn‖21,Ωf + τ

ε7,1

2
µ‖∇θnh‖20,Ωf ,

T7,2 .τh2 µ

2ε7,2
‖un‖22,Ωf + τ

ε7,2

2
|(0, ynh)|2S ,

(5.58)

where the last terms of these inequalities can be absorbed in (5.49), for ε7,1, ε7,2 > 0

small enough. For the third term T7,3, denoting by yni ∈ R the average of ynh over the
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interface patch Pi , using the property (5.33) of the operator Ih and the standard
orthogonal projection inequality

‖ynh − yni ‖0,Pi . h‖∇ynh‖0,Pi ,

together with the trace inequality (1.60) and (5.7), we get

T7,3 = −τ
∑

i

(
ynh − yni ,

.
ξnπ · n

)
Pi

.τ
∑

i

h‖∇ynh‖0,Pih2‖
.
ξnπ‖2,Pi

.τh3 µ

2ε7,3
‖
.
dn‖22,Σ + τh2 ε7,3

2µ
‖∇ynh‖20,Ωh ,

.τh3 µ

2ε7,3
‖
.
dn‖22,Σ + τ

ε7,3

2
|(0, ynh)|2S

(5.59)

the last terms of these inequality can be absorbed in (5.49), for ε7,3 > 0 small
enough. The above estimations of T7,1, T7,2 and T7,3 provide bounds which involve
either terms with the right convergence order or contributions that can be absorbed
by the left-hand side of (5.49).

We now proceed with the extrapolation-dependent terms T8− T10 and the term
T2,r from (5.51). We consider each case of extrapolation separately. Basically, the
terms T8 − T10 are controlled as in [Fer13, Theorem 2]. We include these estimates
here for the sake of completeness.

Algorithm 5.2 with r = 0. We have the bound

T8 ≤ −
τ2

ρsε

(
1− 1

2ε8

)
‖Le

hξ
n
h‖20,Σ + ε8

ρsε

2
‖
.
ξnh −

.
ξn−1
h ‖20,Σ,

with ε8 > 0. On the other hand, we have

T9 =τ
( .
ξnh −

.
ξn−1
h ,Le

hd
n
)

Σ
≤ τ‖

.
ξnh −

.
ξn−1
h ‖0,Σ‖Le

hd
n‖0,Σ

≤ε9ρ
sε

2
‖
.
ξnh −

.
ξn−1
h ‖20,Σ +

τ2

2ε9ρsε
‖Ledn‖20,Σ,

with ε9 > 0, where we have used the h-uniform bound (5.16). For the last term, we
have

T10 =
τ2

ρsε

(
Le
hξ

n
h,L

e
hd

n
)

Σ
≤ ε10τ

2

2ρsε
‖Le

hξ
n
h‖20,Σ +

τ2

2ε10ρsε
‖Ledn‖20,Σ,

with ε10 > 0. On the other hand, owing to (5.52), we have that for r = 0 it holds

T2,0 ≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ + ε2

τ2

ρsε
‖Le

hξ
n
h‖20,Σ + ε2

τ2

ρsε
‖Ledn‖20,Σ.
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Thus, we get

T8 + T9 + T10 + T2,0 ≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ −

τ2

ρsε

(
1− 1

2ε8
− ε10

2
− ε2

)
‖Le

hξ
n
h‖20,Σ

+
τ2

2ρsε

(
1

ε9
+

1

ε10
+ ε2

)
‖Ledn‖20,Σ +

ρsε

2
(ε8 + ε9)‖

.
ξnh −

.
ξn−1
h ‖20,Σ. (5.60)

Taking ε8 = 3
4 , ε10 = 1

3 and ε2 <
1
6 , we have

1− 1

2ε8
− ε10

2
− ε2 > 0

and the second term on the right-hand side of (5.60) is negative. The last term of
(5.60) can be absorbed into the left-hand side of (5.49), for ε9 > 0 small enough. In
summary, the estimate (5.45) follows by inserting the above estimates into (5.49),
summing over m = 1, . . . , n, and applying Lemma 5.1 with

am =
ρf

2
‖θmh ‖20,Ωf +

ρsε

2
‖
.
ξmh ‖20,Σ +

1

2
‖ξmh ‖2s , ηm =

1

T
.

Note that, owing to the selection of the initial data, we have

θ0
h = 0,

.
ξ0
h = ξ0

h = 0. (5.61)

Algorithm 5.2 with r = 1. For the term T8, using (5.32), we have

T8 =− τ2

2

(
‖
.
ξnh‖2s − ‖

.
ξn−1
h ‖2s + ‖

.
ξnh −

.
ξn−1
h ‖2s

)
+τ2

( .
ξnh −

.
ξn−1
h ,Le

h(Ih
.
dn − ∂τdn)

)
Σ︸ ︷︷ ︸

T8,1

− τ2

2ρsε

(
‖Le

hξ
n
h‖20,Σ − ‖Le

hξ
n−1
h ‖20,Σ + ‖Le

h(ξnh − ξn−1
h )‖20,Σ

)
.

Similarly to (5.53), we get

T8,1 =τ2as
( .
ξnh −

.
ξn−1
h ,Ih

.
dn − ∂τdn

)

.
τ2

4
‖
.
ξnh −

.
ξn−1
h ‖2s + h2βsτ2‖un‖22,Σ + τ3βs‖∂tu‖2L2(tn−1,tn;H1(Σ)),

and, thus,

T8 .− τ2

2

(
‖
.
ξnh‖2s − ‖

.
ξn−1
h ‖2s

)
− τ2

4
‖
.
ξnh −

.
ξn−1
h ‖2s

− τ2

2ρsε

(
‖Le

hξ
n
h‖20,Σ − ‖Le

hξ
n−1
h ‖20,Σ + ‖Le

h(ξnh − ξn−1
h )‖20,Σ

)

+ h2βsτ2‖un‖22,Σ + τ3βs‖∂tu‖2L2(tn−1,tn;H1(Σ)).

(5.62)



146

For T9, using (5.16) and a Taylor expansion, we get

T9 =τ
( .
ξnh −

.
ξn−1
h ,Le

h(dn − dn−1)
)

Σ
≤ τ‖

.
ξnh −

.
ξn−1
h ‖0,Σ‖Le

h(dn − dn−1)‖0,Σ

≤τ ρ
sε

4T

(
‖
.
ξnh‖20,Σ + ‖

.
ξn−1
h ‖20,Σ

)
+
τT

ρsε
‖Le(dn − dn−1)‖20,Σ

≤τ ρ
sε

4T

(
‖
.
ξnh‖20,Σ + ‖

.
ξn−1
h ‖20,Σ

)
+
τ2T

ρsε
‖Le∂td‖2L2(tn−1,tn;L2(Σ)).

(5.63)
The first term of (5.63) is controlled by (5.49) via Lemma 5.1. Similarly, for term
T10, we obtain

T10 =
τ2

ρsε

(
Le
hξ

n
h,L

e
h(dn − dn−1)

)
Σ

≤ τ3

2Tρsε
‖Le

hξ
n
h‖20,Σ +

τT

2ρsε
‖L(dn − dn−1)‖20,Σ

≤ τ3

2Tρsε
‖Le

hξ
n
h‖20,Σ +

τ2T

2ρsε
‖Le∂td‖2L2(tn−1,tn;L2(Σ)).

(5.64)

The first term in the right-hand side of (5.64) is controlled by (5.62) and Lemma
5.1. On the other hand, from (5.52), we have

T2,1 ≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ + ε2

τ2

ρsε
‖Le

h(ξnh − ξn−1
h )‖20,Σ + ε2

τ2

ρsε
‖Le(dn − dn−1)‖20,Σ

≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ + ε2

τ2

ρsε
‖Le

h(ξnh − ξn−1
h )‖20,Σ + ε2

τ3

ρsε
‖Le∂td‖2L2(tn−1,tn;L2(Σ)).

In summary, the estimate (5.45) follows by inserting the above estimates into (5.49),
summing over m = 2, . . . , n, and applying Lemma 5.1 with

am =
ρf

2
‖θmh ‖20,Ωf +

ρsε

2
‖
.
ξmh ‖20,Σ +

1

2
‖ξmh ‖2s +

τ2

2ρsε
‖Le

hξ
m
h ‖20,Σ, ηm =

1

T
.

The right-hand side contributions obtained at time t1, can be controlled (due to the
initialization procedure) by using (5.45) with r = 0, T = τ and n = 1.

Algorithm 5.2 with r = 2. Let us first consider the term T9. Using (5.16) followed
by a Taylor expansion, we have

T9 =τ2
( .
ξnh −

.
ξn−1
h ,Le

h(∂τd
n −

.
dn−1)

)
Σ

≤τ ρ
sε

4T

(
‖
.
ξnh‖20,Σ + ‖

.
ξn−1
h ‖20,Σ

)
+
τ3T

ρsε
‖Le(∂τd

n −
.
dn−1)‖20,Σ

≤τ ρ
sε

4T

(
‖
.
ξnh‖20,Σ + ‖

.
ξn−1
h ‖20,Σ

)
+
τ4T

ρsε
‖Le∂ttd‖2L2(tn−1,tn;L2(Σ)).

(5.65)

The first term in the bound (5.65) is controlled via Lemma 5.1 and (5.49). For the
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term T10, using the inverse estimate (5.19) and the 6
5 -CFL condition (5.23), we have

T10 =
τ3

ρsε

(
Le
hξ

n
h,L

e
h(∂τd

n −
.
dn−1)

)
Σ

≤ τ3

2Tρsε
‖Le

hξ
n
h‖20,Σ +

τ3T

2ρsε
‖L(∂τd

n −
.
dn−1)‖20,Σ

≤ τ3

2Tρsε
‖Le

hξ
n
h‖20,Σ +

τ4T

2ρsε
‖∂ttLed‖2L2(tn−1,tn;L2(Σ))

≤τ
3(ωsCI)

2

2Th2
‖ξnh‖2s +

τ4T

2ρsε
‖∂ttLed‖2L2(tn−1,tn;L2(Σ))

≤τα
5
3 τ

1
3

2T
‖ξnh‖2s +

τ4T

2ρsε
‖∂ttLed‖2L2(tn−1,tn;L2(Σ)).

(5.66)

The first term in the bound (5.66) is controlled via Lemma 5.1 and (5.49). Note
that

ξn,?h = ξn−1
h + τ

.
ξn−1
h + τ(πs

h

.
dn−1 − Ih

.
dn−1).

Hence, for the term T8, we get

T8 =− τ2
( .
ξnh −

.
ξn−1
h ,Le

h(
.
ξnh −

.
ξn−1
h )

)
Σ
− τ3

ρsε

(
Le
hξ

n
h,L

e
h(
.
ξnh −

.
ξn−1
h )

)
Σ

+ τ2
( .
ξnh −

.
ξn−1
h ,Le

h

(Ih(
.
dn −

.
dn−1)− ∂τdn +

.
dn−1

))
Σ︸ ︷︷ ︸

T8,1

+
τ3

ρsε

(
Le
hξ

n
h,L

e
h

(Ih(
.
dn −

.
dn−1)− ∂τdn +

.
dn−1

))
Σ︸ ︷︷ ︸

T8,2

.

Under the 6
5 -CFL condition (5.23), we proceed similarly to (5.28) and (5.30), and

we have

T8 ≤ −τ2‖
.
ξnh −

.
ξn−1
h ‖2s +

ρs

4
‖
.
ξnh −

.
ξn−1
h ‖20,Σ + τα5‖ξnh‖2s + T8,1 + T8,2. (5.67)

We consider the terms T8,1 and T8,2 separetely. Adding and subtracting
.
dn in T8,1

yields
T8,1 =τ2as

( .
ξnh −

.
ξn−1
h ,Ih(

.
dn −

.
dn−1)− (

.
dn −

.
dn−1)

)

+ τ2
( .
ξnh −

.
ξn−1
h ,Le

h(
.
dn − ∂τdn)

)
Σ
.

Owing to (5.4) and the approximation properties, we have

T8,1 .
τ2

2
‖
.
ξnh −

.
ξn−1
h ‖2s + h2βsτ2‖un − un−1‖22,Σ

+ τ
ρsε

4T

(
‖
.
ξnh‖20,Σ + ‖

.
ξn−1
h ‖20,Σ

)
+
τ4T

ρsε
‖Le∂ttd‖2L2(tn−1,tn;L2(Σ)).

(5.68)
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For the term T8,2 we have

T8,2 =
τ3

ρsε
as
(
Le
hξ

n
h,Ih(

.
dn −

.
dn−1)− (

.
dn −

.
dn−1)

)

+
τ3

ρsε

(
Le
hξ

n
h,L

e
h(
.
dn − ∂τdn)

)
Σ
.

(5.69)

The second term in the right-hand side of (5.69) is treated similarly to (5.66). The
estimate for the first term follow by the inverse estimates (5.18), (5.19) and the
6
5 -CFL condition (5.23). We have

T8,2 ≤
τ5

2T (ρsε)2
‖Le

hξ
n
h‖2s +

τT

2
‖Ih(

.
dn −

.
dn−1)− (

.
dn −

.
dn−1)‖2s

+
τα

5
3 τ

1
3

2T
‖ξnh‖2s +

τ4T

2ρsε
‖∂ttLed‖2L2(tn−1,tn;L2(Σ))

.

(
τα

10
3 τ

2
3

2T
+
τα

5
3 τ

1
3

2T

)
‖ξnh‖2s + h2βsτT‖un − un−1‖22,Σ

+
τ4T

2ρsε
‖∂ttLed‖2L2(tn−1,tn;L2(Σ)).

(5.70)

Substitution of (5.68) and (5.70) into (5.67), yields

T8 . −τ
2

2
‖
.
ξnh −

.
ξn−1
h ‖2s +

ρs

4
‖
.
ξnh −

.
ξn−1
h ‖20,Σ + τ

ρsε

4T

(
‖
.
ξnh‖20,Σ + ‖

.
ξn−1
h ‖20,Σ

)

+ τ

(
α5 +

α
10
3 τ

2
3

2T
+
α

5
3 τ

1
3

2T

)
‖ξnh‖2s +

τ4T

ρsε
‖Le∂ttd‖2L2(tn−1,tn;L2(Σ))

+ h2βs(T + τ)τ‖un − un−1‖22,Σ. (5.71)

The first term on the right hand side is absorbed into the left-hand side of (5.49)
and, the following two are treated via Lemma 5.1.

On the other hand, regarding the term T2,2 from (5.52), we get

T2,2 ≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ + ε2

τ2

ρsε
‖Le

h(ξnh − ξn,?h )‖20,Σ + ε2
τ4

ρsε
‖Le(∂τd

n −
.
dn−1)‖20,Σ

≤ ε2τ
ρsε

T
‖
.
ξnh‖20,Σ +ε2

τ2

ρsε
‖Le

h(ξnh − ξn,?h )‖20,Σ
︸ ︷︷ ︸

T2,2,1

+ε2
τ5

ρsε
‖Le∂ttd‖2L2(tn−1,tn;L2(Σ)).
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Moreover, we have

T2,2,1 ≤ε2
τ4

ρsε
‖Le

h(
.
ξnh −

.
ξn−1
h ) +Le

h(znh − zn−1
h )‖20,Σ

≤2ε2
τ4βs

h2ρsε

(
‖
.
ξnh −

.
ξn−1
h ‖2s + ‖znh − zn−1

h ‖2s
)

≤2ε2(γτ)
1
3 τ2
(
‖
.
ξnh −

.
ξn−1
h ‖2s + ‖znh − zn−1

h ‖2s
)
.

The first term can be controlled with the numerical dissipation of (5.71) and the
second term can be estimated as in the previous estimations. The estimate (5.45)
then follows by inserting the above estimates into (5.49), summing overm = 3, . . . , n,
using (5.61) and applying Lemma 5.1 with

am =
ρf

2
‖θmh ‖20,Ωf +

ρsε

2
‖
.
ξmh ‖20,Σ +

1

2
‖ξmh ‖2s , γm = max

{
1

T
, 2α5,

α
10
3 τ

2
3 + α

5
3 τ

1
3

T

}
.

The right-hand side contributions obtained at time t2, can be controlled (due to
the initialization procedure) by using (5.45) with r = 1, T = 2τ and n = 2. Hence,
the proof is complete.

We define the energy-norm of the error at time step tn, as

Znh
def
= (ρf)

1
2 ‖un − unh‖0,Ωf + (ρsε)

1
2 ‖
.
dn −

.
dnh‖0,Σ + ‖dn − dnh‖s

+

(
n∑

m=r+1

cgτµ‖∇
(
um − umh

)
‖20,Ωf

) 1
2

+

(
n∑

m=r+1

cgτγµ‖umh −
.
d
m− 1

2
h ‖21

2
,h,Σ

) 1
2

+

(
n∑

m=r+1

cgτ |(umh , pmh )|2S

) 1
2

for n > r. As a corollary of Theorem 5.2, we have the following a priori estimate.

Corollary 5.1 Under the assumptions of Theorem 5.2, we have the following
error estimate, for n > r and nτ < T :

Znh . c1h+ c2τ + c3τ
2r−1

.

Here, the symbols {ci}3i=1 denote positive constants independent of h and τ , but
which depend on the physical parameters and on the regularity of (u, p,d,

.
d).

Proof. The proof follows directly as a consequence of a triangle inequality, The-
orem 5.2 and the optimal approximation properties of the interpolation operators.

Thus, the scheme retrieves optimal accuracy for the extrapolated variants (r =

1, 2) while a suboptimal convergence rate is expected without extrapolation (r = 0).
We then retrieve the same convergence rate than in the fitted case for the Robin-
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Neumann schemes of Section 1.4.3.5 (see Theorem 1.6).
From the proofs of Theorem 5.2 and Corollary 5.1, we can readily obtain the

following optimal error estimate for Algorithm 5.1.

Corollary 5.2 Let (u, p,d,
.
d) be the solution of the coupled problem (5.1)-(5.2)

and {(unh, pnh,dnh,
.
dnh)}n>r be the approximation given by Algorithm 5.1 with initial

data
(
u0
h,d

0
h,

.
d0
h

)
=
(
iszE2u

0,πs
hd

0, Ih
.
d0
)
. Suppose that the exact solution has the

regularity (5.38)-(5.39). Then, we have the following error estimates, for n > 0 and
nτ < T :

Znh . c1h+ c2τ

with c1 and c2 positive constants independent of h and τ , but depending on the
physical parameters and on the regularity of (u, p,d,

.
d).

Proof. Taking (vh, qh,wh) = τ(θnh , y
n
h ,
.
ξnh) in (5.48), the energy inequality (5.49)

holds with χnh =
.
ξnh and T8 = T9 = T10 = 0.

The terms T5 and T6 are treated similarly to (5.55) and (5.56). Note that the
Nitsche’s dissipation on the interface is given in this case by

cgτγµ‖θnh −
.
ξnh‖21

2
,h,Σ

.

Similarly to (5.51), for the term T2, we have

T2 .
ρsεT

2ε2

(
τ2‖∂ttu‖2L2(tn−1,tn;L2(Σ)) + h2‖∂tu‖2L2(tn−1,tn;H2(Σ))

)
+ ε2τ

ρsε

T
‖
.
ξnh‖20,Σ.

The last term may be controlled by Lemma 5.1. The remaining terms T1, T3, T4

and T7 are treated exactly as above. We obtain thus an optimal a priori estimate
for the discrete errors. We conclude as in Corollary 5.1.

5.3 First discretize in time and then in space

Step (5.13) of Algorithm 5.2 has a computational complexity larger than a single

fluid problem, due to the additional unknown
.
d
n− 1

2
h . In this section, we introduce

a new explicit coupling scheme which overcomes this issue without compromising
stability and accuracy. The fundamental idea consists in performing the space and
time discretization reversely.

Robin-Neumann explicit coupling schemes. The starting point of the
methods is the explicit coupling schemes introduced in Section 1.4.3.5. Note that
these schemes may be derived by applying first the fractional-step splitting of Sec-
tion 5.2.1 to the continuous problem (5.1)-(5.2) and then eliminating, contrarily to
Algorithm 5.2, the intermediate solid velocity

.
dn−

1
2 (see Remark 1.17). Applied to

the continuous problem (5.1)-(5.2), these schemes read: for n > r
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1. Fluid substep: find un : Ωf × R+ → Rd and pn : Ωf × R+ → R such that




ρf∂τu
n − divσ(un, pn) = 0 in Ωf ,

divun = 0 in Ωf ,

un = 0 on Γf ,

σ(un, pn)n+ κun = κ
.
dn−1 + gn,? on Σ,

(5.72)

with
κ

def
=

ρsε

τ
, gn,?

def
= ρsε∂τd

n,? + σ(un,?, pn,?)n.

2. Solid substep: find dn : Σ × R+ → Rd and
.
dn : Σ × R+ → Rd such that.

dn = ∂τd
n and

{
ρsε∂τ

.
dn +Ledn = −σ(un, pn)n on Σ,

dn = 0 on ∂Σ.
(5.73)

5.3.1 Fully discrete formulation: explicit coupling scheme with un-
fitted meshes

The fundamental idea consists in performing directly an unfitted interface treat-
ment (à la Nitsche) of the time splitting (5.72)4-(5.73)1. This is achieved by extend-
ing the arguments introduced in [BF14b, CFGM11] (see also [JS09]) to the present
Robin-Neumann framework, in such a way that robustness with respect to the Robin
coefficient κ is guaranteed. The proposed numerical methods build on the following
consistency result.

Proposition 5.1 (Consistency) Let {(un, pn,
.
dn,dn)}n>r be given by (5.72)-

(5.73). Then, there holds




ρf
(
∂τu

n,vh
)

Ωf + af
(
(un, pn), (vh, qh)

)
+ ρsε

(
∂τ

.
dn,wh

)
Σ

+ as(dn,wh)

+
γκµ

γµ+ κh

(
un −

.
dn−1,vh −wh

)
Σ
− γµ

γµ+ κh

(
gn,?,vh −wh

)
Σ

− κh

γµ+ κh

[(
σ(un, pn)n,vh −wh

)
Σ

+
(
un −

.
dn−1,σ(vh,−qh)n

)
Σ

]

− h

γµ+ κh

(
σ(un, pn)n,σ(vh,−qh)n

)
Σ

+
h

γµ+ κh

(
gn,?,σ(vh,−qh)n

)
Σ

= 0

(5.74)
for all (vh, qh,wh) ∈ Vh ×Qh ×Wh.

Proof. Multiplying (5.72)1 and (5.72)2 by vh and qh respectively, integrating by
parts over Ωf and adding both equations we get

ρf
(
∂τu

n,vh
)

Ωf + af
(
(un, pn), (vh, qh)

)
−
(
σ(un, pn)n,vh

)
Σ

= 0. (5.75)
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On the other hand, multiplying (5.73)1 by wh and integrating over Σ we get

ρsε
(
∂τ

.
dn,wh

)
Σ

+ as(dn,wh) +
(
σ(un, pn)n,wh

)
Σ

= 0. (5.76)

Adding (5.75) and (5.76), we obtain

ρf
(
∂τu

n,vh
)

Ωf + af
(
(un, pn), (vh, qh)

)
+ ρsε

(
∂τ

.
dn,wh

)
Σ

+ as(dn,wh)

−
(
σ(un, pn)n,vh −wh

)
Σ

= 0. (5.77)

Multiplying the interface condition (5.72)4 by
γµ

γµ+ κh

(
vh − wh

)
and integrating

over Σ, we get

γκµ

γµ+ κh

(
un −

.
dn−1,vh −wh

)
Σ

+
γµ

γµ+ κh

(
σ(un, pn)n,vh −wh

)
Σ

− γµ

γµ+ κh

(
gn,?,vh −wh

)
Σ

= 0. (5.78)

Multiplying the interface condition (5.72)4 by − h

γµ+ κh
σ(vh,−qh)n and integrat-

ing over Σ, we get

− κh

γµ+ κh

(
un −

.
dn−1,σ(vh,−qh)n

)
Σ
− h

γµ+ κh

(
σ(un, pn)n,σ(vh,−qh)n

)
Σ

+
h

γµ+ κh

(
gn,?,σ(vh,−qh)n

)
Σ

= 0. (5.79)

Finally, by adding (5.77)-(5.79) we recover (5.74), which completes the proof.

The key feature of (5.74) is the fact that for κ → ∞ (i.e., whenever τ → 0) we
formally retrieve the unfitted formulation (5.5). Alternatively, if h→ 0 we formally
retrieve the the weak formulation of the Robin-Neumann splitting (5.72)-(5.73).
Taking successively wh = 0 and (vh, qh) = (0, 0) in (5.74) we obtain the following
partitioned formulation of (5.74):

• Fluid:




ρf
(
∂τu

n,vh
)

Ωf + af
(
(un, pn), (vh, qh)

)
+

γκµ

γµ+ κh

(
un −

.
dn−1,vh

)
Σ

− γµ

γµ+ κh

(
gn,?,vh

)
Σ
− h

γµ+ κh

(
σ(un, pn)n,σ(vh,−qh)n

)
Σ

− κh

γµ+ κh

[(
σ(un, pn)n,vh

)
Σ

+
(
un −

.
dn−1,σ(vh,−qh)n

)
Σ

]

+
h

γµ+ κh

(
gn,?,σ(vh,−qh)n

)
Σ

= 0

for all (vh, qh) ∈ Vh ×Qh.
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• Solid:




ρsε
(
∂τ

.
dn,wh

)
Σ

+ as(dn,wh) = − κh

γµ+ κh

(
σ(un, pn)n,wh

)
Σ

+
γκµ

γµ+ κh

(
un −

.
dn−1,wh

)
Σ
− γµ

γµ+ κh

(
gn,?,wh

)
Σ

for all wh ∈Wh.

This motivates the fully discrete method reported in Algorithm 5.3. Note that the
resulting coupling scheme is explicit.

Algorithm 5.3 Explicit coupling schemes.
For n > r:

1. Fluid substep: find
(
unh, p

n
h

)
∈ Vh ×Qh such that





rρf
(
∂τu

n
h,vh

)
Ωf + af

h

(
(unh, p

n
h), (vh, qh)

)
+

γκµ

γµ+ κh

(
unh −

.
dn−1
h ,vh

)
Σ

− γµ

γµ+ κh

(
gn,?h ,vh

)
Σ
− h

γµ+ κh

(
σ(unh, p

n
h)n,σ(vh,−qh)n

)
Σ

− κh

γµ+ κh

[(
σ(unh, p

n
h)n,vh

)
Σ

+
(
unh −

.
dn−1
h ,σ(vh,−qh)n

)
Σ

]

+
h

γµ+ κh

(
gn,?h ,σ(vh,−qh)n

)
Σ

= 0

(5.80)
for all (vh, qh) ∈ Vh ×Qh.

2. Solid substep: find
( .
dnh,d

n
h

)
∈Wh ×Wh such that

.
dnh = ∂τd

n
h and





ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) = − κh

γµ+ κh

(
σ(unh, p

n
h)n,wh

)
Σ

+
γκµ

γµ+ κh

(
unh −

.
dn−1
h ,wh

)
Σ
− γµ

γµ+ κh

(
gn,?h ,wh

)
Σ

(5.81)

for all wh ∈Wh.

5.3.2 Stability and convergence analysis for r = 0

We present in this section an energy-based stability and a priori error analysis for
Algorithm 5.3 with r = 0. The stability and convergence properties of Algorithm 5.3
with r = 1, 2 are investigated in Section 5.4 via numerical experiments.
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5.3.2.1 Stability analysis

We consider the discrete energy Enh given by (5.20) at time-step tn. The dissi-
pation is given in this case by

D̃n
h

def
=
ρf

τ
‖unh − un−1

h ‖20,Ωf + cgµ‖∇unh‖20,Ωh +
γκµ

γµ+ κh
‖unh −

.
dnh‖20,Σ + |(unh, pnh)|2S

+
ρsε

τ

κh

γµ+ κh
‖
.
dnh −

.
dn−1
h ‖20,Σ +

1

τ
‖dnh − dn−1

h ‖2s +
h

γµ+ κh
‖pnh‖20,Σ.

The following result establishes the unconditional energy stability of Algo-
rithm 5.3 with r = 0.

Theorem 5.3 Let {(unh, pnh,
.
dnh,d

n
h)}n≥1 be given by Algorithm 5.3 with r = 0.

For
γ >

12CTI

c̃g
,

we have

Enh + τ

n∑

m=1

D̃m
h . E0

h. (5.82)

Proof. We first note that in the case r = 0 we have gn,?h = 0. Thus, by taking
(vh, qh) = τ(unh, p

n
h) in (5.80) andwh = τ

.
dnh in (5.81), adding the resulting equations

and applying (5.8), we get the following discrete energy inequality

ρf

2

(
τ∂τ‖unh‖20,Ωf + ‖unh − un−1

h ‖20,Ωf

)
+ c̃gτ

(
µ‖ε(unh)‖20,Ωh + gh(unh,u

n
h)
)

+ τsh(pnh, p
n
h) +

1

2

(
τ∂τ‖dnh‖2s + ‖dnh − dn−1

h ‖2s
)

− κh

γµ+ κh
τ

[(
σ(unh, p

n
h)n,unh −

.
dnh
)

Σ
+
(
unh −

.
dn−1
h ,σ(unh,−pnh)n

)
Σ

]

︸ ︷︷ ︸
T1

+τκ
( .
dnh −

.
dn−1
h ,

.
dnh
)

Σ
+

γκµ

γµ+ κh
τ
(
unh −

.
dn−1
h ,unh −

.
dnh
)

Σ
︸ ︷︷ ︸

T2

− h

γµ+ κh
τ
(
σ(unh, p

n
h)n,σ(unh,−pnh)n

)
Σ

︸ ︷︷ ︸
T3

≤ 0. (5.83)

Note that the solid inertia term is included in term T2. We now proceed by esti-
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mating separately the terms T1, T2 and T3. For the first, we have

T1 =− κh

γµ+ κh
2τ
(
σ(unh, 0)n,unh −

.
dnh
)

Σ
︸ ︷︷ ︸

T1,1

− κh

γµ+ κh
τ
(
σ(unh, 0)n,

.
dnh −

.
dn−1
h

)
Σ

︸ ︷︷ ︸
T1,2

+
κh

γµ+ κh
τ
(
σ(0, pnh)n,

.
dnh −

.
dn−1
h

)
Σ

︸ ︷︷ ︸
T1,3

.

By combining the Cauchy-Schwarz and Young inequalities with the robust trace
inequality (1.61), we obtain the following estimates:

T1,1 ≥ −
κh

γ(γµ+ κh)
4µτ‖ε(unh)‖0,Σ‖unh −

.
dnh‖0,Σ

≥ − 1

2ε1

κh

γ(γµ+ κh)
16µCTIτ‖ε(unh)‖20,Ωh −

ε1

2

γκµτ

γµ+ κh
‖unh −

.
dnh‖20,Σ,

T1,2 ≥ −
κh

γµ+ κh
2µτ‖ε(unh)‖0,Σ‖

.
dnh −

.
dn−1
h ‖0,Σ

≥ − 1

2ε2

µ

γµ+ κh
4µCTIτ‖ε(unh)‖20,Ωh −

ε2

2

κ2hτ

γµ+ κh
‖
.
dnh −

.
dn−1
h ‖20,Σ,

T1,3 ≥ −
κh

γµ+ κh
τ‖pnh‖0,Σ‖

.
dnh −

.
dn−1
h ‖0,Σ

≥ − 1

2ε3

h

γµ+ κh
τ‖pnh‖20,Σ −

ε3

2

κ2hτ

γµ+ κh
‖
.
dnh −

.
dn−1
h ‖20,Σ.

On the other hand, by adding and subtracting suitable terms, for the second
term we have

T2 =τκ
( .
dnh −

.
dn−1
h ,

.
dnh
)

Σ
+

γκµτ

γµ+ κh

(
unh −

.
dn−1
h ,unh −

.
dnh
)

Σ

=τκ
( .
dnh −

.
dn−1
h ,

.
dnh
)

Σ
+

γκµτ

γµ+ κh

(
unh −

.
dnh +

.
dnh −

.
dn−1
h ,unh −

.
dnh
)

Σ

=τκ
( .
dnh −

.
dn−1
h ,

.
dnh
)

Σ
+

γκµτ

γµ+ κh

( .
dnh −

.
dn−1
h ,unh −

.
dnh
)

Σ
+

γκµτ

γµ+ κh

∥∥unh −
.
dnh
∥∥2

0,Σ
.

Hence, using the Cauchy-Schwarz inequality, we infer the following fundamental
lower bound

T2 ≥
ρsε

2
τ∂τ‖

.
dnh‖20,Σ +

1

2

κ2hτ

γµ+ κh
‖
.
dnh −

.
dn−1
h ‖20,Σ +

1

2

γκµτ

γµ+ κh
‖unh −

.
dnh‖20,Σ.

Finally, for the last term, using once more the Cauchy-Schwarz and Young in-
equalities, we get

T3 ≥ −
µ

γµ+ κh
4µCTIτ‖ε(unh)‖20,Ωh +

hτ

γµ+ κh
‖pnh‖20,Σ.
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By collecting the above bounds for T1, T2 and T3 and inserting them into (5.83),
we obtain

ρf

2

(
τ∂τ‖unh‖20,Ωf + ‖unh − un−1

h ‖20,Ωf

)
+ c̃gτgh(unh,u

n
h) + τsh(pnh, p

n
h)

+
ρsε

2
τ∂τ‖

.
dnh‖20,Σ +

1

2

(
τ∂τ‖dnh‖2s + ‖dnh − dn−1

h ‖2s
)

+ τµ


c̃g −

4CTI

γ

(
1 + 1

2ε2

)
γµ+ 2

ε1
κh

γµ+ κh


 ‖ε(unh)‖20,Ωh

+
1

2

γκµ

γµ+ κh
τ (1− ε1) ‖unh −

.
dnh‖20,Σ +

1

2
κ

κh

γµ+ κh
τ (1− (ε2 + ε3)) ‖

.
dnh −

.
dn−1
h ‖20,Σ

+
h

γµ+ κh
τ

(
1− 1

2ε3

)
‖pnh‖20,Σ ≤ 0.

The estimate (5.82) then follows by choosing

ε1 =
2

3
, ε2 =

1

4
, ε3 =

5

8
, γ >

12CTI

c̃g
,

using Korn’s inequality and summing over m = 1, . . . , n. This completes the proof.

5.3.2.2 Convergence analysis

In the sequel we assume that the interface Σ is flat and that the exact solution
of problem (5.1)-(5.2) has the regularity given by (5.38) and (5.39) for a given
final time T ≥ τ . For the derivation of the error estimate, we also build on the
decomposition of the error given by (5.40)-(5.41). Let us first estimate the discrete
errors (θnh , y

n
h , ξ

n
h,
.
ξnh). An a priori bound is stated in Theorem 5.4 below, with the

energy-norm of the discrete error being defined, at time step tn, as

Ẽnh
def
= (ρf)

1
2 ‖θnh‖0,Ωf + (ρsε)

1
2 ‖
.
ξnh‖0,Σ + ‖ξnh‖s +

(
n∑

m=1

cgτµ‖∇θnh‖20,Ωf

) 1
2

+

(
n∑

m=1

cgτ |(θnh , ynh)|2S

) 1
2

+

(
n∑

m=1

γκµ

γµ+ κh
τ‖θnh −

.
ξnh‖20,Σ

) 1
2

+

(
n∑

m=1

h

γµ+ κh
τ‖ynh‖20,Σ

) 1
2

for n > 0.

Theorem 5.4 Let (u, p,d,
.
d) be the solution of the coupled problem (5.1)-(5.2)

and {(unh, pnh,dnh,
.
dnh)}n>r be the approximation given by Algorithm 5.3 with initial
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data
(
u0
h,d

0
h,

.
d0
h

)
=
(
iszE2u

0,πs
hd

0, Ih
.
d0
)
and r = 0. We assume that the exact

solution has the regularity (5.38)-(5.39). Assume that γ > 0 is given by Theorem 5.3.
Then, we have the following error estimates, for n > r and nτ < T :

Ẽnh . c1h+ c2τ + c3τ
1
2 . (5.84)

Here, the symbols {ci}3i=1 denote positive constants independent of h and τ , but
which depend on the physical parameters and on the regularity of (u, p,d,

.
d).

Proof. At time tn, the exact solution (u, p,d,
.
d) of the coupled problem (5.1)-(5.2)

satisfies




ρf∂tu
n − divσ(un, pn) = 0 in Ωf ,

divun = 0 in Ωf ,

un = 0 on Γf ,

σ(un, pn)n+ κun = κ
.
dn−1 −Ledn − ρsε(∂t − ∂τ )

.
dn on Σ,





un =
.
dn on Σ,

ρsε∂t
.
dn +Ledn = −σ(un, pn)n on Σ,

.
dn = ∂td

n on Σ,

dn = 0 on ∂Σ.

Recall that, for a given time dependent function f , we use the notation fn to denote
f(nτ) and ∂tfn to denote (∂tf)n. Then, similarly to Proposition 5.1, we can show
that the exact solution, at time tn, of the coupled problem (5.1)-(5.2) satisfies

ρf
(
∂tu

n,vh
)

Ωf + af
(
(un, pn), (vh, qh)

)
+ ρsε

(
∂t
.
dn,wh

)
Σ

+ as(dn,wh)

+
γκµ

γµ+ κh

(
un −

.
dn−1,vh −wh

)
Σ

+
γµ

γµ+ κh

(
Ledn + ρsε(∂t − ∂τ )

.
dn,vh −wh

)
Σ

− κh

γµ+ κh

[(
σ(un, pn)n,vh −wh

)
Σ

+
(
un −

.
dn−1,σ(vh,−qh)n

)
Σ

]

− h

γµ+ κh

(
Ledn + ρsε(∂t − ∂τ )

.
dn,σ(vh,−qh)n

)
Σ

− h

γµ+ κh

(
σ(un, pn)n,σ(vh,−qh)n

)
Σ

= 0

(5.85)

for all vh, qh,wh ∈ Vh ×Qh ×Wh. Subtracting (5.80) and (5.81) to the continuous
problem (5.85) we obtain, after adding and subtracting ∂τun and ∂τ

.
dn, the following
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modified Galerkin orthogonality:

ρf (∂τ (un − unh),vh)Ωf + af
(
(un − unh, pn − pnh), (vh, qh)

)

+ ρsε
(
∂τ (

.
dn −

.
dnh),wh

)
Σ

+ as
(
dn − dnh,wh

)

− κh

γµ+ κh

[(
σ(un−unh, pn−pnh)n,vh−wh

)
Σ

+
(
(un−unh)−(

.
dn−1−

.
dn−1
h ),σ(vh,−qh)n

)
Σ

]

+
γκµ

γµ+ κh

(
(un − unh)− (

.
dn−1 −

.
dn−1
h ),vh −wh

)
Σ

− h

γµ+ κh

(
σ(un − unh, pn − pnh)n,σ(vh,−qh)n

)
Σ

= −ρf
(
(∂t − ∂τ )un,vh

)
Ωf − ρsε

(
(∂t − ∂τ )

.
dn,wh

)
Σ

+ Sh
(
(unh, p

n
h), (vh, qh)

)

− γµ

γµ+ κh

(
Ledn + ρsε(∂t − ∂τ )

.
dn,vh −wh

)
Σ

+
h

γµ+ κh

(
Ledn + ρsε(∂t − ∂τ )

.
dn,σ(vh,−qh)n

)
Σ

(5.86)

for all (vh, qh,wh) ∈ Vh×Qh×Wh. Hence, from (5.40)-(5.41), we infer the following
equation for the discrete errors θnh , y

n
h , ξ

n
h and

.
ξnh:

ρf
(
∂τθ

n
h ,vh

)
Ωf + af

(
(θnh , y

n
h), (vh, qh)

)
+ Sh

(
(θnh , y

n
h), (vh, qh)

)

+ ρsε
(
∂τ
.
ξnh,wh

)
Σ

+ as
(
ξnh,wh

)

− κh

γµ+ κh

[(
σ(θnh , y

n
h)n,vh −wh

)
Σ

+
(
θnh −

.
ξn−1
h ,σ(vh,−qh)n

)
Σ

]

+
γκµ

γµ+ κh

(
θnh −

.
ξn−1
h ,vh −wh

)
Σ
− h

γµ+ κh

(
σ(θnh , y

n
h)n,σ(vh,−qh)n

)
Σ

= −ρf
(
(∂t−∂τ )un,vh

)
Ωf−ρf (∂τθ

n
π ,vh)Ωf−ρsε

(
(∂t−∂τ )

.
dn,wh

)
Σ
−ρsε

(
∂τ
.
ξnπ,wh

)
Σ

− as
(
ξnπ,wh

)
+ Sh

(
(iszE2u

n, iszE1p
n), (vh, qh)

)
− af

(
(θnπ , y

n
π), (vh, qh)

)

+
κh

γµ+ κh

[(
σ(θnπ , y

n
π)n,vh −wh

)
Σ

+
(
θnπ −

.
ξn−1
π ,σ(vh,−qh)n

)
Σ

]

− γκµ

γµ+ κh

(
θnπ −

.
ξn−1
π ,vh −wh

)
Σ

+
h

γµ+ κh

(
σ(θnπ , y

n
π)n,σ(vh,−qh)n

)
Σ

− γµ

γµ+ κh

(
Ledn + ρsε(∂t − ∂τ )

.
dn,vh −wh

)
Σ

+
h

γµ+ κh

(
Ledn + ρsε(∂t − ∂τ )

.
dn,σ(vh,−qh)n

)
Σ

(5.87)

for all (vh, qh,wh) ∈ Vh×Qh×Wh and n > r. Note that as
(
ξnπ,wh

)
= 0 due to the

definition of the solid projection operator πs
h. Taking (vh, qh,wh) = τ(θnh , y

n
h ,
.
ξnh) in

(5.87), using the stability estimate reported in Theorem 5.3 and (5.43), yields the
following energy inequality for the discrete errors:
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ρf

2

(
τ∂τ‖θnh‖20,Ωf + τ2‖∂τθnh‖20,Ωf

)
+ ˜̃cgτ

(
µ‖∇θnh‖20,Ωf

h
+ |(θnh , ynh)|2S

)

+
1

2

(
τ∂τ‖ξnh‖2s + τ2‖∂τξnh‖2s

)
+

1

6

γκµ

γµ+ κh
τ‖θnh −

.
ξnh‖20,Σ

+
1

5

h

γµ+ κh
τ‖ynh‖20,Σ +

ρsε

2

(
τ∂τ‖

.
ξnh‖20,Σ +

1

8

κh

γµ+ κh
τ2‖∂τ

.
ξnh‖20,Σ

)

≤ −ρfτ
(
(∂t − ∂τ )un,θnh

)
Ωf − ρfτ (∂τθ

n
π ,θ

n
h)Ωf︸ ︷︷ ︸

T1

−ρsετ
(
(∂t − ∂τ )

.
dn,

.
ξnh)
)

Σ
− ρsετ

(
∂τ
.
ξnπ,

.
ξnh)
)

Σ︸ ︷︷ ︸
T2

−τas(ξnh, z
n
h)︸ ︷︷ ︸

T3

+τSh
(
(iszE2u(t), iszE1p(t)), (θ

n
h , y

n
h)
)

︸ ︷︷ ︸
T4

−τ γκµ

γµ+ κh

(
θnπ −

.
ξnπ,θ

n
h −

.
ξnh
)

Σ
︸ ︷︷ ︸

T5

+τ
κh

γµ+ κh

(
σ(θnπ , y

n
π)n,θnh −

.
ξnh
)

Σ
︸ ︷︷ ︸

T6

−τaf
(
(θnπ , y

n
π), (θnh , y

n
h)
)

+ τ
κh

γµ+ κh

(
θnπ −

.
ξnπ,σ(θnh ,−ynh)n

)
Σ

︸ ︷︷ ︸
T7

+τ
h

γµ+ κh

(
σ(θnπ , y

n
π)n,σ(θnh ,−ynh)n

)
Σ

︸ ︷︷ ︸
T8

−τ γκµ

γµ+ κh

( .
ξnπ −

.
ξn−1
π ,θnh −

.
ξnh
)

Σ
︸ ︷︷ ︸

T9

+τ
κh

γµ+ κh

( .
ξnπ −

.
ξn−1
π ,σ(θnh ,−ynh)n

)
Σ

︸ ︷︷ ︸
T10

− γµ

γµ+ κh

(
Ledn + ρsε(∂t − ∂τ )

.
dn,θnh −

.
ξnh
)

Σ
︸ ︷︷ ︸

T11

+
h

γµ+ κh

(
Ledn + ρsε(∂t − ∂τ )

.
dn,σ(θnh ,−ynh)n

)
Σ

︸ ︷︷ ︸
T12

(5.88)
with ˜̃cg > 0. The terms T1 − T4 stem from the time-stepping and the stabilization
methods. The terms T5 − T8 come from the generalized Nitsche’s method. Finally,
terms T9 − T12 are due to the kinematic perturbation and, hence, are inherent to
the fluid-solid time-splitting scheme.

Note that terms T1, T3 and T4 can be bounded exactly as in (5.50), (5.53) and
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(5.54). For term T2 we can proceed in a similar manner to (5.51) to get

T2 .
ρsεT

2ε2

(
τ2‖∂ttu‖2L2(tn−1,tn;L2(Σ)) + h2‖∂t

.
d‖2L2(tn−1,tn;H2(Σ))

)
+ ε2τ

ρsε

T
‖
.
ξnh‖20,Σ.

(5.89)
The last term will be treated using Lemma 5.1.

The boundary penalty term T5 can be handled in a similar manner to (5.55)
yielding

T5 . τh2γµ

ε5
(‖un‖22,Ωf + h‖

.
dn‖22,Σ) + τ

ε5

2

γκµ

γµ+ κh
‖θnh −

.
ξnπ‖20,Σ,

where we have used that
0 <

κh

γµ+ κh
< 1.

Note that the second term can be absorbed in the left-hand side of (5.88), for ε5 > 0

small enough.

Similarly, for the consistency term T6, we have, using (5.35)

T6 .τh2 1

ε6γµ

(
‖un‖22,Ωf + ‖pn‖21,Ωf

)
+ τ

ε6

2

γκµ

γµ+ κh
‖θnh −

.
ξnπ‖20,Σ.

Note that the first term has the right convergence order and the second term can
be absorbed in the left hand side of (5.88), for ε6 > 0 sufficiently small.

As in the proof of Theorem 5.2, we split T7 into two parts. The velocity-velocity
coupling contribution can be easily handled as in (5.57), viz.,

− τa(θnπ ,θ
n
h) + τ

κh

γµ+ κh

(
σ(θnh , 0)n,θnπ −

.
ξnπ
)

Σ

. τh2 µ

ε7CTI
‖un‖22,Ωf + τµ

2

ε7
h2
(
‖un‖22,Ωf + ‖

.
dn‖22,Σ

)
+ 2τε7µCTI‖∇θnh‖20,Ωh .

The last term can be, once again, absorbed in the left hand side of (5.88), for ε7 > 0

sufficiently small. For the velocity-pressure coupling part we write, using integration
by parts in the continuity equation,

− τb(ynπ ,θnh) + τb(ynh ,θ
n
π) + τ

κh

γµ+ κh

(
σ(0,−ynh)n,θnπ −

.
ξnπ
)

Σ

= τ(ynπ , divθ
n
h)Ωf

︸ ︷︷ ︸
T7,1

+ τ(∇ynh ,θ
n
π)Ωf

︸ ︷︷ ︸
T7,2

−τ κh

γµ+ κh

(
ynhn,

.
ξnπ
)

Σ
︸ ︷︷ ︸

T7,3

−τ γµ

γµ+ κh

(
ynhn,θ

n
π

)
Σ

︸ ︷︷ ︸
T7,4

.

Terms T7,1 and T7,2 can be bounded as in (5.58). The control for T7,3 follows as in
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(5.59). For T7,4, using (5.37), we have

T7,4 ≤ τ
1

2ε7,4
γµ‖θnπ‖21

2
,h,Σ

+ τ
ε7,4

2

h

γµ+ κh
‖ynh‖20,Σ

. τh2 γµ

ε7,4
‖un‖22,Ωf + τ

ε7,4

2

h

γµ+ κh
‖ynh‖20,Σ,

the last term can be absorbed in the left hand side of (5.88), for ε7,4 > 0 small
enough. The above estimations of T7,1, T7,2, T7,3 and T7,4 provide bounds which
involve either terms with the right convergence order or contributions that can be
absorbed by the left-hand side of (5.88).

For the term T8 we have

T8 = τ
h

γµ+ κh

(
σ(θnπ , y

n
π)n,σ(θnh , 0)n

)
Σ

+ τ
h

γµ+ κh

(
σ(θnπ , y

n
π)n, ynhn

)
Σ

≤ τ 1

ε8

1

γµ+ κh
‖σ(θnπ , y

n
π)n‖2− 1

2
,h,Σ

+ 2τε8
µ

γµ+ κh
µ‖ε(θnh)n‖2− 1

2
,h,Σ

+ τ
ε8

2

h

γµ+ κh
‖ynh‖20,Σ,

. τh2 1

ε8γµ

(
‖un‖22,Ωf + ‖pn‖21,Ωf

)
+ 2τε8

1

γ
µCTI‖∇θnh‖20,Ωh

+ τ
ε8

2

h

γµ+ κh
‖ynh‖20,Σ,

and the last two terms can be absorbed by the left-hand side of (5.88), for ε8 > 0

small enough.
The boundary penalty term T9 can be controlled using a Taylor expansion

T9 ≤ τ
1

2ε9

γκµ

γµ+ κh
‖τ∂τ

.
ξnπ‖20,Σ + τ

ε9

2

γκµ

γµ+ κh
‖θnh −

.
ξnh‖20,Σ

. τ2 1

2ε9

γκµ

γµ+ κh
‖∂t

.
ξπ‖2L2(tn−1,tn;L2(Σ)) + τ

ε9

2

γκµ

γµ+ κh
‖θnh −

.
ξnh‖20,Σ

. τ
1

2ε9
h2ρsε‖∂tu‖2L2(tn−1,tn;H2(Σ)) + τ

ε9

2

γκµ

γµ+ κh
‖θnh −

.
ξnh‖20,Σ.

Note that the second term can be absorbed in the left-hand side of (5.88), for ε9 > 0

small enough.
Similarly, the boundary penalty term T10 is bounded by

T10 = τ
κh

γµ+ κh

( .
ξnπ −

.
ξn−1
π ,σ(θnh , 0)n

)
Σ

+ τ
κh

γµ+ κh

( .
ξnπ −

.
ξn−1
π , ynhn

)
Σ

. τ
1

2ε10
h2ρsε‖∂t

.
d‖2L2(tn−1,tn;H2(Σ)) + 2τε10µCTI‖∇θnh‖20,Ωh

+ τ
ε10

2

h

γµ+ κh
‖ynh‖20,Σ,

Note that the second term can be absorbed in the left-hand side of (5.88), for ε10 > 0
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small enough.
Similarly, the boundary penalty term T11 is bounded by

T11 . τ
1

2ε11
ρsετ2‖∂ttu‖2L2(tn−1,tn;L2(Σ)) + τ

1

2ε11

τ

ρsε
‖Ledn‖20,Σ

+ τ
ε11

2

γκµ

γµ+ κh
‖θnh −

.
ξnh‖20,Σ.

The last term can be absorbed in the left-hand side of (5.88), for ε11 > 0 sufficiently
small.

Similarly, the boundary penalty term T12 is bounded by

T12 . τ
1

ε12
ρsετ2‖∂ttu‖2L2(tn−1,tn;L2(Σ)) + τ

1

ε12

τ

ρsε
‖Ledn‖20,Σ

+ τε12CTIµ‖∇θnh‖20,Ωh + τε12
h

γµ+ κh
‖ynh‖20,Σ,

The last term can be absorbed in the left-hand side of (5.88), for ε12 > 0 small
enough.

The estimate (5.84) follows by inserting the above estimates into (5.88), summing
over m = 1, . . . , n, and applying Lemma 5.1 with

am =
ρf

2
‖θmh ‖20,Ωf +

ρsε

2
‖
.
ξmh ‖20,Σ +

1

2
‖ξmh ‖2s , ηm =

1

T
.

Note in particular that, owing to the selection of the initial data, we have

θ0
h = 0,

.
ξ0
h = ξ0

h = 0.

We define the energy-norm of the error and dissipation error, at time step tn, as

Z̃nh
def
= (ρf)

1
2 ‖un − unh‖0,Ωf + (ρsε)

1
2 ‖
.
dn −

.
dnh‖0,Σ + ‖dn − dnh‖s,

(
n∑

m=1

cgτµ‖∇
(
um − umh

)
‖0,Ωf

) 1
2

+

(
n∑

m=1

cgτ |(umh , pmh )|2S

) 1
2

+

(
n∑

m=1

cgτ
γκµ

γµ+ κh
‖umh −

.
dmh ‖20,Σ

) 1
2

for n > 0. We have the following a priori estimate as a corollary of Theorem 5.4.

Corollary 5.3 Under the assumptions of Theorem 5.4, we have the following
error estimates, for n > r and nτ < T :

Z̃nh . c1h+ c2τ + c3τ
1
2 . (5.90)
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Here, the symbols {ci}3i=1 denote positive constants independent of h and τ , but
which depend on the physical parameters and on the regularity of (u, p,d,

.
d).

Proof. The proof follows directly as a consequence of a triangle inequality, The-
orem 5.4 and the optimal approximation properties of the interpolation operators.

5.4 Numerical experiments

In order to highlight the stability and accuracy of the proposed schemes, we con-
sider the problem of the pressure-wave propagation within an elastic tube described
in Section 2.4.1 with no damping effects in the solid (viz., α = β = 0 in (1.23)).
We compare the results obtained with the unfitted-mesh Algorithms 5.1-5.3 and the
first-order fully implicit scheme using fitted meshes reported in Algorithm 1.1. An
example of the fitted and unfitted mesh configurations considered in this study is
given in Figure 5.1. In Algorithms 5.1-5.3, the Nitsche’s parameter is set to γ = 103

and the pressure and ghost penalty stabilization terms in (5.6) are given by (1.53)
and (1.55), respectively, with γp = 10−3 and γg = 1. The computations have been
performed with FreeFem++ [Hec12].

⌦f
⌃

⌦h

(a) Unfitted configuration

⌦f
⌃

(b) Fitted configuration

Figure 5.1: Example of unfitted fictitious domain (Figure 5.1(a)) and fitted (Fig-
ure 5.1(b)) configurations

Figure 5.2 presents the snapshots of the pressure field and the solid displacement
(amplified by a factor 5) at the time instants t = 0.005, 0.01 and 0.015, obtained
with τ = 2 · 10−4 and h = 0.01 using Algorithm 1.1 (Figure 5.2(a)), Algorithm 5.1
(Figure 5.2(b)), Algorithm 5.2 with r = 1 (Figure 5.2(c)) and Algorithm 5.3 with r =

1 (Figure 5.2(d)). The schemes reproduce a stable pressure-wave propagation. Note
that this stable behavior was predicted for Algorithms 5.2 and 5.1 by Theorem 5.1
and Remark 5.3, respectively.
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(a) Implicit fitted (Algorithm 1.1) (b) Implicit unfitted (Algorithm 5.1)

(c) Algorithm 5.2 with r = 1 (d) Algorithm 5.3 with r = 1

Figure 5.2: Snapshots of the fluid pressure and (exaggerated) solid displacement
at time instants t = 0.005, 0.01, 0.015. The discretization parameters are given by
τ = 2 · 10−4 and h = 0.01

In order to assess the overall convergence rate of Algorithms 5.1-5.3, we have
uniformly refined in time and in space according to

(τ, h) = {2 · 10−4/2i, 10−1/2i}4i=0. (5.91)

Note that τ = O(h). Figure (5.3) reports the relative elastic energy-norm error
of the solid displacement, at time t = 0.015, obtained with all the different vari-
ants of Algorithm 5.2 (Alg. 2 in Figure 5.3(a)) and Algorithm 5.3 (Alg. 3 in
Figure 5.3(b)). For comparison purposes, the results obtained with both the fitted-
mesh and unfitted-mesh implicit schemes, Algorithm 1.1 and Algorithm 5.1 (Alg. 1
in Figures 5.3(a) and 5.3(b)), are also reported in Figures 5.3(a) and 5.3(b). The
reference solution has been computed with Algorithm 1.1 with a high space-time
resolution: h = 3.125 · 10−3 and τ = 10−6.

The results of Figure 5.3(a) show an overall O(τ) optimal accuracy for Algo-
rithm 5.2 with r = 1, 2, while a sub-optimal O(τ

1
2 ) is obtained with r = 0. This

is in agreement with the error estimates provided in Corollary 5.1. Very similar re-
sults are observed for Algorithm 5.3 in Figure 5.3(b): an optimal O(τ) convergence
is obtained with r = 1, 2 and a sub-optimal O(τ

1
2 ) convergence is retrieved with

r = 0. We recall that the sub-optimality in Algorithm 5.3 for the non-extrapolated
case was predicted by Corollary 5.3. Finally, the first-order convergence rate O(τ)
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Figure 5.3: Time convergence history of the solid displacement in the relative elastic
energy norm using Algorithm 5.2 (left) and Algorithm 5.3 (right) with τ = O(h).

predicted by Corollary 5.2 is observed for Algorithm 5.1.
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Figure 5.4: Time convergence history of the solid displacement in the relative elastic
energy norm using Algorithm 5.2 (r = 1), Algorithm 5.3 (r = 1) and Algorithm 1.4
with τ = O(h).

For comparison purposes, we show in Figure 5.4 the results obtained with the
first-order extrapolated variants of Algorithms 5.2 and 5.3 and with the stabilized
explicit scheme reported in Algorithm 1.4. The results in Figure 5.4 demonstrate
the significant progress achieved by the schemes proposed in this chapter: the ex-
trapolated variants of Algorithms 5.2 and 5.3 solve the non-uniformity in h behavior
of Algorithm 1.4 (which clearly prevents the scheme from converging).

We provide further numerical evidence of the above observations in Figures 5.5
and 5.6, where we have displayed the displacements at t = 0.015 obtained with
Algorithms 5.2 and 5.3, respectively, for different levels of space-time refinement.
For illustration purposes, the displacements obtained with the implicit schemes,
Algorithm 1.1 and Algorithm 5.1, are also reported in both Figures 5.3(a) and
5.3(b).
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Figure 5.5: Algorithm 5.2. Comparison of the solid displacements at t = 0.015 for
different levels of (τ, h)-refinement (5.91).

5.5 Conclusion

In this chapter we have introduced two new classes of splitting methods (semi-
implicit and explicit) for fluid/thin-walled structure interaction using unfitted
meshes. The methods proposed allow different degrees of fluid-solid splitting which
overcome the stability and accuracy issues of the explicit methods reported in
[BCG11, BF14b]. The semi-implicit or explicit nature of the methods proposed
in this chapter is dictated by the order in which the space and time discretizations
were performed:

• discretizing first in space using the unfitted formulation (1.57) and then in
time via (1.84) led to the semi-implicit schemes reported in Algorithm 5.2;

• discretizing first in time using (1.81) and then in space using a variant of
Nitsche’s method for general boundary conditions led to the explicit schemes
reported in Algorithm 5.3.

For the semi-implicit class of schemes, a complete energy-based stability (Theo-
rem 5.1) and a priori error analysis (Theorem 5.2) have been presented. In partic-
ular, unconditional stability and optimal accuracy have been shown for the variant
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Figure 5.6: Algorithm 5.3. Comparison of the solid displacements at t = 0.015 for
different levels of (τ, h)-refinement (5.91).

r = 1. For the explicit scheme with r = 0, stability (Theorem 5.3) and a priori error
estimates (Theorem 5.4) have been reported. In the numerical experiments carried
out in Section 5.4, Algorithms 5.2 and 5.3 have delivered, in spite of their different
semi-implicit and explicit nature, practically the same behavior: stability was ob-
tained with all the variants, optimal first-order convergence was obtained with the
extrapolated ones (r = 1, 2) and a sub-optimal convergence rate was exhibited when
non-extrapolation was performed (r = 0).





Chapter 6

Nitsche-XFEM for the coupling of an
incompressible fluid with immersed

thin-walled structures

In this chapter we extend the unfitted Nitsche space semi-discretization presented in
Section 1.4.2.3 to the case of coupling with immersed thin-walled structures using the ex-
tended finite element method. For the temporal discretization, several splitting schemes are
investigated. The resulting methods are also formulated in a non-linear setting involving dy-
namic interfaces. A series of numerical test in 2D, involving static and moving interfaces,
illustrates the performance of the different methods proposed.

The results presented in this chapter have been reported in:

• F. Alauzet, B. Fabrèges, M. A. Fernández, M. Landajuela, Nitsche-XFEM
for the coupling of an incompressible fluid with immersed thin-
walled structures. Computer Methods in Applied Mechanics and Engineer-
ing, To appear, 2015, https: // hal. inria. fr/ hal-01149225 .
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6.1 Introduction

In this chapter we consider the mechanical interaction of an incompressible vis-
cous fluid with an immersed thin-walled flexible structure. As pointed out in Sec-
tion 1.2.3.2, the thin-walled nature of the immersed solid introduces jumps on the
fluid stresses which, respectively, results in weak and strong discontinuities of the ve-
locity and pressure fields (see Figure 1.4). Standard finite element approximations,
not allowing for such discontinuities, are known to deliver suboptimal convergence
behavior and spurious numerical oscillations in the vicinity of the immersed solid
(see, e.g., [DSGB08, KHS+15, BCG15]).

The discontinuous features of the fluid solution can be readily incorporated
within a standard finite element approximation by considering fitted fluid-solid
meshes (see Section 1.3.1.1). This approach was adopted in Chapter 4 whenever
the solid was modeled as a thin-walled (shell) solid (see Section 4.3.2). It is well
known, however, that maintaining fitted meshes may be cumbersome or unfeasi-
ble in the presence of large interface deflections and topological changes (see Sec-
tion 1.3.1.1). Though a number of advanced mesh update techniques have been
reported in the literature (see, e.g., [STB04, YSH08, Wic11, Ala14, TTBA14]), the
favoured alternative is to consider an unfitted mesh formulation, in which the fluid-
structure interface moves independently of a background fluid mesh. Among these
approaches, we can mention the Immersed Boundary/Fictitious Domain methods
(e.g., [Pes02, GPHJ99b, Baa01, ZGWL04, AGPT09, BCG11, KHS+15, BCG15])
and the methodologies based on a fully Eulerian description of the problem (see
Section 1.3.1.2). In general, these methods are known to be inaccurate in space
due to the continuous nature of the fluid approximations across the interface or to
the discrete treatment of the interface conditions. As already mentioned in Sec-
tion 1.3.1.2, the current trend to overcome these consistency issues is to combine a
local XFEM enrichment with a cut-FEM methodology and a Lagrange multiplier
treatment of the interface coupling (see, e.g., [LCB06, ZL08, GW08, ST11]). The
price to pay, with respect to the original IB and FD methods, is the need of a specific
tracking of the interface intersections (see, e.g., [MGW09, WGMF12, MLL13]) and
a loss of robustness with respect to how the interface intersects the background fluid
mesh (see, e.g., [FB10, BCH+15]).

A well-known alternative to the discrete treatment of the interface conditions
via Lagrange multipliers is Nitsche’s method (see, e.g., [Nit71, Ste95, Han05]). Be-
cause of its flexibility and mathematical soundness, the Nitsche mortaring has been
applied to the design of numerical methods for a number of interface problems,
including XFEM for elasticity [HH02, HH04, BBH09], XFEM for two-phase trans-
port problems [LR12, LR13], XFEM for incompressible flow [SW14] and robust
and accurate FD methods for elliptic and mixed problems [BH12, MLLR14, BH14].
Nitsche’s method was first applied to fluid-structure interaction problems with fitted
meshes in [HHS04] and used to design stable explicit coupling (or loosely coupled)
schemes in [BF09, BF14a]. It has recently been extended to fluid-structure inter-
action problems with unfitted meshes in [BF14b], yielding robust and optimal a
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priori error estimates (fixed interface). The case of the coupling with thin-walled
solids in [BF14b] is restricted to structures surrounding the fluid domain (i.e., not
immersed).

The first contribution of this chapter consists in the introduction of a robust and
accurate Nitsche-XFEM method for fluid-structure interaction problems involving
a thin-walled elastic structure immersed in an incompressible viscous fluid. We
consider an Eulerian description for the fluid and a Lagrangian formulation for the
solid (see Section 1.3.1.2). The fluid domain is discretized with an unstructured
mesh not fitted to the solid mid-surface deformed mesh. In this unfitted mesh
framework, the (strong) consistency of the proposed fluid-solid coupling builds on
the following two ingredients:

• across the interface, locally enriched piecewise affine fluid velocity and pressure
approximations respectively allow for weak and strong discontinuities (using
the XFEM approach of [HH04, BBH09]);

• the kinematic/dynamic fluid-solid coupling is enforced through a fluid-sided
Nitsche’s mortaring (based on the unfitted mesh formulation reported in Sec-
tion 1.4.2.3).

Besides, consistent symmetric stabilization operators are added to guarantee robust-
ness with respect to arbitrary interface/element intersections (see Section 1.4.2.3)
and to circumvent the classical inf-sup and convective related instabilities (see, e.g.,
[BP84, BFH06, BF07, SW14]). In this regard, it is worth noting that for robustness
these operators act on the fictitious region of the computational domain, without
compromising the overall optimal accuracy of the method (in the energy norm).

The second contribution of this chapter has to do with the time-discretization.
Several coupling schemes with different levels of fluid-solid splitting are proposed:
implicit, explicit and semi-implicit. These schemes are the generalization to the
coupling with immersed thin-walled structures of Algorithms 5.1, 1.4 and 5.2, re-
spectively. The stability and convergence properties of the resulting fully discrete
methods are analyzed within a representative linear setting (static interfaces), by
naturally extending the arguments presented for the aforementioned schemes. The
salient features of the semi-implicit schemes presented in this chapter are twofold:
(i) they deliver superior stability and accuracy with respect to alternative meth-
ods of explicit nature (see, e.g., [BCG11]); (ii) they avoid the strong coupling of
alternative coupling methods (see, e.g., [NFGK07, BCG15]).

Finally, the theoretical findings are substantiated by a series of numerical exam-
ples in 2D, involving static and moving interfaces, which illustrate the performance
of the methods proposed by comparing with analytic solutions and fitted mesh ap-
proaches.

This chapter is organized as follows. Section 6.2 is devoted to the derivation and
the analysis of the methods within a linear setting (fixed interface). The space semi-
discrete Nitsche-XFEM formulation is introduced in Section 6.2.1. Section 6.2.3
presents the time discretization and the different coupling schemes. In Section 6.3,
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the numerical methods are formulated within a non-linear setting involving moving
interfaces. Numerical evidence illustrating the performance of the methods proposed
is reported and discussed in Section 6.4. Finally, a summary of the conclusions is
given in Section 6.5.

6.2 A linear model problem: static interface

We consider a linear coupled problem similar to the one introduced in Sec-
tion 1.4.1, involving the Stokes system (1.34) and the thin-walled solid problem
(1.37), but in which the structure is immersed within the fluid. The fluid domain is
denoted by Ωf ⊂ Rd (d = 2, 3) and the mid-surface of the structure is represented
by the oriented manifold Σ ⊂ Ωf of codimension 1 and unitary normal vector n. For
the time being, we assume that Σ divides Ωf into two open domains Ω1 and Ω2 (see
Figure 6.1). In Section 6.2.1.3 we address the general case in which Ωf is partially
intersected by Σ. We denote the outward unit normal to Ωi on Σ by ni, i = 1, 2.
Note that we choose Ω1 and Ω2 so that n1 = n and n2 = −n. We set Γi = ∂Ωi\Σ,
i = 1, 2.

�f = �1 [ �2

Figure 6.1: Geometric description.

In the following, for a given continuous scalar or tensorial field f defined in Ωf

(possibly discontinuous across Σ) we define its sided-restrictions to Σ, noted by f1

and f2, as

f1(x)
def
= lim

ξ→0+
f(x+ ξn1), f2(x)

def
= lim

ξ→0+
f(x+ ξn2) ∀x ∈ Σ.

We also define the following jumps and average across the interface Σ:

JfK def
= f1 − f2, JfnK def

= f1n1 + f2n2, {{f}} def
=

1

2
(f1 + f2) .

The coupled problem reads as follows: find the fluid velocity and pressure u :

Ωf ×R+ → Rd, p : Ωf ×R+ → R, the solid displacement and velocity d : Σ×R+ →
Rd,

.
d : Σ× R+ → Rd such that
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ρf∂tu− divσ(u, p) = 0 in Ωi × R+, i = 1, 2

divu = 0 in Ωi × R+, i = 1, 2

u = 0 on Γi × R+, i = 1, 2

(6.1)





u1 = u2 =
.
d on Σ× R+,

ρsε∂t
.
d+Led = −Jσ(u, p)nK in Σ× R+,

.
d = ∂td in Σ× R+,

d = 0 on ∂Σ× R+,

(6.2)

complemented with standard initial conditions u(0) = u0, d(0) = d0 and
.
d(0) =

.
d0.

The rest of this section is devoted to the derivation of a weak formulation of the
coupled problem (6.1)-(6.2). We recall that Hm(ω) (m ≥ 0) denotes the standard
Sobolev spaces, with norm ‖ · ‖m,ω. Here, the closed subspaces H1

Γf (ω), of functions
in H1(ω) with zero trace on Γf , and L2

0(ω), of functions in L2(ω) with zero mean
in ω, will also be used. Recall that the scalar product in L2(ω) is denoted by (·, ·)ω
and its norm by ‖ · ‖0,ω. Similarly to Section 1.4.2.1, we consider V def

= [H1
Γf (Ω

f)]d

and Q def
= L2

0(Ωf) as the fluid velocity and pressure functional spaces, respectively.
The space W ⊂ [H1

0 (Σ)]d denotes the space of solid admissible displacements.

The standard Stokes bilinear forms (1.40) are collected here in

af
Ωf

(
(u, p), (v, q)

) def
= 2µ

(
ε(u), ε(v)

)
Ωf − (p, divv)Ωf + (q, divu)Ωf .

As in Section 1.4.2.1, the elastic bilinear form as : W ×W → R will represent the
weak form of the (unbounded linear) surface differential operator Le : D(Le) ⊂
[L2(Σ)]d → [L2(Σ)]d , namely,

as(d,w) = (Led,w)Σ

for all d ∈ D(Le) and w ∈ W . We assume as to be symmetric, coercive
and continuous on W with associated norm ‖w‖s def

= (as(w,w))
1
2 . The weak

form of the linear coupled problem (6.1)–(6.2) reads as follows: for t > 0, find
(u(t), p(t),d(t),

.
d(t)) ∈ V ×Q×W ×W such that

{
u1|Σ = u2|Σ =

.
d,

.
d = ∂td,

ρf
(
∂tu,v

)
Ωf + af

Ωf

(
(u, p), (v, q)

)
+ ρsε

(
∂t
.
d,w

)
Σ

+ as(d,w) = 0,
(6.3)

for all (v, q,w) ∈ V ×Q×W with v|Σ = w. Taking (v, q,w) = (u(t), p(t),
.
d(t)) in
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(6.3) we get, for t > 0, the following standard energy identity

ρf

2
‖u(t)‖20,Ωf +

ρsε

2
‖
.
d(t)‖20,Σ +

1

2
‖d(t)‖2s + 2µ

∫ t

0
‖ε(u(s))‖20,Ωf ds

=
ρf

2
‖u0‖20,Ωf +

ρs

2
‖
.
d0‖20,Σ +

1

2
‖d0‖2s . (6.4)

6.2.1 Space semi-discretization

The dynamic relation (6.2)2 introduces jumps in the fluid pressure and in the
velocity gradient across the interface Σ. We propose to approximate the fluid ve-
locity and pressure on triangulations of Ωf which are independent of the interface
Σ (see Figure 6.2(a)). In order to guarantee the optimality of the approximations,
we allow the discrete fluid solution to be discontinuous inside the elements which
are intersected by the interface. In this unfitted framework, the interface coupling
conditions (6.2)1,2 will be enforced through a generalization of the Nitsche’s type
mortaring reported in Section 1.4.2.3.

6.2.1.1 Nitsche-XFEM semi-discrete formulation

For the sake of simplicity, we assume that Ωf and Σ are polyhedral. For the
construction of the discrete approximation spaces in the fluid, we follow the unfitted
approach reported in [HH02, HH04, BBH09]. To this purpose, we consider two
family of meshes {T f

i,h}0<h<1, i = 1, 2, where each T f
i,h covers the fluid region Ωi.

Each mesh T f
i,h is fitted to the exterior boundary Γi but, in general, not to Σ (see

Figure 6.2(b)). Moreover, we assume that for every element K ∈ T f
1,h∩T f

2,h we have
K ∩Σ 6= ∅. Note that T f

1,h ∪T f
2,h gives a conforming triangulation of the whole fluid

domain Ωf . We denote by Ωi,h the domain covered by T f
i,h, viz.,

Ωi,h
def
= int

(
∪K∈T f

i,h
K
)
.

Finally, for the solid, we consider a family of triangulations {T s
h }0<h<1 of Σ. For

the sake of simplicity, we assume that the three families of triangulations are quasi-
uniform.

We introduce the following standard spaces of continuous piecewise affine func-
tions:

X f
i,h

def
=
{
vh ∈ C0(Ωi,h)

/
vh|K ∈ P1(K) ∀K ∈ T f

i,h

}
,

Xs
h

def
=
{
vh ∈ C0(Σ)

/
vh|K ∈ P1(K) ∀K ∈ T s

h

}
.

(6.5)

Associated with X f
i,h, we define the spaces

Vi,h
def
=
{
vi,h ∈ [X f

i,h]d
/
vi,h|Γi = 0

}
, Qi,h

def
= X f

i,h, i = 1, 2. (6.6)

For the approximation of the fluid velocity and pressure we will consider the product
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(a) (b)

Figure 6.2: Unfitted fluid-solid meshes. In grey the elements intersected by Σ (a).
The triangulations T f

1,h and T f
2,h, with the overlapping region in grey (b).

spaces Vh
def
= V1,h×V2,h and Qh

def
= Q1,h×Q2,h, respectively. The solid displacement

and velocity are approximated in Wh
def
= [Xs

h]d ∩W .

Remark 6.1 Note that the discrete velocity and pressure are two-valued in the
overlap interfacial region. Hence, for fh = (f1,h, f2,h) ∈ X f

1,h ×X f
2,h, the associated

function

fΩf ,h
def
=

{
f1,h|Ω1 in Ω1,

f2,h|Ω2 in Ω2,

may develop discontinuities across the interface Σ. This feature is illustrated in
Figures 6.3 and 6.5. This is one of the fundamental ingredients of the present
XFEM approach to approximate the solution of (6.1)-(6.2).

(a) Unfitted meshes (b) Weak discontinuity (c) Strong discontinuity

Figure 6.3: Idealized fully intersected configuration. Example of functions fh ∈
X f

1,h ×X f
2,h.

Since velocity/pressure discrete spaces Vh/Qh fail to satisfy the inf-sup condition,
we consider a symmetric pressure stabilization operator sh : Qh × Qh → R. For
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instance, the classical Brezzi-Pitkäranta method is used in the following fashion

sh(ph, qh)
def
= γp

h2

µ

∑

i=1,2

(∇pi,h,∇qi,h
)

Ωi,h
,

with γp > 0 a user-defined parameter. Note that the stabilization acts on the whole
computational domain Ω1,h × Ω2,h.

In order to guarantee robustness of the method with respect to the way the fluid
mesh T f

1,h∪T f
2,h is intersected by the solid mesh T s

h (see Section 1.4.2.3), we consider
the ghost-penalty stabilization operator gh : Vh × Vh → R defined by

gh(uh,vh) = γgµh
2∑

i=1

∑

F∈FΣ
i,h

(
J∇ui,hKF , J∇vi,hKF

)
F
,

where γg > 0 is a user-defined parameter and the symbol J KF denotes the jump
across the edge or face F belonging to FΣ

i,h, the set of interior edges or faces of the
elements of T f

i,h intersected by Σ, i.e., F ∈ FΣ
i,h if F is a (d− 1)-manifold and there

exist K1,K2 ∈ T f
i,h, with K1 ∩ Σ 6= ∅ or K2 ∩ Σ 6= ∅, such that F = K1 ∩ K2.

From (1.54), it follows that this operator extends the natural H1-coercivity in the
physical domain to the whole Ω1,h × Ω2,h, viz.,

c̃g

(
2∑

i=1

µ‖ε(vi,h)‖20,Ωi,h + gh(vh,vh)

)
≤ µ

2∑

i=1

‖ε(vi,h)‖20,Ωi + gh(vh,vh), (6.7)

for all vh ∈ Vh, with c̃g > 0 depending on γg. The total stabilization operator is
hence given by

Sh
(
(uh, ph), (vh, qh)

) def
= sh(qh, qh) + gh(uh,vh),

with the associated semi-norm |(vh, qh)|S def
=
√
Sh
(
(vh, ph), (vh, qh)

)
. We also intro-

duce the fluid discrete bilinear form

af
h

(
(uh, ph), (vh, qh)

) def
= af

Ω1∪Ω2

(
(uh, ph), (vh, qh)

)
+ Sh

(
(uh, ph), (vh, qh)

)
. (6.8)

The proposed space semi-discrete approximation of (6.1)-(6.2) reads as follows: for
t > 0, find (

uh(t), ph(t),
.
dh(t),dh(t)

)
∈ Vh ×Qh ×Wh ×Wh,
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such that
.
dh(t) = ∂tdh(t) and





ρf
(
∂tuh,vh

)
Ωf + af

h

(
(uh, ph), (vh, qh)

)
+ ρsε

(
∂t
.
dh,wh

)
Σ

+ as(dh,wh)

−
2∑

i=1

(
σ(ui,h, pi,h)ni,vi,h −wh

)
Σ
−

2∑

i=1

(
ui,h −

.
dh,σ(vi,h,−qi,h)ni

)
Σ

+
γµ

h

2∑

i=1

(
ui,h −

.
dh,vi,h −wh

)
Σ

= 0

(6.9)

for all (vh, qh,wh) ∈ Vh × Qh ×Wh. Here, γ > 0 is a positive parameter given by
Lemma 6.1 below (see also Remark 1.11).

Remark 6.2 It should be noted that, unlike [KHS+15, Section 4.1], the interface
fluid tractions from opposite sides do not cancel in (6.9). This is a direct consequence
of the XFEM nature of the velocity/pressure space Vh ×Qh, which guarantees the
strong consistency of (6.9) with (6.1)-(6.2).

Remark 6.3 In the case of a non-polyhedral interface (see Figure 6.1), Σ and
as(·, ·) in (6.9) have to be replaced by their corresponding h-dependent approxima-
tions Σh and as

h(·, ·), respectively.

The above space semi-discretized formulation can be viewed as an extension
of the unfitted mesh method formulation (1.57) to the case of coupling with an
immersed thin-walled structure. In the next section, we will build on this relation
to briefly discuss the stability and convergence properties of (6.9).

6.2.1.2 Stability and convergence

The next lemma, which generalizes Lemma 1.2 to the case of coupling with an
immersed thin-walled structure, exploits property (6.7) to guarantee the coercivity
of the Stokes-Nitsche operator in (6.9).

Lemma 6.1 For
γ >

8CTI

c̃g
,

there exists a constant cg > 0 such that

cg

(
µ

2∑

i=1

‖∇vi,h‖20,Ωi,h +
γµ

h

2∑

i=1

‖vi,h −wh‖20,Σ + |(vh, qh)|2S

)

≤ af
h

(
(vh, qh), (vh, qh)

)
−

2∑

i=1

(
σ(vi,h, qi,h)ni,vi,h −wh

)
Σ

−
2∑

i=1

(
vi,h −wh,σ(vi,h,−qi,h)ni

)
Σ

+
γµ

h

2∑

i=1

‖vi,h −wh‖20,Σ + |(vh, qh)|2S

for all (vh, qh,wh) ∈ Vh ×Qh ×Wh.
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Proof. The proof follows from direct adaptation of the arguments reported in the
proof of Lemma 1.2. First, we have

af
h

(
(vh, qh), (vh, qh)

)
−

2∑

i=1

(
σ(vi,h, qi,h)ni,vi,h −wh

)
Σ

−
2∑

i=1

(
vi,h −wh,σ(vi,h,−qi,h)ni

)
Σ

+
γµ

h

2∑

i=1

‖vi,h −wh‖20,Σ + |(vh, qh)|2S

= 2µ
2∑

i=1

‖ε(vi,h)‖20,Ωi − 2
2∑

i=1

(
σ(vi,h, 0)n,vi,h −wh

)
Σ

+

2∑

i=1

γµ

h
‖vi,h −wh‖20,Σ + |(vh, qh)|2S .

Combining the Cauchy-Schwarz inequality with the (robust) trace inequality (1.61),
we have

2∑

i=1

(
2σ(vi,h, 0)n,vi,h−wh

)
Σ
≤ 8CTI

γ
µ

2∑

i=1

‖ε(vi,h)‖20,Ωi,h +
1

2

2∑

i=1

γµ

h
‖vi,h−wh‖20,Σ.

We conclude by using the strengthened stability (6.7) provided by the ghost-penalty
operator , taking

γ >
8CTI

c̃g

and using Korn’s inequality.

If we take vh = uh(t), qh = ph(t) and wh =
.
dh(t) in (6.9) and apply the result

of Lemma 6.1 we get the following discrete counterpart of (6.4):

ρf

2
‖uh(t)‖20,Ωf +

ρs

2
‖
.
dh(t)‖20,Σ +

1

2
‖dh(t)‖2s

+cg

∫ t

0

(
2∑

i=1

µ‖∇ui,h(s)‖20,Ωi,h +
2∑

i=1

γµ

h
‖ui,h(s)−

.
dh(s)‖20,Σ +

∣∣(uh(s), ph(s)
)∣∣2
S

)
ds

≤ ρf

2
‖uh(0)‖20,Ωf +

ρs

2
‖
.
dh(0)‖20,Σ +

1

2
‖dh(0)‖2s , (6.10)

which guarantees the energy stability of (6.9).

The following result states the optimal accuracy of (6.9) in the energy norm,
under regularity assumptions on the solution of (6.1)-(6.2). It is a generalization
of Theorem 1.2. The symbol . denotes inequality up to a multiplicative constant
independent of h.

Theorem 6.1 Let (u, p,
.
d,d) be the solution of (6.1)-(6.2) and (uh, ph,

.
dh,dh)
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be given by (6.9). We assume that the interface Σ is flat and that

u ∈ [H1(R+;H2(Ω1 ∪ Ω2))]d, p ∈ C0(R+;H1(Ω1 ∪ Ω2)), d,
.
d ∈ [H1(R+;H2(Σ))]d.

For t > 0, there holds:

ρf

2
‖(uh − u)(t)‖20,Ωf +

ρs

2
‖(

.
dh −

.
d)(t)‖20,Σ +

1

2
‖(dh − d)(t)‖2s

+ cg

∫ t

0

2∑

i=1

(
µ‖∇(ui,h − u)(s)‖20,Ωi +

γµ

h
‖(ui,h −

.
di,h)(s)‖20,Σ

)
ds . h2,

where γ > 0 is given by Lemma 6.1.

Proof. The result follows by applying the arguments of the proof of Theorem 1.2
(see [BF14b, Theorem 3.1]) to each Ωi,h, i = 1, 2.

6.2.1.3 Partially intersected fluid domain

In this section we discuss how the space semi-discrete formulation (6.9) can be
generalized to the case in which the interface Σ only partially intersects the domain
Ωf (see Figure 6.4(a)). In order to set up the new discrete spaces Vh and Qh for the
fluid, we consider a fictitious prolongation of Σ, denoted by Σtip

h , so that Σ ∪ Σtip
h

divides Ωf into two open domains (see Figure 6.4(a)). The fluid-fluid fictitious
interface is defined in terms of the partition Σtip

h = Σ̃h ∪ Σ̂h where:

• The part Σ̃h is included in the set of elements containing the tip of Σ. More-
over, within each of these elements, it is defined as the prolongation of the
interface up to the point which is opposite to the edge or face intersected by
Σ.

• The part Σ̂h is aligned with the edges or faces of the mesh.

We now proceed, as in Section 6.2.1.1, by introducing two overlapping triangu-
lations T f

i,h, i = 1, 2 (see Figure 6.4(b)). Note that the overlap region reduces to the
set of elements intersected by Σ. The associated discrete spaces X f

i,h, i = 1, 2, are
then defined as in (6.5). At last, the fluid velocity and pressure spaces are derived
from (6.6) by strongly enforcing the continuity of the velocity and pressure across
Σ̂h (see Figure 6.5), viz.:

Vh
def
=
{
vh = (v1,h,v2,h) ∈ V1,h × V2,h

/
v1,h = v2,h on Σ̂h

}
,

Qh
def
=
{
qh = (q1,h, q2,h) ∈ Q1,h ×Q2,h

/
q1,h = q2,h on Σ̂h

}
.

(6.11)

The functions of these spaces are continuous in the domain

Ωh
def
= Ωf\(Σ ∪ Σ̃h),
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(a) (b)

Figure 6.4: The fluid-solid interface Σ and the fluid-fluid fictitious interface Σ̃h in
red (a). The two new triangulations with the overlapping region in grey (b).

(a) Unfitted meshes (b) Weak discontinuity (c) Strong discontinuity

Figure 6.5: Idealized partially intersected configuration (the red dotted line repre-
sents the fictitious fluid-fluid interface). Example of functions fh ∈ X f

1,h ×X f
2,h.

but discontinuous across the interface Σ∪ Σ̃h. The fluid discrete bilinear form (6.8)
is hence redefined as

af
h

(
(uh, ph), (vh, qh)

) def
= af

Ωh

(
(uh, ph), (vh, qh)

)
+ Sh

(
(uh, ph), (vh, qh)

)
.

The continuity of velocity and stress across the fictitious fluid-fluid interface Σ̃h will
be enforced in a consistent weak fashion, using Nitsche’s method (see, e.g., [DPE12,
Section 6.1.2]). In summary, the resulting semi-discrete approximation of (6.1)-(6.2)
reads as follows: for t > 0, find

(
uh(t), ph(t),

.
dh(t),dh(t)

)
∈ Vh ×Qh ×Wh ×Wh,
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such that
.
dh(t) = ∂tdh(t) and





ρf
(
∂tuh,vh

)
Ωf + af

h

(
(uh, ph), (vh, qh)

)
+ ρsε

(
∂t
.
dh,wh

)
Σ

+ as(dh,wh)

−
2∑

i=1

(
σ(ui,h, pi,h)ni,vi,h −wh

)
Σ
−

2∑

i=1

(
ui,h −

.
dh,σ(vi,h,−qi,h)ni

)
Σ

+
γµ

h

2∑

i=1

(
ui,h −

.
dh,vi,h −wh

)
Σ
−
(
{{σ(uh, ph)}}n, JvhK

)
Σ̃h

−
(
{{σ(vh,−qh)}}n, JuhK

)
Σ̃h

+
γµ

h

(
JuhK, JvhK

)
Σ̃h

= 0

(6.12)

for all (vh, qh,wh) ∈ Vh ×Qh ×Wh.

Remark 6.4 It should be noted that the sole differences between (6.9) and (6.12)
are the definition of the discrete fluid space Vh×Qh and the three additional terms
acting on the fictitious fluid-fluid interface Σ̃h.

Standard arguments show that the energy stability (6.10) also holds for (6.12).
The extension of Theorem 6.1 is more delicate due to the lack of regularity in the
vicinity of the interface tip (see, e.g. [Dim04]).

6.2.2 Implementation aspects

The bilinear forms of the space semi-discrete formulations (6.9) and (6.12) require
the evaluation of integrals over cut elements. This is a consequence of the fact that,
for consistency, the fluid equations are integrated only in the physical zone of Ωi,h,
i = 1, 2. This is a non-standard implementation problem which requires a specific
track of the interface intersections (see, e.g., [MLL13]), namely:

• evaluation of the intersections between the unfitted fluid and solid meshes,
i.e., the detection and computation of the cut elements;

• evaluation of the integrals over the cut elements.

This can be challenging in practice, particularly if (as in the present framework)
the unfitted fluid and solid meshes are unstructured. Regarding the first point, a
few algorithms have been recently reported in the literature (see, e.g., [MGW09,
WGMF12, MLL13]). The second is usually faced by sub-dividing the cut elements
into subelements for the purpose of the numerical integration (see, e.g., [FB10,
MGW09]). Such subdivision can however be involved in 3D (particularly for general
unstructured meshes). An alternative is the use of the divergence theorem to obtain
a boundary representation of the integrals (see, e.g., [MLL13, SMdAW14]).

Furthermore, the construction of the overlapping meshes T f
1,h and T f

2,h requires,
in practice, the duplication of the elements that are intersected by the interface.
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6.2.2.1 Mesh intersection and subtriangulation

In the numerical examples of Section 6.4, a customized 2D algorithm, that si-
multaneously yields the mesh intersections and the cut elements subdivisions (see
Figure 6.6), has been used. Its main steps are the following:

1. We first localize all the solid mesh vertices inside the fluid mesh. This is
carried out using a barycentric coordinates based algorithm, which efficiently
identifies the element of the fluid mesh containing a given point (see, e.g.,
[FG08, Section 2.10] or [AM10, Section 3] for details). Once localized, the
solid vertices are inserted into the fluid mesh. For efficiency, simple insertion
patterns are used, instead of complex vertex insertion operators (such as the
Delaunay kernel [FG08]). In this regard, it is worth recalling that the quality
of the intersected mesh is definitely not a concern here, whose sole purpose is
numerical quadrature in cut elements (not interpolation). Therefore, simple
mesh validity suffices. When a point is inserted into a 2D mesh composed of
triangles, three cases may arise (two of them being degenerated):

• the point falls inside a triangle, then the triangle is split into three trian-
gles;

• the point is on a mesh edge, then the edge is split into two and the two
triangles sharing this edge are split into two triangles;

• the point coincides with an existing mesh vertex, then nothing is done.

This step is illustrated in Figures 6.6(a)–6.6(b).

2. We consider a partitioning algorithm (see, e.g., [GBS03]) to insert the structure
mesh edges into the mesh resulting from step 1. Each edge is treated one at
a time. Its endpoints are vertices of the current (intersected) mesh thanks
to step 1. Let AB be an edge of the solid mesh. Starting from one of its
endpoints, say A, we seek for the first current mesh edge intersected by AB.
The intersection point P1 is computed (see [AM10, Section 5] for details) and
inserted into the current mesh. The two triangles sharing the intersected edge
containing P1 are split into two triangles. At this stage, part of edge AB (i.e.,
the segment AP1) has been added to the current mesh. Then, the process is
pursued by seeking for the intersection between subedge P1B and the current
mesh edges, which will give a new intersection point P2 and so on. If after
n intersection steps the subedge PnB belongs to the current mesh, the whole
solid edge AB has been inserted into this mesh. It should be noted that,
for efficiency, this algorithm works only locally and progresses only through
neighboring elements. This step is illustrated in Figures 6.6(b)-6.6(c).

Once the mesh intersection has been resolved via the above two steps, the data
structures needed for the element duplication and integration over cut elements in
formulations (6.9) and (6.12) are updated accordingly.
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(a) (b) (c)

Figure 6.6: Main steps of the mesh intersection algorithm: (a) initial state where
the solid mesh (in red) and the fluid mesh are not fitted; (b) end of step 1 where the
solid mesh vertices have been inserted inside the fluid mesh; (c) end of step 2 where
the solid mesh edges have been enforced inside the fluid mesh by a partitioning
method. The resulting mesh is the intersected mesh where both meshes are fitted.

6.2.2.2 Element duplication

In practice, we construct the overlapping meshes T f
1,h and T f

2,h starting from
a conforming triangulation T f

h of the whole fluid domain Ωf and duplicating the
elements that are intersected by the interface. The procedure goes as follows. Let

Gh def
=
{
K ∈ T f

h

/
K ∩ Σ 6= ∅

}

be the subset of elements intersected by Σ, given by the procedure of the previous
section. For each element K ∈ Gh, with nodes {i, j, k}, we consider a duplication
{i′, j′, k′} of its nodes. If a node l has been already duplicated, we assume that
l′ refers to the preexisting duplication. Suppose that the node i is in Ω1 whereas
j, k are in Ω2 (see Figure 6.7). We consider two identical copies K ′ and K ′′ of K
defined by the set of elements {i, j′, k′} and {i′, j, k}, respectively (see Figure 6.7).
At the end of this process, we have, de facto, two independent meshes T f

1,h and T f
2,h

covering Ω1 and Ω2, respectively. Note that the correct connectivity of the meshes is
guaranteed by keeping the original nodes on each side of the interface and checking
for preexisting node duplications.

6.2.2.3 Integration over cut elements

Consider the situation depicted in the top-left picture of Figure 6.8, in which an
element K ∈ Gh is completely intersected by an edge of the solid mesh. In that case,
the procedure described in Section 6.2.2.1 gives a subtriangulation {K1,K2,K3} of
K and determines the subsegment S of the solid mesh edge that is intersected by
K.

Let φ be a function defined in K. This section is devoted to the approximation
of integrals of the form

∫
Ki
φ(x) dx, for i ∈ {1, 2, 3}, and

∫
S φ(x) dS. These compu-

tations are needed, respectively, for the evaluation of the fluid’s bulk and Nitsche’s
interfacial terms in the space semi-discrete formulations (6.9) and (6.12). In the
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Figure 6.7: Duplication of an intersected element.

following, the reference 2D triangle is given by K̂ with nodes {(0, 0), (1, 0), (0, 1)}
and the 1D reference segment is given by Ŝ def

= [−1, 1]. We denote by T
K̂→K and

T
Ŝ→S , the standard mappings from K̂ to K and from Ŝ to S, respectively. As usual,

we will make use of quadrature formulas over the reference elements to approximate
the above integrals. In the following formulae, we assume that we can evaluate the
function φ̂ = φ ◦ T

K̂→K over K̂.

K1

K2

K3 eK3

eK1

eK2

bKK

T bK!K

T bK! eK1

T bK! eK2

T bK! eK3

S
eS

�1 1

bS T bS!eS

Figure 6.8: Subintegration maps.

Let us consider first, the integration over the volume subelements. The gradient
and Jacobian of the transformation T

K̂→K are given by

F
K̂→K

def
= ∇T

K̂→K , J
K̂→K

def
= detF

K̂→K .

The image of Ki ⊂ K under the transformation (T
K̂→K)−1 is denoted by K̃i ⊂

K̂, for i ∈ {1, 2, 3}. We consider also the mappings T
K̂→K̃i from K̂ to K̃i, with

corresponding tensors F
K̂→K̃i and JK̂→K̃i , for i ∈ {1, 2, 3}. Using successively the
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change of variables x = T
K̂→K(x̃) and x̃ = T

K̂→K̃i(ξ̂l), we may write

∫

Ki

φ(x) dx =

∫

K̃i

φ(T
K̂→K(x̃))J

K̂→K(x̃) dx̃

=

∫

K̃i

φ̂(x̃)J
K̂→K(x̃) dx̃

=

∫

K̂
φ̂(T

K̂→K̃i(x̂))J
K̂→K(T

K̂→K̃i(x̂))J
K̂→K̃i(x̂) dx̂

≈
lq∑

l=1

φ̂(T
K̂→K̃i(ξ̂l))JK̂→K(T

K̂→K̃i(ξ̂l))JK̂→K̃i(ξ̂l)ω̂l

where {ξ̂l}lql=1 are the quadrature points on K̂ with {ω̂l}lql=1 the corresponding
quadrature weights. When using the isoparametric approach with P1 finite ele-
ments, the Jacobians are constant and the approximation of the integral writes,

∫

Ki

φ(x) dx ≈
lq∑

l=1

φ̂(T
K̂→K̃i(ξ̂l))JK̂→KJK̂→K̃iω̂l. (6.13)

Formula (6.13) requires the computation of the points T
K̂→K̃i(ξ̂l) ∈ K̃i.

Let us consider now the integration over the interface subsegment. The gradient
and metric tensor associated to T

Ŝ→S are given by

F
Ŝ→S

def
= ∇T

Ŝ→S , a
Ŝ→S

def
= (F

Ŝ→S)TF
Ŝ→S .

The image of S under the transformation (T
K̂→K)−1 is denoted by S̃. In the same

fashion as above, we consider the mapping T
Ŝ→S̃ with the associated tensors F

Ŝ→S̃
and a

Ŝ→S̃ . Owing to the properties of the Piola transform (see [Cia88, Theorem
1.7-1]), we may write
∫

S
φ(x) dS =

∫

S̃
φ(T

K̂→K(x̃))J
K̂→K(x̃)‖(F

K̂→K)−T(x̃)ñ‖ dS̃

=

∫

Ŝ
φ̂(T

Ŝ→S̃(x̂))J
K̂→K(T

Ŝ→S̃(x̂))‖(F
K̂→K)−T(T

Ŝ→S̃(x̂))ñ‖
√

det a
Ŝ→S̃(x̂) dŜ

≈
l∂q∑

l=1

φ̂(T
Ŝ→S̃(ξ̂∂l ))J

K̂→K(T
Ŝ→S̃(ξ̂∂l ))‖(F

K̂→K)−T(T
Ŝ→S̃(ξ̂∂l ))ñ‖

√
det a

Ŝ→S̃(ξ̂∂l )ω̂∂l ,

where ñ is the normal to S̃, and we have considered a quadrature on Ŝ with l∂q
points. Under a P1 isoparametric approach, the above formula reduces to

∫

S
φ(x) dS ≈

l∂q∑

l=1

φ̂(T
Ŝ→S̃(ξ̂∂l ))J

K̂→K‖(FK̂→K)−Tñ‖
√

det a
Ŝ→S̃ ω̂

∂
l . (6.14)
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Formula (6.14) requires the computation of the points T
Ŝ→S̃(ξ̂∂l ) ∈ S̃.

6.2.3 Time discretization: fully discrete schemes

This section is devoted to the time discretization of the unfitted spatial semi-
discrete formulations (6.9) and (6.12). In order to simplify the presentation, we
mainly consider the case of (6.9). The extension to (6.12) simply follows by adding
suitable fluid terms (see Remark 6.4). Several coupling strategies will be discussed,
which differ in their degree of fluid-solid splitting: implicit, explicit and semi-implicit
nature (Algorithms 6.1-6.3 below). These schemes generalize Algorithms 5.1, 1.4 and
5.2, respectively, to the case of coupling with an immersed thin-walled structure.
The theoretical discussion on the stability and accuracy of the methods introduced
will be substantiated by numerical experiments in Section 6.4.1.

As usual in this manuscript, τ > 0 denotes the time-step length, tn
def
= nτ for

n ∈ N, and ∂τx
n def

= 1
τ

(
xn − xn−1

)
stands for the first-order backward difference.

The superscript n,? will denote explicit extrapolations of order r ∈ {0, 1, 2} to xn,
namely,

xn,?
def
=





0 if r = 0,

xn−1 if r = 1,

2xn−1 − xn−2 if r = 2.

6.2.3.1 Implicit coupling scheme

An overall backward Euler time-stepping of (6.9) yields the implicit coupling
scheme reported in Algorithm 6.1. This guarantees unconditional stability and
optimal accuracy. In particular, by denoting

En
def
=

ρf

2
‖unh‖20,Ωf +

ρs

2
‖
.
dnh‖20,Σ +

1

2
‖dnh‖2s ,

the total energy of the discrete system at time tn, and by

En def
=

(
ρf

2
‖unh − u(tn)‖20,Ωf +

ρsε

2
‖
.
dnh −

.
d(tn)‖20,Σ +

1

2
‖dnh − d(tn)‖2s

) 1
2

,

the energy norm of the approximation error, the following theorem holds. We recall
that ., & denote inequalities up to multiplicative constants independent of h and
τ .

Theorem 6.2 Let {(unh, pnh,
.
dnh,d

n
h)}n≥1 be the sequence given by Algorithm 6.1.

Then, for γ > 0 given by Lemma 6.1 and n ≥ 1, there holds

En ≤ E0.

Moreover, under for smooth enough solutions, the following a priori error estimate
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holds
En . h+ τ.

Proof. The first result is a straightforward consequence of Lemma 6.1, after
taking (vh, qh,wh) = (unh, p

n
h,
.
dnh) in (6.15). This generalizes the result presented

in Remark 5.3. The a priori error estimate readily follows from the arguments
reported in Corollary 5.2.

Algorithm 6.1 Implicit coupling scheme.
For n ≥ 1, find

(
unh, p

n
h,
.
dnh,d

n
h

)
∈ Vh ×Qh ×Wh ×Wh, such that

.
dh = ∂τd

n
h and





ρf
(
∂τu

n
h,vh

)
Ωf + af

h

(
(unh, p

n
h), (vh, qh)

)
+ ρsε

(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh)

−
2∑

i=1

(
σ(uni,h, p

n
i,h)ni,vi,h −wh

)
Σ
−

2∑

i=1

(
uni,h −

.
dni,h,σ(vi,h,−qi,h)n

)
Σ

+
γµ

h

2∑

i=1

(
uni,h −

.
dnh,vi,h −wh

)
Σ

= 0

(6.15)

for all (vh, qh,wh) ∈ Vh ×Qh ×Wh.

Therefore, due to Theorem 6.2, Algorithm 6.1 exhibits optimal first-order accu-
racy (in the energy norm) both in time and space. The price to pay for the above
unconditional stability and accuracy properties of Algorithm 6.1, is that, at each
time level, the fluid (unh, p

n
h) and solid (

.
dnh,d

n
h) states are fully coupled, which can

be computationally demanding in practice. Indeed, besides the hybrid nature of
the coupled problem, general thin-walled solid models discretized by finite elements
are known to yield very ill-conditioned stiffness matrices requiring specific solvers
(see, e.g., [GRW05]). In the next two sections, we introduce two alternative time
discretizations of (6.9) with a certain degree of splitting between the time-stepping
of the fluid and of the solid.

6.2.3.2 Stabilized explicit schemes

We consider the stabilized explicit coupling paradigm reported in Section 1.4.3.4.
We apply here those ideas to the Nitsche-XFEM spatial semi-discrete formulation
(6.9). To this purpose, we first formulate (6.9) in terms of two coupled subproblems
by successively taking (vh, qh) = (0, 0) and wh = 0 in (6.9). This yields:

• Solid subproblem:



ρsε
(
∂t
.
dh,wh

)
Σ

+ as(dh,wh) +
(
Jσ(uh, ph)nK,wh

)
Σ

+
2γµ

h

( .
dh − {{uh}},wh

)
Σ

= 0
(6.16)

for all wh ∈Wh.
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• Fluid subproblem:




ρf
(
∂tuh,vh

)
Ωf + af

h

(
(uh, ph), (vh, qh)

)
−

2∑

i=1

(
σ(ui,h, pi,h)ni,vi,h

)
Σ

−
2∑

i=1

(
ui,h −

.
dh,σ(vi,h,−qi,h)ni

)
Σ

+
γµ

h

2∑

i=1

(
ui,h −

.
dh,vi,h

)
Σ

= 0

(6.17)
for all (vh, qh) ∈ Vh ×Qh.

We combine a backward Euler time-stepping of the fluid and solid bulk terms in
(6.16)-(6.17) with an explicit treatment of the interface coupling terms. More pre-
cisely, for n ≥ 1, we have:

1. Solid substep: find
( .
dnh,d

n
h

)
∈Wh ×Wh with

.
dnh = ∂τd

n
h and such that





ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) +
2γµ

h

( .
dnh,wh

)
Σ

=
2γµ

h

(
{{un−1

h }},wh

)
Σ
−
(
Jσ(un−1

h , pn−1
h )nK,wh

)
Σ

(6.18)

for all wh ∈Wh.

2. Fluid substep: find (unh, p
n
h) ∈ Vh ×Qh such that





ρf
(
∂τu

n
h,vh

)
Ωf + af

h

(
(unh, p

n
h), (vh, qh)

)
+
γµ

h

2∑

i=1

(
uni,h,vi,h

)
Σ

−
2∑

i=1

(
uni,h −

.
dnh,σ(vi,h,−qi,h)ni

)
Σ

+
γ0h

γµ

2∑

i=1

(
pni,h − pn−1

i,h , qi,h
)

Σ

=
γµ

h

2∑

i=1

( .
dnh,vi,h

)
Σ

+
2∑

i=1

(
σ(un−1

i,h , pn−1
i,h )ni,vi,h

)
Σ

(6.19)

for all (vh, qh) ∈ Vh ×Qh.

A salient feature of this approach is that the explicit treatment of the interface cou-
pling in (6.18) uncouples the computation of (

.
dnh,d

n
h) and (unh, p

n
h). The fundamental

ingredient for the stabitity of the scheme is the weakly consistent term

γ0h

γµ

2∑

i=1

(
pni,h − pn−1

i,h , qi,h
)

Σ
, γ0 > 0,

which controls the temporal interface pressure fluctuations induced by the fluid-solid
splitting in time and, hence, avoids added-mass stability issues. It corresponds to
the two-sided extension of the term (1.76).

The next result establishes the conditional stability of the fully discrete method
(6.18)-(6.19).
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Theorem 6.3 Let {(unh, pnh,
.
dnh,d

n
h)}n≥1 be the sequence given by (6.18)-(6.19).

Then, under conditions γ & CTI/c̃g, γτ . h and γ0 & 1, there holds

En . E0 +
2∑

i=1

(
µ‖u0

i,h‖20,Σ + µ‖ε(u0
i,h)‖20,Ωi,h +

γ0h

γµ
τ‖p0

i,h‖20,Σ
)

for n ≥ 1.

Proof. Similarly to Theorem 1.4, the result follows by combining Lemma 6.1 with
the arguments reported in [BF09, Section 5.1].

Like Algorithm 1.4, the main drawback of the scheme (6.18)-(6.19) is that it
delivers poor accuracy in practice. More precisely, the explicit treatment of the
penalty term in the solid substep (6.18), i.e,

2
γµ

h

( .
dnh − {{un−1

h }},wh

)
Σ
, (6.20)

induces an splitting error O (τ/h) which is not uniform in h. In the spirit of
[BF14a, BF14b], we propose to circumvent this issue by combining (6.18)-(6.19)
with a predictor-corrector strategy (with K ≥ 0 corrections). The resulting solution
procedure is detailed in Algorithm 6.2, where we have used the notation

∂τx
n,k def

=
1

τ
(xn,k − xn−1).

The key idea is that if, instead of the first-order extrapolation (6.20), we consider a
second-order extrapolation of the fluid velocity (r = 2), afterK correction iterations,
the error induced by the explicit treatment of the penalty term becomes

O
((
τ2/h

)K+1
)

(6.23)

As a result, the contribution of the penalty term becomes O
(
τ2/h) with K = 0

and, hence, τ = O(h) suffices to achieve overall first-order accuracy. Nevertheless,
numerical evidence indicates that K ≥ 1 is mandatory for stability (see, e.g., the
discussion of Section 6.4.2.2).

Remark 6.5 The original stabilized explicit coupling scheme (6.18)-(6.19) can be
retrieved from Algorithm 6.2 by taking K = 0 (no correction) and with first-order
extrapolation for the initial guess of the fluid velocity (r = 1). On the other hand,
if we let K →∞ the splitting error (6.23) tends to zero and we retrieve the implicit
coupling solution provided by Algorithm 6.1. In other words, Algorithm 6.2 with
enough correction iterations (i.e., until convergence) provides a partitioned iterative
solution procedure for Algorithm 6.1.
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Algorithm 6.2 Stabilized explicit coupling scheme with K ≥ 0 corrections.
For n ≥ 1:

1. Set initial guess for predictor:

un,0h = un,?h , pn,0h = pn−1
h , dn,0h = dn−1

h ,
.
dn,0h =

.
dn−1
h .

2. Correction iterations. For k = 1, . . . ,K + 1:

(a) Find
( .
dn,kh ,dn,kh

)
∈Wh ×Wh with

.
dn,kh = ∂τd

n,k
h and such that





ρsε
(
∂τ

.
dn,kh ,wh

)
Σ

+ as(dn,kh ,wh) +
2γµ

h

( .
dn,kh ,wh

)
Σ

=
2γµ

h

(
{{un,k−1

h }},wh

)
Σ
−
(
Jσ(un,k−1

h , pn,k−1
h )nK,wh

)
Σ

(6.21)

for all wh ∈Wh.

(b) Find (un,kh , pn,kh ) ∈ Vh ×Qh such that




ρf
(
∂τu

n,k
h ,vh

)
Ωf + af

h

(
(un,kh , pn,kh ), (vh, qh)

)
+
γµ

h

2∑

i=1

(
un,ki,h ,vi,h

)
Σ

−
2∑

i=1

(
un,ki,h −

.
dn,kh ,σ(vi,h,−qi,h)ni

)
Σ

+
γ0h

γµ

2∑

i=1

(
pn,ki,h − p

n,k−1
i,h , qi,h

)
Σ

=
γµ

h

2∑

i=1

( .
dn,kh ,vi,h

)
Σ

+
2∑

i=1

(
σ(un,k−1

i,h , pn,k−1
i,h )ni,vi,h

)
Σ

(6.22)
for all (vh, qh) ∈ Vh ×Qh.

3. Set
unh = un,K+1

h , pnh = pn,K+1
h , dnh = dn,K+1

h ,
.
dnh =

.
dn,K+1
h .

6.2.3.3 Semi-implicit schemes

The main drawback of the explicit coupling schemes introduced in the previous
section is that the splitting error is not uniform in h. Enough correction iterations
with suitable predictions (Algorithm 6.2) are hence needed to enhance accuracy.
In this section, we propose to overcome these issues by extending the operator
splitting approach reported in Section 5.2.1 to the Nitsche-XFEM spatial semi-
discrete formulation (6.9). The resulting schemes deliver stability and overall first-
order accuracy (uniform in h) while keeping a certain degree of fluid-solid splitting
(semi-implicit coupling schemes).

To this purpose, we consider the following fractional-step time-marching of (6.9):
for n > 1,
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1. Find
(
unh, p

n
h,
.
d
n− 1

2
h

)
∈ Vh ×Qh ×Wh such that





ρf
(
∂τu

n
h,vh

)
Ωf + af

h

(
(unh, p

n
h), (vh, qh)

)
+
ρsε

τ

( .
d
n− 1

2
h −

.
dn−1
h ,wh

)
Σ

−
2∑

i=1

(
σ(uni,h, p

n
i,h)ni,vi,h −wh

)
Σ
−

2∑

i=1

(
uni,h −

.
d
n− 1

2
h ,σ(vi,h,−qi,h)ni

)
Σ

+

2∑

i=1

γµ

h

(
uni,h −

.
d
n− 1

2
h ,vi,h −wh

)
Σ

= −as
(
dn,?h ,wh

)
.

(6.24)
for all (vh, qh,wh) ∈ Vh ×Qh ×Wh.

2. Find
( .
dnh,d

n
h

)
∈Wh ×Wh with

.
dnh = ∂τd

n
h and such that

ρsε

τ

( .
dnh −

.
d
n− 1

2
h ,wh

)
Σ

+ as
(
dnh,wh

)
= as

(
dn,?h ,wh

)
(6.25)

for all wh ∈Wh.

The introduction in step (6.24) of the intermediate solid-velocity
.
d
n− 1

2
h enables the

implicit treatment of the solid inertia within the fluid. This is enough to guarantee
added-mass free stability. The remaining solid elastic contributions are treated
explicitly (or ignored) via extrapolation. The end-of-step velocity

.
dnh ∈ Wh is

recovered by solving the solid problem (6.25). Note that unlike, Algorithm 6.2, the
scheme (6.24)-(6.25) does not involve any correction iteration.

Remark 6.6 The relation (6.24) has somme similarities with the explicit time-
splitting procedures commonly used in the immersed boundary (IB) method (see,
e.g., [Pes02, NFGK07, BCG11]). Indeed, substep (6.24) simultaneously includes the
fluid and solid inertia whereas the solid elastic contributions are treated explicitly.
The key difference concerns the solid substep (6.25), which in the IB method consists
of a simple displacement-velocity relation (i.e., the structure solver is never called),
which in practice enforces restrictive CFL conditions for stability. Theorem 6.4
below shows that (6.24)-(6.25) circumvents this issue.

It is worth noting that the semi-implicit coupling scheme provided by (6.24)-
(6.25) has a reduced computational complexity with respect to Algorithm 6.1. In-
deed, the solid contribution to (6.24) reduces to a simple interface mass-matrix,
which does not degrade the conditioning of the system matrix. This reduction in
the coupling complexity is particularly important when considering general shell
models (see, e.g., [CB11]), whose elastic contributions incorporate additional un-
knowns (e.g., rotations). Moreover, unlike Algorithm 6.2, the scheme (6.24)–(6.25)
does not involve any correction iteration.

As in Section 5.2.1, the solid step (6.25) can be reformulated as a standard solid
problem. Indeed, by taking vh = 0 and qh = 0 in (6.24) and adding the resulting
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expression to (6.25), we get

ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) =−
(
Jσ(unh, p

n
h)nK,wh

)
Σ

+
2γµ

h

(
{{unh}} −

.
d
n− 1

2
h ,wh

)
Σ

(6.26)
for all wh ∈ Wh. We can also avoid the extrapolations of the solid elastic term
in (6.24) (which can be cumbersome in practice), by reformulating step (6.24) in a
more intrinsic fashion. To this purpose, we note that from (6.26), we have

as(dn,?h ,wh) =− ρsε
(
∂τ

.
dn,?h ,wh

)
Σ
−
(
Jσ(un,?h , pn,?h )nK,wh

)
Σ

+
2γµ

h

(
{{un,?h }} −

.
d
n− 1

2
,?

h ,wh

)
Σ

(6.27)

for all wh ∈ Wh and n > r. Owing to (6.26) and (6.27), the semi-implicit scheme
(6.24)-(6.25) can be reformulated as shown in Algorithm 6.3.

Algorithm 6.3 Semi-implicit coupling scheme.
For n > r:

1. Fluid-with-solid-inertia substep: find
(
unh, p

n
h,
.
d
n− 1

2
h

)
∈ Vh × Qh ×Wh such

that




ρf
(
∂τu

n
h,vh

)
Ωf + af

h

(
(unh, p

n
h), (vh, qh)

)
+
ρsε

τ

( .
d
n− 1

2
h ,wh

)
Σ

−
2∑

i=1

(
σ(uni,h, p

n
i,h)ni,vi,h −wh

)
Σ
−

2∑

i=1

(
uni,h −

.
d
n− 1

2
h ,σ(vi,h,−qi,h)ni

)
Σ

+
2∑

i=1

γµ

h

(
uni,h −

.
d
n− 1

2
h ,vi,h −wh

)
Σ

=
ρsε

τ

( .
dn−1
h + τ∂τ

.
dn,?h ,wh

)
Σ

+
(
Jσ(un,?h , pn,?h )nK,wh

)
Σ
− 2γµ

h

(
{{un,?h }} −

.
d
n− 1

2
,?

h ,wh

)
Σ

(6.28)
for all (vh, qh,wh) ∈ Vh ×Qh ×Wh.

2. Solid substep: find
( .
dnh,d

n
h

)
∈Wh ×Wh with

.
dnh = ∂τd

n
h and such that




ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) =−
(
Jσ(unh, p

n
h)nK,wh

)
Σ

+
2γµ

h

(
{{unh}} −

.
d
n− 1

2
h ,wh

)
Σ

for all wh ∈Wh.

Remark 6.7 Algorithm 6.3 with r = 1, 2 is a multi-step method on the interface.
Thus, additional data is needed to start the time-marching. In practice, this data
can be obtained by performing one step of the scheme with r = 0 and then one step
of the scheme with r = 1.



6.3. The non-linear case: dynamic interfaces 193

The following result states the stability and convergence properties of the semi-
implicit schemes reported in Algorithm 6.3.

Theorem 6.4 Let {(unh, pnh,
.
d
n− 1

2
h ,dnh,

.
dnh)}n>r be the sequence given by Algo-

rithm 6.3, initialized as indicated in Remark 6.7 for r ≥ 1. Let γ > 0 be given by
Lemma 6.1. There holds

En ≤ E0

for all n > r, unconditionally for r ∈ {0, 1} and under the CFL-like condition
τ . αh

6
5 , τα < 1 and α > 0, for r = 2. In addition, for smooth enough solutions,

there holds
En . h+ τ + τ2r−1

.

Proof. The result follows from a straightforward adaptation of the arguments used
in Theorem 5.1 and Corollary 5.1

The contribution of the splitting error in the a priori energy estimate of Theo-
rem 6.4 is given by the O(τ2r−1

) term. Note that this guarantees the h-uniformity
of the error, which is a major advantage with respect to Algorithm 6.2. Moreover,
Algorithm 6.3 with r = 1 simultaneously yields unconditional stability and overall
first-order accuracy, without resorting to any correction iteration.

Remark 6.8 Algorithms 6.1-6.3 can be adapted to the time discretisation of
(6.12) with minor modifications. Indeed, it suffices to add the corresponding fic-
titious fluid-fluid interface terms

−
(
{{σ(unh, p

n
h)}}n, JvhK

)
Σ̃h
−
(
{{σ(vh,−qh)}}n, JunhK

)
Σ̃h

+
γµ

h

(
JunhK, JvhK

)
Σ̃h

to the discrete problems (6.15), (6.22) and (6.28), respectively.

6.3 The non-linear case: dynamic interfaces

In this section we extend the numerical methods of Section 6.2.3 to the case
of a non-linear fluid-structure interaction problem, involving an incompressible vis-
cous fluid and an immersed thin-walled structure. The fluid is described by the
incompressible Navier-Stokes equations in Eulerian form (1.1) and the structure by
a (possibly) non-linear membrane or shell model.

6.3.1 Problem setting

Let Σ ⊂ Rd be the reference configuration of the solid mid-surface. The cur-
rent position of the interface, denoted by Σ(t), is parametrized by the one-to-one
deformation map φ : Σ × R+ −→ Rd as Σ(t) = φ(Σ, t), with φ def

= IΣ×R+ + d and
where d denotes the displacement of the solid. In order to ease the presentation,
we introduce the notation φt

def
= φ(·, t), so that we also have Σ(t) = φt(Σ). The
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structure is supposed to move within a domain Ωf ⊂ Rd with boundary Γf def
= ∂Ωf

(see Figure 6.9). For simplicity and without loss of generality, Ωf is assumed to be
fixed. The fluid is described in the time-dependent control volume

Ωf(t)
def
= Ωf\Σ(t) ⊂ Rd,

with its boundary partitioned as ∂Ωf(t) = Σ(t) ∪ Γf .

⌦f(t)

�f

Figure 6.9: Geometric description.

The considered non-linear coupled problem reads as follow: find the fluid velocity
and pressure u : Ωf × R+ → Rd, p : Ωf × R+ → R and the solid displacement and
velocity d : Σ× R+ → Rd,

.
d : Σ× R+ → Rd such that





Ωf(t)
def
= Ωf\Σ(t), Σ(t) = φt(Σ), φt

def
=IΣ + d(t),

ρf
(
∂tu+ (u · ∇)u

)
− divσ(u, p) = 0 in Ωf(t),

divu = 0 in Ωf(t),

u = 0 on Γf ,

(6.29)





u1 = u2 =
.
d ◦ φ−1

t on Σ(t),

d(t) ∈W ,
.
d = ∂td,

ρsε
(
∂t
.
d,w

)
Σ

+ as
(
d,w) = −

∫

Σ(t)
Jσ(u, p)nK ·w ◦ φ−1

t ∀w ∈W ,

(6.30)

complemented with standard initial conditions u(0) = u0, d(0) = d0 and
.
d(0) =

.
d0.

We recall that W ⊂ [H1(Σ)]d denotes the space of solid admissible displacements
and as : W ×W → R describes the (possibly non-linear) elastic behavior of the
structure.

For the fluid, we consider the same velocity and pressure functional spaces as in
Section 6.2 and we introduce the convective trilinear form

cΩf (z,u,v)
def
=ρf

(
z ·∇u,v)

Ωf . (6.31)
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We recall that, if z ∈ {v ∈ V / divv = 0 in Ωf}, using integration by parts we have

cΩf (z,v,v) = 0 ∀v ∈ V . (6.32)

The weak form of the linear coupled problem (6.29)-(6.30) reads as follows: for
t > 0, find

(u(t), p(t),d(t),
.
d(t)) ∈ V ×Q×W ×W

such that 



φt = IΣ + d(t), Σ(t) = φt(Σ),

u1 = u2 =
.
d ◦ φ−1

t on Σ(t),
.
d = ∂td,

ρf(∂tu,v)Ω + cΩf (u,u,v) + af
Ωf

(
(u, p), (v, q)

)

+ ρsε
(
∂t
.
d,w

)
Σ

+ as(d,w) = 0

(6.33)

for all (v, q,w) ∈ V ×Q×W with v|Σ(t) = w ◦ φ−1
t .

Assuming that as(d, ∂td) = 1
2∂ta

s(d,d), taking (v, q,w) = (u(t), p(t),
.
d(t)) in

(6.33) and using (6.32) we retrieve an energy equality similar to (6.4).

6.3.2 Numerical methods

The next section presents the formulation of the numerical methods introduced in
Section 6.2.3 within the framework of the non-linear coupled problem (6.29)-(6.30).
The basic idea consists in combining the different coupling paradigms with an ex-
plicit treatment of the geometrical compatibility (6.29)1. Finally, in Section 6.3.2.2,
we briefly comment on how to handle the integration of quantities associated with
different time levels.

6.3.2.1 Nitsche-XFEM formulation and coupling schemes

For simplicity, we assume that Ωf and Σ are polyhedral. We consider the general
case in which the interface partially intersects the fluid domain (see Figure 6.9). The
approximation space for the solid, Wh, is the same as in Section 6.2.1. For a given
discrete displacement dn−1

h ∈Wh at time level n−1, we introduce its corresponding

deformation map φn−1
h

def
= IΣ + dn−1

h . The current configuration (i.e., at time level
n) of the discrete interface is defined as

Σn
h

def
= φn−1

h (Σ). (6.34)

In other words, the geometric compatibility (6.29)1 is treated in an explicit fashion.
For the construction of the fluid discrete spaces, we proceed as in Section 6.2.1.3

with the sole difference that, in the present framework, the fluid-solid interface Σn
h

depends on the discrete displacement dn−1
h . As a result, the fictitious fluid-fluid

interface Σ̃n
h ∪ Σ̂n

h and the fluid spaces, V n
h and Qnh given by (6.11), depend both

on the mesh step h and on the time level n. We recall that the functions of these
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spaces are continuous in the fluid domain

Ωn
h

def
= Ωf\

(
Σn
h ∪ Σ̃n

h

)
,

but discontinuous across the moving interface Σn
h ∪ Σ̃n

h.
It should be noted that the discrete fluid velocities do not satisfy the assumptions

of (6.32), namely, they are not divergence free and V n
h 6⊂ V . Therefore, we need to

modify the trilinear form (6.31) in order to retrieve a suitable discrete counterpart
of (6.32). This is a well-known issue when dealing with discontinuous Galerkin
approximations of the Navier-Stokes equations (see, e.g., [DPE12, Section 6.2.2]).
The key idea consists in combining the so-called Temam’s trick with the fact that,
owing to (6.30)1, the velocity field u is continuous across Σn

h ∪ Σ̃n
h. To this purpose,

we introduce the discrete trilinear form

cnh(zh,uh,vh)
def
= cΩnh

(zh,uh,vh) +
ρf

2

(
(divzh)uh,vh

)
Ωnh

− ρf
(
{{zh}} · nJuhK, {{vh}}

)
Σnh∪Σ̃nh

− ρf

2

(
Jzh · nK, {{uh · vh}}

)
Σnh∪Σ̃nh

.

Note that the last three terms are strongly consistent. Moreover, using integration
by parts in Ωn

h we can infer that, if zh ∈ V n
h , there holds

cnh(zh,vh,vh) = 0 ∀vh ∈ V n
h . (6.35)

To cope with the numerical instabilities related to the inf-sup incompatibility
of the discrete spaces and to large local Reynolds numbers, we need to resort to
a stabilisation method (see, e.g., [BH82, HFB86, Tez92, Cod02, BFH06, BBJL07,
BF07, GT10, APV15] and the references therein). The objective of such a proce-
dure is basically twofold: guarantee the well-posedness of the discrete problem and
improve the convergence of the approximations while limiting the propagation of
spurious oscillations. A successful approach is the so-called SUPG/PSPG method
(see, e.g., [BH82, HFB86, Tez92]), which offers an unified treatment of the velocity
and pressure stabilization by adding to the Galerkin formulation an element-wise
weighted residual of the equation. The residual based nature of the stabilization
operator guarantees the consistency of the method.

Within the present unfitted framework this last property is more delicate. In-
deed, as discussed in Section 6.2.1.1 (see also [BH14, BF14b]), the theoretical anal-
ysis indicates that the stabilization operator must act on the whole computational
domain, that is, including the fictitious zone of the overlapping region. However,
in this zone, we cannot guarantee that the residual of a smooth extension of the
solution vanishes. An alternative to circumvent this issue (see also [SW14]) is to use
symmetric stabilization methods whose consistency does not rely on the residual
(see, e.g., [Cod02, BFH06, BF07, GT10, APV15]). As an example, we consider here
the continuous interior penalty (CIP) stabilization method of [BFH06, BF07]. To
this purpose, we first introduce the set Fni,h of interior edges or faces of T n,fi,h . The
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Algorithm 6.4 Non-linear version of Algorithm 6.1.
For n ≥ 1,

1. Interface update: φn−1
h = IΣ + dn−1

h , Σn
h = φn−1

h (Σ), Ωn
h = Ωf\

(
Σn
h ∪ Σ̃n

h

)
.

2. Find
(
unh, p

n
h,
.
dnh,d

n
h

)
∈ V n

h ×Qnh ×Wh ×Wh, such that
.
dh = ∂τd

n
h and





ρf
(
∂τu

n
h,vh

)
Ωf + af,n

h

(
unh; (unh, p

n
h), (vh, qh)

)
+ ρsε

(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh)

−
2∑

i=1

(
σ(uni,h, p

n
i,h)ni,vi,h −wh

)
Σnh
−

2∑

i=1

(
uni,h −

.
dnh,σ(vi,h,−qi,h)ni

)
Σnh

−
(
{{σ(unh, p

n
h)}}n, JvhK

)
Σ̃nh
−
(
{{σ(vh,−qh)}}n, JunhK

)
Σ̃nh

+
γµ

h

2∑

i=1

(
uni,h −

.
dnh,vi,h −wh

)
Σnh

+
γµ

h

(
JunhK, JvhK

)
Σ̃nh

= 0

for all (vh, qh,wh) ∈ V n
h ×Qnh ×Wh.

corresponding velocity and pressure stabilization operators are, respectively, given
by the relations

snv,h(zh;uh,vh)
def
=γv,1h

2
2∑

i=1

∑

F∈Fni,h

ξ
(
ReF (zh)

)
‖zh · n‖L∞(F )

(
J∇uhKF , J∇vhKF

)
F

+ γv,2h
2

2∑

i=1

∑

F∈Fni,h

‖zh‖L∞(F )

(
JdivuhKF , JdivvhKF

)
F
,

snp,h(zh; ph, qh)
def
=γph

2
2∑

i=1

∑

F∈Fni,h

ξ
(
ReF (zh)

)

‖zh‖L∞(F )

(
J∇phKF , J∇qhKF

)
F
,

(6.36)
where ReF (zh)

def
= ρf‖zh‖L∞(F )hµ

−1 denotes the local Reynolds number, ξ(x)
def
=

min{1, x} is a cut-off function and γp, γv,i > 0, i = 1, 2, are user-defined parameters.
At last, we collect all the above fluid contributions in a single term

af,n
h

(
zh; (uh, ph), (vh, qh)

) def
= cnh(zh,uh,vh) + af

Ωnh

(
(uh, ph), (vh, qh)

)

+ snv,h(zh;uh,vh) + snp,h(zh; ph, qh) + gnh(uh,vh),
(6.37)

with the time-dependent ghost-penalty operator now given by

gnh(uh,vh)
def
= γgµh

2∑

i=1

∑

F∈Fn,Σi,h

(
J∇ui,hKF , J∇vi,hKF

)
F

(6.38)
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Algorithm 6.5 Non-linear version of Algorithm 6.2.
For n ≥ 1:

1. Interface update: φn−1
h = IΣ + dn−1

h , Σn
h = φn−1

h (Σ), Ωn
h = Ωf\

(
Σn
h ∪ Σ̃n

h

)
.

2. Set initial guess for predictor:

un,0h = un,?h , pn,0h = pn−1
h , dn,0h = dn−1

h ,
.
dn,0h =

.
dn−1
h .

3. Correction iterations. For k = 1, . . . ,K + 1:

(a) Find
( .
dn,kh ,dn,kh

)
∈Wh ×Wh with

.
dn,kh = ∂τd

n,k
h and such that





ρsε
(
∂τ

.
dn,kh ,wh

)
Σ

+ as(dn,kh ,wh) +
2γµ

h

( .
dn,kh ,wh

)
Σnh

=
2γµ

h

(
{{un,k−1

h }},wh

)
Σnh
−
(
Jσ(un,k−1

h , pn,k−1
h )nK,wh

)
Σnh

for all wh ∈Wh.

(b) Find (un,kh , pn,kh ) ∈ V n
h ×Qnh such that





ρf
(
∂τu

n,k
h ,vh

)
Ωf + af,n

h

(
un,kh ; (un,kh , pn,kh ), (vh, qh)

)
+
γµ

h

2∑

i=1

(
un,ki,h ,vi,h

)
Σnh

−
2∑

i=1

(
un,ki,h −

.
dn,kh ,σ(vi,h,−qi,h)ni

)
Σnh

+
γ0h

γµ

2∑

i=1

(
pn,ki,h − p

n,k−1
i,h , qi,h

)
Σnh

−
(
{{σ(un,kh , pn,kh )}}n, JvhK

)
Σ̃nh
−
(
{{σ(vh,−qh)}}n, Jun,kh K

)
Σ̃nh

+
γµ

h

(
Jun,kh K, JvhK

)
Σ̃nh

=
γµ

h

2∑

i=1

( .
dn,kh ,vi,h

)
Σnh

+
2∑

i=1

(
σ(un,k−1

i,h , pn,k−1
i,h )ni,vi,h

)
Σnh

for all (vh, qh) ∈ V n
h ×Qnh.

4. Set unh = un,K+1
h , pnh = pn,K+1

h , dnh = dn,K+1
h ,

.
dnh =

.
dn,K+1
h .

and where Fn,Σi,h denotes the set of interior edges or faces of the elements intersected
by Σn

h.

We now have all the ingredients to extend the numerical methods of Section 6.2.3
to the approximation of the non-linear coupled problem (6.29)-(6.30). By combin-
ing the explicit treatment of the geometric compatibility (6.34) with the implicit
coupling paradigm of Section 6.2.3.1 we get the solution procedure given in Algo-
rithm 6.4.
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Algorithm 6.6 Non-linear version of Algorithm 6.3.
For n > r:

1. Interface update: φn−1
h = IΣ + dn−1

h , Σn
h = φn−1

h (Σ), Ωn
h = Ωf\

(
Σn
h ∪ Σ̃n

h

)
.

2. Find
(
unh, p

n
h,
.
d
n− 1

2
h

)
∈ Vh ×Qh ×Wh such that





ρf
(
∂τu

n
h,vh

)
Ωf + af,n

h

(
unh; (unh, p

n
h), (vh, qh)

)
+
ρsε

τ

( .
d
n− 1

2
h ,wh

)
Σ

−
2∑

i=1

(
σ(uni,h, p

n
i,h)ni,vi,h −wh

)
Σnh
−

2∑

i=1

(
uni,h −

.
d
n− 1

2
h ,σ(vi,h,−qi,h)ni

)
Σnh

+
2∑

i=1

γµ

h

(
uni,h −

.
d
n− 1

2
h ,vi,h −wh

)
Σnh
−
(
{{σ(unh, p

n
h)}}n, JvhK

)
Σ̃nh

−
(
{{σ(vh,−qh)}}n, JunhK

)
Σ̃nh

+
γµ

h

(
JunhK, JvhK

)
Σ̃nh

=
ρsε

τ

( .
dn−1
h + τ∂τ

.
dn,?h ,wh

)
Σ

+
(
Jσ(un,?h , pn,?h )nK,wh

)
Σnh
− 2γµ

h

(
{{un,?h }} −

.
d
n− 1

2
,?

h ,wh

)
Σnh

for all (vh, qh,wh) ∈ V n
h ×Qnh ×Wh.

3. Find
( .
dnh,d

n
h

)
∈Wh ×Wh with

.
dnh = ∂τd

n
h and such that





ρsε
(
∂τ

.
dnh,wh

)
Σ

+ as(dnh,wh) = −
(
Jσ(unh, p

n
h)nK,wh

)
Σnh

+
2γµ

h

(
{{unh}} −

.
d
n− 1

2
h ,wh

)
Σnh

for all wh ∈Wh.

Remark 6.9 In Algorithms 6.4, all the appearances of
.
dnh and wh in the interface

terms of Σn
h must be understood as

.
dnh ◦ (φnh)−1 and wh ◦ (φnh)−1, respectively. The

purpose of this little abuse of notation is simply to ease the presentation.

In Algorithm 6.5 we have reported the non-linear counterpart of the stabilized
explicit coupling paradigm of Section 6.2.3.2. It should be noted that the K ≥
0 corrections are performed with the same configuration of the interface Σn

h. At
last, Algorithm 6.6 presents the extension of the semi-implicit scheme introduced in
Section 6.2.3.3 to the present non-linear framework.

The stability results of Theorems 6.2-6.4 remain valid for Algorithm 6.4, Al-
gorithm 6.5 with K = 0 and r = 1, and Algorithm 6.6, respectively. The proofs
follow by combining the identity (6.35) with the result of Lemma 6.1 and the ar-
guments used in the proofs of the static case (Section 6.2.3). This shows that
the explicit treatment of the interface location in the fluid, (6.34), does not com-
promise the energy stability of the methods. Similar conclusions are known for
strongly coupled time discretizations of the immersed boundary method (see, e.g.,
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[NFGK07, BCG15]).
It should be noted, however, that the semi-implicit schemes of Algorithm 6.6

have a reduced computational complexity with respect to alternative schemes used
in the immersed boundary method (see, e.g., [NFGK07, BCG15]), which treat the
fluid-solid kinematic-dynamic coupling in a fully implicit fashion (strong coupling),
as Algorithm 6.4.

6.3.2.2 Integrals with discontinuous functions at different time levels

At each time level, the first step of Algorithms 6.4-6.6 involves the computation
of the new interface intersections and the new sub-divisions of the cut elements.
In other words, we perform the intersection algorithm of Section 6.2.2.1 at each
time-step. Some of the fluid integrals in Algorithms 6.4-6.6, however, involve fluid
discrete functions associated with different time levels, namely, the bulk term related
to the time-stepping scheme in the fluid,

ρf

τ
(un−1

h ,vh)Ωf ,

and the interface terms

(
σ(un−1

i,h , pn−1
i,h )ni,vi,h

)
Σnh
,

γ0h

γµ

(
pn−1
i,h , qi,h

)
Σnh
,

associated with the fluid-solid splitting of Algorithm 6.5. A practical difficulty arises

(a) (b)

Figure 6.10: The previous solution un−1
h ∈ V n−1

h and the test function vh ∈ V n
h

are discontinuous at different locations, Σn−1
h and Σn

h respectively, within the same
element. The dotted lines represent the value of the functions in the fictitious zone
of the overlapping region and the circles the ghost values (a). Approximation of the
function un−1

h with the discontinuity at Σn
h (b).

whenever (un−1
h , pn−1

h ) ∈ V n−1
h × Qn−1

h and (vh, qh) ∈ V n
h × Qnh are discontinuous

at different locations within the same element. This issue is illustrated in 1D in
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Figure 6.10(a), which shows that the evaluation of the bulk terms is much more
involved than in the static framework of Section 6.2, since the interface locations
at tn−1 and tn have to be considered in the evaluation of the intersections and sub-
divisions of the same element. Instead, we propose to approximate the quantities
defined at tn−1 by shifting the discontinuity to the location of the interface at tn (see
Figure 6.10(b)). Basically, this amounts to evaluate part of the functions defined at
tn−1 in the fictitious zone of the overlapping region. In this sense, it can be viewed
as a class of ghost fluid method (see, e.g., [Fed02]). A similar approach is discussed
in [FZ09] (therein called Alternative 2) in the framework of time-stepping schemes
for XFEM methods with dynamic interfaces.

6.4 Numerical experiments

The purpose of this section is to illustrate, via a series of 2D numerical examples,
the stability and accuracy of the methods introduced in Sections 6.2.3 and 6.3.2.
We consider a simple string model for the solid, so that in (6.2) and (6.30) we have

d = ηn, Led =
(
− λ1∂

2
sη + λ0η

)
n,

where η : Σ × R+ → R denotes the normal displacement and λ1, λ0 > 0 are given
coefficients.

6.4.1 Static interface

We first consider the case of the linear model problem of Section 6.2 (static
interface). The next two paragraphs illustrate numerically the accuracy properties
of Algorithms 6.1-6.3 in two different configurations. We retrieve, in particular, the
convergence rates reported in Section 6.2.3. Along this section, the user-defined
parameters of Algorithms 6.1-6.3 are fixed to γp = 10−3, γg = 1, γ = 103 and (in
Algorithm 6.2) γ0 = 1.

6.4.1.1 Idealized closed valve

The purpose of this first example is to mimic the behavior of a closed valve
under a given pressure drop. We consider a rectangular fluid domain with the thin-
walled solid immersed along its middle cross section (see Figure 6.11). We take
Ω = (0, 4)× (0, 1) and Σ = {2} × (0, 1) in (6.1)-(6.2). All the units are given in the
CGS system. The fluid physical parameters are ρf = 1 and µ = 0.035. For the solid
we have ρs = 1.1, ε = 0.1, λ1 = Eε/(2(1 + ν)) and λ0 = 0, with Young’s modulus
E = 0.75 · 106 and Poisson’s ratio ν = 0.5. The external boundary conditions for
the fluid problem are shown in Figure 6.11. A steady pressure drop of magnitude
P0 = 20000 is enforced between the fluid inlet and outlet boundaries. The structure
is fixed on its extremities.

After a brief transition phase, the system reaches a steady state with a pressure
jump across the interface. For this simple configuration, the exact solution can be
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�(u, p)n = 0�(u, p)n = �P0n

u = 0

u = 0

⌃

Figure 6.11: Geometric configuration and external boundary conditions.

computed analytically. The fluid and solid velocities vanish and the pressure is a
piecewise constant function taking the value P0 on the left side and zero on the right
one. Hence, the solid equation reduces to the single 1D boundary value problem

− λ1∂
2
yη = JpK = P0 in (0, 1), η(0) = η(1) = 0, (6.39)

whose solution is given by

η(y) =
P0

2λ1
y(1− y). (6.40)

This analytic solution is used to evaluate the spatial accuracy of the methods.
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Figure 6.12: Steady state displacement.

Because of the time independent nature of the problem, we limit the discussion
to the implicit scheme given by Algorithm 6.1. We consider four pairs of unfitted
fluid-solid meshes with increasing degree of refinement, namely,

h ∈
{

0.1/2i
}3

i=0
.

For illustration purposes, we have displayed in Figure 6.12 the steady state displace-
ment provided by Algorithm 6.1 for h = 0.1, together with the analytical solution
(6.40) and the approximation obtained with an implicit fitted method. Note that
both the fitted and the unfitted approximations perfectly match the analytical so-
lution. The corresponding pressure fields are reported in Figure 6.13. The unfitted
method is able to perfectly capture the pressure drop without spurious oscillations.
The overlap of the approximation at the interfacial zone is also clearly visible.

Finally, Figure 6.14 presents the convergence history of the displacement approx-
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(a) Fitted method (b) Algorithm 6.1

Figure 6.13: Steady state pressure approximations.
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Figure 6.14: Convergence history in space.

imations in the energy norm, for the fitted and the unfitted methods. As expected,
we retrieve the optimal first-order convergence rate predicted by Theorem 6.2 for
Algorithm 6.1.

6.4.1.2 Pressure-waves

This example is a variant of the problem of the pressure-wave propagation within
an elastic tube described in Section 2.4.1 The fluid domain is given by the rectangle
Ω = (0, 6) × (0, 0.8) and the interface by the segment Σ = (0, 6) × {0.54} (see
Figure 6.15). As in the previous example, all the units are given in the CGS system.
The fluid physical parameters are ρf = 1.0, µ = 0.035. For the solid we have
ρs = 1.1, ε = 0.1, λ1 = Eε/(2(1 + ν)) and λ0 = Eε/(0.25(1 − ν2)), with Young’s
modulus E = 0.75·106 and Poisson’s ratio ν = 0.5. The boundary conditions for the
fluid are reported in Figure 6.15. On the inlet boundary {0} × [0, 0.54] we impose
a sinusoidal pressure pin(t), of maximal amplitude 2 · 104, during 5 · 10−3 seconds
(half a period). The solid is clamped on its extremities.

⌃ uy = 0

uy = 0

uy = 0

uy = 0
uy = 0

(�(u, p)n)x = �pin(t)

(�(u, p)n)x = 0
(�(u, p)n)x = 0

Figure 6.15: Geometric configuration and external boundary conditions.

Figure 6.16 shows some snapshots of the elevated pressure field at three different
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time instants obtained with an implicit fitted method and Algorithm 6.1. The zooms
included in Figures 6.16(a) and 6.16(b) illustrate the fitted and unfitted nature of
the meshes. Algorithm 6.1 gives practically the same accuracy as the fitted method,
predicting the propagation of a pressure jump along the tube.

(a) Fitted method

(b) Algorithm 6.1

Figure 6.16: Snapshots of the fluid velocity magnitude and elevated pressure at time
t = 0.005, 0.01, 0.015 (from left to right) obtained with h = 0.05 and τ = 10−4.
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Figure 6.17: Time-convergence history of the displacement at t = 0.015 obtained
with h = O(τ).

In order to provide numerical evidence on the convergence rates of Algorithms
6.1–6.3, we have uniformly refined both in time and in space according to the pa-
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rameters
(τ, h) ∈

{
(2 · 10−4/2i, 0.1/2i)

}3

i=0
. (6.41)

Note that τ = O(h). A reference solution has been generated with the fitted implicit
method using τ = 6.25 · 10−6 and h = 3.125 · 10−3 (i.e., i = 5 in (6.41)). Figure 6.17
reports the convergence histories of the displacement error in the elastic energy
norm at t = 0.015 obtained with Algorithms 6.1-6.3. For comparison purposes,
the convergence history of the fitted implicit approximations is also displayed. The
corresponding displacements, for each level of space-time refinement, are reported
in Figures 6.18 and 6.19.
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Figure 6.18: Algorithms 6.1 and 6.2. Comparison of the solid displacements at
t = 0.015 for different levels of (τ, h)-refinement (6.41).

Figure 6.17(a) retrieves the first-order optimal convergence rate predicted by
Theorem 6.2 for Algorithm 6.1. This convergent behavior is also clearly visible in
Figure 6.18, which points out the good agreement with the approximations provided
by the implicit fitted method. As regards Algorithm 6.2, Figure 6.17(a) indicates
that the variant without extrapolation (K = 0, r = 1) fails to converge under
τ = O(h). On the contrary, stable and first-order accurate approximations are
obtained with a second-order prediction and one correction iteration (K = 1, r = 2).
This behavior is also clearly visible in Figure 6.18, hence confirming the theoretical
discussion on the accuracy of the methods of Section 6.2.3.2.
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Figure 6.19: Algorithm 6.3. Comparison of the solid displacements at t = 0.015 for
different levels of (τ, h)-refinement (6.41).

Finally, we comment on the results obtained with Algorithm 6.3. Figure 6.17(b)
shows convergence for the three variants. Note, however, that sub-optimal accuracy
is obtained with the variant without extrapolation (r = 0). This behavior is also
striking in Figure 6.19, which points out the extremely poor accuracy of the displace-
ment approximations for all the space-time refinement levels. On the contrary, the
variants with r = 1 and r = 2 retrieve the optimal first-order accuracy of the fitted
implicit scheme, hence confirming the convergence rates reported in Theorem 6.4.

6.4.2 Dynamic interface

In this section we provide numerical evidence on the stability and the accuracy
properties of Algorithms 6.4-6.6 in different examples. For comparison purposes,
we consider as reference solution an implicit fitted-ALE approximation of problem
(6.33), where the discrete ALE mapping is built from a simple harmonic lifting of
the solid displacement (no advanced mesh update strategy is hence used). Along
this section, the user-defined parameters in Algorithms 6.4-6.6 are always chosen
to be γp = 10−2, γv,1 = 10−2, γv,2 = 0, γg = 1, γ = 102 and (in Algorithm 6.5)
γ0 = 1. Furthermore, for simplicity, a standard semi-implicit treatment of the fluid
convective term, af,n

h

(
un−1
h ; (unh, p

n
h), (vh, qh)

)
, is adopted in Algorithms 6.4-6.6.
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6.4.2.1 Idealized closed valve

We consider the idealized closed valve test of Section 6.4.1.1 within the non-
linear framework of Section 6.3. The geometrical configuration, physical parameters
and boundary conditions are those of Section 6.4.1.1. A remarkable feature of this
setting is that both the static and the dynamic interface cases share the same steady
state displacement solution. Indeed, using the parameterization of the interface
configuration Σ(t), in terms of the steady state displacement, given by r(y) =(
η(y), y

)
, y ∈ [0, 1], we have

−
∫

Σ(t)
Jσ(u, p)nK ·w ◦ φ−1

t =

∫ 1

0
P0 n

(
r(y)

)
·w
(
φ−1
t (r(y))

)
|r′(y)|dy

=

∫ 1

0
P0 |r′(y)|−1(1,−η′(y)) · (w(y), 0) |r′(y)|dy =

∫ 1

0
P0w(y)dy

for all w ∈ W . We hence recover (6.39), as the strong form of (6.30), and the
analytical expression for the displacement given by (6.40).

(a) Fitted method (b) Algorithm 6.4

Figure 6.20: Steady state pressure approximation and deformed solid configuration.

Due to the stationary nature of the problem, we limit the discussion to the
implicit scheme given by Algorithm 6.4, and compare its accuracy with the implicit
ALE-fitted method. Prototypical approximations obtained with both approaches
are displayed in Figure 6.20. The mesh size for the fitted (structured) and the
unfitted (unstructured) meshes is approximately h ≈ 0.05. Note the distortion of
the fluid mesh in Figure 6.20(a), prescribed by the ALE fitted approach, in order
to fit the solid mesh. In Figure 6.20(b), on the contrary, the structure mesh moves
independently of the fluid background mesh. This is more visible in Figure 6.21,
which presents the mesh intersection and the cut elements subdivisions resulting
from the algorithm described in Section 6.2.2.1.

In order to show the capabilities of the proposed unfitted methods to handle
situations with large interface displacements, we consider a series of increasing inlet
pressures P0 ∈ {104+12·103·i}7i=0. In Figure 6.22, we have reported the displacement
approximations obtained with the fitted and the unfitted methods. The analytical
solutions given by (6.40) are also displayed. We observe that both approaches are
in excellent agreement with the analytical solution until i = 5. From this point on,
the considered ALE mesh update fails. On the contrary, the unfitted approach is
able to continue for i ≥ 6 while keeping a perfect match with the analytic solution.
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Figure 6.21: Mesh intersection and the cut elements subdivisions.
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Figure 6.22: Steady state displacements for increasing inlet pressures.

6.4.2.2 Double cavity

We consider a variant of the classical lid-driven cavity problem in which a sec-
ond cavity is attached below the lower flexible wall. The fluid domain is given
by the rectangle Ω = (−0.5, 0.5) × (−0.5, 1.5) and the interface by the segment
Σ = (−0.5, 0.5)×{0.5} (see Figure 6.23). All units are given in the SI system. The

�(u, p)n = 0

�(u, p)n = 0 �(u, p)n = 0

�(u, p)n = 0

u = 0

uy = 0

⌃
u = 0

u = 0

ux = U(t)

Figure 6.23: Geometric configuration and external boundary conditions.
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fluid physical parameters are given by ρf = 1.0 and µ = 0.2. For the solid we have
ρs = 250, ε = 0.01, λ1 = Eε/(2(1 + ν)) and λ0 = 0, with ν = 0 and we consider
three different values for the Young modulus, E = {125000/2i}2i=0. The fluid exter-
nal boundary conditions are given in Figure 6.23, with U(t)

def
= 100[1− cos(0.4πt)].

The solid is clamped on its extremities.
Figure 6.24 presents some snapshots of the fluid velocity magnitude and of the

elevated fluid pressure obtained with the ALE-fitted method and Algorithm 6.4
for a value of the Young modulus, E = 62500, which gives relatively large interface
displacements. The time-step length is τ = 0.005 and the mesh step is approximately
h ≈ 0.025 in both simulations. The good agreement between the fitted and unfitted
approaches is noticeable.

(a) ALE-fitted method

(b) Algorithm 6.4

Figure 6.24: Snapshots of the fluid velocity magnitude and elevated pressure at time
t = 6.25, 7.5 and 8.75 (from left to right) obtained with E = 62500, τ = 5 · 10−3

and h ≈ 0.025.

Figures 6.25 and 6.26 present a closer view of the discrete solutions at time
t = 7.5, showing the elevated pressure and velocity components. The comparison
of these figures demonstrates the capability of the present unfitted approach to
accurately capture the weak and strong discontinuities of the velocity and pressure
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(a) Pressure (b) Horizontal velocity (c) Vertical velocity

Figure 6.25: ALE-fitted method. Strong (pressure) and weak (velocity) disconti-
nuities of the approximated solution at time t = 7.5 with E = 62500, τ = 5 · 10−3

and h ≈ 0.025.

(a) Pressure (b) Horizontal velocity (c) Vertical velocity

Figure 6.26: Algorithm 6.4. Strong (pressure) and weak (velocity) discontinuities
of the approximated solution at time t = 7.5 with E = 62500, τ = 5 · 10−3 and
h ≈ 0.025.

fields across the interface. No spurious oscillations appear. Note that the unfitted
approximation is two-valued in the set of elements intersected by the interface, only
its value in the physical zone of the overlapping region must be compared with the
results of Figures 6.25.

In order to investigate the accuracy of the different coupling schemes, we have
reported in Figures 6.27 and 6.28 the time history of the solid displacement at point
(−0.2, 0.5) obtained with Algorithms 6.4-6.5 and Algorithm 6.6, respectively, for
the three different values of the Young modulus. For comparison purposes, the
corresponding results for the ALE-fitted method are also plotted.

Figure 6.27 shows that Algorithm 6.4 gives similar results as the ALE-fitted
method in all the regimes. As expected, the higher the Young modulus, the lower
the displacement amplitude. Note that for E = 31250, the considered ALE-fitted
method fails at a certain level of interface deformation (due to the breakdown of the
mesh update technique), while Algorithm 6.4 does not show any lack of robustness.
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The situation is more delicate for the explicit coupling schemes given by Algo-
rithm 6.5. The two explicit variants do deliver stable approximations, but some
spurious time oscillations appear in the case of the largest interface deflections.
This issue is related to the non-uniformity in space of the splitting error discussed
in Section 6.2.3.2. Indeed, as shown in Figure 6.29, reducing the time-step length τ
(while keeping h fixed) improves the quality of the approximations. The enhanced
accuracy of the variant with second-order prediction and one correction iteration
(K = 1, r = 2) is also noticeable. Numerical evidence, not reported here, shows
however that this variant may lack stability if γτ/h is not sufficiently small. As
an example, with γ = 1000, as in Section 6.4.1, stability requires more than one
correction iteration (K > 1).
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(c) E = 31250

Figure 6.27: Time history of the solid displacement at point (−0.2, 0.5) obtained
with Algorithms 6.4 and 6.5, τ = 5 · 10−3.
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(c) E = 31250

Figure 6.28: Time history of the solid displacement at point (−0.2, 0.5) obtained
with Algorithm 6.6, τ = 5 · 10−3.

The results reported in Figure 6.28 indicate that the semi-implicit schemes given
by Algorithm 6.6 with r = 1 and r = 2 do not suffer from the above issues. These
variants deliver comparable accuracy to the implicit ALE-fitted method. On the
contrary, the variant with r = 0 provides poor approximations in all the regimes.



212

0 2 4 6 8 10
time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ve
rti

ca
l d

is
pl

ac
em

en
t

Alg. 4
Alg. 5 (K=0, r=1)
Alg. 5 (K=1, r=2)
implicit scheme ALE-fitted

(a) τ = 2.5 · 10−3
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(b) τ = 1.25 · 10−3

Figure 6.29: Time history of the solid displacement at point (−0.2, 0.5) obtained
with Algorithms 6.4 and 6.5, E = 31250.

We thus retrieve, also in the dynamic interface framework, the essential ingredients
of the accuracy result given by Theorem 6.4.

6.4.2.3 Idealized open valve

This example is intended to mimic the behavior of an open valve (without con-
tact). The fluid domain corresponds to the rectangle Ω = (0, 4)×(0, 1) and the solid
domain is made of two segments Σ = {1.9} × (0, 0.6) ∪ {2.1} × (0.4, 1), as shown in
Figure 6.30. All the units are given in the CGS system. The physical parameters

⌃

⌃

u = 0

u = 0

�(u, p)n = �pin(t)n �(u, p)n = 0

Figure 6.30: Geometric configuration and external boundary conditions.

for the fluid are ρf = 1 and µ = 0.03. For the structure we have ρs = 1.2, ε = 0.065,
λ1 = Eε/(2(1 + ν)) and λ0 = 0, with Young’s modulus E = 10000 and Poisson’s
ratio ν = 0.5. The external boundary conditions for the fluid are detailed in Fig-
ure 6.30, with the inlet pressure given by pin(t)

def
= Pmax sin(2πt) with Pmax = 150.

The solid is clamped at its bottom and top extremities, i.e., at (1.9, 0.6) and (2.1, 1).
Figure 6.31 presents some snapshots of the fluid velocity magnitude and of the

elevated fluid pressure obtained with the ALE-fitted method and Algorithm 6.4.
The time step is τ = 0.0025 and the step parameter of the fluid and solid meshes
is approximately h ≈ 0.05. The unfitted method is able to capture the dynamics of
the pressure jump across the interface delivered by the fitted approximation without
any spurious oscillation. This feature is even more striking in Figures 6.32 and 6.33,
where we present a closer view of the elevated pressure and velocity components
at time t = 0.25. We can also remark how the unfitted approximation is able
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(a) ALE-fitted method

(b) Algorithm 6.4

Figure 6.31: Snapshots of the fluid velocity magnitude and elevated pressure at time
t = 0.25, 0.5 and 0.75 (from left to right) obtained with Pmax = 150, τ = 2.5 · 10−3

and h ≈ 0.05.

to reproduce accurately strong and weak discontinuities in the case of partially
intersected fluid domains (see Section 6.2.1.3).

(a) Pressure (b) Horizontal velocity (c) Vertical velocity

Figure 6.32: ALE-fitted method. Strong (pressure) and weak (velocity) disconti-
nuities of the approximated solution at time t = 0.25 obtained with Pmax = 150,
τ = 2.5 · 10−3 and h ≈ 0.05.

We now turn our attention to the accuracy of the different coupling schemes
proposed in Section 6.3.2. To this purpose, we have reported in Figure 6.34 the time
history of the solid displacement at point (1.9, 0) (tip of the left leaflet) obtained with
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(a) Pressure (b) Horizontal velocity (c) Vertical velocity

Figure 6.33: Algorithm 6.4. Strong (pressure) and weak (velocity) discontinuities
of the approximated solution fields at time t = 0.25 obtained with Pmax = 150,
τ = 2.5 · 10−3 and h ≈ 0.05.

Algorithms 6.4–6.6 and the implicit ALE-fitted method. Figure 6.34(a) confirms
the results of the above qualitative discussion on the accuracy of Algorithm 6.4 with
respect to the reference ALE-fitted method. As regards the time splitting schemes
given by Algorithms 6.5 and Algorithm 6.6, Figure 6.34 indicates that the best
performance is obtained with the variants (K = 1, r = 2) and r = 1, 2, respectively.
Once again, this numerical evidence is consistent with the theoretical discussion of
Section 6.2.3.
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(a) Algorithms 6.4 and 6.5
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(b) Algorithm 6.6

Figure 6.34: Time history of the solid displacement at point (1.9, 0.6) obtained with
Pmax = 150, τ = 2.5 · 10−3 and h ≈ 0.05.

Finally, in order to illustrate the capability of the proposed unfitted approach
to handle very large interface deflections we have performed the simulation with
an increased maximum pressure drop of Pmax = 400. Since the present computer
implementation is not able to handle contact, the top leaflet has been removed.
Some snapshots of the discrete solution obtained with Algorithm 6.4 are displayed
in Figure 6.35. Figure 6.36 shows the time history of the tip displacement provided
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by Algorithm 6.4 and the ALE-fitted algorithm. Both approaches give similar results
up to a certain degree of interface deformation, above which the ALE-fitted method
fails while the unfitted method still delivers a stable numerical approximation.

Figure 6.35: Snapshots of the fluid velocity magnitude and elevated pressure at time
t = 0.25, 0.5 and 0.75 (from left to right) obtained with Algorithm 6.4, Pmax = 400,
τ = 2.5 · 10−3 and h ≈ 0.05.
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Figure 6.36: Time history of the solid displacement at point (1.9, 0.6) obtained with
Pmax = 400, τ = 2.5 · 10−3 and h ≈ 0.05.

6.5 Conclusion

We have introduced a Nitsche-XFEM method for incompressible fluid-structure
interaction problems involving immersed thin-walled structures. Eulerian and La-
grangian formalisms are, respectively, considered for the fluid and the solid. The
key features of the spatial discretization proposed are:

• unfitted (unstructured) fluid and solid meshes;

• affine finite element approximations including weak and strong discontinuities
for the velocity and the pressure, respectively (based on the XFEM method
of [HH04, BBH09]);

• integration of the fluid equations only in the physical domain (cut elements);
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• consistent treatment of the kinematic/dynamic fluid-solid coupling via
Nitsche’s method;

• symmetric velocity/pressure and ghost-penalty stabilization to guarantee ro-
bustness without compromising accuracy.

In the case of static interfaces, a priori error estimates (Theorem 6.1) guaranteeing
optimal convergence (in the energy norm) towards non-singular solutions have been
derived using the arguments reported in [BF14b].

Several splitting schemes (implicit, explicit, semi-implicit) have been proposed,
including their formulation with moving interfaces. The fundamental ingredients
for the stability and accuracy of the resulting fully discrete methods have been
discussed. These theoretical stability and convergence results have then been con-
firmed via numerical evidence in a series of 2D examples involving static and mov-
ing interfaces. The comparison of the different methods indicates that the best
performance (in terms of accuracy and computational complexity) is obtained with
Algorithms 6.3 and 6.6. A salient feature of this semi-implicit method is that it
simultaneously yields unconditional stability and optimal convergence in the energy
norm, while avoiding the strong coupling of [NFGK07, BCG15].



General conclusion and
perspectives





In this thesis, we have considered the interaction of a viscous incompressible fluid
with a general thin-walled viscoelastic structure with fitted and unfitted fluid and
solid meshes. Within these two frameworks, the Robin-Neumann splitting paradigm
of [Fer13, FMV13] has been shown to be successful in avoiding strong coupling
without compromising stability and accuracy. In the unfitted case, this has been
achieved through specific unfitted spatial discretizations that build on the ideas
reported in [HH04, BF14b].

The results of Chapter 2 have shown that this explicit coupling paradigm can be
effectively combined with a fractional-step time-marching in the fluid, which is one
of the most widely used techniques for the large scale simulation of incompressible
flow. From the analysis point of view, this introduces additional difficulties and,
hence, only some of the variants have been analyzed. Interestingly, this splitting
yields a solution procedure that enables a fully decoupled evaluation of the fluid-solid
state. The computational performance of this approach has also been highlighted in
Chapter 4 where, for the first time, an archetypical sample of partitioned solution
procedures for incompressible fluid-structure interaction are compared and validated
against the results of an experimental benchmark. With regard to second-order
accuracy in time, the numerical investigations of Chapter 3 indicate that this can
be achieved by combining the Robin-Neumann splitting with a predictor-corrector
strategy. The analysis of these methods is, however, much more delicate than in the
first-order case. Some insight on their stability has been provided in a simplified
setting.

The results of Part II have shown that the Robin-Neumann coupling combined
with the robust Nitsche and Nitsche-XFEM unfitted mesh frameworks yields so-
lution strategies with many interesting features. First, as shown theoretically and
numerically, they preserve the stability and accuracy of the original methods in
the fitted framework. Second, the resulting semi-implicit schemes offer an accurate
and efficient alternative to the traditional strongly coupled methods used in the
immersed boundary method (see, e.g., [NFGK07, BCG15]).

Extensions of this work can explore various research directions. We list and
discuss below some of them together with some open problems:

• The families of splitting schemes introduced in Chapters 2 and 3 involve the
coupling with a general thin-walled viscoelastic structure. An important prob-
lem, not addressed in this work, is the coupling with three-dimensional shell
models (see, e.g., [CB11, BR00]). An interesting step in this direction could be
to combine the ideas recently reported in [FMV15] to the coupling paradigms
described in Chapters 2 and 3. Note that the three-dimensional shell models
include higher-order through-the-thickness effects that overcome, in particu-
lar, the common modeling assumptions described in Section 1.2.3. Moreover,
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in Chapter 4, this would bypass the introduction of the ad hoc Archimedes
surface force when considering the coupling with a shell solid model.

• Another interesting approach, not explored in this work, would be the formula-
tion of the splitting schemes of Section 1.4.3.2 and Chapter 2 in the immersed
unfitted framework. Note that, in this case, the derivation of a consistent
pressure-Poisson problem in the projection step requires a specific care, due
to discontinuous nature of the pressure. The Nitsche-XFEM method proposed
in Chapter 6 seems to be the natural spatial semi-discrete framework for these
approaches.

• From the theoretical point of view, we can consider the analysis in a fully
discrete setting and the derivation of a priori error estimates for the schemes
introduced in Chapter 2. Some preliminary results indicate its feasibility in
the simplest case s = r = 0. The cases s > 0 and r > 0 require further
investigations. Further insight on the stability of the high order methods
introduced in Chapter 3 could be obtained in a fully discrete setting by using
a Von Neumann analysis (e.g., in the spirit of [BHS14]).

• The analysis for r = 1, 2 of the explicit coupling schemes proposed in Sec-
tion 5.3 is an open problem. The formulation of this coupling paradigm in the
case of immersed thin-walled solids seems to be also not straightforward. An-
other interesting point, not addressed in this thesis, is the convergence analysis
of the unfitted methods with curved interfaces. The case of dynamic inter-
faces is also a delicate problem which has received little consideration in the
literature (see, e.g., [Zun13] for an analysis in the parabolic case).

• On going investigations are devoted to unfitted Nitsche formulations which
are non-symmetric and penalty free. In that case, a priori error estimates
may be derived by adapting the ideas recently introduced in [Bur12, BB14]
to fluid-structure interaction. Numerical evidence indicates that the stabilized
explicit coupling paradigm (used in Algorithms 1.4 and 6.2) delivers first-order
accuracy without resorting to any correction iteration (see also [BF14a]).

• Last, but not by means least, on going work related to Chapter 6 is devoted
to the incorporation of more complex thin-walled solid models, including con-
tact and fracture mechanics. The extension to 3D presents some technical
challenges (see, e.g., the discussion of Section 6.2.2). This extenstions will, in
particular, enable the comparison and validation of the unfitted methods with
the experimental data of Chapter 4.



Appendix A

Additional results for the FSI benchmark

We present additional numerical results and experimental measurements for Phase II
experiment of Chapter 4. Figure A.1 presents some snapshots of the fluid velocity mag-
nitude at different time instants obtained with Algorithm 4.1 at the distant plane z = 90.
Figure A.2 presents a comparison of the measured deflections and the results obtained with
Algorithms 4.1-4.6 at different time-steps over the whole cycle [0, 6]. Figures A.3, A.4, A.5
and A.6 show the experimental results and the numerical approximations obtained, at fours
different time-steps, with Algorithm 4.1 (monolithic fluid solver and 3D solid model) and
Algorithm 4.6 (incremental pressure-correction fluid solver and shell solid model) at the
cutting planes z = 3.5, z = 13.5, z = 23.5 and z = 33.5 (see Figure 4.8(b)).

(a) t = 1.369 s (b) t = 1.585 s (c) t = 1.801 s (d) t = 2.017 s

(e) t = 2.233 s (f) t = 2.449 s (g) t = 2.665 s (h) t = 2.881 s

(i) t = 3.097 s (j) t = 3.917 s (k) t = 4.133 s (l) t = 4.329 s

velocity (mm/s)

0.0 75 150 225 300

Figure A.1: Snapshots of the fluid velocity magnitude in Phase II with Algo-
rithm 4.1 at the distant plane z = 90.
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(a) t = 0.073 s
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(b) t = 0.505 s
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(c) t = 0.721 s
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(d) t = 0.937 s
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(e) t = 1.153 s
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(f) t = 1.396 s
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(g) t = 1.801 s
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(h) t = 2.017 s
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(i) t = 2.233 s
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(j) t = 2.665 s
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(k) t = 3.097 s
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(l) t = 4.133 s
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(m) t = 4.565 s
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(o) t = 5.429 s

Figure A.2: Deflection of the silicone filament in Phase II at different time in-
stants. Comparison of the experimental data with the predictions obtained with
Algorithms 4.1-4.6.



223

 x

-10

0

10

 y

-10

0

10

 z

0

100

200

300

(a) Experiment at t = 0.721.
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(b) Experiment at t = 1.153.
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(c) Algorithm 4.1 at t = 0.721.
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(d) Algorithm 4.1 at t = 1.153.
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(e) Algorithm 4.6 at t = 0.721.
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(f) Algorithm 4.6 at t = 1.153.
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(g) Experiment at t = 1.585.
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(h) Experiment at t = 2.017.

 x

-10

0

10

 y

-10

0

10

 z

0

100

200

300

(i) Algorithm 4.1 at t = 1.585.
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(j) Algorithm 4.1 at t = 2.017.
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(k) Algorithm 4.6 at t = 1.585.
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(l) Algorithm 4.6 at t = 2.017.

Figure A.3: Fluid velocity components in Phase II. Comparison of the experimental
data with the predictions obtained with Algorithms 4.1 and 4.6. Plane z = 3.5.
Units are mm s−1.
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(a) Experiment at t = 0.721.
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(c) Algorithm 4.1 at t = 0.721.

 x

-10

0

10

 y

-10

0

10

 z

0

100

200

300

(d) Algorithm 4.1 at t = 1.153.
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(e) Algorithm 4.6 at t = 0.721.
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(f) Algorithm 4.6 at t = 1.153.
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(g) Experiment at t = 1.585.
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(h) Experiment at t = 2.017.
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(i) Algorithm 4.1 at t = 1.585.
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(j) Algorithm 4.1 at t = 2.017.
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(k) Algorithm 4.6 at t = 1.585.
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(l) Algorithm 4.6 at t = 2.017.

Figure A.4: Fluid velocity components in Phase II. Comparison of the experimental
data with the predictions obtained with Algorithms 4.1 and 4.6. Plane z = 13.5.
Units are mm s−1.
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(a) Experiment at t = 0.721.
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(b) Experiment at t = 1.153.

 x

-10

0

10

 y

-10

0

10

 z

0

100

200

300

(c) Algorithm 4.1 at t = 0.721.
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(d) Algorithm 4.1 at t = 1.153.
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(e) Algorithm 4.6 at t = 0.721.
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(f) Algorithm 4.6 at t = 1.153.
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(g) Experiment at t = 1.585.
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(h) Experiment at t = 2.017.
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(i) Algorithm 4.1 at t = 1.585.
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(j) Algorithm 4.1 at t = 2.017.
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(k) Algorithm 4.6 at t = 1.585.
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(l) Algorithm 4.6 at t = 2.017.

Figure A.5: Fluid velocity components in Phase II. Comparison of the experimental
data with the predictions obtained with Algorithms 4.1 and 4.6. Plane z = 23.5.
Units are mm s−1.
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(a) Experiment at t = 0.721.
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(b) Experiment at t = 1.153.
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(c) Algorithm 4.1 at t = 0.721.
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(d) Algorithm 4.1 at t = 1.153.
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(e) Algorithm 4.6 at t = 0.721.
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(f) Algorithm 4.6 at t = 1.153.
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(g) Experiment at t = 1.585.
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(h) Experiment at t = 2.017.

 x

-10

0

10

 y

-10

0

10

 z

0

100

200

300

(i) Algorithm 4.1 at t = 1.585.
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(j) Algorithm 4.1 at t = 2.017.
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(k) Algorithm 4.6 at t = 1.585.
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(l) Algorithm 4.6 at t = 2.017.

Figure A.6: Fluid velocity components in Phase II. Comparison of the experimental
data with the predictions obtained with Algorithms 4.1 and 4.6. Plane z = 33.5.
Units are mm s−1.
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