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Abstract

The dynamics of structure formation in the Universe is usually described by Newto-
nian numerical simulations and analytical models in the frame of the Standard Model of
Cosmology. The structures are then defined on a homogeneous and isotropic background.
Such a description has major drawbacks since, to be self-consistent, it entails a large
amount of dark components in the content of the Universe.

Different strategies are considered to solve this enigma. Particle physicists have been
searching for some exotic sources of the stress-energy tensor to account for these dark
components. Nevertheless, no direct evidence of these 26% of dark matter and 69% of
dark energy has yet been given. Therefore, some alternative theories to General Relativity
are explored.

To address the problem of dark matter and dark energy, we will neither suppose
that exotic sources contribute to the content of the Universe, nor that General Rela-
tivity is obsolete. We will develop a more realistic description of structure formation in
the frame of General Relativity and thus no longer assume that the average model is
a homogeneous-isotropic solution of the Einstein equations, as claimed by the Standard
Model of Cosmology.

During my work under the supervision of Thomas Buchert, I contributed to the devel-
opment of the perturbative formalism that enables a more realistic description of space-
time dynamics. In the framework of the intrinsic Lagrangian approach, which avoids defin-
ing physical quantities on a flat background, I contributed to the building of relativistic
solutions to the gravitoelectric part of the Einstein equations from the generalization of
the Newtonian perturbative solutions. Moreover, the gravitoelectromagnetic approach I
worked with has provided a new understanding of the dynamics of the analytical solu-
tions to the field equations. Finally, treating globally the spatial manifold, I used powerful
mathematical tools and theorems to describe the impact of topology on the dynamics of
gravitational waves.
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Résumé

La dynamique de formation des structures de l’Univers est habituellement décrite dans
le cadre du modèle standard de Cosmologie par des simulations numériques newtoniennes
et des modèles analytiques. Les structures sont alors associées à des grandeurs définies
sur un fond homogène et isotrope. Cependant, pour que les observations cosmologiques
soient cohérentes avec le modèle standard, il est nécessaire de supposer l’existance d’une
grande proportion d’éléments de nature inconnue dans le contenu de l’Univers.

Différentes stratégies sont envisagées pour déterminer la nature de ces éléments. En
effet, les physiciens des particules cherchent des particules exotiques, qui pourraient alors
rendre compte des 26% de matière noire et 69% d’énergie sombre. Cependant, aucune
mesure expérimentale n’ayant pour l’instant démontré l’existence de ces éléments, des
théories de gravitation alternatives à la relativité générale sont actuellement envisagées.

Pour tenter de résoudre ce problème, nous ne considèrerons pas d’autres sources dans
le contenu de l’Univers que celles ordinaires et resterons dans le cadre de la Relativité
Générale. Nous développerons néanmoins une description plus réaliste de la formation de
structures dans le cadre de la théorie d’Einstein. Ainsi, contrairement au modèle standard
de Cosmologie, nous ne supposerons pas que l’Univers moyenné est une solution homogène
et isotrope des équations d’Einstein.

Lors de mon travail sous la direction de Thomas Buchert, j’ai participé au développe-
ment d’un formalisme perturbatif permettant une description plus réaliste de la dy-
namique de l’espace-temps. J’ai également contribué à l’obtention de solutions relativistes
à la partie gravitoélectrique des équations d’Einstein en généralisant les solutions per-
turbatives newtoniennes. Ces travaux ont été réalisés dans le cadre d’une approche la-
grangienne intrinsèque, évitant ainsi de définir les grandeurs physiques sur un fond plat.
L’approche gravitoélectromagnétique que j’ai adoptée m’a permis une interprétation nou-
velle et performante des solutions des équations d’Einstein. Enfin, j’ai étudié l’impact de
la topologie sur la dynamique des ondes gravitationelles à l’aide d’une description globale
de l’hypersurface spatiale, permise par des théorèmes mathématiques puissants.
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“Put your hand on a hot stove for a minute,
and it seems like an hour.

Sit with a pretty girl for an hour,
and it seems like a minute.

That’s relativity!”

Albert Einstein
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Motivation

Determining the nature of what surrounds us and its history has been one of the
most ambitious project that human kind has dared to undertake. Through time, the
precision of the observations of the Universe has improved. Combined with philosophical
and theoretical developments, they led to changes of paradigms which finally resulted in
our current idea of the Universe. The representation of the Universe shared by most of
the observational cosmologists is the Standard Model of Cosmology, namely the ΛCDM
model (Cold Dark Matter model with a cosmological constant modeling dark energy).
This model gives the evolution of the Universe and its constituents, from the inflation to
the formation of large scale structures, and assumes a decoupling of the dynamics of the
small structures with respect to the global evolution of space-time, which is described as
being locally isotropic and hence homogeneous on all scales.

For the cosmological observations to be consistent with this model, a large amount of
unknown constituents has to be postulated. Indeed, at most 5% of the energy budget of
the Universe can be explained using the matter content of the standard particle physics
while ∼ 69% of the content of the Universe is attributed to dark energy and 26% to dark
matter, which are both of hypothetical origin.

Different strategies are considered to determine the true nature of these dark compo-
nents. Particle physicists have been searching for some exotic sources of the stress-energy
tensor in order to account for these dark components. Even if many candidates for dark
matter and dark energy have been considered, no direct evidence has yet been obtained.
Doubting of the success of the detection experiments undertaken by astroparticle physi-
cists, alternative theories to General Relativity are now being explored [111, 12].

To address the problem of dark matter and dark energy, the strategy we will adopt
will neither suppose that exotic sources contribute to the content of the Universe, nor
that General Relativity is obsolete. We will develop a more realistic description of struc-
ture formation that takes into account the inhomogeneities of the distribution of matter
in the theoretical framework of Einstein’s theory. Thus, we will go beyond the ΛCDM
model and no longer assume that the average model is a homogeneous-isotropic solution
of the Einstein equations [103, 102]. The inhomogeneous approach allows a refined de-
scription of the dynamics of the Universe and takes into account, through a term named
backreaction, the coupling between the matter content and the geometry of the Universe.
Inhomogeneities of the distribution of matter and geometry will have an impact on the
history of structure formation and, according to some models, may even be capable of
replacing the dark matter and dark energy in the dynamics of the Universe, then solving
one of the major mysteries of modern physics.
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In order to quantify the effects of the backreaction term on the dynamics of the
Universe Thomas Buchert has proposed an averaging formalism [30, 29]. During my three-
year work under the direction of Thomas Buchert, I contributed to the development of
the intrinsic Lagrangian perturbation formalism, which defines perturbations locally in
a relativistic way, without the need for a global background. I adopted in most of my
work the irrotational dust matter model, which accounts for the impact of large-scale
structures on the average properties of the Universe down to scales of rich galaxy clusters
(2−3 h−1 Mpc), irrespective of whether we assume "dust" to be the dark matter component
or ordinary matter, since pressure-, dispersion- and vorticity-effects become important
only on smaller scales 1 .

My PhD builds on two previous works on the Lagrangian theory of structure formation
in relativistic cosmology. The first one, accomplished by Thomas Buchert and Matthias
Ostermann [35] presents the Lagrangian framework for the description of structure for-
mation in General Relativity and defines the relativistic generalization of the Zel’dovich
approximation [161]. The second one, by Thomas Buchert, Charly Nayet and Alexander
Wiegand [36], averages the inhomogeneous cosmological equations for an irrotational dust
matter model and evaluates the backreaction term in the relativistic Zel’dovich approxi-
mation.

During my three-year work, I contributed to the building of relativistic solutions to
the gravitoelectric part of the Einstein equations from the generalization of the Newto-
nian perturbation and solution schemes at any order of the perturbations, published by
Alexandre Alles, Thomas Buchert, Fosca Al Roumi and Alexander Wiegand [4]. The grav-
itoelectromagnetic approach I worked with has provided me with a new understanding
of the dynamics of the analytical solutions to the field equations. It shed a new light on
the complementary part to the gravitoelectric solution, which, at first-order, contains the
propagative dynamics: gravitational waves. To determine the propagative solutions, ellip-
tic equations had to be solved, thus needing boundary conditions, provided by a global
treatment of the spatial manifold. In order to do so, I used powerful mathematical tools
and theorems to describe the impact of topology on the dynamics of gravitational waves.

To present what I accomplished during my three-years PhD under the supervision of
Thomas Buchert, I divided the manuscript into three parts:

• Part 1:
This part of the thesis settles the framework of the investigations I led during my
PhD. In the first part, I present Einstein’s theory of General Relativity and ex-
plain why it as a true revolution in the representation and treatment of spacetime.
Afterwards, I discuss on which observational grounds the Standard Model of Cos-
mology is built and which assumptions it implies on the matter distribution of the
Universe. I then sum up the full Big Bang scenario of the history of the Universe,
from inflation to late times in a short review. The next chapter is dedicated to the
Lagrangian description of large scale structure formation, first in the Newtonian
frame then in the relativistic one. The approach and the formalism that is then

1. We could alternatively describe the effect of backreaction at the different structure scales with a
multiscale model [155].



presented will be the one developed in the next parts. In the last chapter of this
part, I provide the deep motivations for the inhomogeneous approach we develop.
The additional term that appears in our formalism with respect to the standard
model, namely backreaction, may overcome the failures of the standard model.

• Part 2:
Part two is subdivided into two chapters. In the first one, I present the main features
of the gravitoelectromagnetic approach of General Relativity. I first present the 3+1
decomposition of the Einstein equations for general foliations and matter models.
I then specify these equations for an irrotational dust matter model and a flow
orthogonal foliation. Thereafter, I discuss how GEM can provide us with a new
insight into the physics of the Einstein equations and will focus on the formulation
of General Relativity in terms of the electric and magnetic parts of the Weyl
tensor. A formal analogy between the Newtonian equations of gravity formulated
in the Lagrangian framework and the gravitoelectric part of the Einstein equations
will be discussed. Furthermore, I will present the Minkowski Restriction, which
is a mathematical tool that will enable us to go from a tensorial to a vectorial
gravitation theory and under certain conditions from Einstein’s General Relativity
to Newton’s theory. The inverse Minkowski Restriction will be used to obtain
relativistic solutions of the gravitoelectric part of the Einstein equations from the
Newtonian perturbative solutions at order n . This scheme will be the subject of
the second chapter of this part.

• Part 3:
The solution obtained from the generalization of the Newtonian perturbative solu-
tion to order n does not contain the propagative dynamics. Indeed, up to first-order,
gravitational waves are contained in the complementary part of this solution. To
obtain the full first-order solutions, elliptic equations have to be solved. Their so-
lutions depend strongly on the topology of the spatial sections. For this reason,
one of the main aspects of this part will be to study the impact of topology on
the dynamics of these gravitational waves with the help of powerful mathematical
tools available on closed manifolds, e.g. the Hodge theorem.

Throughout the manuscript, without further specification, the equation numbers
will refer to equations in the same part.
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During medieval times, the Universe was considered to be something fixed, with the
Earth at its center. The Universe was geocentric and the Moon, the Sun, the other planets
and the stars moved in circles around the Earth. However, by placing the sun at the center
of the Universe and not the Earth, Copernicus drastically changed the representation of
the Universe that was shared by most of the physicists. As the observational techniques
developed and improved, the center of the Universe was shifted further away. Thanks
to his refracting telescope, in 1610 Galileo Galilei discovered that the Milky way was
composed of a big number of stars. Nevertheless, until the beginning of the XXth century,
the advances in the representation of the Universe were motivated by some hypothetical
and philosophical ideas. Around 1755, Kant postulated that the Milky Way was made of
a huge number of stars and that the visible nebulae could be some other island universes
like the Milky Way.

The idea of island-universe only reappeared thanks to the photography of a supernova
made by Herber Curtis in 1917. The luminosity of this exploding star was fainter than
usual and the distance was estimated to 150 kpc, far beyond the limit of our island-
universe. Even if his discovery was controversial at that time, Curtis was convinced that
this object was not in the Milky Way. It was during this debate period that the term of
galaxy was first used. Thanks to his reflective telescope, Edwin Hubble in 1923 managed to
observe in detail several Cepheids [81, 82]. This enabled him to determine more precisely
the distance between the Earth and these objects.

General Relativity was born in this context. Within the two years after its birth, Ein-
stein realized that his theory could be applied to the dynamics of the whole Universe.
When he applied his equations to cosmology in order to find a solution to describe the
Universe, Einstein realized that it could be a dynamical entity. He then rejected this idea
and inserted a term, the cosmological constant Λ, into the equations in order to obtain a
static universe. However, in 1929 Edwin Hubble observationally verified that the Universe
was expanding 1.

In this part, we will first discuss the theoretical framework of General Relativity and
explain why it is so innovative and powerful. In order to do so, we will present the different
stages of its development and will end up with its mathematical formulation. Then, we will
explain how the Standard Model of Cosmology (SMC) has emerged from it and which
approximations it entails. Finally, we will give an overview of the history of structure
formation from inflation to the large scale structure formation, that will be the subject of
Chapter I.2.

1.1 Einstein’s theory of General Relativity

In this section, I present the conceptual path which led to General Relativity. I explain
how Einstein abandoned the notion of absolute space and time to build an intrinsic grav-
itation theory, where matter tells space-time how to curve, and space-time tells matter
how to move. I then introduce the mathematical formalism of the Einstein’s equations,

1. Lemaître was actually the first to conclude this from Slipher’s observations (cf Section I.1.2.1).
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1.1. EINSTEIN’S THEORY OF GENERAL RELATIVITY

which relate the Ricci curvature tensor to the matter content of the Universe, represented
by the stress-energy tensor. This discussion is inspired by the excellent books [130, 74].

1.1.1 From Newtonian gravity to General Relativity
Newton’s theory of gravity

Newton’s first assumption was the existence of a reference frame with an absolute
space and an absolute time passing at the same rate everywhere in space. He postulated
an instantaneous action-at-a-distance force that violated the idea shared by physicists at
that time, namely that interactions could only happen between entities in contact:

F = G
m1 m2

d2 . (1.1)

The force is a function of d the distance between the two masses, m1 and m2 their mass
and G the gravitational constant.

Newton’s theory was a total success. Moreover, he defined a class of non-rotating
reference frames moving uniformly in an absolute space. He called them the Galilean ref-
erence frames. Relative to these Galilean reference frames, all mechanical systems behave
according to Newton’s laws. This is the Galilei-Newton principle of relativity.

Einstein observed a formal similarity between Newton’s force and Coulomb’s force
and concluded that Newton’s theory could be the static limit of a dynamical field theory.
Moreover, gravitational interaction could share the same property as the electromagnetic
interaction: i.e. not to be instantaneous. These ideas guided him in the search for a more
general gravitation theory.

Special Relativity

Einstein noticed that Maxwell’s electromagnetic theory was not Galilean invariant.
Therefore, Newtonian equivalence principle of the Galilean frames could not be extended
straightforwardly to electromagnetism. Indeed, applying the Galilean coordinate trans-
formation to Maxwell’s electromagnetic theory, one found that Maxwell’s equations were
not invariant. Furthermore, there was only one Galilean frame in which electromagnetic
waves had an isotropic velocity.

The Michelson-Morley experiment [110] was designed to measure the velocity of the
Earth with respect to this preferred frame 2 but demonstrated that the notion of absolute
space had no physical legitimacy.

Furthermore, Einstein was convinced that, despite the apparent contradiction, the
physics was the same in all moving inertial frames and that the Maxwell equations were
correct. He realized that, by dropping the prejudice on the temporal structure of time
i.e. that simultaneity is well defined in a manner independent from the observer, and
by accepting the fact that temporal ordering of distant events may have no meaning,

2. Michelson-Morley experiment was supposed to measure the velocity of the Earth with respect to
the "ether", a materialization of Newton’s absolute space. It failed and Newton’s idea of an absolute space
had no physical grounds.
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the picture could be consistent again. Einstein had overcome the contradiction and built
Special Relativity.

He then looked for the field theory that gave (1.1) in the static limit. In order to do so,
he based his work on what Faraday and Maxwell did with the Coulomb force to obtain
Maxwell theory of electromagnetism.

Relativity of motion

Einstein was convinced that Newton’s idea of an absolute space was wrong. According
to him, only relative motions could be physically meaningful.

In Newton’s bucket experiment 3, when the water rotates, it results in the concavity
of its surface. If the water rotated with respect to the rotating bucket that surrounds it,
then the surface of the water would be flat. For Newton, the rotation was with respect to
the absolute space whereas for Einstein, the water rotates with respect to a local physical
entity: the gravitational field.

Galilei proved that the gravitational and inertial mass were the same for all bodies by
demonstrating that freely falling bodies moved in the same way, regardless of their mass
and of their composition. As a consequence, Newton asserted that the laws of physics
should be the same in the Galilean frames (i.e. in the regions far from mass distributions,
where there are no gravitational fields) and in frames falling freely in a gravitational field
(for which inertial forces compensate gravitational ones). Nevertheless, Newton distin-
guished the Galilean frames in absence of gravity and free falling non-inertial frames.
Einstein dropped this distinction, which referred to the existence of a global frame, and
realized that each mass at a given space-time point had its own local inertial reference
frame. Since these local inertial frames were defined by the absence of inertial effects,
Einstein understood that it is gravity that specifies at each point the inertial motion and
thus determines the local inertial frames.

General covariance

Around 1912, the field equations for the gravitational field were still missing. At first,
Einstein demanded the field equations for the gravitational field to be generally covariant
on the space-time manifold. This meant that the laws of physics should be the same
in all coordinate systems. But then, he realized that general covariance did not only
imply invariance of the theory with respect to passive diffeomorphisms (i.e. coordinate
transformations). The consequences were far more important. Indeed, a deterministic
prediction was no longer possible for a given space-time point. Predictions were only
possible at locations determined by the dynamical elements of the theory themselves 4.

3. In this experiment, we consider a bucket full of water that starts rotating. First, the bucket rotates
with respect to us and the water remains still. The surface of the water is flat. Then, the motion of the
bucket is transmitted to the water by friction and thus the water starts rotating together with the bucket.
At some time, the water and the bucket rotate together. The surface of the water is concave [130].

4. It was the "Hole" argument which made Einstein first renounce to the general covariance. He
struggled for three years and finally understood that the notion of a space-time point had to be abandoned.
For an explanation of the "Hole" argument, see [130].
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1.1. EINSTEIN’S THEORY OF GENERAL RELATIVITY

It followed that localization on the manifold has no physical meaning. The background
space-time Newton believed in was eliminated in this new understanding of the dynamics.
Reality is not made by particles and fields on space-time: it is made by particles and fields
that can only be localized with respect to one another.

1.1.2 Einstein’s field equations
Einstein’s theory of General Relativity was a true revolution in the representation of

space-time since it gave up the idea of a gravitational force and an absolute frame [59].
Newton’s motion of a particle under the influence of a gravitational force was replaced by
free motion along the geodesic curves in a curved space-time. The Einstein field equations
formalize the coupling between the matter content of the Universe and its geometry.
According to Einstein’s field equations, matter tells space-time how to curve, and space-
time tells matter how to move. Space-time is a four dimensional manifold M on which
the metric bilinear form g with signature (−, +, +, +) acts.

The matter and energy local content is encoded into the stress-energy tensor, which
is a symmetric tensor T. To ensure the conservation of the energy and momentum of the
continuum of matter and energy, its covariant divergence has to vanish. The stress-energy
tensor being coupled to the geometry of space-time, a symmetric divergence-free tensor
had to be built from the following geometrical quantities: the metric, the Ricci curvature
tensor R associated with the metric g and its trace: the Ricci scalar R. The Einstein
tensor G fulfills these conditions.

The dynamics of (M, g) is linked to the matter content of the Universe T via the
Einstein equations:

G = 8 π G T , G = R − 1
2R g + Λ g , (1.2)

where G is the gravitational constant. The tensor formulation of the Einstein equations
ensures the covariance of the theory. The projection of these equations on a basis gives 5:

Gμν = 8 π G Tμν , Gμν = Rμν − 1
2R gμν + Λ gμν . (1.3)

The Einstein equations determine the dynamics of cosmological objects of different size
such as black holes, galaxies or even the whole Universe. For example, to describe a star
or a static spherical symmetric black hole, the Schwarzschild metric is considered [134].
For a spherical symmetric rotating object, the Kerr metric will have to be considered
[86]. Moreover, the LTB metric [145] is the one adopted to describe an inhomogeneous
spherical symmetric object.

The next section will give a short introduction to standard cosmology. The curious
reader may find a detailed introduction to cosmology in one of these excellent works
[90, 98] or in [151] for an additional introduction to General Relativity.

5. The greek indices represent space-time coordinates, they run in {0, 1, 2, 3}. The latin indices run in
{1, 2, 3} and correspond to the spatial coordinates. Einstein summation convention on repeated indices
is adopted and we consider that c = 1. Furthermore, the Einstein tensor Gμν is not related to the Gram
tensor of the coframes Gab that we introduce in the third chapter of this part.
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COSMOLOGY

1.2 Homogeneous and Isotropic Cosmology

Once he had built General Relativity, Einstein realized that he could apply it to the
full Universe as a single object. Thereafter, cosmologists quickly developed a cosmological
model based on strong hypothesis: spatial homogeneity and isotropy. This model is the
Standard Model of Cosmology (SMC).

In this section, will first present the observational grounds on which the homogeneous
isotropic and expanding universe model is based. The spatial length above which the
Universe can be considered as homogeneous and isotropic is indeed still debated. Then,
we will explain how Hubble’s observations (or actually Lemaître’s observational analysis)
combined with Slipher’s redshift data led to the idea of an expanding universe. Afterwards,
we will give the adapted metric to describe a homogeneous isotropic space-time in polar
coordinates, namely the FLRW metric. We will show how the Hubble parameter is linked
to the scale factor and obtain from the Einstein equations and the Bianchi identities the
conservation of the energy and momentum and the Friedmann equations. Then, we will
introduce the cosmological parameters, which are the parameters of the SMC .

1.2.1 The Cosmological Principle and the Hubble law

The Cosmological Principle

The first solutions of Einstein’s equations were obtained for homogeneous and isotropic
universe models. The homogeneity and isotropy hypothesis are based on the following
cosmological observations. When we observe galaxies, looking in different directions of
the sky, the galaxies are evenly distributed at large scales. Large scales in this context are
neither galactic scales nor galactic clusters scales. They are scales greater than a certain
spatial length beyond which the Universe is statistically homogeneous and isotropic. This
scale is estimated to be in the interval of 100 h−1 Mpc 6 [159, 142, 95] and 700 h−1 Mpc.
As the observation technics and statistical treatments improved, fluctuations were shown
to have an impact on large scales as 200 h−1 Mpc found in [87, 77] or even 700 h−1 Mpc
in the paper by Wiegand et al. [156]. Most of the estimations are based on lower order
statistical properties, whereas the larger results are extracted from Minkowski functionals
and higher order perturbations. The baryon acoustic oscillation (BAO) scale has been
shown to be inhomogeneous at the 100 Mpc−1 scale [128].

The cosmological principle asserts that there exists a spatial length beyond which the
Universe is statistically homogeneous and isotropic. However, the SMC extrapolates from
these global observations a local isotropy, resulting in global homogeneity. The simplest
cosmological model, the homogeneous and isotropic cosmological model, results from these
very strong assumptions.

6. with the dimensionless factor h = (H/100) km.s−1.Mpc−1 where H is Hubble constant and will be
presented later
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1.2. HOMOGENEOUS AND ISOTROPIC COSMOLOGY

Expanding Universe and the Hubble law

Hubble published in 1929 a study based on 18 galaxies (in which cepheids could be
seen) which showed that the speed of galaxies along the line of sight, or equivalently,
their redshift, was proportional to their distance. To do so, he combined the relation
between the luminosity of the cepheids and their distance to the recessional velocities of
the galaxies in which these cepheids were. This quantity was calculated by Vesto Slipher
through the use of the redshift. However, Georges Lemaître was actually the first one to
obtain these conclusions. His article was published in French two years before Hubble’s
and was based on Slipher’s same redshift data and Hubble’s calculated distances. The
coefficient of proportionality, H, is called the Hubble parameter.

In 1998, two teams, the Supernova Cosmology Project [118], and the High-z Supernova
Search team [124], reported that, interpreting their data within the SMC , the Universe is
not only expanding, but also accelerating. As we will see in the next part, within the SMC
, the acceleration of the expansion of the Universe requires the mass-energy density of the
Universe to be dominated at the present time by a gravitationally repulsive component:
the cosmological constant Λ.

1.2.2 Homogeneous and isotropic universe models

Spatial homogeneity and isotropy allows a simple foliation of space-time. A scalar
parameter that is called cosmic time t labels the spatial sections. The time direction
can be represented by the time-like vector et. It is possible to build spatial sections Σt

such that et is everywhere orthogonal to them. As was found by Friedmann, Lemaître,
Robertson and Walker in the 1920’s and 1930’s [70, 97, 125, 150], for such a high symmetry
space-time, we can choose the following line-element 7:

ds2 = dt2 − a(t)2
(

dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)
)

. (1.4)

This metric is called the Friedman-Lemaître-Robertson-Walker (FLRW) metric. The vari-
ables r, θ, φ are polar coordinates. All physical length scales are multiplied by a(t), the
scale factor that describes a homogeneous expansion of the Universe. k is a constant
number that represents the spatial curvature.

If we assume that the space sections of the Universe are simply connected, then, for
k = 0 the Universe is Euclidean (flat universe: hyperplane), for k > 0 the Universe is closed
and has a spherical topology and for k < 0 the Universe is open and has a hyperboloid
topology. Nevertheless, Einstein’s field equations are local and thus do not constrain the
global topology of the Universe. A multi-connex topology could also be a good candidate
for the description of the space sections. A hypertorus topology, for example, can be flat
(its curvature is zero everywhere) and closed (compact without boundaries) at the same
time. Cosmic topology will be the subject of Section III.3.1 and Thurston’s geometrization
conjecture will be presented in Section III.3.2.1.

7. The FLRW metric is cited in a form that contains a coordinate singularity at the equator in the
k > 0 case. This could be avoided by considering another set of coordinates.
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For an FLRW metric, the dynamics are then encoded in the evolution of a(t). The
rate of change of a is called the expansion rate, or the Hubble parameter:

H(t) := 1
a

da

dt
= ȧ

a
. (1.5)

The value of the Hubble parameter today H0 is often expressed as H0 = h×100 kms−1Mpc−1.
Its measured value today is roughly h ∼ 0.7. The evolution of a(t) depends on the matter
content of the Universe and can be calculated using Einstein’s field equations (1.3). The
most general form of the stress-energy tensor which is compatible with homogeneity and
isotropy, is the stress-energy tensor of the form:

Tμν = (p + ρ)uμuν + pgμν . (1.6)

In the fluid restframe, it has the following matrix form:

T μ
ν =

⎛
⎜⎜⎜⎝

ρ 0 0 0
0 −p 0 0
0 0 −p 0
0 0 0 −p

⎞
⎟⎟⎟⎠ , (1.7)

where ρ is the mass density, p is the pressure of the cosmological fluid, uμ = (−1, 0, 0, 0)
and uμ = (1, 0, 0, 0). Homogeneity implies that the pressure and density should be position-
independent on the spatial hypersurfaces Σt. Hence, they can only be time-dependent. If
the 4–velocity of the fluid has a spatial component, then the assumption of spatial isotropy
is violated. Thus the vector uμ has only a time component and the fluid flow is orthogonal
to the hypersurfaces.

When we insert the metric given by (1.4) into the Einstein equations (1.3), we get the
following Friedmann equations in the presence of a cosmological constant:

H2 =
(

ȧ

a

)2
= 8πG

3 ρ − k

a2 + Λ
3 , (1.8)

3 ä

a
= 4πG(ρ + 3p) + Λ . (1.9)

One sees that only a positive curvature term decreases the expansion of the Universe, all
other terms enhance the expansion rate.

Bianchi identities give the energy momentum conservation for a fluid with energy
momentum tensor given in equation (1.7) in an expanding universe

uβ∇α T αβ ⇒ ρ̇ = −3 ȧ

a
(ρ + p) , (1.10)

where ∇α is the Levi-Civita connexion on M 8.
The cosmological constant was introduced as a geometrical quantity in (1.3). It can

also be interpreted as a uniform and stationary fluid with pressure and density:

ρΛ = Λ
8 π G

; pΛ = − Λ
8 π G

. (1.11)

8. It thus has no torsion: for any scalar field ψ, ∇α∇βψ = ∇β∇αψ and is associated to the metric g.
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1.2. HOMOGENEOUS AND ISOTROPIC COSMOLOGY

To determine the evolution of the scale factor a(t), we have to consider an equation
of state for the fluid. Most of the time, we consider it of the form:

p(t) = w(t)ρ(t) . (1.12)

If w(t) is constant, then the conservation of the energy (1.10) gives ρ ∝ a−3(1+w). As will
be detailed in Section I.1.3, after inflation, the Universe was consecutively dominated by
radiation, matter and by the cosmological constant Λ. The global evolution of the size of
the Universe can be determined by solving the system of equations (1.8), (1.9) and (1.10).

• The equation of state of radiation is obtained for w = 1/3 and consequently the
radiative energy ρr ∝ a−4. Therefore the size of the Universe grows as a(t) ∝ t1/2

during the radiation domination era. Not only the number density gets diluted but
also the energy per particle is redshifted when the Universe expands. Both effects
sum up to a faster dilution of an ultra-relativistic fluid such as radiation compared
to a non-relativistic fluid such as pressureless matter.

• After the radiation domination era, expansion is due to the non-relativistic pres-
sureless matter, for which w = 0, ρm ∝ a−3 and the size of the Universe grows as
a(t) ∝ t2/3.

• Finally, due to the cosmological constant Λ, expansion accelerates . Then w = −1
and the scale factor is a(t) ∝ t(Λ/3)1/2t.

• During a potential domination of curvature, the Universe would be expanding
linearly with time: H2 ∝ R−2 ⇒ a(t) ∝ t.

In the model of evolution of the Universe that is considered by most cosmologists
nowadays, at some moment in the past, the scale factor was equal to zero. This initial
singularity is called the "Big Bang". However, at times smaller than the Planck time,
General Relativity is no longer valid. Gravitational quantum effects should be taken into
account. Therefore, the physical treatment that we used here no longer holds.

If we divide the Friedman equation by H2
0 and define

Ωr := 8πG

3H2
0

ρR(t0) , (1.13)

Ωm := 8πG

3H2
0

ρM(t0) , (1.14)

Ωk := − k

R2
0H2

0
, (1.15)

(1.16)

ΩΛ := Λ
3H2

0
, (1.17)

the Friedman equation today now reads

1 = Ωr + Ωm + Ωk + ΩΛ . (1.18)
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In order to get rid of the uncertainty of H0, the energy densities of the components of
the Universe are usually given as Ωxh2. The content of the Universe is given by the 2015
publication of the PLANCK collaboration [2] and is obtained from the analysis of the
temperature fluctuations in the Cosmic Microwave Background 9. The Hubble expansion
rate and the energy densities from the non-relativistic matter and the cosmological con-
stant are given for 68 % confidence levels, supposing that the Universe is flat since the
energy densities from the curvature term satisfies |Ωk| < 0.005:

H0 = 67.74 ± 0.46 kms−1Mpc−1 , (1.19)
ΩM = 0.3089 ± 0.0062 , (1.20)
ΩΛ = 0.6911 ± 0.0062 . (1.21)

The baryon mass density and the dark matter density are:

ΩBh2 = 0.02230 ± 0.00014 , (1.22)
ΩDMh2 = 0.1188 ± 0.0010 . (1.23)

The baryon mass density can be measured to be ΩBh2 = 0.02205±0.00028 (1σ) which
is only ∼ 15% of the total non-relativistic matter density in the Universe. The dark matter
density is ΩDMh2 = 0.1199 ± 0.0027 (1σ).

1.3 Standard Model of Cosmology: history of
structure formation and observational evidences

The SMC does not only include the Einstein equations for a homogeneous isotropic
space-time, it also contains the history of the Universe, in the Big Bang scenario. In this
standard picture, that we will present here, the Universe is well described on average
throughout its history by the SMC of Cosmology. We will present what are considered
to be the strong observational evidences for the ΛCDM model. Nevertheless, the values
of the cosmological parameters are not directly obtained from the observations: they are
interpreted via the SMC . Moreover, to be self-consistent, the SMC has to assume that
95% of the content of the Universe is of unknown nature.

The following elements I give on the early Universe and the nucleosynthesis are inspired
by the very good lecture on standard cosmology [98].

1.3.1 Early stages

There is no theory that has been approved by the majority of the scientific community
that describes the earliest stages of the evolution of the Universe. We here do a short
overview of the standard picture of that period.

9. Today, the average temperature of the CMB is T = 2.7255 K.
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The Planck Era

Just after the Big Bang, the fluctuations are so significant that a quantum theory of
gravity is needed to describe the physics of the Universe. This quantum description is
necessary until tP l, the Planck time, which is

tP l =
√
�G

c3 = 5.4 · 10−44s . (1.24)

At the time before tP l, the Universe was filled with a plasma of relativistic elementary
particles 10, including quarks, leptons, gauge bosons. We think that the Universe existed
in a state of fluctuating chaos during this era. Time was not a well defined quantity, and
the curvature and the topology of space fluctuated very much.

The Inflationary Era

Shortly after the Planck era, the Universe went through a phase of accelerated expan-
sion, called inflation, during which the Universe was expanding exponentially:
a(t) = exp(Hinfl t). During this era, the energy content of the Universe was dominated
by the potential energy of the inflaton, a scalar field that has negligible kinetic energy.
Inflation ended when the inflaton oscillated around its minimum of potential. It then
decayed into the particles of the Standard Model of Particles, which were produced with
high kinetic energy. After inflation, the Universe was dominated by radiation since the
particles formed a thermal bath of relativistic particles. The inflationary era lasted 10−33s.

At this point, the particles have no mass and quickly interact with other particles.
Quarks are free particles and are not confined into hadrons.

At T ∼ 100 GeV, the electroweak symmetry is spontaneously broken and the particles
acquire their mass. Heavy particles become quickly non-relativistic.

At T ∼ 100 MeV the QCD phase transition occurs: quarks are confined into hadrons.

Baryonic asymmetry

If baryon number was conserved during inflation, the number of baryons and an-
tibaryons would be the same. They would then annihilate into photons : b + b ↔ nγ .
Then, the Universe would be filled with radiation and no matter.

At temperatures bigger then the baryonic mass, photons have enough energy to pro-
duce pairs of bb. When the temperature drops below it, photons no longer recreate bb.
The number of baryons and antibaryons drops since they annihilate. Baryon number must
have been violated at some point since we observe baryonic matter in the Universe today.
Nevertheless, the original asymmetry was very small: nb−n

b

nb+n
b

� 10−9 .

At a temperature T ∼ 10 MeV, only the over-density of baryons is left. Non-relativistic
protons and neutrons dominate the matter content and neutrons can decay into protons
by β decay n → p + e− + νe. The reverse process being possible, the ratio of protons and

10. The corresponding temperature is TP l � 1032 K.
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neutrons is constant. Furthermore, electrons and anti-electrons are still relativistic while
neutrinos and antineutrinos are thermalized by the weak interaction.

As the temperature drops, the neutrinos decouple. From then on, their density gets
only diluted by the expansion of the Universe. Then, electrons become non-relativistic and
annihilate until their number density is equal to the proton number density from charge
conservation. Photons are the only relativistic species in the bath and their temperature
scales until today in the same way as the neutrino temperature.

Nucleosynthesis

Figure 1.1: The average binding energy per nucleon in a nucleus as a function of the number
of nucleons. The most strongly coupled nucleus is Fe56. The picture was taken from https://
commons.wikimedia.org/wiki/File:Binding_energy_curve_-_common_isotopes.svg, cred-
its: Fastfission

The nucleosynthesis is the primordial formation of light elements and happens between
1s and 12 mins. Figure 1.1 presents the average binding energy per nucleon in a nucleus.

When temperature drops below the binding energy of deuterium BD ∼ 2 MeV (which
is the first element having two nucleons in its nucleus: a proton and neutron) we would
expect a formation of deuterium from the protons and neutrons since it is energetically
more advantageous. However, there is still a large number of photons in the high energy
tail of the photon distribution that can destroy the deuterium that was formed. It is only
when T ∼ 0.07 MeV that the formed deuterium is stable and that the nuclear reaction
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chain can take place:

p + n ↔ D + γ

D + D → 3He + n (1.25)
3He + D → 4He + p

· · · (1.26)

Fe56 has the highest binding energy per nucleon but the number densities of intermediate
nuclei are not high enough to form Fe56. Nucleosynthesis stops around 4He and only very
few Li and heavier elements are formed because of the local maximum at 4He 11 .

The next stage in the evolution of the Universe is the matter-radiation equality.
For T ∼ 1 eV, the matter and radiation have comparable energy densities. When

temperature lowers, matter begins to dominate.
After nucleosynthesis, photons, electrons, protons and 4He are still in thermal equilib-

rium since they electromagnetically interact. Around T ∼ 0.25 eV, there are not enough
energetic photons to enable the ionization of hydrogen. Protons and electrons leave the
thermal bath and combine into stable atoms. Thereafter, the Universe no longer contains
charged particles. This stage is called recombination. At recombination, photons decouple
since there are no more charged particles to interact with. The photon distribution is
from that time on only changed by the expansion of the Universe. The remaining photons
form a background radiation, still observable today with a temperature T ≈ 2.7 K. This
radiation is the Cosmic Microwave Background, that we discuss in the next part.

1.3.2 Decoupling and the CMB anisotropies
For a good historical introduction on the CMB, the reader may refer to [75]. The

discovery of the Cosmic Microwave Background (CMB) is usually attributed to Arno
Penzias and Robert Wilson in 1965 [116]. As they were trying to build an antenna for
radio waves, they measured a uniform excess temperature. Simultaneously, Robert Dicke’s
group at Princeton had already realized that a hot Big Bang scenario could leave a
blackbody radiation filling the Universe [49] of a few Kelvin today. Nevertheless, the CMB
could be dated back to 1941, when McKellar interpreted some interstellar spectroscopic
absorption lines to be due to some excitation radiation from a black body. The black
body temperature required in order to explain the relative intensities of the observed
lines was 2, 3 K. Nevertheless, this result has never been properly discussed because of
world war two. This discovery represents the most powerful observational constraint on
the parameters of the SMC we have today.

As we have discussed in the previous section, before recombination, hydrogen and
other elements were mostly ionized. At recombination, the Universe transitioned from
this opaque state, to being mainly neutral, and therefore transparent. The photons then
decoupled from matter, when Universe was about 380000 years old. If we assume that
decoupling was a fast process, then the small fluctuations in the photon temperature

11. To cross the gap a three body reaction is needed 3 × 4He → 12C.
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before decoupling are frozen in. Photons propagate freely until today and their spectrum
still contains the fluctuations of the primordial inhomogeneities in the matter repartition
at the moment of decoupling.

The power spectrum of the initial perturbations characterizes the temperature fluc-
tuations with respect to the angular scale of the anisotropies. With Planck data [1], the
cosmological parameters of the ΛCDM model are being measured with percent level uncer-
tainties. They are tuned in order to fit optimally the initial fluctuations obtained from the
CMB statistical observations (cf Figure 37 in [1], showing the power spectrum obtained
by the PLANCK collaboration) but also the brightness-redshift relation for supernovae,
and the large-scale galaxy clustering. The CMB power spectrum can be obtained theo-
retically for scalar adiabatic perturbations taking into account the Sacks-Wolfe effect 12,
the BAOs 13 and Silk damping 14.

In this chapter, I presented the historical context in which General Relativity emerged.
I discussed the theoretical steps that led to this revolutionary theory, that abandons
Newton’s idea of absolute space and time and asserts that it is gravity that specifies
at each point the inertial motion, thus determining the local inertial frames. Then, I
explained how the equations for a homogeneous isotropic universe model can be obtained
from Einstein’s equations. These equations lie at the basis of the SMC , i.e. ΛCDM
model. In the third part of this chapter, I presented the history of the Universe until
recombination in the frame of the Big Bang scenario. This ended in a discussion of the
Cosmic Microwave Background, which provides us with the observational constraint on
the parameters of the SMC . In the next chapter, we will consider the next stage of the
evolution of the Universe: the formation of large scale structures.

12. The photon spectrum is not only redshifted because of expansion. It also contains a shift due to
the gravitational Doppler effect. The difference between the local value of the gravitational potential at
emission and detection shifts the wavelength of photons. The gravitational Doppler effect is called the
Sachs-Wolfe effect.

13. The modes that entered the horizon during radiation domination underwent acoustic oscillations
because of the interplay of gravity and pressure. When the photon fluid decouples from baryons the
oscillations remain frozen in the spectrum.

14. When we observe a photon from a given direction, it does not exactly carry the information from
the same direction but from a point a little bit around it. When photons leave equilibrium, they can
indeed still scatter elastically and change the direction of their trajectory. This implies that correlations
on smaller scales are erased. The power spectrum drops asymptotically to zero for large wave number.
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In the last chapter, we explained how the Friedmann equations of the SMC were
obtained from the Einstein equations, assuming a homogeneous isotropic universe. No
exact solution of the Einstein equations can be obtained in general, except for highly
symmetric density profiles. This is the case for the Schwarzchild metric of black holes for
example.

In order to deal with more general cases, we have to build a perturbation theory for
the gravitation equations.

In this chapter, we will first consider Newtonian structure formation in the phase
space. In Section 2.8, we will present the Vlasov-Newton system and then consider the
case of a dust fluid model to obtain the Euler-Newton system. An Eulerian first-order
perturbation solution will be then given in Section I.2.1.3. We will then discuss how
numerical simulations, that mostly use Newtonian perturbation theory, give an interesting
insight into the large scale structure formation (see Section I.2.1.4).

The next section will first present the Lagrangian description of structure formation
(Section I.2.2.1) and then discuss how, in many respects, this approach is far more powerful
then the Eulerian one (Section I.2.2.4).

This will be the major motivation for developing a relativistic Lagrangian perturbation
theory. Therefore, we will discuss the generalization of the Newtonian Lagrangian per-
turbation approach to General Relativity in Section I.2.3. We will build the relativistic
analogue of the deformation field and give the major tools that will enable us to develop
this approach in the next part.

Since Newtonian gravity and General Relativity share several features, their perturba-
tion schemes will exhibit strong similarities. These analogies will be the subject of Chapter
II.2.

2.1 Vlasov equation and Newtonian Eulerian
dynamics

2.1.1 The Vlasov-Newton system

Trajectories in phase space and mass conservation

In this section, we consider Newton’s theory of gravity. We will follow the ideas pre-
sented in Thomas Buchert’s M2 lecture course at ENS de Lyon [38] and in [13] to establish
the fundamental equations for cosmological fluids. These equations are used in numeri-
cal simulations, as we will discuss in Section I.2.1.4. As we will see, phase space is more
adapted then the Euclidean space R3 to describe fluids with pressure or velocity dispersion.

Fluid particles can either be described in an Eulerian way, where the reference frame
is fixed with respect to the fluid flow, or in a Langrangian way, following the fluid flow.
Contrary to the Eulerian coordinates (w = (x, v), Eulerian position and velocity), the
Lagrangian coordinates label the fluid (W = (X, V), Lagrangian position and velocity).
If N is the total number of particles in the volume Ωt, d6w the infinitesimal Eulerian
volume, 
(x, t) the density, m the mass of the particles, then the particle distribution
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function e (w, t) satisfies:

N =
∫

Ωt

e (w, t) d6w and 
(x, t) = m
∫

Ωv
t

e (w, t) d3v . (2.1)

Ωv
t being the restriction of Ωt to the velocity space, the average velocity is defined by :

v(x, t) =
∫

Ωv
t

e (w, t) v d3v∫
Ωv

t
e (w, t) d3v

. (2.2)

A diffeomorphism k mapping Lagrangian coordinates to the Eulerian ones in the phase
space exists:

k : R6 −→ R6

W 
−→ w = k(W, t) thus W = k(w, ti) .
(2.3)

ti is the initial time. The determinant of the Jacobian matrix for the Eulerian-to-Lagrangian
coordinate transformation is

JΓ = det

(
∂ki

∂Wk

)
with d6w = JΓ(W, t) d6W . (2.4)

If we generalize the Lagrangian derivative to

D

Dt
:= ∂

∂t

∣∣∣∣
W

= ∂

∂t

∣∣∣∣
w

+ s · ∇w , (2.5)

where s is the generalization of the velocity vector in the phase space:

s(W, t) := D

Dt
k(W, t) = ∂

∂t

∣∣∣∣
W

k(W, t) , (2.6)

we can show that the conservation of the number of particles D
Dt

N = 0 implies 1:

D

Dt
e + e ∇w · s = 0 . (2.7)

Vlasov-Newton equations

The gravitational field g(x, t) does not depend of the velocity field thus 2 ∇w · s =
∂vi

∂xi
+ ∂gk

∂vk
= 0 and the conservation of the number of particles (2.7) becomes:

D

Dt
e = ∂

∂t
e + vi

∂

∂xi

e + gi
∂

∂vi

e = 0 , (2.8)

1. This comes from the relation on the Jacobian:

D

Dt
JΓ = JΓ ∇w · s .

2. x and v are independent coordinates.
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If we add to these equations the field equations of the gravitational field:

∇ × g = 0 ; ∇ · g = Λ − 4 π G m
∫

Ωv
t

e (w, t) d3v , (2.9)

we obtain the Vlasov-Newton system. A dust fluid matter model has neither velocity
dispersion nor pressure. Its particle distribution function is:

e dust(x, v, t) = n(x, t) δ(v − v(x, t)) . (2.10)

We recover the usual continuity equation, which, with the gravitational field equations
gives the Euler-Newton system.

We now consider a homogeneous isotropic Universe filled with dust fluid. We can thus
go back to the Euclidean space R3. We represent by f the diffeomorphism mapping the
Lagrangian spatial coordinates X which label fluid elements, to the Eulerian ones x, which
are the positions of these elements in Eulerian space at the time t:

f : R3 −→ R3

X 
−→ x = f(X, t) and X = f(x, ti) .
(2.11)

The description in terms of the trajectory function f is only possible before shell-crossing.
Once caustics have formed, f is no longer a diffeomorphism and this description breaks
down.

A deeper physical interpretation of the specificity of Lagrangian coordinates will be
given in the next section I.2.2.1.

Homogeneity and isotropy imply f = a(t)X where a(t) is a time dependent function
called scale factor. Newton’s second law implies g = ä(t)X where we denoted by an
overdot ˙ the time derivative d/dt. Combining the mass conservation equation with the
field equation (2.9), we get Friedmann’s acceleration law:

ä(t)
a(t) = Λ − 4 πG
H . (2.12)


H is the homogeneous density. Integrating this equation gives the Friedmann expansion
law, which is the fundamental equation of the ΛCDM model:

H2 − 8 π G

3 
H − Λ
3 + k

a2 = 0 . (2.13)

H(t) = ȧ/a is Hubble expansion factor. We remark that we didn’t use Einstein’s theory
of gravitation to derive this equation.

Let us now look at the moments of Vlasov equation. To do so, we define the following
quantities:


(x, t)vi = m
∫

Ωv
t

vi e (w, t) d3v : 
(x, t)vi vj = m
∫

Ωv
t

vi vj e (w, t) d3v . (2.14)

The 0th moment gives:
∂

∂t

 + ∂

∂xj

(
vj) = 0 . (2.15)
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We define the velocity dispersion tensor πij = (vi − vi)(vj − vj) and Πij = 
 (vi − vi)(vj − vj).
Then the 1st moment gives the Euler-Jeans equation:



d

dt
vi = 
 gi − ∂

∂xj

Πij . (2.16)

The velocity dispersion, defined at each point x can be represented in terms of the eigen-
vectors and eigenvalues of the velocity dispersion tensor. If ψi = 1

�
Πik,k, the Euler-Jeans

equation can be rewritten:
∂

∂t
vi + vk vi,k = gi − ψi . (2.17)

If we take the divergence of this equation, we get

d

dt
θ = Λ − 4 π
 G − 1

3θ2 + 2 (ω2 − σ2) − ψi,i , (2.18)

where θ the expansion rate, ω the vorticity and σ the shear are defined locally. To obtain
this equation, we didn’t assume homogeneity, isotropy or any symmetry.

2.1.2 Structure formation, shell-crossing and velocity dispersion
The primordial fluctuations of the CMB I.1.3.2, amplified by gravity, have collapsed

into the large scale structures of the present Universe. Over-dense regions have indeed
attracted some matter and emptied under-dense regions. Voids got larger and larger and
confined the matter into sheets. Sheets collapsed into filaments and filaments into clusters
which virialized to give halos. We want to present the dynamics of a gravitational collapse
and explain how, from a fluid without initial velocity dispersion, the several shell-crossings
it will undergo will generate velocity dispersion.

The dynamics of the collapse are determined by the eigenvectors and eigenvalues of the
Jacobian matrix of coordinate transformation f from Lagrangian coordinates to Eulerian
ones. This is illustrated in the following figure.

Figure 2.1: The eigenvectors of the Jacobian matrix are represented in blue, purple and red.
We supposed that |λ1|, |λ2|, |λ3|. The initially 3–dimensional fluid element collapses into a sheet,
which collapses to a filament. The filament then collapses to a point.

Let us consider now |λ1| � |λ2,3| and assume the following initial velocity:

v1(X1, T0) ∝ sin(X1) . (2.19)
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The gravitational field generated by three streams is bigger then the one generated by
one stream. Thus, the wave fronts will cross again, to generate five then seven streams and
so on. As the number of streams increases, the ellipsoid of velocities, which was initially
highly anisotropic, becomes more and more isotropic.

2.1.3 Eulerian perturbation scheme
We now consider a fluid without pressure and velocity dispersion. The 0th and 1st

moments of the Vlasov equation associated to the field equations for the gravitational
field give the Euler-Newton system:

∂v
∂t

+ v · ∇v = g , (2.20)
∂ρ

∂t
+ ∇ · (ρv) = 0 , (2.21)

∇ × g = 0 , (2.22)
∇ · g = Λ − 4πGρ . (2.23)

From these equations, it is possible to obtain an evolution equation for the vorticity
ω = 1

2∇ × v. This equation is called Helmholtz transport equation for the vorticity:

d

dt

(
ω

ρ

)
=
[

ω

ρ
· ∇

]
v . (2.24)

Combining this equation with the continuity equation, we can show that the solution is

ω = Ω · ∇0f
J

; Ω := ω(X, ti) , (2.25)

where J is the determinant of the Eulerian-to-Lagrangian Jacobian matrix.

We introduce the comoving coordinates q = x/a(t). They coincide with the Lagrangian
coordinates when the fluid undergoes a homogeneous and isotropic expansion. In what
follows, we consider inhomogeneous deformations of the form:

q = X + P(X, t) , (2.26)

where the magnitude of P(X, t) must not be small. In the Eulerian perturbation approach,
we split the following fields into background fields, associated with the Hubble flow and
solution of Friedmann’s equations, and peculiar fields.

ρ(q, t) =: ρH(t)(1 + δ(q, t)) , (2.27)
v(q, t) =: vH + u(q, t) ; vH(t) := ȧ q , (2.28)
g(q, t) =: gH + w(q, t) ; gH(t) := ä q . (2.29)

δ(q, t), u and w are respectively the density contrast, the peculiar velocity and the peculiar
acceleration. The Euler-Newton system can be split into the background dynamics and
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equations for peculiar fields. If we now assume that the deviation fields are first-order
perturbations 3, the first-order equations for the peculiar fields are

∂

∂t

∣∣∣
q
δ + 1

a
∇q · u = 0 , (2.30)

∂

∂t

∣∣∣
q
u + Hu = w , (2.31)

∇q × w = 0 , (2.32)
∇q · w = −4πGaρH δ . (2.33)

The Eulerian perturbation theory was first formalized by Peebles in [115]. The solutions
to these equations for an Einstein-de-Sitter Universe (k = 0, Λ = 0) are:

w = 2
3ti

2

(
t

ti

)−2/3
A(q) + 2

3ti
2

(
t

ti

)−7/3
B(q) , (2.34)

u = 2
3ti

(
t

ti

)1/3
A(q) − 1

ti

(
t

ti

)−4/3
B(q) , (2.35)

δ = −
(

t

ti

)2/3
∇q · A(q) −

(
t

ti

)−1
∇q · B(q) , (2.36)

where

A(q) = 3
5Uti + 9

10Wti
2 , (2.37)

B(q) = −3
5Uti + 3

5Wti
2 , (2.38)

and
U := u(q, ti) ; W := w(q, ti) . (2.39)

Initial data is often given in terms of the Fourier transform of the initial density contrast.

2.1.4 Numerical simulations
A powerful insight into the physics of large scale structures is provided by numerical

simulations. Cosmological simulations are based on the ΛCDM model and Newtonian
gravity. They take into account the homogeneous expansion of the Universe and assume
a given set of cosmological parameters.

Cosmological dark matter simulations don’t consider baryonic matter since, accord-
ing to the ΛCDM model, it is small with respect to the amount of dark matter. They
use a dust fluid model for dark matter and are able to predict the evolution of large
scale structures accurately up to the non-linear regime. They simulate systems from the
cosmic scales (� 20 Gpc) to the cluster and galactic scales (� 10 pc) and involve un-
til 5.1011 particles of dark matter, as is done in DEUS Full Universe Run simulation
based on RAMSES code [17]. Simulations of the DEUS Full Universe Run for different

3. We see that, in the Eulerian perturbation theory, from the definition of the peculiar fields (2.29),
we cannot describe high density contrast because the density field is a perturbed variable.
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box sizes and redshifts can be found at http://www.deus-consortium.org/a-propos/
dark-energy-universe-simulation-full-universe-run/.

Even if dark matter-only simulations are often used as a basis for semi-analytical mod-
els, their relevance ends when we go to galactic scales, where the baryonic effects are too
important to be neglected. The baryonic effects could indeed have a strong impact on the
distribution of dark matter in galactic halos. Furthermore, deviations from the mean-field
approximation that is used by the solution of Poisson’s equations, then become significant
[32]. [94] is an excellent review on the state of the art in cosmological simulations.

Hydrodynamical simulations describe the baryonic component of the Universe. These
simulations either solve Euler equations for a gas on a grid (which can be adaptative
- Adaptative Mesh Refinement - as is done in RAMSES [140]) or can describe the gas
as a set of particles, as is done in "Smooth Particle Hydrodynamics" SPH codes such as
GADGET [137].

Once the initial conditions, coming from the CMB, are implemented, different methods
can be used to solve Euler equations. The direct summation method, known as Particle-
Particle method, evaluates the force on each particle by summing the interaction exerted
by the neighbors. The tree-code method, used in RAMSES code, consists in decomposing
hierarchically the influence of the neighboring structures and treating the influence of
remote structures by a multipole expansion on clusters containing many particles. The
expansion can thus be truncated at low order. Other methods exist, as is explained in
[13].

The description of the evolution of structures is enriched by taking into account the
radiative and thermal transfers (as is done in RAMSES [140] by Godunov method, a mod-
ern shock-capturing scheme that describes the thermal history of the fluid), the chemical
reactions or the impact of magnetic fields on plasmas. Then, these simulations allow a
good precision estimation of the baryonic mass-to-light function of galaxies. The submesh
physics, which includes, for example, the stellar formation, supernovae explosions or the
active galactic nucleus are usually described as an overall feedback.

Some cosmologists claim that analytical approaches have arrived at their limits while
we will show that numerical and analytical approaches are complementary in the de-
scription of structure formation. The intrinsic Lagrangian analytical approach will give
a powerful insight into the large-scale structure formation and shed a new light on the
dynamics of the Universe.

2.2 Newtonian Lagrangian perturbation approach to
describe structure formation

We here present a Lagrangian theory for self gravitational flows following [38] and
[26]. Contrary to the Eulerian case, a single variable is needed to describe the gravitation
dynamics: the trajectory function f , presented in (2.11). Density and velocity are no longer
dynamical variables and thus high density contrasts can be described by this method. We
will derive the Lagrange-Newton system, which is a closed set of Lagrangian equations
for the trajectory field f describing the gravitational dynamics of the self-gravitating
flow. As we will show, we can go back to the Euler-Newton system from the Lagrange-
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Newton system as long as the mapping f is invertible and non-singular. This condition
will be expressed in terms of J , the determinant of the Jacobian matrix of the Eulerian-
to-Lagrangian coordinate transformation.

2.2.1 Lagrangian description of structure formation
The trajectory field of fluid elements, also called deformation field, has been defined in

(2.11). In the Lagrangian approach, the Eulerian position f(X, t) and time t are no longer
independent variables. The independent variables are now (X, t). The tensor of the first
derivatives of the trajectory field with respect to the Lagrangian coordinates: (fi|j), called
the Jacobian matrix, measures the deformation of the fluid particle. Its determinant is
given by:

J := det
(

∂fi

∂Xj

(X, t)
)

= 1
6εijkεklmf i

|kf j
|lf

k
|m . (2.40)

We have denoted by a vertical slash |j the spatial derivative with respect to Xi, by an
overdot ˙ the time derivative and have used Einstein summation convention on repeated
indices: ui vi = u1 v1 + u2 v2 + u3 v3 and uμ vμ = u0 v0 + u1 v1 + u2 v2 + u3 v3 . εijk is
the Levi-Civita tensor. It is equal to 1 if {i, j, k} are an even permutation of {1, 2, 3},
−1 if they are an odd permutation of {1, 2, 3} and zero otherwise. We link the Eulerian
position, velocity and acceleration to the trajectory function by:

x := f(X, t) ; v := ḟ(X, t) ; g := f̈(X, t) . (2.41)

In the Lagrangian perspective, the volume of the deformed fluid element is measured by
the determinant of the Jacobian matrix J(X, t) = det(fi|j). The density must therefore
be proportional to its inverse.

ρ(X, t) = ρ(X, ti)
J(X, t) . (2.42)

This comes from the fact that the Jacobian is solution of the following equation:

J̇ = J ∇v . (2.43)

It is initially equal to J(X, ti) = 1 since by definition, Eulerian coordinates initially
coincide with Lagrangian ones.

The inverse map to f is defined by h = f−1. It is possible to check that its gradient is
given by 4

X = h(x, t) , hi
,j = 1

2J
εjpqε

ilmfp
|lf

q
|m . (2.44)

We denoted by ,i the Eulerian derivative with respect to xi.

4. This can be easily proved in the 2–dimensionnal case, where the inverse Jacobian matrix is

J−1
ab (2D) =

1
J(2D)

(
f2|2 −f1|2

−f2|1 f1|1

)

where the Jacobian is J(2D) = f2|2f1|1 − f2|1f1|2 .

29



CHAPTER 2. LARGE SCALE STRUCTURE FORMATION

2.2.2 Lagrange-Newton System
In order to formulate Euler-Newton system in terms of the Lagrangian trajectory

function, we introduce the following notation. We denote by J (A, B, C) the functional
determinant of A(X, t), B(X, t) and C(X, t)

J (A, B, C) = εklmA|kB|lC|m . (2.45)

From the composition of the derivatives and from (2.44), for any field ai we have

ai,j = ai|khk
,j = 1

2J
εjpqJ (ai, fp, f q) . (2.46)

We denote by g[i,j] the antisymmetric part of gi,j : g[i,j] = 1
2 (gi,j − gj,i). If we replace

the gravitational field by the second time derivative of the trajectory function f(X, t) (cf
(2.41)) in the field equations, we get from (2.46) the following equations:

g[i,j] = (∇ × g)k = 1
2J

εpq[jJ (f̈i], fp, f q) = 0 ,

gi
,i = 1

2J
εipqJ (f̈ i, fp, f q) = Λ − 4πGρ .

(2.47)

The first one can be rewritten as

εpq[jJ (f̈i], fp, f q) = 0 which is equivalent to δij f̈
i
|[pf j

|q] = 0 . (2.48)

Later, we will show that these equations have relativistic counterparts. The relativistic
equations will no longer be expressed in terms of the 3 components of the trajectory
function f , but in terms of the nine components of the Cartan coframes.

2.2.3 Zel’dovich approximation
The Zel’dovich approximation [161] has been built from the observation that, for a

sufficiently long time, a gravitational collapse exhibits a preferred direction. This direction
corresponds to the eigenvector of the Jacobian matrix associated to the largest eigenvalue
(|λ1| in Fig. 2.1). This collapse leads to the formation of flat structures (pancakes), then
to filaments and finally to clusters. For each stage of the collapse, we can assume that
the velocity and the acceleration fields are approximately collinear. A subclass of solu-
tions can then be investigated [21]. The success of the Zel’dovich approximation in the
Newtonian Lagrangian setup is a strong motivation to develop it in the relativistic frame.
Nevertheless, since no relativistic numerical simulations exist, a relativistic Zel’dovich
approximation has not yet been implemented.

2.2.4 Newtonian Lagrangian perturbation theory
Major differences exist between the Eulerian perturbation approach and the Lagrangian

one. They are the motivations for developing the Lagrangian approach. First, the density
field is not a perturbation variable, contrary to the Eulerian case. Second, the perturbed
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flow f is a function of the Lagrangian coordinates, which follow the flow whereas in the
Eulerian case, the perturbations are expressed in the frame associated to the homogeneous
flow. Deviations to the homogeneous flow may be small but the Eulerian fields evaluated
along the perturbed flow can experience large changes as is represented and discussed in
Figure 2 of [26].

The perturbed trajectory field is the sum of a homogeneous background trajectory
field and of an inhomogeneous perturbation field:

f(X, t) = a(t) (X + P(X, t)) . (2.49)

The inhomogeneous perturbations can be decomposed into different orders, order n being
negligible with respect to order n−1. A discussion of the perturbation and solution scheme
will be provided in Chapter II.2.

A reason for the strong success of analytical Lagrangian description of structure for-
mation is that it intrinsically contains non-linear Eulerian terms. The efficiency of this
approach has been discussed in [153], where the authors compare the density profile ob-
tained from a particle-mesh Newtonian simulation, based on the iterative resolution of
Poisson equations, to the density profile obtained from the second order solutions of the
Lagrange-Newton system. Both are computed for a box of a size of (200h−1 Mpc)3 and
from the CMB initial data. The first method requires a numerical resolution whereas the
second is just the plotting of analytical functions. Both are in very good agreement as
discussed in [109].

Nevertheless, the Lagrangian scheme has an intrinsic limit: it is no longer accurate
once the shell-crossing has taken place. In order to follow the perturbation scheme after
that time, we have to truncate the high-frequency modes in the initial fluctuation spec-
trum. Thus, under a certain characteristic size (� galaxy group mass scale), the approach
breaks down [108]. For further details on the Newtonian perturbation theory, the reader
can refer to [27, 55].

2.3 Relativistic Lagrangian description of structure
formation

In last section, we have presented the Newtonian Lagrangian perturbation theory. We
have seen that the Lagrangian description is much more powerful then the Eulerian one,
even when Lagrangian analytical perturbation solutions are compared to Eulerian numer-
ical simulations. These outcomes strongly support the search for a relativistic generaliza-
tion of the Lagrangian approach. Such a generalization was first suggested by Kasai [85]
and was further investigated for the non-perturbative regime in [35] by Thomas Buchert
and Matthias Ostermann, where they build a Lagrangian framework for the description
of structure formation in General Relativity and define the relativistic generalization of
the Zel’dovich approximation. Nevertheless, some work has still to be done for the devel-
opment of the intrinsic Lagrangian perturbation formalism. In this chapter, I will give the
basic mathematical notions of differential geometry needed to describe structure formation
on a curved manifold.
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I will try to give a physical intuition for the Cartan frames and explain how Cartan
coframes can be obtained from them. Then, we will discuss why these coframes are the
relativistic counterparts of the gradient of the trajectory function. The Cartan formal-
ism will be the accurate one to describe the relativistic dynamics of space-time in the
Lagrangian way.

2.3.1 Cartan formalism and the dynamics of space-time
We present the tools needed to understand the Cartan coframe formulation of General

Relativity in the Lagrangian description. The reader seeking for a more detailed and
complete introduction to the mathematical tools needed for General Relativity can find
further information in these very good books [75] [74] [130].

Manifolds and charts

Space-time is a four dimensional manifold M to which is associated the metric bilinear
form g with signature (−, +, +, +). A 4-dimensional manifold M is a topological space
that is locally homeomorphic to Euclidean space 5 6

R
4. This means that there exists a

family of open neighborhoods Ui together with continuous one-to-one mappings
fi : Ui 
→ R4 with a continuous inverse such that this family of open neighborhoods covers
the whole manifold : ⋃

i

Ui = M . (2.50)

If P is a point in M and U an open neighborhood of P , there exists a mapping φ : U → R4

such that φ(P ) = (x0, x1, x2, x3) will be a vector in R4. This mapping φ is a coordinate
system, also called coordinate chart.

Usually, it is not possible to cover a manifold with a single chart such that every
point of space-time has a unique coordinate. For S2, the 2-sphere, 2-dimensional surface
of the 3-dimensional sphere, the lines of constant coordinate must cross somewhere on S2.
Therefore, at least two charts are required to cover it. At the overlapping of two charts,
General Relativity requires that the mapping between the coordinates of the overlapping
charts is at least doubly differentiable.

From coordinates to frames

Gravity can be seen as the field that determines at each point of space-time the
preferred frame in which the motion is inertial. Consider now a particular event associated
to the point A on the space-time manifold. Let xA be its coordinates. Consider the local
inertial frame around A and denote by Aχ the coordinates it defines in some arbitrary
coordinate map x = {xμ}. Choose the origin such that Aχ(A) = 0. As explained in the
Section I.1.1.1, the motion of an object in space-time has to be considered with respect
to the frame determined by the gravitational field. Here, gravity in A can be seen as

5. A homeomorphism being a continuous map which has a continuous inverse map.
6. This means that a manifold is locally Euclidean, i.e. flat. To illustrate this idea, we could think of

the Earth, which was thought to be flat in the ancient times. On the small scales that we see, Earth does
indeed look flat. Any object that is nearly flat on small scales is a manifold.
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the information of the change of coordinates that takes us to the inertial coordinates.
It is contained in Aχ = Aχ(x). The value of this function is only meaningful in a small
neighborhood of A since, as we move away from A, the inertial reference frame will change
and so will the coordinates attached to it. The first-order Taylor expansion gives

Aχ(x) = ∂ Aχ

∂ xμ

∣∣∣∣
xA

xμ = Aeμ(xA) xμ . (2.51)

The construction can be done for any point of the space-time manifold. The gravitational
field is therefore the Jacobian matrix of the change of coordinates [130] from x to the
coordinates that are locally inertial at the space-time point defined by x :

eμ(x) = ∂ χ

∂ xμ

∣∣∣∣
x

. (2.52)

The eμ are called tetrad fields or Cartan frames. They live in the tangent space at the
point that is considered on the manifold. If we had only one inertial frame for the whole
space-time, then the Cartan frames would be equal to the inertial coordinate basis. But
this is not the case since the inertial frame is a local concept. These frames are defined
on the space-time manifold independently of the existence of a metric g.

We have seen that they represent the gravitational field and are, by construction,
attached to the local inertial frame. If we add to the manifold a metric structure, then,
from Gram-Schmidt orthonormalization procedure we can build some orthonormal frames.
This point will be explained in the next paragraph.

Differential forms and Cartan coframes

At any point P of the manifold M it is possible to define a cotangent space that
has {dX i} as a basis. Let φ be a k−differential form (k is an integer smaller that the
dimension of the manifold). Its coefficients can be expressed in the exact basis of the
cotangent space according to

φ = φi1 i2 ... ik
dX i1 ∧ dX i2 ∧ ... ∧ dX ik , (2.53)

where ∧ is the Wedge operator.
The exterior differential is defined to be the unique mapping from the k-forms to the

(k + 1)-forms satisfying the following properties:
1. d is additive: d(α + β) = dα + dβ,
2. If α0 is a scalar, dα0 is the usual differentiation of the function α0,
3. d(αp ∧ βq) = dαp ∧ βq + (−1)pαp ∧ dβq,
4. ∀ α , d(dα) = 0.

We can equivalently define it on a local coordinate chart (X1, ..., Xn). On the k−form φ

dφ = d
(
φν1...νp dXν1 ∧ ... ∧ dXνp

)
= dφν1...νp ∧ dXν1 ∧ ...dXνp (2.54)

= φν1...νp| i dX i ∧ dXν1 ∧ ...dXνp ,
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where φν1...νp| i = ∂Xi(φν1...νp). A k−form φ is exact if and only if it is equal to the exterior
derivative of a (k − 1)−form ψ :

φ exact ⇐⇒ ∃ ψ / φ = d ψ . (2.55)

We will work with coframes rather than frames since this description will be closer to the
Newtonian Lagrangian formalism. The coframes are the duals of the frames and therefore
are 1−forms that live in the cotangent space. They satisfy

ημ(eν) = δμ
ν . (2.56)

We will see later that they can be chosen in such a way to both encode the dynamics of
the fluid and the geometry of the manifold, via the metric bilinear form.

2.3.2 3 + 1 foliation of space-time in a Lagrangian approach
In the following, we briefly present the 3+1 foliation of space-time in order to introduce

and discuss the decomposition of the metric in terms of the Cartan coframes. More details
on the 3 + 1 foliation and on the decomposition of the Einstein equations will be given in
the Chapter II.1.

In General Relativity, an absolute space and an absolute time do not exist. Neverthe-
less, a 3 + 1 splitting of space-time is often considered in order to have a more intuitive
understanding of the dynamics of matter and geometry. For an excellent introduction to
the 3 + 1 formalism, I recommend the reader the following lecture [73].

The Einstein equations, which are 4-dimensional equations, can be split into evolution
equations and constraint equations, defined on 3-dimensional space-like hypersurfaces 7.
The 3 + 1 foliation of space-time is only possible if space-time is globally hyperbolic.
This means that spatial hypersurfaces Σ in M are Cauchy surfaces, i.e. each causal (i.e.
timelike or null) curve without end point intersects Σ once and only once. We introduce
a smooth and regular scalar field t̂ on M such that each hypersurface is a level surface of
this scalar field.

∀t ∈ R , Σt := {p ∈ M , t̂(p) = t} . (2.57)

For different times t and t′, the hypersurfaces Σt and Σt′ do not intersect because t̂ is
regular.

We call the class of observers that move freely the inertial observers. The tetrad
fields associated with a reference frame R are such that e0 is the normal vector to the
hypersurfaces: e0 = n. We here choose the special foliation for which n := u is the unit
tangent vector field of the world lines of the fundamental observers in R, i.e. the 4–velocity
field of these observers. The rest-space of an observer is defined as the local 3-dimensional
space orthogonal to the 4-velocity u of the observer.

If the matter model that we consider is a fluid with vorticity, it is not possible to
synchronize globally the clocks associated to the local rest-spaces of all the inertial ob-
servers. In other words, a single space of simultaneity encompassing the rest spaces of all
the inertial observers does not exist.

7. R. L. Arnowitt, S. Deser and C. W. Misner were the first ones to perform this splitting [6].
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Figure 2.2: The space-time M is foliated by a family of spacelike hypersurfaces Σt. The unit
vector n is normal to the hypersurface. Here we choose the foliation such that n coincides with
the 4–velocity of the fluid flow. The image is taken from[73].

Nevertheless, for a dust fluid without vorticity, such a global space of simultaneity
exists. We can indeed choose the hypersurfaces to be everywhere orthogonal to the 4–
velocity of the inertial observers. In Chapter II.1, we will explain how we obtain from the
general 3+1 decomposition of the Einstein equations the equations in the flow-orthogonal
foliation for the dust fluid without vorticity matter model.

We will refer to spatial quantities with indices a, b, ... going from 1 to 3. Moreover, the
4−coframes ημ will be split into:

• η0, the cotangent field along the worldlines of the inertial observers, i.e. in this
splitting, in the direction of time,

• ηa, a running from 1 to 3, the spatial coframes.
In the foliation we have chosen, the 4−metric is:

(4)g = −dt ⊗ dt + (3)g . (2.58)

From a given symmetric tensor Gab that may depend of the point of the manifold that
we consider and with the help of Gram-Schmidt process, we can build a frame basis in
which the spatial 3−metric is:

(3)g = Gab ηa ⊗ ηb , (2.59)

where a and b run from 1 to 3. We may want to consider the orthonormal coframes, that
satisfy the following identity:

(3)g = δab η̃a ⊗ η̃b . (2.60)
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Nevertheless, we consider the coframes adapted to Gab � δab in order to encode in this
term the initial deviation fields. This will be discussed in Section II.2.1.1.

As in the Newtonian case, we will consider Lagrangian coordinates. These coordinates
cover the spatial sections and are constant along the flow lines. For the dust fluid that
we consider, they are thus transported along the geodesics. More information on the
Lagrangian description will be given for general foliations and matter models in Section
II.1.1.2.

Figure 2.3: The Lagrangian coordinates, which cover the spatial hypersurfaces Σt, label the
fluid particles. They are thus constant along the trajectories of the fluid flow, which are here
geodesics since we consider an irrotational dust fluid.

From (2.59), we get:

(3)g = gij dX i ⊗ dXj = Gab ηa
iη

b
jdX i ⊗ dXj . (2.61)

This implies 8, in the Lagrangian coordinate basis {dX i}:

gij = Gab ηa
iη

b
j . (2.62)

It is possible to show that, if the coframes are integrable forms, ηa −→ dfa, then, as
discussed in Section II.1.5.2, we only have one inertial frame for the whole space-time. It
is remarkable to note that the appearance of a global frame couples with the fact that a
part of the Einstein equations will give back the Lagrange-Newton-System. This will be
discussed in Section II.1.5.

8. Gab is the Gram tensor for the coframes ηa and not the Einstein tensor.
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The SMC is based on the cosmological principle: global homogeneity and isotropy.
But, as it assumes that the average Universe is described by a homogeneous and isotropic
model, it implies that global and local dynamics are decoupled. This assertion goes far
beyond the cosmological principle.

In this chapter, we first show that for most of the interesting scales, the Universe is
not homogeneous. Taking into account these inhomogeneities will lead, both in Newto-
nian gravity and in General Relativity, to an additional term contributing to the global
dynamics of the Universe. Nevertheless, in the Newtonian case, inhomogeneities have no
impact on the global dynamics.

We will consider the relativistic case and explain how the non-linearity of the Einstein
equations results in a difference between the dynamics of an initially averaged space-time
and the averaged dynamics of space-time. The backreaction term quantifies this difference.
Afterwards, we will consider the Einstein equations in the 3 + 1 foliation. The averaging
process that will be introduced is the accurate formalism to determine the impact of
the inhomogeneities of the matter distribution on the evolution of the Universe. Once
averaged, the Einstein equations will be analogous to the ones of the SMC , except for
the additional backreaction term, that will encode the coupling of the evolution of the
fluid to the geometry of space-time. Finally, we will discuss how the backreaction may
replace the dark matter and dark energy that the SMC needs to be self-consistent.

3.1 Inhomogeneities and their consequences on the
global dynamics

Our galaxy is at the edge of a local void in a filamentary sheet [149] that joins us to
Virgo Cluster. Furthermore, some surveys estimate that 40 to 50 % of the volume of the
Universe is contained in voids of diameter 30 h−1 Mpc [79, 80]. Nevertheless, the SMC
assumes that the averaged Universe can be described by a homogeneous and isotropic
model. Are the inhomogeneities really negligible? If so, above which scale can we neglect
them?

3.1.1 Hierarchical structures and their density contrast
The density contrast within structures is the dimensionless excess density over the

mean density : δ := (ρ − ρ)/ρ. Its volume average increases as we consider smaller scales
in the Universe:

— for a region of about 10 Mpc, 〈δ〉 � 1 ,
— for a typical rich cluster of galaxies, 〈δ〉 � 10 ,
— for a galaxy, 〈δ〉 � 105 ,
— for a star, 〈δ〉 � 1028 .
Nevertheless, the cosmological principle asserts that there exists a spatial length, lying

somewhere between 100 h−1 Mpc and 700 h−1 Mpc, beyond which the Universe is statis-
tically homogeneous and isotropic as discussed in Section I.1.2.1. The next step consists
in assuming that this homogeneity and isotropy at large scales allows us to describe the
Universe at these scales with the FLRW metric tensor (1.4). This assumption decouples
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the local dynamics from the global dynamics. Nevertheless, we cannot neglect the global
contribution of inhomogeneities on the dynamics of the averaged space-time [103, 102].

3.1.2 A first insight into averaging and backreaction
We consider the physical space-time described by (M, gμν) and an averaged space-

time (〈M〉 , 〈gμν〉), where we did not specify the averaging procedure 〈·〉. The averaged
Einstein equations (1.3) are then:

〈Gμν〉 = 8 π G 〈Tμν〉 , 〈Gμν〉 = 〈Rμν〉 − 1
2 〈R gμν〉 + Λ 〈gμν〉 . (3.1)

In the same spirit as perturbation theory, we decompose the metric tensor as average and
deviations from the average:

gμν = gμν + δgμν , (3.2)
where we have denoted 〈gμν〉 by gμν . We remark that if we do the same thing for gμν , i.e.

gμν = gμν + hμν , (3.3)

then gμν � 〈gμν〉 and hμν � δgμν . We denote by X all the geometrical quantities build
from gμν , that caracterize 〈M〉.

Averaged Einstein equations can be reformulated in the following way [65]:

〈Gμν〉 = Gμν + ΔGμν = 8 π G 〈Tμν〉 . (3.4)

Einstein’s theory is non-linear. Thus the averaging process and the construction of the
Einstein tensor do not commute. The averaged dynamics of space-time is not equal to
the dynamics of the averaged space-time. This is nevertheless what the standard model
assumes when stating that Einstein’s equations on 〈M〉 are:

Gμν = 8 π G 〈Tμν〉 . (3.5)

ΔGμν , the backreaction term, will be non-zero as long as the inhomogeneities in the
physical space can act on the dynamics of the averaged space-time. The open question
is to understand if this term is big enough to account for dark energy and dark matter.
The standard model of cosmology, by neglecting this term, assumes that the dynamics of
structures at small scales do not influence the global dynamics, at scales larger then the
homogeneity scale.

3.2 Backreaction and spatial average of the Einstein
equations

In the last section, we had a first insight in the origins of backreaction. We will here
work with the 3 + 1 formulation of the Einstein equations, first obtained by [6] and that
we will determine in Chapter II.1. Then, we will give a definition for the spatial averaging
operation we consider. When compared with the equations of the standard model, the
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averaged inhomogeneous Einstein equations exhibit an additional term, the backreaction.
It is the sum of two terms, the first being linked to the shear, the vorticity and the
expansion rate of the fluid while the second is the curvature term.

We are looking for a covariant averaging process for tensors in order to preserve the
covariance of Einstein’s equations. Nevertheless, this averaging procedure has not yet been
found and seems to involve a complex hierarchy of averaging processes [158, 43, 65], that
goes beyond the two scale model proposed by Zalaletdinov [160]. A way to avoid this
difficulty is to only average scalar fields and not tensors. Therefore, we will not consider
the averaged Einstein equations in their tensorial form but rather the scalar equations
that they contain 1.

In the following sections, we present the 3+1 decomposition of the Einstein equations.
Then, we define the averaging operation on scalar fields for any spatial domain. Thereafter,
we build the averaged evolution equations of an inhomogeneous universe, according to
Buchert’s formalism.

3.2.1 Einstein equations in the 3 + 1 formalism
As we will discuss in detail in Section II.1.1.1, the irrotational dust fluid matter model

has the following stress-energy tensor:

Tμν = ρ uμuν , (3.6)

where the 4–velocity is normalized: uμuμ = −1. We choose a flow orthonormal foliation:
the hypersurfaces of constant time Σt are normal to the 4–velocity of the fluid flow u. Then,
the 4–metric and the 4–velocity have the following form in the Lagrangian coordinate
basis 2, also called Gaussian normal coordinate basis {dX i}:

gμν = diag(−1, gij) ; uμ = (−1, 0) ; uμ = (1, 0) , (3.7)

where gij is the metric on the hypersurface. The 4-dimensional line element in these
coordinates is:

ds2 = −dt2 + gij dX idXj . (3.8)
In the special foliation that we considered for the irrotational dust fluid, the Einstein

equations and the conservation equation can be expressed in terms of the expansion
tensor 3, which is a symmetric spatial tensor:

Θij = 1
3θδij + σij where σij = Θ(ij) − 1

3θδij . (3.10)

1. The resulting averaged Einstein’s equations will only cover the full dynamical degrees of freedom
in the case of locally rotationally symmetric spacetimes. In fact, in that case, Einstein’s equations can be
fully reduced to the dynamics of their covariant scalars [67].

2. The Strong Lagrangian description will be introduced in Section II.1.1.2.
3. The expansion tensor is initially a 4–dimensional object, defined by:

Θμν := fα
μfβ

ν∇β uα , (3.9)

where fα
μ is the projector on the rest-frames of the fluid, defined by (1.16), and ∇β denotes the

4–dimensional covariant derivative.
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θ is the trace of Θij, i.e. the expansion rate and σij is the shear. Then, the conservation
of the stress-energy tensor reads:

ρ̇ + θρ = 0 . (3.11)

The full projection of the Einstein equations onto the hypersurfaces Σt gives the evolution
equation of the extrinsic curvature:

Θ̇i
j + θΘi

j = (4πGρ + Λ)δi
j − Ri

j . (3.12)

The full projection perpendicular to the hypersurface (i.e. along the 4–velocity field) gives
the Hamilton constraint:

R + θ2 − Θi
jΘ

j
i = 16πGρ + 2Λ . (3.13)

The mixed projection gives the momentum constraint equation:

θ|i − Θj
i‖j = 0 . (3.14)

The details of the derivation of these equations will be given in Section II.1.1.3. From
these equations, we will extract some scalar equations, which will be averaged in Section
I.3.2.2.

3.2.2 Dynamics of a compact domain from the averaged Ein-
stein equations

We here define the averaging operator on scalar fields for any domain. This operator
will enable us to obtain the averaged scalar Einstein equations for the averaged evolution
of an inhomogeneous universe [29].

Averaging scalars

We consider a compact and simply connected domain in the spatial hypersurfaces Σ.
This domain D will follow the fluid during its evolution: it will follow the flow lines of the
fluid elements. The total rest-mass of the fluid contained in the domain will be conserved.
We use Lagrangian coordinates to parametrize the position on Σt.

〈φ〉D (t) := 1
VD

∫
D

φ(t, X)
√

g(t, X) d3X , (3.15)

VD :=
∫

D

√
g(t, X) d3X , (3.16)

is the volume of the domain and g is the determinant of the spatial metric tensor gij.
Lagrangian coordinates index each particle of fluid and are thus comoving with the fluid.
Furthermore, with these definitions, we can show that

〈θ〉D = V̇D
VD

. (3.17)
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Finally, from these definitions and identities, we get the non-commutation rule:

〈φ〉Ḋ −
〈
φ̇
〉

D = 〈θ〉D 〈φ〉D − 〈θ φ〉D . (3.18)

We conclude that spatial averaging and time evolution do not commute. In the standard
approach, the fluctuations of the CMB are averaged out to obtain the FLRW metric. This
averaged universe is then evolved in time. According to (3.18), this is not equivalent to first
evolving the inhomogeneous fields until present time and then spatially averaging them to
obtain their final averaged values e.g. averaged density field or cosmological parameters.

Averaging scalar equations: Buchert’s equations

We consider the following three scalar equations. The Hamilton constraint equation
(3.19) can be rewritten:

1
3θ2 = 8πGρ − 1

2R + σ2 + Λ , (3.19)

where σ2 = 1
2σijσ

ij. The Raychaudhuri equation is obtained by replacing the Ricci scalar
in the Hamilton constraint by its expression obtained by the trace of (3.12),

θ̇ = −4πGρ + Λ + 1
3θ2 − 2σ2 . (3.20)

The last scalar equation we consider is the conservation of mass (3.11). We define the
averaged scale factor

aD(t) =
(

VD
VDi

)1/3

, (3.21)

Di represents the initial domain and aD(t) is linked to the averaged expansion rate ac-
cording to

〈θ〉D = 3 ȧD
aD

. (3.22)

The Buchert’s equations are obtained by combining (3.18) and (3.22) to average (3.19),
(3.20) and (3.11):

3
(

ȧD
aD

)2
= 8πG 〈ρ〉D − 1

2 (RD + QD) + Λ , (3.23)

3 äD
aD

= −4πG 〈ρ〉D + QD + Λ , (3.24)

〈ρ〉Ḋ + 3 ȧD
aD

〈ρ〉D = 0 , (3.25)

where we have defined

RD := 〈R〉D , QD := 2
3
〈
(θ − 〈θ〉D)2

〉
D − 2

〈
σ2
〉

D . (3.26)

42



3.3. CAN BACKREACTION REPLACE DARK MATTER AND DARK ENERGY?

QD is the kinematical backreaction. The time-derivative of the averaged Hamiltonian
constraint (3.23) is equal to the averaged Raychaudhuri equation (3.24) if the following
integrability condition is satisfied:

1
a6

D

(
QD a6

D
)
˙+ 1

a2
D

(
RD a2

D
)
˙ = 0 . (3.27)

This equation has no Newtonian analogue and states that the averaged intrinsic and
extrinsic curvature are dynamically coupled.

3.3 Can backreaction replace Dark Matter and Dark
Energy?

To be self-consistent, the SMC has to assume a large amount of dark sources, namely
Dark Matter and Dark Energy. The averaged Einstein equations for an inhomogeneous
universe are analogous to the ones of the SMC but exhibit an additional term: QD, called
backreaction, that has an impact on the dynamics of the domain considered D. From
(3.24), we conclude that

• if QD > 0, it contributes to the acceleration of the expansion of the domain and
behaves like dark energy.

• if QD < 0, it will slow down the expansion of the domain and thus behave like
dark matter.

Furthermore, the backreaction behaves like Dark Matter on the small scales and like
Dark Energy on the large scales [154]. Moreover, it has been shown that, for an LTB
model [139], backreaction can mimic the cosmological constant. Nevertheless, a precise
evaluation of the backreaction has still to be achieved for more general inhomogeneous
density profiles. Finally, the observational data should be entirely reinterpreted in the
framework of inhomogeneous cosmology [43] in order to be fully consistent with this
approach. A complete discussion of the effects of the inhomogeneities on the dynamics of
the Universe can be found in the following reviews [65, 34, 91, 123, 158].
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Gravitoelectromagnetism is an analogy between the equations of Newtonian or rela-
tivistic gravity and electromagnetism. This approach of gravity allows a special under-
standing of Einstein’s theory of General Relativity. In this chapter, we will give a brief
historical presentation of the development of this analogy and illustrate it in the case
of the Newtonian gravitation theory. Thereafter, we will discuss the formulation of the
Einstein equations in terms of the electric and magnetic parts of the Weyl tensor. As we
will see, this formulation exhibits strong similarities with the Maxwell equations. Fur-
thermore, we will show that the part of the Einstein equations, namely the gravitoelectric
part, is the non-integrable counterpart of the Lagrange-Newton-System. Exploiting this
formal analogy will be the subject of Chapter II.2, where a relativistic generalization of
the Newtonian perturbation solutions to order n will be presented. The GEM analogy, as
well as the perturbation scheme that we will discuss in the next chapters, is based on the
3+1 decomposition of the Einstein equations. Even if in most of the work that I carried
out during my PhD, we considered the irrotational dust fluid as a matter model for the
content of the Universe, some results for the perfect fluid matter model will be given in
Appendix A.

In this chapter, I first present the general 3 + 1 foliation of space-time and introduce
the geometrical quantities that parametrize the foliation. We will explain how these quan-
tities can be constrained in order to build a foliation adapted to the fluid flow, namely
a comoving synchronous foliation. The Einstein equations will be given in the 3 + 1 de-
composition. The extrinsic curvature and expansion tensor will be expressed in terms of
the physical and geometrical quantities we will define. These general results will then be
specified on the case of the irrotational dust fluid matter model and for the perfect fluid
matter model in Appendix A. Most of the results presented here are discussed in [129].
With permission of the authors, I present the following introductory notes here, since my
work is based on some of these non-published results (in particular, appendix A).

1.1 Preparatory remarks: 3 + 1 decomposition of the
Einstein equations

1.1.1 Description of the fluid flow and foliation of space-time
In this section, we explain how we can relate the fluid flow to the foliation of space-

time. Then, we present the general space-time foliations for an arbitrary set of coordinates
and discuss how the degrees of freedom associated to the choice of the coordinate system,
namely the lapse α and the shift β, are related to the physical quantities of the fluid
flow. Thereafter, we define the rest-frame of the fluid flow and give the expression of the
stress-energy tensor of a perfect fluid in this frame.

3 + 1 foliation of space-time and description of the fluid flow

Fluid flow and hypersurfaces
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1.1. PREPARATORY REMARKS: 3 + 1 DECOMPOSITION OF THE EINSTEIN
EQUATIONS

We consider a globally hyperbolic 4–dimensional manifold, endowed with the pseudo-
Riemannian metric tensor g. We foliate this 4–dimensional manifold into space-like hy-
persurfaces for a given time t. We will denote by n the normal vector to the hypersurfaces
[73] [135].

Figure 1.1: The unitary vector n is orthonormal to the spatial hypersurface Σt. It is tangent
to the integral curves of the Eulerian frames. u, the time-like 4–velocity unit vector, is tangent
to the congruence of the fluid. It is not equal to n in general. The tilt vector v measures the
difference between n and u.

If we call u the time-like 4–velocity unit vector of the fluid flow, then, we can decompose
it in the following way, as illustrated by the Figure 1.1:

u = γ(n + v) , (1.1)

where
g(n, v) = 0 and γ = (1 − g(v, v))−1/2 = −n · u . (1.2)

v is the spatial velocity of the fluid relative to the Eulerian frames, called tilt. v vanishes
when n and u are identified. The quantities that we have defined here are independent of
the choice of coordinates.

Local coordinate system

We define on the 4–dimensional manifold a local system of coordinates xμ = (t, xi).
The corresponding coordinate basis is {∂xμ} = {∂t, ∂xi}. Furthermore, we define ∇t as
the dual of the one-form dt. The normal vector to the hypersurfaces is proportional to
n = −α ∇t where 1 α = (− < dt, ∇t >))−1/2. We introduce the normal evolution vector
m = αn that satisfies < dt, m >= 1. Since < dt, ∂t > is also equal to 1, the vector
β = ∂t − m is tangent to the hypersurfaces Σt. α is called the lapse function and β the
shift vector. The useful geometrical objects are represented in Figure 1.2.

1. We denote by < w, y > the scalar product between the 1-form w and the vector y: wμ yμ
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Figure 1.2: On this figure, we have represented schematically the normal vector n to the hy-
persurfaces, u the 4-velocity of the fluid, ∂t the time-oriented vector of the coordinate basis
which is tangent to the integral curves (of constant spatial coordinates xi = cst). For the fluid
congruence, the time that has elapsed between the two hypersurfaces is dτ0 whereas for the
Eulerian observers, it is dτ . γ measures their ratio : dτ/dτ0 = γ.

In the coordinate basis that we have chosen, the normal vector to the hypersurfaces
has the following coordinates:

nμ = 1
α

(1, −βi) . (1.3)

The dual form of n, n has the following components:

nμ = −α (1, 0) . (1.4)

We define the spatial coordinate velocity V by:

V := d x
d t

with g(n, V) = 0 . (1.5)

V explicitly depends on the choice of coordinates which is not the case of v.
Different times can be considered in the description of the dynamics of the fluid. τ0 is

the time associated to the comoving observers, i.e. measured by the Lagrangian observers
along their flow lines whereas t is the time coordinate, depending on our choice of foliation
of space-time. τ is the time associate to the Eulerian observers, attached to the foliation
(cf Figure 1.2). It is possible to show that for any tensor field F :

uμ∇μF = d F
dτ0

= γ

α

d F
dt

, (1.6)

since α = dτ/dt and γ = dτ/dτ0. Furthermore,

d F
dt

= ∂ F
∂t

∣∣∣∣
Xi

= ∂ F
∂t

∣∣∣∣
xi

+ Vi
∂ F
∂xi

. (1.7)
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From now on, we will denote d F
dτ0

by Ḟ .
Furthermore, for d λ = βdt + dx, we show the useful equality:

v = d λ

dτ
= dt

dτ
(V + β) = 1

α
(V + β) . (1.8)

For (1.1) and (1.8) we conclude that the 4–velocity of the fluid can be expressed as:

u = γ

α
(αn + β + V) . (1.9)

Thus, the components of the fluid flow vector and its dual are:

uμ = γ

α

(
1, V i

)
, uμ = γ

α

(
−α2 + βk(βk + Vk), βi + Vi

)
. (1.10)

If we define the projector on the spatial hypersurfaces as:

hμν = gμν + nμnν , (1.11)

it satisfies the following equalities:

hμνnμ = 0 , hμ
α hα

ν = hμ
ν , hμνhμν = 3 . (1.12)

The components of the metric on the coordinate basis are:

gμν =
(

−α2 + βkβk βj

βi hij

)
; gμν =

(
− 1

α2
βj

α2
βi

α2 hij − βiβj

α2

)
. (1.13)

Thus, the 4–dimensional line element can be decomposed as:

ds2 = gμνdxμdxν = −(α2 − βkβk)dt2 + βidt dxi + hijdxidxj . (1.14)

Stress-energy tensor for the general foliation

In the rest-frame of the fluid, the stress-energy tensor for a general matter model can
be decomposed relative to the 4–velocity u as:

Tμν = ε uμuν + qμuν + qνuμ + p fμν + πμν , (1.15)

where ε is the relativistic energy density, qμ the relativistic momentum density, p the
isotropic pressure, πμν the trace-free anisotropic pressure. We have defined the projector
on the rest-frames of the fluid:

fμν = gμν + uμuν , (1.16)

which satisfies the following equalities:

fμνuμ = 0 , fμ
α fα

ν = fμ
ν , fμνfμν = 3 . (1.17)

In the rest-frame of the fluid, the stress-energy tensor of the perfect fluid is obtained for
qμ = πμν = 0:

Tμν = ε uμuν + p fμν . (1.18)
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Furthermore, for pressure-free matter, called dust matter model (which is the one used
to model the Cold Dark Matter), the stress-energy tensor becomes:

T dust
μν = ε uμuν . (1.19)

The stress-energy tensor for general matter models can also be described in this foliation
using a foliation-dependent decomposition:

Tμν = E nμnν + 2 n(μJν) + Sμν , (1.20)

where E, the energy density, Jμ the momentum density and Sμν the stress density, are all
evaluated in the Eulerian frames i.e. the ones transported along the integral curves of n:

E = nαnβ Tαβ , Jν = −hα
μnβTαβ , Sμν = hα

μhβ
νTαβ . (1.21)

For a perfect fluid matter model, the energy density, the momentum density and the stress
density evaluated in the Eulerian frames can be expressed as functions of ε the relativistic
energy and the pressure p:

E = γ2ε + (γ2 − 1)p , Jμ = γ2

α
(ε + p)(βμ + Vμ) , (1.22)

Sμν = γ2

α2 (ε + p)(βμ + Vμ)(βν + Vν) + p hμν , (1.23)

S = (γ2 − 1)ε + (γ2 + 2)p . (1.24)
Now that we have built all the quantities needed to describe both the fluid flow and
the geometry of space sections, we are able to formulate the Einstein equations for this
3 + 1 foliation of space-time. But before, we present the relativistic generalization of the
Lagrangian description.

1.1.2 Lagrangian descriptions
We here generalize the Newtonian notion of Lagrangian description and introduce two

Lagrangian descriptions: the Weak and the Strong descriptions, for which the observer
follows the fluid flow. The Weak Lagrangian description of the fluid is obtained for a shift
vector β attached to the fluid flow and the coordinate velocity is then zero:

β = α v ⇔ V = 0 . (1.25)

Furthermore, if the lapse function is equal to the Lorentz factor, α = γ, then the
hypersurfaces of constant t are also hypersurfaces of constant fluid proper time τ0. This
description is the Strong Lagrangian description. The two Lagrangian descriptions con-
sider spatial Lagrangian coordinates (cf Section I.2.2.1) and provide us with a relativistic
generalization of the Newtonian Lagrangian formalism.

The 4–velocity can then be expressed as:

uμ = (1, 0) and uμ = (−1, β) . (1.26)
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The Strong Lagrangian description thus defines a comoving synchronous slicing of space-
time. From (1.6), we can show that in this description for any tensor field F ,

d F
dt

= ∂ F
∂t

∣∣∣∣
Xi

= d F
dτ0

, (1.27)

i.e. all the time derivatives are equal.
Since the Lorentz factor γ and the shift α are equal, from (1.2) we conclude that

γ =
(
1 − βkβk

α2

)−1/2
and therefore we obtain the equality:

α2 − βkβk = 1 . (1.28)

This equality, which is a scalar constraint connecting the lapse and the shift, was discussed
by H. Asada and M. Kasai 2 in [7].

1.1.3 3 + 1 decomposition of the Einstein equations
We here determine the 3 + 1 decomposition of the Einstein equations in terms of the

kinematical and geometrical quantities that we introduced in last section. We project the
Ricci curvature tensor and the stress-energy tensor either on the normal vector to the
hypersurfaces n or on the tangent space Σt [73] [73] [135].

The full projection of the Einstein equations on the spatial hypersurface Σt gives the
evolution equation for the extrinsic curvature:

∂t|xiKi
j = α

(
Ri

j + KKi
j − δi

jΛ + 4πG[(S − E)δi
j] − Si

j

)
−α

|i
|j + βkKi

j |k + Ki
kβk |j − Kk

jβ
i|k ,

(1.29)

where Ki
j = −hα

i hβ
j ∇α nβ is the extrinsic curvature tensor of the hypersurface, ∇α is the

four-covariant derivative. ‖i is the three-covariant derivative and |i is the simple three-
derivative equal to ∂xi . ∂t|xi is the time derivative along the integral curves, for which the
coordinates xi are held fixed.

The full projection along n gives the Hamilton constraint:

R + K2 − Ki
jKj

i = 16πGE + 2Λ . (1.30)

while the mixed projection
Kk

j |k − K|i = 8πGJi , (1.31)
gives the momentum constraint.

With the lapse function α and the shift vector β that we defined in last section, we
express the extrinsic curvature Ki

j in terms of metric [73]:

∂t|xihij = −2αKij + 2β(i‖j) . (1.32)

2. H. Asada and M. Kasai took another convention for the metric signature: (+, −, −, −). They there-
fore get α2 − βkβk = −1 instead of α2 − βkβk = 1.
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From equation (1.7) and (1.32), we obtain:

Ki
j = 1

2

(
1
α

(V lhikhkj|l + βi
‖j + β

‖i
j ) − hikḣkj

γ

)
, (1.33)

its trace being

K = 1
2

(
1
α

(V lhikhkj|l + 2β
‖i

i ) − hikḣki

γ

)
. (1.34)

(1.33) and (1.34) can be inserted into (1.29), (1.31) and (1.30) to obtain the evolution
equations for the geometry of the spatial hypersurfaces. In the Strong Lagrangian descrip-
tion, these expressions become:

Ki
j = 1

2α

(
−hikḣkj + βi

‖j + β
‖i

j

)
; K = 1

2α

(
−hikḣki + 2β

‖i
i

)
. (1.35)

The four-covariant derivative of u contains the kinematical information of the fluid
flow. We consider the spatial components of the projection onto the hypersurfaces of the
4–velocity gradient ∇ν uμ:

Lij := hμ
ih

ν
j ∇ν uμ = Θij + ωij − ujai = ui|j − Γα

ij uα . (1.36)

ai is the acceleration: ai := uμ∇μ ui , Θij is the expansion tensor, θ its trace, also called
expansion rate. σij is the symmetric traceless part of Θij and is called the shear tensor
while ωij is the vorticity of the fluid. In terms of the quantities that we defined, we get:

Lij = γ

α
(βi + Vi)‖j − γ

α3

(
−α2 + βkβk + βkVk

)(1
2

∂

∂t

∣∣∣∣
Xi

hij − β(i‖j)

)
. (1.37)

With condition (1.28), in the Strong Lagrangian description, Lij becomes :

Lij = ḣij

2α2 + (1 − 1
α2 )β(i‖j) + β[i|j] . (1.38)

We here derived the 3 + 1 decomposition of the Einstein equations for a general matter
model in the Strong Lagrangian description. Now, we will determine what these equations
become for the dust matter model. We will express these equations in terms of the Cartan
coframes, that were defined in Section I.2.3.2. As we have seen, the Cartan coframes can
indeed be connected to the spatial metric by (2.59).

1.1.4 Lagrangian formulation of Einstein’s equations for an ir-
rotational dust fluid matter model

Since we consider an irrotational flow, it is possible to choose a foliation for which the
normal vector n coincides with the 4–velocity u of the fluid flow 3. In such a foliation,

3. If the fluid flow has vorticity, the local rest-frames do not form a global hypersurface. A 3 + 1
foliation for which n = u cannot be built. The description of a non–zero vorticity will indeed require a
1 + 3 threading of spacetime [68].
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the acceleration vanishes since the trajectories are geodesics and, furthermore, γ = 1.
Moreover, if we consider the Strong Lagrangian description, then

β = 0 ; α = 1 . (1.39)

Θij, the expansion tensor, and Kij, the extrinsic curvature tensor, have now the following
form:

Θij = ġij

2 ; Kij = −Θij = − ġij

2 , (1.40)

where we now use the notation gij instead of hij. Furthermore, we now also have hij = gij

in this foliation.
As was shown in [35], we now insert the expression of the metric in terms of the Cartan

coframes (2.59) and (2.62) into the Einstein equations to obtain the following system of
equations, called the Lagrange-Einstein-System:

Gab η̈a
[iη

b
j] = 0 ; (1.41)

1
2J

εabcε
ikl
(
η̇a

jη
b
kηc

l

)
˙ = −Ri

j + (4πG
 + Λ) δi
j ; (1.42)

1
2J

εabcε
mjkη̇a

mη̇b
jη

c
k = −R

2 + (8πG
 + Λ) ; (1.43)(
εabcε

iklη̇a
jη

b
kηc

l

)
||i =

(
εabcε

iklη̇a
iη

b
kηc

l

)
|j , (1.44)

The system {(1.41)− (1.44)} consists of 13 equations. The equations are, respectively, the
symmetry of the metric (1.41) (3 equations), the equation of motion (1.42) (i.e. the evo-
lution equation for the extrinsic curvature) (6 equations), the energy constraint (1.43) (1
equation) and the momentum constraints (1.44) (3 equations). Thus, the first 9 equations
furnish evolution equations for the 9 coefficient functions of the 3 Cartan coframe fields.

The double vertical slash denotes the covariant spatial derivative with respect to the
3–metric and the spatial connection is assumed to be symmetric. The first equation can
be replaced by the irrotationality condition:

Gab η̇a
[iη

b
j] = 0 . (1.45)

Furthermore, the trace of the equation of motion and the energy constraint leads to the
Raychaudhuri equation:

1
2J

εabcε
ik�η̈a

iη
b
kηc

� = Λ − 4πG
 . (1.46)

The above system is equivalent to the results developed in [35] in a different coframe
basis: in the first paper the choice of the standard orthonormal coframes has been made,
whereas, from [36] on, the choice of the adapted coframes is preferred because it allows a
formally closer Newtonian analogy.

The Lagrange-Einstein-System can also be expressed in a coordinate-independent way,
using differential geometry (cf Section I.2.3.1). We then obtain the following set of equa-
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tions [4], equivalent to the one expressed in the coordinate basis {dX i}:

Gab η̈a ∧ ηb = 0 ; (1.47)
1
2εdbc

(
η̇a ∧ ηb ∧ ηc

)
˙ = (−Ra

d + (4πG
 + Λ) δa
d) Jd3X ; (1.48)

εabc η̇a ∧ η̇b ∧ ηc = (16πG
 + 2Λ − R) Jd3X ; (1.49)
εabc

(
dη̇a ∧ ηb + ωa

d ∧ η̇d ∧ ηb
)

= 0 . (1.50)

The combination of the trace of the equation of motion and the energy constraint
straightforwardly leads to the Raychaudhuri equation:

1
2εabcη̈

a ∧ ηb ∧ ηc = (Λ − 4πG
) Jd3X . (1.51)

To derive the above equations we have implicitly used the Cartan connection one–form
and the curvature two–form that we do not need explicitly in what follows:

ωa
b := γa

cbη
c, (1.52)

Ωa
d := 1

2Ra
bcdηc ∧ ηd , (1.53)

with the connection and curvature coefficients γa
cb and Ra

bcd in the non-exact basis, re-
spectively. The 3–Ricci tensor can be expressed through the curvature two–form:

Ra
dηd ∧ ηb ∧ ηc = δdbΩa

d ∧ ηc − δdcΩa
d ∧ ηb . (1.54)

We here explained how space-time can be foliated in the 3+1 approach. Moreover, we
established the 3 + 1 decomposition of the Einstein equations for a general matter model
and introduced the Strong Lagrangian description to generalize the Lagrangian approach
presented in the Newtonian case. The geometrical parameters of the foliation could then
be constrained in order to build a foliation adapted to the dynamics of the fluid. Since
the major part of my work considers the irrotational dust matter model, I gave the Ein-
stein equations for this matter model, in the Strong Lagrangian description, formulated
in terms of the Cartan coframes. These equations are at the basis of the work I achieved
during most of my PhD. Finally, a discussion of the perfect fluid matter model and some
results at first order in the Strong Lagrangian description are provided in Appendix A.

We will now present a brief history of the GEM analogy. Before going to General
Relativity, we will present in detail the GEM analogy for Newtonian gravity. We will see
that Newtonian gravity could be the limit where c goes to infinity of a Maxwellian theory
of gravity. Furthermore, we will show that it is possible to recover the Maxwell equations
by doing a manipulation in the spirit of what Faraday did for electromagnetism.

In the frame of General Relativity, a way to achieve this analogy is to consider a
formulation of the Einstein equations for which the Ricci tensor is no longer the main
geometrical quantity. The Weyl curvature tensor becomes the fundamental geometrical
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quantity. It can be split into an electric and a magnetic part, in a way that is analogue to
what is done in electrodynamics. Einstein equations are then inserted into the contracted
Bianchi identities in order to obtain new field equations in terms of these electric and
magnetic parts: the Maxwell-Weyl equations.

Finally, we include in the electric part of the Weyl tensor a part of the Einstein equa-
tions, as can be done with the Newtonian tidal tensor and Newtonian gravity equations.
The absence of trace and the symmetry of the electric part, that before were satisfied
by construction, will now give back the Einstein equations that we inserted. This new
tensor, the Einstein electric tensor, will thus coincide with the electric tensor only if these
equations are satisfied.

We should keep in mind that the GEM analogy has some limits since General Relativity
and electromagnetism are, in many aspects, very different. On the one hand, General
Relativity is a non-linear, diffeomorphism invariant field theory which can be formulated
in terms of tensors. On the other hand, electromagnetism is a linear vector field theory
which is Lorentz invariant. Any attempt to distort gravity in order to make it formally
equal to electrodynamics in a restrictive sense will thus fail. Nevertheless, we can use
the existing similarities in order to translate some of the ideas and results coming from
electromagnetism to gravitation.

1.2 Historical introduction to GEM
Gravitoelectromagnetism (GEM) consists in finding a formal analogy between the the-

ory of gravitation and electromagnetism. Such an analogy would enable us to transpose
the results that have been established for electromagnetism to gravity. This analogy has
many applications. Indeed, it would also allow us to take into account retardation effects
in numerical simulations due to the finite value of the speed of light c (information does
not travel instantaneously as in Newtonian theory of gravitation). Moreover, electromag-
netism has been quantized in the frame of QED, so some similarities between the two
theories could give us a new insight into the quantization of General Relativity. Finally,
since electromagnetism is a propagation theory, finding an analogy with gravity should
help us understand the physics of gravitational waves. This aspect will be discussed in
detail in the part on Maxwell-Weyl equations obtained from the electric and magnetic
parts of the Weyl tensor.

In 1870, Holzmüller and Tisserand first postulated that the gravitational force exerted
by the sun on the planets could have a magnetic contribution [78] [141]. Few years later, in
1893, O. Heaviside published an article which is considered to be the foundation of GEM
[76]. In this article, he built the basis of the formal analogy between electromagnetism
and Newtonian gravity and postulated the existence of small terms that would enable a
complete analogy.

In 1917, Lense and Thirring solved the problem of the rotating sphere and identified
the gravitational analogue of a Coriolis force [104]. More recently, the gravitational coun-
terpart of the Aharonov-Bohm effect was measured by [52], in the COW experiment. It
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proved that gravitomagnetic field could, as the magnetic field, be coupled to the quantum
degrees of freedom of particles such as neutrons.

There are many ways to build a GEM analogy. By comparing the gravitational tidal
tensors to the electric and magnetic fields, it is possible to build a covariant GEM analogy
formulated in terms of tidal tensors. This analogy, that is very convincing for static fields,
is still limited by the fact that gravitational tidal tensors are non-linear, spatial and
symmetric whereas electromagnetic tensors are linear and generically non-symmetric and
non-spatial [46].

Another approach is based on Fermi-Walker transport. This approach, that consists
in saying that the analogue of the Lorentz force would come from some non-inertial
fields is based on the 1+3 threading of space-time and Fermi-Walker transport (FWT).
FWT defines locally nonrotating axes along the wordline of the comoving observers [84].
Nevertheless, the magnetic part of the Lorentz force has no physical counterpart in gravity
since we compare a physical magnetic force to an artifact of reference frames.

Furthermore, we can linearize the metric tensor with respect to a flat background and
consider weak gravitational fields and slowly moving gravitational objects: v/c � 1.

The propagation theory that we obtain in this post-newtonian approximation then
formally gives the Maxwell equations and the Newtonian limit of the Lorentz force. This
approach will be presented in Section III.1.2.3.

Finally, we could also cite the GEM analogy based on inertial frame dragging. This
approach is discussed extensively in [157].

1.3 Maxwellian formulation of the Euler-Newton-System
We here consider the Euler–Newton–System (2.20) which gives the evolution equations

governing the motion of self–gravitating dust in the Eulerian picture. The gravitational
field is curl-free. Therefore, a gravitational potential Φ such that g =: −∇Φ exists.

The Euler–Newton–System can either be thought as vector equations on the field g
or as a system of equations on the scalar field Φ. As we will see later, the limit of the
Einstein equations on a flat space-time will exhibit some similarities with the Euler–
Newton–System, expressed in its vector form. Thus, we are here interested in looking for
a Maxwellian counterpart of the Euler–Newton–System.

We are looking for a mathematical operation that should bring the Einstein equations
into a space in which they can be written as Maxwell’s equations. We already know
that for any point P of space-time, it is possible to define an inertial set of coordinates
associated to the tangent space at that point for which the metric is Minkowskian and
the laws of physics are ruled by special relativity.

The mathematical restriction has a link with the Newtonian limit, consisting in taking
the geometrical limit of the equations and sending c to infinity.

In the following discussion, which is based on Thomas Buchert’s M2 lecture at ENS
de Lyon [38] and on the published work [33], we get an insight into the gravitoelectro-
magnetic analogy from Newtonian evolution equations. We identify some gravitoelectric
and gravitomagnetic fields and predict their field equations in the case c is not sent to
infinity.
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Scalar and vector potentials of the current density

We introduce the current density j := 
v for the fluid flow. Using the continuity
equation and the relation between the restmass density and the divergence of the field
strength, we find:

∂

∂t

 = −∇ · j and − 4πG

∂

∂t

 = ∇ · ∂

∂t
g , (1.55)

so, we conclude:

∇ · [ ∂

∂t
g − 4πGj ] = 0 ⇒ ∂

∂t
g − 4πGj =: ∇ × τ , (1.56)

with τ being the vector potential of the current density.
Since we have no equation for the divergence of τ , we may employ the transverse

gauge condition ∇ · τ = 0 4.
Using this gauge condition, we find the simple relationship:

4πG ∇ × j = −∇ × (∇ × τ ) = Δτ − ∇ (∇ · τ ) = Δτ . (1.57)

We conclude that the vector fields g and τ obey the Poisson equations:

Δg = −4πG∇
 ; Δτ = 4πG∇ × j . (1.58)

Kinematical intuition for the vector potential

In order to obtain some kinematical intuition for τ , we notice that τ is a harmonic
vector field for a class of motions that may be specified by the vanishing of the source in
the equation

Δτ = 4πG∇ × j = 4πG[ 
∇ × v + ∇
 × v ] . (1.59)

We infer that, e.g., for irrotational flows, ∇ × v = 0, together with the requirement
that the integral curves of the velocity are orthogonal to isodensity surfaces, the source
vanishes. Thus, a non–trivial τ causes deviations from such a class of motion.

Lorentz–covariant generalization of Newton’s theory

As we have seen, a Lorentz–covariant gravitational theory in the Minkowski space
can be easily constructed. Indeed, including the source term −1/c2 ∂/∂t τ into Newton’s
field equations would render them Lorentz–covariant, while without this term they are

4. It is always possible to require this condition according to the following reasoning: the curl of the
vector field τ remains unchanged, if we add to τ the gradient of an arbitrary scalar field, τ ′ := τ + ∇ψ;
the divergence of τ itself is not specified by the Euler–Newton system, so we can find ψ such that ∇·τ = 0
from the following equation:

Δψ = ∇ · τ ′ .

If the spatial average of the source of Poisson’s equation vanishes there is a solution to this equa-
tion. Nevertheless, the fact that the divergence of the magnetic field vanishes is not a freedom of the
electromagnetic theory: it is a constitutive equation. The analogy is therefore only formal.
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just Galilei–invariant. If we add this term into the Euler–Newton–System, we get the
following equations:

∇ · g = Λ − 4πG
 ; ∇ · τ = 0 ;

∇ × g = − 1
c2

∂
∂t

τ ; ∇ × τ = ∂

∂t
g − 4πGj . (1.60)

They give back the Newtonian theory when we flatten out the light cone, i.e. that we send
the speed of light c to infinity.

A way to obtain these equations is to follow Faraday’s idea and dynamically couple g
to τ via their potentials. We no longer assume that g is curlfree:

g = −∇V − ∂A
∂t

, (1.61)

and we define τ as
τ = c2∇ × A . (1.62)

Then, we get by construction:
∇ × g = − 1

c2
∂

∂t
τ . (1.63)

The Lorentz gauge condition:

1
c2

∂V

∂t
+ ∇ · A = 0 , (1.64)

now has the following wave equation form:

− 1
c2

∂2V

∂t2 + ΔV = Λ − 4πG
 . (1.65)

We now have obtained the equations analogous to the Maxwell equations. The grav-
itoelectric field g is the analogue of the electric field E and the gravitomagnetic field τ
is the analogue of the magnetic field B. We here sum up the analogies existing in this
Lorentz–covariant formulation of gravitation in the case Λ = 0:

E ↔ g ; (1.66)
B ↔ τ

c2 ; (1.67)

ρel ↔ −ρ ; (1.68)

μ0 ↔ −4πG

c2 ; (1.69)

ε0 ↔ − 1
4πG

. (1.70)

In order for the theory to be really analogue to electrodynamics, we should also have
the gravitational analogue of the Lorentz force:

FG = mG

(
g + v × 1

c2 τ
)

. (1.71)
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This assumption was first formulated by [76]. We can argue that, since the additional
term arising from the equations is proportional to 1

c2 , it may not be easy to detect. This
may be responsible for the fact that we previously ignored it.

Moreover, we could generalize the Poisson equation as in [56] or previously discussed
in [144] taking into account pressure for a perfect fluid:

∇ · g = Λ − 4πG
(


 + 3p

c2

)
. (1.72)

The additional term is once again proportional to 1
c2 .

1.4 Decomposition of the Weyl tensor and Maxwell-
Weyl equations

1.4.1 Newtonian dynamics, tidal tensor and relativistic gener-
alization

We consider again the Euler-Newton-System and we spatially derive once Newton’s
second law to get:

gi,j = dvi,j

dt
+ vi,kvk,j . (1.73)

We now define the Newtonian tidal tensor as :

Eij = gi,j − 1
3gk,kδij . (1.74)

The kinematical decomposition of the velocity gradient vi,j is:

vi,j = 1
3θδij + σij + ωij where σij = Θ(ij) − 1

3θδij and ωij = Θ[ij] . (1.75)

Then (2.23) is equivalent to Raychaudhuri equation:

θ̇ = −1
3θ2 − 2σ2 + (Λ − 4πGρ) . (1.76)

If there is no vorticity, the tidal tensor Eij can be rewritten

Eij = 2
3θσij + σikσkj − 2

3σ2δij − σ̇ij . (1.77)

We now define F i
j, the relativistic counterpart of the gradient of the gravitation field.

To do so, we replace the velocity gradient by the expansion tensor Θij = δab ηa
iη̇

b
j. The

analogue of (1.73) is then:
F i

j = Θ̇i
j + Θi

kΘk
j . (1.78)

As will be discussed later, Raychaudhuri equation (1.76) and the absence of vorticity can
be expressed as the following conditions on F i

j:

Fk
k = θ̇ + Θl

kΘk
l = Λ − 4πGρ ; (1.79)
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F[ij] = Θ̇[ij] = 0 . (1.80)
We will show that the electric part of the Weyl tensor is 5 Ei

j = −F i
j + 1

3δi
jFk

k.

1.4.2 Electric and magnetic parts of the Weyl tensor
The full Riemann curvature tensor has 20 independent components. It can be split

into
• its trace part, the Ricci tensor, which has 10 independent components linked to

the matter content of the Universe by the Einstein field equations ,
• its traceless part, the Weyl tensor, containing the remaining 10 independent com-

ponents and having, in addition to a zero trace, the same symmetry properties of
Riemann tensor:

Cμρνσ = Cνσμρ , Cμρνσ = −Cρμνσ , Cμ[ρνσ] = 0 . (1.81)
Since the Weyl tensor is the traceless part of the 4-Riemann curvature tensor [64, 74],

it has the following expression:

Cμν
ρσ = (4)Rμν

ρσ − 2 δ
[μ
[ρ

(4)R
ν]
σ] + 1

3δ
[μ
[ρδ

ν]
σ]

(4)R . (1.82)

It is a traceless tensor so any contraction of two indices vanishes:

Cμ
ρμσ = 0 . (1.83)

The Einstein equations only involve the Ricci tensor. Hence the Weyl tensor represents
the part of the gravitational field that is not directly coupled to the matter content of the
Universe. Furthermore, the Weyl tensor vanishes for dimensions less then 4. In particular,
all the information of the 3-Riemann tensor will be contained in the 3-Ricci tensor since
the 3-Weyl tensor is zero.

Let uμ be the 4–velocity of the fluid. The Weyl tensor can be split in an irreducible
way into an electric and a magnetic part, corresponding to two symmetric and traceless
tensors, each of them containing 5 independent components of the Weyl tensor. The
electric part is

Eμν = Cμρνσ uρuσ , (1.84)
and the magnetic part is

Hμν = 1
2

√
|(4)g| εαβρ(μ Cαβ

ν)σ uρuσ , (1.85)

where (4)g represents the determinant of the 4-metric tensor (4)g and ερμαβ is the 4-
dimensional Levi-Civita tensor. (4)g coincides in our case with g, the determinant of the
3-metric tensor so that we will use the latter in the following. The electric and the magnetic
parts satisfy by construction the following identities:

Eμ
μ =0 ; Eμν = E(μν) ; Eμνuμ =0 , (1.86)

Hμ
μ =0 ; Hμν = H(μν) ; Hμνuμ =0 . (1.87)

5. Note the conventional sign change between the gravitoelectric part of the spatially projected Weyl
tensor Ei

j and the Newtonian tidal tensor E i
j .
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They represent the free gravitational field that enables gravitational action at a distance:
tidal forces and gravitational waves. The Weyl tensor can also be expressed from the
electric and magnetic parts as follows:

Cμνκλ =
(
gμναβgκλγδ − εμναβεκλγδ

)
uαuγEβδ (1.88)

+
(
εμναβgκλγδ + gμναβεκλγδ

)
uαuγHβδ ,

where gμναβ ≡ gμαgνβ − gμβgνα and εμνκλ =
√

−(4)g εμνκλ.

1.4.3 Maxwell-Weyl equations
An alternative formulation of General Relativity, where the Weyl curvature tensor

becomes the fundamental geometrical quantity, exists. It is obtained from the contracted
Bianchi identities, which link the covariant derivatives of the Weyl tensor to the ones of
the Ricci curvature tensor:

∇κCμνκλ = ∇[μRν]λ + 1
6gλ[μ∇ν]R

κ
κ . (1.89)

If we insert in this equation the Einstein field equations and replace the Ricci curvature
tensor by its expression in terms of the stress-energy tensor, we get:

∇κCμνκλ = 8πG
(

∇[μTν]λ + 1
3gλ[μ∇ν]T

κ
κ

)
. (1.90)

We now assume that matter is a perfect fluid for which Tμν = (ρ + p)uμuν + pgμν with uμ

being the fluid 4-velocity, ρ its density and p its pressure in the fluid frame. We decompose
the velocity gradient into the acceleration 4-vector aν , the expansion scalar Θ = ∇μuμ,
the shear tensor σμν , and the vorticity tensor ωμν = εμναβuαωβ :

∇μuν = −uμaν + 1
3Θfμν + σμν + ωμν , (1.91)

where fμν is the projection tensor on the rest-frame of the fluid, as defined in (1.16). We
here denote by d/dτ0 = uμ∇μ the derivative along the fluid wordline (cf (1.6)). We extract
from (1.90) some equations on the electric Eμν and magnetic parts Hμν projected on the
rest-frameof the fluid [14]:

(div E): fμ
αf ν

β∇νEαβ + εμναβuνσαγHγ
β − 3Hμ

νων = 8π

3 G fμν∇νρ ,

(div H): fμ
αf ν

β∇νHαβ − εμναβuνσαγEγ
β + 3Hμ

νων =−8πG(p + ρ)ωμ ,

(dE/dτ0): fμ
αf ν

β

d

dτ0
Eαβ + fα(μεν)βγδuβ∇γHαδ + 2uαaβH (μ

γ εν)αβγ

+ ΘEμν + fμν(σαβEαβ) − 3Eα(μσν)
α + Eα(μων)

α = −4πG(ρ + p)σμν ,

(dH/dτ0): fμ
αf ν

β

d

dτ0
Hαβ − fα(μεν)βγδuβ∇γEαδ − 2uαaβE (μ

γ εν)αβγ

+ ΘHμν + fμν(σαβHαβ) − 3Hα(μσν)
α + Hα(μων)

α = 0 ,

(1.92)
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where εμναβ = εμναβ/
√

|(4)g|.
In the rest-frameof the fluid, where uμ = (1, 0, 0, 0), for a dust fluid without vorticity,

the last set of equations becomes:

Ek
i‖k − gikεkmnΘmlH

l
n = 8πG

3
J̊

J

̊|i , (1.93)

Hk
i‖k + gikεkmnΘmlE

l
n = 0 . (1.94)

Ėij + 2ΘEij − 3Θk(iE
k
j) − Θk

lE
l
kgij − gm(iε

mklHj)l‖k

= −4πG
J̊

J

̊
(

Θij − 1
3Θgij

)
, (1.95)

Ḣij + 2ΘHij − 3Θk(iH
k
j) − Θk

lH
l
kgij + gm(iε

mklEj)l‖k = 0 . (1.96)

We determine in our foliation the components of the electric and magnetic parts of
the Weyl tensors. The (00), (0i) and (i0) components of both the electric and the mag-
netic tensors vanish in our foliation since the velocity field has then vanishing spatial
components. We thus only have to determine the spatial components Eij and Hij.

It is possible to show that:

Ei
j := (4)Ri

0j0 − 1
2

(4)R00 δi
j + 1

2
(4)Ri

j − 1
6

(4)R δi
j , (1.97)

H i
j := gik εlsn

2J
glrgn(k

(4)Rr
sj)0 . (1.98)

We now replace the curvature terms by their expression in terms of the kinematical
expansion tensor Θij. The electric part becomes:

Ei
j = −1

2

(
Θ̇i

j −
δi

j

3 Θ̇
)

−
(

Θi
kΘk

j −
δi

j

3 Θl
kΘk

l

)
+ (1.99)

1
2θ

(
Θi

j −
δi

j

3 Θ
)

+ c2

2

(
Ri

j −
δi

j

3 R
)

and the magnetic part is:

H i
j = gik εlns

J
gn(k Θlj)‖s . (1.100)

If we assume at the same time that the Einstein equations are satisfied, we have from
Raychaudhuri equation:

(4)R00 := −θ̇ − Θl
kΘk

l = 4πGρ − Λ , (1.101)

and from the evolution equation for the extrinsic curvature:
(4)Ri

j := Ri
j + Θ̇i

j + θΘi
j = (4πGρ + Λ) δi

j . (1.102)

We can follow the same idea as the one presented in II.1.3 and replace in the definitions
of Ei

j (1.97) the curvature terms (4)R00 and (4)Ri
j by their expression in terms of the
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sources, obtained from the Einstein equations (1.101) and (1.102). This new tensor that
we can call the Einstein-electric part,

GREi
j := −Θ̇i

j − Θi
kΘk

j − 1
3 (4πGρ − Λ) δi

j , (1.103)

will then coincide with the real electric part of the Weyl tensor Ei
j only if the Raychaud-

huri and the absence of vorticity equations are satisfied:

GREk
k = 0 ⇔ (3.20) ; GRE[ij] = 0 ⇔ (1.41) , (1.104)

In the same way, we can encode into the antisymmetric part of some Einstein-magnetic
tensor:

GRH i
j := gik εlns

J
gnk Θlj‖s , (1.105)

the momentum constraints equation:

GRH[ij] = 0 ⇔ (3.14) . (1.106)

In Section II.1.5, we will focus on the gravitoelectric part of the Einstein equations, i.e.
on the equations that can be obtained from the absence of trace and the symmetry of the
Einstein-electric tensor (1.104).

1.4.4 Newtonian limit of the electric and magnetic parts
In [14] the authors consider first-order perturbations on a flat FLRW background. The

line element is

ds2 = a(τ)2
(
−(1 + 2ψ)dτ 2 + 2widτdxi + [(1 − 2φ)gij + 2hij]dxidxj

)
, (1.107)

where ψ and φ are scalar perturbations, wi are vector perturbations and hij are tensor
perturbations satisfying gijhij = 0 and gjk∇khij = 0. We define Dij := ∂i∂j − δijΔ/3 and
get:

Eij = 1
2Dij(φ + ψ) + 1

2∇(iẇj) − 1
2(ḧij + Δhij) , (1.108)

Hij = −1
2∇(i∇mwnεj)mn + ∇kεkl

(iḣj)l . (1.109)

According to [14], in the Newtonian limit, φ = ψ, the vector and the tensor modes
are zero. The magnetic part vanishes and the electric part now coincides with (1.74)
since gi = −∇iφ. This is also what is claimed in [58], where the authors give a clearcut
definition of the Newtonian limit of General Relativity. When λ = 1/c2 goes to zero,
Newtonian theory is recovered whereas in the opposite limit, we obtain Einstein’s theory.
The magnetic part is then interpreted as the rotation of the nearby free-falling gyroscopes,
which is zero in Euclidean Newtonian theory.

Nevertheless, in [14], the authors show that it is possible to build from the Newtonian
quantities some electric and magnetic parts that will fulfill the (1.93) (1.94) (1.95)(1.96)
equations. In [89], an expansion is done around the Newtonian electric and magnetic parts
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and the non-local aspects of the equations are discussed in detail. The authors show that
in the Maxwell-Weyl equations, the magnetic part should not be set to zero. Indeed, the
first post-newtonian term 1

c3
(P N)Hij has to be taken into account for the decomposition

to be consistent. Then, the Newtonian equations can be recovered from the Newtonian
limit of these equations.

1.5 Analogies between the gravitoelectric system and
the Lagrange-Newton-System

In this section, we will highlight the similarities between the gravitoelectric part of
the Einstein equations for an irrotational dust fluid, obtained in the Strong Lagrangian
approach for a flow orthogonal foliation, and the Lagrange-Newton-System. The Einstein
equations that will be considered are thus the ones established in Section II.1.1.4, namely
the Lagrange-Einstein-System for this matter model. They will be compared to the New-
tonian equations formulated in the Lagrangian frame: the Lagrange-Newton-System. We
will show that a mathematical operation, the Minkowski Restriction, can be applied to the
gravitoelectric part of the Einstein equations to get the Lagrange-Newton-System. This
interesting result will be used in the next chapter in order to build the gravitoelectric
perturbations at any order from the Newtonian perturbative solutions.

1.5.1 Gravitoelectric part of the Einstein equations
In Section II.1.4.3, we have introduced the Einstein-electric tensor, from which some

of the Einstein equations can be recovered. From now on, we drop the GR superscript
when we refer to this tensor. We also gave the components of this tensor in the coordinate
basis {dX i} in terms of the expansion tensor. This tensor can also be represented by the
3 one–form fields Ea (see [35] Eq. (A23)), functions of the coframes:

Ea = −η̈a + 1
3(Λ − 4πG
) ηa . (1.110)

Then, the irrotationality condition (1.47) and the trace equation of motion (1.51) are
generated by

Gab Ea ∧ ηb = 0 ; εabc Ea ∧ ηb ∧ ηc = 0 . (1.111)

These two equations are therefore referred to as the gravitoelectric part of the Einstein
equations. A projection of the gravitoelectric one–form fields and Equations (1.111), using
the Hodge star operator, yields to their coefficient representation:

Ei
j = − 1

2J
εabcε

iklη̈a
jη

b
kηc

l + 1
3 (Λ − 4πG
) δi

j ; (1.112)
E[ij] = 0 ; Ek

k = 0 . (1.113)

These equations are equivalent to

δabη̈
a
[iη

b
j] = 0 , (1.114)

1
2εabcε

iklη̈a
iη

b
kηc

l = ΛJ − 4πGJ̊
̊ , (1.115)
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which we have already derived in Section II.1.1.4. They are formally very close to the
Lagrange-Newton-System. This formal analogy between the two sets of equations will be
used in the next chapter, where relativistic perturbative solutions will be built from the
Newtonian perturbation scheme.

1.5.2 Minkowski Restriction of the gravitoelectric system

Definition of the Minkowski Restriction

We will now discuss the gravitoelectric part of the Einstein equations, and the full
Newtonian system. Formally, this link is provided by the Minkowski Restriction. Let
η̃α be Cartan one–form fields in a 4−dimensional manifold (Greek letters are used in
4 dimensions). A set of forms η̃α is said to be exact, if there exist functions fα such
that η̃α = dfα, where d denotes the exterior derivative operator, acting on forms and
functions. The Minkowski Restriction (henceforth MR ) consists in the replacement of
the non-integrable coefficients by integrable ones, η̃α

ν → fα→μ
|ν , keeping the speed of

light c finite. With this restriction, the Cartan orthonormal coframe coefficients yield the
Newtonian deformation gradient, and the local tangent spaces all become identical and
form the global Minkowski space-time. The Newtonian limit could be defined as MR of
Einstein’s theory and additionally sending c to infinity.

In the flow–orthogonal foliation the 4−dimensional orthonormal coframes reduce to
η̃α = (dt, η̃a), and their MR reads dfα = (dt, dfa→i). Sending the spatial Cartan
coframes to exact forms, i.e. executing the MR , their coefficients ηa

i are restricted to
the Newtonian deformation gradient fa

|i. Note that c and the signature are carried by the
4−dimensional metric coefficients; c is set to 1 throughout this work.

Equivalence of the integrability of the orthonormal and adapted coframes and
the flatness of space

The standard choice of orthonormal coframes η̃a in the Cartan formalism implies for
the spatial metric coefficients g̃ij = δab η̃a

i η̃b
j, with η̃a

i(ti) � δa
i at initial time, in order to

have an initially nontrivial metric.
The alternative choice of adapted coframes ηa, used in the thesis and presented in

Section I.2.3.2, represents the metric coefficients as gij = Gab ηa
i ηb

j, where we are entitled
to require ηa

i(ti) = δa
i at initial time, encoding the initial metric into the coefficients Gab,

i.e. Gij = Gab δa
i δb

j. This makes the comparison with the Newtonian choice of Lagrangian
coordinates to coincide with the Eulerian ones at some initial time more direct.

As will be discussed in (2.3), the basic assumption is that both coframe types describe
the same metric form, i.e. g = δcd η̃c ⊗ η̃d = Gab ηa ⊗ ηb, from which we infer:

Gab = δcd η̃c
aη̃d

b , (1.116)

where we denote with η̃c
a = e i

c η̃c
i the coefficients of the projection of η̃c onto the basis

ηa.
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The MR applied to either of these coframes requires them to be exact forms, η̃a = df̃a

or ηa = dfa. They then define some global Eulerian coordinates, x̃a and xa, respectively.
In the MR , Eq. (1.116) is equivalent to

Gab = δcd
∂f̃ c

∂xa

∂f̃d

∂xb
. (1.117)

We infer from (1.117) that the coefficients Gab just depend on initial vector displacements
after executing the MR . They are related to the initial deformation gradient in the
orthonormal description, as can be seen by looking at the metric equivalence relation in
an exact Lagrangian basis, g = g̃ij dX̃ i ⊗ dX̃j = gij dX i ⊗ dXj:

g(Xk, ti) = δabf̃
a
|X̃i(X̃k, ti)f̃ b

|X̃j (X̃k, ti)dX̃ i ⊗ dX̃j

= δabf̃
a
|i(Xk, ti)f̃ b

|j(Xk, ti)dX i ⊗ dXj

= Gab(Xk)δa
iδ

b
jdX i ⊗ dXj , (1.118)

where a slash denotes derivative with respect to the coordinates X i, as in the main text,
and it is explicitly noted otherwise. From (1.117) we conclude that

g = Gab ηa ⊗ ηb = δcd
∂f̃ c

∂xa

∂f̃d

∂xb
dxa ⊗ dxb = δcd dx̃c ⊗ dx̃d , (1.119)

which is the Euclidean metric.
Summarizing: execution of the MR leads, in either of the chosen coframes, to a metric

that is equivalent to the Euclidean metric. The coefficients Gab can then be expressed in
terms of initial vector displacements, cf. Eq. (1.118).

Minkowski Restriction of the gravitoelectric part of the Einstein equations

In the MR , (1.114) becomes

δabf̈
a
|[i f b

|j] = 0 , (1.120)

i.e. is equal to (2.48). Since, for a flat space-time J̊ = 1, (1.115) becomes

1
2εabcε

iklf̈a
|i f b

|k f c
|l = ΛJ − 4πG
̊ (1.121)

i.e. is equal to (2.47). So, the gravitoelectric part of the Einstein equations (1.114) (1.115)
then reduces to the Lagrange-Newton-System. Moreover, we obtained the Lagrange-
Newton-System expressed in the inertial frame, i.e. for f̈ = g. Therefore, f̈ is then solution
of the following equations:

∇ × f̈ = 0 , (1.122)
∇ · f̈ = Λ − 4πG
 . (1.123)

(1.122) implies that f̈ = −∇φ, where φ is a scalar potential solution of the Poisson
equation.
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The MR operation closes the system, reducing the number of free functions from nine
(ηa

i(Xk, t)) to three (f i(Xk, t)). A discussion of the MR for the remaining equations,
yielding nontrivial Newtonian analogs, will be done in Section II.1.5.3. Considering only
the gravitoelectric equations is not enough to determine the nine functions of the coframe
coefficients. The relativistic aspects contained in the remaining equations will lead to a
richer structure of the solutions and also to constraints on solutions of the gravitoelectric
system. A follow–up work will explicitly consider both parts in the framework of first–
order solutions. To conclude, the Lagrange–Einstein gravitoelectric equations are (up to
non-integrability) equivalent to their Newtonian analogue but the remaining equations do
not have an obvious Newtonian counterpart.

1.5.3 Minkowski Restriction of the other Einstein equations
The equations that we left to be interpreted are the momentum constraints, the one

containing the Ricci scalar (1.125) and the one containing the traceless part of the Ricci
tensor (1.127) τ i

j, obtained from the traceless part of the evolution equation for the
extrinsic curvature (1.42):(

εabcε
iklη̇a

jη
b
kηc

l

)
‖i

=
(
εabcε

iklη̇a
iη

b
kηc

l

)
‖j

, (1.124)

εabcε
mklη̇a

mη̇b
kηc

l = 16πGJ̊
̊ + 2ΛJ − c2 JR , (1.125)
1
2

(
εabcε

iklη̈a
jη

b
kηc

l − 1
3εabcε

mklη̈a
mηb

kηc
lδ

i
j

)
(1.126)

+
(

εabcε
iklη̇a

j η̇
b
kηc

l − 1
3εabcε

mklη̇a
mη̇b

kηc
lδ

i
j

)
=−c2 Jτ i

j .

Considering a flat space-time in the frame of General Relativity would automatically
lead to a zero curvature Ri

j = 0. Here, we no longer work in the frame of General
Relativity since we decouple the geometry of space-time and the dynamics of the fluid.
In this context, Ri

j is no longer a geometrical term but should be reinterpreted.
To have an intuition of the new meaning of Ri

j, we first consider the Newtonian case for
a homogeneous isotropic universe. Newton’s second law combined with Poisson equation
leads to (1.9). Integrating it gives the equation (1.9) that we remind here:

(
ȧ

a

)2
− 8πG

3 ρH − Λ
3 + k

a2 = 0 , (1.127)

By identifying this equation, called Friedmann’s equation, to Hamiltonian constraint for
a Universe with constant curvature NR, we can show that:

k

a2 = c2
NR
6 . (1.128)

We have shown that the equations (1.125) and (1.127), contain, in the frame of General
Relativity, some information that has no Newtonian counterpart. Here, these supplemen-
tary equations should not be interpreted as equalities but rather as some kinematical
definitions for the Minkowskian analogue of curvature: MRi

j. The following equations are
general but their interpretation is specific to our approach.
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The Raychaudhuri equation (1.115) can be rewritten:

θ̇ + 1
3θ2 + 2σ2 + 4πGρ − Λ = 0 . (1.129)

If we define l = J1/3, it becomes:

3 l̈

l
+ 2σ2 + 4πGρ − Λ = 0 . (1.130)

This equation is equivalent to:

σ̇2 + 2θσ2 = 1
2

MṘ + 1
3

MR θ , (1.131)

which can be rewritten as:

6(σ2 MR)1/2 (J [σ2]1/2)˙ = (J MR3/2)˙ . (1.132)

Since the integral of (1.130) has to be the Hamiltonian constraint, a ‘Minkowskian curva-
ture’ term can be defined form integration constants and kinematical quantities:

MR := 2σ2 − 8
l2

∫
σ2l l̇dt − 2

(̊σ2 − 1
2

MR̊)
l2 . (1.133)

Finally, we obtained an evolution equation for MR as a function of the shear. We can
check that, in the case of a homogeneous isotropic flow, we recover the Newtonian result
(1.128) since then l(t) = a(t). From (1.127) and Hamiltonian constraint we can define
MRi

j from kinematical quantities (shear and expansion) and integration constants 6:

MRi
j := 2

3δi
j [σ2 − 1

3θ2 + 8πGρ + Λ] − σ̇i
j − θ σi

j , (1.134)

MRi
j := 1

3δi
j

MR − σ̇i
j − θ σi

j . (1.135)

1.6 Concluding remarks
In this chapter we presented various ways to approach the GEM analogy. We first con-

sidered the similarities between the Newtonian theory of gravity and electrodynamics. We
then built a generalization of the field equations for the gravitational field and for New-
ton’s second law. We have then shown that the Euler-Newton-System could be obtained
in the limit where the speed c goes to infinity. Afterwards, we turned to General Relativity
and developed the GEM approach based on the decomposition of the Weyl tensor into an
electric and a magnetic part. As was discussed, these fields satisfy equations that exhibit
similarities with the Maxwell equations. Nevertheless, contrary to electrodynamics, the
electric and the magnetic parts of the Weyl tensor do not play similar roles. The electric

6. Setting MRi
j to zero would have led to a conservation equation for σi

j which would have restricted
the problem to a self similar flow.
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part is the relativistic generalization of the Newtonian tidal tensor whereas the magnetic
part encodes the dynamics of gravitational waves. A Newtonian limit of the electric and
magnetic parts has also been discussed in order to better understand what they contain
in the relativistic case.

In this chapter, we also discussed the analogies between the gravitoelectric part of
the Einstein equations and the Lagrange-Newton-System. The Minkowski Restriction,
which is the mathematical operation that enables us to go from the gravitoelectric part
of the Einstein equations to the Lagrange-Newton-System, was also applied to the other
Einstein equations. Nevertheless, since the Minkowski Restriction decouples the geometry
of space-time from the dynamics of the fluid (the geometrical Ricci curvature tensor being
then zero), an alternative interpretation of the curvature terms in terms of the kinematical
properties of the fluid has then been formulated.
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Chapter 2

Gravitoelectric Perturbation and
Solution Schemes at Any Order

This chapter is based on the paper by A. Alles, T. Buchert, F. Al Roumi and
A. Wiegand [4].
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In Section II.1.1.3, we presented the Einstein’s equations in the 3 + 1 form for the
Cartan coframe variable. In previous work, the first–order solution was investigated for
the trace and antisymmetric parts. The solution then obtained was extrapolated in the
spirit of Zel’dovich’s approximation in Newtonian cosmology. Moreover, a definition of
a nonperturbative scheme of structure formation [35] was also provided. The average
properties of the latter in relation to the Dark Energy and Dark Matter problems were
studied by T. Buchert, C. Nayet and A. Wiegand in [36]. Here, we proceed by providing
the gravitoelectric subclass of relativistic nth–order perturbation and solution schemes.
As in previous work we restrict our attention to irrotational dust continua for simplicity.

The problem of perturbation solutions in general relativity has been addressed by many
works. In cosmology the ‘standard approach’ is based on the gauge invariant ‘Bardeen for-
malism’ (for a selection of key references on standard perturbation theory see Refs. [10],
[112], [88], [51]). A covariant and gauge–invariant approach has been proposed [62, 63].
The reason for the existence of various approaches is due to an ambiguity of the choice
of perturbation variable, the choice of a ‘background’, but also due to different philoso-
phies; e.g. the standard gauge–invariant approach compares the physical manifold with a
reference ‘background manifold’, while others solely operate on the physical manifold.

The conceptual difference of our framework lies in the fact that we no longer consider
a reference background manifold. All the quantities are now defined on the physical space
section. All orders of the perturbations are defined on the physical manifold, not with
respect to a zero–order manifold (that was interpreted as the background manifold in
standard perturbation theory). Moreover, we are perturbing a single dynamical variable,
the Cartan coframes. As a consequence, the issue of gauge invariance does not arise;
covariance or diffeomorphism invariance is guaranteed for a given foliation of spacetime
by using Cartan differential forms.

A similar point of view has also been taken in previous work, i.e. the pioneering work
by Kasai presents a relativistic generalization of the ‘Zel’dovich approximation’ [161],
and followup works with his collaborators present a class of second–order perturbation
solutions [85, 131]; see also the earlier papers by Tomita [146, 147, 148], the paper by
Salopek et al. [132] as well as the series of papers by Matarrese, Pantano and Saez [105,
106, 107], considerations of so–called ‘silent universe models’ [11, 89, 14, 19, 66], and the
recent paper [122]. These works are all in a wider sense concerned with the relativistic
Lagrangian perturbation theory and concentrate on an intrinsic, covariant description of
perturbations. Still, the present work takes another angle and goes beyond some concepts
of these latter works, as we now explain. In this work, we consider, as presented in Section
II.1.1.4, the Einstein equations formulated within a flow–orthogonal foliation with a single
dynamical variable: the spatial Cartan coframe fields. As we have seen in Section II.1.5,
they generalize the Lagrangian deformation gradient being the single dynamical variable
in the Newtonian theory. One advantage of this approach is that only perturbations of
this variable are considered, which entitles us to express all other physical quantities as
functionals of this variable. Thus, it is possible to leave the strictly perturbative framework
and to construct nonperturbative models inserting the deformation solutions at a given
order of expansion of the Einstein equations into the functional definitions of these fields,
without a posteriori expanding the functional expressions. This in turn provides highly
nonlinear approximations for structure formation (e.g., the density field is known through
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an exact integral of the perturbation variable; the metric as a bilinear form maintains its
role as a measure of distance, i.e. as a quadratic expression; the curvatures are the general
defining functionals for the given perturbed space, etc.).

Moreover, we provide construction rules to derive relativistic perturbative solutions
from the known Newtonian solutions at any order of the perturbations: we have to addi-
tionally study the traceless symmetric part of the equations having no obvious Newtonian
analog, and which is fundamentally linked to the traceless Ricci tensor and the physics of
gravitational waves. Then, we give the perturbation and solution schemes to any order
of the perturbations for the gravitoelectric part of the Lagrange–Einstein system. These
schemes cover the full Newtonian hierarchy of the Lagrangian perturbation theory using
a restriction rule that we will define. Thus, the results of this work allow us to construct
the relativistic counterpart of all Newtonian results, where higher–order information is
needed, e.g., to construct the bispectrum of the perturbations (cf. Refs. [120, 121]).

We perform a strictly intrinsic derivation, i.e., without reference to an external back-
ground space. The perturbations are described locally (in coordinates of the tangent
spaces at the physical manifold at each order of the perturbations). There is no need for
a diffeomorphism to a global background manifold. Furthermore, the existence of such a
global diffeomorphism depends on the global topology of the physical manifold which, in
general, needs several coordinate charts to cover it.

Einstein’s equations within a flow–orthogonal foliation of spacetime can be formulated
in terms of equations for the gravitoelectric and gravitomagnetic parts of the spatially
projected Weyl tensor, as we have shown in Section II.1.4. Subjecting the gravitoelectric
subsystem of equations to a MR , i.e. by sending the Cartan coframes to exact forms,
we obtain the Newtonian system in Lagrangian form (cf Section II.1.5 and [35] ). In
this chapter, we investigate the reverse process, i.e. the transposition from integrable to
nonintegrable deformations, which enables us to construct a gravitoelectric subclass of
the relativistic perturbation and solution schemes that corresponds to the Newtonian
perturbation and solution schemes.

While the Newtonian system furnishes a vector theory, where the gravitational field
strength is determined by its divergence and its curl (the trace and antisymmetric parts
of the Eulerian field strength gradient), the so generalized schemes deliver nontrivial
solutions for the trace–free symmetric part that is connected to the gravitoelectric part
of the spatially projected Weyl tensor, the Newtonian counterpart of which is the tidal
field tensor.

This section is structured as follows. In Section II.2.1 we investigate perturbation
and solution schemes at any order n of the perturbations by explicitly paraphrasing the
Newtonian schemes. Section II.2.2 explains the reconstruction rules and provides explicit
examples. Finally, Section II.2.3 sums up and discusses perspectives.



2.1. CONSTRUCTION SCHEMES FOR RELATIVISTIC PERTURBATIONS AND
SOLUTIONS

2.1 Construction schemes for relativistic perturba-
tions and solutions at any order

We now turn to the main part of this part and construct the gravitoelectric subclass
of nth–order relativistic perturbation and solution schemes through generalization of the
known Newtonian schemes. This allows furnishing relativistic inhomogeneous models for
large–scale structure formation in the Universe. The successful Lagrangian perturbation
theory in Newtonian cosmology is well–developed. We will here generalize the perturbation
and solution schemes of Newtonian cosmology given in the review [55], whose essential
steps will be recalled in this section, followed by their relativistic counterparts.

All schemes are applied to the matter model ‘irrotational dust’. It is possible to extend
the present schemes by employing the framework for more general fluids in a Lagrangian
description that will be developed in forthcoming work. Most of the known representations
are focused on writing equations in terms of tensor or form coefficients. Our investigation
will be guided by the compact differential forms formalism as before. However, we will
also project to the coefficient form in parallel to ease reading.

2.1.1 General n–th order perturbation scheme
As in standard perturbation theories, we decompose the perturbed quantity into a

Friedmann–Lemaître–Robertson–Walker (FLRW) solution and deviations thereof, which
are expanded up to a chosen order n of the perturbations. Contrary to the standard
perturbation theory, we do not perturb the metric globally at the background space, but
we perturb the Cartan coframes locally:

ηa = ηa
idX i = a(t)

(
δa

i +
∑

n

P a(n)
i

)
dX i , (2.1)

in the local exact basis dX i. Notice that with this ansatz we choose to perturb a zero–
curvature FLRW model, but it is possible to encode an initial first–order constant curva-
ture in the coefficient functions Gab in the following local metric coefficients, which can
be calculated from the above coframe ansatz:

gij = Gabη
a
iη

b
j . (2.2)

We remind that, in order to obtain equations that are formally closer to the Newtonian
ones, we do not choose orthonormal (Cartan) coframes η̃a as is common in the literature,
but the ones called adapted coframes ηa. Furthermore, we can link these results to the
ones obtained for the orthonormal coframes η̃c (compare also corresponding remarks in
[40] and [74]). Indeed, the metric bilinear form can be written as:

g = δcd η̃c ⊗ η̃d = Gab ηa ⊗ ηb . (2.3)

From this identity, we conclude:

Gab = δcd η̃c
aη̃d

b , (2.4)
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where the η̃c
a are the coefficients of the projection of η̃c onto the basis ηa. In the next

subsection, we will specify the coframes we consider in such a way that the initial coframe
perturbations vanish. From now on, we will call these coframes adapted coframes to
distinguish them from the orthonormal ones.

2.1.2 Initial data for the perturbation scheme
We choose initial data in formal correspondence with the Lagrangian theory in Newto-

nian cosmology and generalize these initial fields to the relativistic stage. This has obvious
advantages with regard to the aim to give construction rules that translate the known
Newtonian solutions to general relativity. For the initial data setting in the Newtonian
case see [55].

General initial data setting for the perturbations

Let the three one–form fields Ua = Ua
idX i be the initial one–form generalization

of the Newtonian peculiar velocity–gradient, obtained by the inverse MR . Accordingly,
let Wa = W a

idX i be the initial one–form generalization of the Newtonian peculiar–
acceleration gradient. Our solutions will be written in terms of these initial data. We
summarize them together with the constraints at the end of this paragraph.

By generalizing the Newtonian initial data, the initial data for the comoving per-
turbation form coefficients read (we denote P a

i(ti) =: Pa
i, and correspondingly for its

time–derivatives):

Pa
i = 0 , (2.5)

Ṗa
i = Ua

i , (2.6)
P̈a

i = W a
i − 2HiU

a
i . (2.7)

We assume, without loss of generality [55], that the initial data are first–order. As shown
in Paragraph II.2.1.2, the initial density contrast δi := (
i −
Hi)/
Hi satisfies the equality:

δ
i
(1) = δ
i = 
Hiδi = − 1

4πG
δk

aW a
k . (2.8)

Equation (2.5) implies that the coframes we will work with from now on are initially
equal to the exact Lagrangian coordinate basis: ηa(ti) = δa

i dX i. This in turn provides
the initial metric coefficients in the form:

Gij = gij(ti) = Gabδ
a
iδ

b
j . (2.9)

In view of the flow–orthogonal foliation, we have the irrotationality constraint:

ω = Gabη̇
a ∧ ηb = 0 =⇒ GabUa ∧ δb

jdXj = 0 . (2.10)

This implies for the coefficient functions: U[ij] = 0. (We used the implicit definition
Uij := δb

iGbaUa
j.)
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Remark:
From (2.4) and (2.5), it is interesting to notice the following relations that hold to zeroth
and first order (the full initial data are considered to be first order, as was also the choice
in the Newtonian schemes [55]): ⎧⎪⎪⎨

⎪⎪⎩
G(0)

ij = δij ;
G(1)

ij = 2P̃ij ;
2P̃(ij) = G(1)

ij + 2P(ij) ;
(2.11)

where P̃ij = P̃ij(ti). We are thus able to rederive some results from the ones obtained in
previous works that used orthonormal coframes. For example, the Ricci curvature tensor
at first–order can be obtained by inserting the identities (2.11) into (93) of [35]. We can
so obtain the adapted coframes from the orthonormal ones and vice–versa.

Relativistic counterpart of the Poisson equation and consequences for Wa

In the Newtonian approach the initial peculiar–acceleration and the density inhomo-
geneities are linked through the Poisson equation. In order to generalize this equation
to the relativistic case, we note the following relativistic generalization of the Newtonian
field strength gradient that follows from inspection of the Lagrange–Einstein system (for
details the reader can always consult [35]):

F i
j := Θ̇i

j + Θi
kΘk

j (2.12)
= −Ri

j − ΘΘi
j + (4πG
 − Λ) δi

j + Θi
kΘk

j , (2.13)

with the 3−Ricci tensor coefficients Rij whose trace is the Ricci scalar R, and Θij the
expansion tensor coefficients. According to the energy constraint, R + Θ2 − Θk

�Θ�
k =

6πG
+2Λ, the symmetry of the expansion tensor and Ricci curvature, it is straightforward
to show that the relativistic gravitational field coefficients Fij respect the following field
equations:

Fk
k = Λ − 4πG
 ; F[ij] = 0 . (2.14)

In terms of the coframe fields, the relativistic gravitational field can be written as follows:

F i
j = 1

2J
εabcε

iklη̈a
jη

b
kηc

� . (2.15)

Hence, inserting the coframe perturbations and evaluating this expression at initial
time, we get the following relations (note that the zero–order fields trivially satisfy the
second constraint):

Fk
k(ti) = Λ − 4πG
i = (2.16)

Λ − 4πG
Hi(1 + δi) = 3äi + δk
aW a

k ; (2.17)
F[ij](ti) = δb

[iGbaW a
j] = W[ij] = 0 . , (2.18)

with the initial density contrast δi. Thus, the deviation one–form fields Wa obey the
following equations that generalize the Poisson equation for the inhomogeneous deviations
off the zero–order solution:

∗1
2εabcWa ∧ δb

jdXj ∧ δc
kdXk = −4πGδ
i ; GabWa ∧ δb

jdXj = 0 ,
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with δ
i = 
i − 
Hi, implying for the coefficient functions:

− 1
4πG

δk
aW a

k = δ
i = 
Hiδi ; W[ij] = 0 . (2.19)

Summary of initial data

We summarize the set of initial data, determined by our choice of the basis and sub-
jected to the constraints. We assume in perturbative expansions, without loss of generality
[55], that the initial data {(2.20) − (2.22)} are first order. We drop the index (1) for nota-
tional ease and denote the initial data for the comoving perturbation form coefficients by
P a

i(ti) =: Pa
i. We set:

— for the initial deformation and the initial generalizations of the Newtonian velocity
and acceleration gradients:⎧⎪⎪⎨

⎪⎪⎩
Pa(n) = 0 ∀n ,

Ua(1) = Ua, U[ij] = 0 ;
Wa(1) = Wa, W[ij] = 0 ,

(2.20)

— where the coefficients are related via the initial values of the time–derivatives of
the deformation: ⎧⎨

⎩Ṗa
i = Ua

i ;
P̈a

i = W a
i − 2HiU

a
i ,

(2.21)

— together with additional initial constraints that are to be respected (a relation to
the initial metric, to the initial density contrast, and the four ADM constraint
equations evaluated at initial time):⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Gij = Gab ηa
i(ti)ηb

j(ti) = Gabδ
a
iδ

b
j ;

4πGδ
i
(1) = −W ;

HiU = −R(ti)
4 − W ;(

Ua
jδ

i
a

)
||i = (Ua

iδ
i

a )|j ;

(2.22)

Here and in the following we use the abbreviations δk
aUa

k =: U , δk
aW a

k =: W for
the trace expressions.

— the initial Ricci curvature as found from the equation of motion (1.42):

Ri
j(ti) = −(W i

j + HiU
i
j) − δi

j(W + HiU)
−εabcε

ilkUa
jU

b
lδ

c
k ; (2.23)

— equating this expression with the initial Ricci tensor as calculated from the initial
metric,

Ri
j(ti) = G i(1)

[j|b]G
b|a(1)
a + G

b|a(1)
j G i(1)

[b|a] + G a(1)
b|j G [b|i](1)

a + 1
2 G a(1)

[a|b]G
b|i(1)
j − 1

2G a|b(1)
a G i(1)

[j|b]

+ 1
2G(1) a

b|[j G
(1) b|i
a] + 2G

(1) [a|i]
[j|a] + 2G

(2) [a|i]
[j|a] − 2G(1) a

b G
[b|i](1)
[j|a] − 2G(1) i

a G
[b|a](1)
[j|b] , (2.24)
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we determine the first–order part of the initial metric (which is a derived quantity),

2G
(1) [i|k]
[k|j] = −HiU

i
j − W i

j − (HiU + W ) δi
j , (2.25)

— as well as the second–order part of the initial metric (which later appears in the
perturbation and solution schemes):

2G
(2) [i|k]
[k|j] = f(U i

j, W i
j) , (2.26)

where the function f can again be derived by equating (2.24) and (2.13). All further orders
vanish.

The initial data given in (2.20) are exhaustive: in our ADM split, the system of equa-
tions {(1.41) − (1.44)} contains 9 second–order equations of motion for the coframes
subjected to 4 constraints. A general solution therefore contains 18 coefficient functions
encoded in Uij and Wij that reduce to 12 functions for solutions of the irrotationality
conditions (1.41), which these latter are represented by the 6 constraints U[ij] = 0 and
W[ij] = 0. The general solution is further subjected to the 4 ADM constraints resulting in
corresponding constraints on Uij and Wij.

2.1.3 Gravitoelectric perturbation scheme
We now recall the general Lagrangian perturbation scheme of Newtonian cosmology

and generalize it to a gravitoelectric scheme in relativistic cosmology. By construction,
this latter will already contain the known Lagrangian perturbation scheme at any order
in the geometrical limit of exact deformation one–forms.

Recap: Newtonian theory

The general perturbation scheme has been fully developed in [55]. Our approach only
slightly differs in terms of the initial conditions: we formulate them such that they are
formally closer to the relativistic approach. Following the general ansatz (2.1), we intro-
duce three comoving perturbation forms dP i of the three components of the comoving
vector perturbation fields P i(X i, t):

df i( �X, t) =: a(t)dF i( �X, t) = a(t)
(
dX i + dP i( �X, t)

)
, (2.27)

and decompose the perturbation gradient field on the FLRW background order by order:

dP i =
∞∑

m=1
εmdP i(m) . (2.28)

It is, of course, possible to consider perturbations of the position fields f i, because the
Newtonian equation can be expressed in a vectorial form. The relativistic equations are,
however, tensorial and we, therefore, consider the representation in terms of the gradient
of the fluid’s deformation.

In order to provide unique solutions of the Newtonian system, suitable boundary
conditions have to be imposed. For the cosmological framework the requirement of periodic
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boundary conditions for field deviations from a Hubble flow is a possible choice [28]. This
translates into an integral constraint on the perturbations: integration over a compact
spatial domain M implies the following:

∫
M

dP i =
∫

∂M
P i = 0 ; P i =

∞∑
m=1

εmP i(m). (2.29)

Recall now that Ui = dU i = U i
|jdXj and Wi = dW i = W i

|jdXj are the initial one–
form peculiar–velocity gradient and the initial one–form peculiar–acceleration gradient.
The fields W i are determined nonlocally by the following set of equations, equivalent to
Poisson’s equation:

W i
|i = ∗1

2εijkdW i ∧ dXj ∧ dXk = −4πGδ
i ;

δijdW i ∧ dXj = ∗d
(
W idX i

)
= 0 . (2.30)

In view of the restriction to irrotational flows, we additionally impose the constraint:

δijdḟ i ∧ df j = 0 =⇒ δijdU i ∧ dXj = ∗d
(
U idX i

)
= 0 . (2.31)

Without loss of generality, we can choose the following general set of initial data that
can be obtained in the Newtonian theory or, else, from the Minkowski Restriction of
((2.20)–(2.22)):

— for the initial deformation, peculiar–velocity and peculiar–acceleration:⎧⎪⎪⎨
⎪⎪⎩

dP i(n) = 0 ∀n ;
dU i(1) = dU i, U[i|j] = 0 ;
dW i(1) = dW i, W[i|j] = 0 ,

(2.32)

— together with the definition of the Lagrangian metric coefficients and the initial
data relation to the density perturbation:⎧⎨

⎩gij = δklf
k
|if

l
|j ;

δ
i
(1) = δ
i = 
Hiδi = − 1

4πG
W k

|k .
(2.33)

The metric is Euclidean, since the coefficients can be transformed to the coefficients δij

with the help of the to f inverse coordinate transformation.
Plugging the ansatz (2.27) into the Newtonian equations for the deformation gradient

expressed in terms of forms, see [55]:

δijdf̈ i ∧ df j = 0 , (2.34)
1
2εijkdf̈ i ∧ df j ∧ dfk = (Λ − 4πG
) d3f , (2.35)

we find for the background Friedmann’s equation:

εijk 3 ä

a
dX i ∧ dXj ∧ dXk = εijk (Λ − 4πG
H) dX i ∧ dXj ∧ dXk

=⇒ 3 ä

a
= Λ − 4πG
H , (2.36)
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and a full hierarchy of the perturbation equations:
δij dṖ i ∧

(
dXj + dP j

)
= δija

−2dU i ∧ dXj ; (2.37)

εijk

⎡
⎣ (D1dP i

)
∧ dXj ∧ dXk +

(
2D2dP i

)
∧ dP j ∧ dXk +

(
D3dP i

)
∧ dP j ∧ dP k

⎤
⎦

= −εijk
4πG

3 δ
ia
−3dX i ∧ dXj ∧ dXk , (2.38)

where we defined the operator

D� := d2

dt2 + 2H
d

dt
− 4

�
πG
H . (2.39)

Projecting with the Hodge star operator to the coefficient form (and integrating Equation
(2.37)), we obtain:

P[i|j] =
∫ t

ti
Ṗm|[iP m

|j]dt′ ; (2.40)

D1P
i
|i = −4πGδ
ia

−3 − 1
2εijkεlmn

[
P i

|l P j
|mD3P

k
|n + 2δi

|lP
j
|mD2P

k
|n
]

. (2.41)

After splitting the equations (2.37) and (2.38) order by order, we obtain n sets of equations.
At first–order we get:

δijdṖ i(1) ∧ dXj = 0 ; (2.42)
εijkD1dP i(1) ∧ dXj ∧ dXk = a−3εijkdW i ∧ dXj ∧ dXk ; (2.43)

in coefficient form:
P (1)

[i|j] = 0 ; D1P
i(1)
|i = a−3W i

|i , (2.44)

i.e. a set of linear equations. The generic nth–order system of equations will be written
below with an implicit summation over the order of perturbations in the source terms:

A(p)B(q) =
∑

p+q=n

A(p)B(q) , (2.45)

A(r)B(s)C(t) =
∑

r+s+t=n

A(r)B(s)C(t) . (2.46)

Thus, at any order n > 1, the perturbation equations read:
δijdṖ i(n) ∧ dXj = −δijdṖ i(p) ∧ dP j(q) ; (2.47)

εijkD1dP i(n) ∧ dXj ∧ dXk = −εijk

[ (
2D2dP i(p)

)
∧ dP j(q) ∧ dXk

+
(
D3dP i(r)

)
∧ dP j(s) ∧ dP k(t)

]
; (2.48)

in coefficient form:

P (n)
[i|j] =

∫ t

ti
Ṗ (p)

m|[iP
m(q)
|j] dt′ ; (2.49)

D1P
i(n)
|i = −1

2εijkεlmnP j(s)
|m P k(t)

|n D3P
i(r)
|l −

(
D2P

i(p)
|i
)

P j(q)
|j +

(
D2P

i(p)
|j
)

P j(q)
|i . (2.50)

The reader may consult the review [55] and references therein for further details.
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Einstein’s theory

Assuming the perturbation ansatz (2.1) for the coframes, and using the operator D�

as defined in (2.39), the analogous expansion is performed: the zeroth order again leads
to the Friedmann equation, and the general perturbation scheme reads:

Gab Ṗa ∧ δb
jdXj + GabṖa ∧ Pb = 0 ; (2.51)

εabc

⎡
⎣D1Pa ∧ δb

jdXj ∧ δc
kdXk + (2D2Pa) ∧ Pb ∧ δc

kdXk + (D3Pa) ∧ Pb ∧ Pc

⎤
⎦

= εabcW
1
3a−3δa

idX i ∧ δb
jdXj ∧ δc

kdXk .

(2.52)

In coefficient form and integrating (2.51) they become:

P[ij] = Gab

∫ t

ti
Ṗ a

[iP
b
j]dt′ ; (2.53)

D1P
i
i = −

((
D2P

i
i

)
P j

j −
(
D2P

i
j

)
P j

i

)
− 1

2εijkεlmn
(
D3P

i
|l
)

P j
|mP k

|n + Wa−3 .(2.54)

Expansion order by order leads to the first–order gravitoelectric equations:

G(0)
ab Ṗa(1) ∧ dXb = 0 ; (2.55)

εabcD1Pa(1) ∧ δb
jdXj ∧ δc

kdXk = a−3εabcWa ∧ δb
jdXj ∧ δc

kdXk ; (2.56)

and the general nth–order, n > 1, set of nonlinear equations:

GabṖa(n) ∧ δb
jdXj = −GabṖa(p) ∧ Pb(q) ; (2.57)

εabcD1Pa(n) ∧ δb
jdXj ∧ δc

kdXk =
−εabc

[
2 (D2Pa(p)) ∧ Pb(q) ∧ δc

kdXk (2.58)

+ (D3Pa(r)) ∧ Pb(s) ∧ Pc(t)
]

.

In coefficient form, this reads:

P (1)
[ij] = 0 ; D1P

i(1)
i = Wa−3 , (2.59)

and

P (n)
[ij] = G(r)

ab

∫ t

ti
Ṗ a(s)

[i P b(t)
j] dt′ ; (2.60)

D1P
i(n)
i = −1

2εijkεlmnP j(s)
m P k(t)

n

(
D3P

i(r)
l

)
−
(
D2P

i(p)
i

)
P j(q)

j +
(
D2P

i(p)
j

)
P j(q)

i . (2.61)

This provides equations for the perturbation fields at any order n from solutions of order
n − 1.
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Comparing {(2.57), (2.58)} to the Newtonian equations {(2.47), (2.48)}, we see (not
surprisingly) that we arrive at two equivalent sets of equations if we link the perturbations
Pa and dP i at any order via the MR – recall that the construction was done by inver-
sion of the MR : dP i = P i

|jdXj 
→ P a
jdXj = Pa; for the initial data: dU i = U i

|jdXj 
→
Ua

jdXj = Ua and dW i = W i
|jdXj 
→ W a

jdXj = Wa. Therefore, we can simply translate
the formal solution scheme for the trace–parts and the antisymmetric parts of the pertur-
bations. However, note already here that the inversion of the MR produces a symmetric
traceless component that is represented in Newtonian theory by the tidal tensor.

2.1.4 Gravitoelectric solution scheme
Recap: Newtonian theory

We first recall the general solution scheme given in [55], written for the perturbation
gradients only.

The hierarchy begins with the first–order equations {(2.42), (2.43)} which are uniquely
determined by the constraint initial data (2.32). The general nth–order, n > 1, solution
scheme from Eqs. {(2.37), (2.38)}, reads:

δijdP i(n) ∧ dXj = NS(n) ; (2.62)
εijkD1dP i(n) ∧ dXj ∧ dXk = NT (n), (2.63)

uniquely determined by the source terms:

NS(n) := −δij

∫ t

t0
dṖ i(p) ∧ dP j(q)dt′ ; (2.64)

NT (n) := −εijk

[
2
(
D2dP i(p)

)
∧ dP j(q) ∧ dXk +

(
D3dP i(r)

)
∧ dP j(s) ∧ dP k(t)

]
. (2.65)

We have earlier demonstrated the formal equivalence between the Newtonian equations
and the relativistic gravitoelectric equations. The generalization of the Newtonian solution
scheme to obtain the corresponding relativistic scheme is now straightforward.

Einstein’s Theory

The perturbative gravitoelectric Lagrange–Einstein system starts at n = 1 with the
equations {(2.55), (2.56)}, uniquely determined by the corresponding constraint initial
data (2.20). The nth–order, n > 1, gravitoelectric solution scheme reads:

GabPa(n) ∧ δb
jdXj = S(n) ; (2.66)

εabcD1Pa(n) ∧ δb
jdXj ∧ δc

kdXk = T (n) , (2.67)

which is uniquely determined by the source terms:

S(n) := G(r)
ab

∫ t

t0

(
−Ṗa(s) ∧ Pb(t)

)
dt′ ; (2.68)

T (n) := −εabc

(
2 (D2Pa(p)) ∧ Pb(q) ∧ δc

kdXk + (D3Pa(r)) ∧ Pb(s) ∧ Pc(t)
)

. (2.69)

The coefficient form of these equations is given by (2.59)–(2.61).
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2.2 Application of the solution scheme
In order to illustrate the use of the scheme {(2.66),(2.67)} in practice, we will in

what follows explicitly explain the construction of relativistic solutions from Newtonian
ones for the general procedure and through examples, in Subsections II.2.2.3 and II.2.2.4,
respectively. Before we do so we explain the general systematics of solution scheme.

2.2.1 Systematics of the solutions
The n–th order scheme is a hierarchy of ordinary second–order differential equations,

sourced by an inhomogeneity resulting from combinations of lower–order terms. Thanks
to the linearity of the ordinary differential equations (ODE), the solution is, at any order
n, a linear superposition of modes that we will label by l:

P i(n)
j =

∑
l

P i (n,l)
j . (2.70)

In the Newtonian case, and for the gravitoelectric relativistic part, the modes can be
further separated into spatial and temporal parts: P i (n,l)

j = ξ(n,l)(t)P i (n,l)
j (Xk). This is

due to the fact that (2.67) is an ODE and that its coefficients only depend on time.
From the theory of second–order ODE’s it is known (see, e.g., Section 2.1.1 of [119]),

that an equation of the form

f2 (a) y′′ + f1 (a) y′ + f0 (a) y = g (a) , (2.71)

will have as the general solution:

y (a) = C1y1 (a) + C2y2 (a) +
a∫

ai

G (a, s) g (s)
f2 (s)ds , (2.72)

where Green’s function G (a, s) is defined by

G (a, s) = y2 (a) y1 (s) − y1 (a) y2 (s)
y1 (s) y′

2 (s) − y′
1 (s) y2 (s) . (2.73)

Therefore, at any order, the solution will have two modes l that are given by the homo-
geneous solution, known for a given background model (in the examples we will explicitly
give the solutions for the Einstein–de Sitter case, henceforth EdS, and the Cold Dark Mat-
ter background with a cosmological constant, henceforth ΛCDM). The different modes of
the particular solution can be calculated from the integral in (2.72) by setting g = T (n).
As integration is linear, the particular solution can be computed for each subpart of the
source separately, and those parts appear as a P i (n,l)

j in the sum (2.78).
In order to study these subparts, we split the perturbations into their trace, their

symmetric tracefree part and their antisymmetric part:

Pa = 1
3Pδa

jdXj + Πa + Pa . (2.74)
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Then, Equations {(2.60), (2.61)} read:

P
(n)
ij =

∫ t

ti

1
3
(
G(r)

a[iΠ
a(t)
j] Ṗ (s) − G(r)

a[iΠ̇
a(s)
j] P (t)

)
+ 1

3
(
G(r)

a[iP
a(t)
j] Ṗ (s) − G(r)

a[iṖ
a(s)
j] P (t)

)

+
(
G(r)

ab Ṗ
a(s)
[i Πb(t)

j] − G(r)
abP

b(t)
[i Π̇a(s)

j]

)
+
(
G(r)

ab Π̇a(s)
[i Πb(t)

j] + G(r)
ab Ṗ

a(s)
[i P

b(t)
j]

)
dt′ ; (2.75)

D1P
(n) = −2

3P (q)D2P
(p) + Πb(q)

a D2Πa(p)
b +Pb(q)

a D2P
a(p)
b

− 1
2

[1
3

(2
3P (t)P (r) − Πa(t)

b Πb(r)
a −Pa(t)

b P
b(r)
a

)
D3P

(s)

+ 1
3
(
−P (t)P

a(r)
b −Pa(t)

b P (r)
)

D3P
b(s)
a

+ 1
3
(
−P (t)Πa(r)

b − Πa(t)
b P (r)

)
D3Πb(s)

a

+
(
Πa(t)

c Πc(r)
b + Πc(t)

b Πa(r)
c + Πa(t)

c P
c(r)
b + Πc(t)

b P
a(r)
c

+Pa(t)
c Πc(r)

b +Pc(t)
b Πa(r)

c +Pa(t)
c P

c(r)
b +Pc(t)

b P
a(r)
c

)
(
D3Πb(s)

a + D3P
b(s)
a

)]
. (2.76)

Hence, the trace and the antisymmetric parts are completely determined by the lower–
order expressions of all parts (four equations for four components of P i

j). What is missing
is an equation for the five components of the tracefree symmetric term Πi(n)

j . Recall that
the gravitoelectric system is only closed after imposing the MR , which then couples
the tracefree symmetric time–evolution to the one of the trace and encodes the spatial
dependence in a Poisson equation.

2.2.2 Reconstruction of the relativistic solutions
In order to illustrate the scheme for the relativistic case, we will discuss here how to

reconstruct the full n–th order solution from the recursive equations {(2.66),(2.67)}.

Trace part

The trace part is the main part that is given by the hierarchy. In the absence of the
tracefree symmetric term Πi(n)

j , there is no antisymmetric term emerging and we are left
with a recursion relation for the trace:

D1P
(n) = −2

3P (q)D2P
(p) − 1

9P (t)P (r)D3P
(s) . (2.77)

Antisymmetric part

It may appear counterintuitive that a nonvanishing antisymmetric part arises (starting
from second order), given our assumption of irrotationality due to the given foliation of
spacetime. However, this fact is known from the Newtonian Lagrangian perturbation
theory, where antisymmetric parts arise, starting at second order, in Lagrangian space,
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while no vorticity is created in Eulerian space [24]. Our comoving setting corresponds to
the Lagrangian picture of fluid motion, and the antisymmetric terms at order n satisfy and
follow from the irrotationality condition (2.66), given all subleading terms p = 1 . . . n − 1.
However, we need to reconstruct a part of the tracefree symmetric term to recover all the
Newtonian modes that have antisymmetric components, a problem to which we turn now.

Tracefree symmetric part

As our scheme does not separately provide a relation that determines the five coeffi-
cients of the tracefree symmetric part (these equations are part of the gravitomagnetic
scheme), we have to reconstruct the relevant part that complies with the Newtonian so-
lutions. In order to achieve this it suffices to realize that the one–form fields Pa(Xk, t)
become integrable in the MR , dP i(Xk, t), and so also the tracefree symmetric part. Hence,
in the MR , the tracefree symmetric part of dP i(Xk, t) inherits the time–evolution from
the trace. With this in mind, and due to the superposition property of our solution scheme,
we are entitled to split the general tracefree symmetric coefficients Πij into a part that
reproduces the tracefree symmetric part of Pa(Xk, t) in the MR , denoted by EΠij, and
another part HΠij. This is possible at any order:

Π(n)
ij =

∑
l m

ξ(n,l)(t) EΠ (n,l)
ij (Xk) + HΠ (n,m)

ij (Xk, t) . (2.78)

The temporal coefficients ξ(n,l) are the same for the trace and the tracefree symmetric
gravitoelectric parts. For the full relativistic solution there is in addition a contribution,
denoted by HΠij, which is related to gravitational waves. For the time being we note that
the superposition property discussed above assures that the resulting individual terms in
the decomposition (2.78) are correct, if we use only this gravitoelectric part of the tracefree
symmetric tensor in the hierarchy. Thus, even though the scheme does not determine all
the components of P i(n)

j without solving the gravitomagnetic equations, it is consistent for
the terms it delivers. Moreover, by inspection of corresponding perturbation and solution
schemes that we derived for the gravitomagnetic part [4], we can conclude that the so–
reconstructed solutions provide the leading–order modes of the relativistic solutions at
any order. Of course, inserting the reconstructed solution into the full set of Einstein
equations will result in constraints on initial data in addition to the standard constraints.
As an example we will discuss the constraints in the first–order scheme given below.

2.2.3 Example 1: recovering parts of the general first–order so-
lution

In order to illustrate the hierarchy we begin with the first–order equations of the
scheme {(2.66),(2.67)}, i.e. in coefficient form (2.59). With the split in space and time
coefficients, the latter are the well–known solutions of the equation (equivalent to the
equation in the Newtonian scheme [21, 16, 22]):

ξ̈ + 2Hξ̇ − 3
2Hi

2Ωima−3ξ = Wa−3 . (2.79)
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For an EdS universe the modes are proportional to a, a−3/2 and a0. Together with the
initial conditions, the solution for the trace found from (2.59) reads:

P (1) =3
5

[
(Uti + 3

2Wti
2)a −

(
Uti − Wti

2
)

a− 3
2 − 5

2Wti
2
]

. (2.80)

The antisymmetric part vanishes in view of (2.59), Pa(1)
i = 0. We then need to reconstruct

the tracefree symmetric part along the lines described in II.2.2.2 to complete the solution:

EΠ(1)
ij = 3a

5

(
EU tl

ijti + 3
2

EW
tl

ijti
2
)

− 3
5a3/2

(
EU tl

ijti − EW
tl

ijti
2
)

− 3
2

EW
tl

ijti
2 . (2.81)

The notation tl stands for the traceless part. The initial fields have been split accordingly:

Uij =: EU ij +H Uij ; Wij =: EW ij +H Wij , (2.82)

i.e. a part initializing the gravitoelectric, and the gravitomagnetic part, respectively.
We remark that in Newtonian theory the tidal tensor is written in terms of the gravi-

tational potential Φ:
− Eij = Φ,ij − 1

3δij∇2Φ , (2.83)

where a comma denotes derivative with respect to Eulerian inertial coordinates. If we con-
sider the first–order solution (here restricted to the growing mode solution for notational
ease),

EP i
j

(1) = 3
2W i

jti
2 (a − 1) , (2.84)

the first–order gravitoelectric part of the spatially projected Weyl tensor assumes the form
(note the conventional sign difference of this geometrical definition with the Newtonian
(active) definition of Eij):

Ei
j

(1) = − Π̈i
j

(1) − 2HΠ̇i
j

(1)

= − 3
2ti

2 (ä + 2Hȧ)
(

W i
j − 1

3Wδi
j

)

= − 3
2ti

2a
(3

2Hi
2 1
a3

)(
W i

j − 1
3Wδi

j

)

= − 1
a2

(
W i

j − 1
3Wδi

j

)
. (2.85)

We find
Eij

(1) = −
(

Wij − 1
3Wδij

)
. (2.86)

The trace W does not derive from a potential due to nonintegrability of the field. After
executing the MR , we obtain (up to the conventional sign difference), the Newtonian
tidal tensor (2.83).
Summarizing: given the formal analogy of the solution schemes discussed in Section II.2.1.4,
the above solution solves the gravitoelectric part of the corresponding relativistic equa-
tions (2.59). The tracefree symmetric part (2.41), however, is only a part of the solution in
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the relativistic case. Eq. (102) in [35] states that the first–order equation for the relativistic
tracefree symmetric part reads:

Π̈(1)
ij + 3HΠ̇(1)

ij − a−2Π|k(1)
ij |k = −a−2

(
Tij + P (1)

|ij − 1
3P

|k(1)
|k δij

)
, (2.87)

where Tij is the tracefree part of the initial Ricci tensor. Plugging (2.34) and (2.41) into
(2.87), we can check whether our relativistic generalization satisfies the full equation.
Three modes appear in the equation: a−2, a−1 and a−7/2. The equation has to be satisfied
at any time, thus each mode must lead to cancellation of the coefficients. This leads to
the following constraints (Hi := 2/3ti):

ETij = −Hi
EU tl

(ij) −E W tl
(ij) ;

EU
|k
(ij) |k = EU

k

k|ij ; EW
|k
(ij) |k = EW

k

k|ij . (2.88)

The first equation corresponds to the definition of the tracefree part of the initial Ricci
tensor, Eq. (2.13) in the EdS case studied here. In view of the constraints U[ij] = 0 and
W[ij] = 0 (cf. (2.20)), the other two conditions are equivalent to:

EU
|k
ij |k = EU

k

k|ij ; EW
|k
ij |k = EW

k

k|ij . (2.89)

What we call gravitoelectric part in the decomposition of initial conditions (2.21) is there-
fore determined to be the one that solves (2.88). The part contributing to the propagating
gravitomagnetic part is then its complement. This labelling is not completely unambigu-
ous, because in this scheme, the gravitomagnetic part computed from the gravitoelectric
part is not zero, see below for the first–order scheme. (Nevertheless, as we will show in
the next part, it generates a zero dynamical Ricci curvature tensor.)

In order to check how constraining these relations are, beyond the constraints that
we already have, we consider the first and second time–derivatives of the momentum
constraints and evaluate them at initial time in order to obtain constraints on the initial
fields. Taking the second spatial derivative of these equations and contracting them with
respect to one index, we get for Uij:

Uk
j|k = Uk

k|j ⇒ Uk
j|ik = Uk

k|ij ⇒ U
k|i
j|ik = U

k|i
k|ij . (2.90)

The latter identity is solved by the gravitoelectric and the gravitomagnetic parts inde-
pendently. For the gravitoelectric part, we have:

EU
k|i
j|ik = EU

k|i
k|ij , (2.91)

which is equal to the once contracted spatial derivative of the above constraint (2.89). We
conclude that (2.89) and the momentum constraints are compatible with but not equiva-
lent to our constraints. They have to be solved independently in order for the solution to
be compatible with both the evolution equation and the momentum constraints.

What they do constrain are derivatives of the gravitomagnetic part. To derive these
constraints, let us first note that the first–order expression for the magnetic part can be
found from Equation (107) in [35]:

EHij = a(t)εsl
(i

EΠ̇j)l|s . (2.92)
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The solution for EΠij, cf. (2.41), shows that spatial derivatives of the first–order magnetic
part can be traced back to spatial derivatives of Uij and Wij. Together with the first–order
momentum constraints, Ṗ i

i|j = Ṗ i
j|i, and imposing the constraints (2.88), we get:

εuri εsl
(i

EUj)s|lr = 0 ; εuri εsl
(i

EWj)s|lr = 0 . (2.93)

Thus, via (2.41), this leads to
εuri EHij|r = 0 , (2.94)

i.e., the curl of EHij vanishes.
For its divergence the constraints (2.88) are not necessary. Taking the divergence of

(2.92), and using the momentum constraints in the form EΠ̇i
l|is = 2/3Ṗ|ls, we can show:

EHij
|i = 0 . (2.95)

By combining (2.94) and (2.95), we conclude that

Δ0
EHij = 0 . (2.96)

Thus, the gravitomagnetic part that is generated by the gravitoelectric part is a harmonic
tensor field at first order. This harmonic field can be constrained in the initial conditions
(removed) by topological conditions on the perturbations.

2.2.4 Example 2: constructing second–order solutions for ‘slaved
initial data’

Let us now write out the system {(2.66),(2.67)} explicitly for n = 2. We simplify the
first–order source by imposing the so–called ‘slaving condition’ U i

j = W i
jti (as explained

in [21, 22] and, for second order in [23]). This is not necessary but increases readability.
The sum of (2.34) and (2.41) becomes:

P (1)
ij = 3

2Wijti
2 (a − 1) . (2.97)

At second order (2.61) is simply

D1P
i(2)
i = −

(
D2P

i(1)
i

)
P j(1)

j +
(
D2P

i(1)
j

)
P j(1)

i , (2.98)

and we have the system:⎧⎪⎨
⎪⎩

ξ̈(2) + 2 ȧ

a
ξ̇(2) + 3 ä

a
ξ(2) = 3

4ti
2
(
a−1 − a−3

)
;

C(2) = W i
jW

j
i − WW ,

(2.99)

with the source g(2)(t) = 3
4ti

2 (a−1 − a−3).
In order to systematically determine the temporal coefficients of the hierarchy, it is

useful to write the operator D1 in terms of a. We find:

g (a) = ΩimHi
2 ×

((1
a

+ a2c
)

P ′′(a) + 3
2

( 1
a2 + 2ac

)
P ′(a) − 3

2a3 P (a)
)

,

(2.100)

89



CHAPTER 2. GRAVITOELECTRIC PERTURBATION AND SOLUTION
SCHEMES AT ANY ORDER

where c = ΩiΛ/Ωim. For an EdS background, c = 0, the homogeneous solution is

D (a) = aC1 + a−3/2C2 ; (2.101)

Green’s function of Eq. (2.73) is

G (a, s) = 2
5

s
(
a5/2 − s5/2

)
ΩimHi

2a3/2 . (2.102)

Now, it is a matter of a simple integration and Eq. (2.72) gives the second–order trace
solution:

P (2) = 1C(2)a + 2C(2)a−3/2 + 9
8ti

4
(

1 + 3
7a2

)
C(2) . (2.103)

To find the spatial coefficients of the solution, we use the initial values for the coframe
and its time–derivative. They have been chosen to vanish for all orders higher than one
in the hierarchy of solutions of Eqs. (2.61). Therefore, we find the following system:

P (2)(ti) = 1C + 2C + 45
28C(2)ti

4 = 0 ;

Ṗ (2)(ti) = 2
3ti

1C − 1
ti

2C + 9
14C(2)ti

4 = 0 , (2.104)

which fixes all constants to be ∝ C(2). Thus, the second–order trace solution reads:

P (2) = ξ(2)
+
(
WW − W i

jW
j
i

)
;

ξ(2)
+ = 9

4ti
4
(

− 3
14a2 + 3

5a − 1
2 + 4

35a−3/2
)

. (2.105)

After executing the MR this coincides with the second–order Newtonian solution of [24].
The antisymmetric equation (2.66) still delivers Pa(2)

i = 0. This is due to the restriction
to ‘slaved initial conditions’, otherwise we would have a nonvanishing part here. Thus, we
only need the tracefree symmetric part to complete the solution. The gravitoelectric part
can be written as

EΠ(2)
ij = ξ(2)

+ S(2)
ij , (2.106)

where the trace of S(2)
ij is given by

(
W 2 − W i

jW
j
i

)
ti

2. The rest of its components can
be determined from the generalization S(2)

|ij → S(2)
ij , where S(2) is the solution to the

Newtonian Poisson equation Δ0S(2) =
(
(W k

|k)2 − W i
|jW

j
|i
)

ti
2, and where Δ0 denotes

the Laplacian in local (Lagrangian) coordinates (see [24]). To avoid passing by the gen-
eralization of the Newtonian result, one can of course also insert EΠ(2)

ij into (2.106) and
solve the remaining relativistic equations of the gravitomagnetic part to find the off–trace
components of S(2)

ij .
The explicit derivation of the inhomogeneous second–order term in this subsection

illustrates that, using (2.72) and (2.102), the calculation of the temporal evolution of
the general relativistic trace part is straightforward and only involves the calculation of
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integrals. This can also be easily extended to perturbations of a ΛCDM universe model
by noting that (2.101) becomes:

D (a) = a (2)F1

(1
3 , 1,

11
6 ; −ca3

)
C1 +

√
1
a3 + c C2 , (2.107)

with the Gauss Hypergeometric function (2)F1. Greens’ function reads in this case:

G (s, a) =
2
5

s

ΩimHi
2

(
D+ (a, c) − D+ (s, c)

√
(1 + ca3) s3

(1 + cs3) a3

)
, (2.108)

where D+ (a, c) is the first term in (2.107).

2.3 Summary and concluding remarks
We have investigated gravitoelectric perturbation and solution schemes at any order

in relativistic Lagrangian perturbation theory. These schemes cover the full hierarchy of
the Newtonian Lagrangian perturbation theory if restricted to integrable Cartan coframe
fields. Despite the fact that the solution scheme presented in this work gives on its own
not all parts of the relativistic perturbation solutions, it delivers an important part rel-
evant to the formation of large–scale structure. As is well–known (see e.g. discussions
in [99] and [4]), the fastest growing scalar modes of the relativistic solutions correspond
to the Newtonian modes, shown up to second order and, by inspection of the schemes
we investigated, we showed this to hold for the gravitoelectric part also beyond second
order. As we recover all the Newtonian terms with their correct temporal evolution and
their constrained spatial coefficients, we also know that our solution contains all terms
that become important in the Late Universe. The presented scheme is explicit enough to
derive solutions at any desired order by algebraic codes along the lines of the reconstruc-
tion rules that we exemplified up to the second order. We demonstrated the close formal
correspondence of the gravitoelectric Lagrange–Einstein system to the Newtonian theory
furnishing construction rules that also allow to find other, nonperturbative relativistic
solutions from Newtonian ones.

The role of gravitational waves, corresponding to the missing part in our scheme, has
to be further explored. The missing part, which we denoted by HΠij in the coefficients
of the tracefree symmetric parts of the perturbations, corresponds at first order to ‘free
gravitational waves’, i.e. that part of gravitational radiation that does not scatter at
the sources. This changes at higher orders, since this part will couple to the sources
starting at second order. We shall investigate in detail the general first–order scheme
including gravitational waves in the next Part of the thesis, where we also identify the
transformations and restrictions that have to be imposed to obtain the known solutions of
the standard perturbation theory, where perturbations are embedded into the background
spacetime.
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Chapter 1

Gravitational Waves in the Standard
Perturbation Theory
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1.1 Propagative dynamics in the intrinsic approach:
motivations and strategy

In the last part we have used the formal analogy between the gravitoelectric part of
the Einstein equations and the Lagrange-Newton-System to build a relativistic general-
ization of the Newtonian perturbative solution to order n. These solutions exhibit the
same time-dependence as the Newtonian ones and therefore do not encode propagative
dynamics. Furthermore, we have seen that, at first-order, the gravitoelectric part of the
initial conditions has to fulfill the equalities (2.89). As discussed in Section II.1.4.3, the
magnetic part of the Weyl tensor is often thought to encode gravitational waves. It is
interesting to note that the gravitoelectric solutions also generate a magnetic part that
only at first order is a solution of the Laplace equation (2.96). These equations are elliptic
and thus need boundary conditions to be solved. In General Relativity, if we are looking
for a global solution on the manifold, these boundary conditions are provided by topology.

In this part, we will consider only the first-order perturbation theory. Gravitational
waves have then only a trivial component in the gravitoelectric class of solutions. We will
therefore determine where and how they are encoded in the complementary part of the
solution obtained from the Newtonian perturbation theory. Moreover, we will compare
our intrinsic Lagrangian perturbative approach to the standard perturbation theory, in
order to highlight the similarities and identify the differences between the two. One of the
main issues will be to understand under which conditions the gravitoelectric part of the
solution represents the integrable part of the perturbation fields.

In the following chapter, we begin with a short presentation of the standard theory
of gravitational waves. We will present the instruments that have been built to detect
them and explain how they have been theoretically predicted from the linearization of
the Einstein equations. Furthermore, we will discuss the gravitoelectromagnetic analogy
for the linearized Einstein equations in the weak field limit. The standard treatment of
gravitational waves is presented in order to better understand why our description goes
beyond the standard approach, even at first-order.

The second chapter will focus on the local first-order Einstein equations and solutions.
We will give the first results on the gravitomagnetic part of the solution and will carry out
a comparison to the standard perturbative approach. The last chapter will treat globally
the coframes and the spatial manifold. Some powerful mathematical tools and theorems,
available for closed topological spaces, will be used to determine the impact of topology
on the first-order solutions.
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1.2 Standard description of gravitational waves

1.2.1 Observing gravitational waves in the Standard Perturba-
tion Theory

Gravitational waves were predicted by Albert Einstein [60] and are a natural conse-
quence of General Relativity. They propagate at the speed of light, such as the electro-
magnetic waves but, contrary to the electromagnetic waves, they do not propagate on
space-time but are a propagating oscillation of space-time itself. Measures of time and
length are thus modified by gravitational waves. Nevertheless, these effects are very small
and the sensitivity of the detectors should be higher then the current one.

Indeed, being an interferometer on Earth, Virgo uses the modification of lengths by
gravitational waves to detect them. A great amount of the noise in its measurements is
due to some local vibrations. Overcoming this intrinsic limit is a true technical prowess.
However, Virgo has not detected gravitational waves so far.

Measuring the polarization of the CMB, the BICEP 2 (Background Imaging of Cosmic
Extragalactic Polarization) experiment, located in the Antarctic Amundsen-Scott base in
the South Pole, claimed to have found primordial gravitational waves. Data from the
BICEP2 telescope and Planck were analyzed jointly. It turned out that the signal could
be entirely attributed to dust in the Milky Way rather than to the signature of some
primordial gravitational waves [47].

The eLISA spatial gravitational wave detector https://www.elisascience.org ,
which will be the European Space Agency focus for the next two large science missions,
will be a huge improvement for detection of gravitational waves. Measuring gravitational
waves will not only confirm one of the predictions of General Relativity, it will further-
more provide us with some precious information in some aspects of cosmology such as the
Early Universe or the large scale structure formation.

For some very good lectures on gravitational waves, the reader can refer to [73], [152]
and [74].

In order to better compare our Lagrangian perturbation approach to the standard
one, I here present how equations for propagation of gravitational waves are derived when
the metric tensor is perturbed around a Minkowski background. Furthermore, since one
of the important aspects of my research is gravitoelectromagnetism, I wish to discuss
how, from the standard linearized Einstein equations, we can obtain the analogue of the
Maxwell equations and even the Lorentz force. In order to simplify the comparison to
electromagnetism, we will not use the c = 1 units in this section.

1.2.2 Linearizing the Einstein equations
When we linearize the Einstein equations according to (1.1), the gravitational field is

weak, but it doesn’t have to be static, and particles are allowed to move with relativistic
velocities.

We will consider small perturbations around a Minkowski space-time. The metric
tensor will then be decomposed as:

gμν = ημν + hμν ; |hμν | � 1 , (1.1)
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where ημν is the Minkowski metric: ημν = diag(−1, 1, 1, 1). We consider the transformation
of the metric for an infinitesimal coordinate transformation around point P (called gauge
transformation):

xμ′(P ) = xμ(P ) + ξμ(P ) ; |ξμ| � xμ , (1.2)

then,

gρ′σ′ = ∂xμ

∂xρ′
∂xν

∂xσ′ gμν(xμ′ − ξμ) . (1.3)

If we keep only the first–order in hμν and ξμ, we then obtain:

gρ′σ′ = ηρ′σ′ + hρ′σ′ where hρ′σ′ = hρσ − ξρ,σ − ξσ,ρ , (1.4)

where the the comma represents the derivative with respect to xμ.
In order to have gauge invariant components of the metric tensor, the coordinate

transformation must be chosen such that ξρ,σ + ξσ,ρ = 0.
To first order,

Rαμβν = Γαμν,β − Γαμβ,ν where Γαμν = 1
2 (hμα,ν + hνα,μ − hμν,α) . (1.5)

The Ricci tensor is thus:

Rμν = 1
2
(
hα

ν,αμ + hα
μ,αν − h,μν − �hμν

)
, (1.6)

where � = −c−2 ∂2/∂t2+∇2 is the d’Alembert wave operator on the Minkowski space-time
and h = hα

α.
Now we introduce hμν = hμν − 1

2ημνh and perform the gauge transformation on it.

h′
αβ = hαβ − ξα,β − ξβ,α + ηαβξσ

σ . (1.7)

Then, if we choose some harmonic coordinates such that �ξα = h
β

α,β, and drop the prime 1,
we get:

h
β

α,β = 0 , (1.8)

and
�hμν = −16πG

c4 Tμν . (1.9)

For an empty universe, we get the d’Alembert equation:

�hμν = 0 . (1.10)

Thus, gravitational waves propagate at the speed of light.

1. This condition is called Lorenz gauge
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1.2.3 Gravitoelectromagnetism in the weak field limit
The solution of (1.9) can be expressed in terms of the retarded potentials

hμν = 4 G

c4

∫ Tμν(t − c|x − x′|, x′)
|x − x′| d3x′ . (1.11)

Tμν is the analogue of the 4–current Jμ and hμν is the analogue of the 4–potential Aμ. We
will further assume that |T00| � |Tij| and |T0i| � |Tij|, which, for a dust matter model,
implies that the particles are moving slowly with respect to the speed of light c. We then
have

h00 = −4φ

c2 ; h0i = 2Ai

c2 . (1.12)

The Lorenz condition h
β

α,β = 0 can now be rewritten:

1
c

∂φ

∂t
+ 1

2∇ · A = 0 . (1.13)

Appart from the pre-factor 1
2 , which comes from the fact that gravity is a spin 2 theory,

this is identical to the Lorenz gauge condition in electromagnetism. If we define the
gravitoelectric and the gravitomagnetic fields as follows:

EG = −∇φ − 1
2c

∂A
∂t

; BG = ∇ × A , (1.14)

we then obtain the Maxwell equations:

∇ · EG = −4πGρ ; ∇ · BG = 0 ; (1.15)

∇ × EG = − 1
2c

∂BG

∂t
; ∇ × 1

2BG = −4πG

c
j + 1

c

∂EG

∂t
, (1.16)

where ji = T 0i

c
. Now, for a non-relativistic particle, we have dx0/dτ � 1 and dxi/dτ � vi/c.

At the linear order, the geodesic equation gives:

d2xμ

dτ 2 + Γμ
αβ

dxα

dτ

dxβ

dτ
= 0 ; dv

dt
= EG + v

c
× BG . (1.17)

This is the gravitoelectromagnetic analogue of the Lorentz force law.

1.2.4 Plane gravitational waves and polarization
We now consider the plane-wave solutions of (1.10), which is also the homogeneous

part of (1.9). The general solution is a superposition of these plane waves:

hμν = Re(εμνe−ixαkα) . (1.18)

The matrix εμν is symmetric and called polarization tensor. hμν satisfies (1.10) and (1.8).
Moreover, we can find a gauge such that

h
α

α = 0 . (1.19)
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Figure 1.1: Motion of test particles for two linearly polarized states.

This implies the following relations for the wave vector and polarization tensor:

kαkα = 0 ; kαεαβ = 0 ; εα
α = 0 . (1.20)

The initially 10 degrees of freedom for εμν become 5. The other three can be eliminated
using the additional gauge transformations in the class of the harmonic coordinates. To
be compatible with (1.8) and (1.19), such a coordinate transformation must satisfy

�ξα = 0 ; ξα
,α = 0 . (1.21)

For this gauge class, we have hμν = hμν . We can choose ξα = Re(iεα exp (ikαxα)), the
polarization tensor in the new coordinates becomes

ε′
μν = εμν + kμεν + kνεμ . (1.22)

ε′
μν and εμν represent the same physical situation for any value of εν . If we consider

a propagation in the z− direction, then kμ = (k, 0, 0, k), we can show, combining the
different equalities (1.20), that one can choose εα such that only ε12 and ε11 = −ε22 do
not vanish. Thus only two degrees of freedom are left: the two possible polarizations for
gravitational waves. Figure 1.1 represents, for two linearly polarized states, the motion
of test particles moving about a central particle in the transverse plane. For a complete
introduction on gravitational waves, the reader can refer to [152, 74, 138].
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In [4], the Lagrangian approach to General Relativity was proven to be powerful
to extract from the full solution of Einstein equation the part that has the same time
dependence as the Newtonian solution. This was done in the frame of perturbation theory.
In this part, we will go beyond the gravitoelectric part of the Einstein equations and
consider the full set of equations up to first–order. The Cartan formalism, in the frame of
the intrinsic Lagrangian approach, will be the appropriate formalism to grasp the major
features of the perturbative solutions.

As we will show, the first–order gravitoelectric part of the solution, built from the
Newtonian perturbative solution, does not contribute dynamically to the curvature of
space sections. Its complementary part will be the one containing the free gravitational
waves.

One of the main tasks of this work will be to link the standard approach to our
perturbative description. We will show that, when we apply the MR on the first-order
perturbative solution, we will get back the scalar modes of the standard approach. Never-
theless, the non-integrable first-order coframes we consider live on the perturbed manifold
whereas in the standard perturbation theory, they are defined on the background space
section. Therefore, the 0th order space, which we will call by convenience background, will
not play the same role as the background manifold, on which quantities are defined in
standard perturbation theory.

Since our intrinsic approach is on curved space-times, we have to replace the Scalar-
Vector-Tensor decomposition considered in the standard perturbation approach, and only
available on flat space sections, by a decomposition that takes into account the geometry
and topology of space. This will be done in the third chapter of this part.

2.1 Local approach and propagative dynamics
The content of this part is mostly based on the article that will be published by Al

Roumi, Buchert and Wiegand. We will focus on the first–order perturbation equations
and solutions and try to understand what is the physical content of the complementary
part of the first–order solution obtained in [4], which is the relativistic counterpart of the
first–order Newtonian solution.

We will show that the complementary part contains the first–order free gravitational
waves. Moreover, we will interpret the first–order results in terms of electric and magnetic
parts of Weyl tensor, which are solutions of equations that are formally analogue to
Maxwell’s equations (cf Section II.1.4.3). Moreover, we will see that the formalism used
in [4] is implicitly local. In the next chapter, we will do assumptions on the topology of
spatial sections in order to draw from local results some global conclusions. This local
approach will enable us to compare our description to the standard one, since, in the
standard perturbation theory, quantities are defined on a flat background. In this frame,
Green theory can be used to build global solutions.

In this chapter, we wish first to understand the physical contents of the complementary
part of the solution obtained from the Newtonian perturbation scheme. Then, we will
show that the local description may hinder a full comprehension of the dynamics of the
perturbation fields. To efficiently overcome the limits of the local approach, a global
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description will have to be considered. This will be the topic of the next chapter.

2.2 First–order perturbation scheme in a local ap-
proach

2.2.1 First–order perturbation scheme
The general perturbation scheme in the Intrinsic Lagrangian approach has been pre-

sented in Section II.2.1.1 to any order. From now on, we only consider first–order devia-
tions. Thus, the perturbed coframes that we will consider are:

ηa
i = a(t) (δa

i + P a
i) . (2.1)

Inserting the ansatz (2.1) into the metric tensor (2.59), we get:

gij = a2(t)
(
Gij + 2 P(ij) + PaiP

a
j

)
, (2.2)

where we have defined:
Pij := GaiP

a
j . (2.3)

The aim of the next subsections is to calculate the first–order deviation fields. Note that
only the zero–order metric tensor will appear in the linearized equations. Once the first–
order deformation solution is computed, we are entitled to insert it into the functional
expressions of the other fields, such as the metric tensor above, without truncating to
first–order the expansion of the functionals. The initial conditions that we will consider
have already been discussed in Section II.2.1.2.

Homogeneous equations

At zero order in the perturbation field, the metric coefficients and their inverse lead
to the zero–curvature Friedmannian metric:

G
(0)
ij = δij ; g

(0)
ij = a2(t)δij ; gij(0) = a−2δij . (2.4)

We remind the reader that this metric is not the one on which the perturbations propagate,
as is assumed in standard perturbation approaches. As a matter of fact, the physical space
in which the perturbations propagate is described by the perturbed metric.

The homogeneous (zero–order) equations read:

3 ä

a
= Λ − 4πG
Hia

−3 ; (2.5)

3H2 = 8πG
Hia
−3 + Λ , (2.6)

with the Hubble function H := ȧ/a. These equations are the well–known expansion and
acceleration laws comprising the (zero–curvature) Friedmann equations. As a consequence
of the definition of the orthogonal coframes, the zero–order Christoffel symbols and scalar
Ricci curvature are trivially zero:

Γi (0)
jk = 0 ; R(0) = 0 . (2.7)
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2.2.2 First–order equations

In this part, we expand the Lagrange–Einstein system for the Cartan coframes to
find the first–order deformation fields. As the coframes are the only dynamical quantity,
we have functional definitions of all other variables like the density, the metric or the
curvature in terms of their deformation. Recall, that the strategy is then to insert the
first–order coframes into these functional definitions without further truncation. So even
though in the linearized Lagrange–Einstein system the first–order deformation field only
“sees” the first–order contribution from, for example, the curvature, we can write down
the full nonlinear contributions to the curvature that are produced by the deformation at
first order. In this way we are able to furnish non-perturbative approximations that will
improve iteratively by going to higher order deformations.

The deformation coefficients P a
i only appear summed over the non-coordinate index

in the equations, so we introduce the following tensor coefficients and their trace:

P i
j ≡ δ i

a P a
j and P ≡ P k

k = δ a
k P a

k , (2.8)

and use this notation from now on.
The first–order Lagrange–Einstein equations, in the orthogonal basis, read (we omit

the index (1) for the deformation field, but keep it for the Ricci curvature that is inserted
according to its definition and expanded for linearizing the equations):

Ṗ[ij] = U[ij]a
−2 = 0 ; (2.9)

P̈ij + 3HṖij = −a−2
(

R(1)
ij − R(1)

4 a2δij

)
; (2.10)

HṖ + 4πG
Hia
−3P = −R(1)

4 − a−3W ; (2.11)

Ṗ i
[i|j] = 0 . (2.12)

Evaluating the first–order equation of motion (2.10) at initial time, we can express the
initial value of the curvature tensor as a function of the chosen initial data set:

R(1)
ij (ti) =: Rij = −(Wij + HiUij) − δij(W + HiU) . (2.13)

A more transparent representation of these equations is obtained by introducing the de-
composition of the deformation field into its trace, its trace-free symmetric part, and its
antisymmetric part:

Pij = P(ij) + P[ij] = 1
3Pδij + Πij +Pij , (2.14)

where we defined Πij := P(ij) − 1/3 Pδij, Pij := P[ij], and we introduce the trace–free
symmetric part of the Ricci tensor, τ

(1)
ij := R(1)

ij − 1/3 R(1)δij. The first–order system for
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the deformation coefficients now reads:

Ṗij = U[ij]a
−2 = 0 ; (2.15)

P̈ + 3HṖ = −R(1)

4 ; (2.16)

Π̈ij + 3HΠ̇ij = −a−2τ
(1)
ij ; (2.17)

HṖ + 4πG
Hia
−3P = −R(1)

4 − a−3W ; (2.18)
1
3 Ṗ|j − 1

2
(
Π̇i

j

)
|i = 0 . (2.19)

In order to solve the first–order trace equation and the traceless symmetric equation, it is
necessary to express the first–order scalar curvature and the traceless Ricci tensor (1)τij.
To do so, we insert the metric and its inverse, truncated to first–order:

gij = a2
(
δij + G

(1)
ij + 2P(ij)

)
; (2.20)

gij = a−2
(
δij − Gij(1) − 2P (ij)

)
, (2.21)

into the definitions of the spatial Christoffel symbol and spatial Ricci tensor to obtain:

Γk (1)
ij = 1

2δkl
(
G

(1)
li|j + G

(1)
lj|i − G

(1)
ij|l
)

+ δkl
(
P(li)|j + P(lj)|i − P(ij)|l

)
; (2.22)

R(1)
ij = G

(1) |k
i[k|j] + G

k(1)
[j|k]i + P

|k
i[k|j] + P

|k
j[k|i] ; (2.23)

R(1) = 2a−2G
l(1) |k
[k|l] =: R

a2 . (2.24)

Using the split into parts with different symmetries, we express the curvature through
the parts P , Πij and Pij. The momentum constraints allow to rewrite some terms in the
curvature to obtain:

R(1)
ij = Rij + P|ij − 1

3P
|k
|kδij − Π |k

ij |k ; (2.25)

R(1) = a−2R . (2.26)

We can now write the first–order traceless part of the Ricci curvature tensor as:

τ
(1)
ij = Tij + P|ij − 1

3P
|k
|kδij − Π |k

ij |k , (2.27)

where we defined Tij := τij(ti) := Rij − 1/3 Rδij.
Now that we have the first–order scalar curvature and the traceless Ricci tensor, we

can insert them into the first–order system for the deformation coefficients (2.15)–(2.19).
We also perform the time–integration of the antisymmetric part and the momentum
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constraints, and now make use of the constraints on initial data (2.20):

Pij = Pij(ti) , Pij(ti) = 0 ; (2.28)

P̈ + 3HṖ = −a−2R

4 ; (2.29)

Π̈ij + 3HΠ̇ij − a−2Π |k
ij |k = −a−2

(
Tij + P|ij − 1

3P
|k
|kδij

)
; (2.30)

HṖ + 4πG
Hia
−3P = −a−2R

4 − a−3W ; (2.31)
2
3P|j = Πk

j|k . (2.32)

Note that there is no constant of integration appearing in Eq. (2.32), because we chose
our initial data in (2.20) such that for i = 1, 2, 3, Pa

i = 0. Further manipulations of
this system of equations will aim at formally separating the gravitational wave tensor
part from the scalar perturbations. As will be explained later, a part of the symmetric
traceless deformation field is separable and has the same time dependence as the trace.
We would like to isolate the dynamics of this part and show that its complementary part
encodes the propagation of gravitational waves.

2.2.3 First–order master equations

We here aim at equations for the trace and symmetric traceless parts (the equation
for the antisymmetric part is trivial) by combining the evolution and constraint equa-
tions, and hence by eliminating the curvature. This latter will play an important role by
executing the MR . The result is a set of equations that allow to build solutions, we call
them ’master equations’.

For the trace part we insert the Hamilton constraint (2.31) into the evolution equa-
tion (2.29) to obtain Raychauhuri’s equation, which is the master equation for the trace
solution:

P̈ + 2HṖ − 4πG
Hia
−3P = a−3W . (2.33)

For an Einstein-de Sitter universe the modes are proportional to a, a−3/2 and a0. We
obtain:

P =3
5

[
(Uti + 3

2Wti
2)a −

(
Uti − Wti

2
)

a− 3
2 − 5

2Wti
2
]

. (2.34)

In the same spirit, we combine the momentum constraint (2.32) with the traceless
part of the evolution equation (2.30) and replace the initial traceless curvature in favor of
the initial data set, using (2.13), to obtain the following master equation:

Π̈ij + 3H Π̇ij − a−2
(
W tl

ij + HiU
tl
ij

)
= a−2

(
Πij

|k
|k + 1

2δij Πk
l|k

|l − 3
2 Πk

j|ki

)
. (2.35)
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Splitting of the solution into EΠij and HΠij

The idea is now to split the traceless part further into a component EΠij that couples
to the trace part and a component HΠij that decouples from it. As was done in [4],
EΠij can be built from a generalization of the Newtonian trace solution. Such a traceless
solution will be separable and have the same time dependence as P . We will show that
this solution built from the generalization of the Newtonian one contains the integrable
part of the deformation fields. (Note that such a decoupling goes back to Einstein’s Zurich
notebook when he searched for gravitational wave solutions, and it is used in the standard
perturbation theory in terms of the so–called SVT (Scalar–Vector–Tensor) decomposition,
to which we come later.) It turns out that such a split is linked to the gravitoelectric and
gravitomagnetic parts (hence our notation E and H). Indeed, we will show that EΠij

generates a harmonic magnetic part of the Weyl tensor. The coupling of EΠij to the trace
P can equivalently be done by considering that HΠk

j|k is the divergence-free part. Then,
the momentum constraints (2.32):

2
3P|j = Πk

j|k =:
(

EΠk
j|k + HΠk

j|k
)

, (2.36)

can be divided into two separate constraints:

2
3P|j = EΠk

j|k with the definition HΠk
j|k := 0 . (2.37)

Note that, as we did for Πij, we can split the initial fields accordingly:

Uij =: EU ij +H Uij ; Wij =: EW ij +H Wij , (2.38)

and hence the initial curvature:

W tl
ij + HiU

tl
ij =:

(
EW tl

ij + Hi
EU tl

ij

)
+
(

HW tl
ij + Hi

HU tl
ij

)
, (2.39)

where tl refers to the traceless part of the initial tensor fields. This split can be carried
through to the master equation (2.35). Inserting the superposition Πij = EΠij + HΠij, we
first extract the divergence-free part (note that the traceless initial data are not sources
of the divergence-free part), which obeys the equation:

HΠ̈ij + 3HHΠ̇ij − a−2 HΠij
|k
|k = a−2

(
HW tl

ij + Hi
HU tl

ij

)
, (2.40)

Thus, the equation governing HΠij describes the propagation of gravitational waves
and has the form of the d’Alembert equation with a damping term due to expansion (note
that this equation assumes this form in local (Lagrangian) coordinates). The r.h.s. comes
from the fact that this propagation occurs in a curved space-time.

We assumed that EΠij was built from a generalization of the Newtonian trace solution
and thus had the same time dependence as P . It thus has the following expression:

EΠij = 3a

5

(
EU tl

ijti + 3
2

EW
tl

ijti
2
)

− 3
5a3/2

(
EU tl

ijti − EW
tl

ijti
2
)

− 3
2

EW
tl

ijti
2 . (2.41)
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Plugging this expression into (2.35) and having all the different modes appearing in
the equation cancel, we obtain the following conditions on the E part of the initial fields:

EU
|k
ij |k = Uk

k|ij ; EW
|k
ij |k = W k

k|ij . (2.42)

These conditions are equivalent to demanding the equality:

Δ0
EΠij = DijP , (2.43)

Where Δ0 is the Laplace operator for Lagrangian coordinates and Dij = ∂i∂j − δijΔ0/3.
EΠij is now solution of

EΠ̈ij + 3H EΠ̇ij = a−2
(

EW tl
ij + Hi

EU tl
ij

)
. (2.44)

Contributions of EΠij and HΠij to the Ricci curvature

If we insert the relation (2.43) into the equation that gives the first-order curvature
(2.26), we see that EΠij compensates the curvature produced by the trace part of the
perturbations in the dynamical part of the Ricci curvature. The only term that affects
the dynamical part of the curvature is Δ0

HΠij. We conclude that EPij does not produce
curvature. Nevertheless, we cannot conclude from this feature that it represents only the
integrable part of the perturbation fields.

2.3 Electric and magnetic spatial parts of the Weyl
tensor and the Maxwell-Weyl equations

2.3.1 Link to the electric and magnetic part of Weyl tensor
Gravitomagnetic part from EPij

When we split Pij into EPij and HΠij, we obtained EPij from the generalization of
the Newtonian solution. We therefore did not encode any propagative dynamics into it.
Since the magnetic part of Weyl tensor is linked to gravitational waves, we expect EPij

to generate a zero magnetic part. As shown in [4], all we can say is:

Δ0Hij(EPij) = 0 , (2.45)

which is again an elliptic equation that needs some global arguments to be solved.

Magnetic part of the Weyl tensor and deviations from flatness

As discussed in the definition of the Minkowski Restriction, if the coframes become
integrable, the resulting metric becomes Euclidean. They then form an exact coordinate
basis. Coframes, or equivalently frames, will encode deviations from flatness if their struc-
ture coefficients are non-zero. They are defined from the frames in the following way:

[ea, eb] = Cc
abec , (2.46)
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and from the coframes in this way:

d ηa = −1
2Ca

bc ηb ∧ ηc . (2.47)

The magnetic part and the structure coefficients are linked at first–order by the following
relation:

H i
j = 1

2εj
klĊi

lk . (2.48)

The magnetic part thus contains the dynamical deviations from flatness.

2.4 Integrable and non-integrable solutions: compar-
ison with the other perturbation schemes

In this section, we split the first–order deformation fields into an integrable and a
non-integrable part. We show that when we execute the MR , we end up with the scalar
solutions of the standard perturbation theory. Moreover, the trace part falls on the first
scalar mode and the traceless part falls on the second scalar mode. The non-integrable
mode is then by construction zero. In a second part, we will compare our results to the
ones obtained in the comoving synchronous gauge.

2.4.1 Non–propagating solutions for the intrinsic Lagrangian
description

Integrable and non-integrable initial conditions

We split the initial fields into their integrable and non-integrable parts:

Uij = S|ij + Ũij and Wij = −φ|ij + W̃ij , (2.49)

where S is the peculiar–velocity potential, and where φ is the peculiar–gravitational po-
tential, which, on a flat space-time, is solution of Δφ = 4πGδρHi . Moreover, we split the
deformation fields into an integrable and a non-integrable part:

Pij = Ψ|ij + P̃ij . (2.50)

In the next subsection, we determine their time-dependence.

Non–propagating separable modes

We assume that Ψ satisfies the equation

Δ0Ψ = P , (2.51)

i.e. that the non-integrable part of the solution (2.50) has no trace. In the Minkowski
Restriction, since we have to recover the Newtonian solution, Ψ is separable:

Ψ(X, t) = ΨC1(X) ξ1(t) + ΨC2(X) ξ2(t) + ΨC0(X) , (2.52)
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Einstein–de Sitter background

The trace solution is straightforward according to its formal equivalence with Newto-
nian solutions. Specifying an Einstein–de Sitter background we obtain:

Ψ(X, t) = ΨC−1(X)
(

t

ti

)−1
+ ΨC2/3(X)

(
t

ti

)2/3
+ ΨC0(X) , (2.53)

where the coefficient functions are related to the chosen initial data as follows:

ΨC−1(X) = −3
5(Sti + φ ti

2) ;

ΨC2/3(X) = 3
5Sti − 9

10φ ti
2 ;

ΨC0(X) = φ

4πGρHi

. (2.54)

2.4.2 Propagative behavior of the non–integrable part
Particular solution for the non–integrable part

We now focus on Π̃ij, which contains the non–integrable dynamics. As we will see, Π̃ij

can be split into a time–independent part, which encodes the time–independent deviations
to flatness and a part representing free gravitational waves. The time–independent part
is the particular solution of (2.40), which satisfies the equation:

Δ0Π̃pec
ij (X) = −

(
W̃ tl

ij + Hi
HŨ tl

ij

)
. (2.55)

If we split the initial metric also into an integrable and a non-integrable part:

Gij(X) = G |ij(X) + G̃ij(X) , (2.56)

where G̃ij is the non–integrable part of Gij, then

Π̃pec
ij (X) = −

G̃tl
ij

2 . (2.57)

This remark will make sense when we will come to the comparison with the literature.

Monochromatic solution

We first solve the homogeneous equation for Π̃ij by looking for a monochromatic
(separable) solution, with frequency ω and local (Lagrangian) wave–vector K such that
|K| =: K = ω/c (where c is the speed of light),

Π̃ω
ij = ξω(t) C̃K

ij (X) . (2.58)

For these local components, propagating in fibers at given points of the manifold (tangent
spaces), we have two solutions of the master equation (2.40):

a2 ξ̈ω±(t) + 3ȧa ξ̇ω±(t) + ω2 ξω±(t) = 0 . (2.59)
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We choose the plane wave basis (in the local fiber vector space) to express C̃K
ij (X):

C̃K
ij (X) = C̃K+

ij exp(iK · X) + C̃K−
ij exp(−iK · X) , (2.60)

so that the coefficient functions obey the spatial constraints:

Δ0C̃K
ij (X) + K2 C̃K

ij (X) = 0 . (2.61)

The momentum constraints, (2.37), for these modes imply:

C̃K±
ij Ki = 0 , (2.62)

which means that the projection of the propagating deviations on the direction of propa-
gation represented by K is zero. This monochromatic solution has been built from a local
reasoning. To build a global solution from a superposition of these modes, we will have
to take into account both the local geometry and the global topology.

Minkowski Restriction and conclusions

For the set of separable solutions that we were giving in the last subsection, the MR
only acts on the spatial coefficient functions, which become integrable tensor fields. We
will explicitly show this in the following.

The MR assumes the integrability of the integrable coframes, which, combined with
the absence of vorticity, imply that the perturbation fields can be derived from a potential
Ψ:

Pij = Ψ|ij . (2.63)

The trace and the traceless parts are then:

P = ΔΨ and Πij = DijΨ . (2.64)

There are no longer gravitational waves since the non-integrable part is set to zero:

Π̃ij = 0 . (2.65)

We can thus conclude that in the MR , EPij = Ψ|ij and HΠij = 0. Nevertheless, we
cannot conclude that, without the MR , EPij contains only the integrable part of the
perturbation fields. This will be discussed in the next chapter.

2.4.3 Comparison to other perturbation schemes

In this part, we wish to highlight the links between our approach and the standard
one, that uses the Scalar-Vector-Tensor decomposition for the perturbed metric in the
comoving synchronous gauge.
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S–V–T decomposition in the comoving synchronous gauge

In most of the literature, the perturbative approach directly works with the metric in-
stead of using a decomposition into coframes. The synchronous metric may be decomposed
as

ds2 = −dt2 + a2(t)γij(x, t)dxidxj . (2.66)
The first order corrections to a flat FLRW background are then

γij = δij + γ
(1)
Sij . (2.67)

In the usual framework as used in [107], it is more common to split it into scalar vector
and tensor contributions

γ
(1)
Sij = −2φ(1)

S δij + Dijχ
(1)‖
S + ∂iχ

(1)⊥
Sj + ∂jχ

(1)⊥
Si + χ

(1)�
ij , (2.68)

with the traceless derivative Dij = ∂i∂j − 1
3Δδij and

∂iχ
(1)⊥
Si = χ

(1)�i
i = ∂iχ

(1)�
ij = 0 . (2.69)

In general there could be vector modes in the standard perturbation decomposition on
the r.h.s. of (2.68) as well. However, in the irrotational case they represent gauge modes
and can be set to zero [107]. In our case, we have a local coordinate system (in the
tangent space at a point in the Riemannian manifold) in which there exist no vector fields.
Correspondingly however, there is an antisymmetric tensor part, which also vanishes for
the irrotational case. So we only need the synchronous gauge expressions for φ

(1)
S , Dijχ

(1)‖
S

and χ
(1)�
ij as given in [107].

Let us start with the tensor part. It satisfies the equation

χ̈
(1)�
ij + 3Hχ̇

(1)�
ij − ∇2

a2 χ
(1)�
ij = 0 , (2.70)

which corresponds to our equation (2.40) when we would subtract the contribution Dijχ
(1)‖
S .

The solution in [107] is

χ
�(1)
ij (x, t) = 1

(2π)3

∫
d3k exp(ik · x)χ(1)

σ (k, t)εσ
ij(k̂), (2.71)

where εσ
ij(k̂) is the polarization tensor. σ is ranging over the polarization components +, ×

and χ(1)
σ (k, t) are their corresponding amplitudes. The time evolution from (2.70) is

χ(1)
σ (k, t) = A(k)aσ(k)

⎛
⎝3j1

(
3kt

2/3
i t1/3

)
3kt

2/3
i t1/3

⎞
⎠ . (2.72)

The first spherical Bessel function is j1 (x) = sin x
x2 − cos x

x
and aσ(k) is a zero mean random

variable. A(k) encodes the form of the spectrum of hypothetical primordial gravitational
waves.
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Second, we turn to the scalar sector. The solutions given in [107] are restricted to the
growing mode only. In addition, the authors use the residual gauge freedom of synchronous
gauge to fix χ

(1)‖
i such that ∇2χ

(1)‖
Si = −2δi. Then, their solutions for the scalar sector are

Dijχ
(1)‖
S = −3t2

i

(
t

ti

) 2
3
(

ϕ,ij − 1
3δij∇2ϕ

)
. (2.73)

and
φ(1)

S (x, t) = 5
3ϕ(x) + 1

2t2
i

(
t

ti

) 2
3

∇2ϕ(x) , (2.74)

where ϕ is defined by its relation to δi in the cosmological Poisson equation ∇2ϕ(x) =
2

3t2
i
δi(x).

Relating formally the two descriptions

In our case, Pij as well as the initial metric G
(1)
ij appear in the decomposition of the

metric perturbation:
γ

(1)
Sij = G

(1)
ij + 2P(ij) . (2.75)

The general relation between the two sets of perturbation fields is then

φ(1)
S ↔ −1

3

(
P + 1

2G(1)
)

, (2.76)(
Πij + 1

2G
(1)tl
ij

)
↔ 1

2
(
Dijχ

(1)‖
S + 2∂(iχ

(1)⊥
Sj) + χ

(1)�
ij

)
. (2.77)

In order to compare the standard results to ours, we modify the restrictions imposed in
[107]. First, we use a different gauge choice, which is ∇2χ

(1)‖
Si = 0 instead of ∇2χ

(1)‖
Si = −2δi.

Second, we include the decaying mode. Then, the potential is no longer independent of
time and ∇2ϕ(x, t) = 2

3t2
i a

δ(x, t). Therefore, ϕ now has two components ϕ1 and ϕ2 that
are determined by ∇2ϕ1(x)+a−5/3∇2ϕ2(x) = 6

τ2
0 a

δ(x, t). Finally, we include the prefactor
on the r.h.s. into the definition of a renormalized potential ψ (x, t) = ψ1(x) + a−5/3ψ2 (x)
which then satisfies ∇2ψ1(x) + a−5/3∇2ψ2 (x) = −δ(x, t).

With these changes the resulting metric perturbations read

Dijχ
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S = 2
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t

ti

) 2
3

− 1
)

Dijψ1 + 2
⎛
⎝ 1(

t
ti

) − 1
⎞
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and

φ(1)
S (x, t) = − 10

9t2
i

ψ1(x) − 1
3

((
t

ti

) 2
3

− 1
)

Δψ1 − 1
3

⎛
⎝ 1(

t
ti

) − 1
⎞
⎠Δψ2 . (2.79)

This means that first order perturbation theory in synchronous gauge gives the solutions

G(1) ↔ 20
3t2

i

ψ1(x) , (2.80)

P ↔
((

t

ti

) 2
3

− 1
)

Δψ1(x) +
((

t

ti

)−1
− 1

)
Δψ2(x) , (2.81)
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and

G
(1)tl
ij ↔ χ

�(1)
ij (x, ti) , (2.82)

Πij ↔
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ti
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)
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)
Dijψ2(x) (2.83)

+1
2
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)
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Identification of the integrable and the non-integrable part

From the last four identities, it is possible to show that the standard counterpart of
EΠij is

DijΨ ↔
((

t

ti

) 2
3

− 1
)

Dijψ1 +
((

t

ti

)−1
− 1

)
Dijψ2 , (2.85)

and for Π̃ij it is:

Π̃pec
ij ↔ −

χ
�(1)
ij (ti)

2 , (2.86)

and

Π̃GW
ij ↔

χ
�(1)
ij

2 . (2.87)

We here have established some formal analogies between the solutions obtained in the
standard comoving synchronous approach and the ones obtained in our intrinsic approach.
Even if they look very similar, some important differences exist between the intrinsic La-
grangian description and the standard comoving synchronous approach. The standard
approach defines quantities on the background manifold while the tangent spaces associ-
ated to the background manifold are the same at each point.

This is not the case for the quantities we defined in the intrinsic description. Unlike
the standard approach, they are functions of the Lagrangian coordinates, which have the
time-feature to be transported along the fluid trajectories. They are thus defined on the
perturbed manifold since Lagrangian coordinates have a basis that may be different from
one point to the other on the manifold. Indeed, fluid trajectories intrinsically encode the
perturbed dynamics of the fluid particles. The comoving coordinates used in the standard
approach do not exhibit this non-linear feature. The transformation from the Lagrangian
coordinates to the standard comoving coordinates involves non-linearities. It will be done
in the upcoming article.

2.5 Conclusions and limits of the local description
In this chapter, we presented the first-order equations and solutions of the Einstein

equations. The traceless part of the perturbation fields has been decomposed into Πij =
EΠij +HΠij, where EΠij is coupled to the trace, P , via the momentum constraint equation.
This is consistent with the fact that EPij = EΠij + δij

3 P coincides with the gravitoelectric
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solution obtained from the generalization of the Newtonian solution (cf Chapter II.2 of
Part II). We have built the complementary part, HΠij, such that it is not coupled to the
trace. This part contains gravitational waves.

We have also discussed the fact that EPij does not contribute to the dynamical part of
the curvature whereas HΠij does. Furthermore, we know that EPij encodes the integrable
part of the solution. Nevertheless, in order to fully determine EPij, some elliptic equations
have to be solved (2.42) (2.45). In order to do so, we have to consider the topology of the
spatial sections. This will be the aim of next chapter.
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In last chapter III.2, we determined the first–order equations and solutions of the
Einstein equations in a local approach. We considered the projection of the equations on
a local coordinate basis {dX i}, thus constraining the validity of the results to the regions
of the manifold that can be covered by a single coordinate chart.

This local approach did not enable us to completely determine the physical contents
of EPij and HΠij. In order to do so, some elliptic equations have to be solved (2.42) (2.45).
The perturbation fields being defined on the perturbed spatial sections, only topological
considerations can help us determine the boundary conditions to solve these equations.

In Section III.2.2.3, we decomposed the perturbation of the coframe into an integrable
part and its complementary. We then concluded that the integrable part had to be encoded
into EPij. Nevertheless, considering closed topologies will allow us to use the powerful
Hodge decomposition on Cartan coframes and have a new insight into the physics of the
first-order perturbations. More precisely, it should help us determine, on the one hand, if
the generalization of the Newtonian perturbation solution represents the integrable part
of the perturbation fields or if it also encodes deviations from flatness. On the other hand,
we will then be able to determine if the complementary part to this Newton-like solution
is linked to gravitational waves.

New research results [72, 126, 114] support the closed S3 and quotient topologies for
spatial hypersurfaces. The coframes then exhibit the interesting property to be defined
globally (cf Section III.3.1.1). Nonetheless, at least two coordinate charts will be needed
to cover this manifold (cf Section I.2.3.1).

In this chapter, we will first present historically how the topology of the Universe
became a subject of interest for cosmologists. Topology can have indeed a strong impact
on the dynamics of the Universe and on the interpretation of the observations (cf Section
III.3.1.2). Then, we will explain why including topology to our approach will allow us to
bypass the limits of the local formalism. The Hodge theorem will enable us to draw strong
conclusions on the physical content of the first-order solution.

3.1 Introduction to the topology of the Cosmos

3.1.1 Why are we interested in topology?

The topological properties of a manifold are the ones that are unchanged by continuous
transformations. Topology does not constrain the size or the distance: any stretching or
squeezing will leave unchanged the topology. On the contrary, cutting or making holes in
the manifold will affect its topology. According to these considerations, the surface of a
coffee mug with a handle is topologically the same as the surface of the donut. This type
of surface is called a torus.

The topology of the Universe has been ignored by cosmologists until recently. During
the last decade many attempts were indeed made to determine the global shape of the
Universe, i.e. geometry and topology of the its spatial comoving sections.

An aspect of topology which was neglected until recently is its impact on the dynamics
of space-time. This was discussed for multiconnected space sections [127, 114], as we will
explain later in this section.
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Figure 3.1: A coffee cup is topologically equivalent to a torus. The illustration has been
taken from https://commons.wikimedia.org/wiki/File:Mug_and_Torus_morph.gif, cred-
its: Lukas VB.

The coframes, that we adopted to describe the dynamics of space-time, are intimately
linked to the topology of spatial sections. To illustrate this aspect, we consider the circle,
S

1, the 1-dimensional sphere. No coordinate chart can be defined globally on the whole
manifold since the periodicity of S1 implies a coordinate singularity at an arbitrary point.
Nevertheless, it is possible to build a smooth tangent vector field globally on the circle 1.
For n-dimensional manifolds, this property is called parallelizability. Indeed, a manifold
M is parallelizable if we can build smooth vector fields {e1, ..., en} such that for any point
P of the manifold, {e1(P ), ..., en(P )} provides a basis of the tangent space at P . In three
dimensions, we can choose the smooth vector fields to coincide with the frames. Thus,
their dual, the Cartan coframes, are defined globally on a parallelizable manifold.
S

0 , S1 , S3 and S7 are parallelizable. Furthermore, in 3-dimensions, all the orientable
manifolds are parallelizable [143]. In the next sections, we will mostly focus on the topology
of the 3-dimensionnal spatial sections 2. Furthermore, we will discuss how some important
properties of the coframes can be strongly constrained by the spatial topology in the case
of S3 and its quotients.

3.1.2 Cosmic topology: from Einstein to recent times
The reader can find more material on the historical development of cosmic topology

in [101], from which many of the following elements are taken.
Einstein’s theory of General Relativity does not deal with topology but rather with the

local geometrical properties of the Universe, such as its curvature, that can be calculated
from the metric tensor. Indeed, Einstein’s field equations are partial derivative equations
that describe only local geometrical properties. As a consequence, if we consider a metric
solution of Einstein equations, several and sometimes an infinite number of manifolds with
distinct topologies of the Universe can be compatible with it.

For example, the projective space P3, which is obtained from the 3-dimensional hy-
persphere by identifying the diametrally opposite points has the same metric as the 3-
dimensional hypersphere but a different topology. Indeed, it has half the volume of the
3-dimensional hypersphere. In the article [71] Friedmann highlighted the fact that Gen-
eral Relativity is unable to predict the topology or any global structure of space-time.
Questions on the shape (e.g. existence or not of holes) of the Universe or the finite or

1. Consider for example the unit tangent field pointing clockwise.
2. Spatial topology has to be distinguished from the topology of the 4-dimensionnal spacetime
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infinite nature of the Universe could not be adressed by this intrinsically local theory.
The modern problem of quantification of gravity shed a new light on the issue of the

topology of space-time, which was mostly ignored until that time. Some constraints on
topology came from the quantification of gravity, as in the case of the quantum gravity
scenario of the birth of the Universe (which envolves quantum vacuum fluctuations). This
scenario is only possible if spacelike hypersurfaces are compact.

Many topologies for the Universe have been considered throughtout time. In 1900,
before Einstein invented his theory of General Relativity, Schwarzschild imagined a torus
topology of space [133]: “One could imagine that as a result of enormously extended
astronomical experience, the entire universe consists of countless identical copies of our
Milky Way, that the infinite space can be partitioned into cubes each containing an exactly
identical copy of our Milky Way. Would we really cling on to the assumption of infinitely
many identical repetitions of the same world? . . .We would be much happier with the view
that these repetitions are illusory, that in reality space has peculiar connection properties
so that if we leave any one cube through a side, then we immediately reenter it through
the opposite side”. Nevertheless, when Einstein applied his theory to the Universe, he
assumed that space was a positively curved, finite and simply-connected space without
boundary. Multiconnectedness did not attract much support until lately even if Ellis’ [61]
or Zeld’ovich’s [162] work on topology did not exclude it. Allowing multiconnectedness,
finite spatial hypersurfaces with zero or negative curvature could exist.

3.1.3 Observational evidence for multiconnected spaces?
In this part, I present and discuss some of the signatures of topology in observations.

Recent work by Roukema [114, 127] is aimed at constraining and determining the topology
of the comoving hypersurfaces by observational data. In [127] the author first explains how,
in the Newtonian case, a torus topology T 1 = S1 ×R2 can generate a residual acceleration
which is not predicted by usual Newtonian theory. Indeed, a mass test particle at distance
x from a massive object O will be subjected to the gravitational attraction due to O but
also from the one of the two nearest topological images.

These topological effects on the dynamics, usually ignored, are also discussed in the
relativistic case, for the compact Schwarzschild-like solution of the Einstein equations
further in [127].

As discussed in [72], CMB measurements report a first Doppler peak shifted by a few
percents towards larger angular scales with respect to the peak predicted by the standard
cold dark matter inflationary model, thus favoring a marginally spherical model.

Moreover, considering a multiconnected topology could be the solution for observa-
tional issues such as the lack of large angular scale correlations in the CMB. In [126],
Roukema, Bulinski, Szaniewska and Gaudin discussed how the multiconnected Poincaré
dodecahedron topology could explain the missing fluctuation problem in the CMB. Recent
measures [92, 136] suggest an overall small positive curvature but missing fluctuations in
the CMB. 3 and 5 year WMAP data estimate the chance of this lack of large angular scale
correlations for the infinite and flat model to be less than 0, 03% [45]. By considering the
multiconnected Poincaré dodecahedron 3-manifold, correlations between density pertur-
bations should vanish above the length scale of the order of the size of the 3-manifold,
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thus explaining the missing fluctuation in the CMB.

This last part presented some observational evidences supporting a dodecahedron
topology for the spatial hypersurfaces. It was meant to illustrate how topology may have
strong implications on the dynamics of the Universe and why it has to be considered when
cosmological observations are interpreted.

3.2 The Hodge decomposition and the first–order so-
lutions

The Cartan formalism enables us to define the fields on the physical space instead of
a global background. In the following, we consider that this physical space, i.e. the spa-
tial hypersurface, is a closed 3–dimensional manifold. Then, Thurston’s geometrization
conjecture, that we present shortly thereafter, determines which are the possible topolo-
gies of this manifold, that may be multiconnected. Hodge theorem will then allow us
to decompose the Cartan coframes into an exact, a coexact and a harmonic part. The
exact part can be absorbed into a redefinition of global coordinates and, thus, defines a
parametrization of a flat space section, whereas the non-exact and harmonic parts encode
the true geometrical deviations from the background.

3.2.1 Thurston’s geometrization conjecture
Thurston’s geometrization conjecture, presented in [143], asserts that every closed 3–

dimensional manifolds can be decomposed as a of 3–dimensional manifolds modeled after
the 8 model geometries listed by Thurston (see also [96]). This conjecture was proved by
Perelman in 2003 using Ricci flow with surgery [117] and implies Poincaré’s conjecture.
This conjecture asserts that any closed and simply connected 3–dimensional manifolds in
homeomorphic to the hypersphere S3. In Section III.3.2.5, I will consider that the spatial
sections are simply connected 3–dimensional manifold. As we will see, in this case, the
dimension of the harmonic space of 1–forms vanishes and the Hodge decomposition is
simpler.

We now give some mathematical elements that may be useful to understand the Hodge
decomposition. For a very good introduction to differential geometry and Hodge decom-
position, the reader can refer to [69], [113] and [9].

3.2.2 Mathematical tools for the Hodge decomposition
The volume form

On a manifold of dimension n, the volume form is defined from a set of orthonormal
coframes {η̃i}, i = 1...n as 3:

ε = η̃1 ∧ ... ∧ η̃n . (3.1)

3. We use different notations with respect to [74]. The components of Levi-Civita tensor in a general
basis are denoted by εν1...νn

whereas the components of the volume form are εν1...νn
.
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For general coframes {ηi}, i = 1...n, the volume form becomes:

ε =
√

|g| η1 ∧ ... ∧ ηn =
√

|g| ε|μ1...μn| ημ1 ∧ ... ∧ ημn . (3.2)

Where |g| is the absolute value of the determinant of the metric tensor and the vertical
bars denote that only components with increasing indices are included in the summation.
Then,

εμ1...μn =
√

|g| εμ1...μn , (3.3)

where εμ1...μn is the n–dimensional Levi-Civita tensor.

The Hodge-dual, the exterior differential and the codifferential operator δ = d∗

A is a p–vector whose contravariant components are obtained by raising the indices
of a p-form α. The dual of the form α in an n-dimensional space is ∗α:

∗ α = 1
(n − p)!εν1...νp μ1...μn−pα|ν1...νp|ημ1 ∧ ... ∧ ημn−p . (3.4)

The codifferential operator δ = d∗

The codifferential operator sends p-forms to (p − 1)-forms. We will either consider
closed manifolds or compact manifolds with boundaries such that the forms we consider
or their Hodge-dual are zero when restricted to the boundary. Then, on a Riemannian
manifold if βp is a p-form:

d∗βp = (−1)n(p+1)+1 ∗ d ∗ βp , (3.5)

where the exterior differential was defined in I.2.3.1.

Laplace operator on forms

If A is a vector field in Rn with Cartesian coordinates Ai, then ∇2A is the vector field
whose components are (∇2A)i = ∑n

j=1(∂2Ai/∂Xj∂Xj). These coordinates are simply the
Laplacian of the coordinates of A. In R3,

∇2A = grad divA − curl curlA . (3.6)

This can be written in an intrinsic form if we consider α1 the 1-form associated to A.
Then, in R3, this equation is equivalent to

∇2α1 = − (dd∗ + d∗d) α1 . (3.7)

We define the Laplace-de Rham operator ΔdR which is a mapping from p-forms to p-forms
by the negative of the preceding:

ΔdR := dd∗ + d∗d = (d + d∗)2 . (3.8)
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Laplacian of a 1-form and Weizenböck formula

The Weizenböck formula gives the expression of the ΔdR applied to a 1–form ha. On
a coordinate basis dX i, we have:

(
ΔdR ha

)
i

= −
(
ha‖k

‖k

)
i
+ ha

k Rk
i , (3.9)

where ‖ denotes the Lagrangian covariant derivative and Rk
i is the 3–Ricci curvature

tensor. The first term involves covariant derivatives and the second one takes into account
explicitly the local geometry.

If we consider the inertial coordinate system of a flat space, the coefficients of ΔdR

reduce to the usual Laplacian operator, and the Riemann curvature vanishes everywhere.
Moreover, if we consider the local inertial coordinates on a given point of a manifold,

ΔdR will also reduce to the usual Laplacian operator and the Ricci curvature will vanish
locally.

Bochner’s theorem shows that, if the oriented closed Riemannian manifold M has
everywhere a positive Ricci curvature, then a harmonic 1–form will vanish identically. We
will show later that this is also the case for any manifold that has an S3 topology.

3.2.3 Hodge theorem
Harmonic forms on closed manifolds

Let M be a closed Riemannian n-dimensionnal manifold. We define a global positive
definite inner product for

(αp, βp) =
∫

M
α ∧ ∗β . (3.10)

Since

(Δαp, αp) = (dd∗α + d∗dα, α) = (d∗α, d∗α) + (dα, dα) =‖ d∗α ‖2 + ‖ dα ‖2 ≥ 0 ,
(3.11)

thus
Δαp = 0 iff d∗α = 0 and dα = 0 . (3.12)

Thus harmonic forms are both closed and coclosed.

Hodge theorem

The vector space of harmonic p-forms:

Hp = {hp / dhp = 0 = d∗hp} (3.13)

is of finite dimension and Poisson’s equation

ΔdR αp = ρp , (3.14)

has a solution αp iff ρp is orthogonal to Hp.
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Consequence: Hodge decomposition

For any p–form γ, we can find a p–form θ such that γ can be decomposed as:

γp = dαp−1 + d∗βp+1 + hp , (3.15)

where αp−1 = d∗θp, d∗βp+1 = dθp and hp is harmonic. If dΛp−1, δΛp+1 and Hp represent
the vector space of, respectively, the exterior derivative of (p−1)–forms, the co–differential
of (p+1)–forms and of the harmonic p–forms, all of them forming subspaces of the local co–
tangent space of the Riemannian manifold, we can write this decomposition in a symbolic
way:

Λp = dΛp−1 + d∗Λp+1 + Hp . (3.16)
The decomposition (3.15) is unique:

γp = dαp−1 + d∗βp+1 + hp = dα′p−1 + d∗β′p+1 + h′p . (3.17)

Then
dαp−1 − dα′p−1 = 0 ; d∗βp+1 − d∗β′p+1 = 0 ; hp − h′p = 0 . (3.18)

From this we conclude that

αp−1 = α′p−1 + ap−1 / dap−1 = 0 ; (3.19)

βp+1 = β′p+1 + bp+1 / d∗bp+1 = 0 ; (3.20)
hp = h′p . (3.21)

3.2.4 Hodge decomposition of the perturbation fields
Hodge decomposition of a 1–form

A 1–form V can be decomposed according to (3.15) as:

V = d α + d∗β + h / ΔdR h = 0 , (3.22)

where α is a scalar, h a 1–form and β = βij dX i ∧ dXj a 2–form. On the Lagrangian
coordinate basis dX i, we get:

Vi dX i =
⎛
⎝α|i + gij√

|g|

(√
|g|glk gjm βkm

)
|l

+ hi

⎞
⎠dX i / hk Rk

i −
(
h‖k

‖k

)
i

= 0. (3.23)

A 2–form is antisymmetric. In a 3–dimensional space, it has 3 independent coefficients. It
can thus be generated from a 1−form. We define the 1–form B = Bi dX i such that

βkm dXk ∧ dXm = gul εukm Bl dXk ∧ dXm . (3.24)

Then, we can show that
gij√
|g|

(√
|g|glk gjm βkm

)
|l

= gijε
rljBr |l , (3.25)
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where we have used εijk instead of εijk in the definition of Bi in order to get a covariant
object defined on the curved space. The decomposition then becomes:

Vi dX i =
(
α|i + gij εuljBu | l + hi

)
dX i / hk Rk

i −
(
h‖k

‖k

)
i

= 0 . (3.26)

This decomposition is very similar to the Helmoltz-Hodge decomposition, available on flat
space sections, since the first term is the divergence of a scalar potential while the second
one is the generalization of the curl operator to a curved spatial section.

Helmoltz decomposition from the MR of the Hodge decomposition

In the MR , orthonormal Cartan coframes become exact forms. We can thus associate
to them some global coordinates x such that ηa = dfa and x = f(X, t). Hodge decompo-
sition in flat space in terms of global coordinates gives the Helmholtz decomposition 4:

V = xVi dxi =
(

xα ,i + δij εulj xB u , l + xh i

)
dxi / xhi

,k
,k = 0. (3.27)

This equation (3.27) can also be formulated as a vector identity:

�V = �∇ xα + �∇ × x�B + x�h / Δ x�h = �0. (3.28)

where Δ denotes the simple Laplace operator with respect to Eulerian coordinates. In the
Lagrangian coordinates, the MR of (3.26) gives:

XV i dX i =
(

Xα|i + gij εulj XB u | l + Xh i

)
dX i / Xhi

‖k
‖k = 0 . (3.29)

The Christoffel symbols that implicitly appear in the Laplace-de Rham equation for Xhi

are non-zero:
Γi

kl = 1
2
√

|g|
εabcε

imnfa
|kl f b

|m f c
|n . (3.30)

From the unicity of Hodge decomposition, we conclude that Xα = xα + k where k is a
constant.

3.2.5 Hodge decomposition of Cartan coframes for S3 and quo-
tient topologies

From De-Rham and Hurewitz theorem, we can show that the dimension of the har-
monic space of 1–forms on a closed oriented manifold is equal to the dimension of the first
fundamental group (also called closed path group) [15] [48] [50]. For simply connected
manifolds, the dimension of this group is then 0. This is the case of the S3 topology. The
results of Hodge theorem for S3 can be extended to its quotients 5. Therefore, on S3 there

4. The metric is diag(1, 1, 1) in these global coordinates.
5. The quotients spaces M̃/Γ are built from the universal covering space M̃ (here S3) and the holon-

omy group Γ. For example, the torus T2 is built from the universal covering R2 and the holonomy group
Γ = {a ex + b ey : a, b ∈ Z}: T2 = R2/Γ whereh ex and ey are non-colinear vectors. For a detailed
explanation of quotient spaces and equivalence classes, the reader can refer to Section 2.1.2 of [113].
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exists γa such that the coframes can be decomposed as

ηa = dαa + d∗βa = ΔdR γa , (3.31)

where αa is a scalar, βa a 2–form and γa a 1–form.
We now assume we can encode into the first–order perturbation fields the positive

curvature topology. Then, the decomposition

ηa = a(t) (dXa + Pa) , (3.32)

is still available and since the harmonic space of 1–forms is of dimension 0, from (2.45)
and (2.48) we conclude that structure coefficients calculated from EPa are constant in
time. Since they are initially zero, EPa represents the integrable part of the perturbation
fields.

First–order Hodge decomposition of the perturbation 1–form

We consider the Hodge decomposition for the perturbation field Pa and now denote
by αa, βa, Ba the fields that intervene in its decomposition. These fields are first–order
quantities. Keeping only the first order for this equation reads:

P a
j = αa

|j + δrj εulr Ba
u | l . (3.33)

Note that we would have obtained the same expression if Pa was defined on the back-
ground space associated to the metric δij. Nevertheless, the space section is not flat since
P a

j is not in general integrable 6.
We lower the non–coordinate index of P a

j with gai which at first–order is equivalent
to δai :

Pij = δaiP
a
j = αi | j + εul

j Biu | l + hij / hij
|k

|k = 0 . (3.34)

3.2.6 From SVT to Hodge decomposition
We now know that, for S3 and quotient topologies, EPa encodes the integrable part

of the perturbations. Thus
EPa = dαa . (3.35)

As discussed at the end of Section III.2.4.3, it is thus connected to the scalar modes of
the S-V-T decomposition.

The complementary part, HΠa, is then linked to d∗βa. Furthermore, we can show that
the Hodge fields αi and Bij are defined through the following Poisson equations from the
perturbation fields 7:

Δ0αj = Pij
|i , (3.36)

Δ0Bij = εj
mrPir |m . (3.37)

6. This would be the case if εulr Ba
u | l = 0.

7. We have set B m
i |m = 0 since this term does not intervene in the decomposition (3.34) and thus has

no physical relevance.
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Equation (3.36) is consistent with the momentum equation expressed in terms of EPa

(2.37) and here becomes trivially satisfied.
From (3.34), we know that Bij represents the non-integrable part of the Cartan defor-

mation fields. It thus contains the true deviations to the flat background. We now want
to understand how the propagative part of Bij can be linked to the tensor modes χ

(1)�
ij of

the perturbation fields. (3.37) can be rewritten as:

Δ0Bij = εj
mrHΠir |m , (3.38)

which implies that the first–order magnetic part is

Hij = Δ0Ḃij . (3.39)

As we already discussed in Section III.2.4.3, EPa is straightforwardly related to the
scalar modes. It is now possible to link the non-exact part of the Hodge decomposition to
the tensor mode of the S-V-T decomposition:

Δ0Bij = 1
2εj

mrχ
(1)�
ir |m . (3.40)

3.3 Conclusions
In this chapter, after a historical introduction to the cosmic topology, we explained

how it could have an impact on the dynamics of the Universe. My work consisted more
specifically in determining how it could have an effect on the first–order solutions that
were presented in the last chapter. Indeed, the topology of the spatial sections had to
be considered in order to determine the physical content of the first–order solutions EPij

and HΠij. This could not be achieved with a local description of the manifold since
some elliptic equations had to be solved, thus needing boundary conditions. For spatially
closed hypersurfaces, we could solve the elliptic equations and use the powerful Hodge
decomposition.

Furthermore, in the case of closed and simply connected (i.e. S3) topologies for the
spatial hypersurfaces, some results on the contribution of EPij and HΠij to the deviations
from flatness were obtained. These results can be generalized to the quotients of S3 topolo-
gies. To have a deeper insight into the link between the topology and the physical content
of the perturbative solutions, we should now investigate the case of multiconnected spatial
topologies 8, which do not have the same space of harmonic 1–forms. Moreover, we should
extend our results to the perturbative solutions of higher orders to determine if the EPa

solution will then generate deviations from flatness.

To obtain the first–order results for S3 topologies, we assumed that the topology of
the zero–order manifold and the one defined by the first–order perturbations could be
different. Then, the first one could be flat while the second one could have a spherical
topology.

8. Hodge decomposition is available also for the 3–torus T3 which has a harmonic space of 1-forms of
dimension 3.
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We should precisely define the mathematical conditions on the metric tensor in order
to determine if it describes a spatial manifold topologically homeomorphic 9 to S3. This can
be achieved by the Ricci-Hamilton flow, which is available on Riemannian manifolds 10.
This geometrical flow is a process that deforms the metric in a way formally analogous to
the diffusion of heat, smoothing out its irregularities. The result of this flow would then
be a constant positive curvature metric.

9. The Gauss-Bonnet theorem that links the average of the curvature to the topology of the manifold
(represented by its genus) for even dimensions, gives a trivial identity. This does not allow us to link
geometry to topology for odd dimensions. Unfortunately, no extension to it was yet found in this case.

10. For an interesting discussion on the Ricci-Hamilton flow and the averaged inhomogeneities in a
cosmological context, the reader can refer to [31].
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Conclusion & Outlook

During the three years of my PhD I had the possibility to work on different projects
in the frame of the Intrinsic Lagrangian description. All these projects were focused on a
better description of the formation of large scale structures in an inhomogeneous approach.

In the introductory part of this thesis, I first explained how the modern representation
of the Universe historically emerged. Then, I presented how Einstein elaborated Special
and General Relativity in this context. In his theory of General Relativity, he abandons
Newton’s idea of absolute space and time. Moreover, the localization on the manifold has
no longer an absolute physical meaning and is determined by the dynamical elements of
the theory. Thus, the local inertial reference frames are determined by gravity.

Afterwards, I presented the SMC and the approximations that it implies. The SMC
neglects the coupling between the matter content of the Universe and its geometry. Fur-
thermore, it decouples the local from the global dynamics describing a hypothetical ab-
solute space-time in homogeneous expansion. Nevertheless, the inhomogeneities have to
be taken into account to describe accurately the average dynamics of the Universe.

In the second part of the introduction I explained in the Newtonian case why the La-
grangian approach is much more powerful then the Eulerian one. Motivated by the success
of the Newtonian Lagrangian approach, we built its relativistic counterpart. The trajec-
tory function, which is the coordinate mapping between the Lagrangian and the Eulerian
coordinates, is replaced by the Cartan coframes. These coordinate–independent 1–forms
enable a relativistic description of the large scale structure formation. In the third part, I
discussed the consequences of the inhomogeneities on the global dynamics. In particular,
I explained how a backreaction term, which contains both a kinematical and a geometri-
cal part, arises from the non-commutation of the spatial averaging and the time evolution.

In the second part of the thesis, after a chapter on the decomposition of the Einstein
equations for a 3 + 1 foliation of space-time, I focused on the gravitoelectromagnetic
analogy. I first considered the Newtonian case and then the analogy for the electric and
magnetic parts of the Weyl curvature tensor. As was discussed, these fields are solutions
of Maxwell-like equations.

In the Minkowski Restriction, the Cartan coframes become integrable and thus space-
time becomes flat. We used the similarities between the gravitoelectric part of the Einstein
equations and the Lagrange-Newton-System and inverted the Minkowski Restriction to
build from the Newtonian perturbation scheme to order n the corresponding relativistic
solutions.
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Since Newtonian perturbative solutions do not describe propagative phenomena such
as gravitational waves, their relativistic generalization is also not expected to describe
them. The third part of the thesis considered, in the frame of first–order perturbation
theory, the complementary part to the relativistic generalization of the Newtonian per-
turbation solutions. To define our perturbation fields, we used differential geometry and
more precisely differential forms. We discussed the difference between this coordinate-
independent approach, which intrinsically describes the perturbation fields on the curved
physical spacetime, with the one adopted in the standard perturbation approach, which
defines the perturbation fields on a flat background space-time. The Scalar-Vector-Tensor
decomposition used in the standard approach, that is available for fields defined on a flat
space section, does no longer work on curved space sections. Therefore, we considered the
Hodge theory on closed oriented manifolds, that allows a decomposition of differential
forms into exact, coexact and harmonic parts. We applied this decomposition to the per-
turbation 1–forms in the case of a simply connected topology: the S3 topology. For this
topology, we determined which part of the solution contributed to the deviations from
flatness. The EPa represents the integrable part of the perturbation fields and thus does
not contribute to the deviations.

Furthermore, we discussed at first–order the link between the different parts of the solu-
tions and the magnetic part of the Weyl tensor, which contains the physics of gravitational
waves. Nevertheless, before investigating the physical content of EPa and HΠa to upper
orders with the Hodge decomposition, the mathematical conditions on the metric to de-
scribe a manifold that has a globally closed topology should be first determined. This can
be achieved by the Ricci-Hamilton flow. Indeed, as we have discussed in Section III.3.2.1,
a 3–dimensional manifold can be decomposed as a connected sum of 3–dimensional man-
ifolds modeled after the 8 model geometries. The Ricci-Hamilton flow is a process that,
on each manifold of this connected sum, deforms the metric in a way formally analogous
to the diffusion of heat, smoothing out its irregularities. The result of this flow is then a
constant curvature metric.

The intrinsic perturbation scheme could be improved by defining the perturbation
fields with respect to the averaged manifold in an iterative way. Nevertheless, to find this
scheme we need first an accurate averaging procedure for tensors. Furthermore, to im-
prove our description of structure formation on small scales we should take into account
more realistic matter models, containing pressure and vorticity. In order to describe in
a Lagrangian way a fluid with vorticity, the 3 + 1 description is no longer possible. A
Lagrangian description will only be possible in the frame of the 1 + 3 threading approach,
since the local rest-frames do no longer form global hypersurfaces.

I am very happy that during my PhD I could contribute to current research in large
scale structure formation in the frame of inhomogeneous cosmology. The different projects
I had the pleasure to work on will contribute to the evaluation of the backreaction term
for different cosmological systems. Determining the impact of the inhomogeneities on the
dynamics of different cosmological systems will be crucial to build the accurate description
of relativistic large scale structure formation.
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In this chapter, we no longer consider the dust fluid matter model and describe a
perfect fluid flow. I here present the first results that I obtained for this matter model,
in the Strong Lagrangian description. This work was carried out in order to obtain the
relativistic generalization of the results presented in [3], for a Newtonian Lagrangian
description of a perfect fluid. Indeed, we have shown that the Lagrangian description is
the most relevant when we study nonlinear structure formation in the expanding Universe.
The Lagrangian formulation of Einstein equations has already been proposed in [30] for
dust cosmologies, explored by H. Asada and M. Kasai in [7] for a dust fluid with vorticity
and by H. Asada for a fluid with pressure [8].

We here develop a formalism that will enable us to describe both the radiation domi-
nated era in the Early Universe and the collapsing regions with large velocity dispersion.
Allowing pressure in the matter model is a step towards a better description of the dy-
namics of structure formation.

In this work, we will focus on perfect fluid cosmologies, thus neglecting all irreversible
phenomena. We will assume that there is no vorticity in the fluid flow.

A.1 Perfect fluid thermodynamics in the Strong La-
grangian description

A.1.1 Matter models
The perfect fluid description that we develop in this chapter enables us to investigate

the dynamics of the Universe in many different situations and epochs. Indeed, a barotropic
equation of state can be assumed for either a radiation fluid, which dominates the total
energy density at early stages of structure formation, or for fundamental scalar fields.

This description is not only relevant for matter models which are supported by thermo-
dynamical pressure. A Newtonian insight in the dynamics of collisionless systems indicates
that a dynamical pressure force arises due to the formation of multi-stream flows when
shell-crossing singularities in the fluid flow develop. The multi-stream force prevents a
fraction of the fluid to escape from high density regions. As a result, this fraction falls
onto the central region creating an internal hierarchy of caustics, as was explained in
Section I.2.1.2. Such a force, which is tightly related to the velocity dispersion, is not in
general isotropic. Furthermore, the evolution equations governing the anisotropic stresses
involve all velocity moments of the distribution function. Yet, in this work, when we will
describe such a system, we will assume that the multi-stream force acts isotropically.

A.1.2 Thermodynamics of the perfect fluid
We remind that ρ is the positive rest-mass proper density, ε is the energy density and

u = ε/ρ the specific internal energy. The first thermodynamical identity becomes:

du + p dv = T ds (A.1)

where v = 1/ρ and s is the specific entropy.
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An entropy balance equation can be obtained from the conservation equations of the
stress-energy tensor:

Sα
;α = η(παβ, qξ, T ) , (A.2)

where Sα = ρsuα + qα/T .

We here neglect all irreversible phenomena. Therefore, qα = 0 and παβ = 0. We then
obtain the stress-energy tensor we formerly postulated. Since η(παβ, qα, T ) is then null,
the entropy is constant along the flow lines.

We define the specific enthalpy as:

h(s, P ) := u + pv = ε + P

ρ
. (A.3)

It can be considered as a thermodynamical potential. Then, ∂h
∂s

)
P

=: T and ∂h
∂p

)
s

=: v .
Therefore, for an isentropic evolution, since dh/h = dP/(ε + P ):

h(s, p) = h(s, P0) exp(
∫ P

P0

dP

ε + P
) . (A.4)

A.1.3 Stress-energy tensor conservation and shift vector
The conservation of rest-mass density gives:

∇α(ρuα) = 0 ⇒ ρ̇

ρ
= −θ , (A.5)

and the stress-energy tensor conservation equation projected along u leads to

ε̇ − ρ̇

ρ
(ε + p) = 0. (A.6)

We can therefore conclude that:
dε = h dρ (A.7)

The contracted Bianchi identities result in the conservation of the stress-energy tensor:
∇βT αβ = 0. If we combine this equation with expressions (1.18), we derive the following
energy and momentum conservation laws:

uα∇βT αβ = 0 ⇔ ε̇ + θ(ε + p) = 0 where θ = ∇αuα (A.8)

fμα∇βT αβ = 0 ⇔ uα∇αuμ = −
fα

μ ∇α p

ε + p
. (A.9)

The stress-energy tensor conservation equation projected on the rest-frames gives the
equation of dynamics of the fluid:

u̇α = −fβ
α (ln h),β . (A.10)
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For a Lagrangian flux orthogonal foliation such that u = n and β = 0 since V = 0, it is
possible to show from the geometrical relation:

nα∇αnμ = α|μ
α

, (A.11)

that (A.10) becomes a relation between the lapse α and the pressure gradient [30]. u̇α is
then equal to nα∇αnν . In the Strong Lagrangian description, (A.10) relates the shift to
the enthalpy state function. Indeed, we can show that (A.10) is equivalent to:

β̇i + βi
ṗ

ε + p
= − p|i

ε + p
(A.12)

which can be expressed as:
β̇i + βi (ln h)̇ = −(ln h)|i . (A.13)

To show this, we remind that in the Strong Lagrangian description, V = 0 and α = γ.
Therefore, uμ = (1, 0) and uμ = (−1, βi)

fα
μ ∇α p = (∇μ p + uμ∇0 p) ⇒ fα

i ∇α p = p|i + βi ṗ . (A.14)

Furthermore,

hν
iu

μ∇μ uν = δν
i uμ∇μ uν = uμui,μ − uμuρ

2 (giρ|μ + gμρ|i − giμ|ρ) (A.15)

= β̇i − 1
2(α2 + βkβk)|i = β̇i ,

since ni = 0 and α2 − βkβk = 1 . Thus, since the spatial and time derivative commute in
the Strong Lagrangian description, we integrate (A.12) to obtain:

βi(X, t) = − 1
h(X, t)

(∫ t

h(X, t′) dt′
)

|i
. (A.16)

A.2 First-order scheme in the Strong Lagrangian
description for a radiation fluid

A.2.1 First–order shift vector for a radiation fluid
The equation of state for a radiation fluid is:

P (ε) = 1
3ε . (A.17)

The enthalpy expressed in terms of the energy density and the mass density is

h(ε) = h0ε
1/4 ; h(ρ) = H0ρ

1/3 , (A.18)

since ρ = 4
3ε3/4. The shift vector can thus be rewritten as:

βi = ρ−1/3(X, t)
(∫ t

ti
ρ1/3(X, t′)dt′

)
|i

. (A.19)
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At first order, the mass density can be expanded as:

ρ = ρHi

a3

(
1 − W

4πG
− P

)
. (A.20)

We conclude that βi is a first–order vector that has the following expression:

βi = Ψ|i where Ψ = −a(t)
3

(
W

4πG

∫ t

ti

dt′

a(t′) +
∫ t

ti

P (X, t′)
a(t′) dt′

)
. (A.21)

A.2.2 Zero and first–order Einstein equations
Zero–order Einstein equations

At zero–order, the Hamilton constraint equation (1.30) gives:

6H2 = 16πG(0)ε + 2Λ , (A.22)

while the evolution equation for the extrinsic curvature (1.29) reads:

ä

a
= Λ + 4πG((0)ε − (0)p) − 2H2 . (A.23)

If we insert (A.22) into (A.23), we get the Raychaudhuri equation:

ä

a
= Λ − 4πG((0)ε + 3 (0)p) . (A.24)

To obtain these equations, we determined the zero–order for the extrinsic curvature
(0)Ki

j = −H δi
j and for the lapse function. Since the shift function is of order 1, the

lapse function is up to first–order equal to 1.
We then inserted these quantities into the Einstein equations (1.29), (1.31) and (1.30).

Furthermore, we used the fact that, as in the irrotational dust fluid case, (0)Γr
kj = 0 and

(0)R = 0.

Einstein equations to first–order

The first–order term of the extrinsic curvature is:

(1)Ki
j = 1

2
(

(1)βi
|j + (1)β

|i
j − (1) hikḣkj

)
= (1)βi

|j − Ṗ i
j , (A.25)

where we have assumed that there is no vorticity and where we have inserted the metric
(2.59). The trace of this first–order term is:

(1)K = β
|k

k − Ṗ . (A.26)

The Hamilton constraint at first order gives:

H
(
Ṗ − β

|k
k

)
− 4 πG (1)ε = −

(1)R
4 . (A.27)
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The evolution equation for the extrinsic curvature becomes:

(1)Ri
j +

(
Ṗ i

j − βi|j
)
˙+3H

(
Ṗ i

j − βi|j
)
−H δi

j

(
βk

|k − Ṗ
)
+4πG((1)p−(1)ε)δi

j = 0 . (A.28)

Finally, the momentum constraint equation becomes:
(
βk |j − Ṗ k

j

)
|k −

(
βk |k − Ṗ

)
|j = 8πG((1)p + (1)ε)βj . (A.29)

The Raychaudhuri equation at first–order is:
(
Ṗ − βk

|k)˙+ 2H
(
Ṗ − βk

|k) + 4 πG
(

(1)ε + 3 (1)p
)

= 0 . (A.30)

First–order Einstein equations for a radiation fluid

If we decompose ε and the pressure p to zero and first–order, we get:

(0)ε = ε0
ρ

4/3
H i
a4 and (1)ε = −ε0

4 ρ
4/3
H i

3 a4 ( W

4πG
+ P ) . (A.31)

Equations (A.27), (A.28), (A.29) and (A.30) then become:

H
(
Ṗ − β

|k
k

)
+ 2

3

(
Λ − 3 ä

a

)(
W

4πG
+ P

)
= −

(1)R
4 ; (A.32)

(1)Ri
j +

(
Ṗ i

j − βi|j
)
˙+ 3H

(
Ṗ i

j − βi|j
)

= (A.33)

H
(
βk

|k − Ṗ
)

δi
j + 4

9

(
3 ä

a
− Λ

)(
W

4πG
+ P

)
δi

j ;
(
βk |j − Ṗ k

j

)
|k −

(
βk |k − Ṗ

)
|j = 16

9

(
3 ä

a
− Λ

)(
W

4πG
+ P

)
βj ; (A.34)

(
Ṗ − βk

|k)˙+ 2H
(
Ṗ − βk

|k) = 4
3

(
Λ − 3 ä

a

)(
W

4πG
+ P

)
; (A.35)

and

βk
|k = Ψ|k |k = − 1

3a(t)

(
W|k |k

4πG

∫ t

ti

dt′

a(t′) +
∫ t

ti

P (X, t′)|k |k

a(t′) dt′
)

. (A.36)

Expressing W from the initial conditions

If we evaluate (A.30) at t = ti, we get the following equation, since βk
|k(ti) = 0:

P̈ (ti, X) + 2HṖ (ti, X) = 8
3εH iW (X) . (A.37)

It is thus possible, from initial conditions, to build W|k |k.
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First–order trace equations

We combine the previous equations in such a way that no integral over the time
appears. To do so, we formulate the trace equations such that the shift vector will appear
with the scale factor in front of it. Then, the time derivative of a(t) × βi|j gives:

(
aβi|j

)
˙ = − 1

3a(t)

(
W |i|j
4πG

+ P |i|j

)
. (A.38)

The first–order Hamilton equation (A.32) can be written:

a
(
Ṗ − β

|k
k

)
− 4 πG (1)ε

a2

ȧ
= −a2

ȧ

(1)R
4 . (A.39)

The time derivative of this equation gives:

P̈ a + Ṗ
(

ȧ + 16 πG

3 a2ȧ
εH i

)
+
(

16 πG

3 a2ȧ
εH i

( 2
a3 − ä

a2ȧ2

)
+ 1

3a(t)Δ0

)(
W

4πG
+ P

)
= (A.40)

(
äa2

ȧ2 − 2a

) (1)R
4 −

(1)Ṙ
4

a2

ȧ
,

where Δ0 is the Lagrangian Laplacian operator: |k |k. If we now combine the Hamilton
constraint and the trace of the evolution equation for the extrinsic curvature, we get the
following equation:

a 9
4

(1)R +
(
a
(
Ṗ − β

|k
k

))
˙+ 4 πG ((1)p − 4(1)ε) a = 0 . (A.41)

We insert (A.38) into this equation and get:
(

Ṗ a + 9
4a(1)R

)
˙+ 1

3a(t)Δ0

(
W

4πG
+ P

)
+ 176 πG

9 εH i

(
Ṗ

a3 − 3ȧ

a4

(
W

4πG
+ P

))
= 0 .

(A.42)

A.3 Concluding remarks
The equation that we obtain for the trace is a wave equation, since it both implies some

spatial and time derivatives. The wave that propagates is a pressure wave. In order to solve
this equation, we can use the fact that the Ricci scalar can be expressed as: R = 1

a2 R(ti),
where R(ti) can be determined by the initial data for the comoving perturbation fields
(2.6) and (2.7).
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