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Preamble

Collective effects in the motion of cells have aroused a huge interest in
the last decade, bringing together cell biologists, soft matter experimen-
talists and statistical physics theoreticians. However, a detailed account
of the mechanisms, by which the interplay of single cell motility and
cell-cell interactions can lead to collective behaviours – that can be very
different from the individual ones – is still missing in most cases. The
ambition of this thesis is to contribute in bridging the gap between the
refined understanding of processes at the molecular scale allowed by the
approach of cell biology on one hand, and the population scale observa-
tions of e.g. oncologists or developmental biologists on the other hand.
This is why our focus is on the quantification of single cell behaviours
in various collective contexts, with the constant aim of relating them to
the macroscopic dynamics of the system.

The Chapter 1 is an introduction to the concepts that are essential for
the understanding of the following experimental and modelling work.
It presents the basics of cell biology with a focus on the motility and
cell-cell interactions, draws a comprehensive picture of the state of the
art on collective effects in the cell motion, and introduces the rising field
of active matter, whose framework we use to transition to the collective
scale.

The main object we use to describe the properties of a single cell is their
trajectory. In Chapter 2 we give an overview of the usual descriptions
of cell trajectories as random walks. Then we present the methods we
used to obtain and analyse such data. Last we use computer simulations
of self-propelled particles to calibrate our analysis tools.

We came to the study of such collective motion effects following the
previous work of L. Golé, who demonstrated the existence of a chemical
communication system in Dictyostelium discoideum cells that acts to
down-regulate the single cell motility at the scale of the population. This
particular system, which relies on a Quorum-Sensing Factor (QSF)
is the central subject of Chapter 3. There we intend to decipher the
functioning of this regulatory system.
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The discovery of this feedback from the population raised the question
of the output and potential interest of such a phenomenon, not only at
the scale of individual motion but also for the group as a whole. To
get insight into this issue, we developed a colony spreading assay, which
is the topic of Chapter 4. In order to have a good control on the
experimental parameters and to get reproducible data that we could
analyse in a rationalised way, we used micro-fabrication to design the
initial cell colonies. This work evidenced the fundamental role played by
contact interactions, which allowed the cells to invade more efficiently
the free space when the colony was initially denser.

The study on the QSF led us to observe cells plated on a large sur-
face at high density. Chapter 5 describes an unexpected aggregation
phenomenon that occurs spontaneously in this situation. We quanti-
fied this observation, made in the early stage of this doctoral work, but
the actual lack of control that we had on the system drove us to put it
aside in favour of the more mastered experiments that precede in this
manuscript.

In Chapter 6 we draw the conclusions of this work and put them into
perspective in the broader context of generic collective regulation of cell
motility.

The appendices provide the reader with clues to go further into this work.
Appendix A is just supporting material for the analysis of trajectories
with two relaxation times in their direction. Appendix B introduces
methods that are currently in a development stage to better characterise
the aforementioned trajectories. Last, Appendix C is an in-progress
extension of the work of Chapter 4, aiming at integrating the effect
of Contact Enhancement of Locomotion that we uncovered into a
mean-field description of the cell colony.
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Résumé substantiel

Malgré une extraordinaire diversité, apparente et bien réelle dans la plu-
part des cas, l’ensemble du vivant repose sur des bases communes ex-
trêmement conservées, de la plus petite bactérie au mammifère le plus
grand ou le plus complexe. L’une de ces bases est la cellule : c’est
l’unité élémentaire du Vivant, de même que l’atome peut être considéré
comme l’unité élémentaire de la matière en général. Comme les atomes,
les différentes cellules ont des constituants de base de natures similaires
mais en nombre ou fonctions particulières variables ; comme les atomes,
les cellules peuvent s’assembler de façon plus ou moins complexe pour
former des amas homogènes ou hétérogènes : il s’agit des organismes
pluricellulaires.

L’analogie, cependant s’arrête là. Les constituants de la cellules sont
beaucoup plus complexes et beaucoup plus variés que les particules qui
forment les atomes : c’est un ensemble très organisé de machineries
moléculaires en solution aqueuse, isolé du milieu extérieur par une bar-
rière physique. Cette dernière est le plus souvent une membrane con-
stituée d’une double couche de lipides, parfois complétée par un mur
cellulaire dans le cas des plantes, ou d’une seconde paroi de nature vari-
able. Les machineries comprises dans cette barrière peuvent être classées
en trois types principaux : la machine génétique, dont le composant de
base est l’ADN qui contient l’information, assure l’hérédité des propriétés
cellulaires au cours de la reproduction – mitose ou meïose – et constitue
en quelque sorte le livret d’instructions de base pour le fonctionnement
de la cellule ; les voies de signalisation sont les voies de communication
à l’intérieur même de la cellule, et permettent à la fois la transcription
et la traduction du code génétique en messages et en actions molécu-
laires, et l’intégration de signaux de toutes origines qui peuvent agir à
tous les niveaux du fonctionnement cellulaire ; enfin, les effecteurs, la
plupart du temps des protéines ou des complexes protéiques, réalisent
des tâches variées allant de simples modifications chimiques à la généra-
tion d’actions mécaniques par exemple. Cet ensemble de machineries
fait que la cellule est souvent qualifiée d’“usine” moléculaire, exécutant
des tâches nombreuses, variées et complexes.
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. RÉSUMÉ SUBSTANTIEL 4

Une de ces tâches est la motilité, qui désigne l’aptitude des cellules à
se mouvoir. C’est une propriété fondamentale de la cellule, qui inter-
vient chez tous les organismes vivants, et à toutes les étapes de la vie.
Certaines bactéries possèdent ainsi la capacité de nager grâce aux mou-
vements coordonnés de filaments, appelés flagelles, mus par des moteurs
moléculaires. C’est le même type de système qui permet aux sperma-
tozoïdes de se mouvoir jusqu’à l’ovule dans la reproduction sexuée des
mammifères. Certaines cellules possèdent aussi la capacité de se mou-
voir sur des surfaces, en se tractant via des déformations appelées protru-
sions, ou pseudopodes dans le cas des cellules amibiennes, objets de cette
thèse. Une telle motilité est à l’origine des mouvements morphogéné-
tiques menant à l’établissement de la forme des organes chez l’embryon,
mais aussi impliquée dans la réponse immunitaire, la fermeture de plaies
ou la dissémination de cellules cancéreuses à partir de la tumeur princi-
pale.

Ces phénomènes impliquent souvent plusieurs cellules en mouvement,
voire en mouvement coordonné. Il est clair que la motilité de cellules
dans un contexte collectif peut être affectée par la présence d’autres
cellules, via des interactions de différentes natures. L’objet de cette
thèse est de mieux comprendre la nature et les effets de ces interactions.
Pour cela, nous avons adopté une démarche décrite brièvement dans les
lignes qui suivent.

Tout d’abord, ce travail porte sur l’étude d’un organisme modèle : l’amibe
Dictyostelium discoideum. Cet organisme, qui appartient à la famille
des amibes sociales, se trouve à l’état naturel dans les sols forestiers. En
présence de bactéries dont elles se nourrissent, les cellules restent à l’état
dit végétatif. Elles restent unicellulaires, exprimant notamment peu de
protéines d’adhésion cellule-cellule, se divisent, et se meuvent de façon
aléatoire. En cas de carence de nutriments, elles rentrent dans un cycle
de développement où elles commencent par s’agréger sous l’influence de
chimio-attractants, puis se différencient en un organisme multicellulaire
qui prendra plusieurs forment avant de culminer en un corps fructifère,
sorte de champignon dont une partie des cellules forme des spores ré-
sistants. Ces derniers, une fois disséminés par le vent ou d’autre êtres
vivants, pourront former de nouvelles colonies de cellules végétatives si
les conditions s’y prêtent.

Dans le présent ouvrage, nous ne considérons que des cellules végétatives,
capables de substituer un milieu de culture riche – le HL5 dans notre
cas – à leur source naturelle de nutriments, les bactéries. Ces cellules
ont la propriété de se mouvoir relativement vite sur des surfaces – avec
une vitesse de l’ordre de quelques micromètres par minutes – et de façon
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aléatoire. Leur mode de migration est caractéristique des cellules dites
amibiennes, que l’on retrouve par exemple chez les leucocytes ou des cel-
lules métastatiques d’un stade avancé. En outre, de nombreux sysèmes
– jusqu’à génération des forces par le cytosquelette d’actomyosine par
exemple – partagent des propriétés communes avec d’autres modes de
motilité. Nous basons nos observations sur les trajectoires de cellules in-
dividuelles, dont nous décrivons les propriétés dans le cadre de modèles
physiques.

Dans le Chapitre Premier, les différentes notions utiles à la com-
préhension du présent manuscrit sont introduites : bases de la biologie
et de la motilité cellulaire, régulations connues de phénomènes comme la
prolifération cellulaire à l’échelle d’une population, observations de mou-
vements cellulaires collectifs. En particulier, nous décrivons les principes
fondamentaux de la matière active. Cette discipline récente s’attache
à comprendre la dynamique, fortement hors d’équilibre, de systèmes
constitués d’individus qui consomment localement de l’énergie tirée de
l’environnement et interagissent éventuellement. Les particules auto-
propulsées, classe majeure de particules actives, sont ainsi des particules
dont la propriété centrale est de se mouvoir selon une vitesse qui leur est
propre, et en aucun cas dictée par des lois de conservation du moment ou
de l’énergie. Elles constituent aussi, comme décrit plus loin, un potentiel
excellent modèle pour des cellules motiles.

Dans le Chapitre Second, nous revenons en détails sur les propriétés
des trajectoires cellulaires, ainsi que les moyens de les obtenir et de
les analyser. Les différents types de marches aléatoires sont abordées,
et notamment la plus simple marche aléatoire persistante, modèle de
base pour les trajectoires cellulaires. Le lien qui existe entre les pro-
priétés de ces dernières et des signaux provenant de l’environnement ou
d’autres cellules sont aussi traités. Enfin, différentes manières d’analyser
les trajectoires sont présentées, avec une attention particulère portée sur
l’influence de l’aspect discret des données et de leur résolution, à la lu-
mière de nos méthodes d’imagerie et de suivi cellulaire. Cette analyse
se base notamment sur le traitement de trajectoires simulées numérique-
ment, et dont les propriétés s’approchent de celles que l’on attend pour
des cellules réelles.

Dans le Chapitre Tiers, nous étudions un système de régulation de la
motilité via un facteur chimique sécrété, ou facteur de quorum (QSF en
anglais). Nous avons ainsi caractérisé sa nature chimique, la dynamique
de sa sécrétion et de la réponse cellulaire, ainsi que les voies potentielles
de signalisation qu’il induit, et ses effets au niveau morphologique et
fonctionnel sur les cellules individuelles. Notamment, nous démontrons
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qu’il s’agit d’une macromolécule neutre et de nature non protéique qui
induit une réponse via des récepteurs membranaires et des protéines G.
Nous montrons aussi que la dynamique de sécrétion est auto-régulée et
pourrait constituer un système de mesure précis et robuste de la densité
cellulaire.

Dans le Chapitre Quart, nous plaçons les cellules dans une situation
stéréotypée d’étalement de colonie. Plus précisément, à l’aide de tech-
niques de micro-fabrication, nous contraignons un nombre contrôlé de
cellules dans un disque de diamètre fixe avant de relâcher la contrainte.
Cela constitue un modèle basique et reproductible de colonie cellulaire,
qui pourrait mimer par exemple de façon très simplifiée l’échappement
tumoral. Ce système nous permet de mesurer à la fois des grandeurs
macroscopiques comme le rayon de la colonie où la densité cellulaire,
mais aussi microscopique à travers l’étude, une nouvelle fois, des trajec-
toires individuelles. Cela nous permet de distinguer plusieurs régimes
d’étalement. Aux temps longs (de 10 à 48 h), la prolifération cellu-
laire domine la dynamique, comme prévu par les modèles classiques.
L’effet du QSF caractérisé au chapitre précédent est aussi visible à cette
échelle. Aux temps plus courts, au contraire, nous avons mis en évi-
dence un effet jusqu’à présent non rapporté des interactions de contact.
Ainsi, l’étalement est d’autant plus rapide que la densité cellulaire est
élevée. Cela est lié à l’apparition d’une polarisation des cellules vers
l’extérieur de la colonie, sous l’influence des interactions qui accroissent
la persistance du mouvement. Nous formulons à la fois un modèle de
particules uniques et des équations de champ moyen qui rendent compte
de ce phénomène, et nous discutons les mécanismes possibles régissant
ces interactions.

Dans le Chapitre Quint, nous rendons compte de l’observation d’un
comportement collectif observé lorsque les cellules sont déposées à haute
densité. Elles forment alors des agrégats, probablement tridimension-
nels, mobiles et dynamiques. Nous décrivons leur dynamique de forma-
tion et leur distribution en taille, avant de formuler des hypothèses quant
aux principes physiques et biologiques menant à leur apparition.

Dans le Chapitre Sixte, enfin, nous revenons sur les résultats princi-
paux décrits dans le présent ouvrage, en détaillant les conséquences et
les perspectives qu’ils ont ouverts.
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1. Introduction

Cells move. The consequences of this very simple assertion are huge:
without cell motion, the early shaping of multicellular embryos should
be completely reprogrammed. Supposing that tiny difficulty to be over-
come, basically no physiological function could be carried out. Any
infection? Let the infected tissue struggle with it: the body’s policemen,
also called leukocytes, would be stuck at home. It might possibly be an
issue, as immobile epithelial cells might not be able to close any wound.
Anyway, you would not realise it, as your neurons would not be able to
make any plastic connexion that would endow you with any cognitive
capacity. Besides these and other interesting abilities that cell motion
confers to living organisms, it is also involved in the development of
pathologies. Among them, the most commonly cited is certainly cancer,
which involves a great deal of cell motility in the invasion of surrounding
tissues and the formation of metastases.

For these reasons, biologists have studied cell migration for decades,
and produced a lot of knowledge about its molecular functioning at the
single cell level. As far as physicists have been interested in biology, they
have also contributed to this by bringing their singular view on forces
and motions. Yet, none of the relevant phenomena that rely on cell
migration involves isolated cells. Indeed, in vivo, cells always encounter
other cells in their vicinity, hence cell-cell interactions play an important
role in these processes. Certainly, collective behaviours of moving agents
have been gaining a great interest for 15 to 20 years, at the same time in
the communities of cell biology, physics, and at their interface. However,
the general mechanisms by which single cell motility is affected by cell-
cell interactions to give rise to group effects remain elusive. In this
chapter, we introduce the foundational concepts that are necessary to
our biophysical approach of this difficult question, which we develop
further in the present manuscript.
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CHAPTER 1. INTRODUCTION 9

1 The cell, atom of the living matter

Despite their huge diversity in size, shape, complexity or environment,
all living organisms are built on the same basic unit: the cell. Despite,
once again, some differences, all the cells have extraordinarily shared
properties. For instance, the great majority of cells are typically from 1
to a few tenth of microns (μm) in size, whether the whole organism is
invisible to the bare eye or as big as a whale. The structure and molecular
basis of the cell are also among these common features: they are small
bags of water – or rather of complex aqueous mixture – separated from
the outer space by at least a plasma membrane made of a lipid bilayer.
A cell can be an individual organism by itself: this is the case for all the
bacteria and archea, but also for most of the eukaryotes; cells can also
assemble into various multicellular structures to achieve functions that
are not accessible to isolated cells.

Of course, the cells themselves perform multiple tasks. The information
needed for their functioning is encoded in DNA, a sequence of nucleotides
that is replicated when the cells divide, ensuring the continued existence
of species. The DNA is transcribed in messenger RNA, which are sub-
sequently translated in proteins using the genetic code, another strictly
conserved property of all the living kingdoms. The proteins are the
main effectors of various processes thanks to their specific and power-
ful catalytic properties, but the actual cellular processes are much more
complicated than this simple linear sketch: in fact, a cell is similar to
a complex microscopic machinery, with a well-defined spatial organisa-
tion and communication pathways that serve the regulation of all those
processes (Fig. 1.1).

All these functions are carried out at the molecular level. This is the
usual approach of cell biology to tackle them at the same scale: in this
scope, the – oversimplified – strategy to study a particular phenomenon
consists on finding mutants that behave unusually, regarding this phe-
nomenon; then identifying the proteins they do not produce correctly
and looking for their interaction partners, their cellular location... In this
manuscript, we adopted the physicist’s converse view: we consider the
cell as the elementary unit, hence integrating all the subcellular events
in their observable cell scale outputs. Then, the question is whether it
is possible to interpret the collective dynamics as the product of the in-
dividual behaviours and the mutual interactions of the single cells. This
way, the cell can be viewed as the ‘atom’ of living matter.
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CHAPTER 1. INTRODUCTION 10

Figure 1.1: Dynamical architecture of the cell.
This cartoon presents an simplified view of a cell: DNA in the nucleus is
transcribed in messenger RNA, which in turn is translated in a protein.
The protein then carries out its function, either in the cell, within the
external medium or at the border between the two. All the processes are
regulated by at network of signalling pathways.

2 The cellular “vivre-ensemble”
Just as atoms can gather into molecules and complexes with a broad
variety of properties, in certain conditions cells build multicellular struc-
tures. The latter can take the form of simple clusters of similar cells:
for instance this is the case of laboratory spheroids [1], which are just
aggregates of adherent cells that spontaneously become spherical under
the action of effective surface tension. Here, all the cells play the same
role, and there is no spatial structuring. Such spatial structuring occurs
in e.g. biofilms or Dictyostelium discoideum’s development (Fig. 1.2).
In the latter case, the cells, which are originally similar individuals, spe-
cialise in two main cell types: about 80% of the cells become spore cells
and will be able to eventually grow new colonies, while the remaining
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ones become stalk cells that only provide a structure for the others.

Figure 1.2: Dictyostelium
discoideum’s life cycle.
In presence of food, the
cells grow and move ran-
domly, as unicellular,
non-adhesive individuals
(vegetative cycle). Upon
nutrient starvation, they
enter a developmental
cycle: first the cells
aggregate thanks to self-
chemoattraction, then they
differentiate in two main
cell types: prespore and
prestalk cells. The ‘mul-
ticellular’ body undergoes
multiple morphological
changes before the culmi-
nation of a fruiting body,
from which the spores can
be transported to a new
niche, and where the stalk
cells will eventually die.

This is a simplified version of what happens during the development
of truly pluricellular organisms: pluripotent cells differentiate in cells
with specific capacities, which organise spatially according to defined
patterns. This eventually gives rise to a potentially very complex organ-
ism composed of various organs that carry out specific tasks. Each of
these organs is composed of various tissues, which are made up of cell
populations and extracellular medium. To take the example of the skin,
it is composed of three main layers: the epidermis at the outside, then
the dermis and the hypodermis inside; the epidermis is itself made of a
tri-dimensional epithelium of keratinocytes, with dispersed melanocytes,
Langherans cells and Merkel cells (Fig. 1.3).

11
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Figure 1.3: Organs are just structured cell populations in interaction:
the example of the skin.
The skin is made up of three main tissues (left): epidermis in contact
with the outer space, then dermis and hypodermis. Epidermis is it-
self a collection of interacting cell populations of various types(right):
connective layers of epithelial keratinocytes, in which populations of
melanocytes, Langherans cells and Merkel cells are sparsely embedded.

2.1 The two senses of the cell

In this same view, a body can be viewed as an assembly of interacting
cell populations. Moreover, there are also interactions inside these popu-
lations, between cells of either the same or different types. These cell-cell
interactions are fundamental in the functioning of the organism. To con-
form to easy anthropomorphism, think of a group of people without any
perceptive ability: it is hard to imagine them act in coordination. Ac-
tually, it would be impossible for such an individual to react in any way
to its environment. Similarly, the cells need systems that enable them
to sense their environment. This happens at the molecular scale, most
of the time through transmembrane proteins (Fig. 1.4). These proteins
have three domains: a central hydrophobic one that anchors them to
the lipid membrane; an extracellular domain that is able to sense exter-
nal signal, for instance by binding to specific chemicals; a cytoplasmic
domain, that interacts with other cytoplasmic molecules, hence trans-
mitting the signal into the cell. In some cases, the integration of external
signals may also be made through channels, that allow specific molecules
into the cell, or by internalisation of external medium in endosomes.

In the following we focus on receptor-mediated sensing, to review the
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Figure 1.4: Membrane protein.
A membrane protein is a protein that is anchored to the membrane by a
hydrophobic part (here, 3 red α-helices). Transmembrane proteins, which
have both an external domain (blue) and a cytoplasmic one (green), are
able to transduce signals through the cell membrane.

concepts of cell-cell interactions (Fig. 1.5). It is easy to imagine that
membrane proteins provide the cells with a sense of touch: in that role
for instance the cadherins, a family of cell-cell adhesion proteins, are
very important. The neural crest cells use N-cadherin to detect contacts
with other cells, inducing a mechanism known as Contact Inhibition
of Locomotion (CIL, see section 4). In epithelial tissues, the adherens
junctions are used to communicate mechanical signals: cells pull or push
each other, and the forces are transmitted through E-cadherin to the cy-
toskeleton, inducing various responses. Yet, this contact sensing would
not be sufficient: to many extents, sensing the others, further than one’s
closest neighbours, is of great importance for individuals in a popula-
tion. To come back to our anthropocentered analogy, think of a group
of both blind and deaf people. Although some information can be trans-
mitted along the group by a sequence of physical contacts, as we will
see in Chapter 4, it is hard to imagine any efficient coordination of the
whole group in this delicate situation. To communicate with distant in-
dividuals, the cells are able to send signals away by secreting messenger
molecules. These molecules can be transported by diffusion, or in some
cases by convection in a fluidic system such as the blood or lymphatic
vessels, and then detected by receptors on distant cells. Depending on
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the systems, the information conveyed can be more or less complex. As
we will see in Chapter 3, the overall cell density or cell number in a pop-
ulation can be encoded in the concentration of the signal. The cells may
even integrate directions by sensing gradients, and this is when their ac-
tive and dynamic nature becomes fundamental: in a gradient of external
signal, the receptor can distribute over the cell body in a way that re-
flects this gradient, hence inducing a polarised intracellular response [2].
In the particular case of chemotaxis – the ability to move up or down
chemical gradients – the directionality can also be detected even if the
length scale of the gradient is larger than the cell body, by integrating
signals in time and biasing the motion accordingly [3].

Figure 1.5: Cell-cell interactions.
Cells can sense specifically their neighbours thanks to adhesion proteins
(red, left). They can also communicate at a distance through secreted
molecules that are detected by the suitable receptors.

To sum up, the cells possess the ability to sense their neighbours in
various ways, either at contact or at a distance, involving the ‘knowledge’
of various cues: directions, cell density or number, forces, induction
of any activity (Table 1.1)... The response to these signals can be of
multiple nature. Here we will focus on their effects on the two main
processes that shape cell populations: growth and motility.
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�������Sense
Info Contact Distant Number Precise

location
Direction

Hearing – � ∼ – �

Sight – � � � �

Smell – � ∼ – –

Taste � – ∼ ∼ N/A

Touch � – – � �

Contact sensing � – – � �

Quorum sensing – � � – –

Chemotaxis – � ∼ – �

Table 1.1: Comparative table of human and cellular senses.
Property detected (�), partly detected (∼) or not detected (–) by senses.
In their ability to sense the spatial organisation of their neighbours, the
cells would be similar to blind people (the taste is not really relevant to
this capacity). They can sense neighbours precisely at contact, but at a
distance they have only clues about their overall direction and number,
and not their precise location.

2.2 Cell growth in a social context

As stated by Jacques Monod in his seminal article on bacterial growth [4],
“ it would be a foolish enterprise, and doomed to failure, to attempt
reviewing briefly a subject which covers actually our whole discipline”.
Our discipline is not microbiology, but the ideas of this article, including
this quotation, also hold in the case of eukaryotic cells. Trying not
to be too foolish, we will try to give a brief overview of the underlying
principles and molecular bases of cell proliferation, which in essence takes
place in a collective context.

Rigorously, two kinds of growth must be distinguished: mass growth, and
number growth. While the former refers to the increase in quantity of cell
material, due for instance to duplication of DNA, production of proteins,
or even simply water uptake [5], the latter represents the increase in
number of individuals, due to cell division. The two can be different in
some cases: when division but not duplication is inhibited for instance, it
gives rise to the growth of individual, multinucleated cells, but not of the
cell number. Here we consider the number growth. We also implicitly
suppose the ideal case where cells divide correctly, keeping a constant
mass per individual in average. Then, both growths are identical, and
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in particular the density and packing fraction are equivalent.

Forgetting about various lag phases (Fig. 1.6a), there are two main, limit
regimes in cell population growth: an exponential phase and a saturation
phase. In the former, the cells divide at a constant rate, giving rise to
an exponential growth of the cell number (1.1):

dn

dt
=

n ln 2

t2
⇒ n(t) = n02

t
t2 (1.1)

where t2 is the doubling time, or, n(t) = n0.e
λ.t, using the growth rate

λ = ln 2
t2

instead of the doubling time. In the latter the cells stop dividing
at a given density. Of course the transition between the two regimes is
smooth: it is called the “retardation phase”, in which the division rate
continuously decreases toward zero (Fig. 1.6).
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Figure 1.6: Typical cell proliferation dynamics.
(a) Sketches from [4]: (1) lag, (2) acceleration, (3) exponential, (4) re-
tardation, (5) stationary and (6) decline phases. Growth rate (top) and
corresponding evolution of the logarithmic density (bottom). (b) Com-
puted growth and growth rate from expression 1.3 with t2 = 8 h. It rep-
resents well the exponential, retardation and saturation phases (phases
3 to 5 in a).
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This whole dynamics is quite well captured by the logistic growth model
initially introduced by Pierre-François Verhulst in 1838 (see Ref. [6] and
Equation 1.3). In this model the growth rate linearly decreases when
the density approaches a saturation value called the carrying capacity
K. The resulting time-evolution of the cell density is very similar to that
of observed cell proliferation (Fig. 1.6): starting from a low density, an
initial exponential growth phase is followed by a slowing down and a
saturation

dn

dt
= λn(1− n

K
) (1.2)

⇒ n(t) =
K

1 + eλ(t−t0)
(1.3)

Both phenomena originate from molecular processes that occur inside
the cells. The exponential growth relies on the fact that the doubling
time of the population, hence the cell division time, is constant. It is
mostly due to the precise regulation of the cell cycle, as revealed in
Refs [7, 8]. In axenic strains of Dictyostelium discoideum, the mitosis is
short, lasting for about 10 minutes, and the cells spend most of the time
in the S-phase (DNA replication phase) or the G2-phase (cell growth
after DNA replication), giving rise to a narrow distribution of cell cycle
times around 7h to 9h, depending on the strain.

The cell cycle is slowed down at high density until complete arrest. This
slowing down implies that the individuals are able to sense the surround-
ing density. Apart from indirect effects as the medium acidification, or
reaction to cellular waste or nutrient depletion, this is allowed by se-
creted communication molecules called “quorum-sensing factors”. It is
known for example that the secreted proteins AprA and CfaD act to-
gether to slow Dictyostelium’s proliferation by lengthening the G2 phase
[9, 10, 11]. In their absence, the cells proliferate faster and reach a higher
saturation density [9].

The regulation of the proliferation is a first example of the cellular “vivre-
ensemble”. In what follows, we will see that this notion is also very
important for another cell property: the motility.
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3 Cell motility
The term motility refers to the very important ability of cells to move
actively. Using a machinery that we describe below, they can propel
themselves at speeds ranging from a few microns per hour to a few
microns per second for the fastest. This motion takes place either on a
solid substrate – crawling motility – or in a liquid medium – swimming
motility. The second is particularly relevant to bacteria and sperm cells;
we will focus rather on the first type, widely observed in eukaryotic cells
and especially inside multicellular bodies.

Indeed, cell migration is central to many phenomena, either normal or
pathological, at various stages of one’s life. During the development,
large-scale cell movements, such as the gastrulation or the neural crest
migration, shape the embryo and the future organs. All life long, in the
intestine epithelium, the cells proliferate at the base of villi, then they
differentiate during their migration toward the top where they eventually
undergo apoptosis. The migration of single cells is important e.g. for
immunity: the dendritic cells alternate between medium uptake and
displacement phases to scan the potential foreign bodies present in the
tissues [12, 13], and the inflammatory response involves leukocytes that
move fast to chase the infectious cells. Also, the high motility of cancer
cells is a real health issue, as this is what provides them the ability to
invade the surrounding tissues and even to form new tumours, called
metastases, far from the original one, which are one the main reasons
that make cancer so deadly [14]. In the case of unicellular organisms,
the motility is very important for ecological concerns, as it is a driving
process in the dispersion of species in their environment.

3.1 The molecular bases of cell motility

Even though we will try to consider motility as an intrinsic property at
the cell scale, it is important to lay its foundations, in order to be able
for instance to interpret the output of interactions.

The crawling motility of eukaryotic cells mainly relies on the dynamics
of the acto-myosin cytoskeleton (Fig. 1.7). The latter term refers to long
linear polymer chains, assembled in various structures, that give the cell
its architecture and mechanical resistance. Actin microfilaments consti-
tute one of these structures, along with microtubules and intermediate
filaments. It consists in a linear assembly of actin monomers, with a po-
larised activity: at one end, monomers are added, while at the other end
they are removed by active processes under the drive of ATP (Fig. 1.7a).
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(a)

(b)
(c)

(d)
(e)

Figure 1.7: Actin structure and dynamics.
(a) Actin is polarised. Actin filaments polymerise at the barbed (+) end
and disassemble at the pointed (-) end. (b,c) Actin can build supra-
filament structures: branched actin (b) or parallel cables (c) for instance.
(d,e) Actin can exert forces and motion: the polymerisation against the
cell membrane induces a retrograde motion of the filament and a pushing
force on the membrane if the filament encounters resistance. (d) anti-
parallel bundles bound with myosin II motors have a contractile activity
due to the relative motions of the filaments (e).

These dynamics give rise to forces and movements: if a filament poly-
merises, for instance, against the cell membrane, it will exert a pushing
force on the membrane, and at the same time induce a retrograd flow
of the continuously growing polymer (Fig. 1.7d). In addition, filaments
can assemble in various structures thanks to cross-linking molecules, to
form large bundles or flat extended meshes (Fig. 1.7b,c). Among these
cross-linking molecules, molecular motors such as the myosins possess a
special ability: they have two ‘feet’ that allow them to walk along the
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actin filaments. These feet are linked to two α-helical coiled coil chains,
which can bind either to a cargo they can transport, or to another myosin
head. In this case, two linked myosins walking each on a different fila-
ment in opposite directions can give rise to a relative movement of both
filaments (Fig. 1.7e). This provides the cell with a contractile ability,
which is used for instance in muscle contraction, but also for single cell
motility.

The actin cytoskeleton is connected to the outer space through trans-
membrane adhesion complexes. Thus, some cells can make focal ad-
hesion to adhere to extracellular matrix molecules such as collagen or
fibronectin; some others, among which Dictyostelium discoideum, stick
to the substrate with non-specific adhesion. The turnover of these ad-
hesion points and the intracellular actin remodelling may lead to a net
motion through the following scheme (Fig. 1.8): the cell uses the adhe-
sions to exert traction or friction forces on the substrate by polymerising
actin bound to these adhesions; then the cell uses its contractile activ-
ity to retract its rear. Although simplified, this schematic view is quite
general to all crawling eukaryotic cells and allows a good understanding
of the properties of cell kinematics.

3.2 Single-cell motility as random motion
As we have just seen, cells are put in motion by a symmetry break-
ing between a protrusive front and a retractile rear. This implies that
the cell is polarised, and that the dynamics of the motion relies on the
dynamics of this polarity axis. Of course, external signals such as the
chemoattractant that we evoked above can bias the polarity so that in
average the cell moves towards the higher concentrations. However, even
in the absence of any directional cue, protrusions still form and they last
for a finite time. This defines the cell’s persistence time τp, which
is the time during which the cell moves with a memory of its previous
direction. Of course, this does not last for ever in an isotropic medium
and the cell eventually changes its direction of motion. This results, at
a long enough time scale, in an apparent random motion: in particular,
the asymptotic behaviour of the mean-squared displacement, or MSD,
is linear in time:

MSD(δt) = 〈δx2(δt)〉
= 〈‖x(t+ δt)− x(t)‖2〉
= 4Dt for t � τp in 2D. (1.4)
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Figure 1.8: Cartoon of the migration mechanism of a cell on a 2D sub-
strate (from L. Golé, PhD thesis).
First, the actin polymerisation pushes the membrane at the front. Then,
adhesions are made so that this newly extended protrusion can exert
forces on the substrate. Last, the rear retracts under the action of con-
tractile actomyosin that detaches the adhesions in the back.
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This allows to define an effective diffusion constant D, which char-
acterises the cell motility at large time scales. In the t → 0 limit, the
motion is ballistic, at a speed v that is set by the protrusion-retraction
activity. From that, it appears that the time scale at which the motion
is observed and the trajectories sampled has a strong effect on the mea-
surements that are made. This is the main topic of the Chapter 2.
Also, understanding the dynamics of the cell polarity is fundamental to
well describe the trajectories.

(a)

(b)

Figure 1.9: The cell motion is polarised.
(a)Dictyostelium cells follow their pseudopods (from [15]). The time-
lapse pictures show the actin-filled pseudopods, that can originate from a
previous one (Y-split, the bottom one then retracts, or one-way split) or
be newly formed. In all cases, the cell turns in the direction of the new
pseudopod. (b) Universal coupling between speed and persistence through
actin-bound signals (from [16]).

Cell polarity. Bosgraaf et al. [15] observed that Dictyostelium cells
produce pseudopods that grow for 11 s on average before shrinking when
another pseudopod takes the lead (Fig. 1.9a). The latter can be either
a ‘splitting’ pseudopod, that appears close to the pre-existing one and
induces a persistent zigzag motion, or a de novo pseudopod, that forms
at a random location along the cell body, leading to a more sudden
reorientation of the cell. In this system, the ratio of de novo over splitting
pseudopods sets up the persistence of the trajectory.
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At a more intracellular scale, the polarity is known to correlate strongly
with the mutual localisation of small GTPases of the Rho family: Rac1
and CdC42 are found rather at the front and promote the protrusion
activity, while RhoA, which is related to the contractility, locates mainly
at the rear. Recently, Maiuri et al. [16] proposed a physical model in
which such polarisation cues are transported to the cell back by the actin
retrograd flow (Fig. 1.9b). This model explains a coupling between the
speed and the persistence of the cells, which has been observed in some
cell types. It also predicts that the polarity axis can move in two main
ways: first the direction can change smoothly, due to the fluctuations
of orientation of the active protrusion; second, it can change abruptly
by a sudden loss of polarity and building up of a new protrusion (Fig.
1.10). These two reorientation mechanisms, which we term respectively
‘angular diffusion’ and ‘tumble’, constitute the basis of active particle
models, as we will see in Section 5, and they provide a quite complete
set of tools to describe actual cell trajectories.

Until recently, the Ornstein-Uhlenbeck process [17] has been the simplest
and most widely used model for cell trajectories. It describes a correlated
random walk, for which the velocity-autocorrelation function C decays
exponentially with time

C(δt) = 〈v(t+ δt) ·v(t)〉
= 〈v2〉e− δt

τp (1.5)

and the MSD has an explicit expression called Fürth’s formula:

MSD(t) = 4D
(
t− τp.(1− e−t/τp)

)
. (1.6)

In Chapter 2 we will review some more refined models, but the previous
lines contain already the general concepts that are really essential to
apprehend the properties of cell motion: the existence of a speed v at
short times and a diffusion constant D at long times, with a switch of
behaviour around the persistence time τp; and the corresponding short
time ballistic regime in which MSD ≈ (vt)2, the long time diffusing
regime with MSD ≈ 4Dt, and the exponentially decreasing correlation
function C(δt) ∝ exp(− δt

τp
).
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Figure 1.10: Summary of the cell polarity dynamics.
This cartoon illustrate how the cell polarity arises from the relative dis-
tribution of ‘front inducers’ (F, red) and ‘back inducers’ (B, green, left).
F for instance promotes the protruding activity, while B promotes the
contractile activity. It endows the cell with a polarity axis, which defines
the direction of motion (right, modelling with a polar particle). The po-
larity axis may either change smoothly its direction (top), due to the
fluctuations of the polarising factors, or be lost out of the blue, when
the gradients of F or B destabilise suddenly (bottom). These phenom-
ena give rise respectively to angular diffusion, where the turning angle
probability depends on the sampling interval, or to tumbles, where the
direction correlation is instantaneously relaxed.

4 Collective cell motion is not only the sum
of single motions

As explained before, even though it is important to understand the phe-
nomena at the single cell level, cells rarely perform their functions in
complete isolation. The motility is no exception to this rule. On the
contrary the cells often move with or in reaction to the presence of other
cells, and the way they move in these situations is strongly affected by
their interaction partners. We have made a distinction between interac-
tions at a distance and contact interactions. In the following, we give an
overview of these kinds of interactions in the particular case of motility,
and of their possible outputs at both collective and individual levels.
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4.1 Cell motility and the interactions

(a)

(b)

Figure 1.11: Interacting at a distance.
(a) Dictyostelium cells secrete an unknown chemical factor that regulates
its motility (from [18]). An empirical relation was found between the
calculated concentration of this putative QSF and the diffusion constant
of the cells. (b) Dictyostelium cells secrete a chemorepellent factor (from
[19]). Sketch of the experiments: on shallow agar, the cells escape further
than on deep agar, likely due to higher concentrations of this molecule.

Interactions at a distance. The most global and simple kind of in-
teraction might be quorum-sensing, consisting in systems of secreted
molecules to whose concentration the cells are sensitive. They can have
many effects, from pathogenicity activation [20] to slowing down of pro-
liferation [9], but their effects on the motility were only recently inves-
tigated [18]. In this last case, Dictyostelium discoideum cells have been
shown to secrete an unknown QSF that acts to decrease the cells’ diffu-
sion constant in a concentration-dependent way (Fig. 1.11a).

A more complex and also more studied distant effect on motility is
chemotaxis. It refers to the ability of cells to sense the gradient of
a chemical and either move up (chemoattraction) or down (chemorepul-
sion). When the chemical is secreted by the cells themselves, it leads to a
coupled dynamics that can be described in the scope of Keller-Segel mod-
els [21], and results in effective large-scale attraction or repulsion. The
attractive case has been the most studied, and again pioneering works
were made on Dictyostelium discoideum. In the well-known example of
its developmental aggregation, upon nutrient starvation the cells start
emitting periodically cyclic Adenosine MonoPhosphate (cAMP, a cyclic
nucleotide). They are able to move up its gradient and to degrade it,
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giving rise to spiral waves of concentration starting from an aggrega-
tion center and to cell streams towards this center. The functioning of
chemotaxis has been studied at the molecular scale e.g. in E. coli [3],
where it has been shown to rely on the regulation of the duration of run
phases depending on the direction of motion.

In the reverse case, when cells move down the gradient of an endogenous
messenger, the cells repulse each other. In Dictyostelium, such a mecha-
nism was claimed to lead to a faster escape of the cells from spots made
on shallow agar than from those made on thick agar plates [19] (Fig.
1.11b). More recently, the protein AprA was identified as an endoge-
nous chemorepellent in Dictyostelium [22], and its mammal orthologue
DP4 was found to be a chemorepellent for murine neutrophils [23].

Contact interactions. On the other hand, contact interactions, usu-
ally mediated by transmembrane receptors [24, 25], can also affect the
migration properties of the cells. Mechanosensitivity is one of these
mechanisms. The eukaryotic cells, especially in connective tissues as ep-
ithelia, are able to exert forces on their neighbour, which acts to direct
the cell motion in the direction of lowest intracellular stress [26]. In some
cases the forces can be transmitted by the substrate itself [27] but it is
usually not the case in experiments on rigid glass or plastic dishes. This
force transmission is clearly shown in ablation experiments: for instance,
cells pulled by a leader at the edge of a growing epithelium retract upon
release of the pulling force [28].

Even in the absence of strong adhesion and stress transmission, the colli-
sions must have an effect on the motion, at least due to steric hindrance.
This is particularly visible in the case of elongated cells, which undergo
nematic alignment either due to hydrodynamic interactions in the case
of swimming bacteria [29] or to real contacts for crawling bacteria [30]
or mammal cells [31]. Beyond these passive effects, another mechanism,
which was discovered more than 60 years ago [32], has gained renewed
interest recently [33, 24]: it is called ‘Contact Inhibition of Locomotion’
– or CIL – and can be sketched as follows. When two cells encounter,
they inhibit their protrusion in the contact zone, and repolarise in the di-
rection opposite to the contact (Fig. 1.12). In this process the sensing is
mediated by adhesion proteins, and especially cadherins, but also likely
atypical cadherins, the Notch-Delta pathway, Ephrins or Nectins [24].
The intracellular signal is transmitted by the Wnt-planar polarity path-
way and the small GTPases of the Rho family (RhoA, Rac, Cdc42. . . ).

This last phenomenon has been more quantitatively studied in 1D since
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Figure 1.12: (a) Contact inhi-
bition of locomotion in the case
of two cells (from [24]). The
protrusion are inhibited at the
contact point and the cells repo-
larise away from each other.
(b) In a cell layer, the inner
cells are inhibited on all sides,
while the cells at the free edge
are polarised towards the empty
space, allowing to form leader
cells or to make room for the
other ones.

the collisions are more frequent and easier to analyse quantitatively in
this set-up [34, 35], but to our knowledge there is no quantitative study
of the statistics of collisions in two dimensions.

4.2 The various effects of interactions

These cell-cell interactions are not neutral to the overall population dy-
namics. Actually, they may even lead to collective behaviours that are
very different from those expected from single cells. Here, the structure
of the population plays a lot on the observations. In particular, there
is a clear distinction between effects in the core of a population, where
the density is homogeneous in average, and on the edge, where gradients
play a role.

In the core. We have evoked the existence of nematic interactions.
In fact, alignment is a widely spread result of interactions. It mani-
fests itself in spatial correlations: in bacterial systems [29, 30], but also
in densely plated fibroblasts [31], nematic interactions can lead to ori-
entational order over many cell lengths. Such long-range correlations
also exist in migrating monolayers of epithelial cells [27, 36] or of fi-
broblasts [37, 38] (Fig. 1.13a). Generally speaking, these interactions
act to increase the order and correlations. In the absence of alignment,
however, the tendency is rather to a decrease, either through large-scale
chemical interactions [18] or due to a collision-induced decrease of the
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persistence [39]. In even denser connective cells, the tissue may exhibit a
behaviour that reminds a glass transition, in which the cells are trapped
by their neighbours [40, 41, 42].

Figure 1.13: Effects of cell-cell interactions.
Top: In the core - local order in a high density layer of 3T3 fibroblasts
(from [31]). Binarised field of view (left) and same image superimposed
with the color-coded local orientation of the cells (right).
Bottom: On the edge - directionality is increased on the side of a mono-
layer. The color-labeled trajectories of epithelial cells are random and
isotropic next to the center of the colony (left), while they are directed
towards the empty space on the edge (right).

On the edge. A population of diffusing agents is expected to produce
a net flux toward the void zones, because of the density gradient, but
the motion should remain isotropic in the absence of external cues. It
seems obvious that chemotaxis breaks this isotropy and creates a flux
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of more or less directed cells. Actually, even contact effects can lead to
such bias in the motion. Lange et al. [43] showed that cells on the edge
of a monolayer are more directed towards the free space when they have
more cell-cell adhesion (Fig. 1.13b). In the same scope, Nnetu et al.
showed that this persistent motion of the interacting cells in the layer
helped it to maintain its integrity, as the cells that escape will move more
randomly, hence allowing the efficiently advancing sheet to catch them
up. It is also much probable that the particular morphology of leader
cells in expanding epithelia relies on the contact-free space asymmetry
that they experience [28].

When the directionality is transmitted over the whole group, it gives
rise to spontaneous collective motion, as it happens in small islands
of adherent MDCK cells [44]. Concerning the effects clearly identified
as CIL, they can improve the collective chemotactic response [45], and
more unexpectedly lead to directed collective motion even when it is
only associated with an attractive interaction [46].

Figure 1.14: Interspecies contact inhibition of locomotion (from [24]).
In the normal case (top), the motion is inhibited at the interface between
two cell populations, preventing them from mixing. When interspecies
CIL is inhibited for one of the tissues, its cells invade the other one.

The same kind of interaction also occurs between different populations
of cells. The differences in interspecies contact inhibition of locomotion
can promote the invasion of one tissue by another one [24] (Fig. 1.14).
Conversely, the combination of chemotaxis of neural crest (NC) cells
towards placodal cells combined with CIL between these two populations
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leads to a chase-and-run behavior, where NC cells follow placodal cells
that in turn escape, giving rise to a net collective displacement of both
groups [47].

5 Active matter: a rising way of thinking
collective effects

We have just seen that a great deal of interaction classes and related
collective effects in the cell motility have been described, particularly in
the last decade. Although the molecular mechanisms are in some cases
quite well understood, the way by which interactions lead to ensemble
behaviours remains usually elusive. Yet, these mechanisms of transition
to a collective state have gained a huge interest in the community of
theoretical physics, resulting in the appearance of a new field: active
matter.

This name refers to systems of self-propelled particles (SPPs), in-
spired mainly from living materials: molecular motors, cells, animals...
Their particularity is that they consume energy taken from an external
source, hence not being subjected to the laws of equilibrium thermody-
namics. One of the aims of the discipline is to bring together very dif-
ferent systems, that share some common properties, and to understand
how the collective dynamics arise from different classes of interactions.

The Vicsek model. The seminal paper of T. Vicsek [48] can probably
be considered as the foundation stone of active matter. It considers point
particles that move with a fixed speed along a diffusing direction – later
termed active Brownian particles, or ABPs. These particles interact
within a certain radius and have a tendency to align their direction along
the average direction of motion of their neighbours. It was originally
introduced to study, in the simplest way possible, the effects of alignment
interactions in a group of moving agents.

It has been studied in depth, and recently many outstanding results were
found [49, 50, 51]. In particular, it has been shown that a transition to
order occurs when the density is increased or the noise decreased. This
transition is similar to a liquid-gas-transition with a coexistence phase,
where high-density ordered bands of defined size travel at a given velocity
in a disordered gas phase (Fig. 1.15).
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Figure 1.15: Transition to order in the Vicsek model.
Top: simulation results from [48]. When the noise amplitude η is de-
creased at constant density, or the density ρ increased at constant noise,
the order parameter va = ‖〈v〉‖ reaches non-zero values.
Bottom: simulation results from [50]. The transition to order leads to
the formation of moving, ordered, high-density bands. When the den-
sity is increased, the band width remains constant and the number of
bands increases in the Vicsek model (bottom panel, top), contrary to the
simpler “active Ising model” where a single band grows (bottom).

Active Brownian particles and run-and-tumble particles. De-
spite its conceptual interest, the Vicsek model remains quite distant
from real systems. More recently, people have started considering parti-
cles with a finite size, sometimes rod-shaped to mimic bacteria but most
often hard disks. These particles move at a given speed, usually con-
stant, along their polarity axis, and their rotational relaxation process
defines the two basics classes of particles: active Brownian particles,
or ABPs undergo smooth angular diffusion, while run-and-tumble
particles, or RTPs go straight between sudden reorientation events.
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These two different modes of relaxation can lead to similar dynamics
to some extents, because both models belong to the bigger class of cor-
related random walks with exponentially decaying correlation function;
yet, in some situations, they behave very differently. These two models
have been thoroughly compared in a recent comprehensive paper [52].

Slowing down and clustering. The finite size of these particles im-
plies the introduction of hard-core repulsion forces. In a collective con-
text, these forces give rise to a pressure, which has been the focus of
recent works [53, 54]. Another well-described effect of these forces is
a density-driven decrease of the motility. Indeed, when such a particle
faces an obstacle, it stops moving due to steric hindrance, and needs to
wait for its direction to change enough to escape. It has been shown [55]
that this effect leads to a decrease of the average speed that relates to the
packing fraction ρ/ρm as v(ρ) = v0(1− f ρ

ρm
), with f ≈ 0.9. This effect

is very important, for such a decreasing v(ρ) or diffusion constant D(ρ)
can be responsible for motility-induced phase separation, or MIPS.
This is a phenomenon of cluster formation without explicit attraction,
driven by a positive feedback loop between motility and density: in suit-
able conditions, the natural fluctuations of density lead to a substantial
local decrease of the motion; thus, the particles are trapped in high den-
sity zones, which in turn the faster particles coming from sparser areas
can enter, hence accumulating. When the particles have no spatial ex-
tension, they eventually collapse into a single point, an effect that is
counterbalanced in the case of hard disks.

The untapped potential of active matter. Active matter has got
an important quality: it provides models that are at the same time sim-
ple, hence allowing to make general prediction on their basis, and realis-
tic, which is essential to shed light on experimental results. Indeed, one
of the problem of the theories of multicellular dynamics, and especially
in the field of cancer, is that the proposed models are very specific, often
lattice-based, and that their results themselves often depend on these
specificities [56, 57, 58, 59]. Active matter avoids this pitfall, and in fact
a few works have successfully used active matter modelling to get some
insight in their experimental results [60, 61, 62, 42].

However, this potential remains, to my personal opinion, largely un-
derexploited, and a lot could be learnt on the physics of such groups
by easily implementable SPP simulations, or even mean-field or fluctu-
ating hydrodynamics. Therefore, one of the ambitions of the present
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manuscript is to contribute in setting active matter as the cornerstone
for the description of collective behaviours arising from motile cells in
interaction.
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2. Methods for cell trajectory
analysis

This chapter focuses on the object that served as a basis for almost all
analyses in this thesis: the cell’s trajectory. Firstly, we show the po-
tential of this as a source of information on cellular processes. Secondly
we review the classical models of cell trajectories Thirdly we describe
the methods we used to obtain and analyse cell trajectory data; in par-
ticular, we give an overview of the typical properties of the motion of
our Dictyostelium strain. Fourthly we calibrate our measurement tools
against simulated data. The results and models contained in this chapter
constitute the framework of analysis that we use in the following parts
of this manuscript.

Traditionally, the trajectories of living organisms have been associated
to breakthroughs in physics for long.

Here, the experimental observation of an apple’s trajectory in the
gravity field (center) served as the basis for Isaac Newton’s theory of
universal gravitation (1687). No doubt that he would also have agreed

about the realism of hard spheres models for motile living matter
(right). Gotlib c©DARGAUD, 2016.
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1 Why do cell trajectories matter?
As it might have become apparent from Chapter 1, there are many
scales at which cellular processes can be examined: at the subcellular
level, active polymers under the control of regulation signals, produce
the motion; at the cell scale, the cell deforms, moves, reacts to the envi-
ronment; at the supra-cellular level, groups of cells exhibit coordinated,
hindered or uncorrelated behaviours.

Diverse tools, including microscopy, allow measurements to be made at
all these scales. Focusing on a particular cell, there is still a great deal
of observations to be carried out: cell deformations, forces that it exerts
or feels... This is very valuable information, but very complex ones at
the same time. By zooming out a little while remaining at the single
cell scale, one can then extract a single, simple piece of information: the
cell’s position.

Of course, defining the position is itself not so easy: should one take the
center of mass of cell – or rather the barycentre of its projected area,
since making a 3D reconstruction to measure this simple quantity would
seem exaggerated? Or the centre of the nucleus? Or even, as some
do [43], the position of nanoparticle internalised by the cell? The list
of possible definitions is infinite, and we will see in Section 3 that we
used another one. Each definition yields a different result, but this can
be overcome by considering the right scales.

A trajectory is a list of positions over time. This conceptual simplicity
is an obvious strength, but beyond it, trajectories bear a lot of useful
information on the system. Indeed, they are integrated manifestations
of subcellular mechanisms and therefore they can provide insight into
them: for instance the protrusion dynamics could possibly be inferred
from the precise dynamics of Dictyostelium cells’ trajectories [15, 63].
As the path followed by a cell also depends on its surroundings, it can
inform either about the extracellular medium [64] or, as we claim in
Chapters 3 and 4, about the interactions with other cells.

For a physicist, the interest of working with such an object is that it con-
veys notions that have been dealt with by statistical physics for decades.
As such, trajectories can be subjected to – stochastic – kinetic models,
which allows many analogies with well-understood systems. Similarly,
when it comes to collective effects and despite some quite newly-studied
specificities of active materials, statistical physics provides a toolbox
that can be more or less directly applied to understand the underly-
ing principles of observed phenomena. This last point is fundamental,
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as this approach also enables to bring together systems whose particu-
lar internal functioning are distinct but whose motions are comparable,
hence shedding light on the driving mechanisms that lead to similar
population-scale behaviours.

2 Classical descriptions of cell trajectories
As it was mentioned in Chapter 1, the motility of a cell relies on stochas-
tic processes. As a result, cell trajectories belong to the vast world of
random walks. Note that we chose to use this expression to refer
to actuals walks, ie with discrete steps, but also to the extended case
of continuous-time trajectory whose direction changes smoothly (as for
ABPs). In this section, we give an overview of this world, starting from
the simpler discrete models. In particular we try to stress out the prop-
erties that are critical to a good understanding of cell motion and the
special challenges raised by the distributed and intermingled nature of
living matter.

2.1 Discrete random walks: from Simple Random
Walk to correlated run-and-tumble dynamics

As we stated before, the world of random walks is vast, and the words of
Jacques Monod about microbial growth (see Chapter 1.2) hold for this
discipline. Moreover, the theoretical description of all existing kinds of
random walks is outside the scope of this work. Yet, we will derive a few
basic results in order to illustrate the governing principles of such walks.
Note that unless specified otherwise, we consider particles moving at a
constant speed v.

Simple Random Walk in 1D. The basic ideas of random walks are
better understood in 1D. Consider a particle moving on a line with steps
of duration τ and of length a = vτ , with equal probabilities to go in
both directions. Its displacement at step i is therefore δxi = ±a, with
probability p± = 1/2. It constitutes the mono-dimensional version of the
Simple Random Walk, denoted SRW. It is a Markov process for the
position, in so that the position at step i only depends on the position
at step i− 1; this kind of process is also called a position jump process.
We are interested in the statistics of its displacement, namely its average
position 〈x〉 and mean-squared displacement MSD = 〈x2〉 in time. At
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time t = nτ , the mean position is given by

〈x〉 =
n∑

i=1

(
1

2
a− 1

2
a) = 0, (2.1)

and the MSD by:

〈x2〉 = 〈
(

n∑
i=1

δxi

)2

〉

= 〈
n∑

i=1

δx2
i + 2

n∑
i=1

i−1∑
j=1

δxiδxj〉

=
n∑

i=1

(
1

2
a2 +

1

2
(−a)2)

= na2 = v2τt, (2.2)

because δxiδxj = δija
2, where δij = 1 if i = j and 0 if i �= j. This

simple example illustrates that random walks are diffusive processes, for
which the MSD is linear in time: 〈x2〉 ∼ t. We can also introduce the
corresponding effective diffusion constant D = v2τ

2 so that in this case
〈x2〉 = 2Dt.

Correlation and the telegraph equation. Now, consider that what
is subjected to fluctuations is not the position, but the velocity. In other
words, v = ±a/τ can switch to the opposite value at each time step
with rate λ (and so a probability λτ at each time step). This is called
a velocity jump process, and this introduces correlation, in so that the
particle keeps a finite-time memory of its previous direction, hence the
alternative name of correlated random walk (CRW). Let us denote
P
±(x, t) the probability that the particle is at position x at time t and

moves with velocity ±a/τ – then P(x, t) = P
+(x, t)+P

−(x, t) is the total
probability to find the particle at position x at time t. An efficient way
to treat this problem is to write the evolution equation for P

+ and P
−:

P
+(x, t+ τ) = (1− λτ)P+(x− a, t) + λτP−(x− a, t) (2.3)

P
−(x, t+ τ) = λτP+(x+ a, t) + (1− λτ)P−(x+ a, t) (2.4)
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Expanding these in Taylor series and taking the limit a and τ → 0 while
keeping v = a/τ constant yields

∂tP
+ = −v∂xP

+ + λ(P− − P
+) (2.5)

∂tP
− = v∂xP

− − λ(P− − P
+) (2.6)

After reasonable algebra, and using P(x, t) = P
+(x, t) + P

−(x, t), equa-
tions (2.5) and (2.6) yield the so-called telegraph equation:

∂2
t P+ 2λ∂tP = v2∂2

xP (2.7)

The same approach could be used with the SRW, which would yield
a diffusion equation. The telegraph equation (2.7) can be solved, but
the solution is quite complicated [65]. However, one can compute the
nth moment of P quite easily by multiplying equation (2.7) by xn and
integrating with respect to x. In particular, it yields again a zero net
displacement, and the one-dimensional Fürth formula for the MSD:

〈x2〉 = 2D
(
t− τp(1− e

− t
τp )
)
, (2.8)

where D = v2τp, and τp = 1
2λ defines the persistence time of the move-

ment. We can introduce the velocity autocorrelation function, which
measures the memory of the direction over a time interval δt:

C(δt) = 〈v(t)v(t+ δt)〉 (2.9)

Here, we use the total (integrated in space) probability that the particle
goes to the right pr(t) at time t. The time derivative of pr writes

ṗr = −λpr + (1− λ)pr = (1− 2λ)pr, (2.10)

which is obtained in a similar way as equations (2.5) and (2.6). There
are four cases to average over in the right-hand side of equation (2.9):
the particle goes right at t, then right at t+ δt, or left, then left; right,
then left, or left, then right. The product will equal v2 in the two former
cases, −v2, in the two latter. Therefore, C(δt) writes:

40



CHAPTER 2. METHODS FOR CELL TRAJECTORY
ANALYSIS 41

C(δt) =v2[pr(t)pr(t+ δt) + (1− pr(t)) (1− pr(t+ δt))

− pr(t) (1− pr(t+ δt))− (1− pr(t)) pr(t+ δt)]

=v2 [1− 2pr(t)− 2pr(t+ δt) + 4pr(t)pr(t+ δt)] (2.11)

Differentiating with respect to δt:

∂δtC = −2v2∂δtpr(t+ δt) + 4v2pr(t)∂δtpr(t+ δt)

= −2λv2 [1− 2pr(t)− 2pr(t+ δt) + 4λpr(t)pr(t+ δt)]

= −2λC (2.12)

Assuming pr is in the stationary regime, C does not depend on t but
only on δt. Then it comes

C(δt) = e−2λδt = e
− t

τp (2.13)

This concept of exponentially decreasing correlation function is a fun-
damental property of many random paths. Note that the MSD can be
obtained by integration of the correlation function. In particular, for
an exponentially decaying correlation function, one recovers Fürth’s for-
mula for the MSD.

These results can be extended to higher dimensions, in particular in 2D
which is our focus, either on or off lattice. In particular, the 2D off-lattice
version with no correlation in the turning angle is the aforementioned
run-and-tumble particle model.

The general continuous time CRW adds a possible correlation in the
turning angles: in this model, the particle moves along direction eθ
at constant speed during a time drawn from an exponential distribu-
tion with characteristic time τ , and then tumble instantaneously with a
turning angle δθ drawn from a distribution that may not be flat – e.g.
the von Mises distribution, or the wrapped normal or Cauchy distribu-
tion [65]. It just changes the mathematical details, but not the general
behaviour that:

(i) the autocorrelation function decays exponentially: C(δt) ∼ exp(− δt
τp
)

where τp = τ in the case of run-and-tumble particles (RTP, see
Chapter 1), but not necessarily in other situations;
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(ii) at long times t � τp, the motion is diffusive with 〈x2〉 = 4Dt in
2D;

(iii) the MSD is given by the Fürth formula;

(iv) the diffusion constant writes D =
v2τp
2 in 2D,

where (i) implies (ii)–(iv).

2.2 Smooth trajectories

Such properties hold in the case of smoothly turning trajectories, pro-
vided the correlation function remains exponential. Two particular cases
are interesting to the extent that they are both quite simple and widely
studied.

The Ornstein-Uhlenbeck (OU) process has been used to model cell mo-
tion since the 1970s [66, 67]. Originally proposed to describe Brownian
motion [17], it describes the velocity’s dynamics as follows:

⎧⎨
⎩ ṙ = v

P v̇ = −v +
√
2Dvη

It can be interpreted as a Langevin equation with a damping of mag-
nitude 1/P and a Langevin force of magnitude

√
2Dv/P , η being a

Gaussian white noise with unit variance. This model admits a Gaus-
sian stationary distribution for v with a variance that tends to PDv.
The velocity autocorrelation function decays exponentially with relax-
ation time P and the MSD obeys Fürth’s formula. It has been very
widely used to describe the trajectories of isolated cells, and even re-
cently integrated in a model of interacting cells [61] which matches very
satisfactorily experimental data obtained from epithelial monolayers.

However, the meaning of its terms in the context of crawling cell mi-
gration is fuzzy: one expects rather over-damped dynamics than inertial
dynamics with friction. Also, here the stochasticity comes in the form
of a Langevin force, while in cells it rather occurs from intracellular pro-
cesses. As such, despite its descriptive power, the OU process remains
mainly phenomenological.

Another simple model that in my opinion deserves attention is the active
Borwnian particle (ABP) model. It assumes that the particle moves with
constant speed along a polarity axis, which undergoes angular diffusion:
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⎧⎨
⎩ ṙ = veθ

θ̇ =
√
2Drη

(2.14)

where η is a Gaussian white noise with unit variance [52]. It decouples
the internal dynamics that governs the cell polarity from the motion
itself, even though a Dr(v) relation could be considered, as suggested by
Maiuri et al. [16].

A mixture of ABP and RTP provides a comprehensive model for a self-
propelled particle (SPP) with constant speed, which is better described
by its master equation – because the presence of instantaneous reorien-
tations, Langevin equations are not practical – namely

Ṗ(r, eθ, t) =−∇ · [veθP(r, eθ, t)] +∇eθ
· [Dr∇eθ

P(r, eθ, t)]

− ωP(r, eθ, t) +
ω

2π

∫ π

θ′=−π

P(r, eθ′ , t)dθ′ (2.15)

Here, P(r, eθ, t) is the probability to find the particle at position r, with
orientation eθ, at time t. On the right-hand side, the first term is the
advection due to the self-propulsion (we forget translational diffusion
which is less relevant for a migrating cell); the ∇eθ

term denotes the
angular diffusion; the first term on the second line accounts for the loss
of particles initially oriented along eθ, by tumbling at a rate ω, and the
last term is the corresponding gain.

All these models exhibit some differences in their microscopic definition,
and especially in the way the directional persistence relaxes. Although
these discrepancies can show up on large-scale observations in certain
situations [52], the averaged properties of trajectories under no external
constraint are essentially similar. In particular all these models exhibit
an exponentially decaying velocity autocorrelation function with a single
relaxation time – which can be a combination of several times, as in the
last one: τp = 1

Dr+ω .

2.3 Further than Fürth
This matches very well the experimental measurements on cell trajecto-
ries in many cases [66, 67], but more recent works pointed out divergences
from the expected properties of such models [68, 69, 70, 71, 18]. In par-
ticular, some revealed the existence of two different relaxation times in
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the velocity autocorrelation. It could arise directly from the existence
of two subpopulations of cells, but this hypothesis is usually ruled out
quite right up. There are – at least – two other ways to account for this
double relaxation.

The devil is in the details. The approach introduced by Selmeczi
et al. [68] consists in building a theory from experimental data, based
on a general Langevin-type equation for the velocity:

v̇ = −K ∗ v + ¯̄ση (2.16)

where η is a Gaussian vectorial white noise as usual. K is a kernel that
can contain memory and can depend on v, and ¯̄σ is an order two tensor
to account for a potential noise anisotropy. It can depend on v as well.

They use a complete dataset to infer the form of K and ¯̄σ. In particu-
lar, the mathematical form of the velocity autocorrelation function sets
constraints on the form of K, and the properties of the distributions of v̇
for different v inform about the symmetries and functional dependencies
of K and ¯̄σ.

In that fashion, they derive the simplest possible model that fits the
data well. In particular, the two correlation times arise from a complex
interplay of at least the “friction coefficients” and the memory kernel’s
time scale. This method is interesting in that it is solely data-based, and
it provides an accurate description that seems cell-type specific [68, 63].
Then the form of K and ¯̄σ may inform on the dynamics of the cell
polarity and propulsion. Yet, the interpretation of the various terms
and parameters is not so straightforward. Moreover, this data driven
procedure does not exclude other types of models.

Multimodality in cell motion. In the previous models, the multi-
relaxation behaviour arose from entangled processes acting on differ-
ent time scales. This is also the case in a recent model [61], devel-
oped in the purpose of modelling interacting cells, that relies on an
Ornstein-Uhlenbeck process whose noise is itself correlated through an-
other Ornstein-Uhlenbeck process. Conversely, in the last ten years,
there has been a rising opinion that crawling cells could exhibit multi-
modal motion, with an alternation of steps (also “portions of trajectory”
hereafter) with a single relaxation time.
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This property seems obvious for instance in the case of swimming bacte-
ria, with a well-described alternation of running and tumbling phases in
E. coli for instance [72]. There has been evidence that such bimodality
could occur in the motion of mammalian cells [71, 73] or Dictyostelium
cells [18, 74, 75] as well. Theoretical models of bimodal motion have
just started being studied extensively [76, 77]. One should distinguish
between two cases, with respect to the distribution step durations in
each in mode. When both distributions are exponential, ie the switch
processes are Poissonian, one can compute exact results, especially for
the MSD [76]. When the modes at stake consist in two rotational diffu-
sions with different persistence times, one can even express the velocity
autocorrelation function as:

C(t) = Ce−γt = C ′e−γ′t (2.17)

where C, C ′, γ and γ′ are functions of d1, d2, λ1 and λ2, respectively the
rotational diffusion constants and inverse means of the exponential dis-
tributions of the two modes (see Appendix A for detailed expressions).
The limit di → 0 (resp. di → +∞) represents a completely random
(resp. ballistic) motion for mode i. In particular, C,C ′ � 0, C+C ′ = 1,
d1 � γ′ � d2 < γ.

When the step-size distribution are non-Poissonian, it is more difficult
to obtain analytical results, but it is still possible to compute the prop-
agator with a somehow symbolic method, and to apply this to specific
cases [77].

Distributed, non-constant parameters. The reader would have
noticed that to this point the picture has become more and more fuzzy.
However, the considered models still have strong assumptions. In par-
ticular, even if several modes of motion or of directional relaxation are
allowed, until here the underlying parameters have been kept constant
at fixed values. Actually, it could very well be that these parameters are
not constant.

For instance, there is no example of crawling cell trajectories without
fluctuations in the speed. The Ornstein-Uhlenbeck-Selmeczi-like models
exhibit this property, because the noise acts on the whole velocity vector.
On the contrary, in the SPP models where the noise acts on the polarity
axis independently from the motion itself, fluctuations in the speed must
be taken explicitly into account. This approach is therefore relevant to
situations in which the fluctuations in direction and in speed originate
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in different mechanisms [78]. Given the complexity of motile cells, this
does not seem absurd, even though they could also well be correlated in
some way [16]. In case speed and direction are independent, Peruani and
Morelli [78] showed that, if the speed correlation decays exponentially
with constant λv and the direction diffuses with diffusion constant λθ,
the velocity autocorrelation function writes

〈v(t) ·v(0)〉 = 〈v〉2e−λvt + (〈v2〉 − 〈v〉2)e−(λv+λθ)t (2.18)

In addition, the persistence itself could evolve in time, either by dis-
crete switches as in bimodal motion, or in a continuous way, because the
persistence itself relies on an underlying stochastic process. Among the
possible causes for that, the substrate may not be completely homoge-
neous, which is quite true when it comes to collagen or fibronectin-coated
surfaces for instance; alternatively, the cells can undergo bimodal mo-
tion with spread distribution of persistence time in each mode; even
more simply that time, the persistence can be distributed over the pop-
ulation, but contrary to speed it is hardly measurable without very long
trajectories.

2.4 Summary

The attribute vast used to qualify the world of random walks having
probably become meaningful to the reader, it might make sense to sum
up all the above in a compact way.

Firstly, it is important to underline that on sufficiently long time scales,
every isotropic random walk becomes diffusive (except in very partic-
ular, mostly theoretical cases). All the so-called “anomalous” dynamics
that could be described arise from too short observation windows.

Secondly, at shorter time scales, the dynamics can be varied. Many mod-
els fall in Fürth’s class: their velocity autocorrelation function (VACF)
decays exponentially with a single relaxation time. However, they
can have either a constant (e.g. ABPs, RTPs, CRW) or distributed
speed (Rayleigh-distributed in the case of the OU process).

By contrast, many models can account for a sometimes observed double
exponential decay of the VACF. The speed distribution can again vary
from a Dirac to a spread one. The two relaxation times can either arise
from the noise, which is itself correlated, from a memory “frictional”
kernel, or from explicit bimodal motion.
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Thirdly, we distinguish between two main means, by which the noise is
accounted for: in OU-like dynamics, it acts directly on v in a non-
overdamped equation; in SPP models, it acts on the polarity angle,
hence decoupling the latter from the speed dynamics, and the equation
of motion is usually overdamped.

Understanding the motion requires to be able to find a good model for
the trajectories and to interpret its parameters. At the other end of
the spectrum, deciphering the role of cell-cell interactions also demands
to first have a good model of single cell motion, essentially to measure
the changes induced by the interactions. From this perspective, it is
important to get, first, cell trajectories, and then reliable – and the less
arbitrary possible – tools to measure properties from these data.

3 Obtaining and analysing cell trajectory data
In this section we describe the way we obtain cell trajectory data, by
tracking cells on time-lapse microscopy images. Then we present the
main analysis tools that we use to characterise the trajectories. Last,
we simulate random paths that exhibit similar expected properties as
the experimental ones, and we test our analysis procedures on them to
estimate their accuracy and especially how the results are affected by
the discrete nature of the data.

3.1 Imaging and image processing
Unless otherwise mentioned, all the movies were taken with the following
specifications:

– material: Nikon TE2000 microscope with automated XY-stage, An-
dor Zyla camera (field width: 2160x2560 pixels, pixel size: 6.5 μm);
the pictures in Chapter 3 were made at 4X (1.63 μm/pixel) or 3X
(2.17 μm/pixel) magnification, while those of Chapter 4 were taken at
10X magnification (0.65 μm/pixel), in slightly defocused bright-field (for
the cells to appear as very bright spots, see Fig. 2.1a);

– temperature control: to keep the temperature constant at 22◦C,
a home-made box of polystyrene was built to contain the whole mi-
croscope; a heat-exchanger containing circulating water was placed in
the box; the water temperature was adjusted to keep the air tempera-
ture constant thanks to a water bath (Julabo, Germany) connected to a
P1000 temperature probe;
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– time-lapse: time-lapse images were recorded automatically using Mi-
croManager software, with a typical 15 ms exposure-time and a various
time delays: δt � 1 min in Chapter 3 and δt = 20 s in Chapter 4.

To detect the cells’ position, three different techniques could be used, all
run by custom ImageJ macros, taking advantage from the brightness of
the cells (Fig. 2.1).

(a) (b)

(c) (d)
Figure 2.1: Cell detection.
(a) Typical picture obtained by means of low-magnification defocused
microscopy. Scale bar: 200 μm. (b) Detection using the Find Maxima
function. The plus signs denote the detected maxima. (c) Thresholding.
The red areas correspond to zones above the threshold before binarisation.
This picture does not seem to be really suitable for this kind of detection.
(d) Edge detection. The bright zones denote detected edges. Further
post-processing is still required to segment the cells.
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Find Maxima. This technique used the “Find Maxima” built-in func-
tion to automatically detect the local light maxima on the picture (Fig.
2.1b).

It is very simple to use since it only demands defining the correct ‘noise
tolerance’ parameter before running the macro. The maximum of light
is located at the highest point of the cell, which correlates nicely with
the location of the nucleus, and is very close to the center of mass of the
cell since Dictyostelium cells are quite round-shaped.

Yet, its outputs are only pixel-resolved, which may cause some problems
for the analysis. Furthermore, polarised, elongated cells often exhibit
two local maxima which in some cases were identified as two different
cells, although this last issue was secondary.

Threshold. Since the cells are very bright, in some cases a simple
thresholding of the picture is enough to detect the cell contour with a
good accuracy (Fig. 2.1c).

The drawback of this technique is that in dense cell populations, it may
be unable to separate touching cells. Increasing the threshold value can
help to this: then the cell area may be underestimated, but this is not
a serious issue as anyway the cell contour is not accurate because of the
out-of-focus nature of the pictures. In some cases, this technique may
lead to elongated cells being cut in two parts, as with the Find maxima
technique.

Edge detection. This technique uses the “Find Edges” ImageJ built-
in function. It is a variant of the previous one since the aim is also
to detect the cell contours in order to place the center of mass with
sub-pixel resolution (Fig. 2.1d).

Depending on the pictures, one or the other technique can be used. The
accuracy of the detection was controlled each time manually on a few
frames over the movie duration.

Of course, such automated analysis over long-time movies supposes that
the pictures remain similar throughout the movie, so that the parameters
– noise tolerance or threshold values – hold for all pictures, and errors
in this very first step of the data treatment occur with a non-negligible
rate, from 1% to 10% in some difficult cases. On the other hand, it
would not be possible to detect enough cells for a meaningful analysis
manually, so this drawback has to be accepted with humility.
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Tracking and data structure. After this detection step, the cen-
tres of mass are stored in a 3-columns table containing x-y coordinates
and frame label for each position. Then the track.m Matlab code
(J. Crocker, http://www.physics.emory.edu/faculty/weeks//idl/)
is used to link the positions from subsequent frames. Basically, this code
uses the least squares technique, ie it minimizes the squared distance
between couples of positions from subsequent frames, over all allowed
combinations (which number is limited thanks to the ‘Maxdisp’ param-
eter that sets the maximum distance allowed) to find the most likely
matches. A fourth column is added to the table, containing the cell’s
label.

Sometimes the cell is lost, leading to an exponential distribution of tra-
jectory lengths (Ni). Then these gathered trajectories can be treated to
measure various single-cell or averaged parameters.

3.2 Measured quantities.

Velocity. The velocity is defined as v = ṙ. We compute it from our
discrete data as vi = (ri+1 − ri)/δt, where δt−1 is the frame rate, and i

is the frame label. The speed is directly ‖v‖ =
√

v2x + v2y.

Mean-squared displacement. The MSD is computed in a similar
way (for each cell) as MSD(nδt) = 1

N−n

∑N−n
i=1 ‖ri+n − ri‖, where N

denotes the length of the considered piece of trajectory.

Diffusion constant. To compute the diffusion constant D of a popula-
tion, we first keep only the trajectories whose lengths are larger or equal
to N (generally so that Nδt � 90min, see below). Then we compute the
MSD at t = |N/3|δt, and D = 〈MSD(t)

4t 〉, where the angle brackets denote
the population averaging. We take t � 15 min [79]; typically t = 30 min
in Chapter 3 and t = 20 min in Chapter 4.

Velocity autocorrelation function. The VACF is computed in the
direct space as the biased estimator Cv(nδt) = 〈 1

N−n

∑N−n
i=1 vi+n ·vi〉.

We also use most of the time the velocity direction autocorrelation func-
tion (VDACF) C(t) obtained by replacing any vi by vi

‖vi‖ in the above
formula. The relation Cv(t) = 〈‖v‖〉C(t) is well verified in our data.
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Coefficient of movement efficiency. The CME provides an effi-
cient way to estimate the amount of directionality at a given time scale,
without the need for huge statistics over a long time window, as the
VACF. It is defined as the end-point displacement of a cell in the inter-
val nδt, divided by the total path length during the same time,

CMEτ (t) =
‖r(t+ τ

2 )− r(t− τ
2 )‖∫ t+ τ

2

t′=t− τ
2
‖v(t′)‖dt′

, (2.19)

or in its discrete version (measured at time t = iδt, and over a time
window τ = nδt):

CMEnδt
i =

‖ri+n − ri‖∑n−1
j=i ‖rj+1 − rj‖

(2.20)

Of course, other quantities are measured in the course of this manuscript,
but the above are the main one used to characterise the trajectories.

3.3 Typical properties of Dictyostelium’s trajecto-
ries

In this section we report the main characteristics of the trajectories of
isolated Dictyostelium cells from the AX2 strain, which is the ‘eldest’ of
axenic strains (it was derived from AX1, the – lost – first Dictyostelium
discoideum cells grown without bacteria). The results given here are
from 156 independent experiments made on dilute populations of cells
in fresh HL5 medium, with a total of about 25,000 full length (� 90 min
long) trajectories and ∼ 3× 106 single data points (speed - acceleration
etc...).

The detection method was the “Find Maxima” one, as it is the standard
in this work, with δx = 1.63 μm/pixel and a δt = 1 min time lapse.

Speed. First, note that given the pixel-resolved nature of the positions,
the detected speeds take well defined discrete values, the first ones be-
ing {1;√2; 2;

√
3; 2

√
2; 3;

√
10...} × δv, where δv = δx

δt = 1.63 μm.min−1.
The speed distribution is shown in Figure (2.2). Its mean is 〈v〉 =
3.0 μm.min−1, and its standard deviation σv = 2.5 μm.min−1. The
distribution is far from Gaussian, Rayleigh or log-normal. It is not ex-
ponential either, even though it has a similar behaviour over a certain
range of intermediate speeds.
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Figure 2.2: Speed distribution.
(a) Logarithmic plot of the speed histogram. It is somehow straight from
the second bar to v ∼ 15 μm.min−1, exhibiting a behaviour close to an
exponential decay. (b) Logarithmic plot of the histogram of squared speed.
It shows that the distribution is not Gaussian, which would produce of
linear decrease.

Mean-squared displacement and effective diffusion constant.
Taking the trajectories longer than 90 min, we then plotted the MSD
against the time lag Δt. As reported in Ref. [18], the MSDs of individ-
ual cells are very spread (Fig. 2.3a). Its distribution at large time looks
also log-normal (Fig. 2.3d), consistently with these previous observa-
tions [79]. The exponent of the average MSD is about 1.4, showing that
the observation time is around the transition from ballistic to diffusive
behaviour.

In linear scale, the MSD seems to exhibit a linear behaviour after a tran-
sient ‘acceleration’ phase (Fig. 2.3b). From an affine fit at Δt = 20 −
30 min, we extract the diffusion constant Dfit = 13.1 ± 0.2 μm2.min−1

(95% confidence interval). Then, we plotted MSD/Δt against the time
lag. This plot is customary in the team as it shows the diffusive char-
acter through the plateau that emerges at Δt ∼ 10τp, and it makes the
discrepancies from OU dynamics at short times clear. Here, the maxi-
mum Δt is still too short to see really the plateau. However, we can still
define an apparent diffusion constant:

D =
MSD(Δtmax)

4Δtmax
(2.21)

Here, D = 10.9 μm2.min−1. Of course, this measurement induces an
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Figure 2.3: Mean-squared displacements (MSD)
(a) Log-log plot of individual MSDs (green, thin lines), and average
(black thick line). For the sake of clarity, only 1% of the individual
trajectories, chosen at random, are shown. The average has a slope
of ∼ 1.4. (b) Averaged MSD in linear scale. The dashed line rep-
resents a fit of the linear part of the curve: MSD = 4D(t − t∗) with
D = 13.1 ± 0.2 μm2.min−1 (best fit and 95% confidence interval). (c)
Average MSD/(4Δt). The dashed line is a fit with Fürth’s formula
MSD = 4D[1 − P

t (1 − exp(− t
P )] with D = 11.6 ± 0.4 μm2.min−1 and

P = 3.0 ± 0.4 min. (d) Distribution of D from individual trajectories,
defined as in expression (2.21). The dashed line shows a log-normal fit
with 〈lnD〉 = 1.46 and σlnD = 0.90.
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under-estimation of D. Yet, its use is more practical than that of the fit
of the MSD or MSD/Δt with any function. Indeed, the latter presup-
poses either an assumption of the function to fit – most often Fürth’s
formula – or to choose a fitting range in the case of simple linear fit. To
that extent they are not so much more rigorous than definition (2.21),
which at least can be used in a systematic way. In particular, even if the
‘true’ value is not measured, it still allows to compare quantitatively two
different values, for instance by taking their ratio. Particular properties,
such as the MSD overshoots reported in DH1 [18] or cancer cells, could
require more care in doing so, but in the case of AX2 cells, the MSD
exhibits a quite standard monotonously increasing behaviour, and even
if the plateau is not reached at Δt = 30 min, the measurements are quite
reliable, especially in a relative view.

We checked whether this MSD was well described by Fürth’s formula.
The result of the fit is shown in Figure 2.3c. Although the line is every-
where ‘close’ to the data points, it does not give a reliable account of
the experimental curve’s behaviour: firstly, it underestimates the short-
time-scale activity; secondly, at intermediate and large time scales, it
converges faster towards a plateau than the actual curve does. This
divergence is well-explained by the averaging of two underlying time
scales into a single one by Fürth’s formula, as we shall see in the next
paragraph.

Correlation function. Three avatars of the velocity direction auto-
correlation function are plotted in Figure (2.4a): the actual VACF, av-
eraged out of all the trajectories; the velocity direction autocorrelation
function (VDACF), averaged in the same way; the VACF, first aver-
aged per experiment, then over the set of experiments. The last two are
strictly indistinguishable, and the inter-experimental noise is an order
of magnitude smaller than the intra-experimental one (Fig. 2.4b): this
shows that the properties of the correlation function, ie the persistence
of the cells, is conserved throughout experiments, in spite of the vari-
ability in the population and of the variation of other quantities such as
the cell speed between experiments.

The normalised VACF takes slightly larger values than the VDACF,
but they are still very close to each other. The discrepancies occur
from the different weight granted to small or large displacements in the
VACF, while VDACF gives all the vectors the same importance. The
very limited difference between the two suggests that the speed and
persistence dynamics are independent of each other.
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Figure 2.4: Velocity autocorrelation function.
(a) Plot of the VACF (green squares) and the VDACF, either averaged
out directly from all trajectories (red triangles) or first per experiment,
then over the experiments (blue circles). The lines show fits of the
VDACF (red triangles): single exponential decay (gray dash-dotted line),
double exponential decay (black dashed line). (b) Root-mean-squared de-
viation of the VDACF. Deviation between the experiments (blue circles),
spread inside experiments (red triangles). The error bars show the stan-
dard deviation of the latter between experiments.

Both VACF and VDACF exhibit a small drop-out at Δt = δt, and then
decrease smoothly to 0 from C(2δt). The correlation drop-out at the
second point is actually due to the discrete character of the data (see
next section), which explains why it is less marked in the VACF (as the
small displacements are more sensitive to discreteness).

Trying to fit with a single exponential decay leads to the same issue as
the Fürth formula fit of the MSD. Indeed, the exponential curve seems
to average out two time-scales: a fast initial decay followed by a slower
tail. This is confirmed by fitting (from Δt = 2δt) with a sum of two
exponentials, which matches the data much better (Fig. 2.4a):

C(Δt) = φ1e
−Δt

τ1 + φ2e
−Δt

τ2 (2.22)

Thus our data are a new example of the existence of at least two re-
laxation times in the cells’ directionality. Actually, φ1 + φ2 < 1 means
that there is an additional, even faster, decay in the correlation, which
happens between the first two or three points. We will see that this short
relaxation, termed “mode 0”, must be considered with care as positional
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Figure 2.5: Double exponential fitting of the autocorrelation function.
(a) R2-value of the fit of the VACF (green) and the VDACF (red) for
fixed τ2. There is an optimum at τ2 = 12.5 min for the VACF and
τ2 = 9.4 min for the VDACF. (b) Fitted values of τ1. (c) Fitted values
of φ1. (d) Fitted values of φ2.

noise favours its emergence. Conversely, modes 1 and 2 play a great role
in the collective regulation of the motility, as it will appear clearly in
Chapter 3 and more especially in Chapter 4.

To study these modes more in depth, we varied τ2 from 5 to 100 min,
while fitting the three other parameters, for both the VACF and the
VDACF. They exhibit a maximum in the fit’s accuracy at τ2 = 12.5 min
and τ2 = 9.4 min respectively (Fig. 2.5a). The corresponding values
for τ1 are 2.2 min and 2.1 min respectively (Fig. 2.5b). Later, when
it comes about comparing different experiments or different time-point,
we use fixed values for τ1 and τ2, so that we get comparable values for
φ1 and φ2: thus, we gain information about the relative importance
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of modes 1 and 2. It seems preferable to miss the precise values of
the relaxation times than to waste everything in getting a fuzzy set of
parameter values that all vary at the same time. Besides, without a solid
underlying model, these precise times would be of no interest.

As soon as it falls under 1, φ1 looks very stable to the variations of τ2,
around 0.45 for the VACF and 0.40 for the VDACF (Fig. 2.5c). φ2

decreases fast with τ2, because when the persistence is increased, even
a small amount of it creates a long tail in the correlation function (Fig.
2.5d).

Acceleration. We analysed the statistics of acceleration in the same
way as Selmeczi et al. [68]. To that end, for each data point we computed
the acceleration in the frame of the velocity vector. All the results are
plotted in Figure 2.6a, as a function of the speed v. It is clear that a⊥
fluctuates around 0, while a‖ has a decreasing tendency. The mean and
root-mean-square deviation (RMSD) of a⊥ and a‖ are shown in Figure
2.6b. It confirms that 〈a⊥〉 = 0, meaning that the cells are not chiral (ie
they turn with equal probabilities to the left or to the right). Conversely,
〈a‖〉 decreases linearly with v. Some would see it as an argument in
favour of an OU-like process – because it is consistent with the ‘drag’
term −γv in the acceleration. On the contrary, in an ABP-like model,
one expects that:

a = v̇e‖ +
√
2Drηe⊥ ⇒ 〈a‖〉 = 〈v̇〉 (2.23)

In particular, if v = 〈v0〉 is constant, a‖ should be 0. Yet, this is a
naive view that ignores the discrete aspect of the data. In that case,
the measured acceleration is ai = (vi+1 − vi)/δt, which has a non-zero
parallel component a‖ = v0(1−cos δθ) in the frame of vi, where δθ is the
turning angle. Therefore this non-zero 〈a‖〉 does not rule out an ABP-
like behaviour. By contrast, it is clear that the noise amplitude is not
constant and anisotropic, showing again that the Ornstein-Uhlenbeck
process is not sufficient to account for the whole dynamics of AX2’s
trajectories.
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Figure 2.6: Acceleration statistics.
(a) Scatter plot of a‖ (green) and a⊥ (red) as a function of v (∼ 3× 106

points in each scatter). (b) 〈a‖〉 (green), 〈a⊥〉 (red), and RMSD of a‖
(blue) and a⊥ (purple) as a function of v.

4 Sampling effects and measurement noise:
insight from simulations

4.1 Simple active Brownian particles

Contrary to “numerical experiments” in which any precision can be
reached, real experiments yield data that have finite time and space
resolution. The time resolution is defined by the time lapse. In theory,
it could be reduced a lot as we use the camera far from its maximum
frequency. Actually, it would not improve the data, due to the limited
space resolution. The latter is inherent in the system: it is at least equal
to the pixel size in the case of our detection based on the maxima, and
even with contour detection the cell’s deformations make that the small
displacements of the center of mass are not really related to net displace-
ments of the whole cell. We simulated trajectories of active Brownian
particles to study the resolution effects on the measurements.

Apparent speed. The problem of the apparent speed have been tack-
led in some details recently for correlated random walks with exponen-
tially distributed ballistic steps at constant speed v0 [80]. In this case,
during a particular sampling interval, either the particle turn or not. In
the second case, the speed is accurately measured by v = Δx/δt, where
Δt is the particle’s net displacement and δt is the sampling time. On the
other hand, if the particle has turned during the interval, Δx < v0δt,
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Figure 2.7: Apparent speed at various sampling rates.
(a) 〈v〉 as a function of the sampling time δt. (b) Distribution of the
measured v for various sampling intervals: δt = τp/5 (blue), τp (red)
and 5τp (green).

and so v is underestimated. In the case of continuously turning particles,
such as ABPs, this happens during at every sampling interval.

We simulated ABPs moving at v0 = 1 – the space can be rescaled – and
with persistence τp with small time steps τp/1000. Then, the data were
discretised by measuring the displacements with varying time interval
δt. The plot of the averaged measured speed 〈v〉 shows that it decreases
with the sampling interval (Fig. 2.7a). Yet, when δt < τp, which usually
experimentalists try to achieve, the induced error remains limited, with
an approximatively linear decrease towards v(δt = τp) � 0.85v0. The
distributions of v for various δt illustrate this in more detail (Fig. 2.7b).
Thus, at small δt, the distribution is highly asymmetric and concentrated
close to 1. Then it spreads towards 0 with decreasing asymmetry, and
when δt > τp, there is a significant probability to measure any speed
between 0 and v0, the particle’s actual speed. However, when δt < τp,
event without a difference of an order of magnitude, the speed measure-
ments are quite reliable (see for instance Fig. 2.7b, blue histogram).

Apparent speed: pixelation effect and positional noise. Now,
considering a finite discretisation size δx, a natural speed scale δv =
δx/δt appears. It characterises the slowest speed one can detect given
the experimental resolution. It results in displacements smaller than
δx during δt being either counted as 0, or as δx, hence making an
overestimation of the speed possible (Fig. 2.8a).
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Figure 2.8: Positional impreci-
sion and apparent speed.
(a) 〈v〉 as a function of the sam-
pling time δt for various pixel
sizes δx. (b) 〈v〉 as a function
of δt in presence of positional
Gaussian noise but in continu-
ous space, for various noise vari-
ances ξ2. (c) 〈v〉 as a function
of δt with various noises of vari-
ance ξ2 and pixel size δx = v0δt

5 .

To mimic positional noise, we added an uncorrelated Gaussian noise with
variance ξ2 to the initial continuous-space positions. When ξ approaches
v0δt, it results in a dramatic increase of the measured v (Fig. 2.8b). Now,
taking a pixel size so that δv = v0/5 rescues partly this overestimation.
Note that in the experiments, typically δx = 1.63 μm and δt = 1min
(Chapter 3) or δx = 0.65 μm and δt = 20 s (Chapter 4), so that
δx/(v0δt) ≈ 0.2−0.5. The positional noise ξ is of the order of δx as well
(which would not be the case e.g. with stage noise).

To conclude, space and time discretisation of the data affects the mea-
surement of v in a way that produces a ∼ 10% error in the experimental
conditions. Uncorrelated positional noise would have a much stronger
effect. However, it must be stressed out that we only considered uncor-
related positional noise. In the case of maximum brightness detection for
instance, the fluctuations in detected position are related to the defor-
mations of the cell, which are more likely correlated. As a consequence,
to subsequent positions will be in average less distant than if the noise
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were completely random.
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Figure 2.9: Direction measure-
ment accuracy.
(a) 〈cos(θ − θ0〉 as a function of
the sampling time δt for various
pixel sizes δx. (b) 〈cos(θ − θ0〉
as a function of δt in presence
of positional Gaussian noise but
in continuous space, for various
noise variances ξ2. (c) 〈cos(θ −
θ0〉 as a function of δt with var-
ious noises of variance ξ2 and
pixel size δx = v0δt

5 .

Directional accuracy. Measuring the velocity direction with good
accuracy is also fundamental to estimate quantities such as the persis-
tence. We did the same analysis of the effect of spatial imprecisions
(resolution and noise) on the measured angle θ with respect to the ac-
tual angle θ0. The plots of 〈cos(θ − θ0)〉 (Fig. 2.9) show that, once
again, the pixelation yield a reasonable error on the direction, whereas
uncorrelated noise has a more drastic effect. This time, though, the ac-
curacy lost because of noise is not rescued by spatial discretisation (Fig.
2.9c). However for ξ = 0.2v0δt it is still reasonable, and even a higher
error could be overcome by taking an average, as we will see with the
correlation function.

Velocity autocorrelation function. We used the same framework
to analyse the resolution effects on the correlation function. The time
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Figure 2.10: Effect of the sampling time on the correlation function.
(a) Autocorrelation function (VDACF) computed for various δt. (b)
Persistence time, measured from an exponential fit of the VACF (red
circles) or VDACF (blue plus) as a function of sampling time δt.

interval has only a slight effect on the shape of the correlation function,
provided δt < τp again (Fig. 2.10a). When the correlation function
is fitted with an exponential to measure τp, the obtained value τmes

increases approximately linearly with δt (Fig. 2.10b), and at δt > τp the
effect is more marked on the VACF than on the VDACF. At δt = τp,
τmes = 1.38τp using the VACF, and τmes = 1.30τp using the VDACF,
and the overestimation is about 10% for δt = τp/5, which is close to our
typical work conditions.

The pixelation is not too harmful to the correlation function, even if at
very large pixel sizes discrete effects start appearing (Fig. 2.11a). The
addition of noise is more problematic. As shown in Figure 2.11b, the
correlation drops out at t = δt. The rest of the curve, for t > δt is well
fitted by an exponential, which it does not tend to 1 any more but to
φ. We measured systematically τ and φ by fitting the autocorrelation
function with the expression C(t) = φ exp(− t

τ ), for pixelised data with
various pixel sizes, or noisy data with various noise amplitudes and a
fixed pixel size δx = v0δt/5. The results are shown in Figures 2.11c–d.
While τ is quite well retrieved, φ becomes much smaller than 1 when ξ
approaches v0δt. This is because this noise adds a fast relaxing mode in
the directional persistence. Noisy data without pixelation yield similar
results as those presented here (data not shown), so that it is really an
effect of noise, and pixelation does not affect the measurements a lot.
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Figure 2.11: Effect of spatial resolution on the correlation function.
(a) Correlation function (VDACF) computed for various pixel sizes δx
– δt = τp/5. (b) Correlation function computed for various noise ampli-
tudes ξ – δx = 0.5v0δt, δt = τp/5. (c) Normalised measured values of τ
as a function of δt for various pixel sizes δx (circles) or various noise
amplitudes ξ (asters, same colour code as the circles, with δx = 0.2v0δt).
(d) Measured values of φ, the prefactor of the autocorrelation, as a func-
tion of δt for various pixel sizes δx (circles) or various noise amplitudes
ξ (asters, with δx = 0.2v0δt).

4.2 Bimodal motion
As we have seen in Section 3.3, the velocity autocorrelation function
of AX2 cells are best fitted with the function:

C(t) = φ1e
− t

τ1 + φ2e
− t

τ2 (2.24)

with φ1 + φ2 < 1. Moreover, the first three points exhibit the typi-

63



CHAPTER 2. METHODS FOR CELL TRAJECTORY
ANALYSIS 64

cal output of pixelation or positional noise pointed out in the previous
subsection. We can suspect from that that there are at least two differ-
ent time scales in the directional persistence of Dictyostelium cells, and
maybe shorter third one. There are several means to account for these
time scales in a simple model: by integrating correlation in the noise
of a monomodal motion (either OU-like or ABP-like), by building an
OU-like model with memory kernel à la Selmeczi et al., or by postulat-
ing bimodal motion. The last option seemed likely to be the closest to
the actual cell behaviour (see for instance Chapter 3 – Section 2.5 or
Chapter 4 – Sections 3.4 and 4.4). Therefore, we simulated 103 bi-
modal ABPs with the following simplified properties: a “low persistence”
mode 1, with persistence time d−1

1 = D−1
r = 2 min and mean step du-

ration λ−1
1 ; a ballistic mode 2, with persistence time d−1

2 = +∞ and
mean run duration λ−1

2 = ω−1 = 10 min. A particle in mode i switches
to mode j �= i with a rate λi, resulting in an exponential distribution
of step durations. We varied λ−1

1 from 1 min to 200 min (ie from 0.5 to
100 in units of D−1

r ) to cover a wide range of behaviours.
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Figure 2.12: Proportion of time
spent in mode 1, P1, as a func-
tion of the mean step duration in
mode 1 normalised by D−1

r .
Measurements from the simula-
tions (solid red line) and theoret-
ical value (black dashed line).

Recovering the input parameters with good time and space
resolution. First, we measured the proportion P1 of the trajectories
spent in mode 1. It compares well to the theoretical value P1 = ω

ω+λ1

(Fig. 2.12).

Then we computed the velocity autocorrelation function for each of the
simulation and extracted the parameters from a fit C(t) = φ1 exp(− t

τ1
)+

φ2 exp(− t
τ2
). First, we allowed the four parameters to take any value

without any initial guess (Fig. 2.13a-c). Then, we set the starting point
at 0.5 for both φi, 2 min for τ1 and 20 min for τ2 (Fig. 2.13b-d). We
compared the extracted values to their theoretical predictions (see Ap-
pendix A for the detailed expressions). They are quite well recovered,
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Figure 2.13: Parameters of the autocorrelation function.
(a) τ1 (blue) and τ2 (red) measured from the autocorrelation functions
for various λ−1

1 (solid lines), and comparison to theoretical predictions
(dashed lines). (b) τ1 and τ2 measured from the autocorrelation functions
with initial guesses (solid lines) and comparison to theoretical values
(dashed lines). (c) φ1 and φ2, measurements from the free fit (solid)
and theoretical (dashed). (d) φ1 and φ2, measurements from the fit with
initial guess (solid) and theoretical (dashed).

but with increased reliability in the second case.

Because of the various sources of error, it can be a risky to let all the
parameters be set freely by the fitting procedure in the case of exper-
imental data. Although τ1 and τ2 are not strictly equal to 2 min and
10 min respectively, we chose to test the results of the two-parameters fit
C(t) = φ1 exp(− t

2 ) + φ2 exp(− t
10 ). The results are in quite good agree-

ment with the expected values for λ−1
1 > D−1

r (Fig. 2.14). This is not
surprising as τ1 � 2 min and τ2 � 10 min in this range. Conversely, the
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measured φi diverge quite fast from the true values when λ−1
1 < D−1

r .
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Figure 2.14: φ1 (red) and φ2

(blue) extracted from a fit where
τ1 = 2 min and τ2 = 10 min
are constrained (solid lines), and
comparison to theoretical predic-
tions (dashed lines).

Resolution effects on the fit results. We did the same analysis
after discretising the data as in Section 3.4. In particular, as shown
in Figure 2.15, a reasonable sampling up to δt = D−1

r /2 does not affect
much the results. This is also the case for pixelation (Fig. 2.15a-c). By
contrast, again, positional noise introduces a faster decorrelation, hence
a decrease of the measured φi values (Fig. 2.15b-d). Importantly, for
a particular noise amplitude, the ratios φ1/φ

th
1 and φ2/φ

th
2 are equal

and constant. It means for a given source of noise, its influence in the
correlation function does not depend on the details of the trajectory. In
other words, when a “mode 0” is detected, its amplitude φ0 = 1−(φ1+φ2)
should remain constant. If not, it could mean that the “mode 0”, or a
part of it, is intrinsic to the trajectory.
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Figure 2.15: Sensitivity of φ to spatial resolution.
(a) φ1/φ

th
1 for δt = 0.1D−1

r (circles), 0.2D−1
r (squares) and 0.5D−1

r (tri-
angles) and various pixel sizes δx. (b) φ1/φ
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5 Conclusions
Cell trajectories are a quite simple observable that can be obtained with-
out the need for sophisticated imaging. They characterise the cells’ mo-
tion, and result from the interplay of intracellular noisy dynamics and
environmental cues. As a result, they exhibit the properties of correlated
random walks, in particular in the long time limit. At short time scales,
however, they fall outside the scope of the classical simple models.

In particular, we have demonstrated in this thesis that the velocity au-
tocorrelation function of our Dictyostelium cells exhibit not one but two
different relaxation times. To be able to interpret the associated mea-
surements in a reasoned way, we calibrated them on the simplest model
that includes smooth direction changes, namely the ABP model. We
quantified the effects or discretisation of the data and of random posi-
tional error for monomodal and bimodal ABP trajectories. We found
that despite an error introduced by these biases, the speed is quite accu-
rately estimated in the experimental conditions. By contrast, the veloc-
ity autocorrelation function, or rather the VDACF which we focus on in
the experimental data analysis, is strongly affected by the spatial biases:
it is only usable from the point at 2δt, and introduces an apparent “mode
0” that decorrelates faster than δt. Yet, the amplitude of this mode 0
remains essentially constant as long as its source does: it means that the
measured relative amplitudes of modes 1 and 2 (the real, more slowly
relaxing modes) are reliable, and even that changes in the observed am-
plitude of mode 0 could be ascribed to the inherent dynamics of the cell
itself.

We also tackled the problem of trajectory segmentation by bimodal anal-
ysis (see Appendix B), looking for a scheme that would allow distin-
guishing between high and low persistence portions of trajectories. We
described such a process, but found that the punctual mode allocation
errors that occur from it could destroy the distribution of step durations,
hence complicating any further analysis and making its results unreliable
as such, at least to trace back the underlying statistics of step durations.
A method based on Bayesian inference, recently proposed by Metzner et
al. [64] and that mention also in Appendix B, seems promising in the
view of measuring an “instantaneous” persistence time, but it also needs
more development.

Therefore, in the current state of our knowledge, we can measure the
cells’ speed and diffusion constant with good accuracy. We can esti-
mate the relative amounts of persistence modes in the trajectories by
extracting φ1 and φ2 from the VDACF, using a two-exponential fit with
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fixed time-constants τ1 and τ2 (at 2 and 10 min respectively). The CME
computed at various time lags Δt allows us to estimate the persistence
without integrating long portions of many trajectories: it can be used
at a more instantaneous and local scale, but it does not relate rigorously
and quantitatively to the underlying persistence time. Last, as far as we
can judge, bimodal analysis is still too biased to provide additional reli-
able information on the statistics of cell trajectories (see Appendix B).
In Chapters 3 and 4, we use this framework extensively to characterise
the collective regulation of the motility in Dictyostelium discoideum cells.

————————————————————————
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3. Regulation of the cell motility
by a secreted “Quorum Sensing Factor”

In this chapter, we report on the experimental study of a "Quorum
Sensing Factor" (QSF) that is secreted by D.d. cells and regulates their
motility. The existence of such a factor was demonstrated previously in
Laurent Golé’s PhD thesis for DH1 cells. Here, we extended the study to
the AX2 strain, which we focus more on in the present work, and started
deciphering the nature and mode of action of the QSF. In particular, we
showed that it is a secreted amphiphilic molecule of molecular weight
∼ 10 kDa, which is not charged in experimental conditions and with
no dominant proteinic part. We also studied the non-linear response of
the cells to the QSF concentration, and could thus indirectly measure
its secretion dynamics. We found that it is negatively regulated with
saturation, which could be a surprisingly robust way for the cells to
compute the cell density. Then, we explored some possible signalling
pathways for the response to the QSF, demonstrating the involvement
of receptor-bound complexes but not of the cAMP pathway. Lastly,
we looked in more detail at the effect of QSF on the cell trajectories’
properties and on the single cell dynamics.
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1 Introduction
In Section 4 of the introduction part, we saw how important the abil-
ity to sense the others at a distance is, for individuals in a group. The
quorum-sensing (QS) systems provide such ability to cell populations.
First described in bacteria, they consist in molecules, termed "Quorum-
Sensing Factors" (QSF) that are both secreted in the environment and
detected by the cells [81]. The concentration of such QSF thus increases
with the cell number or density, allowing the group to react accordingly.
Most of the known QSF act to regulate the cell proliferation in bac-
teria, fungi [82] and amœba [83], but also in higher eukaryotes. Such
mechanisms could be at stake e.g. in tumour dormancy [20] or fibrosis
diseases [11].

Quorum-sensing in Dictyostelium discoideum. Several QS sys-
tems have been observed in D.d., which provides a good model for this,
thanks to its both rich and quite simple life-cycle. When they grow
on bacteria, D.d. cells secrete a glycoprotein called prestarvation factor
(PSF), at a constant rate [83]. The comparison of PSF concentration
to bacteria number leads to a prestarvation behaviour when the food
supply becomes insufficient [84]: the proliferation stops and early de-
velopmental genes that prepare the cells for aggregation start being ex-
pressed [85, 86]. Importantly, PSF has never been observed in axenic
growth conditions. Upon starvation, the cells secrete another glycopro-
tein named Conditioned Medium Factor (CMF), which, together with
PSF, triggers aggregation by potentiating cAMP emission and detec-
tion [87, 88]. During late aggregation, counting factors (CF) control the
aggregate size through the regulation of motility and adhesion [89].

Another QS system for D.d. in nutrient-rich conditions has been studied
in the last decade [9, 11]. It is constituted of two main secreted proteins,
AprA and CfaD that have two effects. First, they inhibit the growth
by lowering both the proliferation rate and the carrying capacity [11].
Then, AprA acts as an autocrine chemorepellant, for which activity CfaD
is also needed [22].

During his PhD, Laurent Golé discovered a novel type of QSF in veg-
etative DH1 cells [18]. He showed that such a factor, secreted during
the growth in HL5 medium, was responsible for a substantial density-
dependent decrease of the cell motility. This effect is unambiguously
detectable from the average diffusion constant taken over at least hun-
dred cells, although the individual values are widely distributed. He
gathered data from many experiments of different kinds:
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• "medium aging": evolution of the motility over time, while the
QSF is continuously secreted;

• "conditioned medium": measurement of cell motility in a medium
where cultured cells were previously allowed to grow and secrete
QSF;

• "medium perfusion": the QSF was rinsed out by a continuous flow
of fresh HL5 medium (FM).

Assuming a constant secretion rate α and rapid homogenisation of the
medium, he was able to compute the QSF concentration c up to a factor
α with a very simple kinetics model. The plot of the diffusion constant
D versus the concentration c shows a quite acceptable collapse of all
data onto an empirical master curve (Fig. 3.1) whose equation writes:

D(c) = D0

(
1 +m exp(− c

c0
)

)
. (3.1)

Here, D0 is the cells’ diffusion constant in pure HCM, mD0 is the diffu-
sion constant in pure FM and c0 is a sensitivity threshold for the QSF
concentration.

To our knowledge, such a regulation of the motility through a secreted
QSF had not been reported before. We decided to pursue the study
in order to better understand the chemical nature and the mode of ac-
tion of this unknown QSF. Before we present our results, let us intro-
duce the very simple and systematic approach that we adopted. All
the experiments in this chapter are motility assays that follow the same
protocol. We prepared home-made plastic wells stuck on a 1 mm-thick,
ethanol-washed glass slide (90◦ground edges, precleaned, plain, Marien-
feld GmbH, Germany). After UV sterilisation of the sample, 800 μL of
cell suspension at 5.7× 103 mL−1 were deposited in each well, to reach
a surface density of ∼ 2× 103 cm−2. The cells were allowed to sediment
and adhere for 45 min in the incubator before medium change and imag-
ing for at least 100 min by low-magnification defocused microscopy (3X
or 4X magnification depending on the experiments, and δt � 1 min).
The principle of most of the experiments, with the notable exception of
those of section 5 of the present chapter, was to measure the average
diffusion constant D in various test conditions, and to compare it to the
control values in both fresh and highly conditioned medium (FM and
HCM respectively).
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Figure 3.1: Dictyostelium cells secrete an unknown chemical factor that
regulates its motility (from [18]).
An empirical relation was found between the calculated concentration
Nf/α of this putative QSF and the diffusion constant D of the cells.

Depending on the context, three different quantities that all measure the
amount of QSF activity may be used. The most obvious is the raw value
of D. Yet the relative diffusion constant defined as R = D

Dref
, where

the reference taken is most often the value of D in FM, denoted DFM ,
has some advantages over it: first, it spares the display of DFM , which
in most cases does not present much interest by itself; then it allows an
easy comparison of situations with different basal motility, namely DFM .
This can happen e.g. when different strains are compared, due to the
reference medium, or just by chance. Indeed, we observed the general
trend that a poorer medium leads to a general increase of the motility, as
a smooth transition between nutrient-rich and starved conditions. Fur-
thermore, we sometimes observed surprising changes of DFM between
experiments, usually spaced in time but also rarely inside a single se-
ries of experiments. This effect, although known from the Dictyostelium
community, remains unexplained. However, the QSF response is robust
to it, so we will not elaborate much on this topic. A typical value for
the relative diffusion constant R in HCM is in the 0.3 – 0.4 range. Last,
the QSF activity A, defined as
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A =
DFM −D

DFM −DHCM
(3.2)

allows a rigorous comparison of intermediate D values from different ex-
periments, provided the reference FM (fresh medium) and HCM (highly
conditioned medium) used are the same. It varies from 0 in FM to 1
in HCM, with possible negative values due to fluctuations around DFM

in absence of QSF, and A > 1 if the reference HCM is not conditioned
enough. It is mostly used in section 3, to quantify the cellular response
to varying concentrations of QSF.

Preliminary experiments. First, as this thesis’ main model is the
AX2 strain, we extended L. Golé’s main result to these cells: using HCM
made from both DH1 and AX2 cells, we showed that the QSF effect is
shared by the two strains – as it is also with the JH8 strain (see section
4). Interestingly, the relative diffusion constant seems independent from
the basal strain’s motility: thus, in this experiment, AX2 cells were
more motile than DH1, but the ratio R is the same for both strains.
More importantly, the QSF seems not to be strain specific: we did not
test compatibility of HCM from AX2 on DH1 cells and reciprocally, but
as shown in section 4, HCM prepared with an AX2 culture exhibits a
normal QSF effect on JH8 cells, which are very similar to DH1.

After these preliminary experiments, we looked in more detail into the
properties of the QSF. Firstly, we characterised the biochemical prop-
erties of the QSF. Secondly, we analysed the response function of the
cells and their secretion dynamics. Thirdly, we explored some possible
signalling pathways of the cellular response to the QSF. Lastly, we stud-
ied the effect of the QSF on the cell trajectories and on the cell shape
dynamics to better understand its mode of action.

2 Biochemical characterisation of the QSF

2.1 Estimation of the molecular weight by ultrafil-
tration

To start with a rough characterisation of the QSF, we conducted ul-
trafiltration experiments. In these, the media were filtrated through
nanoporous membranes (Vivaspin, Sartorius Gmbh, Germany) by means
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Figure 3.2: Comparison of the motility and the QSF response of AX2
and DH1 cell lines.
(a) D for AX2 (left) and DH1 (right) cells in FM (light gray) and HCM
(dark gray). AX2 cells appear more motile than DH1 cells. (b) Relative
diffusion constant R in both strains: despite their different motilities,
the two strains exhibit the same ratio, hence they respond similarly to
the QSF.
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Figure 3.3: Typical trajectories of AX2 cells.
Trajectories of AX2 cells in (a) FM and (b) HCM. They do not look
qualitatively very different, but they are more contracted in HCM (NB:
the scales are different). The origins of the trajectories have been put on
a regular array for the sake of clarity.

of centrifugation at 6000g, resulting in the separation of a filtrate fraction
containing only the molecules smaller than the membrane’s molecular
weight cut-off (MWCO) and a concentrate fraction, containing all the
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initial constituents but with those of molecular weight higher than the
MWCO concentrated up to a factor 10. Hereafter, we will use subscripts
following the medium name to denote these fractions. For instance,
HCMc:FMf refers to a mixture of concentrate of HCM and filtrate of
FM. Unless otherwise specified, the concentration factor is 10, and so
one volume of concentrate is mixed in 9 volumes of filtrate to recover
the initial concentrations of species (Fig. 3.4).

Figure 3.4: Principle of the ultrafiltration and blends.
Starting from HCM where large blue and small black molecules have been
secreted, we arrive at HCMc with concentrated blue molecules and the
same concentration of black molecules, and HCMf with no blue molecule
and the same concentration of black molecules as initially. When these
fractions are blended with the complementary fraction from FM, one gets
HCMc:FMf with conserved blue activity but decreased black activity; and
FMc:HCMf with conserved black activity but lost blue activity.

The QSF is a secreted factor of large molecular weight. First,
using a 3 kDa MWCO, we confirmed that the QSF is actually secreted
and that its main constituent is larger than 3 kDa. As shown in Fig-
ure 3.5, the ultrafiltration procedure does not bias the measurement.
We made “reconstituted" rFM and rHCM, respectively FMc:FMf and
HCMc:HCMf. These are just a reassembly of both separated phases of
the same medium, and they yield results that are very similar to those of
the original media. Only in rFM is the motility slightly increased with
respect to FM. This is likely because some molecules are trapped on the
ultrafiltration membrane. Yet this does not affect the results greatly,
and in particular the response to the QSF is conserved.
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Figure 3.5: Ultrafiltration results.
(a) D in various media, for a 3 kDa MWCO. A: FM, B: rFM, C:
FMc:HCMf, D:HCMc:FMf, E: rHCM, F: HCM. (b) D in various me-
dia, for a 3 kDa MWCO. A: FM, B: FMc:FM, C: HCMc:FM, D: HCM.
(c) Relative diffusion constant R as a function of QSF dilution, either
by diluting HCM in FM (blue) or HCMc in FMc (mixed at 10% in FMf,
red), for a 3 kDa MWCO (d) QSF relative diffusion constant as a func-
tion of the cut-off size (HCMc:HCMf=rFM). There is a clear cross-over
at MWCO � 50 103Da.

Now, using FMc:HCMf and HCMc:FMf we found that most of the QSF
activity is contained in the HCMc fraction. This means that the QSF
is actually a large secreted molecule. Indeed, there are four differ-
ent options: it can be (i) a small depleted molecule, (ii) a small se-
creted molecule, (iii) a large depleted molecule, or (iv) a large secreted
molecule. Cases (i) and (ii) are ruled out by the experiment in Figure
3.5a: a small depleted molecule would be rescued in condition D by the
presence of FMf, whereas a small secreted molecule would be absent in
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D but present in C, leading to converse results. Case (iii) is ruled out
by the experiment with full FM (Fig. 3.5b), as a large depleted molecule
would be rescued in condition C by the presence of a large amount of
FM (and likely also in condition C of Fig. 3.5). Then, case (iv) – large
secreted molecule – is compatible with all the results: the QSF present
in the HCM is suppressed from the HCMf by the filtration, but it is
concentrated in HCMc (Fig. 3.5a, bars C–D and 3.5b, bar C).

We ran a dilution experiment (Fig. 3.5c), which confirms these results.
Here, we classically diluted HCM in FM on one hand. On the other hand,
we diluted HCMc in FMc so that the HCMc:FMc ratios correspond to
the HCM:FM ratio. Then the HCMc:FMc mix was diluted in FMf in a
1:9 ratio, so that the final concentrations of QSF in the simple HCM:FM
mixture and in the HCMc:FMc:FMf mixture was the same. At a given
QSF dilution φ, both yield a similar relative diffusion constant showing
that both methods lead to the same QSF concentrations, and again that
QSF is completely contained in the HCMc fraction.

Notice that the QSF response is not completely recovered in HCMc:FMf,
with A = 0.77 (Fig. 3.5a, bar D and 3.5c). That may mean that a factor
of small molecular weight is needed to completely activate the main QSF
part with M > 3 kDa.

Estimation of the size of the QSF. To estimate the size of the
QSF, we re-did the ultrafiltration experiment with varying MWCO. We
found (3.5c) that around 50 kDa, the QSF activity switches from HCMc
to HCMf. This means that MQSF ∼ 50 – 100 kDa. The largest MWCO
for which full response is kept in HCMc is 30 kDa.

Note that we have used the molecular weight as the measurement of the
QSF size, as it is the information provided by the manufacturer. Yet,
the real parameter of the membrane is their pore radius, which should
so correspond to the Stokes radius of the filtrated species. The MWCO
are given for proteins, for which it relates with the Stokes radius as
Rglob ∼ M

1
3

glob. For linear polymers in contrast, the relation is Rlin ∼
M

1
2

lin. Thus, if the QSF was a linear polymer and not a globular protein,
its actual molecular weight would be Mlin = f.MWCO

2
3 , where f is

a numerical factor computed from the graph in Figure 3.6, and in that
case, MQSF ∼ 10 – 30 kDa.
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Figure 3.6: Correspondance of MWCO to Stoke’s radius and linear
polymer molecular weight (from www.millipore.com). A MWCO of
50 kDa corresponds roughly to a molecular weight Mlin = 10 kDa for a
linear polymer.

2.2 Biochemical characterisation

To get closer to identify the QSF, we ran a series of tests to uncover
its chemical properties. The molecular weight estimated in the previous
subsection is characteristic of proteins, but some carbohydrate polymers
can also reach such – quite big – size. Other candidates could be gly-
coproteins or proteoglycanes, which are combinations of proteins and
sugars, non-covalent aggregates of smaller molecules, or even, although
less likely, lipids or nucleic acids.

The QSF is depleted by phenol-chloroform extraction. HCM
and FM were subjected to the following treatment:

(i) 20X concentration through a 30 kDa MWCO;
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(ii) extraction by a phenol-chloroform mixture;

(iii) two additional extractions with chloroform only to eliminate the
phenol dissolved in the aqueous phase;

(iv) 10X dilution in ultra-pure water;

(v) 20X concentration through a 3 kDa MWCO;

(vi) 40X dilution of the remaining in non-treated FM.

The phenol-chloroform extraction is a classical liquid-liquid extraction
technique to purify nucleic acid samples. Indeed, the phenol acts by de-
naturing the spatial structure of the polymers in the solution, then the
amphiphilic ones migrate to the organic-aqueous interface where they
form a precipitate. The extracted molecules include almost all the pro-
teins, but also some carbohydrate polymers and some lipids. DNA is
not extracted in neutral or slightly alkaline conditions (pH ∼ 7 – 8), but
it is in acidic conditions such as in our experiment (maximum efficiency
at pH = 4.8, the phenol-chloroform solution used being at pH = 4.1 –
4.5). The highly negatively charged RNA molecules always remain in
the aqueous phase.

Further extraction with chloroform only aims at reducing the residual
concentration of phenol in the aqueous phase. Yet, while the residual
phenol may be at a low enough concentration for molecular biology ap-
plications, it was still enough to affect our experiments on cells: cells
were either killed, or they just greatly slowed down with better removed
phenol. This is the reason for steps (i), (iv) and (v). Then the remain-
ing medium was very poor, for most of the proteins and carbohydrate
polymers had been depleted, so we diluted it in FM to recover "usual
medium richness", hence normal DFM value.

The results presented in figure 3.7 show that this extraction removed
the QSF from the HCMc, while it was still active in the control HCMc
only subjected to the concentration-dilution-concentration cycle. This
confirms what was much expected from the estimated molecular weight,
namely that the QSF is an amphiphilic large molecule, such as a protein,
a carbohydrate or even a lipid aggregate but not an RNA molecule.

The QSF is not degraded by the proteinase K. The proteinase K
is an enzyme that digests the proteins by cutting the peptide bonds next
to the carboxylic group of hydrophobic and aromatic amino-acids. In
other words, it degrades proteins with a broad range and huge efficiency.
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Figure 3.7: QSF stability to phenol-chloroform extraction.
A: control media, R = DHCM

DFM
where HCM and FM were not treated.

B: control that the successive concentration/dilution steps do not affect
the result. Both FM and HCM were concentrated 20X, diluted 10X, con-
centrated 20X media, and then diluted 40X in FM.
C: test condition. The media were subjected to the same treatment as
in B, with in addition one phenol-chloroform, then two chloroform-only,
extractions after the first concentration step.
The red circles correspond to an experiment with 10 times more con-
centrated treated fraction (last dilution step in B and C, 4X instead of
40X).

Were the QSF to be a protein, treating HCM with proteinase K would
very likely suppress the QSF activity.

The usual concentration range for proteinase K is from 10 to 100 μg.mL−1,
with maximum efficiency at 37◦C, and it is inactivated above 65◦C.
As a consequence, in a first experiment, media were incubated with
10 μg.mL−1 proteinase K (Sigma-Aldrich GmbH, Germany) at 37◦C for
2 h, then heated at 65◦C for 20 min. In a second one, the concentration
was increased to 100 μg.mL−1 and the proteinase K was eliminated by
concentration through a 30 kDa MWCO membrane. Indeed the pro-
teinase K’s molecular weight is about 28 kDa.

Neither of the two experiments shows any effect of the treatment by
proteinase K on the QSF response. It means that the latter is not likely
to be a protein (Fig. 3.8).

The QSF is not charged at experimental pH. FM and HCM were
treated with ion exchange resins to eliminate the charged species. As in
the previous paragraph, we would expect the QSF response to disappear
if the QSF was charged. The cation resin has no effect on motility either
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Figure 3.8: QSF stability to moderate heat and protease treatment.
(a) Relative diffusion constant R = DHCM

DFM
in A: control media, B: con-

trol for the heat cycle. The media were incubated for 2 h at 37◦C, then
for 20 min at 65◦C, C: protease test. Same as B with proteinase K at
10 μg.mL−1.
(b) QSF response R = DHCM

DFM
in A: control media, B: control for the

incubation/filtration steps. The media were incubated for 2 h at 37◦C,
then ultra-filtrated through a 30 kDa MWCO and mixed in FMf, C: test
condition. Same as B with proteinase K at 100 μg.mL−1.

in FM or in HCM. The anion resin clearly depletes both media of many
nutrient, hence yielding increased values for D (Fig. 3.9a). While in
simple anion-depleted media R is slightly decreased, in an experiment
aiming at complementing the media in nutrients, the full response is
recovered (Fig. 3.9b).

It means that the QSF has a low affinity with the resines, hence that it
is likely uncharged at pH= 6.2− 6.4.

Taken together, all these characterisation results demonstrate that the
QSF is an amphiphilic, uncharged molecule of high molecular weight.
If any, its amino-acid part is not predominant as shown by the insen-
sitivity to treatment by the proteinase K and the ion-exchange resins,
as peptide sequences are most often charged. The remaining potential
candidates include carbohydrate polymers and proteoglycanes among
the most probable ones, or even lipid aggregates. In the former case,
the QSF would be a linear polymer of molecular weight MQSF ∼ 10
– 30 kDa, while in the case of an aggregate it could reach the globular
weight of MQSF ∼ 50 – 100 kDa.
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Figure 3.9: QSF activity is not sensitive to ionic exchange resine treat-
ment.
(a) Relative diffusion constant R. A: R = DHCM

DFM
, B: R =

DHCMa

DFMa
, C:

R =
DHCMcat

DFMcat
, where the cat (resp. a) subscript denotes treatment with

a cation (resp. anion) exchange resine.
(b) Relative diffusion constant R = D

Dref
. The ’ref ’ media are FM (A,

B) or FMa:FM (C, D) and the test medium is HCM (A), HCM:FM
(B), HCM:FMa (C), HCMa:FM (D). All mixtures are in 1:1 volume
proportions.

3 Cell response and secretion dynamics
During his thesis, Laurent Golé found that the cell response to the QSF
was concentration-dependent, and that, for DH1 cells, the response func-
tion was correctly fitted by the following expression (equation 3.1):

D(c) = D0

(
1 +m exp(− c

c0
)

)
,

with D0 = 2 μm2.min−1, m ∼ 4 – 5 and c0/α = 3 × 106cm2.min−1,
assuming that α, the rate of QSF secretion, is constant. Note that, in
this work, the concentrations were measured in cm−2 to match with the
surface density of cells. Here, we prefer working with volume concentra-
tion in mL−1, which is equivalent for a constant medium height and fast
homogenisation.

In biological systems, the production and the secretion of chemical fac-
tors by the cells are usually under the control of a regulatory network,
so that a constant α value is not a very standard situation. To test
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these previous findings, we built up our reasoning on the following basic
arguments:

D = D(c) (3.3)
ċ = α(p)n(t). (3.4)

Equation 3.3 just states that, irrespective of other environmental cues,
the cell motility only depends on the QSF concentration c. Equation 3.4
describes the secretion dynamics, where n(t) is the cell concentration at
time t. Here we assume a homogeneous surface distribution of the cells
and a constant medium height, together with rapid homogenisation of
the QSF concentration on this height. The secretion rate depends on
a collection of parameters p through the QSF’s particular regulatory
network. The simplest situation is when α = α(c) because it involves no
other intermediate factor.

Indirect measurement of the QSF secretion. To trace back both
the response and secretion dynamics, we followed this procedure:

(i) A set of homogeneous cell cultures was prepared at the same initial
cell density n0 = 3× 103 cm−2;

(ii) The conditioned media from these dishes were harvested at 10 dif-
ferent times ranging from 4 to 80 hours;

(iii) For each of this conditioned media, the cells’ diffusion constant was
measured at various dilutions in FM, together with a control in FM and
a control in a reference HCM.

For each of the conditioned media, we obtain a D(φ) plot, where φ =
V

V+VFM
is the volume fraction of the tested medium. Thanks to the

two controls, we could convert them into a set of A(φ) plots using the
definition 3.2 to overcome the issue of inter-experiment fluctuations.

The leading idea is that if equation 3.3 is true, then all the curves should
collapse onto a single one by the homothety A = A(φ.c(T )) where c(T )
is the QSF concentration of the medium harvested at time T (Fig. 3.10).

For T < 22 h, no QSF activity is measured, even at φ = 1 (no dilution).
For T > 22 h, we get A functions that increase with φ, a later T yielding
a steeper increase, with an apparent upper bound at A = 1. To collapse
the data, we used L. Golé’s empiric response function 3.1, which worked

86



CHAPTER 3. REGULATION OF THE CELL MOTILITY BY A
SECRETED “QUORUM SENSING FACTOR” 87

0 0.5 1
0

0.2

0.4

0.6

0.8

1

φ

R

φT

(a)

0 2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

1

φ

φT

A T = 28 h

T = 32.75 h

T = 45.75 h

T = 54 h

T = 70 h

T = 79.75 h

(b)

0 20 40 60 80
0

2

4

6

8

10

T (min)

c
/
c
0

(c)

Figure 3.10: Indirect measure-
ment of the QSF concentration.
(a) Activity as a function of
the dilution for the media har-
vested at T = 79.75 h. We de-
duce the value of φT from a fit
with A(φ) = 1−exp(−φ/φT )(b)
Collapse of the activities as a
function of φ/φT for media col-
lected at various culture times
T .(c) Normalised QSF concen-
tration in the conditioned media
(c(T )/c0 = 1/φT ), as a func-
tion of the culture time T .

very satisfactorily. Notice that in terms of activity, this function has the
advantage of having one single parameter, the QSF response threshold
c0. Indeed:

A(c) =
DFM −D(c)

DFM −DHCM

=
D0.(1 +m)−D0.(1 +m exp(−c/c0))

D0.(1 +m)−D0

= 1− exp

(
− c

c0

)
. (3.5)
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Now, in terms of dilution φ, which is our work variable, rather than in
terms of concentration, which is yet to be determined, we get:

A(c) = 1− exp

(
− c

c0

)

= 1− exp

(
−φ.c(T )

c0

)

= 1− exp

(
− φ

φT

)
. (3.6)

The fitting parameter being φT = c0
c(T ) , we then get the QSF concentra-

tion at various times T up to a factor: c(T ) ∼ 1
φT

.

The results of these measurements are displayed in figure figure 3.10b.
The QSF concentration seems to saturate, for c(70 h) � c(80 h). Clearly,
this cannot be accounted for by a constant secretion rate α. More pre-
cisely, it appears that α decreases in time. To estimate its evolution,
we assumed it constant between two consecutive data-points. In that
approximation, the secretion dynamics can be solved for each time win-
dow, knowing that the cell proliferation that was measured in parallel
has an exponential behaviour (Fig. 3.11a), as expected:

n(t) = n02
t
t2 , (3.7)

with a doubling time t2 = 8.5± 0.3 h.

Then, equation 3.4 yields, where αi denotes the average α value between
Ti−1 and Ti:

∫ c(Ti)

c(Ti−1)

dc = αi

∫ Ti

Ti−1

n(t)dt

⇒ c(Ti)− c(Ti−1) = αi
n0t2
ln 2

(
2

Ti−1
t2 − 2

Ti
t2

)

⇔ αi =
ln 2 [c(Ti)− c(Ti−1)]

t2 [n(Ti)− n(Ti−1)]
. (3.8)
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Figure 3.11: (a) Cell proliferation, as measured from pictures of the cul-
ture dishes (red squares) or manual count with a Malassez slide (blue cir-
cles). The grey line is an exponential fit with t2 = 8.5 h. (b) Normalised
secretion rate computed from c(T ) and n(T ) as a function of T . (c) Nor-
malised secretion rate as a function of c. The solid line is a linear fit,
while the dashed lines illustrate the parameter variability (limit cases that
include all the error bars). The fit yields α0

c0
= 1.7× 10−6 mL.h−1 and

cm
c0

= 8.0 while the extreme intervals are α0

c0
∈ [1.0 – 3.5]× 10−6 mL.h−1

and cm
c0

∈ [7.5 – 8.0].

The computed values of αi are plotted against those of ci in figure 3.11c.
It shows that the data are compatible with a decreasing α(c) relationship,
with a fixed point at c = cm. The simplest possible shape for this
relationship, which seems quite reasonable, is an affine one:

α(c) = α0

(
1− c

cm

)
. (3.9)
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This yields a linear secretion equation that can again be solved analyti-
cally:

dc

α0

(
1− c

cm

) = n(t)dt. (3.10)

The right-hand side is the same as before, hence by integration:

∫ t

0

n(t)dt =
n0t2
ln 2

(
2

t
t2 − 1

)
. (3.11)

To integrate the left-hand side, we use the change of variable u = cm− c
to get:

cm
α0

∫ c(t)

0

dc′

cm − c′
=

cm
α0

∫ cm

cm−c(t)

du

u

=
cm
α0

[ln(cm)− ln (cm − c(t))] . (3.12)

Equating both integrated sides of 3.10, we obtain:

c(t) = cm − exp

[
ln(cm)− α0n0t2

cm ln 2

(
2

t
t2 − 1

)]

= cm

(
1− exp

[
−α0n0t2
cm ln 2

(
2

t
t2 − 1

)])
. (3.13)

Using this expression with α0

c0
= 1.7× 10−6 mL.h−1 and c

c0
= 8.0 fits

our measurements very correctly. To confirm this finding of a negative
feedback on the QSF secretion, we did the same experiment as before,
starting from two different cell densities: n1 = 6 × 104 mL−1 and n2 =
3 × 105 mL−1. In the case of constant α, the QSF concentration at
a given t should be respectively twenty and one hundred times higher
than in the previous experiments with n0 = 3× 103 mL−1, whereas our

90



CHAPTER 3. REGULATION OF THE CELL MOTILITY BY A
SECRETED “QUORUM SENSING FACTOR” 91

linearly decreasing α(c) would yield values of c next to the saturation
for the harvest times T = 12, 18, 24, and 36 h.

This second experiment was done with less accuracy than the previous
one – one realisation for each condition instead of three – and more
importantly, the reference HCM was not the same as before. Yet, the
A(φ) curves allowed to retrieve again c(t) up to a factor c0. As expected
they seem close to a saturation value cm, but cm seems a priori different
from that of the previous experiment (Fig. 3.12). However, using a
different reference HCM could have been misleading for the estimation
of c0, hence of cm. Rescaling α0 so that α0

cm
= 2.2× 10−7 mL.h−1 is the

same for both experiments makes both sets of data compatible through
the use of 3.13.
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Figure 3.12: Comparison of the analytical results to the experiments.
(a) Normalised QSF concentration as a function of time for three differ-
ent initial cell densities: n0 = 3× 103 mL−1 (blue), n0 = 6× 104 mL−1

(green) and n0 = 3× 105 mL−1 (red). The dashed lines are plots of
the expression 3.13 with the parameter values from figure 3.11 (b) Nor-
malised QSF concentration as a function of n for three n0. The dashed
lines are plots of the expression 3.14

A robust self-counting system. When it comes to measuring the
current cell density, the drawback of a constantly secreted counting factor
is that its concentration is the integral of the cell density. In other words,
it results from the accumulation of factor both in the present and in the
past, hence being not only dependent on the current cell density, but also
very sensitive to the precise history of the cell population. As such, it is
not an efficient system to estimate the cell density. Having a feedback on
the secretion dynamics could possibly solve this issue, and we wanted to
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test how much the linearly decreasing α(c) that we found could improve
this.

Using the expressions 3.7 and 3.13, we computed both the cell density
n(t) and the QSF concentration c(t), starting from various initial cell
densities. The results displayed in figure 3.13 show that c(n) does not
depend much on the initial condition for n � n0. In particular, in this
approximation, c(n) rewrites:

c = cm

(
1− exp

[
− α0t2
cm ln 2

(n(t)− n0)

])
(3.14)

≈ cm

(
1− exp

[
− α0t2
cm ln 2

n

])
. (3.15)

This appears to be an efficient cell counting mechanism. Indeed, al-
though its range is not very broad – c equals either 0 or cm for almost
all cell densities – it is not sensitive to past history, and it may allow
to selectively detect cell densities around n∗ = cm ln 2

α0t2
, as illustrated in

Figure 3.13. Indeed, c reaches 63% of its saturation value at n = n∗, and
95% at n � 3n∗. Interestingly, the obtained value of n∗ = 3.7×105 mL−1

is close to the maximum value that is empirically recommended for Dic-
tyostelium cultures.
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Figure 3.13: Theoretical QSF concentration using expression 3.14 as
a function of n for various initial cell densities from 1× 102 mL−1 to
1× 106 mL−1. The vertical dashed line is located at n = n∗.

Thus, using measurements of the QSF activity in dilutions of various
conditioned media with respect to a reference FM and a reference HCM,
we first showed that the empirical expression (3.1), originally proposed

92



CHAPTER 3. REGULATION OF THE CELL MOTILITY BY A
SECRETED “QUORUM SENSING FACTOR” 93

to account for the QSF response of DH1 cells, describes well the cellular
response to the QSF concentration, even in AX2 cells. Then, taking
advantage of this robust response function, we could retrieve the value
of the QSF concentration in all those conditioned media with a single
parameter α

cm
, up to a factor. We found that the secretion rate is not

constant, but that the QSF concentration rather exhibits a saturation
value cm. Our data are compatible with a linearly decreasing secretion
rate, which allows the analytical calculation of the QSF concentration
in time. This may constitute a robust quorum-sensing system with high
selectivity in cell density. Generally speaking, such a mechanism could
be used to perform any function that should be triggered by a given cell
density, the latter being set by the respective values of the cells’ doubling
time, the secretion rate and the saturation concentration.

4 A journey into response pathways
In order for the QSF concentration to be translated in terms of motil-
ity, cells have to process the signal through a mechanism called the re-
sponse pathway, or signalisation cascade. It consists in a series of molec-
ular steps of various natures: chemical intermediaries such as proteins,
RNAs, nucleotides, lipids, carbohydrates or other small molecules can
be activated, deactivated, produced or destroyed by catalysis, chemical
or structural modifications.

In order for the signal to cross the membrane, the QSF can be either
bound by a membrane receptor or internalised by endocytosis for in-
stance. Then the signal is processed through the cascade, which can be
linear but can also involve many ramifications and feedback loops, to
finally activate a response that can be of three major natures:

(i) genetic regulation: the signal is imported into the nucleus where it
acts to regulate the transcription of a gene into mRNA;

(ii) translational regulation: the signal acts to regulate the translation
of a mRNA into a protein;

(iii) direct regulation: the signal directly acts on the phenotypic activity
– e.g. on the acto-myosin activity in the case of motility.

This cascade is very important for two main reasons: firstly, it defines
molecules that are more or less important for the response to happen. For
instance, if a protein constitutes a bottleneck in the response pathway,
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a mutant that does not express it will not exhibit any response to the
QSF. Secondly, the response function and secretion feedback that we
studied mathematically in the previous section depend completely on its
spatio-temporal dynamics.

As a consequence, we conducted a series of experiment aiming at de-
termining whether some proteins were involved in the QSF signalisation
pathway, so as to sketch its contours.

Figure 3.14: Dictyostelium’s signalling pathways (from [90]).
The three main paths are known as the “phosphate pathway” (top left),
which involves in particular the PhosphoLipase C (PlC) under the con-
trol of a G-protein complex, the “calcium pathway” and the “cAMP path-
way”. The latter is related to external signals through receptor-binding
G-proteins that activate the Adenylate Cyclase A (ACA). The latter in-
duces the production of cAMP, which regulates its production by trigger-
ing a feedback loop initiated by the Protein Kinase A (PKA).

94



CHAPTER 3. REGULATION OF THE CELL MOTILITY BY A
SECRETED “QUORUM SENSING FACTOR” 95

4.1 Involvement of receptor-binding G-protein sub-
units

First we wanted to ascertain how the cells sense the QSF. In most cases
it is realised by transmembrane receptor proteins or protein complexes,
which change conformation upon ligand binding, hence initiating a sig-
nalisation cascade inside the cytoplasm.

Dictyostelium discoideum has many receptors, some of which are not well
characterised or does not have a null mutant. Thus, trying to find di-
rectly the receptor would have been quite hazardous. Yet, Dictyostelium
posses an interesting receptor-bound G-protein complex, which consti-
tutes a kind of bottleneck for many receptor-mediated signalling path-
ways (Fig. 3.14). This complex is made up of three subunits, called
Gα, Gβ and Gγ– also called gpa, gpb and gpg in theDictyostelium sys-
tematic notation. While Gα has 12 identified variants, Gβ has only two
and Gγ only one. We could test only a subset of these proteins, as
all null mutants were not available from the Dicty stock center (http:
//www.dictybase.org/), a NIH ruled institute that maintains all refer-
enced Dictyostelium strains.

We measured the diffusion constant of null mutants of these G-protein
subunits to determine whether they were involved or not. A first exper-
iment with Gβ1− cells showed that in this strain, the relative diffusion
constant R is quite close to 1 (Fig. 3.15) . Doing again this experiment
(Fig. 3.16a), we found again a partial suppression of the response, with
surprisingly spread values of R this time. This advocates the idea that
the response is mediated by a G-protein-binding membrane receptor, but
that Gβ1 can be bypassed in some way.
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Figure 3.15: Involve-
ment of a receptor-
binding G-protein
complex.
QSF response for vari-
ous Gα and Gβ knock-
out cells. Gα4− and
Gβ1− cells exhibit a
very limited response to
the QSF – ie relative
diffusion constant R
close to 1.
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Then, we tested the motility of a series of mutants of various Gα subunits:
Gα2−, Gα5− and Gα8− mutants were found to respond normally to the
QSF, while Gα4− cells did not (Fig. 3.15). The last strain stemmed
from the JH8 strain, which we also tested in a second experiment (Fig.
3.16b). The result is that the parental strain JH8 has a low motility
compared to AX2, but that the response to the QSF – secreted by AX2
cells – is still observed with a similar R. In contrast, JH8-Gα4− cells
have a similar motility as JH8 in FM, but they keep the same motility
in HCM (R � 1), hence not responding to the QSF.

From these results, we conclude that the response to the QSF is medi-
ated by a membrane receptor and involves a receptor-binding G-protein
complex, where the Gα4 subunit is essential for the response and the
Gβ1 subunit is involved but dispensable.
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Figure 3.16: Repeat of the experiment with the identified G-protein sub-
units.
(a) Relative diffusion constant R for control AX2 cells and DH1-Gβ1−
cells. Mean and standard deviation from two colour-coded series of 3 or
6 independent experiments. The disks show the individual results from
all independent experiments, which exhibit a wide spreading in the case
of Gβ1- cells with both usual and notably higher than usual values of R.
(b)Relative diffusion constant for control AX2, JH8 and JH8-Gα4− cells
in a second series of experiments. The Gα4− cells do not respond to the
QSF while the parental JH8 cells do.

4.2 The role of cyclic AMP and known signalling
pathways.

A well-known secreted molecule that acts to regulate the motility of
Dictyostelium discoideum cells is the cyclic adenosine monophosphate
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(hereafter simply called cAMP). This cyclic nucleotide is secreted in
a pulsatile manner upon starvation, which gives rise to concentration
waves through signal relay and cAMP consumption, and is eventually
responsible for the cell streaming and aggregation. It acts on the motility
of starved cells both by polarising the cells in the direction of the wave’s
source – or alternatively upwards in a simple cAMP gradient – and by
increasing their migration activity. Moreover, it does not only play a role
as a secreted molecule, but also as a cytoplasmic signal, which makes its
homoeostasis quite complicated, given that external and internal cAMP
have different functions.

External cAMP. First, we tested whether cAMP could act as an
external messenger in the QSF regulation, either that it be the QSF
itself – although it is very unlikely given the biochemical characterisation
results, cAMP is a too important secreted signal in Dictyostelium to
afford not to test it – or an interfering co-messenger.

To that end, we measured the QSF response of AX2 cells in FM supple-
mented with various concentrations of cAMP (see Fig. 3.17a) or HCM
treated in the same way (Fig. 3.17b). It is quite clear that over a wide
range of cAMP concentrations, which correspond either to the physio-
logical one or those used in vitro, e.g. for chemotaxis assays, cAMP has
no influence on the cells’ diffusion constant, and especially it does not
modify the relative diffusion constant R.
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Figure 3.17: Adding cAMP in the medium does not affect the cells’ motil-
ity.
(a) Relative diffusion constant R for cAMP supplemented FM at various
concentrations [cAMP ] and control in pure HCM. (b) Relative diffusion
constant R for HCM supplemented with various concentrations [cAMP ].
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Internal cAMP. Then, to check whether an internal production of
cAMP could be involved in the response to the QSF, we used the cAMP
analogue 8-Br-cAMP. When it is present in the medium, this molecule
is internalised, contrary to cAMP, and it activates the same targets as
cAMP. Therefore, adding some 8-Br-cAMP in the medium is similar to
forcing the production of cytoplasmic cAMP. Would the addition of 8-Br-
cAMP in HCM suppress the QSF response, it would mean that internal
cAMP does so, and so lead to the hypothesis that in the presence of
QSF, the internal cAMP production is inhibited. On the contrary, a
significant decrease of D upon supplementation of FM with 8-Br-cAMP
could mean that the QSF promotes the production of cAMP.

Looking at D for AX2 cells in FM with or without 8-Br-cAMP, and R
for the same cells in HCM submitted to the same treatment, this in-
ternal cAMP analogue seems to have very little, if not no effect (Fig.
3.18a,b). Yet it is known that 8-Br-cAMP takes about 30 – 45 min to
penetrate the cells’ cytoplasm and activate the pathway. Considering
shorter trajectories that starts at t = 45 min does not change the results
a lot – though the obtained values of D are slightly lower, since we get
closer to the persistence time. Looking at the evolution of D over hours
for one longer experiments confirms that 8-Br-cAMP has no effect on
HCM. It seems to have some effect on FM after a time, but it is hard to
conclude, firstly because the effect is not very strong, but more impor-
tantly because it is not monotonous with the 8-Br-cAMP concentration
(see Fig. 3.18c).

From these two series of experiments, we conclude that neither external
nor internal cAMP seem to play a fundamental role in the QSF regulation
of the cellular motion. In what follows, we explore further the cAMP
signalling pathway, together with other classical ones.

4.3 A trip to hot spots of Dictyostelium’s signalling.
Indeed, as we stated above, cAMP behaves not only a secreted messenger
but it also plays a role in intracellular signalisation, through the so-called
cAMP pathway, which involves the activation of ACA by a Gαβγ com-
plex and a subsequent production of cAMP. This in turn activates PKA
through the release of the PKAC subunit, which introduces a negative
feedback by inhibiting both the Gαβγ complex and the cAMP produc-
tion by ACA, while favouring the cAMP hydrolyse by RegA under the
negative control of ERK2 (see Figure 3.14).

Two other major pathways that are linked to the regulation of the motil-
ity in Dictyostelium are the calcium pathway and the phosphate pathway
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Figure 3.18: Effect of internal
cAMP stimulation.
(a) Diffusion constant of AX2 cells
in FM supplemented with 8-Br-
cAMP at different concentrations.
(b) Relative diffusion constant R =
DHCM

DFM
of AX2 cells in HCM and

FM supplemented with 8-Br-cAMP
at different concentration (the same
concentration both in FM and HCM
for each point). (c) Time evolution
of D in FM (solid lines) and HCM
(dashed lines) with 0, 5 and 10 mM
of 8-Br-cAMP (resp. black up
triangles, brown circles and ochre
squares).

(Fig. 3.14). Superoxide signalling is also known to be necessary for the
early multicellular development phase of starved Dictyotselium cells [91].
The last was evoked in the introduction section: it is the AprA regulatory
system, which involves the co-secreted protein CfaD, the receptor bind-
ing Gα8 protein and the cytoplasmic kinase QkgA for both its activities,
namely the regulation of the proliferation and chemorepulsion [11, 22].

In the present section, we explore these various pathways by studying
the QSF response of mutants that lack important intermediaries of these
pathways.

AprA. We first checked whether the QSF was AprA itself. To that
end, we measured the response of aprA− mutants to the QSF, and

99



CHAPTER 3. REGULATION OF THE CELL MOTILITY BY A
SECRETED “QUORUM SENSING FACTOR” 100

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

t (h)

D
(μ

m
2
.m

in
−
1
)

FM

HCM-aprA−

HCM

(a)

0 2 4 6 8 10 12
0

5

10

15

20

t (h)

D
(μ

m
2
.m

in
−
1
)

FM

HCM-aprA−

HCM

(b)

AX2 plcBsr plcNeo
0

0.2

0.4

0.6

0.8

1

R

acaA− sodA++ qkgA−

(c)

AX2 (pkaC):pkaC
0

0.2

0.4

0.6

0.8

1

acaA−

R

(d)
Figure 3.19: Response of various mutants to the QSF.
(a) Time evolution of D for AX2 cells in FM (blue), HCM (red) and
HCM made by aprA− cells (green). The conditioning of the FM with
time is clear, as well as the initial conditioning of HCM even in the
absence of AprA. (b) Time evolution of D for AX2-aprA− cells. The
media are the same as in (a). It is clear that aprA− cells respond to
the QSF in both HCM, and that they condition the FM with time. (c)
Relative diffusion constant R of various mutants. The response looks
weaker but not suppressed in acaA− and (act15):sodA cells (see main
text for more details). (d) Relative diffusion constant R of acaA− and
(pkaC):pkaC) cells in a later experiments. Both strains respond to the
QSF, even though the response is decreased, with widespread values, in
the case of the faster (pkaC):pkaC cells. Red circles denote the values
obtained from individual independent experiments.

showed that aprA− are perfectly able to self condition their medium
(Fig. 3.19b). We also measured the response of wild-type cells to HCM
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made from aprA− cultures (Fig. 3.19a), HCM from AX2 treated with
an anti-AprA antibody, and FM supplemented with recombinant AprA
(rAprA), kindly contributed by Richard Gomer (Department of Biology,
Texas A&M University). All these experiments suggest that AprA is
not the searched QSF, even though a slight decrease of the motility is
induced in a certain range of rAprA concentrations.

QkgA. The ROCO kinase QkgA is necessary for both activities of
secreted AprA. Consistently with the results on AprA, it is not involved
in the QSF response, as shown in Figure 3.19c.

AcaA. The adenylate cyclase of aggregation stage, or adenylyl cyclase
AcaA is responsible for the production of cAMP, under the control of
G-protein complexes. In a first experiment (Fig. 3.19c), acaA− cells
seemed to exhibit R values closer to 1, while in a more recent one (Fig.
3.19d) it was not the case. However, these results are very hard to
interpret correctly as in both cases a substantial fraction of cells did not
adhere to the substrate.

PkaC. The catalytic subunit of protein kinase A PkaC introduces a
negative feedback in the cAMP pathway: indeed, it is activated by the
cAMP, but it provokes a decrease of the cAMP concentration both by
down-regulating its production and by promoting its hydrolysis by RegA.
AX2 cells that over-express PkaC, noted (pkaC) : pkaC cells, exhibit an
increased D both in FM and in HCM. This is quite unexpected, as a
higher level of PkaC lowers intracellular cAMP, which should decrease
the motility.

However, there is still a response to the QSF, which is more relevant to
the present work, even though it is reduced, confirming that the cAMP
pathway might well slightly interfere with the QSF response (Fig. 3.19d).

Plc. The phosphoinositide-specific phospholipase C, noted Plc or alter-
natively PipA, intervenes in the phosphate pathway and it is especially
necessary for normal chemotaxis. We checked that two different plc−

knock-outs responded normally to the QSF, showing that this pathway
is likely not involved in the QSF regulation of the motility (Fig. 3.19c)

SodA. Lastly, we measured the response of (act15):sodA cells that
overexpress the superoxide dismutase, which catalyses the dismutation

101



CHAPTER 3. REGULATION OF THE CELL MOTILITY BY A
SECRETED “QUORUM SENSING FACTOR” 102

of superoxide ions, hence reducing the concentration of free radicals.
Superoxide signalling has been shown to be important in chemotaxis,
with SodA overexpression leading to the suppression of aggregation for
instance [91].

0 200 400 600 800 1000
0

200

400

600

800

1000

x (μm)

y
(
μ
m
)

(a)

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

x (μm)
y

(
μ
m
)

(b)

Figure 3.20: (act15):sodA cells exhibit smooth trajectories.
Trajectories of (a) AX2 and (b) (act15):sodA cells in FM. The origins of
the trajectories have been put on a regular array for the sake of clarity.
Warning: the scales in (a) and (b) are different.

In our experiments, (act15):sodA cells exhibit a reduced response to
the QSF (Fig. 3.19c). However, they also have a particularly high
diffusion constant, and their trajectories look very dissimilar from all
the other one: they are much smoother both in FM and HCM (Fig.
3.20). From that, we hypothesise that SodA overexpression disturbs the
motility by an other means than the QSF. Although it would probably
be very interesting to look further into these particular trajectories, or
alternatively to take advantage of them as a parameter button in other
experiments, this pathway does not appear to be relevant to the QSF
regulatory system.

4.4 Summary
We started addressing the issue of the signalling pathway involved in
the response to the QSF. We found that the response is mediated by
receptor-binding G-protein subunits. In particular, the Gα4 subunit,
previously shown to be involved in folate chemotaxis and morphogene-
sis [92, 93], is necessary for the response.

Then we stepped into the main signalling pathways of Dictyostelium
discoideum (Fig. 3.14). The AprA/CfaD system does not seem to be
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involved, as well as the phosphate path. Superoxide signalling interferes
with the response to the QSF but the motility of SodA over-expressing
cells is too different from the wild-type to draw a definitive conclusion
from this experiment. Last, the cAMP pathway, which is so fundamental
in Dictyosetlium’s motility, is apparently not directly involved. However,
PkaC over-expressing cells show a reduced response. Whether it is due
to actual involvement of PkaC in the QSF response or not, again remains
unclear, but this way should not be abandoned right away as the MAP
kinase Erk2, closely related to PkaC, is known to interact with the Gα4
subunit [93].

5 How does the QSF affect single trajecto-
ries?

Even though, in terms of signalling, the cellular response to the QSF
remains elusive to that point, we can make use of the rich trajectory
data that we have to study the response at the scale of single cells’
motion.

In his previous work on DH1 cells [18], Laurent Golé claimed that the
regulation was made at the level of the persistence time, with a “con-
stant speed” emerging from the linear relation between D and P , the
persistence time extracted from a fit of MSD(δt) using the Fürth for-
mula. However, we have seen that this formula may not apply well to the
considered trajectories, and especially to measure the persistence time
in the case of DH1 cells that exhibit a short-time negative correlation.
Moreover, this assertion was not supported by any measurement of the
speed, even though we have seen that it might not be well-defined.

In this section, we start tackling this issue based on the numerous data
obtained from the FM and HCM controls of 156 experiments of this
chapter, with a total of 25,858 trajectories in FM and 28,056 trajectories
in HCM.

Variability in the diffusion constant. Let us first draw a general
picture of the dataset that we have. It consists of 156 sets of trajectories
of cells in FM, and the corresponding ones from cells in HCM recorded
in the same experiment. This last point is very important, to the extent
that it allows us to distinguish the effects of inter-experimental variability
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due to environmental or cell-culture-related non-controlled parameters,
from those actually stemming from the presence of QSF.
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Figure 3.21: Overview of the diffusion constants in the dataset.
(a) Distribution of D in FM (red) and HCM (blue). The solid lines
are Gaussian fits. (b) A linear relation between DFM and DHCM looks
realistic, validating the use of the relative diffusion constant R as a mea-
sure of the QSF response. (c) Distribution of R (bars) and prediction if
DFM and DHCM were uncorrelated (blue line). The red (resp. green)
disks show six realisations of the distribution of 156 computed R from
simulated D values (resp. experimental, decoupled D values).

During these experiments, that have been done between May and De-
cember 2015, we could observe a certain variability in what we call the
“basal” cell motility, namely the value of D in FM. It leads to notably
spread values of D both in FM and HCM (see 3.21 ), which form almost
a continuum from 2 to 20 μm2.min−1. Their respective distribution
are correctly fitted by normal laws with DFM = 11 ± 3 μm2.min and
DHCM = 4± 1 μm2.min respectively, where the figures before and after
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the ‘±’ are the mean and the standard deviation. Yet, DFM and DHCM

are quite correlated. Indeed, we find a correlation value of Corr = 0.6,
where the correlation is defined as

Corr(X,Y ) =
Cov(X,Y )√

V ar(X).V ar(Y )
. (3.16)

We computed the relative diffusion constant R and found that it is dis-
tributed according to Fig. 3.21. In particular, its mean and standard
deviation yield R = 0.34± 0.08. We checked further this correlation by
contrapositive. To that end, we assumed that DFM and DHCM were
distributed normally with their measured mean and standard deviation,
but uncorrelated. In that case, the distribution of R should be a compli-
cated function (see [94]). Instead of computing directly this function, we
generated 106 uncorrelated couples of random values following the dis-
tributions of DFM and DHCM , then computed their ratio. The obtained
Rsim variable is distributed around a similar average as the experimen-
tal one, 〈Rsim〉 = 0.37, but the tails are broader (Fig. 3.21c) due to
the lack of correlations. This is not a low-number artefact, as shown
by the distribution of R computed from the experimental values, and
decorrelated by muddling up randomly the values of DHCM , which is
fairly similar to the theoretic, uncorrelated one (Fig. 3.21c).

This is a first illustration of the exogenous variability that differs from
the endogenous, QSF-caused, effects.

Density is not a control parameter. Of course, other exogenous
parameters could play a role, and it is important to rule out the main
observable one: the cell number. Despite our efforts to keep the cell
density constant, the actual cell number varied from less than 100 to
more than 300. Interestingly, the relation NFM ∼ NHCM is quite well
verified (Fig. 3.22a), which reduces the variability on the NFM

NHCM
ratio,

hence on the intra-experimental variability caused by this parameter, if
ever. Moreover, it is quite clear from the D vs N plot (3.22b) that in
these very dilute situations, the cell density has a negligible effect on the
motility.

The speed is neither a constant, nor the only affected parame-
ter. Then we checked whether the hypothesis of constant speed held in
our experiments. The answer is clearly no: D appears to be a function
of v, and one could even reasonably assume a linear relation between v2
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Figure 3.22: D is not correlated to the cell number in dilute conditions.
(a) NFM versus NHCM : the variations seem to be more inter-
experimental than intra-experimental. (b) D is not correlated with N .

and D. Remember that in the simple CRW model in 2D, such a relation
exists:

D =
v2τ

2
, (3.17)

where τ is the persistence time. Should this kind of relation hold in
our more complex case, and should the QSF act only on the cell speed,
then we should get R = DHCM

DFM
=

v2
HCM

v2
FM

. In other words, the relative
diffusion constant should be accounted by the relative squared speed
R2

v =
v2
HCM

v2
FM

. It is not the case and R is only loosely correlated to
R2

v – with Corr(R,R2
v) = 0.2 (scatter not shown). Furthermore, the

relative squared speed R2
v is higher than the relative diffusion constant:

R2
v = 0.56 ± 0.20 > R = 0.34 ± 0.08. It means that a part of the

regulation of D by the QSF is not accounted for by its action on the cell
speed. According to 3.17 or its suitable analogue, the persistence of the
movement should also be affected, as first claimed by Golé et al. [18].

Velocity autocorrelations. To study the evolution of persistence in
these experiments, we computed the velocity auto-correlation function,
defined as:

C(δt) = 〈 v(t+ δt).v(t)

‖v(t+ δt)‖.‖v(t)‖〉. (3.18)
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Figure 3.23: (a) D is quite correlated to v2 both in FM (red) and in
HCM (blue). (b) D is well predicted by equation 3.20.

As detailed in Chapter 2 of the present manuscript, in the case of
simple correlated random walk, this function decays exponentially with
a characteristic time τ called the persistence time, which is the τ used
in relation 3.17. It corresponds to the time over which, in average, the
cell loses memory of its previous direction of motion. Our data are best
fitted with a sum of two exponentials:

C(δt) = φ1 exp(− δt

τ1
) + φ2 exp(− δt

τ2
). (3.19)

Because φ1 + φ2 �= 1, this highlights the existence of three different
relaxation times, and hence three modes of migration coexisting in the
population: a fast relaxation with persistence time lower than the frame
rate δt = 20 s which can be at least partly due to pixelation or positional
noise, an intermediate persistence τ1 and a larger persistence τ2. Their
proportions in the population are φ0 = 1−φ1−φ2, φ1 and φ2 respectively.

Given the number of parameters, it seems more reasonable to set two
of them to fix values in order to obtain valuable insight from the two
free ones. We found that keeping τ1 ∈ [1; 3] min and τ2 ≥ 7.5 min yields
both a good fit of the data and reproducible behaviours for φ1 and φ2.

Up to some assumptions – exponential distributions for the times spent
in each respective mode is a sufficient condition for instance [77] – the
analogue to equation 3.17 in this three-modal situation writes:
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D =
v2(φ0τ0 + φ1τ1 + φ2τ2)

2

≈ v2(φ1τ1 + φ2τ2)

2
, if τ0 � 0. (3.20)

Plotting D vs the approximated right-hand-side of 3.20 shows the re-
markably good accuracy of that prediction (Fig. 3.23b). To compare,
the values of D computed with a single relaxation time (but still a φ < 1)
are quite under-estimated, even though they correlate well to the actual
measurements.
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Figure 3.24: Regulation of the persistence modes φi and relation to v.
(a) φ0 exhibits a strong negative correlation to v. (b) φ1 is positively
correlated to v. (c) The φ2 values in FM and HCM are well distinct.
However, in each of the clouds, there seems to be no correlation of φ2

with v. (d) Distribution of φ2 in FM (light gray) and HCM (dark gray).
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The three ‘φs’ are correlated with D and v when all the data are con-
sidered (see Table 3.1 and Fig. 3.24). These correlations are reduced
when the data in FM and in HCM are separated, suggesting that a part
of the correlation is due to QSF-related variations of all the parameters.
Strikingly, though, the correlations are even more strongly destroyed in
the case of φ2 (Table 3.1 and Fig. 3.24). It could mean that φ2 is
regulated by the QSF in a way that is independent of the other parame-
ters, and especially the cell speed. It is anyway strongly reduced (three
times on average, Fig. 3.24d), confirming that the QSF acts on the cells’
persistence, by decreasing the occurrence of long-lived polarised motion.
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Corr D v D (FM) D (HCM) v (FM) v (HCM)

φ0 −0.83 −0.76 −0.52 −0.45 −0.37 −0.43

φ1 0.55 0.58 0.30 0.34 0.32 0.41

φ2 0.72 0.53 0.27 0.06 −0.03 −0.17

Table 3.1: Correlation coefficients of the distribution of the φ parame-
ters with D and v, either gathering all the data (first two columns) or
separating FM and HCM data (left columns). The figures in red (resp.
blue) denote significant positive (resp. negative) correlation,

6 Conclusions and perspectives
A few years ago, Laurent Golé discovered the existence of a secreted QSF
that regulated the motility in DH1 cells. Here we extended this finding
to the AX2 cell line, with the ambition of understanding the chemical
nature and the mechanism of action of the QSF. We found out that this
QSF system also exists in AX2, with strikingly conserved properties:
even though the basal – “natural” – motility of AX2 cells is relatively
different from that of DH1 cells, and especially in so that the cells move
faster, the response to the QSF in terms of effective diffusion constant
has the exact same dependency on the QSF concentration.

We could unravel the molecular functioning of this system: it is based on
a secreted amphiphilic and uncharged molecule of high molecular weight,
namely the QSF; this QSF induces a response via G-protein subunits,
particularly Gα4 but also Gβ1; for now, the downstream signalling path-
way remains puzzling. This response manifests itself as a decrease in
both cells’ speed and persistence. Regarding the latter, the regulation is
especially visible in an average 3-fold decrease of φ2, the proportion of
10min persistence in the trajectories. This regulatory system is appar-
ently linked to non-linear intracellular dynamics. Indeed, the motility
decreases exponentially with the concentration towards a low plateau.

At the other end of the chain, the secretion itself undergoes a feedback
that leads to a linear decrease of the secretion rate with the QSF concen-
tration. This results in a surprising behaviour: the QSF concentration c
transitions very fast from a low value to its saturation, in a way that is
essentially independent from the past history of the colony, but rather
induces an almost bijective relation between c and the instantaneous cell
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density. It raises the question of possible other functions of the QSF: as
such, it would seemingly constitute a very robust self-counting system,
with a narrow detection range around a density value that is known to
be a watershed in Dictyostelium culture.

In a nearer future, other experiments will be necessary to complement
the already done work. This is especially true for the uncovering of the
molecular response pathway, which might require a larger scale screening
to find non-responding mutants. The complete biochemical identifica-
tion of the QSF could also take time: a battery of new, more focused
tests, e.g. treatment with periodate which is known to degrade most
carbohydrates, has to be implemented to that aim. In the meanwhile,
there is still room for more physics-based work, particularly on the effect
of the QSF on the protrusion dynamics.

————————————————————————
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4. Spreading of model colonies

This chapter presents an analysis of the spreading of model cell colonies.
To provide an experimental set-up that mimics various complex physio-
logical situations, such as the tumour escape, the ecological spreading or
even some morphogenetic movements, in a very minimal way, we used
a micro-stencil technique to initially locate Dictyostelium cells at a de-
sired density in a disk with controlled diameter. Then, we released this
constraint to let the cells move freely outwards. We relate the macro-
scopic evolution of the colony to the properties of individually tracked
cells. In particular, we dissect the respective effects of proliferation, cell
motility and various kinds of cell-cell interactions. We find that prolifer-
ation is dominant in the long-term behaviour, together with a probable
noticeable overall effect of the QSF which is described in details in the
previous chapter. At short-time, by contrast, short-range interactions
induce a density-dependent speed-up of the spreading. More precisely,
cell-cell contacts seem to increase the persistence of the cell trajectories,
a previously unaccounted effect that we term Contact Enhancement of
Locomotion (CEL). Our analysis of the experimental data is supported
by individual-based models and mean-field partial differential equations
descriptions of the system.
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1 Introduction
The collective regulation of the motility is particularly relevant when
it comes to the following question: how will cells in a place move to
another place? Especially, will the population move as a whole or by
sending isolated scouts ? Will the dynamics of the process be influenced
by the properties of the initial group? Such issues are at play in various
biological situations, inspiring either ecologists (how will some cell pop-
ulation invade its surroundings?), developmental biologists (why should
this group of cells be translocated to that particular place in such a way?)
or oncologists (on what grounds is one tumour more or less invasive?). To
determine the underlying principles of such complex processes, physics
suggests to first try to understand the basic ingredients controlling a
minimal caricature of them. The study of the spreading of patterned
circular colonies of cells seems to fit well this recommendation, all the
more with cells that do not adhere specifically onto each other, which
would add an inopportune particularism.

In the following, we review the current knowledge about cell colony
spreading, in the light of previously realised experimental observations.
We stress out the accepted relative importance of cell proliferation and
motility. Then we focus on already described mechanisms of cell-cell
contact interactions, as we will see they can play a prevailing role. The
next sections present our experimental procedure, the analysis of our ob-
servations, and some insight provided by several modelling approaches.

1.1 Cell colonies: from bacteria to tumor

In the introductory chapter of this thesis, we showed how the cell pro-
liferation can be regulated, leading to changing dynamics. The tempo-
ral dynamics being quite clear, let us now introduce space in a simple
fashion. Early papers on colony spreading, dating back from the 1960s
[95, 96, 97] dealt with the spreading of microbial – mostly bacterial –
colonies. These works did not really consider the matter of motility, but
rather focused on growth-governed and nutrient-diffusion-limited pat-
terns.

Although very simple in their principle, these models based only on pro-
liferation introduce two fundamental features that we always encounter,
even in more complicated situations. These are the concepts doubling
time and peripheral “growing zone”, which almost direct consequences
are an exponential or linear growth of the colony radius. To visualize it,
let us consider the mass increase of a circular 2D colony, or equivalently
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of a cylinder of constant height h. In that view, the mass transport is
implicit and may be forgotten, and the radius of the colony is simply
related to its mass:

M = πR2h ⇔ R =

√
M

πh
. (4.1)

One can then study two simple situations (Fig. 4.1). First, all the
cells proliferate. The dynamics is given by the differential equation 4.2,
yielding an exponential increase of the radius, of which the time constant
is related to the cells’ doubling time 4.3:

dM

dt
= λM ⇒ M = M0e

λt (4.2)

⇒ R = R0e
λt
2 , (4.3)

where M0 and R0 are respectively the initial mass and radius, and λ the
growth rate.

In the second case, suppose that for any reason, only a ring of width W
at the edge is able to proliferate. That can be due to the consumption
of nutrients in the core of the colony, or to a saturation of density in the
central region for instance. Then the dynamics for the mass is given by
the following equation, leading to a linear increase in the colony radius
[95] (see Fig.4.1):

dM

dt
=

d

dt
(πR2.h) = 2πhR

dR

dt
= λ2πWh

⇒ R(t) = R0 +Wλt. (4.4)

We will see later (see next section) that these features are recovered
when motility is explicitly considered, and especially that the notion of
peripheral growing zone can be explain more precisely in that scope.

The interest in the spreading of colonies of cells has risen together with
the growing concerns about cancer. Interestingly enough, some features
of these systems are reminiscent of the periphery versus core discrimi-
nation. For instance, it is known that in non-vascularised tumours, a
necrotic core forms and that the spheroid properties are much affected
by this duality between the inside and the active envelope.
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Figure 4.1: Sketch of the bacterial growth model from [95]: first all the
cells proliferate (top), then only a ring of width W is able to grow. here,
the nutrient concentration is considered as the limiting factor for growth.

Subsequently, huge modelling efforts have been made from the 1980s [98].
From that point, the cell motility has started being taken explicitly into
account in the theoretical descriptions of expanding cell populations.

1.2 The decadence of a too powerful model, or trendy
Fisher waves

The FKPP equation. Knowing the properties of basic ingredients
that can affect the evolution of cell density, namely proliferation and
motility, the next step is to try to write a mean-field model for this
density. The usual way to derive such an equation is to start from a
simple mass conservation equation (where ρ represents the cell density,
j the cell current and λ a ρ-dependent reproduction rate).

∂ρ

∂t
= −∇ · j+ λ(ρ)ρ. (4.5)

Then one needs to write the flux and production terms in terms of the
density to close the equation. For the flux, the simplest way to integrate
a correlated random walk in a field equation is to use the first Fick law
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– ∇ · j = −DΔρ – and hope the persistent aspect is not to important.
Concerning the production, a logistic term appears to be the simplest
form that can account for the known growth dynamics (although one
would prefer keeping things linear, a simple linear proliferation would
produce an unrealistic diverging density). We arrive then at the following
model:

∂ρ

∂t
= DΔρ+ λρ

(
1− ρ

ρ0

)
. (4.6)

This equation was first introduced by Fisher [99] to describe the spread of
a favoured gene in a population, and analytically studied by Kolmogorov
et al. [100]. It is known as the Fisher-Kolmogorov-Petrovskii-Pishkunov
(FKPP) equation and it has been quite deeply reviewed in Murray’s
book [101].

At low densities, it is similar to a simple diffusion equation, with uni-
form exponential growth, since the proliferation term is then simply
linear. Thus, the spreading of a low density colony should obey usual
diffusion laws, like the time square-root increase of the gyration radius.
Depending on the parameters, the density will either increase from the
beginning or first decrease before eventually increasing again. Indeed,
starting with N0 cells in a domain of area A0, the area scales as:

A ∼ A0 + 4Dt, (4.7)

and, provided N0/A0 � ρm, the cell number scales as

N ∼ N0e
λt, (4.8)

and so the cell density is given by

ρ =
N

A
∼ N0e

λt

A0 + 4Dt
. (4.9)

Differentiating with respect to time, one finds that

dρ

dt
� 0 ⇔ λA0 � 4D. (4.10)

If the colony spread fast enough, it can offer enough new area per unit
time for the newly produced cells, so that the density first decreases;
otherwise it increases from the beginning.
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Fisher waves. Then the density approach the carrying capacity. The
behaviour is somehow different, but the density still increases until it
saturates, and the population still spreads out due to the negative gra-
dient. When the density reaches the carrying capacity, starting from
the center, the situation is the following: in the central zone the density
profile is flat, equal to the carrying capacity, and so it remains constant
(no proliferation, no gradient); outside this zone, there is a proliferat-
ing, spreading zone (Fig. 4.2). This situation is very reminiscent of the
peripheral growing rim assumption of the bacterial models reviewed in
the previous section [95].

Figure 4.2: Dynamics of the adimensioned Fisher-Kolomogorov-
Petrovskii-Pishkunov equation in one dimension (from [101]). Starting
from a “spot” (left), the density u spreads out and its integral grows
(center), until it reaches the carrying capacity u = 1 and a wavefront
develops to invade the empty space at speed cmin (right).

It has been shown [101] that in 1D the FKPP-equation admits travelling
wave solutions. Several wave velocities are accessible but the slowest
one, given by c = 2

√
Dλ, is kinetically selected. This wave, whose

shape depends on the parameters, separates a region where the density
is equal to the carrying capacity from another where it is zero, the former
invading the latter. One can guess that this behaviour can map to the
higher dimension radial symmetry situation for large enough radii, giving
rise to a linear increase of the colony radius. Actually, this latter result
is true even for non-negligible curvatures (one can see that from numeric
resolution for instance), and the front wave tends asymptotically to that
of the 1D case (see [98] p444).

Numerical simulations. Therefore, if this equation holds, one should
notice a transition from R ∼ t1/2 to R ∼ t, where R denotes the colony
radius. This transition has been observed in numerical simulations of
randomly moving particles. Dirk Drasdo and his collaborators has pro-
duced a substantial literature [102, 103] about this kind of individual
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based models. Considering hard or soft, disk-like, randomly moving
cells, they obtain results that are quite consistent with the Fisher model.
In particular, they question the size of the proliferating ring with more
individual-based considerations.

In the case of adherent cells, used to model connective monolayers, they
also point out a transition from an initial exponential increase of the
radius to the linear long-time behaviour. This exponential evolution,
instead of square-root, is due to the suppression of free diffusion by the
cell-cell adhesion. Interestingly, this initial exponential spreading has
been recently observed experimentally [44], with some subtle modifica-
tions, for circular colonies of MDCK cells, using a set-up that is very
similar to the one presented in this Chapter.

Experimental works. In the last two decades, in addition to the
work of Marel et al. [44] on islets of MDCK cells (Fig. 4.3a), a few
authors [104, 105, 106, 107, 108, 109, 110, 43] experimentally studied
the spreading of circular colonies of crawling cells, using initial radii
that are notably larger than the ones we use ourselves (Fig. 4.3b). All
of them observe approximately a long-time linear increase of the colony
radius, as predicted by the FKPP equation.

Some of them [104, 105, 106, 107, 108] then went to an analysis of the
critical exponents of the interface growth to try to classify their system
in a known universality class of growing interface, which is quite far from
our present concerns.

Lange et al., as Simpson et al. [43, 110] just took this model for good,
and tried to fit in without examining too much its validity. The latter,
for instance, measured λ and c, the linear spreading rate, to deduce the
cell diffusion constant from the formula c =

√
4λD. Yet they did not

look for any microscopic confirmation of the obtained value. On the
contrary, Lange et al. tracked the single cells and they even quantified
some deviations from the assumptions of the FKPP equation: the cells
on the border are more persistent and preferentially directed outwards
than the cells inside. Their point being not to question this model,
though, they do not stress that out.

Sengers et al. [109] had an opportunity to go further, as they had to
modify the flux term in what they call the “sharp front version” of the
FKPP equation,

∂ρ

∂t
= ∇.(D

ρ

ρmax
∇ρ) + λ.ρ.(1− ρ

ρmax
), (4.11)
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(a)

(b)

Figure 4.3: Examples of previous cell
spots experiments.
(a) Islet of MDCK epithelial cells
(from [44]). Scale bar 100 μm.
(b) Large colony of murine 3T3 fibrob-
lasts (from [110]). Scale bar 1.5 mm.

to fit correctly their experimental density profiles. They claim two possi-
ble origins for this flux expression: random motion with increased speed
in higher density areas, or directed motion proportional to the “gradient
of free space” ∇(1− ρ

ρm
), but they do not support either hypotheses by

cell motility data.

Lastly, Marel et al. [111] also used the Fisher model with a modified flux
expression, in a channel geometry. There, they added a constant drift
flux in Fick’s first law to account for their flux data whose dependence on
the density gradient is very small. Then, they deduced a constant drift
velocity, which is very different in truth, to define a moving frame where
they just fitted their (almost linear) density profiles with an analytic
solution of the FKPP equation (actually, with the almost linear part of
a complicated deformed-sigmoid) to obtain the cells’ division time and
diffusion constant, which, nevertheless, are consistent with microscopic
measurements.

As a conclusion, the Fisher model is the simplest mean-field equation
that one can think of for the density of randomly moving, logistically
growing cells. It has been studied for long and some interesting results
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have been obtained on it. While some of its features are very satisfac-
torily found in individual-based models, as well as in some experimental
observations, it has not really been subjected to experimental assessment
in the field of cell colony spreading, even though some papers [109, 111],
willingly or not, started to point out some contradictions with it, clearing
the start of possible tracks beyond the FKPP paradigm.

1.3 Scope of our experiments

In the previous sections and in Chapter 1, we gave an overview of the
two main processes at stake in the spreading of colonies of motile cells.
We showed that there are solid foundations and a scientific consensus
about the description of cell proliferation with a logistic law, character-
ized by a doubling time and a carrying capacity; similarly, single cell
motion can be described in a quite satisfactory fashion with a persistent
random walk characterized by its speed and persistence time.

Some models, reviewed above in this section, proposed descriptions of
cell population dynamics that takes these mechanisms into account.
Among them, the Fisher model, or FKPP equation is at the same time
simple and quite complete, which granted it a long-lived success. Al-
though some experimental works are consistent with it to some extent,
they still lack a microscopic assessment to confirm its validity in a quan-
titative way.

In particular, it considers no interactions in the motility term. Yet,
it is clear, both from an experimental and a theoretical point of view
(see Chapter 1), that cells interact together and that these interactions
should affect the local motility properties, such their speed or polarisa-
tion.

To check the role of these interactions and the agreement of FKPP-like
models to a comprehensive, coherent, set of experimental data, we de-
signed experiments that allowed us to access the properties of motion
and proliferation in spreading colonies of cells, over a wide range of spa-
tial and temporal scales, with a good control on parameters such as the
cell density, the population geometry and the environmental conditions.

In what follows, we first describe the experimental set-up and analysis
framework. Then the experimental outputs are presented in details.
Last, before we conclude on that part, we introduce some modelling
approaches, in which view we discuss our results.
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2 Methods

2.1 Design of the experiment: prerequisites

The purpose of the experiment is to decipher the roles and regulation of
motility and proliferation in a colony assay. To that end, we decided to
fabricate colonies by the suited patterning technique. We used a stencil
technique that seemed to be the most efficiently implementable at many
scales. This allows us to control the initial shape and dimension, as well
as the cell density, of the experimental colonies.

The radial symmetry was chosen as (i) this is the most stable symmetry
for spreading finite-size systems and it occurs naturally in spreading
colonies [112], (ii) it allows easy conceptual analogies to diffusion for
instance (iii) it allows orthoradial averaging provided the symmetry is
not broken.

The diameter of the colonies was first set to be tunable from 40 μm to
320 μm, allowing to investigate several regimes from two-body to true
multicellular – even though still mesoscopic – assembly, but only 320 μm
was eventually used. This size is large enough to consider a wide range
of cell densities, but small enough (i) for the cell number to remain
reasonable, (ii) to allow the colony to double in area quite fast with cell
motion only, (iii) to explore the transition between initially decreasing
and increasing density due to the interplay of spot spreading and cell
number increase.

We decided to make only one colony per experimental well to ensure the
absence of external cues. To that end it was also important to make
sure that no cell (or just a few of them) settled outside the colony, and
that the medium volume was large enough for the colony not to feel the
sample walls.

To allow a better control of the chemical composition of the medium, we
should also be able to infuse the sample through a fluidic system.

We chose to fabricate micro-stencils made in PDMS after the technique
used by Poujade et al. [113]. Here we describe the sample preparation,
from mould fabrication to cell deposition, and the bases of time-lapse
data analysis. The development of the sample preparation protocol was
made with the collaboration of Peiyuan He, a Master 1 intern under my
supervision, from January to February 2014.
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Figure 4.4: Principle of the stencil technique: the cells are first seeded
on top of a PDMS micro-stencil, then, after they could adhere to the
substrate through the stencil’s holes, the constraint is removed to let the
cells move freely (reproduced from [113]).

2.2 Soft lithography

To make PDMS stencils, we needed a mould. We used standard soft-
lithography processes to fabricate a SU8 mould containing an array of
pillars, whose negative PDMS output would be a membrane with regu-
larly spaced circular holes. The SU8 needed to be thick enough to cross
the entire PDMS layer.

The 2-steps process described here is for an expected height of ∼ 500 μm
for the SU8 pillars (Fig. 4.5). We used also a 160− 170 μm-thick mould
that was made following the same process with only one spin-coating
step.

2.3 Micro-fabrication: from PDMS scrapping to PDMS
spin-coating

The crucial point is to be able to make transverse holes in the PDMS. So
the PDMS layer must be thinner than the SU8 features, which in turn
cannot be more than 500 μm-high as we saw.

We first tried a scrapping device that allows pouring PDMS into a layer
of controlled height. Although imprecise and uneasy to use, this device
was used to make the first stencils. Two different problems occurred at
that point. First, some of the pillars were torn off while peeling off the
stencils from the mould, likely due to an inverse conical shape or just
because they were tilted from the verticality, leading to an obvious non-
durability of the mould, and a difficult tweezers extraction of the pillars
that remained stuck in the PDMS membranes (Fig. 4.6a). Second, at
the cell seeding step, the cell suspension had a hard time getting down
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(a) (b) (c)

(d) (e) (f)
Figure 4.5: Photo-lithography.
(a) Photoresist is deposited and spin-coated on a Si wafer. (b) Then it
is cured by heating. (c) A second layer of photoresist is deposited and
spin-coated on top of the previous one. (d) The second layer is cured. (e)
The photoresist is subjected to UV illumination through a photo-mask.
(f) The patterns are developed in a chemical bath after a postbake.

the 500 μm-high but only 320 μm-wide chimney through the PDMS.

These two considerations together lead us to think about making things
thinner, hence the idea of PDMS spin-coating. This technique had al-
ready been used and documented [114, 115], but its drawback in the
present case is the possibility of wake formation behind the mould’s fea-
tures, leading to non-uniformity of the surface. The feature density being
low on our design, this risk was not too high, though.

We used a 200 μm-high mould for this, with lower aspect ratio, hence
more robust pillars. PDMS (10:1 base:curing agent ratio) was then spin-
coated on this wafer (500 rpm, 10 s, then 800 rpm, 1 min). It resulted
in a 70 μm-thick layer of PDMS pierced by the SU8 pillars (Fig. 4.6c).

After peeling of the PDMS membrane in the shape of individual squares
of 9x9 mm with one single 320 μm-wide hole in the center, a very thin
membrane of PDMS usually remained on top of the hole. We removed
it with the tip of a scalpel under a bright-field microscope at 10X mag-
nification (Fig. 4.6b).
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(a)

(b)

(c)

Figure 4.6: PDMS stencils.
(a) Top view of a PDMS stencil
with a 80 μm-wide hole and a pillar
pulled up from the mould. Scale bar
100 μm. (b) Top view of a PDMS
stencil with a 320 μm-wide hole.
The thin PDMS membrane that ob-
structs the hole is visible. Scale
bar 100 μm. (c) Profilemeter im-
age of the mould (side view). Left:
spin-coated PDMS. Central part:
free mould surface from which the
PDMS has been peeled off. Right:
SU8 320 μm-wide pillar. (Warn-
ing: the scales on the x-axis and
y-axis are different!)

The resulting PDMS squares were stored in plastic dishes closed with
Parafilm M (Pechiney plastic packaging, Chicago, IL) to protect them
from the dust and moisture before use.

2.4 Sample preparation: plasma or not plasma, glass
or plastic, these are the questions. Bonus: the
benefits of vacuum

The exact nature of the sample dish is discussed just below. Let us
picture it as a circular, few-centimeter-sized, transparent experimental
dish. A PDMS square was stuck in the center of each experimental dish
using its natural stickiness, probably helped by electrostatic interactions.
To avoid the deposition of a large amount of cells around the PDMS
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(a) (b)

(c) (d)

Figure 4.7: Sketch of the patterning procedure.
(a) The PDMS stencil topped with a small plastic well is placed on top
of a Petri dish. (b) Cell suspension is deposited into the small well and
the cells sediment (c) Once the cells adhere, the stencil and the well are
removed. (d) The cells can move freely on the Petri dish. NB: the scales
have been modified for clarity.

membrane – since the whole surface of the sample could not be covered
– a home-made well made from a cut micropipette-tip was stuck on top
of the square so that a droplet of liquid put into that well could contact
the sample surface only through the micro-fabricated hole (Fig. 4.7a-b).

We tried glass and plastic surfaces, both untreated or O2-plasma treated.
The best yield was obtained with culture-treated 3.5 cm Petri dishes
(BD-Falcon). Indeed, on the other surfaces, the cells were often detached
during the stencil peeling-off, probably due to aspiration via medium-
entrainment by the chimney walls. Only on the culture-treated dish did
the cells adhere strongly enough to resist it, with a designated peeling
method.

When we changed the cell suspension density, we observed an unex-
pected effect: the less concentrated the cells, the longer it took for the
suspension to descend the chimney and contact the sample surface. This
effect remains mysterious: it might be due to an active modification of
the PDMS wall wetting by the cells, or the facilitation, related to the
presence of cells, of the evacuation of the air bubble that remains in the
hole. An other hypothesis is a fast conditioning of the medium by the
cells, which would lead to a modification of its fluid properties. To get
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rid of this cell-density dependence and make the experiments in similar
conditions for various cell densities, we first dropped 90 μL of culture
medium in the home-made well and put the sample under vacuum for
15 min before cell seeding, allowing the prior evacuation of the air from
the stencil’s hole.

2.5 Cell deposition and stencil peeling off

Cells are seeded in the form of a 60 μL droplet of cell suspension, ranging
from 4 × 105 mL−1 to 4 × 106 mL−1. The resulting cell number in the
320 μm-wide disk scales linearly with that concentration, from ∼ 25 to
∼ 250 cells.

Cells are allowed to sediment and adhere on the substrate for 45 min in
the culture incubator at 22◦C (Fig. 4.7b-c).

To peel off the stencil without detaching the cells from the sample sur-
face, one must first fill the dish with 2 mL of HL5. Then, the joint
between the stencil and the well is cut with a surgical blade and the
surrounding PDMS is removed smoothly. The well is removed smoothly
in turn. Afterwards, the remaining corresponding disk of PDMS can be
removed with care and tweezers. During this last step, the numerous
cells loosely stuck on the PDMS are in direct contact with the medium
and one should take care of not detaching them so that they cannot sed-
iment onto the substrate, outside the patterned colony. Last, the sample
is smoothly washed twice with fresh HL5, taking care of preserving the
cell colony.

At that point, the sample is ready for observation and should be placed
readily under a microscope not to miss the very start of the colony
spreading (see Fig. 4.11a).

2.6 Macrofluidic device

For medium perfusion experiments, we need to interface this sample with
a fluidic system. The flux will be quite high, allowing for a complete re-
newal of the sample volume ∼ 10 mL in the order of minutes. Balanced
in-and-out fluxes in an open system are not very reliable and often lead
to microscope drowning. For that reason we first seal the sample with
an adapted cover in which an input and an output of calibrated hydro-
dynamic resistance are plugged, using silicon jointing.

After a 15 min reticulation, the sample is completely filled with fresh
HL5 (∼ 10 mL) and the input and output tubes respectively connected
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Figure 4.8: Schematic view of the fluidic device. A bottle of HL5 medium
is maintained under a controlled overpressure ΔP (left). It is sterilely
connected to the sample dish (center), which output is itself connected to
a waste bottle right).

to a 1 L-HL5 reservoir and another 1 L empty bottle. All the previous
operations must be done under sterile conditions in the hood.

The closed system can be taken under the microscope. The waste is put
in the thermalised box while the reservoir is kept outside for convenience
reasons. The latter is connected to an automated pressure controller
(OB-1, Elveflow, Paris) which is itself connected to a pressure generator
(Elveflow, Paris) or a pressured air bottle (Air Liquide, Paris). The
pressure controller is automated thanks to adapted software (Elveflow,
Paris), allowing in particular to stop the pressure, hence the flow, before
the source bottle is empty (Fig. 4.8).

The flow is driven by the pressure difference between the waste bottle
– at atmospheric pressure – and the pressure generated in the source
bottle. That allows a precise reproducibility of the flow, using always
the same tubes and similar sample dishes to keep the same hydrodynamic
resistance.

The flux was first calibrated with water pushed through a sample dish.
The applied overpressure ΔP and the time t taken to flow 5 mL where
measured, leading to calculated fluxes with about 2% errors. From those
measurements, the following relation was found:

φ = Rh.(ΔP +ΔP0) (4.12)

with Rh = 0.21± 0.02 mL.h−1.mbar−1 and ΔP0 = −4± 8 mbar.
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Figure 4.9: Evolution of the FITC fluorescence in time. At t = 0, the
sample is filled with water. At t = 50 s, ΔP is turned on and FITC
starts flushing into the sample. At t = 148 min, the FITC source is
replaced by water, hence rinsing out the FITC from the sample.

Later on, with the experimental samples and HL5 instead of water, these
values were found to have slightly changed to RHL5 = 0.33 mL.h−1.mbar−1

and ΔP0 = 11 mbar.

To check whether such a flux device was able to change efficiently the
chemical concentrations close to the bottom surface of the dish, the
following experiment was run:

1) A sample was filled with water and connected to the fluidic device.

2) The sample was infused with a FITC solution under ΔP = 100 mbar
for 1h30.

3) After a 1 h long pause of the flux, the sample was then infused with
water for 45 minutes to rinse out the FITC.

Throughout the experiment, a time-lapse movie of the sample was taken,
at 10X magnification, in the FITC fluorescence channel, with a frame
every 10 s. The evolution of fluorescence over time clearly shows that
such a device allows efficient renewal of the medium close to the surface
(Fig. 4.9).

2.7 Imaging and image processing.
We used Low-Magnification Defocused Microscopy as described in Chap-
ter 2 to image the cells in a 2560x2160 pixels window, at 10X magnifi-
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cation – δx = 0.65 μm – and a frame rate of 3 fps – δt = 20s.

The cells were located using the Find Maxima based routine, although
its accuracy was checked by comparing the results to those obtained from
Edge Detection in some experiments, and the cell trajectories retrieved
and analysed using home-made Matlab software, as in the rest of this
thesis.

In particular, we computed the cell coordinates and velocities in both
Cartesian and cylindrical coordinates, allowing to measure many ortho-
radially averaged field data.

3 Experimental results
The experimental results from this section are taken from the following
available data:

A Series. 4 (respectively 3) successful 2-days long experiments at high
density (Ni � 250 cells) with AX2 (respectively DH1) cells from March
to May 2014.

B Series. 3 experiments with AX2-aprA− cells from September 2014.

C Series. 3 perfusion experiments from October-November 2014.

D Series. 22 short (> 9 h) experiments at various densities with AX2
cells from December 2014 - January 2015.

E Series. 4 short (> 9 h) experiments at various densities with AX2
cells under fresh HL5 perfusion for 9 h.

F Series. 8 short (> 9 h) experiments at various densities with AX2
cells in highly conditioned medium (HCM).
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3.1 Overall view: FKPP-like dynamics

Cell proliferation. In a dilute, homogeneous population of cells, we
would expect the number of individuals to grow exponentially, with a
characteristic doubling time that is estimated to be ∼ 8h for the studied
strains AX2 and DH1. According to the Fisher model and to the corre-
sponding simulations by Drasdo et al. [102, 103] this exponential growth
should hold at short times, when the density is low enough everywhere,
before switching to a N ∼ t2 growth that can be explained in terms of
proliferating rim.

Indeed, we observe such an exponential growth in the experiments, as
clearly demonstrated by the semi-log plots of Figure 4.10. By comparing
two sets of experiments run with AX2 and DH1 cells (A series), we
obtain very similar doubling times:

tAX2
d = (9.4± 0.2 )h

tDH1
d = (9.0± 0.3 )h.

Note that these doubling times are very consistent with the usually as-
sumed time of 8 h. Concerning the long-time evolution, it is difficult
to state whether the system enters a power-law growth regime or not,
and if yes to determine the exponent, even though there is a clear devia-
tion from exponential and the end of both log-log plots suggests it (Fig.
4.10).
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Figure 4.10: Cell growth in DH1 (left) and AX2 (right) colonies. Semi-
log representation of the growing number of cells. Each curve is for one
experiment from the A series (n = 3 and 4 independent experiments
respectively).
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Figure 4.11: Snapshots of the spreading of cell colonies.
Top: AX2 cells at t = 0, 100, 300 and 600 min (from left to right).
N0 = 327 cells initially. Scale bar: 300 μm. Bottom: DH1 cells at the
same time points, N0 = 324 cells. The contrast was enhanced for better
visualisation.

Colony spreading. As specified in the previous section, experiments
were run with two different strains whose doubling time was approxi-
mately the same. Yet, we had observed in previous experiments that
they differed greatly in motility, with about a 4-fold higher D for AX2
than for DH1 – although the D measured from 2014 were about 3 times
lower than in 2013, the hierarchy subsisted. This provided us a providen-
tial means to decouple motility and growth and study their respective
effects.

Our observations fulfil this wish nicely. The AX2 colonies spread faster
(Fig. 4.11), as expected, and the shape of the density profiles are very
dissimilar from one strain to the other (Fig. 4.12). In the case of AX2,
the spreading is fast enough for the density in the center to first decrease
before the proliferation becomes dominant, while the density of DH1
colonies increases everywhere from the beginning. In the former, that
induces almost linear profiles with very shallow gradients, while in the
latter the gradients are steep and the density evolves towards a flat
profile with an advancing front. The density reaches a saturation value
at 6 – 8 × 105 cm−2 in both cases, but much more quickly in the DH1
colonies.
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Figure 4.12: Density profiles at various times for 3 DH1 colonies (top)
and 3 AX2 colonies (bottom). The hollows at late times on DH1 density
profiles are an artifact caused by the high density aggregation that pre-
vents accurate cell detection.
Note: 1 day = 1440 minutes.

Gyration radius. Qualitatively, these evolutions of the density pro-
files are in accordance to the ideas governing the FKPP equation. To get
a better insight in the scaling laws ruling the spreading in both cases,
we computed the gyration radius Rg as follows:

Rg =
√

〈r2〉 (4.13)

where r refers to the radial coordinate of a cell with respect to the center
of the colony and the brackets 〈:〉 denotes the average over all the cells
in the colony.

The radius of DH1 colonies increases continuously in a way that could
match FKPP dynamics, even though the growth exponent looks higher
than 1 at long times (see Fig. 4.13a, c).

In the case of AX2 cells (Fig. 4.13b, d), there is a clear transition from
a fast to a slower spreading regime. From the log-log plot, it is not
possible to estimate scaling for Rg(t) over a broad range of times, but
it appears that the FKPP equation will not be enough to account for
the colony dynamics. To identify the source of this deviation from the
Fisher model, we looked further into the evolution of cell motion over
the experiments’ duration.
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Figure 4.13: Colony radius.
Linear plot of Rg(t) for DH1 (a) and AX2 (b) colonies, and correspond-
ing log-log plots of Rg(t)−Rg(0) (c and d respectively). The dashed lines
indicate the approximate slope of these curves. n = 3 and 4 independent
experiments respectively.

3.2 Long-term variations of the cell motility: a pu-
tative QSF effect

Speed and diffusion constant. One of the key points of our data is
that we can access single trajectories. Thus, we can not only estimate
transport coefficients from a fit with an assumed model, but rather di-
rectly measure them in time and space.

First, we studied the diffusion constant, which is supposed to remain
constant in the FKPP equation. We define it as D = limδt→+∞(MSD

4.δt ),
where the limit is computed at δt = 22.3 min since we cannot access infi-
nite times. This is an average over the entire colony, made in successive
67-minutes-long time windows, which defines the time resolution of this
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measurement.

To get a better resolved quantity, we also measured the instantaneous
“speed”, defined as v = δx

δt , where δx is the displacement of a cell be-
tween two successive frames, and δt = 20 s the time between two frames.
Although v is somehow ill-defined in this way, as we saw in Chapter 2,
it still gives a valuable estimate of the short-time speed of the cells.
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Figure 4.14: Colony averaged motility for DH1 (left) and AX2 (right)
cells.
Top: diffusion constant. Each color is for one experiment, the black
curve shows the average over all experiments and standard deviation.
Bottom: instantaneous colony-averaged speed. Each curve is for one
experiment.

Looking at their colony averages throughout the experimental time, one
feature appears clearly: they are not constant at all, especially in AX2
colonies (Fig. 4.14). In the latter, both 〈v〉 and D increase until a peak
at t ∼ 90 min, then decrease for about 10 h to reach a low plateau value.

Compared to AX2, the absolute values do not vary much in the case
of DH1. Yet the shape of AX2’s initial peak is recalled in both D and
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〈v〉 curves, and D exhibits a slow but continuous drop at t > 1300 min.
The inter-strain difference in motility is clear on the compared values of
D while both speeds are similar. Therefore the difference should occur
from a difference in persistence, with more random trajectories in the
case of DH1. We can roughly estimate an “average persistence time” τp,
assuming a simple correlated random walk, through the use of τp = 2D

v2 .
We find τp � 0.6 min for DH1 and τp = 1.2 – 3 min for AX2 in time.

Perfusion experiments. The observed long-term decrease of the motil-
ity is not a surprise for the careful reader, as we saw in Chapter 3 that
Dictyostelium cells self-regulate their motility through a secreted QSF.
To experimentally check whether such an effect could be at stake here,
a fluidic device was used to continuously infuse the samples with fresh
medium. Indeed, it has been shown [18] that medium renewal could
efficiently suppress its effect.

At a Φ = 20 mL.h−1 flux, corresponding to a renewal rate of 200%.h−1

since the sample volume is about 10 mL, the motility of the cells still
decreases over time, although this may be a little slower (Fig. 4.15).
At Φ = 100 mL.h−1, this decrease was significantly reduced over 18 h.
Then the flux was stopped, leading to a decrease of D towards its low
plateau.

The same kind of experiments was redone (E series) on shorter time
scales. In these experiments, the motility is maintained high throughout
the duration of the perfusion (9 h) and then it dropped fast (see Fig.
4.19c in Section 3.3 for a plot of the cell speed).

These results, together with HCM experiments (see the Section 3.3),
show that a QSF – presumably the same as described in Chapter 3 – is
responsible for the long-term decrease of both the speed and the diffusion
constant of the cells.

Thus, the cell motility is time-dependent, which constitutes a first devi-
ation from the simple Fisher model. There is experimental evidence that
the motility is down-regulated through a secreted QSF, and this effect is
noticeable on long time-scales. Yet it does not explain the peak of activ-
ity during the early spreading of the colonies. This is why we investigate
further these short-time dynamics in the following section, with a focus
on AX2 cells that are the most exemplary of this behaviour.

137



CHAPTER 4. SPREADING OF MODEL COLONIES 138

0 500 1000 1500 2000 2500 3000
2

3

4

5

6

7

Time (min)

<v
> 

(μ
m

.m
in
−1

)

(a)

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

Time (min)

D
 (μ

m
2 .m

in
−1

)

(b)
Figure 4.15: Perfusion of FM slows down the decrease of motility.
(a) Average cell speed without perfusion (4 experiments, blue), with per-
fusion at 20mL.h−1 (2 experiments, green) and 100mL.h−1 (1 experi-
ment, red). (b) Diffusion constant (taken at δt = 15min) for the same
experiments (circles, squares and triangles respectively). Mean and stan-
dard deviation for each condition.
The dashed vertical lines mark t = 1080min, when the perfusion stops
in the high flux case.

3.3 Density-dependent polarised motion in the short-
time regime.

Outwards motion. To that point, we have implicitly assumed that
the cell motion is isotropic. In terms of Cartesian coordinates, this is
true: there is no symmetry breaking, either at the scale of the colony or
at the single cell level.

This last point can be studied by computing the average velocity vector.
As such, it constitutes a polar order parameter that bears information
about the presence of directed bias in the motion. If it is isotropic,
〈v〉 = 0, while ‖〈v〉‖〉0 means that, in average, the cells move in the
direction pointed at by 〈v〉. The amount to which they are polarised
can be quantified by the “directionality index” I = ‖〈v〉‖

〈‖v‖〉 , even though
we will see later more rigorous quantifiers based on the full angular
distribution.

Now, when the average is taken in polar coordinates, a clear anisotropy
emerges: the radial coordinate of the velocity exhibits an important
peak, especially pronounced in the case of AX2, whose timing correlates
with the higher initial spreading rate (Fig. 4.16).
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Figure 4.16: Radial velocity.
(a) The radial velocity vr is defined in cylindrical coordinates with re-
spect to the center of the colony O. (b) Average radial component of
the velocity for AX2 (red, peaked) and DH1 (blue, flat) colonies. The
averages have been first computed in each colony, then over all experi-
ments. The light background zones represent the standard deviation over
the experiments (n = 4 experiments for AX2 and 3 for DH1).

As the radial symmetry is conserved, all the quantities are only functions
of r and t, and therefore can be displayed as spatio-temporal colour
maps. In Figure 4.17, the maps of vr(r, t) and Ir(r, t) =

vr

‖v‖ show that
during the 200 first minutes, the cells on the edge of the colony move in
average outwards. This effect appears also in DH1 colonies but both its
amplitude and duration are smaller, explaining why their effect are less
noticeable at the scale of the colony.

The effect of cell density. As there is no external cue, this effect
occurs from the colony itself, hence from the interactions between the
cells. Therefore there should be an effect of the cell density. That is why
a series of experiment (D series) with various initial cell numbers was
run. From these experiments, it is clear that the spreading rate increases
with the cell number – or cell density, since the initial diameter is not
changed (Fig. 4.18). The difference in spreading occurs at very short
times: at t = 100 min the profiles are already well separated, and the
separation does not increase a lot until t = 150 min (Fig. 4.18a-b).

The plot of the gyration radius Rg (Fig. 4.18c) confirms this tendency,
and shows that the peak in spreading rate is very correlated to that of
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Figure 4.17: Directed cell motion on the edge.
(a-c) DH1 colonies, (b-d) AX2 colonies. (a-b) Spatio-temporal represen-
tation of the local average radial velocity (left, in μm.min−1) and (c-d)
directionality index vr

v . The white areas are zones with no detected cells.
During the 200 first minutes, cells on the edge of the spot move in aver-
age towards the outside of the colony.

the radial velocity. Interestingly, the increase of 〈vr〉 seems to be borne
by the same curve for all initial cell numbers N0, and only the time it
stops increasing – ie the peak’s timing – seems to depend on N0 (Fig.
4.18d). Thus one can define t∗(N0) as this peak position, which scales
almost linearly with N0 (see Section 5.2 for more details). This last
finding must be taken with care, due to the error on 〈vr〉: not shown for
the sake of clarity, they are of the order of 20% and stem mainly from the
inter-experimental variability, and they could affect the determination
of t∗. Yet, it seems to be a particular feature of this system and we will
come back to it later to try to understand its origin.

Thus, the fast early spreading is well explained by an outward-directed
motion, which originates from cell-cell interactions yet to be identified.
Two natural candidates stand out from the current knowledge: long-
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Figure 4.18: Density-dependence of the spreading.
(a) Normalised density profiles at t = 0 for various starting cell numbers
N0. (b) Same at t = 150min. (c) Radius increase. (d) Radial velocity.
The vertical dashed lines denote the position of t∗(N0), the peak timing
for each cell density.

range repulsion through chemotaxis, or a short-range effect due to colli-
sions. We first focused on the former.

Chemo-repulsion by AprA is not required. It has been shown
recently [22] that AprA is an endogenous chemorepellent in vegetative
Dictyostelium discoideum. It seemed natural to check whether cells that
do not secrete this protein will still exhibit the fast spreading dynamics
and outward escape in a colony experiment. A series of experiment
(B series) was run with AX2-aprA− cells. Although the motility of
individual cells is different from that of our wild-type AX2 strain, as
already mentioned in Chapter 3 of this thesis, the features of directed
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escape are still observed in these experiments (Fig. 4.19a).
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Figure 4.19: The collective effect does not rely on large-scale chemical
interactions.
(a) Radial velocity for AX2-aprA− cells at high initial density (〈N0〉 =
312). The cell speed is v � 5μm.min−1. (b) Radial velocity for colonies
in HCM at various N0. The cell speed is v � 3μm.min−1. n =4, 3 and
3 experiments respectively. (c) Colony-averaged cell speed as a func-
tion of time for AX2 colonies perfused with fresh medium for 9 h (red)
or without perfusion (blue). The speed remains high until the flow is
stopped (dashed vertical line), then it starts decreasing. Each curve is
an average over four distinct experiments, the light background repre-
sents standard deviation (〈N0〉 � 250 in both cases).
(d) Colony averaged radial velocity for both perfused (red) and non-
perfused (blue) colonies, from the same experiments as in (c). vr remains
unaffected by the perfusion.

Thus, AprA does not seem to play a major role in this effect. This
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result does not rule out the possibility of chemorepulsion, certainly, but
it undermines it to the extent that if chemorepulsion was at stake, the
presence or absence of AprA should be noticeable [22]

Perfusion experiments. Let us recall that in the perfusion experi-
ments of the E series, the average cell speed and diffusion constant are
maintained constant along the perfusion duration, showing that the se-
creted molecules are efficiently rinsed out. Any chemorepellant activity
should be suppressed in the same way, but the peaks in radial veloc-
ity and spreading rate hold (Fig. 4.19c, d). It demonstrates that the
outward escape does not rely on a large-scale chemical effect.

The outward motion survives high conditioning of the medium.
Last, experiments in highly-conditioned medium (HCM) show the same
tendency. In a simple view on such a medium, every secreted factor is
expected to be present in a huge concentration. Supposing that the cell
chemosensing systems saturate above some threshold value, any puta-
tive chemorepellent should be above this saturation. It would lead to
a screening of the chemorepellent field, thus suppressing the outward
escape in case it is due to chemotaxis. Although the motion is again
different from that of the wild-type experiments in fresh medium, wit-
nessing the presence of QSF and so the high level conditioning of the
medium, the outward motion again survives (Fig. 4.19b).

These three different experiments together demonstrate that the outward
escape of the cells is not due to a long-range chemical effect. Therefore,
it has to originate from local interactions between neighbouring cells,
likely contact interactions.

In the following, before exploring various modelling approaches that will
give insight into the nature of these contact interactions, I would like
to first describe in more details the spatio-temporal dynamics of the
colonies, and especially the appearance of polarity.

3.4 Polarisation dynamics

A true polarisation signal. To better understand the rise of direc-
tionality in the dense colonies, we examined the spatio-temporal dynam-
ics of various observables. The maps of density and radial velocity are
reminiscent of already described phenomena. The speed v(r, t) itself in-
creases in the zones of high vr (Fig. 4.20). Yet, without anisotropy, it
would not yield such high values of vr. To check the origin of anisotropy,
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Figure 4.20: Spatio-temporal dynamics of the polarisation
Only 〈N0〉 = 20 [left column] and 〈N0〉 = 259 [right] are displayed here.
(a, b) Radial velocity (c, d) Speed (norm)

we looked into the angular density function P(r, ϕ, t) where ϕ denotes
the angle of the velocity vector with respect to the radial direction er.
It can be decomposed in angular harmonics (Fig. 4.21):

P(r, ϕ, t) = ρ(r, t) + p(r, t).u+ q(r, t) : (uu− I/2) + ψ(r, ϕ, t), (4.14)

where u = (cos(ϕ), sin(ϕ)) and ψ contains higher order harmonics. ρ
is simply the cell density. The polarity p characterises the strength of
a mono-oscillation perturbation: its adimensioned version P = p/ρ is a
polar order parameter, while Q = q/ρ characterises the nematic order
through a symmetric two-oscillations perturbation.

In concrete terms, we compute them as P = 2〈u〉ϕ (the factor comes from
the summation of harmonics -1 and +1) and (Qr, Qϕ) = 2〈(cos(2ϕ), sin(2ϕ))〉ϕ
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Figure 4.21: Example of angular density function P(ϕ) and its decom-
position in angular harmonics.
Here P(ϕ) = P0(1 + p1 cos(ϕ) + p2 cos(2ϕ)) is polar: P0 = 1.5× 104AU ,
p1 = 2〈cos(ϕ)〉 = 1

3 and p2 = 2〈cos(2ϕ)〉 = 1
10 . The dashed lines show

the 0th (blue), 0th+1st (red) and 0th+2nd (green) harmonics, the orange
solid line is the sum of the three.

to simplify. We also measured the ‘speed anisotropy index’ 〈‖v‖u〉ϕ,
which tells if the speed itself is anisotropically distributed. Here, the
notation 〈:〉ϕ refers to the average over all possible orientations ϕ. We
find that only Pr takes significant values (Fig. 4.22a-b), indicating the
order arising is strictly polar – even though it might be shaped more
finely by higher harmonics – and controlled by the angular distribution
of the cells, not by an anisotropic speed.

As a check, we computed vr(r, t) = ‖v(r, t)‖.Pr(r, t).ρ(r, t), which shows
a very good agreement with the measured field (compare Fig. 4.22c-d
to 4.20a-b).
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Figure 4.22: Spatio-temporal dynamics of the polarisation (2).
(a, b) Polarity (c, d) Computed radial velocity vcomp

r = v.Pr (e, f) CME
measured at 5 min.
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Inward propagating directionality signal. A more careful look
into the vr dynamics for t < t∗, ie before the peak in vr shows that
the onset of directionality happens at the very edge of the colony, at
t � 0 (Fig. 4.23). Then, the signal propagates inwards at constant
speed, while it builds up on the edge. Despite the noisy nature of these
maps, which prevents us to make really quantitative assertions on them,
notice that:

(i) the signal vr expands outwards due to colony spreading, but more
importantly it propagates towards the center of the colony with a
propagation speed of c ∼ 1 μm.min−1, which is of the same order
as the cell speed;

(ii) again, the maps for various N0 all look similar to each other, with
the only difference being t∗, which corresponds to the end of the
signal propagation and amplification.

Increase in persistence. Last, we studied the persistence of the tra-
jectories. To that end, the velocity autocorrelation function is the canon-
ical intermediate to access parameters such as the persistence time in a
simple correlated random walk, or the proportions of the modes in a
multi-modal motion (see Chapter 2). Its drawback is the same as the
diffusion constant’s: it requires an average over several long enough tra-
jectories to be usable, thus reducing the accuracy of any measurement.
To get resolved spatio-temporal dynamics of the local persistence, we
computed the “coefficient of movement efficiency” (Fig. 4.24), or CME,
which we define, for a given time interval Δt, as the ratio between the
end-point distance ‖r(t + Δt) − r(t)‖ and the total distance travelled
during Δt (see also Chapter 2):

CMEΔt(t) =
‖r(t+ Δt

2 )− r(t− Δt
2 )‖∫ t+Δt

2

t′=t−Δt
2

‖v(t′)‖dt′
. (4.15)

Measuring it over temporal sliding windows, we could build its spatio-
temporal map for all N0 and various Δt (Fig. 4.22e–f, only shown for
Δt = 5min). They exhibit clearly higher values maintained over longer
Δt in the zones of high polarisation. This suggests that the rise of
polarisation is linked to an increase of the single cells’ persistence. We
measured the velocity autocorrelation functions in 67 min-long time win-
dows. As in other experiments it is best fitted with a bi-exponential
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Figure 4.23: Polarity wave.
Zoom in vr maps for (a) 〈N0〉 = 45, (b) 〈N0〉 = 78, (c) 〈N0〉 = 125 and
(d) 〈N0〉 = 259, with t ≤ t∗(N0).

decrease rather than a single exponential (Fig. 4.25, see Chapter 2,
Sections 3.3 and 4.2):

C(t) = φ1 exp(− t

τ1
) + φ2 exp(− t

τ2
) (4.16)

When τ1 ∈ [1; 3] min and τ2 ≥ 7.5 min, the fit’s accuracy is really good
(Fig. 4.25a). Again, we fix two of the parameters – τ1 = 2 min and
τ2 = 10 min – which allows us to sample φ1(t) and φ2(t) in a consistent
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Figure 4.24: Coefficient of
Movement Efficiency.
(a) Trajectory of an active
Brownian particle with colour-
coded instantaneous CME com-
puted at Δt = τp. (b) Same
trajectory with CME computed
at Δt = 4τp. (c) Zoom in the
trajectory (rectangle in (a) and
(b)), for t = 0− 4τp. The CME
is computed as the ratio of end-
point distance over Δt (dashed
lines) on the total path length
(solid lines).

way over successive time windows. φ2(t) increases with N0 and has a
maximum at about t∗, which confirms that the persistence is enhanced
when the polarisation occurs, seemingly because then the cells spend
more time in a very persistent mode (Fig. 4.25b). As this effect relies
on local cell-cell interactions and it improves the large scale motion of
the cells, we term it “Contact Enhancement of Locomotion” .

3.5 Summary

Let us sum up our main experimental results before we tackle the models
we used to handle them. We observed the spreading of AX2, DH1 and
AX2-aprA− colonies in non-renewed FM, and AX2 colonies with FM
perfusion or in HCM. Despite the differences inherent to these various
situations, we could notice some features that are common to them all.
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Figure 4.25: Contact Enhancement of Locomotion.
(a) Autocorrelation of the velocity direction. The red dashed line is a
mono-exponential fit C(t) = φ exp(− t

τ ), which yields τ � 5 min, while
the blue dash-dotted line is a bi-exponential fit C(t) = φ1 exp(− t

τ1
) +

φ2 exp(− t
τ2
) with fixed τ1 = 2 min and τ2 = 10 min (〈N0〉 = 259 cells).

(b) φ2(t) for various N0, measured with τ1 = 2 min and τ2 = 10 min.
The error bars show the standard deviation of the collapsed curves using
different values for τ1 and τ2.

First, the basic idea of Fisher-like models that the interplay of cell mo-
tion and cell proliferation leads to a transition from a motility-induced
spreading regime to a proliferation-dominated advancing front regime is
well-verified. Then, the use of fast moving AX2 cells allowed us to quan-
tify finer effects: we could notice the presence of secreted QSF through
the decrease of cell motility, which is suppressed by continuous FM per-
fusion. Yet its macroscopic effect remains questionable. Above all, we
could infer a previously unreported effect of local cell-cell interactions,
which we name Contact Enhancement of Locomotion – or CEL – to con-
trast from the slowing down suggested by the term ‘inhibition’ in CIL
(described in Chapter 1): the cells seem to increase their persistence
upon cell-cell contacts. This last finding was confirmed by computer
simulations, as described in the next section, and could play an impor-
tant role in situations where cells spread out from an initial constrained
location.
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4 Modelling approaches
In this section, we propose various models, based on the concepts of
the FKPP equation, to quantify the importance of the effects that we
observed experimentally and to get a better insight in their mechanisms.
To that end, we used both partial differential equations – PDE – models
and individual-based ones.

Partial Differential Equations. The mean evolution of fields such
as the cell density, some chemical concentrations, or other distributions,
can be described by one or a set of Partial Differential Equations (PDEs).
Most of the equations that we propose here are not easily analytically
solvable, so we solved them numerically, using a Maple code on comput-
ers from Tohoku University, with the kind authorisation and help of Pr.
Yoshinori Hayakawa.

1D cellular automaton. The particle-based models used here are
of two types. First, I implemented a simple 1D cellular automaton,
described in Section 4.3 to get insight into the main mechanisms at
stake.

Active Brownian particles simulations. Second, we started a col-
laboration with Alexandre Solon (Physics Department, MIT, USA, and
formerly MSC laboratory, Université Paris Diderot), to design 2D simu-
lations of active particles to study the effect of various classes of contact
interactions in the geometry of the experiments.

4.1 The limits of FKPP

It was clear even from Rg(t) that FKPP would not be able to model
the evolution of the AX2 colonies in any fashion. Therefore, we tried to
compare the results of its numerical solving with those of DH1 colonies,
which seemed to exhibit more constant and ‘FKPP-like’ dynamics only.

To that end, we chose to adopt an approach similar to that of Simpson et
al. [110]: we take advantage of the bijection between {c, L}, respectively
the asymptotic front speed and width, and the parameters {D, λ}. The
former can be measured from the smoothed density profiles in two steps
(Fig. 4.26b): first a rough, pixel-resolved estimate of R(t) is made by
detecting the first place where ρ(r, t) < ρm/2 (and L(t) is estimated
in the same fashion: L(t) � R2(t) − R1(t), where ρ(R1, t) = 3

4ρm and
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ρ(R2, t) = 1
4ρm); then these estimates are used to define the almost

straight part of the profile, which we fit linearly to obtain R(t) and L(t)
more accurately. L is computed as the mean of L(t) for large t, and c is
the slope of R(t) on the same range of times.
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Figure 4.26: Wave fronts in density profiles.
(a) Density profiles from a typical spreading DH1 colony. Δ = 200min
separation between subsequent curves. Note that the hollows at the back
of late profiles are due to aggregates that form at high density (see Chap-
ter 5) and prevent the detection of cells. (b) Method for the measurement
of R(t) and L(t): first a rough estimate of R is made (disk), and then
the front (between the two squares) is fitted with a straight line. R(t)
is the point where this line equals ρm/2 (vertical dash-dotted line) while
L(t) is the length over which it decreases from ρm tp 0 (blue segment).

We first tested by numerical solving of the FKPP equation (4.6) whether
we retrieved the 1D predictions for c and L:

c =
√
4Dλ (4.17)

L = 8

√
D

λ
. (4.18)

Remember that λ = ln(2)
T2

, where T2 is the doubling time. For each
set of parameters [λ;D], we run three solvings, starting from the experi-
mental initial conditions and using the corresponding carrying capacities
(ρm = {5.5; 7; 7} × 105 cells.cm−1 for experiments #1, #2 and #3 re-
spectively). We find that expression 4.17 over-estimates slightly c, while
expression 4.18 under-estimates L. Linear fits of the measured values to
the predicted ones show that corrections by a factor 0.9 and 1.1 respec-
tively yield accurate estimations (Fig. 4.27).
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Figure 4.27: Prediction accuracy for the front speed c and width L.
(a) c, measured from the profiles from numerical PDE solving as a func-
tion of theoretical values computed with 4.17, for various division times
(λ−1 from 1 h to 7 h, from blue to red) and with parameters from 3 ex-
periments (disks, squares and triangles). The slope of the dashed line is
0.9. (b) L measured from numerically obtained profiles as a function of
the predicted values, from the same profiles. The slope of the dashed line
is 1.1.

We then measured c and L in three independent experiments with DH1
cells (4.28, solid lines). From that we deduced the values of D and λ
presented in Table 4.1. Then, we solved again the FKPP equation, start-
ing from the experimental initial conditions, and with these estimated
parameters (and with 10% variations in these parameters). The shape
of the profiles is reproduced quite well, as well as the asymptotic front
speed (Fig. 4.28, dashed lines). This is expected since this is how the
parameters were optimised. However, the FKPP solution moves always
ahead of the experimental front, with a lead of several hours (from 6 to
more than 10 h!).

This effect is better understood by looking at the early shapes of ρ(r, t):
the experimental profiles seem to exhibit a retardation in proliferation
with respect to the theoretical ones. Indeed, the profile does not spread
out too much in comparison, but ρFKPP (0, t) grows very fast towards
ρm while it is not the case in experiments. Yet, we suspect this is
mislead of a model-focused point of view. Indeed, the estimated doubling
times (Table 4.1) are much shorter than the expected ones, around 9 h
(Fig. 4.10). Conversely, the diffusion constant is smaller than that
found by microscopic measurements. These discrepancies could reflect
the fact that, as in the case of AX2, an outwards bias arises from cell-

153



CHAPTER 4. SPREADING OF MODEL COLONIES 154

Experiment 1 2 3 Expected

c (μm.min−1) 0.21 0.23 0.24 ≈ 0.16

L (μm) 248 171 144 ≈ 500

D (μm2.min−1) 3.0 2.5 2.2 ≈ 5

λ−1 (h) 3.7 2.6 2 13

Table 4.1: Measured values of c and L, and the deduced D and λ−1 from
3 DH1 experiments.
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Figure 4.28: Comparison be-
tween numerical solving of the
FKPP equation and experimen-
tal profiles.
The FKPP equation was solved
with the initial conditions and
parameter estimations that pre-
cede. Experimental profiles
(solid lines) and computed pro-
files (dashed lines) for 3 inde-
pendent experiments.

cell interactions. (see 4.17). Such drift may lead to a sharper front
[109, 111], which would allow higher motility and doubling time than
the FKPP equation does.

Further work would be necessary to deeply understand these DH1 ex-
periments: varying N0 could tell more about the role of interactions for
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instance. However, this example, with colonies that look at first sight to
comply well with the FKPP equation, are a good demonstration of the
limits of this model, and advocate the more thorough study of the effect
of cell-cell interactions.

4.2 Downhill FKPP equation

Velocity down the density gradient. It seemed clear that mod-
elling the motion with linear diffusion could not result in a good de-
scription of the experimental observation. In particular, two important
features are not accounted for by it: the output of contact interactions,
and the outward bias in the velocities – which can reasonably supposed
to relate to each other. The last hypothesis was supported by a recent
work by Bruna and Chapman [116], who studied the effect of hard-core
repulsion in an assembly of (passive) Brownian disks. They showed that
they resulted in an increase of the diffusion constant in dense zones.
In particular, at high packing fraction, the diffusion constant writes (in
2D):

D = D0(1 + 4
ρ

ρm
), (4.19)

where ρ
ρm

represents the packing fraction. Similarly as in a previous
work [109], this dependence of D on ρ can be interpreted as a drift
velocity down the density gradient:

⎧⎨
⎩ j = −D∇ρ+ vdriftρ

vdrift = −α∇ρ
(4.20)

where α = 4
ρm

in the case of passive Brownian particles [116].

We plotted vr versus ∇ρ for all N0 (Fig. 4.29). They seem to be
linearly anti-correlated, provided the points at t < t∗ are removed, with
a slope −α that depends on N0. That means that the concept of velocity
down the density gradient remains consistent with our data, up to two
important features:

(i) it is true only after an initial rise of the polarisation;

(ii) the relation between vr and ∇ρ is not an intrinsic property of the
system but depends on the initial condition at t = t∗.
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Figure 4.29: Velocity down the
density gradient.
vr versus ∂rρ for (a) 〈N0〉 =
45, (b) 〈N0〉 = 78, (c) 〈N0〉 =
125 and (d) 〈N0〉 = 259. The
dashed lines are linear fits vr =
−α.∂rρ. (e) α(〈N0〉). The er-
ror bars show the variations of
the α estimate when the num-
ber of points in the (a–d) plots
is changed.

If this drift was of the same origin as in Bruna & Chapman’s case, α
should be a constant for all N0 and take the value

α = 4πD0R
2 ∼ 102 μm4.min−1, (4.21)
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for disks of radius R = 5 μm, which is much under the measured values
α ∼ 1− 4× 105 μm4.min−1. This means that the bias should originate
from something else than the steric hindrance only. Nevertheless, we
added such a term to the FKPP equation, to build what we term the
downhill-FKPP equation:

∂tρ = ∇ ((D + αρ)∇ρ) + λρ

(
1− ρ

ρm

)
. (4.22)
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Figure 4.30: Downhill-FKPP results.
Density profiles from experiments (solid lines) and numerical solving of
the downhill-FKPP equation (dashed lines). (a) 〈N0〉 = 45, (b) 〈N0〉 =
78, (c) 〈N0〉 = 125, (d) 〈N0〉 = 259. The parameters are fixed to λ−1 =
9 h, D = 10 μm2.min−1, α = α(N0) from Fig. 4.29e.

Taking the density profile ρ(r, t∗) for each N0 as the initial condition,
we solved numerically this equation over 500 min. λ was fixed to 9 h
consistently with the data, and we used the measured values of α(N0).
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Figure 4.31: Downhill-FKPP:
overall dynamics.
(a) Cell number, (b) gyration
radius and (c) radial veloc-
ity: comparison of experiments
(solid lines) and numerical DH-
FKPP solving (dashed lines).
Same parameters as in Fig.
4.30.

The most problematic parameter to set was D. For instance, the MSD is
affected by the drift velocity, hence it cannot give D directly. However,
we could estimate that D = 10 μm2.min−1 is a good approximation for
– and actually we checked that the dynamics is not highly affected by
its value provided it is in the range 5− 40 μm2.min−1.

Rather than allowing the parameters to move in order to fit the data,
we decided to check the behaviour of the downhill-FKPP equation with
the parameter values inferred from the microscopic measurements. The
match of the computed profiles and of various macroscopic quantities
to the data is displayed on Figures 4.30 and 4.31 respectively. It shows
that this equation captures the essential dynamics of the evolution after
t∗. In particular, even for times smaller but comparable to the doubling
time, the growth term is necessary to match the profiles and N(t) well.
Indeed, in its absence the profiles spread too fast. The decay of 〈vr〉(t)
is also quite well described, even though it is much over-estimated in the
first minutes of the solving, for 〈N0〉 ≥ 78. Note that the data could be
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Figure 4.32: Comparison of the spatio-temporal dynamics of vr in (a)
experiment and (b) numerical solution of the downhill-FKPP equation,
starting from the same initial condition (〈N0〉 = 259)) and parameters
as in Fig. 4.30.

better fitted by changing the parameters’ values, but we did not carry
out such a procedure as it would not have been very informative.

The spatio-temporal dynamics are also quite consistent with the exper-
imental ones (Fig. 4.32): vr(r, t) is high on the edge of the colony,
where the density gradient is high, and it relaxes as the profiles become
shallower. By contrast, this equation is not able to produce the initial
polarisation phase: rise of vr from 0 and subsequent peak at t = t∗.
Starting from a very steep gradient concentrated at the very edge of the
colony, it is expected that this gradient propagates inwards as the density
spreads out. Yet, this phenomenon happens on a very short time-scale
of the order of a few minutes and so it cannot account for the slow signal
propagation that we observe experimentally.

To sum up, the results of the downhill-FKPP equation confirm that
an outwards drift velocity, concentrated in the zones of high density
gradient, is the driving mechanism of the colony spreading at t ≥ t∗.
However, it also confirms that the magnitude of this drift depends on its
initial state at t∗, but it is unable to explain the dynamics before t∗.

4.3 Polarisation and persistence: insights from 1D
simulations.

Once it is evidenced that the colony dynamics is controlled by the po-
larisation, and that the polarisation is driven by contact interactions,
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the interaction mechanism at play remains to be elucidated – and the
passive hard-core repulsion is seemingly not enough. The approach of
cell biology would be to screen various mutants, looking for a change in
the response to these interactions, together with a thorough analysis of
intracellular processes in the contact zone, for instance by fluorescence
microscopy. We chose to tackle this problem with the view of physics,
aiming at identifying the minimal class of interaction which can give rise
to the observed collective phenomenon.

(a)

−20 −15 −10 −5 0 5 10 15
Position

(b)

Figure 4.33: Principle of the 1D cellular automaton.
(a) At t = 0, N = 5 cells are distributed at −Li/2 < r < Li/2. Here
Li = 20, the borders materialised by the two vertical red lines. 10 in-
dependent simulations are shown. Then they are attributed a polarity,
illustrated by the arrowheads (“+1”: green, to the right, “-1”: red, to the
left). (b) At t = 1, the cells that were free to move have moved to their
target site; those facing a contact have tumbled without moving; those
‘fighting’ for a target have either moved or not (example: bottom line,
the cell at −0.5 has moved to the right, while that at 1.5 has not moved).

A one-dimensional (1D) cellular automaton provides a convenient tool to
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that end, since what happens in the system is very easily interpretable.
It was built as follows (see Fig. 4.33):

• the space is defined as a line with equally spaced sites (squares in
Fig. 4.33);

• one site can be occupied either by zero (white) or one (black) cell;

• the cells have a +1 (green arrow-head) or −1 (red arrow-head)
polarity;

• at each time step all cells i move onto the neighbouring site in the
direction defined by its polarity pi, then they can tumble (reverse
their polarity) with a rate 1

τp
;

• if the neighbouring site is not free, the cell does not move and
tumbles;

• if the neighbouring site is free but a cell coming from the opposite
side aims at it as well, one of the two is chosen at random and does
not move, while the other is allowed to move to its target.

To model circular colonies in 1D, we used a segment of length Li ran-
domly occupied by N cells of random polarity as the initial condition
and then let the system evolve following the above rules.

Note that in its first basic version, this automaton has symmetric colli-
sions, to the extent that a cell has the same properties before and after
a collision. Starting with N ‘cells’ concentrated on a segment of width
Li = 200, only τp plays a role in the overall dynamics (Fig. 4.34), except
for N ∼ Li due to the initial crowding that slows down the system (when
two cells aim at the same target, only one moves). The cell ‘size’ does
not change anything either. To check that, we multiplied all lengths and
times – Li, τp, observation time and length – by a factor 2 or 5, which
is equivalent to a decrease of the spacing between sites by the same fac-
tor: keeping the same number of cells, there are more free sites between
adjacent cells. The dynamics remained unchanged in these cases (not
shown).
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Figure 4.34: Overall dynamics of the 1D automaton.
(a) Gyration radius and (b) polarity (analogue to 〈vr〉) for ‘cell colonies’
simulated with the 1D cellular automaton with various parameters. The
persistence time τp is colour-coded, N ∈ {5; 10; 20; 100} (full, superim-
posed lines) and N = 200 (dashed lines). Li = 200. 10, 000 independent
simulations.
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Figure 4.35: 1D automaton: spatio-temporal dynamics of the polarity.
Polarity maps for (a) τp = ∞, (b) τp = 50, (c) τp = 10. N = 100.
Li = 200. 10, 000 independent experiments.

Polarity due to persistence. Looking at the polarity P (r, t) = 〈pi〉,
where the average is taken over the two sites at a distance r of the center
in 10.000 simulations, one observes a wave that propagates from the edge
to the center at the speed of the cells, v = 1 (Fig. 4.35).

These results can be interpreted as follows. Since the collisions are sym-
metric, this system is actually similar to a system of particles moving
with a persistence τp with no interaction. Indeed, when a couple of cells
collide, the output is the same as that of a crossing, provided the cells’
are not labelled. This explains why N has no effect.

162



CHAPTER 4. SPREADING OF MODEL COLONIES 163

−20 −10 0 10 20
−1

−0.5

0

0.5

1

Position

P

(a)

−20 −10 0 10 20
−1

−0.5

0

0.5

1

Position

P

(b)

−20 −10 0 10 20
−1

−0.5

0

0.5

1

Position

P

(c)

−20 −10 0 10 20
−1

−0.5

0

0.5

1

Position

P

(d)

Figure 4.36: Origin of the polarity without interactions.
Distribution of ‘cells’ with infinite persistence. The dashed lines show
the density distribution of the +1 (green), and the -1 cells (red), while
the black solid line represents the local average polarity. At t = 0 (a), the
mean polarity is 0 everywhere, but as time goes both population separate,
inducing the growth of polar zones on the edges (b, c, d: t = 1− 3).

Thus, the polarity wave comes only from the persistence. To illustrate
this, think of non-interacting cells, whose polarity is initially set at ran-
dom in the colony, with infinite persistence (as schematised in Fig. 4.36).
The N/2 “-1” cells will move as a solid to the left, while the N/2 “+1”
cells will move to the right. That creates a band that contains only “-1”
on the left edge (and symmetric) and that grows with speed v = 1 in
both directions until it reaches the center. Then the groups will separate
and move away from each other.

Now, if the cells have a finite persistence, for t � τp the system behaves
just as described, while at t � τp the cell density tends to be Gaussian
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and the average polarity remains very low. The polarity wave with speed
v = 1 still builds up, but it is counterbalanced by the tumbles on a time
∼ τp. This is why it disappears on long time scales, leading to a peak of
average 〈P (t)〉r.
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Figure 4.37: 1D simulation of Contact Enhancement of Locomotion
(a) Gyration radius and (b) polarity for simulated ‘cell colonies’ with
Li = 1000, τp = 2, τe = 1000, N ∈ {5; 10; 20; 50; 100; 200; 500} (colour-
coded solid lines). The limit cases with no CEL are plotted in black with
τp = 2 (dash-dotted lines) and τp = 1000 (dashed lines).

Asymmetric collisions: Contact Enhancement of Locomotion.
In this particular system, the only way to produce a collective effect is to
consider asymmetric collisions: as a collision is undistinguishable from a
crossing, the state of the system will be changed upon contact only if the
state of the cells themselves is changed: for instance, the cells can either
escape with a greater speed or a greater persistence. Since the frequency
of collisions increases with density, the spreading should increase with
N .

The second option was implemented as follows: after a collision, the
persistence of both colliding cells is increased to τe > τp. Then it relaxes
to τp at the next tumble, or it is set again at τe at the next collision.

To explore a broader ranger of persistence, we increased the initial seg-
ment length Li to 1000 and the observation time accordingly (this pro-
cess is equivalent to decreasing the particle size). Now there is a clear
effect of the cell number (Fig. 4.37). In particular, at high (resp. low)
N the behaviour approaches that of a system with symmetric collisions
and persistence τe (resp. τp).
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4.4 Active Brownian particles: 2D simulations.
NB: the work reported in this section is based on interacting particles
codes written and implemented by Alexandre Solon.

We used 2D simulations, based on the active Brownian particle model,
to get a more precise idea of the effect of contact interactions in two
dimensions and in continous space.
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Figure 4.38: Active Brownian particles with simple collision rules.
(a,c) Gyration radius and (b,d) radial velocity for colonies of active
Brownian particles undergoing simple interaction rules: hard-core re-
pulsion only (a,b) or hard-core repulsion and angular repulsion (c,d).
The particle were initially constrained in a disk of diameter 320 μm.
v = 5 μm.min−1, D−1

r = 5 min, (a,b) γ = 0 or (c,d) γ = 100.

Hard-core repulsion only. We started with steric hindrance only,
modelled by a hard-core repulsive force acting on touching particles.
The dynamics of particle i is described by the following set of stochastic
equations:
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∂tri = vu(θi) +
∑
j �=i

fij(ri − rj) (4.23)

∂tθi =
√

2Drηi(t) (4.24)

where u(θi) = (cos θi, sin θi) and ηi is a delta-correlated Gaussian white
noise with zero mean and unit variance. fij is the steric repelling force
exerted by particle j on particle i, and derives from a Weeks-Chandler-
Andersen potential V (r) = 4

[(
σ
r

)12 − (σr )6] + 1 if r < 21/6σ and 0

otherwise, where σ = 10μm is the particle radius. The Langevin equa-
tions Eqs. (4.23-4.24) were integrated using a Euler integration scheme
with time steps Δt = 10−3 min.

As we have seen in Section 4.2, this effect alone can increase the dif-
fusion constant in a density-dependent way. It is due to an additional
pressure arising from interactions, which has also been described for ac-
tive particles [117]. However, this effect is expected to be significant
only at close packing, which is not reached in experimental conditions
(packing fraction up to ∼ 0.3, assuming that the effective interaction
radius is the cell radius itself), and it should even be counterbalanced
by the decrease of the effective speed in the case of ABPs [55]. Indeed,
there is no effect of the particle number on the dynamics (4.38a-b).

Active reorientation through angular repulsion. Contrary to the
1D automaton, the collisions do not induce a change of direction in the
latter model. Yet, it is reasonable to think that the cells actively reorient
upon contact: this is the current paradigm of the contact inhibition of
locomotion (CIL), that the protrusions are inhibited in the contact zone,
leading to a repolarisation in the direction away from the contact. This
was implemented by adding a angular repulsion between two interacting
– ie at contact – particles:

⎧⎨
⎩ ∂tri = vu(θi) +

∑
j �=i fij(ri − rj)

∂tθi =
√
2Drηi(t) + γ

∑
j �=i sin(θi − βij)

(4.25)

where the term γ
∑

j �=i sin(θi − βij) is a repulsive torque of magnitude
γ, which reorients the particles away from their neighbours, with βij =
arg(rj − ri).
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Qualitatively, it could act to reorient preferentially the particles in the
direction of negative density gradient. Indeed, there is a small increase
in both vr and the spreading rate when the particle number is increased
(Fig. 4.38c-d). Yet, this increase remains very small and the peak is still
very early, showing that angular repulsion is not sufficient to account for
the spectacular effect observed experimentally (Fig. 4.18).
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Figure 4.39: Active Brownian particles undergoing CEL.
(a) Gyration radius (variation) and (b) radial velocity for colonies of
active Brownian particles undergoing contact enhancement of locomo-
tion: upon collision, they enter a ballistic mode that relaxes to normal
persistent random motion with rate ω. The particle were initially con-
strained in a disk of diameter 320 μm. v = 5 μm.min−1, D−1

r = 2 min,
ω−1 = 10 min.

Contact Enhancement of Locomotion. Therefore, we implemented
the effect of Contact Enhancement of Locomotion in a similar way as in
the 1D automaton. Upon collision, the particles start a ballistic run un-
til they relax stochastically to their natural mode, at a rate ω−1. Here,
we take D−1

r = 2 min and ω−1 = 10min, corresponding to relaxation
times close to τ1 and τ2 respectively, as measured in the experiments,
and γ = 0 (no angular repulsion). Alternatively, the second mode can be
an ABP mode with a higher persistence τe, and the speed in this mode
can be changed – increased – as well.

The simulation results demonstrate that this effect alone (the angular re-
pulsion has been switched off there) captures very well the main features
of the experiments (Fig. 4.39). In particular, the quantitative agree-
ment, in terms of values of 〈vr〉 for instance, is surprisingly good given
the simplicity of the model: here vr(t

∗) ≈ 1.5 μm.min−1 for N0 = 200,
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while experimentally vr ≈ 2 μm.min−1 for 〈N0〉 = 259 (Fig. 4.18d).

The main discrepancy is in the peak timing t∗, which is earlier in the
simulations and does not seem to depend much on N0, the particle num-
ber. Again, it seems to be set by the persistence time, namely ω−1 in
this case, with only a change in proportion with N0 (Fig. 4.40).
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Figure 4.40: Timing t∗ of the
peak in radial velocity.
t∗ as a function of N0 from
the experimental data (blue plus
signs) and the bimodal ABP
model (red circles).

The velocity autocorrelation function is well described by a sum of two
exponential decays, as expected (François Detcheverry, personal commu-
nication, see Appendix A). Here, unlike in the experiments, φ1+φ2 = 1,
because only two modes are considered, with no positional noise. Fitting
φ2 and τ2 from the expression

C(δt) = (1− φ2) exp(− t

2
) + φ2 exp(− t

τ2
) (4.26)

we find that φ2 correlates well with the actual proportion of cells in mode
2. Furthermore, τ2 increases as well in the denser, more persistent zones
(not shown). This is consistent with a shorter mean free path, hence a
shorter characteristic time for the duration of “random” runs, in mode
1.

4.5 Summary

In this section, we introduced a few concepts that allowed us to draw a
more precise picture of the spreading dynamics of our Dictyostelium
model colonies. First, by numerical solving of the FKPP equation,
we demonstrated that this equation could describe well the long-time,
proliferation-driven evolution of DH1 colonies, at the cost of a small dis-
tortion of the parameters; however, even in this seemingly FKPP-friendly
case, it failed to account for the early dynamics.
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This is apparently due to a bias in the motion, which is directed outwards
in the early stage of the spreading. This bias, more visible in AX2
colonies on which all the following was based, can be relatively well
introduced in the form of a drift velocity down the density gradient, for
t � t∗. This gives birth to the downhill-FKPP equation, which predicts
quite accurately the dynamics in this time frame (t∗ � t � 500 min).

Yet, this phenomenological approach does not inform about the origin
of the bias, and especially about its emergence at t < t∗. The latter can
be seen as a polarisation induced by the cell persistence. Particle-based
simulations showed that in order for it to exhibit the experimentally
observed characteristics, the cells should undergo CEL, a process which
increases their persistence upon cell-cell contact.

5 Accumulation model: getting closer to the
data

Using particle-based simulations, we could quite satisfactorily explain
the appearance of transient polarisation that relies on a simple mech-
anism of Contact Enhancement of Locomotion. However the precise
dynamics of the polarisation is not completely captured by this simple
two-state model. In particular, it does not exhibit the right t∗(N0) de-
pendency (see Fig. 4.40) and it does not reflect the experimental obser-
vation that before t∗ all the 〈vr〉(t) curves seem to be undistinguishable.
Here we develop qualitative arguments to build a model that fits this
behaviour, from the dynamics to the mechanisms.

We simplify the problem as follows: we consider an expanding domain,
whose expansion dynamics is controlled by an expansion speed V , which
is in a way the analogue of vr in this model. Then we suppose that V
is accumulated by contact interactions, so in a density dependent way,
and is destroyed at a constant rate. The dynamics is given by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ṙ = V

V̇ = a(ρ)− βV

ρ = N
πR2

(4.27)

The driving idea is that the peak in V is set by a transition from an
accumulating regime (a(ρ) > βV ) to a decay regime (a(ρ) < βV ). The
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critical functional is thus the accumulation rate a(ρ), which can set t∗

since ρ decreases as the colony spreads out (Fig. 4.41). The simplest
shape possible for a(ρ) is a stepwise function:

a(ρ) =

⎧⎨
⎩ βV0 if ρ > ρ∗

0 otherwise
(4.28)

0
0

ρ

a
(
ρ
)

βVm

ρ
∗

Figure 4.41: Possible shapes for
the accumulation rate a(ρ).
In the sharp version (blue),
a transitions instantaneously
from βVm to 0 when ρ passes
down ρ∗. In the smooth version
(red), a ∝ ρ, with a potential
saturation at βVm, leading to a
slow decrease of V following ρ.

With this assumption, the dynamics of V is very simple: as long as
ρ > ρ∗, V = Vm(1 − exp(−βt)), and at t � t∗ so that ρ(t∗) = ρ∗,
V = V ∗ exp(−β(t − t∗)). Importantly, one notices directly that for all
N , as long as V (t) increases all the curves collapse on the same one.
Then t∗ is determined by the condition ρ(t∗) = ρ∗.

For t � t∗, the radius writes

R(t) = R0 +

∫ t

t′=0

V (t′)dt′

= R0 + Vmt+
Vm

β

(
e−βt − 1

)
, (4.29)

and so the condition on t∗ yields

N

2πR(t∗)2
= ρ∗

⇔Vmt∗ +
Vm

β
e−βt∗ =

√
N

2πρ∗
. (4.30)
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The scaling of t∗ with N is not obvious and depends on the relative values
of the three parameters. We solved this model using a finite difference
method with explicit scheme for a few sets of parameters. We observe the
expected behaviour: an initial increase that is shared by all conditions N ,
and then an exponential relaxation from t∗(N) (Fig. 4.42b). Moreover,
t∗ increases with N0 in a way that reminds the experimental data (see
Fig. 4.44, dark green triangles).
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Figure 4.42: Accumulation model – sharp version.
(a) Rg = 2

3R and (b) V as a function of time obtained from the accu-
mulation model. a(ρ � ρ∗) = βVm, a(ρ < ρ∗) = 0, with β−1 = 80 min,
Vm = 2.5 μm.min−1, ρ∗ = 9× 4 cm−2.

Of course, there are discrepancies with the experimental observations.
As R is only driven by V , it tends to a constant. This is because in
this simple avatar, our model does not account for any spreading in
the absence of V , which represents the polarised motion. It could be
overcome by including an additional term in Ṙ, for instance in the form of
a basal speed V0, or even of a diffusion constant (so that Ṙ2 = 4D+2V 2t
for instance); alternatively a(ρ) could be shaped so that V does not
relaxes to 0.

As such, it is only a toy model that allows to estimate the behaviour of a
colony where persistence for instance – or speed – would be accumulated
upon contact, instead of simply switching from a native state to an
activated state. It shows that this hypothesis has some potential to
better explain the experimental data and could deserve being integrated
in a more realistic particle-based or PDE model.

Biologically speaking, it could rely on the production of internal polaris-
ing or activating signals by the cells upon cell-cell contact, which signals
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would be degraded at a constant rate β. If a given amount of this sig-
nal was produced per collision, then a(ρ) should scale as 1/tcol, where
tcol is the mean time between collisions, set by the mean-free path (see
Appendix C). So a should scale as ρ or ρ

1
2 , which would be very differ-

ent from our current assumption: the transition from the accumulation
to the relaxation phase would be far smoother and especially the sharp
peak in V would be very unlikely to occur. Similarly, all the V curves
with different N would separate more progressively, leading to a shape
closer to that of the above bimodal ABP model, so the improvement of
the accumulation model would be partly lost.

A saturation in a(ρ) could be easily introduced by assuming that the
signal production is passivated for a time tmin upon activation: then
a(ρ) would saturate above ρ∗ so that tcol(ρ

∗) = tmin, introducing again
a critical density ρ∗ defining the time at which V (t) leaves the initial
carrying curve. However, again, the too smooth decrease of a(ρ < ρ∗)
would lead to a spread maximum in V (t) and not a sharp peak (Fig.
4.43b).
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Figure 4.43: Accumulation model – smooth version.
(a) Rg = 2

3R and (b) V as a function of time obtained from the accumu-
lation model. a(ρ � ρ∗) = βVm, a(ρ > ρ∗) = βVm

ρ∗ ρ, with β−1 = 80 min,
Vm = 2.5 μm.min−1, ρ∗ = 9× 4 cm−2.

To sum up, the activity (persistence or speed) accumulation hypothesis
seems promising, but it would need further development to assess its
real accuracy. Moreover, it assumes a quite sophisticated intracellular
process, which requires more experimental observation to the strength
of its biological relevance.
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Figure 4.44: Summary: timing of the peak in radial velocity.
t∗ as a function of N0 from the experimental data (blue plus signs),
the bimodal ABP model (red circles), the sharp accumulation model
(dark green triangles) and the smooth accumuluation model (light green
squares).

6 Conclusions and perspectives
In this chapter, we described an experimental observation of the spread-
ing of cell colonies. In order to rationalise the analysis, the colonies
were prepared using microfabrication techniques that allowed a precise
control of the initial condition (colony shape, radius and density).

We noted that the spreading undergoes several regimes: at late times,
it is dominated by proliferation – and slowing down due to a QSF effect
– which meets the prediction of the FKPP equation; on a shorter time
scale t � 500 min, however, a novel effect of contact enhancement of
locomotion speeds up the process by a large amount. Thus, the cell-cell
contacts act to increase the cell persistence, which in turn induces a local
polarisation of the motion and a faster spreading of the population.

Various modelling approaches gave us a better insight into the dynamics
of this effect. In particular, a model of bimodal, contact-activated active
Brownian particles accounts well for this density dependent polarisation
and speed up of the spreading. The main discrepancy resides in the
scaling of the peak timing t∗ with N0, which could possibly be better
described by an accumulation model (Fig. 4.44).

At the scale of the individual cell, this effect of CEL could be a partic-
ular manifestation of the CIL (for contact inhibition of locomotion), an
effect that is well described in mammal cells [24]. In CIL, the protrusions
in the contact zone are inhibited, hence leading to a new polarisation of
the cell away from the contact. One could easily imagine that membrane
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ruffling in the contact zone is inhibited for a while, inducing a transient
more persistent motion (described in the bimodal ABP model of Section
4.4). The intracellular signals of polarisation and of motility activation
could also be involved. For instance, the production of motility activat-
ing molecules could be induced transiently upon contact, leading to a
contact-frequency-dependent accumulation of motility, accounted for in
Section 5.2.

It seems fundamental to better understand these cell scale processes in
order to go further in the interpretation of such results. To that end,
specially designed experiments are needed. In particular, quantifying
the effect of one or a series of contacts on single trajectories would allow
to complete the picture. The main limitation in such experiments is that
in two dimensions, when the cells are dilute enough to avoid multiple
collisions, the contacts are actually too rare to yield enough statistics.
Special experiments should thus be designed to force collisions, either
by directing cells in a microsystem of by directly contacting a mov-
ing cell with another micro-manipulated one. Additional information
on the molecular mechanisms underlying this interaction process could
be brought by intracellular fluorescence imaging and molecular biology
approaches.

At a larger scale, whatever its detailed mechanism, our observations
demonstrated that CEL confers an increased invasive capacity to cells
even in a relatively loose population. This could be at stake in leuko-
cytes or highly metastatic cells that exhibit a motile behaviour close to
Dictyostelium’s [118, 119]. Our experimental set-up and analysis frame-
work could therefore be applied to these and other cell types to look for a
similar CEL effect, or even to study other kinds of cell-cell interactions,
for instance by adding cell-cell adhesion.

————————————————————————
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5. Dynamic aggregation at high cell
density

Although Dictyostelium cells are well known for their aggregation upon
sudden nutrient starvation, the behaviour of cells at high density in rich
culture medium has raised relatively low interest until now. In this chap-
ter, we report on experiments that aimed at understanding this limit of
the density diagram. We observed an impressive phenomenon of dy-
namic aggregation: before confluence, the cells become more active and
progressively gather into three-dimensional packed clusters, which are
motile and exchange cells. We give a first description of the aggrega-
tion dynamics and quantify the aggregates’ statistics, hence paving the
way for the understanding of the exotic behaviours exhibited by Dic-
tyostelium cells in extreme situations.
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1 Introduction
We have seen in Chapter 3 that density matters a lot. In particular,
in the community of Dictyostelium biologists, common wisdom has it
that one should refrain from letting the cells in culture reach too high
densities, in order to avoid exotic or even pathological behaviours. As
a consequence, we really wanted to let cells in culture reach high den-
sities. Our observations about exotic, or even pathological behaviours
are reported below. Yet, let us first discuss a little about the reasonable
expectations of either biologists or physicists facing such a high density
system.

For inert matter physicists, increasing the density usually means decreas-
ing the activity. It typically involves a glassy transition, in which the
dynamics slows down for kinetic reasons. Similar properties have been
described in living tissues, and especially epithelia [27, 42] and studied
theoretically for active matter [120]. However, some authors claim that
in this particular case, the density should not be the driving parame-
ter as the packing fraction is always 1, and they propose a model that
highlights the role of various cell-cell adhesive interactions [121, 41].

Yet, below the jamming, increasing the density of active systems may
also lead to richer phenomena. In the Vicsek model, alignment interac-
tions leads to a transition to order with micro-phase separation of dense
ordered bands [48, 50]. Such clustering associated to alignment has been
described and modelled in rod-shaped bacteria [29, 30].

(a) (b) (c) (d)
Figure 5.1: Aggregation in Myxococcus xanthus (from [30]).
(a–d) Snapshots of clustering bacteria at various packing fractions: 0.06
(a), 0.1 (b), 0.16 (c) and 0.24 (d). M. xanthus cells are rod-shaped, with
length L = 6 μm and width W = 0.7 μm, and they align upon collision.

Micro-phase separation also occurs without any adhesive or aligning
interactions, by motility-induced phase separation (MIPS), when the
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motility is decreased in denser zones. This happens for instance in ho-
mogeneous dense collections of hard-disks which average speed decreases
because of steric hindrance. However, to our knowledge it has not yet
been demonstrated to drive aggregation in any living system, even if it
is a trendy hypothesis [122, 123].

2 Experimental observations

2.1 An overview of the phenomenon

The cells – DH1 strain – are seeded at 2×105 cm−2 in small home-made
wells on a glass slide. Then they are simply imaged for up to one week.
At first, the cells start proliferating – although not exponentially – and
exhibit a very low motility, as expected at this high density (see Chapter
3). Then, they become suddenly more polarised and motile, leading to
important local density fluctuations which progressively build up into
dense, much likely three dimensional clusters (Fig. 5.2). These clusters
grow in a very dynamic way: they include cells from the surrounding
“dense gas”, but also fuse with other clusters, melt sometimes, and move
at random.

Figure 5.2: Cluster formation.
Starting from a homogeneous cell population at high density (left), the
cells gather in small clusters (center) which grow with time to reach a
stationary state (right). Left, inset: zoom in on the left picture. The cell
density is high but below close packing.

We took advantage of the contrast between the dark aggregates and
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the light gray background to segment the pictures (see Fig. 5.5c for
an example of binarised image), and analyse the properties of the cell
clusters.

The aggregation is characterised by a phase of rapid growth that lasts
only a few hours, so that ζ(t), the fraction of the surface occupied by
the aggregates, exhibits an almost sigmoid shape, with a sharp transition
that separates the waiting phase from an almost stationary “aggregated”
phase (Fig. 5.3). At the same time, the proliferation almost stops.
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Figure 5.3: Aggregation kinetics.
(a) Cell density ρgas detected outside the aggregates, (b) surface fraction
ζ occupied by the aggregates, (c) aggregate number Nc and (d) aggregate
average area 〈A〉 as a function of time. Three independent experiments
were aligned using the Nc(t) curves.

A surrounding ‘gas’ of single cells. Around the aggregates, sin-
gle cells keep behaving as in a homogeneous culture: they still move
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seemingly at random on the surface, constituting what we term here a
surrounding ‘gas’, in contrast with the condensed clusters. Interestingly,
the cell density ρgas in the ‘gas’ remains constant, and relatively far from
the close packing (Fig. 5.3a). The measurements seem to show a good
agreement between experiments 2 and 3 (red and blue respectively) but
not with experiment 1 (green). Yet one should not focus too much on the
absolute values but rather on the time evolution: the aspect of pictures
does not allow to really detect every single cell once, but the possible
bias is expected to be constant over a whole experiment.

Kinetics of aggregation. To look deeper into the kinetics of aggre-
gation, we computed both the cluster number Nc and average area 〈A〉
(Fig. 5.3c-d). We found that both increase from 0 to an almost sta-
tionary value, just as ζ(t) (Fig. 5.3). Yet, they exhibit slight differences.
Nc(t) has a very sharp initial increase and overtakes its aggregated phase
value; then it relaxes slowly to the latter. By contrast, the onset of the
growth of 〈A〉(t) is delayed; then it increases more slowly, and it reaches
its stationary value later than ζ and Nc. This shows that there is a
first nucleation phase during which small clusters form; then these clus-
ter grow by absorbing isolated cells from the surrounding “gas” and by
fusing together, which explains the eventual decrease of Nc.

Pre-aggregation, dissolution, re-aggregation. In experiments run
on shorter times and smaller fields of view, we observed an intriguing
phenomenon: in some cases the cells first formed small transient clusters
that melted completely before a new more extensive aggregation phase
– likely the one described above – could start several hours later. The
reason of this disintegration remains unclear. This might be related to
the “breathing” phenomenon mentioned in Section 2.2 below.

Spatial organisation. Whether the aggregation is globally or locally
triggered is not obvious. In some experiments, it seemed to nucleate
homogeneously at the scale of the field of view – several millimetres, still
– but in some others we could observe an advancing front of aggregation.
By computing Nc locally in adjacent strips, we could measure a local
passage time and found a fluctuating front moving at almost constant
speed (Fig. 5.4).
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Figure 5.4: Aggregation front.
Small clusters first form on the right side of the field of view, then an
aggregation front (the red dashed line is a guide to the eye) progresses to
the left at a constant speed cfront = 8.9 μm.min−1.

2.2 Aggregate size: statistics and dynamics

Cluster size distribution. We measured the cluster size distribution
(CSD), defined as the relative frequency of aggregates of area A (Fig.
5.5). It evolves from an approximately exponential distribution at the
onset of aggregation towards a specific stationary shape (Fig. 5.5a): a
first power-law-like decrease is followed by a local maximum and a faster
decay. The peak area defines the typical size A∗ = 1− 1.5× 104 μm2 of
numerous large and long-lived aggregates. The initial decay means that
there is a large number of clusters of all sizes between 0 and A∗.

Interestingly, this distribution is well reproduced in three independent
experiments made over more than a month (Fig. 5.5b), which shows
that it is a robust property of this system.

Aggregate breathing. Even in the ‘stationary’ phase, the aggregates
remain highly dynamic. In particular, they constantly seem to exchange
cells, either with the surrounding ‘gas’ or with other aggregates. At a
larger scale, the whole population of clusters breathes. This phenomenon
is particularly marked in one of the experiments: we observe clear an-
tiphase oscillations of the number of aggregates Nc and their average
area 〈A〉 (Fig. 5.3, experiment 3, blue lines). In the CSD, it results in a
depopulation of the large-scale peak at A∗ > 104 μm in favour of more
numerous clusters of intermediate size (Fig. 5.6).

Interestingly, the CSD exhibits two distinct characteristic shapes corre-
sponding to breathing in – fewer but larger aggregates, red up-pointing
triangles – and out – numerous intermediate aggregates, blue down-
pointing triangles.
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Figure 5.5: Cluster size distributions.
(a) Evolution of the CSD with time in experiment
3 (in blue in (b) and in Fig. 5.3). (b) Average
CSD for 2000 min < t � 4000 min for three inde-
pendent experiments.
(c) Binarisation process: the top image is the re-
sult of the unprocessed bottom picture. The let-
tered aggregates are examples of the variety of
sizes: [A] 2 × 104 μm2, [B] 1 × 104 μm2, [C]
7× 103 μm2, [D] 1× 103 μm2, [D] 7× 102 μm2
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Figure 5.6: Aggregate breathing.
CSD in experiment number 3,
averaged over 100 min around
the hollows (red, solid up tri-
angles) and peaks (blue, empty
down triangles) in Nc(t).

3 Perspectives
The phenomenon that we have described here raises many questions,
from both perspectives of the physiology of Dictyostelium and of the
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physics of aggregating active systems.

Aggregation signal. Firstly, it is not clear whether the aggregation is
an emergent property of the system or whether a signal is actually trans-
mitted over the population to trigger a change of cellular behaviours. In
the former case, an intrinsic parameter – such as the cell density or
any characteristic of the motion – would reach a critical value leading to
destabilisation of the homogeneous population; in the latter, the commu-
nication could occur by contact or via a change in the medium, e.g. the
secretion or depletion of a molecule, or medium acidification. Of course,
a mixture of the two is conceivable. For instance, a relative depletion
of any nutrient could lead to a pre-starvation behaviour, involving an
increase in motility, and the system’s stability be sensitive to the cells’
speed or persistence. We started experiments with a perfusion of fresh
medium to test the hypothesis of medium-change-induction of the ag-
gregation, but at that time the fluidic system we used was not reliable
enough to produce convincing results.

It is even not clear whether the process nucleates locally or on a large
scale. In two experiments (1 and 3, respectively blue and green lines in
Fig. 5.3), there is a front of nucleation of the small clusters, while in
the third experiment (red lines in Fig. 5.3) this nucleation step occurs
simultaneously over the whole field of view, but then the formation of
dark large aggregates starts on one side and propagates. In both situa-
tions the front comes from outside the field of view and extends further
than the edges when it enters the image. This propagation could be the
signature of a signal relay but it does not inform about the nature of
this signal.

Finally, the constant density in the ‘gas’ is reminiscent of a condensed
phase / gas coexistence, but ρgas is difficult to handle experimentally
because of the proliferation, and at least some features – as the breathing
phenomenon – seem to have a different origin.

Clustering mechanisms. In such a collection of moving agents, var-
ious mechanisms can lead to aggregation. The simplest one is the action
of an attractive cell-cell interaction, which can take the form of chemoat-
traction but also of cell-cell adhesion. The interplay of the latter and
the forces exerted on the substrate can stabilise more or less the aggre-
gates. In principle, vegetative Dictyostelium cells do not express cell-cell
adhesion proteins, but the long culture time at high density could trig-
ger a prestarvation behaviour involving the expression of Contact Site
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A, an important cell-cell adhesion protein expressed in the course of de-
velopment [124] or other similar proteins. Experiments with knock-out
cells, or with cells whose expression of prestarvation genes is tractable
by fluorescence could give valuable information on this point.

Alternatively, active particles can cluster without explicit attraction: a
motion that slows down in dense zones can lead to motility-induced
phase separation (MIPS) [125]. The characteristics of the large aggre-
gates, which are tightly packed, seemingly three-dimensional and motile,
suggest that the cells inside adhere to each other, but MIPS could be at
play in the early stage of aggregation.

Indeed, the aggregation involves two distinct morphologies of clusters:
the smaller are two-dimensional and highly dynamic, especially at the
onset of aggregation where they are similar to transient local density fluc-
tuations; the larger look like three-dimensional dense structures, more
comparable to spheroids. To better understand the phenomenon, it
would be interesting to get a more precise picture of the aggregates’
structure and of the single cell dynamics, in the clusters and in the ‘gas’.
The former could be achieved by using confocal imaging to get three-
dimensional stacks of the aggregates, and at least higher magnification
images. To that end, the main obstacle is that the appearance of the
clusters depends on the magnification, and thus mapping higher magni-
fication picture to our low magnification ones is not as straightforward
as it could seem. Concerning the single cell dynamics, the experiment
1 was done with a mixture of GFP and RFP expressing cells (kindly
provided by C. Nizak, ESPCI, Paris) in 98:2 ratio so that the RFP cells
can be tracked individually. The aim was to separate the cells in the
clusters from those in the ‘gas’, compare their motility and measure the
entrance/exit rates in the aggregates (Fig. 5.7). However, for lack of
additional experiments, these data were left on the side.

To sum up, various mechanisms, possibly triggered by various signals
and control parameters, can lead to this rich dynamic aggregation be-
haviour. The main difficulty resides in the low control on the aggre-
gation that is currently accessible. In that view, the spreading assay
presented in Chapter 4 could be a promising way, as the same cluster-
ing phenomenon was observed in the late high density stages of these
experiments. Yet, although very preliminary, these results show that a
broad class of rich exotic behaviours remains to be explored in biological
systems near the onset of collectivity.

————————————————————————
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Figure 5.7: Tracking individual cells in the aggregates.
In experiment 1, GFP cells were mixed with RFP cells so that RFP
cells are isolated. Bright-field (top-left), RFP channel (top-right), merge
(bottom-left) and merged binarised images (bottom-right).
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6. General conclusion

This thesis was based on three different experimental studies, reported in
Chapters 3, 4 and 5, complemented with modelling when it could shed
light on some principles driving the system. These experiments aimed
at understanding how cells could regulate their motility as a group, by
means of individual cell-cell interactions. To that end, we committed to
the approach of physics, namely by choosing a simple microscopic observ-
able and trying to relate its properties to the evolution of macroscopic
variables. This involved a coarse graining procedure, whose details could
in turn evidence the mechanisms linking the two scales.

To be more specific, we made the decision to work essentially on cell
trajectories, hence considering the cells as particles whose internal dy-
namics was summed up in this apparently simple object. To be able
to quantify the extent to which they were affected by the interactions,
it was important to have a good idea of their properties in the absence
of external cue. The review and preliminary measurements presented
in Chapter 2 showed that, even though this task itself was far from
being completed, the cell trajectories could well be seen as an integrated
manifestation of their internal activity. In particular, we stressed out
the importance of the dynamics of the cell polarity axis, characterised
by one or several persistence times.

In order to come and go between the individual and collective scales,
active matter constitutes a very suitable framework. Indeed, it allows
a quite straightforward integration of the experimental measurements
into simple models of self-propelled particles, that describe closely the
motion of polar individuals. Quantifying the effects of various classes of
interactions is then made possible with retained generality. In Chapter
4, it allowed us to demonstrate the necessity of a Contact Enhancement
of Locomotion (CEL) effect to account for the speed-up of early colony
spreading, whereas classically accepted cell-cell interactions failed to it.

More generally, active matter has the potential to deal with interactions
of all the kinds and functional forms that we have encountered during
the course of this doctoral research. We pointed out three of them:
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chemical sensing at a distance is the central point of Chapter 3 and is
much likely at stake in the triggering of the clustering in Chapter 5;
a local ‘repulsive’ interaction, in the form of CEL, is responsible for the
density sensitivity of colony spreading reported in Chapter 4; lastly, ad-
hesive contacts probably play a driving role in the dynamic aggregation
of Chapter 5.

It is remarkable that a single cell type is able to exhibit such various
properties depending on the experimental context. To that extent, Dic-
tyostelium discoideum has proven once again that it is a rich and pow-
erful tool to uncover and decipher elementary biological functions, and
especially regarding cell motility and emergent collective properties. The
other side of the coin is that, should they be restricted to social amœbas,
the results obtained with this organism would be of limited impact as
such.

Therefore we expect this thesis to lay the foundation of research in
more applied fields of cell biology. This is commonplace for findings ini-
tially made in Dictyostelium to be extended to leukocytes or even highly
metastatic cells, that both present amœboid characteristics [126, 23].
Similarly, the interaction mechanisms that we have described here can
reasonably be thought to matter in various situations. To our knowledge,
quorum-sensing has not been reported so far to regulate the motility of
other cell types, mainly because it has not been looked upon. However,
there is no reason for it not to exist elsewhere. It can show itself to
be particularly important in vitro as, when overlooked, it can bias the
results in an unexplained fashion – this is actually the way it was first
hypothesised. Besides, in vivo, cell populations that are scattered but
still need to be able to reach any point in an extended zone could take
advantage of such a regulation of the motility to achieve a good coverage.
This includes e.g. immune cells or fibroblasts.

The effect of CEL is interesting for cells that may be more packed but
where individuals can move freely over intermediate distances. Indeed it
gives such a group the ability to spread more efficiently when its density
is increased even in the absence of continual communication. It could
be at play in the invasiveness of highly metastatic, loosely connected,
tumour cells, or in microbial dispersion. Again it could also help immune
cells to scatter from a possible prior meeting point.

Last, the dynamic breathing aggregation phenomenon undergone at high
density contains certainly makes room for exciting discoveries on large-
scale synchronisation and biphasic-equilibria-like phenomena that could
occur in numerous physiological processes.
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To conclude, this work is not an account of completed stand-alone re-
search. Quite the opposite, I hope it can be considered as a working
base for further findings in the broad and fascinating field of the emer-
gent collective behaviours in living matter.

————————————————————————
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A Bimodal rotational diffusion
Here we present results obtained by F. Detcheverry (Institut Lumière
Matière, Université Claude Bernard Lyon 1, Villeurbanne) on the corre-
lation function and the MSD of a particle undergoing bimodal rotational
diffusion.

Assume a particle moves in the plane with velocity of constant magnitude
v0. Its orientation changes according to rotational diffusion, but with
a coefficient that alternates between two values d1 and d2. The times
spent in mode 1 and 2 are both exponentially distributed, with mean
λ−1
1 and λ−1

2 respectively 1. What are the properties of such a random
motion?

The main quantity to determine is the angle correlation function

Cθ(t
′ − t) = 〈cos [θ(t′)− θ(t)]〉, (1)

which is equivalent to the velocity direction autocorrelation function
(VDACF, see Chapter 2)

C(t′ − t) = 〈 v(t′) ·v(t)
‖v(t′)‖‖v(t)‖〉, (2)

and its Laplace transform Cθ(s), from which one obtains the mean square
displacement m(t) and the diffusion coefficient from

m(s) = v20
Cθ(s)

s2
, (3)

D =
v20
4

lim
s→0

Cθ(s). (4)

One way to obtain Cθ(s) is to solve the problem

∂tp1 = d1 ∂
2
θθp1 − λ1p1 + λ2p2, p1(θ, 0) = φ1δ(θ), (5)

∂tp2 = d2 ∂
2
θθp2 + λ1p1 − λ2p2, p2(θ, 0) = (1− φ1)δ(θ).

Here pi=1,2(θ, t) is the probability to be in mode i at time t, di is the
rotational diffusion coefficient in mode i, and φ1 = λ2/(λ1 + λ2) is the
fraction of time spent in mode 1. Introducing p = p1+p2, Cθ(t) is given
by

Cθ(t) =

∫ π

−π

dθ p(θ, t) cos θ (6)

1The value of d is thus a Telegraph process.
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Using Laplace and Fourier transforms, one finds

Cθ(s) =
(λ1 + λ2)

2 + λ1(s+ d1) + λ2(s+ d2)

(λ1 + λ2) [(s+ d1)(s+ d2) + λ2(s+ d1) + λ1(s+ d2)]

In time domain one obtains for Cθ(t) the sum of two exponentials:

Cθ(t) = Ce−γt + C ′e−γ′t, (7)

with the notations

κ2 = (d1 + d2 + λ1 + λ2)
2 − 4(d1d2 + d2λ1 + d1λ2), (8)

κ′2 = (d1 − d2 + λ1 − λ2)
2 + 4λ1λ2, (9)

γ = (κ+ d1 + d2 + λ1 + λ2)/2, (10)
γ′ = γ − κ, (11)

C = − (d1 − d2) (λ1 − λ2) + (λ1 + λ2) (λ1 + λ2 − κ′)
2κ (λ1 + λ2)

, (12)

C ′ =
(d1 − d2) (λ1 − λ2) + (λ1 + λ2) (λ1 + λ2 + κ′)

2κ (λ1 + λ2)
. (13)

As a check, in the cases d1 = d2, λ2 → ∞ or λ1 → 0, one recovers the
unimodal case and Cθ(t) = e−d1t.

Besides, the following inequalities hold:

C,C ′ � 0, d1 � γ′ � d2 < γ, (14)

showing that the slowest relaxation is intermediate between d1 and d2,
and that both exponential are always decaying: Cθ(t) is thus a strictly
decaying function and can not have a minimum. Finally, the diffusion
coefficient D is

4D

v20
=

λ1d1 + λ2d2 + (λ1 + λ2)
2

(λ1 + λ2) (d1d2 + λ2d1 + λ1d2)
(15)

In the limit d2 → ∞, i.e. when all directional persistence is lost in
mode 2, all expressions greatly simplify

γ = d2, γ′ = d1 + λ1, (16)

C =
λ1

λ1 + λ2
, C ′ =

λ2

λ1 + λ2
, (17)

4D

v20
=

λ2

(λ1 + λ2) (d1 + λ1)
, (18)
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where only the first term in the expansion has been retained. In this
case, Cθ(t) exhibit a rapid drop over a time ∼ d−1

2 , followed by a slowest
decay whose constant γ′ = d1+λ1 is independent of d2. This is the limit
used in Appendix B to calibrate a bimodal analysis procedure.

The model used in Chapter 2, Section 4.2 and in Chapter 4, Sec-
tion 4.3 to model the effect of CEL is another special case of bimodal
rotational diffusion with d−1

2 = 0.

As final remark, note that the motion is different from what would be
observed with two populations of cells, each remaining in a given mode.
In that case, the quantities are obtained by an average over the two
populations, for instance

Cθ(t) = e−dit,
4D

v20
= d−1

i , Xi = φ1X1 + (1− φ1)X2, (19)

which are distinct from the expressions above.

————————————————————————
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B Towards bimodal analysis
Assuming that a given trajectory is bimodal, one might want to recover
the underlying parameters – d1, d2, the rotational diffusion constants and
λ1, λ2, the mode transition rates, in the case of a bimodal ABP. This is
possible in theory using the fit of the autocorrelation function. However,
inverting the expressions for τ1, τ2, φ1 and φ2 is far from straightforward,
and the relative imprecision of the measurements could be misleading to
precisely estimate the four parameters at the same time. This is why we
prefer to go no further than the estimation of φ1 and φ2 with fixed τ1
and τ2, which at least gives a reliable picture of the relative amounts of
short and long relaxation times.

To go further, it could be interesting to be able to segment the trajec-
tories into steps of each mode. This would allow to precisely study the
statistics of each mode. However, until now, the only proposed analysis
schemes have relied on arbitrary criteria. The typical way is to define
one or a few observables that may characterise the current mode: con-
secutive turning angles [71, 18], or local MSD exponent together with
the local turning angle variance [74]. In case the two modes are really
different, setting the suitable threshold might not be too difficult and
the modes can be detected quite reliably. Yet the situation in which
bimodal analysis is more valuable is when the mode detection is more
subtle. Of course, even in this case, this kind of procedure always yields
a result. The question is, how informative is this result? And also, what
is the influence of an arbitrarily set criterion for mode allocation?

Bimodal active-passive Brownian particles The Coefficient of Move-
ment Efficiency that we defined in Section 3.2 seems to be a good can-
didate for mode detection. Indeed, it is close to one when the motion is
persistent, and to 0 when it is random. To evaluate a bimodal analysis
scheme based on the CME, we simulated particles alternating between an
ABP mode ‘1’ with persistence τp = 4 min and speed v0 = 5 μm.min−1

and a diffusion mode ‘0’ with diffusion constant Dt (no persistence at
all). Both modes are exponentially distributed with mean step durations
τ1 and τ0 respectively. The data were discretised so that δt = 20 s and
δx = 0.67 μm. The control parameter used is the proportion of time
spent in mode 1, P1 = τ1

τ1+τ0
, which arises from the velocity autocorre-

lation function

C(t) = φe−
t
τ (20)
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where

⎧⎨
⎩ φ = P1

τ =
τpτ1
τp+τ1

(21)
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Figure B1: Parameters of the velocity autocorrelation function.
(a) Measured φ and (b) τ as a function of their theoretical predictions,
for various τ1 and τ0. Measurements from fits of the correlation function
over 5, 10, 15 and 20 minutes (blue, light blue, green and red respectively)
are completely superimposed.

We first checked whether we could recover well this parameters by fitting
the autocorrelation function. The results presented in Figure B1 shows
a good agreement with the predictions, the slight overestimation of φ
being well understood in the perspective of Section 4.1.

Distribution of the CME. To characterise the distributions, we plot-
ted the inverse cumulative distribution function Φ(c) =

∫ 1

c
P(c′)dc′ that

describes the proportion of data points with CME> c (see Chapter 2
for the definition of the CME). This function is noted Φ on purpose as
we will look for c such that Φ(c) = φ (the φ in the correlation func-
tion) later. This function decreases from 1 at c = 0 to 0 at c = 1. A
fast decrease denotes a peak in the probability density function, while a
flat zone stands for a hole. A “good” shape in our expectations would
be a sigmoid decrease with a very flat part in the middle, whose value
would be close to P1. It would mean that there is a clear separation
between the peak in the CME distribution due to the random part of
the trajectories and the one due to the persistent part.
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Of course, the shape also depends on the Δt that is chosen to compute
the CME. One expects that if Δt << tp, where tp is the characteristic
decorrelation time, then both peaks will be located near 1. In the oppo-
site limit, both will be next to 0 because lim

Δt→+∞
CMEΔt = 0 for both

modes.
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Figure B2: Cumulative distribution of CMEs measured at Δt = 4 min
for P1 ∈ {0.8, 0.5, 0.2} (full, dashed and pointed lines respectively) and
τ1 ∈ {2, 4, 8, 40} min (from darker to lighter brown).

In Figure B2 we display the Φ cumulative function measured at Δt =
τp = 4 min with various input parameters. One notices three bundles
of curves that correspond to the three values of P1. The greater P1 is,
the later Φ(CME) decreases. In each bundle the shape evolves from
single curvature to sigmoidal shape when τ1 is increased. This is an
effect of time scale separation. Indeed, when the steps in trajectories
are short compared to, or of the same order as Δt, the CME values
arise typically from mixtures of both modes, leading to a very smooth
distribution. Conversely, when the steps in trajectories are longer, the
time window typically corresponds to one or the other mode, hence two
better separated distributions of CME.

One can see several question emerging from this single figure:

(i) How does the shape of Φ depend on P1 ?

(ii) How does the shape depend on τ1 ?

(iii) Does the shape depend on τp itself ?
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(iv) How to optimize Δt ?

The answer of the question (i) looks quite clear: the greater P1 is, the
later the function decreases, giving rise to shapes that evolve from -
globally - convex to - globally - concave.

The role of τ1 appears also quite clearly, as explained above: when the
time scales - τ1 and Δt - are mixed, the CME distribution essentially
consists in a wide bump, while when these scales are well separated, the
distribution is bimodal, leading to a flat zone in Φ(c), hopefully so that
this "almost-plateau" value is next to P1 (this would mean that one can
distinguish the modes according to their CME value easily).

The plots in figure B3 give a good idea of what is a “good separation
of timescales”. Indeed the curves tend to a limit shape which is almost
reached at τ1 = 10τp – ie for steps in mode 1 10-fold longer than the
persistence time – while at τ1 = 2τp the plateau is still not visible at all.
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Figure B3: Cumulative distribution of CMEs measured at Δt = tp
for tp = 4 min (left) and tp = 8 min (right), P1 = 0.5 and τ1 ∈
{0.5, 1, 2, 10, 20, 30, 40, 50} × τp (from darker to lighter brown).

The role of τp may be – a little – more subtle. Thus, when everything can
be normalized by τp, different τp values should yield the same results as
long as the other – normalized – parameters match. Yet, it is again not
the case here, as can be seen on figure B3. This is mainly a discretisation
effect, which again shows itself to be non-negligible at all. Indeed the
pixel size defines a minimal correlation length – all the trajectories are
at least straight over the pixel size – and the frame rate defines a new
time scale – which can be seen, similarly, as a minimal correlation time.
Thus, it is easier to isolate random portions of the trajectory when δt,
this “correlation time” of mode 0 is well separated from τp. One can
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check that binning the data at τp = 8 min twice in space and time yields
the same Φ(CME) as for τp = 4 min (data not shown).
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Figure B4: Cumulative distribution of the CME measured at Δt ∈
{2, 3, 4, 5, 6, 8} min (red, fuschia, blue, green, brown and pink respec-
tively) for τp = 4 min, P1 = 0.5 and τ1 = 40 min. The horizontal
lines are at Φ = 0.5 (solid), 0.4 and 0.6 (dashed).

The last question is the optimization of Δt, the time frame used to
compute the CME. This is not a very easy one for several reasons. We
have just seen that it might be interesting to have Δt >> δt. However
Δt should be kept of the order of τ , otherwise the persistent portions
will appear random.

Figure B4 shows that choosing Δt ∼ τ is probably the right choice.
Indeed, this is around this value that the plateau is the most marked,
and also the values of Φ in this zone are then correctly located near P1.

Last, one should keep in mind that we do not know τp a priori from the
data, but rather only τ (see Equation 20). As a consequence, this value
should be taken as reference to set Δt, even though the Φ curves for
various τ1 collapse better onto each other when one uses Δt = τp than
Δt = τ .

Bimodal analysis scheme. The properties of the Φ function are now
quite well described. From this we can conclude – not very satisfactorily
– that a universal CMEthresh value that would separate the random and
persistent portions of trajectories cannot be defined.

Instead, one should use a systematic procedure to set its value for every
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dataset, knowing that the output will probably be of better quality when
the Φ(CME) curve exhibits a flat part in the middle.

The procedure we propose is the following:

(i) From the raw trajectories, measure φ and τ via the velocity direc-
tion correlation function

(ii) Use these values to compute CMEτ and find CME∗ so that
Φ(CME∗

τ ) = φ.

(iii) Allocate the data points a mode (1 or 0) according to their CMEτ ,
using CME∗ as threshold.

(iv) (Optionnal step) Filter the obtained binary data so that no portion
is shorter than Tfilter.
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Figure B5: Error rate as a
function of the minimum step
duration Tfilter.
Mode allocation using
the systematic procedure
described above for (a)
P1 = 0.8, (b) P1 = 0.2,
with τ1 ∈ {2, 4, 8, 10} min
and (c) P1 = 0.5 with τ1 ∈
{2, 4, 8, 10, 20, 30, 40, 50} min.
τ1 is color-coded, from dark to
light.
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Allocation error. The principle of such an analysis is to allocate a
Mode, either 0 or 1 to each time point in the trajectory, aiming at
reproducing reliably original sequence (Modereal). We estimated the
quality of this process by computing the error defined as:

Error = 〈|Modereal −ModeAnalysis|〉 (22)

The results of this estimation are plotted in figure B5. To better see
the impact of this procedure, the y-axes where limited to the “random
allocation error” defined by Erand = 2P1(1−P1), which is the error that
would result from randomly allocating the mode to the data points.

Again, for τ1 ∼ τp the results do not look exceptionally good compared
to the random allocation. Yet it does not mean that the measurement of
the statistics – τ1, τ0, P1 – is not greatly improved compared to random
allocation!

Error in time constants. With random allocation, the probability
of finding a persistent portion of duration δt is P1 = 1 − φ2, and for
n > 1, the probability of finding a segment of duration nδt is given by
Pn = 1

Z e−n(1−φ) where Z is a normalization factor.

As this is an exponential distribution, one should be very careful about
the values of τ1 and τ0 that arise from this procedure, because the shape
of the distribution can be misleading. Moreover, as illustrated in figure
B6a, adding only little random errors to a sequence of zeros and ones with
exponential distributions of the segment lengths affects the measured τ1
and τ0 a lot.

In particular, with a rate of added random errors of only 5%, all the mea-
sured outputs are below 10 min, whatever the actual value (Fig. B6b).
It means that only a few random errors masks completely the actual un-
derlying distribution of step duration by shifting the distribution to the
left. It is because each error cuts a segment of length T into to smaller
pieces: thus, adding only as many errors as there are steps of both modes
will decrease the mean step duration by approximately a factor 2!

Finally, the τ1 distribution that is obtained is a mixture of a rapid decay
due to errors only and a slower one which results to the original segment
cut by the errors (Fig. B7). It could be possible to extract informa-
tion from this kind of distribution, but more work is needed in order
to achieve precise and general analyses on this basis, and the finish line
seems way further than the scope of this manuscript.
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Figure B6: Effect of random errors on τ1 and τ0.
The sequences of zeros and ones denoting the current mode were taken
directly from the simulations’ output. Then various amounts of random
point errors was added to test the robustness of the step durations’ statis-
tics. (a) Normalized measured τ1 for τ1 ∈ {2, 4, 8, 40} min (from dark to
light brown) and P1 ∈ {0.2, 0.5, 0.8} min (pointed, dashed and full lines
respectively). (b) Measured τ1 and τ0 for all conditions with τp = 4 min.
No matter their true value, a few percents of error bring them down
easily under 10min
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Figure B7: Distribution of persistent step lengths after bimodal analysis.
(a) Distribution of step lengths τ1. (b) Same distribution: with a zoom
in of the y-axis and a zoom out of the x-axis, a second larger time scale
emerges.

Continuously evolving persistence. An alternative way to deal
with non-constant persistence in single trajectories is a continuously
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evolving underlying variable, rather than a two-states switching quan-
tity. Metzner et al. have recently developed a method based on Bayesian
inference to estimate the “instantaneous” persistence of a trajectory.

To sum up, they assume an underlying order 1 auto-regressive process
(AR1-process) that is the discrete equivalent of an Ornstein-Uhlenbeck
process:

vt+1 = qtvt + atη (23)

where vt is the velocity vector at time t, η is a Gaussian white noise
with unit variance, qt is a persistence parameter and at an activity pa-
rameter. Their method allows them to recover qt and at. In principle it
could be applied directly to bimodal ABPs, which would yield a bimodal
distribution of qt and at. The technique could also be adapted to the
ABP model by working on the direction of motion θ rather than on v,
resulting in a Dr(t) function for all trajectories. In this scope Dr should
be considered as distributed variable rather than as a constant parame-
ter. Although promising, however, this approach is still very preliminary
in the context of our data.

————————————————————————
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C A mean-field description of Contact En-
hancement of Locomotion

In this part, we start analysing a mean-field model of CEL, based on
the coarse-grained equations of the simulations in Chapter 4, Section
4.4.

Let us recall the classical ABP model on which the two-dimensional
simulations were built:

⎧⎨
⎩ ṙi = v0.eθi

θ̇i =
√
2Drη̃i(t)

(24)

where η̃i(t) is a Gaussian white noise with zero mean and unit variance.

It has been shown [52] that the mean-field behaviour of the density ρ
and the polarisation p obeys the following set of equations:

⎧⎨
⎩ ∂tρ = −∇.(v0p)

∂tp = −Drp− 1
2∇(v0ρ)

(25)

In a homogeneous density field, the excluded volume interactions modify
the equations only slightly:

⎧⎨
⎩ ∂tρ = −∇.(v(ρ)p)

∂tp = −Drp− 1
2∇(v(ρ)ρ)

(26)

where v(ρ) = v0.(1 − f ρ
ρm

) is the effective local speed, which is de-
creased because particle motion is impeded during collisions (f ≈ 0.9,
see Chapter 1).

We used this mean-field system as a starting point for the continuous
description of our system.

Should the hard-core repulsion be taken into account? The first
thing to do is to estimate the effect of the v(ρ) dependency. We solved
the system (26) numerically with various N0. It shows that the spreading
rate decreases with the density (Fig.C1), contrary to the experimental
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case. The importance of this effect could be predicted as for ρ = 4.8 ×
105 cm−2, v = 0.7v0, hence D = 0.72D0 = 0.5D0, where D is the
effective diffusion constant and D0 the diffusion constant in the absence
of interactions.
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Figure C1: Effect of v(ρ) on the gyration radius.
Rg(t) for various cell numbers with the v(ρ) dependency (solid lines)
and limit with no interaction (dashed line). ρm = 1.4× 106 cm−2, v0 =
7 μm.min−1.

However, the particle-based simulations show no effect of the density
when only hard-core repulsion is considered. It is probably because
the aforementioned v(ρ) is valid only for a uniform density field. In
our situations with high gradients, other terms could play a role. For
instance, integrating naively both this v(ρ) and the effect described by
Bruna and Chapman [116] yields

D

D0
∼ (1 + 4

ρ

ρm
)(1− f

ρ

ρm
)2, (27)

or accounting for this by an effective speed,

v

v0
∼ (1− f

ρ

ρm
)

√
1 + 4

ρ

ρm
. (28)

For ρ/ρm � 0.5, both these expressions take values close to 1. Thus,
keeping a constant v0 seems to be the best choice in our situation, which
is also good news in terms of computing efficiency.
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Peak of polarisation and persistence. We solved numerically the
system (25) with an initial condition consistent with the experiments,
v0 ∈ {3; 5; 7} μm.min−1 and τp = 2n with n ∈ [−1 6]. All the obtained
vr(t) exhibit a peak, but there is not trivial scaling between the peak
timing t∗ and the persistence time τp = D−1

r . Conversely, we could no-
tice an interesting relation between the normalised peak timing t∗/τp
and the normalised peak radial velocity v∗r/v0 (Fig. C2). Its significance
remains unclear, but this is a new proof that the experimental obser-
vations cannot be accounted for by a constant speed and a constant
persistence time, as both v∗r and t∗ increase with < N0 >.
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Figure C2: The nor-
malised peak radial
velocity v∗r/v0 scales
exponentially with the
normalised peak timing
t∗/τp (black plus signs:
simulations, dashed red
line: exponential fit).

The basic two-state model. Now we consider ABPs that switch
from their “natural” mode 1 upon collision to an “excited” or “escape”
mode 2. The first mode is characterized by persistence time τ1, while
the second one is characterized by a higher persistence time, τ2. This
mode relaxes to mode 1 with a rate ω. The collision rate depends on the
densities and is denoted t−1

col. This gives rise to a system of four coupled
equations.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tρ1 = −∇.(v1p1)− ρ1

tcol
+ ωρ2

∂tp1 = −p1

τ1
− 1

2∇(v1ρ1)− p1

tcol
+ ωp2

∂tρ2 = −∇.(v2p2) +
ρ1

tcol
− ωρ2

∂tp2 = −p2

τ2
− 1

2∇(v2ρ2) +
p1

tcol
− ωp2

(29)

The speed of ith mode is denoted vi to let the possibility that the propul-
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sion speed also depends on the motion mode.

Collision rate. In this model, the dynamics is controlled by the colli-
sion rate. A priori the exact value of the mean time between collisions
is a complicated function of ρ1, ρ2, p1 and p2. To estimate this is itself a
big question. However one can also try to find a correct approximation.
Let us first consider simple ABPs that follow the equations 24 in the
high and low density limits.

At high density the mean free path is shorter than the persistence length.
Between two collisions, the particle motion is thus ballistic. Equating
the mean free path and the distance covered between two collisions yields
the collision time:

tcol = tbal =
1

vρ
1
2

(30)

At low density, the motion is diffusive, hence

tcol = tdif =
1

2v2τρ
(31)

The curves for these two times cross at ρ∗ = 1
4v2τ2 , which defines the

order of magnitude of the transition from one to the other regime (Fig.
C3). In this monomodal model, a function that admits expressions (30)
and (31) as high and low density limits and tcol(ρ

∗) ∼ τ should be a
good approximation, for instance tcol = tbal.e

− ρ
ρ∗ + tdif .(1 − e−

ρ
ρ∗ ) or

t−1
col = t−1

bal.e
− ρ

ρ∗ + t−1
dif .(1− e−

ρ
ρ∗ ).

In the experiments, taking as typical parameter values v = 5 μm.min−1

and τ = 4 min yields ρ∗ = 6.25 × 104 cm−2, so that at least at short
times most of the experimental conditions are in the ballistic regime.

Of course, the bimodal model makes the estimation of tcol a little bit
more complicated. Nevertheless, when v1 ∼ v2 it should not change too
much.

We solved this set of equations for various starting densities with tcol =
tdif , v1 = 3 μm.min−1, τ1 = 2 min, v2 = 7 μm.min−1, τ−1

2 = 0 (ballistic
mode) and ω−1 = 10 min. The results exhibit the expected behaviour
with a density-dependent spreading rate and peak of vr (Fig. C4). Using
v1 < v2 allows a better separation between the different N0, but t∗ is
still roughly the same for all conditions.
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Figure C4: Results of the nu-
merical solving of the mean-field
CEL model.
(a)Rg as a function of time for
various N0. (b) < vr > as
a function of time. (c) φ2,
measured as the proportion of
cells in mode 2, as a function
of time. It exhibits a density-
dependent peak which is earlier
than the < vr > peak.
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Abstract

Cell motility is fundamental in many physiological, either normal or
pathological, phenomena. Yet, although these most often involve several
cells moving at the same time, how the interactions between cells affect
both individual and collective dynamics remains a poorly understood
question. In this thesis, I used vegetative Dictyostelium discoideum cells
as a model to study this collective regulation of the motility. I relied
mainly on the thorough analysis of numerous cell trajectories in various
situations to (i) characterise a secreted factor used to down-regulate the
cells’ motility (biochemical nature, response pathway, secretion and re-
sponse dynamics) and (ii) quantitatively analyse and model the dynam-
ics of spreading cell colonies of controlled initial shape, size and density.
Last, I describe a dynamic aggregation phenomenon that occurs when
the cells are seeded at high density in a nutrient-rich medium.

Résumé

La motilité cellulaire est fondamentale dans de nombreux processus phys-
iologiques, qu’ils soient normaux ou pathologiques. Cependant, bien que
ces derniers impliquent la plupart du temps de nombreuses cellules se
mouvant en même temps, les effets des interactions entre cellules sur
leur dynamique, à la fois individuelle et collective, restent assez mal
connu. Dans cette thèse, j’ai utilisé Dictyostelium discoideum à l’état
végétatif pour étudier cette régulation collective de la motilité. Je me
suis principalement appuyé sur une analyse minutieuse de nombreuses
trajectoires cellulaires dans des situations variées pour (i) caractériser
un facteur sécrété qui régule négativement la motilité cellulaire (nature
chimique, voie de signalisation, dynamique de sécrétion et de réponse)
et (ii) analyser et modéliser quantitativement la dynamique d’étalement
de colonie cellulaires de forme, dimension et densité contrôlées. Je décris
enfin un phénomène d’agrégation dynamique observé lorsque les cellules
sont placées à haute densité dans un milieu nutritif.
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