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Abstract

It is generally maintained that one of cortex’ functions is the storage of a large number of
memories. In this picture, the physical substrate of memories is thought to be realised in
pattern and strengths of synaptic connections among cortical neurons. Memory recall is
associated with neuronal activity that is shaped by this connectivity. In this framework,
active memories are represented by attractors in the space of neural activity.
Electrical activity in cortical neurones in vivo exhibits prominent temporal irregularity.
A standard way to account for this phenomenon is to postulate that recurrent synaptic
excitation and inhibition as well as external inputs are balanced. In the common view,
however, these balanced networks do not easily support the coexistence of multiple at-
tractors. This is problematic in view of memory function.
Recently, theoretical studies showed that balanced networks with synapses that exhibit
short-term plasticity (STP) are able to maintain multiple stable states. In order to inves-
tigate whether experimentally obtained synaptic parameters are consistent with model
predictions, we developed a new methodology that is capable to quantify both response
variability and STP at the same synapse in an integrated and statistically-principled way.
This approach yields higher parameter precision than standard procedures and allows for
the use of more efficient stimulation protocols.
However, the findings with respect to STP parameters do not allow to make conclusive
statements about the validity of synaptic theories of balanced working memory.
In the second part of this thesis an alternative theory of cortical memory storage is de-
veloped. The theory is based on the assumptions that memories are stored in attractor
networks, and that memories are not represented by network states differing in their
average activity levels, but by micro-states sharing the same global statistics. Different
memories differ with respect to their spatial distributions of firing rates. From this the
main result is derived: the balanced state is a necessary condition for extensive memory
storage. Furthermore, we analytically calculate memory storage capacities of rate neu-
rone networks. Remarkably, it can be shown that crucial properties of neuronal activity
and physiology that are consistent with experimental observations are directly predicted
by the theory if optimal memory storage capacity is required.
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Chapter 1

Introduction

Memories are undoubtedly central when it comes to understanding the brain. There is an
abundant amount of both experimental and theoretical studies concerned with this sub-
ject. At this, memory has been investigated on different levels of biological organisation,
from the molecular to the psychological and even beyond. Here, we consider mechanisms
of memory that span from the level of synapses to the level of neural networks.
Our general approach here is reductionist, assuming that complex biological phenomena
can ultimately be explained by uncovering a set of simple, elementary principles. We
hope to make a small contribution to this endeavour.
This first chapter is dedicated to introduce the general concepts and the set of problems
we want to concern ourselves with. At first we will give a short introduction to memory
function and to working memory. Closely linked to this we will discuss crucial prop-
erties of the physical substrate of memory activation: cortical activity. We proceed by
introducing balanced networks and will briefly review models that try to explain memory
function in this framework. Finally, motivated by work which relates memory function to
synaptic short-term plasticity, we will give a short introduction to this topic. In Chapter
2 we will review the most important models of short-term plasticity and demonstrate
that they can be subsumed in a common framework that is based on the notion of the
release site. We show that this framework enables us to devise synapse models that cap-
ture both the dynamics and the stochasticity of synaptic transmission. The advantages
of using this new methodology are presented in chapter 3 together with an analysis of
experimental recordings from synaptic connections. The obtained parameters estimates
do not permit us to make conclusive statements about the validity of aforementioned
synaptic memory models. We thus propose an alternative theory of memory storage in
chapter 4, with which we can predict crucial properties of cortical activity from optimality
considerations. Chapter 5 is devoted to a general discussion.

1.1 Memory, working memory and cortical activity

In this section we want to give a short introduction to the organisation of memory func-
tion in cortex. We will follow the work of Fuster [see e.g. Fuster (1995, 1997, 2009)].
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Figure 1.1: Organisation of memory in the cortex. A): Hierarchical organisation of motor
and perceptual memory from less (dark colours) to more abstract (white). B): Mem-
ory locations in the cortex; same colour code as in A; numbers denote the Brodmann
areas. Figure adapted from Fuster (1997).

According to Fuster, memory can be subdivided in two classes: perceptual and motor
memory. Perceptual memory is linked to sensory experience in the broadest sense, in-
cluding episodic and declarative memory. Motor memory refers to basic acts but also to
more complex motor programs, goal directed behaviour and plans.
At this, both memory types are organised in a hierarchical fashion. This hierarchy ranges
from very primitive memories up to very complex, abstract representations. On the low-
est level we find so-called phyletic memories. These are thought to be innate, that is,
present before learning. Fuster calls them ’memories of the species’. Phyletic percep-
tual memory is thought to correspond to basic sensory experiences, while phyletic motor
memory represents information linked to elementary motor acts, like the contraction of
specific muscles and muscle groups. Ascending the hierarchy, memories gain in their
level of abstraction; at the top, we find representations of semantic concepts, faces, ethi-
cal principles etc.. At any stage of the hierarchy, higher level memories build upon lower
level memories. Figure 1.1 shows a scheme of the described organisation. As indicated
by the arrows between different levels and between the two memory pillars, these or-
ganisational principles do not imply a strict separation between these entities. On the
contrary, interconnections are vast.
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The two memory hierarchies are to a significant extend reflected by anatomy. Figure 1.1B
shows how the memory areas extend over the cortex. Starting from phyletic memory ar-
eas close to the central sulcus, motor memory expands into frontal cortex and perceptual
memory to posterior regions. This gradient from simple to complex is also mirrored by
phylogenetical and ontogenetical developmental processes; the prefrontal cortex, for in-
stance, is one of the evolutionary newest cortical regions and one of the last to mature.
So far we have considered memories in rather abstract terms. But what is their physi-
cal substrate? It is generally maintained that memories can be identified with the way
cortical neuronal networks are organised. This idea dates back to Hebb, who coined the
notion of cell assemblies [Hebb (1968)]. In this view, memories are formed by sets of
neurones that are recurrently interconnected. When a memory is activated, or recalled,
the neurones in that network excite one another, thereby maintaining the memory-circuit
as a whole in an activated state. Learning of these assemblies happens by strengthening
of synaptic connections between neurones that are simultaneously activated. By virtue
of this associative process, existing networks can be in principle endlessly extended in an
huge variety of ways.
We want to emphasise an important issue at this point. According to the Hebbian
framework, memories are ultimately identical to the synaptic configuration of cortical
networks. Once formed, memories are physically present in the synaptic structure, in-
dependent of neuronal activity. The fact that a memory is stored in a network becomes
apparent when this memory is retrieved: in that case, the synaptic structure enables the
network to display the particular neuronal activity that represents that memory. In this
view, the synaptic configuration is identical to what is commonly known as long-term
memory, while the effect it causes - the corresponding neuronal activity - can be identified
as short-term memory, or, using the vocabulary of Fuster, ’active memory’. Importantly,
this implies that short-term/active and long-term memory are not physically separated
entities but are co-located in the same cortical networks.
This suggests a strategy for the study of memory function: employing experimental
paradigms that require active memory can be useful to uncover general principles of
memory organisation and memory dynamics. Indeed, in what follows we will focus on
a specific form of activated memory, the so-called working memory, which has been a
fruitful and intensively studied research topic in the last decades.

1.1.1 Working memory

Working memory (WM) is the ability to temporarily retain information that is relevant
for a motor or cognitive task in the near future [Baddeley (1992)]. The memorised in-
formation can be of discrete nature, like an image or a telephone number as well as a
continuous quantity, like the position of a dot on a screen, or the strength of a mechan-
ical vibration. WM is generally considered to be of utmost importance for nonroutine
behaviour, like the creative use of language, the solving of a puzzle, the handling of an
equation and so on.
A cortical region that is thought to play a key role in WM is the prefrontal cortex (PFC).
For instance, studies in which the PFC of monkeys was temporarily cooled found that
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Figure 1.2: Persistent firing of a memory cell. On and offset of delay period activity in the
same PFC cell in different trials. Figure adapted from Fuster et al. (1971).

the behavioural performance in tasks that require WM is significantly impaired in that
condition [Bauer and Fuster (1976); Fuster et al. (1985)]. We refer at this point to re-
views of anatomy and function of the prefrontal cortex than can be found, for example
in Fuster (1988) and Miller and Cohen (2001).
In order to expose the neuronal mechanisms that underlie WM many researchers have
over the last decades recorded PFC neurones in animals performing so-called delayed
response tasks. One of the first of a long series of studies was carried out by Fuster
and Alexander [Fuster et al. (1971)]. In their setup, a monkey was shown how a piece
of apple was placed under one of two objects, which were subsequently concealed for
a delay period of several tens of seconds. After this period, the objects were revealed
and the monkey had to choose the correct object to obtain a reward. In simultaneous
extracellular recordings from PFC the authors found neurons that exhibited an elevated
firing-rate during the delay period. This is shown in figure 1.2. Two things are crucial
here: first, the neurones started elevated firing only after cue presentation, and second,
returned to baseline only after the end of the delay period (marked by the arrows). This
suggests that this elevated activity is contingent upon the necessity of active memory
maintenance.
The notion is now widely held that this type of ’persistent activity’ is the hallmark of
so-called ’memory cells’ [Fuster (1995); Goldman-Rakic (1995)]. These cells are thought
to belong to memory networks that encode task-relevant information by means of their
elevated activity. Memory cells have been found in many different versions of the delayed
response task, across species [e.g. Kesner et al. (1996)] and in various cortical areas [e.g.
Miyashita and Chang (1988); Miller et al. (1996)]. They can be activated by different
sensory modalities [e.g. Romo et al. (1999)] and can code for discrete items and also
continuous quantities [e.g. Funahashi et al. (1989)].
A visual form of so-called parametric WM can be studied with the oculomotor delayed-
response task (ODR task) [see e.g. Funahashi et al. (1989)]. In the classical version of
this setting a monkey has to memorise a visual cue presented on a screen. After presen-
tation of the cue, that can appear in one of eight possible locations around a fixation
point, the monkey needs to retain a spatial memory of the cue’s position. Finally, the
monkey gets rewarded if he performs a saccade to the correct target. In Funahashi et al.
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Figure 1.3: Selective persistent activity. Middle: the eight possible positions at which a cue
can appear during the ODR task. Other panels: activities of the same memory cell
in the eight different cue conditions; vertical lines represent onset/offset of cue and
delay period. Adapted from Funahashi et al. (1989).

(1989) neurones in PFC were recorded during the task. Figure 1.3 shows recordings from
an exemplary neurone that exhibits persistent activity during the delay period that is
specific to one out of eight directions. This example thereby also illustrates that memory
can feature strong selectivity to certain stimuli.
We have seen that the general organisation of memory in the cortex can potentially be
revealed by the study of active memory. In the context of WM, active memory involves
the elevated activation of PFC neurones, but also neurones from other cortical areas. It
is therefore worthwhile to consider general properties of cortical neuronal activity.

1.1.2 Properties of cortical activity

Here, we want to shortly summarise some well established findings about cortical activity.
This list focuses on those statistics of neuronal activity that are relevant to our work.
An ubiquitous feature of electrical activity in cortical neurones in vivo is their promi-
nent temporal irregularity [Softky and Koch (1993); Bair et al. (1994)]. This irregularity
differs in function of the cortical area [Shinomoto et al. (2009)]. The least variables neu-
rones are found in the motor cortex, while neurones in prefrontal cortex tend to have
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Figure 1.4: Lognormal distribution of firing rates in the cortex. a): Cells from rat hip-
pocampus and entorhinal cortex during slow-wave-sleep (left) and exploration (right).
b): Cells from awake rat A1. c): PFC cells from exploring rats. d): Cells from lateral
intraparietal and parietal reach region areas of the macaque cortex during a baseline
condition and during performance of a reaching task. e): Human middle temporal
gyrus cells recorded during sleep. f): Neurons from multiple cortical areas of several
human patients during various tasks. Figure and caption modified from Buzsáki and
Mizuseki (2014).

inter-spike-interval distributions with coefficients of variation of 1 or higher. In an analy-
sis of PFC neurones recorded in monkeys performing ODR tasks, several studies showed
that neurones fire irregularly both during delay period persistent activity and in baseline
conditions [Shinomoto et al. (1999); Compte et al. (2003); Shafi et al. (2007)].
Another universal property of all cortical regions is associated with the distributions of
firing-rates. Numerous recent studies have found that firing-rates of most neurones are
small, but that a few exhibit high activities. These observations have been made, for
instance, in parietal and prefrontal cortex of monkeys [Shafi et al. (2007)] and in rat bar-
rel cortex [O’Connor et al. (2010)]. When statistical models are fitted to the firing-rate
distributions, log-normal distributions emerge as the best descriptions in most cases, as
has been reported in rat A1 [Hromádka et al. (2008)], in rat V1 [Song et al. (2005)] and
in hippocampus and entorhinal cortex of both awake and sleeping rats [Mizuseki and
Buzsáki (2013)]. In two recent review articles, more examples are given [Wohrer et al.
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Figure 1.5: Global firing-rate distributions change only little in function of the be-
havioural states. A): Firing-rates from rat A1 cells before (spontaneous), during
(early, late) and after (off) a acoustic pip. B): Stimulus-evoked changes in rat A1 and
movement-evoked changes in rat OFC. Top: the empirical cumulative probability dis-
tributions for firing-rates during baseline and task. Bottom: difference in probability
distribution functions for the best-fitting models to spontaneous activity, stimulus-
evoked activity or action-related activity. C): The distribution of rate changes in rat
OFC between baseline and movement for every sampled firing rate (every neuron in
every trial). D): The distribution of the proportion of trials on which each neuron
showed a difference in rate between baseline and movement for cells in rat OFC; the
median proportion was 0.42. Figure and caption modified from Wohrer et al. (2012).

(2012); Buzsáki and Mizuseki (2014)]. Figure 1.4 shows several instances of firing-rate
distributions across species, layers, neurone-types and behavioural conditions.
A particularly striking feature of cortical activity can be noticed in panel d. Shown are
two distribution of firing rates from lateral intraparietal and parietal areas in a macaque
monkey. The red curve shows the neuronal activity during a reaching task, the blue curve
the same neuronal population when the monkey is idle. The difference in the overall ac-
tivity between the two conditions is very small, indicating that the global state of these
cortical regions does not change in function of the behavioural state.
Panels A and B of figure 1.5 show further evidence supporting this view. This per-
manence of the overall firing-rate distribution is, however, not due to the fact that no
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changes of activity on the single neurone level occur. As can be seen from panels C
and D, a substantial fraction of neurones indeed undergoes a modulation of their firing
rates. These findings are consistent with the view that different states of cortical net-
works/areas correspond to different spatial distributions of neuronal activity with the
same global statistical properties. At this, it seems to be irrelevant whether the animal
is passively perceiving a stimulus or actively engaged in a motor behaviour. We have to
note, however, that these remarks have to be restricted to states in which the animal is
awake. As can be seen from figure 1.4a, changes in firing-rate statistics induced by sleep
seem to be substantial.
Finally, it is well known that the average firing rates of inhibitory neurones are signifi-
cantly larger than firing rates of excitatory ones [Beloozerova et al. (2003); Mitchell et al.
(2007); Fujisawa et al. (2008); Gentet et al. (2010)]. This general feature can also be
identified in figure 1.4, panels b and e.

1.1.3 The balanced state: a theory of cortical activity?

A framework that can potentially explain a wide range of properties of cortical activity
is the theory of balanced networks. The original motivation underlying the development
of this theory comes from the following (allegedly) paradoxical observations: on the one
hand, the large majority of neurones in vitro that are subjected to a constant current
pulse fire regular trains of action potentials [Connors et al. (1982)]. On the other hand,
as we have described before, activity of cortical neurones in vivo is very irregular. This is
prima facie surprising, as each neurone receives a large number of synaptic inputs [Softky
and Koch (1993); Holt et al. (1996)]. By virtue of the law of large numbers, fluctuations
in the neurone’s total input should therefore be much smaller that the average input and
we should expect to see regular spiking, as in the in vitro experiments.
This apparent contradiction can be overcome in recurrent networks with excitatory and
inhibitory cells with relatively strong synapses; that is, synapses that are large compared
to the neurones’ thresholds. In such networks, both average excitatory and inhibitory
currents are large, but fluctuations of these currents are of a size similar to the threshold’s.
If excitation and inhibition approximately balance, both the residual average input and
its variance are of comparable magnitude (see figure 1.6). In technical terms, balanced
networks provide input currents to the neurones whose average and variance are of the
same order, in contrast to classical networks, where fluctuations vanish when the number
of synapses becomes large. It is generally maintained that such conditions set neurones in
a regime where they operate just below threshold. Fluctuations can then drive neurones
above threshold and shape the spiking significantly. In this fluctuation-driven regime,
neurones can produce irregular outputs with coefficients of variations around 1. We will,
however, indicate below that a qualification has to be made.
Balance between excitation and inhibition has been notably discussed by Shadlen and
Newsome [Shadlen and Newsome (1994, 1998)]. Van Vresswijk and Sompolinsky showed
that this balance arises automatically and under very general circumstances in recurrent
networks with strong synapses [van Vreeswijk and Sompolinsky (1996, 1998)]. Balance
is a phenomenon that emerges from the dynamics of the network as a whole. Only very
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Figure 1.6: Balanced networks can account for firing variability. Left: Typical setup of
balanced network models; E0 and I0 denote external inputs, the Js are the various
synaptic strengths between the populations. Right: large excitatory and inhibitory
inputs cancel and produce a total input of the order of the threshold at 0 (top);
spiking is driven by fluctuations and thus irregular (bottom). Figure adapted from
Wolf et al. (2014).

gentle requirements need to be imposed on the strength of synaptic weights and external
inputs to the network in order for the balanced state to exist; no parameter fine-tuning is
required. Figure 1.6 shows a schematic picture of the typical setup of balanced networks
and simulated inputs and spikes.
The mechanism of dynamical balance was originally established in networks of randomly
connected binary neurones, but the same principle has been demonstrated to work
in various other configurations, for instance in networks of integrate-and-fire neurones
[van Vreeswijk and Sompolinsky (2005); Lerchner et al. (2006); Renart et al. (2010)],
conductance-based neurones [Hansel and van Vreeswijk (2012); Hansel and Mato (2013)]
and rate-neurones [Roudi and Latham (2007)]. A comprehensive review of balanced net-
works can be found in Wolf et al. (2014).
There is indeed good experimental support for a balanced between excitation and inhi-
bition in the cortex. It has been shown, for instance, that neurones in awake animals
operate in a high-conductance state [see e.g. Destexhe et al. (2003); Shu et al. (2003);
Haider et al. (2006)], indicating that at any point in time neurones receive a large number
of synaptic inputs. Furthermore, it has been demonstrated in vivo that during sponta-
neous activity an increase in excitation is consistently accompanied by an increase in
inhibition [Okun and Lampl (2008)]. For a review on this matter, see e.g. Isaacson and
Scanziani (2011).
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We have seen that the balanced state can account for the temporal variability that is
characteristic of cortical neurones. Indeed, also the firing-rate distributions’ high skew-
ness can be approximately reproduced in this framework. Roxin et al. (2011) investigated
a balanced network of leaky integrate-and-fire neurones (LIF). They showed that for typ-
ical LIF parameters and realistic average firing rates, synaptic inputs to neurones indeed
operate in a regime not far below their thresholds. In that regime, the LIF f-I curve
can be well described by an exponential function in the limit where the neuronal mem-
brane time-constant is small. Given normally distributed synaptic inputs, the network of
LIF neurones then produces log-normally distributed firing-rates. For finite membrane
time-constant the LIF f-I curve is closer to a power-law function than to an exponential
and the firing-rate distribution deviates from log-normality; however, it remains strongly
skewed and reasonably similar to a log-normal.
Finally, we note that in the framework of balanced networks it is easily possible to obtain
average inhibitory firing rates that are larger than average excitatory ones, as observed
in cortex.
The balanced state can apparently provide mechanistic explanations for some crucial
properties of cortical activity. However, we want to indicate at this point two important
open questions. First, Lerchner et al. (2006) showed that neuronal temporal irregularity
in the balanced state can vary substantially in function of synaptic strength. Coefficients
of variation both significantly lower and higher than unity can be obtained. Indeed,
there is no reason to assume that neurones in the balanced state automatically operate
in a sub-threshold regime; in principle the level of average synaptic input could be well
above threshold. In that case, although the network would still be balanced, spiking
irregularity would be reduced and firing rate distributions much less skewed. Thus, while
the balanced state can potentially account for a number of properties of cortical activity,
it does not give an answer to the question why cortical networks should operate in the
biologically plausible regime.
The second issue is that, in the common view, balanced networks do not easily sup-
port the coexistence of different activity states. The dynamics of these networks tend to
linearise the relationship between external stimuli and the neuronal response on the pop-
ulation level [van Vreeswijk and Sompolinsky (1998)]. In other words, the same external
input will always elicit the same network response. However, as we have seen above, in
delayed response tasks sensory input is identical during fixation and delay period, but
memory cells change their activity significantly. It is not straightforward to explain this
phenomenon by invoking bistability between two balanced states. The putative rigidness
of balanced networks thus seems to be problematic in view of memory function.
All of these issues will be revisited in chapter 4. For now, we turn our attention to a
short review of some recent attractor network models of working memory.

1.1.4 Attractor models of working memory

Several strategies have been used to account for the phenomena observed during WM
delay tasks. On the one hand, models based on single neurone properties have been
developed to explain the bistability of memory cells. Proposed mechanism include high-
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Figure 1.7: Schematic representation of a multistable system’s phase-space. Dots repre-
sent fixed points; the solid lines confine different basins of attractions. Figure modified
from Stewart (2011).

voltage activated calcium channels in combination with calcium activated cationic cur-
rents, post-spike after-depolarisation induced by neuromodulation and the non-linear
current-voltage-curve of NMDA receptors [see e.g. Marder et al. (1996); Durstewitz et al.
(2000a); Major and Tank (2004)]. Another line of research puts forward models of WM
that explain persistent activity in terms of collective network states. Two different types
of models have been developed: classical attractor networks and, more recently, networks
that perform so-called reservoir computing [Jaeger (2001); Maass et al. (2002)]. Here, we
will concentrate on recent attractor models of working memory. For a general review of
the variety of working memory models see for example Durstewitz et al. (2000b), Wang
(2001), Barbieri and Brunel (2008), Barak and Tsodyks (2014) and Mongillo (2014).
A standard way to model memory storage and retrieval mathematically is by making
use of attractor networks [Amari (1977); Hopfield (1982); Amit (1992)]. The notion of
’attractor’ refers to the portion of phase-space to which a dynamical system converges
in the course of time. In this picture, memories correspond to attractors in the space
of neuronal activity. During activation, that is during retrieval or, in the case of WM,
active maintenance of a specific memory, the activity of all neurones converges to the
pattern that represents that memory. Figure 1.7 shows a schematic representation of
this principle. The plane on which the figure is sketched represents the phase space of
the network, that is the ensemble of its firing rates. Each dot stands for a stable fixed
point and the lines confine different basins of attractions. If the neuronal activity is set
close to one of the attractor fixed points, for instance by a sensory input, the network’s
state will, when the external input is removed, evolve in time towards it (indicated by
the arrows). The network will remain in that state, until some other input pushes it to
another region of phase space. Since multiple attractors exist, the network can respond
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in different ways to different inputs and can thereby keep track of the last one.
The attractor view elegantly provides another important property of memory: its auto-
associative nature. When a memory is only partially hinted at, for instance one sees an
item that vaguely resembles a memorised one, eventually this latter one is recalled or
’comes to mind’. This amounts to setting the neural activity somewhere in a basin of
attraction in figure 1.7; the dynamics of the network neural then ’autocorrect’ the neural
activity over time, until it corresponds to the fixed-point activity.
In the attractor picture the above described dichotomy between passive and active mem-
ory - or long-term memory and short-term/working memory - arises naturally. The
attractors themselves are here identified with robustly stored memories. The network
dynamics can then recall, retrieve or activate these memories by entering the attractors.
At this, the shape of the attractor landscape is determined by structured synaptic con-
nectivity between the neurones. Roughly speaking, neurones that are highly active in
the same memories tend to be stronger connected among each other than neurones that
are not activated at the same time. This is, of course, nothing else but Hebb’s principle
[Hebb (1968)].
Many works in the past have employed such synaptic structuring in attractor networks
with simplified binary neurones [see e.g. Amari (1977); Hopfield (1982); Tsodyks and
Feigel’Man (1988); Amit (1992)]. These models yielded a good understanding of the
general behaviour of networks with numerous attractors. In recent years, researches took
further steps to develop more realistic models that reproduce qualitative aspects of ex-
perimental data obtained in WM tasks.
A very important study in this respect was performed by Amit and Brunel who for the
first time studied analytically the associative memory properties of a network of LIF
neurones [Amit and Brunel (1997), and see also Brunel (2004)]. In this model, inhibitory
synaptic connectivity is unstructured, while a very simple form of Hebbian excitatory
connectivity creates a certain number of non-overlapping sub-populations of excitatory
neurones. Figure 1.8 illustrates this architecture. Each of the sub-populations contains
a number of neurones that corresponds only to a small fraction f of the whole excitatory
population. The network is able to switch from a baseline state, where all sub-populations
fire at roughly the same rate, to various retrieval states, each in which one of the sub-
populations fires at an elevated rate. Different sub-populations are of course activated for
different inputs, that is, the network exhibits multistability between selective persistent
activity states.
The neurones in both the baseline state and the various retrieval states feature realis-
tic average firing rates, as shown in figure 1.8B. Moreover, it has been shown that the
baseline state in Amit and Brunel’s model corresponds to the balanced state we have
introduced above [Brunel (2004)], so that pronounced temporal variability in this state
is to be expected. However, a crucial shortcoming of this model is that the multistability
is an effect of the network’s finite size. Scaling up the number of neurones destroys the
persistent state, that is all memory relevant properties are undone and only the baseline
state remains.
Apart from explicitly considering scaling effects, Renart et al. (2007) modified Amit and
Brunel’s model by including inhibition into the network’s clustering structure. With
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Figure 1.8: Persistent activity model by Amit and Brunel.A): Scheme of the model’s setup.
B): The model’s behaviour in response to a stimulus presented between t = 1.0−1.5s.
Pre-stimulus (t = 0−1.0s) and delay activity (t = 1.5−2.5s) are clearly distinct. The
different panels show the activity of the different classes of neurones. Both panels
modified from Brunel (2000).

this feature, persistent activation of a sub-population enhances firing of both excitatory
and associated inhibitory neurones; balance can then be maintained even in the mem-
ory states. However, this model has difficulties in achieving memory states with high
temporal fluctuations. While it allows robustly for multistability between baseline and
very regular retrieval states, connectivity has to be fine-tuned to assure the appearance
of irregular persistent activity. This fine-tuning problem increasingly aggravates when
the network size is scaled up.
Another approach to solve the scaling problem was proposed in van Vreeswijk and Som-
polinsky (2005). In this work, inhibition was kept unstructured as in the original model.
To ensure that all network states remain balanced when the network is sized up, the
authors introduced a scaling of the quantity f into their framework. As the number of
neurones in the network increases, f is reduced accordingly, with the consequence that
the absolute number of neurones participating in a sub-population grows slower than
linear. Problematic here is again that the way f changes with the network size has to be
finely tuned, implying that the multistability in this system is fragile.
Barbieri and Brunel (2007) employ a combination of two mechanisms to obtain baseline
and memory states in a LIF network that are highly irregular. The first is a post-spike
reset value that is close to the neuronal spiking threshold. This generally increases the
probability of neurones to emit bursts of spikes, enhancing temporal irregularity. In addi-
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tion, in order to avoid that neurones work in a supra-threshold regime, synapses between
excitatory cells are provided with short-term depressing synapses which reduces synaptic
strength of highly active afferent inputs [Tsodyks and Markram (1997)]. However, in this
approach the level of fast noise seen by each neurone is not calculated self-consistently,
but treated as a fixed parameter. Again, this parameter has to be tuned in order to
produce the desired effects.
Finally, the work by Roudi and Latham (2007) introduces Hopfield-like attractors into
a balanced network. This is done by endowing the excitatory-to-excitatory synapses
with some structuring on top of random connectivity; inhibition is unstructured. The
authors obtain a network where both background and memory retrieval state operate
in the balanced regime. The neurones feature thus in both states a relatively high de-
gree of temporal fluctuations, although it remains somewhat below the experimentally
reported values. Although this study successfully demonstrates how a balanced network
can be reliably be furnished with multiple memory patterns, it has several drawbacks.
The synaptic connectivity’s structured part has to be roughly an order of magnitude (or
more) smaller than the unstructured part and has therefore to be finely tuned. Moreover,
the number of patterns that can be stored is quite small.
We have seen that all of the above models exhibit, in one way or another, a fine-tuning
problem. There is another problematic feature that these models have in common: they
do not reproduce realistic firing-rate distributions. During delay activity, neurones in
the persistently activated population fire - as intended - at higher rates than the rest of
the network. The overall firing-rate distribution in this state is therefore bimodal. In
addition, when the network is in the baseline state, the overall firing-rate distribution is
significantly different from the one in the memory state. These characteristics are clearly
inconsistent with the findings we have reviewed in section 1.1.2. The reason for these
differences is ultimately the compartmentalisation of the network in different functional
sub-populations.

A synaptic theory of balanced working memory

In this section, we consider a recent model by Hansel and Mato (2013) which manages
to embed WM robustly into a balanced network, avoiding the fine-tuning problem. The
authors developed a computational model that explains persistent activity and selectiv-
ity of PFC cells during ODR tasks. The mechanism employed in this work is based on
short-term modulation of excitatory-to-excitatory synapses, which has been proposed in
a previous publication by Mongillo et al. (2012). Synaptic short-term-plasticity (STP) is
indeed a widespread phenomenon in prefrontal pyramidal-to-pyramidal synapses [Hempel
et al. (2000); Wang et al. (2006)].
As we have seen, the population level responses in balanced networks depend linearly
on the external inputs to the network, thereby impeding multistability among balanced
states to arise. The solution suggested here relies on non-linearities introduced into the
system by facilitating synapses. In function of the level of pre-synaptic activity, the
release probability of synapses endowed with STP changes and therefore the effective
synaptic weight is modulated. For parameters that correspond to strongly facilitating
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Figure 1.9: Bistability between balanced states with facilitating synapses.A): Change
of the average firing-rate during the delay period. B): Firing-rate distribution during
baseline (left) and delay period (right). C): Distribution of the inter-spike-intervals
during baseline (left) and delay period (right). Figure adapted from Hansel and Mato
(2013).

synapses, this leads to a scenario that features a bistability between a low-activity state
with unmodulated, weak synapses and a high-activity state with facilitated synapses.
Figure 1.9A shows the bistable response properties of a simulated excitatory popula-
tion; the average firing rate increases in response to a transient input that facilitates the
synapses. Note that the two states have very different global properties, as can be seen
from their firing rate distributions (panel B) and their temporal variability (panel C).
This mechanism lies the basis for the model in Hansel and Mato (2013) where an addi-
tional connectivity structure similar to the classical ring-model [Ben-Yishai et al. (1995)]
is imposed on the synaptic weights in order to obtain spatial selectivity. A whole series
of experimental findings is successfully described by this work, as, for instance, the dif-
ference in irregularity of firing between baseline and high-activity state reported by some
authors [Compte et al. (2003)] and the diversity of neuronal tuning-curves [Funahashi
et al. (1989, 1990)]. Furthermore, the functioning of the model is robust with respect to
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changes in several parameters.
However, two potentially problematic issues have to be raised. First, as we have seen
above, experimental evidence suggests that the overall properties of the firing-rate dis-
tributions of task-relevant populations do not change. However, as can clearly be seen in
figure 1.9B, this model predicts a significant change in the overall firing-rate statistics,
like the others we encountered above. Second, it is not clear whether the regime of synap-
tic parameters required for the functioning of the model is consistent with experimental
findings. The facilitation-based mechanism described above requires synaptic release
probabilities that are smaller than 0.12. Analysis of prefrontal pyramidal-to-pyramidal
connections, however, indicates that this value ranges between 0.15 − 0.35 [Wang et al.
(2006)].
We will revisit the first of these issues in chapter 4, but will turn our attention first to
the discrepancy between required and measured release probabilities. Reasonable doubt
in the statistical methodology used to obtain parameter estimates from synaptic record-
ings motivated us to develop a new theoretical framework for the description of synaptic
transmission and the analysis of experimental data. This will be the topic of chapters 2
and 3. We have therefore to put the matter of memory aside for now and introduce the
basic concepts of synaptic short-term plasticity.

1.2 Synaptic short-term plasticity

Short-term plasticity (STP) is the transient modification of post-synaptic responses at
chemical synapses induced by pre-synaptic activity on time scales of hundreds of mil-
liseconds to several seconds. Commonly two types of STP are distinguished: short-term
depression and short-term facilitation. Depression, referring to the activity dependent
reduction of synaptic efficacy, is thought to be primarily caused by depletion of synaptic
vesicles. Facilitation, the use-dependent enhancement of synaptic transmission, is a con-
sequence of enhanced probability of neurotransmitter release, which, in turn, depends
mostly on the spike-triggered calcium-influx into the pre-synaptic terminal.
Since STP is effectively a necessary consequence of synaptic physiology, virtually all
synapses display some form of STP, which is often a mixture of depression and facilita-
tion. However, strikingly difference types of STP have been found that differ systemati-
cally in function of cell types of pre- and post-synaptic partner, cortical region and age
[e.g. Reyes et al. (1998); Blackman et al. (2013)]. This suggests that rather than being a
physiological byproduct, STP is used by the central nervous system and tuned for specific
ends [but see Borst (2010)]. Indeed, in numerous experimental and theoretical studies
STP has been implicated in a broad range of functional roles, for instance gain control
[Abbott et al. (1997)], temporal filtering [Goldman et al. (2002); Klyachko and Stevens
(2006); Rosenbaum et al. (2012)] and effects on the dynamics of attractor networks, as
we have seen above.
The next chapter is dedicated to a review of the most important STP models. In the
course of this, we will encounter a great variety of mechanism that contribute to its phe-
nomenology. For detailed reviews of STP mechanism and the various functions STP has
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been implied in see, for instance, Zucker and Regehr (2002), Abbott and Regehr (2004)
and Tsodyks and Wu (2013).
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Mizuseki, K. and Buzsáki, G. (2013). Preconfigured, skewed distribution of firing rates
in the hippocampus and entorhinal cortex. Cell reports, 4(5):1010–1021.

23



Mongillo, G. (2014). Models of working memory.

Mongillo, G., Hansel, D., and van Vreeswijk, C. (2012). Bistability and spatiotemporal
irregularity in neuronal networks with nonlinear synaptic transmission. Physical review
letters, 108(15):158101.

O’Connor, D. H., Peron, S. P., Huber, D., and Svoboda, K. (2010). Neural activity in
barrel cortex underlying vibrissa-based object localization in mice. Neuron, 67(6):1048–
1061.

Okun, M. and Lampl, I. (2008). Instantaneous correlation of excitation and inhibition
during ongoing and sensory-evoked activities. Nature neuroscience, 11(5):535–537.

Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., and Harris,
K. D. (2010). The asynchronous state in cortical circuits. science, 327(5965):587–590.

Renart, A., Moreno-Bote, R., Wang, X.-J., and Parga, N. (2007). Mean-driven and
fluctuation-driven persistent activity in recurrent networks. Neural computation,
19(1):1–46.

Reyes, A., Lujan, R., Rozov, A., Burnashev, N., Somogyi, P., and Sakmann, B. (1998).
Target-cell-specific facilitation and depression in neocortical circuits. Nature neuro-
science, 1(4):279–285.

Romo, R., Brody, C., Hernández, A., and Lemus, L. (1999). Neuronal correlates of
parametric working memory in the prefrontal cortex. Nature, 399:470–473.

Rosenbaum, R., Rubin, J., and Doiron, B. (2012). Short term synaptic depression imposes
a frequency dependent filter on synaptic information transfer. PLoS computational
biology, 8(6):e1002557.

Roudi, Y. and Latham, P. E. (2007). A balanced memory network. PLoS computational
biology, 3(9):e141.

Roxin, A., Brunel, N., Hansel, D., Mongillo, G., and van Vreeswijk, C. (2011). On the
distribution of firing rates in networks of cortical neurons. The Journal of Neuroscience,
31(45):16217–16226.

Shadlen, M. N. and Newsome, W. T. (1994). Noise, neural codes and cortical organiza-
tion. Current opinion in neurobiology, 4(4):569–579.

Shadlen, M. N. and Newsome, W. T. (1998). The variable discharge of cortical neurons:
implications for connectivity, computation, and information coding. The Journal of
neuroscience, 18(10):3870–3896.

Shafi, M., Zhou, Y., Quintana, J., Chow, C., Fuster, J., and Bodner, M. (2007). Variabil-
ity in neuronal activity in primate cortex during working memory tasks. Neuroscience,
146(3):1082–1108.

24



Shinomoto, S., Kim, H., Shimokawa, T., Matsuno, N., Funahashi, S., Shima, K., Fu-
jita, I., Tamura, H., Doi, T., Kawano, K., et al. (2009). Relating neuronal firing
patterns to functional differentiation of cerebral cortex. PLoS Computational Biology,
5(7):e1000433.

Shinomoto, S., Sakai, Y., and Funahashi, S. (1999). The ornstein-uhlenbeck process does
not reproduce spiking statistics of neurons in prefrontal cortex. Neural Computation,
11(4):935–951.

Shu, Y., Hasenstaub, A., and McCormick, D. A. (2003). Turning on and off recurrent
balanced cortical activity. Nature, 423(6937):288–293.

Softky, W. R. and Koch, C. (1993). The highly irregular firing of cortical cells is in-
consistent with temporal integration of random epsps. The Journal of Neuroscience,
13(1):334–350.
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Chapter 2

Phenomenological Models of

Short-term Plasticity

In this section we wish to achieve two things. First, we want to review phenomenological
ways to account of STP. Instead of enumerating models that we can find in the literature
we want to review them with a certain perspective in mind. Our viewpoint is based
on the observation that all existing phenomenological descriptions of short-term plastic-
ity, however sophisticated, ignore a fundamental property of synaptic responses: their
stochasticity. Rather, almost all modelling approaches try to explain average responses,
disregarding the quantal nature of synaptic transmission. Our goal here is to show that
this limitation can be overcome since virtually all phenomenological descriptions found
in the literature can be embedded in a quantal release scheme. This is possible since all
can be cast in a release-site formulation. We will thus go over a number of representative
STP models and show how they can be interpreted as descriptions of probabilistic transi-
tions between different release-site-states. This procedure of reformulation in a common
framework will make it also quite easy to compare them.
Second, based on the notion of the release-site, we want to introduce a novel modelling
framework that makes it possible to model synaptic responses in its entirety. That is, we
propose an approach which describes not only average responses, but whole distributions
of response sequences. Since all models reviewed here can be formulated as release-site
models, it follows that they all can be transformed in a fully probabilistic version.
It seems fit at this point to make some remarks about the rationale of our interest in phe-
nomenological models. We wish to consider those modelling work that tries to capture
STP without retracing the fathomless complexity of the molecular machineries involved
in synaptic transmission. Instead, we concentrate on models that indeed are biologically
inspired, but deliberately omit a substantial amount of biological details. From this kind
of reductive approach one obtains descriptions of synaptic responses that are mathemat-
ically relatively simple and have a small number of free parameters. This class of models
can be named ’phenomenological models’. Of course, one cannot draw a neat separation
between ’phenomenological’ and ’realistic’ descriptions, but we will concentrate on the
simpler end of the spectrum.
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What are reasons to use phenomenological models? First, we should not use models
that are very complex when this is not justified by the available data. Especially for
small central synapses, it is virtually impossible to obtain enough electro-physiological
and anatomical data to constrain a model which aims at capturing molecular details.
Thus, modelling simplifications have inevitably to be made; a point that will be further
elucidated in the next section.
Second, it may be that a phenomenological model captures all behaviour that is func-
tionally relevant for the specific scientific question that is studied. It could even turn out
that the complex molecular machinery of the synapse always generates dynamically low-
dimensional responses, sealing the molecular level from higher ones. A phenomenological
description would then comprise all that is needed to study higher level functions. This is
analogous to the integrate-and-fire neuron model which despite its simplicity reproduces
a wide range of relevant phenomena.
Third, phenomenological models are simply much handier than detailed biological de-
scriptions (see for instance Pan and Zucker (2009); Nadkarni et al. (2012)). Featuring
a low-dimensional parameter- and state-space they can be treated both numerically and
analytically with less effort. This is in particular important in the research of neural net-
works where preferably low-dimensional, efficient models of synaptic transmission have
to be incorporated in large numerical simulations.

2.1 The release-site formalism
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Figure 2.1

The release-site interpretation we wish to impose is tightly associated with the quantal
model (Del Castillo and Katz (1954)). In its simplest form, the quantal model pictures a
synapse as a collection of N identical, statistically independent sites which, upon spike,
can either release one vesicle of neurotransmitter or fail to do so. Consider a single site’s
total probability of release pR upon spike. Commonly, this quantity is decomposed into
two parts: the probability that the site is occupied, pocc, and the probability that the
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site releases given that it is occupied, prel. We can write:

pR = prel · pocc. (2.1)

This description assumes that the release site can be in one of two states: occupied by
one vesicle (release-competent) or vacant (refractory). At this, ’occupied’ indeed means
that all docking and priming processes involving vesicle and site are completed, and that
for release to occur, no other processes are needed except those that are directly triggered
by a pre-synaptic spike. On the other hand, in the refractory state a spike can never
trigger release. In order to formalise the two states, we introduce a binary occupation
state variable ξ, where ξ = 1 denotes the release-competent state and ξ = 0 the refractory
state. Consequently, pocc is the probability that ξ = 1.
These considerations lead to a commonly accepted single release-site scheme (see e.g.
Heinemann et al. (1993); Weis et al. (1999); Wang (1999); Neher and Sakaba (2008);
Neher (2010)) which we wish to use throughout our review. It is shown in figure 2.1.
The possible transitions between the two occupational states comprise vesicle release as
well as vesicle docking/undocking processes. At this, we have to distinguish two types
of transitions: those that occur upon stimulation (upon spike), and those that occur in
the time interval ∆t between stimulations (in between spikes). If ξ = 1, the site can go
to the refractory state either by release of its vesicle upon spike (with prel), or by vesicle
unbinding in between spikes (with ∆t · k−). If ξ = 0, the site either binds a vesicle in
between spikes (with ∆t · k+) or remains refractory. In the following we will assume
(unless stated otherwise) that the vesicle supply is unlimited; transition probabilities
cannot be altered by vesicle shortage. Two things are noteworthy: first, pocc is now
fully replaced by the rates k+ and k−. Second, in this scheme the release site is clearly
stochastic.

2.1.1 Depletion

We start our review with simple models and will progressively add more details. The
most basic short-term effect on synaptic efficacy is depression due to depletion of vesicles.
In the release-site scheme, this corresponds to:

k− = 0

k+ = const

prel = const. (2.2)

The fact that k− = 0 means that once a vesicle is docked at a release-site, it must stay
there. Thus, for sufficiently long inter-spike intervals ∆t = tk+1− tk, this scheme dictates
that the probability of occupancy pocc equals 1. As a consequence, in simple depletion
models all release sites are in the release-competent state in absence of pre-synaptic
activity (for example before stimulation in an in-vitro experiment).
Models that can be formulated in terms of equations 2.2 are for instance Liley and North
(1953), Betz (1970) and Tsodyks and Markram (1997), which apply it, respectively, to
the rat or frog neuromuscular junction and to synapses between rat layer 5 somatosensory
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pyramidal neurons. The latter work predicts that depletion causes steady-state responses
to be inversely proportional to the input frequency.

2.1.2 Activity-dependant release probability

The next more complex class of models features a release probability that depends on
the activation-history of the synapse. Our scheme changes accordingly:

k− = 0

k+ = const

prel = prel(t). (2.3)

Commonly, one considers activity-dependant changes that are increasing prel; this mech-
anism is thought to underlie synaptic facilitation. However, processes that reduce prel in
function of synaptic stimulation have also been captured in a number of models. We will
consider facilitation first.

Simple facilitation

One of the most prominent and popular models of short-term plasticity has been con-
ceived by Tsodyks and Markram (Tsodyks and Markram (1997); Markram et al. (1998)).
It describes synaptic transmission that features both a depressing and facilitating compo-
nent and hassub been successfully applied to a wide range of preparations ( e.g. Fuhrmann
et al. (2004); Loebel et al. (2009); Wang et al. (2006)). It is, due to its simplicity, often
used in theoretical studies exploring the functional role of STP (Tsodyks et al. (1998);
Fuhrmann et al. (2002); Mongillo et al. (2008); Pfister et al. (2010); Mongillo et al. (2012);
Cortes et al. (2013); Hansel and Mato (2013)). The Tsodyks-Markram (TM) model can
be accommodated in our scheme by setting:

k− = 0

k+ =
1

τD
(2.4)

where τD is the typical time constant of the persistence of depression. The activity-
dependant dynamics of prel are given by the following differential equation:

ṗrel(t) =
p0 − prel(t)

τF
+ p0(1− prel(t))

∑

k

δ(t− tk). (2.5)

According to this, release probability increases upon spikes (occurring at times tk), and
then decays back to its baseline level, p0, with a time constant τF in between spikes. We
see that short-term depression arises in the TM-model from the simplest possible form,
namely release-site depletion. On the other hand, short-term facilitation is solely deter-
mined by an activity-dependent increase of prel, which can be, for instance, interpreted
as caused by the elevation of the residual Ca2+ concentration. If we set τF to a very
small value, we obtain the purely depressing model mentioned above.

30



�

�

Figure 2.2: Behaviour of the Tsodyks-Markram model. A): Left: Experimentally mea-
sured postsynaptic potentials (top) generated by a regular spike train (Bottom).
Model fit without facilitation component in the middle. Right: The same with irreg-
ular spike train. B): Data and model traces for a facilitating connection. Panel A, B
and captions adapted from Tsodyks and Markram (1997) and Markram et al. (1998),
respectively.

Note that in the above formulation, the increase in prel is proportional to the initial
release probability p0. In general, however, we can consider an increase ∆p, yielding

ṗrel(t) =
p0 − prel(t)

τF
+∆p(1− prel(t))

∑

k

δ(t− tk), (2.6)

as has been employed in Costa et al. (2013) and Hennig (2013). Another simple model
belonging to this class has been used in Varela et al. (1997).
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Bertram’s facilitation

Depending on the scientific question considered, facilitation of the Tsodyks-Markram
type might be too simplistic. However, the scheme given by equations 2.3 is readily
compatible with more biophysically realistic forms of facilitation. Following Bertram
et al. (1996), facilitation can be understood as resulting from the cooperative action of
four different calcium binding sites. To trigger release, four calcium ions have to bind
to the release machinery. The unbinding from the four sites occurs then at different
timescales, allowing for the possibility of partially bound sites the next time an action
potential triggers calcium influx. Considering its average effect, this mechanism can be
expressed by setting:

prel(t) = F1(t) · F2(t) · F3(t) · F4(t), (2.7)

where

Ḟi(t) = −
Fi(t)

τFi

+ b+i · Ca(t) · (1− Fi(t)), τFi
= (b+i · Ca(t) + b−i )

−1. (2.8)

At this, Fi(t) denotes the probability that the ith calcium binding site is bound, b+i
and b−i are the corresponding binding and unbinding rates, and Ca(t) is the calcium-
concentration at the release site. The factor 1 − Fi(t) guarantees that the probabilities
do not grow beyond unity.1 As shown in Bertram et al. (1996), these relations capture
the fourth-power relationship between calcium-concentration and release probability that
has been observed by Dodge and Rahamimoff (1967) at the frog neuromuscular junction.
In the model of Wang (1999) a simplified version of equations 2.7 and 2.8 is used to
describe neocortical synapses between pyramidal cells and interneurons, as described by
Thomson et al. (1993). The dynamics of the four gates are combined into one variable
and accordingly, only one time constant is considered:

Ḟ (t) = −F (t)

τF
+ Ca(t) · (1− F (t)) = −F (t)

τF
+∆C(1− F (t))

∑

k

δ(t− tk). (2.9)

Here, ∆C is the instantaneous increase in F upon spike when due to calcium influx. To
preserve the aforementioned fourth-power relationship the release probability is set to:

prel(t) = p0 · F 4(t). (2.10)

In this formulation, Ca(t) is given by a delta-pulse at spike-time. What is hence consid-
ered in this model is the effect due to a local calcium-concentration transient, while the
residual calcium-concentration plays no role. A very similar version of this model has
been used by Matveev and Wang (2000a), where three time-constants are considered.
The explicit effect of the residual calcium-concentration has been included in a further

1In this formulation, the Fi(t) are meant to be updated before the release-transition is performed,
otherwise prel = 0 upon the first spike.
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development of the Wang (1999) model. In Hempel et al. (2000), the form of Ca(t) is
changed according to:

Ca(t) = ∆C

∑

k

δ(t− tk) + Cagl(t), (2.11)

where the temporal development of the global calcium-concentration is given by:

Ċagl(t) = −
Cagl(t)

τC
+∆CG

∑

k

δ(t− tk). (2.12)

While the effect of the local calcium-concentration ∆C is restricted to spike-times, the
global calcium-signal only falls off on a timescale of τC , after being raised by ∆CG < ∆C

upon spike.

Reduction of prel

Activity dependant reduction of prel has been observed in various preparations (see e.g.
Betz (1970); Wu and Borst (1999)). Possible mechanism that generally come into consid-
eration are inactivation of calcium-channels (Forsythe et al. (1998); Xu and Wu (2005))
and the activation of pre-synaptic autoreceptors (CITE Zucker and Regehr (2002)). A
simple description of these effects was included in Fuhrmann et al. (2004) and is basically
an inversion of the Tsodyks-Markram facilitation prescription:

ṗrel(t) =
p0 − prel(t)

τinac
−∆inac · prel(t)

∑

k

δ(t− tk). (2.13)

A slightly different formulation is chosen in Billups et al. (2005) and Hennig (2013)
to model mGluR autoreceptor activation. Here, prel is not decreased directly, but by
modulating p0:

ṗ0(t) =
p0,ini − p0(t)

τp0
−∆p0 · p0(t)

∑

k

δ(t− tk). (2.14)

In general, ∆p0 does not need to be a constant, but can depend on the amount of released
neurotransmitter. An extended version of this model that takes into account different
autoreceptor states has been developed in Hennig et al. (2008).

Combining processes that modulate prel

Equation 2.7 illustrates how prel can be facilitated by different components. Obviously,
processes that depress synaptic transmission by reducing prel can be added in the same
way. This has been implemented in the model by Varela et al. (1997) where various
(unspecified) modulatory processes are combined. For i facilitating and j depressing
components we can write:

prel(t) = p0 · F1(t) · . . . · Fi(t) ·D1(t) . . . ·Dj(t). (2.15)
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with

Ḟi(t) =
1− Fi(t)

τFi

+∆Fi
· (1− Fi)

∑

k

δ(t− tk)

Ḋj(t) =
1−Dj(t)

τDj

−∆Dj
· (1−Dj)

∑

k

δ(t− tk). (2.16)

2.1.3 Activity-dependant recovery from depression

In the models discussed so far, the only time-dependant transition-probability is prel.
Things become more complex when we allow for a time-dependence of k+, that is, for an
activity-dependant recovery of vesicles. Adding this process to our scheme yields:

k− = 0

k+ = k+(t)

prel = prel(t). (2.17)

This mechanism was put into a mathematical form in Dittman and Regehr (1998) and
Dittman et al. (2000). The adoption to our scheme reads:

k− = 0

k+(t) = k0 +
kmax − k0

1 + KD

CaXD(t)

prel(t) = p0 +
1− p0

1 + KF

CaXF (t)

. (2.18)

Here, we distinguish two calcium related processes: CaXF (t) and CaXD(t) denote the
concentrations of some calcium-receptor molecules that are responsible, respectively, for
facilitated release (with an initial probability of p0 and a maximal value of 1) and in-
creased vesicle recruitment (that ranges between k0 and kmax). CaXF (t) and CaXD(t)
determine the increase in release probability and binding rate not in a linear way, as seen
in the models so far, but by means of a Michaelis-Menten-type relation. At this, the
constant KF (KD) denotes the value of the concentration CaXF (t) (CaXD(t)) at which
prel (k

+) has increased halfway between its baseline and maximum value. The values of
CaXF (t) and CaXD(t) are given by:

˙CaXF (t) = −CaXF (t)

τXF
+∆XF

∑

k

δ(t− tk),

˙CaXD(t) = −CaXD(t)

τXD
+∆XD

∑

k

δ(t− tk). (2.19)

The symbols are analogous to the ones used in equation 2.12.
When compared to models with constant k+, Dittman’s scheme predicts much less de-
pression after long stimulus trains, i.e. when the synapse reaches steady-state behaviour.
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Figure 2.3: Behaviour of Dittman’s model. A): Trace represents a single trial of Parallel
fiber to Purkinje cell EPSCs recorded during 25 stimuli at 50 Hz. Open circles are
the model fit, filled circles represent model prediction with the same parameters but
without calcium-dependent recovery from depression (CDR). B): Steady-state EPSC
size plotted against stimulus frequency for the parallel fiber synapse with (thin line)
and without (thick line) CDR. Open circles represent parallel fiber data. Figure and
caption adapted from Dittman et al. (2000).

This is illustrated in figure 2.3. Indeed, in Dittman et al. (2000) it was shown that
the model can successfully capture average transient as well as steady state responses of
climbing fibre to Purkinje cell synapses, parallel fibre to Purkinje cell synapses (see figure
2.3) and Schaffer collateral to CA1 pyramidal-neuron synapses.
A very similar model by Lee et al. (2009) reduces equations 2.19 to a single calcium
variable Ca(t) with baseline calcium-level Ca0:

Ċa(t) =
Ca0 − Ca(t)

τC
+∆C

∑

k

δ(t− tk). (2.20)

In this formulation, the dynamics of facilitation and recovery from depression are thus
unified. Furthermore, k− and k+ are adopted without change, while prel reads:

prel(t) = pmax ·
1

1 + ( KF

Ca(t))
4
, (2.21)

where we encounter anew the fourth-power relationship between calcium-concentration
and release-probability found by Dodge and Rahamimoff (1967). In addition, prel is upper
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bounded by a maximal release probability pmax. The model describes appropriately the
responses of the climbing fibre to Purkinje cell synapse, the calyx of Held and synapses
between neo-cortical pyramidal neurons, predicting in particular the resonance-frequency
of steady-state responses.
A more phenomenological description of activity-dependent recovery from depression has
been proposed in Fuhrmann et al. (2004):

k+(t) =
1

τD(t)
,

(2.22)

where τD(t) is determined by:

τ̇D(t) =
τD0 − τD(t)

ττ
−∆τ · τD(t)

∑

k

δ(t− tk). (2.23)

In contrast to Dittman’s model, k+ can in principle grow without bounds (as τD ap-
proaches zero).
Other works that model activity-dependant recovery from depression in a similar way
are Hennig et al. (2008) and Yang and Xu-Friedman (2008). They describe calyx of Held
responses over a wide range of stimulation frequencies.

2.1.4 Non-zero unbinding rate

Experimental evidence from several preparations indicates that vesicle binding to release-
sites and/or vesicle priming is reversible2 (Murthy and Stevens (1999); Zenisek et al.
(2000); Nofal et al. (2007)). Models allowing vesicles to undock from a release-site, obey
the following scheme:

k− = const

k+ = k+(t)

prel = prel(t). (2.24)

The obvious consequence of k− > 0 is that, even in absence of stimulation, pocc is never
equal to 1. Instead, the probability of finding the release-site occupied at any time t is
given by:

pocc(t) =
k+(t)

k+(t) + k−
. (2.25)

Note that this scheme can provide for a facilitation mechanism that goes beyond an
increase in prel. If k

+ is increased during activation of the synapse, pocc increases, leading

2Note that our definition of the vacant state includes release-sites that exhibit a docked, but unprimed
vesicle.
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on average to an augmentation of the number of release-sites that can be activated.
The time-constant associated with the occupation probability, pocc(0), is given by:

τ0(t) =
1

k+(t) + k−
. (2.26)

Other than in the models we have seen so far, the time-constant τ0(t) is not exclusively
linked to depression but represents the typical recovery-time of the time-dependant oc-
cupation probability.
Two models that are among the first to adopt above scheme can be found in Heine-
mann et al. (1993) and Weis et al. (1999). While the former work was concerned with
non-synaptic release (hormone-secretion from chromaffin cells), the latter was used to
describe both transient and steady-state release at the calyx of Held synapse. We will
thus concentrate on Weis’ model. It’s transition-parameters can be written as:

k− = const

k+(t) = k0 ·
Ca(t)

Ca0
prel = const, (2.27)

with the standard calcium-dynamics:

Ċa(t) =
Ca0 − Ca(t)

τC
+∆C

∑

k

δ(t− tk). (2.28)

As mentioned above, since Ca(t) and thus k+ can in principle increase without bounds,
facilitation can be induced, despite prel = const, by an increase of pocc, which is, being a
probability, upped bounded by unity.
In the same paper, the authors present an alternative interpretation of scheme 2.28,
where the number of release-sites N is not fixed ab initio. At this, the two-states shown
in figure 2.1 represent two consecutive states of vesicle maturation rather than the occu-
pancy states of release sites. N is then the number of readily releasable vesicles. This
’vesicle-state’ model allows, in principle, for an unlimited growth in N , which seems
incompatible with our premise, namely that all relevant dynamics can be captured by
models that use release-sites as the basic entities. However, as already pointed out in Weis
et al. (1999), the release-site and vesicle-state models become mathematically equivalent
if N · pocc ≪ N . In this light, Weis’ vesicle-state model is simply a release-site model
with pocc(t)≪ 1 for all times t.
Structurally similar models have been developed in Worden et al. (1997) and Bykhovskaia
et al. (2000) where they are used to address facilitation of the lobster neuromuscular junc-
tion in response to mono-frequency stimuli. In contrast to Weis et al. (1999) they feature,
however, a constant refilling rate k+. In order to include facilitation, an additional refill-
ing process is introduced, which comprises the occupation of a fixed number of release
sites upon spike, a mechanism which we will revisit below. This process successfully
explains experimental findings. Unfortunately, these works do not investigate transient,
but only steady-state responses.
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An example of release-site heterogeneity

The models considered so far assumed the properties of all release-sites to be identi-
cal. Heterogeneity of release-site properties is, however, a common phenomenon (see e.g.
Dobrunz and Stevens (1997); Murthy et al. (1997); Branco and Staras (2009), but also
Koester and Johnston (2005)). To explore the effects of heterogeneity in the simplest
possible way, Trommershäuser et al. (2003) introduced two different types of release
sites: one type forms a readily-releasable, the other a reluctantly-releasable pool3. In
addition, this model includes activity-dependant recovery from depletion and facilita-
tion that emerges from an interaction of local calcium-domains and calcium-buffers. In
summary, the complexity of Trommershäuser’s model sets it at the boundary between
phenomenological and biophysically realistic modelling and it is the most complex one
we will consider here.
Expressed in our scheme, we obtain for the transition parameters:

k−1 = const

k+1 (t) = const

prel,1 =
1

1 + ( KF

Ca1(t)
)4

(2.29)

k−2 = const

k+2 (t) = k0 + ks ·
Cagl(t)

Cagl,0

prel,2 =
1

1 + ( KF

Ca2(t)
)4
. (2.30)

where the increase of k+2 depends on the global intracellular calcium-concentration, which
is modelled as usual (see equation 2.28). The variables Ca1(t) and Ca2(t) reflect different
local calcium-concentrations prevailing at the two types of sites, stemming from differ-
ences in distance to calcium-channels. Release-sites associated with pool 2 are thought
to be closer to channels than release-sites from pool 1. Ca1(t) and Ca2(t) are given by:

Cai(t) = Cagl(t) + J(Caout) · α · [δi,2 + η · {1 + γ · (Cagl(t)− Cagl,0)}] (2.31)

At this, J(Caout) is a constant that depends on the extracellular calcium-concentration
and α, η and γ are constant parameters. While α is a measure of the distance between
release-sites and calcium-channels, γ determines the strength that buffer-saturation has
on facilitation (i.e. no facilitation when γ = 0). η sets, together with the Kronecker delta
δi,2, the exact difference in release probability between the two types of release-sites; in
general, we have prel,2 > prel,1, as intended. Figure 2.4 shows the dynamics of both

3Originally, only the dynamics of the readily-releasable pool are described by a release-site model,
while those of the reluctantly-releasable pool are described by a vesicle-state model in the sense of Weis
et al. (1999). However, by virtue of the argument given above, we can apply the release-site formalism
to both pool types.
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Figure 2.4: Behaviour of Trommershäuser’s model. Model predictions Pool dynamics dur-
ing and after repetitive stimulation with 10 Hz (thick black line) and 100 Hz(black
line). A): Occupancy in pool 1. B): Occupancy in pool2. The arrow indicates the
calcium-dependent recovery at the end of the stimulus train. C): Facilitation of the
release probabilities prel,1 (open circles) and prel,2 (solid circles). D): Elevation in
the global calcium concentration during repetitive stimulation. E): Recovery after
repetitive stimulation with 200 Hz (50 stimuli). Figure and caption adapted from
Trommershäuser et al. (2003).

vesicle pools and their corresponding release probabilities for two different stimulation
frequencies.
This model has been designed for the calyx of Held synapse, that has been extensively
studied over decades. The detailed understanding of this synapse allows to fix a large
number of the model’s parameters. As a consequence, the model is biophysically realistic,
but seems highly specialised to the calyx. Nevertheless, Trommershäuser’s model has
been used, with different degrees of modifications, to study, for example, the Drosophila
neuromuscular junction with some success (Hallermann et al. (2010b,a); Weyhersmüller
et al. (2011)). It is less clear, however, whether findings can be readily extended to small
central synapses, where that have not been physiologically characterised as exhaustively
as large synapses.
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2.2 A stochastic framework of synaptic function

All models discussed so far have a crucial feature in common: they describe average
responses. Suppose that a pre-synaptic spike-train consists of M spikes. Let us denote
the post-synaptic response amplitude to the ith spike byRi and a sequence ofM responses
by R1→M ≡ {R1, . . . , Ri, . . . , RM}. Then these deterministic models follow the pattern:

pre-synaptic input −→ deterministic model −→ average: R̄1→M , (2.32)

where the bar symbolises the average over trials. Dynamical changes of prel, for instance,
are merely expressed as effects on the mean-response, while these models make no state-
ments, among other things, about the trial-to-trial variability of individual responses or
correlations between different responses.
In this section we want to show that, based on the release-site formalism, it is possible
to construct probabilistic models of synaptic transmission. Since, as we have shown,
virtually all important models of STP can be expressed in the release-site scheme, they
can all be endowed with full stochasticity. Stochastic models obey:

pre-synaptic input −→ stochastic model −→ distribution: P (R1→M ). (2.33)

Here, P (R1→M ) is the probability distribution of response sequences. This class of models
is able to describe synaptic transmission beyond average responses, as it captures higher
momenta and correlation structures of the response sequences.
We proceed by presenting the construction of stochastic models.

2.2.1 The synaptic state

We have seen that we can understand a wide number of pre-synaptic STP-mechanisms
and even release-site heterogeneity by considering their effects on a single release-site. It
is now straightforward to obtain a model of a full synapse by grouping N identical single
sites together4.
To see this more clearly, let us define the synaptic state S. S corresponds to the number
of occupied release-sites, i.e. it is a natural number between 0 and N :

S = {# of sites with ξ = 1}. (2.34)

At this, we do not keep track of the release-sites’ identities; that is, all instances with 4
docked vesicles, for example, are equivalent, no matter at which sites they are docked.
We can think of the synaptic state as representing the ready-releasable pool (RRP) of
the synapse.
Now consider the situation where a spike train activates the synapse at times t1→M ≡
{t1, · · · , tM}. Clearly, the spike train will drive the release-sites through a sequence of
those transitions we have discussed at length in the previous sections and S will change

4If we wish to introduce heterogeneity, we simply take N1 sites of type one, N2 sites of type two etc.
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correspondingly. Let us denote by S−
k and S+

k the synaptic state S immediately before
and after spike i:

S−
i = {# of sites with ξ = 1 immediately before ti}

S+
i = {# of sites with ξ = 1 immediately after ti}. (2.35)

Since all transitions are probabilistic we can now formulate probabilities for transitions
between synaptic states. At this we have to distinguish, as we have done before, between
two different types: transitions upon spike and transitions in between spikes. We can
write:

P (S+
i ←− S−

i ) = P (S+
i |S−

i ) probability upon spike

P (S−
i+1 ←− S+

i ) = P (S−
i+1|S+

i ) probability in between spikes. (2.36)

These probabilities depend on the one hand on the properties of the single release-sites,
that is on prel(t), k

+(t) and k−. On the other hand, the size of the synapse, which is
correlated with the number of release sites, N , (Schikorski and Stevens (1997)), plays an
important role. Furthermore, the transitions depend also in the ith interspike-interval
∆ti. We will proceed by giving concrete examples of the expression in equation 2.36,
starting with in between spike transitions.

2.2.2 Transitions in between spikes
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Figure 2.5

Let us first consider the case with k− = 0 and k+ = const. The probability that a single
empty release-site is occupied during an interspike-interval ∆ti is given by:

li = 1− e
−∆ti

τD , (2.37)

where we used k+ = 1
τD

. If ∆ti is much longer than τD, this probability approaches unity.

Figure 2.5 shows a graphical representation of an exemplary transition from S+
i to S−

i+1.
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Figure 2.6

The recovery-probability of S−
i+1 − S+

i empty sites is given by a binomial distribution:

P (S−
i+1|S+

i ) =

(
N − S+

i

S−
i+1 − S+

i

)

l
(S−

i+1
−S+

i )

i (1− li)
(N−S−

i+1
). (2.38)

This relation holds true for S−
i+1 ≥ S+

i , that is, if the number of docked sites increases
or stays the same. Otherwise, we set P (S−

i+1|S+
i ) = 0, since transitions with k− = 0 can

never reduce the number of docked sites.
The case with k− = 0 and k+ = k+(t) is very similar, with the difference that k+(t) has
to be integrated over the interval ∆ti. Considering Dittman’s model, for instance, this
leads to the single-site recovery probability (see Dittman et al. (2000)):

li = 1− e−ζ(∆ti)

ζ(∆ti) = kmax ·∆ti + τXD · (kmax − k0) · ln







KD + CaXD(ti)

KD · e
∆ti
τXD + CaXD(ti)






, (2.39)

where CaXD(ti) is a deterministic function of the input spike times, which can easily be
evaluated at ti. Equation 2.38 remains unchanged in this case.
On the contrary, allowing for k− > 0 changes the situation quite a bit, as both occu-

pied release-sites can become vacant and vacant release-sites can be docked by a vesicle
during the inter-spike interval. Recall from equations 2.25 and 2.26 the definitions of the
equilibrium probability of occupancy pocc and the time constant τ0 of the decay to pocc.
With these, we can write down the probability that a single vacant site goes into the
occupied state p+, and the probability that a single occupied site goes into the vacant
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state p−5:

p+,i = pocc ·
(

1− e
−∆ti

τ0

)

p−,i = (1− pocc) ·
(

1− e
−∆ti

τ0

)

, (2.40)

where the index i flags the dependence on the ith inter-spike interval. As ∆ti −→∞ the
transition probabilities converge to p+ = pocc and p− = (1 − pocc), yielding the correct
steady-state values. For k− = 0, we have pocc = 1 and expression 2.40 reverts to equation
2.37.
The transition probability from one synaptic state to the next, P (S−

i+1|S+
i ), has now to

be decomposed into two parts, as show in figure 2.6. First, we can state the probability
of recovering ∆d release sites. Second, given ∆d, the probability of emptying ∆u release
sites can be given, hereby considering only those sites which have not been updated yet.
Finally, we have to sum over all possible values of ∆d. In formal terms, this yields:

P (S−
i+1|S+

i ) =

∆dmax∑

∆d=∆dmin

P (S−
i+1|S+

i +∆d) · P (S+
i +∆d|S+

i )

=

∆dmax∑

∆d=∆dmin

(
N − S+

i

∆d

)

· p∆d
+,i · (1− p+,i)

(N−S+
i −∆d) ×

×
(
S+
i

∆u

)

· p∆u
−,i · (1− p−,i)

(S+
i −∆u). (2.41)

where ∆u = S+
i +∆d − S−

i+1. The sum over ∆d starts at ∆dmin = max{S−
i+1 − S+

i , 0}
and ends at ∆dmax = min{S−

i+1, N − S+
i }. These limits guarantee that two obvious

constraints are met: no more release-sites can be occupied than are empty and no more
release-sites can be emptied than are occupied.

2.2.3 Transitions upon spike

Transitions upon spike are associated with the release process. We have to distinguish
two scenarios. First, especially at hippocampal synapses, findings suggest that only one
single vesicle can be released per active zone (Stevens and Wang (1995); Hanse and
Gustafsson (2001a,b)), despite the presence of more than one release-site at the active
zone. The probability of releasing a vesicle, however, does not simply correspond to
the single site’s prel, but seems to increase with the number of occupied release-sites
(Dobrunz and Stevens (1997)). Following Kandaswamy et al. (2010), we can express this
cooperation between release-sites by6:

P (S+
i |S−

i ) =

{

1− (1− prel,i)
S−
i if S+

i = S−
i − 1

0 else,
(2.42)

5Here, we assume for simplicity k+ = const.
6An alternative, but roughly equivalent formulation can be obtained from Wang (1999): P (S+

i |S−
i ) =

1− exp(−prel,i · S−
i ).
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Figure 2.7

Here, prel,i is a short-hand notation for prel(ti), that is, for the release-probability upon
the ith spike. The condition in equation 2.42 ensures that only release of a single vesicle
can occur.
In the second scenario, release sites act independently from each other and release of
multiple vesicles at once is possible (Auger et al. (1998); Oertner et al. (2002); Loebel
et al. (2009); Bender et al. (2009); Huang et al. (2010)). Figure 2.7 shows the transition
between two synaptic states in this case. The number of released vesicles upon the ith
spike is simply given by:

ni
ves = S−

i − S+
i . (2.43)

With this, the transition probabilities can be straightforwardly written as:

P (S+
i |S−

i ) =

(
S−
i

ni
ves

)

· pn
i
ves

rel,i · (1− prel,i)
S−
i −ni

ves , (2.44)

where, of course, ni
ves ≥ 0 and otherwise P (S+

i |S−
i ) = 0.

Note that in the second case described here - the multiple vesicle release model - sites
are independent from each other (as far as the release process is concerned). This is in
contrast to the single vesicle release model, where different sites exhibit a cooperative
effect.

A fast refilling process upon spike

Worden et al. (1997) and Bykhovskaia et al. (2000) proposed a model where a fixed
number of vesicles is ’mobilised’ upon spike, which amounts to the occupation of a fixed
number of release sites. In our framework we can address this process in a more general
manner. Instead of deterministically increasing the number of occupied sites, we can
introduce an additional transition probability, as shown in figure 2.8A. Upon spike then,
vacant sites can be docked by a vesicle with a probability pfast, which may or may not
depend on the activation history. Concerning the sequence of the processes involved,
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Figure 2.8

different scenarios are conceivable. For instance, fast docking could occur before release,
or vice versa. Let us assume here that release occurs first, and that fast docking can
only update those release-sites which were vacant before release. This process is sketched
in figure 2.8B. Denoting the number of sites that become docked by ∆d, we obtain the
following state transition probabilities:

P (S+
i |S−

i ) =

N−S−
i∑

∆d=0

P (S+
i |S+

i −∆d) · P (S+
i −∆d|S−

i )

=

N−S−
i∑

∆d=0

(
N − S−

i

∆d

)

· p∆d
fast,i · (1− pfast,i)

N−S−
i −∆d ×

×
(
S−
i

ni
ves

)

· pn
i
ves

rel,i · (1− prel,i)
S−
i −ni

ves , (2.45)

where, in contrast to equation 2.44, we have ni
ves = S−

i − S+
i +∆d. Equation 2.45 holds

if S+
i ≤ N −ni

ves, otherwise P (S+
i |S−

i ) = 0, which reflects the fact that only sites vacant
before release can be refilled.

2.2.4 Quantal response function

If we want to obtain P (R1→M ), we need to connect the synaptic states sequences with
the observable responses Ri. As we have seen in the previous section, the model provides
us with the probability that one or more vesicles are released upon a given spike. In order
to convert a certain number of released vesicles ni

ves into Ri, we adopt the assumptions
of the quantal model in its simplest form. According to the quantal model, each of the
nves vesicles produces on average a response q (called the quantal size or the unitary
quantal response). Disregarding saturation and post-synaptic receptor desensitisation
processes, the effects of all released vesicles sum linearly. The unitary quantal response,
however, exhibits some variability, which is quantified through its standard deviation,
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Figure 2.9

σq, called the quantal variability. The probability of measuring Ri given the release of
ni
ves vesicles can thus be described by a probability distribution with mean ni

ves · q and
variance ni

ves · σ2
q .

What is the form of this distribution? Measurements of synaptic miniature events suggest
that the distribution of the quantal response is not simply a Gaussian, but skewed to the
right (Bekkers et al. (1990); Bhumbra and Beato (2013)). We can, for example, model
this distribution with an Inverse Gaussian:

P (Ri|ni
ves) =

q
3

2 · ni
ves

√

2πσ2
qR

3
i

exp

{

−q ·
[
Ri − q · ni

ves

]2

2σ2
qRi

}

(2.46)

We are not limited to describe P (Ri|ni
ves) in this form, but can choose from a wide range

of possibilities (see e.g. Stricker and Redman (1994)).

2.2.5 The total probability distribution

With the components at hand to describe the synaptic state sequence and its relation
to the observable quantities we can state P (R1→M ). The probability of observing a
single sequence of responses is equal to the sum of probabilities of all possible synaptic
state sequences that can contribute. The abstract scheme in figure 2.9 summarises the
composition of P (R1→M ) for the standard case, i.e. when ni

ves = S−
i −S+

i . Formally, we
obtain:

P (R1→M ) =
∑

all S+,S−

P (R1→M , S−
1→M , S+

1→M )

=
∑

all S+,S−

P (S−
1 )

M∏

i=1

P (S+
i |S−

i )P (Ri|ni
ves)

M−1∏

i=1

P (S−
i+1|S+

i ). (2.47)

The only thing left to specify is the initial state distribution, P (S−
1 ). For all models with

k− = 0, we have P (S−
1 = N) = 1 and P (S−

1 ) = 0 for all other values of S−
1 . If k− > 0,

P (S−
1 ) is simply given by a binomial distribution with probability pocc.
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Equation 2.47 yields a full probabilistic description of synaptic transmission, from which
all momenta of the responses can be calculated.

2.2.6 Possible extensions

So far, we have disregarded a few potentially important mechanisms of synaptic trans-
mission, especially post-synaptic processes. Here, we wish to shortly suggest how those
effects could be implemented in our framework. We will do this in broad terms and
without presenting complete elaborations.

Saturation

At certain synapses, receptor saturation has a significant effect on the post-synaptic
responses (Tang et al. (1994); Auger et al. (1998); Foster et al. (2002)). In order to
allow for saturation, we have to abandon the linear summation assumption of vesicle
effects described in section 2.2.4. With regard to the response probability distribution,
P (Ri|ni

ves), it is thus no longer possible to increase its mean and variance linearly with
nves . Following Auger et al. (1998) and Matveev and Wang (2000b), we can instead
choose a more complicated dependency between these quantities. Let us denote by w the
fraction of post-synaptic receptors that are activated by a single vesicle and by Rmax the
maximal response the synapse is capable of. Then the average response µR in function
of the number of release vesicles is:

µR(n
i
ves) = Rmax ·

(

1− (1− w)n
i
ves

)

. (2.48)

In this setting, the quantal amplitude is given by the average response to a single vesicle,
i.e. q = Rmax · w. We may choose a similar dependence on nves for the response
variability, where analogously the variability of a single vesicle response would be given
by σ2

q = Varmax ·w, Varmax denoting the maximal response variability. This would
account for the lowering of responses’ coefficients of variation with increasing nves, a
phenomenon presumed by Franks et al. (2003). We want to clearly stress, however,
that the answer to the question how response variability changes under the influence
of increasing saturation is less straightforward, and our proposal here is somewhat ad-
hoc. Nonetheless, this example should make it clear that once relationships between nves

and response average and variance are established, they can easily be included in the
probabilistic framework.

Desensitisation

Receptor desensitisation is another post-synaptic phenomenon that reduces the efficacy of
released neurotransmitter. While saturation causes sub-linear summation of single vesi-
cle effects, desensitisation temporarily inactivates receptors in function of the amount of
neurotransmitter released. A description of this process requires q to be treated not as a
constant, but a as function of release-history. The simplest way to include desensitisation
in our framework is to treat it deterministically. This would come down to decreasing
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q upon spike by an amount that is proportional to the average number of vesicles re-
leased at that time, with subsequent recovery (Brenowitz and Trussell (2001); Hennig
et al. (2008)). Resorting to a deterministic description, however, may appear somewhat
inconsistent with our probabilistic approach.
Alternatively, we can follow Yang and Xu-Friedman (2008) and consider the desensitisation-
dynamics to be caused by the presence of neurotransmitter in the synaptic cleft that is
gradually cleared. In this case, the synaptic state can be extended to include an ad-
ditional state variable that keeps track of extracellular neurotransmitter concentration,
this latter determining the values of q and σq. At any point in time then, the synaptic
state contains information about the number of docked sites and the updated values of
the quantal amplitude and quantal variance, from which P (Ri|ni

ves) can be calculated.
Admittedly, adopting this scheme comes at the cost: the state-space is larger, which
renders all applications of the model computationally more expensive. We can conclude,
however, that there is no conceptual barrier for embedding stochastic desensitisation in
our framework.

Including more vesicle pools

Synaptic responses to long stimulus trains (on the timescales of minutes) may require the
modelling of additional vesicles pools (Wu and Betz (1998); Hallermann et al. (2010b);
Kandaswamy et al. (2010)). At the bottom of this requirement is the observation that,
after prolonged stimulation, the recovery from depression cannot be described by a sin-
gle exponential time-course. In these cases, depletion of a single RRP is not a sufficient
explanation for depression, and the dynamics of a second pool have to be included. The
common view is that beside the RRP two other pools can be identified in most synapses:
a recycling pool and a reserve pool (Zucker and Regehr (2002); Rizzoli and Betz (2005)).
The recycling pool is in fast equilibrium with the RRP and is slowly refilled by the re-
serve pool. If the recycling pool is partially depleted after prolonged stimulation it can
to some extend refill the RRP. Full replenishment, however, will be dictated by the slow
processes which mediate recovery of the recycling pool.
One way to include recycling pool contributions in our framework is a deterministic
treatment. We can introduce an additional variable which keeps track of the recycling
pool’s fractional filling level. The refilling rate of the RRP, that is, vesicle binding rate
to the release site, k+(t), can then be considered a function this variable, so that k+(t) is
zero when the recycling pool is empty and maximal when the recycling pool completely
refilled. In other words, k+(t) is endowed with an activity-dependant decreasing compo-
nent.
Certainly, a full stochastic description of the recycling pool can be devised. This will
comprise the inclusion of a recycling pool state in the synaptic state S and the defini-
tion of corresponding transitions. However, we expect that the impact of the stochastic
transitions between recycling pool and RRP on the observable response variability will
be quite insulated. In view of the implementation costs, the discussed deterministic pool
dynamics may turn out to be sufficient.
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2.3 Conclusion

We have considered two things in this chapter. First, we have reviewed phenomenologi-
cal models of STP that range from simple to moderately complex. We showed that the
description with a simple release-site scheme is sufficient to accommodate a wide range of
mechanisms and, by virtue of this very fact, a wide range of different synapse types. The
release-site view is useful to structure our view on the rich diversity of models as it helps
to trace descriptive similarities and differences. Second, we showed that thanks to the
common release-site structure, all phenomenological models of STP can be transformed
into a fully stochastic version and have demonstrate the basic recipe to perform this step.
The probabilistic modelling framework permits us to go beyond average response per-
spective and ask: ”Given a model, what is the probability to observe a certain response
sequence?”
We stress that the assumptions underlying any stochastic model devised within our frame-
work do not go beyond those of the quantal model and the underlying deterministic STP
model. In general, the responses of model synapses with large N show less fluctuations;
synapses that are built of independent release sites are indeed self-averaging for increasing
N7. In these cases a deterministic description seems fit. Most central synapses, however,
are small and response fluctuations are significant. We propose that probabilistic mod-
elling is much more appropriate in these cases. The next chapter will be dedicated to
exactly this topic. There we will show the superior performance of this type of modelling
over standard average-response models when confronted with real-data applications.

7In the case described by equation 2.42 the release-sites are not independent as they exhibit a coop-
erative effect on the overall release probability. Nevertheless, for large N this release probability is close
to unity, causing the responses of this model to be deterministic.
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Trommershäuser, J., Schneggenburger, R., Zippelius, A., and Neher, E. (2003). Heteroge-
neous presynaptic release probabilities: functional relevance for short-term plasticity.
Biophysical journal, 84(3):1563–1579.

Tsodyks, M., Pawelzik, K., and Markram, H. (1998). Neural networks with dynamic
synapses. Neural computation, 10(4):821–835.

Tsodyks, M. V. and Markram, H. (1997). The neural code between neocortical pyramidal
neurons depends on neurotransmitter release probability. Proceedings of the National
Academy of Sciences, 94(2):719–723.

Varela, J. A., Sen, K., Gibson, J., Fost, J., Abbott, L., and Nelson, S. B. (1997). A
quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of
rat primary visual cortex. The Journal of neuroscience, 17(20):7926–7940.

Wang, X.-J. (1999). Fast burst firing and short-term synaptic plasticity: a model of
neocortical chattering neurons. Neuroscience, 89(2):347–362.

Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., and Goldman-Rakic,
P. S. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex.
Nature neuroscience, 9(4):534–542.

Weis, S., Schneggenburger, R., and Neher, E. (1999). Properties of a model of ca++-
dependent vesicle pool dynamics and short term synaptic depression. Biophysical
Journal, 77(5):2418–2429.

Weyhersmüller, A., Hallermann, S., Wagner, N., and Eilers, J. (2011). Rapid active zone
remodeling during synaptic plasticity. The Journal of Neuroscience, 31(16):6041–6052.

Worden, M. K., Bykhovskaia, M., and Hackett, J. T. (1997). Facilitation at the lob-
ster neuromuscular junction: a stimulus-dependent mobilization model. Journal of
neurophysiology, 78(1):417–428.

54



Wu, L.-G. and Betz, W. J. (1998). Kinetics of synaptic depression and vesicle recycling
after tetanic stimulation of frog motor nerve terminals. Biophysical journal, 74(6):3003–
3009.

Wu, L.-G. and Borst, J. G. G. (1999). The reduced release probability of releasable
vesicles during recovery from short-term synaptic depression. Neuron, 23(4):821–832.

Xu, J. and Wu, L.-G. (2005). The decrease in the presynaptic calcium current is a major
cause of short-term depression at a calyx-type synapse. Neuron, 46(4):633–645.

Yang, H. and Xu-Friedman, M. A. (2008). Relative roles of different mechanisms of
depression at the mouse endbulb of held. Journal of neurophysiology, 99(5):2510–2521.

Zenisek, D., Steyer, J., and Almers, W. (2000). Transport, capture and exocytosis of
single synaptic vesicles at active zones. Nature, 406(6798):849–854.

Zucker, R. S. and Regehr, W. G. (2002). Short-term synaptic plasticity. Annual review
of physiology, 64(1):355–405.

55



Chapter 3

Quantifying Short-Term Plasticity

and Variability at Chemical

Synapses: A Generative-Model

Approach
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3.1 Introduction

A distinctive feature of chemical transmission is the rapid, transient modification of the
(post-)synaptic response as a result of the repetitive pre-synaptic activation [Zucker and
Regehr (2002); Fioravante and Regehr (2011); Regehr (2012)]. Such short-term plastic-
ity (STP) has been suggested to endow chemical synapses, and consequently neuronal
circuits, with important computational capabilities [Abbott and Regehr (2004); Tsodyks
and Wu (2013)]. A full understanding of ’synaptic computations’ clearly requires simple,
yet qualitatively and quantitatively accurate, models of STP.

Quantitative investigation of STP relies to a significant extent on phenomenologi-
cal descriptions. In such descriptions, the synaptic response is modulated by different
dynamical variables that describe facilitating or depressing processes taking place at
the synapse. Upon spikes, these variables increase/decrease by discrete amounts while,
in between spikes, they decay back to their baseline levels. A notable example is the
Tsodyks-Markram (TM) model, where synaptic transmission is described in terms of two
dynamical variables and four free parameters, which can be estimated from experimen-
tal data. In their providing a compact (i.e., with few free parameters), low-dimensional
description of STP, phenomenological models such as the TM model have been highly in-
strumental in effectively classifying different STP patterns [Tsodyks and Markram (1997);
Markram et al. (1998); Hempel et al. (2000); Wang et al. (2006)], in uncovering the under-
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lying mechanisms of synaptic transmission [Dittman and Regehr (1998); Dittman et al.
(2000); Hennig et al. (2008); Kandaswamy et al. (2010)], and in exploring theoretically
the functional/computational consequences of STP [see e.g. Buonomano (2000); Gold-
man et al. (2002); Mongillo et al. (2008); Pfister et al. (2010); Rosenbaum et al. (2012)].
Phenomenological models, however, either only describe the average synaptic responses
or, where the model is stochastic, it is the average model responses which are fitted to
the trial-averaged experimental responses. In either case, the trial-to-trial variability and
the within-trial correlation of the synaptic responses are neglected (but see Loebel et al.
(2009); Scheuss and Neher (2001); Hallermann et al. (2010)).

Stochasticity of synaptic responses is, indeed, another distinctive feature of chemical
transmission, which is especially apparent at central synapses. The quantitative analy-
sis of fluctuations in the synaptic responses is based on the notion of ’quantal’ release,
that is, neurotransmitter is secreted in discrete units (quanta) rather than in continuous
quantities. In its simplest instantiation, the quantal model describes the synapse as a
collection of identical, independent release sites each of which, upon spike, can release
at most one quantum in a probabilistic way. The response to the release of multiple
quanta from different sites is the sum of the responses to a single quantum (the unitary
quantal response). The model has three free parameters - the number of release sites, the
probability of release and the unitary quantal response - which can be estimated from
sufficiently long recordings of synaptic responses. Methods to estimate quantal parame-
ters are tailored for steady-state conditions, and their extension to dynamical conditions
has proven difficult [Loebel et al. (2009); Scheuss and Neher (2001); Hallermann et al.
(2010)].

Explicitly taking into account the variability of the synaptic responses while fitting
phenomenological models of STP to experimental data appears highly desirable. Models
will be more constrained, as they have to provide a good description not only for the av-
erage responses but also for the variability as well as for the correlation between different
responses. As a result, more precise estimates of the parameters are expected. Data-
constrained modelling of the stochasticity of synaptic responses in dynamical conditions
would be extremely helpful in distinguishing different putative mechanisms underlying
STP. Different mechanisms could, in fact, predict the same average responses but differ
on higher order statistics as, for instance, the coefficient of variation of the responses
or the correlation between consecutive responses. Moreover, this would lead to compact
(in the spirit of the TM model) models of stochastic STP, together with the biologically
relevant ranges for the accompanying parameters, to be used in theoretical investigations.

Currently, there is no methodology to quantify responses’ variability and STP at the
same synapse, and from the same set of recordings, in an integrated and statistically
principled way. Here, we provide such a methodology. We use a generative-model ap-
proach to build a parametric, probabilistic model of the synaptic response to patterns of
pre-synaptic activation. Point-estimates of the model parameters are then obtained by
maximum-likelihood estimation. We demonstrate two main advantages of our approach
over conventional techniques. First, we simultaneously estimate both quantal and dynam-
ical parameters from the same recordings, consisting of synaptic responses to pre-synaptic
spike trains of varying rates at Layer 5 pyramidal-to-pyramidal connections in the ferret
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medial pre-frontal cortex [Wang et al. (2006)]. The parameter estimates obtained with
our method are consistent with those derived by standard procedures. Second, and most
importantly, since the estimation procedure does not rely on trial-averaged quantities,
the repetition of identical stimulations becomes unnecessary. Parameters can be esti-
mated from single traces. It is thus possible to devise alternative stimulation protocols
and analyze their impact on parameter estimation by the use of theoretical tools. Specif-
ically, by using Fisher Information Matrix theory one can design ’optimal’ stimulation
protocols (e.g., protocols which minimize the variance of the parameter estimates) for
any given synaptic model. As an example, we show that Poisson spike trains yield better
parameter estimates than periodic spike trains with the same rate.

3.2 Overview

3.2.1 Stochastic models of repetitive synaptic transmission

The basic unit of modeling in our approach is the release site. The release site can be
thought of as being in one of two states: release-competent or refractory. The release-
competent state represents a situation where calcium entry upon spike is able to trigger
release, that is all the docking and priming processes needed for neurotransmitter exo-
cytosis are completed. Hereafter we refer to all these processes simply as docking. The
refractory state represents the complementary situation where, e.g., the vesicle is far
from the release site and/or priming is not yet completed. In this case, the spike is
unable to trigger release. We introduce a binary variable s to describe the state of the
release site, where s = 1 denotes the release-competent state and s = 0 the refractory
state. The transitions between the states describe release upon spike as well as vesicle
docking/undocking processes in between spikes (see figure 3.1A). In between spikes, a re-
fractory site becomes release-competent (i.e., s = 0→ 1) with a probability per unit time
k+s (docking rate), while a release-competent site becomes refractory with a probability
per unit time k−s (undocking rate). Release occurs only upon spike, if the site is release-
competent, with probability prel. The site then becomes refractory (i.e., s = 1 → 0).
Thus, the state variable s evolves stochastically according to

P [s(t+∆t) = 1] = P [s(t) = 0]·k+s ·∆t+P [s(t) = 1]·(1−k−s ·∆t−prel ·
∑

k

δ(t−tk)) (3.1)

where P [s(t) = 1] is the probability that, at time t, the site is release-competent, and
the sum is over all spike times tk. Note that the transition s = 1 → 0 can occur either
as a result of undocking processes or as a result of spike-triggered release. In this latter
case, a post-synaptic response is observed. The post-synaptic response to the release
of a vesiscle is variable, and we denote q its average (quantal size) and σ2

q its variance
(quantal noise).

A large class of models of synaptic transmission upon repetitive pre-synaptic activa-
tion can be described in this framework. Different pre-synaptic mechanisms of STP can
be straightforwardly modeled by making the docking/undocking rates k+s and k−s , as well
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Figure 3.1: The generative model. A): Scheme of the single release site model; solid lines:
transitions in between spikes, dashed line: transition upon spike; V: vacant state, RC:
release competent state. B): Scheme of the synaptic states and transitions between
them. C): single synthetic traces and average for facilitation dominated synaptic
connection (N = 10, q = 0.15mV , σq = 0.03mV , U = 0.3, τD = 195ms, τF = 570ms,
σnoise = 0.03mV ). D): single synthetic traces and average for depression dominated
synaptic connection (N = 10, q = 0.15mV , σq = 0.03mV , U = 0.25, τD = 670ms,
τF = 15ms, σnoise = 0.03mV ).

as the single-site release probability prel dependent on the activation history. Thus, we
write

k+s ≡ k+s (ξ1, · · · , ξM ); k−s ≡ k−s (ξ1, · · · , ξM ); prel ≡ prel(ξ1, · · · , ξM ) (3.2)

where ξ1, · · · , ξM are additional variables describing the state of the release site. The
dynamics of these modulatory variables are typically described by first-order differential
equations, where the variables increase/decrease by discrete amounts upon spike, while
they decay back to their baseline levels in between spikes. Some examples are in order
at this point. The TM model can be obtained by setting

k+s =
1

τD
; k−s = 0 (3.3)

59



where τD is the time constant for depression. To model facilitation, an additional state
variable is needed, ξ, which evolves according to

ξ̇ = −ξ/τF + p0(1− ξ) ·
∑

k

δ(t− tk) (3.4)

The probability of release is then given by

prel = p0 + (1− p0) · ξ (3.5)

that is, the release probability increases upon spikes (occurring at times tk), and then
decays back to its baseline level, p0, with a time constant τF in between spikes. Equa-
tions 3.4-3.5 are a simplified description of the effects of calcium influx into the synaptic
terminal, and its subsequent removal, on the probability of release [Bertram et al. (1996);
Dittman and Regehr (1998); Neher and Sakaba (2008)]. More biophysical detail can be
easily added, e.g., along the lines of Dittman et al. (2000), Trommershäuser et al. (2003)
and Kandaswamy et al. (2010).

Modulatory variables need not be continous nor their dynamics deterministic. For
instance, one can take into account the existence of different synaptic vesicle pools by
introducing state variables which keep track of the number of vesicles available in each
pool [Rizzoli and Betz (2005)]. In the simplest scheme, one would consider the recycling
pool and the readily releasable pool. The docking rate would be proportional to the
number of vesicles in the recycling pool, ξrp (which is now a discrete variable), i.e.,
k+s = ξrp/τD. A docking event reduces the number of vesicles in the recycling pool (i.e.,
ξrp ← ξrp−1), and no further docking is possible as long as the site is release-competent.
The docked vesicle belongs then to the readily releasable pool. The recycling pool is
refilled at exponentially distributed random times, with average refilling time τrp, until

some maximum is reached, ξ
(max)
rp , after which no further increase in the size of the pool

is possible. Biophysical detail comes, however, at the cost of increasing both the number
of state variables needed to describe single-site dynamics and the number of parameters.
As compared to the TM model, for instance, this scheme requires one additional state

variable, ξrp, and two more parameters, ξ
(max)
rp and τrp.

Post-synaptic mechanisms, as for instance receptor desensitization, can be similarly
described by making q and σ2

q dependent on the release history (see chapter 2).
A synaptic connection is thought of as a collection of identical, statistical independent

release sites. At each time, thus, the state of the connection is defined by the number
of release-competent sites (a discrete variable, which we denote S, ranging from 0 to N ,
where N is the number of release sites) and by the current values of all the modulatory
variables (e.g., ξ in the TM model). The knowledge of the synaptic state immediately
before a spike allows one to compute the probability of observing a given post-synaptic
response, once one specifies the distribution of the responses to a single vesicle. Following
the quantal model, we assume that the total response is simply the sum of the single
quantal responses. For instance, if a single vesicle causes a Gaussian distributed post-
synaptic response with mean q and variance σ2

q , the release of three vesicles will produce a
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response which is also Gaussian distributed with mean 3q and variance 3σ2
q . The number

of vesicles released, nrel, is binomially distributed according to

P (nrel = n) =

(
S

n

)

· pnrel · (1− prel)
(S−n) (3.6)

where S and prel are the values of the correspondng variables immediately before the
spike, and P (nrel = n) = 0 for n > S.

3.2.2 Parameter estimation from experimental data

Here we describe how, once a specific model is chosen, to estimate all the model’s free
parameters from a single set of experimental data. Before doing that, it is instructive to
shortly review current, state-of-the-art methodologies.

Quantal analysis aims at estimating the so-called quantal parameters, that is the
number of release sites N , the average quantal response q and its variance σ2

q , and the
probability of release prel. For this, the synapse is stimulated at very low rates, while
collecting the corresponding post-synaptic responses. Once a sufficiently large number of
responses (typically, indeed, a very large number) is collected, and a parametric model
for the distribution of responses to unitary quantal events has been chosen, the quantal
parameters can be estimated by using Equation 3.6 (with S = N) [Del Castillo and
Katz (1954)]. An alternative method, the so-called mean-variance analysis, allows one
to reduce the number of response needed, as compared to the classical quantal analysis,
at the cost of manipulating the probability of release by changing extra-cellular calcium
concentration [Silver (2003)]. As, in either cases, the rate of stimulation is purposefully
chosen so as to allow the synapse to recover its initial state, quantal analysis can not
provide any information about the dynamical parameters (e.g., τD and τF in the TM
model). The extension of quantal analysis to dynamical conditions has proven difficult
Scheuss and Neher (2001).

To extract information about the dynamical parameters, the synapse is stimulated at
high rates (the inter-spike interval must be of the order of the underlying time constants).
Standard protocols include pair-pulse stimulation [e.g. Thomson et al. (1993)], long spike
trains [e.g. Varela et al. (1997); Dittman et al. (2000)] and short spike trains followed
by a recovery spike [e.g. Tsodyks and Markram (1997); Markram et al. (1998); Wang
et al. (2006)]. Typically the spike trains are periodic, but this is not necessarily the case
[Varela et al. (1997)]. Post-synaptic responses, however, exhibit strong variability which
is dealt with by averaging over multiple repetitions of the same pattern of stimulation.
The dynamical parameters are then estimated by least-squares fitting the average model
response to the average experimental response. Unfortunately, while allowing for least-
squares fitting, the averaging procedure also destroys important information contained
in the trial-to-trial fluctuations and the within-trial correlation between responses (as we
show below). This has important consequences. Clearly, one is unable to estimate the
quantal parameters in this way (but see Loebel et al. (2009)). More significantly, the
precision of the least-squares estimates is fundamentally limited by the precision of the
empirical average response. In view of the large variability exhibited by central synapses,
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achieving a reliable estimate of the average response would appear to require quite a large
number of repetitions. Furthermore, it is rather cumbersome to quantify the effects of the
estimation errors on the average response on the estimation of the model’s parameters.

The limitations described above can be easily overcome by noticing that, once the
sources of stochasticity are explicitly described, the model allows one to compute the
probability of observing any given post-synaptic response as a function of the stimula-
tion protocol and of the model parameters. The model parameters can then be adjusted
so that the distribution of the model responses approximates, as closely as possible, the
distribution of the experimental responses. More technically, this requires to minimize
the Kullback-Leibler divergence (i.e., a measure of similarity between two distribution
functions) between the experimental and the model distribution of synaptic responses.
This can be achieved by determining the model parameters by maximum-likelihood es-
timation.

Let us consider a given pattern of stimulation t1→M ≡ {t1, t2, · · · , tM}, where tk de-
notes the time of k-th pre-synaptic spike. A sequence of responses R1→M ≡ {R(t1), R(t2),
· · · , R(tM )} will correspondingly be observed. The likelihood function is defined as

L(θ|R1→M ) ≡ P (R1→M |θ) (3.7)

that is, the probability of observing the actually-observed sequence of responses as a
function of the model parameters, which we denote θ. We want to maximize L(θ|R1→M )
with respect to θ. The direct maximization of Equation 3.7, however, turns out to
be impractical because the likelihood function can not be expressed conveniently in
an analytical form, although it can efficiently be evaluated numerically (as we show
in the Methods section). On the other hand, the joint probability of the observed re-
sponses and the underlying (hidden) sequence of synaptic states responsible for their
generation is easily written down. We denote U−

1→M ≡ {U(t−1 ), U(t−2 ), · · · , U(t−M )} and
U+
1→M ≡ {U(t+1 ), U(t+2 ), · · · , U(t+M )} the synaptic states immediately before and after

the corresponding spikes, respectively. The joint probability of the responses R1→M , and
synaptic states U−

1→M and U+
1→M , P (R1→M , U−

1→M , U+
1→M |θ) reads

P (R1→M , U−
1→M , U+

1→M |θ) = P (U−
1 |θ)

M∏

k=1

P (U+
k |U−

k ,θ)P (Rk|U+
k , U−

k ,θ)
M−1∏

k=1

P (U−
k+1|U+

k ,θ)

(3.8)
The conditional probabilities appearing in the above equation have a straightforward
interpretation: P (U−

1 |θ) is the steady distribution of synaptic states in absence of stim-
ulation; P (U+

k |U−
k ,θ) is the probability that the synaptic state changes from U−

k to U+
k

upon spike; P (Rk|U+
k , U−

k ,θ) is the probability of observing a post-synaptic response Rk

when the synaptic states changes from U−
k to U+

k ; P (U−
k+1|U+

k ,θ) is the probability that

the synaptic state changes from U+
k to U−

k+1 during the time interval tk+1− tk in absence
of spikes. Once the model has been specified, these conditional probabilities are easily
computed.
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As P (R1→M , U−
1→M , U+

1→M |θ) conveniently factorizes, the maximum-likelihood esti-
mation of the model parameters can be efficiently carried out by using the Expectation-
Maximization (EM) algorithm [Rabiner (1989)]. Instead of maximizing the likelihood
function in Equation 3.7, one maximizes the so-called auxiliary function with respect to
θ. The auxiliary function, Q(θ,θ(old)), is defined as

Q(θ,θ(old)) =
∑

U−
1→M

,U+
1→M

P (U−
1→M , U+

1→M |R1→M ,θ(old)) log
[
P (R1→M , U−

1→M , U+
1→M |θ)

]

(3.9)
where θ

(old) is an initial guess for the parameters, and the sum is over all possible se-
quences of synaptic states. This is the so-called E-step, as the evaluation of the auxiliary
function requires the computation of the expectation of log

[
P (R1→M , U−

1→M , U+
1→M |θ)

]

over the distribution of synaptic states, conditional on the observed responses and on
the current parameters estimate. In the M-step, a new parameters estimate, θ(new), is
obtained

θ
(new) = argmax

θ

Q(θ,θ(old)) (3.10)

so that L(θ(new)|R1→M ) ≥ L(θ(old)|R1→M ). By iterating the E- and M-step, one can
improve the inital guess until eventually a fixed point is reached (i.e., θ(new) = θ

(old)),
which corresponds to a (local) maximum of the likelihood function L(θ|R1→M ). In the
Methods section, we show how all the quantities needed to carry out EM can be efficiently
computed, and we obtain explicit re-estimation formulas for the parameters in the case
of the TM model. Although we have explictly worked out only the case of the TM model,
for reasons to be explained shortly, the techniques and algorithms described in Methods
are straightforwardly applicable to any model which admits a factorization of the joint
probability of the responses and synaptic states as in Equation 3.8.

3.3 Results

In order to demonstrate the feasibility of our approach, and the advantages it entails, we
choose the specific instantiation of the release site and release probability dynamics that
corresponds to the stochastic TM model. Several considerations motivated this choice:
(i) the TM model has a small number of free parameters, thus minimizing potential
problems of overfitting, and yet is able to describe very diverse STP patterns; (ii) The
data set we presently analyse have been previously analysed with the TM model, which
allows for direct comparison with parameter estimates, obtained by least-squares fit,
reported in Wang et al. (2006); (iii) The stochastic TMmodel has been widely employed in
theoretical investigations of functional/computational implications of synaptic variability,
thus it appeared relevant to asses to which extent the model captures variability in real
synapses.

The general structure of the model is illustrated in Fig. 3.1B. It has 6 free parameters:
the number of release sites N , the quantal size q, the quantal variability σq, the initial
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release probability p0 and the time constants for docking and facilitation, τD and τF
respectively. The model contains three sources of variability: both release and docking
are stochastic processes, and the post-synaptic response exhibits fluctuations at parity
of number of vesicles released. These sources of variability are all well documented
experimentally [e.g. Faber et al. (1992); Bekkers et al. (1990); Franks et al. (2003);
Branco and Staras (2009); Ribrault et al. (2011)]. To illustrate the generative sufficiency
of the model, that is its ability to qualitatively reproduce the recorded traces when probed
with the experimental protocol, we show the resulting synthetic single traces, together
with the trial-averaged trace, for a representative facilitating connection in Fig. 3.1C,
and for a representative depressing connection in Fig. 3.1D. The variability of the single
traces is substantial and comparable to the one observed in the experimental data (see
Response variability).

The data set we analysed consisted of dual whole-cell patch clamp recordings between
synaptically connected layer 5 pyramidal cells in the medial pre-frontal cortex of adult
ferrets (1.5-3 months) (see Wang et al. (2006) for details about electrophysiology and
the experimental set-up). The stimulation protocol consisted of a regular train of 5-8
spikes, at varying frequencies, followed by a recovery spike. Post-synaptic responses were
recorded in the current-clamp mode. The inter-spike interval of the train, T , ranged
between 14.3ms and 200ms (ν = 5 - 70Hz), with most of the recordings carried out at
T = 50ms, and the interval for the recovery spike was correspondingly determined as
Trec = T +500ms. Patterns of transmission at pre-frontal cortex synapses were found to
be especially complex, as compared to patterns in primary sensory cortices [e.g. Varela
et al. (1997); Tsodyks and Markram (1997); Markram et al. (1998)], exhibiting both
depressing and facilitating components over a wide range of time scales [Wang et al.
(2006)].

3.3.1 Response variability

We began by analysing response variability, which was not previously done, and found
that synaptic responses exhibited strong variability. For purpose of illustration, we show
in Fig. 3.2 sample voltage traces for one facilitating (A) and one depressing (B) con-
nection, together with the corresponding trial-averaged traces. In both cases, the large
variability across the different repetitions is immediately evident. The variability is,
indeed, so strong that the facilitating/depressing nature of the transmission is largely
concealed in the single traces, while it becomes readily apparent in the trial-averaged
traces.

To quantify variability for each connection, we extracted from the corresponding
single-trial voltage traces the peak excitatory post-synaptic response (pEPSP) corre-
sponding to each pre-synaptic spike. The procedure is detailed in Methods. We then com-
puted, for each connection and for each response, the associated coefficient of variation
(CV). The results of this analysis are shown in Fig. 3.2D, where we report the histograms
of the CV across the population of synaptic connections separately for each response.
The average of the initial response ranged between 0.11mV and 3.43mV (0.70± 0.61mV;
n = 69), while the associated CV ranged between 0.21 and 1.58 (0.59 ± 0.27; n = 69).
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Figure 3.2: Variability of synaptic transmission. A): Input protocol (first line), single sweeps
(grey) and average response (last line) for a facilitation dominated synaptic connec-
tion. B): Input protocol (first line), single sweeps (grey) and average response (last
line) for a depression dominated synaptic connection. C): Histograms of the CVs for
each response index; grey shaded panel: recovery response. Data from Wang et al.
(2006).

The average values for the synaptic efficacy (i.e., the trial-averaged pEPSP to the first
spike in the train) and for the CV, as well as the corresponding ranges, are fully consis-
tent with previous studies [Thomson and Deuchars (1997); Markram et al. (1997)]. We
took this as an indication of the reliability of the method we used for isolating synaptic
responses within the single-trial voltage traces.

Synaptic unreliability remained high all along the stimulation, and it even increased
for late responses, as can be seen in Fig. 3.2D. This is a consequence of the increasing
probability of failure due to vesicles depletion. The population-averaged CV was small-
est for the second and the recovery response. This is a consequence of the increasing
probability of release occurring at facilitating synapses while release-ready vesicles are
still abundant (i.e., before depression builds up). The second and the recovery response
were, in fact, the most facilitated responses on average.

One immediate consequence of such high levels of variability is that, to achieve a rela-
tively accurate estimate of the average response, one needs a large number of repetitions.
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For a true CV of 0.3, an estimate of the true average response within 10% relative pre-
cision would require about 80 repetitions, while an estimate within 5% relative precision
would require more than 300 repetitions. Given the CVs estimated from the data, these
figures should be considered as the minimal number of repetitions needed to estimate the
average response with reasonable accuracy.

The above considerations clearly illustrate the inadequacy of least-squares fitting
techniques for estimating synaptic parameters at unreliable connections. On one hand,
parameters estimate obtained with a small number of repetitions (e.g., 20-30 trials) could
be grossly imprecise, as a result of the poor estimate of the average responses. On the
other hand, increasing the number of repetitions to improve the accuracy of the empirical
averages would lead to a very inefficient use of the experimental data. Out of hundreds
of responses, in fact, we would just be distilling one number, the average response, to be
used in the fitting procedure. Note that high levels of variability (i.e., high CVs) are the
rule, rather than the exception, for central chemical synapses.

3.3.2 Maximum-likelihood estimation of the synaptic parameters

To estimate the synaptic parameters θ = {N, q, σq, p0, τD, τF } for each connection we
proceeded as follows. For a fixed value of N (note that N takes on only integer values,
while the other parameters are continuous), the maximum-likelihood estimate of the
remaining parameters can be straightforwardly obtained by using the EM algorithm
described in Methods. We repeatedly applied the EM algorithm while varying N between
1 and 100, and obtained the parameters which maximizes the likelihood for each N .
We then selected the value of N (and of the corresponding parameters) for which the
likelihood was maximal, as the maximum-likelihood estimate.

The above procedure is illustrated in Fig. 3.3A for a sample connection. In the left
panel, we plot the log-likelihood as a function of N while, in the right panels, we plot
the values of the parameters which maximize the log-likelihood for the corresponding
N . As can be seen, the log-likelihood exhibits a clear maximum at N = 17. The
values of remaining parameters can be read from the corresponding curves. They are:
q = 0.18mV, σq = 0.06mV, p0 = 0.27, τD = 202ms and τF = 449ms. Using the estimated
parameters, we then generated 500 synthetic experiments in which the model is probed
with the same stimulation protocol, and for the same number of trials, as in the real
experiment. We then computed the average responses and the associated CVs for each
experiments (28 trials), and from these the corresponding grand-averages together with
95% confidence intervals. The results are shown in Fig. 3.3B. In the top panel, we report
the experimental (black curve) and the model average responses (red curve - error bars
represent 95% confidence interval). For comparison, in the same panel we also report the
least-squares fit to the experimental average responses (blue curve). In the bottom panel,
we report the experimental (black curve) and the synthetic CVs (red curve - error bars
represent 95% confidence interval). As can be seen, both for the average responses and
for the CVs, the experimental data are well reproduced by the model. It is important to
stress that the model parameters have not been selected by the estimation procedure to
reproduce the average responses, as it is the case for the least-squares fit, nor the CVs
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Figure 3.3: MLE fit to experimental data. A): Log-likelihood and model parameters as
functions of N . Inset, blue: q; red: σq. B): pEPSPs and CVs versus response index
of a single exemplary synaptic connection; black: experimental data, blue: LS-fit,
red: MLE-fit; error bar denote 95 % confidence intervals of the model prediction.
C): Generative log-likelihood cumulative distributions for 4 different instances of the
leave-one-out procedure (blue curve). Log-likelihood and zout of the corresponding
test trial (red dot). D): Distribution of zout values over the entire data set.

but rather to maximize the probability of the trains of responses observed in single trials.
In 6 out of 69 cases the estimation procedure returned values for one or more param-

eters that were judged problematic. In 4 cases, the estimation procedure returned values
for one or both the time constants (i.e., τD and τF ) that were several orders of magnitude
larger than the longest time scale at which the synaptic connections were probed. In the
remaining 2 cases, the procedure returned very small values for q (i.e., far outside the
reported physiological range) because the maximum of the log-likelihood was achieved
for large values of N . These connections were excluded from further analysis.

Next, we checked whether the model was overfitting the data by using a leave-one-
out cross-validation procedure. We estimated the parameters as described above while
leaving out one set of responses (i.e., one trial). With the parameters thus obtained, we
computed the probability that the model would generate a set of responses with a log-

67



� �

�����

��� ��

��

�
�
�

�	

�
�

��
�

� �
�

�� ��

Figure 3.4: Comparison of LS and MLE estimates. A): Average estimates obtained with
leave-one-out procedure; results obtained with MLE plotted versus results obtained
with LS for each synaptic connection. B): Distributions of CV of the estimator
obtained from leave-one-out procedure for each method.

likelihood equal or smaller than the log-likelihood of the set of responses that was actually
left out. We denote this probability by zout. This procedure is illustrated in Fig. 3.3C
for the same connection as in Fig. 3.3A. In each sub-panel we show (i) the cumulative
distribution of the log-likelihood for a set of responses generated from the model, where
the parameters are estimated by leaving out one trial (blue curve); (ii) the value of the
log-likelihood of the set of responses left out during the estimation procedure; (iii) the
corresponding value of zout. For sets of responses generated by the model, one expects
zout to be uniformly distributed between 0 and 1. For each connection, we thus computed
the average zout across all trials. The corresponding distribution across the data set is
shown in Fig. 3.3D. As can be seen, most of the values are between 0.4 and 0.5. For only
5 out of 63 connections the obtained zout where significantly different from the uniform
distribution (Kolmogorov-Smirnov test; p = 0.01). For 3 of these connections, less than
25 trials were available. When only connections with 30 trials or more were checked, for
no one (out of 10) the resulting zout showed statistically significant deviation from the
uniform distribution. We concluded that, for the large majority of the connections, there
were no overfitting problems, while for the remaining it is very likely that we simply
lacked statistical power to asses overfitting.

3.3.3 Maximum-likelihood vs. least-squares estimation

We estimated the synaptic parameters by least-square fitting using, as above, a leave-
one-out procedure. The purpose of this analysis was to compare the accuracy as well as
the stability of the two estimation procedures. Notice that the two methods are expected
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Figure 3.5: Population data. A): Distributions of the synaptic parameters across the popula-
tion. B): Plot of τD versus τF ; each dot represents one synaptic connection.

to return the same estimates (for A = N · q, p0, τD and τF ). This is confirmed in Fig.
3.4A, where we plot the estimates obtained with our method vs. the estimates obtained
with the least-square fitting procedure. As can be seen, the estimates obtained with the
two methods are highly correlated, with the large majority of points lying very close to
the diagonal.

The leave-one-out procedure allowed us to evaluate the average coefficient of variation
of the estimates with the two procedures, which we took as a quantitative measure of
the accuracy and stability. The corresponding distributions are reported in Fig. 3.4B
(left panel: maximum-likelihood; right panel: least-square fit). As can be seen, there is a
tendency for the maximum-likelihood procedure to exhibit larger accuracy and stability.
We could, however, not detect any statistically significant difference between the two
distributions (Kolmogorov-Smirnov test; p = 0.01).

We concluded that our method exhibited an accuracy and stability certainly not worse
than the least-square fitting procedure, while allowing one to estimate 2 more parameters.

3.3.4 Population analysis

We compared the parameters estimates obtained with our method with the corresponding
estimates, obtained by least-squares fit, reported in Wang et al. (2006). When averaging
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across the population (denoted by angular brackets) we obtained for the absolute synaptic
efficacy 〈A〉 ≡ 〈N ·q〉 = 2.20±1.72 mV (range: 0.48 mV - 7.97 mV), for the initial release
probability 〈p0〉 = 0.33 ± 0.13 (range: 0.05 - 0.73), for the time constant of the docking
process 〈τD〉 = 335 ± 306 ms (range: 16 ms - 1800 ms), and for the time constant of
facilitation 〈τF 〉 = 321±340 ms (range: 0 ms - 1900 ms). The corresponding distributions
are shown in Fig. 3.5A. The population averaged values reported in Wang et al. (2006)
are: 〈A〉 = 3.46 ± 2.79 mV; 〈p0〉 = 0.27 ± 0.15; 〈τD〉 = 396 ± 163 ms; 〈τF 〉 = 292 ± 240
ms. They all are in excellent agreement with our estimates. Also, consistently with the
results reported in Wang et al. (2006), we found both strongly facilitating (i.e., τF ≫ τD)
and strongly depressing (i.e., τF ≪ τD) connections in the synaptic population (see Fig.
3.5B).

With our method, we were also able to estimate the quantal parameters. When
averaging across the population we obtained for the quantal size 〈q〉 = 0.15 ± 0.06 mV
(range: 0.06 - 0.32 mV), for the quantal noise 〈σq〉 = 0.05± 0.05 mV (range: 0.00 - 0.31
mV), and for the number of release sites 〈N〉 = 15±12 (range: 2 - 77). The corresponding
distributions are showed in Fig. 3.5A. The estimate of 〈q〉 obtained with our method
is in excellent agreement with those obtained with other techniques in intra layer 5
connections in rat somato-sensory cortex (〈q〉 = 0.13 ± 0.04 mV; n = 20; [Loebel et al.
(2009)]) and at layer 4 spiny stellar cell connections to layer 2/3 pyramidal cells in the
rat barrel cortex (〈q〉 = 0.15± 0.02 mV; n = 32; [Silver et al. (2003)]). Hardingham and
collaborators Hardingham et al. (2010) found a somewhat larger value in rat intra layer 5
connections (〈q〉 = 0.211mV ±0.065mV ; n = 20), which however lies still inside the error
bar range. Finally, Thomson and West Thomson and West (1993) report quantal sizes
ranging from q = 0.179mV ± 0.017mV to q = 0.382mV ± 0.093mV for intra layer 2/3
and intra layer 4 connections in the rat somato-sensory/motor cortex (cfr. Fig. 3.5A). In
order to compare the estimated value of σq we calculated the average quantal coefficient
of variation, 〈CVq〉 = 〈<σq>

<q> 〉 = 0.38± 0.28 (range: 0.00 - 1.21). This value is similar to
the value reported by Silver and collaborators (〈CVq〉 = 0.43± 0.06; n = 32; Silver et al.
(2003)). The number of release-sites obtained by our analysis ranges from 2 to 77. We
are aware of only one study that estimated the number of release sites N in dynamical
conditions [Loebel et al. (2009)]. The range for N reported in that study was 7-170, with
〈N〉 = 53± 42.

We next searched for correlations between the different synaptic parameters. We
found a strong correlation between the number of release sites N and the synaptic
strength, as measured by the largest average pEPSP encountered in the train of re-
sponses (R = 0.76, p < 10−12). This result is in line with the results of Loebel et al.
(2009) for purely depressing synapses. We also found a weak, but statistically signifi-
cant correlation between the quantal amplitude q and the synaptic strength (R = 0.25,
p < 0.05), in line with the results of Hardingham et al. (2010). We were unable to detect
other correlations.

It should be noted that the data used for this study were not recorded for the purpose
of performing quantal analysis, that is, in many cases only a small number of repetitions
are available (range: 8-43 trials). Nonetheless, the maximum-likelihood estimation pro-
cedure returned quantal parameters which were in good agreement with the estimates
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obtained in similar preparations using especially-tailored estimation procedures.

3.3.5 Poisson input protocol outperforms repetitive input protocols

Estimating synaptic parameters by least-squares fit requires the experimenter to repeat
the stimulation identically a certain number of times (this number increasing with the
unreliability of the synaptic connection - see Response variability), in order to estimate the
average post-synaptic responses. This is not necessary with our method. The question
thus naturally arises as to whether varying the stimulation from trial to trial might lead
to improved estimates.

To investigate this issue we ran numerical experiments in which we compared the
accuracy of the estimates obtained in the two conditions (i.e., repetitive vs. non-repetitive
stimulation). In the repetitive condition, we used the actual experimental protocol. In
the non-repetitive condition, for each trial we generated a train of 9 spikes where the inter-
spike intervals are randomly and independently drawn from an exponential distribution
with the same average inter-spike interval as in the repetitive condition. An additional
500ms are added to the last inter-spike interval (see Fig. 3.6A). Notice that both the
number of responses obtained and the recording time (on average) are matched in the
two conditions.

The parameters of the model were set to the corresponding population-averaged val-
ues as estimated from the physiological recordings (see Population analysis). Using the
model, we ran an experiment of 20 trials for each condition, and estimated the param-
eters using our method and, in the repetitive condition, also using the least-squares fit
procedure. The frequencies of stimulation were chosen to be the same as in the real
experiment. At parity of condition, we obtained different estimates for each experiment,
due to the stochasticity of the model. In the non-repetitive condition, the variability of
the stimulation across trials is an additional source of stochasticity. Thus, to quantify
the accuracy of the estimates, we computed for each parameter j (j = 1 · · ·Npar, where
Npar is the number of estimated parameters) the corresponding standard deviation of
the relative error across 500 experiments in the same condition. Finally, to obtain just a
single number, we averaged over the parameters, i.e.,

ǫ =
1

Npar

Npar∑

j=1

√
√
√
√
〈θ̂2j 〉 − θ2j

θ2j
≡ 1

Npar

Npar∑

j=1

ǫj (3.11)

where the sum over j runs over all estimated parameters (Npar = 6 for our method,

Npar = 4 for the least-squares fit), θ̂j is the estimate of the parameter j, whose true
value is θj , obtained in one experiment, and the angular brackets denote average over the
experiments. The larger the value of ǫ the less accurate are, on average, the estimates.
Notice that we have used the true values of the parameters in Eq. 3.11 because both
maximum-likelihood and least-squares fit are expected to return unbiased estimates. We
have nevertheless checked that in our numerical experiments this was indeed the case
(data not shown).
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Figure 3.6: Regular protocol versus Poisson protocol. A): Scheme of the two used input
protocols. B): ǫ versus input-train frequency; blue: regular protocol, red: Poisson
protocol, green: least-squares fit ; inset: zoom on the low frequency range. C): Rel-
ative error of the worst estimate, ǫτF , versus input-train frequency. D): Cumulative
distributions of relative errors obtained from

In Fig. 3.6B we plot ǫ as a function of the frequency of stimulation for the repetitive
(blue curve: maximum-likelihood estimation; green curve: least-square fit) and the non-
repetitive condition (red curve). In the inset we also plot, with the same color code, a
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zoomed version.
As can be seen, the estimates obtained in the non-repetitive condition are more

precise than those obtained in the repetitive condition. The overall improvement of
ǫ seems moderate, but is greatest in the physiologically relevant region of low input
frequencies. However, as shown in Fig. 3.6C, the relative error of the worst estimate (τF )
is significantly reduced in the non-repetitive condition, across all frequencies. Estimates
obtained with the least-squares fit are inferior for all stimulation frequencies.

Finally, we verified that the superior performance of the Poisson protocol with respect
to the regular protocol does not depend on the concrete parameter choice. To do so, we
calculated the fisher-information of the parameter estimates (see Methods) in function
of the input protocols for 500 parameter sets that were drawn from the experimentally
obtained distributions. As explained in Methods, the fisher-information can be used to
obtain a lower bound on the parameter estimates. From this a relative error ǫFI can be
obtained, similar to expression 3.11.

In Fig. 3.6D we plot the cumulative distributions of ǫFI for the regular (blue curve)
and Poisson protocol (red curve) for various input frequencies. The Poisson protocol
yields on average lower ǫFI than the regular protocol in all conditions. This effect is
more prominent for small input frequencies, where the ǫFI obtained from the regular
protocol remarkably display a long tail. The difference between the protocols becomes
smaller for higher input frequencies, but the cumulative distributions remain, however,
significantly different in all conditions (two-sample Kolmogorov-Smirnov test, p < 10−4).

3.4 Discussion

We have developed a general statistical framework that integrates the features of quantal
and STP models in a uniform scheme. By applying standard machine learning tech-
niques, it can be used to extract synaptic parameters and to quantify simultaneously
dynamic and statistical properties of synaptic transmission. We demonstrated with the
analysis of experimental recordings that this is feasible in practice while the obtained
results are consistent with previously reported ones. Furthermore, the approach provides
as an essential novelty a freedom in the choice of the input protocol, which can be utilized
to find more efficient experimental setups.
In this work, the two components of the stochastic framework, the binomial quantal
model and the TM model, haven been chosen in part for their simplicity and illustrative
clearness. However, our framework is general. It imposes no restrictions on more exten-
sive modeling, e.g. the inclusion of dynamics with more time constants, of post-synaptic
effects or of more than one vesicle pool. As long as single sequences of synaptic responses
can be formulated as being caused by a discrete Markov chain of synaptic states, a like-
lihood function can be derived as shown in the example at hand.
The analysis of the double cell recordings presented in this work is intended to be a feasi-
bility study. The estimated synaptic parameters are in reasonable agreement with results
obtained by state-of-the-art analysis. This is in spite of the fact that the recordings were
originally not intended for quantal analysis, that is, in many cases only a small number of
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repetitions were available. Furthermore, the pre-processing applied to the data was kept
very basic, e.g. no explicit identification of release failures was performed. An inclusion
of this will further increase the precision of the estimates.

3.4.1 Parameter estimates

For some connections we observed that the dynamical parameters obtained with the
deterministic TM model deviated significantly from the maximum likelihood estimates.
These connections also exhibited particularly variable responses, suggesting that the
neglect of higher order statistics, as it is done when fitting to trial averaged data, is
not justified in these cases. Fits to synthetic data indeed show that the uncertainty of
the estimators is systematically higher for the deterministic model compared to the full
stochastic model. This is attributable to the superiority of the MLE compared to the
LS fit. It should be stressed that this difference vanishes in the limit where an infinite
amount of data is available. However, if we consider the cases which are relevant in
practice, we find that the MLE approach always yields an improvement in the precision
of parameter estimates.

3.4.2 Free choice of input patterns

The generative model approach grants a novel freedom in the choice of the pre-synaptic
input since it renders trial averaging unnecessary. As we have shown, this can be used
to design input protocols which, for a given amount of data and a given model, allow
a preciser estimation of model parameters as compared to the classical input protocol.
Equivalently, with a superior experimental design it becomes possible to obtain the same
estimator quality with shorter measurements. In addition, our method makes it possible
to estimate synaptic parameters from single input spike trains of arbitrary length. It
becomes thus feasible to economize the intervals between single trials used to restore the
synapse’s initial state. In principle, this gained time again can be used to record more
responses from the same connection or from a higher number of different connections.
Note that the notion of ’input protocol quality’ is associated with a given model: for
different models there may be different optimal input protocols, all of which can be
characterized with the techniques outlined in this work. However, independent of the
particular model used, the free input choice allows to use physiologically more realistic
inputs, like Poisson trains or in vivo recorded trains. Extraction of synaptic parameters
from realistic input patterns will remove possible artificial contributions stemming from
the regularity of the standard input protocol.

3.4.3 Further benefits

The probabilistic nature of the modeling framework provides us with a likelihood mea-
sure which makes it possible to compare the explanatory power of different stochastic
models. In the simplest case, when two models with equal numbers of free parameters
are fitted to a given data set, the model which returns a higher likelihood value is prefer-
able. This allows e.g. to compare models which make different mechanistic assumptions,
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which could given some insight into the microscopic processes involved in STP. Model
comparison with the full stochastic framework is in particular useful in cases where dif-
ferent models produce responses with the same average traces but different statistics.
A straightforward extension of our formalism is the inclusion of prior distributions. If
some prior knowledge on the synaptic parameters is available, this information can be
implemented by simply multiplying the prior distributions of the parameters to the like-
lihood function. The corresponding optimization is known as maximum a posteriori
probability (MAP) estimation. Also for MAP estimation efficient EM re-estimation for-
mulas can be found.

3.5 Methods

3.5.1 The stochastic Tsodyks-Markram model

Assuming the identity of all release sites and the settings of the dynamic transitions as
outlined above in equations 3.3, 3.4 and 3.5, we obtain a stochastic model that exhibits
the same average response as the Tsodyks-Markram model. This model contains 6 free
parameters: the number of release sites N , the quantal size q, the quantal variability σq,
the initial release probability p0 and the time constants of depression and facilitation τD
and τF . In the following, we will show in detail how the transition probabilities can be
calculated, how the parameters can be estimated via EM and how the Fisher-information-
matrix can be determined.

3.5.2 Likelihood of a response sequence

We compute the probability of observing a sequence of post-synaptic responses R1→M ≡
{R1, · · · , RM} in correspondence to a train of pre-synaptic spikes occurring at times
t1→M ≡ {t1, · · · , tM}. In the case of the stochastic TM model, the release probability
prel,k is a deterministic function of the input protocol and can consequently be calculated
ab initio. The only state variable upon which the observed responses will depend are
thus the occupation states of the synapse immediately before and after each spike. We
therefore set U−

1→M = S−
1→M and U+

1→M = S+
1→M .

Note that the difference S−
k − S+

k is the number of vesicles released upon the k-th
spike. The occupation states are not directly observable nor they are a deterministic
function of the spike times as the release probability. Thus, we need to compute first
the joint probability of a sequence of responses and a sequence of occupation states,
P (R1→M , S−

1→M , S+
1→M |t1→M ,θ), and then marginalise over S−

1→M and S+
1→M to obtain

P (R1→M |t1→M ,θ). To enlighten the notation, we drop hereafter the dependence of the
various probabilities on the spike times (given) and on the synaptic parameters (assumed
constant). We start by rewriting P (R1→M , S−

1→M , S+
1→M ) as

P (R1→M , S−
1→M , S+

1→M ) = P (S−
1 )

M∏

k=1

P (S+
k |S−

k )P (Rk|S+
k , S

−
k )

M−1∏

k=1

P (S−
k+1|S+

k ). (3.12)
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The conditional probabilities appearing in the above equation are easily computed. We
consider first P (S+

k |S−
k ), which is the probability that the occupation state changes from

S−
k to S+

k upon the k-th spike. It is given by

P (S+
k |S−

k ) =

(
S−
k

S−
k − S+

k

)

p
(S−

k
−S+

k
)

rel,k (1− prel,k)
S+

k , (3.13)

if S+
k ≤ S−

k , and it is 0 otherwise. Before the k-th spike there are S−
k release-competent

sites which can independently release with probability prel,k. On the other hand, the
number of release-competent sites cannot increase upon spike. The probability of release
prel,k can be computed recursively from equations 3.4 and 3.5

prel,k+1 = p0 + prel,k · (1− p0) · exp
(

−∆k

τF

)

(3.14)

where ∆k ≡ tk+1 − tk is the k-th interspike interval. The probability of observing a
response Rk when the occupation state changes from S−

k to S+
k , P (Rk|S+

k , S
−
k ), represents

the quantal model part. According to the quantal model, each vesicle produces on average
a response q (quantal size or unitary quantal response), and the effects of all released
vesicles sum linearly. The unitary quantal response, however, exhibits some variability,
which is quantified through its standard deviation, σq, called the quantal variability.
Measurements of synaptic miniature events suggest that the distribution of the quantal
response is not a Gaussian, but skewed to the right [Bekkers et al. (1990); Bhumbra and
Beato (2013)]. That is, with a small probability a single quantum triggers a relatively
large response. In the following, we thus assume that fluctuations around the unitary
quantal response can be described by an Inverse Gaussian distribution. As a consequence,
the post-synaptic response to the release of S−

k − S+
k vesicles is also given by an Inverse

Gaussian, with mean (S−
k − S+

k ) · q and variance (S−
k − S+

k ) · σ2
q . We can write:

P (Rk|S+
k , S

−
k ) =

q
3

2 · (S−
k − S+

k )
√

2πσ2
qR

3
exp

{

−q ·
[
Rk − q · (S−

k − S+
k )

]2

2σ2
qR

}

(3.15)

To fully describe the statistics of the post-synaptic responses as measured in the ex-
periment, we have to introduce an instrumental Gaussian noise with variance σ2

noise,
independent of the number of vesicles released, which sums linearly to the quantal noise
σq. The presence of such noise is evident from the recordings, and makes it difficult or,
better, arbitrary to distinguish between failures and responses which are just small. Its
introduction in the model allows one to deal with failures in a ’soft’ way (i.e., what is the
probability of this response being a failure), by avoiding the need of ’hard’ classification
(i.e., it is or not a failure) of small responses. Formally, the effect of instrumental noise
can be expressed by a convolution of expression 3.15 with a Gaussian distribution with
zero mean and variance σ2

noise:

P (Rk|S+
k , S

−
k , σ

2
noise) =

∫ +∞

−∞
P (x|S+

k , S
−
k ) · P (Rk|x, σ2

noise)dx. (3.16)
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In general, this expression has to be evaluated numerically. Although, for reasons of
clarity, we will omit instrumental noise in the below derivations, it was included in all
analysis of the experimental data.
Finally, the probability that the occupation state changes from S+

k to S−
k+1 during the

k-th interspike interval, P (S−
k+1|S+

k ), is given by

P (S−
k+1|S+

k ) =

(
N − S+

k

S−
k+1 − S+

k

)

l
(S−

k+1
−S+

k
)

k (1− lk)
(N−S−

k+1
) (3.17)

if S−
k+1 ≥ S+

k , and it is 0 otherwise. After the k-th spike there are N−S+
k refractory sites

which can independently become release-competent within the time interval ∆k with
probability lk = 1− e−∆k/τD . On the other hand, the number of release-competent sites
cannot decrease in between spikes.
In the case of more than one sequence (say, Nt sequences), the total likelihood is just the
product of the likelihoods of the individual sequences:

P (R1→Nt

1→M ) =

Nt∏

i=1

P (Ri
1→M ). (3.18)

3.5.3 Expectation-Maximization

A series of authors have developed EM methods designed for the estimation of quantal
parameters only [Kullmann (1989); Stricker and Redman (1994)]. Here, we extend these
algorithms significantly by including the dynamical STP parameters.
With the definition of S−

1→M and S+
1→M we can write:

Q(θ,θold) =
∑

S−
1→M

∑

S+
1→M

P (S−
1→M , S+

1→M |R1→M ,θold) log
[
P (R1→M , S−

1→M , S+
1→M |θ)

]

(3.19)
The condition for the EM maximization step can now be written as:

∂

∂θj
Q(θ,θold) = 0 (3.20)

From this, we can derive re-estimation formulae for all continuous free parameters. These
have to be solved at every step of the EM algorithm in function of the estimates at the
previous step, θold. Using Equations 3.12, 3.13, 3.15 and 3.17 in equation 3.20 (and
omitting the instrumental noise), we obtain the following re-estimation formulae (in an
implicit form) for the model parameters

qnew :
M∑

k=1

〈
Rk − qnew · (S−

k − S+
k )

〉
= 0 (3.21)

σq,new :

M∑

k=1

〈

1− qnew
σ2
q,newRk

· (Rk − qnew · (S−
k − S+

k ))
2

〉

= 0 (3.22)
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τD,new :
M−1∑

k=1

∂lk
∂τD

[〈

S−
k+1

lk(1− lk)

〉

−
〈
S+
k

lk

〉

− N

1− lk

]

= 0 (3.23)

Unew :
M∑

k=1

∂pk
∂U

[〈
S−
k

pk

〉

−
〈

S+
k

pk(1− pk)

〉]

= 0 (3.24)

τF,new :

M∑

k=1

∂pk
∂τF

[〈
S−
k

pk

〉

−
〈

S+
k

pk(1− pk)

〉]

= 0. (3.25)

Here, the brackets 〈·〉 denote the average over all possible sequences of occupation states,
weighted by the posterior distribution P (S−

1→M , S+
1→M |R1→M ,θold). This average has

the following convenient property:
〈
g(S−

k , S
+
k )

〉
=

∑

S−
1→M

∑

S+
1→M

g(S−
k , S

+
k ) · P (S−

1→M , S+
1→M |R1→M ,θold)

=
∑

S−
k
,S+

k

g(S−
k , S

+
k ) · P (S−

k , S
+
k |R1→M ,θold). (3.26)

This holds for any arbitrary function g.
Note that the conditions for Unew and τF,new involve pk and its derivatives, which have
to be calculated with the new estimates of the parameters. Thus, the estimates Unew and
τF,new depend on each other and have to be found simultaneously, by numerical means.
The same issue arises between qnew and σq,new when instrumental noise is included.

3.5.4 Forward-Backward formalism

The computation of P (R1→M ) by marginalising over S−
1→M and S+

1→M in Equation 3.12
is impractical. We develop for our case a forward-backward procedure in analogy with the
one used with Hidden Markov Models [Rabiner (1989)]. We define two forward variables
as

α−
k (S) = P (S−

k = S,R1→k−1) (3.27)

α+
k (S) = P (S+

k = S,R1→k) (3.28)

These variables can be evaluated recursively as follows

α−
1 (S) = P (S−

1 = S) (3.29)

α+
k (S) =

N∑

S−
k
=0

α−
k (S)P (S+

k = S|S−
k )P (Rk|S+

k = S, S−
k ) (3.30)

α−
k+1(S) =

N∑

S+

k
=0

α+
k (S)P (S−

k+1 = S|S+
k ) (3.31)
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Note that α+
M (S) = P (S+

M = S,R1→M ) and thus
∑N

S=0 α
+
M (S) = P (R1→M ). Similarly,

we can define two backward variables as

β−
k (S) = P (Rk→M |S−

k = S) (3.32)

β+
k (S) = P (Rk+1→M |S+

k = S) (3.33)

that can be evaluated recursively as follows

β+
1 (S) = 1 (3.34)

β−
k (S) =

N∑

S+

k
=0

β+
k (S)P (S+

k |S−
k = S)P (Rk|S+

k , S
−
k = S) (3.35)

β+
k−1(S) =

N∑

S−
k
=0

β−
k (S)P (S−

k |S+
k−1 = S) (3.36)

and
∑N

S=0 β
−
1 (S)P (S−

1 = S) = P (R1→M ).
From this follows that the conditional distribution of the states in equation 3.26 can be
easily computed from:

P
(
S−
k , S

+
k |R1→M ,θ

)
=

β+
k (S

+
k ) · P (Rk|S−

k , S
+
k ) · P (S+

k |S−
k ) · α−

k (S
−
k )

P (R1→M )
. (3.37)

3.5.5 Fisher information matrix

In function of the stimulation protocol, the synaptic responses can be expected to carry
more or less information about the model parameters. For instance, assume that one
evokes a pre-synaptic spike train with inter-spike intervals that are much larger than
the synaptic time constants. Clearly, the produced post-synaptic responses will not be
able to resolve them. To quantify the amount of information a specific stimulus protocol
gives us about a specific model, we compute the Fisher-Information Matrix (FIM) of the
generative model:

I(θ)j,k = E

[(
∂

∂θj
log {P (R1→M |t1→M ,θ)}

)

·
(

∂

∂θk
log {P (R1→M |t1→M ,θ)}

)

|θ
]

,(3.38)

where we have re-introduced the likelihood’s dependencies on t1→M and θ. j and k
are the indices of the model parameters and E[·] denotes the expectation value over the
responses R. The diagonal elements of the inverse FIM are lower bounds on the variances
of the parameter estimates:

V ar(θjj) ≥ [I(θ)]−1
jj (3.39)

This relation is known as the Cramér-Rao bound [Radhakrishna Rao (1945); Cramér
(1999)]. For a given model, the optimal stimulation protocol topt1→M is the one that
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minimises
∑

j V ar(θjj).
The calculation of the derivatives in equation 3.38 can be carried out efficiently by use
of the forward-variables α±. We can write:

∂

∂θj
log [P (R1→M |t1→M ,θ)] =

1

P (R1→M |t1→M ,θ)
·

N∑

S=0

∂α+
M (S)

∂θj
. (3.40)

Since α+
k depends on α−

k and vice versa, we obtain recursive formulae for their respective
derivatives:

∂

∂θj
α+
k (S) =

N∑

S−
k
=0

α−
k (S

−
k ) · P (S+

k = S|S−
k ) ·

{
∂P (Rk|S−

k , S
+
k = S)

∂θj

}

+

N∑

S−
k
=0

α−
k (S

−
k ) ·

{
P (S+

k = S|S−
k )

∂θj

}

· P (Rk|S−
k , S

+
k = S)

+
N∑

S−
k
=0

{
∂α−

k (S
−
k )

∂θj

}

· P (S+
k = S|S−

k ) · P (Rk|S−
k , S

+
k = S), (3.41)

∂

∂θj
α−
k (S) =

N∑

S+

k−1
=0

α+
k−1(S

+
k−1) ·

{

∂P (S−
k = S|S+

k−1)

∂θj

}

+
N∑

S+

k−1
=0

{

∂α+
k−1(S

+
k−1)

∂θj

}

· P (S−
k = S|S+

k−1). (3.42)

The derivatives of equations 3.13, 3.15 and 3.17 appearing above are easily computed.

3.5.6 Preprocessing

Traces which featured a clear directed deviation from baseline during recording or which
featured abrupt changes in the baseline were excluded by visual judgement and not used
in the further analysis.
After subtraction of baseline the single noisy traces were smoothed by using a rectan-
gular window of 2 ms size. From the average of the smoothed traces we determined
each neuron’s membrane time constant τm by fitting an exponential decay to the falling
edge of the recovery response and, if possible, also to the first and averaged over these.
Subsequently we deconvolved the smoothed single voltage traces V (t) using the following
relation [Richardson and Silberberg (2008)]:

R · I(t) = τm ·
dV (t)

dt
+ V (t) (3.43)

From this, we obtained the quantities R ·I(t) which are identical to the synaptic currents
I(t) up to a proportionality factor R (input resistance). The I(t) feature well separated
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response peaks which we cut out in the following way: first, for a given data set, we
determined the nominal positions of the response peaks from the average current trace.
Around the expected positions, we cut out a certain time window of each single current
trace (called ’crops’ in the following). For input frequencies of less than 50 Hz the window
extended from −10 ms to +10 ms relative to the expected position, at around 50 Hz from
−8 ms to +8 ms and at around 70 Hz from −6 ms to +6 ms. Reconvolution of the crops
yielded fully separated EPSPs whose peaks were obtained by searching for the maximum
response in a time window of 6 ms length staring after the expected current peak. This
window was adjusted by eye to compensate for variability in rise-times between different
connections. After the position of the maximum was found, we averaged over a sym-
metric window of 1 ms size around this point. This value in turn was normalised by
subtracting a baseline value obtained by averaging over a 5 ms window starting 0.5 ms
after the crop’s onset.
Finally, we estimated σnoise, which is defined as the standard deviation of the fluctua-
tions of 1 ms-window averages. We took for each crop of a data set the average of two
subsequent 1 ms windows (inside the baseline interval used for normalisation), obtaining
thus a distribution of Nt ·M · 2 noise values per data set. σnoise was then determined by
computing the square-root of the distribution’s standard deviation.
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A Comment on the Synaptic

Parameters

The work presented in the last chapter was initially motivated by the need to better
quantify synaptic parameters. As we have seen, the model by Hansel and Mato (2013),
based on the mechanism exposed in Mongillo et al. (2012), relies on relatively small val-
ues of the initial release probability, p0. Recall that the original estimates of short-term
plasticity properties in pre-frontal cortex in Wang et al. (2006), however, indicate that
p0 = 0.15−0.35. This lies outside the range where multi-stability can be achieved by the
proposed mechanism.
We wanted to investigate the possibility that experimental estimates of synaptic param-
eters obtained with classical methods are not reliable enough to make conclusive state-
ments about synaptic properties. As we have shown this is indeed the case. However,
although parameters of single synaptic connections can vary substantially in function of
the analysis method used (see figure 3.5), the global distribution of parameters we obtain
is quite similar to what has been found before. Particularly with regard to p0 we cannot
observe significant differences with respect to the results of Wang et al. (2006).
Is the model Hansel and Mato (2013) thereby refuted? To answer this question, other
factors have to be taken into account. It has, for instance, been pointed out by Borst
(2010) that synapses studied in vivo exhibit a substantially lower release probability
than synapses recorded in vitro. According to this reference, a whole series of factors
may distort synaptic properties in experimental conditions, the most prominent being
the different extracellular calcium concentrations in slices and in in vivo. Furthermore,
changes in p0 are accompanied by changes in the phenomenology of STP. Other factor
like slice temperature have been shown to play an important role as well [Klyachko and
Stevens (2006)].
All of this points to the very general issue whether available synaptic recordings provide
STP parameter estimates that are meaningful enough for modelling work. This question
is beyond the scope of our work. For us remains at this point only the somewhat sobering
conclusion that we cannot make any definite statement about the validity of STP based
models of balanced working memory.
The next chapter will therefore be dedicated to the development of an alternative theory
where STP plays no role. Indeed, we will rely on static synapses only, but will make use
of correlations between neuronal activity and synaptic connections.
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Chapter 4

Multistability in the Balanced

State

It is generally maintained that one of cortex’ functions is the storage of a large number of
memories [Goldman-Rakic (1987); Fuster (1995)]. In this picture, the physical substrate
of memories is thought to be realised in the way cortical neural networks are structured.
A common notion is, for instance, that non-random synaptic connectivity is the holder of
the mnemonic information [Hebb (1968); Hopfield (1982)]. Memories then, are ’present’
in the network independently from whether neurones are active or not. Neural activity
itself is associated with the retrieval process: activation of different memories - their recall
- is indicated by different patterns of neuronal activity. The presence of stored memories
becomes apparent in their shaping of the possible activity states of the network.
A standard way to model memory storage and retrieval mathematically is by making
use of attractors [see e.g. Amari (1977); Hopfield (1982); Amit (1992)]. The notion of
’attractor’ refers to the portion of phase-space to which a dynamical system converges
in the course of time. In this picture, memories correspond to attractors in the space
of neuronal activity. During activation - retrieval - of a specific memory, the activity of
all neurones converges to the pattern that represents that memory. The attractor view
elegantly provides another important property of memory: its auto-associative nature.
When a memory is only partially hinted at, for instance one sees an item that vaguely
resembles a memorised one, eventually this latter one is recalled or ’comes to mind’.
Analogously, setting neural activity sufficiently close to an attractor will cause it to
converge to this very attractor.
Electrical activity in cortical neurones in vivo exhibits prominent temporal irregularity
[Softky and Koch (1993); Bair et al. (1994); Shinomoto et al. (2009)]. A standard way
to account for this phenomenon is to postulate that recurrent synaptic excitation and
inhibition as well as external inputs are balanced [Shadlen and Newsome (1994); van
Vreeswijk and Sompolinsky (1996, 1998); Shadlen and Newsome (1998)]. It can be shown
that, when neurones receive relatively strong synaptic inputs, recurrent networks adjust
automatically to a working point where inhibitory and excitatory currents approximately
cancel. In this balanced state, neurones can potentially operate near threshold, where
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their spiking is driven by fluctuations around the average input, causing aforementioned
temporal irregularity. The network’s self-regulation occurs dynamically, and under very
general conditions; no fine-tuning is required.
Balanced networks have been widely studied and employed to explain a broad range
of experimental observations beyond temporal irregularity, like persistent delay activity
related to working memory [e.g. van Vreeswijk and Sompolinsky (2005); Hansel and
Mato (2013)] and the emergence of selectivity from random connectivity [Hansel and
van Vreeswijk (2012)]. However, in the common view, balanced networks do not easily
support the coexistence of different activity states, as the dynamics of these networks tend
to linearise the relationship between external stimuli and the neuronal response on the
population level. This is problematic from the perspective of a memory framework based
on attractors, as networks that store multiple memories need to feature multistability
among attractors.
In this work we set out to show that the common belief that balanced networks are
inadequate for memory storage is erroneous. In fact, we highlight that it is not necessary
to invoke neuronal or synaptic non-linearities to create multistability, but that simple
learning of synaptic weights as in perceptrons suffices. Quite on the contrary to the
common view then, we demonstrate that the balanced state is necessary for extensive
pattern storage in neural networks. We show further that by demanding that pattern
storage is optimal, a series of experimentally observed properties of neural networks can
be predicted.

4.1 Extensive memory storage requires balances

To demonstrate the new functional role of the balanced state, we begin by explicitly
stating the experimental findings we will make use of and the further assumptions we
make about the nature of cortical activity.

• At any time, each neurone receives a large number of excitatory and inhibitory
inputs [Matsumura et al. (1988); Destexhe et al. (2003); Shu et al. (2003); Haider
et al. (2006)]. We assume that these inputs sum linearly.

• Cortical activity is asynchronous [see e.g. Destexhe et al. (2003)].

• An activity pattern is represented by the ensemble of all neuronal firing rates in
the network. We assume that it is sufficient to consider neurones as rate-units.

• Growing experimental evidence supports the idea that the global operating state
of cortical areas does change only little, if at all, in function of the behavioural task
(in awake animals) [see the reviews in Wohrer et al. (2012); Buzsáki and Mizuseki
(2014)]. We assume therefore that different network states share the same global
statistics. As a consequence, we consider also retrieval activity of different memory
patterns being identically distributed.

• For simplicity, we assume that all firing-rate patterns are uncorrelated.
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Let us consider a very simple neural network: a single inhibitory population ofN neurones
that are recurrently and (potentially) all-to-all connected. Apart from the same external
excitatory input hext, all neurones receive inhibitory currents which are proportional to
the respective firing-rates of their pre-synaptic partners in the local population. A current
elicited in neurone i by pre-synaptic neurone j, can be written as the firing-rate νj of
neurone j, weighted by the synaptic weight between the neurones Jij . The dynamics of
the total input hi seen by to neurone i can then be written:

τmḣi = −hi +



hext −
N∑

j=1

Jijνj



 . (4.1)

Here, τm is the neuronal membrane time constant, which, for simplicity, we consider to
be identical across the population. The relationship between inputs and firing-rates in
governed by the neuronal transduction function φ:

νi = φ(hi). (4.2)

At this point, we do not need to specify φ further apart from demanding that it should
be a monotonically increasing function and lower bounded by zero, as firing-rates cannot
be negative.
According to our assumptions, we consider a pattern to be given by the entirety of all
firing rates in the network. The necessary condition that a given activity pattern is indeed
stored in the network is that this pattern is a fixed point of the network’s dynamics. This
is the basic idea underlying attractor models of memory. In formal term this condition
can be written by setting ḣi = 0 in the above dynamical equation. We obtain:

hi = hext −
N∑

j=1

Jijνj

= hext −
N∑

j=1

Jijφ(hj), (4.3)

that is, at the fixed point the inputs produce just the right firing-rates to sustain them-
selves and the system does not move from the state in which it is.
The above condition is straightforwardly extensible to the storage of more than one pat-
tern. Suppose P firing-rate patterns are to be stored. We introduce the index µ = 1, .., P
to distinguish between them. We can write:

hµi = hext −
N∑

j=1

Jijν
µ
j . (4.4)

In order to satisfy these P conditions we have to adjust the Jij ; that is, the synaptic
weights have to be learnt. It seems natural to expect that as N gets larger the number
of patterns P that the network can store should, in principle, grow: increasing N , and
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thus the number of pre-synaptic inputs, more adjustable parameters become available. If
P indeed grows with N , pattern storage of the network would be extensive: the number
of memories the network can accommodate grows with the network’s size. However, a
further qualification on the Jij has to be made.
To elucidate this, note that, regardless of how exactly the weights are learnt, it is crucial
that the neurones must be able to distinguish between different patterns. Thus, if we
consider two pattern µ and ξ, the corresponding hµi and hξi must be sufficiently distinct.
To investigate this quantitatively, it suffices to consider a single neurone. Dropping the
index i in equation 4.4, the difference between two inputs is:

hµ − hξ =
N∑

j=1

Jj

(

νξj − νµj

)

. (4.5)

Recall the assumption that all patterns obey the same statistics and thereby have identical
average firing-rate and average input. We can therefore use the expressions hµ = h̄+ δhµ

and νµj = ν̄ + δνµj , where the overlined terms represent the averages and the δ-terms
denote fluctuations around these averages. We obtain:

δhµ − δhξ =
N∑

j=1

Jj

(

δνξj − δνµj

)

, (4.6)

and can observe that the average quantities drop out. This equation tells us that the
information about the identity of a pattern available to a single neurone resides in fluc-
tuations around the average synaptic input. In order to obtain the typical difference
between two patterns we square both sides of equation 4.6 and average over patterns. If
we set aside for a moment possible correlations between the Jj and the νµj , this yields:

E

[(

δhµ − δhξ
)2

]

= E









N∑

j=1

Jj

(

δνξj − δνµj

)





2



⇔ 2σ2
h =

N∑

j=1

J2
j E

[(

δνξj − δνµj

)2
]

+
N∑

j 6=k

JjJk E
[(

δνξj − δνµj

)(

δνξk − δνµk

)]

⇔ 2σ2
h = 2σ2

ν

N∑

j=1

J2
j (4.7)

where we have used the fact that correlations among neurons for each pattern are zero.
σ2
h and σ2

ν denote the variances of inputs and firing-rates, respectively. In our theory,
these quantities should be finite, as they are observable properties of the system we want
to model and their magnitude should not depend on the number of neurones in the net-
work. Note, however, that the way in which equation 4.7 is written, poses a problem
in this respect: we have a sum of N terms on the right-hand side. To compensate, we
clearly need the Jj to scale with N in some way, in the sense that their magnitude has
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to be reduced as N grows.
The obvious choice here is to scale the synaptic weights as 1√

N
, as it eliminates all de-

pendence on N . With this scaling, finite differences between firing-rate patterns lead to
finite differences in the synaptic inputs. If we were to adopt for instance a scaling 1

N , all
patterns would look increasingly uniform to the single neurone with growing N .
The 1√

N
-scaling thus enables the single neurone to distinguish between patterns (or

network-states) independent of the network size. However, this seems to come at a
cost as now the average input to each neurone appears to grow with N . This can be seen
by writing equation 4.4 with all synapses scaled accordingly:

hµi =
√
Nhext −

N∑

j=1

Jij√
N

νµj . (4.8)

At this, the factor
√
N in front of hext reflects the fact that the synapses delivering the

external input into the network are scaled in the same way as the recurrent synapses.
The average input that each neurone sees is:

h = E[hµi ] =
√
N

(
hext − J · ν

)
, (4.9)

Naively, the above equations tell us that the input’s average is not independent of the
network’s size, but grows with N . From this it would seem that we have gained nothing
with the 1√

N
-scaling: finite differences from pattern to pattern would still be vanishingly

small compared to the mean. However, it has been shown in two important papers
by Van Vreeswijk and Sompolinsky [van Vreeswijk and Sompolinsky (1996, 1998)] that
the dynamics of a network as in equation 4.8 are guaranteed to produce a cancellation
between recurrent inhibition and external input to leading order. This balance occurs
automatically, without the need to fine-tune parameters. In our case, terms of order

√
N

in equation 4.9 sum up to zero, and h is given by contributions of order unity. The effect
of the balance can be expressed by:

hext − J · ν = 0. (4.10)

This equation tells us that (in the limit where N is very large) once the external input
is fixed, the average firing rate of the activity patterns unambiguously determines the
average synaptic strength in a network storing those patterns. We will make use of this
relationship below.
Let us summarise the first important result of this section. We started by considering
storage of identically distributed patterns in a neuronal network. The information about
the network’s state, or equivalently, the information about the activated pattern acces-
sible to each neurone resides in the deviations from the average input. To be able to
store an extensive number of patterns, that is, a number proportional to the network
size, the size of these fluctuation has to be independent of N . This, in turn, requires a
synaptic scaling that leads to the existence of a balanced state. We can conclude thus
that extensive memory storage implies balance. In other words, balance is a necessary

92



condition for extensive memory storage.
The finding that both average input and input fluctuations remain finite in balanced
networks, even in the limit of infinite N , is well established and was historically indeed
the main motivation for the development of this theory. The novelty of our results is to
show that this property is of exceeding importance in the context of memory storage. In
fact, the balanced state gains a purpose other than being a mechanistic explanation for
irregular neuronal activity.
The model of memory storage we propose here is the following. The network’s macro-
state, determined by the dynamics of the balance, characterises the global firing-rate
statistics and thereby defines the network’s working point. The activity patterns them-
selves are represented by the various micro-states that the network can enter. We will
show in the following that the network’s working point determines the number of activ-
ity patterns that can be sustained. Remarkably, demanding that this number is optimal
predicts crucial properties of neuronal activity and physiology that are consistent with
experimental observations.

4.2 Critical capacity of one inhibitory population

In order to study the relationship between storage capacity and firing-rate statistics, let
us consider the single inhibitory population from the previous section, which is indeed
the simplest possible network of rate units that can exhibit a balanced state. Recall the
condition for the storage of activity patterns:

hµi =
√
Nhext −

N∑

j=1

Jij√
N

νµj , (4.11)

with

νµi = φ(hµi ). (4.12)

Let us add one additional constraint on the synaptic weights. It is well established that
neurones obey a principle known as Dale’s Law [Dale (1935)]. It states that all the
synapses of a neurone release the same type of neurotransmitter. In our setting this
translates to the requirement that all synaptic connections of our inhibitory neurones
have the same sign. We thus demand that the Jij are non-negative. Furthermore, we
ban autapses, that is we set Jii = 0.
We have seen in the previous section that, if we fix the external inputs hext, adjusting the
synaptic weights Jij is the only way by which equation 4.11 can be satisfied for multiple
patterns. Here, we want to ask how many activity patterns can be stored, and on which
network parameters this number depends.
Let us, following the classical work in statistical physics, define the maximal number
of pattern that can be learnt without errors (in the limit of infinite N) as Pc, where
the subscript ’c’ stands for ’critical’. The critical storage capacity is then given by Pc
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normalised by the network size, N :

αc =
Pc

N
. (4.13)

If we can store only a finite number of patterns in the limit of infinite N , the critical
capacity will equal zero. If, however, storage capacity is extensive, and Pc grows, say,
linearly with N , αc is a finite quantity1. At any capacity level below αc, that is, when
a number P < Pc of patterns is learnt, many solutions to the synaptic weight learning
problem exist since condition 4.11 is underdetermined. Exactly at critical capacity, only
one solution exists. These considerations constitute the basic principle of an elegant
mathematical approach devised by Gardner [Gardner (1988)], with which - in the limit
of infinite N - the volume of all possible Jij that solve conditions like 4.11 can be calcu-
lated. Pc, and thus αc, are determined by the value for which the volume collapses to a
single point, which, in turn, depends on the statistics of the activity patterns one wishes
to store.
Two crucial points about Gardner’s approach are in particular worthy to be emphasised.
First, this technique does not make any assumptions on the process that governs learning
of the synaptic connections. Instead, it makes statements about the general properties
of networks storing patterns in their synaptic structure. It offers thus a way to study the
final outcome of learning, not learning itself. Second, central to Gardner’s approach is
the observation that, in the large N -limit, all neurones become statistically independent,
making it sufficient to consider the weight-space of a single neurone.
Clopath and Brunel (2013) applied Gardner’s calculation, which was originally conceived
for binary units, to the case of a neurone that receives a continuous input signal (a
firing-rate) and produces a continuous output signal. Furthermore, the weights in their
calculation are required to be non-negative, respecting thereby Dale’s Law. This corre-
sponds exactly to the situation outlined here, and we can straightforwardly make use of
their findings.
Before we state their results, however, we want to stress that some information about
the synaptic weights is already provided by the balance equation 4.10. We see that the
average synaptic strength is given by:

J =
hext
ν

. (4.14)

With this, the critical capacity from Clopath and Brunel (2013) reads:

αc = H(B), (4.15)

where B is determined by the following equation:

B

G(B)−B ·H(B)
=

σ2
h

σ2
ν · J

2 , (4.16)

1The exotic cases that can arise in the theory of spin-glasses where Pc can grow exponentially with N

can not arise in our theory.
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Figure 4.1: The parameter B and critical capacity in function of γI : The maximal value
αc = 0.5 is reached when γI = B = 0.

and the functions H(B) and G(B) are defined as:

H(B) =
1

2

[

1− erf

(

− B√
2

)]

, G(B) =
1√
2π

exp

(

−B2

2

)

. (4.17)

Let us further write:

γI :=
σ2
h

σ2
ν · J

2 =
σ2
h · ν2

σ2
ν · h2ext

. (4.18)

We can see from equation 4.15 and the definition of H(B) that the critical capacity
becomes maximal when B = 0, yielding αc = 0.5. B itself depends on the parameters of
the network and the statistics of activity patterns that appear on the right-hand side of
equation 4.18. Clearly, B = 0 when γI = 0. Figure 4.1 shows a more detailed picture of
the behaviour of αc and B in function of γI . The most important point here is that αc

is a monotonically decreasing function of γI .
The novelty in our work is that we wish to interpret equations 4.15 - 4.18 in the context
of a recurrent network. Clopath and Brunel (2013) considered a feed-forward structure
(a Purkinje-cell receiving input from the granule-cell synapses) where the statistics of ν
and h can be treated as independent. This is not true anymore in a recurrent network.
By virtue of equation 4.12, we see that the statistics of inputs and firing rates are tightly
linked by the neuronal transduction function. We can now proceed by asking how the
properties of φ and the choice of the firing-rate statistics (or, equivalently, the input
statistics) change the critical capacity of the network.
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Figure 4.2: Critical capacity in the one-population scenario. αc is given in function of the
input-pattern statistics. Parameters are: hext = 2, β = 5, v0 = 4

4.2.1 Critical capacity under the constraint of self-consistency

In order to get a grip on the self-consistent relationships between firing-rates, inputs
and the neuronal transduction function, we need a starting point. Recall some of the
assumptions made in section 4.1: each neurone receives a large number of synaptic inputs,
its pre-synaptic weights are only weakly correlated and firing rates in the network are
in general asynchronous. From this we should expect that the inputs to each neurone
are distributed normally, both across patterns and across the population. There exists
indeed good experimental support for this assumption [Destexhe et al. (2003); Carandini
(2004)]. Therefore, instead of considering memory patterns defined in terms of firing
rates, let us study the network’s critical capacity for Gaussian input patterns as we vary
the average input h and its variance σ2

h.
Clearly, αc will depend not only on h and σ2

h but also in a crucial manner on the neuronal
transduction function. In the rest of this work we will use the following, biologically
plausible transduction function:

φ(h) = ν0 · log
(

1 + exp

(
h

β

))

. (4.19)

For small inputs, φ exhibits an exponential shape, while in the limit of large inputs it
becomes linear (see figure 4.3, red curves). This behaviour mimics roughly the FI-curve
of the integrate-and-fire neurone [Brunel and Sergi (1998); Roxin et al. (2011)].
In order to analyse the dependence of the critical capacity on the pattern statistics, we
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Figure 4.3: Non-linear transformation of the input distribution. Blue curves show his-
tograms of inputs and firing-rates, red curve φ. A) Inputs located mostly in the linear
part of φ, with h = 25, σ2

h = 50, result in firing-rate distribution with ν = 20Hz,
σ2
ν = 31Hz2. B) Inputs located mostly in the exponential part of φ, with h = −2,

σ2
h = 50, result in firing-rate distribution with ν = 2.9Hz, σ2

ν = 6.9Hz2. Parameters
in all panels: β = 5, v0 = 4Hz

calculate αc in function of h and σ2
h. At this, we fix hext = 2, β = 5 and ν0 = 4. The

ingredient to calculate γI are obtained by generating normal input distributions for each
combination of h and σ2

h, passing them through φ and calculating the corresponding
firing-rate statistics. Finally, αc is obtained by solving equation 4.16 numerically. The
result of this procedure is shown in figure 4.2, where αc is displayed in colour-code on
the h-σ2

h plane. The optimal region can be found at negative h values; its size grows with
decreasing h.
To understand the preference for small h values, recall that αc grows with decreasing
γI . Fixing the external input hext, equation 4.18 reveals that the important issue for
achieving high critical capacity is the following. For a given variance of the inputs hi, the
ratio ν2

σ2
ν
should be as small as possible; or, stated otherwise, the firing-rate distribution’s

coefficient of variation should be as large as possible.
The relationship between σ2

h and ν2

σ2
ν
depends on the properties of the transduction func-

tion. Figure 4.3 shows that input patterns that reside in the exponential part of φ - that
is, patterns with small h - generate a firing rate distribution with higher CV than the
same input patterns shifted to the linear part. For this reason, large values of αc are
found on the left hand side of figure 4.2.
Let us turn to the dependence of αc on σ2

h. It is instructive to consider two limiting
cases. First, if h is sufficiently small, all hi will settle in the exponential part of φ. We
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can then write:

ν =
1

N

N∑

i=1

φ(hi)

N→∞
=

∫ +∞

−∞
Dη φ(h+ σh · η)

≈
∫ +∞

−∞
Dη ν0 · exp

((
h+ σh · η

)
/β

)

= ν0 · exp
(
h

β
+

1

2

σ2
h

β2

)

(4.20)

and

ν2 =

∫ +∞

−∞
Dη φ2(h+ σh · η)

≈ ν20 · exp
(

2
h

β
+ 2

σ2
h

β2

)

, (4.21)

where Dη is the Gaussian measure. From this we can deduce

σ2
ν = ν2 ·

[

exp

(
σ2
h

β2

)

− 1

]

. (4.22)

which yields

γI =
σ2
h

h2ext
·
[

exp

(
σ2
h

β2

)

− 1

]−1

. (4.23)

Note that the ratio ν2

σ2
ν
does not depend on h anymore. Thus, γI converges to a finite

value for any given σ2
h as h becomes very negative. When σ2

h → 0, γI further simplifies:

γI =
β2

h2ext
. (4.24)

As long as the hi stay in the exponential part of φ, αc increases with σ2
h, since γI is

a decreasing function of the input variance. This trend inverts when the hi reach the

linear part of φ. At this point, ν2 starts to grow faster than σ2
ν

σ2
h

and γI is inflated. This

behaviour can be recognised on the left part of figure 4.2. For each slice of small constant
h we can see the non-monotonic progression of αc.
The capacity’s other limiting behaviour can be seen on the right part of figure 4.2, where
αc simply falls off with increasing σ2

h. This can be understood from the fact that for

rather large h, the hi settle in the linear part of φ. Here, the ratio ν2

σ2
ν
remains constant

for growing σ2
h. In that limit, αc thus becomes a strictly decreasing function of σ2

h.
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Figure 4.4: Information measure of network performance. Middle: I is given in function
of the input-pattern statistics. Left: Exemplary firing-rate distribution for inputs in
optimal region with h = −39, σ2

h = 600; inset: semi-log plot of same distribution.
Right: Exemplary firing-rate distribution for inputs in non-optimal region with h =
20, σ2

h = 100. Parameters: hext = 2Hz,β = 5, v0 = 4

Retrievability

So far we have considered the capability of the network to store patterns. However,
patterns should also be reliably retrievable in order to assure efficient memory function.
We have seen in the previous section that capacity is linked to the network’s ability to
distinguish between patterns. Retrievability, on the other hand, is associated with the
network’s ability to distinguish between patterns and noise; in other words, it depends
on a signal-to-noise ratio.
It should be clear that if we assume the total inputs hi to each neurone to be subjected
to some form of additive noise σ2

N , activity patterns with σ2
h < σ2

N should not be re-
trievable; the noise dominates the total input and different activity patterns become
indistinguishable. This is true regardless of the value of αc, indicating that αc alone can
not be a good measure of the network’s performance in this limit. Indeed, this problem
was already pointed out in Clopath and Brunel (2013) and remedied by introducing an
information-theoretical measure. Likewise, let us quantify the network’s performance by
the following variable:

I = αc log2

(

1 +
σ2
h

σ2
N

)

/2. (4.25)

where σ2
N is the variance of Gaussian white noise with zero mean that is added to the h.

I represents the mutual information between firing-rates and inputs, multiplied by αc; it
grows with the number of storable patterns and the signal-to-noise ratio of the input.
A large source of noise in neuronal networks comes from temporal fluctuations in the
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neuronal firing. Since our framework does not feature spiking neurones but rate units,
there is no rigorous way to include this kind of noise. We can, however, make the
reasonable assumption that the spike generation of each neurone obeys Poisson statistics.
With this, we can roughly estimate that σ2

N should depend on the average firing rate of
the population:

σ2
N ∼ J2 · ν, (4.26)

where J2 is the second moment of synaptic weights distribution. The middle panel of
figure 4.4 shows I in function of h and σ2

h. It can be seen that the optimal region is
shifted to larger σ2

h values, as expected. Our previous finding, however, that the system’s
optimal performance is linked to an operating point in the expansive region of the trans-
duction function is still valid.
To conclude, the first result of this section is that in order to maximise storage capac-
ity, the network should be set up such that synaptic inputs to its neurones are matched
to the expansive region of the neuronal transduction function. In fact, this indicates
a functional role of the neuronal non-linearity. Moreover, recall our assumption that φ
approximates the IF neurone well. The expansive regime in the IF transduction function
corresponds to an operating regime where the neurone is close to threshold and spiking
is fluctuation driven [Roxin et al. (2011)]. This indicates that the irregularity of neuronal
spiking in cortex may be linked to the requirement of optimising capacity. As we have
seen, this remains true even if we include the deleterious effect of this irregularity.
Another interesting observation to be made concerns the shape of the firing rate distri-
butions, which is tightly linked to the neuronal non-linearity just mentioned. As critical
capacity grows to the extent to which the inputs sit in the expansive region of the trans-
duction function, large values of αc imply that firing-rate distributions should be right-
skewed. In the concrete case discussed here, φ provides an exponential non-linearity for
small inputs, and firing-rate distributions become thus increasingly log-normal as αc or I
increase. The observation that firing-rate distributions should be skewed makes sense in-
tuitively, since high capacity requires distributions with large CV but firing rates cannot
become negative. The left and right panels of figure 4.4 illustrate this relationship. As
can be seen, the firing-rate distribution in the optimal region is indeed strongly skewed
and close to log-normal, with some small deviations at high firing rates. We come to our
second conclusion that the skewness of firing rate distributions that indeed seem to be a
ubiquitous feature of cortical activity [Song et al. (2005); Shafi et al. (2007); Hromádka
et al. (2008); O’Connor et al. (2010); Wohrer et al. (2012); Buzsáki and Mizuseki (2014)]
can be interpreted in our theory as signatures of a system that is optimised for memory
storage and retrieval.

4.3 Two populations: excitation and inhibition

In this section we extend our consideration to the more realistic case of networks compris-
ing two neuronal populations, one inhibitory, one excitatory. By making the conservative
assumption that learning affects merely the excitatory to excitatory connections we set
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out to study the effect of unstructured inhibition on the network’s learning capabilities.
Let the excitatory population comprise NE neurones with firing rates νEj and the excita-

tory population comprise NI neurones with firing rates νIj . The total inputs to excitatory
and inhibitory neurones for different patterns µ can be written respectively as:

hE,µ
i =

√

Nexth̃
E
ext −

NI∑

j=1

JEI
ij√
NI

νI,µj +

NE∑

j=1

JEE
ij√
NE

νE,µ
j

hI,µi =
√

Nexth̃
I
ext −

NI∑

j=1

JII
ij√
NI

νI,µj +

NE∑

j=1

JIE
ij√
NE

νE,µ
j , (4.27)

where Next denotes the number of external input connections. The various J-symbols
represent the four different types of synaptic weights. The relation between input and
firing rate still remains

νIi = φ(hIi ), νEi = φ(hEi ). (4.28)

Throughout the rest of this section, we use φ with the same parameters for both popu-
lations.
In the above equations we allow for the case where the numbers of external, recurrent
inhibitory and recurrent excitatory synaptic inputs can be different. To clarify further
derivations it is useful to express all these numbers in terms of NE . Without loss of gen-
erality, we can absorb the fraction Next

NE
by rewriting the external inputs. Additionally,

by introducing c = NI

NE
we obtain:

hE,µ
i =

√

NEh
E
ext −

NI∑

j=1

JEI
ij√

c ·NE
νI,µj +

NE∑

j=1

JEE
ij√
NE

νE,µ
j (4.29)

hI,µi =
√

NEh
I
ext −

NI∑

j=1

JII
ij√

c ·NE
νI,µj +

NE∑

j=1

JIE
ij√
NE

νE,µ
j (4.30)

As in the previous section, we want to study the dependence of the critical capacity
αc on the statistics of the firing-rate and input distributions. For this, first note the
following. As before, the average synaptic strength is given by requiring that equation
4.29 is balanced. We have:

JEE =
heff
νE

=

√
c · JEI · νI − hEext

νE
. (4.31)

Note the important difference here, that the average excitatory-to-excitatory synaptic
strength now also depends on the inhibitory feedback.
Furthermore, suppose we choose activity patterns only in the excitatory population with
fixed νE and σ2

νE
. Given JII

ij and JIE
ij , the corresponding patterns in the inhibitory

neurones are then unambiguously determined by equation 4.30. Since the synaptic input
weights to the inhibitory population are not affected by learning, they are uncorrelated
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with the firing-rates. Thus, we can also obtain average and variance of the inhibitory
firing-rates directly from equation 4.30. In the limit NE →∞, we get:

νI =
hIext + JIE · νE

JII ·
√
c

. (4.32)

We see that equation 4.29 is different to its analogue, equation 4.11, in that the effective

external input
√
NEh

E
ext −

∑NI

j=1

JEI
ij√
c·NE

νI,µj , against which the JEE
ij have to be adjusted,

changes from pattern to pattern. From this we can expect that inhibitory rates’ quenched
fluctuations will influence critical capacity.
Given also the statistics of JEI

ij , we can use equation 4.29 to determine the space of

the JEE
ij weights that satisfy the conditions for the excitatory pattern’s storage. The

calculation, reported in detail in the appendix, is a generalisation of the one in Clopath
and Brunel (2013). It yields:

γEE =
σ2
eff

σ2
νE
· J2

EE

=
σ2
eff · ν2E

σ2
νE
· h2eff

(4.33)

where, σ2
eff is given by:

σ2
eff = σ2

hE
+ J2

EI · σ2
νI
. (4.34)

From the above equations, and the fact that the network has to be in the balanced
state, we can readily derive two important constraints on the activity patterns. The first
requirement is that JEE has to be positive. From equation 4.31 we see that it is necessary
that

νI >
hEext
JEI

·
√

NE

NI
, (4.35)

or, equivalently, by using equation 4.32

νE > hEext ·
JII

JEI · JIE

− hIext
JIE

. (4.36)

To demand the positivity of the excitatory-to-excitatory connections thus sets a lower
bound on the average firing rates. In addition, given the well known fact that NE > NI

[Gentet et al. (2010)], we see from here that it is quite natural that νI > νE .
The second constraint derives from the requirement of having a balanced state. Necessary
conditions for this to happen are that the following inequalities are satisfied:

hEext
hIext

>
JEI

JII

>
JEE

JIE

(4.37)

However, we saw that in the limit NE →∞, JEE is given by equation 4.31. Rearranging
this expression using equation 4.32 we can obtain:

JEE

JIE

=
JEI

JII

(
hIext

JEI · νE
− hEext

νE
· JII

JEI · JIE

+ 1

)

. (4.38)
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The second inequality in 4.37 can only be violated when the term in the brackets is larger

than unity. It can be easily seen that this implies
hE
ext

hI
ext

< JEI

JII
, that is, an unbalanced

solution is only possible when the network parameters reside already outside the allowed
region. Thus, learning of activity patterns as it is proposed here cannot result in an
unbalanced network state. Note that by setting hIext = 0, that is imposing that the
inhibitory population receives no input from outside the local network, the balance-
constraint is automatically satisfied and the one from equation 4.36 is more likely to be
satisfied.
The model outlined so far is a general description of a two population network that is
able to learn memory patterns by adjustment of its excitatory-to-excitatory connections.
However, the number of free parameters is quite big, as we need to specify the statistics
of all synaptic populations (except the JEE

ij of course). In order to achieve our primary
goal - a better understanding of the role of inhibition - we thus consider a reduced model
in the next section.

4.3.1 A reduced model

In general, the inhibitory firing-rate variance depends on the statistics of the excitation.
This can be seen by calculating the variance of the input to the inhibitory neurones.
Starting from equation in 4.30, we can write:

σ2
hI

= Var
(

hI,µi

)

=
1

c ·NE

NI∑

j=1

Var
(

JII
ij ν

I,µ
j

)

+
1

NE

NE∑

j=1

Var
(

JIE
ij νE,µ

j

)

= J2
II ·Var

(

νI,µj

)

+ ν2I ·Var
(
JII
ij

)
+ J2

IE ·Var
(

νE,µ
j

)

+ ν2E ·Var
(
JIE
ij

)
.

(4.39)

Here, we want to neglect the above equation and assume that we can adjust σ2
νI

indepen-
dently so that we can study the effect of the inhibitory quenched noise on αc explicitly.
The requirement that the inhibitory population should be balanced is still valid, however,
so that νI remains determined by equation 4.32.
We start the derivation of a reduced model by expressing the effect of the recurrent inhi-
bition purely in terms of an external current. This current is now not constant anymore,
but will depend on the pattern-index. We can write:

hE,µ
i =

√

NE · hµred +
NE∑

j=1

JEE
ij√
NE

νE,µ
j , (4.40)

with

hµred = hEext −
NI∑

j=1

JEI
ij

c ·NE
νI,µj . (4.41)
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Figure 4.5: Critical capacity in the reduced model αc is given in function of inhibitory
feedback strength and inhibitory quenched noise. Parameters are: h̃red = 2, β = 5,
v0 = 4

Since νI,µj and JEI
ij are in general uncorrelated, the distribution of hµred across patterns

is Gaussian. Its average is

hred := E[hµred] = hEext −
JEI

JII

(
hIext + JIE · νE

)
, (4.42)

where we have used equation 4.32. The variance reads:

σ2
red√
NE

:= Var[hµred] =
J2

EI√
NE

σ2
νI
. (4.43)

Using a Gaussian random variable ηµ with zero mean and a variance of one, the total
excitatory inputs of the reduced system can eventually be written as:

hE,µ
i =

√

NE · hred + σred · ηµ +

NE∑

j=1

JEE
ij√
NE

νE,µ
j

=
√

NE

(

h̃red − JI · νE
)

+ σred · ηµ +

NE∑

j=1

JEE
ij√
NE

νE,µ
j . (4.44)

Again, by invoking the balance argument we can obtain the average synaptic weight:

JEE =
JI · νE − h̃red

νE
. (4.45)
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The behaviour of the reduced network is governed by three effective parameters, one of
which is σ2

red, the inhibitory quenched noise variance. The other two are

h̃red = hEext −
JEI

JII

· hIext, JI =
JEI · JIE

JII

. (4.46)

h̃red denotes the constant input seen by the network, independent of the average firing
rate. In contrast, JI represents the strength of the νE dependent part of the inhibitory
input; that is, it measures the effectiveness of inhibitory feedback.
It is straightforward to derive the expression for γ for this system:

γred =
σ2
h · ν2E

σ2
νE
· (JI · νE − h̃red)2

+
σ2
red · ν2E

σ2
νE
· (JI · νE − h̃red)2

. (4.47)

The first term is similar to what we know from the case with one population. The sec-
ond one quantifies the effect of quenched noise associated with the inhibitory population.
Clearly, as γred grows with σ2

eff , large inhibitory quenched noise is detrimental to capac-
ity. Intuitively, the learning of each excitatory pattern now also has to compensate for
the change in the inhibitory population. Thus the fraction of JEE weight-space that has
to be invested per pattern is larger and maximal storage capacity is reached for a smaller
number of patterns.
By contrast, αc increases with growing JI . Recall that a large value of JI augments the
average excitatory-to-excitatory synaptic strength, JEE , thereby increasing the weight
space. This implies that strong inhibitory feedback, for instance through high inhibitory
firing rates, is beneficial to the network’s memory storage ability. Analogously, decreas-
ing h̃red, has a similar impact on αc, where, however, h̃red ≥ 0 must be obeyed.
In order to visualise the discussed effects we compute αc in function of JI and σ2

eff . Fig-
ure 4.5 shows this for excitatory input patterns drawn from a Gaussian distribution with
hE = −7 and σ2

hE
= 100 and transduction function parameters set to β = 5 and ν0 = 4.

Furthermore we kept h̃red = 2. The global maximum of αc over the shown parameters is
clearly achieved for large JI and small σ2

eff .
The conclusion we can draw from our considerations is the following. In order to obtain
high critical capacity in a two population network where only excitatory-to-excitatory
connections can be learnt, inhibition has to have a strong, but uniform effect on the
excitatory population. The fact that in cortex inhibitory firing rates are found to be
larger than excitatory ones [Gentet et al. (2010); Beloozerova et al. (2003); Mitchell et al.
(2007); Fujisawa et al. (2008)] is consistent with our optimality argument. However,
variability associated with inhibition is generally large; the variance of inhibitory firing
rates is much larger than that of excitation [see e.g. Gentet et al. (2010)] and inhibitory
synaptic weights seem to be no less variable than excitatory ones [Chapeton et al. (2012);
Levy and Reyes (2012); Avermann et al. (2012)]. This is not consistent with the predic-
tion of our model. We thus may conclude that cortical memory storage does not only
involve learning of the excitatory connections but relies significantly on inhibitory plas-
ticity, whose importance is supported by broad evidence [see e.g. Dorrn et al. (2010);
Kullmann et al. (2012)].
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Figure 4.6: Critical capacity and information measure for two populations with plastic
E-to-E connections. A): αc is given in function of the input-pattern statistics. B):
Same as A) for I. Parameters are: hE

ext = 0.2, hI
ext = 0, JEI = 0.6, JIE = 0.8,

JII = 0.2, Var[JEI ] = Var[JIE ] = Var[JEE ] = 0.3, β = 5, v0 = 4Hz; dark blue
regions in both plots indicate input region for which the network is not balanced.

4.3.2 The full system revisited

A crucial difference between the one population model in section 4.2 an the two population
model still remains to be explored, namely the effect of the average firing rates on the
critical capacity. In the case of one population, γI is very sensitive to changes in the
average rate of the patterns. By contrast, ν2E enters the numerator of γEE but as well
the denominator. Naively, this suggests that critical capacity increases with growing νE .
Furthermore, in the limit of very large νE , αc should become independent of the average
firing-rates. Indeed, this is exactly the behaviour of the reduced model from the previous
section. However, deriving the reduced model we neglected the fact that the inhibitory
quenched noise depends on the statistics of the excitatory patterns via equation 4.39.
In order to include this dependence we have to come back to the full system. Figure 4.6A
shows αc in function of hE and σ2

hE
. As before, inputs to the excitatory population are

drawn from a Gaussian distribution with the respective parameters. The corresponding
statistics for the inhibition were calculated self-consistently from equation 4.30. All
parameters used for this figure are given in the caption. The main change with respect
to the one-population network is the obvious shift of the optimal region (compare to
figure 4.2). Instead of extending to very negative average inputs, the optimal region is
now confined to intermediate values of hE . As can be seen, for every value of σ2

hE
exists

an optimal hE . This behaviour can be understood best by separately considering the two
contributions to γEE , namely the term proportional to σ2

hE
and the term proportional to
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Figure 4.7: Contributions of the two terms in equation 4.48. A): Term proportional to
σ2
h. B): Term proportional to σ2

eff . Parameters as in figure 4.6; note the log-scale.

σ2
eff :

γEE =
σ2
h · ν2E

σ2
νE
· h2eff

+
σ2
νI
· J2

IE · ν2E
σ2
νE
· h2eff

. (4.48)

As we have seen above (section 4.2.1), the ratio
ν2E
σ2
νE

becomes independent of the average

input for very negative hE as the inputs enter the exponential part of φ. In this limit,

since
ν2E
σ2
νE

is finite, the first term of γEE is dominated by the asymptotic behaviour of h2eff .

As hE and thus νE decrease, h2eff approaches zero and the first term of γEE diverges, as
shown in figure 4.7, panel A.
By contrast, the second term does not diverge, as σ2

νI
goes to zero as well. Instead, it

diverges in the opposite limit, that is, for large positive hE . Note that in this limit the
neurones of both population operate in the linear part of φ and the variances of the firing
rates depend linearly on the input firing rates. Hence, it can be straightforwardly seen
from equation 4.39 that σ2

νI
(and σ2

hI
) are a quadratic function of νE . This relationship

underlies the divergence of γEE for large hE shown in panel B of figure 4.7.

Finally, as in the single population model, the reduction of
σ2
hE

σ2
νE

with growing σ2
hE

is

responsible for the increase of αc and thus the broadening of the optimal region in figure
4.6.
The retrievability of the two population network can be investigated similarly as in the
previous case. As before, the strength of the signal is given by σ2

hE
. However, the

noise consists now of two contributions, corresponding to the temporal variances of both
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Figure 4.8: Firing-rate distributions in the two population scenario. A): Exemplary
firing-rate distributions of excitatory (red) and the inhibitory (blue) population for
excitatory inputs in optimal region with hE = −15, σ2

hE
= 295; corresponding in-

hibitory inputs are hI = 14.9, σ2
hI

= 62.0; firing rates: νE = 1.95Hz, σ2
νE

= 16.45Hz2,
νI = 12.43Hz, σ2

νI
= 32.29Hz2. B): Semi-log plot of the same distributions. Parame-

ters as in figure 4.6.

neuronal populations. We can write:

σ2
N ∼ J2

EE · νE + J2
EI · νI . (4.49)

The quantity I calculated with the above σ2
N is shown in figure 4.6B. Contrary to the

single population case, the optimal region is shifted to smaller values of hE , that is to-
wards the exponential part of φ. The reason for this effect lies in the contribution of the
inhibition to σ2

N , since large inhibitory firing rates create noise, but add nothing to the
signal.
Concluding, we stress that given the large number adjustable free parameters, any analy-
sis has to focus on the general, qualitative behaviour of the network and we must refrain
from making quantitative statements. But whereas position and width of the optimal
region may shift in function of the chosen parameters, the asymptotic behaviour exposed
here holds in general. We can thus still make the following general remarks.
First, optimal storage capacity and the information measure I are subject to three con-
straints: νE should not be too small, otherwise heff will diverge; σ2

νI
should not be

too big; and the ratio
σ2
hE

σ2
νE

should remain small. The first of these causes the biggest

qualitative difference with respect to the single population model, where optimal critical
capacity is achieved for very small inputs, that is, small average firing rates. By contrast,
the two-population network prefers larger average firing rates. However, requiring that
patterns are retrievable reduces this difference between the two cases.
Second, in the two population scenario, the distribution of inputs in the optimal re-
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gion move closer to the linear part of the transduction function. This effect is small for
the excitatory population, so that the excitatory firing-rate distribution remains highly
skewed and almost log-normally distributed, with some deviations at high rates. For the
inhibitory population, however, this shift is significant and skewness is highly reduced.
Examples of firing-rate distributions from the optimal input region are shown in figure
4.8. We see that inhibitory activity is almost normally shaped. This phenomenon is in
contrast to what is observed experimentally [see e.g. Buzsáki and Mizuseki (2014)]. As
in the previous section we see that learning that is limited to the excitatory-to-excitatory
synapses leads to predictions for properties of inhibitory neurones that are not consistent
with experimental data. It is in fact intriguing that the population endowed with plas-
ticity attains physiologically realistic properties through learning and the one without
plasticity does not. The conclusion of this section is thus in line with the previously
stated one: plastic inhibition seems to be a crucial ingredient in cortical learning.

4.4 Outlook: numerical simulations

We considered throughout this chapter the problem of learning a certain number of
patterns in a recurrent neural network by adjusting the synaptic weights. Recall that the
requirement for a solution to the learning problem, equation 4.11, demands that patterns
are fixed-points of the network dynamics. Our theory makes strong statements about
the existence of solutions to this problem, but not about the stability of these solutions.
To test whether the memories we want to impose on the synaptic structure really lead
to a network that is multi-stable we can resort to numerical simulations.
In this section we want to give a short overview over some interesting observation made
when running numerical simulations of our attractor networks. We concentrate here on
simulations of the single inhibitory population; the issues we want to point out are similar
in the two population case. It is important to stress that the results described here need
further thorough investigation and are thus rather preliminary.

Weight learning

The first step to be taken is the adjustment of the weight matrix such that equation
4.11 is satisfied. As we have no local learning rule, we have to make use of a global
cost (or error) function which we can minimise. Let us denote the desired target input,
that is, the input patterns we wish to learn, by h̃µi . Given any weight matrix we can
then calculate the input patterns that the network actually will produce. The squared
difference of target inputs h̃µi and actual inputs hµi defines an error in function of the
matrix J as follows:

εi(J) =
1

2

∑

µ

(

h̃µi − hµi

)2
. (4.50)

This error can be minimised via gradient descend methods. At this, the weights Jij are
updated repeatedly according to the following rule:

Jij ← (Jij − η ·∆Jij) · θ (Jij − η ·∆Jij) , (4.51)
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where η is the learning rate and θ(·) denotes the Heaviside step-function. θ(·) enforces
that the synaptic weights remain non-negative. Furthermore we have:

∆Jij = [▽εi(J)]j

=
1√
N

∑

µ

(

h̃µi − hµi

)

· νµj . (4.52)

The above equations represent the basic framework for weight learning. In our implemen-
tation, we additionally introduce an acceleration of the gradient method due to Nesterov
[Nesterov et al. (2007)].
Apart from η, which has to be fixed empirically, there are two more parameters to be
set for the learning: first, the error tolerance at which the weight updating is considered
sufficient. In all examples shown in this section, we deemed learning sufficient when
each neurone’s individual error satisfied εi < 10−6. Second, we have to define an initial
distribution of the Jij . Note that, while at a storage level that corresponds to αc there
is only one solution to the learning problem, at all levels below αc the space of possi-
ble weights is finite. Therefore, more than one solution exists and we expect the initial
weight distribution J ini

ij to have an effect on the final weight distribution. However, we

observed no significant effect of J ini
ij on the attractor phenomenology. In the following,

we choose J ini
ij to be log-normally distributed with E[J ini

ij ] = Var[J ini
ij ] = 1.0.

Attractor phenomenology

In order to understand whether dynamically stable fixed points can be reliably learnt in
our scheme, we generated and studied several instances of networks with different param-
eters, pattern statistics and sizes. Recall that the equations that govern the dynamics of
the network (and that we used to perform the simulations) are:

τmḣi = −hi +




√
Nhext −

N∑

j=1

Jij√
N

νj



 , (4.53)

νi = φ(hi), (4.54)

with

φ(hi) = ν0 · log
(

1 + exp

(
hi
β

))

. (4.55)

We find that for a rather wide range of transduction function parameters and input pat-
tern statistics the learnt attractors are indeed stable.
To demonstrate an example, we set up a network with N = 2000 neurones and the pa-
rameters hext = 2Hz, β = 5, v0 = 4 and τm = 0.02ms. We then performed learning of
Gaussian input patterns with h = −13, σ2

h = 180. The theoretical critical capacity of
this network is αc ≈ 0.16. As networks of finite size cannot reach capacity levels of αc we
limited ourselves to introduce merely P = 100 patterns, which corresponds to α = 0.05.
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Figure 4.9: Attractor dynamics in a simulated balanced network. A): Temporal devel-
opment of 15 out of 2000 firing rates; for detailed description see the main text. B):
Temporal development of overlaps between target firing rate patterns and the net-
works state; the coloured lines represent overlaps with pattern states that are realised
during the simulation. All input patterns were drawn from a Gaussian distribution
with h = −13, σ2

h = 180, resulting in firing rate patterns with ν = 1.51 Hz, σ2
ν = 8.72

Hz2; network parameters were: hext = 2Hz, β = 5, v0 = 4Hz, τm = 0.02ms

Figure 4.9A illustrates an exemplary simulation over several seconds. Firing rates of 15
randomly drawn neurones are shown. Initially, the inputs of 150 neurones are clamped
for 200ms to values corresponding to attractor number 1; the rest of the network’s rates
and inputs are set the random initial values. This short clamping of less than 10% of the
population suffices to drive the network into attractor state 1. Beginning at t = 3s the
network is perturbed with global external input for 200ms. The fact that the network
returns quickly to the attractor state after the perturbation further shows that this state
is stable. Finally, at t = 6s and t = 10s the population receives external inputs that are
proportional to the differences between its attractor states before and after the inputs.
As can be seen, the network is able to switches reliably between states.
In order to check that the attractors we observe are indeed the states that were intended,
we can calculate the overlap between the network’s state at each point in time and the
100 patterns injected into the learning algorithm. At this, the overlap is defined as the
correlation coefficient between network state and pattern. Panel B shows the overlap’s
temporal development for the same simulation as in panel A. The coloured lines indicate
overlaps with the 3 attractor states that are effectively realised; these are indeed unity.
Note that the relatively large overlap among patterns is a finite size effect; in the limit
of large N we expect these values to approach zero.
We want to stress that the temporal sequence shown in 4.9A bears some resemblance to a
classical working memory delayed response task, if we think of the phase between t = 6s
and t = 10s as the delay period [see, for instance Fuster (1995); Funahashi et al. (1989)].
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An experimenter who records the neurone indicated by the thick red line, would describe
it as exhibiting persistence activity, coding for the memory in question. According to our
theory however, all neurones in the population code for that memory. The emergence of
a few prominent high rates originates from the strong skewness of the firing-rate distri-
bution.
Although in most cases the learning of the synaptic weights produced the intended net-
work behaviour as shown in the example above, we encountered cases where unexpected
phenomena arose. We can distinguish between two cases. First, for certain parameter
configurations, especially when the gain of the transduction function is too large, the
network dynamics can become chaotic. It is not clear a priori whether it makes sense
to consider pattern storage in this regime, that is, whether the chaotic nature of the
dynamics can be consistent with multiple separate attractors. Thus chaos is potentially
deleterious to pattern storage in the sense discussed throughout this chapter. As our
theory for critical storage capacity cannot distinguish between chaotic and non-chaotic
regimes we may have to introduce a further bound on αc based on dynamical considera-
tions.
The second issue concerns the appearance of stable network states that are different from
those imposed during learning. Under some circumstances an additional stable state with
equal average firing rate but smaller variance can arise alongside the stable pattern states.
Interestingly, this low variance state has an intermediate overlap with all other states in
the network. In other instances, the learnt patterns are not stable. In this case there
appears a new stable attractor in the vicinity of each learnt pattern. These states are
highly correlated with their learnt, unstable counterparts, but have higher variances. So
far, it is not clear under which conditions these states appear. Interestingly, their oc-
currence is higher when we use a purely exponential transduction-function. This could
indicate either an effect of very high rates or numerical problems. Without doubt, these
issues have to be investigated thoroughly in future research.

Stability eigenvalues

A final intriguing observation we want to report is linked to the eigenvalue spectrum of
the attractors. Given the weight-matrix J after learning, we can numerically calculate a
stability matrix Sµ separately for each attractor state. It is given by:

Sµ = IN×N +
J√
N
· φ′(hµ∗), (4.56)

where IN×N denotes the identity matrix inN dimensions and φ′(hµ∗) is the first derivative
of the transduction function, evaluated at the µth attractor state hµ∗. The eigenvalues
of Sµ provide us with information about the stability of pattern µ.
Figure 4.10 visualises the eigenvalues that are associated with the second attractor from
figure 4.9 (between t = 6s and t = 10s). The phenomenology shown here is typical. First
of all, note that the real parts of all eigenvalues are negative; the attractor is therefore
stable. The very negative real eigenvalue in panel A is linked to the non-negativity of
Sµ [Frobenius (1912)], which can be seen from the fact that all synaptic weights are
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Figure 4.10: Eigenvalues from stability analysis in the complex plane. A): Full view of
the eigenvalues of the second attractor state from 4.9; all eigenvalues have strictly
negative real parts. B): Zoomed view; the disk on the right contains P − 1 = 99
eigenvalues. Same parameters as in figure 4.9.

non-negative and φ′ is positive, since φ is a monotonically increasing function. Panel B
is a zoomed version of panel A. Two disk-like structures can be spotted: the disk on the
left stems from the random, unstructured part of the synaptic weight matrix J . It can
be shown that the distribution of eigenvalues of a random matrix with independently
and identically distributed entries uniformly covers a circular disk in the complex plane
[Tao et al. (2010)]. The fact that the uniform distribution of eigenvalues inside this disk
is distorted in our case can presumably be accounted for by correlations between the
weights and the firing rates. The disk on the right features an interesting property: the
number of eigenvalues in this structure corresponds to P − 1, that is 99 in the example
at hand. This observation was reliably made in all investigated cases. We thus may
conclude that this second disk is tied to the structured part of the weight-matrix.
Finally, we can report that we repeatedly observed the following relationship between the
eigenvalue spectrum and the stability of the attractors states. On the one hand, it seems
that an attractor’s destabilisation in favour of low or high variance states is associated
with one or a few eigenvalues from the second disk crossing the real axis. On the other
hand, the transition to chaos appears to be governed by the crossing of eigenvalues from
the first disk. We stress that these interpretations are not definitive and the mentioned
phenomena need to be further investigated in a more systematic and extensive way.

4.5 Conclusion

In this chapter, we have derived three important results. First, starting from experimen-
tal findings and reasonable assumptions about cortical activity we showed that neural
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networks that store an extensive number of memory patterns are necessarily balanced.
The balanced state is needed to keep the quenched fluctuations in the average input,
which are indicative of the network’s state, finite. Second, requiring that memory storage
capacity and retrievability are optimal sets balanced networks in a working point where
they display a series of properties that are reminiscent of cortical activity. These include
a highly skewed firing-rate distributions, a pronounced temporal spiking variability and
generally low firing rates. Thus we suggest that these phenomena can be interpreted as
signatures of networks that are optimised for memory function. Third, when we consider
networks with both excitatory and inhibitory neurones, the requirement of optimality
predicts features of inhibitory activity that are presumably incompatible with experi-
mental findings. This suggests that modification of inhibitory connections is a crucial
ingredient in cortical plasticity, as is indeed reported.

For a general discussion of these results the we refer to the next chapter.

Appendix

The volume of weight space

Let us consider the inputs to an excitatory neurone, given by equation 4.29. To make the
notation handier, we suppress the ’E’ index when writing the excitatory firing rates and
inputs. Likewise, we write NE = N and JEE = J . In the steady state, each excitatory
pattern νµj has to satisfy:

hµ =
√
NhE

ext −
NI∑

j=1

JEI
j√
c ·N

νI,µj +
N∑

j=1

Jj√
N

νµj . (4.57)

For convenience we define:

zµ = hµ −




√
NhE

ext −
NI∑

j=1

JEI
j√
c ·N

νI,µj +
N∑

j=1

Jj√
N

νµj



 . (4.58)

The constraint that the network should contain P patterns can be written formally as:

P∏

µ=1

δ(zµ) = 1. (4.59)
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In order to compute the average logarithm of the weight-space’s volume, we make use of
the replica method. We can write:

〈V n〉 =

〈
∫




∏

j,α

dJα
j




∏

µ,α

δ(zµα)

〉

=

〈
∫




∏

j,α

dJα
j




∏

µ,α

∫ +∞

−∞

dxµ
α

2π
exp(ixµ

α · zµα)
〉

=

∫



∏

j,α

dJα
j




∏

µ

∫ +∞

−∞

(
∏

α

dxµ
α

2π

)〈

exp(i
∑

α

xµ
α · zµα)

〉

(4.60)

Next, we expand the exponential in the above equation. We will make use of the following
order-parameters:

1

N

∑

j

(
Jα
j

)2
= Qα (4.61)

1

N

∑

j

Jα
j J

β
j = qαβ (4.62)

1

N

∑

j

Jα
j = J +

Mα

√
N

=
heff

ν
+

Mα

√
N

, (4.63)

where, as before we have heff =
√
c · JEI · νI − hEext. We start the expansion by writing:

〈

exp(i
∑

α

xµ
α · zµα)

〉

= 1 + i
∑

α

xµ
α · 〈zµα〉+

i2

2

∑

α,β

xµ
αx

µ
β ·

〈

zµαz
µ
β

〉

+ ... (4.64)

Let us calculate the first two moments of zµα separately:

〈zµα〉 = 〈hµ〉
︸︷︷︸

h

−〈νµ〉
︸︷︷︸

ν

·Mα (4.65)

〈

zµαz
µ
β

〉

= σ2
h + J2

EI · σ2
νI

︸ ︷︷ ︸

σ2

eff

+(h− νMα) · (h− νMβ) + qαβσ2
ν (4.66)

Thus the expansion of the exponential can be re-summed as:
〈

exp(i
∑

α

xµ
α · zµα)

〉

= 1 + i
∑

α

xµ
α

(
h− ν ·Mα

)

︸ ︷︷ ︸

bα

−1

2

∑

α,β

xµ
αx

µ
β

(
σ2
eff + (h− νMα) · (h− νMβ) + qαβσ2

ν

)
+ ...

= 1 + i
∑

α

xµ
α · bα −

1

2

∑

α

(xµ
α)

2
(
(bα)2 + σ2

eff +Qασ2
ν

)
− 1

2

∑

α 6=β

xµ
αx

µ
β




bαbβ + σ2

eff + qαβσ2
ν

︸ ︷︷ ︸

cαβ




+ ...

= exp



i
∑

α

xµ
α · bα −

1

2

∑

α

(xµ
α)

2 · (σ2
eff +Qα · σ2

ν)−
1

2

∑

α 6=β

xµ
αx

µ
β · cαβ



 (4.67)
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From this point on, the calculation is identical for the two cases of one population and
two populations. We introduce conjugate momenta M̄α, Q̄α and q̄αβ :

1 =

∫
dMαdM̄α

2π/
√
N

exp



−iM̄α




∑

j

Jα
j −N · J −

√
N ·Mα







 (4.68)

1 =

∫
dQαdQ̄α

2π/N
exp



iQ̄α




∑

j

(Jα
j )

2 −N ·Qα







 (4.69)

1 =

∫
dqαβdq̄αβ

2π/N
exp



iq̄αβ




∑

j

Jα
j J

β
j −N · qαβ







 (4.70)

Rearranging and factorising the products
∏

µ,j yields for 〈V n〉:

〈V n〉 ∝
∏

α

∫

dM
α
dM̄

α
dQ

α
dQ̄

α
∏

α<β

∫

dq
αβ

dq̄
αβ ×

× exp



N



−i
∑

α<β

q
αβ

q̄
αβ − i

∑

α

Q
α
Q̄

α + i
∑

α

M̄
α
J







×

× exp



N ln







∏

α

∫ ∞

0

dJ
α exp



−i
∑

α

M̄
α
J
α +

∑

α

Q̄
α · (Jα)2 +

1

2

∑

α 6=β

q̄
αβ

J
α
J
β













×

× exp



P ln







∏

α

∫ ∞

−∞

dxα

2π
exp



i
∑

α

xαb
α − 1

2

∑

α

(xα)
2(σ2

eff +Q
α · σ2

ν)−
1

2

∑

α 6=β

xαxβc
αβ















(4.71)

Now, we assume replica symmetry and redefine M̂ = iM̄ , Q̂ = iQ̄ and q̂ = iq̄. Let us
consider equation 4.71 line by line. In the limit n → 0, the first line of equation 4.71
becomes:

exp

(

N

[

−1

2
(n− 1)n · qq̂ − n ·QQ̂+ n · M̂J

])

= exp

(

Nn

[
1

2
qq̂ −QQ̂+ M̂J

])

(4.72)

The second line of equation 4.71 yields:

exp



N ln







∏

α

∫ ∞

0

dJ
α exp



−
∑

α

M̂J
α +

∑

α

(Q̂− q̂

2
)(Jα)2 +

1

2

∑

α,β

q̂J
α
J
β















HST
= exp

(

N ln

{

∏

α

∫ ∞

0

dJ
α

∫ +∞

−∞

dt

i
√
2πq̂

exp

(

−
∑

α

J
α(M̂ + it) +

∑

α

(Q̂− q̂

2
)(Jα)2 +

t2

2q̂

)})

= exp

(

N ln

{

∏

α

∫ ∞

0

dJ
α

∫ +∞

−∞

du√
2π

exp

(

∑

α

J
α(
√

q̂u− M̂) +
∑

α

(Q̂− q̂

2
)(Jα)2 − u2

2q̂

)})

= exp

(

N ln

{∫ +∞

−∞

Du

[∫ ∞

0

dJ exp

(

J(
√

q̂u− M̂) + (Q̂− q̂

2
)J2

)]n})

n→0
= exp

(

Nn

∫ +∞

−∞

Du ln

{∫ ∞

0

dJ exp

(

J(
√

q̂u− M̂) + (Q̂− q̂

2
)J2

)})

(4.73)
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The third line of equation 4.71 gives:

exp



P ln







∏

α

∫ ∞

−∞

dxα

2π
exp



i
∑

α

xαb−
1

2

∑

α

(xα)
2(Q− q)σ2

ν − 1

2

∑

α,β

xαxβc















HST
= exp

(

P ln

{

∏

α

∫ ∞

−∞

dxα

2π

∫ ∞

−∞

dt√
2πc

exp

(

i
∑

α

xα(b+ t)− 1

2

∑

α

(xα)
2(Q− q)σ2

ν − t2

2c

)})

= exp

(

P ln

{

∫ ∞

−∞

Du
∏

α

∫ ∞

−∞

dxα

2π
exp

(

i
∑

α

xα(b+
√
cu)− 1

2

∑

α

(xα)
2(Q− q)σ2

ν

)})

= exp

(

P ln

{

∫ ∞

−∞

Du
1

(2π)n

(√

2π

(Q− q)σ2
ν

)n

exp

(

−1

2

∑

α

(b+
√
cu)2

(Q− q)σ2
ν

)})

= exp

(

P ln

{

∫ ∞

−∞

Du

[

1√
2π

√

1

(Q− q)σ2
ν

exp

(

−1

2

(b+
√
cu)2

(Q− q)σ2
ν

)

]n})

n→0
= exp

(

Pn

∫ ∞

−∞

Du ln

{

1√
2π

√

1

(Q− q)σ2
ν

exp

(

−1

2

(b+
√
cu)2

(Q− q)σ2
ν

)

})

= exp

(

Pn

∫ ∞

−∞

Du

(

− ln(σν)−
1

2
ln(2π)− 1

2
ln(Q− q)− 1

2

(b+
√
cu)2

(Q− q)σ2
ν

))

= exp

(

Pn

(

− ln(σν)−
1

2
ln(2π)− 1

2
ln(Q− q)− 1

2

b2 + c

(Q− q)σ2
ν

))

(4.74)

We can disregard all parts which do not depend on the order-parameters, since they do
not affect the saddle point. We get:

〈V n〉 ∝
∫

dMdM̄dQdQ̄dqdq̄ exp(NnF ) (4.75)

with

F =
1

2
qq̂ −QQ̂+ M̂J

+

∫ +∞

−∞

Du ln

{∫ ∞

0

dJ exp

(

J(
√

q̂u− M̂) + (Q̂− q̂

2
)J2

)}

+α

(

−1

2
ln(Q− q)− 1

2

(h− ν ·M)2 + σ2
eff + qσ2

ν

(Q− q)σ2
ν

)

(4.76)

Saddle point equations and critical capacity

The value of 〈V n〉 is dominated by the extremum of F . To obtain the values of the
order parameters at the extremum, we set the derivatives of F with respect to the order-
parameters to zero. At first:

∂F

∂M
= ν2M − νh

!
= 0

⇔M =
h

ν
(4.77)
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With this result for M follows that:

∂F

∂Q
= −Q̂+ α

(

− 1

2(Q− q)
+

σ2
eff + qσ2

ν

2σ2
ν(Q− q)2

)

!
= 0

⇔ Q̂ = α
σ2
eff + qσ2

ν − σ2
ν(Q− q)

2σ2
ν(Q− q)2

, (4.78)

and

∂F

∂q
= −1

2
q̂ + α

(

− 1

2(Q− q)
− 1

2(Q− q)
−

σ2
eff + qσ2

ν

2σ2
ν(Q− q)2

)

!
= 0

⇔ q̂ = α
σ2
eff + qσ2

ν

σ2
ν(Q− q)2

. (4.79)

As can be seen from the above equations, Q̂ and q̂ diverge in the limit q → Q. Following
Brunel et al. (2004), we rewrite the quantities Q̂ and q̂ in order to highlight their divergent
behaviour:

q̂ =
C

(Q− q)2
(4.80)

q̂ − 2Q̂ =
α

Q− q
, (4.81)

with C =
α(σ2

eff
+qσ2

ν)

σ2
ν

.

Before evaluating the derivatives of F with respect to the conjugated order parameters
q̂, Q̂ and M̂ , it is advantageous to rewrite the integral over J appearing in F (equation
4.76):

∫ ∞

0

dJ exp

(

J(
√

q̂u− M̂) + (Q̂− q̂

2
)J2

)

=

∫ ∞

0

dJ exp

(

−1

2

{

(q̂ − 2Q̂) · J2 + 2(M̂ −
√

q̂u) · J
})

=

∫ ∞

0

dJ exp




−

1

2







√

q̂ − 2Q̂ · J +
M̂ −

√
q̂u

√

q̂ − 2Q̂







2



 exp

(

(M̂ −
√
q̂u)2

2(q̂ − 2Q̂)

)

With the choices

κ =
M̂ −

√
q̂u

√

q̂ − 2Q̂

, z =

√

q̂ − 2Q̂ · J + κ, (4.82)

we obtain:
∫ ∞

0

dJ exp

(

J(
√

q̂u− M̂) + (Q̂− q̂

2
)J2

)

=

∫ ∞

κ

dz
√

q̂ − 2Q̂

exp

(

−z2

2

)

exp

(
κ2

2

)

=
1

√

q̂ − 2Q̂

exp

(
κ2

2

)√
π

2
erfc

(
κ√
2

)

(4.83)
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Now the derivative of F with respect to M̂ can be written as:

∂F

∂M̂
= J +

∂

∂M̂

∫ ∞

−∞

Du

(
κ2

2
− 1

2
ln(q̂ − 2Q̂) + ln

{√
π

2
erfc

(
κ√
2

)})

= J +

∫ ∞

−∞

Du

(

κ · ∂κ

∂M̂
− exp

(

−κ2

2

)
∂κ

∂M̂
·
[√

π

2
erfc

(
κ√
2

)]−1
)

= J + M̂ · Q− q

α
−

√

Q− q

α

∫ ∞

−∞

Du exp

(

−κ2

2

)

·
[√

π

2
erfc

(
κ√
2

)]−1

(4.84)

where we used equation 4.81 and the fact that
∫∞
−∞Du · u = 0. From equations 4.80 -

4.82 we see that κ diverges in the limit q → Q, while its sign is given by the value of u
as:

u >
M̂√
q̂
⇒ κ→ −∞

u <
M̂√
q̂
⇒ κ→ +∞ (4.85)

Thus, since erfc
(

κ√
2

)−1
→ +∞ for κ→ +∞, the integral in equation 4.84 is dominated

by values u < M̂√
q̂
. This implies that we can expand

√
π
2 erfc

(
κ√
2

)

≈ exp
(
−κ2

2

)
1
κ . With

B = M̂√
q̂
we can write:

∂F

∂M̂
= J + M̂ · Q− q

αc

− Q− q

αc

∫ B

−∞

Du · (M̂ −
√

q̂u)

= J +
Q− q

αc

√

q̂

(

M̂√
q̂
−

∫ B

−∞

Du ·
(

M̂√
q̂
− u

))

= J +
Q− q

αc

√

q̂

(

B −
∫ B

−∞

Du · (B − u)

)

= J +
Q− q

αc

√

q̂







B · 1

2

[

1− erf

(
B√
2

)]

︸ ︷︷ ︸

H(B)

− 1√
2π

exp

(

−B2

2

)

︸ ︷︷ ︸

G(B)








!
= 0

⇔ J · αc =
√
C (G(B)−B ·H(B))

⇔ C =
J
2 · α2

c

G(B)−B ·H(B)
(4.86)
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With ∂κ
∂Q̂

= M̂−
√
q̂u

α
3
2

(Q− q)
3

2 , we obtain for ∂F
∂Q̂

:

∂F

∂Q̂
= −Q+

∫ ∞

−∞

Du

(

κ · ∂κ
∂Q̂

+
1

q̂ − 2Q̂
− exp

(

−κ2

2

)
∂κ

∂Q̂
·
[√

π

2
erfc

(
κ√
2

)]−1
)

= −Q+
Q− q

αc

+
(Q− q)2

α2
c

{

M̂2 + q̂ −
∫ B

−∞

Du
(

M̂2 − 2M̂
√

q̂u+ q̂u2
)
}

= −Q+
Q− q

αc

+
(Q− q)2

α2
c

q̂

{

M̂2

q̂
+ 1−

∫ B

−∞

Du

(

M̂2

q̂
− 2

M̂√
q̂
u+ u2

)}

= −Q+
Q− q

αc

+
(Q− q)2

α2
c

q̂

{

B2 + 1−
∫ B

−∞

Du
(
B2 − 2Bu+ u2

)

}

= −Q+
Q− q

αc

+
C

α2
c

{
(B2 + 1) ·H(B)−B ·G(B)

} !
= 0 (4.87)

Analogously, ∂F
∂q̂ yields:

∂F

∂Q̂
= q +

Q− q

αc

(H(B)− 1)− C

α2
c

{
(B2 + 1) ·H(B)−B ·G(B)

} !
= 0 (4.88)

Adding equations 4.87 and 4.88 we obtain:

αc = H(B) (4.89)

On the other hand, subtracting equation 4.87 from 4.88 yields:

Q+ q +
Q− q

αc

(H(B)− 2)− 2
C

α2
c

{
(B2 + 1) ·H(B)−B ·G(B)

}
= 0

q→Q⇒ Q =
C

α2
c

{
(B2 + 1) ·H(B)−B ·G(B)

}
(4.90)

Since C =
α(σ2

eff
+Qσ2

ν)

σ2
ν

, we can solve the above equations for C:

C =
α2
cσ

2
eff

σ2
ν · (αc − (B2 + 1) ·H(B) +B ·G(B))

(4.91)

Finally, by comparing this with expression 4.86 and using αc = H(B), we obtain:

B

G(B)−B ·H(B)
=

σ2
eff

σ2
ν · J

2 =
σ2
eff · ν2

σ2
ν · h2

ext

(4.92)

This equation defines the parameter B in function of the statistics of the firing-rate
patterns νµi and the inputs hµi .
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Chapter 5

Discussion

The work presented here comprises two main results. On the one hand, we developed
a new methodology for the analysis of electrophysiological recordings of single-synapse
transmission. On the other hand, we devised a network theory of memory storage that
strongly links the balanced state with the network’s ability to have multiple stable states,
at the same time integrating a series of properties of cortical activity. In this chapter
we will first discuss implications of these results separately and will then explore where
connections can be made.

Probabilistic analysis of synaptic transmission

Central synapses are small and noisy, and, as far as cortex is concerned, this is the
rule, not the exception. We have seen that the high variability of synaptic transmission
entails significant difficulties when we want to assess synaptic properties by means of
electrophysiology. Here, we devised a statistically sound method to fully quantify the
quantal and dynamic nature synaptic transmission. We have shown in chapter 3 that
our approach makes it possible to extract more information from experimental recordings
precisely because we harness the variability present in those. As a consequence, we were
able to extract a bigger number of parameters from the same data sets. At this, the
quality of the estimates was at least as good, if not better, as the one obtained with the
standard least-squares fit.
The most important novelty introduced by our method is certainly the possibility to use
any input protocol for synaptic analysis. The basic finding we presented in chapter 3
is that non-repeated Poisson input trains yield better parameter estimates than regular
trains. This is, however, almost secondary compared to the fact that with our method
synaptic parameters can be estimated from realistic spike trains that were, for instance,
obtained during in vivo recordings [see e.g. Klyachko and Stevens (2006)]. In this way
synapses can be studied in more realistic environments, and phenomenological param-
eters, which necessarily remain to a considerable degree descriptive, would be endowed
with more significance. Beyond that, our method could also be used to analyse synaptic
responses recorded in vivo, for example from certain thalamo-cortical connections which
are known to be mono-synaptic [Ganmor et al. (2010)].

125



It would be interesting to adapt our approach to optical data. It should be possible to
probabilistically model the dependence between the amount of neurotransmitter that is
released at a synapse and the luminosity of, for instance, some voltage sensitive dye. In
this way the same analysis presented here could be transferred to different experimental
techniques.
Finally, the method could be extended to cope with recordings that involve more than
one synaptic connection. If, for instance, the recorded neurones receive inputs from a
pre-synaptic population that can be reliably stimulated, our approach could be used to
estimate not single parameters of an individual synapse, but the distributions of parame-
ters of the synaptic population involved. The estimation method we presented in chapter
3 can straightforwardly be adapted to this situation.

A theory of cortical memory storage

Our most important finding is that extensive memory storage implies balance. We saw
that the balanced state is needed to keep the quenched fluctuations in the average input,
which are indicative of the network’s state, finite. This reasoning mirrors the argument
made in Hansel and van Vreeswijk (2012), where the balanced state is invoked to account
for the selectivity of V1 neurones in rodents. In rodents, no functional map of orienta-
tion selectivity is present, suggesting that synaptic connectivity does not (or does not
strongly) correlate with function. But even for the case where connectivity is random,
Hansel and Van Vreeswijk showed that selectivity arises in the balanced state in response
to very weakly tuned inputs. The mechanism is the same as in our case: the balanced
network is sensitive to quenched fluctuations in the external inputs, which contain the
relevant information. A significant difference is that in our theory the quenched input
fluctuations derive from the synaptic connectivity and are thus generated by the network
itself. By adjusting the synaptic weights, quenched fluctuations can be controlled and
memory patterns can be learnt.
The requirement of optimal memory storage capacity and retrievability leads to predic-
tions that are consistent with many properties of cortical activity. By virtue of a similar
mechanism as in Roxin et al. (2011), we obtain highly skewed firing-rate distributions
while we generally have low firing rates. Furthermore, the balanced state provides a
pronounced temporal spiking variability. We want to stress that all previous accounts of
these phenomena are mechanistic, but not functional. That is, they explain how certain
properties of cortical activity can be generated, but not why they are the way they are.
Our theory proposes a functional explanation. Indeed, it suggests that crucial properties
of cortical activity can be interpreted as signatures of networks that are optimised for
memory storage.
The study of networks with both excitatory and inhibitory neurones where only excitatory-
to-excitatory synapses are plastic indicates that the average inhibitory firing-rate should
be larger than the excitatory one, which is indeed consistent with data. However, the
deteriorating effect of quenched inhibitory noise, which experimental work suggests to be
rather large, indicates that the missing inhibitory plasticity has an important impact on
the statistics of cortical activity. Indeed, more and more evidence for inhibitory plasticity

126



has become available in recent years [Dorrn et al. (2010); Kullmann et al. (2012)].
The memory model we propose does not feature a baseline state. Consistent with exper-
imental results, the global state - or macrostate - of the network does not change. This
state sets the system in a working point that determines it memory storage properties,
in particular the number of microstates that the system can maintain.
In recent years, some studies have put forth evidence that persistent activity of memory
cells is much less stable than previously assumed [see e.g. Romo et al. (1999, 2002)]. A
large variety of trajectories has been reported. In view of this, some authors have chal-
lenged the classical attractor picture and developed WM models based on liquid state
machines [Ganguli et al. (2008); Sussillo and Abbott (2009); Barak et al. (2010)]. In
these networks, information about a stimulus is stored in the transient dynamics.
If we decide to agree with the claim that persistent activity is not well described by clas-
sical attractor networks, we can resort to the following conclusions. On the one hand,
we may say that our model is rather a model for the storage and recall of long-term
memory than for WM (which includes also the storage of unknown items). Indeed, a
recent interesting study Barak et al. (2013) compared different types of memory net-
works, showing that different strategies of memory storage may corresponds to different
degrees of proficiency in a task associated with that memory. According to the authors,
liquid-state machines seem to be better fitted explaining experimental findings related to
WM of novel stimuli. The attractor network, on the other hand, featuring the highest
degree of synaptic structuring, seems to best represent optimal performance of highly
trained animals. In this view, our model would be most adequate to explain storage and
retrieval of stable long-term memories.
Another option we need to consider is that reported variable trajectories can still be a
sign of attractor dynamic. If the working point of our attractor network is set in the
vicinity of the bifurcation to the chaotic regime, transient responses can become quite
long before reaching the steady-state. This could completely account for the mentioned
phenomenology. Interestingly, increasing the gain of the neuronal transduction function
both increases critical capacity of our network and draws it closer to the chaotic bifur-
cation.
Alternatively the variability in firing-rate trajectories could be explained if we set up our
networks with correlated patterns and include a source of noise. As shown in Mongillo
et al. (2003), this can cause the network activity to switch between similar attractors
during delay activity, thereby causing seemingly non-stationary persistent activity pat-
terns.
We have not addressed so far another crucial feature of the theory. As shown in Brunel
et al. (2004) (and likewise used in Chapeton et al. (2012) and Clopath and Brunel
(2013)), the replica-formalism can also make predictions about the distribution of synap-
tic weights. At critical capacity, this distribution features a large peak at zero and the
positive part of a Gaussian that has a negative mean. The fraction of silent synapses S
is given by the simple relation S = 1 − αc. This implies that for the typical capacity
values we find in the region of optimal information, 80% - 90% of all connections are
silent. Thus, the theory also predicts the well reported experimental finding that cortical
connectivity is sparse.
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However, the theoretical weight distribution at critical capacity features a tail that falls
off according to a Gaussian curve. This is not consistent with experimental findings that
suggest that cortical synaptic weights, like firing-rates, are distributed log-normally [see
e.g. Song et al. (2005); Levy and Reyes (2012); Avermann et al. (2012); Buzsáki and
Mizuseki (2014)]. It has been argued that this discrepancy could be mitigated by finite
size effects [Chapeton et al. (2012)], nonlinear summation of synaptic inputs, or the fact
that memory storage remains subcritical [Barbour et al. (2007)].
Subcriticality has another advantage. At critical capacity, there is only one solution to
the weight learning problem. Thus, it can be expected that, in this situation, any per-
turbation of the synaptic weights can severely limit the network’s reliability. If learning
remains subcritical, the only effect of noise might be to move the synaptic weights such
that they stay inside the finite volume of solutions. It should be in principle straightfor-
ward to investigate in numerical simulations how the network’s robustness depends on
the magnitude of the noise and the number of stored patterns.
Directly relevant to this issue is the recent experimental finding that spine-sizes of ex-
citatory cortical neurones - which are a good proxy for synaptic efficacy - continuously
change their size [Loewenstein et al. (2011)]. These spine dynamics, which include ap-
pearance of new spines and disappearance of existing spines, occur on the timescale of
days. It would be interesting to study the quantitative effects of these changes on the
dynamics of our attractor networks for different capacity levels.
A general strategy to gain a better understanding of the questions linked to the synaptic
weights could be to use the cavity method. This approach can be employed to obtain the
same results as the replica method [Mézard (1989)], but allows to get a better intuitive
understanding of the variables involved. Of particular interest for us is that the cavity
method involves thermal noise on the synaptic weights, which may make it possible to
relate this approach to the above problems.

A possible connection

A potential connection between our work on synaptic transmission and the memory model
is, quite naturally, the learning process. In a very interesting article, Seung showed that
noisy synapses can in principle emulate a stochastic gradient descent [Seung (2003)].
As synapses have a finite release probability, release failures in response to pre-synaptic
spikes will occur. In function of whether release was successful or not and depending on a
reward signal, the synapses lower or raise their release probability and thereby their total
synaptic efficacy. In this framework, networks are actually capable to learn temporally
structured responses by utilising the synapses’ STP.
Our results from chapter 3, however, indicate that synaptic efficacy is correlated with
the number of release sites, N , and not with release probability. It could be worth
investigating a mechanism that is analog to Seung’s, but involves the increase or decrease
of N . Note that a change in the number of release sites has a similar joint effect on
synaptic reliability and efficacy as the modulation of the release probability; increasing
N both augments synaptic strength and reduces the occurrence of failures. A crucial
difference between such a scheme and the one by Seung is that in the latter synapses can,
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in principle, become deterministic and that their dynamic range is limited. If N is the
adjustable quantity, synapses may become very reliable, but would nevertheless remain
noisy; differences in synaptic efficacy could become very large. This would be indeed
biologically more plausible.
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