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Introduction

The ability to perform precise measurements is a fundamental aspect of all quanti-

tative science. To determine the value of a parameter in a physical system, an experi-

mentalist uses a probe to interact with the system. By measuring the way the probe has

been altered by its interaction with the system, it is possible to deduce the value of the

parameter. Any probe can however be intrusive in the sense that it a�ects the physical

system on its interaction, thus altering the response of the system to its presence. From

a classical physics point of view, the usage of a beam of light as a probe is adapted to

a non-intrusive measurement since it can be attenuated to a point where its interaction

with matter is negligible.

For instance, light has been used extensively to the purpose of estimating distances.

More than 2000 years ago, Eratosthenes estimated the circumference of the Earth using

geometric consideration of the shadow cast by the Sun. If the same measurement were

made today using current data, the retrieved value would be accurate to less than 1%.

Accuracy is a fundamental concept in experimental science. It de�nes how di�erent

the value of a parameter will be when an experiment is repeated several times. The �nite

accuracy is a direct consequence of other physical phenomena that limit the knowledge

of a variable, which may be described as the noise in a measurement. Without noise,

any measurement would be always perfect.

The discovery in the end of the 18
th

century of the wave-like nature of light gave birth

to the �eld of interferometry, allowing to measure distances with a precision limited

only by the wavelength of light. In 1894, Michelson measured the length of a platinium-

iridium standard by interferometry and de�ned it in terms of an emissive wavelength

of cadmium. He advocated the use of wavelengths as a natural standard for distance

[Michelson 94]. In 1960, the meter was rede�ned in terms of the emissive wavelength

of krypton, replacing the platinium-iridium standard. Today, the meter is de�ned from

the speed of light. Light became an even more widespread measurement tool since the

advent of lasers, which brought a source of light that is highly coherent both spatially

and temporally.

As a recent example, the usage of light as a tool to measure long distances with good

accuracy has resulted in the estimation of the distance between the Earth and the Moon

with an accuracy of a few millimeters [Murphy Jr 08]. This measurement was achieved

by sending pulses of light on a retrore�ector on the Moon and measuring their time of

arrival. This measurement is called a time-of-�ight measurement, which is less accurate

than an interferometric measurement. The ability to distinguish between redundant in-

1



2 INTRODUCTION

formation on distance, called ambiguity range, is on the order of the wavelength of light

for an interferometric measurement, while it is on the order of the distance between

subsequent pulses for a time-of-�ight measurement. The latter then o�er a better dy-

namics, since the spacing between pulses of light is much higher than its wavelength.

Combining interferometric and time-of-�ight measurements then allows to merge high

dynamics and sub-wavelength precision.

In order to combine the dynamics of the time-of-�ight measurement performed with

pulsed light and the precision obtained by interferometric measurement, optical fre-
quency combs appeared as ideal tools for the task. A frequency comb consists of a large

number of equally spaced optical frequencies with a narrow linewidth, and a �xed phase

relationship between them. In the temporal domain, this corresponds to a train of short

pulses emitted at equal intervals. The development of mode-locked lasers, and in par-

ticular Titanium-Sapphire lasers in the 1990' [Spence 91], resulted in the realization of

such frequency comb with pulses as short as a few femtosecond. The realization of many

stabilization techniques allows today to produce very stable frequency combs, making

them perfect tools for metrology and spectroscopy [Udem 02].

For the purpose of high precision measurement, the accuracy of an experiment ac-

complished using an optical frequency comb is limited mostly by the noise of the source.

For a time-of-�ight measurement, the accuracy is limited by the �uctuation of the repe-

tition rate, called timing jitter, whereas an interferometric measurement is limited by the

�uctuations in the each optical carrier, generally called phase noise. The ability to char-

acterize and measure these �uctuations is essential to their stabilization [Paschotta 05].

These �uctuations can be described as arising from technical sources, such as ther-

mal and mechanical variations, but also from the quantum nature of light, which poses

the most fundamental limit, the one that remains when removing all sources of techni-

cal noise in the measurement. For instance, the random time-of-arrival of photons on

a detector, commonly called the shot noise limit, de�nes the standard quantum limit in

sensitivity in both amplitude and phase noise [Caves 81]. The �eld of quantum metrol-

ogy studies how it is possible to engineer the quantum state of the system that results

in a better sensitivity compared to classical methods. Recently, the usage of squeezed

vacuum in an interferometer allowed to surpass the current sensitivity in gravitational

wave detection [Aasi 13].

In this thesis, we investigate the usage of frequency comb for precision measurements

at the quantum limit, as well as the �uctuations of the combs structure. We use a formal-

ism that is borrowed from quantum optics to describe classical phenomenon. We show

indeed that the comb structure can be decomposed on a basis of modes, where each of

these is attached to a given physical parameters [Lamine 08, Jian 12]. In a projective

measurement scheme, we show that it is then possible to measure an information car-
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ried by the electromagnetic �eld (such as a delay in time) as well as �uctuations from the

laser source (in that example, the timing jitter). We �nally propose a scheme to generate

two beams that are “squeezed in time”, since they allow to measure a delay with a better

sensitivity than using classical ressources.
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Outline of this thesis

The �rst part of this thesis concentrates on giving global de�nitions of the tools that

are needed for the task of measurement using a multimode description of an optical

frequency comb.

In the �rst chapter, we give a classical and a quantum formulation of the electromag-

netic �eld. We de�ne the notations that are used throughout this thesis.

In the second chapter, we describe the concepts of ultrafast optics. Since the work

of this PhD was accomplished with short pulses (∼ 20 fs), it is important to understand

the physical phenomena that arise when such pulses propagate. We also outline how to

characterize the spectral and temporal structure of the pulse, as well as its generation.

In the third chapter, we expose how we intend to measure the multimode structure

of an ultrafast frequency comb. We give a global description of the experiment and we

outline how to measure the optical quadratures of the di�erent spectral components of

the �eld.

The second part concentrates on the study of precision measurements at the quantum

limit.

In the fourth chapter, we describe the multimode structure of the �eld when a pertur-

bation is introduced. We cover the case of a displacement in time, in amplitude (i.e. en-

ergy), in optical frequency and in phase. We show that these parameters can be extracted

by performing a projective measurement on a set of speci�c spectral modes. Moreover,

we give a quantum description of the matter, which allows to show that these param-

eters are conjugated. We also show that the sensitivity of the projective measurement

scheme coincides with the standard quantum limit.

In the �fth chapter, we present the experiments that were achieved on parameter esti-

mation. We �rst give an optical method to measure the sensitivity of an interferometer,

and show that it coincides with the limit de�ned by quantum mechanics. We then use

a multimode approach to measure the sensitivity of an interferometric and of a time-of-

�ight measurement. We also construct a detection mode that combines interferometric

and time-of-�ight measurements, and show that a time measurement performed with

that speci�c mode is indeed more sensitive. Using again a multimode description, we

measure the value of index dispersion of a material with a reasonable precision. Finally,

we use a di�erent laser source that generates multimode squeezed vacuum, and show

an increase in sensitivity when the mode that is attached to the detection of a parameter

is squeezed.

The third part of this thesis is about characterizing the noise of an ultrafast frequency

comb. We use a homodyne based scheme that compares the noise of a laser source to a
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reference whose noise �gures are either known or negligible.

The sixth chapter is about generating a reference beam to characterize the �uctuations

of another. Since we use the same laser source to build the reference, we use an optical

cavity to �lter the noise. We describe in this chapter the �ltering of the noise with optical

cavities, and also characterize their properties when injected by an optical frequency

comb.

In the seventh chapter, we measure the spectral amplitude and phase noise of an op-

tical frequency comb, as well as their spectral correlations. We show how the noise of

di�erent spectral components of the spectrum is distributed and the correlations that

exist between them. We also measure the correlations between the amplitude and the

phase �uctuations of the comb.

The fourth and last part of this thesis is about perspective on the next part of the

experiment, which aims at generating multimode squeezed light.

In the eighth and last chapter of this thesis, we present the general principle to gen-

erate squeezed light with frequency combs. Based on parametric down conversion, we

show the multimode structure of the quantum �eld that is generated and its potential

applications. We present the work that started on the elaboration of a synchronously

pumped optical parametric ampli�er.
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Part I

Measuring with ultra-fast frequency
combs
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1 The modes and states of a beam of
light

“You’re looking for an intership ? Check this guy out, N. Treps [. . . ] he’s very
smart and does really great research, I reckon he will rise quickly in academia.”
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10 1. THE MODES AND STATES OF A BEAM OF LIGHT

The aim of this chapter is to develop most of the conventions and notations that are

used throughout this thesis. We begin by describing the notion of modes of the classical

electromagnetic �eld, a concept that is essential to the understanding of the remaining.

This is done both for the longitudinal and transverse part of the �eld representing a

beam of light. We then write the quantum description of light by quantifying the �eld,

introducing the operators and states that will be relevant to this work.

1.1 The classical electromagnetic �eld

Light being a form of electromagnetic radiation, its description may be achieved by

Maxwell’s equations. Throughout this manuscript, every boldface symbol X denotes

a vector in the cartesian basis, unless speci�ed otherwise.

1.1.1 Description of the real electromagnetic �eld
We begin by writing the electric �eld E (r, t), which is a 3-dimensional vector that de-

pends on the spatial variable r and the temporal variable t.
In order to keep this description general, we consider that the �eld propagates through a

medium of free charge density ρ and of polarization density P, neglecting the magnetic

part. The electric �eld will induce on matter an electric response D, called the electric

�ux density, which is de�ned as

D (r, t)= ε0E (r, t)+P (r, t) (1.1)

More generally, the relationship between the applied electric �eld E and the response D
is established through the electric permittivity tensor εr:

D (r, t)= ε0 [εr]E (r, t) (1.2)

The physics behind the �eld-matter interaction is then contained within the εr tensor,

which describes the anisotropy of the medium. Its de�nition will be particulary useful

for the description of non-linear e�ects that will be outlined in chapter 8.

For now, we specialize to the case of propagation through a charge free ρ = 0, isotropic

and linear medium. This involves that the relation between the induced polarization and

the applied �eld is linear:

P (r, t)= ε0χeE (r, t) (1.3)
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Under these conditions, the relation between the electric �eld and the response of the

medium is simply given by

D (r, t)= ε0 εE (r, t) with ε= 1+χe (1.4)

This lead to the de�nition of the index of refraction n, which is more commonly used in

optics:

n =p
ε (1.5)

The familiar propagation equation that governs the spatial and temporal propagation of

the electric �eld through a medium is:

4E= 1
v2
ϕ

∂2E
∂t2 (1.6)

where 4 stands for the vectorial laplacian operator and vϕ = c/n is the phase velocity,

i.e. the speed of light in the medium (in the case of vacuum, we have naturally vϕ = c).

A standard solution to (1.6) is the plane-wave solution:

E (r, t)=Re
{
E0 ei(k·r−ωt+φ)

}
(1.7)

where E0 is a constant vector, k is the propagation vector whose magnitude k = ωn/c
satis�es the dispersion relation for a plane-wave of pulsation ω. In this expression, an

arbitrary phase φ will be expanded in more detail in section 2.2.

1.1.2 Fourier space formalism
On many occasions in this manuscript, it will be convenient to look at the representation

of the electric �eld in the frequency-domain, which we shall describe in this part.

In this work, we will adopt the symmetric de�nition of the Fourier transform. Al-

though not necessary, it is convenient to use this prescription in quantum optics with

continuous variables as the commutation relations for the bosonic operators â(t) and

â(ω) are then symmetric (see section 1.4.2).

For a function f (t) de�ned in the temporal domain, we write the Fourier transform

f̃ (ω) de�ned in the conjugated space as:

f (ω)=
∫
R

dtp
2π

f (t) eiωt ≡F [ f (t)] (1.8)
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Conversely, the inverse Fourier transform is then given by
1
:

f (t)=
∫
R

dωp
2π

f (ω) e−iωt ≡F−1 [ f (ω)] (1.9)

Applying this to the real electric �eld yield its Fourier decomposition

E (r, t)=
∫
R

dωp
2π

E (r,ω) e−iωt
(1.10)

Since E(t) is a real quantity, it follows that

[E (r,ω)]∗ =E (r,−ω) (1.11)

This de�nition of E(ω) therefore contains some redundancy, which leads to the introduc-

tion of the analytic electric �eld E(+) (r, t) where the negative frequencies are removed

from the Fourier decomposition:

E(+) (r, t)=
∫
R+

dωp
2π

E (r,ω) e−iωt
(1.12)

It is worth stressing that this quantity is now complex, so that the real �eld is de�ned

by the relation

E (r, t)=E(+) (r, t)+E(−) (r, t) (1.13)

where E(−) (r, t)= [
E(+) (r, t)

]∗
corresponds to the integration over the negative frequen-

cies.

Equivalently, one may de�ne an analytic signal in the frequency domain by taking the

Fourier transform of the temporal analytic signal:

E(+) (r,ω)=
∫
R

dtp
2π

E(+) (r, t) eiωt
(1.14)

It follows that

E (r,ω)=E(+) (r,ω)+E(−) (r,−ω) (1.15)

where E(−) (r,ω)= [
E(+) (r,ω)

]∗
.

1
For a better readability, we use the same notation to denote a function f in the real and in the Fourier

domain.
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1.2 Modal description
As introduced by equation (1.7), plane-waves satisfying the dispersion relation form a

basis on which the �eld can be expanded. More generally, it may be expanded on any set

of normalized modes, either spatial, temporal, or spatiotemporal, as long as they satisfy

Maxwell’s equations.

In this section, we show how to describe the electric �eld with modes in the longitu-

dinal and transverse plane. We enclose the system in a box of volume V and of section

S.

1.2.1 Temporal and spectral modes
A decomposition of the �eld in plane-waves may be achieved by expanding the analytic

�eld (1.12) in spatial Fourier components, as it is done in [Grynberg 10]. The �eld is then

written as

E(+) (r, t)= i
∑
`

E`α`ε` ei(k`·r−ω`t)
(1.16)

where ε` is the polarization of the component `, k` its wavevector, α` is the normal

variable which corresponds to the complex amplitude of the component `, and E` is a

normalization constant given by

E` =
√

~ω`
2ncε0V

(1.17)

This is called the normal mode decomposition and each mode of the basis is an inde-

pendent monochromatic polarized wave. This de�nition of the �eld is very convenient

when quantifying it, but for the scope of this thesis, we will rather decompose a light

beam on a basis of envelope modes.

For the remaining of this manuscript, we will consider the �eld only in a given linear

polarization, E is then reduced to a scalar. We also consider that the frequency spectrum

in (1.16) is narrow and centered around ω0, allowing the constant to be taken out of

the sum E` ' E0. Finally, we rewrite (1.16) as a decomposition of envelope modes u(t)
relative to the carrier frequency:

E(+) (r, t)= E0
∑
`

α`u`(t)ei(k·r−ω0t)
(1.18)

where {u`(t)} is a set of orthonormal modes that satisfy the general condition (1.31) and

α` is the complex amplitude of the �eld. We’ve also incorporated the imaginary unit
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i in the mode u`, since these can always be de�ned up to a constant phase factor. It

will sometimes be convenient to write the �eld as E(+) (r, t) = E0a(t)ei(k·r−ω0t)
where

a(t)≡∑
`α`u`(t) is the envelope of the �eld.

By taking the Fourier transform of (1.18), one may also de�ne a spectral mode, or

frequency mode:

E(+) (r,ω)= E0
∑
`

α`u`(ω−ω0) eik·r
(1.19)

with u(ω−ω0)= u(Ω)=F [u(t)] and Ω=ω−ω0 is the frequency relative to the optical

carrier.

These temporal - or spectral - modes will be the main center of focus throughout this

thesis. Their de�nition is very general at this point since the modes {u`} needs only to

satisfy Maxwell’s equation as well as the normalization and orthogonality conditions

(1.31). However, in section 2.1.4, we will revise this spectro-temporal modes concept

by applying it to the case of ultrashort laser pulses. In particular, we will use whenever

possible the gaussian pro�le for the spectral and temporal envelopes, as every calculation

will have an analytical solution in this case.

1.2.2 Spatial modes
The previous treatment only deals with plane waves whose wavefront is in�nite. How-

ever, in practice, actual laser beams have a �nite transverse extent and may not be con-

sidered as true plane waves.

Fortunately, in the present case, we may consider the laser beams as paraxial, meaning

that they are made up of a superposition of plane waves with propagation vectors close

to a single direction. This also implies that the �eld’s variations in the transverse plane

are much slower than in the longitudinal dimension.

We choose the propagation direction as z, and the transverse direction as the (x, y)
plane where we de�ne a unitary vector ρ. Therefore, the position vector is written

as r = (
ρ, z

)
. A more complete description of the paraxial beams and the transverse

structure of laser �eld may be found in [Yariv 67] or [Siegman 86].

We consider a monochromatic paraxial wave written as

E(+) (r, t)= E0 g(r) ei(kz−ω0t)
(1.20)

where E0 = E0α encompasses the �eld amplitude, k satis�es the dispersion relation and

g is a slowly varying envelope in the longitudinal direction. Mathematically, this con-

dition is written

∣∣∂2
z g

∣∣ ¿ 2k |∂z g| and allows to the neglect second order derivatives of

g with respect to z.
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Injecting the expression (1.20) into the propagation equation (1.6) under this approxi-

mation leads to the following paraxial wave equation

4ρ g−2ik
∂g
∂z

= 0 (1.21)

where 4ρ = ∂2
x +∂2

y is the laplacian operator in the transverse plane.

This equation has gaussian solutions that provide a good description of the laser beams

that we are used to work with. In particular, the entire family of transverse electromag-

netic mode (TEM) prove very useful as they correspond to the spatial eigenmodes of a

laser cavity. The expression for the lowest order mode is written as follows:

g00 (x, y, z)= w0

w(z)
e−ρ

2/w2(z) e−ikρ2/2R(z) eiφ(z)
(1.22)

where we de�ned the quantities

w2(z)= w2
0

[
1+

(
z

zR

)]
(1.23)

1
R(z)

= z
z2 + z2

R
(1.24)

φ(z)= arctan
(

z
zR

)
(1.25)

zR = πw2
0n
λ

(1.26)

This describes a gaussian beam centered at z = 0 with a radius w0 called waist (measured

at 1/e). The beam width variation is de�ned by w(z). The confocal parameter or depth

of focus b = 2zR is the length over which the radius is less than

p
2ω0. The geometry

of the wavefront is given by the radius of curvature R(z) and φ(z) is called the Gouy

phase.

Higher order modes of the TEMmn family are obtained by adding Hermite polynomi-

als variation to the solution. The resulting modes then read

gmn (x, y, z)= Cnm

w(z)
Hm

(p
2 x

w(z)

)
Hn

(p
2 y

w(z)

)
e−ρ

2/w2(z) e−ikρ2/2R(z) ei(m+n+1)φ(z)
(1.27)
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where Cnm = 1/
p
π2n+m+1n!m! ensures a proper normalization of the mode.

To show the e�ects that will be of interest to us in this thesis, we shall reduce the

dimensions of the Hermite Gauss modes by constraining them to the x axis. We write

our new basis as {gn(x, z)}. It is linked to the two-dimensional modes (1.27) by assuming

a fundamental pro�le over the y direction and integrating it out:

gn (x, z)=
∫
R

dy gn0(x, y, z) (1.28)

The exact expression of the resulting modes, which may be found in [Delaubert 07], is

not relevant to the scope of this thesis, as we shall only use their orthogonality proper-

ties.

1.2.3 Spatio-temporal modes

The previous de�nitions in the transverse and longitudinal domains are quite conve-

nient, since they may be combined in a straightforward manner to build a new set of

modes. This provides a complete model description of the electric �eld.

Under the previous descriptions and approximations, a linearly polarized electric �eld

may be expanded on the basis of temporal ui(t) and spatial modes vn(x, z) as:

E(+) (x, z, t)= E0
∑
i,n
αi,nui(t) gn(x, z) ei(kz−ω0t)

(1.29)

Alternatively, we are also able to de�ne a new basis of modes wi,n(x, z, t) that encom-

passes every combination of the longitudinal and transverse modes:

wi,n(x, z, t)= ui(t) gn(x, z) (1.30)

Note that the spatial and temporal parts are factorized in w, which assumes no space-

time coupling. This is a very reasonable assumption for the present work, where the

light beam is in a well-de�ned spatial mode. At any position z and over a detection

time T , these form an orthonormal set; introducing the standard L
2

inner product 〈·, ·〉,
it reads

〈
wi,m,w j,n

〉≡ ∫
T

cdt
Ï
S

d2ρw∗
i,m w j,n = ScT δi j δmn (1.31)
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1.2.4 Basis change
The modes that we chose, being the temporal u(t) or spatial v(x, z) modes, are not

unique; the �eld may be expanded on any other basis. As an example, if we consider

another temporal basis {vi(t)} of the �eld, the change from {ui(t)} to {vi(t)} is achieved

by a unitary transform U de�ned by

Ui j =
〈
ui(t),v j(t)

〉≡ ∫
T

c dt u∗
i (t) v j(t) (1.32)

which allows to write the change of basis as

v j(t)=
∑

i
Ui j ui(t) (1.33)

1.2.5 Power and energy
Finally, we de�ne some of the physical quantities related to the energy and the power

contained in the �eld. These are important quantities since that are quite easy to access

experimentally.

To lighten the notations , we write the complex �eld as

E(+) (x, z, t)= E0 a(x, z, t) e−iω0t
(1.34)

where a(x, z, t) = ∑
i, jαi, j ui(t) g j(x, z) is the envelope of the �eld, proportional to the

square root of the number of photons.

The energy density υ (in J/m
3
) contained in the electromagnetic �eld [Yariv 67] is

given by

υ= 1
2
ε0

(
E2 + c2 B2

)
(1.35)

In term of the complex �eld, the energy density may be written as
2

υ(x, z, t)= 2ε0

∣∣∣E(+)(x, z, t)
∣∣∣2 (1.36)

The energy W contained in the �eld is therefore equal to the integral of the energy

density over the volume V = ScT delimited by a section S and a detection time T . The

index dependency comes from the fact that the light actually travels through the medium

2
The “energy” in the real �eld is twice the one contained in the complex �eld E2 = 2

∣∣E(+)∣∣2
, and since

for plane waves, B2 = E2/c2
, the energy density as a function of the complex �eld is consequently written

as (1.36).
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an optical length dependent on the index n. Using the normalization condition (1.31) and

the �eld constant (1.17), the energy reads

W = 2ε0nE 2
0

∫
V

dV |a(x, z, t)|2 = N~ω0 (1.37)

where N is the number of photon in the �eld over a time T . For temporal modes that

are bounded, as it is the case for pulses of light, this integration time T allows to de�ne

speci�c quantities (see section 2.1.2).

The instantaneous intensity of the �eld (in J/s/cm
2
) is then given by

I(x, z, t)= 2ε0nc
∣∣∣E(+)(x, z, t)

∣∣∣2 (1.38)

For pulses, we are often interested in the integrated intensity or �uence F:

F(x, z)=
∫
T

I(x, z, t) dt (1.39)

Alternatively, we may de�ne the power by integrating the intensity (1.38) over trans-

verse coordinates:

P(z, t)=
∫
S

I(x, z, t) d2ρ (1.40)

The energy contained in the �eld may therefore be obtained by integrating either the

power or the �uence on the proper variables:

W =
∫
S

F(x, z) d2ρ ≡
∫
T

P(z, t) dt (1.41)

Because of the dependency between the t and z variables, the integral over t cancels the

longitudinal component of these quantities. Another useful quantity is the power that is

obtained experimentally using a bolometer. These instruments measure power through

heating, and are therefore incapable of resolving the power in a single pulse
3
. The result

of such a measurement is the power averaged over a second Pavg (in W).

Note that all the previously de�ned quantities translate very well to the spectral do-

main, thanks to the symmetric Fourier transform de�ned in section 1.1.2. Using indeed

this prescription, the Parseval theorem reads∫
R

dΩ
∣∣∣E(+)(Ω)

∣∣∣2 = ∫
R

dt
∣∣∣E(+)(t)

∣∣∣2 (1.42)

3
For relatively long pulses, a calibrated photodiode can resolve a single pulse. For pulses shorter than

picosecond timescale, this method is no longer valid because of the slow response of the electronics.
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meaning of course that computing the energy-related quantities in both spaces yields

equivalent results.

1.3 The quadratures of the classical �eld
In section 1.2, we’ve seen that we can write the �eld in a particular spatio-temporal mode

as the product of a slowly varying envelope and a phase factor that re�ect the wave-like

nature of light. In the following parts, it will be useful to break this phase factor into an

absolute phase and the wave front curvature part. This leads to the introduction of the

�eld quadratures [Bachor 04].

1.3.1 Quadrature amplitudes
Using the previous notations, we write the real electric �eld in the spatio-temporal

modes basis

{
wi,n(x, z, t)

}
as

E (x, z, t)= E0
∑
i,n
αi,n wi,n(x, z, t) ei(kz−ω0t) +c.c.≡ E0 a(x, z, t) e−iω0t +c.c. (1.43)

where c.c. stands for conjugated complex, and where we merged the spatial propagation

with the envelope to form the complex amplitudes a(x, z, t) = ∑
i,nαi,n wi,n(x, z, t) eikz

.

An equivalent form of this notation is given in terms of the quadrature amplitudes X
and P associated to the sine and cosine waves:

E (x, z, t)= E0 [X (x, z, t) cos(ω0t)+P(x, z, t)sin(ω0t)] (1.44)

The quadratures of the �eld are proportional to the real and imaginary part of the com-

plex amplitude:

X (x, z, t)= a(x, z, t)+a∗(x, z, t) (1.45)

P(x, z, t)= i
(
a∗(x, z, t)−a(x, z, t)

)
(1.46)

This notation is convenient for describing the interaction between two �elds (and also

to quantify the electric �eld, see section 1.4). A common representation of the classical

�eld decomposed on its quadratures is called the Fresnel diagram, or phase space repre-
sentation.

In this diagram, the �eld is represented at a single point of space and time as a vector

of magnitude |a| making an angle φ= arctan(P/X ) with the X axis as outlined on �gure

1.1a. In the case of interferences, the total �eld is sketched as the vectorial sum between

the two individual �elds. This helps to visualize on which quadrature lies the resulting

�eld, as it is showed on �gure 1.1b.
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(a) (b)

Figure 1.1: Phase space diagram of a single electric �eld E (a) and of

the interference between two �elds (b).

1.3.2 Quadrature �uctuations

Another elegant application of the �eld quadrature is when the wave has �uctuations in

both amplitude and phase.

Consider a variation of the envelope in equation (1.44) (this means that the carrier

remains una�ected). The �uctuations of E then read

δE (x, z, t)= E0

(
δX (x, z, t) cos(ω0t)+ iδP(x, z, t)sin(ω0t)

)
(1.47)

The �uctuations of the �eld quadratures δX and δP may then easily be linked to the

�uctuations in amplitude and phase. Indeed, for the simplest expression of an electric

�eld E = E0αeiϕ+ c.c., a �uctuation in both amplitude δα and phase δϕ leads to the

following �rst order expansion:

δE ≈ E0

(
δα eiϕ+ iαδϕ eiϕ

)
+c.c. (1.48)

= 2E0

(
δX cosϕ+δP sinϕ

)
This description is again very relevant to the scope of this thesis, as the variations in

amplitude δX and phase δP are easily accessible by usual measurements methods. From

this point, we shall call respectively X and P the amplitude and phase quadratures of

the electric �eld
4
.

4
Note that δP is actually proportional to the amplitude A of the �eld. As we will see in chapter 3,

one does not exactly measure the phase of the �eld, but rather the phase as being “imprinted” on the

amplitude.
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1.4 Quantization of the �eld
In order to explore the ultimate limits in sensitivity when measuring with light, we need

a quantum description of the electric �eld. The standard way to quantify the �eld is by

identifying the �eld quadratures X and P as canonical variables in the sense of Hamilto-

nian mechanics, analogous to the quanti�cation of a collection of harmonic oscillators.

This allows to associate hermitian operators X̂ and P̂ which satisfy canonical commu-

tation relations. The full treatment can be found in [Grynberg 10].

1.4.1 Bosonic operators
This begins by associating to the normal modes α` of (1.16) an operator â`. We impose

these operators the canonical commutation relation, and we also impose a zero com-

mutation for operators corresponding to di�erent modes, since they are decoupled by

construction: [
â` , â†

k

]
= δ`k (1.49)

[â` , âk]= 0 (1.50)

The bosonic operators â` and â†
`

are called respectively annihilation and creation oper-

ators since they destroy or create a photon in the mode `. This is again entirely similar

to the harmonic oscillator where an excitation is represented by a photon.

It follows that we can de�ne a real quantum electric �eld from the quanti�cation of

(1.13):

Ê (r, t)= Ê(+)
(r, t)+ Ê(−)

(r, t) (1.51)

where the quantum analytic �eld in the Heisenberg representation is given by

Ê(+)
(r, t)= i

∑
`

E` â`ε` ei(k`·r−ω`t)
(1.52)

1.4.2 Modal decomposition
In analogy to the classical treatment of 1.2, it is also possible to expand the quantum

�eld on any basis of monochromatic modes wi(x, z, t) that still allow to diagonalize the

energy of the system. Using the same considerations that were used to derive equation

(1.18), we can write

Ê(+) (x, z, t)= E0
∑

i
âi wi(x, z, t) (1.53)
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where E0 is also de�ned by (1.17).

The commutation relations (1.49) and (1.50) remain valid for the bosonic operator

in the mode {wi(x, z, t)}. In particular, considering that the �eld is in a well de�ned

spatial mode g0(x, z), an even more concise notation may be obtained by considering the

continuous mode annihilation operator [Loudon 00] â(x, z, t)= â(t) g0(x, z), allowing to

write the commutation relations as[
â(t) , â†(t′)

]
= δ(t− t′) (1.54)[

â(t) , â(t′)
]= 0 (1.55)

The Fourier transform formalism introduced in section 1.1.2 then allows to de�ne the

annihilation operator in the frequency domain â`(Ω) where the commutation relation

is written the same way
5
: [

â(Ω) , â†(Ω′)
]
= δ(Ω−Ω′) (1.56)[

â(Ω) , â(Ω′)
]= 0 (1.57)

The energy of the quantized system is given by the Hamiltonian that sums the contri-

bution of every mode i:

Ĥ = ~ω0

∫
T

(
â†(t) â(t)+ 1

2

)

= ~ω0
∑

i

(
â†

i âi + 1
2

)
≡ ~ω0

∑
i

(
N̂i + 1

2

)
(1.58)

where N̂i ≡ â†
i âi is the operator for photon number in the mode i.

The continuous annihilation operator â(Ω) may be decomposed as

â(Ω)=∑
i

âi ui(Ω) (1.59)

The eigenstates of the Hamiltonian are the photon number states, or Fock states,
|N1, . . . , Ni, . . .〉 where Ni is the number of photons in the mode i. The bosonic oper-

ators action on the Fock states is mode dependent:

âi |n1, . . . ,ni, . . .〉 =p
ni |n1, . . . ,ni −1, . . .〉 (1.60)

â†
i |n1, . . . ,ni, . . .〉 =

√
ni +1 |n1, . . . ,ni +1, . . .〉 (1.61)

5
The non-symmetric de�nition of the Fourier transform would leave a factor 2π in the commutator.
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A change of basis from {wi(x, z, t)} to

{
v j(x, z, t)

}
is done in a similar way as in the

classical part 1.2.4 by associating another bosonic operator b̂ j to the new mode v j(x, z, t) :

Ê(+)(x, z, t)= iE0
∑

i
b̂ j v j(x, z, t) (1.62)

such that, for w̃ j de�ned as (1.33) with a unitary basis change matrix U, the new bosonic

operators write as :

b̂†
i =

∑
i
Ui j a†

i (1.63)

b̂i =
∑

i

(
U−1)

i j ai (1.64)

1.4.3 Quadrature operators
In quantum information, the Fock states are particularly interesting since they allow

to picture photons as a natural representation of qubits. They also exhibit interesting

quantum behavior for many applications in quantum optics [Kimble 77]. This regime is

called the discrete variable (DV) regime.
In our case, we are more interested in a regime where we have a high photon �ux

since it leads to higher sensitivity in our measurement (see 4.1.2). We then classical a

classical �eld of macroscopic energy and we picture the quantum e�ects as �uctuations

in the light wave. This high photon number regime, also called the continuous variable
(CV) regime is getting more and more used in the quantum optics community [Lloyd 99,

Furusawa 11], as well as the hybrid regime that couples both the discrete and continuous

description of the light [Morin 14, Jeong 14].

The standard approach in CV consists in assigning a bosonic operator âi to a classical

wave amplitude αi such that αi = 〈âi〉. The quantum �uctuations δâi of the quantum

�eld are then written as

δâi = âi −〈âi〉 (1.65)

where there is an implicit identity operator 1̂ hidden after the expectation value of âi. In

this thesis, we make use of the semi-classical approximation [Reynaud 92] that neglects

any higher order term in δâ.

The bosonic operators are not hermitian, so they do not correspond to an observable

and may not be measured. However, their real and imaginary parts are hermitian and

correspond to the exact quantum counterpart of the �eld quadratures de�ned in (1.45)

and (1.46):

x̂i = âi + â†
i (1.66)

p̂i = i
(
â†

i − âi

)
(1.67)
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From (1.49) and (1.50), the commutator for the quadrature operators x̂i and p̂i is given

by: [
x̂i , p̂ j

]= 2iδi j (1.68)[
x̂i , x̂ j

]= [
p̂i , p̂ j

]= 0 (1.69)

These conjugation relations allow to write the following Heisenberg inequality:

σ2
x̂i
σ2

p̂i
≥ 1 (1.70)

where σÔ ≡ 〈
δÔ2〉

is the variance of operator Ô. Finally, we can de�ne an arbitrary

quadrature operator q̂φi at a φ angle in phase space:

q̂φi = â†
i eiφ+ âi e−iφ

(1.71)

Using this notation, the amplitude (1.66) and phase (1.67) operators are dephased by π/2.

For states that contain n-modes, the quadrature operators {x̂i} and {p̂i} are represented

as vectorial operators of n components x̂ and p̂. It is also convenient to de�ne a full

quadratures vector of 2n components X̂= (x̂1, . . . , x̂n, p̂1, . . . , p̂n)ᵀ.

1.4.4 Relation to the classical �eld
In experimental quantum optics, it is quite convenient to be able to relate the quantum

�eld (1.53) to the classical �eld (1.18). This allows to de�ne what observable is being

measured.

The expectation value of the electric �eld (1.53) is written as〈
Ê(+) (x, z, t)

〉
= E0

∑
i
〈âi〉 wi(x, z, t) (1.72)

For single-mode Gaussian states (cf. section 1.6.2.2), it is always possible to �nd a basis

of modes {vi(x, z, t)} where only the �rst mode n = 0 is non-vacuum. This implies that

〈â0〉 =
p

N (1.73)

where N is the number of photons contained in the �eld. Using the de�nition of the

quadrature operators (1.66) and (1.67), the annihilation operator can be written in term

of observables:

âi = x̂i + i p̂i

2
(1.74)
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Thus, the quantum electric �eld is written in term of amplitude and phase observables:

Ê(+) (x, z, t)= E0
∑

i

x̂i + i p̂i

2
vi(x, z, t) (1.75)

For classical light, computing the expectation value of (1.75) should be equivalent to

measuring the classical �eld (1.18). This de�nes the important relation:

〈x̂〉 = 2 Re
{
E(+)

}
(1.76)

The expectation value of the quadrature amplitude of the quantum �eld is exactly equal

to twice the real part of the complex classical �eld
6
.

1.5 Quantum states
We introduce in this section the quantum states of interest in the continuous variable

regime. For a more detailed description of the subject, [Braunstein 05] provides with a

thorough review.

1.5.1 Density operator
Usually a quantum system is represented by a single state vector

∣∣ψ〉
, called pure state.

It is however not su�cient to describe a realistic system; the in�uence of the environ-

ment or �uctuations of various origin will degrade the purity of the state and lead to a

statistical mixture of pure states, or mixed state. These may no longer be represented

as single state vectors. A standard way of representing mixed states is by the density

matrix or density operator ρ̂, de�ned by

ρ̂ =∑
i

ci
∣∣ψi

〉〈
ψi

∣∣
(1.77)

where the ci coe�cients are the statistical weight of the pure state

∣∣ψi
〉
. The density

matrix satis�es the condition Tr
[
ρ̂
]= 1.

The purity P of the state can be deduced from the density matrix by

P =Tr
[
ρ̂2]

(1.78)

For a pure state, P = 1; otherwise, 0< P < 1 for a mixed state.

6
Obviously integrated over a �nite spatial and temporal window.
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The density matrix is a general tool that is especially convenient when describing

mixed states in the discrete variable regime, as it may be expanded on the Fock states

basis. However its usage in the continuous variables regime, where the number of pho-

tons and of modes increases, is more problematic, since it contains an in�nite number

of elements. Therefore, in this regime, it is more proper to make use of a representation

in quadratures, which is a natural representation of continuous variables. It is outlined

in the next section as the Wigner function, or Wigner distribution.

1.5.2 Wigner function
The Wigner function corresponds to another representation of the �eld in terms of

quadratures. For a n-mode state, it may be written on the phase space of the outcomes

of x̂, p̂ as [Schleich 11]:

W(x,p)= 1
(2π)n

∫
dnµ dnν Tr

[
ρ̂ e−i(x̂·µ+p̂·ν)

]
ei(x·µ+p·ν)

(1.79)

This representation should ideally show the probability of measuring the outcome x
and p of a measurement on x̂ and p̂. However, it is clear from (1.68) that these op-

erators do not commute, therefore such a probability distribution cannot exist. The

Wigner function W is a quasi-probability distribution such that the projection of W on

any quadrature x̂φi corresponds to the marginal probability distribution of the outcome

qφi of the measurement. Like a probability distribution, the integral over all quadratures

is equal to 1: ∫
dnx dnpW(x,p)= 1 (1.80)

and the integral over all but one quadrature yields the probability to measure it; for

example, by writing pφ = qφ+π/2
the orthogonal quadrature to qφ, the probability to

measure qφ is given by projecting the Wigner function:

Pφ(qφ)=
∫

W(qφ,pφ)dnpφ
(1.81)

However, this distribution can be negative, hence the name of quasi-probability dis-

tribution. For more details on the Wigner function, see [Ourjoumtsev 07].

The Wigner function is a good tool to describe quantum states in term of the phase

space variables, and many of the states relevant to continuous variables quantum optics

may be represented through this function. It is worth stressing that the negativity of

the Wigner function is not a necessary criterion do describe the "quantumness" of the

state. Some states will exhibit highly non-classical behaviors such as entanglement and

nonlocality, yet their Wigner function are positive. The most common belong to the

class of Gaussian states that will be expanded in the following section.
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1.6 Gaussian states

1.6.1 De�nition and quantum covariance matrix
Simply put, gaussian states correspond to states whose Wigner function is Gaussian.

They are e�ciently producible in a laboratory and available on demand. As an example,

the ground state of the Hamiltonian, or vacuum state, is Gaussian. Moreover, most op-

erations we can apply on gaussian states of light preserves their Gaussian characteristics.

The most general form for a Gaussian Wigner distribution can be formulated as

[Ferraro 05] :

W(X)= 1

(2π)npdetΓ
exp

[
−1

2
(
X−〈

X̂
〉)ᵀ

Γ−1 (
X−〈

X̂
〉)]

(1.82)

where

〈
X̂

〉
is the expectation value vector of the quadratures and Γ is the symmetrized

covariance matrix which elements are de�ned the following way:

[Γ]i j ≡Γi j = 1
2

〈{
X̂ i , X̂ j

}−〈
X̂ i

〉 〈
X̂ j

〉〉
(1.83)

where {· , ·} denotes the anti-commutator. By de�nition (and as for its classical counter-

part, see section 7.2.1), the covariance matrix is a real, positive and semi-de�nite matrix

which allows the spectral theorem to apply (this will be of great importance to us later

on). The diagonal elements of this 2n× 2n matrix correspond to the individual vari-

ance of each quadratures for every modes, and the o�-diagonal represent correlations

between those modes and quadratures. For our purposes, it contains all the information

on the gaussian state that is considered.

Finally, the purity of the state in term of the covariance matrix is given by

P = 1p
detΓ

(1.84)

1.6.2 Examples of Gaussian states

1.6.2.1 Vacuum state

The ground state of the radiation �eld is the state with zero photons |0〉 = |N1 = 0, . . . , Nn = 0〉
in every modes. It is called a vacuum state. The covariance matrix associated to this state

is the identity matrix, whatever the basis of modes in which it is represented:

Γ|0〉 = 12n (1.85)
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It is a direct consequence of the way we de�ned the quadrature operators (1.66) and

(1.67) : the variance of the �uctuations on both quadratures for a zero-photons state is

equal to unity. Therefore, its Wigner function is given by

W(x,p)= 1
(2π)n e−

1
2 (x2+p2)

(1.86)

1.6.2.2 Coherent state

Introduced in [Glauber 63], coherent states |αi〉 are widely used in quantum optics since

they are the quantum states that represent the state of light emitted by an ideal laser

well above threshold. They are also called quasi-classical states. Moreover, they are the

eigenstates of the annihilation operator âi:

âi |αi〉 =αi |αi〉 (1.87)

The expression of such states may be obtained by displacing the vacuum state in phase

space. This is achieved by applying the displacement operator D̂ i on the vacuum state:

|αi〉 = D̂ i(αi) |0〉 (1.88)

where

D̂ i(αi)= exp
[
αi â

†
i −α∗

i âi

]
(1.89)

A general coherent state is obtained by the tensor product of each individual coherent

states (1.87)

|α〉 =⊗
i
|αi〉 (1.90)

Its covariance matrix is also equal to the identity matrix:

Γ|α〉 = 12n (1.91)

and is therefore the same in each basis. In fact, it may be shown that there always exists

a basis in which any coherent state can be represented with a coherent state in mode 1
and vacuum in all the other modes [Treps 05]:∣∣ψ〉= |α〉⊗ |0, . . . ,0, . . .〉 (1.92)

A coherent state may therefore be considered as a single mode state.7

7
In contrast, a state is called multi mode if it is not single mode. Albeit amusing, this condition is

strong in the sense that any state that cannot be written according to (1.92) is by de�nition multi mode.

A good explanation of these conditions can be found in [Delaubert 07].
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In this basis, the coherent state writes in terms of the Fock states as

|α〉 = e−|α|
2/2

∞∑
n1=0

ân1
1√
n1!

|0〉 (1.93)

where the photons are created in the �rst mode. It is straightforward to show that〈
N̂1

〉= |α|2 (1.94)

and

σ2
N̂1

= |α|2 (1.95)

The photon number distribution of a coherent state follow a Poisson distribution.

1.6.2.3 Squeezed state

The Heisenberg inequality (1.70) imposes a restriction on the value of the product of the

variances of the quadratures in a given mode. And yet it does not constrain the variance

of one single quadrature. In the case where the variance of one quadrature in a given

mode is less than 1, this mode is said to be squeezed.

The squeezing operator for the quadrature q̂φi
i in mode i is written as

Ŝi(ξi)= exp

ξi

(
â†

i

)2 −ξ∗i (âi)2

2

 (1.96)

where ξi = r i eiθi
is the squeezing parameter; r i > 0 is the amount of squeezing and θi

is the direction.

On a vacuum state, the action of this operator yields the state |ξi〉 = Ŝi(ξi) |0〉, which

may be expanded in terms of even Fock states [Ferraro 05]. Despite its name, the squeezed

vacuum is not an empty state, as its mean number of photon is given by〈
N̂i

〉
|ξi〉 = sinh2 r i (1.97)

whereas the expectation value of a quadrature operator at any angle in phase space

vanishes :

〈
q̂φi

〉
|ξi〉

= 0 ∀ φ. However, the variances for the two orthogonal quadratures

q̂φi and p̂φi ≡ q̂
φ+π

2
i read

σ2
q̂φi

= e−2r i ≡σ2
i (1.98)

σ2
p̂φi

= e2r i ≡ 1
σ2

i
(1.99)
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The �eld is then “squeezed” along a given quadrature and “anti-squeezed” along the

other. The special cases where φ= 0 and φ= π
2 correspond respectively to amplitude or

phase squeezed states.
In the case where the state is pure and multimode, the covariance matrix is diagonal:

Γ|ξ〉 = diag

(
σ2

1,σ2
2, . . . ,

1
σ2

1
,

1
σ2

2
, . . .

)
(1.100)

A phase space diagram of coherent and squeezed states is shown on �gure 1.2.

(a) (b)

Figure 1.2: Phase space representation of (a) a coherent state; (b) a

coherent squeezed squeezed on the θ+π/2 quadrature. A vacuum state

is obtained by setting α= 0 in these diagrams.

1.6.2.4 Entangled states

As it was pointed out, the o�-diagonal terms in the covariance matrix display the cor-

relations between the quadrature, whose origin may be classical or quantum. One of

the most intriguing parts of quantum mechanics, the famous notion of entanglement as

�rst described in [Einstein 35], emerges from quantum correlations. Formally speaking,

an entangled state is a quantum state that cannot be described by the tensor product of

density operators of its sub-ensembles; the state is then called not separable. While this

feature is well described in the discrete variables regime, giving a formal de�nition of it

in the continuous variables regime is a more challenging task. Current research studies

a variety of criteria to de�ne entanglement in this regime, such as inseparability, study

of correlations, etc.

Although most of the work in this thesis is of classical nature, entangled states will

be of interest in the next part of the experiment, and a more thorough explanation will

be given in chapter 8.



2 Femtosecond ultrafast optics

(About ultrafast pulse-shaping) “There’s about amillion things that can gowrong.”
– Jonathan “Golden Goose” Roslund
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This thesis is all about precise measurements with light in the near infrared in the

femtosecond regime and the analysis of its �uctuations. This domain has been growing

and maturing for the last forty years and is now incredibly active. It is also very im-

pressive how interdisciplinary this �eld has become, with its wide range of applications
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in all sorts of research area. It involves a short time scale which allows one to make

“stop-action” measurements of rapid phenomenon, and very high intensity, enough to

strip the electrons from their nuclei, resulting in a laser-generated plasma. It also makes

extreme nonlinear optics phenomena possible, where laser-matter interactions are sen-

sitive to the non-instantaneous dynamics of bound motions of electrons. Although this

thesis does not deal with these extreme behavior -attosecond time scales, XUV and X-

Ray frequencies, high harmonics generation...-, ultrafast aspects need to be treated with

care. The aim of this chapter is therefore to give the reader a “crash-course” in ultrafast

optics, since most of the remaining chapters in this manuscript will rely heavily on the

de�nitions that will follow. A more complete description may be found in [Rudolph 06]

and [Weiner 11a].

2.1 Description of pulses of light
In this section, we introduce the notion of an optical frequency comb and give a mathe-

matical description of its �eld. We then de�ne power-related quantities that are speci�c

to ultrashort pulses of light. We also put forward de�nitions to characterize the temporal

and spectral envelopes, and end with a Gaussian description of the matter.

2.1.1 Optical frequency combs
In the case where the output spectrum of the laser corresponds to a large number of

equally spaced longitudinal modes, the laser is designated as an optical frequency comb
where every frequency mode is called a tooth of the comb. The process through which

such lasers are generated is called mode-locking; it ensures a �xed phase relationship

between each longitudinal mode of the comb. In this condition, in the temporal domain,

it can be shown that the electric �eld consists of pulses of limited duration, whereas

it would vanish if the phases were random. This mechanism will be outlined in more

details in section 2.4.

Due to their very stable structure, frequency combs are tools of reference for metrol-

ogy and spectroscopy. Their development led to the Nobel prize of Theodor W. Hänsch

and John L. Hall in 2005.

2.1.1.1 Ideal frequency comb

In the following, we will give a mathematical description for the output of a mode-locked

laser. The frequencies of the longitudinal modes are written as

ωn = nωr (2.1)
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where ωr is the free-spectral range of the laser cavity.

Considering only the temporal part, the electric �eld of a single pulse can be written

from (1.18) as the product of a slowly varying envelope and an optical carrier at the

frequency ω0:

E(+)
pulse(t)= E0 a(t) e−iw0t

(2.2)

which can be expanded in the Fourier space as previously:

E(+)
pulse(ω)= E0

∫
R

dtp
2π

a(t)ei(ω−ω0)t = a(ω−ω0)≡ a(Ω) (2.3)

The Fourier relation between time and frequency domains (or time-bandwidth product)

imposes that short pulses have a broad spectrum.

In the spectral domain, assuming an in�nitely narrow homogeneous linewidth for

each longitudinal mode, the spectrum of an optical frequency comb is obtained by sum-

ming the contribution of each single pulse:

E(+)(ω)= E(+)
pulse(ω)

∑
n
δ(ω−nωr) (2.4)

which corresponds to the spectrum sketched on �gure 2.8.

In the temporal domain, this becomes

E(+)(t)=
(
E(+)
pulse?∆τ

)
(t) (2.5)

where? represents the convolution product and∆τ is the Fourier transform of the Dirac

comb distribution

∑
nδ(ω−ωn):

∆τ =
∑
n
δ(t−nτ) (2.6)

Consequently, the complex �eld in the temporal domain is written as

E(+)(t)=∑
n

a(t−nτ) e−iω0(t−nτ)
(2.7)

This represents a train of pulses where τ= 2π/ωr is the time spacing between subsequent

pulses.
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Figure 2.1: Temporal and spectral representation of a frequency comb.

2.1.1.2 Realistic frequency comb

The previous treatment is not entirely realistic since it does not take into account the

e�ect of dispersion in the laser cavity. As we will expand into more details in section

2.2, both the envelope and the carrier of short pulses of light are changed by the e�ect

of dispersion. Dispersion causes a di�erence between the phase velocity and the group

velocity, therefore leading to an increasing dephasing between the carrier and the en-

velope from pulse to pulse
1
. The di�erence of dephasing between successive pulses is

called carrier-envelope phase (CEP):

∆φCE =
(

1
vg

− 1
vφ

)
ω0L (2.8)

where vφ and vg are respectively the phase and group velocities in the laser cavity, and

L is the length of the laser cavity.

1
Note that the dispersion that is refered to here is inside the laser cavity, not outside.
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As a result, the complex �eld reads

E(+)(t)=∑
n

a(t−nτ) e−iω0(t−nτ) e−in∆φCE
(2.9)

It is important to point that as opposed to (2.7), the �eld is no longer periodic because

of the CEP. In the spectral domain, this translates to

E(+)(ω)= E(+)
pulse(ω)

∑
n
δ (ω− (nωr +ωCE)) (2.10)

where ωCE is the carrier-envelope o�set (CEO) de�ned by

ωCE =∆φCE
ωr

2π
(2.11)

The longitudinal modes of a realistic frequency comb are then written as

ωn = nωr +ωCE (2.12)

The temporal and spectral representation of a frequency comb are shown on �gure 2.1.

In precision measurements, the stabilization of both the repetition rate and the carrier-

envelope o�set are very important. It can be achieved through a variety of ways, for ex-

ample by locking the comb on stabilized single-mode lasers [Nicolodi 14]. These quanti-

ties also belong to the global parameters of a frequency comb and their �uctuations will

be analyzed in more details in the next part of this thesis.

2.1.2 Energy and peak power
This section is a complement to 1.2.5.

As it was suggested, for pulses of light, the detection time T need to be chosen with

care as it allows to de�ne speci�c power-related quantities. It can be useful to consider

this detection time as τ/2 i.e. half the time between subsequent pulses. Hence, computing

the energy from (1.41) yields the energy Wp contained in a pulse:

Wp =
∫
τ/2

P(z, t) dt (2.13)

For a frequency comb with a repetition rate fr, the average detected power is given

by:

Pavg =
Wp

Tr
≡Wp × fr (2.14)
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which is obviously equal to the energy in a pulse times the number of pulses per second.

Finally, for nonlinear e�ects, a very important characteristic of a pulse is its peak

power Ppk, which is de�ned as the maximum occurring optical power. Since this quan-

tity depends on the actual pulse shape, giving a mathematical description in the general

case is not possible, but it has an analytical expression for gaussian pulses (c.f. (2.27)).

2.1.3 Moments of the �eld
When working with ultrashort pulses, it is useful to know the temporal and spectral

characteristics of the �eld such as the width ∆ω in the spectral domain and ∆t in the

temporal domain. There are multiple ways of de�ning these quantities, the most widely

used being the full width at half maximum (FWHM). Though convenient because visual,

it is not always the best way. That is for instance the case of pulses with substructures

that causes a considerable part of the energy to lie well outside of the range de�ned

by the FWHM. In these cases, it is preferable to use averaged values derived from the

statistical moments of the �eld’s intensity envelope.

The moments of the �eld can be de�ned for any variable ξ, being spatial, temporal and

spectral. Therefore, for the sake of generality, let us write the �eld envelope as f (ξ). The

moment of order n for the variable ξ with respect to the intensity of the �eld is de�ned

as

〈
ξn〉= ∫

R ξ
n | f (ξ)|2 dξ∫

R | f (ξ)|2 dξ
(2.15)

The �rst order moment 〈ξ〉 is the “center of mass” of the intensity distribution, generally

chosen as a reference to give a zero value. As an example, the center of the transverse

�eld as de�ned by (1.28) will be centered on x = 0, and the spectrum is usually centered

on the carrier frequencyω0. This de�nition can become very meaningful experimentally

since we seldom work with perfectly symmetric spectra (and neither with perfectly sym-

metric pulses, for that matter).

A good criterium for the width in either domain is the standard deviation, de�ned as

a function of the �rst and second order moments:

σξ =
√〈

ξ2
〉−〈ξ〉2

(2.16)

In the temporal domain, when setting the �rst moment as zero, this is equivalent to the

root mean square (RMS). The RMS duration has analytical expressions for well-de�ned

envelopes [Sorokin 00]. The case of gaussian envelopes will be treated in the next sec-

tion.
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When de�ning the center of mass as the reference, the time width of the pulse is

simply written as

σ2
t =

∫
R t2 |a(t)|2 dt∫
R |a(t)|2 dt

(2.17)

Similarly, the bandwidth is de�ned as

σ2
ω =

∫
R+ω2 |a(ω)|2 dω∫
R+ |a(ω)|2 dω

(2.18)

Because of the conjugation relationships between the temporal and the spectral domains,

the uncertainty principle in harmonic analysis [Appel 08] states that

σ2
t ·σ2

ω ≥ 1
4

(2.19)

This inequality is saturated only in the case of gaussian pulses.

2.1.4 Gaussian pulses
Having presented the general characteristics of a pulse, it seems convenient to introduce

a Gaussian temporal envelope u(t) that we can use to do analytical calculations. The

choice made here is indeed purely analytical, since the Gaussian shape is a reasonable

approximation of the structure of the experimental pulses.

2.1.4.1 Temporal domain

The temporal mode u(t) associated to a Gaussian shape is given by

u(t)= 1
(2π)1/4

1p
∆t

exp
(
− t2

4∆t2

)
≡ Ct exp

(
− t2

4∆t2

)
(2.20)

where ∆t is the second moment and the coe�cient Ct ensures that u(t) satis�es the

normalization condition
2

∫
R |u(t)|2 dt = 1.

The FWHM of this distribution is related to the time bandwidth by

∆tFWHM = 2∆t
p

2ln2 (2.21)

Note that with this de�nition of the Gaussian �eld, the RMS width (2.17) and the second

moment are equal

σ2
t =

∫
R

t2 |u(t)|2 dt =∆t2
(2.22)

With other de�nitions that are more common in the ultrafast community, there would

be a factor of 2 between them.

2
For simplicity, we take the normalization condition (1.31) and consider that T = 1.
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2.1.4.2 Spectral domain

Taking the Fourier transform of (2.20) yields the �eld in the spectral domain:

u(ω)=
p

2∆t
(2π)1/4 exp

(−∆t2ω2)
(2.23)

Computing the second moment then yields

∆ω2 = 1
4∆t2 (2.24)

which allows us to rewrite the spectrum as

u(ω)= 1
(2π)1/4

1p
∆ω

exp
(
− ω2

4∆ω2

)
≡ Cω exp

(
− ω2

4∆ω2

)
(2.25)

This representation is the exact counterpart of equation (2.20) and obeys the same nor-

malization conditions. All the quantities from the temporal part may be transposed to

the spectral domain by the substitution ∆t →∆ω.

From (2.24), it is clear that the Gaussian case saturates the inequality (2.19). The time-

bandwidth product may also be written in term of the FWHM:

∆tFWHM×∆ωFWHM ≈ 2π×0.441 (2.26)

This metric allows us to de�ne the transform limited pulse, the shortest Gaussian pulse

possible for a given spectral width. The value of the time-bandwidth product for other

pulse shapes, such as hyperbolic secant or lorentzian, can be found in [Sorokin 00].

Finally, when writing the power of a Gaussian pulse according to (1.40), it becomes

possible to write the peak power as

Ppk =
Wpp
2π∆t

' 0.94
Wp

∆tFWHM
≡ 0.94

Pavg

fr ×∆tFWHM
(2.27)

This expression as a function of the average power is convenient since, again, this quan-

tity cannot be measured using usual electronics.

2.2 The in�uence of dispersion
As introduced in section 1.3, the electric �eld can carry information on both the ampli-

tude and the phase quadrature. When doing measurement with ultrashort pulses, this

information can be spectrally dependent. We will be particularly interested in the phase

quadrature of the �eld, and therefore, we need to understand the phase variations in

both the spectral and the temporal domains. It is also important to know whether or not

a pulse is free of such phase variations.
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2.2.1 Spectral and temporal phases
At the risk of sounding redundant, we write the complex �eld in the temporal domain

as

E(+) (t)= E0 a(t) e−iω0t
(2.28)

where a(t) is the �eld envelope, a priori complex. In the spectral domain, relative to the

carrier frequency, we also have

E(+) (Ω)= E0 a(Ω) (2.29)

with Ω = ω−ω0. To add phase variations in either the frequency or time domains,

we write these phases respectively φ(t) and φ(ω) and include them in the envelope as

follows:

a(t)= |a(t)| eiψ(t)
(2.30)

and

a(Ω)= |a(Ω)| eiφ(Ω)
(2.31)

Two particular cases emerge: when ψ(t) is a constant, the pulse is free of phase modula-
tion, and when φ(ω) is a constant, the pulse is said to be bandwidth limited3

.

When a pulse has a non trivial variation in both ψ(t) and φ(ω), we say it is chirped.

The following section will list the e�ects that a spectral phase can have on the pulse

shape.

2.2.2 E�ects on the pulse shape
Let us consider that the spectral phase φ(ω) can be Taylor expanded around the carrier

frequency ω0:

φ(ω)'φ(ω0)+ (ω−ω0)
∂φ

∂ω

∣∣∣∣
ω0

+ 1
2

(ω−ω0)2 ∂
2φ

∂ω2

∣∣∣∣
ω0

+ 1
6

(ω−ω0)3 ∂
3φ

∂ω3

∣∣∣∣
ω0

(2.32)

which can be rewritten in a more compact notation as

φ(Ω)'φ0 +Ωφ1 +Ω
2

2
φ2 +Ω

3

6
φ3 (2.33)

3
Here we stress the fact that a linear phase in either t or ω has the same e�ect on the pulse than a

constant phase... As we will see in 2.2.2, a linear spectral phase shift is equivalent to a simple delay in the

time domain, and a linear temporal phase shift is simply a shift of center frequency. As a result, it does

not change this de�nition, and that is the reason why we kept the carrier e−iω0 t
outside of the envelope

in (2.28).
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The �eld’s spectrum is consequently written as

E(+) (Ω)= E0 |a(Ω)| eiφ(Ω)
(2.34)

It is evident from computing the spectral intensity that the energy is not a�ected by this

phase, nor is the intensity spectrum as observed with a spectrometer. However, such a

phase can have a huge in�uence on the pulse shape. In the next section, we show the

e�ect of each term of the phase expansion on the temporal pulse.

2.2.2.1 Constant phase

In the case of a constant phase φ(Ω) = φ0, there is no change in the pulse shape. The

temporal �eld is directly given by

E(+)(t)= E0 |a(t)| e−i(ω0t−φ0)
(2.35)

A constant spectral phase then results in a simple phase shift of the carrier in the tem-

poral domain. The real �eld in the temporal domain is written

E(t)= 2Re
{
E(+)(t)

}
= 2E0|a(t)| cos

(
ω0t−φ0

)
(2.36)

The resulting pulse shape is depicted in �gure 2.2 for a wavelength of 795 nm and a

temporal FWHM of 6 fs.

No delay
-5 fs of phase delay

t (fs)-10 -5 0 5 10

Figure 2.2: Pulse shape of a 6 fs pulse with and without a constant (negative) spectral

phase.
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2.2.2.2 Linear phase

For a linear spectral phase φ(Ω) = Ωφ1, the complex �eld in the temporal domain is

written as

E(+)(t)= E0
∣∣a (

t−φ1
)∣∣ e−iω0t

(2.37)

This results in a global delay in the envelope of the pulse as shown by �gure 2.3. Note that

the carrier of the delayed pulse is not shifted with respect to the phase of the undelayed

pulse.

t (fs)-10 -5 0 5 10 15

No delay
10 fs of group delay

Figure 2.3: Pulse shape of a 6 fs pulse with and without a linear spectral phase.

A global delay in both phase and envelope, combining constant and linear spectral

phases, will then result in a shift of the carrier in the delayed pulse.

2.2.2.3 Quadratic phase

A quadratic spectral phase φ(Ω)= Ω2

2 φ2 a�ects both the envelope shape and the carrier

frequency, as shown on �gure 2.4. This is also the case for every higher order phase.

The temporal �eld of a Gaussian pulse with a quadratic spectral phase reads

E(+)(t)= E0α
Cςp
∆t

e−(t/2ς)2 e−iω0t
(2.38)

Here we de�ned the envelope of the �eld as a Gaussian of second moment ς de�ned by

ς=∆t

√
1− i

φ2

2∆t2 (2.39)

Since this quantity is complex, the temporal �eld is not yet written in the form of (2.30).
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To do so, we de�ne an e�ective temporal width∆t′ = |ς| for the chirped pulse, allowing

to decompose the argument of the Gaussian in real and imaginary parts:(
1
2ς

)2
=

(
1

2∆t′

)2
+ i

φ2

8(∆t′)4 (2.40)

where ∆t′ is de�ned as

∆t′ =∆t

√
1+

(
φ2

2∆t2

)2
(2.41)

From equation (2.40), we see that a quadratic phase will have two e�ects on the pulse

shape:

• The envelope becomes broader according to (2.41) independently of the sign of

φ2. A useful criterium is the amount of quadratic phase φc for which the pulse’s

envelope is twice bigger than the transform limited one. It reads:

φc = 2
p

3∆t2
(2.42)

All these quantities may of course be put in term of temporal FWHM using (2.21).

• A linear frequency modulation occurs, given by

ψ(t)= φ2

8(∆t′)4 t (2.43)

This phenomenon is often referred to as chirp, as an analogy to acoustic waves.

An up-chirp means that the instantaneous frequency increases with time, whereas

a down-chirp is the contrary.

No chirp
+20 fs² of quadratic
 phase

t (fs)-10 0 10

Figure 2.4: Pulse shape of a 6 fs pulse with and without a positive quadratic phase.
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A pulse will acquire quadratic phase when it propagates through a dispersive medium.

Since both positive and negative chirp induce a broadening of the envelope, the min-

imum pulse duration can only occur when there is no chirp, that is when there is no

variation in instantaneous frequency and no spectral phase higher than the �rst order

in ω.

To compensate a positive quadratic phase acquired through propagation, a pulse may

be compressed down to the Fourier limit by using a negative group velocity dispersive

medium. This is achieved by using either prisms or gratings [Martinez 84], or even by

pulse shaping using a Spatial Light Modulator [Weiner 00].

2.2.2.4 Cubic phase

A cubic phase φ(Ω)= Ω3

6 φ3 results in a radical change in the temporal envelope, making

it non-Gaussian. The Fourier transform may still be analytically computed according to

[McMullen 77].

Using a clever change of variables ξ=Ω+ i∆t2

τ3 , with τ3 =φ3/2, the Fourier transform

of the spectral envelope reduces to

u(t)= Cω

∫
R

dξp
2π

exp
[

i
τ3

3
ξ3 + i

(
∆t4

τ3 − t
)
ξ

]
exp

[
2∆t6

3τ6 − ∆t2

τ3 t
]

e−iωo t
(2.44)

The integral over ξ is known as the Airy integral in the complex plane Ai(t)= ∫
C

dzp
2π i

e
z3
3 −zt

.

Injecting this result, we then obtain:

u(t)= Cω

τ
Ai

(
∆t4/τ3 − t

τ

)
exp

[
∆t2

τ3

(
2∆t4

3τ3 − t
)]

e−iωo t
(2.45)

For τ→ 0, this function converges to the standard gaussian pulse. For non zero values of

τ, we see that the carrier is una�ected, whereas the envelope acquires a complex shape,

as shown in �gure 2.5.

Upon propagating through a strongly dispersive medium, the third order dispersion

will cause a delay of the pulse peak as well as an asymmetric broadening, creating repli-

cas. For a negative cubic phase, these ripples arrive earlier in time, whereas it is the con-

trary for a positive phase. Generally, the cubic dispersion is weaker than the quadratic,

so that e�ect always coincides with the broadening and chirp de�ned in the previous

section. This may be modeled by the substitution ∆t → ζ in (2.45).

Cubic phase can therefore pose very serious problems in ultrafast optics. As was the

case for quadratic phase, it is possible to compensate for it using a compressor or a pulse

shaper.
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Figure 2.5: Envelope of a 6 fs pulse with and without a cubic phase.

2.3 Representations of the pulse

From the previous section, it is clear that a full representation of the pulsed �eld needs

to include both the spectral and the temporal phases. Of course, once retrieved, one

could plot the spectral and temporal phases of the pulse, but these can be hard to read.

Although it does contain all the required information, it is not straightforward to know

the temporal distribution of each frequency of the �eld. For example, temporal repre-

sentations of the pulse in the previous section do not give easily away the arrival time

of each color.

2.3.1 Time-frequency distributions

In many other �elds such as quantum mechanics or acoustics, other representations

were introduced to complement standard Fourier analysis. These distributions of time-

varying spectra are called spectrograms (or equivalently sonograms). The concept has

been widely used for the analysis of time-varying spectra

Over the years, a great number of distributions have been introduced and investigated,

and it is still an evolving �eld. Here we only expose the general principle that lies be-

hind time-frequency distributions since it also hints as to how to access the pulse shape

experimentally. It also provides a good visual witness of the pulse shape and allows one

to understand rapidly the structure that the pulse acquired during its propagation. For

a review on all the di�erent time-frequency distributions, see [Cohen 89].
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2.3.1.1 Wigner distribution

The whole �eld of time-frequency distribution has been built upon the study of the

Wigner function. First introduced by Wigner and applied to quantum mechanics, the

Wigner function can be applied to any set of conjugated variables, for example, the

wave-vector k and the position x, or the angular frequencyω and the time t. It has found

some application in ultrafast optics for the description of pulses [Walmsley 96], but its

usage has become limited since it is cumbersome to relate to the physical spectrum. Its

mathematical de�nition is generally given by

W (t,ω)=
∫
R

dτ
2π

E(−)
(
t− τ

2

)
e−iωτE(+)

(
t+ τ

2

)
(2.46)

=
∫
R

dϑ
2π

E(−)
(
ω− ϑ

2

)
e−iϑt E(+)

(
ω+ ϑ

2

)
(2.47)

This de�nition is the counterpart of the quantum version.

Although this does provide a two-dimensional representation of the �eld, the Wigner

function can prove hard to use and interpret. Because the distribution at a certain time

usually re�ects properties of the signal at other times, it is highly “non-local” in nature.

Therefore, if there is noise on the signal for a small �nite time, that noise will appear

at other times. This means also that, at a certain point in time, the function can be non

zero even when the signal is null. This noisy behavior is one of the main drawbacks of

the Wigner distribution; it can be cleaned by smoothing, but this operation inevitably

destroys some desirable structures.

2.3.1.2 Short-time Fourier Transform

A more widespread way of obtaining a spectrogram with better reliability is the so-called

short-time Fourier transform. The concept is simple to understand and powerful. If one

wants to analyze the behavior of a signal at a particular time, then one simply has to

take a portion of the signal centered around that time, calculate its energy spectrum,

and do this for every time.

Formally, let us consider the complex temporal envelope a(t) of the �eld that we want

to resolve and multiply it by a gating function h(t−τ). The spectrogram is then obtained

by taking the energy of the Fourier transform of the signal:

S(ω, t)=
∣∣∣∣∫
R

dτp
2π

a(τ)h(τ− t) e−iωτ
∣∣∣∣2 (2.48)

which, for speci�c �lter function h, is the short-time Fourier transform (STFT) of the



46 2. FEMTOSECOND ULTRAFAST OPTICS

signal. Alternatively
4
, we may de�ne S by taking the spectral envelope a(ω) and the

Fourier transform of the �lter h(ω) :

S(ω, t)=
∣∣∣∣∫
R

dϑp
2π

a(ϑ)h(ϑ−ω) eiϑt
∣∣∣∣2 (2.49)

The two de�nitions are equivalent. From an experimental point of view, there are many

techniques that allows one to measure spectrograms and therefore to resolve both the

amplitude and the phase of the pulse.

One needs to choose the �lter function h with care. Once again, because of the uncer-

tainty principle, the narrower the function, the better the resolution in a speci�c domain,

but it cannot be arbitrarily narrow. In that case, any variation in either the spectral or

the temporal phase will be much smaller than the spectrum of S and will then be di�-

cult to resolve. Conversely, if the �lter is too broad, the spectrogram will be identical to

the original power spectrum, and no information over the phase can be gained. There is

therefore a necessary tradeo� between time and resolution. In general, one should select

a gate function whose duration is on the order of the inverse bandwidth of the pulse to

be characterized. In other words, gating the pulse by its transform-limited version is a

good choice.

2.3.2 Some examples
In this short section, we take some of the spectral phases that were investigated in sec-

tion 2.2.2 and apply the STFT method to compute the spectrogram. We chose the gate

function to be the transform limited version of the chirped pulse. We again restrict our-

selves to the study of Gaussian envelopes.

The spectrograms shown on �gure 2.6 represent three di�erent cases. The �rst is the

transform-limited pulse which has no chirp, but it can have either a constant or a linear

spectral phase
5
. The second is a pulse with a positive quadratic phase, it is said to be

linearly chirped. The third and last pulse has some cubic phase.

From these representations, the temporal distribution of each color
6

is more evident.

It is very easy to notice that a positive quadratic phase will make the lower frequency

part (i.e. the red wavelengths) to arrive earlier in time. In the cubic case, the colors

propagate together, but the shape of the pulse is no longer gaussian as it was stressed

earlier. The center of mass of the pulse is also noticeably shifted.

4
This de�nition is sometimes called a sonogram.

5
Naturally, a linear spectral phase would translate the spectrogram along the time axis.

6
Note that the term color denotes here the spectrum of the electromagnetic �eld, not the colors used

to represent the spectrograms in �gure 2.6 !
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Figure 2.6: Spectrogram of three di�erent pulse shapes. From left to right: (a) transform

limited 20 fs pulse, (b) linear chirp (i.e quadratic phase), (c) cubic phase.

2.3.3 Experimental realizations

To conclude this chapter, we shall say a few words on how to experimentally retrieve

the pulse shape. See [Trebino 02] for a much more complete list.

Knowing the exact structure of a pulse in both amplitude and phase can be very im-

portant for a lot of applications. Every non-linear process is highly dependent on the

phase of the pulse, and the best e�ciency is achieved when the pulse is transform-limited

(c.f. section 8.3.2). In this situation, it is vital to know the absolute spectral (or temporal)

phase.

There are no linear e�ects that can resolve the duration of a pulse or its phase in an

absolute way. However, intensity correlation measurements will give information on

the width of the pulse. This is realized by gating the pulse by itself within a χ(2)
medium

and measuring the intensity of its second harmonic. The width of the resulting autocor-

relation trace is proportional to the e�ective time-bandwidth of the pulse. Although it

does not give the phase distribution, it is a simple technique that allows to infer whether

or not a pulse is chirped with respect to its theoretical limit.

To access the phase pro�le, we usually resort to a technique called Frequency-Resolved

Optical Grating (FROG) which gates the pulse to itself. Mathematically, what is mea-

sured at the output is very similar to (2.48). There exists a wide variety of FROG tech-

niques that each o�er some advantages and drawbacks. It is usually a technique similar

to auto-correlation except that we measure the spectrum instead of the intensity. This

allows to retrieve the absolute spectral and temporal phase of the pulse.

When the time-frequency distribution of the pulse is known, one can use it as a ref-

erence to measure the phase pro�le of another source using simpler techniques. For

example, by beating an unknown pulse with a reference in an interferometer, in the

spectral domain, the interference pattern allows one to retrieve the relative spectral
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phase between the two (see section 3.1.3.4). Knowing the phase of the reference, it is

therefore straightforward to plot the time-frequency distribution of the unknown pulse.

This method can also be used to directly retrieve the spectrogram of the pulse by the

xFROG procedure [Trebino 02].

2.4 Generation of pulses of light
In part III, we shall dive in more details into the noise characteristics of a laser source and

we will need a decent knowledge on how the light of a femtosecond oscillator is gener-

ated. The aim of this section is to provide a description centered mainly on the type of

lasers that have been used during this PhD (solid-state Titanium Sapphire laser, passive

Kerr-lensing mode-locking), and does not pretend to review all of the laser theory.

2.4.1 Steady-state laser cavity
For our purposes, we consider laser sources that are made of a linear Fabry-Pérot cavity

with a gain medium, as depicted by �gure 2.7. Light passes through the gain medium

twice per round-trip, and the electric �eld is periodic on this length. To achieve optical

gain, a population inversion must occur in the gain medium. This corresponds to the

situation where the number of electrons in an excited state exceeds the number of elec-

trons in a lower level. This is usually achieved by optical pumping, where an external

light source -e.g. a laser diode- is used to promote the electrons in an excited state.

Gain medium
HR OC

Figure 2.7: Linear laser cavity. HR: High Re�ectivity ; OC: Output Coupler.

A steady-state is achieved if the two following conditions are ful�lled:

• The gain condition states that the round-trip gain balances exactly the round-trip

losses.

• The phase condition allows only certain longitudinal modes to resonate inside the

cavity. Their angular frequencies must satisfy

ωm = 2πm
c
L

(2.50)

with m ∈ N and L is the total path traveled by the light in the cavity (in the case of

a linear cavity, this distance is twice the cavity length). The spacing between each
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longitudinal mode, or free spectral range, is given byωFSR = c/L. It also corresponds

to the laser repetition rate.

Figure 2.8: Sketch of the conditions for multimode lasing.

When the laser cavity is set such that the gain exceed losses only for a single longitu-

dinal mode, the regime is called single mode. This results in the well-known monochro-

matic properties of lasers.

A basic laser operation is sketched schematically on �gure 2.8 in the spectral domain.

Laser oscillation happens only for modes where the gain lies above the loss line. In

this broadband situation, multiple longitudinal modes satisfy the lasing conditions so

that several output frequencies appear simultaneously. This regime is therefore called

multimode.
This picture is a bit naive since in practice, the situation is a bit more complicated.

Indeed, the gain condition requires that the gain exactly equals rather than exceeds the

loss. This situation depends only on the properties of the laser medium and the pump

level, and the level at which gain equal losses is called threshold. At this level, only weak

light is emitted by the laser. To produce signi�cant laser intensity, weak spontaneous

emission needs to build up in the gain medium, and the gain must therefore exceed the

loss.

However, above threshold, the intracavity �eld will extract more power that was

stored by the pump in the gain medium and a saturation phenomenon occurs. As pho-

tons are ampli�ed in the laser cavity by the gain medium through stimulated emission,

electrons in the excited state are stimulated back to their low energy state. The gain

is consequently reduced, and the actual gain, known as saturated gain, depends on the

properties of the laser medium, the pump level and also the intracavity laser intensity.

Thus, pump power above the threshold value is converted into stimulated emission
7

as

laser intensity will build up just enough to maintain the saturated gain at exactly the

7
This picture is similar to saturation phenomenon of electronic ampli�ers; full gain is only possible for

input signals below a certain voltage level, whereas higher input level will induce clipping of the output.
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loss level. On �gure 2.8, we assumed that the gain medium is broadened homogenously

such that the saturated gain has the same spectral shape as the minimum gain required

to achieve threshold.

This representation is however convenient, as to achieve short-pulse generation, a

large number of modes need to oscillate simultaneously. As it was pointed in section

2.1.1, each of these longitudinal modes needs to have a �xed phase relationships in order

to generate a frequency comb. This is achieved through the process of mode-locking.

2.4.2 Mode-locked lasers
To obtain a mode-locked laser generating ultrashort pulses, pulses need to form within

the laser cavity using either active or passive elements. One also needs to take into

account a number of di�erent processes that a�ect the pulse as it propagates inside the

cavity.

2.4.2.1 General principles

The mechanism of mode-locking is enabled when the gain is higher for the pulsed regime

than for the continuous wave (CW) regime. This mechanism can either be an active ele-

ment or be passively triggered by saturable absorption. Historically, active mode-locking

was the �rst one to be demonstrated. Currently, passive mode-locking is widely used

since it yields the shortest pulses through Kerr-lens mode-locking [Morgner 99]. The

process of mode-locking is a complicated one: it involves a lot of di�erent processes

simultaneously, and describing its dynamics requires an elaborate treatment. A thor-

ough description can be found in [Weiner 11a]. In the following, we brie�y review the

di�erent key points that are required to achieve pulsed light generation.

Gain and bandwidth. As for single mode regime, both gain and linear loss are needed

to generate short pulses, but their bandwidth are then important. According to the time-

bandwidth product (2.19), shorter pulses have broader bandwidth and the laser needs to

be set accordingly. Bandwidth limitation arises from a �ltering e�ect, due to wavelength-

dependent loss elements or from the �nite bandwidth of the gain medium. Therefore,

one has to maximize the bandwidth of the laser to achieve the shortest pulses generation.

Modulations. It is straightforward to see regularly spaced pulses of light as a CW

wave whose amplitude is modulated at the repetition rate frequency. When this mod-

ulation happens inside the laser cavity, it introduces losses that are minimized when

laser emission occurs in the form of short pulses that are synced with the modulation

frequency. At each pass of the cavity, pulses get shortened up to a certain limit, and the
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pulsed regime becomes favorable. That is why modulations play a key role in achieving

and maintaining mode-locked operation
8
.

Active modulations. This refers to externally driven modulators that modulate

either the amplitude or the phase of the circulating pulse. The modulation frequency

is usually chosen as the cavity round-trip time, and it needs to be set very precisely.

This mode-locking technique, though quite simple, is not very robust since it is highly

dependent on the stability of the cavity length. Moreover, the response of the modulator

becomes ine�ective for very short pulses and this limits the attainable pulse width.

Passive modulations. Conversely, this cavity loss modulation may be a function

of the pulse intensity . As a consequence, the loss changes dynamically in response to

the pulse, which itself is modulated in return. It is a nonlinear process that leads to

a self-induced modulation with a period automatically synced to the cavity round-trip

time. When the modulation happens in amplitude, we talk of self-amplitude modulation
(SAM). These can be induced by adding a saturable loss element in the cavity, or saturable
absorber. The phase can also vary dynamically with the time-dependent pulse intensity,

leading to a self-phase modulation (SPM), occurring also at the pulse round-trip time.

This process usually has a very fast response, such that only the instantaneous intensity

matters in the nonlinear interaction. As a result, the pulse-shortening action can remain

e�ective even for very short pulses. This mode-locking mechanism is therefore classi�ed

as passive, since the light itself initiates its own modulations through nonlinearities.

Dispersion. Finally, as we have seen in section 2.2.2, dispersion (due especially to

quadratic and cubic phases) leads to serious consequences on the pulse shape and can

therefore hinder short-pulse generation. In the laser cavity, dispersion comes from the

gain medium, from the dielectric coating of the mirrors, or even simply from air. As

the pulse gets broader after each round-trip, the temporal overlap in the cavity becomes

weaker and this limits the e�ciency of the lasing process. More importantly, this de-

grades the peak power and leads to weaker nonlinear e�ects. To minimize intracavity

dispersion, a popular scheme for this is to use a shorter, more highly doped gain crystal.

This minimizes the amount of dispersion acquired through the medium, but it does not

compensate for other elements. Best results are then obtained by using a prism based

compressor which material is carefully chosen, or by using specially designed chirped

mirrors. The latter o�er a very high and broadband re�ectivity with the advantage of

tailoring even better the phase they compensate and are usually prefered for few-cycles

pulse generation.

8
Note that since a Fabry-Perot cavity couples amplitude and phase, the modulations needed to achieve

mode-locking can also be in phase.
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To summarize, when a laser cavity is built with a broadband gain and a su�cient

bandwidth, generation of short pulses can be achieved by modulating the intracavity

�eld and a careful management of dispersion. We will now interest ourselves in one

particular type of passive mode-locking, the solid-state Kerr mode-locking, as it might

explain the correlations in the dynamics of amplitude and phase of the lasers that we

investigate (cf. chapter 7).

2.4.2.2 Kerr-lens mode-locking

Nowadays, the most popular mode-locking technique with solid-states laser is called

Kerr-lens mode-locking (KLM). KLM lasers based on titanium:sapphire (Ti:S) are partic-

ularly widespread. It consists of using the nonlinear response of the gain medium in

which the nonlinear index leads to self-focusing in the laser cavity. This provides the

modulation necessary to mode-lock the system. Note that this e�ect is an interplay

between spatial and temporal properties of the �eld.

More precisely, the optical Kerr e�ect originates from the χ(3)
nonlinearity of the gain

medium. The index of refraction of the medium depends on the intensity of the laser

pulse. It is written as

n(r, t)= n0 +n2 I(r, t) (2.51)

where I(r, t) is the pulse intensity de�ned in (1.38). The pulse induces a change in the

refractive index
9

of the material that is proportional to the instantaneous intensity. The

response time of this nonlinear e�ect is not known exactly but is usually estimated to

be 1 to 2 fs which can be considered as instantaneous.

As a result, after propagating in such a medium of length L, the �eld will acquire a

nonlinear phase shift, given by

∆φ(r, t)= ω

c
n2I(r, t)L (2.52)

When approaching a pulsed regime, this e�ect induces both a fast SAM and a fast SPM,

which may therefore be used as a mode-locking scheme. This process is highly depen-

dent on the spatial pro�le of the lasing �eld. Once initiated, mode-locked operation is

then self-sustaining.

Originally, the lasers that use this e�ect were described simply as “self-mode-locked”

since the mode-locking mechanism was not identi�ed at �rst. Afterwards, it was deter-

mined that a nonlinear lensing associated to the gain medium provides the fast amplitude

modulation required for mode-locking. As pointed out earlier, because the response of

9
In most laser materials, n2 > 0 so the index actually increases with pulse power.
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the medium is almost instantaneous, it is by this process that most of today’s Ti:Sa lasers

emit pulses of light in the sub 10-fs range.

From (2.52), it is clear that the KLM method is highly dependent on the temporal

pro�le (i.e peak power) but also on the spatial pro�le of the lasing �eld. Indeed, when

assuming a Gaussian pro�le such as (1.22), the intensity (hence the nonlinear e�ects)

induced in the gain medium depends upon the radial coordinate. The change of index

has therefore a radial dependency (and so does the phase) which is equivalent to a self-

induced lens for the lasing mode. Under di�erent conditions, this e�ect can reduce the

loss or increase the gain, thus acting as a fast saturable absorber and resulting in self-

amplitude modulation. When the loss is reduced, mode-locking becomes possible.

To reduce the loss using the spatial mode structure, a number of options are avail-

able. For example, it has been found quite remarkably that when a Ti:Sa laser cavity is

slightly misaligned for a mixture of fundamental and higher order TEM modes to res-

onate, mode-locking could be induced by an external perturbation, such as tapping one

of the cavity mirrors. This can be explained by the fact that a higher order mode has a

wider spread and gets clipped somewhere in the cavity
10

. Self-lensing then improves the

mode quality or decreases the beam size which in turn reduces the loss. There are also

possibilities to accentuate and control the beam clipping e�ects by adding a slit close to

the end mirror. This approach is called hard-aperture KLM and corresponds to one type

of laser source that was used in this thesis (see 7.2.3). Finally, the gain can be increased

since self-focusing may a�ect the overlap of the lasing mode with the spatial pro�le of

the pump laser beam in the gain medium. The situation is in the end equivalent to the

latter, and is called soft-aperture KLM. Such a laser is the other source used in this work

(see 3.1.1).

What should be retained from this section is that the process by which ultra-short

pulses of light are generated is a complicated one. It is a delicate interplay between

non-linear e�ects (Kerr e�ect, self-amplitude and self-phase modulation, self-focussing,

in�uence of the pump power...), spectral phase (negative group delay dispersion) and

spatial characteristics of both laser and pump �eld. The full description of these e�ects

is well beyond the scope of this thesis and we only need to remember that the dynamics

of a laser �eld are obviously highly dependent upon them.

10
This is one of the reasons that explain the poor spatial pro�le at the output of a mode-locked laser.
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3 Revealing the multimode structure

(About doing experiments in the late evening) “It’s not worth it; you think you
have a good idea, but you just end up doing stupid things.”

– Pu “Pupu” Jian
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Having introduced the modal description of the �eld generated by an ultrafast fre-

quency comb, we now present the experimental techniques to actually access this struc-

ture. This multimode description may be used to retrieve information encoded in the

�eld.
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Accessing experimentally these frequency-dependent quadratures have two prereq-

uisites:

• Being able to measure the amplitude and the phase of the �eld. In practice, as

it was stressed in equation (1.48), one may only measure the amplitude of the

�eld. However, the phase quadrature information are experimentally transferred

to an amplitude measurement. This is achieved by interferometric measurement

called homodyne detection, a very widespread scheme in optics, and particularly

in quantum optics[Adesso 14]. In this scheme, one �eld, called local oscillator, is

used as a reference, while the other �eld, called signal, carries the information to

be measured. One can then access the phase di�erence between the two �elds.

• Resolving the temporal or the spectral structure of the �eld. The �rst solution is

to disperse the spectrum on a di�raction grating and perform homodyne detec-

tion on a given spectral slice. This spectrally-resolved homodyne detection, called

multipixel homodyne detection (MHD), is a very powerful and versatile tool to mea-

sure the multimode structure of the �eld. We present the working principle of the

method in section 3.3.2. Another possibility is to physically change the spectral

amplitude and phase of a �eld and perform a standard homodyne detection. This

has been originally achieved in the group by shaping the spectrum of the local

oscillator using a pulse shaper. In the homodyne detection, this allows selection of

which spectral part of the �eld will interfere. Since already done in the past (see

[Jian 14]), we only introduce the working principle of pulse-shaping in section

3.1.3, and we add a few details in appendix B. Although measuring from a spectral

point of view seems easier, accessing it from the temporal side also yields interest-

ing results. We call this last method temporally-resolved homodyne detection, and

introduce it in section 3.3.3.

In this section, we focus on presenting the building blocks of the experiment that allow

to extract this structure.

3.1 General experimental scheme
In this section, we present the general layout of the experiment. Subparts of it are built

di�erently depending on the experiment but it can be summarized as shown on �gure

3.1.

The beam generated by the femtosecond oscillator is split into the two arms of a Mach-

Zehdner interferometer. 90% of the power is sent in the local oscillator (LO) arm, and

the remaining 10% are sent into the signal beam. On the LO path, a pulse-shaper is

introduced to address both the amplitude and the phase of the �eld.
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Figure 3.1: General experimental scheme, BS: beam-splitter.

On the signal path, we consider that, at some point, a spectrally-dependent pertur-

bation occurs. It can be purposely introduced by an amplitude or phase modulator in

the form of a modulation at a given frequency. This is what we opted for in parameter

estimation, where we voluntarily modulate a physical parameter in order to measure it

through a multimode description of the phenomenon. We develop this experiment in

part II.

However, this modulation of the �eld does not need to be purposely introduced. In-

deed, any source of noise (being mechanical, acoustical, thermal or technical in nature)

can be represented as a modulation of the �eld on a range of frequencies (or equivalently,

integration time). It is very natural to understand that at very high detection frequency

(i.e. at a very short time scale), there can be no source of noise other that the quantum

nature of light. Conversely, on a longer observation time (i.e. at low frequencies), in-

�uence from the surrounding environment becomes more noticeable. In part III, we use

a similar scheme where one beam shows much lower noise �gures (such that it can be

taken as a reference) to actually extract the noise information of the other beam.

The two beams are then combined in a homodyne detection scheme and the resulting

�eld is consequently measured.

We shall now present the di�erent subparts of the experiment.

3.1.1 Laser source
The laser source is a Titanium-Sapphire based femtosecond oscillator from the Femto-

lasers company. It delivers pulses around 22 fs FWHM at a central wavelength of 795
nm for a repetition rate of 156 MHz. The average power is on the order of 1.1 W, there-

fore the energy contained in a pulse is about 7 nJ and the peak power is around 0.2 MW.

The distance between subsequent pulses is then 1.92 m, i.e. 6 ns in the time domain. The

spectrum is well approximated by a Gaussian of 42 nm width FWHM. The geometry of

the laser cavity is depicted on �gure 3.2.
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Figure 3.2: Laser cavity. M1 and M5 are curved mirrors, the other mirrors in the short

and long arms are chirped. M3 is on a translation stage to �ne-tune the stability range.

OC: output coupler, W: wedge to adjust the CEP, ECDC: extra-cavity dispersion com-

pensation to compress the pulse to the transform limit.

The gain medium is pumped by a Verdi V10 laser from Coherent. An acousto-optic

modulator (AOM) is used to attenuate the pump power to around 5 W and can also

be utilized to lock the CEO frequency of the comb [Helbing 02]. As the injection of

the pump drifts on hours-time-scale, a quadrant detector is used on a leakage to detect

the pointing drift, and a mirror mounted on piezo-electric actuators is used to lock the

beam’s position. The stability range of the cavity is controlled by changing the length of

the short arm. The mode-locking mechanism is a soft-aperture KLM (see section 2.4.2.2).

Intra-cavity dispersion compensation is achieved by chirped mirrors. At the output of

the laser, the pulses are compressed to be transform-limited using an extra set of chirped

mirrors.

Because this laser cavity is built using very short mounts and small optics, it is a very

stable oscillator with good noise �gures. It can remain modelocked over multiple days of

operation as long as the environnement does not show abrupt variations. As it is usually

the case with solide-state laser cavities, the main source of large time scale perturbation

are thermal. A thorough analysis of the noise characteristics of this laser source may be

found in [Schmeissner 14a].

This is not the only femtosecond source that was used in this thesis. In part III, we

actually developed most of the experimental frame around another system that delivers

longer pulses. The working principle of the laser cavity is however very similar to the

one presented here.
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3.1.2 Interferometric photodetection
Photodetection is a straightforward way to measure the �eld’s intensity in optics. Since

a standard detector integrates the intensity over a time much larger than the optical

period, the information about the phase is then lost. To access the phase of the �eld,

we make use of interferometric measurements. The beating of the two �eld results in

an interference pattern which contains information on the phase di�erence between the

two �elds.

Consider the scheme depicted in �gure 3.3. Two �elds are mixed on a 50−50 beam-

splitter (BS). The �rst one, called signal �eld, is the �eld to be characterized. The second

one, called local oscillator, serves as a reference. This denomination comes from the ho-

modyne detection scheme that will be outlined in section 3.1.2, and we chose to keep

this notation to describe the principle of interferometric measurements.

Signal

Local
Oscillator

Output

Figure 3.3: General homodyne detection scheme where two balanced photodiodes are

used to detect the signal. The di�erence of the two photocurrent is subsequently taken

to yield the homodyning signal.

The total �eld after the beamsplitter (that we consider a �xed longitudinal coordinate

z, such that we may drop the z dependency) reads

E(+)
tot(x, t)= E(+)

s (x, t)±E(+)
LO(x, t)

p
2

(3.1)

where the ± sign depends on which output port of the beamsplitter is considered. Com-

puting the intensity according to (1.38) yields:

I tot (x, t)= Is(x, t)
2

+ ILO(x, t)
2

±2ncε0 Re
{
E(−)

s (x, t)E(+)
LO(x, t)

}
(3.2)

A standard square-law photodetector integrates the intensity over the detector size S
and on a given integration time T . The e�ciency of the photon-to-electron conver-
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sion can be modeled by the responsivity R (in A/W) of the photodiode
1
. The retrieved

photocurrent I is then written as

I (t)=R

∫
S

d2ρ

∫ t+T

t
dt′ I(x, t′)≡R P(t) (3.3)

where P(t) is the detected power of the electric �eld.

The total photocurrent at one output of the beamsplitter is thus written as

Itot(t)= Is

2
(t)+ ILO

2
(t)±R

~ω0

ST
Re

{∫
S

d2ρ

∫ t+T

t
dt′ a∗

s (x, t′)aLO(x, t′)
}

(3.4)

where we injected the complex �eld expression and simpli�ed some constant factors.

Here, the envelopes a contain the phase of each �eld.

As we have seen in section 2.2.1, it seems more convenient to consider spectral phases

rather than temporal phases, since the relation between the two is not always trivial.

However, the concept of photodetection is more naturally put in the time domain since

the signal is integrated over a �nite time. To switch to the spectral domain, we inject

the Fourier transform of a(x, t) into (3.4). The temporal integral then writes as∫ t+T

t
dt′

Ï
R2

dΩp
2π

dΩ′
p

2π
a∗

s (Ω)aLO(Ω′) ei(Ω−Ω′)t′
(3.5)

Since the bounds of the temporal integrals are not in�nity, we need to apply a convenient

approximation. We integrate over a time T a �eld whose spectral width is on the order

of ∆ω. In the scope of this thesis where we do not require to resolve the pulsed regime,

the detection time is on the order of the microsecond. For a laser source such as the one

described in 3.1.1, the time-bandwidth product (2.24) implies that 20 fs pulses have a 50
THz bandwidth. It means that ∆w×T À 1 is valid over a very wide range of detection

times T . Under this condition, we can consider the bounds of this integral as being

in�nite, allowing to consider the temporal integral as δ
(
Ω−Ω′)2

.

Thus the photocurrent (3.4) is equivalently written as

Itot = Is

2
+ ILO

2
±R

~ω0

ST
Re

{∫
S

d2ρ

∫
R

dΩa∗
s (x,Ω)aLO(x,Ω)

}
(3.6)

1
From (3.3), the responsivity R is de�ned by R = I

P . By writing both the photocurrent and the energy

as containing respectively n electrons and N photons, the responsivity is de�ned by R = η
q

~ω0
. This

introduces the quantum e�ciency η= n
N of the detector with 0≥ η≥ 1, a parameter that is more commonly

referred to in the �eld of quantum optics.

2
This approximation also allows to link the normalization condition (1.31) for spectral and temporal

modes:

∫
R dΩu∗(Ω)u(Ω)= ∫ t+T

t dt′ u∗(t′)u(t′)= T
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This expression still indicates that the measurement is taken over a �nite detection time

T . The two �rst terms in this equation contain only information about the energy in

each �eld. To isolate the third term, we take the di�erence of the photocurrents at both

outputs of the beamsplitter:

I− = 2R
~ω0

ST
Re


∫
S

d2ρ

∫
R

dΩa∗
s (x,Ω)aLO(x,Ω)

 (3.7)

The signal that is measured is then proportional to the cross-correlation between the two

�elds, which is necessarily phase-dependent. It is referred to as the homodyne signal and

will be at the center of most experiments done in this thesis. A few relevant comments

on this signal:

• This assumes that the beamsplitter is balanced, i.e. that the detected photocurrents

associated to each �eld are equal on both detectors. It also involves that both

detectors have the same responsivity R.

• It is integrated over the full optical spectrum.

• Whereas the detection of a single beam would only yield the optical power, this

interferometric scheme is sensitive to the phase of the �eld.

To further simplify the expression of the homodyne signal, let us write the signal �eld

envelope as as(x,Ω)=αs ws(x,Ω) where the amplitude αs is complex. We also consider

the spatio-temporal mode is not coupled in space and time: w(x, t)≡ g(x)u(Ω). Concern-

ing the local oscillator �eld, in analogy to the quantum treatment, we write its complex

amplitude as αLO =√
NLO eiφ0

. This notation allows to set the phase reference in this

interferometric measurement. Finally, we choose to normalize every photocurrents by

R~ω0, and we keep the same notation I− for the normalized photocurrent.

Hence, the homodyne signal is written as

I− = 2
√

NLO Re
{
α∗

s Γc eiφ0
}

(3.8)

where we introduced the homodyne overlap integral Γc. The overlap integral, also called

coherence of the �eld, is factorized as follows:

Γc =
 1

S

∫
S

d2ρ gs(x)∗gLO(x)

 ×
 1

T

∫
R

dΩu∗
s (Ω)uLO(Ω)

≡ γρ×γΩ (3.9)

The spatial overlap integral γρ denotes the spatial mode-matching between the two

beams. Ideally, the two beams need to have the same transverse pro�le on the beam-

splitter. In that case, this factor is equal to unity.
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The γΩ integral contains a fair amount of information. It is quite similar to the spatial

integral since it de�nes the spectral overlap between the two �elds. To maximize it, one

need to match both the spectral phases and the envelope. In the temporal domain, in

analogy to the spatial case, this corresponds to the situation where both the envelopes

and carriers of the two pulses overlap. This may be achieved through a variety of means,

but the most e�cient way to ensure a perfect temporal overlap is pulse shaping. We will

develop this method in section 3.1.3.

Consider that we perfectly matched the two �elds both spatially and spectrally. The

coherence of the �eld is then unity. Hence, this interferometric measurement retrieves

the signal

I− = 2
√

NLO Re
{
α∗

s eiφ0
}

(3.10)

Having set the local oscillator as the �eld of reference
3
, this allows to extract information

on the amplitude and the phase of the signal �eld. Note that this signal is also ampli�ed

by the number of photons in the LO �eld. When this detection is operated in a con�gu-

ration where the LO beam is stronger that the signal, this scheme is called a homodyne
detection, that we expand in more details in section 3.3.

In this work, we look at �uctuations of the global mode u(Ω) which in the general

case become accessible through Γc. In section 3.2.1, we give the example of modulating

the signal �eld in either amplitude and phase, and apply this experimental scheme to

retrieve information on the modulation.

In the following section, we present how the spectral overlap between the two �elds

can be experimentally optimized.

3.1.3 Pulse shaping
For the majority of applications in ultrafast optics, the necessity to carefully control the

pulse shape is of great importance. The development of pulse shaping techniques has

therefore been closely related to the advancements in ultrafast technologies. These tech-

niques are complementary to ultrashort pulse generation and characterization methods.

Their applications include ampli�ed pulse compression, dispersion compensation for

�ber optics communications, coherent control, spectroscopy and nonlinear microscopy,

to name a few.

In this section, we present brie�y the pulse shaping techniques that were used during

this thesis and their purpose. More information on pulse shaping techniques can be

found in [Weiner 95, Weiner 11b].

3
The phase reference φ0 can be de�ned so that α∗

s eiφ0
is real.
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3.1.3.1 Programmable mask pulse shaper

For our applications, we chose to build a pulse shaper by using spatial light modulation
(SLM) in a 4− f con�guration, as depicted in �gure 3.4. By di�racting the spectrum using

di�raction gratings, we are able to address both the amplitude and the phase of each part

of the spectrum. The resolution is limited by the one of the masks of the SLM. A more

detailed description of the pulse shaper can be found in [Jian 14], and explanations on

the alignment procedure in [Monmayrant 05] (although the chosen geometry di�ers).

This pulse shaper was graciously lent to us by Béatrice Chatel.

Unshaped 
pulse

Grating
Lens

Grating

Shaped
pulse

SLM

Pixels addressed
individually

Figure 3.4: Schematic of a pulse-shaper in a 4-f con�guration. [Figure by Jonathan

Roslund]

The arrays, produced by the Jenoptik company, are composed of 640 pixels of ne-

matic liquid crystals, comprised between two glass substrates. Transparent electrodes

are deposited on the substrate as to control the voltage on each pixel. The total size

of the mask is 64 × 10 mm. When applying a voltage between two electrodes, one can

change the refractive index in the liquid crystal, and the array then acts as a phase mask.

By combining two arrays with orthogonal polarizations and a polarizer at the output, it

is possible to address both the amplitude and the phase of each “pixel” of the �eld.

This shaper has however some drawbacks. Being more than 10 years old, the delay

between sending a command and the actual response of the crystal is on the order of 1

second, which is too long for complicated coherent control scheme or optimization pro-

cedure using evolutionary algorithm [Roslund 10]. It is also about 50 cm high, making it

cumbersome to work with, whereas most recent pulse shapers can be as small as 10 cm.

However, the use of a large SLM is vital when shaping short pulses; the spectrum being

wide, in order to obtain a good resolution, one needs very di�ractive gratings, therefore

leading to short distances in the optical apparatus. Short distances are hard to work with

when building a pulse shaper, since it will inevitably lead to a number of problems, such
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as achromatism and spatial chirp. Therefore, we settled for a large mask that allowed

for a more comfortable geometry in its design.

3.1.3.2 Pulse-shaping application to the experiment

While pulse shaping can be a very powerful tool to optimize light-matter interaction

(for example, optimizing the temporal phase to maximize the e�ciency in a non-linear

process), our applications do not require a transform-limited pulse. Indeed, since we are

dealing with linear interferometry, any common phase in each arm of the interferometer

cancels out, and we need only to concern ourselves about the relative phase di�erence.

From equation (3.8) and (3.9), we set a perfect spatial overlap between the two �elds

(i.e. γρ = 1). We also decompose the envelopes as amplitude and phase a(Ω)= |a(Ω)| eiφ(Ω)
.

The phases de�ned here are spectrally dependent. The homodyne signal at the output

of an interferometer is then proportional to

I− ∝Re

 1
T

∫
R

dΩ |as(Ω)aLO(Ω)| eiδφ(Ω) eiφ0

 (3.11)

where we wrote the relative spectral phase between the two �elds as δφ(Ω)=φLO(Ω)−
φs(Ω). As we pointed out in the previous section, the retrieved signal (3.8) is maximized

when the overlap between the �elds is optimal.

For our applications, we need to make absolutely sure that the relative spectral phase

between the two arms of the interferometer is as �at as possible (i.e. shows no curvature,

according to 2.2.1). This can be summarized by setting δφ= 0∀Ω, and the most e�cient

way to achieve this condition is by pulse-shaping. Note that a mismatch in linear phase

is easy to correct using a standard delay line. However, achieving a perfectly �at relative

phase is problematic using standard compensation scheme such as prism compressors.

Pulse shaping, though hard to implement, has the advantage of being versatile since any

change in the dispersive elements can easily be accounted for.

As a complement to relative phase compensation, the pulse shaper can be also used

to optimize the spectral overlap in amplitude between the two �elds, although this has

�nally less of an impact on the resulting signal than phase mismatch. This spectral

�lter function has also been used to calibrate the multipixel detection (see section 5.3.1).

Information and results on using the shaper to actually form the detection mode can be

found in appendix B.

3.1.3.3 Spectral phase compensation

We quickly outline in this part the experimental procedure to match the phase between

the two arms of the interferometer, since it has been routinely done when changing

elements in the interferometer.
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We start by setting the maximum voltage on the electrodes of the SLM such that

its transmission is maximal (the pulse shaper is then equivalent to a zero-dispersion

4-f line). In the absence of any dispersive elements on the interferometer other than

the strict necessary (achromatic mode-matching lenses for example), the phase between

the two arms is relatively �at. When adding a dispersive element, two strategies can

therefore be applied:

• Knowing the dispersive medium, it is possible to simulate how much phase it adds

and write it on the shaper as a Taylor polynomial;

• Measure the relative phase by spectral interferometry, and apply it to the shaper

as to minimize it.

To optimize the phase di�erence, a good metric is to look at the contrast of the optical

fringes. This experimental quantity can be steadily measured by looking at the signal

from a single diode at the output of the interferometer. To generate fringes, one needs

to sweep the delay between the two �elds. To do so, we set φ0 =ωmodτ which yields

Itot(τ)= Is

2
+ ILO

2
+2 Re

 1
T

∫
R

dΩ |as(Ω)aLO(Ω)| eiδφ(Ω) eiωmodτ

 (3.12)

The interference term then oscillates at the modulation frequency ωmod
4
. The contrast

C of these fringes is given by the familiar formula

C = Imax
tot −Imin

tot

Imax
tot +Imin

tot
(3.13)

The contrast can be easily linked to the coherence (3.9) using equation (3.12):

C = 2
√

IsILO

Is +ILO
Γc (3.14)

Therefore, measuring the contrast of the balanced detection returns information on the

spectral overlap in both amplitude and phase. For a constant phase ∆φ, the only re-

maining term that can in�uence the coherence is the spatial overlap between the two

�elds.

We stress however that this metric is not very sensitive to small shifts in the phase,

and additional corrections are usually best achieved using spectral interferometry.

4
This oscillation is easy to show in the monochromatic case. In our case, it can be deduced from

(3.12) considering that a spectral phase di�erence lies obviously in the phase quadrature. Therefore, the

interference term will be proportional to Γc sinφ0.
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Figure 3.5: Experimental wrapped relative phase between the signal and LO �elds of

the Mach-Zehdner interferometer over the full width of the spectrum.

As an example, on �gure (3.5) we show the spectral phase that is written on the shaper

for the basic interferometer with the minimum dispersive elements in each arm. This

correction ensures a contrast of more that 90%, limited only by the spatial mismatch

of the two �elds. We see that the phase is a balanced mix of quadratic and cubic com-

ponents, probably because of the very thick achromatic lenses that are used for spatial

mode-matching.

Note also that on this �gure, the phase is wrapped every 2π. That is a consequence of

the regime in which the shaper is operated, where the voltage applied in the electrodes

is mapped in such a way that the phase is de�ned modulo 2π. In practice, this limits the

maximum phase variation that can be written on it
5
: the neighbouring pixels of such

discontinuities need to have their nematic crystal oriented in opposite directions. As a

consequence, the �eld is di�racted and this causes a drop in the amplitude that appears

as holes in the spectrum. This e�ect inevitably reduce the coherence between the two

�elds. Therefore, it has been preferable to compensate the quadratic dispersion as best as

possible using linear optics (such as transparent glass), and only doing small corrections

with the pulse shaper.

3.1.3.4 Spectral interferometry

As hinted at the end of section 2.3.3, spectral interferometry is a powerful and easy-to-

implement technique when we only care about the relative spectral phase between two

�elds.

5
The ultimate limit, however, is de�ned by the Nyquist limit. It can be summarized be stating that

no phase di�erence greater that π may be imprinted on adjacent pixels. It is very similar to a sampling

problem where undersampling will result in an ambiguity in the shaping process[Monmayrant 05].
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Detecting one port of the beamsplitter with a spectrometer yields:

I tot (Ω)= Is(Ω)
2

+ ILO(Ω)
2

+R
~ω0

S
Re

{∫
S

d2ρE(−)
s (x,Ω)E(+)

LO(x,Ω)
}

(3.15)

Doing a treatment similar to the photodetection, it is straightforward to obtain the de-

tected signal:

I tot (Ω)= Is(Ω)
2

+ ILO(Ω)
2

+|as(Ω)aLO(Ω)| cos
[
φ0 +δφ(Ω)

]
(3.16)

We see that the overall spectrum shows an oscillation that is dependent on the relative

spectral phase between the two �elds. However, δφ(Ω) is usually quite small and the

spectrum modulation is experimentally masked by stronger �uctuations (such as air

turbulences). A direct measurement of δφ(Ω) is thus impossible to achieve using this

signal.

A way around this limitation is to set a global delay between the two �elds, i.e. φ0 =
ωτ. In that case, the spectrum shows oscillations of a period 2π/τ that are modulated

by the spectral phase, which may then be extracted. This technique is called spectral
interferometry.

Figure 3.6: Fourier-transform spectral interferometry algorithm from experimental

data. The delay between the two �elds is on the order of 500 fs (i.e. 150 µm).

To show how the spectral phase is extracted, let us rewrite the interference part of

equation (3.16) as

1
2
|as(Ω)aLO(Ω)|

(
ei(Ω+ω0)τ+iδφ(Ω) + e−i(Ω+ω0)τ−iδφ(Ω)

)
(3.17)

Taking the Fourier transform of (3.17) transfers the signal to the temporal domain which

exhibits sidebands at ±τ. We label them f (t±τ):

f (t±τ)= 1
2

∫
dΩ |as(Ω)aLO(Ω)| eiδφ(Ω) eiΩ(t±τ)

(3.18)
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By selecting one sideband and transferring it back to t = 0, another Fourier transform

allows to retrieve the integrand |as(Ω)aLO(Ω)| eiδφ(Ω)
. The modulus of that signal yields

the product of the spectral envelopes whereas its argument gives directly the spectral

phase.

This algorithm is called Fourier-transform spectral interferometry [Lepetit 95]. It is

depicted on �gure 3.6 for experimental data that eventually lead to the phase compen-

sation shown on �gure 3.5.

Using these methods, we are then able to ensure that the spectral overlap between the

two mean �elds is close to the optimum.

3.2 Signal measurement
In this section, we present how the information may be encoded either on the phase or

on the amplitude quadrature of the �eld. We then show how this information may be

retrieved using an interferometric measurement scheme.

We start by considering that the two �elds are perfectly matched both temporally and

spatially, such that the overlap integral (3.9) is equal to one.

3.2.1 Modulations of the �eld
As an analogy to radio frequencies, information may be hard-coded in the electric �eld

by modulating it, either in amplitude or in phase. The description of the resulting �eld

is necessary to properly retrieve this information.

The temporal representation of the signal �eld modulated in amplitude is written as

E(+)
AM(t)= E0

(
1+m(t)

)
αs u(t) e−iω0t

(3.19)

where αs is the complex envelope. Furthermore, a phase modulation reads

E(+)
PM(t)= E0αs u(t) e−i(ω0t−p(t))

(3.20)

3.2.1.1 Interferometric measurement of the modulations

For a small modulation, we may expand the phase modulated �eld as

E(+)
PM(t)' E0

(
1+ ip(t)

)
αs u(t) e−iω0t

(3.21)

Therefore, we can consider that the quantity that is being modulated is the complex

amplitude of the �eld. It then becomes time-dependent and may be rewritten as

αs(t)=αs +δαs(t) (3.22)
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where δαs(t) is equal to m(t) ·αs for an amplitude modulation and ip(t) ·αs for a phase

modulation.

The signal at the output of the homodyne detection is obtained by replacing the com-

plex envelope αs in (3.8) by αs(t). It is possible to do so for a modulation whose period is

much slower than the response time of the detector. It is a reasonable assumption when

modulating at MHz frequencies. The time-dependent homodyne signal then reads

I−(t)= 2
√

NLO Re
{
α∗

s (t)eiφ0
}
≡ 2

√
NLO Re

{
α∗

s eiφ0 +δα∗
s (t)eiφ0

}
(3.23)

where we remind that we set the overlap integral Γc = 1.

If we de�ne the phase reference φ0 such that α∗
s eiφ0

is real, then for an amplitude

modulation, the same phase φ0 allows to retrieve the signal. On the contrary, for a phase

modulation, the signal is maximal for a π/2 phase di�erence between the two �elds.

3.2.1.2 The sidebands picture

The representation of the modulated �eld in the Fourier domain introduces the concept

of sidebands of the optical carrier.

For that, we assume a sinusoidal pro�le for the modulations: m(t)= m cosΩRF t, and

a similar expression for p(t)6
.

Using this expression, the phase modulated �eld may be expanded as

E(+)
PM(t)= E0 a(t) e−iω0t eip(t)

(3.24)

For a small amplitude of modulation p ¿ 1, the phase can be expanded, leading to (3.21).

In the Fourier domain, the phase modulated spectrum reads

E(+)
PM(Ω)= E0

(
a(Ω)+ i

p
2

a (Ω−ΩRF )− i
p
2

a (Ω+ΩRF )
)

(3.25)

In the case of a frequency comb, a phase modulation will result in sidebands appearing

on both sides of each tooth with an imaginary amplitude. The situation is also very

similar for an amplitude modulation where sidebands appear, but with a real amplitude :

E(+)
AM(Ω)= E0

(
a(Ω)+ m

2
a (Ω−ΩRF )+ m

2
a (Ω+ΩRF )

)
(3.26)

This comb picture is sketched in �gure 3.7.

The perturbation to the �eld therefore occurs at a given analysis frequency ΩRF that

can be di�erentiated from signals at baseband frequency.

6
Note that this formulation of a modulation considers only one electrical quadrature. In the general

case, either a phase or a sine term should be added.
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Figure 3.7: Phase-space representation of a frequency comb modulated in both ampli-

tude (green lines) and phase (blue lines). The phase modulation switches sign on either

side of a tooth.

3.2.2 Data acquisition

In equation (3.23), we showed that we can retrieve the information on the modulation

through I−(t). We now give more details on the tools at our disposal to characterize it.

This leads naturally to some statistical consideration, the introduction of signal-to-noise

(SNR) ratio and the concept of demodulation.

3.2.2.1 Demodulation of the signal

We consider that we retrieve the signal I−(t) from (3.23) and we convert it to a voltage

V (t) = V0 + δV (t) which encompasses the cases of both amplitude and phase optical

quadrature measurements (V0 = 0 in that case). This signal contains a DC term V0 and

some time-dependent variation.

We begin by considering a modulation such that δV (t)= mcos(ΩRF t). We are inter-

ested in retrieving the amplitude m of the modulation. A very common way in signal

analysis is demodulation. It consists in multiplying the signal by another at the same

frequency ΩRF delivered by a reference (for example a function generator). Since there

is no reason for these two signals to be synced, we need to set the phase ϕ of the ref-

erence. The mixing of the two signals can be done using an analogical mixer, but the

process can also be digital.

The signal X (t) at the output of the mixer reads

X (t)=V0 cos
(
ΩRF t+ϕ)+mcos(ΩRF t)cos

(
ΩRF t+ϕ)

(3.27)
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where we considered that the amplitude of the reference signal is 17
. Using product-to-

sum trigonometric identities, the signal is rewritten as

X (t)=V0 cos
(
ΩRF t+ϕ)+ m

2

(
cosϕ+cos

(
2ΩRF t+ϕ))

(3.28)

The resulting signal still shows oscillation, but we transferred the DC component to the

quantity we want to measure. To isolate it, we apply a low-pass �lter with a transfer

function h( f ) of low cuto� frequency.

After low-pass �ltering, the retrieved signal in the frequency domain is simply the

product of the signal by the �lter:

X ( f )|h = h( f ) · X ( f ) (3.29)

Since the product of Fourier transforms is equal to the Fourier transform of their convo-

lution product, the temporal signal at the output is directly the convolution of the signal

by the �lter:

X (t)|h =
(
h∗ X

)
(t)≡

∫
R

dt′h(t′− t)X (t′) (3.30)

The �lter function h( f ) has a low cuto� frequency, therefore its Fourier transform h(t)
is a very broad function

8
. As such, the integration on oscillating terms will be zero, and

the only remaining term is

X (t)|h = m
2

∫
R

dt′h(t′− t)cosϕ (3.31)

By setting the demodulation phase ϕ, we select which electric quadrature is being mea-

sured. In that case, we measure m for ϕ= 0.

This signal is �nally discretized by sampling at a given sampling rate fs where each

point X i is the mean value X i = fs
∫

1/ fs
X (t)|h dt. This allows to characterize the signal

by computing its mean and variance. We see that one would here always retrieve the

exact value of m, since this model did not include any noise in the measurement (the

variance of the detected signal is zero).

In order to take the noise into account, we simply add a stochastic variable n(t) to

δV (t), leading to an extra term δX (t) at the output of the mixer. It reads

δX (t)|h =
∫
R

dt′h(t′− t)n(t′) cos
(
ΩRF t′+ϕ)

(3.32)

7
In practice, an analogic mixer requires a speci�c power in the reference to be driven ,i.e. in order to

extract the modulated signal above the noise.

8
For a �rst-order low-pass �lter with a cuto� frequency fc, its transfer function is a lorentzian h( f )=

1

1+
(

f
fc

)2 . Its temporal response is an exponential: h(t)=
√

π
2 fc e− fc |t|

, which is therefore a function with a

high temporal bandwidth for a small value of fc.
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which will retrieve the spectral component of n(t) at the frequency ΩRF . The amount

of noise that is retrieved is dependent upon the width of the �lter. For low cuto� fre-

quencies (i.e. large temporal width), the �uctuations will average and the noise �oor will

then be lower. This bandwidth is called resolution bandwidth.

This picture including noise is more realistic, since the recovered distribution of X i
presents a certain variance σ2

X . When no light hits the detector, at high analysis fre-

quencies, the only present noise comes from the detection apparatus and is commonly

referred to as dark noise ndark(t). When light hits the detector, at high analysis frequency,

another noise source arises from the �uctuations of quantum vacuum, i.e the shot noise

nshot(t). The baseline for noise may then be de�ned by measuring the variance of theses

two signals. If the detection scheme allows to resolve the shot noise, taking the ratio of

the variances of shot noise versus dark noise de�nes the clearance of the whole detection

scheme.

In this work, we will rely heavily on this measurement scheme since it is quite easy

to implement. Usually, to characterize a signal at multiple analysis frequencies, one

would use a spectrum analyzer which functioning principle is very similar to what we

developed here. This apparatus has the advantage of presenting a very low noise �oor. It

does however measure only a single signal at the same time, and in our work, we needed

to acquire at most 16 signals simultaneously on a wide range of analysis frequencies.

3.2.2.2 The power spectral density

Some measurements were still done using a spectrum analyzer, mostly because of its

very good noise �gure. Therefore, we present here the working principle of a spectrum

analyzer, which requires to consider the previous treatment in the frequency domain.

Whereas the previous demodulation scheme retrieves a voltage, a spectrum analyzer

retrieves the power.

The power spectral density (PSD) of I−(t) is formally de�ned as:

SI−( f )= lim
T→∞

1
T

∣∣∣∣∫ T/2

−T/2

dtp
2π

I−(t) e2iπ f t
∣∣∣∣2 (3.33)

For a stationary process, the Wiener-Khinchin theorem allows to rewrite the power spec-

tral density as the Fourier transform of the autocorrelation function of I−:

SI−( f )=
Ï
R2

dtp
2π

dt′I−(t′)I−(t′− t) e2iπ f t
(3.34)

The variance of I−(t) may be obtained from the PSD as:

σ2
I− =

∫
R

d f SI−( f ) (3.35)
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SI−( f ) is de�ned for both positive and negative values of f , and since I− is real, its PSD

contains redundant information. This description is called double-sided, in opposition to

the single-sided description which considers only positive frequencies. Thus, the single-

sided PSD is twice as large as the double-sided in order to conserve the total power

contained in the sidebands.

This picture is similar to the one developed previously in the temporal domain except

that it outputs a power distribution. If one requires the full distribution of the signal over

a range of di�erent RF frequencies, one would need to sweep the frequency of the local

oscillator during the mixing process. This is precisely what a swept-tuned spectrum

analyzer does: it aims to compute (3.35). In the same way, it needs to apply a �lter

function h( f ) such that this variance remains �nite (very high frequency �uctuations

such as white noise are usually present in such measurements). The measured variance

is then equal to

σ2
I−

∣∣∣
h
=

∫
R

d f SI−( f ) |h( f )|2 (3.36)

As previously, the shape and bandwidth of the �lter de�nes for how long the acquisition

window is opened and how high the noise �oor is.

3.3 Mode-dependent detection

Having introduced the concept and outcome of an interferometric measurement scheme,

we �nally come to show that this detection is mode-dependent. Not only does it allows

to retrieve information encoded on a speci�c quadrature of the �eld, it also enables

to di�erentiate between di�erent modes. To show this, we use a multimode quantum

description of 3.1.2.

3.3.1 Quantum derivation
Similar to the quantization that was done in section 1.4, we consider the quantum coun-

terpart of equation (3.7) where we assign a bosonic operator â(Ω) = ∑
i âiui(Ω) to the

spectral envelope a(Ω). Considering again a perfect spatial overlap, the di�erence of

photocurrent operator is given by

Î− = 1
T

∫
dΩ â†

s(Ω) âLO(Ω)+h.c. (3.37)

where h.c. stands for hermitian conjugate.
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Using the modal decomposition of the bosonic operator (1.59), this equation is written

as

Î− = 1
T

∑
i, j

â†
i,sâ j,LO

∫
dΩu∗

i,s(Ω)u j,LO(Ω)+h.c. (3.38)

Moreover, the normalization condition (1.31) allows to write the overlap integral in (3.38)

as δi, j . The quantum homodyne signal thus reduces to

Î− = 1
T

∑
i

â†
i,sâi,LO +h.c. (3.39)

We need to chose a proper basis to compute the noise in the measurement. We de�ne

the mean-�eld basis from the local oscillator, where only the �rst mode is non-vacuum:

âLO =αLOu0(Ω)+∑
i
δâi,LO ui(Ω) (3.40)

where αLO ≡√
NLO eiφLO

is the complex amplitude of the mean �eld and we expanded

the annihilation operator as (1.65).

In the mean-�eld basis, the homodyne operator thus reads

Î− =αLO â†
0,s +

∑
i

â†
i,sδâi,LO +h.c. (3.41)

In the case where the LO beam is stronger than the signal (in other words, if NLO is large

enough), we may neglect the second term in this development. This approximation is at

the center of homodyne detection. It implicates that the �uctuations of all the modes of

the LO do not come into play in this measurement.

In term of quadratures operators (1.71), we can rewrite the homodyne operator as

Î− =αLO â†
0,s +α∗

LO â0,s ≡
√

NLO q̂φLO
0,s (3.42)

Therefore, computing the homodyne signal from the expectation value of (3.42) results

in the expectation value of the signal quadrature operator in the quadrature de�ned by

the local oscillator. This development also shows the mode selectivity of this scheme. In-

deed, the detection only retrieves the mode of the signal �eld that is de�ned by the mean

�eld mode of the local oscillator. Thus, we call this scheme a projective measurement.
Another relevant consideration is the quantum noise in this measurement. Consid-

ering the �uctuations of the homodyne signal δÎ− =√
NLO δq̂φLO

0,s , we can compute its

variance: 〈(
δÎ−

)2
〉
= NLO

〈(
δq̂φLO

0,s

)2
〉

(3.43)
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Thus, the noise in the homodyne measurement is written as

∆I− =
√

NLO σ (3.44)

where σ is the noise in the mode of the signal �eld. When the noise originates only from

the �uctuations of quantum vacuum, then σ= 19
.

This quantum derivation is very useful to show the mode selectivity of the homodyne

detection scheme. Although not straightforward, it can be linked to the classical treat-

ment that was done in this chapter. Indeed, we adopted a purely monomode approach

in the form of a single spectral mode. From this point of view, the homodyne detection

measures the �uctuations (either in amplitude or in phase) of the global mode, that is

accessible through the overlap integral Γc. In the quantum description, the overlap inte-

gral is always equal to unity by the construction of the detection basis. The signal that

is measured is actually dependent on the expectation value of the bosonic operator in

each mode of the signal �eld. Since this basis is constructed from the spectrum of the

global mode, it is therefore entirely similar to the classical description.

Finally, another important fact to be retained from this section is that the local oscil-

lator �eld needs to be stronger than the signal �eld in a homodyne detection scheme. It

is vital to ensure that the noise from the LO �eld does not come into play.

3.3.2 Spectrally-resolved homodyne detection
In analogy to (3.38), for a local oscillator in a given mode wLO(x, t) and a multimode

description of the signal �eld, the classical homodyne signal can be written as

I− = 2
√

NLO Re

{∑
i,n
α∗

i,nαLO

〈
w∗

i,n(x, t),wLO(x, t)
〉}

(3.45)

where the inner product is de�ned as (1.31) and the

{
wi,n

}
modes form an orthonormal

basis. Thus, to measure the amplitude of a given mode of the signal �eld, one has to set

the LO in that same mode.

We consider the temporal part of this scalar product and are interested in how the

local oscillator mode can be constructed. As it was hinted earlier, a �rst strategy is pulse-

shaping to construct the projection mode and to perform the measurement. This means

however that a new con�guration needs to be established for each di�erent mode. We

present here a way to perform this projection after the measurement, which then allows

to extract any mode from a single measurement.

9
The quantum treatment is needed to properly identify the noise in this measurement. However, a

similar result can be obtained from a monomode classical derivation.
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The starting point is to notices that, in an interferometric measurement, once the

beams are combined, the nature of the signal remains unchanged for linear operation.

Therefore, if one could resolve each spectral component of the combined �eld, the result

would be strictly equivalent to combine the same spectral component of each �eld on a

di�erent beamsplitter and then separately measure the di�erent colors.

Thus, a spectrally-resolved homodyne detection is achieved by spatially dispersing

the spectral component of the light (using either a grating or a prism
10

), focussing each

of these colors on a linear array of detectors, and performing the detection. The general

setup is sketched on �gure 3.8.

Since this detection is done using a �nite number of detectors, or pixels, we call this

scheme multipixel homodyne detection (MHD).

Local
Oscillator

Signal

-
Output

Photodiodes
array

Figure 3.8: Spectrally-resolved homodyne detection.

3.3.2.1 Introduction

This detection was �rst introduced in the spatial domain for quantum state tomography

[Beck 00]. Quantum state tomography is a technique based on homodyne detection to

measure the quantum state of light and reconstruct the Wigner function of the state. As

we will see in the next section, homodyne detection is sensitive to the mode mismatch

between the two �elds (represented by the overlap integral), and any mismatch will lead

to a loss of e�ciency and degrade the quality of the reconstruction. Optimization of the

mode-matching (in that case, spatial, but in our case, it is spectral / temporal) can be

achieved by shaping the beam, but it may not be an easy or robust task.

The solution proposed in [Beck 00] relies on using an array of detectors in the homo-

dyne detection instead of single diodes, such that the mode-mismatch may actually be

10
A prism cut at Brewster angle and properly placed in the beam will be less lossy than a grating, but

less dispersive.
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corrected post facto. For a more complete description of spatial multipixel detection, see

[Morizur 11]. In the following, we give a description of spectral multipixel detection,

which we will simply refer to as MHD.

3.3.2.2 Multipixel basis

We consider an array of N pixels, where N is an even integer. We assume it is centered

on the carrier frequency ω0 and it is subdivided so that each pixel corresponds to a

spectral slice of width δω. We index each pixel by n ∈ Z. This de�nes subset of the

optical spectrum whose center frequencies are given by ωn =ω0 +nδω.

Figure 3.9: Multipixel array.

This de�nes a new set of modes, called pixel-modes, that we label un(ω). They can be

de�ned from the whole spectrum:

u(ω)=
N∑
n

un(ω) (3.46)

where a pixel-mode is obtained by “pixelization” of the envelope:

un(ω)=
{

Cn u(ω) if ωn ≤ω<ωn+1
0 otherwise

(3.47)

where cn ensures that each pixel-mode is normalized.

Any basis may therefore be represented in the multipixel basis using the same method.

3.3.2.3 Multipixel homodyne signal

To reconstructing the homodyne signal in the multipixel case, we �rst write (3.8) for a

single pixel. It reads

I−,n = 2
√

NLO Re

α∗
s,n

∫
δω

dωu∗
s,n(ω)uLO,n(ω) eiφLO

 (3.48)
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where we set once again a perfect spatial overlap (which doesn’t depend on the pixel

number in the absence of spatial chirp
11

). In theory, one would have to account for the

dependency of the responsivity R on the pixel number, but it can be taken care of by an

experimental calibration of the detector.

Usually, the two �elds are in the same spectral mode (experimentally, that may not

exactly be the case, but this mismatch can be compensated, as we will discover in section

5.4.2). Therefore, to introduce an arbitrary mode in the LO �eld, one has to reconstruct

the homodyne signal by applying an arbitrary gain to the single-pixel signal :

I− =
N∑

n=1
gn I−,n

= 2
√

NLO Re

α∗
s

∫
δω

dωus(ω)uMP (ω) ei∆φ(ω) ×γρ
 (3.49)

where we wrote the e�ective mode of the LO �eld as

uMP (ω)=∑
n

gn un,LO(ω) (3.50)

Again, it is reasonable to consider that the LO �eld is in the mean �eld mode, such that

any projection mode can be constructed knowing the mean �eld mode. It is clear that

modes that show a structure varying faster than the resolution of the array cannot be

reconstructed.

In our case, we do not wish to reconstruct very complicated modes, such that mean-

ingful information can be obtained even with only 4 pixels. Indeed, the strongest con-

dition for reconstructing a basis is the orthogonality between its modes. One therefore

needs as many pixels as there are peaks and valleys in the modes to construct them

unambiguously.

3.3.3 Temporally-resolved homodyne detection
Finally, a very useful measurement scheme that was used during this PhD is a temporally-

resolved homodyne detection. The general scheme is based on cross-correlations mea-

surements, which derivation is similar to the one done for spectral interferometry in

section 3.1.3.4. For our applications, it provides an incredibly convenient way to mea-

sure the homodyne signal independently of the optical quadrature.

11
Spatial chirp can be a very serious problem when dealing with ultrashort pulses. It corresponds to the

situation where di�erent wavelengths are mapped to di�erent part of the transverse beam, as an analogy

to temporal chirp (2.2.2.3). It can be very easily introduced when working with di�racting elements such

as pulse compressors.
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3.3.3.1 Electric �eld cross-correlations

When scanning the delay between the two �elds, the homodyne signal reads

I−(τ)∝
∫
R

dΩa∗
s (Ω)aLO(Ω) eiΩτ+c.c. (3.51)

where both envelopes are complex and contain their respective phases. Injecting the

Fourier transforms of each envelopes yields the temporal representation:

I−(τ)∝
∫

T
dta∗

s (t)aLO(t−τ) e−iω0τ+c.c. (3.52)

For pulse characterization, if one �eld is known, then it is possible to extract both the

amplitude and the phase of the other. For example, by considering that the LO pulse is

a delta function, then the result of the measurement is proportional to Re
{
as(τ)e−iω0τ

}
(in the spectral domain, this means the spectrum of LO is much broader, and the signal

spectrum is obtained by deconvolution). Therefore, the envelope of the crosscorrelation

signal gives access to the amplitude of the �eld, while the argument gives access to its

temporal phase. However, in the general case, nothing conclusive may be extracted

about the pulse shape without making assumptions.

3.3.3.2 Application to homodyne detection

Nonetheless, we do not concern ourselves with the actual pulse shape, but we are rather

interested in the relative phase between the two �elds. Recording the homodyne signal

as a function of the delay between the two �elds has the great advantage of retrieving

all the information at once.

We want to compute the homodyne signal as function of the delay τ between the two

�elds. This is done by setting φ0 =ωτ≡ (Ω+ω0)τ in (3.8). The signal then reads

I−(τ)= 2
√

NLO Re
{
α∗

s

∫
dΩu∗

s (Ω)uLO(Ω)eiΩτeiω0τ

}
(3.53)

If we consider also a perfect spectral overlap, this simply reduces to

I−(τ)= 2
√

NLO Re
{
α∗

s ucc(τ)eiω0τ
}

(3.54)

where ucc(τ) is the cross-correlation of the envelopes
12

.

12
If both �elds are de�ned by the same Gaussian envelope of width ∆t, the autocorrelation is another

Gaussian of width

p
2∆t. Note however that this does not retrieve the absolute width of the pulse since

this is a relative measurement.
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This expression shows that all the information on the complex envelope αs of the

signal �eld may be retrieved in the envelope and the phase of the retrieved signal. More

importantly, this method allows to measure every optical quadratures “simultaneously”.

To show this, we consider that the signal �eld is modulated either in amplitude or in

phase, similar to (3.23). This signal is then written as

I−(τ)= 2
√

NLO

(
Re

{
α∗

s ucc(τ)eiω0τ
}
+Re

{
δa∗

s (τ)ucc(τ)eiω0τ
})

(3.55)

The information on the modulation is contained in the second term which can be isolated

by demodulation. Whereas in the previous description, we need to set φ0 to di�erentiate

between an amplitude and a phase modulation, here they can both be accessed.

Moreover, this method can also be used to extract the spectral structure of the signal

�eld, in the same way the multipixel homodyne does. Indeed, taking the Fourier trans-

form of the cross-correlation signal (3.53) with respect to τ yields directly the integrand:

I−(Ω)=F [I−(τ)]≡ 2
√

NLO Re
{
α∗

s u∗
s (Ω)uLO(Ω)

}
(3.56)

As we will see later, measuring this temporally resolved homodyne signal is an incredi-

bly powerful and versatile tool that will allow to measure parameters precisely without

resorting to complex experimental techniques. Indeed, the result is virtually identical to

the multipixel scheme and can be used with a single detection. It may then prove to be

an alternative to multipixel detection since it is possible to extract the spectral part from

the signal.

3.3.3.3 Experimental realization

To actually measure the temporally-resolved homodyne signal, one needs to scan the

delay between the two �elds. Di�erent methods are available, each presenting di�erent

constraints:

• This displacement needs to be purely longitudinal. If it induces an angular shift,

then the spatial overlap will not be uniform over the range of the scan thus intro-

ducing errors.

• The best way to achieve such a delay scan is by putting a retrore�ector on a mo-

torized delay line. This allows to achieve displacements over a large range, more

than enough to resolve the full pulse width. The drawback of this method is its

speed: motorized translation stages do not respond fast enough to make such a

measurement real-time.

• A mirror mounted on a piezoelectric actuator can o�er micrometers of displace-

ment on a millisecond timescale. This o�er the fastest possible response, but it

need to be introduced in the beam path with a minimum angle.
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For our experiment, we decided to build a retrore�ector on a motorized delay line. Ini-

tially, it was used solely for the purpose of crosscorrelations measurements, before this

temporally-resolved homodyne detection was even considered. To account for the slow

response, we chose to stabilize the relative phase between the two �elds before the stage

by building two consecutive homodyne detections. The experimental scheme is shown

on �gure 3.10.

Signal
Local

Oscillator

Motorized
Delay Line

HD1

HD2

Phase Lock

Figure 3.10: Experimental layout for the relative phase lock between signal and LO

�elds. The two �elds are �rst separated by beamsplitter of 90% re�ectivity. The trans-

mitted 10% are combined in a �rst homodyne detection. The di�erence of the photocur-

rent is used to lock the delay between the two �elds. Once the phases are stabilized,

measurements can be done on a second homodyne detection.

Both signal and LO beams are split on a 90/10% beam splitter. On part goes to a �rst

homodyne detection (HD1) while the second goes to the second homodyne detection

(HD2) which has the retrore�ector built into the signal beam’s path. Using the low

frequency signal from HD1, the relative phase between the two �eld is locked by acting

on a piezo-mounted mirror. In such a con�guration, the only phase �uctuations left

come from the propagation of the two beams on a very short distance, and they are

therefore very small. This allows to perform the crosscorrelation measurement with a

very good reproducibility.

We specify that the second homodyne detection can either be single diode or spectrally-

resolved.
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3.3.4 Addendum: single diode homodyne detection
To close that part on homodyne detection, we explain one last relevant point. In homo-

dyne detection, we take the di�erence of the two photocurrents to measure the interfer-

ometric term. It is not only to remove the signal coming from the power of both �elds,

but rather to get rid of any classical noise that might be contained in the �elds.

It is clear from the signal of a single detector (3.16) and from the di�erence signal (3.8)

that both contain the same interference term. The only di�erence between these two

expressions reside in the power contained in each �eld, which is a term that does not

oscillate. Therefore, when demodulating as described in section 3.2.2, the mean signal

retrieved would be similar in both cases. The only important di�erence resides in the

variance.

Indeed, if any amplitude classical noise is present, it will show when measuring the

noise from a single diode, but not from the di�erence. The latter then present a higher

SNR
13

. Nevertheless, if the analysis frequency is high enough, the only noise comes

from quantum �uctuations. Thus, looking at only one photocurrent in the homodyne

detection yields the same result than taking the di�erence at the expense of lower photon

number.

13
Note that classical noise will be present in the measured mean signal in whichever case. However,

the noise �oor is di�erent, hence the signal-to-noise is higher in the real homodyne con�guration.
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4 Parameter estimation at the quantum
limit

(About the amount of squeezing required in quantum computation)“From what
I got from the experimentalists, we don’t have in�nite squeezing yet.”

– Giulia “Flash Dance” Ferrini
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In the previous chapter, we introduced how the multimode structure of the �eld can

be experimentally accessed. In the present chapter, we shall describe the particular case

of parameters that are willingly encoded in the �eld. It introduces the concept of pro-

jective measurement, detection modes, limits in sensitivity and e�cient measurements.

We then concentrate our study to the case of perturbations of the pulse both in am-

plitude and in phase that originate from phase and energy shifts. We put forward the

conjugated variables amplitude / phase and time / frequency that naturally arise, and

give a proposal for a quantum formulation.

Then, we look at more precise examples of parameter estimation, such as distance

and frequency. We de�ne the detection modes for these quantities and compute their

sensitivities.

Finally, we put forward a drawback in the projective measurement scheme where the

85
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spatial part of the �eld can contain information that contaminates the measurement on

its longitudinal part.

4.1 Projective measurements
In this section, we present in a more detailed way how the variation of a small parameter

encoded in the �eld may be seen as photons being displaced in a given mode of the �eld.

This de�nes the projections modes required in a homodyne detection scheme 3.3 to

extract this parameter.

4.1.1 Displacements of the �eld in speci�c modes
In a way very similar to the modulations introduced in 3.2, let us consider that through

propagation in a dispersive medium, the �eld is a�ected by a parameter p. Whether this

perturbation happens in the amplitude or in the phase quadrature is of no importance for

this general treatment. We also assume that the �eld is in a given spatial mode such that

the transverse dependency of the �eld can be implicit
1
. The general scheme is depicted

on �gure 4.1.

Signal

Local
Oscillator

Output

Perturbation

Figure 4.1: Projective measurement scheme.

The �eld after propagation reads

E(+)(t, p)= E0 a(t, p) e−iω0t
(4.1)

To remain consistent with previous de�nitions, we again keep the carrier outside of the

complex envelope a(t). The parameter p may however be a perturbation of the carrier.

The general problem of estimating a parameter p encoded in a light beam E(p) has

been treated for example in [Helstrom 68]. The ultimate limit in sensitivity in the mea-

surement is given by the so-called quantum Cramér-Rao bound for speci�c quantum

1
Note that the present treatment can also be applied to the transverse pro�le of the �eld. It’s only a

matter of changing the considered variable from time to space.
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states of light. For Gaussian states, it can be shown [Jian 14] that this bound can be

experimentally reached with a balanced homodyne detection scheme.

For a small variation of p, the �eld (4.1) may be Taylor expanded as follows:

E(+)(t, p)' E(+)(t,0)+ p
∂E(+)

∂p
(t, p = 0) (4.2)

The modal structure appears by writing (4.2) in term of the complex envelope:

E(+)(t, p)' E0

(
a(t,0)+ p

∂a
∂p

(t,0)
)
≡ E0αs

(
u0(t)+ p K v(t)

)
e−iω0t

(4.3)

where we introduced the normalized mode v(t) = 1
K
∂u
∂p (t, p = 0) and K is a dimensional

normalization constant which reads K =
√〈∣∣∣∂u

∂p

∣∣∣ ,
∣∣∣∂u
∂p

∣∣∣〉 , where the inner product is de-

�ned as (1.31). The mode u0(t)= u(t,0) corresponds to the mean-�eld, i.e. the envelope

of the non-displaced �eld. The mode v(t) is called the detection mode attached to the

detection of the parameter p.

In the general case where multiple parameters pi ∈ ~p are encoded in the �eld, the

previous derivation applies and reads

E(+)(t,p)' E0
(
a(t,0)+p ·∇∇∇p a(t,0

)≡ E0αs

(
u0(t)+∑

i
pi K i vi(t)

)
e−iω0t

(4.4)

One should note that, in general, the modes v do not form an orthogonal basis. In this

equation, the displaced �eld is de�ned as a superposition of the undisplaced �eld in

the mean �eld mode and a set of di�erent modes with a small contribution. We can

thus image the fact that this perturbation is displacing photons into other modes (which

is similar to power being pushed in sidebands in the spectral domain in the case of a

modulation).

We also consider that the signal �eld is in a coherent state, such that αs =
p

N .

The retrieved signal in a homodyne con�guration scheme is computed by considering

that the signal �eld is given by (4.3) and the LO is in the mode v(t). The situation is then

similar to (3.43), where we retrieve the information carried by the signal �eld in the

mode de�ned by the mean-�eld of the local oscillator. The optical quadrature that we

retrieve is set by the phase of the local oscillator.

In this picture, the signal may also be written as the inner product of the signal enve-

lope by the local oscillator mode:

I− = 2
√

N NLO Re
{
〈u(t),v(t)〉

}
(4.5)
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with u(t)= u0(t)+ p K v(t).
As an example, let us consider the special case where v(t) is orthogonal to u0(t). We

then have 〈u0(t),v(t)〉 = 0 and 〈v(t),v(t)〉 = 1. The homodyne signal then directly re-

trieves the value of p:

I− = 2
√

N NLO p K (4.6)

To compute the signal-to-noise ratio Σ, one has to compute the noise in the experiment,

which is given by (3.44):

∆I− =
√

NLO σ (4.7)

where σ represents the noise in the detection mode. Thus, the signal-to-noise ratio reads

Σ= 2
p

N K
σ

· p (4.8)

If the only noise present arises from �uctuations of quantum vacuum, then we have

σ= 1.

In the multi-parameters case described by (4.4), in the particular case where the modes

vi(t) form an orthogonal basis, it is straightforward to see that a homodyne detection

with the local oscillator in the mode vi(t) allows to retrieve unambiguously any param-

eter pi encoded in the signal �eld.

4.1.2 Sensitivity
One can then determine the sensitivity with which we retrieve the parameter p. It is

de�ned from the minimum value pmin of p that can be measured using this method,

that is, for a signal-to-noise ratio of 1:

pmin = σ

2
p

N K
(4.9)

The sensitivity is then given by the inverse of pmin. In the quantum-limited case, we

have:

pmin = 1

2
p

N K
(4.10)

This important relation shows that the sensitivity increases with the photon number N
and with the normalization constant K . In the more general case (4.9), we see that the

sensitivity is also governed by the variance of the detection mode. It means that when
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classical noise is present (i.e. σ> 1), sensitivity decreases, however, if squeezed quantum

light is used (σ < 1), then sensitivity is increased. This is a standard result in quantum

metrology, �rst demonstrated in [Caves 81], and a recent application example can be

found in [Aasi 13].

Since the sensitivity (4.10) scales with the number of photons, we took the experimen-

tal strategy to work with strong coherent states rather than to use squeezed vacuum.

4.1.3 The Cramér-Rao bound
As hinted in the beginning of this section, the ultimate limit in sensitivity that one may

achieve in the parameter estimation problem is given by the Cramér-Rao bound. Indeed,

to know whether or not a given measurement scheme is optimal, one usually resorts to

information theory. A good outlook into the classical Cramér-Rao bound may be found

in [Réfrégier 02] whereas a quantum development and an application to this experiment

is done in [Jian 14].

In information theory, the classical Cramér-Rao bound corresponds to the best pre-

cision that one can achieve using every possible estimator for a given parameter. This

estimator is then said to be unbiased since it gives the correct value of the parameter

that is estimated. This allows to determine which measurement apparatus or strategy is

best suited to determine the value of a parameter.

This can then be rede�ned in the quantum realm in term of density operators. The

measurement is described by a set of operators known as positive operator-value mea-

sure (POVM) [Barnett 02]. The derivation of this bound is more subtle than in the classi-

cal case, but it gives a stronger result. Indeed, the limit that one obtains is measurement

independent, since the quantum Cramér-Rao bound is given whatever the measurement

apparatus. This bound can be saturated, and has been extensively used in the �eld of

quantum metrology [Anisimov 10].

In the case of multimode Gaussian states (for example, coherent states), this bound

can be computed. More importantly, it has been demonstrated that the best sensitivity of

parameter estimation using a balanced homodyne detection scheme equals the quantum

Cramér-Rao bound, making this detection scheme an e�cient measurement strategy.

The main result here is that the chosen projective measurement scheme yields the

best possible outcome in the parameter estimation problem.

4.2 Spectral and temporal displacements

In this section, we concentrate our study to small displacements of the �eld in time

(carrier and envelope) and to small displacements of the spectrum.
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4.2.1 Temporal displacements
We use the results that were obtained in section 2.2.2 about spectral phase e�ects on the

pulse shape. Let us Taylor expand the accumulated phase to the �rst order as in (2.33).

For convenience, we identify characteristic times in the following way:

φ(Ω)'ω0 tϕ+Ω tg (4.11)

We identify tϕ as a displacement of the carrier and tg as a displacement of the envelope.

The displaced �eld in the spectral domain is simply given by

E(+)
s (Ω)= E0 a(Ω) ei(ω0tϕ+Ωtg)

(4.12)

Equivalently, in the temporal domain:

E(+)
s (t)= E0 a(t− tg) e−iω0(t−tϕ)

(4.13)

which clearly shows the displacements in both carrier and envelope.

Since tϕ and tg are supposedly small compared to the optical period, we then proceed

to expand the amplitude and the phase of the temporal representation of the �eld. We

then obtain

E(+)
s (t)' E0

p
N

(
u0(t)− tg

∂u0

∂t

)
· (1+ iω0tϕ

)
e−iω0t

= E0
p

N
(
u0(t)+ω0tϕ · iu0(t)− tg

∂u0

∂t

)
e−iω0t

(4.14)

where we neglected the second order term tϕ · tg. We labeled u0 the unperturbed �eld

envelope, such that the total �eld is written as E(+)
s (t) = E0

p
N u(t). We can see that

equation (4.14) is similar to (4.3), except that not all modes are normalized.

After normalization of the modes on which (4.14) is expanded, the �eld then writes as

E(+)
s (t)= E0

p
N αs

(
u0(t)+ω0tϕ ·vϕ(t)+Kgtg ·vg(t)

)
e−iω0t

(4.15)

The mode attached to the detection of a phase shift tϕ is called phase mode vϕ(t), and is

de�ned by

vϕ(t)= i u0(t) (4.16)

Note that vϕ is not orthogonal to the mean-�eld mode u0.
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Figure 4.2: Schematic picture of a delayed pulse expanded on the basis of the detection

modes.

As a reference to measurements that consider the time of arrival of pulses of light,

we call the mode attached to the detection of a shift in the envelope tg the time-of-�ight
mode vg(t). It is de�ned as

vg(t)=− 1
Kg

∂u0

∂t
e−iω0t

(4.17)

whose normalization constant Kg is given by Kg =
√∫

dt
∣∣∣∂u0
∂t

∣∣∣2 . In the Gaussian case

given by (2.20), the normalization constant is actually proportional to the temporal band-

width: Kg = 1
2∆t and the time-of-�ight mode is consequently given by

vg(t)= t
∆t

u0(t)≡−2∆t
∂u0

∂t
(4.18)

In that case, the �eld is written as

E(+)
s (t)= E0

p
N

(
u0(t)+ω0tϕ ·vϕ(t)+ tg

2∆t
·vg(t)

)
e−iω0t

(4.19)

As an example, on �gure 4.2 is depicted a representation of the real part of (4.19) in

the case of a global delay of the pulse tϕ = tg = δt.
In the same manner, the expansion of the Gaussian �eld in the spectral domain from

(4.12) yields

E(+)
s (Ω)' E0

p
N u0(Ω)

(
1+ iω0 tϕ+ iΩ tg

)
≡ E0

p
N

(
u0(Ω)+ω0 tϕ ·vϕ(Ω)+∆ω tg ·vg(Ω)

)
(4.20)
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The detection modes in the spectral domain are then given by

vϕ(Ω)= i u0(Ω) (4.21)

vg(Ω)= i
Ω

∆ω
u0(Ω) (4.22)

Using the previously de�ned Fourier transform formalism, it is easy to show that the

Gaussian detection modes are directly linked by Fourier transforms.

Note that every spectral mode is pure imaginary, whereas the temporal time-of-�ight

mode is real. Although surprising, it is understandable that a perturbation in the arrival

time of a train of pulses can be resolved with a single detector; it is therefore an amplitude

quadrature measurement in the temporal domain, but it cannot be resolved as easily in

the spectral domain
2
.

4.2.2 Spectral displacements
The previous derivation has an exact counterpart in the spectral domain.

Consider a displacement in the spectrum that manifests itself in the form of a global

change ε of the amplitude. The envelope of the �eld is then written as (1+ε)a(Ω), where

we chose ε to be independent on wavelength for simplicity. Consider also a change δω

in the central wavelength, which then changes the amplitude to a(Ω−δω).
Using these notations, the displaced spectral �eld is consequently written as

E(+)
s (Ω)= E0 (1+ε)a(Ω−δω) (4.23)

Taking the Fourier transform simply yields

E(+)
s (t)= E0 (1+ε)a(t) e−i(ω0−δω)t

(4.24)

When expanding the �eld (4.23) and neglecting second-order terms, we then obtain

E(+)
s (Ω)' E0

p
N

(
u0(Ω)+ε ·u0(Ω)−δω · ∂u0

∂Ω

)
(4.25)

A treatment identical to (4.19) allows to write the displaced spectrum as

E(+)
s (Ω)= E0

p
N

(
u0(Ω)+ε ·vε(Ω)+ δω

2∆ω
·vδω(Ω)

)
(4.26)

2
One can also consider an in�nitely accurate detector in the temporal domain. It could potentially re-

solve any e�ect on the pulse shape, being a delay, a broadening or a change in its structure. A spectrometer

on the other hand cannot resolve any spectral phase without using interferometric measurements. A time

measurement is then sensitive to the relative phase between each color.
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Figure 4.3: Schematic picture of a spectrum displaced in energy and in center wave-

length expanded on the basis of the detection modes.

which de�nes the detection mode vε for a perturbation ε in the amplitude of the �eld

vε(Ω)= u0(Ω) (4.27)

and the mode vδω attached to a shift of the central wavelength

vδω(Ω)= Ω

∆ω
u0(Ω) (4.28)

In the same way as before, �gure 4.3 provides a schematic representation of equation

(4.26).

In the temporal domain, equation (4.24) allows to de�ne the temporal detection modes

vε(t)= u0(t) and vδω(t)= i
t
∆t

u0(t) (4.29)

We see that the exact set of modes are used to detect these fours parameters. They di�er

in their de�nition by the imaginary unit i which speci�es on which optical quadrature

the information resides. More importantly, it also reveals that these parameters are con-

jugated in the sense of hamiltonian mechanics. Therefore, they are also observable of

conjugated operators in a quantum description (see section 4.2.3).

Using (4.10), we compute the ultimate limit in sensitivity for these measurements. For

the temporal displacements, we obtain

(
tϕ

)
min =

1

2
p

N ω0
and

(
tg

)
min =

1

2
p

N∆ω
(4.30)

and for the amplitude / spectrum displacements, we have

(tε)min =
1

2
p

N
and (tδω)min =

∆ωp
N

(4.31)
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Using this modal description, we �nd the standard result for the ultimate sensitivity for

an interferometric measurement of amplitude and phase
3
.

Moreover, using a Gaussian mean-�eld mode allows to easily construct the detec-

tion basis. One may note that the detection basis that we derived here is similar to the

Hermite-Gauss basis. This is quite convenient since these modes are directly orthogonal.

For a non-Gaussian mean-�eld, the construction of the basis is not as straightforward.

Indeed, there is no guarantee that the modes attached to the estimation of parameters

are orthogonal. In that case, the construction of the basis needs to be adapted to the

parameters that need to be measured. Albeit less general, we will keep the Gaussian

de�nition for analytical reasons, but the same results may be obtained for an arbitrary

mean-�eld.

4.2.3 Conjugated parameters

Introducing the Hermite-Gauss modes vn(Ω)4
, we have

v0(Ω)= u0(Ω) and v1(Ω)= Ω

∆ω
u0(Ω) (4.32)

which allows to rewrite the displaced �elds in the same basis.

In the spectral domain, we consider a �eld displaced in all four of the previous param-

eters :

E(+)
s (Ω)= E0

p
N

(
v0(Ω)+ (

ε+ iω0tϕ
) ·v0(Ω)+

(
δω

2∆ω
+ i∆ωtg

)
·v1(Ω)

)
(4.33)

where we used the modes {vn} from the Hermite-Gauss basis.

This equation puts forward the conjugated parameters. The mean �eld mode v0 is

associated naturally to variations of amplitude, whose conjugate quantity is a shift in

phase. Similarly, the mode v1 carries the information on a shift in the envelope of the

pulse. The conjugate parameter is a shift of the spectrum. In quantum mechanics, con-

jugate variables are observable that do not commute and satisfy Heisenberg’s principle.

The �eld of quantum metrology has usually focused on the measurement of a single

variable. Its orthogonal observable may however contain information from a di�erent

origin that can be used to enhance the measurement result[Steinlechner 13].

3
It is worth noting that the standard interferometer limit scales as 1/

p
N . This di�erence by a factor

of two arises from the fact that the homodyne-based measurement places the N signal photons into a

single arm of the interferometer, whereas the standard interferometric detection distributes them equally

between both arms.

4vn(Ω)= 1p
2nn!

Hn

(
Ωp
2∆ω

)
·u(Ω)
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To formulate the quantum counterpart of (4.33), we write 〈â0〉 =
p

N , and assume

that only v0 and v1 are non-vacuum modes. Under the small parameter approximation,

it reads

Ê(+)
s (Ω)= E0

{p
N

[(
1+ε+ iω0tϕ

) ·v0(Ω)+
(
δω

2∆ω
+ i∆ωtg

)
·v1(Ω)

]
+∑

n
δânvn(Ω)

}
(4.34)

Ideally, we would like to de�ne observables to measure the parameters encoded in the

�eld. Using the quadrature operators (1.66) and (1.67), for a �eld in the Hermite-Gauss

basis where the mean-�eld mode is v0, we have

Ê(+)
s (Ω)= E0

∑
i

âi vi(Ω)= E0
∑

i

x̂i + i p̂i

2
vi(Ω) (4.35)

Thus, in term of quantum observables, the �eld (4.34) is written as

Ê(+)
s (Ω)= E0

(〈x̂0〉+ i 〈 p̂0〉
2

v0(Ω)+ 〈x̂1〉+ i 〈 p̂1〉
2

v1(Ω)+∑
n
δânvn(Ω)

)
(4.36)

By identi�cation, we have the following relations:

〈x̂0〉 = 2
p

N (1+ε) and 〈 p̂0〉 = 2
p

N ω0 tϕ (4.37)

〈x̂1〉 =
p

N
δω

∆ω
and 〈 p̂1〉 = 2

p
N ∆ω tg (4.38)

We see that the mean-�eld mode v0 is naturally used to detect the amplitude and the

phase of the �eld. The next mode in the basis is used to detect slippage in time and in

frequency. We may then de�ne new conjugate operators X̂ i and P̂i such that computing

their expectation value yields the parameter of interest:

X̂0 = 1

2
p

N
x̂0 and P̂0 = 1

2
p

N ω0
p̂0 (4.39)

X̂1 = ∆ωp
N

x̂1 and P̂1 = 1

2
p

N ∆ω
p̂1 (4.40)

This introduces clearly the couples of conjugate variables amplitude / phase and time /

frequency as carried by di�erent spectral modes. To perform a measurement below the

standard quantum limit on one quantity, one would have to introduce squeezing in the

same mode (the quantity retrieved in the other �eld quadrature would then show excess

noise).
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Being conjugate observables, using (1.68), the commutation relations for these new

operators read

[
X̂0 , P̂0

]= i
2Nω0

and

[
X̂1 , P̂1

]= i
N

(4.41)

leading to the following uncertainty relations:

σX̂0
·σP̂0

≥ 1
4Nω0

and σX̂1
·σP̂1

≥ 1
2N

(4.42)

In addition to the enhancement in sensitivity, the identi�cation of conjugated observable

allows to generate entanglement between them. We investigate this possibility in the

last part of this thesis.

4.2.4 Application to range-�nding
An application to our projective measurement scheme is space-time positionning, as

proposed in [Lamine 08]. In the perspective of exchanging pulses of light between two

observers, it is possible to determine the delay in time or in space between their time of

arrival and a reference. In our description, it is similar to measuring tϕ and tg.

In the �rst case, one uses the wave-like nature of light and uses interferometry to de-

termine the o�set between the carriers. The ambiguity range of such a measurement is

on the order of the wavelength. In the second case, one considers the arrival time of the

pulses envelope, leading to an ambiguity range dictated by the spacing between subse-

quent pulses. Naturally, combing the two methods leads to a more precise measurement.

In our vocabulary, it means that there exists a mode that combines the phase mode

and the time-of-�ight mode, which presents a higher sensitivity for measuring a global

delay (or displacement).

4.2.4.1 Existing schemes

Combining interferometric with time-of-�ight measurement is common method in ab-

solute distance estimation. The �rst experiment from [Chekhovsky 98] uses picosecond

pulses in a time-of-�ight measurement, giving a rough estimation of distance, combined

with white-light interferometry, thus enhancing precision.

As an example of a scheme combining interferometric and time-of-�ight measure-

ment using femtosecond pulses, we can cite the one proposed by Jun Ye in [Ye 04]. It

is based on the fact that in an interferometer, when a distance di�erence is introduced

between the two arms, the delay in the arrival of the two pulses depends also on the

repetition rate of the laser. Monitoring the delay as a function of the repetition rate then
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allows to retrieve the distance. The �rst estimate on distance is done using a fast detec-

tor while higher precision is achieved by measuring the contrast of the optical fringes.

An experimental realization has been done in [Cui 08]. The precision of this scheme is

limited by the timing jitter of the laser source.

This scheme is best suited for use in vacuum since it is sensitive to dispersion. To

account for that e�ect, it is possible to consider the spectral phase accumulated. The

distance can be retrieved by comparing the spectral phase between the reference arm and

the target arm of an interferometer for di�erent wavelengths. It is another application of

spectral interferometry 3.1.3.4 to distance estimation [Cui 11]. The precision is however

limited by the knowledge of the environnement parameter in order to compensate for

it.

Another scheme derived from dual comb spectroscopy techniques has been demon-

strated in [Coddington 09]. Two frequency combs with slightly di�erent repetition rates

are used: one is sent into an interferometer while the other is used as the local oscillator

of an heterodyne cross-correlation scheme to analyze the output of the interferometer.

The pulses from the two sources are then overlayed at di�erent times. This technique

can be seen as down-sampling of the signals which may be measured using slow detec-

tors and electronics.

Finally, a purely time-of-�ight technique can be mentioned [Kim 08]. It is called a bal-

anced optical cross-correlator. Pulses coming from a target whose distance we want to

determine are combined with a reference in a nonlinear χ(2)
crystal. A cross-correlation

is obtained between the two pulses by measuring the sum frequency signal out of the

crystal. The delay is retrieved by scanning the repetition rate between the two lasers

and identifying zero cross-correlations signal. This method directly measures the group

delay and no knowledge on the dispersives properties of the propagation medium is re-

quired. However, since it is a non-linear process, it is dependent on the pulses duration.

4.2.4.2 Ultimate limit in sensitivity

We compute the ultimate limits of sensitivity for an interferometric phase measurement

or a time-of-�ight measurement. We consider that light propagates in a weakly disper-

sive medium with a refractive index n(ω). Introducing a perturbation of propagation

distance δL in the signal beam, the phase di�erence between the two �elds writes as

δφ(ω)= ωn(ω)
c

δL (4.43)
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We expand this phase, similar to (4.11):

δφ(ω)' δL
c
ω0 n(ω0)+ (ω−ω0)

(
n(ω0)+ω0

∂n
∂ω

∣∣∣∣
ω0

)
≡ω0 tϕ+Ω tg (4.44)

where we neglected the second order dispersion. The time shifts of the carrier tϕ and of

the envelope tg are given by

tϕ = δL
c

n0 = δL
vϕ

(4.45)

tg = δL
c

(
n0 +ω0 n′

0
)= δL

vg
(4.46)

where we introduced the phase and group velocities of light in the medium, and we

wrote derivatives with respect to ω with a prime.

Using the derivation of the previous section, the delayed signal �eld is consequently

written in the Hermite-Gauss basis {vn} as

E(+)
s (Ω)= E0

p
N

(
v0(Ω)+ iω0tϕ ·v0(Ω)+ i∆ωtg ·v1(Ω)

)
= E0

p
N u(Ω) (4.47)

where u(Ω) is the mode of the signal �eld
5
. Performing a projective measurement on

iv0 and iv1 will retrieve respectively tϕ and tg, thus giving information on δL with

shot-noise limits given by (4.30). More precisely, the limit in sensitivity for a phase and

a time-of-�ight measurement are written as

(δL)ϕmin =
vϕ

2
p

N ω0
(4.48)

(δL)g
min =

vg

2
p

N∆ω
(4.49)

Since the information on δL is carried by both modes, we can construct another de-

tection mode corresponding to δL. We compute:

∂u
∂(δL)

∣∣∣∣
δL=0

= i
(
ω0

vϕ
·v0(Ω)+ ∆ω

vg
·v1(Ω)

)
(4.50)

≡
(
ω0

vϕ
·vϕ(Ω)+ ∆ω

vg
·vg(Ω)

)
(4.51)

5
Note that u(Ω) results from a Taylor expansion of a normalized mode. Therefore, it is no longer

normalized.
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For measuring δL, the ultimate limit of sensitivity is thus given by

(
δL

)
SQL =

1

2
p

N

1√(
ω0
vϕ

)2 +
(
∆ω
vg

)2
(4.52)

and the detection mode allowing to reach this sensitivity is given by

vδL(Ω)= 1√(
ω0
vϕ

)2 +
(
∆ω
vg

)2

(
ω0

vϕ
·vϕ(Ω)+ ∆ω

vg
·vg(Ω)

)
(4.53)

We see indeed that the detection mode combines the phase mode and the time-of-�ight

mode to yield a more sensitive measurement of δL. The enhancement depends on the

properties of the light source (by its wavelength and bandwidth) and on the properties

of the dispersive medium. In the case of air, the dependency of index with wavelength

is negligible such that vϕ ' vg.

It is then similar to vacuum, where the phase velocities and group velocities of light

are equal. And the detection mode is then given by

vδL(Ω)= 1√
1+

(
∆ω
ω0

)2

(
vϕ(Ω)+ ∆ω

ω0
·vg(Ω)

)
(4.54)

Here, the enhancement is only dependent on the wavelength and bandwidth of the laser.

To make best use of this scheme using a coherent broadband source, the technical limi-

tation to the enhancement is obtained for single-cycle pulses
6
.

Since this scheme relies on linear interferometry, the pulse duration is not relevant,

and spectrum broadening techniques, such as supercontinuum generation, can be used

in order to increase even more the sensitivity.

Note that the description for a perturbation in mean wavelength and energy given

in 4.2.2 may be written such that the amplitude of the �eld is a�ected by the change in

wavelength. Since the parameter δω would appear on both the amplitude and the time-

of-�ight mode, a similar development to the one done here would result in a detection

mode to detect δω.

4.2.4.3 Addendum: higher order modes

In the previous treatment, we neglected the in�uence of dispersion. The main reason for

that simpli�cation is mostly technical. Experimentally, it is already di�cult to measure

6
A single-cycle pulse can be de�ned as ∆tFWHM = 2π

ω0
[Brabec 97]. For Gaussian pulses, this yields

∆ω
ω0

≈ 0.2.
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the group delay term, and accessing the information about group delay dispersion using

this scheme is not possible. One would need either a very dispersive material or a very

high number of photons in the signal beam in order to extract the signal above the noise

�oor.

However, taking into account the dispersion results in another interesting application

of the projective measurement scheme, that we propose to develop here.

Expanding the phase perturbation (4.43) to the second order yields

δφ(ω)' δL
c

{
ω0 n(ω0)+ (ω−ω0)

(
n(ω0)+ω0

∂n
∂ω

∣∣∣∣
ω0

)
+ (ω−ω0)2

2

(
2
∂n
∂ω

∣∣∣∣
ω0

+ω0
∂2n
∂ω2

∣∣∣∣
ω0

)}
which can be rewritten as

δφ(Ω)=ω0 tϕ+Ω tg +Ω
2

ω0
tGV D (4.55)

with

tGV D =ω0

(
n′

0 +
ω0

2
n′′

0

) δL
c

(4.56)

With the previous treatment, the detection mode for tGV D is given by

vGV D(Ω)= i
1p
3

Ω2

∆ω2 u0(Ω)

= 1p
3

v0(Ω)+
√

2
3

v2(Ω) (4.57)

where the mode of the �eld is written as

u(Ω)= v0(Ω)+ i
(
ω0tϕ ·v0(Ω)+∆ωtg ·v1(Ω)+

p
3
∆ω2

ω0
tGV D ·vGV D(Ω)

)
(4.58)

The detection mode for a perturbation of group delay dispersion combines the �rst and

third modes of the Hermite-Gauss basis. It is then clear that this mode is not orthogonal

to the phase mode iv0, but it is orthogonal to the time-of-�ight mode iv1. This mode

description is another derivation to show that a time-of-�ight measurement is insensitive

to the e�ect of group-velocity dispersion. However, performing a measurement using

the phase mode will be contaminated by dispersion. More precisely, it would retrieve

〈
u,vϕ

〉=ω0 tϕ+ ∆ω
2

ω0
tGV D (4.59)
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and a projection on the dispersion mode would yield

〈u,vGV D〉 =
ω0p

3
tϕ+

p
3
∆ω2

ω0
tGV D (4.60)

which would then be contaminated by the pure phase displacement.

The modal decomposition of the �eld allows to de�ne puri�ed modes to measure only

one parameter independently of the other. In the case of GVD, it is straightforward to

see that the puri�ed mode is directly

vp
GV D(Ω)= v2(Ω) (4.61)

The sensitivity of this puri�ed mode is obtained by computing its normalization contant

K p
GV D = KGV D

〈
vp

GV D ,vGV D
〉=p

2 ∆ω2

ω0
. It is proportional to the constant of the original

mode KGV D by a factor equal to the overlap between the original and the puri�ed modes.

The measurement is thus more accurate but less precise.

Similarly, a puri�ed phase mode vp
ϕ would retrieve only the pure phase information

without the dispersion. It is obtained by orthogonalization as follows:

vp
ϕ(Ω)∝ vϕ(Ω)−〈

vϕ,vGV D
〉 ·vGV D(Ω) (4.62)

After normalization, the puri�ed mode for phase detection is given by

vp
ϕ(Ω)=

√
2
3

v0(Ω)− 1p
3

v2(Ω) (4.63)

The sensitivity for this phase measurement is scaled by K p
ϕ =

√
2
3 ω0, leading to

(
tp
ϕ

)
min =

1

2
p

N
√

2
3 ω0

(4.64)

Comparing to (4.30), we can see that the sensitivity for a phase measurement indepen-

dent of dispersion is indeed degraded.

With this treatment, we showed the feasibility to use projective measurements as a

mean to increase the accuracy of a ranging experiment in a dispersive medium at the

expense of precision
7
. It is also possible to add other parameters to the development,

thus building another detection modes basis. Two strategies can then be adopted.

7
We stress that this modal description is another derivation of already existing schemes. For example,

the fact that the time-of-�ight mode is independent of dispersion is another representation of multiwave-

lengths interferometry that combines interferometric measurements at di�erent wavelength.
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The �rst one is to use an established model to de�ne the detection modes. In [Jian 12],

the Edlén model is used to characterize the dependency of the index of refraction of air on

parameters such as pressure, humidity and temperature. It is then possible to construct

a variety of modes that measure the variation of only a single parameter independently

of the others.

Otherwise, it seems conceivable to adopt an evolutionary algorithm to build the de-

tection mode. For example, if one were to dynamically address the projection mode

on a ranging experiment in a dispersive medium, an optimization of that mode could

potentially increase the signal to the optimal.

Obviously, all of these schemes are dependent on the amount of noise in the experi-

ment, and the ability to distinguish the e�ects of other sources of noise to the �uctuations

that we want to access.

4.3 Space-time coupling: a source of contamination

To conclude, we need to address the in�uence of the transverse pro�le of the �eld in the

projective measurement scheme.

In most of our calculations, we considered that both beams in the interferometers

were in the same spatial mode, such that the overlap integral γρ is unity. When the

beams are spatially multimode, not only does it degrade the signal, it can also cause a

contamination on both optical quadratures. As a consequence, a phase measurement

no longer retrieves a pure longitudinal information, but rather a mixture of longitudinal

and transverse displacement.

4.3.1 Transverse displacements
Thanks to the symmetry between the spatial and the temporal description of the electric

�eld, our previous treatment can be applied to the spatial domain. For a more detailed

description, see [Delaubert 07]. For our purpose, we consider spatial perturbation only

as displacement and tilt of the beam relative to a reference, as shown on �gure 4.4.

Reference
Axis Reference

Axis

a) Displacement b) Tilt

Figure 4.4: Representation of simple spatial modi�cations for a Gaussian beam relative

to a reference axis. a) Displacement of the beam. b) Tilt or angular displacement θ.
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We write the transverse envelope of the �eld as a(x, z) = α g0(x, z) where we de�ne

the transverse mode as a TEM00 (1.27). In analogy to a displacement in time, we �rst

consider that the beam is displacement along the x axis by a quantity d. The reference is

naturally de�ned as x = 0. For simplicity, we center the longitudinal coordinate z = 0 at

the beam waist. Although the beam’s displacement does not depend on the longitudinal

coordinate, the tilt of the beam needs to be de�ned around a pivot point, which we will

de�ne as the beam’s waist.

The displaced transverse �eld is then expanded as

a(x)'α
(
g0(x)+d · ∂g0

∂x
(x)

)
(4.65)

The information on displacement is carried by
∂g0
∂x , which for TEM modes, is found to

be exactly the TEM01 mode. The displaced �eld then writes as

a(x)'α
(
g0(x)+ d

w0
· g1(x)

)
(4.66)

Note that the amplitude of the displacement is real.

On the other hand, the expression of a beam that is tilted by an angle θ with respect

to a reference reads

a(x)=α g0(xcosθ) eikxsinθ
(4.67)

where k = 2π
λ

is the norm of the wavevector at a wavelength λ. Here, the wavefront is

tilted both in amplitude and in phase. In similar way as previously, we expand this phase

considering that the angle θ is small
8
, and we obtain the tilted �eld:

g(x)=α
(
g0(x)+ ip · xg0(x)

)
with p = 2π

λ
θ (4.68)

The tilt information p is carried again by the mode xg0(x) which is directly proportional

to the TEM01 mode for a TEM00 reference beam. It is carried in the phase quadrature of

the �eld.

The expression of the �eld for a beam both displaced and tilted then reads

E(x)= E0α

[
g0(x)+

(
d

w0
+ i

w0 p
2

)
g1(x)

]
(4.69)

which is schematically depicted in �gure 4.5.

It is obvious that, from the point of view of an experimentalist, a change in the posi-

tion of a beam can come either from a global displacement and/or from a tilt of the beam.

8
More precisely, the condition writes as λ/w0 ¿ 1.
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Figure 4.5: Representation of a displaced and tilted beam in the transverse plane. The

tilt is represented here by an angle of the wavefront’s plane with respect to a reference.

The information about the displacement and the tilt are both carried by the TEM01 mode,

but on orthogonal optical quadratures.

From equation (4.69), we see that one is distinguishable from another by accessing the

amplitude or the phase quadrature of the TEM01 mode. As in the temporal domain, per-

forming a projective measurement by projecting the displaced �eld on a local oscillator

in the TEM01 mode allows to retrieve the information.

A displacement or a tilt of the beam can always be seen as a simple displacement in the

detection plane. Hence, to properly distinguish between them experimentally, careful

imaging needs to be achieved. Otherwise, if the detection plane is not at a well-de�ned

point in space, a physical displacement and tilt of the beam translate into di�erent quan-

tities.

The important point is that both amplitude and phase optical quadratures contain

information on the displacement of the beam. Again, this displacement can be described

as photons being transferred to the TEM01 mode
9
.

If one were to continue the expansion (4.65) up to the second order, it would show that

the TEM02 mode carries information about a change in the waist size in the amplitude

quadrature and a change in the longitudinal waist position in the phase quadrature.

4.3.2 Homodyne contamination
Let us consider that we want to detect a longitudinal displacement in a projective homo-

dyne detection, as introduced in 4.2.1 and 4.2.4. We consider that whatever mean utilized

to generate the longitudinal displacement in the signal �eld also induces a transverse dis-

placement. We chose the longitudinal reference z = 0 as the point where the beams are

combined. We write the signal mode as

gs(x)= g0(x)+ (
sd + isp

) · g1(x) (4.70)

9
The displacement and tilt of the beam also correspond to conjugated observables in a quantum

description[Delaubert 06].
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We also consider that the transverse mode of the local oscillator is mostly in a TEM00
mode with a small TEM01 contribution. We write:

gLO(x, z)=µ g0(x, z)+ν g1(x, z)≡µ
(
g0(x, z)+ηg1(x, z)

)
(4.71)

with

∣∣µ∣∣2 +|ν|2 = 1, ν¿ 1 and η= ν
µ
¿ 1.

Since we did not specify the pivot point for the tilt, we simply write the two displace-

ment parameters as sd and sp, as way to identify the optical quadrature. Note that these

correspond in the general case to a mixture of displacement and tilt. In our experiment,

we did not carefully image the displacement, therefore it is not possible to infer whether

or not the information on the spatial amplitude and phase quadrature originate from

displacement or tilt.

Computing the spatial overlap integral, as de�ned in (3.9), we then obtain

γρ =µ
(
1+η(

sd − isp
))

(4.72)

where we remind that µ' 1 and η¿ 110
. In the following, we remove the dependency

on µ since it is close to unity, and does not add anything relevant.

We remind that the spectral envelope of the signal �eld is written in the Hermite-

Gauss basis as

us(Ω)= v0(Ω)+ i
(
ω0 tϕ ·v0(Ω)+∆ω tg ·v1(Ω)

)
(4.73)

The signal �eld is then found to be in the following spatio-temporal mode:

us(Ω) · gs(x)= v0(Ω)
[
g0(x)+ (

sd −ω0tϕsp
) · g1(x)

]
(4.74)

+iv0(Ω)
[
ω0tϕ · g0(x)+ (

sp +ω0tϕsd
) · g1(x)

]
− v1(Ω)∆ωtgsp · g1(x)

+iv1(Ω)
[
∆ωtg · g0(x)+∆ωtgsd g1(x)

]
We can see that the amplitude and phase quadratures of the signal �eld now contain both

temporal and spatial parameters. By neglecting second order terms (i.e. terms similar to

tϕsd which are supposed to be small), we compute the overlap between the signal �eld

(4.73) and the spatial part of the local oscillator (4.71):

us(Ω) ·γρ = v0(Ω) ·
[
1+η sd

]
(4.75)

+iv0(Ω) ·
[
ω0tϕ+η sp

]
+iv1(Ω) ·∆ωtg

10
Note also that sd and sp are real quantities.
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It is now clear from (4.75) that performing a projective measurement on the mode iv0
attached to a phase measurement will not retrieve only a information on a longitudi-

nal displacement. The measurement is then contaminated by the spatial displacement,

depending on how much TEM01 component there is in the local oscillator beam.

For no TEM01 contribution in the local oscillator (η= 0), as before, we retrieve either

tϕ or tg by projecting on respectively the phase mode iv0 and the time-of-�ight mode

iv1. However, when η 6= 0, projecting on the phase mode retrieves

I− ∝ η sp +ω0tϕ (4.76)

Even though η is supposed to be small, for a precision measurement, the contamination

can become signi�cant. In the time domain, this spatial e�ect can be seen as an additional

delay of the carrier.

Interestingly enough, projecting on the time-of-�ight mode does not retrieve any spa-

tial information (at the �rst order). This mode will retrieve purely a timing information,

independently on the amount of spatial displacement.

Since we interest ourselves into the ultimate limits in the sensitivity to measure a

purely longitudinal displacement, these spatial e�ects can a�ect the result. It is there-

fore of utmost importance to control the transverse displacement of the beam in our

sensitivity measurements.



5 Measuring the multimode �eld

“The starting point is to do just a simple time measurement.”
– Nicolas “The Boss” Treps
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In this chapter, we present the main results of the parameter estimation experiment.

It is in the continuity of the range-�nding experiment done by Pu Jian during her PhD

[Jian 14]. Back then, the main experimental setup was built, and the goal was to show

the application of projective measurements to parameter estimation, and in particular

to range-�nding. The ultimate objective was to use di�erent modes to measure di�erent

107
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parameters that are encoded into the beam of light. For example, one can assign di�erent

modes sensitive to a variety of di�erent physical e�ects that arise due to propagation

through a dispersive medium [Jian 12].

The proof-of-principle experiment was realized using a pulse-shaper to create a local

oscillator mode that shows di�erent sensitivities to a path di�erence between the two

arms of the interferometer. It relied on a careful calibration of this displacement. The

next step was to use projective measurements to di�erentiate between a displacement

in free-space or in vacuum, i.e. to di�erentiate between a di�erence in true path or in

optical path.

In the work that we present here, the main objective remains, but we had to make

di�erent choices on the experimental side. A lot of the original ideas proved di�cult to

implement, and the parameters that we wanted to access ended up being too small to

be measured with good con�dence. Moreover, the spatial contamination described in

(4.3) proved to be signi�cant, even though the spatial overlap seemed su�ciently high.

In this section, we therefore settle to show the following points:

• Using the mean-�eld mode, we measure the sensitivity of a Mach-Zehdner inter-

ferometer, and we show that it coincides with the Cramér-Rao bound for coherent

states (4.30). This calibration is done in an absolute manner, without assuming

anything about the losses in the measurement process.

• Making use of a spectrally resolved homodyne detection, we show that the multi-

mode structure of the �eld is accessible with a single shot measurement, and that

we can therefore do a post-facto projective measurement.

• We apply this experimental scheme to the original range-�nding experiment, and

derive the sensitivity of a mode attached to a displacement in phase, a displace-

ment in the envelope, and �nally we show that the ultimate sensitivity is attained

using the detection mode. We then measure the same parameter with di�erent

modes, resulting in di�erent sensitivities.

• Finally, we show that one can e�ectively measure di�erent parameters using dif-

ferent projection modes. Using a spectral and time-resolved homodyne detection,

we measure the di�erence in optical path between two arms of the interferometers

when a heavily dispersive material is introduced.

5.1 Experimental details
As we hinted in the introduction, the whole experiment proved to be more di�cult than

�rst expected. It eventually grew more and more in complexity in order to show even
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the simplest results with reproducibility and con�dence. For example, the spatial con-

tamination required the experiment to be adapted to the new constraints rather than

being entirely rebuilt.

In this section, we outline details on the experimental scheme, the way it is con-

structed and the way the information is measured.

5.1.1 Measurement strategy
To summarize, we want to measure the parameters outlined in section 4.2 using a pro-

jective measurement scheme. Ideally, we would like this measurement to be quantum-

limited since we are interested in the ultimate limits in sensitivity. These limits are only

achieved when the only noise present in the light source is the �uctuations of quantum

vacuum (i.e. σ= 1 in equation (4.9)).

In a homodyne con�guration scheme, the noise of importance in the measurement is

the amplitude noise. Indeed, since the two arms of the interferometer comes from the

same source, the phase noise does not come into play.

To determine the frequency at which the laser source is shot-noise limited in ampli-

tude, a standard measurement is a balanced detection. It consists in splitting equally

on a beamsplitter the �eld and measure the power spectral density of the noise with

two balanced diodes. Taking the sum of the photocurrents yields the classical noise of

the original beam, whereas taking the di�erence yields the shot noise. Indeed, since any

classical noise subtracts when taking the di�erence, what remains is the quantum nature

of light. The result, using a homebuilt photodetector, is shown on �gure 5.1.
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Figure 5.1: Balanced detection and resulting noise traces. The sum gives the amplitude

noise, di�erence gives the shot noise. The laser source is shown to be shot-noise limited

in amplitude at 2 MHz.

On this plot, we show the amplitude noise, the shot noise and the dark noise of the

detector. The amount of light on the detector is on the order of 200 µW, and the noise

level is given in Decibel-Carrier dBc, i.e. the noise level relative to the power contained

in the optical carrier. We can see that the amplitude noise is at the same level than the
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shot noise at around 2 MHz. We also added the dark noise of the detection to con�rm

that the clearance is high enough to assert the shot noise level.

This shows that, in order to perform a quantum limited measurement, we need to

measure the parameters at a frequency around 2 MHz. The homodyne signal is then

retrieved either using a spectrum analyzer or by demodulation, as described in section

3.2.2.

5.1.2 Phase modulation at high frequencies
We then need to achieve a modulation of the optical path at 2 MHz. A standard way to

do so is to use an electro-optic modulator (EOM), which is able to deliver a strong phase

modulation at high frequency. Rather than modulating the optical path, such a device

modulates the index of refraction of the propagating medium, thus creating a phase shift.

Although it results in considerable depth of modulation, for our purposes of multimode

parameter estimation, it may not be the best choice.

By applying a strong electric �eld Eext to a crystal, the linear Pockels e�ect induces a

change ∆n in the refractive index. The change in phase is then found to be written as

∆φ(ω)= ω

c
∆n(ω) (5.1)

where ∆n(ω) is de�ned as [Boyd 03]:

∆n(ω)= 1
2

n3(ω) r33 Eext (5.2)

The phase modulation is then proportional to the cube of the index of refraction of

the medium and to the appropriate element of the electro-optic tensor r33 (which can

be de�ned as a function of χ(2)
). Even though this phase shift may be rewritten as a

longitudinal displacement, it is not as straightforward as physically delaying the pulse.

For example, if we want to measure the ultimate sensitivity for a distance or a delay

using our scheme, that is, using the detection mode de�ned in section 4.2.4.2, the de-

scription of the phase and group velocities is then entirely dependent on the model de-

scribed by (5.1). In particular, the type of crystal and its composition needs to be known

(which consist usually of doped materials to achieve a strong phase displacement) with

precision, and the dependency of the electro-optic tensor with the wavelength should

also be taken into account. Moreover, the polarization needs to be carefully set to avoid

unwanted amplitude modulations.

Hence, to generate a displacement at high frequency, we settled for the most straight-

forward method which consists of physically displacing a mirror. This is best achieved

by mounting a mirror on a piezoelectric actuator at zero incidence with the beam, as
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Figure 5.2: Experimental scheme for modulating the delay between the two arms of the

interferometer.

shown on �gure 5.2. By applying a voltage to the actuator, its ceramic material expands

or contracts, thus displacing the beam.

This apparatus generates a true displacement that is straightforward to understand,

but it does have some drawbacks too.

• First, to generate a pure longitudinal displacement, one has to make sure that the

mirror is perfectly normal to the incident beam, which is not an easy feature to

achieve. This will inevitably displace the beam in the transverse plan, leading to

the unwanted coupling described in section 4.3.

• Though a piezoelectric actuator is supposed to expand and contract longitudinally,

there is no guarantee that it does not move in the transverse plane. Indeed, in

[PI 14], it is shown that piezoelectric stacks possess other vibration modes than

longitudinal. The amount of excitation of these unwanted modes depends largely

on how the resonator is mounted. The resonator consists of the association of the

mirror, the actuator and the mount. Di�erent mounting strategies can be adopted

to insure a better stability, such as a strong, stable mount [Briles 10], or a lateral

clamping of the actuator [Chadi 13].

• Applications of a piezo is best suited for low frequencies. When high voltage is

applied, a displacement on the order of 1 µm is achievable. However, at high

frequencies, the response is severely reduced. For sensitivity measurements, this

limit does not matter since even a small displacement may be su�cient. Neverthe-
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less, the response can be erratic, and the linearity of displacement with the applied

voltage needs to be experimentally veri�ed.

Therefore, a mirror mounted on a piezo actuator induces a change in both the longitu-

dinal and the transverse planes. These displacements happen at the same modulation

frequency, such that it is not straightforward to distinguish between a pure phase modu-

lation (i.e. a change in propagation) to a transverse displacement. Moreover, with a high

enough sensitivity (which is the case in the scope of this thesis), an amplitude modula-

tion can be observed simply because the angle of incidence of the beam on optics is being

modulated [Ivanov 03]. Albeit small, this e�ect is not negligible in our applications.

To evaluate our experimental scheme, we modulated the phase of the signal �eld us-

ing di�erent elements and measured the signal on both optical quadratures. We also

measured the spatial displacement. The experimental scheme for these measurements

is outlined on �gure 5.3.

Razor blade

Amplitude Phase

Phase modulation
at        

Figure 5.3: Experimental scheme to measure the amount of phase, amplitude and spatial

modulations. The amplitude response is obtained by removing the razor blade. Note that

the photon number needs to be equal in each measurement in order to be consistent.

Also, the signal at the output of the mixer goes through a 15 kHz �rst order low-pass

�lter before collecting the data.

The phase quadrature information was retrieved using a homodyne detection with

the relative phase between the signal and LO locked on π/2. Note that this measurement

is done without any mode construction, so the projection mode is simply the mean-

�eld mode, which is best suited for a phase detection. The amplitude quadrature was

obtained with a single diode with the same optical power than in the homodyne case.

The spatial information was obtained by adding a sharp razor blade in the beam. The

blade is moved in the beam until half the power is blocked. It then gives information
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on how much the beam is being displaced (but does not distinguish displacement or tilt

without proper imaging). This was done for both x and y directions. We then took this

data set for a range of modulation frequencies around 2 MHz. The data was acquired

by demodulating each signal
1
. Note that since the modulation of the �eld is small, the

output of the photodiode needs to be ampli�ed before the mixing procedure. This is

achieved with a low noise ampli�er ZFL-1000LN from Mini-circuits.

On �gure 5.4, we plotted the detected signals for these cases when a piezoelectric

actuator is being modulated.
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Figure 5.4: Power spectral density obtained by demodulation of the amplitude and

phase optical quadratures for a piezoelectric actuator (Physik Instrumente, PL055.30).

We can see on this plot that the phase quadrature (i.e. the homodyne signal) yields

the higher stsignal. It is also noticeable that the response is not �at with respect to mod-

ulation frequency. This is to be expected for any resonator, which will show resonances.

The signal on the amplitude quadrature is lower by at least two orders of magnitude,

which is quite small but it can be measured without any di�culty. It means that, in an

homodyne detection scheme, if the relative phase between the two arms is not set per-

fectly for a phase quadrature measurement, not only is there a loss of signal, we would

also retrieve information from the amplitude quadrature.

More surprising is the amount of spatial modulation that is present. Note that these

traces are corrected from the amount of amplitude modulation since it should appear on

all measurements. Both axis show a signal level that is only one order of magnitude lower

than the homodyne signal, which is not negligible. We can see that the transverse and

longitudinal displacements are structured, which is yet another witness of resonances.

However, the relationship between the phase quadrature structure and the transverse

displacement does not appear to be trivial: for example, there is a clear resonance at

2.03 MHz for the phase quadrature which does not appear on both spatial signals.

We add that similar measurements were done for di�erent types of piezo actuators,

which showed very di�erent responses. The one that was eventually chosen and plotted

1
The demodulation phase (i.e. electronic quadrature) was set such that the retrieved signal is maximal.
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on �gure 5.4 showed the lowest transverse modulation. We also characterized di�erent

EOMs the same way. Though the phase modulation is much �atter with frequency, it

isn’t exempt of amplitude or transverse modulation, as shown on �gure 5.5. This is a

con�rmation that an electro-optic modulator is not a perfect phase modulator either.
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Figure 5.5: Power spectral density obtained by demodulation of the amplitude and

phase optical quadratures for an electro-optic modulator (resonant, but operated at a

frequency far from resonance).

We conclude that getting a purely longitudinal displacement required a very careful

control of both imaging and the way the displacement is generated. We opted for a spa-

tial �ltering technique to remove the transverse displacement rather than try to generate

a pure phase modulation.

5.1.3 Spatial �ltering
The analysis of the previous section and the theoretical analysis of 4.3 shows that the

transverse displacement is a real e�ect that comes into play in our experimental scheme.

In order to be con�dent in the fact that no spatial contamination remains, the best

option would be to ensure a perfect TEM00 mode in the local oscillator arm. A pos-

sible way to do so is to build a Fabry-Pérot cavity in this arm, which acts as a spatial

�lter. However, it is a cumbersome solution in ultrafast optics, since this cavity would

need to match the laser’s cavity (especially in length) in order to transmit the entire the

spectrum. It also adds complexity to the experimental setup with the need of an active

lock.

We then opted for a single-mode �ber, which also acts as a spatial �lter, but can prove

to be cumbersome. In particular, these are quite dispersive, and would need to be com-

pensated. One solution would be to put �bers on both arms of the interferometer and

use the pulse-shaper to �ne tune the relative phase.

As we pointed in section 3.3.2, in a homodyne measurement, once the beams are com-

bined, no linear element can a�ect the information contained in the interference pattern.

Therefore, it is convenient to put the �lter �ber at the output of the beamsplitter, where
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the dispersion does not matter anymore, as depicted by �gure 5.6. Doing so, we noticed

a consequent increase in the contrast of the interference fringes. By introducing a nar-

row bandpass �lter of 1.5 nm FWHM, the temporal overlap integral can be considered

as being unity, such that the measured contrast depends only on the spatial coherence.

Without spatial �ltering, we measured a contrast of 92%, whereas with a single-mode

�ber, we measured a contrast close to 100%.

Signal

Local
Oscillator

SF

SF

Figure 5.6: Spatial �ltering scheme for homodyne detection. SF: single-mode �ber.

This allows us to consider that both beams are in the same spatial mode (de�ned by

the �ber), such that no contamination of the homodyne signal can come from trans-

verse e�ects. Note that these unwanted spatial modulations on the phase quadrature at

the input of the �ber are however pushed into the amplitude quadrature at the output.

Therefore, the lock of the relative phase between the two arms of the interferometer still

needs to be set with care.

5.2 Interferometer calibration
Before proceeding to multimode parameter estimation, we need to calibrate the phase

modulation. Simply put, one needs to be able to relate what is measured to physical

quantities. We restrict our calibration to the case of a mirror mounted on a piezo actuator,

but the same strategy can be applied to an EOM.

What is being measured at the output of the homodyne detection is an optical phase,

and we would like to relate it to a longitudinal displacement. For large displacements

(i.e. on the order of the optical wavelength), the phase shift can be observed from the

interference fringes, and therefore be measured with a good precision. However, at high

modulation frequency, the response is very diminished and the resulting longitudinal

displacement is much smaller than the optical wavelength. Hence, it may not directly
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be measured. Extrapolating from a calibration obtained from a large displacement is

conditioned by the linearity of both the piezo element and the electronics that are used.

A possible strategy is to use a quadrant detector which allows to detect small dis-

placements [Treps 03]. We place the actuator at a 45◦
angle and measure the transverse

displacement. However, relating the measured signal to an actual longitudinal displace-

ment requires a knowledge of the distances and the geometry of the optical layout. The

precision on the calibration is then dependent on the ability to measure distances on the

optical table. Such a calibration, albeit precise and simple to execute, is thus not done

in an absolute manner. It also requires to move the mirror at a di�erent place, and the

calibration is not done with the same optical scheme than the measurement.

In [Roslund 15], we propose a methodology to enable an absolute measurement of a

subwavelength longitudinal displacement introduced by a piezo-electric actuator. It is

based on the fact that all the information on the displacement is contained within the

relative strength of the various harmonics that arise due to the phase modulation. This

method does not require any assumption regarding the nature of the light source.

With the calibration in hand, it is straightforward to estimate the limit of sensitivity

of the interferometer given by (4.10). Usually, the ultimate limit of detection (which

scales with
1p
N

) is estimated by measuring the optical power contained in the signal

�eld[Verlot 09]. Doing so necessitate to know the responsivity of the photodiode and

also to precisely measure all the �eld quantities that de�ne the detection limit such as

the fringes contrast for mode-matching. The method that we propose here does not

require any of this knowledge.

5.2.1 Calibration of displacement

5.2.1.1 Methodology

We begin by considering that the signal �eld is phase modulated. Under the assumption

that the phase modulation is linear with the voltage applied to the piezo element, we

write the optical phase as

φmod = k ·n ·d(V ) ·sin[ΩRF t] (5.3)

where k = 2π
λ

is the �eld’s wavenumber, n is the index of refraction of air, d(V ) is the

longitudinal displacement that we need to determine, and ΩRF is the modulation fre-

quency. The signal �eld is consequently written as

E(+)
sig(x, t)= E0αs ws(x, t) eiφmod

(5.4)

where we set αs as a real quantity. Therefore, the homodyne signal (3.8) writes as

I− = 2
√

NLO Γc ·αs cos
[
φ0 +φmod

]
(5.5)
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where Γc is the coherence between the two �elds and φ0 is the phase of the local os-

cillator. We remind that the responsivity of the detector is contained implicitly in the

de�nition of the photocurrent. Note also that this measurement is done with no mode

construction: the mode in the signal �eld is supposed to be similar to the mode in the

local oscillator �eld, i.e. the mean-�eld mode. Any mismatch in amplitude or in phase

between the �elds is contained in the coherence Γc.

For a displacement smaller than the optical wavelength kḋ ¿ 1, the homodyne signal

may be expanded on a Bessel function basis. It yields:

I− ' 2
√

NLO Γc ·αs
[
J0(k n d) cosφ0 (5.6)

−2J1(k n d)sinφ0 sin[ΩRF t]+2 J2(k n d)cosφ0 cos[2ΩRF t]+ . . .
]

We can see that the signal at the fundamental frequency ΩRF is maximal for a relative

phase o�set between the two �elds φ0 = π
2 . It means that the LO needs to be overlapped

with the phase quadrature of the signal �eld.

The amplitude quadrature of the �eld contains a DC term which corresponds to the

energy in the two �elds and the second harmonic of the modulation, which contains

information about the longitudinal displacement d.

At an analysis frequency where the only noise present arises from �uctuations of

quantum vacuum, the noise in the detection is given from (4.7) with σ= 1:

∆I− =
√

NLO (5.7)

which allows to write the signal to noise ratio as

Σ= 2Γc ·αs
[
J0(k n d) cosφ0 (5.8)

−2J1(k n d)sinφ0 sin[ΩRF t]+2 J2(k n d)cosφ0 cos[2ΩRF t]+ . . .
]

≡Σ(0) +Σ(1) +Σ(2)

This expression shows that the signal-to-noise shows di�erent harmonics which depend

on the energy contained in the signal �eld.

By computing the ratio of the �rst and second harmonic, we have

Σ(2)

Σ(1) =
∣∣∣∣ J2(k n d)
J1(k n d)

∣∣∣∣' k n d
4

(5.9)

which is independent on the energy in the signal �eld and varies linearly with the optical

displacement d.

Therefore, the relative strength of the harmonics of the signal-to-noise ratio is linearly

related to the displacement, which enables a direct calibration.
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Figure 5.7: Retrieved traces at the output of the interferometer when sweeping the

relative phase between the two arms. Dashed: DC signal of a single photodiode. Straight:

Demodulation of the �rst harmonic for a phase modulation. Note that the two signals

are in perfect quadrature.

5.2.1.2 Experimental procedure

To retrieve the displacement d(V ) as a function of the applied voltage V , we then need

to measure the power of the �rst and second harmonics of the signal-to-noise ratio for

di�erent voltages.

Measuring the �rst harmonic is straightforward. We set the interferometer in homo-

dyne con�guration by setting approximately 10 times more power in the local oscillator

arm than in the signal arm (as to be insensitive to the noise in the local oscillator, as it

was discussed in section 3.3.1). The output of both photodiodes are split at 10 kHz using

a biased-tee. This allows to separate the DC to the high frequency components of (5.8).

On �gure 5.7, we plot the DC term and the demodulated �rst harmonic of equation

(5.8). Using the scheme introduced by �gure 3.10, we sweep the relative phase between

the two arms of the interferometer while retrieving simultaneously the DC fringes and

we demodulated the �rst harmonic
2
. We see that both are in quadrature, such that the

DC may be used as an error signal to lock the delay. When the DC term is zero, the

signal from the �rst harmonic is maximal. This allows to pinpoint the phase quadrature

with a good precision.

We drive the piezo-electric actuator
3

at a frequency of 2 MHz and we ramp the voltage

2
The relative amplitude of these two traces is not meaningful in this plot since we normalized them to

1.

3
We stress that this method does not only calibrate a displacement: it may more generally be utilized

to calibrate a phase o�set. It can thus be used to calibrate the response of an electro-optic modulator using

the same scheme.
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from 0 to 10 V using a function generator. Note that this signal is not ampli�ed, which

guarantees that the electric signal that is sent to the piezo element is linear. The relative

phase φ0 is locked on the phase quadrature using a PI lockbox Newfocus LB1005.

To measure the second harmonic, we need to lock the relative phase on the amplitude

quadrature. To do so, we utilize the demodulated signal of the �rst harmonic, which is in

quadrature with the DC fringes. This demodulated signal then provides the error signal

to lock on the amplitude quadrature.

Therefore, using this signal, it is possible to lock the interferometer on the amplitude

quadrature and measure the power contained in the second harmonic. This is achieved

by adding another modulating element to the interferometer (such as another piezo-

electric actuator or an EOM). It is modulated at a di�erent RF frequency such that it

does not in�uence the modulation of the �rst one, and used to generate the error signal.

That way, the locking apparatus is di�erent from the one that we measure.

Note also that the strength of the second harmonic is much lower than the funda-

mental. It is therefore necessary to have both a strong phase modulation and a detection

with a low noise �oor in order to measure this amplitude modulation. Therefore, we

use a spectrum analyzer for this calibration. Demodulation is used only to lock on the

amplitude quadrature.

We add that an ultrafast source is not required for this calibration procedure.

5.2.1.3 Results

To compute the signal-to-noise using a spectrum analyzer, we need to consider how the

noise is retrieved.

On a general manner, we can write the measurement M(t) as a sum of signal S(t)
and noise N(t): M(t) = S(t)+ N(t). Computing the PSD from (3.34) yields M2( f ) =
S2( f )+ N2( f ) in the absence of correlation between signal and noise. The signal-to-

noise ratio is then simply given by

S
N

( f )≡Σ( f )=
√√√√(

M
N

( f )
)2

−1 (5.10)

Therefore, we need to measure the signal SI−( fRF ) at the fRF frequency given by (3.33)

and the noise in the measurement by measuring the homodyne signal in the absence of

a modulation. The signal-to-noise is then computed using (5.10).

The evolution of the amplitude of both the fundamental and second harmonic peaks

are depicted on �gure 5.8a and b as a function of the applied voltage.

We can see that the �rst harmonic grows linearly for small values of the displacement

(in agreement with J1(d) ' d
2 ). This also con�rms our assumption that the modulating

element responds linearly to voltage on the investigated range.
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Figure 5.8: Phase modulation harmonics observed in the homodyne signal as a function

of the voltage applied to the piezo-electric actuator. The fundamental harmonic (a) grows

linearly with displacement, whereas the second harmonic (b) grows quadratically. The

ratio (c) of the two signal-to-noise shows a linear response to the displacement, and

allows to retrieve the calibration.

The growth of the second harmonic is considerably smaller and scales quadratically

with displacement (in agreement with J2(d)' d2

8 ). Both those signals are dependent on

the power contained in the signal �eld, as shown by (5.8).

The ratio of the two harmonics depicted by 5.8c, however, is independent on the

strength of the signal �eld. As expected, the ratio grows linearly with displacement,

and a linear �t according to (5.9) retrieves an optical displacement of

d(V )= 0.55±0.01 Å
/

Volt (5.11)

for a center wavelength λ= 2π
k = 795 nm. Since the experiment was done in laboratory

air, we set the index of refraction n = 1. The calibration was achieved at 1.95 MHz.

5.2.2 Sensitivity measurement

With the calibration in hand, it is then possible to estimate the sensitivity of the in-

terferometer to a phase measurement. We again lock the relative phase on the phase

quadrature and ramp the voltage as in 5.8a, albeit over a reduced range. This is achieved

with a 42 dB electric attenuator at the output of the function generator. The scan result

is shown on �gure 5.9.

The smallest amplitude dmin that is measurable occurs for a modulation amplitude that

is equal to the background quantum noise, i.e. Σ(1) = 1.0. We �nd that the minimum

sensitivity is dmin = 5.0 ± 0.1 · 10−14
m. The retrieved signal results from collecting

photons within a time interval corresponding to a resolution bandwidth of ∆νRBW =
50 Hz. After renormalization by the resolution bandwidth, the minimum detectable
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Figure 5.9: Time-averaged displacement sensitivity of the mirror-mounted piezo ac-

tuator. The displacement at which the signal-to-noise is equal to 1 is found to be

dmin = 5.0±0.1·10−14
m. The integration time is 9 ms which amount to ∼ 1012

photons.

longitudinal displacement becomes

dmin = 7.0±0.1 ·10−15
m

/p
Hz (5.12)

We want to compare this value to the one predicted by the Cramér-Rao bound for phase

estimation. Using (4.30), it is given by

dSQL
min =

λ0

4π
p

N
(5.13)

where λ0 is the center wavelength of the light. We then need to evaluate the number of

photons that are detected during the calibration.

As we hinted in the introduction to this section, estimating the photon number neces-

sitates to take into account the quantum e�ciency of the detector as well as the fringe

contrast. For detectors PDA36A from Thorlabs, the responsivity at 795 nm is R = 0.5
A/W, leading to a quantum e�ciency of η= 78%.

The contrast of the optical fringes that we measured is C = 51%. This allows to

compute the coherence of the �eld using (3.14). The DC output of the detectors shows a

voltage of 0.365 V in the signal beam and 4.13 V in the local oscillator �eld. We therefore

estimate a coherence of Γc ≈ 94%.

Moreover, we need to estimate the acquisition time of the spectrum analyzer. Since

it utilizes a Gaussian �lter, the acquisition window is opened for a time ∆t that can be

calculated from the time-bandwidth product of the �lter. Namely, we have ∆t∆νRBW =
0.44 where ∆νRBW corresponds to the resolution bandwidth of the apparatus. We then

estimate the width of the time window to be ∆t = 9 ms.

The number of detected photons during the time ∆t is therefore given by

N = η ·Γ2
c ·

Ps

~ω0
·∆t (5.14)
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where Ps = 115 µW is the power in the signal �eld. We then estimate N ' 2.7 ·1012

photons.

Plugging the detected number of photons into the theoretical detection limit (5.13)

and normalizing by the resolution bandwidth then yields

dSQL
min = 5.5 ·10−15

m

/p
Hz (5.15)

Thus, the experimentally recovered sensitivity is in fair agreement with the one esti-

mated from the standard quantum limit

(
dmin

/
dSQL
min ' 1.27

)
.

We stress that the observed displacement is a time-average over the detection time

in the millisecond scale. This measurement does not resolve an absolute variation on

an ultrafast timescale. Also, we add that the retrieved sensitivity is very dependent on

the purity of the phase modulation. Indeed, if the retrieved signal contains a mixture of

longitudinal and transverse displacement (that we’ve seen in section 4.3.1 can lie in the

phase quadrature of the �eld), the measured sensitivity won’t coincide with the Cramér-

Rao bound anymore.

Still, it is quite remarkable that the retrieved sensitivity is in very good agreement

with the theoretical expectation.

5.3 Multipixel detection

Having a way to calibrate the longitudinal displacement with a good precision, we may

now move on to extracting parameters from the �eld using a modal approach. Toward

that aim, we �rst need to develop the design and construction of the multipixel detection.

5.3.1 Design and construction

5.3.1.1 Optical and electrical design

The multipixel homodyne detection of �gure 3.8 is put instead of the second homodyne

detection on �gure 3.10. The two beams are focussed on two plane-ruled gratings (RG-

1200-1000 from Newport) which are then imaged on microlenses arrays. These allow to

precisely focus the spectral slices on each pixel of the detector array without any gaps
4
.

This optical layout is shown on �gure 5.10.

4
Though not mandatory, this focussing increases the signal for quantum application, when detecting

squeezed vacuum. In our case, we noticed inconsistent signals at high frequency when the light is being

di�racted on the border of pixels. We therefore opted for the additional microlenses array.
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Figure 5.10: Picture of the multipixel homodyne detection. The beams are schematically

overlayed. The left detector is at a noticeable angle in the beam because of the way the

photodiode array is clamped. Both di�racted beams are actually at zero incidence on the

arrays to maximize e�ciency.

We chose a mirror-symmetry for the construction of both detectors for an easier align-

ment. To ensure a proper alignment, we aligned carefully the di�raction grating as not

to introduce any tilt in the di�racted beams.

Each detector and each microlenses array are mounted on lateral translation stages,

which is very important for alignement. There is no need for a longitudinal translation

stage on the detectors.

The photodiodes array, built by Hamamatsu, are composed of 16 Si photodiodes with

a quantum e�ciency of 90%. They are plugged into a self-built motherboard. Each

pixel is connected to a transimpedance ampli�er which split the signal into a DC and

high-frequency part (cuto� frequency of ∼ 200 kHz). The gain of the ampli�er may be

adjusted using a potentiometer. It allows to calibrate the gain of each pixel.

On the left side of picture 5.10, we can see the demodulation electronics. For simplicity,

we operated the detection with 8 pixels, plugging only every other pixels. Each HF

signal is demodulated. The path starts with taking the di�erence of the photocurrents of

both detectors (with a passive subtractor ZFSC-2-1 from Mini-circuits), and a 20 kHz

high-pass �lter is added to ensure no saturation of the demodulation electronics. The

di�erence signal is subsequently ampli�ed and mixed with the electronic local oscillator.

The output of the mixer is then low-pass �ltered with a 15 kHz bandwidth. This scheme

is identical for all the 16 pixels that result in the 8 signals. These are digitalized using
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an acquisition card PCIe-6361 from National Instrument. This card can acquire 16
channels simultaneously at an acquisition rate of 2 MHz

5
. The analogical signals from

the demodulation are acquired using a BNC connector block BNC-2110.

The DC output of the photodiodes are connected into another connector block BNC-

2111 which allows for the acquisition of 16 simultaneous signals. As we will see, the

acquisition of all of the DC allows to precisely align the detection, and serves as a good

reference before starting a measurement.

We also take two DC signals from the center pixels of each detectors to lock the delay

between the arms of the interferometer (by taking the di�erence to generate an error

signal, see �gure 5.7).

The data acquisition is then accomplished using Labview.

5.3.1.2 Alignement procedure

Once the optical layout is set, we need to carefully align the detection. When construct-

ing a homodyne detection, it is necessary to ensure that the photons are distributed

equally between the two outputs of the combining beamsplitter. This is required to nul-

lify the energy terms of signal and LO �eld in (3.4) when taking the di�erence of the

photocurrents. Failing to do so would result in an unbalanced detection where the noise

from the local oscillator remains.

When using two detectors, this is achieved by �ne-tuning the angle on the beamsplit-

ter until the energy detected by both detector is equal
6
. However, since this scheme

integrates over the full optical spectrum, it does not ensure that every part of the spec-

trum is perfectly balanced.

To balance the power on the multipixel detection, we �rst con�rmed that each DC

output of the detector was balanced, i.e. that the same voltage was read for the same

optical power. This was accomplished by using the pulse-shaper as an interference �lter,

selecting a very narrow spectral slice centered at 795 nm, and using the translation

stages to move each pixel in the beam. Therefore, we were able to con�rm that each DC

were balanced and could be used as a reference.

We then maximized the sum of the DC voltages of each detector by �ne-tuning the

position of the microlenses array. Then, by summing the signal received by both de-

tectors (thus computing the total received), we balanced the beamsplitter by tuning its

angle.

Eventually, we need to �nd a way to ensure that the power in each spectral slice rather

than the total power is balanced. By monitoring every DC simultaneously, we compared

5
For a single channel, thus, the simultaneous acquisition rate for 8 pixels is limited to 250 kHz per

channel.

6
Since the stronger beam is the local oscillator, this procedure is accomplished using this beam only.
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Figure 5.11: Acquisition of the DC signal of signal and local oscillator �elds for a single

detector. Each points represents a pixel of the detector.

the power pixel by pixel. By playing with the lateral position of both detectors and

microlenses arrays, we are able to overlap the two spectra perfectly
7
.

However, this procedure does not ensure that the signal �eld is also balanced. It has

been previously observed and con�rmed in this experiment. It is believed to originate

from polarization imbalance between the two �elds. Fortunately, this has no e�ect on

the �nal measurement, since the signal �eld is weaker than the local oscillator. It does

however come into play for locking the relative phase. Indeed, since we use the di�er-

ence of the DC (which is proportional to power), the proper lock point is thus not de�ned

as being exactly zero. The o�set can be determined by measuring the imbalance of the

signal �eld. Albeit small, this di�erence is enough to considerably change the outcome

in a sensitive measurement.

The mismatch between the signal and local oscillator spectra is shown on �gure 5.11.

This particular e�ect is important for modes construction and needs to be accounted for.

5.3.2 Gain calibration
Now that the power received by both detector is balanced, we move on to the gain

calibration procedure.

As it was described in 5.3.1.1, the high frequency output of the detectors have a vari-

able gain that may be tuned. This is important to ensure that the retrieved signal is

equal on all pixel for the same optical power. We therefore need to balance the gain of

all pixels of a single detector, but we also need to balance both detectors. If they are not

balanced, the situation is equivalent to an unbalanced beamsplitter.

7
Note that this overlapping procedure is easier with short spectra. Large bandwidth means that the

uncertainty in the re�ectivity of all optics gets more noticeable.
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To calibrate the gain, we again use the pulse shaper as an interference �lter, allowing

to focus a �xed amount of power on a single pixel. A possible strategy from there is

to record the variance of the demodulated signal at a quantum limited frequency while

moving the detector laterally. Since this variance is proportional to the photon number,

assuming that the photodiodes have the same response, it is possible to tune the gain to

set each variance on the same value.

This method is easy to implement, yet does not yield the best result. Indeed, measuring

the variance of the demodulated signal is not very stable, and the measurement needs

to be averaged over a few seconds in order to be reproducible. The whole calibration

procedure thus takes longer to achieve, and is subject to slow power �uctuations of the

laser source.

We adopted another technique which is widespread to calibrate photodiodes. Since

we need only the local oscillator beam to calibrate, we may introduce any dispersive

element in the beam without being concerned about overlap. We then introduced an

acousto-optic modulator (MT110-A1.5-IR from AA Opto-Electronic) before the beam

splitter. We optimized its alignement such that the e�ciency of di�raction is maximum.

Blocking the di�racted beam, we may then modulate its amplitude, such that it intro-

duces an amplitude modulation on the beam
8
. For consistency, we chose to modulate

the amplitude of the �eld at the same frequency that we want to do the measurement,

i.e. around 2 MHz.

Demodulating this signal, we then have a stable reference to do the calibration. We

send light to a single detector and move it such that the beam hits a single pixel at a time,

and tune the gain to put the demodulated signal on the reference. This method allows

to calibrate not only the photodiode’s ampli�er, but also all the detection scheme.

With a single detector calibrated, we then put the light on the same pixel of both

detector and look at the di�erence of the photocurrents. We tune the gain of the second

detector to make that signal zero, ensuring that both detectors are balanced. Iterating

that procedure over all pixels allows to complete the calibration procedure.

To con�rm that the calibration is successful, we remove the AOM and measure the

variance of the di�erence of the photocurrents for a given optical power. We then com-

pare the retrieved spectral shape to the DC spectrum. As we said, both are proportional

to the photon number and should therefore be similar. The measurement is shown on

�gure 5.12.

We can see on this plot that the DC spectrum overlaps very well with the HF variance
9
.

8
We remind that we inject only a single spectral slice of the spectrum. We then do not need to take

into account the response of the AOM with respect to optical wavelength.

9
Note that the variance retrieved for a single detector rather than the di�erence of both also retrieves

the shot noise at a high enough detection frequency. The signal is however divided by two since it receives

half the number of photons.
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Figure 5.12: Measurement of the DC signal of the local oscillator for a single detector

and the variance of the di�erence of photocurrents. Both overlap, showing a succesful

calibration.

This means that measuring the variance of the homodyne signal at a high enough fre-

quency (without any element modulating) does indeed retrieve the shot noise statistics,

and may be used to compute the signal-to-noise in our measurements.

5.3.3 Space-wavelength mapping

Another important part of the procedure is to map pixels to wavelength. This is achieved

using again the pulse shaper. Since it is already calibrated, we chose to use it as a refer-

ence to calibrate the mapping of the pixels.

To do so, we use again the shaper as an interference �lter where we sweep its central

wavelength. For each point, we record the DC of each pixels for both detectors. The

result is shown on �gure 5.13a.

We �t a Gaussian through each signal of 5.13a and map the mean wavelength as a

function of the pixel number. This is done for both detectors. The resulting calibration

is shown on 5.13b. Note that the mapping of both detectors is symmetric, thanks to the

good optical design.

We can see from the mapping that we indeed plugged every other pixels, except for

the ones on the edge. This is intentional, since the amount of power is reduced at the

edge of the spectrum. Therefore, we moved the edge pixel inwards, allowing to have

enough optical power to rise the signal above the noise level.
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Figure 5.13: Space to wavelength mapping of the detectors. (a) Acquisition of the de-

tected DC signal when the center wavelength of a small spectral slice is sweeped on a

detector. (b) Resulting calibration for both detectors.

5.3.4 Clearance
Finally, another important step in characterizing a photodiode ampli�er is to determine

its saturation point.

To determine this point, we measure the variance of each signal while increasing

the optical power. The retrieved signal should increase linearly with power. Saturation

occurs when the ampli�ed signal does no longer grow linearly with power.

With the ampli�er than is used, the saturation phenomena occurs when the variance

of the signal drops suddenly to the noise �oor of the detection. The amount of optical

power at which the signal crashes de�nes the maximum power at which the detection

may be operated. In turn, this de�nes the maximum clearance of the system. Doing so,

we found the saturation point of the system to be 8 dB above the dark noise (per pixel).

This value, even if it is not very high for very sensitive quantum application, such as

detection of squeezed vacuum, is more than enough for our applications.

Knowing the saturation point, we usually operated our homodyne detection with a

power level that maximizes the signal while keeping a safe distance from saturation.

5.4 Spectrally-resolved multimode parameter estima-
tion

We are now equipped to investigate the multimode structure of the �eld using spectrally-

resolved detection. We �rst use the multipixel detection to show the existence of a higher
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order mode in which photons are displaced when the optical path is modulated.

We then develop how the modes are constructed under the restriction that both spec-

tra from the signal and local oscillator �elds are not exactly similar. Finally, we apply this

scheme to the measurement of phase and group delay independently, and to construct

the detection mode for space-time positioning.

5.4.1 A glimpse at the multimode structure
We �rst consider the homodyne signal out of the multipixel detection when the phase of

the �eld is modulated, as developed in 4.2.1. Let us write the integrand of the homodyne

signal as

i(Ω)=
√

NLO α
∗
s ·

[
v0(Ω)− i

(
ω0tϕ ·v0(Ω)+∆ωtg ·v1(Ω)

)] ·uLO(Ω)eiφ0 +c.c. (5.16)

where c.c. stands for conjugated complex. The homodyne signal is written I− = ∫
dΩi(Ω).

We can see in this expression that the time-of-�ight mode carries information. How-

ever, the signal is dominated by the phase mode, since ω0 À ∆ω. We propose here to

experimentally suppress the contribution of the phase mode from (5.16). What should

remain is the time-of-�ight mode (and higher order modes not written in (5.16)), con-

�rming the validity of the modal expansion of the �eld.

For a phase modulation occurring at a quantum limited frequency, the noise in the

measurement at an optical frequency Ω may be written as ∆i(Ω)=√
NLO uLO(Ω). The

signal-to-noise is consequently given by

Σ(Ω)=α∗
s ·

[
v0(Ω)− i

(
ω0tϕ ·v0(Ω)+∆ωtg ·v1(Ω)

)]
eiφ0 +c.c.≡ 2Re

{
as(Ω)eiφ0

}
(5.17)

which is found to be the signal’s �eld envelope (4.1) in the quadrature de�ned by the

local oscillator’s phase. This quantity can be steadily evaluated using the multipixel

detection and setting the relative phase between the two arms of the interferometer.

The signal-to-noise 5.17 can be decomposed as a part independent of the modulation

(i.e. DC) in the amplitude quadrature of the �eld and a part the is modulated at a high

frequency that lies in the phase quadrature. On the amplitude quadrature, we have

ΣX (Ω)= 2Re
{
α∗

s v0(Ω)
}

(5.18)

which does not contain any high frequency modulation. On the contrary, the phase

quadrature’s signal-to-noise writes as

ΣP (Ω)= 2Re
{
α∗

s
(
ω0tϕ ·v0(Ω)+∆ωtg ·v1(Ω)

)}
(5.19)
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which contains the modulated terms tϕ and tg. The signal given by equation 5.19 may

thus be measured by locking the interferometer on the phase quadrature and demodu-

lating at the modulation frequency. As we pointed earlier, the main contribution in this

signal comes from the phase mode v0, and the displacement contained in v1 is small in

comparison. However, the DC signal actually contains the �rst mode without the lon-

gitudinal displacement. At the DC output of the photodiodes, we measure the square

of (5.18) (since it measures power) with a proportionality factor due to the di�erent re-

sponse in electronics.

To extract higher order components from (5.16), one may subtract the DC signal with

a proper gain as to cancel the phase mode contribution. What should remain is the

contribution of higher order modes.

Consider that we record the signal-to-noise given by (5.19) for a given phase modula-

tion. We then use the DC of signal’s �eld Ps(Ω), which we write as a function of (5.18)

as Ps(Ω)= κ ·
(
ΣDC

)2
, where κ is a proportionality factor.

To remove the phase mode’s contribution from (5.16), we write the di�erence signal

D as

D(Ω)=ΣHF (Ω)− g ·
√

Ps(Ω) =α∗
s

[(
ω0tϕ− g

p
κ

) ·v0(Ω)+∆ωtg ·v1(Ω)
]

(5.20)

where g is an arbitrary gain in post-processing that we propose to determine. More

precisely, the phase mode contribution is zero for:

g = ω0tϕp
κ

(5.21)

At �rst glance, it seems like determining g requires to know the values of unknown

parameters. However, one may note that the integral of the phase mode

∫
dΩv0(Ω)

is non-zero, since it is an even function for the considered spectrum. Conversely, the

integral of the time-of-�ight mode yields zero by construction

∫
dΩv1(Ω)= 0. We stress

that this last remark is exact for Gaussian spectra. In the case where the optical spectrum

is a little asymmetric, we may still consider that the integral of the time-of-�ight mode,

which is an odd function, is much smaller than the integral of the phase mode. It is

therefore a reasonable hypothesis to neglect this term.

Using this assertion, the gain is then found to be:

g =
∫

dΩΣHF (Ω)∫
dΩ

√
Ps(Ω)

(5.22)

In term of our experimental setup where we have 8 pixels, these integrals are discrete

summation over the pixels.
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Figure 5.14: Homodyne signal without the phase mode contribution, given by (5.20)

with the proper gain (5.21). The spectral structure clearly resembles the time-of-�ight

mode. Higher order modes are also contained in this spectrum, but are not as obvious

to the eye. For comparison, we overlayed the signal-to-noise of the acquisition which

is clearly dominated by the phase mode. It is clearly not obvious that such spectrum

contains a time-of-�ight component.

The result of this procedure when modulating the piezo actuator that was calibrated

in section (5.2.1) is presented in �gure 5.14.

We can see that the remaining spectral structure in the di�erence signal D shows a

strong contribution from a time-of-�ight mode. The �rst moment of the DC spectrum

is found to be µ = 796 nm, which is in good agreement with the point at which the

structure of (5.2.1) crosses zero. The right scale of this plot is attached to the signal-to-

noise (5.19) which is overlayed. The left scale is therefore also in the same units of signal

relative to noise. Note that the di�erence signal is much smaller, which is to be expected

since the group velocity modulation in air is negligible. It is remarkable however that it

may still be extracted.

We stress also that although the sign of the extracted mode 5.14 (i.e. D < 0 for λ>λ0)

is right on this �gure, it depends on the lock point. More speci�cally, looking back at

�gure 5.7, we see that the two sides of the DC fringes are equivalent respectively to a

maximum and to a minimum of the demodulated signal. Therefore, depending on which

side of the DC fringe we lock on (which we remind is our error signal), the sign of the

retrieved signal switches. On the measurement that yielded the result 5.14, we were

locked on an “up-fringe”, corresponding to a positive HF signal.

This measurement is merely to show that the multimode structure of the �eld is indeed

contained in our spectrally-resolved measurement. We do not try to extract any physical

value at this point since we want to construct projection modes to do so.
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5.4.2 Signal extraction
We now present the method to construct the projection modes. As we discussed in 4.2,

the modes may be constructed from a Hermite-Gauss basis, but only for a Gaussian

mean �eld mode. In the general case, we need to know the spectrum of the mean �eld

and de�ne the next mode in the basis using the theoretical derivation from section 4.2.

In the previous experiment, we showed that it is possible to retrieve the time-of-�ight

mode using the spectrum from the signal �eld. Such a method could then potentially be

used to construct the detection basis. We experimented with various ways to construct

this basis, and we expand in this section the method that was eventually chosen.

Using the multipixel homodyne detection, what is measured is the signal (5.16) inte-

grated on each spectral slice. To properly extract the information carried by the signal

�eld, we remind that we need to set a gain gn on each signal, as depicted by equation

(3.49). The homodyne signal of the n
th

pixel is written as

I−,n =
√

NLO α
∗
s gn

Ωn+δω/2∫
Ωn−δω/2

dΩu∗
s (Ω) ·uLO(Ω) eiφ0 + c.c. (5.23)

where δω is the spectral width of a pixel and us is the envelope of the signal �eld, which

may be expanded on the projection modes basis {vi} as us(Ω)=∑
i pi vi(Ω).

The total homodyne signal is obtained by summing the individual contribution from

each pixel. It reads:

I− =
√

NLO α
∗
s
∑
n

gn

Ωn+δω/2∫
Ωn−δω/2

dΩ

(∑
i

pi v∗i (Ω)

)
·uLO(Ω) + c.c. (5.24)

≡
√

NLO α
∗
s
∑
n,i

pi gnΓn,i + c.c. (5.25)

where Γn,i is the overlap integral between the local oscillator mode and the i
th

mode of

the signal �eld over the n
th

spectral band. To show how to chose the gain g in order to

extract a given mode j, we rewrite (5.24) as:

I− =
√

NLO α
∗
s
∑

i
pi ·

(∑
n

gn ·Γn,i

)
+ c.c. (5.26)

Since pi are physical parameters, they are real quantities, and we also de�ned the gains

gn as real numbers. This allows to write:

I− = 2
√

NLO α
∗
s
∑

i
pi ·

(∑
n

gn ·Re
{
Γn,i

})
(5.27)

≡ 2
√

NLO α
∗
s
∑

i
pi · 〈 g , Γi 〉 (5.28)
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We can see from this last expression that the homodyne signal is proportional to the

scalar product between the gain function and the overlap integral in the i
th

mode. In the

case were the local oscillator is a �at function, the gain that allows to retrieve a given

mode j of the projection basis is g = ∫
v j , such that 〈 g , Γi 〉 = δi j . This gain g then

selects a single term in the sum, but it needs to be constructed knowing the shape of v j ,

which is deduced from v0.

Hence, to reconstruct a given mode v j from the signal �eld, we need to know the local

oscillator’s envelope uLO, but also the mean-�eld mode v0. In the continuous limit of an

in�nite number of pixels n, this reconstruction is exact. In our case, the pixelization of

the detection can only approximate the structure of the modes, such that the reconstruc-

tion is not exact. It is however su�cient to ensure orthogonality between the projection

modes, which is the most important in parameter estimations.

The noise in the measurement is given by ∆I− = NLO
∑

n g2
n
∫
δω dΩ |uLO(Ω)|2. Con-

sequently, the signal-to-noise is given by

Σ=α∗
s

∑
n gn

∫
dΩu∗

s (Ω) ·uLO(Ω)√∑
n g2

n
∫

dΩ |uLO(Ω)|2
eiφ0 +c.c. (5.29)

where the integrals are over the spectral width δω around the n
th

pixel. Note that the

gain function needs to be considered in the noise of the measurement.

In principle, the knowledge of the envelopes v0 and uLO should be acquired by mea-

suring the DC of the signal and local oscillator’s �elds. The mode vi can then be pre-

dicted, and the gain that needs to be applied to uLO can be computed.

However, we have discovered that this method did not yield the best reproducibility.

The measured homodyne signal is quite sensitive to di�erent parameters such as tur-

bulences that slightly a�ect the lock point. As a consequence, the signal-to-noise (5.17)

shows a di�erent spectral shape than the signal’s spectrum recovered by the DC output

of the detectors. This small o�set is enough to make the output of each measurement

very di�erent, and as a consequence, we had to devise another way to construct the

modes.

The solution that we eventually picked is to use the demodulated homodyne signal

to extract the mean-�eld mode. This method requires the assumption that demodulated

signal is a pure phase modulation, which is a very reasonable hypothesis with our spatial

�ltering. More speci�cally, we consider the phase modulation as φm(ω) =ω · tm, where

tm = δLn/c.

We divide the signal-to-noise (5.29) of each individual pixel by the optical frequency

ωn. This treatment does not exactly retrieve the signal envelope because of the pixeliza-

tion of the signal to noise. It does however provide a stable reference that is speci�c

to each measurement and that takes systematic errors into account. For simplicity, we

refer to that retrieved spectrum as the signal �eld envelope.



134 5. MEASURING THE MULTIMODE FIELD

Having obtained the signal spectrum, we may now construct the modes basis by ap-

plying a proper gain gn to each pixel. We remind that, in the Gaussian case, this basis is

de�ned by the Hermite-Gauss basis, and the gains gn are therefore given by the Hermite

polynomials.

In the case where the envelope of the signal �eld is not Gaussian, the modes are more

di�cult to construct. The time-of-�ight mode is formally de�ned by (4.18) as the deriva-

tive of the mean-�eld mode with respect to frequency. Computing the derivative of the

retrieved mean-�eld mode would be a possibility, however, it is not a stable solution.

Indeed, dealing with a discretized spectrum, a numerical derivation is very unstable.

Hence, this method does not ensure the best reproducibility.

Another convenient approximation may be done here, considering that our spectra

are close to being Gaussian. Therefore, the gain that needs to be applied must also be

close to Hermite polynomials. To construct the modes, we then multiply the envelope

of the signal �eld by the proper Hermite polynomial. The obtained spectrum is then

orthogonalized to the mean-�eld mode and normalized.

Such an algorithm does not ensure that the constructed time-of-�ight mode is ex-

actly the derivative of the mean-�eld. However, for our applications, we want to extract

the information carried by a given mode, independently of another. Doing so requires

perfect orthogonality between the projection modes. It is therefore logical that the ex-

periment is very sensitive to the orthogonality between the modes. Moreover, the most

important feature of the time-of-�ight mode is the π phase shift at the center of the

spectrum, which is easy to achieve using this method.

Finally, one last problem to address is the fact that the local oscillator spectrum is

di�erent from the signal, as shown by �gure 5.11. Fortunately, this mismatch is easy to

account for when constructing the gain
10

. By dividing the projection mode by the local

oscillator’s spectrum, we multiply the result to the homodyne signal (5.23). This allows

to make sure that the envelope of the local oscillator simpli�es in the process, and we

project on the proper mode de�ned by the signal’s mean-�eld mode.

This process is detailed in appendix C.

5.4.3 Heterodyne measurements: the need for a stable reference
Before proceeding even further, we need to address yet another complexity in the mea-

surement scheme.

We aim to measure small parameters, which as we have discovered in 5.4.1 is possible.

We indeed extracted a small signal (on the order of a signal to noise ratio of 1) from a

10
For posterity, it is worth mentioning that an interesting way to tackle this problem would be to use

the shaper to match both spectra. We did not investigate this method, but it may be worthwhile to pursue

it.
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much stronger signal (SNR of ∼ 300). The result that was presented in that section is

however hard to reproduce. It is subject to numerous systematic errors, such as tur-

bulences and dependency on the lock point of the interferometer. Moreover, it is not

surprising that the outcome of this measurement is highly dependent on how the �l-

tering �ber is injected. Such a device is quite sensitive to alignement and is subject to

variations. It has been observed that a small change in the injection of the �ber (small

enough that the coupling is not noticeably a�ected) results in a totally di�erent mea-

surement. This may be explained by the di�erence in mode-matching between the two

beams of the interferometer. The local oscillator beam is smaller than the signal and is

then coupled di�erently into the �ber. Small changes in the injection therefore result in

a di�erent interference pattern.

It is thus very di�cult to �nd a good witness to the proper alignement of the experi-

ment in this con�guration. We therefore needed to �nd a way to ensure good operation

of the experiment with a solid reproducibility, in an e�ort to gain in precision.

What usually provides a good reference is the DC signal from the detectors. However,

using such a reference requires to somehow know the result of the experiment before

measuring it. Indeed, a possibility would be to monitor the di�erence signal from �gure

5.14 while tweaking the alignement and the lock point of the interferometer. Comput-

ing before hand the amount of signal that should remain on the time-of-�ight mode,

this would provide a reference. More than just being not an exceptionally rigorous ex-

perimental procedure, it is cumbersome to do so, since we need to measure multiple

quantities to compute the di�erence signal (like the shot noise).

We then tried to �nd other references, considering that the experiment would work

better if everything were measured simultaneously, in order to account for stability is-

sues. The idea then came to simultaneously measure two modulations which should be

similar. For example, if one were to modulate the phase of the �eld using two similar

modulators, one would retrieve exactly the same signal
11

. If not, it then means that the

experiment is not properly aligned (di�erent spatial components couple di�erently into

the �ber).

We consequently modulated two di�erent piezo actuators at di�erent RF frequencies.

These two actuators are placed at very di�erent distances in the interferometers, such

that their amount of spatial displacement is di�erent. If, for example, we do not in-

ject properly the �ber, their higher order spatial components will be transmitted with

di�erent weight, resulting in a di�erent measurement.

We heterodyne the two modulations as to detect them simultaneously. The �rst ac-

tuator is modulated at ΩRF , while the other is modulated at ΩRF +Ωh, where Ωh is

11
We remind that the most relevant measurement is the spectral shape of the phase modulation. The

amplitude of this high-frequency spectrum is not as relevant as its shape, which contains the modal struc-

ture.
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called the heterodyne frequency, and is on the order of a few hundred Hz such that the

signal is not �ltered by the low-pass �lter at the output of the demodulation process.

We demodulate the signal at ΩRF , which then shows a modulation at the Ωh frequency.

By Fourier transforming this signal, isolating the peak at the heterodyne frequency and

Fourier transforming back, we extract the two di�erent signals without any losses
12

.

It is then possible to monitor these two modulations at the same time. This allows

to tweak in real-time the injection and the lock point of the interferometer until both

signals overlap perfectly. Doing so resulted in the best possible reproducibility in this

experiment.

5.4.4 Space-time positioning

At last, we have what is necessary to extract the parameters carried by the multimode

�eld. To perform the measurement, we adopt a strategy similar to the one used for the

calibration (5.2.1.2). We ramp the amplitude of the modulation of a phase modulating

element and record the demodulated signal for each pixel.

Note that modulating an element di�erent than the one that we calibrated does not

require to perform another calibration. By assuming that both modulate the phase of the

�eld in the same way, we just ratio the signal-to-noises of the �rst harmonics to deduce

the displacement.

We then compute the signal-to-noise (5.29) for a given gain function, de�ning a given

projection mode.

5.4.4.1 Phase and time-of-�ight measurements

We propose to �rst measure the minimum variation of distance distance that is pos-

sible to measure using either the phase mode or the time-of-�ight mode. We remind

that the theoretical expression for these is given by equation (4.48) and (4.49). Their

reconstructed spectral shape is plotted on �gure 5.15. By ramping the amplitude of the

modulation, we record the strength of the phase modulation for each part of the spec-

trum. We then compute their signal-to-noise, as shown on �gure 5.16a. By summing

each pixel (�gure 5.16b), we should recover the same sensitivity that we measured using

a non spectrally-resolved homodyne detection for the calibration.

To con�rm that assertion, we measured the power in the signal beam and found 346
µW. Taking into account a quantum e�ciency of the detectors of 90%, a contrast of

90% and a resolution bandwidth (speci�ed by the low-pass �lter for demodulation) of

12
Note that during this process, there is a digital demodulation phase that needs to be determined to

maximize the retrieved heterodyne signal.
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Figure 5.15: Detection modes for space-time positioning. Because of the limited band-

width, the di�erence between the timing mode and the phase mode is negligible but still

noticeable.

15 kHz
13

, we estimate a detected photon number of ∼ 1010
.

The minimum theoretical detectable displacement is then found to be

dSQL
min = 5.2 fm

/p
Hz (5.30)

Taking the longitudinal displacement for which the signal-to-noise of �gure 5.16b is

equal to 1 and normalizing by the resolution bandwidth, we measure an ultimate sensi-

tivity of

dmin,XP = 7.2±0.1 fm

/p
Hz (5.31)

which is once more in good agreement with the theoretical value.

To perform the projective measurement, we take the raw acquisition (i.e. not the

signal-to-noise 5.16a), and linearly �t the response of each pixel. We then perform the

scalar product of these �ts to the �lter of the mode we want to project on. Indeed, the

acquisition already contains the spectral shape of the local oscillator, hence we need only

the �lter part of the modes to perform the projection. This gives the signal for which we

then need to compute the signal-to-noise

The noise is obtained by projecting on the projection mode the variance of vacuum

for each pixel. Note that, from (5.29), we need to take the square of the gain function to

do this projection, the variance is proportional to the number of photon (it is therefore

a power measurement) and the signal is proportional to the square root of the number

13
It is worth stressing that the �lter has a Lorentzian transfer function, in contrast with the spectrum

analyzer that acquires in a Gaussian window. The time-bandwidth product of a Lorentzian is 0.142.
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Figure 5.16: Signal recovered by each pixel of the detection while scanning the am-

plitude of the calibrated piezo actuator. (a) Retrieved signal-to-noise for each pixel. (b)

Total signal-to-noise and linear �t.

of photon (it is a measurement of the �eld). We then obtain the shot-noise projected on

the desired mode
14

.

We may then compute the signal-to-noise of the displaced �eld projected on a given

mode. The signal-to-noise once projected on the phase and time-of-�ight modes is out-

lined on �gure 5.17.

We remind that the limits in sensitivity for measuring a distance using the phase and

time-of-�ight modes are respectively given by (4.48) and (4.49). In this case, we modulate

the distance in air, hence vϕ ' vg is a very reasonable approximation. The ratio of these

two sensitivities is then given by

(δL)g
min

(δL)ϕmin
= ω0

∆ω
(5.32)

Experimentally, from (5.31), the retrieved sensitivity while projecting on the phase mode

is dϕ

min,XP = 7.2±0.1 fm

/p
Hz and when projecting on the time-of-�ight mode, we have

dg
min,XP = 382.6±0.5 fm

/p
Hz . The ratio of these sensitivities then reads

(δL)g
XP

(δL)ϕXP
' 53 ±2 (5.33)

14
Note that the value of the shot noise obviously does not change a lot when projecting it onto the

�lters. Nevertheless, the small variation still needs to be accounted for.
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Figure 5.17: Signal-to-noise of the phase modulation projected on the detection modes

attached to a phase and a time-of-�ight measurement.

To compare to the theoretical ratio, we need to compute the �rst and second moment of

the spectrum that is received by the detector. We use the DC output of the detector when

detecting the signal’s spectrum. We �nd µ= 796.5 nm for the �rst moment and σ= 15
nm for the second moment. This de�nes an e�ective center frequency and bandwidths

as ωX P
0 = 2.37 PHz and ∆ωX P = 44.5 THz. This allows to compute the ratio

ωX P
0

∆ωX P ' 53.2 (5.34)

which is in excellent agreement with the retrieved ratio (5.33).

This result serves as a proof-of-principle for projective measurement. We measured

the minimum detectable displacement in a homodyne measurement scheme when pro-

jecting on the two modes attached to a phase and a time-of-�ight measurement. We

found obviously that a time-of-�ight measurement is less sensitive that a phase mea-

surement, and the di�erence in sensitivities is found to be dependent on the bandwidth

and the center wavelength of the detected light.

5.4.4.2 Detection mode

We now propose to go one step further and try to compute the ultimate sensitivity for

space-time positioning when projecting on the detection mode de�ned in 4.2.4.2. We

name that mode timing mode.
We remind that this detection mode is a superposition of the phase mode and the

time-of-�ight mode, with a weight de�ned by the ratio (5.34). Having measured the ex-

perimental moments of the �eld and having constructed the phase and time-of-�ight

modes, it is then straightforward to build the detection mode. We plot it on �gure 5.15.
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Figure 5.18: Enhancement in sensitivity between the detection mode for space-time

positioning and the phase mode.

We can see that it is very similar to the phase mode, since the bandwidth of the spectrum

is relatively small. There is still a noticeable di�erence in the shape, and as a direct con-

sequence, a projective measurement using this mode will result in a di�erent sensitivity.

For a modulation in air, the ratio of sensitivities for a phase detection and a detection

on the timing mode is given by

(δL)ϕmin

(δL)SQL
=

√
1+

(
∆ω

ω0

)2
' 1+ 1

2

(
∆ω

ω0

)2
(5.35)

As such, the enhancement is quanti�ed by
1
2

(
∆ω
ω0

)2
, which with our experimental mo-

ments amount to 1.8 ·10−4
, which is very small. A way to show this enhancement ex-

perimentally is to plot the di�erence between a projection of the homodyne signal on

the timing mode and on the phase mode ΣδL−Σϕ as a function of the displacement. This

is plotted on �gure 5.18. We can see that the slope of this function is positive, showing

that the detection mode has indeed a higher sensitivity.

We compute the minimum detectable displacement with the timing mode and ra-

tio it to the sensitivity of the phase mode. The measured enhancement is found to be

(1.5±0.2) ·10−4
, which is in good agreement to the expected value.

We have then showed the applicability of projective measurements with the example

of space-time positioning. We measured the smallest displacement possible using the

modes attached to a phase and a time-of-�ight detection, and constructed another mode

that combines both methods to obtain an even better sensitivity.
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5.4.5 Dispersion
We now propose to use the time-of-�ight mode to measure a di�erent parameter. As

shown by (4.45) and (4.46), the retrieved information for a perturbation of distance de-

pends on the phase or the group velocity of light in the medium. For air, these are

equal. However, if it were possible to introduce a path variation in a strongly dispersive

medium, then the two velocities are no longer equal, and the time-of-�ight mode would

retrieve a di�erent information.

Moreover, knowing the value of the phase velocity by projecting on the phase mode, it

seems possible to measure the group velocity by subtracting the projection on the phase

mode to the projection on the time-of-�ight mode. The original idea for that application

is depicted in appendix D, which proved di�cult to implement.

We had to devise another way to induce a strong modulation of the group velocity.

Since it does not seem possible to modulate the group velocity independently of the

phase velocity, we chose to introduce a modulation of path by introducing a dispersive

material in the beam. We settled for a prism made of SF-10, which we mounted on

a piezo-actuator as shown on �gure 5.19. With careful alignement, we were able to

achieve a deep phase modulation.

Figure 5.19: Modulation of path in a strongly dispersive medium. The two prisms are

places as close to possible as not to introduce any problems when the colors are recom-

bined.

Using such a device to modulate the path, the phase and time-of-�ight modes will

retrieve a di�erent parameter. To show this, we propose to make use of another detec-

tion scheme than the multipixel detection. Namely, we use a single diode homodyne

detection and resolve the spectral structure of the �eld by resolving it temporally, as

introduced in section 3.3.3. Such a scheme is not dependent on lock point and allows to

retrieve the spectrum with less ambiguity than the multipixel. Note that the multipixel

detection also works for this application and has the advantage of resolving the spectral

structure in a single-shot, but the representation is pixelized rather than continuous.

We retrieve the cross-correlation of the signal and local oscillator �eld when modulat-

ing the calibrated piezo actuator and the prism. Both modulations are retrieved simul-

taneously through heterodyning. We also measure the DC output of the photodiodes.

Performing a Fourier transform then allows to retrieve the spectrum, as depicted by �g-

ure 5.20. Note that the spectral resolution of the retrieved spectrum is much better than
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the multipixel, since it is de�ned by the time window on which the cross-correlation is

measured, which can be made arbitrarily large.

Figure 5.20: Demodulated signal of the cross-correlation between the signal and the

local oscillator �elds. The retrieved fringes are those of the high-frequency phase mod-

ulation. The Fourier transform is directly the spectrally resolved homodyne signal.

By heterodyning, we retrieve simultaneously the signal-to-noise spectra for the mod-

ulation of a calibrated piezo-mounted mirror and the prism. Using a procedure similar

to (5.20), it is possible to isolate the dispersion term.

More precisely, we write as Σ1 and Σ2 respectively the signal to noise of the piezo

actuator and the prism. It writes:

Σn(Ω)= 2
p

N
[
ω0 tϕ,n ·v0(Ω)+∆ω tg,n ·v1(Ω)

]
(5.36)

where n denotes which element is modulated. Computing the di�erence signal D be-

tween the signal-to-noise ratios then yields

D(Ω)=Σ2(Ω)− g ·Σ1(Ω) (5.37)

= 2
p

N
[
ω0

(
tϕ,2 − g tϕ,1

) ·v0(Ω)+∆ω (
tg,2 − g tg,1

) ·v1(Ω)
]

Similarly to (5.22), the gain to be digitally added in order to nullify the phase mode’s

contribution to the di�erence signal is found to be

g = tϕ,2

tϕ,1
≡

∫
dΩΣ2∫
dΩΣ1

(5.38)

Since in air, group and phase velocities are equal, we have tϕ,1 = tg,1. Upon application

of the gain, the di�erence signal simpli�es to

D(Ω)= 2
p

N ∆ω
(
tg,2 − tϕ,2

) ·v1(Ω)

≡ 2
p

N ∆ω · ω0 n′
0δL2

c
·v1(Ω) (5.39)
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We can see that the di�erence signal should in theory contain a single contribution on

the time-of-�ight mode which is directly proportional to the index dispersion at the

center wavelength.

Using projections, it is possible to suppress the dependency on the displacement δL2.

Indeed, projecting the signal to noise on the phase mode yields

〈Σ2,v0〉 = 2
p

N ω0tϕ,2 ≡ 2
p

N ω0
n0δL2

c
(5.40)

Dividing the di�erence signal projected on the time-of-�ight mode by this quantity then

yields

〈D,v1〉
〈Σ2,v0〉

= n′
0

n0
∆ω (5.41)

which is only dependent on the bandwidth of the �eld and on the index properties of

the medium.
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Figure 5.21: Heterodyne di�erence signal. The retrieved shape clearly ressembles to a

time-of-�ight mode. Dashed line correspond to the retrieved spectrum with the same

procedure but when modulating two similar piezo-mounted mirrors.

On �gure 5.21, we show the di�erence signal (5.39) which shows obviously princi-

pally a time-of-�ight structure. In dashed lines, we applied the same gain procedure

when we heterodyne and demodulate two similar piezo-mounted mirrors. This allows

to show that the retrieved signal is indeed dependent on the di�erence between the two

modulating elements.

Using the projections de�ned by (5.41), we retrieve a value of

〈D,v1〉XP
〈Σ2,v0〉XP

' (1.2±0.2) ·10−2
(5.42)
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Using Sellmeyer’s equations and the values of index and index dispersion given in table

A.1, we �nd that, for SF10,

n′
0

n0
≈ 9.9 ·10−3

fs. For the considered bandwidth, the theo-

retical value of (5.42) is therefore 3.9 ·10−3
. The experimental value is too important

by a factor of 3. There are multiple leads to explain this discrepancy. Among the most

relevant is the fact that this measurement is slow compared to the single shot acquisition

of the previous experiments. In order to obtain a good resolution, the delay line needs

to be swept over a long range, resulting in a longer acquisition time (on the order of 2
seconds). Such a measurement is prone to turbulences and �uctuations. Moreover, since

it is not spectrally-resolved, the shot noise needs to be reconstructed from the DC signal.

The in�uence of all the sources of error has not been investigated in details since this

method was applied near the end of this thesis. It would however bene�t from being

studied further, since it presents an interesting alternative to the multipixel detection.

5.4.6 Quantum spectrometer
To conclude on this part on parameter estimation, we consider the same experiment on

the amplitude quadrature.

As described in (4.2.2), the time-of-�ight mode can be used in the amplitude quadra-

ture to detect a shift in the spectrum. Using the multipixel detectors, such a measurement

is quite easy to achieve, since it is an amplitude measurement and thus does not require

any homodyne detection or delay lock. We took this measurement one step further by

using squeezed vacuum in order to perform a measurement below the standard quantum

limit.

This experiment was accomplished with a di�erent laser source, delivering longer

pulses on the order of 100 fs. The reason being that this source is injecting a syn-

chronously pumped optical parametric oscillator, which delivers under threshold multi-

mode squeezed vacuum[Roslund 13]. The modal structure of this quantum light is well

approximated by the Hermite-Gauss basis, which also happens to be the basis on which

the previous detection modes are expanded. Therefore, it is possible to use such �eld that

is squeezed in the proper mode to enhance the sensitivity of projective measurement, as

described by (4.9).

For this experiment, we chose to modulate the center wavelength of the laser, again

at a high frequency of ∼ 1.5 MHz. This is achieved by modulating a mirror inside the

laser cavity, usually used to lock the spectrum’s center
15

. The modulation was added to

the retrocontrol loop of the lock, small enough such that it does not hinder the stability.

Since the wavelength parameter lies on the amplitude quadrature, the measurement

15
On this source, this lock actually also stabilizes the CEO.
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Figure 5.22: Signal-to-noise ratio for each pixel when the center wavelength is being

modulated by a variable amplitude. On the right, the last point of the scan (i.e. maximum

modulation strength) is plotted as a function of wavelength. It shows a non-Gaussian

shape.

is performed using a single multipixel detector, greatly simplifying the scheme
16

. How-

ever, since it is dealing with quantum resources, the experiment still comprises a lot of

complications. The �rst one it to be able to generate a bright beam which is squeezed

on the proper mode. This was achieved by combining the multimode squeezed vacuum

output of the OPO with a strong beam on a 93-7% beamsplitter. These two beams had

to be locked together. For a more complete description of the experiment, see [Cai 15].

As a �rst step, the experiment was made using classical resources, much like what was

described in the previous section. The amplitude of the modulated element is ramped,

and the signal received by each pixel (on the amplitude quadrature) is subsequently

demodulated. The retrieved signals are plotted on �gure 5.22.

In contrast with our previous measurements on the phase quadrature, we directly

retrieve a high frequency spectrum that has a shape similar to the time-of-�ight mode.

That is to be expected from (4.25), since demodulating this �eld and computing its signal-

to-noise would retrieve directly

Σ(Ω)= δω

2∆ω
·v1(Ω) (5.43)

In this scheme where only a single beam is used, the modes construction is easier:

it can be constructed from the spectral shape of the shot-noise. Doing so allows to

construct the amplitude mode and the time-of-�ight mode without having to resort to a

complicated construction as in 5.4.2.

16
Note that, since it is using a single detector, the measurement needs to be performed at a quantum

limited frequency in order to be shot-noise limited.
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Figure 5.23: Signal-to-noise ratios after projection on the phase mode and on the time-

of-�ight mode. The modulation induces variations in both amplitude and wavelength.

After projecting on these two modes, we retrieve the signal-to-noise ratios depicted

by �gure 5.23. We can see that projecting on the amplitude mode results in a higher

signal than the time-of-�ight mode. Therefore, the way the wavelength is modulated in

this experiment does also induce a variation of amplitude that is subsequently detected.

Note also that we did not calibrate the displacement, since we are interested mostly in

the quantum enhancement. Therefore, we consider that this measurement on the time-

of-�ight mode is quantum limited, and we retrieve for a signal-to-noise ratio of 1 the

ultimate value given by (4.31). Computing again the �rst moment from the reconstructed

modes and considering a number of photons of 4·1016
(corresponding to 10 mW detected

over a second), the ultimate limit for the detection of a spectral displacement is

(δω)SQLmin ' 61 kHz

/p
Hz (5.44)

Interestingly, this value is smaller than the tooth spacing.

We then perform the same measurement when squeezed vacuum is injected. The

sensitivity will then be proportional to the variance of the detection mode. The way

squeezed vacuum is generated, in order to have a noise reduction in the second mode,

the �rst mode must necessarily show excess noise (see section 8.1.1).

The �rst mode is antisqueezed and shows an excess noise of +4.4 dB, whereas the

second mode is squeezed, and has a reduced noise of −1.4 dB. The result upon projecting

on these modes is shown on �gure 5.24 along with the case when vacuum is injected.

We can see that the amplitude mode does indeed show excess noise, since the sensi-

tivity is reduced with respect to the vacuum case. On the other hand, the time-of-�ight

mode increases the sensitivity by a considerable amount of 21%. The sensitivity limit is
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Figure 5.24: Comparison between vacuum and squeezed vacuum input upon projection

on (a) the amplitude mode (b) the time-of-�ight mode.

then given by

(δω)sqzmin ' 50 kHz

/p
Hz (5.45)

This resulting sensitivity is below the standard quantum limit.
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6 Optical cavities

(Upon observing the transverse modes of a particularly misaligned cavity, looking
incredibly similar to the Batman sign[Jacquard 12]) “I don’t think I can ever do
better than that.”

– Clément “Game Over Man” Jacquard
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In the previous part, we used a modal description of the �eld to extract information

that was hard-coded in it. In this part, we show that the same formalism may be applied

to the noise analysis of a frequency comb, in both amplitude and in phase.

For that purpose, we need to develop tools to access the noise characteristics. We have

already seen that accessing the amplitude noise is straightforward. However, resolving

phase noise necessitates to compare a signal to a reference, being electrical or optical.

As it was hinted in section 3.1, in a homodyne detection scheme, if the phase noise of

one �eld in the interferometer is known, then we can deduce the phase noise of the

other �eld. Such a scheme would allow to apply our modal characterization to noise

characteristics of a laser source.

To decouple the noise, we chose to introduce a Fabry-Perot cavity in the signal arm of

the interferometer. It acts as a low-pass �lter in both amplitude and phase, whose output
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shows di�erent noise properties than its input. From a speci�c analysis frequencies

de�ned by the cavity’s �nesse, we can consider that the noise properties of the �ltered

beam are quantum limited, and may thus be used in a homodyne measurement to access

the noise distribution of the local oscillator.

In this part, we focus on the description of Fabry-Perot cavities in the femtosecond

regime. We also present experimental details on the characterization of a high �nesse

cavity injected by a broad spectrum.

6.1 Fabry-Perot cavities

In this section, we remind the basic equations that describe a Fabry-Perot cavity and

its �ltering behavior. The general theory can be found in many optics book, such as

[Siegman 86].

6.1.1 Input-output relations
We consider a ring Fabry-Perot cavity of length L made of three mirrors. We label

two input and output mirrors with Fresnel coe�cients in energy
1 R1,R2 and T1,T2,

such that Ri + Ti = 1. The third mirror is supposed have a perfect re�ectivity. The

amplitude coe�cient are assumed to be real and are written as r i =
√

Ri , ti =
√

Ti . A

representation of such cavity is done on �gure 6.1.

Figure 6.1: Schematic drawing of a ring cavity. The back mirror is supposed to have a

perfect re�ectivity. The phase accumulated on one round-trip is written ϕc.

1
For simplicity, we do not assume that the Fresnel coe�cients are dependent on wavelength. Never-

theless, for a full simulation of a high �nesse cavity injected by a broad spectrum, the re�ectivity curve

of the mirrors needs to be taken into account.
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Figure 6.2: Amplitude and phase of the complex transfer coe�cients in transmission

and in re�ection for an impedance matched cavity of �nesse 1000. The phase of the

re�ected �eld is not de�ned at resonance, since all the incident �eld is transmitted. If

losses are included in this model, there exists a re�ected �eld at resonance.

We are interested in the incident, transmitted and re�ected �elds, that we write re-

spectively E(+)
i , E(+)

t and E(+)
r . We write the phase accumulated over a round-trip as

ϕc(Ω), and the �eld inside the cavity is written as Ec(Ω). The input-output relations of

the cavity are written as

E(+)
t (Ω)= tc(Ω) ·E(+)

i (Ω) and E(+)
r (Ω)= rc(Ω) ·E(+)

i (Ω) (6.1)

These �elds are linked by the following coe�cients:

tc(Ω) = t1t2eiϕc(Ω)/2

1− r1r2eiϕ(Ω) = τ(Ω) eiΦt(Ω)
(6.2)

rc(Ω) = r2eiϕc(Ω) − r1

1− r1r2eiϕ(Ω) = ρ(Ω) eiΦr(Ω)
(6.3)

We decomposed both coe�cients in amplitude and in phase. The phase accumulated

one round-trip is noted ϕc(Ω). As before, the frequencies are taken relative to the carrier

Ω=ω−ω0.

By computing the amplitude and the phase of the transfer coe�cients, it can be shown

that τ(Ω) and ρ(Ω) are even functions, while Φt(Ω) and Φr(Ω) are odd functions. The

coe�cients are depicted on �gure 6.2.

When the cavity is impedance matched, i.e. t1 = t2 = t and r1 = r2 = r, the equations

are greatly simpli�ed. The transmission coe�cient in energy is given by: :

Tc(Ω)= |tc(Ω)|2 = T2

(1−R)2 +4R sin2
(
ϕc(Ω)

2

) (6.4)
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which is maximal for ϕc(Ω)= 0 [2π].
In the remaining, it will be convenient to consider the input-output relations in term

of the quadratures of the �eld.

We remind that the real �eld is decomposed in the spectral domain as a sum of the

analytic �elds as:

E (ω)= E(+) (ω)+E(−) (−ω) (6.5)

In term of the �eld’s amplitude, we have E(+) (ω)= E0 a(ω−ω0). The input-output rela-

tions may the be written as

at(Ω)= tc(Ω) ·ai(Ω) (6.6)

Using the expressions of the �eld quadratures (1.45) and (1.46), it is possible to rewrite the

input-output relations as a function of the quadratures of the incident and transmitted /

re�ected �elds. A simple expression is obtained by considering the parity of the transfer

coe�cients. The relation linking the �eld quadratures is then written as(
X t
Pt

)
(Ω)= τ(Ω)

[
cosΦt(Ω) −sinΦt(Ω)
sinΦt(Ω) cosΦt(Ω)

]
·
(
X i
Pi

)
(Ω) (6.7)

A similar expression may be obtained for the re�ected �eld’s quadratures.

6.1.2 Characteristic quantities
A cavity is de�ned intrinsically by its mirrors and its length, which allow to de�ned

quantities to characterize it.

The phase accumulated over one round-trip of a cavity in vacuum writes as

ϕc(Ω)= (Ω+ω0)
L
c

(6.8)

For the cavity to be resonant at the frequency ω0, its length L needs to satisfy the con-

dition:

L = pλo (6.9)

This length de�nes the spacing in frequency between two resonances as the free spectral

range (FSR):

νFSR = c
L

(6.10)
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We introduce the �nesse F of the cavity, which is an intrinsic quantity only dependent

on the properties of the cavity. For a global re�ectivity R in power
2

(i.e. a fraction 1−R
in power is lost after one round-trip), the �nesse reads:

F = π

2arcsin
(

1−pρ
2
pp

ρ

) (6.11)

In the high re�ectivity approximation, this formula approximates to:

F ' 2π
1−ρ = 2π

T +P
(6.12)

where we noted T the global transmission, and P the round-trip losses. This formula

is only valid for a high �nesse. A common way to describe the �nesse is the average

number of round-trip of a single photon inside the cavity before being transmitted. The

higher the �nesse, the longer the light is trapped inside the cavity. This properties is

useful to understand the �ltering properties of a cavity.

6.1.3 Spatial mode
In order for a cavity to be a stable resonator, the intra-cavity �eld needs to be periodic on

the cavity length: the accumulated phase needs to be a multiple of 2π, and the transverse

pro�le of the cavity beam must overlap with the incident beam.

The stability condition for a cavity is obtained by modeling the propagation of the

beam using the ABCD formalism, and solving for the complex beam parameter to be

unchanged after a round-trip. This de�nes the distances between the optics that result

in a stable resonator.

Usually, the spatial mode of the cavity is a TEM00. Proper injection of the cavity

consists in overlapping the incident beam with the cavity’s mode. To do so, one needs

to align the input beam properly, and to ensure that the mode matches the one of the

cavity by setting its waist size and position on the proper values.

Misaligning the input beam puts energy in odd modes (such as TEM01), whereas in-

correct mode-matching transfers energy in the even modes (such as TEM02). It is there-

fore possible to distinguish experimentally between an error in alignement and an error

in mode-matching by looking at the transmitted spatial modes
3
. Such properties can be

used to change the mode of the input beam, which is obviously a lossy process[Treps 03].

2
For the cavity sketched on �gure 6.1, the global re�ectivity writes as R = R1R2. Losses can be intro-

duced in this factor.

3
Note that distinguishing between an mismatch in waist size and in waist position requires to access

the amplitude and the phase quadrature of the TEM02 mode.
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6.1.4 Noise �ltering
The spatial pro�le of the transmitted beam is de�ned by the mode of the cavity. The

behavior may be seen as a �lter of the transverse pro�le of the input beam. Indeed, if

the mode at input shows other modes than the one of the cavity, then these components

will propagate away and not resonate in the cavity. The e�ciency of this �ltering is

dependent on the �nesse. The higher the �nesse, the more e�cient the �ltering.

In the spectral domain, the same phenomenon occurs, even though it is not as straight-

forward to describe. Using the sidebands picture 3.2.1.2, any noise can be represented as

a sideband of the optical frequency. If the frequency of the noise is high enough such that

the sidebands are not resonant, according to (6.7), the sidebands won’t be transmitted

by the cavity.

Therefore, the cavity will act as a low-pass �lter in noise, which cuto� frequency

can be de�ned from the point at which the amplitude transfer coe�cient of �gure 6.2

is reduced by a factor of 2, in analogy to electric �lters. This frequency de�nes the

bandwidth νc of the cavity, and is related to the �nesse and the free spectral range of

the cavity by:

νc = νFSR

F
(6.13)

A higher �nesse thus leads to a stronger �ltering of the noise. In the temporal domain, a

similar treatment allows to consider that the �uctuations of the �eld are averaged over

the time the light is trapped in the cavity. This time is the inverse of the bandwidth of

the cavity.

Using the quadratures description (6.7), we then see that this low-pass �ltering occurs

in both quadratures, thus �ltering the amplitude and the phase noise of the incident �eld.

6.1.5 Quadrature conversion
In term of quadratures, the noise �ltering is described another way. Consider ampli-

tude and phase noise of the incident �eld, written as δX i and δPi. The variance of the

amplitude and phase noise of the transmitted �eld (6.7) are then written:〈
δX2

t
〉= c2

1
〈
δX2

i
〉+ c2

2
〈
δP2

i
〉−2c1 c2 〈δX i ·δPi〉 (6.14)〈

δP2
t
〉= c2

1
〈
δP2

i
〉+ c2

2
〈
δX2

i
〉+2c1 c2 〈δX i ·δPi〉 (6.15)

where we wrote the conversion coe�cients c1 = τ(Ω)cosΦt(Ω) and c2 = τ(Ω)sinΦt(Ω).
We can see that the amplitude quadrature of the transmitted �eld contains information

about both optical quadratures of the incident �eld and also correlations between ampli-

tude and phase noise. As it is shown in section 7.3.4, these correlations are considerably

smaller than the individual noise in amplitude or in phase.
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Figure 6.3: Amplitude of the coe�cients that convert noise from one optical quadrature

to the other.

On �gure 6.3, we plotted the conversion coe�cients. We can see for example that

on the amplitude quadrature of the transmitted �eld (6.14), the amplitude noise is �l-

tered by the coe�cient c1. However, the amount of phase noise conversion increases

with analysis frequency, up to approximately ∼ νc
2 . At this frequency, the value of the

two coe�cients di�ers by about 2 dB. In the case where phase noise is much higher

than amplitude noise (which is the case with a modelocked Ti:Sa laser), the amplitude

quadrature of the transmitted �eld should therefore show excess noise. On the phase

quadrature (6.15), the input phase noise is attenuated, and a portion of the input ampli-

tude noise is converted.

Thus, the noise switches quadrature between the input and the output of the cavity.

Nevertheless, the noise is still attenuated, such that the total noise is diminished. This

quadrature conversion e�ect will be of importance later.

6.2 Synchronous cavities

In order for a cavity to be resonant for multiple optical frequencies, the resonance con-

dition (6.9) needs to be revised. In the time domain, it is straightforward to see that a

resonant cavity injected by a train of pulse corresponds to the situation where the pulse

inside the cavity overlaps with the next pulse in the train. In order to be perfectly reso-

nant, both the carrier and the envelope of the pulses need to overlap. Such cavities are

then said to be synchronous, since they need to be synced with the repetition rate of the

laser.

In this section, we write the theory for synchronous cavities, and do simulations to

predict the behavior of high �nesse synchronous cavities. A more complete treatment

may be found in [Medeiros de Araujo 12].
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6.2.1 Resonance condition
We consider that the cavity is injected by a frequency comb whose CEO is zero, such

that the frequencies of the comb are written simply as ωn = nωr (see (2.1)). In order for

the cavity to be resonant for the entire comb, the phase accumulated on a round-trip

needs to be a multiple of 2π for each frequency :

ϕc(ωn)= 0 [2π] ∀ n (6.16)

Solving this condition with (6.8) allows to deduce that the cavity length needs to satisfy

L = 2πc
ωr

≡ Lr (6.17)

The length of the cavity needs to equal the length between two pulses, which is also the

length of the laser cavity. Note that this solution is also valid for any multiple integer

of the repetition length. Such a cavity would also transmit the entire spectrum, the only

complications are experimental, since longer cavities are more subject to turbulences.

6.2.2 The cavity’s comb
When considering the physical parameters that arise when describing the phase ac-

cumulated in a round-trip, it can be shown that the cavity de�nes a frequency comb.

Achieving perfect resonance is then equivalent to overlapping perfectly the comb de-

�ned by the cavity with the comb of the laser source.

We write the phase due to propagation in a dispersive medium (6.8) as

φc(ω)= ωL
c

(
1+δn(ω)

)
≡ωL

c
+ϕ(ω) (6.18)

The �rst term of this phase corresponds to the vacuum case, whereas the second term

is the perturbation induced by the dispersive medium. This description is convenient

since in the vacuum case, the resonance condition is well-de�ned.

The round-trip phase is then written as

ϕc(ω)=φGouy+ωL
c
+ϕ(ω) (6.19)

We considered the Gouy phase that is a result from the propagation of the transverse

modes
4
. It is a constant that depends only on the geometry of the cavity. The term φvac

4
Note that when considering the Gouy phase, the cavity length (6.17) does not ensure resonance. The

incident comb thus needs to have a non-zero CEO.
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corresponds to the propagation in vacuum, while the term ϕ contains the information

about the medium.

We propose to solve the resonance condition for this accumulated phase, when the

cavity is injected by a frequency comb with a non-zero CEO.

To do so, we Taylor-expand ϕ(ω) around ω0 as it was done previously, for example in

(2.32). The accumulated phase then writes as

ϕc(ω)=φGouy+ϕ0 −ω0ϕ
′
0 +

ω

c
(
L+ cϕ′

0
)+ 1

2
(ω−ω0)2ϕ′′

0 + . . .

≡α+ ω

c
Le�+

1
2

(ω−ω0)2ϕ′′
0 + . . . (6.20)

where ϕ0 =ϕ(ω0), ϕ′
0 and ϕ′′

0 correspond respectively to the �rst and second derivatives

of ϕ with respect to ω taken at ω0. We can see a constant phase term described by

α=φGouy+ϕ0 −ω0ϕ
′
0 (6.21)

and a e�ective optical path de�ned by

Le� = L+ cϕ′
0 (6.22)

This apparent cavity length is due to the �rst order dispersion.

If we neglect higher orders of this development, we may solve analytically the res-

onance condition. We see that we can de�ne the cavity’s frequency combs, which fre-

quencies ωc
n satisfy ϕc(ωc

n)= 2nπ. They read

ωc
n = n

2πc
Le�

−α c
Le�

≡ nωc
r +ωc

CE (6.23)

This frequency comb has its own repetition rate and carrier-to-envelope o�set that are

dependent on the properties of the cavities and of the dispersive medium.

To ensure perfect resonance of the incident light, we need to overlap the frequency

comb de�ned by the cavity to the frequency comb of the laser. It means that we must si-

multaneously set ωc
CE =ωCE and ωc

r =ωr. Experimentally, one may match the repetition

rates by either locking the length L of the cavity to the repetition rate of the laser, or the

other way around. For the carrier-to-envelope phase, since it is a constant parameter,

one may change the amount of dispersion in the cavity to match the CEO of the laser.

However, for high �nesse cavity, this parameter usually �uctuates, such that it is better

to be able to lock the CEO of the laser on a stable reference, and tune this value such

that it matches the cavity’s.
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When taking into account higher order dispersion, the frequencies that are resonant in

the cavity do not form a comb anymore, since the spacing between the teeth of the comb

is not constant. There are no other strategies than minimize the dispersion accumulated

on a round-trip. This parameter is very important to control when conceiving a high

�nesse cavity.

6.2.3 Simulations
Even though solving the resonance condition is no longer analytical for realistic condi-

tions (i.e. propagation in a dispersive medium), it may be simulated easily. Such sim-

ulations are essential when building synchronous high �nesse cavity, since it allows to

predict how the spectrum will be transmitted. The only unknown parameters in such

simulations is the actual �nesse, which always turns out to be smaller in the experiments,

due to various sources of losses that are not easily modeled.

A parameter that is easy to change experimentally is the cavity length, using for ex-

ample a translation stage. Small variations of the cavity length is commonly achieved

by introducing a piezo-mounted mirror inside the cavity. This also allows to control the

cavity length’s in a retrocontrol loop in order to lock it to the laser. We remind that the

contrary procedure (i.e. changing the laser’s cavity length) results in the same situation,

such that the problem may be modeled in a similar way.

When simulating cavities injected by broad spectra, a useful representation is to plot

the transfer function (6.4) as a function of the wavelength and of the detuning of the

cavity
5
. This results in a two-dimensional map which is easy to relate to experimental

quantities. This is inspired by [Schliesser 06].

We consider a high-�nesse cavity injected by the frequency comb described in 3.1.1,

which has a spectral width of 40 nm FWHM. We then compute the transfer function

(6.4) considering that the cavity is in lab air. We de�ne the incident frequency comb

according to experimental parameters, and we set the cavity’s parameters (6.23) to satisfy

the resonance conditions without dispersion.

We then consider small variations δL around L and plot the transfer function in trans-

mission for each wavelength. The result, which we call resonance map, is shown on �g-

ure 6.4. The simulation is done for a cavity of �nesse∼ 200 in air at standard atmospheric

pressure. Since a cavity is sensitive to the phase accumulated over one round-trip, a res-

onance map is an indirect representation of this phase. We can see on this �gure that

the resonance is curved with respect to wavelength, which is representative of residual

dispersion.

Taking projections of the map at a given cavity length gives the transmitted spectrum.

It is equivalent to setting the cavity length experimentally by locking. On the right side

5
This detuning may be de�ned as an o�set in its length around resonance.



6.2. SYNCHRONOUS CAVITIES 161

-100 -50 0

870

831

795

762

732

(nm)

W
av

el
en

gt
h 

(n
m

)

-100 -50 50 100

50

100

150

200

250

0

(nm)

In
te

ns
it

y 
(A

U
)

Figure 6.4: Resonance map for a cavity of �nesse ∼ 200 in air. On the right is the

integral of the resonance map over wavelength. The insets are projections at a given

cavity length.

of �gure 6.4, we integrated the resonance map over wavelength. This result is also ac-

cessible experimentally by sweeping the cavity length at a resonnably high speed (which

can be done by ramping the piezo inside the cavity and measuring the transmitted power

with a photodiode). The transmission peak, which is a Lorentzian without dispersion, is

clearly assymetric, which is another witness of intra cavity dispersion.

We can see from the map that there is no cavity length (i.e. no lock point) that allows

to transmit the whole spectrum because of second order dispersion. Without quadratic

phase, the resonance map would be straight, without curvature, meaning that it is pos-

sible to transmit the entire spectrum, as predicted by (6.23).

In this model, we only considered the accumulated phase results from propagation

through air. Experimentally, we need to take into account all the elements inside the

cavity, especially the dielectric coating on all the mirrors, which always adds dispersion.

Therefore, a possible strategy to ensure resonance of every tooth of the comb is to use

specially designed mirrors with the lowest possible dispersion, and put the cavity in vac-

uum. Another possibility is to use chirped mirrors which phase is tailored to compensate

the propagation through air. However, this usually results in an oscillating GDD which,

for high �nesse cavities, introduces higher order dispersion to the accumulated phase.
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6.3 Experimental realization

6.3.1 Motivations
In this last section, we present experimental results on the construction and the charac-

terization of a cavity of �nesse ∼ 1200 injected by a ∼ 45 nm FWHM spectrum. More

details may be found in [Schmeissner 14a]. It was constructed to take advantage of the

noise �ltering properties described in 6.1.4.

We remind that, from section 4.1.2, the sensitivity in a projective measurement scheme

is governed by the noise in the detection mode. In our experiment described in chapter

5, we split the �eld out of the laser source to generate the beam where information is

encoded and the beam used to measure it. In a more general scheme, the two �elds do not

come from the same source and thus do not share common noise properties. As a result,

for space-time positioning, the phase noise of the source needs to be minimized since

the detection mode is on the phase quadrature. This may be achieved by introducing a

�ltering cavity in the signal’s arm of the interferometer

6.3.2 Design and construction
As we developed in section 6.2.1, in order to transmit the entire spectrum, the cavity

length needs to match the free spectral range of the laser source. We chose to set a

cavity length of 1.92 m, matching the laser’s cavity (free spectral range of 156 MHz).

IC OC

CM CM

PZT

Figure 6.5: Drawing of the bow-tie ring cavity. IC : input coupler, OC : output coupler;

PZT : piezo-mounted mirror; CM : curved mirror. The waists in the cavity are written

w1 and w2. Not shown : one mirror is on a remote controlled translation stage with

picometer precision to match the free spectral range of the cavity to the laser.

The geometry that was chosen is a ring cavity in a bow-tie con�guration. The reason

for a ring cavity instead of a linear is that it is possible to inject two counter-propagating

beams. Therefore, one beam may be used to lock the cavity’s length, while the other one
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is used for measurements. Working with short pulses, this solution is convenient since

the locking beam can propagate through very dispersive materials such as EOMs while

keeping the studied pulse transform-limited. The cavity is sketched on �gure 6.5.

The cavity is put in a vacuum chamber built of Invar to minimize the in�uence of

the environnement. The mirrors are coated by Layertec, and are optimized for zero

dispersion on a large spectral bandwidth. The re�ectivity of the couplers is 99.8%, which

using (6.11) results in a theoretical �nesse of ∼ 1600.

To match the free spectral range of the cavity, one of the mirrors is mounted on a

motor translation stage with a picometer precision. Another mirror is mounted on a

piezo actuator to lock the cavity length.

We estimated the �nesse using an optical ring-down technique to a value of ' 1250,

which is smaller than the theoretical value. There are consequently losses in the cavity,

which is to be expected when building a high �nesse cavity. Nevertheless, the measured

�nesse is very acceptable for applications to ultrafast optics. The bandwidth of the cavity

is then approximately νc ≈ 125 kHz.

6.3.3 Cavity lock
A weaker second beam is injected from the output coupler, used as a reference. It is phase

modulated outside of the cavity bandwidth using an EOM. Its re�ection is di�racted on a

grating, and a selected spectral slice is detected using an APD. The phase modulation is

demodulated to generate the error signal used to lock the cavity in a Pound-Drever-Hall

(PDF) scheme[Black 01].

This allows to set the cavity length, which is one of two parameters that need to be set

to ensure full transmission of the incident spectrum. As we described in 6.2.2, the other

parameter that needs to be �xed is the carrier-envelope-o�set. We do so by changing

the CEO of the laser by modulation of the pump laser[Helbing 02].

This stabilization of the CEO is done with a commercial system from Menlo. A

photonic crystal �ber is injected by a portion of the laser’s output to generate a su-

percontinuum. It is octave spanning, and may therefore be self-referenced. Doing so,

we realize a f −2 f scheme that retrieves the �uctuations of the carrier-envelope o�set

frequency[Jones 00]. As usual, this signal is demodulated by a stable reference (Agilent

N5181A) and used in a retrocontrol loop on the pump AOM to lock the CEO. The proper

o�set is found by maximizing the transmission of the cavity.

6.3.4 Environnemental pressure dependency
As we described it in 6.2.2, the environnemental conditions are of the utmost importance

when realizing a high �nesse cavity in the femtosecond regime. Naturally, the best op-
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Figure 6.6: Experimental resonance maps for di�erent intra-cavity air pressure. The

striped structure is a result of the interpolation technique used to plot, and is not a real

physical e�ect.

eration should be obtained when the cavity is under vacuum, since there wouldn’t be

any source of dispersion.

In practice however, we noticed that the best operation (i.e. maximum transmitted

power and spectral width) is obtained for a weak vacuum of ∼ 50 mbar. To investigate

this behavior, we propose to measure the resonance map of �gure 6.4 for di�erent air

pressure inside the cavity.

To achieve such a map, we need to change the length where the cavity is locked,

which we refer to as the lock point. The way to do so is to change the spectral slice

that is used to generate the error signal. However, we stress that this method does not

allow to lock the cavity on an arbitrary point. Indeed, from �gure 6.4, we can see that a

certain cavity length is resonant for two ranges of frequency. Using our locking method,

it means that using the error signal of these two spectral slices result in the same lock

point. This situation occurs if the accumulated phase is quadratic. The simulation can

be easily adapted to that constraint, as shown by �gure 6.7a. The resonance map is then

symmetric in the situation where two distinct spectral slices are transmitted at a given

cavity length.

Setting di�erent intra-cavity pressure, we acquire the transmitted spectrum using a

spectrometer for di�erent lock points. We then plot the resonance maps, as shown on

�gure 6.6.

For the highest and lowest pressure, the experiment maps are consistent with the

observation that we made about symmetric resonance maps. We can then conclude that

there is a fair amount of quadratic phase accumulated at 130 mbar. However, we can

also see that there is a residual negative quadratic phase at lower pressure.
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Figure 6.7: (a) Theoretical resonance map for a cavity of �nesse ∼ 200 in 100 mbar

of air. Instead of the cavity length, we plotted it as a function of the lock point, ob-

tained by mapping the transmitted spectrum to the cavity length. (b) Projection of the

experimental resonance maps of �gure 6.6 for a lock point of 795 nm.

This residual quadratic phase must come from the optical elements inside the cavity.

There are 6 mirrors in the cavity, and small residual quadratic phase on each re�ection

can result in a considerable amount over a round-trip, which is even more noticeable for

a high �nesse cavity. Therefore, the remaining negative dispersion from the mirrors is

compensated by the positive dispersion of the air inside the cavity.

On �gure 6.7b, we selected a lock point of 795 nm and plotted the spectrum transmit-

ted by the cavity. At a pressure of ∼ 50 mbar, the cavity transmits the entire spectrum,

whereas it is reduced for higher or lower air pressure because of dispersion. The trans-

mitted power is also higher. We also injected the cavity with a broader source generated

by a photonic crystal �ber, and found the maximum bandwidth of the cavity to be around

100 nm.

With this method, we fully characterized the cavity. It allows to retrieve indirectly the

phase accumulated on a round-trip without introducing any element inside the cavity.

6.3.5 Noise properties
Finally, we take interest in the noise of the �eld transmitted by the cavity. The re-

sults presented in this part are investigated in greater details in [Schmeissner 14c] and

[Schmeissner 14a].

We �rst compare the amplitude noise of the transmitted and incident �elds by ac-

quiring the power spectrum distribution with a single detector. The result is shown on
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Figure 6.8: Power spectrum distribution of the amplitude noise for the same amount

of power of the laser and the cavity transmission. The higher signal comes from the

free-running variations of the CEO frequency, normalized for an equivalent power. The

CEO noise’s trace is cut before 1 MHz because the detected beating hits the noise �oor

of the detection scheme.

�gure 6.8.

We see that at high frequencies, there is indeed a �ltering of the amplitude noise of the

laser. Notably, the structure at 1.5 MHz which originates from the relaxation oscillations

of the laser is totally suppressed. However, at lower frequencies, the amplitude noise of

the �eld transmitted by the cavity is considerably higher. We see an excess noise of ∼ 40
dB.

This result can be expected from equation (6.14). For a high phase noise and low

amplitude noise at the input, the amplitude quadrature of the output of the cavity will

show higher noise than the original amplitude noise.

In [Schmeissner 14a], using what is called the rubber-band model[Newbury 07], it is

shown that the main driver of phase noise of this laser source comes from �uctuations

of CEO rather than repetition rate. In order to lock the cavity, the CEO of the laser has

to be locked with a PID whose bandwidth is on the order of 100 kHz. Any �uctuations

in CEO higher than this frequency can thus be considered to be free-running.

Using a phase-lock loop (PLL) scheme, we analyze the power spectrum distribution of

the carrier-to-envelope o�set noise detected at the output of the f −2 f interfermometer,

and we plot it also on �gure 6.8. Above 100 kHz, we can see that the slope of the CEO

noise is similar to the amplitude noise transmitted by the cavity. Comparing the noise

level is not straightforward since the beating signal in the f −2 f is detected using an

APD, and renormalizing the power is prone to measurements error. However, comparing
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Figure 6.9: Power spectrum distribution of the amplitude noise of the laser source, the

homodyne signal of the output of the cavity versus its input and the CEO phase noise

measured from the signal at the output of the f −2 f interferometer.

the slopes is enough to infer that the transmitted �eld by the cavity is indeed dominated

by the conversion of high phase noise of the laser source.

To conclude, we perform a homodyne detection between the transmitted �eld (as the

signal �eld) and the laser’s output (as the local oscillator). On the phase quadrature, we

should measure the relative phase noise

〈
δφ2

rel

〉
between the two �elds. We analyze the

beam at the output of the cavity which contains the �ltered phase noise of the laser.

Indeed, if the phase noise of the local oscillator is written

〈
δφ2

0
〉
, then the phase noise of

the signal �eld is

〈
[H( f ) ·φ0]2〉

, where H( f ) is the �lter function of the phase quadrature.

The relative phase noise that is measured is thus:〈
δφ2

rel
〉= [1−H( f )]2 〈

δφ2
0
〉

(6.24)

We then do not actually measure the noise of the source, but rather the remaining phase

noise after �ltering. At low sideband frequencies, the cavity does not �lter anything

(H → 1) and the two arms of the interferometer are correlated and no meaningful infor-

mation about phase noise may be retrieved. However, above the cuto� frequency, the

retrieved phase noise contains information on the original phase noise attenuated by the

�lter function. The result is shown on �gure 6.9.

We observe that the homodyne signal follows a speci�c attenuation above the cuto�

frequency, whose slope is di�erent than the one retrieved from the PLL of the carrier-

to-envelope o�set frequency noise. The di�erence in slopes is found to agree with the

�ltering of the CEO phase noise[Schmeissner 14c].
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7 Experimental study of correlations
in spectral noise

“It’s all about the noise...”
– Roman “Herr Schmeissner” Schmeissner
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We use in this chapter a multimode description of an optical frequency comb to

describe its noise. We show that both its amplitude and phase �uctuations may be de-

composed on a basis of modes, each attached to a di�erent parameter. We pursue the

strategy that was adopted in [Schmeissner 14b] to characterize the spectral distribution

of noise of a frequency comb, bringing novel insight on the matter.

In particular, we adapt our spectrally-resolved measurement scheme to simultaneous

measurement of the spectral structure of amplitude and phase noise. This allows to glean

the correlations between the amplitude and the phase noise of an optical frequency comb

which is, to our knowledge, an undocumented subject.

The scheme that we investigate in this section allows to retrieve the �uctuations of the

169
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collective parameters that de�ne an optical frequency comb. Accessing their variations

in real-time grants the possibility to precisely characterize and potentially stabilize the

laser source.

7.1 The modal structure of noise

7.1.1 Introduction and motivations
When assessing the noise of a laser source, it is usually separated in �uctuations in

amplitude (i.e. variation in photon number) and in phase (i.e. variation in frequency).

In the case of a frequency comb, such a description needs to be applied to each indi-

vidual comb line, resulting in �uctuations in the global comb structure. Typically, the

noise dynamics are described with a number of collective properties[Haus 93] such as

pulse energy, carrier-envelope o�set or the temporal jitter of the pulse train.

In a manner similar to that presented in 4.2, it has been theorized in [Haus 90] that a

variation of one of these collective parameters a�ects the comb structure in a way that

consists of adding a particular noise mode to the mean-�eld mode. The noise dynamics

of an optical frequency comb may thus be theoretically represented by a unique set of

noise modes, exactly like a perturbation in the propagation distance of a pulse may be

decomposed on a set of modes.

The existence of such modes would imply that correlations must exist between indi-

vidual comb lines. Strictly speaking, this would mean that the sum of the noise of individ-

ual spectral slices is not equal to the noise of the sum of the spectral slices. Whereas the

distribution of noise across a frequency comb is an already well-documented subject[Bartels 04,

Swann 06], the role of correlations among individual comb lines is a research subject to

be explored in more details[Martin 09].

7.1.2 The noise modes
To fully describe the dynamics of a frequency comb, we use four collective parameters.

The theory of Haus and Lai[Haus 90] describes the noise that arises due to the generation

and propagation of a soliton pulse in a laser cavity. The variables considered for a pulse

are its photon number, phase, position (in time) and momentum (i.e. frequency). These

four variables may be linked to four collective parameters of the pulse train as mean

power, central wavelength, timing jitter and phase (CEO).

On �gure 7.1, we show a schematic representation of the variations in amplitude and

in phase of individual comb lines. In insets, we reproduced the corresponding noise

mode from [Haus 90] describing the �uctuations of power, wavelength, CEO phase and

timing jitter.
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Figure 7.1: Schematic representation of the four collective parameters that describe the

noise dynamics of a frequency comb.

As it should, these modes show a close resemblance to the ones outlines in section

4.2. The di�erences arise from the fact the Haus theory describes a soliton pulse that

propagates inside the laser cavity while we look at the �eld at the output.

The description of this theory is beyond the scope of this thesis, the important point

being the existence and shape of such noise modes.

7.2 Measuring spectral correlations in the noise
To reveal the modal structure in the noise dynamics of a frequency comb, one has to

simultaneously measure and compare the �uctuation (in amplitude and in phase) of ev-

ery comb line. Since resolving a single frequency is not experimentally feasible with

our sources, we consider spectral bands. The collective properties of the comb lines that

populate these bands should remain. To do so, we propose to make use of the multipixel

detection presented in 3.3.2.

7.2.1 Classical covariance matrix
As usual, we represent the �eld as:

E(+)(Ω)= E0 a(Ω) eiϕ(Ω)
(7.1)

The �uctuations of the �eld δE = E−〈E〉 are thus given to the �rst order by

δE(Ω)= E0

(
δa(Ω)+ iδϕ(Ω) ·a(Ω)

)
eiϕ(Ω) +c.c.

= 2δX cos
[
ϕ(Ω)

]+2δP sin
[
ϕ(Ω)

]
(7.2)
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Consider that we measure simultaneously the �uctuations of the �eld in amplitude and

in phase in a given spectral band. We write the retrieved amplitude and phase noise for

the n
th

spectral band respectively as δXn and δPn. These �uctuations are retrieved at a

given sideband frequency.

We investigate a sideband RF frequency range of ∼ 100 kHz to ∼ 3 MHz. We do not

wish to resolve �uctuations at lower frequencies that originate from technical noise,

such as vibrations, turbulence, acoustics and thermal e�ects. The investigated range is

mostly dominated by laser dynamics such as spontaneous emission and noise from the

pump transferred to the oscillator.

Over that range, the observed noise �uctuations closely follow Gaussian statistics. As

a consequence, a proper representation of these spectrally dependent �uctuations is a

covariance matrix. The elements of the covariance matrices in amplitude and in phase

are written as

[ΓX ]i j =
〈
δX i ·δX j

〉
(7.3)

[ΓP ]i j =
〈
δPi ·δP j

〉
(7.4)

The diagonal elements of this matrix represent the spectrally-resolved variance. The

notation 〈·〉 denotes the averaging of the demodulated �uctuations at a given sideband

frequency over the acquisition time.

Since the phase

〈
(δP)2〉

and amplitude

〈
(δX )2〉

�uctuations are acquired simultane-

ously, it is possible to compute the correlations 〈δX ·δP〉 for every frequency bands. We

write the obtained matrix C as

[C]i j =
〈
δX i ·δP j

〉
(7.5)

Note that this matrix is not symmetric, and may thus not be diagonalized. However, the

full matrix M de�ned by:

Γ=
[
ΓX C
CT ΓP

]
(7.6)

which represents the collective �uctuations in amplitude and in phase. This matrix is

symmetric and may therefore be diagonalized.

Indeed, since covariance matrices are positive-semide�nite and symmetric, they may

consequently by decomposed on an eigenbasis:

Γ=VΛV−1
(7.7)

where the i
th

column vi of V is the i
th

eigenvector of Γ associated to the eigenvalue Λii.

The eigenvector then correspond to a noise mode whose eigenvalue depict its contribu-

tion to the global noise description. Note that this matrix needs to be normalized, which
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we will do in section 7.2.3.2 relative to the shot noise level. Also, the amount of modes

that are accessible using the multipixel detector is limited by the number of pixels.

With such a decomposition in hand, it is possible to project the modes attached to

the �uctuation of a parameter that we constructed in chapter 5 on the eigenmodes of

the noise matrices to estimate their contributions. This is in essence what was done in

section 5.4.6 to know the noise in the time-of-�ight mode in the amplitude squeezed

beam. Albeit the noise was quantum in nature, the strategy adopted here to extract

classical noise structure is globally inspired by the quantum method.

Note that the decomposition of the full covariance matrix (7.6) results in a basis of

modes that couple both amplitude and phase noise. Since these are not easy to interpret,

we chose to diagonalize independently ΓX and ΓX which gives the modal distribution

of amplitude and phase noise whose analysis is more accessible.

7.2.2 Retrieving the �uctuations
Up until now, we used a homodyne detection to retrieve the information on the phase

quadrature of the �eld by taking the di�erence of the photocurrents, or the amplitude

noise by taking the sum. Such measurement were done independently. Here, we show

that this same scheme may be used to retrieve simultaneously the information on both

�eld quadrature by acquiring the signal at both output of the interferometer. We name

this scheme as superdyne detection.

In the interferometer, we want to retrieve the noise in the local oscillator beam (i.e. the

strong �eld) while the signal �eld is used as a reference to access the phase quadrature.

As we will demonstrate in this section, this optical setup allows to retrieve the �uctua-

tions both in amplitude and in phase of the local oscillator �eld. To measure the noise in

individual spectral bands, we use the same spectrally-resolved homodyne detection as

before (see 3.3.2). The details on the experimental procedure are given in section 7.2.3.1.

In [Schmeissner 14b], measuring the previously-described covariance matrices was

achieved using the same homodyne detection based optical setup. Two balanced photo-

diodes were used at the output of the interferometer, such that the detection of individual

spectral bands was achieved with a pulse shaper in the local oscillator arm. . The mea-

surement was accomplished using a spectrum analyzer. Both amplitude and phase noise

were measured, but not simultaneously, such that the correlations between the two was

not measured. The scheme that we present here consists in an upgrade of that previous

setup since a single measurement retrieves the noise in both quadrature simultaneously

and is much quicker to achieve.

To retrieve both quadratures at the same time, for one given spectral band, we measure

simultaneously the signals coming from both detectors. So instead of measuring a single

signal coming from the analogical di�erence of both photocurrents, we retrieves the two
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photocurrents. This is done for all of the 8 spectral bands, resulting in the simultaneous

acquisition of 16 signals. The sum and the di�erence are then done in post-processing.

More speci�cally, going back to equation (3.4), taking the sum of the photocurrents

(for a given spectral slice) yields

I+,n =Is,n +ILO,n (7.8)

where the contribution from individual �eld is integrated over the spectral band of the

detector. This obviously yields the total power contained in both beams of the inter-

ferometer, such that the �uctuations of this photocurrent are found to be directly pro-

portional to the noise on the amplitude quadrature of the �elds. In the case where the

local oscillator is stronger than the signal �eld, the noise if dominated by its amplitude

�uctuations. Hence, it follows that〈(
δI+,n

)2
〉
= NLO

〈(
δXLO,n

)2
〉

(7.9)

Taking the di�erence of the photocurrent results in the now familiar homodyne signal:

I−,n = 2
√

NLO Re
{
α∗

s Γc,n eiφ0
}

(7.10)

Note that in contrast with parameter estimation, the modal structure of the �uctuations

of the signal �eld is not known, since this is what we aim to determine. When the

interferometer is locked on the phase quadrature, we see that the �uctuations in phase

noise are carried by the term ia(Ω)·δϕ(Ω) (cf. equation (7.2)). The measured phase is the

relative phase between the two arms of the interferometer: δϕ(Ω)= δϕLO(Ω)−δϕs(Ω).
If we consider that there is no phase noise in the signal �eld, which may be achieved

by �ltering, then the measured phase is δϕ(Ω) = δϕLO(Ω), which is the absolute phase

noise of the local oscillator.

When the relative phase between the two arms is π/2, the noise in the detected signal

is given by 〈(
δI−,n

)2
〉
= NLO

〈(
δPs,n

)2
〉

(7.11)

Note that this is contingent upon the local oscillator being in the same mean-�eld mode

than the signal �eld. More importantly, we can see that this scheme measures the phase

quadrature of the signal �eld rather than the local oscillator �eld. Hence it needs to be

renormalized. From (7.2), we can see that the phase quadrature is proportional to the

envelope of the signal �eld, as such, δPs ∝
p

N . Therefore, when the two �elds are in

the same mean-�eld mode, their phase �uctuations are linked by

δPLO,n =
√

NLO

N
δPs,n (7.12)
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This allows to renormalize our measurement (7.11) such that the �uctuations of the same

�eld are retrieved.

7.2.3 Experimental scheme

7.2.3.1 Measurement strategy

As we hinted earlier, to measure the �uctuations, we use our superdyne detection to ac-

quire simultaneously the sum and the di�erence of the photocurrents. The experimental

scheme is depicted on �gure 7.2.

Spectral/phase
compensation

Passive/cavity
F~200

100/fs/pulses
795/nm

Local
Oscillator

+/-

Signal
(Reference)

10-90

Figure 7.2: Experimental scheme of the superdyne detection that measures simultane-

ously the �uctuations in amplitude and in phase of the laser �eld. The �eld that is being

characterized is the local oscillator, while the signal �eld serves as a reference.

The laser source that we characterize is di�erent of the one used in the experiments

from part III. It is a solid-state Titanium-Sapphire laser Mira from Coherent pumped

by a Verdi V18. It delivers pulses of ∼ 100 fs at a center wavelength of 795 nm with

a repetition rate of 76 MHz. The spectral width is 10 nm FWHM, and the mean mode-

locked power that is delivered is around 2 W.

On the local oscillator arm, a spatial light modulator from BNS is introduced to com-

pensate the spectral phase between the two �elds by pulse shaping.

In order to decouple the �uctuations of the two arms, we introduce a Fabry-Pérot

cavity of �nesse ∼ 200 to �lter the signal’s �eld. The cuto� frequency νc is consequently

around 200 kHz. We remind that, when using a cavity in a homodyne detection, the

relative phase that is measured is given by equation (6.24), which is dependent on the

transfer function in phase H( f ) of the cavity.

The analysis frequency f l at which the phase noise in both beams is non longer cor-

related may be obtained by solving the frequency at which the phase noise of the trans-



176 7. EXPERIMENTAL STUDY OF CORRELATIONS IN SPECTRAL NOISE

mitted �eld is reduced by a factor of 2 from the incident:

[1−H( f l)]2 = 1
2

(7.13)

By approximating the transfer function to the case of high �nesse cavities, this yields

f l ' 1.55 ·νc. Therefore, at a frequency of ∼ 300 kHz, the two beams can be considered

as decoupled in phase, such that the measurement on the phase quadrature retrieves the

�uctuations of the local oscillator.

On the amplitude quadrature, we remind that this quadrature shows excess noise from

the quadrature conversion (6.14) induced by the cavity. Consequently, the noise level

has to be characterized and attenuated properly to ensure that taking the sum of the

photocurrents yields only the noise of the local oscillator. To ensure no contamination

due to the di�erent noise levels, we introduced di�erent level of optical attenuation in the

signal beam when measuring. The optimal attenuation is obtained when the retrieved

noise spectrum for the sum of the photocurrent is equivalent (in the distribution, not in

amplitude) to the one retrieved with the signal beam blocked
1
.

7.2.3.2 Normalization

As it was outlined in section 3.3.1, the variances of the quadrature operators in amplitude

and in phase are equivalently equal to 1 for vacuum. Hence, it is a logical choice to

normalize the �uctuations to the shot-noise level. Moreover, since the clearance of the

detection scheme is not exceptionnally high (8 dB at maximum power, about 2 dB only

for the side pixels that receive less power), the dark noise in the measurement needs to

be carefully removed.

The normalization process consists in computing a gain function that allows to re-

trieve the signal. As before, we write the measured signal mi for a single pixel, with an

optical signal si and noise
2 di. The measurement then yields mi =αi si+di, where αi is

gain resulting from the conversion of the optical signal into an electrical signal. In term

of covariance, without correlation between the signal and the noise, we have:

Covi j [m]=αiα j ·Covi j [s]+Covi j [d] (7.14)

where Covi j [x] is the element (i, j) of the covariance matrix of x. When the �uctuations

of the signal arise from quantum vacuum, then Cov[s]= 1 is the identity matrix. For any

1
We also add that the introduction of a high-pass �lter at the input of the demodulation stage was

necessary because the very high phase noise at lower frequencies saturated the electronics.

2
The noise that is referred to here is the dark noise of the detection. The term signal obviously describes

the noise that arises from measuring the �uctuations of the light �eld, which are not correlated to the noise

of the detection.
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measurement to yield the value of 1 when measuring vacuum, the gain α is thus found

to be

αi =
√

Covii [mvac]−Covii [d] (7.15)

where mvac is the measure covariance matrix of vacuum.

The covariance matrices normalized to the shot-noise level are therefore given by

Covi j [s]= Covi j [m]−Covi j [d]
αi ·α j

(7.16)

which is the noise relative to shot noise (RSN).

The amplitude covariance matrix directly retrieves the amplitude �uctuations of the

local oscillator �eld. However, the phase covariance matrix needs to be renormalized ac-

cording to (7.12) such that the phase noise that is measured is for the number of photons

contained in the local oscillator �eld and no the signal �eld.

Note that, from a quantum point of view, this situation is equivalent to mixing an unit

of vacuum in the signal port of the beamsplitter. As a consequence, the sensitivity is

reduced according to Heisenberg principle. This is a consequence of the simultaneous

measurement of both optical quadratures. For classical noise, this is however not an

issue.

Once this renormalization of the phase �uctuations is done, the correlation matrix C
is also normalized to shot noise using to (7.16) because of the isotropy of vacuum.

7.3 Experimental results

7.3.1 Amplitude and phase spectral noise
On �gure 7.3, we represent the covariance matrices in amplitude (top panel) and in phase

(bottom panel) for a range of three sideband frequencies. The noise is estimated relative

to the shot noise level in a linear scale. We also included as inset a two-dimensional

heatmap representation of each matrices.

We can see that at high frequency, neither the amplitude nor the phase matrix exhibit

correlations between wavelengths. For the amplitude matrix, the diagonal elements are

equal to 1, con�rming that the laser source is shot noise limited in amplitude on this

corresponding time-scale. The absence of correlation terms is also consistent with the

fact that the �uctuations of vacuum are entirely uncorrelated. The same observation can

be done for the phase covariance matrix, although the diagonal elements are equal to 10.

This is a consequence of the power renormalization (7.12) that decreases the sensitivity



178 7. EXPERIMENTAL STUDY OF CORRELATIONS IN SPECTRAL NOISE

0

4

0

1.0

0

1.0

Amplitude

0

4000

8000

0

100

0

10N
oi

se
 r

el
at

iv
e 

to
 s

ho
t

Phase

787

803

250 kHz 650 kHz 3.5 MHz

Figure 7.3: Covariance matrix representation of the �uctuations in amplitude (top row)

and in phase (bottom row) at three di�erent sideband frequencies.

of the measurement. When not normalizing, the diagonal elements are equal to 1, and

the source is therefore also shot-noise limited in phase noise at this sideband frequency.

Conversely, on longer time scale, it appears that the amplitude �uctuations of every

considered spectral band are correlated, as it is depicted by the �at structure of the top

left matrix. For the phase quadrature, not only is the noise considerably higher, the

correlations are largely con�ned to the spectral center. Both quadrature show a very

di�erent noise level and spectral distribution.

Note also that the amplitude noise appears to reach the shot noise level quicker than

the phase noise, which is in accord with �gure 6.9. Although the laser source that was in-

vestigated in chapter 6 is di�erent than the present one, both are still Titanium-Sapphire

based laser and thus exhibit similar disparities in the noise level.

However, the two sources do not share the same mode-locking mechanism, hence

there is no reason to assume that their spectral noise distribution should be similar. Un-

fortunately, the phase noise of the source that delivers 20 fs pulses was not yet acquired

at the time of the writing of this thesis. However, measuring the amplitude noise is quite

straightforward and has been steadily achieved. Its amplitude noise matrices are plotted

on �gure 7.4

We see indeed a di�erent spectral distribution than the ones depicted by �gure 7.3.

Most noticeably, the noise seems concentrated toward the infrared wavelengths, even
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more than the other laser source. At 1.5 MHz, the amplitude noise is dominated by the

relaxation oscillations. Whereas the amplitude noise retrieved with a single detector

does not appear to be that di�erent for both laser sources, their spectral correlations can

show di�erent structure.

By this method, the noise �gure of two laser source may be compared in details since

information about correlations between di�erent parts of the spectrum are not easily re-

trieved using standard methods. More importantly, the di�erence in the mode-locking

process may be the reason for the di�erences that are witnessed here, and more infor-

mation will be gained by acquiring the spectral phase �uctuations in the near future.
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Figure 7.4: Covariance matrix representation of the �uctuations in amplitude only of

the laser source described in 3.1.1.

7.3.2 The noise modes
We now want to extract the modal structure of this noise, which becomes accessible upon

eigendecomposition of the noise matrices. The eigenvalues re�ect the noise power, and

are dependent on analysis frequency. They are shown on �gure 7.5. At high frequency,

the noise in both quadratures is equal to the shot noise
3

as it should. At longer timescale,

the eigenvalues rise well above shot noise level in a non-degenerate manner. In both

cases, the main noise mode is clearly identi�ed as the one with the highest eigenvalue.

The eigenmode attached to the highest eigenvalues (at a particular analysis frequency)

are also shown on the plot 7.5. We can see that the main amplitude noise mode closely

resembles the mean-�eld mode while the next eigenstructure is similar to the time-of-

�ight mode. The phase quadrature shows the same eigenmodes.

The eigenstructures are very similar to the theoretical prediction of [Haus 90] shown

on �gure 7.1. The amplitude noise is clearly dominated by amplitude �uctuations while

3
The o�set with respect to shot in the noise value for the main eigenvalue of the phase quadrature

comes from excess noise from the cavity. It may be suppressed by attenuating the signal’s beam.
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Figure 7.5: Eigenvalue distribution of the covariance matrices in amplitude (a) and in

phase (b). The corresponding eigenmodes at 500 kHz are also plotted.

the �uctuations of wavelength are much lower. In the phase quadrature, the CEO phase

noise largely dominates whereas the timing jitter is less important but still noticeable.

Interestingly, we show the clear existence of a third mode not predicted by Haus theory,

which, in analogy to 4.2.4.3, may be attached the �uctuations of dispersion inside the

laser cavity.

Note that this method of eigendecomposition does not ensure that the variation of

each eigenvalue in �gure (7.5) is always attached to the same mode. Nevertheless, no

crossing in the noise power is observed, and the modal structure is not a�ected by the

analysis frequency
4

.

Since the noise is represented relatively to the quantum limit, this method also allows

to compare the noise power in both quadrature. We can infer from the decomposition

that the �uctuations in CEO and in time of arrival of the pulses are more intense than

the �uctuations in power and in center frequency.

We note also that the general structure of the amplitude covariance matrix and eigen-

modes are di�erent from the one presented in [Schmeissner 14b] despite the laser source

being identical. In addition to the di�erence in sensitivity, this disparity may be ex-

plained by the fact that this previous experiment was accomplished with pump diodes

at the end of their life cycle, resulting in very di�erent noise characteristics.

7.3.3 Collective parameters projection
It is also possible to derive which parameter �uctuates given knowledge of the previous

noise distribution. Indeed, the modes attached to the �uctuations of a parameters may be

4
Except of course when shot noise is reached and every eigenvalue is degenerated. Consequently, the

modal structure is meaningless.
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Figure 7.6: Experimental evolution of the �uctuations of the four collective parame-

ters of an optical frequency comb with respect to sideband frequency. The phase mode

corresponds on the amplitude and phase quadratures respectively to variations in mean

power and in CEO phase. The time-of-�ight mode corresponds to timing jitter and cen-

ter wavelength �uctuations.

computed, as it was done in 4.2. Computing the inner product (i.e the overlap) between

the parameter mode and the eigenmodes of the noise matrices then allows to retrieve

the noise associated to the �uctuation of the said parameter. This is in essence a basis

change of the covariance matrix. The retrieved eigenvalue is then directly the noise

power attached to the �uctuations of a physical parameter.

On �gure 7.6, we projected the previous eigendecomposition into the basis de�ned by

the phase mode and time-of-�ight modes v0 and v1 as previously de�ned. This projection

is done for every analysis frequency, hence the distribution in noise is always attached

to the proper mode. It is clear from this �gure that the noise variation is quite similar

to the one depicted in �gure 7.5, thus demonstrating a very good overlap between the

eigenmodes and the projection modes attached to a speci�c parameter.

This allows to directly compare the noise in amplitude and in phase. The global noise

structure is strongly dominated by the �uctuations of CEO and timing jitter that lie on

the phase quadrature.

7.3.4 Phase-amplitude correlations
The concurrent acquisition of amplitude and phase �uctuations allows to compute the

correlations between the two. Note that the quadrature noises have very di�erent in-

tensities. Retrieving the correlations between signals very contrasted does not yield

a precise result. To increase the dynamic range, it is preferable to compute the cor-
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Figure 7.7: Matrix of correlations between amplitude and phase noise. The correla-

tions vanish at high sideband frequencies since the �uctuations of quantum vacuum are

uncorrelated.

relations between two signals with similar variations. In our setup, the strongest noise

comes from the phase noise, which is retrieved by the amplitude of the signal �eld. Con-

sequently, this beam was signi�cantely attenuated. The power ratio between the local

oscillator and the signal �elds was set to ∼ 300 for the acquisition of correlations. On

�gure 7.7, we plot the matrices of correlations for three di�erent analysis frequencies.

As expected, beyond sideband frequencies of ∼ 1 MHz, no correlations are observed

since the quadrature of vacuum are not tied. At lower frequencies however, a distinct

structure is observed along the amplitude quadrature. We can see a variation in ampli-

tude seemingly similar to a Gaussian for every frequency band of the phase quadrature.

Note that the global sign of this correlation matrix has no meaning since the variations

in phase are dependent upon the lock point of the interferometer. As it was discussed in

5.4.1, the side of the fringe on which we lock determines the sign of the recovered signal,

hence the sign of the retrieved correlations may be switched by changing the lock fringe.

The polarity of each pixel within the correlation matrix is however relevant, and every

spectral bands are correlated the same way.

The Gaussian structure along the phase quadrature may be explained by the mode-

locking mechanism of the laser. As it was outlined in 2.4.2.2, the Kerr-lensing e�ect

is in essence a phase response dependent on the amplitude, as described by equation

(2.52). This may explain that the phase and amplitude quadrature are correlated within

the same spectral band, with a progression that follows the mean-�eld spectrum.

An animation of the amplitude and phase noise matrices as well as the correlation

matrix as a function of sideband frequency may be found online at [Thiel 15].
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Figure 7.8: Fluctuations of power (a) center wavelength (b) CEO phase (c) and timing

jitter (d) for di�erent con�gurations of the mode-locking mechanism.

7.3.5 Real-time laser dynamics analysis

To conclude, we wish to propose this measurement scheme to resolve the real-time vari-

ation of the laser noise. To do so, instead of leaving the laser source free-running, we

introduce a perturbation inside the laser cavity and characterize it. Since the measure-

ments in the phase quadrature require to lock an optical cavity, this perturbation needs

to be small enough as not to disrupt the cavity’s retrocontrol loop.

We decided to adjust the mode-locking mechanism by slowly opening or closing the

slit at the output of the laser’s cavity. Being a hard-aperture KLM (see section 2.52), do-

ing so either pushes laser operation towards continuous wave generation
5

(slit opened)

or towards self Q-switching. In both cases, mode-locking is lost. We propose to dynam-

ically explore the noise characteristics of the laser along this range.

For di�erent opening of the slit, we record the covariance matrices in amplitude and

in phase as a function of the analysis frequency. We proceed to eigendecomposition and

we project the results in the phase and time-of-�ight modes. This ensures that we are

tracking the �uctuations in the same mode. The results are shown on �gure 7.8.

5
We note that this con�guration results in the least amplitude noise.
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We see again that the noise structure is dominated by the �uctuations of phase in every

con�guration. The parameters that are the most a�ected by the mode-locking mecha-

nism appear to be the CEO phase and the mean power, both carried by the mean-�eld

mode. In comparison, the �uctuations in timing jitter and center wavelength remains

unchanged by the perturbation.

The noise added by the opening of the slit is clearly concentrated in the relaxation

oscillations of the system. In amplitude and in phase, the relaxation oscillation peaks

is ampli�ed by 20 dB when the slit is opened (i.e. close to self Q-switching) whereas it

vanishes when the slit is closed (i.e. optimal con�guration of the system).

This behaviour is observed easily when measuring the power spectrum distribution in

amplitude noise using a single detector. However, it is interesting to notice that the phase

quadrature is a�ected by the same amount, and that the �uctuations are concentrated

in the global phase of the comb rather than in timing o�set.

Because of the way the aperture of the slit a�ects the laser cavity, the results that we

show here is to be expected. Introducing losses in the cavity should not a�ect the center

wavelength nor the repetition rate. This proves however the validity of this method to

diagnose the ultrafast source in term of its main parameters.

Rather than measuring the noise matrices over a range of sideband frequencies for

di�erent opening of the slit, we also did a dynamical measurement at �xed sideband fre-

quencies. We computed in real-time the covariance matrices while dynamically opening

the slit. Note that this was not done for the phase quadrature, since the change in power

would most certainly unlock the cavity. The result of the dynamic acquisition on the am-

plitude quadrature is shown on �gure 7.9 for analysis frequencies close to the relaxation

oscillation of the system.

We see that the more sensitive parameter to this particular perturbation is the am-

plitude, while the center wavelength is not a�ected. This measurement was achieved

independently for the four sideband frequencies, such that the timescales may not be

compared.

Having access to these �uctuations in real-time opens the possibility to diminish them

using a retrocontrol loop. For example, while monitoring the �uctuations in CEO phase

noise, it is conceivable to act on an element inside the laser cavity to reduce the noise.

Since the obtained decomposition is made in term of uncoupled noise, it should be pos-

sible with proper engineering to counter the variation of one parameter independently

of the others.
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Figure 7.9: Real-time acquisition when the slit at the output of the laser cavity is opened

dynamically. This is a dynamic progression between the situations plotted on �gure

7.8 at four analysis frequencies close to the relaxation oscillations. The noise are for

(1) amplitude and (2) center wavelength jitter. The grayed boxes represent the time at

which mode-locking is lost, and the contained data is then not relevant.
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8 Multimode squeezed states

(Having spent a day trying in vain to communicate with a Newfocus controller,
to the point of building his own communication cable)
“By now, I am �rmly convinced that this instrument has become self-aware, and
will just refuse to work.”

– Jonathan “Gri�n” Roslund

Contents
8.1 Generating quantum states . . . . . . . . . . . . . . . . . . . . . . . . 190

8.1.1 Creation of squeezed states . . . . . . . . . . . . . . . . . . . . . . 190

8.1.2 Parametric down conversion with an optical frequency comb . 191

8.1.3 Objectives and perspectives . . . . . . . . . . . . . . . . . . . . . . 192

8.2 Single-pass squeezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.2.1 Parametric down conversion . . . . . . . . . . . . . . . . . . . . . 193

8.2.2 Eigenmodes of the parametric down conversion . . . . . . . . . 194

8.2.3 Expected e�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.3 Second harmonic generation . . . . . . . . . . . . . . . . . . . . . . . 198
8.3.1 E�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.3.2 The in�uence of temporal chirp . . . . . . . . . . . . . . . . . . . 202

8.4 An ultra-fast squeezer . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.4.1 Pump generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.4.2 Synchronously pumped optical parametric ampli�er . . . . . . . 204

8.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.5.1 Quantum enhanced metrology . . . . . . . . . . . . . . . . . . . . 205

8.5.2 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

In this �nal part, we overview the future developments of the parameter estimation

experiment. It involves the generation of quantum light to perform measurements below

the standard quantum limit and the synthesis of a beam entangled in “time”.

Toward that aim, we describe the non-linear e�ects in the femtosecond regime (second

harmonic generation and parametric down conversion) that are necessary to generate

the quantum resources that are required.
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8.1 Generating quantum states

8.1.1 Creation of squeezed states
To generate quantum states with sub-Poisson statistics, several techniques which are

all based on non-linear optics can be used. It involves the creation of pairs of photons

within a medium which then share complementary information (such as polarization,

frequency, etc.).

In our laboratory, generation of quantum states has been achieved within an optical

parametric oscillator (OPO) injected by a frequency comb. It consists of a gain medium

which presents a χ(2)
non-linearity put in a cavity. Within the crystal, a nonlinear e�ect

converts a pump photon of frequency ωp and wavevector kp into two photons, called

signal and idler, whose frequencies and momenta satisfy:

ωp =ωs +ωi (8.1)

kp =ks +ki (8.2)

The cut of the crystal is set such that all frequencies propagate with the same velocities,

resulting in the maximal gain. In the case were the signal and the idler photons are in

the same spatiotemporal mode, the parametric down conversion process is said to be

degenerate.

The Hamiltonian of a degenerate parametric down conversion process is written as

ĤPDC = igap

(
â†

s

)2 +h.c. (8.3)

with g = χ(2)ωs
Ni c

. To obtain that expression, we considered that the pump is a classical

�eld, and we made the approximation that it is undepleted by the nonlinear process. We

also considered the perfect phasematching case ∆k= 0.

The unitary evolution matrix associated to the Hamiltonian is then given by

Û = exp
[
− i

2
ĤPDC

]
≡ exp

[
1
2

gap

((
â†

s

)2 − âs

)]
(8.4)

which corresponds to the squeezing operator (1.96) with a squeezing parameter gap.

This factor scales with the amplitude of the pump �eld (i.e. the square root of the pump

intensity) and with the non-linear susceptibility of the crystal.

It may be shown that this process corresponds to a phase sensitive ampli�cation of

the incoming �eld in the same mode as the signal [Grynberg 10]. More precisely, for an

input �eld Ê(+)
in of frequency ωs and of same polarization as the signal, after propagation
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through the crystal, the �eld Ê(+)
s is characterised by the following quadrature operators:

x̂s = e−γ`c · x̂in (8.5)

p̂s = e+γ`c · p̂in (8.6)

where `c is the length of the crystal and γ = χ(2)apωs
Ni c

is the gain, with ap the classical

amplitude of the pump and Ni the photons number in the input �eld. The variances of

the quadrature operators are then written as:〈
(δx̂s)2〉= e−2γ`c ·〈(δx̂in)2〉

(8.7)〈
(δ p̂s)2〉= e+2γ`c ·〈(δ p̂in)2〉

(8.8)

When the input state is a coherent state or a vacuum state, its variance on both quadra-

ture is equal to unity, and therefore, the amplitude �uctuations of the signal state are

found to be below 1. It is said to be amplitude squeezed. On the other hand, its phase

quadrature has a variance superior to one, and is then said to be anti-squeezed.

8.1.2 Parametric down conversionwith anoptical frequency comb
To introduce the generation of multimode squeezed light, we give a succinct description

of the parametric down conversion of an optical frequency comb. A more complete

description may be found in [Patera 08] and in [Jiang 12].

For a pump �eld described by a frequency comb of repetition rate ωr and carrier-

envelope-o�set frequency 2ωCE , each toothωp,k = kωr+2ωCE can give rise by paramet-

ric down conversion to two frequencies ωs,n = nωr+ωCE and ωs,k−n = (k−n)ωr+ωCE
with ωs,n +ωs,k−n = ωp,k. The amplitude of this conversion is dependent on the am-

plitude ak of the pump frequency ωp,k. Consequently, a frequency of the signal comb

ωs,n is generated by all the pump frequencies ωp,k and coupled to all the signal frequen-

cies ωs,k−n with a strength depending on the amplitude ak for each k. This is therefore

a highly multimode process that results in a highly multimode structure, as shown by

�gure 8.1.

The interaction Hamiltonian in this case is then written as

ĤPDC = ig
∑
m,n

am+nΦm,nâ†
s,mâ†

s,n +h.c. (8.9)

whereΦm,n denotes the phase mismatch between the interacting waves within the crys-

tal. It can be shown[Eckstein 12] that this decomposition on a very large number of fre-

quency modes may be simpli�ed by diagonalizing the spectral coupling matrix or joint
spectral distribution Lm,n = am,nΦm,n. When writing Λk the eigenvalues of L and Ŝk
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Figure 8.1: Representation of the parametric down conversion process with optical fre-

quency comb. Each tooth of the pump comb can give rise to every tooth of the signal

comb. [Figure by Renné Medeiros de Araujo]

the annihilation operators associated to the eigenmodes vk of L, the Hamiltonian is ex-

pressed in the basis of the operators

{
Ŝk

}
as:

ĤPDC = ig
∑
k
Λk

(
Ŝ†

k

)2 +h.c. (8.10)

This Hamiltonian describes an assembly of independent squeezing operators acting on

the modes Ŝk with a squeezing factor gk = gΛk. The modes Ŝk are called the supermodes
of the system.

In the case we are interested in, it may be shown that Λk is real, and when ordered

from highest to lowest values, Λk is positive for even k and negative for odd k. This

means that the even supermodes are squeezed in amplitude, while the odd supermodes

are squeezed in phase.

8.1.3 Objectives and perspectives
We aim to generate a number of these quantum supermodes for various applications

such as below quantum limit parameter estimation and entanglement. Such resource

has already been successfully manufactured by the group [Roslund 13], showing at least

a number of 32 supermodes, each individually squeezed, where the lowest order mode

is squeezed by 8 dB. This quantum source was also used for the experiment in quan-

tum metrology described in section 5.4.6. See [Cai 15] for the latest development and

applications.
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As it was referred to earlier, the quantum source consists of a synchronously pumped

optical parametric oscillator (SPOPO) which is resonant for the signal �eld. If we were to

generate entanglement between di�erent supermodes, one would have to manufacture

two of these multimode quantum beams. Moreover, since it is generated inside of a

cavity, the “quantumness” of the state is only observable on an integration time that

is limited by the bandwidth of the cavity. In the time domain, this is pictured by the

quantum behaviour of a train of pulses that are correlated over the life time of the cavity.

Consequently, observing quantum e�ects between subsequent pulses is not possible

using such squeezer. Having access to the quantum e�ects in a pulse-by-pulse regime

would result in a discrete representation of a continuous variable state, thus leading to

interesting perspectives. The parametric down conversion process in single-pass (i.e.
not in cavity) appears to be well-suited to that particular task.

We propose to utilize such scheme to the generate a signal and idler �eld with less

complexity that an OPO. Since no cavity is present, there is no bandwidth e�ect, hence

every pulse would show quantum properties[Wenger 04]. On the down side, achieving

squeezed light generation in a single-pass con�guration requires a lot of pump power.

In the following, we give a description of the parametric down conversion process

that is oriented toward the main parameters to set and control in order to maximize the

amount of squeezing in a single-pass con�guration.

8.2 Single-pass squeezing

8.2.1 Parametric down conversion
We begin by showing how to derive (8.9).

We consider the interaction between a pump and a signal �eld in a non-linear medium

with a second order non-linear polarization. Using a classical treatment, it can be shown
1

that the envelope as of the signal �eld satis�es the following propagation equation:

∂as

∂z
(z,ω)= E0,p

ω0χ
(2)

2nsc

∫
R

ap(z,ω+ω′)a∗
s (z,ω′) ei∆k(ω,ω′)z dω′

p
2π

(8.11)

where ns is the index of refraction seen by the signal wave and E0,p is the �eld constant

of the pump �eld. Note that even though we considered that the signal and the idler

�elds are identical, this process may not be regarded as being degenerate since photons

are created at di�erent frequencies that satisfy the energy conservation condition (see

�gure 8.1.

1
As in the �rst chapter, we use the paraxial approximation and the slowly-varying envelope approxi-

mation.
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The quantity ∆k(ω,ω′) is the mismatch in wave vector due to the propagation of dif-

ferent polarization in an anisotropic medium. It reads

∆k(ω,ω′)= kp(ω+ω′)−ks(ω′)−ks(ω) (8.12)

In the undepleted pump regime where ap does not depend on the longitudinal variable,

for a real envelope
2 as, it is straightforward to obtain the amplitude of the signal �eld

at the output of the crystal. With a crystal length `c, the signal envelope at the output

aout
s is written as a function of the input ain

s as:

aout
s (ω)= exp[S0] ·ain

s (ω) (8.13)

where S0 is given by the following integral:

S0 = E0,p
ω0χ

(2)`c

2nsc

∫
R

ap(ω+ω′) sinc
(
∆k(ω,ω′)`c

2

)
dω′
p

2π

≡ C
∫
R

L(ω,ω′)
dω′
p

2π
(8.14)

We wrote the constant factor C that encompasses the medium properties and the in-

dices of refraction seen by the pump and the signal �eld, and we introduced the joint

spectral distribution L(ω,ω′) = ap(ω+ω′) sinc
(
∆k(ω,ω′)`c

2

)
. Using the discrete structure

of a frequency comb allows to write the Hamiltonian (8.9).

The squeezing factor is consequently proportional to the eigenvalues Λ j of L and to

the constant C. Note that L is dependent on the amplitude of the pump �eld, such that

the eigenvalues Λ j are also dependent on the square root of the number of photons in

the pump.

8.2.2 Eigenmodes of the parametric down conversion
The multimode structure of the signal �eld at the output of the crystal is dictated by

the eigenmodes of the joint spectral distribution. Using a Gaussian approximation, this

diagonalization has an analytical solution[Patera 08] where the eigenvalues have a geo-

metric progression dependent on the properties of the gain medium and the eigenvectors

are Hermite-Gauss modes. The spectral width of the �rst supermode is dependent also

upon the properties of the medium and the spectral bandwidth of the pump, while the

width of the following modes scales with the square root of the mode order.

We want this squeezing source to be realized from the second harmonic of the laser

source described in 3.1.1, which delivers pulses of ∼ 20 fs, much shorter in comparison

2
In the more realistic case were as is complex, the calculation links aout

s to its complex conjugate (ain
s )∗.
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to the other laser source that was used to measured the noise matrices of chapter 7 and

the below shot noise measurement of section 5.4.6. Whereas the peak power is more

important with shorter pulses, the in�uence of dispersion is also much stronger. Hence,

a compromise has to be made between pulse duration and crystal length.

When frequency doubling this source, the maximum achievable bandwidth is on the

order of 14 nm. This sets the limit for the bandwidth of the pump to be used in the

simulations. The other parameter to be chosen is the crystal type. The nonlinear crystal

used in the SPOPO and for second harmonic generation is BIBO (BIB3O6), which has a

strong nonlinearity but is also quite dispersive.

A very widespread nonlinear crystal in ultrafast optics is Barium Borate, BBO. It has

a decent nonlinearity and a very wide phase matching bandwidth, making it ideal for

short pulses. We settled to use this crystal for our simulations and experiments.

We set the orientation of the crystal such that phase matching is achieved at the center

frequency ∆k(ω0,ω0) = 0. The phase mismatch between di�erent spectral components

of the interacting �elds is obtained by Taylor-expanding the pump and signal wavevec-

tors:

∆k(Ω,Ω′)=���*
0

∆k0 + (k′
p −k′

s)(Ω+Ω′)+
[

1
2

k′′
p(Ω+Ω′)2 − 1

2
k′′

s (Ω2 +Ω′2)
]

(8.15)

where k′
s,p and k′′

s,p correspond to �rst and second order derivatives with respect to ω

taken at the center frequency ω0. On �gure 8.2, we plot the joint spectral distribution

matrix and its eigendecomposition for a parametric down conversion in 1 mm of BBO

when the pump has a bandwidth of 8 nm FWHM.

The joint spectral distribution corresponds to the product of the Gaussian pump by the

phase matching function which results in the curved structure because of the quadratic

dispersion in the crystal. It follows that the supermodes have an oscillating behaviour in

the spectral wings. From the analytical diagonalization, it can be shown that the width of

the �rst supermode is proportional to the bandwidth of the pump, and inversely propor-

tional to the parametric crystal length, the group velocity mismatch and the dispersion.

Choosing the crystal length and the bandwidth of the pump thus allows to taylor the

width of the supermodes.

These parameters also a�ect the eigenspectrum in both its amplitude and its distribu-

tion. The con�guration that was chosen for this simulation yields a �at distribution of

the �rst four eigenvalues, while the bandwidth of the �rst supermode is similar to the

one of the laser.

This spectral width is important to control in order to access it. To measure the vari-

ance in a given mode, one has to perform a projective measurement where the local

oscillator is in the same mode. To do so, the local oscillator �eld needs naturally to have

a bandwidth at least equal to the mode that we want to measure. If not, the overlap

between the signal and the reconstructed mode will be lower, which, when measuring
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Figure 8.2: Parametric down conversion for 1 mm of BBO and a pump of 8 nm FWHM.

(a) Joint spectral distribution. (b) Eigenspectrum of the decomposition and simulated

measurement. (c) First two supermodes (plain) and amplitude of the laser’s �eld (dashed).

quantum states, is equivalent to mixing vacuum. This is a source of loss that is very

important to control.

Consequently, if one wants to measure every modes that are shown on the eigen-

spectrum of �gure 8.2 using the �eld from the laser source, the retrieved distribution of

squeezing would be very di�erent. A way of predicting this dependency is to use a prag-

matic approach based on projective measurements. Consider that we want the measure

the noise in a given supermode in a homodyne detection were we are able to shape the

local oscillator. In the case were the parameters of the interaction are such that the �rst

supermode is well-approximated by a Gaussian (as it is the case in �gure 8.2), it follows

that the next supermodes are also approximated by a Hermite-Gaussian basis.

To measure the amount of squeezing in each of these supermodes, we project the mul-

timode vacuum on the mode of the local oscillator that is set by the experimentalist. To

construct the projection mode, we measure the �rst and second moments of this �rst su-

permode
3

and build a Hermite-Gauss basis with these parameters. Since the bandwidth

of the local oscillator is limited by that of the original �eld, we multiply the reconstructed

3
With the SPOPO, this may be done by operating it over threshold such that this mode is non-vacuum.
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Figure 8.3: Overlap between the �rst 8 eigenmodes and a reconstructed Hermite-

Gaussian basis that has the same moments than the �rst supermode. This reconstructed

basis is also weigthed such that its width may not exceed the maximum possible band-

width de�ned by the local oscillator (dashed).

basis by a sharp �lter. This allows to simulate that the bandwidth of the local oscillator

can be slightly increased with increasing its power and shaping its amplitude.

We then compute the overlap between each modes of this new basis and the eigen-

modes computed in 8.2.2, and we use the result to weight the eigenvalues distribution.

The result is shown on �gure 8.3. This procedure adds a steep cuto� and reduces sub-

stantially the number of measurable modes, as shown on 8.2(b). A similar result may

be obtained by diagonalizing a subset of the joint spectral distribution matrix. When

applied to a simulation of the SPOPO experiment, this method gives a reasonable ap-

proximation of the experimental squeezing spectrum
4
.

Experimentally, this bandwidth e�ect is currently limiting the amount of squeezing

that is measured in the higher order modes with the SPOPO. Another concomitant e�ect

may be that the pixelization of the search space can only approximate the high frequency

variation of the supermodes, and is again equivalent to mixing in vacuum.

For the situation that we study, we do not wish to produce a high number of squeezed

modes, in contrast with the SPOPO experiments. However, we are interested in produc-

ing squeezed modes that are as close as possible to Hermite-Gauss, as we will explain in

section 8.5.1. Computing the overlap between the simulated eigenmodes of the system

and the ideal basis is then more adapted to that purpose.

4
Although the real experimental method to measure the noise in every mode is based on reconstructing

the covariance matrix and diagonalizing it. This does not assume any shape of the supermodes, but is still

limited by bandwidth and pixelization issues.
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8.2.3 Expected e�ciency

The previous simulation allows to predict the number of detectable modes and their

relative squeezing / anti-squeezing levels. The global e�ciency of the process is however

not an easy quantity to predict with con�dence. Experimental quantities that are hard

to evaluate precisely, such as peak power and focussing e�ects, lead to very di�erent

expectations.

Since we already have access to a squeezer in our laboratory, meaningful results can

be obtain by doing comparisons. In an OPO, the maximum squeezing is achieved for

a pump power at which the cavity is emitting a bright beam of light, similar to a laser.

This point is called threshold and is dependent in particular on the re�ectivity of the OPO

cavity. By considering the squeezing factor g0 of the �rst supermode, which depends

on pump power, one can show that the threshold is reached for:

gthresh = cosh−1
(
1+ r2

2r

)
(8.16)

where r is the global re�ectivity of the cavity. We calculate the value of this parameter

for the experimental settings corresponding to a global re�ectivity r2 = 70% (�nesse of

20). The pump power at threshold is measured to be Pthresh ≈ 80 mW.

In the case of the SOOPO, the squeezing parameter in the n
th

mode is a function of

the eigenvalue gn. The threshold corresponds in the theory to a singular point where

the squeezing parameter goes to in�nity. However, when no cavity is considered (i.e.
in single pass parametric down conversion), the squeezing parameter is directly pro-

portional to this eigenvalue and does not show any singularity. With out experimental

parameters, if one were to remove the OPO cavity and measure the squeezing level for

the pump power at which threshold is achieved, the expected squeezing level is on the

order of 1.5 dB.

This rough estimation allows to infer the maximum amount of squeezing in a single

pass con�guration for a given pump power. We also note that the squeezing amount

scale with the square root of the pump power, and is by far the easiest parameter to

adjust in order to increase the squeezing amount.

8.3 Second harmonic generation

In this section, we succinctly present how to create a strong pump for the parametric

down conversion process. We derive the governing equations for second harmonic gen-

eration in the ultrafast regime and the parameters on which e�ciency depends.
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8.3.1 E�ciency
With a similar treatment than that done in section (8.2.1) for parametric down conver-

sion, the propagation equation for the signal �eld
5

within the frequency doubling crystal

writes as

∂As

∂z
(z,ω)= i

ω0χ
(2)

nsc

∫
R

Ap(z,ω′) Ap(z,ω−ω′) ei∆k(ω,ω′)z dω′
p

2π
(8.17)

where we considered the center frequency of the signal �eld as 2ω0, and we write the

envelopes A i(z,ω)= E0,iai(z,ω) for a better readability.

In the undepleted pump regime, equation (8.17) may be integrated over the crystal

length `c:

Aout
s (ω)= i

ω0χ
(2)`c

nsc

∫
R

Ap(ω′) Ap(ω−ω′) sinc
(
∆k(ω,ω′)`c

2

)
dω′
p

2π
(8.18)

where we consider that the signal �eld at the input of the crystal has a zero amplitude.

When neglecting the e�ect of second-order dispersion in the phase-matching func-

tion, the second-harmonic �eld is then written as:

Aout
s (ω)= iΓ`c F(ω) ·Φ(ω) (8.19)

where Γ = ω0χ
(2)

nc , F(ω) = ∫
R

dω′p
2π

Ap(ω′) Ap(ω−ω′) is the self-convolution of the pump

�eld and Φ(ω) is the phase-matching function. It reads

Φ(ω)= sinc
(
∆k′`c

2

)
(8.20)

where ∆k′ = k′
p −k′

s is the group velocity mismatch.

In the Gaussian case, the second harmonic of the pump �eld is another Gaussian of

bandwidth

p
2∆ωp and center frequency 2ω0 multiplied by the phase matching function

which acts as a spectral �lter. For a dispersive material, the phase-matching function

becomes narrower, hence the second harmonic spectrum is shorter than the limit given

by

p
2∆ωp.

We are interested in the energy Ws contained in the second harmonic �eld, obtained

by integrating the intensity (see (1.41)):

Wout
s = 2ncε0

∫
R

dω
∣∣Aout

s (ω)
∣∣2

(8.21)

5
Note that we always consider the pump �eld as the input of the nonlinear process, being second

harmonic generation or parametric down conversion. It does not denotes the same �eld for both processes.
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An exact treatment can be done in the time domain to compute the energy [Weiner 11a].

In the spectral domain, a similar result may be obtained by approximating the phase-

matching function by a Gaussian of similar FWHM.

The second harmonic �eld is then found to be proportional to

Aout
s (ω)∝ χ(2)Wp`c

n3/2 exp
[
−

(
ω−2ω0

2κ

)2]
(8.22)

where Wp is the energy in a pump pulse and κ is an e�ective width de�ned by

κ=
p

2∆ωp

[
1+

(
∆k′`c∆ωpp

2ξ

)2]−1/2

(8.23)

where ξ≈ 1.9 is a numerical factor that approximates the FWHM of the sine cardinal to a

Gaussian. For short crystals `c → 0, we �nd the standard result that the second harmonic

�eld has a width

p
2∆ωp. A longer crystal then reduces the spectral bandwidth of the

second harmonic �eld.

Hence, the energy in a signal pulse is given by

Wout
s ∝

d2
e�

n3 W2
p `

2
c κ (8.24)

We introduced the e�ective nonlinear coe�cient de� = χ(2)

2 which is commonly used in

the literature to quantify the nonlinearity of a medium [Boyd 03].

The e�ciency of the second-harmonic generation process is proportional to:

ηSHG ∝
d2
e�

n3 Wp`
2
c κ (8.25)

It is a standard result that this e�ciency is proportional in the CW regime to the pump

power, to the square of the crystal length and to the nonlinear coe�cient. In the ultrafast

regime, however, di�erent cases arise depending on the bandwidth of the pump. We

chose to write these conditions as a function of the temporal bandwidth rather than the

spectral bandwidth:

•

∣∣∆k′∣∣`c ¿∆tp: this is the quasi-continuous regime, it corresponds to the situation

where the bandwidth of the phase-matching is much broader than the spectrum

of the pump. In that case, κ→∆ωp and the e�ciency writes as:

η
QCW
SHG

∝ `2
c

Wp

∆tp
(8.26)
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Like the CW case, the e�ciency scales with the square of the crystal length and

with the energy of the pump. However, because of the pulsed regime, the e�ciency

is also inversely proportional to the temporal bandwidth ∆tp of the pump.

•

∣∣∆k′∣∣`c À ∆tp: the group delay mismatch is much larger than the pulse width,

which is equivalent to state that the phase-matching bandwidth is much narrower

than the pump spectrum. In this case, κ → 2ξ
|∆k′|`c

which is independent of the

bandwidth of the pump. When computing the e�ciency in the large group velocity

mismatch regime, we obtain:

ηGVM
SHG

∝ `c

|∆k′|Wp (8.27)

In this regime, the second harmonic power scales linearly with the crystal length,

and is independent of the pump duration. E�ciency is degraded by the group

velocities mismatch. Spectrally, the second harmonic �eld is �ltered by the phase-

matching function, which results in the temporal domain in a square pulse shape,

with a duration

∣∣∆k′∣∣`c independent of the pump pulse duration.

The previous discussion allows to de�ne a characteristic length `T , called temporal

walk-o�, as the distance for which the pump and the signal are temporally separated by

one unit of bandwidth:

`T = ξp
ln2

∆tp

|∆k′| (8.28)

The optimal situation is attained when these two width are matched, meaning `c ≈ `T .

This usually means using a crystal with a broad phase-matching bandwidth compared

to the pump �eld spectrum.

The length `T gives a limit to the crystal length for temporal e�ects. A similar deriva-

tion may be done in the spatial domain to yield two di�erent boundaries.

The �rst one arises from focussing e�ects. When pumped by a Gaussian beam of waist

w0,p in the center of the crystal, the transverse mode of the signal beam is also Gaussian

with the following properties:

w0,s =
w0,pp

2
for which z0,s = z0,p (8.29)

where z0 is the Rayleigh length of the beam. De�ning the depth-of-�eld, or confocal

parameter, b as b = 2z0, it is possible to estimate the optimal crystal length at which

e�ciency is maximum. The treatment done in [Boyd 68] gives the optimal crystal length

`c ≈ 2.84b. This criterion takes into account the fact that the frequency doubling process
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is most e�cient at the point of focus whereas it is weaker in the other regions of the

crystal.

The other criterion to consider is the e�ect of walk-o�. When critical phase-matching

is achieved (i.e. the cut of the crystal is such that the fundamental and harmonic waves

propagate with the same velocities), this poses the problem that the second harmonic

energy does not propagate along the wave vector. Hence, the overlap between the two

waves is not conserved over the crystal length.

The limit in crystal length `s (also called aperture length), for a walk-o� angle ρ, is

de�ned by the distance for which the second harmonic wave is displaced by one pump

beam diameter:

`s =
p

2 w0,p

ρ
(8.30)

giving yet another limit in crystal length to take into account.

One �nal focussing e�ect that is worth mentioning is the phase-matching of the dif-

ferent wave vectors of the pump. Indeed, for strong focussing, the edge of the beam

propagate with di�erent wavevectors, such that the doubling e�ciency is decreased due

to phase-matching. This de�nes the acceptance angle of the crystal.

Obviously, the same considerations need to be applied to parameteric down conver-

sion in order to maximize its e�ciency.

8.3.2 The in�uence of temporal chirp
The previous derivation considered transform-limited pulses. It is important to know

the in�uence of the pump chirp on the second harmonic.

We consider here that the pump �eld is linearly chirped, i.e. it has a quadratic spectral

phase φ2 (see section 2.2.2.3) when entering the crystal. As we have seen, such phase

expands the pulse length in the temporal domain and decreases the peak power. It should

therefore decrease the e�ciency of the frequency doubling process.

We add a quadratic spectral phase to the pump �eld in equation (8.18):

A′
p(ω)= Ap(ω) exp

[
iφ2

(ω−ω0)2

2

]
(8.31)

It can be shown that the second harmonic �eld at the output of the crystal thus writes

as

(
Aout

s
)′ (ω)= Aout

s (ω)√
1− iφ2

/
2∆t2

p

exp
[

i
φ2

2
(ω−2ω0)2

2

]
(8.32)
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showing that the quadratic phase of the pump is passed to its second harmonic, reduced

by a factor 2.

Consequently, the energy in the second harmonic �eld is found to be:

(
Wout

s
)′ = Wout

s

1+ (
φ2

/
2∆t2

p
)2 ≡ Wout

s(
∆t′p

/
∆tp

)2 (8.33)

where ∆tp and ∆t′p are respectively the temporal width of the transform-limited and

the chirped pump pulse, as de�ned by (2.41). Naturally, we have ∆t′p
/
∆tp > 1 whether

φ2 is positive or negative.

The e�ciency of second harmonic generation is thus degraded with respect to the

transform limited case according to

η′SHG = ηSHG(
∆t′p

/
∆tp

)2 (8.34)

This shows the necessity to have a transform-limited pump pulse to ensure the best

e�ciency. More precisely, this same treatment may be used to take into account the

dispersion induced by the propagation through the crystal, which can be very dispersive

for short pulses. Hence, the optimal situation corresponds to a transform-limited pump

pulse in the center of the crystal. Again, the same considerations also apply to parametric

down conversion.

8.4 An ultra-fast squeezer
We present in this section the experimental realization of a single-pass squeezer.

8.4.1 Pump generation
We achieved second-harmonic generation in a type-I BBO crystal of 400 µm from transform-

limited 20 fs infrared pulses. A prism compressor was used to ensure that the infrared

pulses duration was minimal in the frequency doubling crystal. The second harmonic

spectral width is on the order of 8 fs in such con�guration, which is what is required by

the simulation on �gure 8.2.

When pumped with an infrared power of ∼ 400 mW, we measure an e�ciency of

∼ 5%, i.e. 20 mW of second harmonic power. Such power is not su�cient to e�ciently

pump the parametric down conversion process. To increase it, one could change the

parameters of the frequency doubling , such as focussing and crystal length. However,

this would pose other problems such as spatial chirp, poor spatial mode quality and

non-gaussian spectrum.
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Figure 8.4: Geometry of the SPOPA cavity. The waist at its center is w1 = 20 µm, and

the input waist is w0 = 180 µm. IC: input coupler, HR: high re�ectivity, CM: curved

mirror.

Hence, we chose to place the parametric down conversion crystal in a synchronous

cavity resonant for the pump. The resulting scheme can be called a synchronously

pumped optical parametric ampli�er (SPOPA).

Note that a 8 nm spectrum at 400 nm corresponds to transform-limited 30 fs pulses,

which disperse more quickly than in the infrared. The compensation of dispersion of the

second harmonic �eld is therefore very important, especially if it needs to be resonant

in a high �nesse cavity.

8.4.2 Synchronously pumped optical parametric ampli�er
The power circulating inside of a cavity with a high �nesse F is enhanced with respect

to the incident beam by a factor of F /π. Hence, a cavity of �nesse 100 would see its

intracavity power enhanced by a factor of ∼ 20. Such an enhancement applied to our

second harmonic power is more than enough to pump the parametric down conversion

process.

During her master thesis internship [Casacio 14], Catxerê Andrade Casacio designed

the geometry of a synchronous cavity which provides a waist of ∼ 20 µm at its center.

It is a linear cavity in a simple layout with one input coupler, one back mirrors and two

curved mirrors, as shown on �gure 8.4.

Since it is linear, the light travels in both directions inside the cavity, and its length

corresponds to half the free spectral range of the laser. The curved mirrors both have

a focal length of 50 mm. In order to be a stable resonator, the waist on both the input

coupler and the back mirror needs to be of ∼ 180 µm.

The cavity was experimentally constructed by Thibaut Michel during his internship.

The modematching is achieved using three curved mirrors as to minimize the dispersion

on the second harmonic beam. Using an input coupler with a re�ectivity of 98%, a

�nesse of ∼ 150 was measured, with a reasonable mode-matching of 90%. The presence

of a transverse TEM01 mode was originally observed, and it could not be diminished by
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aligning the beam to the cavity. It was determined that this transverse mode came from

the ellipticity of the beam. Introducing a pinhole to �lter it solved the problem.

Using a Pound-Drever-Hall locking scheme were a piezo actuator is modulating the

phase of the beam at ∼ 800 kHz, a stable lock was obtained with low �uctuations.

As of yet, we could not introduce the parametric down conversion crystal inside of

the cavity because of the dispersion. Since the light is going twice through the crystal,

taking into account the air, the amount of dispersion for one round-trip with a 1 mm

BBO crystal is around 300 fs
2
. That amount of phase is enough to double the length of

a 30 fs pulse.

Consequently, we acquired chirped mirrors to compensate for the propagation inside

the cavity. This would allow to proceed to lock the cavity with a crystal inside.

8.5 Perspectives
Finally, we present the applications to the quantum light that would be generated by

the SPOPA. Being a source of multimode squeezed light, it can be applied to quantum

metrology to produce below shot-noise sensitivity in parameter estimation. From an-

other perspective, one can consider two of these multimode squeezed beams and use

them to entangle quantities that can be linked to the parameters from section 4.2.

8.5.1 Quantum enhanced metrology
We remind from section 4.2.4.2 that a measurement on the detection mode for space-time

positioning presents the best sensitivity using classical resources. The sensitivity of this

projective measurement is governed by the variance of the signal �eld in the detection

mode. Hence, using squeezed light, the sensitivity is increased beyond the quantum

limit, as it was done experimentally in 5.4.6. However, that quantum experiment was a

spectral analysis, whereas the space-time positionning experiment can be achieved with

a single pulse. The quantum e�ects would then also be resolvable in a pulse-by-pulse

measurement.

By taking into account the variance of the di�erent modes of the signal �eld, the

minimum detectable distance from (4.52) (for a propagation in vacuum) is then written

as

(
δL

)
min =

c

2
p

N

√
ω2

0σ
2
p0 +∆ω2σ2

x1

ω2
0 +∆ω2

(8.35)

where σp0 is the noise in the phase mode (in the phase quadrature) and σx1 the noise

in the time-of-�ight mode (in the amplitude quadrature). In order for the sensitivity to
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Figure 8.5: Representation of the multimode output of the parametric downconversion

process when seeded by a coherent state. The mean-�eld mode is squeezed on the phase

quadrature and the time-of-�ight mode is squeezed on the amplitude quadrature.

increase with respect to the standard quantum limit, both these variances need to be

smaller than unity.

Remarkably, this is precisely the characteristics of the multimode squeezed light at the

output of the parametric down conversion process. Indeed, when the �rst supermode

(corresponding to the mean �eld mode) is phase squeezed, then the next supermode

(corresponding to the time-of-�ight mode) is amplitude squeezed. In the case depicted

by �gure 8.2, the �rst two eigenvalues have the same absolute value, such that the two

�rst supermodes would show the same reduced variance in orthogonal quadratures, i.e.
σp0 'σx1 ≡σ0. Hence, the sensitivity reads

(
δL

)
SQZ,min

' c

2
p

N

1√
ω2

0 +∆ω2
·σ2

0 (8.36)

Therefore, the parametric down conversion scheme outputs directly the necessary re-

sources to perform a below shot-noise measurement of a displacement in space or in

time. The important point is that the two �rst supermodes are squeezed by the same

amount while the higher order modes are of no importance. The conditions that are

outlined in �gure 8.2 appear to be su�cient to generate such quantum state.

We stress that this quantum detection mode is generated directly by the nonlinear

process, and does not require the generation of a synthetic beam as it was done in 5.4.6.

The parametric down conversion process needs to be seeded since the mean �eld mode

has to be squeezed. A schematic representation is given on �gure 8.5.

To produce the squeezed state using the SPOPA, it needs to be seeded in order to pro-

duce the beam described by �gure 8.5. Note that the signal and idler photons need to

be created in the same spatiotemporal mode. To do so, one could use dichroic mirrors

to seed the cavity and perform the parametric down conversion in a collinear con�g-

uration. This results directly in a squeezed beam, similar to the output of the SPOPO.
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Figure 8.6: Computer graphics representation of the SPOPA. It is seeded by a coherent

�eld in the mean-�eld mode. In a non-collinear con�guration, at the output, there are

two entangled beams.

To achieve such scheme, dichroic mirrors of very good quality are required, but this ge-

ometry is simple to execute and the down-converted beam is easy to retrieve. The most

problematic part would be the dispersion compensation, or more precisely, matching the

spectral phase of the seed to the down-converted �eld.

8.5.2 Entanglement
If two such beams are generated, it is possible to combine them on a beamsplitter to gen-

erate entanglement. Entanglement would then be observed between the two mean-�eld

modes and on between the two time-of-�ight modes. Since the phase mode is attached

respectively to a detection of variation in amplitude and phase on the amplitude and

the phase quadrature, the �rst entangled quantities are amplitude and phase. Similarly,

the time-of-�ight mode detects a variation of center wavelength and timing jitter, so the

entangled quantities are frequency and time.

If the two modes have the same squeezing value, this degeneracy allows to easily

change the basis to the detection mode that combines both phase and time-of-�ight

mode. The entanglement would then be related to this mode which is attached to a

measurement of distance. One entangled quantity would therefore by the delay in dis-

tance (or in time) while the other quantity is less clearly de�ned, as it combines energy
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Delay

Figure 8.7: Generation of a highly multimode quantum source that is entangled in fre-

quency and multiplexed in time.

and frequency. The study of the properties of such states is among the next objectives

of this project.

These entangled beams are generated when seeding the SPOPA in a non-collinear

con�guration, as depicted be �gure 8.6. Because of the small acceptance angle of BBO,

this scheme requires tight geometry and small angles which is experimentally challeng-

ing. Combining these two beams would then generate squeezing and allow to be applied

to quantum metrology.

It is important to stress that this treatment holds for a single pulse, such that these

properties may be accessed by resolving the process in the time domain.

Another interesting application of the OPA in the non-collinear con�guration is the

generation of big states [Yokoyama 13]. It consists of a large number of entangled states

(called cluster states), which are important resources to continuous variables quantum

information. Such highly multimode entangled state can be generated with the SPOPA

in non-collinear con�guration, as shown by �gure 8.7.

After generation of two entangled beams in a non-collinear con�guration, one is de-

layed with respect to the other and the two beams are combined on a beam-splitter. The

resulting quantum state is highly multimode and entangled in both frequency and time.



Conclusion and outlooks

In this thesis, we have given a modal description of the �eld generated by an ultrafast

frequency comb. We have explicitly described how this multimode structure is experi-

mentally accessed through the scheme of projective measurement. We have applied this

formalism to the extraction of information encoded in a given optical quadrature, as well

as to the retrieval of the �uctuations of the laser source.

We have demonstrated that a single parameter information is contained in a single

mode of the �eld, named the detection mode, and we have shown that the best strategy

to retrieve it is to use a homodyne detection where the local oscillator is in the detection

mode.

We used a spectrally-resolved homodyne detection the set the mode of the local os-

cillator. It allows to retrieve simultaneously all the information that is contained on a

given optical quadrature.

In quantum metrology, we devised an all-optical method to calibrate at the standard

quantum limit the phase shift induced by a phase modulating element. The calibration

is then utilized to measure the limit in sensitivity of an interferometer, which is found

to coincide with the Cramér-Rao bound for Gaussian states. This measurement does

not require any knowledge of the physical quantities that de�ne the theoretical limit in

sensitivity.

We introduced the detection modes attached to a phase and a time-of-�ight measure-

ment. The sensitivity of a measurement on these two modes is found to be in very good

agreement with the theory. We constructed the detection mode for a longitudinal dis-

placement, which combines interferometric and time-of-�ight measurement, and proved

an increase in sensitivity. This allowed to validate the projective measurement protocol

applied to space-time positioning.

This protocol could �nd practical applications. For example, the increase in sensitiv-

ity could be used for synchronizing the position between two remote objects in vacuum.

The small in�uence of dispersion allows to use very broadband sources such that the

gain in sensitivity would be more important. The modal approach also allow to dis-

tinguish between di�erent parameters. As such, this scheme could allow to perform a

measurement of longitudinal displacement independently of transverse e�ect, such as

�uctuations in pointing.

We applied this measurement scheme to the dispersive properties of a material. Us-
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ing a temporally-resolved homodyne detection, we did extract the same spectrally mul-

timode structure with a continuous rather than pixelized approach, although the mea-

surement is non longer done in real-time. We thus extracted the index dispersion of a

medium with a reasonable accuracy. This temporally-resolved measurement could po-

tentially be made real-time by making the delay sweep quicker, and the extraction of

timing information could also be improved by using two combs with slightly di�erent

repetition rates [Coddington 09].

We also successfully used non-classical light generated by another laser source to

enhance the sensitivity in the measurement of a spectral displacement. By introducing

squeezed vacuum in the mode attached to the detection of that parameter, we showed

an increase in sensitivity due to the reduction in quantum noise in that detection mode.

In our experiments, the limited bandwidth of the laser source made the quantities to

be measured extremely small. The enhancement between a standard measurement and

one that uses a modal approach was thus also small. It is still remarkable that the en-

hancement was measurable with precision, proving again the validity of the protocol.

We used the multipixel homodyne detection to measure the spectral �uctuations in

amplitude and in phase of the laser source. Using a modal description, we have access in

real-time to the dynamics of the collective parameters of a frequency comb. Moreover,

this allowed to measure the correlations between the amplitude and the phase noise of

an optical frequency comb, bringing interesting perspective on the mode-locking mech-

anism.

Since it is real-time, we showed that this scheme could potentially be used as an error

signal to compensate the �uctuations of the laser source.

Finally, we introduced the theoretical and experimental concepts that are needed to

create sources of multimode squeezed light with single-pass parametric down conver-

sion. We presented the development of a synchronously-pumped optical parametric

ampli�er. Such tool can be used in applications to quantum metrology and fundamen-

tal physics with the study of entanglement between a displacement in space and its

conjugate variable. With the use of pulsed light, this quantum ressource also presents

potential application in continuous variable quantum information with the elaboration

of quantum networks.
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A Medium dispersion

(While explaining a complicated phase-lock loop electrical scheme)
“[...] Then the signal comes into this electrical component” (showing a circle with
an R in it) “which is actually me doing the retrocontrol loop by myself. It’s the
human element !”

– Roman “Human PID” Schmeissner
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In this appendix, we give useful formula for estimating the dispersion in a medium.

It can be a very handy tool in ultrafast optics when building an experiment. It allows

to estimate how much delayed a pulse will be with respect to another or the amount

of quadratic phase it will acquire. It is also important to estimate the phase-mismatch

between the interacting waves in a nonlinear process.

A.1 Sellmeyer equation

For numerical calculations, the main indices of an anisotropic medium may be calculated

using Sellmeyer’s equation:

n2
i (λ)= A i + Bi

λ2 −Ci
−D iλ

2 i = x, y, z (A.1)

where Sellmeyer coe�cients A,B,C,D may be found in the literature usually for λ in

micrometers.
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A.2 Wave-vector dispersion

We expand the wavevector k(ω)= ωn(ω)
c in the spectral domain:

k(ω)' k(ω0)+ (ω−ω0)
∂k
∂ω

∣∣∣∣
ω0

+ (ω−ω0)2

2
∂2k
∂ω2

∣∣∣∣
ω0

(A.2)

≡ k0 +Ωk′
0 +

Ω2

2
k′′

0 (A.3)

Derivative of the index n(ω) with respect to ω need to be computed. Using Sellmeyer

equations, one can compute the derivatives of n(λ) with respect to λ. Finally, to deduce

each term of (A.2), we use the composition of derivatives ∂/∂ω = ∂λ/∂ω× ∂/∂λ which

then yields

∂k
∂ω

= 1
c

(
n(ω)+ω∂n(ω)

∂ω

)
= 1

c

(
n(λ)−λ∂n(λ)

∂λ

)
(A.4)

∂2k
∂ω2 = 1

c

(
2
∂n(ω)
∂ω

+ω∂
2n(ω)
∂ω2

)
= λ3

2πc2
∂2n(λ)
∂λ2 (A.5)

Knowing the main indices of a medium by the Sellmeyer equation (A.1) and the index

seen by any propagating wave, we may use relations (A.5) to compute the linear and

quadratic dispersion terms.

A.3 Application to delay and dispersion estimation
It is then straightforward to estimate the amount of delay or dispersion that a pulse

acquires by propagating through a medium of length L. By expressing λ in mm in Sell-

meyer equations and using c = 299.8 nm/fs, delay in fs is directly given by
1

δτ= k′
0 L (A.6)

with k′
0 in fs / mm, while the amount of dispersion in fs

2
is given by

φ2 = k′′
0 L (A.7)

with k′′
0 in fs

2
/mm.

On table A.1, we show the index properties of materials that were encountered during

this thesis. The knowledge of the properties of glass materials was particularly useful

to compensate the amount of dispersion caused by transmissive optics such as lenses

and windows, while the properties of air needed to be taken in account for the design

of Fabry-Pérot cavities.

1
Here we consider the delay relative to a path reference in vacuum. We replace vacuum with the

medium such that the path traveled is actually (n(ω)−1)×L.
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Medium λ0 (nm) n0 k′
0 (fs/mm) k′′

0 (fs
2
/mm)

Air

800 nm 1+3 ·10−4 0.9 0.021
400 nm 1+3 ·10−4 1 0.050

Air (40 mbar) 800 nm 1+1 ·10−5 0.05 0.001

BK7

800 nm 1.51 1760 45
400 nm 1.53 1950 123

SF10

800 nm 1.71 2510 158
400 nm 1.78 3350 708

BBO (oo-e)

800 nm 1.66 2284 75
400 nm 1.66 2481 198

BIBO (ee-o)

800 nm 1.82 2900 166
400 nm 1.82 3337 480

Table A.1: Table of index properties of some materials that were used in this thesis. For

nonlinear crystals, the indices are taken to achieve critical phase-matching.
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B Projectivemeasurements by pulse shap-
ing

(Having spent an hour trying to make an expensive Stanford Research Systems
PID controller working)
“I’m sure this thing works perfectly − you just need to be an expert in PID theory
to precisely set all of the 15 parameters.”

– Jonathan “Labview Guru” Roslund
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B.3 Dispersion measurement . . . . . . . . . . . . . . . . . . . . . . . . . 221

In this appendix, we review the procedure of projective measurement by pulse shap-

ing, as it was originally intended.

This technique has the main advantage of not requiring a spectrally-resolved detec-

tion, thus reducing the complexity of the experiment. Indeed, as it is explained in 5.3, the

multipixel detection requires careful alignment and calibration in order to work prop-

erly. Moreover, the necessity to demodulate each pixel independently requires low-noise

electronics and careful engineering in order to reduce the noise �oor of the detection,

and particularly cross-talk between each electrical pathway. The way our demodula-

tion was achieved may not be optimal, and the low clearance of 8 dB could certainly be

improved.

For quantum experiment, the highest quantity of squeezing where detected using sin-

gle photodiodes with high quantum e�ciency, and the mode projection to measure the

variance in a given mode of the squeezed vacuum �eld is achieved by pulse shaping. The

multipixel detection could not measure as much squeezing as the single diode scheme

because of the lowest quantum e�ciency and the relatively low clearance of the detec-

tion scheme.

For our application to quantum metrology, the clearance is not as important, and

the clear advantage of single diode scheme is the simplicity of the experimental scheme

(moreover, as we develop in 3.3.3 and 5.4.5, a single diode scheme can resolve the spectral

structure of the �eld). However, the drawback that motivated the use of the multipixel

detection is the reproducibility of the experiment. Since every mode can be constructed
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post-facto with the multipixel detection, a single measurement may be used several times

to extract di�erent information.

As we show in this appendix, however, some of the simplest experiment would have

been strictly impossible using pulse shaping.

B.1 Pulse shaping the time-of-�ight mode
We show the example of pulse shaping the time-of-�ight mode, whose expression is

given by (4.32).

Shaping this mode is straightforward: a π phase shift is imprinted on the compensa-

tion phase 3.5. An quadratic amplitude mask is also applied. The resulting spectrum and

the spectral phase measured by spectral interferometry is shown on �gure B.1.
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Figure B.1: Top : Spectrum of the time-of-�ight mode. The gold trace is the experimen-

tal spectrum obtained from the mean-�eld mode while the blue is measured. Bottom :

retrieved spectral phase of the time-of-�ight mode by spectral interferometry. It shows

a π phase shift at the center wavelength.

The di�culty when trying to pulse shape such a mode is to respect orthogonality.

As we develop in appendix C, the modes construction require perfect orthogonality in

order for our experiments to succeed. This is experimentally hard to achieve, since the

phase shift needs to happen exactly on the center of mass of the mean-�eld mode.
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A solution that we investigated was to dynamically change the wavelength at which

the π phase shift occurs while looking at the center of the cross-correlation between the

local oscillator and the signal �eld. Such a cross-correlation measurement is shown on

�gure B.2. The mode construction is successful when the fringe at time zero is zero, and

the symmetry satisfy the theoretical predictions.
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Figure B.2: Crosscorrelation between the signal �eld and the local oscillator in the time-

of-�ight mode.

B.2 Locking on the time-of-�ight mode
Considering that the time-of-�ight mode’s construction is successful, to achieve projec-

tive measurement on the phase quadrature, one would have to lock the relative phase

between the two arms of the interferometer on the phase quadrature. This is usually

achieved by locking on the di�erence of the DC signal from the detectors of the homo-

dyne detection, as shown on �gure 5.7. In the case of the phase mode, the lock point is

easy to pinpoint since the maximal phase information corresponds to a null DC signal.

In the case of the time-of-�ight mode, however, the lock point is not well de�ned. The

�rst problem to obtain an error signal to lock the delay is that the time-of-�ight mode

has zero amplitude at its center. There is thus no signal to lock on. It is however not the

most fundamental of problems that prevent from locking on such a mode.

We remind that the �ip mode (i.e. mean �eld mode with a π phase shift) has the same

energy than the mean-�eld mode, and should therefore be easier to lock on. Since it

shows a 80% overlap with the time-of-�ight mode, it is possible to use it in projective

measurements. Even using this mode, a simple measurement such as the one presented

in 5.4.4.1 (comparing the sensitivity of the phase mode to the time-of-�ight mode in

distance estimation) is very complicated using pulse shaping.
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Let us explain how the experiment would work with pulse shaping. Modulating the

phase of the �eld, we use the phase mode to measure the minimum displacement that

corresponds to a signal-to-noise of 1. This is achieved by locking on the phase quadra-

ture, which corresponds to the maximal signal that is retrievable. Note that this is a good

reference to know whether or not the lock point is e�ectively on the proper quadrature.

To know the sensitivity of the time-of-�ight mode, one would have to use the pulse

shaper to put the local oscillator in this mode, and perform the same measurement on

the same lock point. However, theoretical simulations show that this lock point does no

longer correspond to a maximum of signal.

-10 -5 5 10

Figure B.3: Crosscorrelation of the high frequency component of the �eld (i.e. the sen-

sitivity to a phase modulation) when the local oscillator is in the phase mode (blue) and

the �ip mode (gold). In this simulation, the ratio of the two marked point is equal to

ω0
/
∆ω.

On �gure B.3, we show the theoretical cross-correlation between the signal and the

local oscillator �eld for a phase mode and �ip mode projection. We marked the maxi-

mum of the signal retrieved with a projection on the phase mode. We can see that the

corresponding point on the �ip mode does not correspond to the maximum signal. There

is thus no other way to lock on this mode than to use the DC error signal, which is very

small and hard to lock on.

The best option that was devised was to build yet another homodyne detection with

the mean-�eld mode in both arms to generate an error signal. The delay of the other ho-

modyne detection is locked according to this error signal. There was therefore a homo-

dyne detection for locking the delay, and another for measuring the signal. The problem

with that scheme is that the path �uctuations are di�erent on both detections, and the

measured signal was thus noisier.
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B.3 Dispersion measurement
The dispersion experiment outlined in section 5.4.5 aim at measuring the dispersion of

a medium by removing the phase mode contribution to the measurement. The original

idea behind that experiment made use of pulse shaping, and aimed at measuring the

di�erence between a modulation of distance in air or in vacuum.

Because of a number of complications, we settled for the measurement depicted in

5.4.5. However, a lot of work was put on the original idea, and successful techniques

were developed, that we shall expand in this appendix.

Signal

Local
Oscillator

22 fs Ti:Sa 
Oscillator

Pulse shaper

Vacuum
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HD

Figure B.4: Scheme to measure the air dispersion. Two piezo actuators modulate the

distance δL by an equal amount in vacuum and in air. A variable gain is applied on the

second piezo, such that for a speci�c value, they create a variation of the optical path

without any change in distance.

The original scheme is presented on �gure B.4. Using a vacuum chamber, a distance

δL is modulated in vacuum, while another distance is modulated in air with an opposite

phase −g ·δL. A variable gain g may be experimentally tuned.

Written the modulated �eld and computing the retrieved signal-to-noise ratios in a

projective measurement scheme on the phase mode, we have:

Σϕ(Ω)= 2
p

N ω0 (1− g ·n0)
δL
c

(B.1)

whereas on the time-of-�ight mode:

Σg(Ω)= 2
p

N∆ω
[
1− g · (n0 −ω0n′

0
)] δL

c
(B.2)
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where we wrote n0 and n′
0 respectively the index of refraction and the dispersion of air.

We see that, for a speci�c value of g = 1
n0

, the projection on the phase mode will be

zero, whereas the time-of-�ight mode would retrieve the following signal:

Σg(Ω)= 2
p

N∆ωω0
n′

0

n0

δL
c

(B.3)

More speci�cally, if we scan the gain parameter g continuously and record the variation

of (B.1) and (B.3), we would recover linear function that cross zero for two di�erent

values of g. The spacing between this value is then found to be proportional to n′
0. In

essence, this method is very similar to the one presented in 5.4.5.

Experimentally, we tried to achieve this measurement by pulse shaping. As we de-

veloped in B.2, the ability to project on the time-of-�ight mode requires to lock the

interferometer on another homodyne detection of reference.

To achieve the compensation of the two modulations, we demodulated the signal re-

ceived by the reference homodyne detection locked on the phase quadrature, thus yield-

ing a signal proportional to (B.1). By setting the electronic demodulation phase on the

amplitude quadrature retrieves the di�erence in the amplitude of the two modulations.

The electronic phase quadrature retrieves the sign. These two signals were then used

as error signals to lock both the amplitude and the phase of the compensation. One of

the actuator was amplitude modulated and the other was phase modulated, such that

it is possible to lock the signal (B.1) at zero. Then, ramping a small DC voltage to the

amplitude modulation allows to sweep the gain g.
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Figure B.5: Histograms of the demodulated signals for the piezo modulations in air and

in vacuum. (a) Signals retrieved when both piezos are modulated independently with

the same amplitude but with an opposite phase. (b) Same situation, but the two piezos

are modulated simultaneously. The variance of the compensated signal is found to be

equal to the shot noise.
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On �gure B.5a, we plotted the histogram of the demodulated signals when the two

piezos are modulated independently with the same amplitude but with an opposite

phase. On �gure B.5b, we recorded another histogram but when both piezos are com-

pensated. By overlaying the signal retrieved when no modulation is achieved, we see

that the compensated signal is identical to the shot noise statistics. By locking the two

modulations together, we therefore achieved two perfectly balanced modulation, such

that the path traveled by the light is not changed. It is then possible to sweep the am-

plitude of one modulation from both sides of the compensation point, record the signal

when projecting on the phase and on the time-of-�ight mode, and retrieve the dispersion

of air.

Such a measurement would then show that di�erent modes retrieve di�erent param-

eters in a projective measurement scheme.

Unfortunately, we could not complete this experiment due to the spatial contami-

nation described in 4.3. This contamination was actually discovered while performing

this measurement. Indeed, we noticed a very di�erent response of each piezo actuator

whether we retrieved the signal-to-noise on the measurement homodyne or on the lock

homodyne. This e�ectively meant that the distance modulation was compensated ac-

cording to one homodyne, but not to the other. This was explained by the fact that both

homodyne were not strictly similar. The reference homodyne did not present a spatial

contrast as good as the measurement homodyne. Moreover, the piezo actuators were

imaged di�erently on both beamsplitter, thus recovering a di�erent amount of spatial

components.

At this point, we decided to build the multipixel detection described in 5.3 in an e�ort

to distinguish between spatial and temporal modulations. Indeed, a spatial modulation

should not be spectrally-dependent. Eventually, we moved towards spatial �ltering, as

described in 5.1.3.

Nevertheless, this experiment was very successful in the sense that we were able to

lock two high frequency modulations in quadrature with no added noise.
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C Experimental construction of the de-
tection modes

(Upon noticing the german profanity in my Labview programs) “I think you have
a problem.”

– Vanessa “das Heiliges Einhorn” Chille

In this appendix, we explicit the ways the detection modes for the parameter estima-

tion are constructed.

In section 5.4.2, we introduced the problem of modes construction. Ideally, these

should be constructed from the power spectrum of the signal �eld. When the local oscil-

lator spectrum is similar, the modes can also be constructed from its spectrum. However,

when both �eld are not superimposed, there are extra steps to be added to the modes

construction algorithm. We also remind that all the spectra are acquired using demodu-

lated high frequency signals rather than DC signals from the detectors.

We begin by extracting the signal �eld from the high frequency signal, which we

name uhack
sig . The local oscillator spectrum is obtained by acquiring the variance of the

photocurrents at a quantum limited frequency, such that we measure �uctuations of

quantum vacuum. We name the retrieved spectrum uhack
LO .

If the two �elds showed the same spectral structure, we can reconstruct the homo-

dyne signal by computing the gain. To obtain the multipixel gain (which correspond to

Hermite polynomial in the Gaussian case), we need to compute the �rst moment µ of

the signal’s spectrum (see section 2.1.3). With the calibration of the multipixel detector,

we have a map λi shown on �gure 5.13b which returns the wavelength of pixel i. By

�tting this map to a line, we obtain a continuous function pix(λ) which returns the pixel

number of wavelength λ. Knowing the center of mass µ of the spectrum, it is therefore

possible to obtain its fractional pixel index pix(µ). This part is quite important to the

algorithm, since the sensitivity that is measured depends on the spectrum that is being

recorded, and not on the full spectrum delivered by the laser.

We can then construct the �lter function fn(λ) as

f̃n(λ)= (
λ−µ)n

(C.1)

which are subsequently normalized using fn(λ)= f̃n(λ)∣∣∣ f̃n(λ)
∣∣∣ .
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When we multiply these �lters to the signal mode uhack
sig , there is no guarantee that the

resulting modes are orthogonal, and thus do not form a basis yet. We obtain the proper

modes by orthogonalizing each of them to the signal mode. We label these modes uhack
n .

Finally, we need to de�ne new �lters from these modes. Indeed, these are de�ned with

respect to the signal �eld. However, we need to apply these modes to the local oscillator

in order to accomplish a projective measurement. The �nal �lters, labeled Fn, are then

given by

Fn(λ)= uhack
n

uhack
LO

(C.2)

where n = 0 is the �lter to apply to the local oscillator �eld for a phase detection, n = 1
is a time-of-�ight measurement, etc... This operation ensure that applying the �lter to

the acquisition will project on the right mode de�ned by the signal �eld. The �lters for a

given acquisition of the experiment is given on �gure 5.12 when a piezoelectric actuator

is modulated.
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Figure C.1: “Hack” �lters obtained by extracting the spectral structure of the �eld from

the measured homodyne signal. Note the di�erence with the theoretical Hermite poly-

nomial Hn, where for example H0 = 1. This structure in the �lters is essential for repro-

ducibility of the experiment.

To accomplish the post-facto projective measurement, we then need to apply the �lters

to the spectrally resolved homodyne acquisition, and compute the signal-to-noise.



D Conjugated variable of space-timepo-
sition

(About writing a PhD dissertation)
“Stop drinking co�ee and start drinking tea. Otherwise, you’ll be twitching more
and more every passing day.”

– Alexandros “The Greek” Tavernarakis

In section 8.5, we showed that is it possible to produce quantum states that correspond

to the observables de�ned in 4.2.3. For example, it is possible to introduce squeezing in

a detection mode to enhance the sensitivity of the measurement, as it was done in 5.4.6

were we achieved a measurement of a spectral displacement below the standard quan-

tum limit. The same description applies to the measurement of a phase shift, amplitude

perturbation and timing jitter.

We also proved that it is possible to squeeze the detection mode for space-time posi-

tioning. It is therefore possible to entangle this state to its conjugate quantity. In this

appendix, we investigate the physical meaning of the observable that is conjugated to

the position in space-time.

The problematic should be posed as follows: consider that we have a source that

delivers the beam depicted by �gure 8.5, that is squeezed in the detection mode for space-

time positioning. If one were to perform a detection of a longitudinal displacement

using this mode, the sensitivity would be increased with respect to the standard quantum

limit. However, what physical information would be retrieved by a measurement on

the orthogonal quadrature ? Since the displacement in space-time is an observable, the

orthogonal quadrature should also contain a physical parameter.

D.1 Detection mode for a global displacement
From a classical point of view, the expression of a �eld that is delayed by a quantity δL
is given by:

E(+)(Ω)= E0
p

N
[
v0(Ω)+ iδL

(
ω0

vϕ
·v0(Ω)+ ∆ω

vg
·v1(Ω)

)]
(D.1)

where v0 is the mean-�eld mode and v1 is the next mode in the Hermite-Gauss basis. The

modes i ·v0 and i ·v1 correspond respectively to the phase mode and to the time-of-�ight
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mode.

In section 4.2.4.2, we introduced the detection mode vδL for measuring δL. It reads:

vδL(Ω)= i
KδL

(
v0(Ω)+ ∆ω

ω0
· vϕ

vg
·v1(Ω)

)
(D.2)

where KδL =
√

1+
(
∆ωvϕ

/
ω0vg

)2
is a normalization factor. The displaced �eld (D.1)

then writes simply as:

E(+)(Ω)= E0
p

N
[
v0(Ω)+KδL · δLω0

vϕ
·vδL(Ω)

]
(D.3)

We take the case of a displacement in vacuum, such that vϕ = vg = c. The detection

mode then writes as:

vδL(Ω)= i
KδL

(
v0(Ω)+ ∆ω

ω0
·v1(Ω)

)
(D.4)

D.2 Detection mode for a spectral displacement
In section 4.2.2, we derived the detection mode for a spectral displacement. We did not

take into account the fact that changing the optical frequency also changes the energy

of the �eld.

Indeed, from the plane-wave expansion (1.16) of the �eld, we can write:

E(+)(t)=∑
`

E`α`u`(t)e−iω`t
(D.5)

We consider a global displacement δω of the spectrum that a�ects every frequencies

equally. As such, we have

E(+)(t)=∑
`

E`α`u`(t)e−iω`te−iδωt
(D.6)

The energy of the �eld is a�ected by the change in the frequency through E` (1.17). For

a small displacement δω, we have E`→ E`+ δω
2ω`

·E`.

The �eld may then be written as

E(+)(t)=∑
`

E`

(
1+ δω

2ω`

)
α`u`(t)e−iω`te−iδωt

(D.7)
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We then apply the small bandwidth approximation: ω` ≈ω0. Also, since ω0 À∆ω, it is

possible to consider that

√
~ω`

δω

2ω`
= δω

2

√
~
ω`

≈ δω

2

√
~
ω0

Consequently, the displacement in energy due to the frequency shift may simply be

modeled by a perturbation of the �eld constant:

E(+)(t)' E0

(
1+ δω

2ω0

)∑
`

α`u`(t)e−iω0te−iδωt
(D.8)

Finally, the �eld displaced in frequency and in energy is written from (4.26) by setting

ε= δω
2ω0

. We then obtain

E(+)
s (Ω)= E0

p
N

[
u0(Ω)+ δω

2ω0

(
·v0(Ω)+ ω0

∆ω
·v1(Ω)

)]
(D.9)

The detection mode for δω is thus given by

vδω(Ω)= 1
Kδω

(
v0(Ω)+ ω0

∆ω
·v1(Ω)

)
(D.10)

with Kδω =
√

1+
(
ω0

/
∆ω

)2
.

We can see that this mode is di�erent from (D.10) �rst by its real amplitude, but also

by the weight on the mode v1. Indeed, a detection of a shift of distance is more easily

achieved with large bandwidth, i.e. with short pulses for the time-of-�ight component.

The change in the center of the temporal enveloppe is then easier to detection. The

same argument explains why the shift of the carrier is easier to detect with large optical

frequencies.

It is also logical that a shift of the spectrum is easier to detect with very small band-

width, since a small change in the center wavelength results in a large change in the

signal at a �xed optical frequency. The fact that the shift in amplitude due to δω is de-

tected with a sensitivity that scales with 1
/
ω0 is explained by the fact that, since δω is

small, then the smaller ω0 is, the easier it is to detect the shift in energy.

One should note that this description is purely theoretical, since it seems hard to �nd a

laser source that could displace the spectrum in such way that the only change in energy

comes from a change in photon frequencies. For instance, on �gure 5.23, we can see an

amplitude variation that is higher than the variation of center wavelength. Although
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it may include a contribution from the change in photon frequency, this contribution

should be negligible, probably not even detectable.

The most important point is the fact that the mode (D.10) is not the complex conju-

gate of (D.10). Consequently, it is not possible to perform the quantum derivation from

section 4.2.3 when the �eld is expanded on these modes.

D.3 Conjugated parameter
We propose to write formally the expression of the conjugated parameter. We start by

rede�ning the basis of the �eld as {Vn}, where the �rst mode corresponds to the detection

mode:

V0(Ω)= 1√
1+

(
∆ω

/
ω0

)2

(
v0(Ω)+ ∆ω

ω0
v1(Ω)

)
(D.11)

We consider that this is the only mode in the basis that is non-vacuum.

In terms of quadratures, the quantum �eld is written as

Ê(+)
s (Ω)= E0

(〈
X̂0

〉+ i
〈
P̂0

〉
2

V0(Ω)+∑
n
δânVn(Ω)

)
(D.12)

where X̂ and P̂ are the quadratures of the �eld in the new basis.

We see that, naturally, the expectation value of the phase quadrature operator is given

by

〈
P̂0

〉= 2
p

N
δL
c

√
ω2

0 +∆ω2
(D.13)

We can see that computing the expectation value of the observable P̂ ′
0 = c

2
p

N
√
ω2

0+∆ω2
P̂0

would yields δL.

However, the meaning of its conjugate variable is more di�cult to interpret. It should

obviously contain the mean-�eld, but it should also contain a physical quantity that is

detected on the amplitude quadrature with a sensitivity that increases with ω0 and ∆ω.

This is clearly the contrary of a shift δω in the center frequency.

Hence, the physical interpretation of that quantity does not seem straightforward and

could result from di�erent sources that are not clearly identi�ed.



Bibliography

[Aasi 13] J. Aasi & the LIGO Scienti�c Collaboration. Enhanced sensi-
tivity of the LIGO gravitational wave detector by using squeezed
states of light. Nature Photonics, vol. 7, no. 8, pages 613–619,

July 2013. Online URL. (Cited on pages 2 and 89.)

[Adesso 14] Gerardo Adesso, Sammy Ragy & AR Lee. Continuous variable
quantum information: Gaussian states and beyond. Open Sys-

tems & Information Dynamics, pages 1–55, 2014. Online URL.

(Cited on page 56.)

[Anisimov 10] Petr M. Anisimov, Gretchen M. Raterman, Aravind Chiruvelli,

William N. Plick, Sean D. Huver, Hwang Lee & Jonathan P.

Dowling. Quantum Metrology with Two-Mode Squeezed Vac-
uum: Parity Detection Beats the Heisenberg Limit. Phys. Rev.

Lett., vol. 104, page 103602, Mar 2010. Online URL. (Cited on

page 89.)

[Appel 08] Walter Appel. Mathématiques pour la physique, 4
e

édition. H

& K, 2008. (Cited on page 37.)

[Bachor 04] Hans-A Bachor & Timothy C Ralph. A guide to experiments

in quantum optics, 2nd, volume 1. 2004. (Cited on page 19.)

[Barnett 02] Stephen M Barnett & Paul M Radmore. Methods in theoretical

quantum optics, volume 15. Oxford University Press, 2002.

(Cited on page 89.)

[Bartels 04] a Bartels, C W Oates, L Hollberg & S a Diddams. Stabiliza-
tion of femtosecond laser frequency combs with subhertz residu-
allinewidths. Optics Letters, vol. 29, no. 10, pages 1081–1083,

2004. Online URL. (Cited on page 170.)

[Beck 00] M Beck. Quantum State Tomography with Array Detectors.
Physical review letters, vol. 84, no. 25, pages 5748–5751, (Cited

on page 76.)

231

http://www.nature.com/doifinder/10.1038/nphoton.2013.177
http://www.worldscientific.com/doi/abs/10.1142/S1230161214400010
http://link.aps.org/doi/10.1103/PhysRevLett.104.103602
http://ol.osa.org/abstract.cfm?URI=ol-29-10-1081


232 BIBLIOGRAPHY

[Black 01] Eric D. Black. An introduction to Pound-Drever-Hall laser fre-
quency stabilization. American Journal of Pysics, vol. 69, no. 1,

page 79, (Cited on page 163.)

[Boyd 68] G. D. Boyd & D.A. Kleinman. Parametric Interaction of Focused
Gaussian Light Beams. Journal of Applied Physics, vol. 39,

no. 8, page 3597, 1968. Online URL. (Cited on page 201.)

[Boyd 03] Robert W Boyd. Nonlinear Optics, volume 5 of Electronics &
Electrical. Academic Press, 2003. (Cited on pages 110 and 200.)

[Brabec 97] T Brabec & Ferenc Krausz. Nonlinear Optical Pulse Propagation
in the Single-Cycle Regime. Prl, vol. 78, page 3282, (Cited on

page 99.)

[Braunstein 05] SL Braunstein & Peter Van Loock. Quantum information with
continuous variables. Reviews of Modern Physics, no. April,

2005. Online URL. (Cited on page 25.)

[Briles 10] Travis C Briles, Dylan C Yost, Arman Cingöz, Jun Ye &

Thomas R Schibli. Simple piezoelectric-actuated mirror with
180 kHz servo bandwidth. Optics express, vol. 18, no. 10, pages

9739–9746, (Cited on page 111.)

[Cai 15] Yin Cai. Quantum Coherent Control with an Optical Frequency
Comb. PhD thesis, ENS, 2015. (Cited on pages 145 and 192.)

[Casacio 14] C. A. Casacio. Single-pass squeezing with an optical frequency

comb. Master’s thesis, 2014. (Cited on page 204.)

[Caves 81] Carlton M. Caves. Quantum-mechanical noise in an interfer-
ometer. Physical Review D, vol. 28, no. 8, (Cited on pages 2

and 89.)

[Chadi 13] a. Chadi, G. Méjean, R. Grilli & D. Romanini. Note: Simple and
compact piezoelectric mirror actuator with 100 kHz bandwidth,
using standard components. Review of Scienti�c Instruments,

vol. 84, no. 5, pages 2013–2015, (Cited on page 111.)

[Chekhovsky 98] Alexander M Chekhovsky, Anatol N Golubev & Michael V

Gorbunkov. Optical pulse distance-multiplying interferometry.

Applied optics, vol. 37, no. 16, pages 3480–3483, (Cited on

page 96.)

http://scitation.aip.org/content/aip/journal/jap/39/8/10.1063/1.1656831
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.77.513


BIBLIOGRAPHY 233

[Coddington 09] I Coddington, WC Swann, L Nenadovic & NR Newbury. Rapid
and precise absolute distance measurements at long range. Na-

ture Photonics, vol. 3, no. 6, pages 351–356, (Cited on pages 97

and 210.)

[Cohen 89] Leon Cohen. Time-Frequency distributions : a review. Proc.

IEEE, vol. 77, no. 7, pages 941–981, (Cited on page 44.)

[Cui 08] M. Cui, R. N. Schouten, N. Bhattacharya & S. a. van den Berg.

Experimental demonstration of distance measurement with a
femtosecond frequency comb laser. Journal of the European Op-

tical Society, vol. 3, pages 1–4, (Cited on page 97.)

[Cui 11] M Cui, M G Zeitouny, N Bhattacharya, S a van den Berg & H P

Urbach. Long distance measurement with femtosecond pulses
using a dispersive interferometer. Optics express, vol. 19, no. 7,

pages 6549–6562, (Cited on page 97.)

[Delaubert 06] Vincent Delaubert, N Treps & CC Harb. Quantum measure-
ments of spatial conjugate variables: displacement and tilt of a
Gaussian beam. Optics letters, vol. 31, no. 10, pages 1537–1539,

2006. Online URL. (Cited on page 104.)

[Delaubert 07] Vincent Delaubert. Quantum imaging with a small number of
transverse modes. PhD thesis, UPMC & ANU, 2007. (Cited on

pages 16, 28 and 102.)

[Eckstein 12] Andreas Eckstein. Mastering quantum light pulses with nonlin-
ear waveguide interactions. PhD thesis, Friedrich-Alexander-

Universität Erlangen-Nürnberg, 2012. (Cited on page 191.)

[Einstein 35] A Einstein, B Podolsky & N Rosen. Can quantum-mechanical
description of physical reality be considered complete? Physi-

cal review, vol. 47, no. May, pages 777–780, 1935. Online URL.

(Cited on page 30.)

[Ferraro 05] Alessandro Ferraro, Stefano Olivares & MGA Paris. Gaus-
sian states in continuous variable quantum information. arXiv

preprint quant-ph/0503237, 2005. Online URL. (Cited on

pages 27 and 29.)

http://www.opticsinfobase.org/abstract.cfm?&id=89501
http://prola.aps.org/abstract/PR/v47/i10/p777_1
http://arxiv.org/abs/quant-ph/0503237


234 BIBLIOGRAPHY

[Furusawa 11] Akira Furusawa & Peter Van Loock. Quantum teleportation

and entanglement: a hybrid approach to optical quantum in-

formation processing. John Wiley & Sons, 2011. (Cited on

page 23.)

[Glauber 63] RJ Glauber. Coherent and incoherent states of the radiation �eld.

Physical Review, vol. 49, no. 638, 1963. Online URL. (Cited on

page 28.)

[Grynberg 10] Gilbert Grynberg, Alain Aspect & Claude Fabre. Introduc-

tion to quantum optics: from the semi-classical approach to

quantized light. Cambridge University Press, 2010. (Cited on

pages 13, 21 and 190.)

[Haus 90] H. a. Haus & Y. Lai. Quantum theory of soliton squeezing: a
linearized approach. Journal of the Optical Society of America

B, vol. 7, no. 3, page 386, (Cited on pages 170 and 179.)

[Haus 93] HA Haus & Antonio Mecozzi. Noise of mode-locked lasers.
Quantum Electronics, IEEE Journal of, vol. 2, no. 3, 1993. On-

line URL. (Cited on page 170.)

[Helbing 02] F W Helbing, G Steinmeyer, U Keller, R S Windeler, J Stenger

& H R Telle. Carrier-envelope o�set dynamics of mode-locked
lasers. Optics letters, vol. 27, no. 3, pages 194–196, (Cited on

pages 58 and 163.)

[Helstrom 68] Carl W Helstrom. The minimum variance of estimates in quan-
tum signal detection. Information Theory, IEEE Transactions

on, vol. 14, no. 2, pages 234–242, (Cited on page 86.)

[Ivanov 03] Eugene N. Ivanov, Scott a. Diddams & Leo Hollberg. Analy-
sis of Noise Mechanisms Limiting the Frequency Stability of Mi-
crowave Signals Generatedwith a Femtosecond Laser. IEEE Jour-

nal on Selected Topics in Quantum Electronics, vol. 9, no. 4,

pages 1059–1065, (Cited on page 112.)

[Jacquard 12] C. Jacquard. Réalisation d'une cavité de �ltrage pour la

métrologie quantique par peigne de fréquence. Master’s the-

sis, 2012. (Cited on page 151.)

http://prola.aps.org/abstract/PR/v131/i6/p2766_1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=206583
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=206583


BIBLIOGRAPHY 235

[Jeong 14] Hyunseok Jeong, Alessandro Zavatta, Minsu Kang, Seung-

Woo Lee, Luca S. Costanzo, Samuele Grandi, Timothy C. Ralph

& Marco Bellini. Generation of hybrid entanglement of light.
Nature Photonics, vol. 8, no. 7, pages 564–569, June 2014. On-

line URL. (Cited on page 23.)

[Jian 12] Pu Jian, Olivier Pinel, Claude Fabre, Brahim Lamine & Nicolas

Treps. Real-time displacement measurement immune from at-
mospheric parameters using optical frequency combs. Opt. Ex-

press, vol. 20, no. 24, pages 27133–27146, Nov 2012. Online

URL. (Cited on pages 2, 102 and 108.)

[Jian 14] Pu Jian. Quantum limits in range-�nding measurements with
optical frequency combs. PhD thesis, UPMC, 2014. (Cited on

pages 56, 63, 87, 89 and 107.)

[Jiang 12] Shifeng Jiang, Nicolas Treps & Claude Fabre. A time/frequency
quantum analysis of the light generated by synchronously
pumped optical parametric oscillators. New Journal of Physics,

vol. 14, no. 4, page 043006, April 2012. Online URL. (Cited on

page 191.)

[Jones 00] D. J. Jones. Carrier-Envelope Phase Control of Femtosecond
Mode-Locked Lasers and Direct Optical Frequency Synthesis.
Science, vol. 288, no. 5466, pages 635–639, (Cited on page 163.)

[Kim 08] Jungwon Kim, Jonathan a. Cox, Jian Chen & Franz X. Kärtner.

Drift-free femtosecond timing synchronization of remote optical
and microwave sources. Nature Photonics, vol. 2, no. 12, pages

733–736, (Cited on page 97.)

[Kimble 77] HJ Kimble, M Dagenais & L Mandel. Photon antibunching in
resonance �uorescence. Physical Review Letters, vol. 39, no. 11,

pages 691–695, 1977. Online URL. (Cited on page 23.)

[Lamine 08] Brahim Lamine, Claude Fabre & Nicolas Treps. Quantum im-
provement of time transfer between remote clocks. Physical re-

view letters, vol. 101, no. 12, page 123601, (Cited on pages 2

and 96.)

[Lepetit 95] L Lepetit, G Cheriaux & M Jo�re. Linear techniques of phase
measurement by femtosecond spectral interferometry for appli-

http://www.nature.com/doifinder/10.1038/nphoton.2014.136
http://www.nature.com/doifinder/10.1038/nphoton.2014.136
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-24-27133
http://www.opticsexpress.org/abstract.cfm?URI=oe-20-24-27133
http://stacks.iop.org/1367-2630/14/i=4/a=043006?key=crossref.40ed160488830d9e3b4f2910889cf41b
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.39.691


236 BIBLIOGRAPHY

cations in spectroscopy. JOSA B, vol. 12, no. 12, pages 2467–

2474, (Cited on page 68.)

[Lloyd 99] Seth Lloyd & SL Braunstein. Quantum computation over con-
tinuous variables. Physical Review Letters, vol. 82, no. 8, pages

1784–1787, 1999. Online URL. (Cited on page 23.)

[Loudon 00] Rodney Loudon. The quantum theory of light. 2000. (Cited on

page 22.)

[Martin 09] Michael J Martin, Seth M Foreman, TR Schibli & Jun Ye. Testing
ultrafast mode-locking at microhertz relative optical linewidth.

Optics express, vol. 17, no. 2, pages 558–568, (Cited on

page 170.)

[Martinez 84] O.E. Martinez, J.P. Gordon & R.L. Fork. Negative group-velocity
dispersion using refraction. JOSA A, vol. 1, no. 10, pages 1003–

1006, (Cited on page 43.)

[McMullen 77] J D McMullen. Chirped-pulse compression in strongly disper-
sive media. JOSA, vol. 67, no. 11, pages 1575–1578, (Cited on

page 43.)

[Medeiros de Araujo 12] Renné Medeiros de Araujo. Génération et manipulation de
peignes de fréquences quantiques multimodes. PhD thesis,

UPMC, 2012. (Cited on page 157.)

[Michelson 94] A.-A. Michelson. Les méthodes interférentielles en métrologie
et l'établissement d'une longueur d'onde comme unité absolue de
longueur. J. Phys. Theor. Appl., vol. 3, no. 1, pages 5–22, (Cited

on page 1.)

[Monmayrant 05] Antoine Monmayrant. Façonnage et caractérisation
d'impulsions ultracourtes. Contrôle cohérent de systèmes
simples. PhD thesis, Université Paul Sabatier, 2005. (Cited on

pages 63 and 66.)

[Morgner 99] Uwe Morgner, FX Kärtner, Seong-Ho Cho, Yanbei Chen, Her-

mann A Haus, James G Fujimoto, Erich P Ippen, V Scheuer,

Gregor Angelow & Theo Tschudi. Sub-two-cycle pulses from a
Kerr-lens mode-locked Ti: sapphire laser. Optics Letters, vol. 24,

no. 6, pages 411–413, (Cited on page 50.)

http://link.springer.com/chapter/10.1007/978-94-015-1258-9_2


BIBLIOGRAPHY 237

[Morin 14] Olivier Morin, Kun Huang, Jianli Liu, Hanna Le Jeannic,

Claude Fabre & Julien Laurat. Remote creation of hybrid en-
tanglement between particle-like and wave-like optical qubits.
Nature Photonics, vol. 8, no. 7, pages 570–574, June 2014. On-

line URL. (Cited on page 23.)

[Morizur 11] Jean-François. Morizur. Quantumprotocols with transverse spa-
tial modes. PhD thesis, UPMC & ANU, 2011. (Cited on page 77.)

[Murphy Jr 08] TW Murphy Jr, Eric G Adelberger, JBR Battat, LN Carey,

Charles D Hoyle, P LeBlanc, EL Michelsen, K Nordtvedt,

AE Orin, Jana D Strasburget al. The apache point observatory
lunar laser-ranging operation: instrument description and �rst
detections. Publications of the Astronomical Society of the Pa-

ci�c, vol. 120, no. 863, pages 20–37, (Cited on page 1.)

[Newbury 07] NR Newbury & WC Swann. Low-noise �ber-laser frequency
combs. JOSA B, vol. 24, no. 8, pages 1756–1770, 2007. Online

URL. (Cited on page 166.)

[Nicolodi 14] Daniele Nicolodi, Bérengère Argence, Wei Zhang, Rodolphe

Le Targat, Giorgio Santarelli & Yann Le Coq. Spectral purity
transfer between optical wavelengths at the 10-18 level. Nature

Photonics, vol. 8, no. 3, pages 219–223, January 2014. Online

URL. (Cited on page 35.)

[Ourjoumtsev 07] A. Ourjoumtsev. Etude théorique et expérimentale de superposi-
tions quantiques cohérentes et d'états intriqués nongaussiens de
la lumière. PhD thesis, UPMC, 2007. (Cited on page 26.)

[Paschotta 05] R. Paschotta, a. Schlatter, S.C. Zeller, H.R. Telle & U. Keller.

Optical phase noise and carrier-envelope o�set noise of mode-
locked lasers. Applied Physics B, vol. 82, no. 2, pages 265–273,

December 2005. Online URL. (Cited on page 2.)

[Patera 08] Giuseppe Patera. Quantum properties of ultra-short pulses gen-
erated by SPOPOs: multi-mode squeezing and entanglement.
PhD thesis, UPMC & Università dell’Insubria, 2008. (Cited on

pages 191 and 194.)

[PI 14] PI. Catalog : piezoelectric actuators. Physik Instrumente GmbH,

2014. Online URL. (Cited on page 111.)

http://www.nature.com/doifinder/10.1038/nphoton.2014.137
http://www.nature.com/doifinder/10.1038/nphoton.2014.137
http://www.opticsinfobase.org/abstract.cfm?&id=140010
http://www.opticsinfobase.org/abstract.cfm?&id=140010
http://www.nature.com/doifinder/10.1038/nphoton.2013.361
http://www.nature.com/doifinder/10.1038/nphoton.2013.361
http://link.springer.com/10.1007/s00340-005-2041-9
http://www.piceramic.com/download/CAT128E_R2_Piezoelectric_Actuators.pdf


238 BIBLIOGRAPHY

[Réfrégier 02] P Réfrégier. Théorie du bruit et application en physique. Her-

mes Science, 2002. (Cited on page 89.)

[Reynaud 92] Serge Reynaud, Antoine Heidmann, Elisabeth Giacobino &

Claude Fabre. Quantum �uctuations in optical systems.
Progress in optics, vol. 30, pages 1–85, (Cited on page 23.)

[Roslund 10] Jonathan Roslund. Optimal quantum control in the laboratory.

PhD thesis, Princeton, 2010. (Cited on page 63.)

[Roslund 13] Jonathan Roslund, Renné Medeiros de Araújo, Shifeng Jiang,

Claude Fabre & Nicolas Treps. Wavelength-multiplexed quan-
tum networks with ultrafast frequency combs. Nature Photon-

ics, vol. 8, no. 2, pages 109–112, December 2013. Online URL.

(Cited on pages 144 and 192.)

[Roslund 15] Jonathan Roslund, Valérian Thiel, Pu Jian, Claude Fabre &

Nicolas Treps. Sensitivity measurement of a Mach Zehdner in-
terferometer using absolute calibration of a subwavelength dis-
placement. To be published, (Cited on page 116.)

[Rudolph 06] Wolfgang Rudolph & Jean-Claude Diels. Ultrashort Laser

Pulses Phenomena - Second Edition. 2006. (Cited on page 32.)

[Schleich 11] Wolfgang P Schleich. Quantum optics in phase space. John

Wiley & Sons, 2011. (Cited on page 26.)

[Schliesser 06] Albert Schliesser, Christoph Gohle, Thomas Udem & TW Hän-

sch. Complete characterization of a broadband high-�nesse cav-
ity using an optical frequency comb. Opt. Express, vol. 14,

no. 13, pages 1802–1805, 2006. Online URL. (Cited on

page 160.)

[Schmeissner 14a] Roman Schmeissner. Frequency combs at the quantum limit.
PhD thesis, UPMC, 2014. (Cited on pages 58, 162, 165 and 166.)

[Schmeissner 14b] Roman Schmeissner, Jonathan Roslund, Claude Fabre & Nico-

las Treps. Spectral Noise Correlations of an Ultrafast Frequency
Comb. Physical Review Letters, vol. 263906, no. December,

pages 1–5, (Cited on pages 169, 173 and 180.)

[Schmeissner 14c] Roman Schmeissner, Valerian Thiel, Clément Jacquard, Claude

Fabre & Nicolas Treps. Analysis and �ltering of phase noise in

http://www.nature.com/doifinder/10.1038/nphoton.2013.340
http://www.researchgate.net/publication/26282907_Complete_characterization_of_a_broadband_high-finesse_cavity_using_an_optical_frequency_comb/file/9fcfd50bdc6b53e15e.pdf


BIBLIOGRAPHY 239

an optical frequency comb at the quantum limit to improve tim-
ing measurements. Optics letters, vol. 39, no. 12, pages 3603–

3606, (Cited on pages 165 and 167.)

[Siegman 86] Anthony E Siegman. Lasers. University Science Books, Mill

Valley, CA, 1986. (Cited on pages 14 and 152.)

[Sorokin 00] Evgeni Sorokin, Gabriel Tempea & Thomas Brabec. Measure-
ment of the root-mean-square width and the root-mean-square
chirp in ultrafast optics. JOSA B, no. January, pages 146–150,

2000. Online URL. (Cited on pages 36 and 38.)

[Spence 91] David E Spence, P Np Kean & Wilson Sibbett. 60-fsec pulse
generation from a self-mode-locked Ti: sapphire laser. Optics

letters, vol. 16, no. 1, pages 42–44, (Cited on page 2.)

[Steinlechner 13] Sebastian Steinlechner, Jöran Bauchrowitz, Melanie Meinders,

Helge Müller-Ebhardt, Karsten Danzmann & Roman Schnabel.

Quantum-dense metrology. Nature Photonics, vol. 7, no. 8,

pages 626–630, June 2013. Online URL. (Cited on page 94.)

[Swann 06] W C Swann, J J McFerran, I Coddington, N R Newbury, I Hartl,

M E Fermann, P S Westbrook, J W Nicholson, K S Feder, C Lan-

grock & M M Fejer. Fiber-laser frequency combs with subhertz
relative linewidths. Optics letters, vol. 31, no. 20, pages 3046–

3048, (Cited on page 170.)

[Thiel 15] Valérian Thiel, Jonathan Roslund, Claude Fabre & Nicolas

Treps. Noise matrices animations. https://youtu.be/BpIwW-

nX26A, 2015. Online URL. (Cited on page 182.)

[Trebino 02] Rick Trebino. Frequency-resolved optical gating: the measure-

ment of ultrashort laser pulses. Springer Science, 2002. (Cited

on pages 47 and 48.)

[Treps 03] Nicolas Treps, Nicolai Grosse, Warwick P Bowen, Claude

Fabre, Hans-A Bachor & Ping Koy Lam. A quantum laser
pointer. Science (New York, N.Y.), vol. 301, no. 5635, pages 940–

3, August 2003. Online URL. (Cited on pages 116 and 155.)

[Treps 05] N. Treps, V. Delaubert, a. Maître, J. Courty & C. Fabre. Quan-
tum noise in multipixel image processing. Physical Review A,

http://www.osapublishing.org/abstract.cfm?uri=JOSAB-17-1-146
http://www.nature.com/doifinder/10.1038/nphoton.2013.150
https://youtu.be/BpIwW-nX26A
http://www.ncbi.nlm.nih.gov/pubmed/12920292


240 BIBLIOGRAPHY

vol. 71, no. 1, page 013820, January 2005. Online URL. (Cited

on page 28.)

[Udem 02] Th Udem, Ronald Holzwarth & Theodor W Hänsch. Optical
frequency metrology. Nature, vol. 416, no. 6877, pages 233–237,

(Cited on page 2.)

[Verlot 09] P. Verlot, A. Tavernarakis, T. Briant, P.-F. Cohadon & A. Hei-

dmann. Scheme to Probe Optomechanical Correlations between
Two Optical Beams Down to the Quantum Level. Phys. Rev.

Lett., vol. 102, page 103601, Mar 2009. Online URL. (Cited on

page 116.)

[Walmsley 96] IA Walmsley & Victor Wong. Characterization of the electric
�eld of ultrashort optical pulses. JOSA B, no. November, pages

2453–2463, 1996. Online URL. (Cited on page 45.)

[Weiner 95] AM Weiner. Femtosecond optical pulse shaping and processing.

Progress in Quantum Electronics, vol. 6727, no. 94, 1995. On-

line URL. (Cited on page 62.)

[Weiner 00] Andrew M Weiner. Femtosecond pulse shaping using spatial
light modulators. Review of scienti�c instruments, vol. 71,

no. 5, pages 1929–1960, (Cited on page 43.)

[Weiner 11a] Andrew Weiner. Ultrafast optics, volume 72. John Wiley &

Sons, 2011. (Cited on pages 32, 50 and 200.)

[Weiner 11b] Andrew M. Weiner. Ultrafast optical pulse shaping: A tutorial
review. Optics Communications, vol. 284, no. 15, pages 3669–

3692, July 2011. Online URL. (Cited on page 62.)

[Wenger 04] Jérôme Wenger, Rosa Tualle-Brouri & Philippe Grangier. Non-
Gaussian Statistics from Individual Pulses of Squeezed Light.
Physical Review Letters, vol. 92, no. 15, page 153601, April

2004. Online URL. (Cited on page 193.)

[Yariv 67] A Yariv. Quantum electronics, 1967. Wiley, 1967. (Cited on

pages 14 and 17.)

[Ye 04] Jun Ye. Absolute measurement of a long, arbitrary distance to
less than an optical fringe. Optics letters, vol. 29, no. 10, pages

1153–1155, (Cited on page 96.)

http://link.aps.org/doi/10.1103/PhysRevA.71.013820
http://link.aps.org/doi/10.1103/PhysRevLett.102.103601
http://www.osapublishing.org/abstract.cfm?uri=josab-13-11-2453
http://www.sciencedirect.com/science/article/pii/007967279400013O
http://www.sciencedirect.com/science/article/pii/007967279400013O
http://linkinghub.elsevier.com/retrieve/pii/S0030401811003750
http://link.aps.org/doi/10.1103/PhysRevLett.92.153601


BIBLIOGRAPHY 241

[Yokoyama 13] Shota Yokoyama, Ryuji Ukai, Seiji C. Armstrong, Chanond

Sornphiphatphong, Toshiyuki Kaji, Shigenari Suzuki, Jun-ichi

Yoshikawa, Hidehiro Yonezawa, Nicolas C. Menicucci & Akira

Furusawa. Ultra-large-scale continuous-variable cluster states
multiplexed in the time domain. Nature Photonics, vol. 7,

no. 12, pages 982–986, November 2013. Online URL. (Cited

on page 208.)

http://www.nature.com/doifinder/10.1038/nphoton.2013.287

