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Modélisation et simulation du mouvement de structures fines
dans un fluide visqueux : application au transport mucociliaire

Résumé

Une grande part des muqueuses a l'intérieur du corps humain sont recouvertes de cils
qui, par leurs mouvements coordonnés, conduisent & une circulation de la couche de fluide
nappant la muqueuse. Dans le cas de la paroi interne des bronches, ce processus permet
I’évacuation des impuretés inspirées a l'extérieur de I'appareil respiratoire.

Dans cette thése, nous nous intéressons aux effets du ou des cils sur le fluide, en nous
placant a ’échelle du cil, et on considére pour cela les équations de Stokes incompressible.
Due a la finesse du cil, une simulation directe demanderait un raffinement important du
maillage au voisinage du cil, pour un maillage qui évoluerait a chaque pas de temps.
Cette approche étant trop onéreuse en terme de cotits de calculs, nous avons considéré
I’asymptotique d’un diamétre du cil tendant vers 0 et d’une vitesse qui tend vers I'infini :
le cil est modélisé par un Dirac linéique de forces en terme source. Nous avons montré qu’il
était possible de remplacer ce Dirac linéique par une somme de Dirac ponctuels distribués
le long du cil. Ainsi, nous nous sommes ramenés, par linéarité, a étudier le probléme de
Stokes avec en terme source une force ponctuelle. Si les calculs sont ainsi simplifiés (et
leurs cotts réduits), le probléme final est lui plus singulier, ce qui motive une analyse
numérique fine et ’élaboration d’une nouvelle méthode de résolution.

Nous avons d’abord étudié une version scalaire de ce probléme : le probléme de Poisson
avec une masse de Dirac en second membre. La solution exacte étant singuliére, la solution
éléments finis est a définir avec précaution. La convergence de la méthode étant dégradée
dans ce cas-la, par rapport a celle dans le cas régulier, nous nous sommes intéressés a
des estimations locales. Nous avons démontré une convergence quasi-optimale en norme
H?® (s = 1) sur un sous-domaine qui exclut la singularité. Des résultats analogues ont été
obtenus dans le cas du probléme de Stokes.

Pour palier les problémes liés a une mauvais convergence sur l’ensemble du domaine,
nous avons élaboré une méthode pour résoudre des probléeme elliptiques avec une masse de
Dirac ou une force ponctuelle en terme source. Basée sur celle des éléments finis standard,
elle s’appuie sur la connaissance explicite de la singularité de la solution exacte. Une fois
données la position de chacun des cils et leur paramétrisation, notre méthode rend possible
la simulation directe en 3d d’un trés grand nombre de cils. Nous 'avons donc appliquée
au cas du transport mucociliaire dans les poumons. Cet outil numérique nous donne acces
a des informations que 'on ne peut avoir par 'expérience, et permet de simuler des cas
pathologiques comme par exemple une distribution éparse des cils.

Mots clés

Probléemes de Poisson et de Stokes, mesures de Dirac, éléments finis, estimations d’erreur
locales, cils, transport mucociliaire.






Modelling and computing of the movement of thin structures in a
viscous fluid: application to the muco-ciliary transport

Abstract

Numerous mucous membranes inside the human body are covered with cilia which, by
their coordinated movements, lead to a circulation of the layer of fluid coating the mucous
membrane, which allows, for example, in the case of the internal wall of the bronchi, the
evacuation of the impurities inspired outside the respiratory system.

In this thesis, we integrate the effects of the cilia on the fluid, at the scale of the cilium.
For this, we consider the incompressible Stokes equations. Due to the very small thickness
of the cilia, the direct computation would request a time-varying mesh grading around
the cilia. To avoid too prohibitive computational costs, we consider the asymptotic of a
zero diameter cilium with an infinite velocity: the cilium is modelled by a lineic Dirac of
force in source term. In order to ease the computations, the lineic Dirac of forces can be
approached by a sum of punctual Dirac masses distributed along the cilium. Thus, by
linearity, we have switched our initial problem with the Stokes problem with a punctual
force in source term. Thus, we simplify the computations, but the final problem is more
singular than the initial problem. The loss of regularity involves a deeper numerical
analysis and the development of a new method to solve the problem.

We have first studied a scalar version of this problem: Poisson problem with a Dirac
right-hand side. The exact solution is singular, therefore the finite element solution has
to be defined with caution. In this case, the convergence is not as good as in the regular
case, and thus we focused on local error estimates. We have proved a quasi-optimal
convergence in H'-norm (s < 1) on a sub-domain which does not contain the singularity.
Similar results have been shown for the Stokes problem too.

In order to recover an optimal convergence on the whole domain, we have developped
a numerical method to solve elliptic problems with a Dirac mass or a punctual force in
source term. It is based on the standard finite element method and the explicit knowl-
edge of the singularity of the exact solution. Given the positions of the cilia and their
parametrisations, this method permits to compute in 3d a very high number of cilia. We
have applied this to the study of the mucociliary transport in the lung. This numerical
tool gives us information we do not have with the experimentations and pathologies can
be computed and studied by this way, like for example a small number of cilia.

Keywords

Poisson and Stokes problems, Dirac measures, finite element methods, local error esti-
mates, cilia, muco-ciliary transport.
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INTRODUCTION

Une grande part des muqueuses a l'intérieur du corps humain sont recouvertes de cils
qui, par leurs mouvements coordonnés, conduisent & une circulation de la couche de fluide
nappant la muqueuse. Dans le cas de la paroi interne des bronches, ce processus permet
I’évacuation des impuretés inspirées a 'extérieur de ’appareil respiratoire : c’est la clai-
rance mucociliaire (on parle aussi de transport mucociliaire). L’efficacité du transport est
basée sur I'interaction entre les cils et le fluide environnant, ce qui rend complexe la modé-
lisation mathématique de ce phénomeéne biologique. Mais mieux comprendre la rhéologie
du systéme est capital pour I’étude de cas pathologiques, telle la mucoviscidose. La thése
porte sur la simulation directe en 3D du mouvement de cils dans un fluide visqueux. Par
simulation directe, nous entendons prise en compte des mécanismes a l’échelle ot ils se
produisent, a savoir celle du cil. L’objectif est de décrire en détail le mouvement d’un ou
plusieurs cils en interaction avec le fluide environnant, en se basant sur I’observation que
le cil est une structure fine dont la fréquence de battement est trés grande. Nous nous
placons donc dans I'asymptotique ol le rapport entre épaisseur et longueur du cil tend
vers 0, mais ou la résultante de la force appliquée par les cils sur le fluide reste constante.
Cette approche conduit a I’étude de problémes mathématiques singuliers, motivant une
analyse numérique fine et 1’élaboration d’une nouvelle méthode de résolution. L’enjeu est
de développer un outil numérique pour la simulation du transport mucociliaire, capable
en particulier de simuler un trés grand nombre de cils battant dans un fluide complexe.
Cet outil permettrait de mieux comprendre les mécanismes mis en jeu, et en jouant sur
les différents parameétres, d’évaluer leur influence sur efficacité du processus de trans-

port. Ce travail a bénéficié d'un financement public Investissement d’avenir, référence
ANR-11-LABX-0056-LMH, LabEx LMH (Laboratoire de Mathématiques Hadamard).

Présentation du probléme

Dans les poumons, la paroi des bronches est recouverte d’un film liquide visqueux dont le
role est double :
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e il capture les impuretés inhalées et les fait remonter le long des bronches, puis le long
de la trachée, d’ou elles basculent dans I'cesophage et sont éliminées dans I'estomac.

e il protége la paroi des bronches des agents pathogénes (particules de pollution,
bactéries, etc.).

Ce film protecteur est composé de deux couches superposées. La premiére, contre la paroi
des bronches, est la couche périciliaire (PCL, pour periciliary layer en anglais), essentiel-
lement composée d’eau. Le mucus, la couche en contact avec 1'air, est composé d’eau et de
lipides, les mucines. Ces deux fluides forment une barriére d'une dizaine de micrometres
d’épaisseur. Les impuretées piégées dans le mucus sont transportées hors de 'appareil
respiratoire grace a des cils baignant essentiellement dans la couche périciliaire, et dont
le battement permet la propulsion du mucus vers le haut de la trachée (voir Figure 1
pour une photo des cils). L’ensemble de ce mécanisme est appelé clairance mucociliaire
(ou transport mucociliaire).

Une des grandes difficultés dans ’étude du transport mucociliaire est le manque de
données expérimentales. La structure dyadique de I’arbre bronchique rend impossible les
mesures n vivo a partir de la sixiéme génération. Par ailleurs, ces mesures sont trés peu
précises car les techniques employées sont souvent trop invasives. La culture in vitro de
cils n’est pas plus facile & cause de la dégradation du matériel biologique vivant apres pré-
levement [64]. C’est pourquoi il est intéressant de développer un outil numérique donnant
accés a des mesures de vitesses par exemple, que 'on ne peut que difficilement obtenir
via l'expérience.

Une autre difficulté provient des différentes échelles de longueur que 1’on peut considé-
rer : moléculaire, ciliaire, bronchiale, etc. La Figure 1 illustre les différentes échelles mises
en jeu.

Enfin, la complexité structurelle du transport mucociliaire rend son étude mathéma-
tique difficile. Beaucoup de paramétres sont & prendre en compte :

e le fluide nappant la paroi des bronches n’est pas homogeéne, il est composé de deux
fluides de viscosités trés différentes (le mucus est 50 fois plus visqueux que la couche
périciliaire), et donc la dynamique de l'interface entre ces deux fluides peut faire
I’'objet d'une étude approfondie.

e les cils sont trés fins, donc difficiles & prendre en compte numériquement, et la
fréquence de battement est élevée.

e l'interaction entre l'air inspiré ou expiré et le mucus, sachant que les deux phéno-
meénes ont des échelles de temps caractéristiques trés différentes : les cils battent a
une fréquence de I'ordre de 15Hz tandis que la fréquence de la respiration est de
I'ordre de 0.25Hz.

e l'influence des agents pathogénes piégés dans le mucus qui peut aboutir & une mo-
dification de la rhéologie de I’écoulement bifluide.

Les travaux théoriques et numériques foisonnent sur le sujet et, malgré tout, la simula-
tion du transport mucociliaire reste un enjeu important. La complexité du processus, dont
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Cellule goblet  Couche périciliaire

epithéliales

FIGURE 1: Schéma multi-échelle du poumon humain, des premiéres générations de
bronches (~ 1 cm) aux cellules épithéliales (~ 5 pm). Adapté a partir de [30].

une liste non exhaustive des difficultés est donnée ci-dessus, rend le modéle numérique
complet hors de portée des scientifiques a I'heure actuelle [29]. Dés lors, la compréhen-
sion du processus requiert une combinaison de méthodes qui incluent la modélisation
mathématique, I'analyse des problémes résultants et le calcul scientifique. Des modéles
trés différents mais complémentaires ont été proposés par les différentes auteurs, voir [108]
pour en avoir une synthése détaillée.

L’objectif de la thése est la simulation directe en 3D du mouvement d'un trés grand
nombre de cils dans un écoulement bifluide. La modélisation présentée dans la section
suivante est guidée par la volonté de limiter les cotits de calculs, qui peuvent vite devenir
exhorbitants, tout en essayant de faire le minimum d’hypothéses possible.

Choix du modéle

Comme expliqué précédemment, il n’est pas raisonnable (voire impossible) de prendre en
compte toute la complexité du probléme. Il est donc important de bien construire son
modéle, et pour cela, des hypothéses doivent étre formulées.
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Modéle fluide. Dans la littérature, les gens s’accordent sur le fait que la couche péri-
ciliaire est essentiellement de 1’eau et a donc un comportement newtonien, méme si cette
affirmation a récemment été mise en cause par Boucher [17]. En revanche, pour le mucus,
les modéles proposés peuvent étre trés différents : du modeéle newtonien [30], au modéle
viscoélastique [86, 107], et méme parfois un fluide viscoplastique [37]. Pour notre modéle,
nous avons choisi de considérer un fluide newtonien, pour la couche périciliaire et pour le
mucus. Cependant, nous tenons compte de la différence de viscosité entre les deux fluides,
et modélisons ’ensemble par un modéle bifluide, dont l'interface entre les deux fluides
est supposée plane et invariante (voir Figure 2). Cette hypothése se vérifie expérimenta-
lement [96] et a été confirmée par les simulations [40], méme si cette hypothése peut étre
relaxée.

Couche
périciliaire

FIGURE 2: Bifluide.

La modélisation de ’écoulement d’un fluide newtonien incompressible et homogéne
conduit aux équations de Navier-Stokes

p <&;—ltl + div(u® u)) —pAu+Vp = F,
div(u) = 0,

ol p est la masse volumique, u la vitesse, p la viscosité, p la pression et F. les forces
extérieures qui s’exercent sur le fluide. La premiére équation correspond & la conservation
de la quantité de mouvement, et la seconde a la conservation de la masse. Dans sa forme
adimensionnée, la premiére équation s’écrit

~

Re @—‘ti + div(ﬁ@ﬁ)) — Ati+Vp=F,

ou u, t, p et F, sont les quantités correspondantes sans dimensions, et Re est le nombre

de Reynolds :
LU
Re = '0—,
i
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avec L et U respectivement la longueur et la vitesse caractéristiques de 1’écoulement.
Contrairement au nageur humain, pour lequel on a Re ~ 10, la longueur caractéristique
dans le cas du transport mucociliaire est le micromeétre et la vitesse le micrométre par
seconde, de sorte que le nombre de Reynolds est de I'ordre de 107%, rendant ainsi les
termes inertiels négligeables dans les équations de Navier-Stokes. On considére donc les
équations de Stokes
—puAu+Vp = F,
{ div(u) = 0.

Ces équations étant complétement réversibles en temps, les cils bronchiques doivent
produire un battement non réversible en temps sous peine d’avoir un effet moyen nul sur
le fluide au cours d’une période.

Modéle pour le cil. Le but de cette thése est de simuler en 3D et de maniére directe
toute une forét de cils bronchiques, pour mesurer leur effet sur le mucus. La faisabilité
des calculs, autrement dit éviter des colits numériques exhorbitants, constitue notre ligne
de conduite dans le choix du modéle pour le cil. Les deux modéles, dits de “cils discrets”,
les plus intuitifs sont :

e le domaine fluide exclut les cils, et on impose des conditions d’adhérence sur le bord
de chaque cil ugige = Ueir-

e on immerge les cils dans le fluide, et on traite les cils par pénalisation en posant
dans le volume du cil ufyige = Uei-

Dans les deux modeéles décrits ci-dessus, le maillage doit étre trés précis au niveau des cils
pour pouvoir prendre en compte les effets des cils et leur structure. Comme le cil est trés
fin, un raffinement de maillage est nécessaire au niveau du cil. Si la simulation de quelques
cils en 3D est envisageable, il devient compliqué de simuler toute une forét de cils. De plus,
le premier modéle exige la construction d’'un nouveau maillage & chaque pas de temps, ce
qui devient vite trés cotiteux, 1a ot le second modelé autorise un maillage cartésien fixe au
cours des itérations en temps. Toujours dans 'objectif de limiter au maximum les cotits de
calculs, nous avons choisi de considérer une nouvelle approche. En partant du constat que
les cils battent trés vite et qu’ils sont trés fins, nous nous plagons dans I'asymptotique ot
la vitesse du cil tend vers l'infini pendant que le diamétre du cil tend vers 0. A la limite,
il reste du cil une distribution linéique de forces, portée par ’axe central du cil. Pour
des raisons purement numériques, car il est plus facile d’évaluer une fonction en un point
que de l'intégrer le long d’une courbe, nous avons approché cette distribution linéique de
forces par une somme de forces ponctuelles distribuées le long du cil (voir Figure 3). Les
liens entre ces modéles seront discutés dans ce manuscrit. Dans cette étude, on s’intéresse
a I’écoulement produit par des cils dont le battement et la fréquence sont imposés.

Paramétrisation du cil. Pour compléter ce modéle, il reste a définir les z;, points
ou sont localisées les forces ponctuelles, ainsi que les ¢;, intensité de ces forces ponc-
tuelles. En d’autres termes, on doit choisir une paramétrisation du cil et définir la force
en chaque point du cil. La paramétrisation que nous avons choisie a été établie par Fulford
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FIGURE 3: Modélisation du cil : a. Cil volumique de rayon ¢ et de force e 72, de sorte que
la masse totale reste constante quand e tend vers 0. b. Distribution linéique de forces
portée par la courbe I' du cil. ¢. Une somme de N forces ponctuelles distribuées le long
du cil.

et Blake [48]. C’est une décompositon en série de Fourier du battement de cil & partir
d’'images obtenues par Sanderson et Sleigh [96]. Plus précisément, a chaque pas de temps ¢,
le cil est représenté par la courbe paramétrée

E(s,t) =1L %ao(s) + nz_:lan(s) cos(2nm ft) + b, (s) sin(2nw ft) | ,

ou s est la longueur d’arc depuis la base du cil, L et f sont respectivement la longueur
et la fréquence de battement du cil. Les coefficients de Fourier a,,, b,, sont des vecteurs
polynomiaux de degré 3 en s.

FIGURE 4: Trajectoire d'un cil pendant un battement. a. Description faite par Sanderson
et Sleigh [96]. b. Paramétrisation établie par Fulford et Blake [48].

La Figure 4 illustre bien la correspondance entre les travaux expérimentaux [96] et
les travaux théoriques [48] concernant la description du battement d’un cil bronchique.
On peut déja remarquer que le cil traverse 'interface mucus-couche périciliaire a ’aller,
pendant la phase effective, mais reste complétement immergé pendant la phase de retour.
Cette remarque est primordiale : le mouvement du cil n’est pas & moyenne nulle, ce qui
est accentué par cette pénétration du cil dans le mucus, l'irréversibilité en temps étant
nécessaire dans un fluide de Stokes pour permettre un transport du mucus efficace.
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Paramétrisation d’une forét de cils. L’article de Fulford et Blake [48] indique aussi
comment paramétrer toute une forét de cils. Deux paramétres sont & prendre en compte :
I’espacement ¢, entre deux cils et la longueur d’onde A de 'onde métachronale qui nait
de la synchonisation des cils. Considérons une forét de n, x n, cils, ou n, et n, sont
respectivement les nombres de cils dans les direction z et y, le cil (i, 7) est représenté par

. ‘ il
&.j(s,t) = ilpe, + jloe, + & <s, f—; + t) ,
Dans notre modeéle, comme c’est toujours le cas dans la littérature, on supposera que
cette onde métachronale se propage seulement dans la direction du transport de mucus
(direction x), mais dans le sens opposé.

FIGURE 5: Dessin en 3D d’une forét de cils (avec ¢y = 2um au lieu de 0.3um).

Distribution de forces le long du cil. Pour définir la distribution de forces le long du
cil, deux options s’offrent & nous : la premiére est la “resistive-force theory”, développée
par Gray et Hancock [53] dans le cas de flagelles, qui suppose que la force hydrodynamique
est proportionnelle & la vitesse locale du cil, mais cette théorie reste inconsistante dans
le cas ou les effets visqueux sont dominants [74]; la seconde, que nous avons choisie, est
la “slender-body theory”. Notre modéle est di a Cox [36] qui a établi un développement
asymptotique de la force lorsque le rapport L/ry tend vers I'infini (longueur du cil divisée
par son rayon). Toujours en notant & la paramétrisation du cil, 'expression de la force en
chaque point est approchée par

f(s’t) = %7'” 2}13 B €(87t) ®€(S,t>
1€(s, 6|2

ll’l(L/To)
ou E est la dérivée de & par rapport a s et ug est la dérivée par rapport a t. Cette
expression a été établie en confrontant deux approches : la premiére consiste & considérer
la vitesse tellement proche du cil qu’on distingue son rayon mais sa longueur L parait
tendre vers l'infini; la seconde au contraire considére la vitesse loin du cil, sa longueur
est donc finie mais son diamétre parait nul tellement il est fin. Dans les deux cas, le
rapport L/rg tend vers I'infini.

ucil(37 t)7

Conditions aux bords. Nous allons maintenant fixer les conditions aux bords. La
boite de calcul que 'on considére est un parallélépipéde rectangle dont le bord inférieur
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correspond & la paroi des bronches et la bord supérieur a l'interface entre le mucus et
I’air. On suppose que la couche périciliaire adhére & la paroi des bronches, donc on y
impose une vitesse nulle. Comme c’est souvent le cas dans les divers travaux menés sur
le sujet, on suppose que la surface supérieure du mucus reste plane, ce qu’on modélise
par une condition de non sortie du fluide et un glissement sans frottements (on néglige
les effets de air sur le mucus). A I'échelle des cils, la fenétre de calcul se focalise sur une
longueur d’onde de I'onde métachronale, c¢’est-a-dire une centaine de cils. Les conditions
aux bords les plus naturelles dans la direction du transport du mucus et celle qui lui est
perpendiculaire sont donc des conditions bipériodiques, de facon & prendre en compte le
battement des cils a l'extérieur de la boite. Les conditions aux bords considérées sont
rassemblées en Figure 6.

,,,,,,,,,,,,,,,,,,,,,,,, " |bipériodiques

Lo / ] B (en z et y)

|

I

! ,

: Conditions
|

|

FI1GURE 6: Illustration of the boundary conditions.

Probléme mathématique résultant. Ce paragraphe est la conclusion de ’ensemble de
la modélisation présentée précédemment. Le modéle considéré, par linéarité des équations
de Stokes, conduit au probléme mathématique suivant :

—puAu+Vp = 0, F on
diviu) = 0 on, (0.0.1)
u = 0 on 0,

ol Xy est le point du domaine qui porte la force ponctuelle F. Les conditions aux bords
décrites précédemment n’ont pas été prises en compte ici, mais elles le seront lors des
calculs. En fait, les conditions aux bords choisies ne changent pas la régularité de la so-
lution du probléme résultant, et c¢’est pourquoi, dans un souci de simplicité et de clarté,
I’analyse numérique sera étudiée en considérant des conditions aux bords de type Diri-
chlet homogénes. De méme, si la viscosité variable peut poser des soucis pour la résolution
numérique du probléme, ce probléme est indépendant du probléeme de la singularité du se-
cond membre. Ainsi s’affranchit-on de ces difficultés lors de I’étude théorique du probléme
de Stokes avec une terme source singulier
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Analyse numérique de problémes elliptiques singuliers

Le mode¢le présenté au paragraphe précédent a été choisi pour pouvoir simuler de ma-
niére directe toute une forét de cils en 3D. Le modéle permet en effet de s’affranchir des
conditions de raffinement de maillage puisqu'un maillage (structuré ou non) peut étre
envisagé indépendamment du nombre de cils. En contrepartie, un soin extréme doit étre
apporté a I’analyse numérique du probléme résultant qui n’est pas usuel : le terme source
du probléme de Stokes est une force ponctuelle, terme source singulier en 2D et plus en-
core en dimension 3. Avant de s’intéresser au probléme de Stokes, I’analyse numérique est
menée dans le cas du probléme de Poisson avec une masse de Dirac en second membre :
ce probléme est la version scalaire du probléme de Stokes et, tout en étant plus simple,
plusieurs résultats obtenus dans ce cas sont adaptables au probléme de Stokes singulier.

Analyse numérique du probléme de Poisson singulier. Le probléme que I’on consi-

dére est le suivant
—Au = 9, dans¢)
u = 0 sur 09,

ol {2 est un domaine régulier et x4 est un point de ce domaine. La solution de ce probléme
n’étant pas dans H2(€2), les résultats classiques de convergence des méthodes éléments finis
ne sont plus garantis, a savoir une convergence a l'ordre 1 en norme H'() et & I'ordre 2 en
norme L2(£2). En fait la solution n’est méme pas dans H'(2), ce qui fait que les méthodes
ne sont a priori pas définies. Si 'on considére des éléments finis continus (comme c’est
trés souvent le cas), la solution numérique a bien un sens et on peut alors s’intéresser a la
convergence de cette solution numérique vers la solution exacte. Ce probléme a largement
été étudié dans la littérature. Parmi les résultats principaux on compte celui de Scott [99],
qui a montré une convergence en norme L2(Q) en h%? ot h est la taille caractéristique
du maillage et d la dimension. Au moyen d’un raffinement du maillage autour de la
singularité, Apel et ses co-auteurs [2] ont recouvré une convergence IL? 4 1'ordre 2 en 2D,
mais avec un maillage équivalent & du h? prés de la singularité : ce résultat rejoint celui
de Scott mais apporte I'information qu'un raffinement de maillage local seulement suffit.

De notre c6té, nous nous sommes intéressés au comportement de la solution numérique
“loin” du Dirac, c’est-a-dire que nous avons étudié la convergence de la méthode sur
un sous-ensemble 2y qui exclut la singularité. Parallélement a des travaux de Koppl et
Wohlmuth [66], qui ont montré une convergence optimale en norme L%(£)), nous avons
prouvé une convergence quasi-optimale en norme H®(€)y), s > 1. Plus précisément, le
résultat que nous avons prouvé en 2D est le suivant :

Theorem. Soient Qy cc 2y < () tels que ¢ ¢ 2y et 1 < s < k. On note u la solution
du probléme de Poisson avec un Dirac en second membre, et u, sa projection de Galerkin
sur l’espace éléments finis ViE. Alors, il existe hy tel que pour tout 0 < h < hy,

Hu - uhHLQO < C(Q()? Qlu Q)hk V ‘ hlh"

ot k est Uordre d’approximation de l’espace ViF. De plus, pour s = 2, si on suppose en
plus que les éléments finis sont H*-conformes, on a

lu — ups.00 < C(Q0o, 0, QRFF54/| In h).
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Ce résultat est vrai dés que 'espace éléments finis V¥ vérifie quelques hypotheéses trés
classiques et vérifiées par une grande classe d’espaces éléments finis, incluant tous les
éléments finis définis sur des maillages quasi-uniformes. En particulier, les éléments finis
de Lagrange et de Hermite, ou encore les ondelettes vérifient ces hypothéses. Elles sont
écrites plus en détail dans le Chapitre 2.

La preuve de ce théoréme s’appuie fortement sur le Théoréme de Nitsche et Schatz [88|,
qui donne une estimation de 'erreur locale optimale (comme dans le cas régulier) moyen-
nant ’erreur dans une norme aussi faible que ’on veut. Pour estimer cette erreur en norme
faible, nous avons démontré une version faible du Lemme d’Aubin Nitsche. On se rameéne
alors au controle de I'erreur en norme Wh4(§2), avec ¢ < 2, que I'on obtient grace a une
égalité inf-sup discréte.

En 3D, le résultat obtenu n’est plus quasi-optimal puisque la convergence que 1’'on
obtient n’est plus en h¥4/|Inh| mais en hF¥~13/|In h]Q. En fait, les arguments donnés en
2D fonctionnent car la solution est dans WH2=7(Q), pour tout 7 > 0, c’est-a-dire a la limite
d’étre dans H'(€2). En 3D, la solution est dans W1%¥2-7(Q), elle est bien plus singuliére,
et cela suffit & mettre en défaut la preuve présentée en 2D.

Dans le cas particulier des éléments finis de Lagrange Py, nous avons montré un résultat
légérement plus fort :

HU — UhHLQO < C(Qo, Qh Q)h

Ce résultat s’obtient encore grace au Théoréme de Nitsche et Schatz, mais avec d’autres
arguments que ceux présentés dans le cas précédents : la clé réside en le fait que les
fonctions test sont harmoniques sur chaque maille. Malheureusement, cette preuve ne
s’étend ni au cas des éléments finis Py, £ > 2, ni au cas de la dimension 3, ni au probléme
de Stokes.

Analyse du probléme de Stokes singulier. Comme dit dans le préambule de cette
partie, certains résultats obtenus dans le cas du probléme de Poisson singulier peuvent étre
montrés dans le cas du probléme de Stokes avec une force ponctuelle en terme source. Cette
fois-ci encore, la solution n’est pas suffisamment réguliére pour espérer une convergence
optimale des méthodes éléments finis sur I’ensemble du domaine. A I'image de I'étude
menée dans le cas du probléme de Poisson, nous nous sommes intéressés aux erreurs locales
des méthodes éléments finis classiques, et plus particuliérement aux éléments Py /Py,
pour k > 2, et P;b/P; pour le cas k = 1. Le résultat que nous avons montré toujours en
2D est le suivant :

Theorem. Soient Qg cc Oy << Q tels que g ¢ 0, kK = 1, 1 < q < 2, considérons
(u,p) € W3 (Q) x LYQ) la solution du probleme de Stokes avec une force ponctuelle en
terme source et (uy,pn) sa projection de Galerkin sur lespace éléments finis V;F x W}
telle que §,pp, = 0 et

J Viua—uy) :: Vn — J (p—pp)div(n) = 0 forallneVE,
Q Q

J diviu—u,)¢é = 0 forall £ € WE.
Q
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Sous Uhypothese (u,p) € H*1(Q1)% x H%(Qy), il existe hy tel que pour tout 0 < h < hy,
lo.20 < C(Q, U, QR /| In k).

La preuve est présentée dans le Chapitre 3. Elle s’appuie sur le Théoréme d’Arnold et
Liu [4], qui est un résultat équivalent a celui de Nitsche et Schatz, mais pour le probléme
de Stokes. Bien que ’ajout de la pression complique les choses, le squelette de la preuve est
sensiblement le méme que dans le cas du probléme de Poisson. Quelques généralisations
de ce résultat sont données a la suite de la preuve. Cependant, comme dans le cas du
probléme de Poisson, le second membre étant plus singulier encore, et les estimations
obtenues en 3D ne sont plus quasi-optimales.

la— a0, + [P~ pa

Une méthode numérique pour la résolution de problémes
elliptiques singuliers

Nous avons prouvé que la convergence des méthodes éléments finis classiques était opti-
male (ou quasi-optimale) sur un sous-domaine qui exclut la singularité. Mais nous savons
aussi que sur I’ensemble du domaine la convergence est mauvaise. Pour pallier ces pro-
blémes de convergence, nous proposons une nouvelle méthode numérique, dite de “sous-
traction”, qui permet de retrouver un ordre de convergence optimal sur I’ensemble du
domaine, sans raffinement. Cette méthode est basée sur la constat que, dans le cas de la
masse de Dirac ou de la force ponctuelle, on connait explicitement la singularité. Il suffit
alors d’extraire la singularité de la solution et de se ramener a un probléme auxiliaire ré-
gulier, dont I’analyse numérique conduit a une convergence optimale, quel que soit I'ordre
d’approximation des éléments finis considérés.

Par exemple, dans le cas du probléme de Stokes, une solution fondamentale est donnée
par la Stokeslet (ug, ps) :

—pAus + Vps = 0, F dans R?
div(us) = 0 dans RY

ou d est la dimension de l'espace, et F la force ponctuelle localisée au point xq. Pour
extraire la singularité de la Stokeslet, concentrée au point xy, nous allons la multiplier
par une fonction plateau y réguliére qui vaut 1 sur un voisinage de xq. Plus précisément,
soient 0 < a < b < dist(xg, 012) :

e Y\ est supposée réguliére, O
Y € HF(RY). b

e y vaut 1 “pres” de xq, %
X| =1.
B(Xo, a)

e y vaut 0 “loin” de xq,

X| c
B(xo,b) FIGURE 7: Support de .
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On pose alors ug = xus et py = xps, et on calcule —pAug + Vpg et div(ug) :
e sur B(xg,a), x = 1 donc

_,UAUO + va = _IUAHKS + vp5 = 5x0F et diV(u()) = diV(lL;) = 0.

e sur B(xg,b)¢, x = 0 donc

—ulAug+ Vpy =0 et div(ug) = 0.

En fait, (ug, po) est solution de

—pulAug+ Vpy = 6x,F +g dans
div(ug) = h dans Q,
u = 0 sur 0f),
ol les termes sources réguliers g et h sont connus explicitement et a support dans la

couronne centrée en X, de rayon intérieur a et de rayon extérieur b (voir Figure 7). Ainsi,
en notant (v, q) la solution exacte du probléme

—puAv +Vq = —g dans (),
div(v) = —h dans Q,
v = 0 sur 0,

et v, la solution numérique associée, on obtient une solution numérique u; du probléme
initial en posant u, = uy + vp. La solution approchée u; ainsi définie converge vers la
solution exacte u a ’ordre optimal, quel que soit I’ordre d’approximation des éléments finis
utilisés, car I'erreur u—uy, est égale a v —vy,, 'erreur obtenue en résolvant numériquement
le probléme auxiliaire régulier.

La méthode de soustraction a été présentée dans le cas du probléme de Stokes mais peut
étre généralisée a beaucoup de problémes elliptiques, dés lors qu’on en connait une solution
fondamentale (exemple : le probléme de Poisson). Elle se généralise aussi & d’autres cas de
conditions aux bords plus complexes que des conditions de Dirichlet homogénes, comme
celles que nous avons fixées pour notre modéle de transport mucociliaire (voir Figure 6).
Enfin, la méthode a été décrite dans le cas d’un fluide de viscosité constante, mais peut
étre facilement adaptée au cas d’un écoulement bifluide.

Simulation directe en 3D d’une forét de cils

La méthode de soustraction présentée précédemment permet de simuler en 3D et de ma-
niére directe toute une forét de cils : par linéarité du probléme de Stokes, considérer une
seule force ponctuelle ou un trés grand nombre revient au méme dans le sens ot on ne
résout qu'un seul probléme numérique a chaque itération en temps. Pour les calculs, nous
utilisons le code CAFES, écrit en C/C++ et développé par Benoit Fabréges pendant sa



Simulation directe en 3D d’une forét de cils 29

these en collaboration avec Loic Gouarin et Bertrand Maury. Le code est notamment uti-
lisé pour sa partie solveur de Stokes paralléle et notre contribution a été I'implémentation
de la méthode de soustraction décrite ci-dessus, de la construction du second membre a la
correction de la solution numérique obtenue en résolvant le probléme auxiliaire régulier.

Nous avons tout d’abord testé la méthode sur le cas modéré d’un petit paquet de cils :
15 dans la direction x et 15 dans la direction y (voir Figure 8). Notons quand méme que ce
“petit” cas test représente déja beaucoup plus de cils que ce qu’ont pu considérer certains
travaux [40, 71]. Pour ce premier test, on considére un fluide de viscosité constante : I'idée
est d’observer la différence d’efficacité du transport pendant les phases effective et de
retour des cils (voir Figure 8).

FIGURE &: Simulation 3D d’une mini forét. a. Phase effective. b. Phase de retour.

FIGURE 9: Simulation directe en 3D d’une forét de 6885 cils. a. Affichage avec cils.
b. Affichage sans cils.

Aprés avoir constaté l'efficacité de la méthode sur quelques centaines de cils, nous
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avons testé sa robustesse sur des milliers de cils. Pour le calcul suivant, on se place dans
des conditions réelles : simulation directe en 3D d’une forét de cils compléte, battant dans
un écoulement bifluide et avec les conditions aux bords réalistes. La Figure 9 illustre ce
calcul qui sera en fait le cas témoin auquel les calculs suivants seront comparés. Deux
remarques immédiates émergent de ce calcul : le mucus se déplace a vitesse constante tel
un “bloc” glissant sur la couche périciliaire, et la vitesse dans la couche périciliaire croit
linéairement, comme déja observé dans divers travaux [84, 108].

L’outil numérique que nous avons développé permet donc non seulement la simulation
directe en 3D d’'un trés grand nombre de cils, mais aussi la simulation de certaines patho-
logies liées au processus de clairance mucociliaire. Nous avons pu, entre autres, simuler
une hauteur de la couche périciliaire anormalement élevée (cas ou les cils n’atteignent
jamais le mucus), ou au contraire anormalement basse (cas ou les cils atteignent le mucus
aussi dans la phase de retour). L’influence de la densité de cils a aussi été étudiée, de
facon a mesurer les effets de seuil de densité sur 'efficacité du transport.

Plan de la thése

La these porte sur la modélisation et la simulation directe en 3D d’une forét de cils.
Elle est divisée en 4 chapitres, un chapitre de présentation et modélisation, 2 chapitres
d’analyse numérique, et un dernier axé calcul scientifique.

Nous commencons le premier chapitre par une présentation d’ensemble du phénomeéne
qui est étudié, a savoir la clairance mucociliaire. Les principales caractéristiques biolo-
giques et mécaniques des cils, du mucus et de la couche périciliaire y sont décrits. Aprés
un état de I'art des différentes études menées sur le sujet, nous y décrivons notre modéle
pour le fluide et les cils. La fin du chapitre est consacrée a I’étude théorique de deux
problémes elliptiques singuliers : le probléme de Stokes avec une force ponctuelle en terme
source, probléme résultant de la modélisation choisie, et le probléme de Poisson avec une
masse de Dirac en second membre, une version scalaire du probléme de Stokes singulier.

Le deuxiéme chapitre est dédié¢ a 'analyse numérique de la résolution du probléme
de Poisson avec une masse de Dirac en second membre par des méthodes éléments finis
classiques. Plus précisément, on montre pour des éléments finis trés généraux que la
solution numérique converge a l'ordre quasi-optimal sur tout sous-domaine qui exclut la
singularité. En d’autres termes, la convergence de la méthode est altérée par la singularité
du second membre, mais ’erreur se concentre autour de la singularité, pour une bonne
convergence “loin” du Dirac.

Des résultats analogues de convergence sont montrés dans le troisiéme chapitre dans le
cas du probléme de Stokes avec une force ponctuelle en terme source. Cette fois-ci, I’étude
est menée dans le cas des éléments Py /Py_q, pour k = 2, et P1b/P; pour le cas k = 1, puis
généralisée ensuite.

Le quatriéme et dernier chapitre est divisé en deux grandes sections. La premiére
présente une nouvelle méthode numérique, dite de soustraction, qui permet de recouvrir
une convergence optimale sur I’ensemble du domaine quel que soit ’ordre d’approximation
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des éléments. Cette méthode est ensuite généralisée a des cas plus compliqués comme un
modele bifluide, des conditions aux bords non homogénes, etc. La seconde section met en
application cette méthode de soustraction et présente les résultats numériques obtenus
dans le cas du transport mucociliaire. L’influence de plusieurs facteurs importants est
testée comme 'importance de 1’écoulement bifluide, la densité de cils ou la hauteur du
mucus.
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1.1 Some biological data

1.1.1 The respiratory system

The respiratory system is the largest organ of human body. The volume that it occupies
(from 5 to 7 litres) is essentially air. Half a litre is blood and less than another half forms
the various tissues. It is composed of:

e the structure areas, among them the rib cage, the diaphragm, intercostal muscles,
pleural area...

e the bronchial tree, with the trachea, the bronchi and the bronchioli.

e the respiratory areas formed by the alveoli, where the gaseous exchanges with the
blood occur.

Through the breathing process, its role is to supply the body with oxygen (distributed
by the blood) and to evacuate the carbon dioxide it products. To help in this process,
a maximal air-blood exchange area is necessary: the exchange area is the boundary of a
huge collection of small balls (around 300 million units), called alveoli, the diameter of
which is about a quarter millimeter. That makes an exchange area (membrane of those
alveoli) of about 100 m? The alveoli are connected to the outside world through the
respiratory tract, which has a very particular spatial structure of tree (see Figure 1.1).

Figure 1.1: Bronchial tree mouding, created by E. R. Weibel [117|. Zoom on the little
bronchi.

Indeed, the respiratory tract is an assembly of interconnected pipes following a very
dyadic-tree structure. The overall tree can be described as follows: the trachea (with a
diameter around 2 c¢m) divides into two sub-branches, which divide further onto smaller
branches, and so on, up to around 23 levels of bifurcations. The word “around” is impor-
tant: the aim is to occupy the whole available space in the rib cage, and some branches
stop before the 23rd generation whereas others divide after [118]. The first generations
are purely conductive, exchanges do not take place before generation 16 or 17. Beyond
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that point, all branches are lined up with alveoli, up to the last generation. With 300
million alveoli, the exchange area is around 100 m? in human adults.

As said previously, the exchange area must be sufficiently large to allow the required
quantity of oxygen to be transferred by passive diffusion. Therefore preserving the lung
from the inhaled impurities is necessary: they could obstruct the bronchi and limit the
exchange area. The breathed products which could settle in the bronchopulmonary system
are eliminated thanks to three principal mecanisms:

e the cough.
e the mucociliary transport (or mucociliary escalator).

e the alveolar clearance.

Although it is not the aim of this thesis to discuss the mecanism and results of coughing
in any detail, the relationship of cough to mucociliary transport deserves a mention.
During cough, the respiratory muscles of the rib cage and diaphragm contract to expel air
violently from the lungs, and this expulsion is accompagnied by a narrowing of the larger
airways and an oscillation of the tissues and linings of the airway wall [72]. Gases may
be expelled from the mouth at 10 L.s™! or more, implying gas velocities well in excess of
10 m.s!, even in narrow airways, and estimated speeds in regions of airway compression
range as high as 250 m.s~!, which is three quarters of the speed of sound.

In a few words, the alveolar clearance is the process during which particles are removed
from the alveoli. This clearance can take many forms: phagocytosis by macrophages,
elimination of the dust-loaded macrophages towards the ciliated airways, detention in the
interstitium and transport to the lymphatic nodes [70].

In this thesis, we focus on the mucociliary transport and its mecanisms.

1.1.2 The mucociliary transport

The lining of the bronchi is napped with a mucus film whose role is to catch the inhaled
impurities (dust, pollution particles, bacteria, fungus...). The mucus traps the pathogens,
reduces microbial access to the epithelial cells, cells which compose the lining of the
bronchi, and prevent them from accumulating in the bronchi and obstructing the lung.
The mucus and the trapped impurities are transported outside the lung by means of the
beat of submerged cilia, until the junction with the oesophagus to be eliminated in the
stomach.

More precisely, at the scale of the cilium, on the lining of the bronchi (see Figure 1.2)
the fluid is biphasic [81]. The lower layer is the periciliary layer (commonly called PCL). Tt
contains the cilia. The upper layer is the mucus. The lining epithelium of the respiratory
tract is thicker in its upper parts, where it is underlain by a thick submucosal zone [98].
The epithelia of ciliated regions are known to be complex, at least in part: in addition
to the easily distinguishable ciliated cells, there are several types of epithelial cells, as
described by Jeffrey and Reid [61], among them the goblet cells responsible for secreting
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Figure 1.2: Multi-scales schema of human lung, from the trachea and the first generations
of bronchi (~ 1 cm) to the epithelial cells (~ 5 pm). Modified from [30].

the proteins which compose the mucus. In the large airways, the apices of ciliated cells
may form a more or less continuous cover at the surface of the epithelium. For instance,
the tracheal epithelium may have only 1 goblet cell for every 5 ciliated cells. But, in the
smaller airways, the proportion increases and there may be numerous intermediate cells.

Mucociliary transport depends upon a successful relationship between these three
components: the cilia, the mucus and the periciliary fluid. The characteristics of transport
may be altered by changes in any of these three components, and such changes may be
used to regulate transport or changes resulting from disease may interfere with transport.
Let us introduce some detailed aspects of the mucociliary transport which is the focus of
this work from the mathematical point of view.

1.1.2.1 The mucus

There are two different types of biological fluids: the ones which flow in a closed circuit,
like for instance the blood and the lymph, and the ones which flow in an open circuit, like
mucus, saliva, sperm... Although the functions of each of these fluids are very different,
they are all essentially composed of water and some other specific components: proteins,
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cells, nutriments...

Respiratory airway mucus is a complex mixture of several proteins (glycoproteins,
proteoglycans, lactoferrin, lysozyme...), lipids and salt [34, 80]. This mixture imparts
protective properties to the lung: some proteins enhances the capture of bacteria and
reduces microbial access to the epithelia; some remove iron required by many bacteria
while others kill these bacteria [33]. Microorganisms are also trapped by the various
lipids attached to some proteins, and the more diverse the lipids, the wider their binding
properties. Mucus macromolecules absorb many kinds of foreign molecules avidly, and
sulphated groups interact with viruses.

The glycoproteins appear to be the most important component conferring viscoelastic
properties to the mucus. The rheological behavior of the mucus is important [78, 79, 80].
When cilia beat in water, the rate of flow increases linearly with the force exerted by the
cilia because the viscosity remains constant [103]; such fluids show Newtonian behavior.
Some other fluids, including mucus, are non-Newtonian and behave as shear-thinning
fluids in which the viscosity, although much greater than water, decreases as the applied
force is increased, so the more forcefully the cilia beat, the more easily the mucus moves.
But mucus has also elastic properties. When it is stretched and released, it may return
to near its original shape using energy stored in it by the original deformation, although
some energy is also dissipated in overcoming the viscous forces. The time taken to use
up the stored energy against viscous resistance is a measure of the relaxation time, which
relates the moduli of elasticity and viscosity. Experiments suggest that the relaxation
time for mucus is quite long (perhaps 30 s [51]). Thus, when cilia, which beat at rates
of 10 to 20 Hz, exert propulsive forces on the mucus, stretching forces are applied to the
mucus at much shorter time intervals than the relaxation time. The mucus is therefore
seen by the cilia as an elastic structure able to accept efficient energy transfer from the
cilia and relaxing very little between successive beats.

It has been observed that the mucus forms a blanket in the larger airways, but is
more broken in smaller airways [56, 110]. In the smaller bronchioli, the mucus is present
in the form of droplets [58]. These droplets are more numerous in the larger bronchioli
and more likely in the larger airways to aggregate into flakes. In the bronchi and the
trachea, the mucus seems to be a more continuous sheet. It appears possible that the
mucus is normally only secreted in response to stimulation, and that the small droplets,
flakes or plaques are bearing away trapped particules, perhaps bacteria or macrophages.
Certainly one might expect a larger number of particules to be filtered out by inertial
impact against the epithelium in the larger airways, and larger mucous plaques would be
required to support them on the ciliary escalator. Let us note that flakes and plaques of
mucus are more abundant in many infections and diseases of human respiratory tracts.

Finally, the mucus is the upper layer of the fluid napping the lining of the bronchi.
It traps the inhaled impurities and transports them outside the lung. The mucus is a
viscoelastic fluid but the relaxation time is long, so that we can model the mucus as a
Newtonian viscous fluid.
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1.1.2.2 The periciliary layer

The cilia of the respiratory tract beat in a low viscosity periciliary layer whose depth is a
little less than the extended ciliary length when mucus is present. Although it is believed
that the cilia achieve little net transport of periciliary fluid beneath the mucus, there is
no quantitative data. Mathematical modeling suggests that at least the lower part of the
periciliary layer shows minimal net flow. Clearly, the layer of fluid immediately below the
mucus must flow at the same speed as the mucus, but we do not know anything about
the relative depths of these two regions of the periciliary layer. Recently, it has been
suggested that a further role of the PCL is to prevent the adherence of epithelial cells
with the overlying mucus layer [65].

The activity of cilia may play a part in maintaining and controlling the depth of the
periciliary layer. If the periciliary fluid layer becomes too deep, the cilia will be detached
from the mucus during their effective strokes (see below), leading to lower transport rates
until excess fluid is removed by cilia and they reach the mucus once again. In dry air,
the loss of fluid by evaporation may reduce the depth of periciliary fluid and damage the
cilia.

1.1.2.3 The cilia

The ciliary component is the best understood of the three components (mucus, periciliary
layer and cilia). The first comprehensive account of cilia seems to be due to Sharpey
in 1835 [101], who not only gave detailed descriptions of the actions of cilia in a wide
variety of animals but also reported the discovery of ciliary motion in the respiratory
systems of mammals. Since then a long period of active research, notably by Lucas who
studied ciliary function in the upper respiratory tract [81]. As well as providing detailed
confirmation of the role of cilia in mucociliary transport, this work led to the important
conclusion that mucus is propelled by the tips of the cilia which themselves move in a low
viscosity layer beneath the mucus.

Length of cilium L 6 pm
Cross-sectional radius To 0.1 pm
Beat frequency f 15 Hz
Cilia spacing 4y 0.3 pm
Metachronal wavelength A 30 pm

Table 1.1: Summary of data for cilia in the lung, from [48].

Cilia fixed on the epithelial cells in the bronchi are thin structures whose length L is
about 6 pum in the larger airways (reduced to 5 pm or a little less in the smaller bronchioli)
and radius rg is 0.1 pm. They beat at an average frequency f of 15 Hz (see Table 1.1 for a
summary of these data). We are talking about an “average frequency” because ciliary beat
frequency depends on several parameters, among them the temperature and the humidity
of the environment. Fluctuations in secretion of mucus can also stimulate the activity of
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the cilia [92, 109, secretion which can be increased or decreased by some drugs [87]. As it
will be explained below, the cilia do not beat alone but take part of a metachronal wave

which propagates to the surface of a carpet of 0.3 um-spaced cilia with a wavelength of
30 pm.

The complete modelling of the polymerization of a cilium is still an open problem at
this time. A sectional view of a cilium (see Figure 1.4) shows a normal 9 + 2 axonemal
structure of fibrils: a doublet of fibrils (called “axoneme”) is encircled with nine other
doublets of fibrils. Moreover, they are unusual in the possession of a crown of 3 to 7 short
“claws” 25 to 35 nm long (see Figure 1.3), projecting from a dense cap at their tips [46].
The ciliary basal body is of a common type with a basal foot, short striated rootlets, and
attached cytoplasmic microtubules, which together provide anchorage. This structure is
characteristic of the cilia.

n—
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Figure 1.3: Crown of “claws” attached to the tips of the cilium, modified from [105].

Bending movements are produced as the outer nine microtubules doublets of the ciliary
axoneme actively slide against one another when propelled by molecular bridges of dynein
that project from one doublet towards the next. Dynein is a ATPase protein that uses
energy from ATP in performing cyclical shape changes that produce the active sliding
movements. The machinery of motility is spread along the whole length of the cilium,
and different patterns of sliding along the length of the nine doublets are responsible for the
differences in shape of the cilium during its beat. Radial connections between axonemal
fibrils are assumed to resist the sliding and contribute to the formation of bends. A
detailed description of the mechanism of motility has been given by Gibbons [50].

The beat of a cilium can be broken down into two parts: a recovery stroke and an
effective stroke. These two phases does not counterbalance one with the other. This point
is very important. Indeed, mucus and periciliary layer are viscous fluids at the scale of a
cilium, and these fluids have reversibility property: a reversible movement of the cilium
would not permit the mucus to be transported (see Section 1.3.1.2). Between two cycles,
the cilium is at rest. At the start of the beat cycle, the cilium is in the rest position r (see
Figure 1.5). In the recovery stroke the cilium unrolls clockwise (in the top view) from its
rest position to the starting position for the effective strokes, remaining close to the cell
surface. In the effective strokes, the cilium is fully extended and bends over to reach the
rest position. Both side and top views show the beat is 3-dimensional, even if the effective
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Figure 1.4: Diagrams showing the structure of a cilium. a. Structures seen in a longi-
tudinal section. b. Transverse section of the ciliary shaft with the typical arrangement
of internal fibrils. c. The arrangement of fibril triplets in the basal body, showing the
position of the third subfibril C, and the twist of the peripheral triplets. Modified from

Warner [116].



42 Chapter 1. From the mucociliary transport to the Stokes problem

stroke is nearly planar and in a plane perpendicular to the cell surface, during which the
cilium swings through an arc of about 110 degrees.

The different motion of the cilium between the effective and recovery strokes can be
well understood if we consider the motion of a needlelike body in a viscous liquid. The
force acting on a needlelike body moving perpendicular to the axis of symmetry is almost
twice the force acting on the same needlelike body moving in the axial direction. Thus, it
would be highly desirable for the cilium to have a “perpendicular mode” of motion in its
effective stroke (thus generating a greater force) as against a “tangential mode” of motion
during the recovery strokes. In addition, the force is linearly dependent on the velocity;
thus, a larger velocity implies a larger force, which is clearly obvious in the ciliary beat
pattern with the fast effective strokes. Indeed, according to Sanderson and Dirksen [95],
the effective stroke is two or three times faster than the recovery stroke and the rest phase.

Side

-
P LR

Figure 1.5: The 3D-beat cycle of a tracheal cilium seen from the side and from above. On
the left the recovery stroke and on the right the effective stroke. Modified from [105].

When mucus is present, floating on top of the periciliary layer, it comes within reach
of the ciliary tips during the effective stroke of the ciliary beat cycle, but the cilia will
move beneath the mucus for the rest of the cycle. At the start of the effective stroke,
cilia are often still slightly bent forward and may therefore enter the overlying mucus the
tip first rather than being bent backwards and presenting the side of the cilium to the
mucus (Figures 1.6a and 1.6b). At this stage, the cilia may push upwards on the mucus,
raising it a little away from the cell surface. As the effective stroke proceeds, the cilium
engages with the mucus and imparts propulsive force to the mucus. Towards the end
of the effective stroke, the ciliary tip must begin to swing downwards once more and its
forward movement decreases. The mucus continues to move forward as it is propelled by
surrounding cilia and is pulled away from the decelerating ciliary tip. Then, decelerating
cilia finish at the rest position. The resting cilium projects in the direction of mucus
transport, and an area of resting cilia could act as a “nonreturn surface”, discouraging a
backward flow of mucus over the area (Figure 1.6d).

A cilium that is propelling mucus is subjected to a different distribution of forces
from that of a cilium propelling water. In a homogeneous fluid, the viscous resistance
to movement of a cilium increases towards the tip only because of increasing velocity of
movement. However, a mucus-propelling cilium in its effective stroke is surrounded by
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Figure 1.6: Mucus and cilia in different situations. Modified from [105].

low viscosity fluid throughout most of its length, but meets the much greater resistance
of mucus in the distal 0.5 gm or so at the tip. Propulsive force for ciliary movement is
generated throughout the ciliary length, and when a cilium meets resistance it will tend to
bend backwards, the backward bend increasing as the distance of the effective resistance
from the ciliary base increases. If a cilium bends backwards too far it will no longer be
able to propel mucus effectively (Figure 1.6¢c). That is why there should be an optimal
length for a mucus-propelling cilium at which it can exert a reasonable force and yet not
bend too much when it meets a mucus load [103].

Figure 1.7: Two adjacent 1-um-thick sections of cultured rabbit tracheal epithelium ex-
amined by scanning electron microscopy. Note the difference in orientation of the cilia
during the effective (e) and recovery (r) phases of the beat cycle. Modified from [96].

Cilia that propel mucus do not work alone but as members of a metachronal wave.
They take advantage of the recovery stroke to coordinate. If two cilia lie close enough
together, they will interfere with one another and will adjust their frequency and phase of
beating so as to minimize this interference [102]. According to the positional relationship
between them relative to their plane of beating, they may end up beating in phase with
one another, or with a constant phase difference. When many cilia interfere with their
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neighbors in such a way, their beating will become organized into coordinated metachronal
waves (see Figure 1.7). We can imagine that changes in the viscosity of the medium, or in
the length, or in the spacing of the cilia, will have a deep influence on the characteristics
of the metachronal wave. Its wavelength is of the order of a hundred of cilia, namely
around 30 pm (see Table 1.1).

Even a small raft of flake of mucus would be likely to be propelled by several metachronal
waves. A cilium performing its effective stroke will therefore normally come into contact
with mucus that is already moving at perhaps 200 pum.s™! [115]. Because the ciliary tip
would move at 4 or 5 times this speed in the absence of mucus, it will exert a force on
the mucus tending to accelerate the mucus. However, the highly viscous nature of the
mucus will resist the propulsive force of the cilium and as a consequence will slow down
the local speed of the cilium. Other cilia of the metachronal wave moving behind will
join the first cilium and add their propulsive effort, and the slower the mucus moves, the
larger the number of cilia within each metachronal wave that contribute effective strokes
at any instant because they are slowed down to the speed of the mucus.

Based on the works of Sanderson and Sleigh [96] on the rabbit, waves may be small
circular patches of activity, as in Figures 1.8c and 1.8d, or longer areas as seen in Fig-
ures 1.8a, 1.8b and 1.8e. In either case, they are limited in space and propagated for
only a short distance on the cultured epithelium. In Figures 1.8c and 1.8d, some cilia are
performing a clockwise recovery stroke (r), others an effective stroke (e) in the direction
of mucus transport. The resultant metachronal wave (m) moves in a different direction.

The pattern of ciliary activity represented in Figure 1.9 indicates the metachronal
relationships of the component cilia at an instant during the extension and propagation
of the wave across the epithelium. The metachronal wave has originated from a single
cilium. Each cilium begins its movement with a clockwise recovery stroke that has two
components of hydrodynamic coupling which induce the movement of neighbouring cilia.
With respect to the direction of the effective stroke (e) (which is the direction of the mucus
transport), this coupling by sideways and backward forces, acting respectively downwards
and to the left, as indicated by the short arrow (m). The effective stroke returns the cilia
to the resting position by moving in the direction of the arrow (e) and has little influence
on the metachronism. The metachronal wave therefore travels at an obtuse angle (~ 135°)
to the effective stroke. The line of synchrony (s) is at 90° to the direction of the main line
of metachrony.

Since there can be several metachronal waves, even if they can be located on small
circular patches of ciliary activity (Figure 1.8b), their contribution to the propulsion of
an area of mucus will carry the mucus over any irregularities or nonciliated areas of the
epithelium, and smooth out any minor differences in rate or direction of beat of the small
metachronal fields that go to make up the whole surface. These works on the rabbit
were confirmed by Marino and Aiello [82], whose studies on human bronchial biopsies
showed similar restricted metachronal fields. These are interpreted as being limited by
the irregularities of the epithelial surface, or probably narrow nonciliated areas or other
discontinuities across which mechanical communication of the wave does not easily take
place.
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Figure 1.8: Scanning-electron micrographs of rabbit tracheal ciliated epithelia showing
different areas of activity. Modified from [96].
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Figure 1.9: Interpretation of an area of ciliary activity on cultured rabbit tracheal ep-
ithelium represented by a model which is based upon a reconstructed 3-dimensional beat
cycle (a) and upon a plan which indicates the spatial relationships of cilia on the epithelial
surface. All cilia in the plan b are equally spaced (of 0.3 pum, see Table 1.1) and each one
is represented by a single numeral, whose value denotes the phase of the cilium in its beat
cycle (corresponding to schema a). Modified from [96].

Finally, the cilia are very slender bodies whose beats propel the mucus. They move
in the periciliary layer, a low viscosity layer beneath the mucus. The beat of a cilium is
a liking of a recovery stroke and an effective stroke, interspersed with rest phases, during
which the cilium projects in the direction of mucus transport. Only tips of the cilia enter
the mucus during the effective stroke to propel it. The cilium does not work alone but as
member of a metachronal wave which emerges from the coordination of the cilia during
the recovery stroke, and propagates in the opposite direction of mucus transport. All the
data related to the cilia and the metachronal wave are given in Table 1.1.

1.1.2.4 Some pathologies

Before tackling the mathematical modellings for the mucociliary transport, let us mention
some pathologies related to it. First, the cilia of persons who inherit the various forms
of primary ciliary dyskinesia (immotile cilia syndrome) or Young’s syndrome are either
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totally nonmotile or have such defective motility that mucociliary clearance is absent
or severely reduced [24, 89, 91|. In asthma [69], in infections with influenza [23] or cold
viruses [90] and mycoplasmas |35, among others, substantial numbers of ciliated cells may
be shed, and the propulsive machinery of mucociliary transport depleted. Disorientation
of ciliated cells may occur in regeneration after infections, and it appears to be common
in bronchitics [58|, asthmatics, and smokers [104]. Hypertrophy of the mucous glands is
a standard feature of disease, also seen most often in bronchitics [57], asthmatics [114],
and smokers, and hypersecretion of mucus increases the amount to be cleared, perhaps
by 10 or 20 times. Excessive mucin secretion by different secretory cell types is likely to
be a major cause of the airway plugging associated with fatal asthma [55]. Finally, mucus
viscosity can change too and disturb mucociliary clearance: it increases in diseases such
as cystic fibrosis or when the mucosa becomes dehydrated, for example with a fever or
excessive alcohol consumption; it decreases under emotional stress or if the subject has
bronchitis or asthma.

1.2 Mucociliary transport, state of art

While numerous physiological and pathophysiological factors are known to influence mu-
cociliary clearance and associated diseases, there are often insufficient data to evaluate
each of their effects on the mucus transport [41], motivating theoretical and experimental
modelling studies. Even if this phenomenon has already been widely studied, it is still a
challenge for the scientific research. Several problems emerge from the complexity of the
system: taking into account active thin strutures (cilia), the non-constant viscosity, the
Newtonian or non-Newtonian behavior of the fluid, the interface between the two layers,
the lining of the bronchi on the periciliary layer, the influence of the air on the mucus, the
effects of the inhaled pathogens, etc. This complexity makes the full numerical problem
be out of reach of scientists [29], but several complementary models have been developed
to study the mucociliary clearance. This section is dedicated to the presentation of the lit-
erature related to the mucociliary transport in the lung. Mathematical models have been
increasingly sophisticated and reflect many of the features found in the actual system,
incorporating the effects of a large number of cilia together with the two-layer character-
istic of the mucociliary fluid. Several of the more successful mucociliary transport models
that have been developped are discussed below.

1.2.1 Envelope models

The concept of the envelope model is based on the idea that the main propulsive thrust
comes from the instantaneous surface covering the tips of the undulating cilia (Fig-
ure 1.10). This idea was developed independently by Ross and Corrsin [94] for mucus
transport and by Blake [10, 12| for free-swimming ciliated protozoa. The mucus trans-
port model of Ross and Corrsin considered two layers: a “watery” periciliary layer and
a linear viscoelastic mucous layer (Maxwell fluid). They predicted unrealistically low
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mucus transport rates, but their theory did not allow contact between the envelope and
the viscoelastic mucous layer. This work suggested that the mucous layer moves essen-
tially like an elastic bloc. Moderate changes in the mucus viscosity did not appear to
significantly alter transport. Conversely, they noted the significance of the viscosity of
the periciliary layer, as any change can yield an appreciable change in mucus transport
rate. The envelope model, while useful in gaining some understanding of mucociliary
transport, is somewhat superficial in that it does not incorporate the essential physics of
the ciliary beat cycle and the mechanical contact with highly viscous mucous layer. A
more realistic model would take into account the action of the full length of the cilia and
their asymetric beat pattern, which allows the inclusion of such important factors as the
velocity and orientation of the cilium during the effective and recovery strokes.

Cilia sublayer Envelope
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Figure 1.10: A schematic illustration of the envelope model. Modified from [105].

1.2.2 Sublayer models

A wide class of sublayer models have been developed taking into account the full length
of the cilia to simulate the propulsion of mucus by cilia. On the one hand, there is the
“traction-layer” model which uses a continuum representation for the cilia. On the other
hand, there is the “discrete-cilia” model which employs an array of oscillating needlelike
bodies to represent the cilia.

1.2.2.1 Traction-layer model

The action of a large number of cilia is modeled by a continuous distribution of forces
per unit volume within the cilia sublayer. The volume force distribution is obtained by
appropriate spatial averaging and Fourier analysis over a cycle of a particular ciliary beat
pattern. In the model of Keller and coworkers [63], the averaging technique does not
adequately discriminate between the effective and recovery strokes and predicts relatively
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high oscillatory velocities as a consequence. A fairly constant stream flow in the upper
part of the cilia sublayer could be observed. One of the characteristic results of this
analysis is the almost total retardation of flow in the lower part of the cilia sublayer
together with a “plug flow” in the mucous layer.

Recently Smith and coworkers [107] modeled in two-dimension the airway surface
liquid by a three-layer model: the upper (the mucus) modeled as a Maxwell fluid, the
lower one (the periciliary layer) and the middle one (kind of transition layer, rather thin)
considered as Newtonian fluids. The cilia are treated as an active porus medium and
their effects modeled by a volumique resistive force depending on the local velovity of the
cilia. This model showed a quasi-uniform transport of the mucus layer but no collective
movement in the periciliary layer emerges from this model.

1.2.2.2 Discrete-cilia model

Barton and Raynor [6] developed a mathematical analysis of ciliary propulsion, approxi-
mating the cilium by a rigid rod which automatically shortens during the recovery stroke.
They used a simplified “resistance coefficient” approximation to the effect of the cilium on
the surrounding fluid, and their model of the cilia motion did not include the experimen-
tal findings that were to emerge later. Their work allowed us to calculate realistic flow
rates, and their characterization of the cilium as a rigid rod was exploited later in some
models [15].

An alternate “discrete sublayer” approach utilizing the mathematical technique of
slender-body theory was developed by Blake [13], initially for ciliated microorganisms.
Due to their slenderness, individual cilia can be modelled by distributing force singu-
larities along their centrelines. These ideas were extended in studies such as Liron and
Mochon [76] and Fulford and Blake [48|. This theoretical approach gives estimates for the
mean field velocity in both the periciliary layer and the mucous layer when both liquids
are assumed to have Newtonian fluid properties. In all examples, the mean field velocity
is very small in the lower part of the periciliary layer (which contains the recovery stroke)
and increases very quickly close to the mucous layer, up to the mucous velocity.

Cilia seem to alter their beat pattern in the presence of mucus, or in a general way when
subjected to a high viscosity environment. Calculations using a specified beat pattern do
not strongly support the hypothesis that the penetration of the cilia into the mucous layer
during their effective stroke is essential for mucus movement. Actually, they suggest that
ample velocities of propulsion are obtained by the cilia even if there is no penetration, in
the situation where the cilia densities are sufficiently high. Conversely, calculations based
on models in which active cilia are sparsely distributed over the epithelium suggest that
penetration of the cilia into the mucous layer would significantly enhance transport.

The form of the ciliary beating, especially during its effective stroke, is a determining
factor for the velocity of the mucous layer. The ciliary beat described by Sanderson and
Sleigh [96] is the more realistic as the cilia encounter the very large resistance of the
mucus. Other theories have been developed, they include the tip penetration models, in
which only the tips of the cilia penetrate the mucus [77], and the difficulties to determine
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the deformation of the interface between two viscous fluids by the motion of a nearby
slender body [14].

More recently, Smith and coworkers [106] discussed in detail techniques for modelling
flows due to finite and infinite arrays of beating cilia. Cilia are modelled as curved
slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities
along their centrelines, leading to an integral equation that can be solved using a simple
and efficient discretization. They developed a more complex and detailed model of flow
patterns in the periciliary layer of the airway surface liquid. Their results confirmed
that shear flow of the mucus layer drives a significant volume of periciliary liquid in
the direction of mucus transport even during the recovery stroke of the cilia. Lee and
coworkers [71| considered in 2-dimension a two-layer Newtonian fluid model to investigate
the important factors that may affect the mucociliary transport. The cilium is modeled
by discrete Dirac delta function distributed all along the cilium. The numerical techinque
implemented in this study is a projection method combined with the immersed boundary
method in order to prescribe the ciliary beating patterns. Using the same computational
techniques, Jayathilake and coworkers [60] simulated a 3-dimensional two-layer flow to
better understand some pathological cases.

1.2.3 Non constant viscosity models

A few works consider a variable-viscosity model. Matar and Spelt [83] modeled in 2-
dimension the viscosity as the solution of a reaction-advection-diffusion equation depend-
ing on the temperature, but the model of the flow is very simplified. A variable-viscosity
model has been presented by Enault and coworkers [42] in the abscence of cilia, and by
Mauroy and coworkers [85] at the scale of the bronchi for a Bingham fluid. Chatelin
and Poncet [30] proposed a 3-dimensional model where the viscosity is the solution of a
convection-diffusion equation. The movement of the cilia is imposed as the solution of an
1-dimensional transport equation on a parametric curve, and the effects of the cilia on the
fluid are treated by penalization. To the best of our knowledge, in the other works which
consider a variable viscosity, the viscosity is defined constant by part. In a recent study,
Dillon and coworkers [40] used the immersed boundary method to simulate 2-dimensional
flow due to three cilia, with a discrete model of the internal elastic and force-generating
structures of the cilia. The mucus layer was simulated using a relatively thin elastic layer
immersed in the fluid, a short distance above the cilia tips. Their results showed that
the cilia are able to propel mucus without the need to engage with the mucus layer, and
that elastic properties of the mucus layer prevent unphysical deformation of the mucus-
periciliary liquid interface. This observation justifies the two-layers models (sometimes
three) developed in several works [60, 71, 107], for which the interfaces are assumed in-
variable and flat.

For a more complete synthesis of the works on the mucociliary transport, we refer the
reader to the review by Smith and coworkers [108]. An important conclusion of this state
of art is that the complexity of the phenomenon leads us to consider several restrictive
assumptions. The next section is devoted to the presentation of the mathematical model
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of mucociliary transport. The aim is to simulate in 3D a whole forest of cilia in a two-
viscosity fluid. We will especially pay attention to limit the computational costs related
to the model, and at the same time, try to keep assumptions to the minimum.

1.3 Mathematical modelling of mucociliary transport

In discussing the fluid mechanical principles of mucociliary transport, it should be ob-
served that there are several length scales of particular relevance to this study. There
are:

molecular length scales relative to the biochemical structure of the mucus.

length scales associated with the cilium tip (0.1 to 1 pm).

a length associated with the cilium length, cell size, ciliary wavelength and coherence
of a mucous plaque (5 to 50 pm).

a length scale associated with the length of an airway (5 to 10 mm).

In this study, we focus on the mucociliary transport phenomena at the scale of the cilium
and ciliary wavelength.

1.3.1 Modeling of the fluid

1.3.1.1 A Newtonian fluid
All the notations introduced in the following developement are summarised in Table 1.2.

As a first step, the fluid is assumed to be homogenous with constant viscosity. The
mathematical modelling of fluid is classically based on the two conservation principles:

e mass conservation for an incompressible and homogeneous fluid,
div(u) =0 on Q,
e movement quantity conservation,

p <&&—ltl + div(u® u)) = div(e) + F. on Q.

We assume that the fluid is Newtonian:

o =2uD(u) — pl; = p (Vu + ‘Vu) — pl;, (1.3.1)
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which leads to the incompressible Navier-Stokes equations:

ou .
p <— +div(u® u)> —phutVp = Fo on{ (1.32)

ot
divfiu) = 0 on Q.

As it has been discussed in Section 1.1.2.1, the mucus is a viscoelastic fluid, and so
we should work with a non-Newtonian fluid model. Nevertheless, the relaxation time is
very high, which means that at the scale of the cilia beat, the elastic energy of the fluid
is insignificant with regard to the viscous resistance. As a consequence, we have chosen
to model the mucus as a Newtonian fluid, and use Equation (1.3.1) for the constraint
tensor o.

2 Domain occupied by the fluid
u  Velocity of the fluid
p  Density of the fluid
o  Constraint tensor
F. External forces
i Viscosity of the fluid
D(u) Deformation tensor of u
p  Pressure of the fluid
I3  Identity matrix of M3(R)

Table 1.2: Notations.

1.3.1.2 Stokes versus Navier-Stokes

Figure 1.11: a. Simmer with a high Reynolds number: Jérémy
Stravius at the World Swimming Championships in Barcelona,
2013.

b. Swimmer with a low Reynolds number: microalga
Chlamydomonas Reinhardtii, picture found and modified from
http:/ /www. fytoplankton. cz.
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Dividing Equations (1.3.2) by the fluid flow characteristic quantities, we get

~

Re <%‘ti +divi® ﬁ)) — A+ Vp=F, (1.3.3)

where U, ¢, p and f‘e are the corresponding dimensionless quantities, and Re is the
Reynolds number. It is defined by

LU
Re = p—,
i

with L and U respectively the flow characteristic length and velocity. Let us discuss two
particular regimes:

e cither the Reynolds number Re is high, which is true at the scale of the human
swimmer (Figure 1.11a), for who Re is of the order of 10°. In this case, inertial terms
in Equation (1.3.3) preponderate over viscous terms. Note that these equations are
not reversible in time because of the non-linear term, and the solution depends on
the solution in the past.

e or the Reynolds number Re is low, which is true for micro-swimmers like Chlamy-
domonas Reinhardtii (Figure 1.11b), for which Re is of the order of 107%. This time,
the inertial terms are dominated by the viscous terms and thus, the fluid can be
modeled by the Stokes equations

—pAu+Vp = F. onQ,
{ pot TP on (1.3.4)

div(u) = 0 on .

Let us note that the time-derivative does not appear in the Stokes equations, which
results in an instantaneous balance of forces at each time: there is no dependance
on the past, no memory effects, and the problem is completely reversible in time.

Regarding to mucociliary transport, the characteristic length and velocity are of the order
of the micrometer and the micrometer per second, so that the Reynolds number Re in
this case is of the order of 107°, like the micro-swimmer Chlamydomonas Reinhardtii. As
a consequence, the Stokes equations are privileged. It is very important to underline that,
because of the reversibility of the Stokes equations, the mucous transport is efficient only
if the movement of the cilia is not reversible in time.

Much of the mucus propelled by cilia in the tracheobronchial tree moves against the
pull of gravity, even if values of mucociliary transport appear similar irrespective of ori-
entation. At the micrometric scale, the force of gravity pg and of buoyancy Apg are
insignificant. Moreover, for normal mucus depths (< 10 pum), two factors negate the grav-
itational effects: first, the high-density array of cilia acting like a porous resistive medium,
and second, the high viscosity and tensile forces within the mucus itself. The conclusion
is that there is no external forces: F, = 0.
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1.3.1.3 Effects of the cilia on the fluid

It remains to take into account the interaction between the cilia and the mucus. Let us
present two approaches:

e the easiest model is the “one-way” model, that is only one action is considered. Here,
we model the effects of the cilia on the fluid, but we neglect the retroaction of the
fluid on the cilia. In this case, the positions and the velocities of the cilia are given
either by solving some mechanics equations or analytically imposed.

e the second model, more complex, is the “two-ways” model, when the two interactions
are considered. The mechanical equations are coupled with the fluid mechanics
equations (for example through the boundary conditions) and both the action of
the cilia on the fluid and the action of the fluid on the cilia are modeled, leading to
a strongly coupled fluid-structure interaction problem.

In this work, we consider only the action of the cilia on the mucus (“one-way” model) and
we will see in Section 1.3.2.2 how to impose the position and the movement of the cilia.
This action is naturally introduced in our problem by no-slip boundary conditions: the
velocity u of the fluid at the level of a cilium is equal to the velocity u. of the cilium.
Finally, the problem we consider to model the fluid is the following Stokes problem

—pAu+Vp = 0 on ()
div(u) = 0 onQ, (1.3.5)
u = u. on the cilia.
1.3.1.4 Bifluid model
mucus

periciliary
layer

Figure 1.12: Domain €2 in the case of a two-viscosity fluid.

As described in Section 1.1.2; the airway surface liquid is composed of two overlayed
layers, the mucus and the periciliary layer. In our model, we take into account this fact
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defining the viscosity p by the constant piecewise function

_ ) o i 2 < hg,
M(x,y,z)—{m if 2 > ho,

where hyg is the height of the periciliary layer. Finally, Problem (1.3.5) becomes

—2div(pD(u)) +Vp = 0 on Q,
divflu) = 0 onQ, (1.3.6)
u = uy on the cilia.

1.3.1.5 Boundary conditions

biperiodic

—>
conditions

- / 77777777777 . |(inzandy)

Figure 1.13: Hlustration of the boundary conditions.

For now, we impose one boundary condition: u = u. on the cilia (no-slip boundary
conditions). In this section, we describe the different boundary conditions we impose to
match reality. First, consider a box as the domain Q (see Figure 1.13). The bottom
corresponds to the lining of the bronchi, which is assumed to be flat, and we impose
no-slip boundary condition: u = 0. The box we consider is seen as a window focused on a
part of a bronchus, with mucociliary transport which goes on outside the box. Therefore
it is natural to impose in both directions x and y biperiodic boundary conditions. Lastly,
if we pay attention to Figure 1.7, it seems reasonable to assume that the mucus surface
remains flat. This approximation involves two boundary conditions on the top of the box:

u-n=>0 kinematic condition,
(6-n)-7=0  dynamic condition,

where n is the normal vertor, T the tangential vector and o the constraint tensor. The
kinematic condition corresponds to a non-output condition while the dynamic condition
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is a no-friction sliding condition. All the boundary conditions we impose in our model
are summarized in Figure 1.13.

For the theoretical study, we do not consider these boundary conditons. Actually,
they do not impact on the regularity of the solution and/or the approximation of the
solution by finite element methods. Thus, we will consider homogeneous Dirichlet bound-
ary conditions fir the sake of clarity, even if the results readily adapt with the boundary
conditions that have been described in this section. They will be considered at the time
of the computations (Chapter 4). In the meantime, Problem (1.3.6) is well-defined and
we can discuss the regularity of the solution.

1.3.2 Modeling of a cilium

1.3.2.1 Hierarchy of thin-structure models for the cilium

The aim of this work is to solve Problem (1.3.6) by a finite-element method, so we have
to mesh the domain €2 correctly. In the previously chosen model, in order to take into
account the cilia in a conforming way, the mesh has to respect the complex geometry of
domain 2, especially at the neighbourhood of the cilia. The cilia are very slender bodies,
as a consequence the mesh has to be very refined near the cilia. These considerations
mean that computational costs will be very high, not to mention cilia beat very quickly
and the mesh has to be redefined at each time step. If we could imagine this process for
one cilium, it is clearly not adapted to a forest of cilia.

Another way to treat the cilia is to process by penalisation: the domain €2 includes
the cilia, and the velocity of the fluid is penalized to be equal to the cilium velocity. Once
more, it is important to have a very refined mesh on the volume occupied by the cilia;
otherwise, cilia seen by the mesh would behave as a continuous layer where the velocity
of the fluid is imposed (this model tends to the traction-layer model). Finally, this model
yields the same computational cost issues as the previous model, and therefore is not
adapted neither.

Our model is based on the fact that the cilium is a very slender body (the ratio cross-
sectional radius over length is r9/L = 0.1/6) and that it beats very quickly (frenquence
f =15 Hz), see Table 1.1. To avoid too prohibitive computational costs, we consider the
asymptotic of a zero diameter cilium with an infinite velocity: the cilium is modeled by a
line distribution of forces in source term. Again, in order to ease the computations, the
line distribution of forces is approached by a sum of punctual forces distributed along the
cilium, Figure 1.14.

In this section, we estimate the convergences between these different source terms:
the volumic source term, the line distribution of forces and the distribution of punctual
forces. More precisely, see Figure 1.14,

a. the cilium seen as a curved cylinder, which corresponds to a volumic source term of
radius € > 0,

1
ez—ﬂci LQQa
J —lal € ()



1.3. Mathematical modelling of mucociliary transport 57

and u. € H?(Q) the associated solution.
b. the cilium seen as a line distribution of forces on the curve T',
Spe H171(Q),¥n > 0, (1.3.7)
and ur € H'77(Q) the associated solution.

c. the previous line distribution replaced with a sum of N punctual forces located at the
points z; and of intensities ¢;,

N
fN = Z Ciéxi € H73/2777<Q)7 vn > 07

i=1

and uy € HY277(Q) the associated solution.

N
2 or D cide,
i=1F

e—0 N—+00

a. b. C.

Figure 1.14: Three schematic source terms to model a cilium: a. A volumic cilium of
small radius € and force in €72 so that the mass stays constant when ¢ tends to 0. b. A
line distribution of forces. c¢. A sum of N punctual forces distributed along the cilium.

Let us define
£ [0L] - R

s = &(s)
a regular parametrization of I' such that & € ¥* and d £ is never zero. We recall the
following properties of the Sobolev spaces:

Proposition 1 (Sobolev embeddings). Consider a regular domain 2, we denote by d the
dimension,

H™(Q) — €*%(Q) form >k + g

Proposition 2 (Trace operator). Consider s > 1/2 and an open domain 2 with a reqular
border 0, there exists a continuous mapping T defined by

T: H*(Q) — H'2(Q)
v — Tv=v| .
o0

We can now establish estimates of convergence between these different source terms
and deduce convergences for the solutions. From now and until the end of this section,
the study is led in dimension 3. We denote by 7 any (small) real such as n > 0.
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Convergence of fy to ér. We show a weak convergence result in H*?77(Q) and a
strong convergence result in H*"((2).

Proposition 3 (Weak convergence). Let (x;)icpi,ny be N orderly points on I, there exist
N reals (c;)ieq1,ny such that, for all v e Hg’/2+"((2),

N
<; CmiézvN U> N—>—+)OO <5F7 U>7

which means that fx = Y. c,,0,, weakly converges to oy in H~3/27".

Proof. Consider v e H*?*1. By Proposition 1, v is continuous, so that we can write:

N N
<2 Ca Oy V) = 2 €, 0(@3).-
i=1 i=1

Moreover, for all i, there exists s; € [0, L] such that z; = &(s;), so we have

N
2% o) = 2y

On the other hand,

dg
ooy = [ wtwae = [ oo | Z s s
So, let us choose (s;); such as
L
O=sp<s1<---<sy=Let maxsi—si,lsﬁ,
and it
i = | G50 (5= 50

Since the product |%(-)|v(&(-)) is continuous, By the Riemann sums theorem,

e o, [

Therefore, for all v e HS’/H"(Q),

N

Z(Si - 52‘71)

i=1

dg
2

v(€&(s))ds = J v(x)dz.

%(Sz’) .

N
<; CmiézvN U> N—>—+)OO <5F7 U>7

which ends the proof of the weak converge. O

Proposition 4 (Strong convergence). The convergence rate of fn = >, ¢y,0,, to or de-
pends on the space we consider:
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o In H-27(Q), fx converges to dr at the order N—V/2.

o In H=°*(Q), fn converges to o at the order N7,

Proof. Consider v e H*™((Q), formally,

N

<§]1c$,.am,v>—<5p,v> - (33— | G500 ot = [ 0 et
< i [ || e - E|ueenes Az
. i [N 2 ([0 en ) @] (139)
< i [ (HZ—% (€0 o (1310

I 2
< C@lolwn) (5 )

Let us derive this estimate in a rigorous way:

e from (1.3.8) to (1.3.9), since v € H*™(Q), the trace operator which restricts v to I'
defines a function ¥ € H'™(T"), and thus the composition by the regular function &
becomes a function of H'*"(]0, L[). So we can apply the fundamental theorem of
calculus which writes a function as the integral of its derivative (mutliplying by the
regular function ||%(-)|| does not perturb this process).

e Inequality (1.3.10) comes from the Cauchy-Schwarz inequality.

Thus, we have shown that fy = Y. ¢,,8,, converges to dr in H~27"(Q) at the order N~'/2.
Note that this result is a priori false in H=3/277(Q).

We can also specify the convergence rate in H~%?~". Indeed, Riemann sums theorem
ensures that the rate of convergence for ¢! (Q2)-functions is O(N~!). More precisely,

N
L
<; Ca; 0z, U> - <5I‘7 U> < C(é)NHVUHoo,Q

By Proposition 1, for any v € HY*™ |Vu|,q < Clv|gseinq). We conclude that
fv = D ¢, 0., converges to o in H~>277(Q) at the order N~ O
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Convergence of f. to dr By the definition of dr, Equation (1.3.7), the test function v
has to belong to H'*(£2), so that {dr,v) is well-defined (actually, we need that the trace
operator is defined on a submanifold of dimension d — 2). Nevertheless, conversely to the
previous case, no convergence (even weak) has been established in H~177(2). We can
however get an order of convergence in a weaker norm.

Proposition 5. The convergence rate of f. to dr depends on the space we consider:

e In H271(Q), f. strongly converges to or at the order \/=.

o In H2271(Q)), f. strongly converges to dr at the order ¢.

Proof. For ve H*™(Q),

[<fur ) — (o)) = \L LI R

Y

me2

J, 75 (o) = vlpr(a)ar

where €. is the cylinder of center line I'" and of radius e, and pr(z) is the orthogonal
projection of x onto I'. Moreover, since v € H**"(Q), its derivatives belong to H*"(Q):
their traces are well-defined on I". We can apply the fundamental theorem of calculus and
the Cauchy-Schwarz inequality to obtain

1 J‘x
— | 0Op_yv(o)dodzdy
pr(y,e) ne? |, o)

1
s L Te? JD( ) & = "2 0s—y ] 111y, ddy
Y,€

[(fesv) = o, 0)] =

< [TVelvlazen(e),
where D(y, €) is the cross-section of the cylinder %, at the point y € I'. We conclude that
f- converges to dr at the order 1/2 in H=277((Q).

We can also specify the convergence in H~%277(Q). Indeed, for v € H>?t(Q)), from
the above,

(few) = Gl =| [ =5 (o) = ol )o

1
< — IV — d
|, 7 Vrlesle - pe(@)lae

We conclude with Proposition 1 that f. converges to ér at the order 1in H~>277(Q). O
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Convergence of the solutions. Now we have established convergence results for the
source terms, we can specify the convergence results for the corresponding solutions. The
results of this section are based on the following theorem, taken from [75] (Chapter 2,
Theorem 6.3).

Theorem 1. Define the space

= _ vemm\\v\y: S 1 Dal < +o0 b,

lal<r
where p is a smooth function such that there exist ¢y, co € RY satisfying

p(x)

61<m<02, VSL’EQ

The space ==", forr = 0, is defined as the dual space of =". Consider the following elliptic

problem
Au = in €2,
{ s (13.11)

where A is a “reasonable” elliptic operator (we assume that (1.3.11) has a unique solution
for any regular right-hand side f). Then, for any f in =277, r = 0, there exists a solution
w of (1.3.11) satisfying

lullm—r < Clflz—r,

where m is the highest order of derivation in the operator A.

Inspired by Scott [99], we apply Theorem 1 to o — Y] ¢;,0,, and f. — dp. But in order
to do so we need to assume the cilium to be “far” from the border of €2, that is, there
exists Qg << Q) such as supports of f., or and Y, ¢,,d,, are included in €. Indeed, the
H™"-norm and the = "-norm are equivalent on )y, and for any f supported in €2y, we
have

[flz= < cd (o, 02)~" | f -,

where ¢ depends only on 2y and on the choice of p. Finally, we conclude easily from the
previous sections that for any n > 0,

N N C
HU/F - uNH—n < C 5F - C$i51‘i < C 5F - C$i51‘i < >
=2-2-7 —2—n N
N N C
Jur = un|-1/2-n < C' |8 = Y 1¢n,0, < C|or = ) a0, <5
=-5/2-n —5/2—n

Jue —url -y < Cllfe = drflz—2-n < Ol fc = dr] 2y < CVE,

Hue - UFH71/2777 < CHfa - 51““5—5/2—'7 < CHfa - 5FH75/2717 < Ce.
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Remark 1. The convergence of the solutions in weak spaces (relative to the solution’s
reqularities) has been established under the assumption “the cilium is far from the border”.
In the case of mucociliary transport, the cilium is connected to the lining of the bronchi,
which is the border of our domain ). Nevertheless, the velocity of the cilium at the
border is zero, and so the active part of the cilium is not in contact with the border: the
convergence of the solutions holds in this case.

1.3.2.2 Parametrization of a cilium and of a forest of cilia

As explained in Sections 1.3.1.3 and 1.3.2.1, the effect of the cilia on the fluid (“one-way”
model) is modeled by punctual forces distributed along the cilia. To complete this model,
we have to define a parametrization of the movement of each cilium and the force it exerts
on the fluid. Let us start with the parametrization of the movement of a cilium.

One cilium. Conversely to inert stiff or elastic solids, the cilia are “active™ they have
their own internal energy which allows them to beat. In our model, their movement is
analytically imposed, as it is done for instance by Chatelin and Poncet in [30]. We use
the parametrization established by Fulford and Blake in [48], based on the Fourier series
decomposition of the beat of the cilium described by Sanderson and Sleigh in [96]. More
precisely, at each time ¢ the cilium is represented by the truncated Fourier series of the
parametric curve

E(s,t) =1L %ao(s) + Z a,(s) cos(2nm ft) + b, (s) sin(2nw ft) | ,

where s € [0, 1] measures arclength from the base of the cilium, L and f are respectively
the length and the beat frequency of the cilium (see Table 1.1). The Fourier coefficients
a,, b, are vector quantities, which are approximated by the following 3-degree polynomial
functions

3 3
a,(s) = Z amksk and b, (s) = Z bnvksk
k=1 k=1

where a,, , and b, ;, are constant vectors of R3, given in Table 1.3.

Figure 1.15 shows the beat of a cilium that we get with this parametrization and
confirms the correspondance with the description made by Sanderson and Seligh in [96].
Let us note that the cilium crosses the interface between the mucus and the peryciliary
layer (PCL) during the effective stroke (and only during this phase). This point is very
important to guarantee an efficient mucus transport.
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Ap k
n=>0 n=1 n =2 n=3 n=4 n=>5 n=2~06
R —0.449 0.130 | —0.169 0.063 | —0.050 | —0.040 | —0.068
2.076 | —0.003 0.054 0.007 0.026 0.022 0.010
e — 9 —0.072 | —1.502 0.260 | —0.123 0.011 | —0.009 0.196
—1.074 | —0.230 | —0.305 | —0.180 | —0.069 0.001 | —0.080
k3 0.658 0.793 | —0.251 0.049 0.009 0.023 | —0.111
0.381 0.331 0.193 0.082 0.029 0.002 0.048
bn,k
n=1 n=2 n=23 n=4 n=>5 n=~06
k1 —0.030 | —0.093 0.037 0.062 0.016 | —0.065
0.080 | —0.044 | —0.017 0.052 0.007 0.051
9 1.285 | —0.036 | —0.244 | —0.093 | —0.137 0.095
—0.298 0.513 0.004 | —0.222 0.035 | —0.128
3 —1.034 0.050 0.143 0.043 0.098 | —0.054
0.210 | —0.367 0.009 0.120 | —0.024 0.102

Table 1.3: Fourier-least squares coefficients for the cilia beat pattern. The upper and
lower numbers in each entry correspond to the z and z components respectively, the y
component is always zero.

Mucus

PCL

Figure 1.15: Traces of a cilium during one period of its beat. a. Description made by
Sanderson and Sleigh [96]. b. Parametrization established by Fulford and Blake [48].

In [48], Fulford and Blake not only give a parametrization of one cilium, but they also
explain how to parametrize a whole forest of cilia.

A forest of cilia. Now that we have described the beat of one cilium, parametrizing a
whole forest is not more complicated if we take into account two important features of
the forest: the space ¢y between two cilia (in each direction) and the wavelength A of the
metachronal wave. These data are given in Table 1.1. More precisely, in order to model
a forest of n, x n, cilia, with n, (respectively n,) the number of cilia in the direction x
(respectively the direction y), the cilium (4, j), where ¢ € [[1,n,] and j € [1,n,], is
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parametrized by the curve

14
€i7j(8a t) = ilpe, + jéoey + 6 <3’ Zf_;)\ + t) ’

where s € [0,1]. Let us note the phase shift ¢; = ify/fA in = (and only in z, not
in y) which the metachronal wave comes from. As most of the models, we only consider
the metachronal wave in the direction x, even if Figure 1.9 shows that activity is also
propagated in the direction y. This approximation is classical and experiments [49] show
that increasing viscosity causes the metachronal wave to become more orthoplectic (in
the direction of mucociliary transport). We have drawn in Figure 1.16 a section of the
forest in the direction z. The propagation of the metachronal wave (to the left on the
picture) is in the opposite direction of mucus transport (to the right). Figure 1.17 shows
a forest in 3d as we model it in the simulations (see Chapter 4), except on the value of
the cilia spacing {¢y: it has been voluntarily increased for the sake of clarity.

0 20 30

50 60

o

Figure 1.16: Parametrization of a forest of cilia. a. Another section of cultured rabbit
tracheal epithelium examined by scanning electron microscopy, modified from [96]. b.
Drawing of a section of a forest with the parametrization established by Fulford and
Blake [48].
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Figure 1.17: Drawing in 3d of a forest of cilia (with ¢y = 2 pm instead of 0.3 pm).

This section has been dedicated to the parametrization of the cilium and of a forest
of cilia. Next section presents the model we have chosen for the force distributed along a
cilium.
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1.3.2.3 Distribution of forces along the cilium

There are two main theories to model the distribution of forces along a cilium. The
simplier one is the resistive-force theory, and the second one is the slender-body theory.
The resistive-force theory has been developed for flagella hydrodynamics in the pioneering
work of Gray and Hancock [53]. It has been extensively used in subsequent studies of
flagellar propulsion and bending [16, 21, 22|. The underlying assumption of this model
is that the hydrodynamic forces are proportional to the local body velocity, where the
constant of proportionality is defined as the force (or drag) coefficient. As pointed out
by Lighthill [74], this assumption is inconsistent with the true hydrodynamic situation
in which viscous effects dominate and produce long-range hydrodynamic interactions.
Therefore, we have chosen to use the slender-body theory, although it requires more
extensive numerical computations than the resistive-force theory.

L — 4o

To

7”0—>O

Figure 1.18: a. The inner expansion: L — +00. b. The outer expansion: ry — 0.

The slender-body theory model we use is based on asymptotic expansions when the
ratio L/ro tends to infinity, where 7y is the thickness of the cilium and L its length.
Cox [36] established an asymptotic expansion of the force at each point of the cilium. If
€ is a parametrization of the cilium, the expression of the force at the point of curvilinear
abscissa s is

2 (5,1) ® €(s,
£s,0) = 2T (op, ESDOESDY oy (1.3.12)
In(L/ro) 1€(s, )]
where ﬁ is the derivative of & relative to s and ug; is the derivative relative to ¢:
o0& o€

(s, t) = g(s,t) and ug(s,t) = E(s,t}.
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Equation (1.3.12) has been established in [36] by confronting two different approaches:

a. the inner expansion consists in studying the fluid velocity near the cilium, which is
thus seen as an infinite cylinder. The corresponding regime is L tends to infinity while
7o remains constant.

b. the outer expansion considers the flow far from the cilium seen as a zero-thickness
body, which corresponds to the regime ry goes to zero while L remains constant.

Both of these expansions are illustrated in Figure 1.18.

In the case of a two-viscosity fluid, the slender-body theory described by Cox [36] is not
valid any longer. Fulford and Blake [47| established the expression of the distribution of
forces along a slender body which straddles an interface. At the first order (in the regime
In(L/ro)~! tends to zero) the expression of the force is the one given by Equation (1.3.12)
with p the value of the viscosity at the origin point of the force. Actually, that point is
not exact: the expression of the distribution of forces on the part of the cilium close to
the interface (at a distance ry from the interface) is a little different. In our case, there are
20 punctual forces by cilium, so that the distance between two punctual forces is 0.3 pm,
which is three times the radius ro = 0.1 pm of the cilium (see Table 1.1). Therefore,
we do the following approximation: we consider Equation (1.3.12) for the distribution of
forces all along the cilium.

1.3.3 Resulting mathematical problem

This subsection is a conclusion of the whole model presented in Section 1.3. Finally, the
model leads us to the following problem

Nex Ney N .
—2div(uD(u)) + Vp = > (Z O, s (snt) (sn, % + t)) on €,

i—1j=1 \n=1
div(u) = 0 on €, (1.3.13)
u = 0 on 012,

where N and N, are respectively the number of cilia in the directions x and y, and
N is the number of punctual forces composing each cilium. We recall that ¢y, f, and A
are respectively the distance between two neighbouring cilia, the beat frequency and the
wavelength of the metachronal wave, see Table 1.1. For a given cilium, s,, measures the
arclength of the force application point from the base of the cilium. By linearity of the
Stokes equations, studying Problem (1.3.13) consists in studying the following problem

—2div(uD(u)) + Vp = 05, F on Q,
div(u) = 0 onQ,

u = 0 on0dQ,

where X is a point of the domain 2.
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In what follows, we focus on the regularity of the solution and its approximations by
finite element methods. In our model of a two-viscosity fluid, with 0 < p; < po, the
regularity of the solution (and so the convergence of the numerical solution) is not altered
by the non-constant viscosity. Therefore, we consider the Stokes problem in a constant-
viscosity fluid. In this case, the study is quite simplier and especially we can make explicit
the solutions (at least in an infinite domain). Nevertheless, the two-viscosity fluid will
be also considered in Chapter 4 in the computations. Finally, for the sake of clarity, we
study the following problem

—puAu+Vp = 0, F on
diviu) = 0 on, (1.3.14)
u = 0 ond.

Before focusing on the numerical method to solve Problem (1.3.14), next section is
dedicated to the study of this problem (regularity, existence of solutions...).

1.4 Elliptic problems with a singular right-hand side

This section is divided in two parts: the first one is devoted to the study of the Stokes
problem with a punctual source term (Problem (1.3.14)); the second one introduces the
Poisson problem with a Dirac mass in right-hand side, which is a scalar version of Prob-
lem (1.3.14). We take an interest in this problem because it is a simplier problem for
a preliminary study, and because many results or methods that apply to the Poisson
problem can be adaptated to the Stokes problem.

1.4.1 The Stokes problem with a punctual force in source term

1.4.1.1 The Stokeslet

The study is lead in 2-dimension, but the results will also be given in dimension 3. For
the sake of simplicity, the location of the punctual force is the origin. Let us consider the
Stokes problem on the whole domain:

{ —pulAus + Vps = 6F in R2,

div(us) = 0 inR2% (1.4.1)

The solution of this problem is not unique. Indeed, the homogeneous problem

—pAu+Vp = 0 inR?
div(u) = 0 inR%

has non-trivial solutions. For instance,
cos(zq)e*?
u(x)zl (1) } and p = 0.

sin(xy)e™
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In Proposition 6, we consider a particular solution, called “Stokeslet”.

Proposition 6. The 2d Stokeslet [31], defined by

x - ix
ug(X) = m <— hl HXHI[Q + W) . F S RQ,
—In HXHfl + x%fl =+ x1x2f2
1 2
o I , e R?, (1.4.2)
A “ln x| fs + 122 f1 + X5 fo
||
x-F x1f1 + 22 fo
— = R
P = S T 2l %

where F = f1, fo] and x = [z1, 23], is a solution of Problem (1.4.1).

Proof. Here, we present a constructive proof of the existence of the Stokeslet. As it will
be done in the case of the Poisson problem (see Section 1.4.2.1), we first consider the

following velocity
_ In ||| f1
wt) = —e| i |

where ¢ is constant. Defined in this way, us satisfies —Aus = ¢dy, but the condition
div(us) = 0 is not satisfied. Therefore us is modified by

T =l 4+ S+ va(x)fo
‘M”‘CL%Mﬂﬁ+m@vﬁmMmﬁ]

Some calculations show that div(us) = 0 for any F in R? is equivalent to the system

T
(311)1 + azwl = —12

Z9 S
511)2 + 52102 = e

x|

The right hand side expression of System (1.4.3) encourages us to consider v; and w;
defined by

x! xg 1 xi? xg 2
ulx) = T o Wil = Ton

where a1, as, [ et By are some reals we have to set. We inject in the first equation of
System (1.4.3), and we get the conditions

a;—1=1
Ozgz]_: gli?
~1=0 ’
’ By =1

O[1+/82:3
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which gives
2

L1L2
vy (%) = = et wy(x) =
x| x|
By injecting in the second equation of (1.4.3), we get
(9 = P12 ot () =
Vo X) = 2\ X) = —%=
] ]

Finally, we have established the expression of the solution u:

2
+
—In HXHfl + xlfl x1$2f2

u(x) 1|2
UJ(X):[UQX}:C 2
) ]+ 220D

Now, let us consider the pressure ps. We want —puAus + Vps = 0 (for x # 0), so we set

x%fl + 2122 fo

Ix[?
Vps(x) = culug(x) = cu/\
SR [PV T
|2
After some calculations, we have
1 2.’171
81p5(X) HXH2 fl - HXH4(xlfl + x2f2)
Vp(x) = | Cog | PP I
(/Qp(g(X) 9

el — W(fﬁfl + 2 f5)

I

We identify

with
1
9(x) =21 fi + 22fz et h(x) = =P

Finally, the pressure ps is given by

x-F

— + Deo
[z 7

1 f1 + T2 fo
|||

ps(x) = 2cp ( ) + P = 2cp

where p., is the value of the pressure at infinity. In what follows, we choose p,, = 0. In
order to set the constant ¢, we fix a function ¢ € C°(R?, R?) and assume that ¢ is radial
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(to ease calculations): ¢(x) = ¢(|x]). For F = *[1,0]:

(—pus + Vs, ) = ﬂ (— o (x)e1(x) — pLus(x)ea(x) + Vs(x) - (x)) dx

= — ﬂR2 (uul(x)Aw(X) + MUQ(X)AS@(X))dX
~ [ 20 (0 + 220 ax
- —cu< [[-wiiaanm | %waﬂx

2
n ﬂ xl_x;Agpz(x)dX + ﬂ %(81901(3() + (72902(X)>dx>
e ] r2 x|

= —C,u<[1 + [2 + [3 + [4)

We recall the following results:

21

2m
J cos(f) sin(f)dd = 0 and J cos?(0)dd = m.
0

0

e Calculation of I;:

I :ﬂ —In x| Apr(x)dx
R2

r2m

JO

r2m +0 400
([r In Té’rgol(r)} + J Orpr(r) (Inr —Inr — 1) dr) de

JO

+00 1
J rinr (é’frcpl(r) + —é’rcpl(r)> drdf
’ T

0

0 0

r2m +00
J —0pip1(r)drdd
Jo

0

= —2mp1(0).

e Calculation of Is:

I

2
T LAcpl(x)dx
R

2 |||

[

r2T +00 1
J 7 cos?(6) (83@1(7“) + —(3rg01(7’)> drdf
Jo Jo r

r2m +00

cosz(ﬁ)dﬁj <7’(33901(7“) + (Mpl(r)) dr
Jo 0

w ([r&rwl('r)] U JM Orpr (r)dr + J M 8r<p1(7*)dr>

0 0 0
0.
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e (Calculation of Ij:

T
I3 = ﬂ 1—§Ag02(x)dx
rz [X]

27 +00 1
J J 7 cos() sin(6) (ofgog(r) + ;8,@2(7’)) drdf
() + ) )

L cos(f) sin(0)dd
0.

0

e Calculation of I4:

- fw L " g cos() (Cos(ﬁ)ﬁrwl(r) + sin(@)&rcpg(r)) drdd

27 +0o0 2 +00
=2 f cos?(#)do f Or1(r)dr + 2 J cos(f) sin(#)dd f Ora(r)dr
0 0

0 0
= —2m1(0).

Finally, we get
<—,UA115 + vp57 SO> = 47TC”S01(0)7

and we want
(=plug + Vps, @) = {d, p1) = ¢1(0).
We conclude that

1
c=—".
AT
The same calculations with F = [0, 1] give the same constant ¢. By linearity, it holds for
any F in R?, which ends the proof. O
Proposition 7. In 3-dimension, the “Stokeslet” is defined by
1 I St
wi) = oo (o) F -
8mp \ x| [x]
[ i i fi + 2o fo + a1 fs ]
| [x]?
_ L N 122 f1 + SU%JE + T3 f3 c R, (1.4.4)
8mp | |x| I
s masfi + xaxsfo + 23 fs
| x| [x]? _
x-F T1f1+ 22fo + 233
ps(x) = = e R,
Arrx? Arrx?

where ¥ = t[fh f2, f3] and x = t[ﬂfhib’z,fb’s]-
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Proof. The proof is the same as in 2-dimension. O

1.4.1.2 Regularity of the solution (u,p)

Let us come back on the focus of Problem (1.3.14). The main difficulty in the study of
this kind of problem is the singularity of the source term (and therefore of the solution).
In 2-dimension, Problem (1.3.14) has a unique weak solution (u,p) € Wh4(Q)? x LI(Q)
for all ¢ € [1,2[. Actually, the 2d Stokeslet (us,ps) satisfies Problem (1.4.1), so that
the Stokeslet (us(- — xq),ps(- — Xo)) contains the singular part of (u,p), the solution of
Problem (1.3.14). The solution (u, p) can be built by using a suitable lift procedure which
consists in adding to (us, ps) a corrector term (w, 7) € H'(Q)? x L2(Q2) which satisfies the
following problem:

- Aw+Vr = 0 in Q,
div(w) = 0 in Q,
w = —us(-—xp) on 0.

Then, the solution is given by:

1 t
u(x) = us(x) + w(x) = yym < In ||x||I2 + I ) F + w(x),
pls) = ps(3) + 7(x) = s + ().

Moreover, it is easy to show that us ¢ H;(2)? and ps ¢ L?(2). Actually, we can specify
how the quantity |us|i 40 goes to infinity when ¢ goes to 2, with ¢ < 2 (which is noted
q — 2). By (1.4.2), estimating |us|; 40 when ¢ — 2 reduces to estimate |us|; 4 5, where

< <

B denotes the ball B(xg, 1): we can easily show that there exists C' > 0 depending only
on F such that

Vi<g<+mw, useLY(Q) and |Vus| <

and so, using polar coordinates, we get for ¢ < 2,

1 2 1 1
q — (4 - — q
us]1 g0 = J\Vug !dx\f L dx =C JL rrdfdr = 2m 0l —.

Finally, there exists C' > 0 independent of ¢ such that, for 1 < ¢ < 2,

C
2—q

[us]10.0 < (1.4.5)
In the same way, we can easily show that there exists C' > 0 independent of ¢ such that,

for 1 < ¢ <2,
C

< :

(1.4.6)

In 3-dimension, the punctual force source term is more singular, and the solution (u, p)
belongs to W14(Q)? x LI(Q) for all ¢ € [1,3/2[. The construction of the solution (u,p)
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is the same as in 2d, and we have: there exists C' > 0 independent of ¢ such that, for
1<q<3/2,
C C

and  |pslog0 < (

u < —_—.
| 5|17q79 ( 3 — 2(])2/3

3 — 2(])2/3

Let us now do the same developments for the Poisson problem with a Dirac mass
right-hand side, which is a scalar version of Problem (1.3.14).

1.4.1.3 Stokeslet in a confined domain

Even if Problem (1.3.14) is singular, each finite element space V}, we consider satisfies
Vh e %(Q),

so that the discrete problem (and so the finite element solution) is well-defined. The
numerical analysis of such problem is led in Chapter 3. The solution of Problem (1.3.14)
is the Stokeslet in a confined domain (in contrast to the Stokeslet defined in the whole
domain, Propositions 6 and 7).
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Figure 1.19: Stokeslet 2d in a confined domain.
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A numerical solution of the problem 2d is illustrated in Figure 1.19, where €2 is the
unit square, xo = (0.5,0.5) and F = [1,1]. Notice that there are recirculations due to
the boundedness of the domain.

1.4.2 The Poisson problem with a Dirac mass right-hand side

In this section, we consider the solution u of the following Poisson problem:

{—Au = 0y in {2, (1.4.7)

v = 0 on 0,

where ) is a bounded open smooth subdomain of R?, d = 2 or 3, and =, € Q. As said at
the beginning of this section, we focus also on this problem because it is a scalar version of
Problem (1.3.14), and so a simplier problem to lead a preliminary study (see Chapter 2).
As it has been done in the case of the Stokes problem, we lead the study in 2-dimension
and the results will be also given in 3-dimension.

1.4.2.1 The Green’s function

Also for the sake of simplicity, the location of the punctual force is the origin. Let us
consider the Poisson problem on the whole domain

— Aug = 6 € R (1.4.8)

The solution of this problem is not unique: if u is a solution and v satisfies Av = 0, then
u + v is another solution. Proposition 8 gives a particular solution of Problem (1.4.8).

Proposition 8. The Green’s function, defined in 2-dimension by
1
us(r) = —5=nfz],
is a solution of Problem (1.4.8).

Proof. We search the solution u;s in the form

us(x) = U(|lz]),
with U : RY — R. By the expression of the Laplacian in polar coordinates, we have for
any x € R*\{(0,0)}

Aus(x) = U"([l]) + ﬁU’(le)-

With r = ||z], us is a solution of Problem (1.4.8) if and only if U satisfies on R* the
differential equation

U"(r) + %U(r) = 0.
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The solutions of this equation satisfy

U'(r) = ae~0) = a

)

and so are
U(r) =alnr +b,

where a and b are two real constants. It is clear that U is defined ignoring an additive

contant so that we can choose b = 0. It remains to be determined the constant a: consider
p € CF(R?),

(=Dug, py =— J us(z)ANp(x)dx

RQ

27 400
- J J U(r)Ap(r, 8)rdrdd
o Jo
+00 1 1
_ JO JO arlnr <537r<p(r, ) + ;é’rgo(r, ) + ﬁa;@@(r, 0)) drdé

— - arr ([r Inrd,(r, e)rm + Jm orp(r,0) (Inr — Inr — 1)dr> do

0 0 0

- f@ In{r )l o(r, G)FWdr
f f Y ol 0)dras

= — 2amp(0
. 1
We conclude that —Augs = dp involves a = 9 and so
T
1
us(z) = —5—Inf|.

O

Remark 2. Actually, we have shown that there exists an unique radial solution of Prob-
lem (1.4.8) up to an additive constant. The Green’s function is the one for which this
constant is zero.

Proposition 9. In 3-dimension, the Green’s function is given by

11
A [

us(z) =

Proof. The proof is the same as in 2-dimension. O
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1.4.2.2 Regularity of the solution u

In this subsection, we focus on the singularity of the solution, which is the main difficulty
in the study of this kind of problems. In 2-dimension, Problem (1.4.7) has a unique weak
solution u € W, () for all ¢ € [1,2[ (see for instance [3]). In fact, the Green’s function
satisfies —Aus = dy, so that us(- — o) contains the singular part of u. As it is done in [3],
the solution u can be built by adding to us(- — zg) a corrector term w € H'(2), solution
of the Laplace Problem

{ —Aw = 0 in , (1.4.9)

w = —us(-—xp) on L

Then, the solution of Problem (1.4.7) is given by

u(z) = us(zr — zo) + w(z) = —% log(|x — xo|) + w(x).

It is easy to verify that u ¢ HJ(2). Actually, we can specify how the quantity |ull; .0
goes to infinity when ¢ goes to 2, with ¢ < 2. By the foregoing, if we write u = us + w,
since w € H(Q), estimating |u]1,0 when ¢ converges to 2 from below is reduced to
estimate |us|14.5, where B = B(0,1): us € L4(Q) for all 1 < ¢ < o, and using polar
coordinates, we get, for ¢ < 2,

g \% ad e 1 ' dod 1=q 1 1=aq (2m)"e
_ — — (2m)} ~4dy = .
|U6|1’q’B JB| us(@)f'dz Jo Jo (27r7“) rdédr = (2m) JO " " 2—q

Finally, when ¢ — 2,
<

1 1

u (1.4.10)

1.4.2.3 Illustration of the solution u

In this case again, even if Problem (1.4.7) is singular, the finite element solution is well-
defined. The numerical analysis of this problem is led in Chapter 2. Figure 1.20 illustrates
the Green’s function in a confined domain, with {2 the unit square and z, its center,

To = (05, 05)

The study of the regularity of the solution of the Poisson problem (1.4.7) ends this
chapter. The next chapter is devoted to the analysis of the finite element method applied
to solve the Poisson problem with a Dirac mass right-hand side. In Chapter 3, we lead
the study in the case of the Stokes problem with a punctual force in source term. In
the last chapter, we detail a new numerical method to solve these problems and present
numerical results got for the mucociliary transport.
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Figure 1.20: Solution u of Problem (1.4.7) in 2d and its section {y = 0.5}.
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The solutions of elliptic problems with a Dirac measure right-hand side are not H!
and therefore the convergence of the finite element solutions is suboptimal. The use of
graded meshes is standard remedy to recover quasi-optimality, namely optimality up to
a log-factor, for low order finite elements in the L?-norm. Optimal (or quasi-optimal for
the lowest order case) convergence for Lagrange finite elements has been shown, in the
L2-norm, on a subdomain which excludes the singularity. Here, on such subdomains, we
show a quasi-optimal convergence in the H®*-norm, for s > 1, and, in the particular case
of Lagrange finite elements, an optimal convergence in H'-norm, on a family of quasi-
uniform meshes in dimension 2. The study of this problem is motivated by the use of
the Dirac measure as a reduced model in physical problems, for which high accuracy of
the finite element method at the singularity is not required. Our results are obtained
using local Nitsche and Schatz-type error estimates, a weak version of Aubin-Nitsche
duality lemma and a discrete inf-sup condition. These theoretical results are confirmed
by numerical illustrations.

2.1 Introduction

This chapter deals with the accuracy of the finite element method on the Poisson problem
with a singular right-hand side. More precisely, let us consider the Dirichlet problem

—Au = 0y in €,
(F) { u = 0 on 0,
where 2 = R? is a bounded open C* domain or a square, and d,, denotes the Dirac
measure concentrated at a point g € € such that dist(xg, 0§2) > 0.

Problems of this type occur in many applications from different areas, like in the
mathematical modeling of electromagnetic fields [59]. Dirac measures can also be found
on the right-hand side of adjoint equations in optimal control of elliptic problems with
state constraints [26]. As further examples where such measures play an important role,
we mention controllability for elliptic and parabolic equations [27, 28, 73] and parameter
identification problems with pointwise measurements [93].

Our interest in (Fj) is motivated by the modeling of the movement of a thin structure
in a viscous fluid, such as cilia involved in the muco-ciliary transport in the lung [48]. In
the asymptotic of a zero diameter cilium with an infinite velocity, the cilium is modelled by
a line Dirac of force in the source term. In order to make the computations easier, the line
Dirac of force can be approximated by a sum of punctual Dirac forces distributed along
the cilium [67]. In this chapter, we address a scalar version of this problem: problem (Ps).

In the regular case, namely the Poisson problem with a regular right-hand side, the
finite element solution wuy, is well-defined and for v € H**1(£2), we have, for all 0 < s < 1,

=, < CR s, (2.1.1)

where k is the degree of the method [32] and h the mesh size. As can be noticed, the
efficiency of the method critically depends on regularity of the solution. We aim at
describing the impact of the loss of the regularity of the solution over the classical estimates
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due to irregular source term. In dimension 1, the solution u of Problem (FPj) belongs to
H(Q), but it is not H*(€). In this case, the numerical solution u; and the exact solution
u can be computed explicitly. If zy matches with a node of the discretization, u, = u.
Otherwise, this equality is true only on the complementary of the element which contains
Ty, and the convergence orders are 1/2 and 3/2 respectively in H'-norm and L2-norm.
In dimension 2, Problem (Pj) has no H'(f2)-solution, and so, although the finite element
solution can be defined, the H'()-error has no sense and the L?()-error estimates
cannot be obtained by the Aubin-Nitsche method without modification.

Let us review the literature about error estimates for problem (Ps), starting with
discretizations on quasi-uniform meshes. Babuska [5] showed an L?(Q)-convergence of
order h'=" n > 0, for a two-dimensional smooth domain. Scott proved in [99] an a priori
error estimates of order 2 — g, where the dimension d is 2 or 3. The same result has been
proved by Casas [25] for general Borel measures on the right-hand side.

To the best of our knowledge, in order to improve the convergence order, Eriksson [44]
was the first who studied the influence of locally refined meshes near zy. Using results
from [97], he proved convergence of order k and k + 1 in the W (Q2)-norm and the
L(Q)-norm respectively, for approximations with a Py-finite element method. Recently,
by Apel and co-authors [2], an L2(2)-error estimate of order h2?|In h|*? has been proved
in dimension 2, using graded meshes. Optimal convergence rates with graded meshes
were also recovered by D’Angelo [38] using weighted Sobolev spaces. A posteriori error
estimates in weighted spaces have been established by Agnelli and co-authors [1].

These theoretical a priori results are based upon graded meshes, which increase the
complexity of the meshing and the computational cost, even if the mesh is refined only
locally, especially when the right-hand side includes several Dirac measures, that can be
static or moving. Therefore Eriksson [43] developed a numerical method to solve the
problem and recover the optimal convergence rate: the numerical solution is searched in
the form ug + wy, where ug contains the singularity of the solution and wy, is the numerical
solution of a smooth problem. This method is presented in the case of the Poisson and
the Stokes problems in [67].

However, in applications, the Dirac measure at xq is often a model reduction approach,
and a high accuracy at xg of the finite element method is not necessary. Thus, it is inter-
esting to study the error on a fixed subdomain which excludes the singularity. Recently,
Képpl and Wohlmuth have shown in [66] optimal convergence in L2-norm for the La-
grange finite elements (the result is quasi-optimal for the P!-element). In this chapter,
we consider the problem in dimension 2, and we show :

1. Quasi-optimal convergence in H*-norm, for s > 1. This result applies to a wide
class of finite-element methods and beyond, including Lagrange and Hermite finite
elements and wavelets. The L%-error estimates established in [66] are not used and
the proof is based on different arguments.

2. Optimal convergence in H'-norm for the Lagrange finite elements. This result is
obtained by direct use of the optimal L%-norm convergence result in [66].

3. Optimal convergence in H'-norm in the particular case of the P!-Lagrange finite
element using different arguments than those used for the previous results.
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These results imply that graded meshes are not required to recover optimality far
from the singularity and that there are no pollution effects. In addition, by linearity
of Problem (Ps), the result holds in the case of several Dirac masses. The chapter is
organized as follows. We begin with the 1-dimensional case, Section 2.2. Our main results
are presented in Section 2.3 after recalling the Nitsche and Schatz Theorem, which is an
important tool for the proof presented in Section 2.4. In Section 2.5 another argument is
presented to obtain an optimal estimate in the particular case of the P;-finite elements. We
illustrate in Section 2.6 our theoretical results by numerical simulations and, in Section 2.7,
we discuss the generalization of our approach to the three-dimensional case.

2.2 Preliminaries: one-dimensional case

Before getting to the heart of the matter, let us consider the problem in dimension 1.
We consider I =]a, b and suppose that the Dirac mass ¢ is supported by xy €]a,b[. In
dimension 1, the problem (FPj) can be written as

—u” = §,, in ]a, b[,

(&) { u(a) = u(b) = 0.

It is easy to show that the solution u of the Poisson problem (P}) (drawn on Figure 2.1)
is given by

bb_—l;) (x —a) if z € |a, ],

u(x) = (2.2.1)

i)o:aa(b —x) if x € [xg,b].

In dimension 1 (and only in dimension 1), the solution u belongs to HJ(I) (actually, it
belongs to H*27"(I) for all n > 0). In this section, the study is limited to the case of the
Lagrange finite elements IP; but the results can be easily extended to P.-finite elements.
Moreover, it is possible to write an explicit form of the numerical solution wuy,.

Theorem 2. Let T, be a discretization of the interval I =|a,b|, the numerical solution
uyp, satisfies one of the two following assertions :

o if xo is a point of the discretization T, (mesh 1 on Figure 2.1), up = u.

o if zg is not a point of the discretization Ty, (mesh 2 on Figure 2.1), by denoting x;
and ;.1 the two consecutive points of the discretization Ty such as r; < o < Tiy1,
the numerical solution uy, is equal to the exact solution u on the closed sub-domain
[a, z;]U[Zis1, b], it is continue on I and affine on [x;, x;41] (see Figure 2.1). Actually,
the numerical solution wy is equal on I to the interpolation Ipu. Moreover, the
convergence can be specified :

lu—upli; <CVh  and  |lu—up]or < Ch¥2. (2.2.2)
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Figure 2.1: Exact solution and numerical solution in dimension 1.

Remark 3. In dimension 1, the discretization T, does not need to be uniform or quasi-
uniform. FEstimates (2.2.2) are true for h = x; 1 — x;, the length of the segment which
contains the point xg.

Proof. 1If ¢ is a point of the discretization Ty, u belongs to the approximation space V},,
and a direct consequence of the Cea lemma is u;, = u. Otherwise, let us look at the
discrete right-hand side corresponding to the Dirac measure d,, : it is of the form

0 0 0
7 tTa | |« n 0
i+1 4+ 8| | O 6|’
| 0 | 0 | 0 ]

where a = v;(zg) and 8 = v;41(0), with v; and v;1 the test functions corresponding to
the points z; and z;,; of the mesh. By linearity of problem (P}), the numerical solution
uy, is given by

h h
Up = Uy + Ug,

where u! and ug are respectively the numerical solutions of problems

—u! = ad,, in |a, b, —up = 36, in |a,b],
(Fo) { wola) = ua(®) =0, 4 UP) { us(a) = up(b) = .
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Each of these problems satisfies the first item of Theorem 2, and thus, by (2.2.1),

( b— 1.
N :E,@j_a) if z € [a, z;],
N b—a
up () = <
k ai’_f(b—x) if z € [;,0],
( b— 1.
B#(x—a) if z € [a, z;41],
—a
ug(x)—<
LTiy1 — @ '
BEEL_Z(b— ) if w € [0, b],
L b—a
with
o= THLTT g g T
Tiv1 — T; Litr — L

Finally, since the function u;, = u® + ug is continuous and affine on each of the segments
la, z;], [, xi41] and [x;41, b], it remains only to verify that the function u, satisfies

up(a) = up(b) = 0, up(x;) = u(z;) and up(Tip1) = w(wisr).

Now that the analytic expressions of u and wj, are known, error Estimates (2.2.2) can be
deduced from a direct calculation of the error on the segment [x;, z;41]. O

Remark 4. Since in one dimension the solution u belongs to H'(I), the finite element
method is well-defined, but the solution does not belong to H?(I), and thus the classical
error Estimates (2.1.1) are no longer valid: the order of convergence is 1/2 in H'-norm
and 3/2 in L2 -norm against respectively 1 and 2 in the regular case.

We have proved with Theorem 2 that in dimension 1 the numerical solution is equal to
the exact solution outside the segment of the mesh which contains the singularity. More-
over, if the point xg matches with a point of the discretization, the numerical solution is
actually the exact solution. Thus, if the mesh can be chosen conformed to the singularity,
the error of the finite element method is zero. The following focuses on the local error
far from the Dirac mass in dimension 2. As it will be seen, the 1-dimension arguments
cannot be used anymore.

2.3 Main results

In this section, we define all the notations used in this chapter, recall an important tool
for the proof, the Nitsche and Schatz Theorem, and formulate our main results.
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2.3.1 Notations

Figure 2.2: Domains 2y and €2;.

For a domain D, we denote by | - ||s,.p (respectively |- |s,p) the norm (respectively the
semi-norm) of the Sobolev space W*4(D), while | - |[s.p (respectively |- |s p) stand for the
norm (respectively the semi-norm) of the Sobolev space H*(D).

For the numerical solution, let us introduce a family of quasi-uniform simplicial tri-
angulations T, of Q and a finite element space V¥ = H(Q), where k is the order of
approximation. To ensure that the numerical solution is well-defined, the space V¥ is

assumed to contain only continuous functions. The finite element solution wu; € V¥ of
problem (Ps) is defined by

J‘ Vuh : Vvh = Uh(ZL‘Q), Vvh € th. (231)
Q

We also evaluate the H*-norm of the error on a subdomain of €2 which does not contain the
singularity, for s > 2, and, whenever we do so, we of course assume the finite elements are
H?-conform. We fix two subdomains of €2, named 2y and €2y, such that Qg cc Q; cc Q
and z¢ ¢ O (see Figure 2.2). We consider a mesh which satisfies the following condition:

Assumption 1. For some hg, we have for all 0 < h < hy (see Figure 2.2),

ﬁgnﬂﬁc = (J, where ﬁgﬂ = U T,
TeT,
TNQ%D

and Q) is the complement of 0y in €.

2.3.2 Nitsche and Schatz Theorem

Before stating the Nitsche and Schatz Theorem, let us introduce properties satisfied by
the finite element spaces V}*.
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Assumption 2. Given two fixed concentric spheres By and B with By cc B cc (),
there exists an hy such that for all 0 < h < hy, we have for some R > 1 and M > 1:

A1l Forany 0 < s < R and s < { < M, for each v e H(B), there exists n € V¥ such
that

5.5 < CR™*||v]¢.5.

lo=n
Moreover, if v e Hi(By) then n can be chosen to satisfy n € Hj(B).

A2 Let p € 6°(By) and vy, € V¥, then there exists n € V¥ N H(B) such that
lovn = nlvs < Clp, B, Bo)h|vn1.5.

A3 For each h < hqg there exists a domain B), with By cc B, cc B such that if
0 < s </l <R then for all v, € V}¥ we have

B, S Chsiszh’

[onl 5By

We now state the following theorem, a key tool in the forthcoming proof of Theorem 3.

Theorem (Nitsche and Schatz [88]). Consider Qy cc= Q; cc Q and let V¥ satisfy
Assumption 2. Let v e HYQy), let vy, € V¥ and let t be a nonnegative integer, arbitrary
but fized. Let us suppose that v — v, satisfies

f V(v—up) V=0, YneVFinHQ).
Q
Then there exists hy such that if h < hy we have

(i) for s =0,1and 1 << M,

ls.00 < C (hg_sHv

HU — Un ‘5,91 + HU - vh”*t,Ql) )

(it) for2<s<{< M ands <k <R,

HU — 'UhH&QO <C (hz_SH’U |g791 + hl_SH’U — 'UhH—t,Ql) .

For our study, we actually need a more general version of the assumptions on the
approximation space V;*:

Assumption 3. Given B < Q and ¢’ = 2, there exists an hy such that for all0 < h < hyg,
we have for some R >1 and M > 1:

Al Forany 0 < s <R and s < { < M, for each v € HY(B), there exists n € V¥ such
that, for any finite element T’ c B,

‘U o n‘s,q’,T < Chd(l/q/,1/2)h£fs‘U‘Z,ZT.
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A3 For0<s<{<R, forall v, e Vi for any finite element T in the family Ty, we
have
|on)le.gr < CREVT=D =4y,

‘s,Q,T-

Assumptions A1l and A3 are generalizations of Assumptions A1 and A3. They are
quite standard and satisfied by a wide variety of approximation spaces, including all finite
element spaces defined on quasi-uniform meshes [32]. The parameters R and M play
respectively the role of the regularity and order of approximation of the approximation
space V;¥. For example, in the case of P;-finite elements, we have R = 3/2 — ¢ and
M = 2. Assumption A2 is less common but also satisfied by a wide class of approximation
spaces. Actually, for Lagrange and Hermite finite elements, a stronger property than
Assumption A2 can be shown as a consequence of Assumptions A1 and A3:

Lemma 1. Let us consider Lagrange finite elements, or Hermite finite elements if s > 1,
we still denote by ViF the approzrimation space of degre k. Given two concentric spheres
By and B with By cc B cc Q, and let us fix ¢ € 6,°(By). For any 0 < s < { <k and
any vy, € Vi¥, there exists n € VF N HY(B) such as

o8 < C(Q)R™* vy,

lovn —n] le,5-
Applied for s = £ = 1, Lemma 1 gives assumption A2. The proof is inspired from the
ones presented in a more general case in [§].

Proof. Let 0 < s < k. Since ¢ € 6;°(B), by Assumption A1, there exists n € VF N H}(B)
such that
5.5 < CH* 7 |oup s,

lovn —n

So we can write

levn = nli 5 < CRPET Y lounlfir g
TeTh

In order to bound the quantity |¢uvy| k41,7, we need the following result:
Proposition 10 (Ciarlet, page 192 [32]). Let G be a subset of R? and an integer k > 1,
let a € WF®(G) and be H*(G). Then abe H*(G) and

lablk,c < C (|alow,clblrc + [a

k0,60 k-1,6) -

Applied for G =T € Ty, a = ¢ and b = vy, Proposition 10 gives

lovnllk+1.r < C (|@lo.wr|vnlksrr + | €lkoor|vn]kr) -

Since vy, € Rg[X], |vn|k+1,r = 0, and so

levnlksrr < Cll@lkwr|vn]rr-

Thus, we get: there exists n € V;¥ N H}(B) such that

o < C(Q)R"17%|y,

lpvn, — 1| kB
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To end the proof, we use Assumption A3: for any 0 < ¢ < k,

k5 < ChF|uy|

th ¢,B-

Finally, there exists n € V;¥ N H}(B) such that

o8 < C(Q)R* | vp .-

lpvn — |

2.3.3 Statement of our main results

Our main results are Theorems 3, 4 and 5. The rest of the chapter is mostly concerned
by the proof and the illustration of these results.

Theorem 3. Let )y cc Q; cc Q satisfy Assumption 1, 1 < s < k. Let u be the
solution of problem (Ps) and uy, its Galerkin projection onto Vi¥, satisfying (2.3.1). Under
Assumptions 2 and 3, there exists hy such that if 0 < h < hy, we have,

lu — up|1.0, < C(Q0, 0, Q)R /| In A|. (2.3.2)

In addition, for s > 2, if the finite elements are supposed H"-conforming, we have

lu — up| o0, < C(Q0, 21, Q)R 754/ In h|. (2.3.3)

Remark 5. The main tool in proving Theorem 3 is the Nitsche and Schatz Theorem, and
the result holds for all the spaces verifying Assumptions 2 and 3. The class of such spaces
includes spaces beyond finite elements, including, for instance, wavelets.

Section 2.4 is dedicated to the proof of Theorem 3.

In the particular case of Lagrange finite elements, Koppl and Wohlmuth [66] showed,
in the L?-norm of a subdomain which does not contain x4, quasi-optimality for the lowest
order case, and optimal a priori estimates for higher order. The proof is based on Wahlbin-
type arguments, which are similar to the Nitsche and Schatz Theorem (see [112, 113]), and
different arguments from the ones presented in this chapter, like the use of an operator of
Scott and Zhang type [100]. Using this result it is possible to prove quite easily optimal
convergence in H'-norm for Lagrange finite elements. This result reads as follows:

Theorem 4. Consider a domain s such that Qy cc Qp cc Qy << Q, 2y ¢ Qo,
and satisfying Assumption 1. Let u be the solution of problem (Ps) and wy, its Galerkin
projection onto the space of Lagrange finite elements of order k + 1. There exists hy such
that if 0 < h < hy, we have

HU — UhHLQO < C(Ql, QQ, Q)hk
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Remark 6. This result is optimal and thus slightly stronger than Inequality (2.3.2), but it
is limited to Lagrange finite elements and to the H'-norm, due to the use of an operator of
Scott-Zhang type. Theorem 3 is more general: it holds for a wide class of finite elements
and it allows to estimate the error in H*-norm, for any s > 1.

Proof of Theorem 4. In the particular case of Lagrange finite elements, Képpl and Wohlmuth
proved in [66] the following convergence in the L?-norm of a subdomain which does not
contain xg:

R|In(h)| if k=1,
hk+1 if k> 1.
Let us apply the Nitsche and Schatz Theorem on 2y and €2, for [ =k + 1 and t = 0,

HU — uhHO,Ql < C(Ql, QQ, Q) { (234)

oo < C (WM ull20, + Ju—upl

Hu — Up, 07Q1) .

Using (2.3.4), we get
Hu - uhHl,QO < Chk

O

For the particular P;-Lagrange finite elements, we prove the optimal convergence in
H'-norm using completely different arguments. This proof involves a technical assumption
on the mesh, namely Assumption 4 in Section 2.5.2: the distance of the Dirac mass to
the edges of the mesh triangles is assumed to be at least of the same order as the mesh
size h. The result reads as follows:

Theorem 5. Let )y cc Qy cc Q satisfy Assumption 1 and consider a mesh such that
there exists a domain B. satisfying Assumption 4 with € of the same order as the mesh
size. The Py-finite element method converges with order 1 for the H(Q)-norm. More
precisely:

Hu — uhHLQO < C(Qo, Ql, Q)h

The proof of this result is detailed in Section 2.5.

2.4 Proof of Theorem 3

This section is devoted to the proof of Theorem 3. We first show a weak version of
the Aubin-Nitsche duality lemma (Lemma 2) and establish a discrete inf-sup condition
(Lemma 3). Then, we use these results to prove Theorem 3.

2.4.1 Aubin-Nitsche duality lemma with a singular right-hand
side
The proof of Theorem 3 is based on Nitsche and Schatz Theorem. In order to estimate

the quantity ||u — upl|—¢0,, we first show a weak version of Aubin-Nitsche Lemma, in the
case of the Poisson problem with a singular right-hand side.
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Lemma 2. Let f € W24(Q) = (Wa? (Q)), 1 < ¢ < 2, and v e W(Q) be the unique
solution of

v = 0 on 0f.

{—Av = f inQ,

Let v, € VF be the Galerkin projection of v. For finite elements of order k, letting
e =v—uwp, we have for all0 <t < k —1,

lel—ta < Ch”lhz(l/ql*m)!611,(;,9- (2.4.1)
Proof. We aim at estimating, for ¢ > 0, the H *-norm of the error e:

e
lef-to = sup B (b‘-
sez@) |9l

(2.4.2)

The error e € Wy %(Q) satisfies
J Ve -Vn =0, Vne V.
Q

Let be ¢ € 6;°(€2) and let w? € H'? be the solution of

—Aw® = ¢ inQ,
w® = 0 on 0.

In dimension 2, by the Sobolev injections established in [20], H**2(Q) = W' (Q) for all
¢’ in [2, +oo[. Thus, for any wy, € V}¥,

JQ e(b J;] eAw¢ J;] ve: vw¢' -

We have to estimate |w? — wp|; 4.0- It holds

< |w? — wyl1,¢.0lel1,g0-

L Ve - V(w® — wy)

w? — will g0 = Z w? — w1 g1
T

For all 0 <t < k — 1 and for all element T in 7, thanks to Assumption Al applied for
s =1, =t+ 2, there exists wy € V¥ such as

jw? — W11 < ChQ(l/ql_l/Z)htH|W¢‘t+2,2,T- (2.4.3)
We number the triangles of the mesh {7;,i =1,--- , N} and we set

a = (a;); and b = (b;);, where a; = [w® — wy|1,¢.1 and b; = [W?|; 4207

By (2.4.3), we have, for all 7 in [[1, N],

a; < Ch2(1/q’71/2) htJrle‘.
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We recall the norm equivalence in RY for 0 < r < s,
e < e < NV 2]
Remark that here N ~ Ch™2. As 2 < ¢/, we have ||b]|, < ||b||;z. Then, we can write

ORI o]
Cht+1h2(1/q’—1/2) HbHZ%
ChH P2 w4220,

Cht+1 h2(1/q’—1/2) H¢

[w? — wp|1g0 = [af

INCININ A

10
Finally, using this estimate in (2.4.2), we obtain, for t < k — 1,

Heuft,ﬂ < Cht+1h2(1/q’71/2) ’6’17(]79.

O
Corollary 1. For finite elements of order k, for any 0 < e < 1,
Hu — uhH,kJrl,Q < Chkhieyu — uh‘l,q&Q. (2.4.4)
where q. €]1,2[ is defined by
2 2
= ——— d [ = : 2.4.5
1 1+5<an 50 G 1—5) ( )

Proof. We apply Lemma 2 to estimate |u — up|—¢0, for (¢, ¢.) defined in (2.4.5). In

Inequality (2.4.1):
1 1 1—-¢ 1
20 = _—Z) =2 — =) = —¢. 2.4.6
(2 =2 (5 3) = =

Finally, for finite elements of order k, with t = k — 1,

Hu - uthkJrl,Q < Chkhie’“ - uh‘l,qs,ﬂ-

2.4.2 Estimate of |u — uy,

1,qe,82

It remains to estimate the quantity |u—up|; 4 o by bounding |us|1 4. 0 in terms of |uly 4 o
(Equation (2.4.8)). To achieve this, we need the following discrete inf-sup condition.

Lemma 3. For 0 < ¢ < 1, q. and ¢. defined in (2.4.5), we have the discrete inf-sup
condition
SQ Vuh . Vvh

> Ch°.
oy

inf sup
et b T

1#1579 17ql57Q
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Proof. The continuous inf-sup condition
§o Vu- Vo

u ‘LQE

inf  sup =>06>0

1,q¢ /
ueW;’ 1,
0 ’UG”’O de

v ‘Lqé

holds for # independent of ¢. and ¢’ (and thus independent of €). It is a consequence of the
duality of the two spaces W% (Q) and Wol’qlf(Q), see [62]. Forv e Wol’qlf (), let I, v denote
the H}-Galerkin projection of v onto V;¥. This is well defined since Wol’qlf(Q) < H}(Q).
We apply Assumption A3 to [Myv for £ = s =1, and get

HHhUqug@ < O'h~2(1/2-1/q2) HHhUHMQ < Op 212~ 1/q5)Hv o < Ch™ 2(1/2— 1/qg)Hv|

1,az,92-
Moreover, for any uy € V¥ < Wl (Q),
Vuy - Vo Vuy, - VI
lunl1,4..0 < C sup 597/1 =(C sup Jo Vi "
wewiit 1Vlae wewiit Ve
< CH20/271d) gy, §o Vun - VI
vew et [TThv]1,4.0
< Oh—201/2-1/d) M,
Uhevk [vn e
Finally, thanks to Poincaré inequality, and to Inequality (2.4.6),
Vuy, - Vv
inf sup Jo Vit > o
wneV¥ e [Unllge.olvn]1e.0
0
Then, we can estimate |u — up|1 4.0
Lemma 4. With q¢. and ¢. defined in (2.4.5),
h—E
u—u < C—. 24.7
|u = unl1q.0 7 (2.4.7)
Proof. By Lemma 3, it exists vy € V), with |vy]1,4.,0 = 1, such that
R22=Ya) gy |y 00 < (JJ Vuy, - Vo, = (JJ Vu - Vo, < Olul4.0-
Q Q
So we have
[u—unlig.0 < |ulig.o+ [urlig.0 < Ch720/2 ) uf1,4.0- (2.4.8)

All that remains is to substitute |ul|;,. o for the expression established in (1.4.10) in
Chapter 1, Section 1.4.2.2. For ¢. defined as in (2.4.5),

C C

< —— <K .
RNV R RINNG

]
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Finally, with (2.4.6) and (2.4.8), we get
h*E
Ve

\u — uh]17q579 < C

2.4.3 Proof of Theorem 3

We can now prove Theorem 3.

Proof. The function u is analytic on )y, therefore the quantity |ul/s 10, is bounded. If
we suppose s = 1, Nitsche and Schatz Theorem gives, for { =k + 1 and t = k — 1,

lu—unlia, < C (A" + lu = up|—rs10,) -
Thanks to (2.4.4) and (2.4.7),
h—25
\/g )

lu— up| k41,0 < ChF

therefore, taking € = |Inh|™!,

|u = un|—p+10 < CR*A/Inh]. (2.4.9)

Finally, we get the result of Theorem 3 for s = 1 (Inequality (2.3.2)):

|u — up)1.0, < Ch*+/|Inhl.

Now, let us fix 2 < s < k, Nitsche and Schatz Theorem gives, for { = k + 1 and
t=Fk—1,
Ju = unls00 < C(BF7° 4+ 2w — upl|pi10,) -

So, thanks to (2.4.9), we get the second result of Theorem 3 (Inequality (2.3.3)),

|u — up|s0, < CHEFT54/|Inhl.

which ends the proof of Theorem 3. U

2.5 Proof of Theorem 5

In the particular case of the P;-finite element method, different arguments from the ones
presented in the general case permit us to recover optimality. The approach is as follows:
we first regularize the right-hand side and prove that in our case the solution u of (Ps)
and the solution of the regularized problem are the same on the complementary of a
neighbourhood of the singularity (Theorem 6). The proof of Theorem 5 is based once
again on the Nitsche and Schatz Theorem and the observation that the discrete right-
hand sides of problem (Ps) and the regularized problem are exactly the same, so that the
numerical solutions are the same too (Lemma 6).
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2.5.1 Direct problem and regularized problem

The results presented in this section are valid in any dimension d > 1. However they are
only applied in dimension 2 in Section 2.5.3 in order to prove Theorem 2. Let € > 0, and
f¢ be defined on 2 by

d

fe= WﬂBga (2.5.1)

where B. = B(rg,¢) and 0(S4_1) is the Lebesgue measure of the unit sphere in dimen-
sion d. The parameter ¢ is supposed to be small enough so that B. cc ). The function f¢
is a regularization of de the Dirac distribution ¢,,. Let us consider the following problem:

—Auf = f¢ in €,
<P€){ u® = 0 on 09.

Since f¢ € L2(2), it is possible to show that problem (P.) has a unique variational solution
u® in H} () N H*(Q) |54]. We show the following result:

Theorem 6. The solution u of (Ps) and the solution u® of (P.) coincide on the closed set
Q= O\B., ie,

w = u’

The proof is based on the following lemma.

Lemma 5. Let d € N\{0}, ¢ > 0, v € R?, v a function defined on R, harmonic on
B(z,¢), and f € L*(R?) such that

e f is radial and positive,

e supp(f) < B(0,¢), e >0,

° flx)dx = 1.
Rd

Then, [ +v(a) = | ol =) dy = (o).
R
Proof. As supp(f) < B(0,¢), using spherical coordinates, we have:

fro(z) = L s fryv(z —rw)r™ dwdr = J riLf(r) <L v(x — rw)dw) dr.

0

Besides, v is harmonic on B(x, ), so that the mean value property gives, for 0 < r < ¢,

1 rd=1

) = BT " = T
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thus
f*wmszmm@ﬂﬂmW»m
= v(a:)fo s fr)yrTtdwdr
=) [ )y

= v(x).

Now, let us prove Theorem 6.

Proof. First, let us leave out boundary conditions and consider the following problem
— Av = f%in Z'(RY). (2.5.2)

With us defined in Chapter 1, Section 1.4.2.1, —Aus = &, in Z'(R%), so we can build a
function v satisfying (2.5.2) as:

v(z) = [ xus(z) = » fFWus(z —y) dy

= (o + y)us(z — z9 — y) dy
R

— <f5(x0 + ) = u(s) (x — x0).

Moreover, for all x € Q\B., u; is harmonic on B(x — zg,¢), and f*(- + x() satisfies the
assumptions of Lemma 5, so that v(z) = <f€(x0 + ) = w;) (x — x9) = us(x — z9). We
conclude that v and us(- — 7o) have the same trace on 0f2, and so v + w, where w is the
solution of the Laplace Problem (1.4.9) (see Chapter 1, Section 1.4.2.2), is a solution of
the problem (FP.). By the uniqueness of the solution, we have u® = v + w. Finally, for all
z e O\B., u®(z) = u(z). Since these functions are continuous on €2 = O\ B., this equality
is true on the closure of €2, which ends the proof of Theorem 6. O

Remark 7. Theorem 6 holds for any radial nonnegative function f € L'(R?) N L2(R%)
such that

supp(f) < B(0,¢) and f(z)dz =1,
R4
taking f¢ = f(- — xg). It is a direct consequence of Lemma 5.

Remark 8. The result is true in dimension 1, taking

1

€
S
f 28 Iy
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where I. = [xg—e,x9+¢]| <|a,b[= I. In this case,

we can easily write down the solutions
u and u® explicitly,

b_xox—ab_xo if x € [a, o],
u(z) = b—a b—a
_i)o_—aax + bl;]__aa if x € [x0, b].
( b—=x b—uz _
b—aox_ab—ao if x € [a,xo — €],

_I_Q + (E + w) T
€(0) — 4e 2¢ 2(b — a) |
ut(x) = < o .
a(xo - b) + b(l’o — a) B x% + 52 fo [.TO 67 x(] E],
2(b—a) 4e

o — a To— Q .
\_b—aerbb—a if x € [xo + €, b].

and observe, as shown in Figure 2.3, that u and u® coincide outside I..

i i i

a Tog— € o To + € b

Figure 2.3: Illusration of Theorem 6 in 1D.

2.5.2 Discretizations of the right-hand side

At this point, we introduce a technical assumption on B, and the mesh.
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Assumption 4. The support B. of the function f¢ is supposed to satisfy
B€ (= T(]’

where Ty denotes the triangle of the mesh which contains the point xo (Figure 2.4).

0

&
\oX

Figure 2.4: Assumption on B..

Remark 9. The parameter ¢ will be chosen to be h/10, so it remains to fiz a “good” triangle
Ty and to build the mesh accordingly, so that Assumption 4 is satisfied. Notice that it is
always possible to locally modify any given mesh so that it satisfies this assumption.

Lemma 6. Under Assumption /,
uj, = Up,

where uy, and u; are respectively the numerical solutions of problems (Ps) and (Px).

Proof. Let us write down explicitly the discretized right-hand side [} associated to the
function f¢: for all node ¢ and associated test function v; € V!,

(7).~ | sttt - [ —

B.cT, U(Be)

UZ(ZL') d{L‘,

and v; is affine (and so harmonic) on Tj, therefore

(Fe) _ | vi(x) if i is a node of the triangle Tp,
hli ™ 0 otherwise.

We note that Fy = Dy, where D), is the discretized right-hand side vector associated to
the Dirac mass. That is why, with A, the Laplacian matrix,

uj, — up = Z [A;l(F,f — Dh)]ivi = 0.

i node

O

Remark 10. F; = Dy holds as long as B. < Ty. Otherwise, we still have u|Q = u€|Q
0 0
(Theorem 6), but F; # Dy, and so Unl, # uzm
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2.5.3 Proof of Theorem 5

Theorem 5 can now be proved.

Proof. First, by triangular inequality, we can write, for s € {0, 1}:
lu = unls.0o < llu—u sy + 0" = uhfls0o + lluh — unls0p-
Besides, thanks to Theorem 6, we have
Ju— w50, =0, (2.5.3)
and thanks to Lemma 6, we have
Jun =y s 00 = 0.

Finally we get
Ju = oy < 0 = 3l (2.5.4)

We apply Nitsche and Schatz Theorem to e = «* —wuj;. With / =2, s =1, and t = 0,
lelio, < C (hufll2q, + [elog) - (2.5.5)

The domain  is smooth and f¢ € L2(2), so u € H*(Q) N H(€2), and then, thanks to
Inequality (2.1.1),

lelog, < llelloe < Ch?*[uf|an < CR?[f*]o.0-
As | f¢]o, can be calculated,

. ) 1/2 .
Lﬂm=<L(%ﬂ&@)@J - 250

for € ~ h/10 (in order to satisfy the assumption on B.), we get
lefloq, < Ch. (2.5.7)

Finally, by Theorem 6, U, = u5|Q , therefore combining (2.5.5) and (2.5.7), we get

[u® =il = lela, < Ch. (2.5.8)

At last, we obtain from Inequalities (2.5.4) and (2.5.8) the expected error estimate, that
is

Hu — uhHLQO < Ch
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2.5.4 Limits of the method

This proof cannot be adapted to prove the same rate of convergence for a higher order.
Indeed, in dimension 2, numerical results make us expect a result in the form of:

lu — up|1.0, = O(RF), (2.5.9)

for a numerical solution of the problem (Fj) using the finite element method Py, k > 2.
The are two natural ways to adapt the proof to show Inequality (2.5.9):

e we can keep f© as it is defined in (2.5.1), so that Equation (2.5.3) holds. Nevertheless,
the finite elements P, for k > 2 are not harmonic functions, and so Lemma 6 cannot
be used.

e we can use instead of f¢ a polynomial function (), depending on xq, Ty and k, and
supported by Tp (see [99]). But in this case, @k is not a radial non negative function
of mass 1, and Lemma 5 can not be applied.

None of these adaptative methods permits to prove the expected result (2.5.9).

2.6 Numerical illustrations

In this section, we illustrate our theorical results by numerical examples.

Concentration of the error around the singularity. First, we present one of the
computations which drew our attention to the fact that the convergence could be better
far from the singularity. For this example, we define 2 as the unit disk,

Q={r=(x1,72) e R?: x|, < 1},
)y as the portion of (2
Qo = {r = (21,25) e R?: 0.2 < ||z < 1},
and finally zo = (0,0) the origin. In this case, the exact solution u of problem (FPj) is
given by
1
u(x) = 1 log (xf + x%)

When problem (Pj) is solved by the P;-finite element method, the numerical solution
uy, converges to the exact solution u at the order 1 on the entire domain €2 for the L.2-norm
(see [99]). The previous example has shown that the convergence far from the singularity
is faster, since the order of convergence in this case is 2 (see [66]). The difference of

convergence rates for L2-norm on  and Qg let us suppose that the preponderant part of
the error is concentrated around the singularity, as can be seen in Figures 2.5, 2.6, 2.7,
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and 2.8. Indeed, they respectively show the repartition of the error for 1/h ~ 10, 15,20
and 30.

0'167Err0r 0'167Err0r

0.12 0.12

0.08 0.08

0.04 0.04

<
T
S
TR

Figure 2.5: Error for 1/h ~ 10. Figure 2.6: Error for 1/h ~ 15.
0.16%”0r o.mg1r1r0r
-0.12 %0.12
éo.os éO.O8
:{20.04 :_{20.04
ok i

o
5

Figure 2.7: Error for 1/h ~ 20. Figure 2.8: Error for 1/h ~ 30.

Estimated orders of convergence. Figure 2.9 shows the order of convergence for
L?(€Qg)-norm for the Py-finite element method, where & = 1,2, 3 and 4. In this case too,
the convergence far from the singularity is the same as in the regular case: the IPp-finite
element method seems to converge at the order k + 1 on Qg for the L2-norm. This result
has been proved by Képpl and Wohlmuth in [66].

Figure 2.10 shows the estimated order of convergence for the H'(€)-norm for the
P-finite element method, where k = 1,2,3 and 4, in dimension 2. The convergence far
from the singularity (i.e. excluding a neighborhood of the point z) is the same as in
the regular case: the Pj-finite element method converges at the order k on €y for the
H'-norm, as proved previously with a 4/|In(h)| multiplier.
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1072 ¢
1076 * 4 o
A
N o
A 9
10—9 L
s)

*  FElements Py

10-12} . Order = 2.00]
Elements P,
Order = 3.00
O Elements P5
10-15 Order = 4.01
1072 107!

Figure 2.9: Estimated order of convergence for IL?()y)-norm for the finite element method
Py, k=1,2,3.

1
1073 + - A
A o =
A . © o
106 . A
L *  FElements Py
9 Order = 1.00
1077 ¢ A Elements P, ]
Order = 2.00
O  Elements Py
10,127 Order = 3037
o Elements P,
Order = 4.22
1072 1071

Figure 2.10: Estimated order of convergence for H'({)y)-norm for the finite element
method Py, k =1,2,3,4.
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2.7 Discussion

2.7.1 The three-dimensional case

Dirac mass. The approach presented in this chapter can be extended to the three-
dimensional case but straighforward adaptations of the proofs lead to a suboptimal result.
In the case of Theorem 3, the solution u belongs to Wy%(Q) for all ¢ in [1,3/2[. As a
consequence the couple (g, ¢.) defined in (2.4.5) has to be taken near from (3/2,3). For
instance,

3
1—¢’

qe and ¢, =

:2+<€

so that, with the same notations, the result of Corollary 1 becomes
[ = unl k10 < CR*B 2 |u — uply g 0.
Moreover, the discrete inf-sup condition in dimension 3 is

SQ Vuh . Vvh

| HU > Ch€+1/2.
1,q¢,21|Vh

inf sup
up€Vyy vpeVE Huh

140
Thus when dealing with the estimaye for |u — up|1 4. o, we get
—e—1/2
|U - uh|17qE7Q < Ch / |u|17QS7Q'

Finally, with the asymptotics in 3d

1 1
2 Ty — )
17q 3 47T 3/73 — 2q62

]

we get the estimate

2
lu — up|1.0, < C(Qo, 0, QR | Inh| .

which is clearly suboptimal.

Theorem 5 is also suboptimal in 3d, even if better. Indeed, in 2d or in 3d, the proof
readily adapts until the computation of | f*|o.q, which is in 3d

1F4los = 2/2
0,2 — 2 FE\/E’

1,00 S CVh.

so that we get

o =
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Line Dirac along a curve. In 3-dimension, a line Dirac dr along a curve I' cc
belongs to H~17" for all n > 0, so that the solution ur of the Poisson problem with the
line Dirac dr belongs to H'™". Actually, we have ur € Wh4(Q) for all ¢ € [1,2[. In this
case, with the same notations and assumptions as in Theorem 3, we have the following

estimate for ur and its Galerkin projection uf,

1,Q0 < C(Qo, Ql, Q)hk’\/ ‘ hl h‘,

which is quasi-optimal. This result is shown using the same arguments as the ones pre-
sented in Section 2.4, but cannot be obtained with the tools given in the proof detailed
in [66].

Jur — ug|

2.7.2 Dirac mass near the boundary

Theorem 5 excludes some critical cases: Dirac mass should not be closer and closer to the
border of the domain Q. Indeed, for example in the case d(xg, Q) ~ h%, Assumption 4
cannot be satisfied with € ~ h/10, but only with ¢ ~ h?/10. Nevertheless, this small value
of ¢ implies

lu —upf1,0, < C,

so that our method does not even prove the convergence of the approximate solution in
this case. Actually, if the distance d(xg,d2) tends to 0, the norm |u|; 40, for a fixed
1 < ¢q <2, tends to +o0, so that the problem becomes more and more singular. But this
question is a completely different problem and should be treated in a different way.

This discussion ends this chapter, devoted to the study of the Poisson problem with a
Dirac mass in right-hand side. In next chapter we focus on the analysis of local errors for
the finite element method applied to the Stokes problem with a punctual force in source
term, and show in this case quasi-optimal convergences on subdomains which exclude the
singularity [68].
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The solution of the Stokes problem with a punctual force in source term is not H* x 1.2
and therefore the approximation by a finite element method is suboptimal. In the case
of the Poisson problem with a Dirac mass in the right-hand side, an optimal convergence
for the Lagrange finite elements has been shown on a subdomain which excludes the
singularity in L2-norm by K&éppl and Wohlmuth, and, independently, we have proved a
quasi-optimal convergence in H*-norm, for s > 1 (see Chapter 2). In this chapter, we show
a quasi-optimal local convergence in H' x L?>-norm for a P;,/P;_; finite element method,
k = 2, and for the P;b/P; finite elements. The error is still analysed on a subdomain
which does not contain the singularity. The proof is based on local Arnold and Liu error
estimates, a weak version of Aubin-Nitsche duality lemma applied to the Stokes problem
and discrete inf-sup conditions. These theoretical results are generalized to a wide class
of finite element methods, before being illustrated by numerical simulations.

3.1 Introduction

This chapter is about the accuracy of the finite element method to solve the Stokes
problem with a punctual force in source term. Let us consider this following problem

—Au+Vp = 0xF in
diviu) = 0 inQ, (3.1.1)
u = 0 on 0,

where 0 = R? is a square, and d,,F denotes the punctual force F located at x € Q such
that dist(xo, 2) > 0.

Our interest in Problem (3.1.1) is motivated by the modeling of the movement of thin
structures in a viscous fluid, such as flagella connected to bacteria or cilia involved in
the muco-ciliary transport in the lung [48]. Indeed, for instance in the lung, the cilium
is very thin and a direct simulation with a graded mesh would be too expensive. In
the asymptotics of a zero diameter cilium and an infinite velocity, the cilium is thus
replaced by a line Dirac of forces in source term. In order to ease the computations,
the line Dirac of forces is approached by a sum of punctual forces distributed along the
cilium [67]. Finally, by linearity of the Stokes problem, the analysis of the subsequent
problem reduces to Problem (3.1.1).

In dimension 2, Problem (3.1.1) has no H'(2)? x L?(Q)-solution. Although the nu-
merical solution can be defined in this case, the H'(Q)-error (respectively L2(Q)-error) for
the velocity (respectively the pressure) has no sense, and the L*-estimates of the velocity
cannot be derived like in the regular case without suitable modifications.

Let us notice that the scalar version of this problem, the Poisson problem with a Dirac
mass in right-hand side, has already been widely studied. It occurs in many applications
from different areas like in optimal control of elliptic problems with state contraints [26]
or in the mathematical modeling of electromagnetic fields [59]. Problems of this type
are found in controllability for elliptic parabolic equations [27, 28, 73| and in parameter
identification problems with pointwise measurements [93]. In this case, Babuska proved
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in [5] for two-dimension smooth domain an L?(2)-convergence of order h' ¢, € > 0, where

h is the mesh size, and Scott has shown in [99] an a priori error estimates of order 2 — g,
where the dimension d is 2 or 3. Casas has got the same result in [25] for general Borel

measures on the right-hand side.

To the best of our knowledge, there is no finite element method convergence result
for the Stokes problem with a punctual force in source term. Moreover, in applications,
the punctual force (or the Dirac measure) at the point X, is often a model reduction
approach and the finite element solution does not need to approximate precisely the exact
solution at the point xy. Thus, it is interesting to estimate the error on a fixed subdomain
which does not contain the singularity. In the case of the Poisson problem, Koppl and
Wohlmuth recently showed in [66] a quasi-optimal local convergence for low order in L?-
norm for Lagrange finite elements and optimal local convergence for higher orders. A
quasi-optimal local convergence in H®-norm, s > 1 and an optimal local convergence in
the case of low order have been proved in dimension 2 in [9]. In this chapter, we establish
still in dimension 2 local error estimates for the Stokes problem with a punctual force in
source term, Problem (3.1.1), and show a quasi-optimal convergence in H' xL?>-norm. The
proof is based on the Arnold and Liu Theorem [4] that establishes local error estimates
for finite element discretizations of the Stokes equations with regular source term. It is
written in the case of the Py /Py_; elements for k > 2, and the MINI finite element method
Pib/Py if £ = 1. No graded meshes are required for these results and they imply that
there is no pollution effects far from the singularity.

The chapter is organized as follows. Our main result is formulated in Section 3.2
followed by the Arnold and Liu Theorem [4], an important tool for the proof presented
in Section 3.3. Our theoretical results are generalized in Section 3.4 and summarized in
Section 3.5, before being illustrated in Section 3.6 by some numerical simulations.

3.2 Main results

In this section, we first set all the notations used in this chapter. Then, we formulate our
main result and give an important tool for the proof: the Arnold and Liu Theorem. For
the sake of clarity, this result is first set and proved in the particular case of the Py /Py
finite elements (k > 2) and the P1b/P; elements. It is generalized in Section 3.4.

3.2.1 Notations

For a domain D, we denote by | - ||s4p (respectively | - |s,p) the norm (respectively
semi-norm) of the Sobolev space W*4(D), and by | - ||s,p (respectively | - |sp) the norm
(respectively semi-norm) of the Sobolev space H*(f2). Letters in bold refer to a vector of
R? or a function with values in R?.

For the numerical solution, let us introduce a family of quasi-uniform simplical trian-
gulations Ty, of 2, where h is the meshsize. For the approximation spaces V¥ and W}, we
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mesh

Figure 3.1: Domains €y and €2;.

use the Py, /P, finite elements, for k > 2, defined as
th — {Vh € CK(Q)Q } Vh‘T € Pk[T],VT c ﬁl} ,
Wy = {pn e €(Q)| Phiy € Pea[T],VT € Tnt

and if £ = 1, we use the MINI finite element method P1b/P;, where Pib denotes the
continous piecewise linear and bubble functions. For a finite element T, the bubble
function b is defined by

NN ()M () ifzeT,
b@):{ @A)

0 else,

where AT, A" and \I are the barycentric coordinates of z in relation to the triangle 7.

We fix two subdomains of €, called Qo and Qy, such that Qy cc Q; cc Q and x¢ ¢ Oy
(see Figure 3.1). We consider a mesh which satisfies the following condition:

Assumption 5. For some hgy, we have for all 0 < h < hg (see Figure 3.1),

Q' NQS = T, where Q) = U T.
TeT,
TNQ#=I

3.2.2 Statement of our main results

Our main result is given by Theorem 7. The rest of the chapter is mostly concerned by
the proof, the generalization and the illustration of this theorem.

Theorem 7. Consider Qg cc Qy cc Q satisfying Assumption 5, k > 1, 1 < q < 2,
let (u,p) € Wy'(Q) x LL(Q) be the solution of Problem (3.1.1) and (a,,py) its Galerkin
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projection onto V;F x WF satisfying SQ prn =0 and
J V(ia—uy):: Vn— J (p—pr)div(n) = 0 forallne Vi,
Q Q
J div(u — up)¢
Q

Under the assumption that (u,p) € H*1(Qy)? x H*(Qy), there exists hy such that if
0 < h < hy, we have,

Ju —wnl10, + P = palog, < C(Q0, 21, Q)R /[ Inh.

(3.2.1)
0 for all £ € WE.

3.2.3 Arnold and Liu Theorem

Before stating Arnold and Liu Theorem, let us enumerate the assumptions that the finite
element spaces V¥ and Wi have to satisfy so that the theorem is true.

Assumption 6. Given two fized concentric disks By and B with By cc B cc (Q, there
exists an hy such that for all 0 < h < hg, we have for some integers ki and ks:

B1 For any 1 < {, for each v € H*(B)?, there exists n € V¥ such that
v —nlip < CR" Yv]ep, ™ =min(k, +1,0).

For any 0 < s, for each m € H*(B), there exists & € WF such that

T —Ellos < Ch2|m|s3, 7o = min(ky + 1,5).

Moreover, if v.e H}(By)? (respectively m vanishes on B\By) then n (respectively )
can be chosen to satisfy n € H}(B)? (respectively & vanishes on Q\B).

B2 Let g € 65°(Bo), vi € Vi and m, € W, then there exist n € Vi Hy(B) and & € Wy
with supp & < B such that

lovi — 0|18 < C(p, B, Bo)h|vhl|1,B,
lemn — &lo,s < C(p, B, Bo)h|mho,5-

B3 For each 0 < h < hq there exists a domain By, with By cc B, << B such that for
any 0 < ¢, for all v, € V¥ and m, € WE, we have

[valiz, < Ch™ [ val-e.5,.

[71lo.5, < CR™ |l -1,

B4 There exists B > 0 such that for all 0 < h < hg, there is a domain By, with
By cc By, << B for which

div(vy)my,

inf sup Iy, > 3> 0.
TrhEW}I: VhEV}I: |7Th|0,Bh|Vh|17Bh

supp m,CBp supp vy By,




3.3. Proof of Theorem 7 113

We now state the following theorem by Arnold and Liu [4], a key tool in the forth-
coming proof of Theorem 7.

Theorem (Arnold and Liu [4]). Consider Qy cc Q; <= Q and VF and W} satisfy
Assumption 6. Suppose that the continuous solution (v,7) € H*(Q)? x L*(Q) satisfies
(v, 7)o, € HY(Q)? x HY(Qy) for some £ > 0. Suppose that the finite element solution
(v, ) € ViF x WE satisfies $om—m =0 and

J V(v—vp):Vn— J (r —mp)div(n) = 0 forallne V¥,
Q Q

L div(v — vp)&

Let t be a nonnegative integer. Then there exist a constant C' > 0 and a real hy > 0
depending only on €y, Qy, and t, such that if 0 < h < hy we have

0 for all £ € WE.

[v = valio, + |7 = mulog, <C(R" I V]eq, + 577710,

v = Vil + |7 =7l t-1,0,),
where r1 = min(ky + 1,¢), 7o = min(ky + 2, /), and ky, ko as in Assumption B1.

Assumptions B1 and B3 are quite standard and satisfied by a wide class of finite
element spaces, including all finite element spaces defined on quasi-uniform meshes [32].
The parameters k; and ko play respectively the role of the order of approximation of the
spaces Vi and WF. In this section, for k > 2, we have k; = k and ky = k — 1, and for
k =1, we have ki = ky = k = 1. Assumption B2 is less common but also satisfied by
a wide variety of approximation spaces, including the P;b-finite elements [4]. Actually,
for Lagrange finite elements, a stronger property than assumption B2 is shown in [8]: let
0<s</{<k, pe%(B)and v, € V}¥, then there exists n € V;* such that

lovi = nlls,5 < C@)R | vie,5- (3.2.2)

Applied for s = ¢ = 1, Inequality (3.2.2) gives assumption B2. When B, = 2, Assump-
tion B4 is the standard stability condition or discrete inf-sup condition of the Stokes
elements. It usually holds as long as By, is a union of elements.

Remark 11. The assumption (v,m) € H(Q)? x L2(Q) is not necessary, but it ensures
that the finite element solution (vy,my,) is well-defined. In the Dirac right-hand side case,
as Vi < €(Q), the discrete solution (uy, py) is well-defined and Arnold and Liu Theorem
holds.

3.3 Proof of Theorem 7

This section is devoted to the proof of Theorem 7. We first show a weak version of
Aubin-Nitsche duality lemma (Lemma 7), then we establish two discrete inf-sup conditions
(Lemmas 8 and 9), and finally we use these results to prove Theorem 7.
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3.3.1 Aubin-Nitsche duality lemma with a singular source term

The proof of Theorem 7 is based on Arnold and Liu Theorem. In order to estimate the
quantities |[u—uyp|_¢0, and |p—pn|_t—1,0,, we first show a weak version of Aubin-Nitsche
Lemma in the case of the Stokes problem with a singular source term.

Lemma 7. Consider the source term f € W=19(Q)% = (W7 (Q)2), 1 < ¢ < 2, and let
(w,m) € Wyl(Q) x LI(Q) be the unique solution of

—-Aw+Vr = f inQ,
diviw) = 0 in{,
w = 0 on .
Let (wy, m4) be the Galerkin projection of (w, ) in VEXWE. For any integer 0 <t < k—1,
[w—wn|-t0 + Im = Tl -t-10

< ChQ(l/q,_l/Q)hH_l (|W - Wh|17q7Q + |7T - 7Th|07q7Q) . (331)

Proof. We aim at estimating, for ¢ > 0, the H*(Q)-norm and the H~*~!(2)-norm respec-
tively of the errors w — wy, and m — 7p,:

W —wp|_to=sup
e ()2 [#lleo

[ o= 90‘ (33.2)

L(w _ mw‘ (3.3.3)

1
I — 7ThH—t—1,Q = Ssup 7
veer (@ [Vl

The Galerkin projection (wy, 7y,) satisfies J m—m, = 0 and
Q

J V(w—wy) = Vnp— J (m — mp,)div(n) 0 for all ne V¥,
@ 2 (3.3.4)
f div(iw —wy)é = 0 forall £ € W
Q

Consider ¢ € €3°(2)? and let (w¥, %) € H'™(Q) x H'™(Q2) be the solution of

—AwW? +V7r¥ = ¢ in (),
div(w¥) = 0 in{,
w¥ = 0 on 0.

Existence and uniqueness of the solution to this problem are given in [111] (see Chapter I,
§2), and we have the estimate

[w*ler20 + |7°lee < Clelio: (3.3.5)
In dimension 2, by the Sobolev injections established for instance in [20], we have

H*2(Q) c Wha'(Q),

HtJrl(Q) c Lq’(Q>’ (336)
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for all ¢’ in [2, +oo[. Thus

L(W—Wh)'go=—L(W—wh).AWerf(W_Wh).vﬂso

Q
= f V(w—wp) : Vw? — f div(w — wy,)7m%.
Q Q
By adding (3.3.4) in the last equation, we get for any n € V¥ and any £ € W},

| vy = | Vv = wi) s Vi =) = [ diviw = w6

+memm—ﬂg

By definition of w?, div(w¥) = 0 on €2, so

| v =)o = [ Vi =) s Vw =) = | diviw =) (r7 - €)

+£fwm—wﬁh—ww

<|w = wilig0 (W9 = nfiga + 77 = £log.e)

+ |7 = Thlog.0lW? = NlLe.0

Now let us deal with the pressure estimate. For any ¢ € 6;°(€2), we denote by QZ the

function .
b= | v
9] Jo
By definition, it is easy to see that QZ satisfies

| #=0 and w0, 17lsa < COIla
Q

We can now establish the result for the pressure: consider ¢ € €3°(€2) and the solution

(w¥, %) e H'2(Q) x H*1(Q) of

—AwWY + V¥ = 0 inQ,

diviw¥) = ¢ inQ,
w¥ = 0 on 09,

See [111] (Chapter I, §2) for the existence and the uniqueness, and the following estimate

WY 20 + 710 < ClY e < ClY) 1o

Moreover, J m —m, = 0, so that
Q

[[m=mw=[@-mid+ g [ o] nmm= [ -

(3.3.7)
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By the Sobolev injections recalled in (3.3.6), and the Galerkin projection property (3.3.4),

we can write for all n € V¥,

| m=mp = | (w—m)i

_ L(w — )div(w?)

= L(W — mp)div(w? —n) + f V(w —wy) = V.

Q

Then, for all v € W, %(Q)

f vw¥ ;1 Vv —J m¥div(v) = 0,
Q

Q

so, with v = w — wy, and for any £ € W},

L(w—ﬂhw J T — ) div(w fvw wp) i V(n—w?)
+ L Vdiv(w — wy,)
L(ﬂ — ) div(w f V(w —wy) : V(g —w?)

+ J (7¥ — &)div(w — wy,)
0
<7 — Thlogalw? —nliga
+ W —whlig0 (WY = nliga+ 7 —Eoga) .
Finally, for any (n;,&;) € Vi x W},
f (W—wp) ¢ <[w = w100 (W —mligo+ |7 = &ilog o)
Q
+ \7T - Wh\o,q,ﬂ‘w@ - mh,qzm
and for any (1, &) € VF x Wk,
J (m — m) ¥ <[7 — Thlogalw? — mlieo
0

+ W = Wilig0 (W = mligo + 7 = &logo) -

(3.3.8)

(3.3.9)

In order to estimate |[W? — |1 4.0, [WY — m2l1g.0, |79 — &ilog.0 and |7¥ — &lo.g.0, We

need the following result:
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Proposition 11 (Girault, Raviart, Corollary A.2, page 97 [52|). Let T, be a family of
quasi-uniform simplicial triangulations of 0 < R2, where h is the meshsize. For any
0<m<t+1<k, for any mesh element T in the family, for any v e WF4(Q), any
real ¢ = 2,

|U — Hhv|m7q/,T < Ch2(1/q/71/2)ht+2im|v|t+2,27T, (3310)

where 1l,v 1s the Py-interpolant of the function v.

Up to now and until the end of this proof, we take
m = ,w? and 1, = I,w¥ € V¥,

fl = ﬁhﬂ'w and §2 = ﬁh’ﬂ'w € W]f,

where II,v is the Pg-interpolant of the function v and ﬁhv is the P,_i-interpolant of the
function v. By (3.3.10), with m =1, 0 <t < k — 1, for all T finite element in the family,

h2(1/q/_1/2)ht+1|W<p|t+2,2,Ta (3.3.11)
RV =12 gy

[w¥ — 771|1,q’7T <C
WY — a1y < C Y0tr2oT,
and with m = 0,

!
|7TSO - §1|0,q’7T < ChQ(l/q 1/Z)ht-"_l|7T80|t+1,2,T7
<

¥ — &olog T ChQ(l/q/_l/z)hHl|7Tw|t+172,T-
We denote the triangles of the mesh by {T;};1 ... n, and we set
a = (a;); and b = (b;);, where a; = |W¥ — |11 and b; = |W¥|ii027.
By (3.3.11), we have, for all 7 in [[1, N],
a; < CRPVA2 R,
We recall the norm equivalence in RY for 0 < r < s,
e < ller < NV ],
with here N ~ Ch™2. As 2 < ¢/, we have |b],s < |b]s2. Then, we can write

(w? =g = alw < CARH RV b,
< C«htJr1h2(1/q’71/2)Hb”g27
<

Cht+1h2(1/q/*1/2) |W£p|t+2 2.0

Similarly, we get

|W¢ - 772|1,qr7Q < Cht+1h2(1/q/71/2)|Ww|t+272797
|79 — Eilogo < CRTREVITD| 72 b g,
|7Tw - §2‘0,q’7ﬂ < Cht+1h2(1/q/71/2)|7Tw‘t+172797
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and by (3.3.5) and (3.3.7), we get
ht+1h2(1/q’71/2)“w|

|W“J - 771|1,q/,Q t,2,Q5

NN

([ ¢]le41.2,0,
ht+1h2(1/q’71/2)HS0’

C
‘Ww —lLg.0 Cht+r1p20/d =172
C

N

‘ﬂsp _ &‘O’q,ﬂ t,2,2
7 — Ealogr < CRF 2V g 415,

Finally, the proof is ended by combining (3.3.2), (3.3.3), (3.3.8), (3.3.9), and the last
inequalities. U

Corollary 2. Let (uy,pp) € ViF x WF be the Galerkin projection of the solution (u,p) of
Problem (3.1.1), for any 0 <e <1,

lu—up| 1.0+ [P — pul-x0
< Ch™hF (ju - Wil1 4.0+ [P = Prlog.a),

where q. € [1,2| is defined by

2 2
= —2 (andsoq = . 3.3.12
o= o (wnd so - ) (3312

Proof. We apply Lemma 7 with f = 0x,F, w =u, 7 = pand t = k — 1. We can explicit

Inequality (3.3.1):
oLy o (lze 1Y _ (3.3.13)
7 2)” 5 5)="¢ 3.

lu—up|—r1,0 + [Ip — Pul-r0

and so, it follows

< Ch™chF (ju - Uplig..0+ [P — Prlog.q)-

3.3.2 Discrete inf-sup conditions in L%-norm

Section 3.3.3 is devoted to estimate of |u — up|1,4. 0 and |[p — prlog. 0. In that prospect,
we need to establish two discrete inf-sup conditions.

Lemma 8. With q. and ¢. defined in (3.3.12), the approzimation space f/hk defined by

‘o/hk == {Vh € th

J div(vy)pn = 0,¥py, € W,f} ,
Q

satisfies the following discrete inf-sup condition:

Vuy, = V
inf sup SQ . ML

weVE v, evt [UhlLg 0 ValLg 0

> Ch®.
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Proof. The bilinear form
a(u,v) = J Vu: Vv
Q

is continuous and coercive on HE(€2), so for Vi* vector subspace of H}(2), we have the
inf-sup condition:

Vuy, :: Vv
inf sup Sﬂh—h>a>0,
upeVk vheVF |llh|1,Q|Vh|1,Q

where o only depends on 2. We recall the following inverse inequality:

Proposition 12 (Ciarlet, Theorem 3.2.6, page 140 [32]). Let T, a family of quasi-uniform
simplicial triangulations of Q = RY, where h is the meshsize. Forv, e ViF, 1 < r s < 4w,
0</l<m,

1/r 1/s
(Z |Vh|:n,r,T> < Chfd[max{o,l/sfl/r}]hf(mfé) (Z |Vh|zs,T) )

TeTh TeTh

We apply this to any vy, € f/h’“ c?(Q),withd=2,m=101=1,s=2andr = ¢ to
get:
Vilig o < Ch—2/2=1/q)

Vili2.o = Ch™%|vili2.0,

using Equation (3.3.13). Moreover, for any uy, € ‘O/hk ,

Vuy :: Vv Vuy, :: Vv
luplig.0 < Clugliza < C sup SQh—h < Ch™® sup Sﬂh—h
veevp [Valize wevt  [Valige
Finally,
Vuy :: Vv
inf sup Jo Vi, "> o

uhe\/h’“ VhE‘Q/}iC |uh | 1,(]57Q |Vh | 17qlsvﬂ

The second discrete inf-sup condition we need is given by the following lemma:

Lemma 9. With q. and ¢, defined in (3.3.12), the approximations spaces V¥ and W}
satisfy the following discrete inf-sup condition:

> Ch.

X SQ diV(Vh)ph
inf sup
PeWh vyevi [PrlogeolValie o

Proof. The proof is similar to the proof of Lemma 8. By Assumption B4,

. SQ diV(Vh)ph
inf sup —=—-———
Wk v,evi [PhloglVal1e

> [ >0.

By Proposition 12, for any v;, € V¥,

|Vh’1,q’E,Q < Ch™f|vpl|i2.0-
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So, we have, for any p, € W} and ¢. < 2,

div(v div(v
waevp  IValize vaevr [Valigo
Finally, we get
SQ div(vy)pn

> Ch®.

inf  sup
ph,EVV}IlC V}LG‘/}fC |ph|07QE7Q|Vh|17qIE7Q

3.3.3 Estimates of |[u— |1, .0 and |p — prlog.0

Following Corollary 2, the quantities |u — ug|1,4. o and |p — pploq. .o have to be estimated
to prove Theorem 7. We apply the last two results to bound them in terms of |ul;,. ¢

and |p | 0,ge 7Q .

Lemma 10. Let (up,pp) € Vi x WE be the Galerkin projection of the solution (u,p) of
Problem (3.1.1), for any small enough real € > 0,

lu — uh‘l,qs,ﬂ <Ch™* (‘uyl,qa,ﬂ + ‘p‘O,QE79> .

Proof. First, we estimate |uy|14. o in terms of |uly 4 0. As we have div(u) = 0 on 2, by
Equation (3.2.1) we have

[ ivtaan =0, van e wr
Q
and so, uy, € Xo/h’“. By Lemma 8, there exists vy, € ‘O/h"“ such as [vy|1,4.0 = 1, and
lupl14..0 < Ch_‘fj Vu,, :: Vvy,.
Q

Moreover, Equation (3.2.1) gives

.
J Vu, = Vv, = | Vu: Vv, — J div(vy)(p — pn)-
Q Jo Q

rk
Now, v, € V}7, so
R

div(vp)pn, = 0.

Jo
Finally, as |vp|1,4.0 = 1, we get

[uplig.0 < Ch™° <J Vu:: Vvy, — J div(vh)p) ,
Q Q

< Ch™ (|ufrg.0 + [Plog..0) -
We conclude with the triangulary inequality,

u—wl1g.0 < [ulig.0+ [Unlig.o < Ch e (Julig.o + Plog.o) -
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We can now estimate |p — pplo.q. 0

Lemma 11. Let (uy, py) € Vi x W[ be the Galerkin projection of the solution (u,p) of
Problem (3.1.1), for any small enough real € > 0,

P = prlig.0 < Ch7* ([ulig.0 + [Plog.2) -

Proof. The proof is similar to the velocity case: by Lemma 9, there exists v;, € V}¥ such
as |Vpl1,¢,0 = 1 and

‘ph|07q57ﬂ < Chef diV(Vh)ph.
Q

By Equation (3.2.1), we have

J div(vp)pn = —J V(u—uy) :: Vv, + J div(vp)p.
Q Q Q
By applying Lemma 10, as |[vj|1,4.0 = 1, we get
|ph‘0,qE7Q <Ch™* <—J‘ V(u — uh) = Vv, + J‘
Q

Q

div(vh)p) ,

<Ch™(Jlu— uh‘l,qs,ﬂ + ‘p‘o,qs,ﬂ) )

< Ch™* (Julig.0 + [Plo.g..2) -

3.3.4 Proof of Theorem 7
We can now prove Theorem 7.

Proof. The functions u and p are analytic on ), so the quantities |u|z,1.0, and |p|r.0,
are bounded. Let us note that in this case (u,p) ¢ H}(Q)? x L(Q2), but Remark 11 allows
us to apply Arnold and Liu Theorem. For k; = k and

b 1 ifk=1,
2T k=1 ifk=2,

and [ =k+1=7r;and t =k — 1, we have

lu— w0, + [P = Prlloge < C(R* + lu— w100 + |2 — Prl-k0.)-

By combining Corollary 2, Lemmas 10 and 11, and Inequalities (1.4.5) and (1.4.6) (see
Chapter 1, Section 1.4.1.2), we get

h—35
—u- — pullr0, < CRF .
Hu uhH k+1,9; T Hp th kS m
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By (3.3.12), with e < 1,
1 vV1i+e

1 1
_ <. 3.3.14
V2 =g \2e \E ( )

therefore, taking ¢ = |In |,

0.00 < Ch¥+/|In |,

which ends the proof of Theorem 7. 0

lu —upf10, + [P — ol

3.4 General case

Theorem 7 and its proof have been written in the particular case of the Py/Pj_; finite
element method, k > 2, and the P;b/P; elements (which corresponds to the case k = 1).
But we can state two more general results.

3.4.1 Some more general assumptions

First, we focus on the assumptions. Let 7, be a family of quasi-uniform simplicial trian-
gulations of €2, let thl and W,i” be two approximation spaces satisfying Assumption 6.
We also assume that V™ € €(Q): this assumption ensures that the finite element so-
lution is well-defined. Moreover, we need two more assumptions, they play the role of
Propositions 11 and 12:

Assumption 7. Given B < Q, consider ¢ > 2, there exists an hy such that for all
0 < h < hg, we have for some positive integers kq, ko, and some reals Ry, Ry > 1:

B1 For any 0 < m < Ry and m < {, for each v € H'(B)?, there exists 1) € Vi such
that, for any mesh element T < B,

IV = Dy < CHAVIYDR=m ), 0 0 7 = min(ky + 1, 0).

For any 0 < m < Ry and m < {, for each m € HY(B), there exists £ € W,fQ such
that, for any mesh element T < B,

T = &g, < CRMVTTV2R M), 7 = min(ky + 1,0).

B3 For0<m < /(< Ry, for all vy € thl, for any mesh element T € Ty, we have
[Valleqr < CRPYE VDR vy o
For0 <m < ¢ < Ry, forallm, e W,i”, for any mesh element T € Ty, we have

e < CH™ ||

H7Th m,T-
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Assumptions B1 and B3 are also satisfied by a wide class of finite element spaces,
including all finite element spaces defined on quasi-uniform meshes [32]. They are actually
common generalisations of Assumptions B1 and B3. The parameters R; and Ry play the
roles of the regularities of the approximation spaces thl and W/fQ.

3.4.2 Generalization of Theorem 7

We can now state the following result:

Theorem 8. Consider Qy cc Q; cc Q satisfying Assumption 5, 1 < q < 2, the solution
(u,p) € WyU(Q)% x LYQ) of Problem (3.1.1) and (un,pp) its Galerkin projection onto
VE < W satisfying §, pn = 0 and

f V(ia—uy):: Vn— f (p—pn)div(n) = 0 forallneV}F,
0 0

J diviu—up)é = 0 forall £ WP
Q

Under the assumption that (u,p) € HT1(Q)2 x H* (), there exists hy such that if
0 < h < hy, we have,

l0.20 < C(Q0, 1, Q)h*+/[Inhl,

la— w10, + [P~ pa

where ko = min(ky, ko + 1).

Proof. We do not develop the complete proof here because it is essentially the same as
the proof of Theorem 7 (see Section 3.3). But we explain two differences between both
proofs:

e the result of Lemma 7 holds in this case, but for 0 < ¢ < min(k; — 1, k).
e the result of Corollary 2 becomes

la—up| —ryr1.0 + [P — 2l —ko0

< Chchko (la—uplig.0 + [P — Prlog.a) (3.4.1)

where ko = min(ky, ks + 1).
The end of the proof is the same. O

The next two sections are dedicated to the local error analysis for the Stokes equations
with a punctual force in source term in H* x H* !-norm, with s > 2.
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3.4.3 Local error estimates in H* x H* !-norm, with s > 2

Before proceeding, we have to state the following result. It can be seen as a complement
of the Arnold and Liu Theorem.

Theorem 9. Consider Qy cc ) cc (), thl and W,i” satisfy Assumption 5. Moreover,
we assume that thl and W,f2 also satisfy Assumption 6, and Assumption 7 for ¢ = 2.
Suppose that (v, ), € H'(n)* x H™'(Q) for some £ > 0, and (vi,m) € Vi x W

satisfies SQ m— 7 =0 and

J V(v —wvy):Vn— J (r —mp)div(n) = 0 for allnme VE,
0 0

L div(v — vy)é

0 for all £ € WE.

Let t be a nonnegative integer. Then, there exist a constant C > 0 and a real hy > 0
depending only on i, o, and t, such that for 0 < h < hy, and 2 < s < £, with
s<ki<Ryand s <ky+1< Ry + 1, we have

a0 T 7 = smr00 SC[R 0 V]eq, + 1770710,

+ W (v = Valvo + 7 = malmie)] (34.2)

[v =il

where r = min(k; + 1,0), 7o = min(ky + 2, ¢).

We first prove a local version of Theorem 9.

Lemma 12. Suppose the conditions of Theorem 9 are satisfied, then (3.4.2) holds with
Qo and 2 replaced by Gy and G, two concentric disks such as Gy c< G cc ().

Proof. Let us fix 2 < s </ such as s < ky < Ry and s < ks + 1 < Ry + 1, and consider
Gy cc Gy, cc G cc G cc )y where Gy, G; and G are concentric disks, and G}, is a
union of mesh elements. Then, for any (n, &) € VP x W2,

ls,co + 1T = Th]s—1,60
< v —=nlsc + n—val

|v—wvy,

s T = E&lsre + 1€ = mlsran

Thanks to Assumption f}S, applied for ¢’ = 2,

In = Valsc, < b2 —vilia,,
1€ — Thls—1,6, < B0 — ml

0,Gp s

so that we have

IV = Vilsco + |7 — Thls—1,60
< v =nlse + 2750 = valie, + 17 = Elsre + A€ = o,
< v =1nlse+ 7 = Elsre + B (v = Valie + |7 — mloc)
+ 0 (v = e + |7 = &loq)- (3.4.3)

We now estimate all the terms in Equation (3.4.3):
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e thanks to Assumption ]~31, applied for ¢ = 2, there exists n € thl such that
[v—nllse < Ch" | v]eg and |v = nle < CR™ 7 Hv]ee, (3.4.4)
where 71 = min(k; + 1, 7).
e still thanks to Assumption ]§1, there exists € € W,’? such that
|7 = €ls-1.6 < OB *|mle-1c and |7 = log < OB 7|1, (3.4.5)
where 7o = min(ky + 2, /).
e applying Arnold and Liu Theorem for 2y = G; and ; = G, we get
v = Vil + |7 = mlog, SCR" 7 v]eg + A" rle-re
+ v = vi|-tc + |7 — 7] -t-1.6)- (3.4.6)
Finally, combining (3.4.3), (3.4.4), (3.4.5), and (3.4.6), we get the result of Theorem 9
with €y = Gy and Q; = G-

v = Vilsco + |7 = Tls-1,60 <C[R" 5| V]ee + A7)l e-16

+ B (v = Vil e + |7 = mnll—m16)]-

We can now prove Theorem 9.

Proof. The argument is the same as in Theorem 5.1 in [88]. Consider d = dy/2 where
do = dist(Qp, 092;). Cover () with a finite number of disks Go(z;), i = 1,2, ..., N centered
at x; € Qy with diam Gy(x;) = d. Let us note that the number N of disks depends only
on Qo and €. For all i € [[1, N], we define G(z;) corresponding concentric disks with
diam G(x;) = 2d, so that we have:

N

N
0y < UGO(:U@ c UG’ x;) < Q.

i=1 i=1
We apply Lemma 12 to each couple (Gg, G), so that we get:

N

Iv = Vallsgo + |7 = Tallsmr00 < DIV = Vallscown + 17 = Thlls=1,60(0):
i=1

N
<C Y [W V] eo@) + b |l e—10)
=1

+ B (v = Vil —t6@) + |7 — Tl —i-v6@))]
<On[R" 2 V)0, + A7) o= 1,0,
+ B (v = Vil —ee, + T = Tl —m100)],

which ends the proof of Theorem 9. O
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3.4.4 Local error analysis in H* x H* !-norm for the Stokes equa-
tions with a punctual force in source term, s > 2

In the same way we proved Theorem 8 based on Arnold and Liu Theorem, we apply
Theorem 9 to prove the following result.

Theorem 10. Consider )y cc 0 cc ), th1 and W,i” satisfy Assumption 5. Moreover,
we assume that thl and W,i” also satisfy Assumption 6 and Assumption 7. Consider
1<q <2 let (u,p) e Wy Q)2 x LQ) be the solution of Problem (3.1.1) and (uy,py)
its Galerkin projection onto th1 X W,fQ satisfying SQ prn =0 and

J V(iua—uy):: Vn— J (p—pp)div(n) = 0 forallne Vi,
0 0

J div(u —up)é 0 for all £ € WE.
Q

Under the assumption that (u,p) € H™T1(Q)2 x H*(Q,), there ewists hy such that if
0 < h < hy, we have for 2 < s < kg < min(Ry, Ry + 1),

Hu - uhHS,Qo + Hp - thS—l,Qo < C(QO> le Q)hk0+1_s V | In h|7

where kg = min(ky, ky + 1).

Proof. The proof is similar to the one of Theorem 7. The functions u and p are analytic
on €, so the quantities |uy,+1,0, and |pllx, 0, are bounded. Let us apply Theorem 9
taking ¢ = ko +1 and t = ko — 1. For 2 < s < min(ky, k2 + 1) < min(Ry, Ry + 1), we have:

[u—wilsoo + Ip = prll o100 < A7 + A7 (Ju = wy iy 00 + [P = Poll-ro2)]-

Assumptions of Theorem 10 imply that assumptions of Theorem 8 are satisfied. We
conclude that Estimate (3.4.1) holds, so that:

Ju—wlso + 1P — Palls—r.00 < CRT R [Ju — wpl1 .0 + P — Prlog.o)

where ¢, is defined in (3.3.12). By combining Lemmas 10 and 11, and Inequalities (1.4.5)
and (1.4.6) (see Chapter 1, Section 1.4.1.2), we get

h—3a
u—u + |lp — 1o, < Cplotl=s .
H hHS,Qo Hp ph“s 1,9 \/m

By (3.3.14), with € = | In k|7, we have

Hu - uhHS,Qo + Hp - ths—LQo < ChkOJrliS V | 1nh|>

which ends the proof of Theorem 10. 0
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3.5 Summary of the main theoretical results of this
chapter

The aim of this section is to collect the results of this chapter to have a clear view of
them. We have proved the following results:

Theorem 11. Consider Qy cc O cc Q, Vi < €(Q) and W) satisfy Assumption 5.
Moreover, we assume that thl and W,lfQ also satisfy Assumption 6, and Assumption 7.
Consider 1 < q < 2, let (u,p) € Wy?(Q)? x LL(Q) be the solution of Problem (3.1.1) and
(up, pr) its Galerkin projection onto thl X W,i” satisfying §, pn = 0 and

J V(ia—uy) :: Vn— f (p—pp)div(n) = 0 forallneV}F,
Q Q
J diviu—up)é = 0 forall £ WP
Q

Under the assumption that (u,p) € H*1(Q)? x H*(Qy), there ewists hy such that if
0 <h<hy, for 1 <s<ky<min(Ry, Ry + 1), we have

[u =500 + [P = Palls-1.0 < C(Q0, 2, QR F754/| In k.
where ko = min(ky, ko + 1).
First, the case s = 1 in Theorem 11 has been proved in the particular context of the

Py/Py_; finite elements, for £ > 2, and the P;b/P; finite elements (which corresponds to
the situation k£ = 1). It is Theorem 7.

Theorem 11 is a mix of Theorem 8 (case s = 1) and Theorem 10 (case s > 2), which
have been proved in Section 3.4. For s = 1, the proof is based on the Arnold and Liu
Theorem [4]. For s > 2, the result is a consequence of Theorem 9, proved in Section 3.4.3.

Next section is devoted to the numerical illustrations of these theoretical results.

3.6 Numerical illustrations

In this section, we present some computations which illustrate the theoretical results
proved in this chapter.

Concentration of the error around the singularity. First, we define 2 as the unit
square,

Q=1[0,1]*
and solve the following Stokes problem with F = *[1, 1] and xo = (0.5,0.5),

—Au+Vp = 0xF inQ,
diviu) = 0 inQ, (3.6.1)
u = u; on 0,

where ug is the 2d Stokeslet defined in (1.4.2) (see Chapter 1, Section 1.4.1.1).
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Remark 12. Unlike Problem (3.1.1), Problem (3.6.1) has non homogeneous Dirichlet
boundary conditions, but in this case, the exact solution is known: us. Thus, it is easier
to get some information on the error.

Figures 3.2, 3.3, 3.4 and 3.5 show the repartition of the error on the velocity with a
P;b/P; method for respectively 1/h ~ 5,10,20 and 30. Figures 3.6, 3.7, 3.8 and 3.9 show
the repartition of the error on the pressure for the same values of h. In both cases, they
illustrate the fact that the error concentrates around the singularity. These simulations
made us think that the convergence could be optimal on a subdomain which does not
contain the singularity: quasi-optimality has been proved in this chapter (Theorem 7).

Figure 3.6: Error in pressure, 1/h ~ 5. Figure 3.7: Error in pressure, 1/h ~ 10.
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Figure 3.8: Error in pressure, 1/h ~ 20. Figure 3.9: Error in pressure 1/h ~ 30.

Estimated orders of convergence. For this second example, the domain €2 is still the
unit square, and €2 is defined as the following portion of €2,

QO = {XEQZ HX—X()H2 >O4}7

where xg = (0.5,0.5). We fix F = [1,1] and solve Problem 3.1.1 for different mesh sizes
h with the P1b/Py, Py/P; and P3/P; finite element methods.

1072

10~

1076

1078

*  Elements P1b/P,

y Order = 1.12
o A Elements Py/P; T
P Order = 2.02
o O Elements P5/P,
. ~ = Order = 3.08
1072 1071 0

Figure 3.10: Estimated order of convergence for the H'(€y)-norm of the velocity.

Figure 3.10 (respectively Figure 3.11) presents the estimated orders of convergence for
the H'(€g)-norm of the velocity (respectively the L?(€)-norm of the pressure) for these
three methods. The convergence far from the singularity (i.e. on €2) is the same as in
the regular case: the Py/Py_; method (or the P;b/P; method if & = 1) converges at the
order k on € in H'-norm for the velocity and in L2-norm for the pressure, as proved
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1
0
o A
®)
1072 ¢ * A ]
* A -
* A o
1074 + 1
*  Elements P1b/P
Order = 2.17
A Elements Py /Py
Order = 2.21
10-6 | ©  Elements P3/P, |
Order = 3.1

1072 107!
Figure 3.11: Estimated order of convergence for the L?(€)-norm of the pressure.

in this chapter. Let us just note that there is an over-convergence in pressure for the
P;b/P; elements: the estimated order of convergence is approximately 2, greater than the
convergence expected by Theorem 7.

About the error in IL?(Qg)-norm for the velocity, Figure 3.12 suggests that the Py /Py,
finite element method (or P1b/P; if & = 1) converges at the order k£ + 1 on 4. This result
has only been observed numerically but it is still an open question.

3.7 Discussion

3.7.1 The three-dimensional case

Punctual force. The approach presented in this chapter can be also extended to the
three-dimensional case, but like is the case of the Poisson problem, straighforward adap-
tations of the proofs lead to a suboptimal result. First, the solution (u,p) belongs to
Wy Q) x LE(Q) for all ¢ in [1,3/2[, as a consequence the couple (g, ¢") defined in (3.3.12)
has to be once again taken near from (3/2,3). We fix

g = and ¢, =

1—¢’
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1
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1073 L % A o i
* A ©
* N )
1076 | N ,
*  Elements P1b/P,
Order = 2.12
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O Elements P5/P,
Order = 4.07
1072 1071

Figure 3.12: Estimated order of convergence for the L?()-norm of the velocity.

so that, with the same notations, the result of Corollary 2 becomes

lu—up|—p1,0 + [P — Pul-ro
< Ch™= 20" (Ju — wplig0 + [P — Prlog.0) -

Moreover, the discrete inf-sup conditions in dimension 3 are

Vuy, - Vv
inf sup So Vun h S Che+12,
wneVf y,evk [Unl1g.0lValie.o
and N
iv(v
inf sup Jo div(va)pn > Chet1/2,

peWE vyevi [Prloge2lValie 0

The rest of the proof is exactly the same, and we finally get the estimate

l0.00 < C(Q0, 21, QA*1{/| In h|2.

la— a0, + [P~ pau

which is clearly suboptimal.
Line Dirac of force. The proof presented in the case of the punctual force, and the

adaptations in 3d suggest that the method lead to a local quasi-optimal convergence in
the case where the solution (u,p) belongs to € W,%(2) x LI(Q) for all ¢ in [1,2[. For
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example, in 3-dimension, a line Dirac of force along a curve I' =< € belongs to H17"(Q)
for all n > 0, so that the solution (u',p") of the Stokes problem with the line Dirac of
forces or belongs to € Wy (Q) x LE(Q), ¢ € [1,2[. In this case, we can proof the following
estimate

1,90 + pr _pEHO,Qo < C(QO7 Ql7 Q)h’k V “nh”a

which is quasi-optimal. This result is shown using the same arguments as the ones pre-
sented in Section 3.3.

[u — |

3.7.2 Punctual force near the boundary

The conclusions about this critical case are strictly the same as for the Poisson problem.
Curious reader is encouraged to see Chapter 2, Section 2.7.2 for further information.

Chapters 2 and 3 establish the analysis of local errors for the finite element methods
to solve elliptic problem (Poisson and Stokes problems) with a singular source term.
Last chapter presents a new method to solve these problems and recover the optimal
convergence rate: it is based on the knowledge of the singularity of the solutions [67].
Once set, this method is applied to the study of mucociliary transport.
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The modelling of thin structures in a viscous fluid leads to consider elliptic problems
with a singular right-hand side: a Dirac mass for the Poisson problem or a punctual force
for the Stokes problem. In Chapters 2 and 3, we have established local error estimates
for the finite element method. But it is well known that the convergence over the whole
domain is suboptimal (see for example [99]). In this chapter, we propose a numerical
method which preserves optimality for any approximation order even with a singular
source term. It is based on the knowledge of a fundamental solution of the associated
operator over the whole space. Unlike Chapters 2 and 3, in which the study is limited to
the 2-dimensional case, the method is detailed in dimensions 2 and 3. Besides, it is applied
in dimension 3 to the direct simulation of a large forest of cilia. Actually, this method is
a performing tool to study muco-ciliary transport efficiency and related diseases: direct
simulation allows for example to understand better the influence of some parameters on
mucus transport, such as the thickness of periciliary layer (and thus of mucus) or the
density of cilia.

4.1 A numerical method to solve elliptic problems with
a singular source term

As it has been already done in previous chapters, we present the method in the case of the
Poisson problem with a Dirac mass right-hand side and in the case of the Stokes problem
with a punctual force in source term. The calculations are detailed in 2-dimension only,
but the results are also given in dimension 3.

The method is based on the explicit knowledge of the singularity of the solution. The
main idea relies on the extraction of the singularity from the solution to reduce initial
problem to an auxiliary regular problem. This approach fits on the class of subtraction
methods, introduced in [120] in the context of electroencephalography.

4.1.1 The Poisson problem with a Dirac mass right-hand side

Even if we aim at applying the method in the case of the Stokes problem, let us start
with the Poisson problem for two reasons. First, all the important steps to explain the
method are contained in the explanations related to the Poisson problem, and since this
problem is the scalar version of Stokes problem, the method is a little simplier in this
case. Second, the Poisson problems with a Dirac mass right-hand side appear naturally
for example in electromagnetism [120)].
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4.1.1.1 Principle of the subtraction method

First, let us recall the Poisson problem with a Dirac mass in right-hand side

{—Au = 0p in €, (4.1.1)

v = 0 on 0.

For the sake of clarity, in all the results of this section the location xy of the Dirac mass
is the origin. The fundamental solution of the no-boundary condition problem is still

denoted us,
— Augs = 0y in 2'(RY). (4.1.2)

By Propositions 8 and 9, Chapter 1, Section 1.4.2.1, the fundamental solution of this
problem is given by
- . 1
e in dimension d = 2, wugs(z) = . In|z|,
T

o (4.1.3)

e in dimension d = 3, wus(z) = ]
T |z

Since a regular lift is sufficient to get the exact solution u (see Chapter 1, Section 1.4.2.2),
the singularity of u is contained in the Green’s function us and is located at the Dirac
point zg (here, the origin). The following method is based on this observation.

In order to extract the singularity, let us fix 0 < a < b < d(z, 092) and define y by
Definition 1:

Definition 1. Assume that x is a bump
function satisfying for some k = 0, b

G0

o x € H**M(RY),

° =1,

X‘B(:po,a)

[ ]
B (wo, by
Figure 4.1: Definition of y.

Then we set
Uy = UsX, (4.1.4)

and the function g is defined by
— Aug = —A(ugx) =+ g. (4.1.5)

By Definition 1, we can specify usy:
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e on B(xg,a), x =1, so usx = ug, and therefore

g =—Aus — dy, = 0.

e on B(xzg,b), x =0, so usx = 0, and therefore
g=—A(0) =0.
Finally, supp(g) < Rg(xo), where RZ (zo) is the ring centered around zy, of internal radius
a and external radius b, see Figure 4.1. Moreover, since u; is analytic on a neighbourhood

of R (z¢) and x € H?***(RY), the function g belongs to H*(2). Thus, Problem (4.1.1) is
reduced to the following regular problem

—Av = —g in (),
{ v = 0 on0df, (4.1.6)
and the solution u of Problem (4.1.1) is given by
U=v+ U =0+ usX,

where uq is explicitly known and v is the solution of Problem (4.1.6). With vy, the finite
element solution of Problem (4.1.6), the numerical solution u;, of Problem (4.1.1) is set as

Up = Uy + Up = Uy + UsX.

Even if the solutions u and u;, do not belong to H(€2) (because of the singularity at the
point xg), the difference u — wuy, does, and we have

|u —upls0 = v —uvn]sq, for 0 <s<k+1.

Remark 13. This method allows us to switch from the numerical computation of the
solution of a singular problem with Dirac source term (with a poor convergence rate) to
the numerical computation of the solution of a regular problem with an optimal convergence
rate, at any required precision in terms of reqularity.

4.1.1.2 Practical aspects

First of all, a suitable function x has to be defined: to take advantage of the use of a P-
finite element method, ¢ > 1, the function x has to belong to €*(R?) N H**1(RY), so that
g € H*"Y(Q), and finally get an optimal convergence. We could choose x € €;°(R?), but
the calculations to make g be explicit would be unnecessarily complicated. For example,
for £ = 1, we can take the radial function defined by

1 sire[0,al,
3_ 2 2(p _
() = 2r° — 3(a + b)r* + 6abr + b*(b — 3a) sirefabl, (4.1.7)
(b—a)?
0 sir>b,
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where the function r is the Euclidean distance from the origin
r(x) = [l

The expression of g can now be explicited. We detail the calculations only in 2-dimension,
but the results are also be given in 3-dimension.

Proposition 13. In dimension d = 2, the function g is given by

g(z) = ﬁ ((3r* = 2(a + b)r + ab) In7 + 2r* — 2(a + b)r + 2ab) Lgs () (2)-
Proof. First, we have already shown that

supp(g) = R (xo),

so for |z| < aorb < |z|,
g(x) = 0.

For a < |z| < b, in polar coordinates, since x and us are radial functions,
A(usx) = xA(us) + 2Vus - Vx + us Ay

1
- 3B+ 20, (a0 + s (2,00 + 22,0

Now, us is a solution of Problem (4.1.2), so A(ug) = 0 on R%(z¢). That is why

Busx) = 20, (us)2, () + vs (2,00 + 10,00 ) (1.18)
Moreover, by Equations (4.1.3) and (4.1.7),
e 0.(us) = _ﬁlr
6 2
e 0.(x) = (b= a) (r*—(a+b)r + ab), (4.1.9)

#0200 = a2 — (b))

Finally, by injecting (4.1.9) into (4.1.8), we get

g(x) = —=A(usx) = ﬁ ((3r* = 2(a + b)r + ab) Inr + 2r* — 2(a + b)r + 2ab) .

O

Proposition 14. In dimension d = 3, the function g is given by

3

g(z) = —m(% — (a+ b)) LRy (ap) ()
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4.1.1.3 Numerical illustrations

In this section, we illustrate our theorical results by a numerical example. We define €) the
unit disk and zy = (0,0) the origin. Table 4.2 presents the L?-error for a direct method
and the subtraction method respectively, for characteristic mesh sizes h, and the estimated
order of convergence (e.o.c.). Figure 4.2 illustrates the section {y = 0} of the error |u—uy,|
in both cases. Numerical simulations evidence the fact that solving the auxiliary problem
associated to the subtraction procedure of the singularity is more efficient than solving
directly the problem with the punctual force source term.

h Direct method Subtraction method

23 1.58 x 1072 211 x 1073
24 3.72 x 1073 4.63 x 1074
275 3.89 x 1073 1.22 x 1074
26 1.45 x 1073 2.99 x 107°
27 6.51 x 1074 8.73 x 1076
€.0.C. 1.06 1.98

Table 4.1: L2-error for the direct method and the subtraction method

0.01

T T T T |
—oe— Subtraction method
—— Direct method

0.005F

s 06 04 02 0 05 04 06 08 9

Figure 4.2: Section {y = 0} of the error |u—uyl| for the direct method and the subtraction
method with h = 0.125.

Remark 14. Figure 4.2 illustrates the concentration of the error around the singularity,
with a wide and infinite peak located at the point xq for the direct method.

4.1.2 The Stokes problem with a punctual force in source term

The previous method has been presented in the case of the Poisson problem. In this
section, we adapt the method to the Stokes problem. As in Section 4.1.1, the calculations
are detailed in dimension 2 but the results in dimension 3 are also given. Actually, we
apply this method in dimension 3, in the case of the Stokes problem, to study muco-ciliary
transport.
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4.1.2.1 Principle of the subtraction method

The principle of the method is essentially the same as in the case of the Poisson problem.
Let us consider the following problem,

—puAu+Vp = 0 F inQ,
diva = 0 in €, (4.1.10)
u = 0 on 0,

where xq is fixed in © and F is a vector of R?. For the sake of clarity, we assume X, to
be the origin. We still denote by (us,ps) the fundamental solution of the no-boundary
condition problem

in 7'(R%). (4.1.11)

—pAug + Vps = oF
divu = 0

We recall that the solution of Problem (4.1.11) in dimension d is given by Propositions 6
and 7, Chapter 1, Section 1.4.1.1:

1 x!x 1x-F

d=2 - — (-1 I, + — ) F and - ——
P2 b 47w< Bl |x|2) il 2ot = o g
od= us;(x) = — | — an X)=——=
SR TAN TR Y P I T

where [; is the identity matrix in dimension d. The fundamental solution (us,ps) does
not satisfy the boundary conditions, and so is not the solution of Problem (4.1.10). But
this solution can be retrieved by adding a regular lift, therefore the whole information on
the singularity of the solution (u,p) is contained in the fundamental solution (us, ps) and
is located at x¢. In order to extract this singularity, let us fix 0 < a < b < d(x0, 02) and
define x by Definition 1. Then, with uy = yus and pg = xps, we define g and h as

g = —plug + Vpg — 0x, F, (4.1.13)

h = div . (4.1.14)

By the definitions of us, ps and x, supp(g) = R%(xp) and supp(h) = RY(xq), where
RY(x0) is still the ring centered around xg, of internal radius a and external radius b, see
Figure 4.1. Since us and ps are analytic on Q\{xo}, the regularity of functions g and h
directly depends on the regularity of function y, namely g € H*(Q) and h € H*1(Q).
Finally, it only remains to correct the terms uy and py by solving the regular elliptic
problem

—puAv+Vq = —g in (),
divv = —h inQ, (4.1.15)
v = 0 on0dQ,

and the solution of Problem (4.1.10) is given by

(u,p) = (wg + v, po +q) = (xus + v, xps + q),
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where ug and py are explicitly known functions and (v, ¢) is the solution of Problem (4.1.15).
Noting (v, gn) the numerical solution of Problem (4.1.15) and defining u;, = v;, + uy and
Ph = qn + Po, We have,

Hu—uh\Hs(Q) = HV_Vh’HS(Q), fOI‘OSSSk—i—l,
< k.

= pulms) = lle — anllas@), for 0<s

Again, the method allows us to switch from the numerical computation of the solution
of a singular problem with a punctual force in source term (with a poor convergence
rate) to the numerical computation of the solution of a regular problem with an optimal
convergence rate, at any required precision in terms of regularity.

4.1.2.2 Practical aspects

We still take (4.1.7) for the choice of x, and we can establish the expressions of the
functions g and h.

Proposition 15. In dimension 2, the functions g and h are given on R2(xq) by

3

g(x) = (b= a)r [((3r2 —2(a+b)r+ab)lnr

t
+2r? —2(a + b)r + 2ab) Iy + (ab — TQ)E]F,

r2

3(1 —Inr)(r* — (a + b)r + ab)

-F.
2u(b — a)3r x

h(x) =

where r = r(x) = |x|, and are zero outside.

Proof. We already know that supp(g) = Rb(xo) and supp(h) = R2(xg). Let us begin
with the calculation of h. For a < x| < b,

h = div(xus) = Vx - us + xdiv(us) = Vx - uy, (4.1.16)

as div(us) = 0 on RE(xp), since (us,ps) is solution of Problem (4.1.11). We need to
establish the expression of Vy. Noting that

with x = [z, 23], we have

o= 0% _ (2 _ (44 byr + ab),

b—a)r

and so 6(r2 — ( b) b)
r*—(a+0)r+a
= ) 4.1.1
VX (b—a)r x ( )
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By combining (4.1.16) and (4.1.17), we get:

3(r? — (a + b)r + ab)

B —
27p(b — a)ir

(1—Inr)x-F.

Let us now calculate g. As we did previously,
g = —nA(xus) + V(xps)
= —p (xAus + 2VusVx + Axus) + xVps + psVx
= —U (2Vll§VX + AXU(;) + sV X, (4.1.18)

because (us, ps) satisfies —uAus + Vps = 0 on Rb(xg). We need to calculate Ay: with
Equations (4.1.9),

6(3r* — 2(a + b)r + ab)
(b—a)3r '

All that remains for us is to calculate Vus. With F = *[f;, f3],

1 x-F T1fo — 22 fi1 2 4o
_ _ S F .
Vs 4t pur? (l Taf1 — 21 fo x-F XX

We can now make all the term in (4.1.18) be explicit:
3(r? — (a + b)r + ab)

1
Ax =02, (x) + ~0:(x) =

—2 F
NvuévX ( )3T )
-2
—MAXU(SZ:))(?)T (a + b)r + ab) In(r 1[2__ F,
27(b—a)’r
3(r? — (a + b)r + ab) x
— *Xp.
PsVX (b —a)? 73
And finally we deduce the expression of g;:
(x) = 3 (3r* —2(a + b)r + ab) Inr
g%/ = 27 (b — a)3r
+2r? — 2(a + b)r + 2ab)1[2 + (ab—r )XQX]F
r
O
Proposition 16. In dimension 3, the functions g and h are given on R%(xq) by
3 5 x'x
g(X) = W ((a + b)'r’ —2r )I[g + <2CLb — (a + b)T)7‘| F,

3(r? — (a + b)r + ab)
27 (b — a)3r?

h(x) = x - F,

where r = r(x) = |x|, and are zero outside.
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4.1.2.3 Numerical illustrations

As it has been done in the case of the Poisson problem, we illustrate here our theorical
results by a numerical example. We define ) as the unit square and x¢ = (0.5,0.5). Ta-
ble 4.2 presents the L2-error for a direct method and the subtraction method respectively,
for characteristic mesh sizes h, and the estimated order of convergence (e.o.c.). Figure 4.3
illustrates the section {y = 0.5} of the error |u —uy| in both cases. Again, numerical sim-
ulations evidence the fact that solving the auxiliary problem associated to the subtraction
procedure of the singularity is more efficient than solving directly the problem with the
punctual force source term.

h Direct method Subtraction method

23 1.02 x 1072 412 x 1073
24 487 x 1073 1.33 x 1073
25 2.36 x 1073 2.92 x 104
26 1.21 x 1073 6.86 x 107
27 5.89 x 1074 2.71 x 107°
e.0.C. 1.02 1.88

Table 4.2: L%-error for the direct method and the subtraction method

0.02 I I ]
—e— Subtraction method
— Direct method
0.01f ~
G 4 339, S X CREROLARN,
0 0.2 0.4 0.6 0.8 1

Figure 4.3: Section {y = 0.5} of the error |[u — u,|| for the direct method and the sub-
traction method with A = 0.125.

4.1.3 Adaptations of the subtraction method to more general
problems

In this section, we focus on the advantages and drawbacks of implementing and using the
method.

4.1.3.1 Linear elliptic problems

The subtraction method has been presented in the particular cases of the Poisson and the
Stokes problems. Actually, it can be detailed in the case of other linear elliptic problems.
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Consider a linear elliptic operator A, for example of the form

d d
Au = — Z a; ;D Dju + Z b Dyu + cu,

ij=1 k=1

where the coefficients a; ;, by, ¢ are smooth functions, and assume that we know explicitly
a smooth fundamental solution s, that is to say s is smooth except on the point xy and
satisfies

Aty = 0y in 2'(RY). (4.1.19)
Then the subtraction method can be applied to solve the following problem

Au = 4, inQ,
u = 0 on of).

In this example, A is a partial operator of order 2, but the order of derivation does not
matter. Moreover, the method can be extended to mixed problems, such as the Stokes
problem. In fact, the key points are the linearity of the operator and the explicit knowledge
of a fundamental solution smooth out of a compact. Notice that in the general case, it is
very difficult to solve explicitly Problem (4.1.19) and that the method cannot be applied
without such a solution.

4.1.3.2 About boundary conditions

Consider the following problem

Au = 0, in €,
Bu = 0 on o).

where A is a linear elliptic operator for which there exists a smooth fundamental solution
ts, and B a boundary condition operator. This operator B is assumed to satisfy the
condition

B(v+v) = B(v) (4.1.20)

for any function vy such that vy = 0 on a neighbourhood of the border €2 (for instance,
B(v 4 ug) = Bv, where uyg is defined in (4.1.4)). Then the method can be applied in this
case and the finite element solution uy, is given by

up = vy, + Ug
where %y = sy (Definition 1) and vy, is the finite element solution of the following problem

Au = —g in Q,
Bu = 0 on 09,

with ¢ defined as in (4.1.5). Note that if B is a linear operator which depends only on
the trace on 02 of u and its derivatives, for example Dirichlet or Neumann boundary
conditions, Equation (4.1.20) still holds. Besides, the subtraction method is compatible
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with periodic boundary conditions, and these conditions are imposed on the auxiliary
problem. Lastly, the method is of course compatible with mixed boundary conditions.
For example, in 3-dimension, we can consider biperiodic conditions in directions x and y,
homogeneous Dirichlet boundary conditions on the bottom, no-output conditions with
no-friction sliding on the top of the box (see Figure 4.4).

biperiodic
.
conditions

- / 77777777777 | |(inzandy)

Figure 4.4: Hlustration of mixed boundary conditions.

These boundary conditions are chosen in the modeling of the mucociliary transport in the
lung.

4.1.3.3 More general source terms

In order to clarify the explanations, let us deal with the Stokes problem, even if the
principle also extends to other linear elliptic problems concerned by Section 4.1.3.1.

A punctual force plus a smooth function in source term. Let f be a smooth
function, and consider the following problem

—pAu+Vp = 0, F+f in Q)

div(u) 0 in €,
u = 0 on 0f).

By linearity, the subtraction method can be applied to get a numerical solution of such
problems solving the following auxiliary problem

—puAu+Vp = —g+f in Q)
diviu) = —h inQ,
u = 0 on 012,

where the functions g and h are defined in (4.1.13) and (4.1.14). Note that the regularity
of this problem is directly linked to the regularity of the function f. Actually, if the
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function f is also singular, the method allows the user to separate the difficulties and deal
with one singularity after the other.

High number of punctual forces in source term. Let us now consider the Stokes
problem with several punctual forces in source term:

N
—pdu+Vp = > 5. F, inQ
i=1
div(u) = 0 in €,
u = 0 on 0f).

For each punctual force dy,f;, we define g; and h; as in (4.1.13) and (4.1.14). No matter
the number of punctual forces, the method can be applied and by linearity, only one
auxiliary regular problem has to be solved:

-

N
—plAu+Vp = —Zgi in €,
i=1
{ N
diviu) = — 2 hi in Q,
i=1
u = 0 on 0.

\

A high number of punctual forces may involve some bad convergence: even if the
source term Y. g; (respectively Y. h;) is regular, its L2-norm (respectively H'-norm) can
be very large, and the convergence depends directly on this norm, even if the convergence
rate remains the same. Figure 4.5 draws the L?>-norm of the term source in function of the
number of cilia, knowing that a cilium is composed of 20 punctual forces. The L2-norm
of the source term does not linearly depend on the number of cilia, and even if it can be
very large, it stops growing after some number of cilia This screening effect is due to the
high density of cilia. The dotted line corresponds to the number of cilia we consider in
the simulation, namely 6885 cilia (135 in the direction z and 51 in the direction y).
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Figure 4.5: L?-norm of the right-hand side in function of the number of cilia.
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Note that the required time to numerically build the source term >’ g; may become
preponderant for a high number of cilia compared to the required time to solve the Stokes
problem.

4.1.3.4 Punctual force close to the border

The issue is the same for the Stokes problem as for the Poisson problem. When presenting
the method, we introduce the ring R?(xg) centred on xg, of internal radius a and external
radius b. The natural question is: what happens if the Dirac mass is close to the border
of Q7 Indeed, even if we can always define the ring, the mesh size h could be bigger than
one of these distances: the radius a, the width of the ring b — a, the distance of the ring
RY(x0) to the border dQ. Moreover, even if h small enough, is the convergence of the
finite element solution to the exact solution still optimal? Actually, the convergence is
related to the regularity and the norm of the right-hand side g. In our case, we have:

Igllo.e < Ixl2my 00 05

LR} (x0) -
Moreover, we can show that there exists C' independent of a and b such that

C
|2.RE (x0) < .
RE (b—a)

Ix

As a result, if the distance b — a is small, the norm | x o s (x,) is very big (and the growth
is cubic). We conclude that the optimal rate of convergence can be counterbalanced by
the constant, leading to a deterioration of the results in practice.

A solution to counter-balance this fact is to consider a so-called “Stokeslet in a no-slip
boundary”; that is to say a Stokeslet defined in the half-space, and satisfying u = 0 on
the border (see Figure 4.6). This Stokeslet is built in [11]. For the sake of clarity, consider
the problem

—pAUs + Vps = 0 F inR* x R%,
div(s) = 0 inR? xR,
s = 0 onthe plan {z = 0},

where F € R? and xq = (0, 90, 20), with 29 > 0. The solution is the Stokeslet in a no-slip
boundary, and it is defined by:

N 1 [<1 1)H3+X+®X+_X®X

Uy + ZZOW(Rl, RQ, Rg)] : F,

- % r R 3 R
and
Ps = i [% ~ % — QZos(Rl,RQ,R3)] -F,
where

X+:t[x_x07y_y07z_z0]7 X—:t[x—l’o,y—yo,Z-i-zo],

r=[X.], R=|X_|=4/R+ Rj+ Rj,
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Ry=x—x9, Ro=y—1, R3=2z+ 2,

W(R17R27R3) -
[ Z()R1 R1R3 Z()R1 R1R3 ZQR1 R1R3 ]
w\ TR m\ T o (T T T
Z()RQ R2R3 Z()RQ R2R3 ZQR2 R2R3
w\ T T ‘e \ T T T ‘w\ T TR ’
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Figure 4.6: Construction of the Stokeslet in a no-slip boundary.

Once we have a fundamental solution, we can apply the subtraction method. To help
in this process, we have to define a “good” function y, but Definition 1 does not match in
this case. Let us make another choice for x:

Definition 2. Assume that x is a bump function satisfying for some k = 0, x € H?***(Q).
Moreover, let us split the domain ) in two parts and define x on each of these parts:
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e in the half-space {z = 2o}, x is a radial function centred on xq such as

=1 and X|B =0,

X B(xq, a) (%0, b)°

as defined in Definition 1.

e in the half-space {z < z}, x is a cylindrical function of axis D (the straight line
{x =x¢ and y = yo}, see Figure 4.7) such as

x(x,y,2) =1 ifr(z,y) <a,
x(z,y,2) =0 ifb<r(x,y),

where 1(z,y) = A/(x — x0)2 + (y — yo)%.

From this point, the method can be applied as in Sections 4.1.1.1 and 4.1.2.1. With
this adaptation, we can compute punctual forces 5, F close to the border of €2, even if
an issue persists if the punctual force is near a corner. Note that if we consider periodic
boundary conditions, punctual forces can be close to the border (or corner): the part of
the support of x which is out the box is deferred at the other side of the box.

Figure 4.7: Definition of y. Section {y = yo}.

Calculations of functions g and h have not been done in this case. Actually, in our
model, the cilium is connected to the bottom of the box (domain ) and therefore, we
should use the Stokeslet in a no-slip boundary. But the lower part of the cilium does not
beat a lot, the velocity near the base is low, and so the force F distributed near the border
is also very small and vanishes at the border. As a consequence, heavy computations
related to the treatment of the near boundary punctual forces can be avoided in the case
of mucociliary transport.



152 Chapter 4. Simulation in 3D of a dense forest of cilia in a viscous fluid

4.1.3.5 Non-constant viscosity

The method has been presented in the case of a constant-viscosity fluid. Actually, this
assumption is not really necessary, but the difficulty remains the existence of the funda-
mental solution. In some cases, we can still define the method with suitable adaptations.
For instance, the two-viscosity case is very interesting, as the mucociliary escalator relies
on a bifluid mechanism. Consider () a viscous fluid domain in 3d of viscosity p defined by

. J251 ifZ<h0,
:u(xayvz>_{,u2 ifZ>h0,

where hg is the height of the bottom layer. Let us denote by €2; this bottom layer and
the top layer by €y (see Figure 4.8). In applications, the domain {2; corresponds to
the periciliary layer while the domain €2 refers to the mucus. Let us assume that the
punctual force is located at the point xg = (o, yo, 20) With zg < hg, so that it is located
in the bottom layer, as in Figure 4.8 (else, the development is the same exchanging the
subscripts ¢ = 1,2 for p; and €2;).

O, M2

X0

Qla,ul Q

Figure 4.8: Illustration of the subtraction method for a two-viscosity fluid

Let us thus define the Stokeslet (us,ps) as in (4.1.12) with p = gy, and the functions
g and h are given in 3d by Proposition 16, still with 4 = gy and x defined in (4.1.7).
Consider u =ug + v = yus + v and p = pg + ¢ = xps + ¢, where (v, p) is the solution of
Problem (4.1.15), and calculate for any test function ¢ € 65°(£2),
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=2 JQ D (ug)(x) = D(p)(x)dx + 2[ 2D (ug)(x) = D(p)(x)dx

+ . Vpo(x) - p(x)dx — L g(x) - p(x)dx
=2J u1D(up) (x) = D(p)(x)dx + QJ 2D (1) (x) = D(¢)(x)dx
Q1 Q2
+ Grar ) =2 | D)) 5 D) ()b

= (Oxs P)(2) + QJ (p2 — p1)D(ug)(x) = D(p)(x)dx.

Qo

In the light of this calculation, let us define g by: for all ¢ € €;°(Q?),

& )= J x)dx + 2 J;) (2 — p1)D(ug) (x) :: D(p)(x)dx,

and denote by (v, q) the solution of the following auxiliary regular problem

—2div(uD(V)) + Vg = —g in Q,
div(v) = —h in{,
v = 0 onoQ.

We conclude that (u,p) = (ug + V,po + q) is the solution of

div(u) 0 in©Q,
u = 0 ondQ.

{ —2div(uD(u)) + Vp = 0xF in Q,

To complete this adaptated method, it remains to explicit Vug on €2s:

e on ) N B(xp,b)¢, x =0, and so Vuy = 0.
e on (N B(xp,a), x =1, and so Vuy = Vug, with
x-F rfo—yfi xfs—zfi

1
yfhi—zfe  x-F  yfs—zfo | — ﬁxthtX
2fi —afs z2fa—yfs x-F

1

Vll5 (X) = W
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e on 2y N RE(xg), Vug = V(xus) = xVu; + us'Vy, with x given in (4.1.7), Vus
explicited above, and

2 _ ¢
'V = 3(r* — (a+ b)r + ab) <H3 L X x) Fix

Ampq (b — a)3r? 2

The method adaptated to the two-viscosity case is used in Section 4.2.4 for the sim-
ulation of a forest of cilia and the study of the influences of some parameters, like the
thickness of the periciliary layer or the density of cilia.

4.2 Application to mucociliary transport in the lung

The complexity of the process is high (cilia, two layers, several interfaces, several scales,
etc) and only a few data are available. Although a wide variety of works can be found
in the literature about mucociliary clearance, the numerical modeling remains at present
time a challenge for the scientists. One of the main difficulties is the model of the cilia.
For instance, Smith and coworkers [107] replaced the forest by an active porous medium
in which the cilia are modeled by a volumic resistive force directly dependent on the local
velocity of the cilia. They considered in 2-dimension a three-layer fluid: a Maxwell fluid
for the mucus and a Newtonian fluid for the periciliary layer and the layer of transition.
This model leads to a quasi-uniform mucus transport but no collective movement in the
periciliary layer emerges from this model. Another way to model the cilia is the discrete-
cilia. model. Dillon and coworkers [40]| tried to model the internal elastic and force-
generating structures of the cilia. They considered in 2D only a few cilia but observed
that the interface between the mucus and the periciliary layer stays flat, which justifies
the two-layers (sometimes three) models with invariant interfaces. Nevertheless, how the
internal ciliary engine affects the ciliary beat form remains an open question. That is
why most of the works focus on the flow fields produced by cilia with given beat pattern
and frequency. Smith and coworkers [106] considered a discrete-cilia model and used
regularized Stokeslet to model in 3D the transport by an infinite array of cilia. Lee and
coworkers |71] modeled the cilia by discrete Dirac delta functions distributed all along
the cilium. They considered a 2D two-layer flow and the governing equations are solved
using the immersed boundary method combined with the projection method. The same
techniques were used in 3D by Jayathilake and coworkers [60] to simulate a 3D two-
layer flow in order to better understand some pathological cases. Finally, Chatelin and
Poncet [30] proposed a 3D model with a variable viscosity: the viscosity is the solution
of a convection-diffusion equation. The beat of the cilia is imposed and the effects of
the cilia on the fluid are treated by penalization. Most of these approaches are discussed
in [108].
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4.2.1 Implementation

The code CAFES (Cartesian Finite Element Solver) has been developed by Benoit Fab-
réges, in collaboration with Loic Gouarin and Bertrand Maury [45]. It is written in
C/C++ and uses the library PETSc. It works with the 4Q1/Q1-finite element to solve a
class of problems for which a solver on a Cartesian grid is needed. The library PETSc is
used for the parallel structure of matrices and vectors, as well as the parallel solvers for
the linear systems.

The simulations presented below are obtained with the code CAFES, used for the
resolution of the regular auxiliary Stokes problem. My contribution to the code is the
implementation of the subtraction method, described in Section 4.1, from the construction
of the right-hand side to the corrective terms added to the numerical solution of the
auxiliary regular problem.

4.2.2 Choice of the different parameters for the computations

Before beginning the computations, let us fix the values of the parameters. Consider the
Stokes problem
—Au+Vp = F inQ,
diviu) = 0 in €,
u = 0 ondQ,

where F is independent of the viscosity u. By denoting (u, p) the solution of this problem,
for any viscosity p the couple (u, up) is solution of the problem

—plAu+Vp = f‘,u in €,
div(u) = 0 in{,
u = 0 ondQ

This remark leads us to consider the viscosity fi = 1 in the computations: the velocity
flow remains the same, and the pressure is multiplied by the real viscosity u. In the case
of the bifluid model, the observation is the same: it is only necessary to keep the ratio
between both viscosities 7, = ftmucus/1tpcr constant.

Remark 15. We can take the viscosity we want for the computations because we focus on
the flow fields produced by cilia with given beat pattern and frequency. If we would impose
the force and not the movement of the cilia, this simplification would not be possible.

Table 4.3 recalls the data related to the cilia. These parameters are the ones used in
all the simulations (unless otherwise stated). It remains to choose the parameters a and
b to complete the definition of y. Let us take a = d/5 and b = 4d/5, with d defined by

d = min(zp, h, — 2p),

where 2z is the third component of the position of the punctual force, and h, the height of
the box of calculations. This choice of a and b is consistant with the biperiodic boundary
conditions.
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Length of cilium L 6 pm
Cross-sectional radius To 0.1 pm
Beat frequency f 15 Hz
Cilia spacing ly 0.3 pm
Metachronal wavelength A 30 pm

Table 4.3: Summary of data for cilia in the lung, from [48|.

The simulations should present the time evolution of flow. In our case, the movement
of the cilia is periodic (the period T" is 1/f), and the movement of the cilia is imposed:
there is no effect of the fluid on the cilia. Due to the instantaneousness of the Stokes
equations, the simulation of one period is sufficient. The time step At is taken equal to
T/20. For the sake of clarity, the time ¢ is not given in seconds but in the form ¢ = nAt,
where n is an integer between 0 and 19, and represents the associated step in the period 7.
In all the simulations presented in this chapter, the number of punctual force composing
each cilium is 20. Lastly, we do not present convergence results but we ensured that the
computations have indeed converged for the meshsize used in the simulations.

Next sections are devoted to the presentation of the various results obtained using
the code CAFES and applying the subtraction method to the mucociliary transport. In
particular, this numerical tool allows us to study the influence of some parameters of the
mucociliary clearance.

4.2.3 Simulations in a constant-viscosity fluid

In the light of the review of the works related to mucociliary clearance, it is clear that
modeling the airway surface liquid as a constant-viscosity fluid is not sufficient. However,
comparing the constant-viscosity case to the two-viscosity fluid allows to highlight the
impact of the bifluid flow for the mucus transport efficiency. Therefore we start with
computing cilia beating in a constant-viscosity fluid.

4.2.3.1 Simulation of a small patch of cilia

In order to validate the model and the method, we start the computations with the
simulation of a small patch of cilia. For this computation, we consider a 20 x 10 x 10 pm?
box, discretized by a 64 x 32 x 32 mesh. The patch of cilia is a 15 x 15 array of cilia.
Figure 4.9 shows the 3-dimensional flow generated by a patch of cilia in a constant-viscosity
fluid at times t = At s (during the effective stroke) and ¢ = 11At s (during the recovery
stroke). It illustrates the efficiency of transport during the effective stroke compared to
a low flow in the opposite direction during the recovery stroke. This observation is a
consequence of the non-reversibility of the cilia beat pattern. Note also that the average
flow over a period is non-zero.

A whole 3-dimensional forest of cilia is computed in a constant-viscosity fluid in the
next section.
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Figure 4.9: 3D-Simulation of a patch of cilia in a constant-viscosity fluid. a. Effective
stroke (t = At s). b. Recovery stroke (¢t = 11At s).

4.2.3.2 Simulation of a forest of cilia

Figure 4.10 illustrates the flow produced by a whole forest of cilia. The parameters are
the same as in the previous case, except for the domain and the number of cilia: we
consider a 30 x 5 x 10 ym? box, discretized by a 128 x 17 x 33 mesh. The bottom of
the box is filled with cilia, an “infinite” array in each direction modeled by a 153 x 51
array of cilia and the biperiodic boundary conditions. The length of the box is exactly the
length of one metachronal wave, and the boundary conditions in the directions x and y are
biperiodic, so that the flow does not depend on time, up to a translation at the velocity of
the metachronal wave. As a consequence, drawing one time step only is sufficient. In the
following simulation of a whole forest, the box has the same length as the metachronal
wave, and therefore this observation holds.
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Figure 4.10: 3D-Simulation of a whole forest of cilia in a constant-viscosity fluid.
a. Drawing with the cilia. b. The same flow drawn without the cilia.

Figure 4.10 illustrates the mucus transport which emerges from the collective move-
ment of the high number of cilia. Let us note the presence of recirculations over the cilia
during their recovery stroke, which results in a loss of energy and therefore a sub-efficiency
of the mucus transport, compared to the bifluid case (see below).

4.2.4 Simulations with the bifluid model

The simulation of a constant-viscosity fluid leads to first conclusive observations but is
not sufficient for the study of mucociliary transport in the lung. From now, we present
simulations with the bifluid model: the periciliary layer and the mucus.

4.2.4.1 Simulation of a forest of cilia

Let us start with the non-pathological case. Figure 4.11 illustrates the flow produced by a
whole forest of cilia in a two-viscosity fluid. All the parameters (among the computational
box) are the same as in previous case, but we consider here a bifluid model for which the
ratio between the viscosity in the mucus and the viscosity in the periciliary layer is r, = 50,
the ratio measured in the experiments [71, 107].
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Figure 4.11: 3D-Simulation of a whole forest of cilia in a constant-viscosity fluid.
a. Drawing with the cilia. b. The same flow drawn without the cilia.
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Figure 4.12: Velocity of the fluid as a function of the height.
First of all, note that the mucus, corresponding to the top block in Figure 4.11, is

transported at near constant velocity. Note also that the components in y and z are zero
in the whole fluid. The velocity in the periciliary layer does not appear to depend on x
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and y, but only on the height 2. It seems to grow linearly from 0 (at the bottom of the
domain, against the epithelial lining) to the mucus velocity. There are no recirculations as
in the constant-viscosity case. The conclusion is that high viscosity in the mucus allows a
more efficient transport. Actually, the viscosity effect is the primary mechanism by which
mucus transport is produced. Moreover, mucus is transported at a constant velocity, as
a block “sliding” over the periciliary layer, which means it is not transported by fits and
starts, and there is no turning back, contrary to the case of a patch of cilia [30]. This
fact results from the collective movement of the high number of cilia. Note that there
is no difference between the area in which cilia are in their effective stroke and the area
in which they are in their recovery stroke, which is different from the constant-viscosity
case (compare Figures 4.10 and 4.11): it is a consequence of the collective dynamics of
the cilia.

In Figure 4.12, the velocity of the fluid is drawn as a function of the height of the fluid.
This figure confirms that velocity is constant in the mucus and that it linearly grows in the
periciliary layer. The simulation allows us to reproduce the profiles described in [84, 108|.

In what follows, the simulation of the standard case serves as a reference case to study
the influence of some parameters and their related pathologies.

4.2.4.2 Influence of the density of cilia

Now that the non-pathological case has been simulated, we can study the influence of
some parameters, and for instance, let us look at the consequences of a low density of
cilia. By linearity of the Stokes equations, if we divide the number of cilia by 2 (keeping
the same length A for the metachronal wave), we can expect the same qualitative flow, but
with an average transport velocity divided by a factor 2. Nevertheless, it is possible that
a low density of cilia causes the loss of the collective dynamics. The aim of the following
simulations is to evaluate the limit where the collective dynamics disappear.

Figure 4.13 shows the flows produced by lower densities of cilia. Figure 4.13a illustrates
the flow when the number of cilia is divided by 2 in each direction of the array of cilia.
The total number of cilia is therefore divided by 4. As expected, the average velocity
in the mucus is 4 times lower. In the case where the number of cilia is divided by 4 in
each direction (Figure 4.13b), the velocity in the mucus is divided by 16, and by 64 when
the number of cilia in each direction is divided by 8 (Figure 4.13c). Finally, we conclude
that the flow produced by the cilia is proportional to the number of cilia. This fact was
forseeable by linearity of the Stokes equations. Note that the collective dynamics hold in
these cases.

However, when the number of cilia is divided by 8 in each direction, and therefore a
total number of cilia divided by 64, the produced flow is not quite constant over a cilium
beat. Figure 4.14 draws the average velocity in the mucus layer at the times ¢t = nAt s,
for n € [0,19] (over one beat). The order of magnitude is significantly the same. The
difference in the absolute value comes from the ratio between the number of cilia which
are in their effective stroke and the number of cilia which are in their recovery stroke:
this ratio is not the same all over the beat, but the variations are small. Actually, this
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Figure 4.13: Influence of the density on the mucus transport. a. Number of cilia divided
by 2 in both directions x and y. b. Number of cilia divided by 4 in both directions z
and y. c. Number of cilia divided by 8 in both directions x and y.

observation is a consequence of a computational artefact: the size of the box related to the
metachronal wave length, artefact which disappears when the number of cilia increases.

But, what happens when the number of cilia in each direction is even lower? Let us
devide it by 16 for a total number of cilia divided by 256. Figure 4.15 shows the flow
generated in this case at two different times of the beat: t = 0 s (Figure 4.15a) and
t = 4At s (Figure 4.15b). At time t = 0 s, there are cilia which penetrate into the mucus,
and therefore it can be transported. The velocity in this case follows the proportionnality
observed previously. But if there is no cilium which penetrates into the mucus (time
t = 4/t s), it is not transported and only a bit of periciliary layer is propelled. In this
situation, we lose the collective dynamics and fall in a pathological case. Actually, with
the simulation of Figure 4.15b, we recover the fact that mucus transport requires cilia to
reach the mucus layer in situation of low ciliary density, whereas in the case of a high
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Figure 4.14: Velocity in the mucus layer over a beat for a density divided by 8 in each
direction.
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Figure 4.15: Flow produced by a low-density array of cilia (divided by 16 in each direc-
tion). a. Flow at the time ¢t = 0 s. b. Flow at the time t = 4At s.

ciliary activity, the penetration into the mucus is not necessary to obtain ample velocities
of propulsion [105, 108|.

As a conclusion of this section, let us remark that the too small length of the compu-
tational box does not allow us to bring to light a potential threshold where the collective
dynamics disappear. Actually, the box should be of the length of several metachronal
waves to hope to observe the loss of collective dynamics, but it involves too expansive
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computational costs.

4.2.4.3 Influence of the thickness of the periciliary layer

It is clearly reported in the litterature [105, 108] that the penetration of cilia into the mucus
is very important for its transport: mucus is propelled by cilia during their effective stroke
(and only during this stroke) and the penetration accentuates the irreversible nature of
the beat of the cilia. Two natural pathological cases emerge:

e the first one is the case where the periciliary layer is too thick, so that the cilia do
not reach the mucus layer.

e the second one concerns the case where, on the contrary, periciliary layer is so thin
that the cilia reach the mucus not only during their effective stroke but also during
their recovery stroke, propulsing the mucus towards the opposite direction.

A too thick periciliary layer. Let us start with studying the first case. We compute a
dense forest of cilia with the parameters described above, but assume the periciliary layer
is a 6.5 pm thickness layer (against 5 um in the non-pathological case). For this height of
periciliary layer, the cilia cannot reach the mucus and never penetrate into it. Figure 4.16
draws the flow produced by a dense forest of cilia beating in a too thick periciliary layer.
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Figure 4.16: 3D-Simulation of the thick periciliary layer case. a. Drawing with the cilia.
b. The same flow drawn without the cilia.
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As it has been observed experimentally [105] and recovered numerically [108], a high
ciliary activity does not require penetration of the cilia into the mucus to obtain an efficient
mucus transport, even if of course the velocity in the mucus layer is lower. Figure 4.16
shows that this observation is reproduced by our simulations. The robustness of the
process results in it: if an overproduction of periciliary liquid occured, so that the cilia
could not reach the mucus layer, the periciliary layer and the mucus would be transported
and a return to the standard situation could be expected.

We can also take advantage of the thick periciliary layer case to study the influence
of the viscosity in the mucus on the transport, that is to say the influence of the ratio
of viscosities. In order to do that, we compute the flow for three values of this ratio of
viscosities: 7, = 20, r, = 50 and r, = 70. Note that r, = 50 is our reference case,
illustrated above (see Figure 4.16). Figure 4.17 draws the mean velocity for each of these
three values of the ratio of viscosities, as a function of the height. The flow produced in
the periciliary layer is the same in the three cases: the cilia do not see the mucus, and the
mucus seems to have no effect on the periciliary layer. Nevertheless, the viscosity in the
mucus changes its velocity: the more the mucus is viscous (which corresponds to a high
ratio of viscosities 7,) the more the transport is efficient. Note that the loss of velocity
between the cases 7, = 50 and 7, = 20 is only about 5% whereas the ratio is divided by
2.5 (same remark between the cases r, = 50 and r, = 70: the gain is about 3.5% for a
ratio multiplied by 1.4). The dependence of the transport on the viscosity in the mucus
is clearly not linear and not very sensitive.
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Figure 4.17: Variation of the viscosity in the mucus in the case of a too thick periciliary

layer (PCL).

A too thin periciliary layer. Let us now consider the opposite phenomena: a thin
periciliary layer. In this situation, the height of the interface mucus-periciliary layer is
so low that the cilia reach the mucus layer also in their recovery stroke. The mucus is
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Figure 4.18: 3D-Simulation of the thin periciliary layer case. a. Drawing with the cilia.

b. The same flow drawn without the cilia.
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Figure 4.19: Velocity of the fluid as a function of the height for the thin-periciliary layer

case.

therefore also propelled in the opposite direction during this phase. Figure 4.18 shows
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the flow produced in this case. Note that there are big recirculations and very different
velocities in the periciliary layer: even if the mucus is propelled also in this case, the
transport is not optimal because of the important loss of energy in the periciliary layer.
Figure 4.19 draws the average velocity as a function of the height and confirms the ample
variations of the velocity in the periciliary layer.

x10°

[\ w
T T

Velocity in pym.s™*
T

Thickness of the periciliary layer in pym

Figure 4.20: Average velocity in the mucus for different thicknesses of periciliary layer.

To conclude this section, the average velocity in the top of mucus layer is drawn in
Figure 4.20 for different thicknesses of periciliary layer. First of all, let us note that the
most efficient case is where the thickness of the periciliary layer is 5 pm, that is the
same thickness for periciliary layer and mucus. This configuration corresponds to the
non-pathological case: the case selected by the nature is the most efficient. Moreover,
Figure 4.20 also shows the robustness of the transport efficiency related to the thickness
of the periciliary layer. Nevertheless, the velocity magnitude falls significantly if the
thickness of the periciliary is not between 3.5 and 6 um.

4.2.5 Limits of the model

To end this chapter, we discuss the limits of our model. The first one, and maybe the main
one, is that the cilia beat is imposed. Even if most of the works related to mucociliary
transport do this assumption, it is not realistic. The second limit is the too high order
of magnitude we obtain compared to the experimental data. These differences can be
explained by the model, which should be improved.

Imposed beat pattern. In our model, as it is done in nearly all the models (see for
instance [30, 71, 107, 108|), the movement of the cilia is imposed, independently on the
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environment: no matter if the fluid viscosity is high or low, the cilium beat remains
the same. When the cilium penetrates the mucus, its velocity is imposed through the
movement, and the cilium beat pattern is not sensitive to the change of viscosity. The
resistance of mucus is much higher than the resistance of the periciliary layer, but the
movement of the cilium is not affected by this difference of resistance, as if the cilium
could adapt its internal force to keep a constant velocity. This assumption is not realistic.
Actually, experiments show that the cilium is slowed down by the mucus and ends its
beat when it goes out the mucus, as if the mucus had stopped it [96]. In our model, this
is not taken into account, and thus, the internal force of the cilium increases artificially to
adapt to the viscosity of the mucus. Indeed, the force is linear in u and therefore, when
the cilium crosses the interface mucus-periciliary layer, the force is multiplied by 50 in
the upper part of the cilium.

In order to illustrate this remark, we compute the flow produced by a forest of cilia in
a bifluid model with the force generated as if the cilia were in a constant-viscosity fluid
(the periciliary layer). Actually, we recall the expression of the force at each point of the
cilium (see Chapter 1, Equation (1.3.12) for more details)

f(s,t) = 2Tk (2113 HEY ®€(S’t)> ucii(s, 1),

In(L/ro) € (s, )2

where g is the local viscosity at the point &(s,t). Figure 4.21 shows the flow produced
when we keep i = ppcr, all along the cilium, as if the force generated by the cilium were
the same in the periciliary layer and the mucus.
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Figure 4.21: Flow generated with the modified force in each point of the upper part of
the cilia. a. Drawing with the cilia. b. The same flow drawn without the cilia.
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Even if this definition of the force is not consistant with the movement of the cilia,
the simulation illustrates the important difference between the standard case computed
in Section 4.2.4.1 and a “more realistic case”, in which the force but not the movement
of the cilia would be imposed. By comparing Figures 4.12 and 4.22, which draw the
vertical profiles of velocity, we can see a ratio 27 between the two velocities in the upper
part of the mucus (where the velocities are constant). Finally, imposing the movement
and deducing the force increases artificially the velocity of the fluid, which is one of the
reasons of high orders of magnitude (see below). But even if it is not the most realistic
model we can develop, it allows us to compute simulations and study the influence of
some parameters on the transport and thus understand the mucociliary clearance. Note
that imposing the force rather than the movement of the cilia involves a description of
the internal mechanism of the cilium, which is not really well-understood. Moreover, this
approach requires the model to take into account the feedback of the fluid on the cilium.
Finally, imposing the force is an altogether different model.
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Figure 4.22: Average velocity of the fluid as a function of the height, flow produced by
the modified force.

High order of magnitude. In the non-pathological case, Section 4.2.4.1, the order of
magnitude of the predicted velocity in the mucus is 3.5 x 10°ums~!, which is 1000 times
higher than the experimental measurements: Wanner [115] measured rates of 300 pm.s™t.
This difference of order of magnitude can be explained by several reasons related to the

model, among them:

e the movement of the cilia is imposed; this first point has been explained in the last
paragraph, and we have shown that a loss of a factor 27 can be expected by imposing
the force rather than the movement.
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e the biperiodic boundary conditions.

e the whole forest is computed.

The biperiodic conditions can also explain the high order of magnitude we obtain
with our model. Indeed, the mucus is transported along the bronchi until the end of the
trachea, and for a portion of bronchus, the mucus input and output have no reason to be
equal. We consider biperiodic boundary conditions because they are natural at the scale
of the metachronal wave, and because of the difficulty of imposing realistic conditions of
input and output.

Lastly, for most of the simulations presented in this chapter, we compute a whole forest
of cilia with no area of inactivity. Actually, as it has been observed by Sanderson and
Sleigh [96], only small areas of cilia are beating at each time, a lot of the cilia being at rest
(see Chapter 1, Figures 1.8 and 1.9). By linearity of the Stokes equations, we can expect
a higher order of magnitude of the flow produced by a whole forest of cilia than the flow
produced by only small areas of ciliary activity. But the study of the collective dynamics
generated by several small areas of ciliary activity requires a very big box of computation,
which increases significantly the computational costs. That is why the simulation of a
whole forest in a box of one-metachronal wave length is a good deal between realistic
orders of magnitude and reasonable computational costs.






CONCLUSION ET PERSPECTIVES

L’objectif de la thése est de modéliser et de simuler de maniére directe en 3D le mouvement
de cils dans un fluide visqueux, c’est-a-dire prise en compte des mécanismes a 1’échelle ou
ils se produisent, a savoir celle du cil. Il s’agit de décrire en détail le mouvement d’un ou
plusieurs cils en interaction avec le fluide environnant, et de développer un outil numérique
capable de simuler un trés grand nombre de cils battant dans un fluide complexe, cet outil
permettant de mieux comprendre le processus de transport mucociliaire et les pathologies
associées.

Un des points clés du modeéle présenté dans le Chapitre 1 est la fagon dont nous avons
choisi de prendre en compte les effets des cils sur ’écoulement bifluide. Nous travaillons
a mouvement imposé et donc la rétro-action du fluide sur les cils n’est pas prise en
considération. Le cil étant un corps trés fin et battant a une fréquence trés élevée, dans
I’'asymptotique ol le rapport entre épaisseur et longueur tend vers 0, mais a résultante de
force constante, il est modélisé par une distribution linéique de forces, elle-méme approchée
pour des raisons purement numériques par une distribution de forces ponctuelles le long du
cil. Cette modélisation conduit a I’étude de problémes elliptiques singuliers, dont I’analyse
numérique est présentée dans le Chapitre 2 pour le probléme de Poisson avec une masse
de Dirac en second membre, et dans le Chapitre 3 pour le probléme de Stokes avec
une force ponctuelle en terme source. En particulier, on s’intéresse & des estimations
d’erreurs locales, sur des sous-domaines qui ne contiennent pas la singularité. Cette analyse
numérique nous a poussé a développer une nouvelle méthode numérique pour la résolution
de ces deux problémes. Basée sur celle des éléments finis, elle s’appuie sur la connaissance
explicite d’une solution fondamentale, et permet de retrouver une convergence optimale
de la solution approchée vers la solution exacte. Enfin, dans le Chapitre 4, cette méthode
est appliquée a I’étude du transport mucociliaire. Elle nous permet notamment de simuler
en 3D I'écoulement bifluide généré par toute une forét de cils. Des pathologies liées a la
clairance mucociliaire sont illustrées a travers I’étude de I'influence de certains parameétres
telles la hauteur de mucus ou la densité de cil.

Nous terminons ce manuscrit en donnant des pistes naturelles de recherche a explorer
pour compléter ce travail.
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Analyse numérique

[’analyse numérique des problémes de Poisson et de Stokes singuliers a soulevé plusieurs
problémes. Le principal étant que les preuves présentées en dimension 2 ne s’étendent
pas au cas de la dimension 3 : les résultats qu’on obtient ne sont pas optimaux. Une
perspective de ce travail est donc la recherche d’autres techniques que celles présentées et
qui pourraient étre étendues a la dimension 3.

Dans le cas du probléme de Poisson, Koppl et Wholmuth [66] ont obtenu des estima-
tions d’erreurs locales optimales en norme IL? pour les éléments finis de Lagrange. Méme si
les estimations que nous avons obtenues en norme H*, s > 1, ne sont que quasi-optimales
(présence d’un facteur log qui, numériquement, ne se voit pas), elles sont valables pour
une trés grande classe d’éléments finis : les éléments de Lagrange, de Hermite, les onde-
lettes, etc. Un des points clés de la preuve de Koppl et Wholmuth [66] est le résultat de
Scott [99] : sur I'ensemble du domaine, il y a convergence en norme L? a I'ordre 1 en
dimension 2 et 1/2 en dimension 3, contre l'ordre 2 dans le cas régulier. Il n’y a pas de
résultat équivalent pour le probléme de Stokes : pas de résultat de convergence en norme
L? pour la vitesse sur '’ensemble du domaine. Un axe de recherche consisterait donc a
établir des estimations d’erreur sur l’ensemble du domaine dans ce cas-1a aussi, et a les
utiliser pour démontrer des estimations d’erreurs locales optimales en normes L2 et H*,
pour s > 1.

Enfin, la question a été soulevée mais laissée en suspens : que se passe-t-il lorsque la
masse de Dirac (ou la force ponctuelle) est proche du bord ? Cette question intéressante
change complétement la nature du probléme et mérite réflexion car, dans les applications,
elle intervient lorsque 1’on souhaite simuler la dynamique d’un micro-nageur autopropulsé
par un flagelle ou des cils. Dans ce cas, remailler le domaine a chaque itération est cotiteux
et par ailleurs un nouveau maillage ne suffirait pas & obtenir de bonnes estimations.

Méthode de soustraction

Comme expliqué dans le Chapitre 4, la méthode dite de soustraction, que nous avons
développée et présentée pour la résolution numérique des problémes de Poisson et de
Stokes singuliers, peut étre généralisée & d’autres problémes elliptiques. Mais qu’en est-il
si on remplace le terme source par un autre lui aussi singulier 7 Par exemple, considérons
le probléme de Stokes avec en second membre un doublet de Stokes D, défini par

Ds = lim OxF = 0%, F 5*°F,
e—0 £
o F est la force du doublet, xq son origine, et Xg = xg — ce (dans le cas d'un pusher, voir
plus loin). Le vecteur unitaire e est défini par e = F/|F||. Un doublet de Stokes est en fait
la limite de la somme de deux forces ponctuelles de méme intensité, de méme direction
mais de sens opposés, lorsque leur distance € tend vers 0 (voir Figure 4.23).
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FIGURE 4.23: Doublet de Stokes.

Une solution du probléme de Stokes en domaine infini est connue pour ce terme source :
on 'appelle la Stresslet [7]. Elle est définie par :

1 F 3(F-x)(e-x
us(x) = Qdﬂ-u l_ |Td| + ( rdlg ):| X,
i) - o [ 22

ou d est la dimension de I'espace. Comme on connait une solution en domaine infini, on
peut adapter la méthode de soustraction & ce probléme défini sur un domaine borné, et
pallier les problémes de convergence liés a la résolution numérique d’un probléme singulier.
Une extension méthodologique des travaux présentés dans ce manuscrit consisterait donc
a dérouler les calculs et & appliquer la méthode, par exemple, a la simulation d'un grand
nombre de micro-nageurs dans le but de retrouver des signatures rhéologiques observées
expérimentalement [39].

D’autres choix de modélisation

Un modéle viscoélastique pour le mucus. Dans la littérature scientifique consacrée
au transport mucociliaire, les auteurs s’accordent sur le fait que la couche périciliaire est
essentiellement de ’eau, et a donc un comportement newtonien, méme si cette affirmation
a récemment été mise en cause par Boucher [17]|. En revanche, pour le mucus, les modéles
proposés peuvent étre trés différents [30, 37, 86]. Pour notre modeéle, nous avons choisi
de considérer un fluide newtonien, pour la couche périciliaire et pour le mucus. Un autre
modéle naturel serait de considérer un modéle bifluide, avec un fluide newtonien pour la
couche périciliaire et un fluide viscoélastique pour le mucus, dans I’espoir de retrouver des
effets non captés par le modéle bifluide newtonien.
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Un modéle diphasique pour le fluide. En s’appuyant sur des expériences de San-
derson and Sleigh [96] et sur des travaux numériques de Dillon et ses co-auteurs [40],
nous avons supposé dans notre modéle que I'interface entre le mucus et la couche péri-
ciliaire restait plane et invariante. Cette hypothése peut étre relaxée en considérant un
modéle diphasique pour le fluide [18|, notamment §’il s’agit de mettre en évidence des
phénoménes de régulation de la hauteur de la couche périciliaire. Par exemple, Boyer
et ses co-auteurs [19] considérent le modele d’Oldroyd pour les fuides viscoélastiques et
I'interface diffuse entre les deux fluides est modélisée par le modéle de Cahn-Hilliard. Ce-
pendant, ce modéle couplé est non linéaire et n’a pas été étudié avec des termes sources
singuliers. De maniére générale, se pose la question de comment adapter la méthode de
soustraction a des opérateurs non linéaires.

Travail a force imposée. Méme si travailler & mouvement imposé, comme nous 1’avons
fait dans la thése, permet de retrouver des comportements et des champs de vitesses
observés expérimentalement et numériquement, on a bien vu dans le Chapitre 4 que ce
modeéle est limité. Son principal défaut est que la partie haute du cil adapte sa vitesse
a la résistance du mucus quand il pénéetre dedans. Un modéle plus réaliste serait de non
pas imposer le mouvement du cil, mais la force que le cil génére en chaque point sur le
fluide. De cette force serait induit le mouvement du cil, et on pourrait alors aussi prendre
en compte la rétro-action du fluide sur le cil. Le probléme est qu’il n’est pas simple de
définir cette force, notamment car les mécanismes internes du cil ne sont pas encore bien
compris.

Application & la nage de micro-organismes

Le travail effectué dans cette thése et l'outil numérique que nous y avons développé,
possédent un champ d’applications plus large que le transport mucociliaire. Parmi ces
applications se trouvent l'é¢tude et la simulation de la nage de micro-organismes. On
distingue deux types de micro-nageurs :

e le pusher, qui est propulsé par des flagelles, a 'instar de la bactérie Escherichia Coli
ou du spermatozoide.

e le puller, tracté par des cils, comme la micro-algue Chlamydomonas reinhardtii (voir
Figure 4.24).

Dans chacun des deux cas, nous pouvons simuler la nage a 1’échelle du cil (ou du flagelle)
et espérer retrouver des signatures rhéologiques observées expérimentalement. Pour un
fluide de viscosité constante, travailler & mouvement imposé peut aussi étre un bon pre-
mier modeéle, mais il semble alors naturel de prendre en compte la rétro-action du fluide.
En particulier, pour des bactéries nageant dans un écoulement donné (cisaillement par
exemple), les effets du fluide sur les cils peuvent étre prépondérants. Ce travail serait
I'occasion de confronter le modéle a des données réelles.
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FIGURE 4.24: Chlamydomonas reinhardtii, image modifiée a partir de [119].
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