
HAL Id: tel-01368084
https://theses.hal.science/tel-01368084

Submitted on 19 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic based middleware to support nomadic users in
IoT-enabled smart environments

Benoit Christophe

To cite this version:
Benoit Christophe. Semantic based middleware to support nomadic users in IoT-enabled smart envi-
ronments. Ubiquitous Computing. Université Pierre et Marie Curie - Paris VI, 2015. English. �NNT :
2015PA066669�. �tel-01368084�

https://theses.hal.science/tel-01368084
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Benoit CHRISTOPHE

Pour obtenir le grade de
DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Semantic based middleware to support nomadic users in
IoT-enabled smart environments

soutenue le 07 Septembre 2015

devant le jury composé de :

M. Jerome Euzenat Rapporteur
M. Serge Chaumette Rapporteur
M. Animesh Pathak Examinateur
M. Christophe Marsala Examinateur
M. Bertrand Granado Directeur de l’EDITE

A ma famille, sans qui rien n’aurait été possible.

The above proposition is occasionally useful.

Bertrand Russell, about 1+1=2

Principia Mathematica

Acknowledgments

It would not have been possible to write this doctoral thesis without the help and sup-

port of the kind people around me, to only some of whom it is possible to give particular

mention here.

Above all, I would like to thank my wife Manami for her personal support and great pa-

tience at all times. I am also grateful to my two wonderful daughters Noa & Lia that gave

me the force and courage to finalize this thesis, through their joy of life. My parents have

given me their unequivocal support throughout, as always, for which my mere expression

of thanks likewise does not suffice.

Amongst my fellows at Bell Labs, I am deeply grateful to Matthieu Boussard that worked

together with me over the last 7 years, always triggering the good pointers allowing to

push my research further. I would particularly thank Alonso Silva, Vincent Verdot and

Vincent Toubiana for their kind advices and the moments that we spent together at Bell

Labs, exchanging on innovative ideas.

I address warm thanks to my former colleagues Philippe, Gerard, Olivier, Nicolas, Monique,

Eric, Lionel, Dohi, Cedric and Pierrick.

I am also grateful to Martin Vigoureux for having made possible this research and the re-

sulting doctoral thesis. I thank my colleagues Wenyi, Bela, Dominique, Francois, Laurent,

Ludovic, Michel, Nicolas, Pierre, Richard and Thai.

Finally, I would like to acknowledge the financial support provided by Alcatel-Lucent and

Bell Labs for writing this thesis.

For any errors or inadequacies that may remain in this work, of course, the responsibility

is entirely my own.

Abstract

With the growth in Internet of Things, the realization of environments composed of

diverse connected resources (devices, sensors, services, data, etc.) becomes a tangible real-

ity. Together with the preponderant place that smartphones take in the daily life of users,

these nascent smart spaces pave the way to the development of novel types of applica-

tions; carried by the phones of nomadic users and dynamically reconfiguring themselves

to make use of such appropriate connected resources. Creating these applications however

goes hand-in-hand with the design of tools supporting the nomadic users roaming in these

spaces, in particular by enabling the efficient selection of resources. While such a selection

calls for the design of theoretically grounded descriptions, it should also consider the pro-

file and preferences of the users. Finally, the rise of (possibly mobile) connected resources

calls for designing a scalable process underlying this selection.

Progress in the field is however sluggish especially because of the ignorance of the stake-

holders (and the interactions between them) composing this eco-system of “IoT-enabled

smart environments”. Thus, the multiplicity of diverse connected resources entails in-

teroperability and scalability problems. While the Semantic Web helped in solving the

interoperability issue, it however emphasizes the scalability one. Thus, misreading of the

ecosystem led to producing models partially covering connected resource characteristics.

Revolving from our research works performed over the last 6 years, this dissertation identi-

fies the interactions between the stakeholders of the nascent ecosystem to further propose

formal representations. The dissertation further designs a framework providing search

capabilities to support the selection of connected resources through a semantic analysis.

In particular, the framework relies on a distributed architecture that we design in order

to manage scalability issues.

The framework is embodied in a VR Gateway further deployed in a set of interconnected

smart places and that has been assessed by several experimentations.

vi Abstract

Keywords

Smart environments, Internet of Things, Ubiquitous Computing, Pervasive Computing,

Semantic Web, Knowledge Representation, Similarity measure, Distributed Information.

Résumé

Avec le développement de l’Internet des Objets, la réalisation d’environnements com-

posés de diverses ressources connectées (objets, capteurs, services, données, etc.) devient

une réalite tangible. De plus, la place prépondérante que les smartphones prennent dans

notre vie (l’utilisateur étant toujours connecté) font que ces espaces dits ‘intelligents’ ou-

vrent la voie au développement de nouveaux types d’applications; embarquées dans les

téléphones d’utilisateurs nomades – passant d’un environnement connecté (la maison)

à un autre (la salle de réunion) – et se reconfigurant dynamiquement pour utiliser les

ressources de l’environnement connecté dans lequel celles-ci se trouvent. La création de

telles applications va cependant de pair avec le design d’outils supportant les utilisateurs en

mobilité, en particulier afin de réaliser la sélection la plus efficace possible des ressources de

l’environnement dans lequel l’utilisateur se trouve. Tandis qu’une telle sélection requiert

la définition de modèles permettant de décrire de façon précise les caractéristiques de ces

ressources, elle doit également prendre en compte les profils et préférences utilisateurs.

Enfin, l’augmentation du nombre de ressources connectées, potentiellement mobiles, re-

quiert également le développement de processus de sélection qui “passent à l’échelle”.

Des avancées dans ce champ de recherche restent encore à faire, notamment à cause d’une

connaissance assez floue concernant les acteurs (ainsi que leurs interactions) définissant

(i.e., prenant part à) l’éco-système qu’est un “espace intelligent”. En outre, la multiplicité

de diverses ressources connectées implique des problèmes d’interopérabilité et de scala-

bilité qu’il est nécessaire d’adresser. Si le Web Sémantique apporte une réponse à des

problèmes d’interopérabilité, il en soulève d’autres liés au passage à l’échelle. Enfin, si

des modèles représentant des “espaces intelligents” ont été développé, leur formalisme ne

couvre que partiellement toutes les caractéristiques des ressoures connectées. En partic-

ulier, ces modèles tendent à omettre les caractéristiques temporelles, spatiales où encore

d’appartenance liées à l’éco-système dans lequel se trouvent ces ressources. S’appuyant sur

viii Résumé

mes recherches conduites au sein des Bell Labs, cette dissertation identifie les interactions

entre les différents acteurs de cet éco-système et propose des représentations formelles,

basées sur une sémantique, permettant de décrire ces acteurs. Cette dissertation propose

également des procédures de recherche, permettant à l’utilisateur (ou ses applications) de

trouver des ressources connectées en se basant sur l’analyse de leur description sémantique.

En particulier, ces procédures s’appuient sur une architecture distribuée, également décrite

dans cette dissertation, afin de permettre un passage à l’échelle.

Ces aides à l’utilisateur sont implémentées au travers de briques intergicielles déployées

dans différentes pièces d’un bâtiment, permettant de conduire des expérimentations afin

de s’assurer de la validité de l’approche employée.

Contents

Abstract v

Résumé vii

Introduction 1
Emerging eco-system . 3
Difficulties in enabling the use of smart spaces 6
Contributions . 8
Outline of the thesis . 10

1 Preliminaries 13
1.1 Background . 13
1.2 Notations and Definitions . 17

2 Related Works 19
2.1 Models for smart environments . 19
2.2 Searching through semantic similarity measures 29

3 Defining models to support mobile users 33
3.1 Rationale in using Semantic Web technologies 34
3.2 Modelling connected devices . 35
3.3 Modelling the location associated to smart environments 45
3.4 Semantic models for application templates 49
3.5 Representing user profiles . 56
3.6 Conclusions . 59

4 Towards producing efficient searching procedures 61
4.1 Preamble . 64
4.2 A semantic similarity measure for SHOIQ concepts 65
4.3 Example of application . 78
4.4 Conclusions . 80

5 Distributing knowledge amongst smart environments 83
5.1 Preamble . 84
5.2 Federated architecture of nodes . 86
5.3 Sharing knowledge between federated nodes 92
5.4 Conclusions . 95

x Contents

6 Experimentations 99
6.1 Implementations . 100
6.2 Experimentations . 110
6.3 Conclusions . 128

Conclusions 131
Summary of contributions . 131
Perspectives . 134

A Subsumption relations in SHOIQ 137

B Algorithms generating pseudo-concepts 141

List of Figures 145

List of Tables 147

Bibliography 149

Introduction

Since its introduction by Weiser in 1991[Wei91], ubiquitous computing has been a fer-

tile ground for research and technology, leading to a number of concrete advances, e.g.

in mobile computing. However the core of the vision, revolving around smart spaces in

which mobile users seamlessly consume services and information, has still a long way to

go. Until recently, this was explained by a number of factors, two of them being without

a doubt the need for pervasive network connections and the cost of embedding advanced

electronics in everyday objects. While the latter has decreased dramatically in the past

few years, the former has benefited both from the Internet of Things research field and

from technology improvements, which make the Internet today a commodity available

largely, and accessible to most connected devices.

A consequence of this commodity results in an increasing set of network-capable devices

becoming part of people’ daily life. As an instance and according to the International

Telecommunication Union (ITU) 1, cell phone subscriptions are about 6.8 billions globally,

with a total number of 7.1 billions people on the planet (96% penetration). Information

Handling Services (IHS) 2 company reported that in 2013 the installed base and worldwide

new shipments of Internet connected devices was a market of approximately 12 billions

devices, with an expected growth of 8 billions on the horizon 2015, suggesting an expo-

nential increase. This growing trend in providing smart components as well as connected

sensors and actuators, is consequently leading to billions of services and data offered in a

plurality of diverse smart environments (found in homes, factories, malls, etc.) through

different and heterogeneous IoT devices. In such a context, realizing Mark Weiser’s vision

of ubiquitous computing now accounts for providing efficient tools and interfaces that will

support users. In particular, search capabilities assisting users to find and further use

1. http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/ITU_Key_2005-2013_
ICT_data.xls

2. Internet Connected Devices: Evolving from the “Internet of Things” to the “Internet of Everything”,
http://www.ihs.com/info/sc/a/internet-of-things.aspx

http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/ITU_Key_2005-2013_ICT_data.xls
http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2013/ITU_Key_2005-2013_ICT_data.xls
http://www.ihs.com/info/sc/a/internet-of-things.aspx

2 Introduction

meaningful devices, are de-facto pre-requisites that need to be carefully designed accord-

ing to the IoT specificities, e.g., where devices evolve over the time: may be relocated,

may become unavailable, etc.

The preponderant place that smartphones take in the daily life of users further adds a

mobility challenge to provide such tools, considering the continuity of service that IoT-

based applications carried by these smartphones may need to ensure whatever the smart

environment they are executed in. More specifically, realizing the vision of Mark Weiser

also accounts for proposing mechanisms allowing the IoT applications of the nomadic users

to be dynamically reconfigured with appropriate connected devices each time such users

roam across a different smart environment.

Accordingly, this dissertation identifies the underlying challenges associated to the design

of search capabilities for these IoT-enabled smart environments. Grounded by the ideas

of Kindberg et al. [KBM+02] – that considered the realization of smart environments

through the Web presences of nomadic people, places and things – this dissertation fo-

cuses on enabling mobile users to consume composite services and possibly aggregated

information through connected devices available in the different smart environments that

they cross as well as in the Cloud. Specifically, this dissertation is organized around three

research axes that have been investigating over the last six years. The first axis lays the

foundations for enabling user-personalized search capabilities by determining appropriate

representations to formally describe devices and the requirements arising from applica-

tions. This axis also points out works that I have been launching then supervising, and

consisting of defining user profiles by use of Fuzzy logic. The second axis investigates

how accurate results can be returned to a user having performed a query, focusing on the

semantics underlying the representation models. In particular, it yields to the design of a

method that independently of any context, computes accurate similarity results between

any entities having been described with such a semantic. Finally, the third axis focuses on

creating a distributed infrastructure composed of cooperating smart environments to en-

sure a responsive and still relevant search process to any user. We motivate this work based

on the emerging eco-system and the underlying problems that are becoming increasingly

relevant to address.

Emerging eco-system 3

Emerging eco-system

In our vision, the development of the Internet of Things has led to an eco-system in

which five different stakeholders may be involved in scenarios where users consume services

and information when roaming in smart environments.

Represented by Figure 1, this eco-system is composed of Connected Devices – com-

prising sensors, actuators and other smart components. Some of these devices can be

mobile (e.g., a car) but are always associated with a location. Some can have availability

restrictions (e.g., aligned with office hours), access policies as well as restrictions in terms

of concurrency of access. Thus, the increasing number of connected devices accounts for

a high heterogeneity in terms of the functionalities, services, etc. that they can offer.

A second actor that this eco-system implies is the Applications. Sharing similar char-

acteristics with the first actor, they can be mobile (e.g., embedded in the smartphone of

the user), with a use restricted to an environment (e.g., within the walls of a company) or

can be living in the Cloud.

The third actor of this system is the mobile User. Coming with specificities (e.g., having

a handicap, being in a hurry), a user has a profile defining his preferences and is often

associated to a context.

The fourth actor of the eco-system is the Smart Environment that represents a place

(a mall, a house, a room, etc.) equipped with an infrastructure that (at least) allows

accessing to Connected Devices and Applications.

Finally, the last actor of the eco-system is the Cloud enabling a pervasive access (i.e.,

an access unbound to a geographical area) to Applications and Connected Devices and

taking more and more importance with the rise of platforms such that Xively 3).

In terms of interlinks, Connected Devices and Applications share a lot of commonalities.

Both can be localized and only accessed at some specific location(s) (a house, a company,

a mix of several locations, etc.) or can be exposed in the Cloud to be accessed indepen-

dently from where they are. Both can also be carried by people (e.g., sensors in their

smartphone). Most of the time both are owned by one – or a group of – person, leading

to setting and managing different access policies. Finally, both are consumed by Users.

Accessing to a Connected Device, from a user viewpoint, may depend on the type of in-

teraction that is expected. In particular, two cases can be distinguished. A direct access

3. Xively – Public Cloud for the Internet of Things, https://xively.com/

https://xively.com/

4 Motivating application: Roaming across smart environments

may be required for physical interactions (e.g., physically pushing a button on a device)

while an indirect access (through the Internet) may be sufficient for other purposes (e.g.,

reading of a sensor value). Finally, Connected Devices are also going to be integrated

in Applications. In particular, Connected Devices may be coupled with other devices in

order to provide a particular service (coupling a lamp and a phone to provide a new type

of call notification) or simply aggregated to deliver a feed of information (e.g., aggregating

several data produced by the sensors of a house, for monitoring purpose). Obviously, using

Connected Devices will depend on User profile and expectations as well as on Application

requirements.

Other interlinks that form this eco-system concern the (potential) mobility of Users, Ap-

plications and Connected Devices accounting for the evolving context associated to any

smart environment, i.e., where Users and their associations with Applications and Con-

nected Devices change over time. Finally smart environments may also be interconnected,

for instance in the case where they are part of the same indoor environment (e.g., a

shopping mall where a smart clothes shop is interconnected with a smart coffee shop).

Amongst others, such interconnections may enable different smart environments to share

knowledge about their own context such that the associations between Users, Applica-

tions and Connected Devices mentioned before. Altogether, these different stakeholders

and their interlinks allow for the creation of unprecedented data and services and create

a kind of collective intelligence for supporting multiple scenarios. Let us consider one

representative situation encountered in this eco-system.

Motivating application: Roaming across smart environments

Ben is visiting his friend Vincent. As he does not want to miss the last metro of the

evening, he opens his application center on his mobile and searches for an application that

could help. He selects a “Metro Warning” application that describes itself as requiring a

public transportation information feed as input and a signaling device in the immediate

environment of the user as output to warn the user of an incoming train. The system helps

Ben in the configuration process by filtering automatically spaces and objects of relevance

according to his context: it proposes the nearby metro stations that expose relevant in-

formation (upcoming trains) and returns only local, signaling devices made accessible by

Vincent for his visitors (e.g. a connected lamp or a screen). The application lets Ben set

a timer that will expire 3 minutes before the train arrives in the station so he has enough

Motivating application: Roaming across smart environments 5

Figure 1 – The different stakeholders and their interconnections in the Internet of Things

6 Difficulties in enabling the use of smart spaces

time to catch it.

During the discussion, Ben decides to show his latest vacation picture to Vincent. He

is already a user of a “Local Slideshow” application that he has set-up by coupling his

home’s Network Attached Storage (NAS) with his home’s picture frame. As he resumes

it, the application proposes to reconfigure itself. Some resources are kept unchanged and

are remotely accessed (the NAS device) while locally available devices are proposed to su-

persede others – Ben selects amongst the proposed possibilities Vincent’s video projector

and the two discuss vacation plans. Later that evening, as the last train is 3 minutes away

from the station, the “Metro Warning” application executes, issuing a visual signal on

Vincent connected lamp. Ben packs his things and leaves. The “Local Slideshow” appli-

cation is aware of Ben’s departure and automatically stops the association with Vincent’s

connected video projector.

The day after, Ben reaches the new offices of his company and tries finding a nearby

printer to get a paper version of the documents he has to show. He enters into the smart

lobby equipped with a gateway in charge of managing devices and sends a request through

his mobile phone to find such printer. Although no printer is localized in the lobby, the

gateway returns one physically located in a nearby corridor. Indeed, after this printer

was installed, its associated representation was sent to the gateway associated with the

corridor as well as to all others in its vicinity (rooms, other corridors and the lobby).

After his presentation, Ben is willing to find a room equipped with a video conference

system and hence, issues a request from his current location to the associated gateway

(e.g., the gateway managing the meeting room where Ben gave his presentation). As the

gateway is not aware of any video conference system in the different places it has received

information from, he looked at Ben’s profile to determine if it can spread the request to

other gateways, located few steps ahead from the gateways it already knows. Ben’s profile

enables determining the maximum number of steps, allowing to fulfill the request in a set

of places complying with Ben’s expectations.

Difficulties in enabling the use of smart spaces

Despite multiple efforts to support mobile users in smart environments, realizing an

application like the one mentioned here is still a hard and lengthy process for many rea-

sons, as exposed hereafter.

Difficulties in enabling the use of smart spaces 7

Connected devices and applications are ill-defined

Practical problems (like the application discussed) require a combination of services from

different resources able to solve user needs. This requires heterogeneous services, data and

applicative requirements to be annotated with a common representation that is generic

and does not need to be redefined every time a new resource must be taken into account.

This calls for a representation capturing enough semantics and computational details so

that it can support a variety of pervasive scenarios. In particular, the representation

must enable the translation of an applicative requirement to a set of (possibly ordered)

operations performed on data and services of different connected devices. In almost all

scenarios, this representation will contain processable (homogeneous) temporal and spa-

tial information e.g., to support the selection of available devices in a specific area. This

representation may also contain information about access rights, to support the selection

of accessible devices or applications. Finally, this representation may be able to describe

the dynamics of a connected device or an application, e.g., how its access rights evolve

over the time. All the aforementioned points are illustrated by the discussed application,

as it needs to propose connected devices shared by their owner and located in the vicinity

of the user. In addition, this application requires a method to couple the output coming

from the NAS device with the input required by the video projector in order to instantiate

the applicative requirement of visualizing remote pictures.

Lack of defining such a representation leads to an interoperability nightmare, limiting the

development of so called IoT-based applications.

Users have specificities and preferences

While the selection of connected devices entails the definition of a homogeneous represen-

tation, it also requires taking care of user specificities especially when a direct access is

required by the user. In particular, in the context of connected devices in smart indoor

environments, the selection of connected devices may lead to different results whether the

user is an elder or a youth or whether the user is in a good shape or not (e.g., having a

handicap). Lack of a processable representation of the user profile may typically lead in

proposing unsuitable devices to users.

Mobility entails reconfiguring applications

In most scenarios involving mobile users, applications must be able to dynamically recon-

figure some of the resources they use. Indeed for a user in a given smart environment, the

set of available resources tightly depends on their exposition. Smart environments may

8 Contributions

expose some resources locally and therefore limit their use, while they could expose some

others in the Cloud, allowing access from anywhere (through the Internet). In the context

of applications carried by a user and interacting with local resources, a process capable of

evaluating the similarities between different resources must be triggered each time users

roam across different smart spaces, for reconfiguration purposes. Relying on the represen-

tation of the connected devices, this process should distinguish the preponderant features

of interest from others as well as return exact or partial similarity results depending on

the situation. While many tools can compute the similarity of different semantic represen-

tations, none of them has been customized to completely cover the semantics underlying

the representation models of connected devices and applicative requirements.

Search processes must scale

Reconfiguring applications as well as proposing connected devices, requires scalable sys-

tems which can seamlessly handle huge volumes of data. In the context of billions of

connected devices offered through the Internet, designing such systems accounts for char-

acterizing the devices based on some criteria (one of them being their geo-location) to

further create clusters of connected devices into which recommendations are given. Clus-

ter based systems would allow to limit the search space to a few set of resources based on

the characterization having been performed, enabling to propose reconfigurations in near

real-time. Conversely, relying on a centralized approach where a plethora of connected

devices have to be checked would avoid the development of applications as the one we

discuss.

Contributions

This dissertation contributes to the problem of supporting mobile users roaming across

different smart environments by detailing (resp. proposing) studies having been performed

(supervised) over the last six years and directed towards providing search capabilities that

can be applied in the addressed context. Overall these studies revolve around the following

contributions:

1. To define a unified semantic representation for diverse connected devices and ap-

plicative requirements. This contribution is further completed by the proposition

to scope the description of user profiles by introducing Fuzzy logic theory.

2. To design a process computing accurate semantic similarity measurements between

Contributions 9

any entities described by the Description Logic (DL) SHOIQ. Independent of any

context, this study has been driven in order to design a similarity method dedicated

to taking into account the semantics of this DL. Because the representations of

connected devices and applicative requirements are covered by the semantics of

this DL, the similarity measure can be applied as such to enable the selection of

the most relevant connected devices for a given user’ query.

3. To design a network composed of distributed clusters in which connected devices

are gathered according to their location and that helps to reduce the search space

by using the location as a filter.

4. To provide a framework where connected devices can be exposed, enabling the

validation of the representation models by assessing the search capabilities having

been designed.

Supporting mobile users roaming across smart environments accounts for providing search

capabilities capable of returning meaningful results to users. In this dissertation a mean-

ingful result – for a given user – is defined as a service or data offered by one (or a

composition of) device(s), satisfying user needs in terms of the functionality

or information that it delivers. Thus, this service or data is accessible, avail-

able, aligned with the specificities of the user and, depending on the scenario,

is “localized” in the vicinity of the user.

This definition emphasizes the different stakeholders participating in the “IoT-enabled

smart environments” eco-system (displayed in Figure 1) and highlights the various key

points that need to be addressed. Focusing on the definition of a unified semantic repre-

sentation for connected devices and applicative requirements – considering their dynam-

ics, the environment they are localized in, their access rights and temporal constraints

– allows the development of specific searching procedures, supporting e.g., the dynamic

(re)configuration of applications by matching their applicative requirements with con-

nected devices. These procedures are undoubtedly depending on the preferences and

expectations of users, which is allowed by relying on the formal model scoping their pro-

files.

Overall, determining the context tied to a search allows refining the space in which relevant

devices must be found. In particular, this context is likely to depend on information about

the user, its disabilities, its location, etc. With a refined search space, efficient methods

relying on the semantic representation of connected devices and applicative requirements

10 Outline of the thesis

can be developed to return meaningful devices.

While supporting the mobile user when roaming across different smart environments ac-

counts for a wide range of scenarios, many of them may consist of returning connected

devices in a specific geographical area e.g., for monitoring purposes, or in the vicinity of

a given user e.g., constrained by physical interaction needs. In the case of a large smart

environment, considering its representation to build a network of small and interconnected

smart environments allows delineating search to a geographical area.

All aforementioned ideas are embodied in a framework that allows processing the formal

descriptions of connected devices, applicative requirements and users. The framework

also allows triggering the aforementioned search process, possibly applied on a specific

geographical area.

Outline of the thesis

Chapter 1 recalls the basic concepts of the major technologies underlying this disser-

tation and as such, gives details about Description logic and Semantic Web technologies.

This chapter further lays the definitions and notations used in the dissertation and in

particular on the semantic similarity method that is detailed in Chapter 4. Chapter 2

surveys the most influential works having led to formal descriptions of connected devices

and pervasive services and further describes the major studies in the field of semantic sim-

ilarity computation. Chapter 3 defines a set of concepts capturing the semantics bound to

connected devices and applicative requirements. This chapter also identifies the minimal

Description logic that underlies these representations. Finally, this chapter details our

viewpoint regarding the necessity to describe user profiles, the limitations of solely relying

on Semantic Web technologies to create such profiles and finally how these limitations can

be dissipated by the use of Fuzzy logic. In particular, the idea to rely on Fuzzy logic has

been investigated under my supervision during a PhD thesis. Details of such work will

therefore not be reported in this dissertation but some ideas can be found in [XMC13] and

in the corresponding PhD dissertation [Xu15]. Chapter 4 presents our views regarding

the design of efficient search procedures to return connected devices corresponding to a

user’ query. While these views include filtering devices using spatio-temporal as well as

user profile information, this chapter does a strong emphasis on a method that performs

similarity measurements by exploiting the specificities of the Description logic identified

Outline of the thesis 11

in Chapter 3 4. Chapter 5 proposes the design of a federated network in which the prob-

lem of finding relevant connected devices is constricted by geographical boundaries, i.e.,

where the selected connected devices are necessarily nearby the user having performed

the request. This chapter also provides the communication scheme used by the nodes of

such a network. Chapter 6 presents a framework allowing to expose connected devices on

the Web and in which the components detailed in the other chapters take place to enable

search capabilities. Finally the last chapter discusses future challenges and concludes this

dissertation.

4. Note that the proposed method is independent of the context in which it is applied. As a conse-
quence, it may therefore serve to compute semantic similarity measurements in other contexts than the
one associated to this dissertation, provided that the entities being compared are underpinned by the same
DL

Chapter 1

Preliminaries

This chapter recalls the main notions that are used in this dissertation. In particular,

it details the main logical constructs that are found in the various Description logics (DL)

underlying Semantic Web technologies. Finally, a section of this chapter introduces the

notations that will be used in this dissertation and in particular in the chapter presenting

a novel semantic similarity measure for ontological concepts underlied by the DL SHOIQ.

1.1 Background

1.1.1 Ontology and Description Logics

As defined by Gruber in 1993 [Gru93], an ontology is an explicit specification of a

conceptualization, meaning that it represents concepts and objects that are presumed to

exist in an area of interest. This declarative knowledge is underlied by Description Logics

(DL), a representation language family particularly suited to define the concepts and

properties of a domain of discourse [Hay79]. Based on a standard syntax and semantics,

a DL specifies a canonical form to describe knowledge. In the literature, several DL with

different expressive power have been proposed, based on studies evaluating the efficiency

of their reasoning (e.g. their decidability and complexity) [DLNN91].

In its simplest expression, an ontology can consist of atomic concepts defined relatively to

others by the sole use of the inclusion concept (e.g. assertions such as A v B, A v C but

not such as A v (BuC)) 1. In this dissertation, however, we primarily consider ontologies

underlied by more expressive DL, such that SHOIQ (detailed in Table 1.1), involving the

definition of complex concepts.

1. Note that in this case, the ontology is simply a hierarchy of atomic concepts

14 Chapter 1. Preliminaries

As usual, for C and D (possibly complex) concepts, C v D is called a General Concept

Inclusion (GCI). A finite set of GCI forms the terminology T (or TBox) of the ontology.

A role inclusion axiom is of the form R v S where R and S are two roles defined in

the ontology. The set of all roles in an ontology is named NR while we denote the set

of all transitive roles with NR+ . The finite set of role inclusion axioms represents a role

hierarchy named R. Note that we consider the terms property and role as equivalent, and

that we use both throughout the paper.

In the case of ontologies underlied by the DL SHOIQ, the pair (T ,R) is called a knowledge

base (KB). T represents the terminology of the ontology (the definitions of the concepts)

and is also called the TBox. R denotes the set of roles defined in the ontology. Finally,

the set of concept instances declared in the ontology is called the ABox and is sometimes

written A. For the same reason as [HS05] we do not include the ABox to the definition of

the KB.

The formal semantics of SHOIQ is defined with respect to an interpretation I = (∆I , ·I).

I consists of a non empty set ∆I called the domain of interpretation and an interpretation

function ·I mapping each concept C to a set of individuals CI (such that CI ⊆ ∆I) and

each role R to a set of pairs of individuals RI (such that RI ⊆ ∆I ×∆I).

With respect to I, the DL SHOIQ allows the creation of atomic concepts (A such that

AI ⊆ ∆I) and atomic roles (R such that RI ⊆ ∆I×∆I). Complex concepts can be written

using the operators disjunction, conjunction, full existential qualification, qualified value

restriction, qualified cardinal restriction and negation. Concepts can also be nominals,

i.e. defined as an enumeration of instances. Finally, roles can be organized hierarchically,

can be transitive and finally can be inverse of other roles. Table 1.1 summarizes the

semantics of the DL SHOIQ. In this table, x, y, z, a1, . . . , an denote individuals of ∆I . n

is a positive integer, while we use the symbol # to denote the cardinality of a set. Note

that throughout the paper, we will use > to denote the absolute truth (as well as the top

concept of the ontology, i.e., the concept that subsumes all the concepts defined in the

ontology) and ⊥ to denote the absurdity (as well as the bottom concept of an ontology,

i.e. that is subsumed by all the concepts defined in the ontology).

The least common subsumer (LCS) of two concepts C and D is defined as in [CBH92]

i.e. as the least common concept that subsumes both C and D. In such definition, the

LCS results from a computation procedure and may lead to generating a new concept

(with respect to what contains the ontology). The least common ancestor (LCA) denotes

1.1. Background 15

Description Syntax Semantics
Atomic concept A AI ⊆ ∆I
Atomic role R RI ⊆ ∆I ×∆I
Negation ¬C ∆I\CI
Conjunction C uD CI ∩DI
Disjunction C tD CI ∪DI
Nominal {a1, . . . , an} {aI1 , . . . , aIn}
Qualified value restriction ∀R.C {x ∈ ∆I |∀y.(x, y) ∈ RI → y ∈ CI}
Full existential qualification ∃R.C {x ∈ ∆I |∃y.(x, y) ∈ RI ∧ y ∈ CI}
Qualified cardinal restrictions ≥ nR.C {x ∈ ∆I |#{y|(x, y) ∈ RI ∧ y ∈ CI} ≥ n}

≤ nR.C {x ∈ ∆I |#{y|(x, y) ∈ RI ∧ y ∈ CI} ≤ n}
= nR.C {x ∈ ∆I |#{y|(x, y) ∈ RI ∧ y ∈ CI} = n}

Role Hierarchy R v S RI ⊆ SI
Role Inverse R ≡ S− RI ≡ {(x, y)|(y, x) ∈ SI}
Transitive roles R ∈ NR+ {(x, z)|(x, y) ∈ RI ∧ (y, z) ∈ RI}

Table 1.1 – Syntax and semantics of SHOIQ

the most specific named concept that subsumes two concepts. Unlike the LCS, the LCA

is obtained by solely using the subsumption graph of the ontology and never leads to

computing a new concept.

Considering a set of axioms forming the terminology T of an ontology O, we use the term

primitive concepts to denote the set of concepts of T that occur only on the right-hand

side of axioms. If concepts appear in the left-hand side of an axiom, then we use the term

defined concepts. As an example, in the following axiom C ≡ ∀R.A u B, C is a defined

concept, while A and B are primitive concepts (and R, a role).

1.1.2 The Semantic Web: OWL and SWRL

Over the last 15 years, a lot of effort has been done to realize the vision of a Se-

mantic Web as defined by Tim Berners Lee [BLHL01], i.e., where Web resources are

easily accessed and consumed in automated processes. Amongst others, the OIL language

was developed by a group of (largely) European researchers in 2001 [FHHM01] while

DAML-ONT was supported by the DARPA DAML program [MFSH03]. Merged to give

DAML-OIL[MFHS02], further efforts were done at the instigation of the W3C to finally

produce the Web Ontology Language (OWL 2) and, on top of it, the Semantic Web Rule

Language 3 (SWRL) coupling the use of OWL with the Unary/Binary Datalog RuleML

2. OWL 2 Web Ontology Language Document Overview (Second Edition), http://www.w3.org/TR/
owl2-overview/

3. SWRL: A Semantic Web Rule Language Combining OWL and RuleML, http://www.w3.org/
Submission/SWRL/

http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/

16 Chapter 1. Preliminaries

sublanguages of the Rule Markup Language in order to express complex concepts such

that ones involving relations between individuals.

Overall, OWL can be described as a computational logic-based language, such that knowl-

edge expressed in OWL can be exploited by computer programs 4. More specifically, the

concepts expressed in OWL rely on operators found in Description logic. The following

briefly recalls what is SWRL (based on the words of the authors of the SWRL specifi-

cation). Aligned with RuleML, SWRL rules are of the form of an implication between

an antecedent (body of the rule) and consequent (head of the rule). According to the

SWRL specification, both the antecedent (body) and consequent (head) consist of zero or

more atoms. Multiple atoms are treated as a conjunction meaning that if an antecedent is

composed of several atoms, all of them must be satisfied in order for the associated con-

sequent to hold. Atoms in SWRL rules can be of the form C(x), P (x, y), sameAs(x, y) or

differentFrom(x, y), where C is an OWL description, P is an OWL property, and x, y are

either variables, OWL individuals or OWL data values. In SWRL, variables that appear

both in the antecedent and the consequent of a rule are treated as universally quantified.

SWRL variables that appear only in the antecedent of a rule are treated as existentially

quantified. The scope of any SWRL variable is moreover limited to a given rule. As

usual, only variables that occur in the antecedent of a rule may occur in the consequent (a

condition usually referred to as “safety”). Aligned with OWL, SWRL supports the Open

World Assumption, meaning that an inference is proved if and only if it can be proved

that the contrary never holds. A consequence is that the inferences built by OWL and

SWRL reasoning are monotonic (i.e., an inference cannot be invalidated by some others).

Another consequence is that OWL and SWRL do not allow negation as a failure (as it

could entail non-monotonic inferences). For the same reason, SWRL rules are not allowed

to retract any information from an ontology.

Equation 1.1 gives an example of a SWRL rule. In this example, the rule is made of

an antecedent of two atoms and a consequent of one atom. Verifying the conjunction of

atoms of the antecedent implies that the atom in the consequent holds. Specifically in this

example, if an OWL individual (say a) is in relation with another OWL individual (say

b) through the property “hasFather”. Then if this OWL individual b is itself in relation

with a third OWL individual c through the property “hasBrother”, then it holds that the

4. Web Ontology Language, OWLhttp://www.w3.org/2001/sw/wiki/OWL

http://www.w3.org/2001/sw/wiki/OWL

1.2. Notations and Definitions 17

individuals a and c are in relation with the property “hasUncle”.

hasFather(?x, ?y) ∧ hasBrother(?y, ?z)→ hasUncle(?x, ?z) (1.1)

1.2 Notations and Definitions

For a given ontology O, we use the notation WO to define the set of all possible

SHOIQ expressions that can be written by coupling the defined concepts and properties

of O with the different SHOIQ operators. As a consequence, T v WO. We use the term

pseudo-concepts to denote the set of concepts that do not exist in the ontology but that

are extracted by the method defined in Section 4.2 (i.e., these concepts have not been

defined by an ontologist). The set of pseudo-concept is written PS and contains expres-

sions formed by concepts and logical operators of the DL SHOIQ. As a consequence,

PS v WO.

GO refers to the classification graph of O before it has been expanded by the method de-

fined in Section 4.2, while EO accounts for the expanded classification graph. GO contains

concepts of T while EO contains concepts of T ∪ PS.

For the same reasons as [dFE06], eliciting the semantics of concepts in T requires to nor-

malize them. Towards this goal, we define a SHOIQ Normal Form as follows 5.

Definition 1.1. A defined concept CD is in SHOIQ Normal Form iff CD ≡ ⊥ then

CD := ⊥ or if CD ≡ > then CD := > or if CD ≡ D1 t . . . tDn(∀i = 1 . . . n,Di 6= ⊥) then

each Di is such that:

Di :=
(
Prim(Di)

)⋂(
Nom(Di)

)⋂(⋂
R∈NR

Rest(R,Di)
)

with:

— Prim(C), the intersection of all (possibly negated) primitive concepts at the top-

level of C,

— Nom(C), the intersection of all (possibly negated) nominals at the top-level of C,

— Rest(R,C) ≡ Exist(R,C)uUniv(R,C)uAtleast(R,C)uAtmost(R,C)uExactly(R,C)

with:

5. Note that in our definition, the SHOIQ Normal Form neither involves hierarchy nor transitivity of
roles and consequently could be seen as an ALCOQ Normal Form.

18 Chapter 1. Preliminaries

— Exist(R,C) ≡
⋂

C′∈ex(R,C)
∃R.C ′, with ex(R,C) being the set of all C ′ such that

∃R.C ′ appears at the top-level of C (C ′ is a singleton in the case of ∃R.a

restrictions, with a, an individual).

— Univ(R,C) ≡ ∀R.val(R,C), with val(R,C) being the conjunction C1 u . . .uCn

in the value restriction of role R (here again, Ci is a singleton in the case of

∀R.a restrictions, with a being an individual).

— Atleast(R,C) ≡
⋂

C′∈al(R,C)
≥ nmaxR.C

′, with al(R,C) being the set of all C ′

such that ≥ nR.C ′ appears at the top-level of C and with nmax being the

highest n if more than one minimal cardinality exist for the same C ′.

— Atmost(R,C) ≡
⋂

C′∈am(R,C)
≤ nminR.C

′, with am(R,C) being the set of all

C ′ such that ≤ nR.C ′ appears at the top-level of C and with nmin being the

smallest n if more than one maximal cardinality exist for the same C ′.

— Exactly(R,C) ≡
⋂

C′∈exact(R,C)
= nR.C ′, with exact(R,C) being the set of all C ′

such that = nR.C ′ appears at the top-level of C.

— Any sub-description C ′ in ex(R,C), al(R,C), am(R,C), or exact(R,C) and any

Ci ∈ val(R,C) is in Normal Form except if such C ′ has already been rewritten

(allow handling cyclic definitions of concepts such that C ≡ (∃R.C)).

Note that computing the SHOIQ Normal Form of a concept requires writing it in

Disjunctive Normal Form (DNF). Such operation is always possible by pushing negation

inwards, using De Morgan laws and the duality between “existential” and “universal”

(¬∃A⇔ ∀¬A) as well as between “at most” and “at least” numbers restrictions.

As a convention the set of direct subsumers of any concept C ∈ EO will be written SD(C)

while its set of direct subsumees will be written SD(C).

Chapter 2

Related Works

The proposed work lies at the intersection of multiple active research areas. Here we

discuss the related works in the context of the problems studied. We first survey the

related works which tackle the design of formal representations for connected devices and

applicative requirements. In particular, we review the different approaches to context

modelling with a focus on the case of ontologies and semantic middlewares having been

developed to enable the use of pervasive environments. As searching in smart environ-

ments is often linked to determining the similarity between resources and because our

approach is underlied by semantic models, we finally review the different semantic simi-

larity measures having been developed over the years. We also position these measures

according to one that is detailed in the Chapter 4 of this dissertation and that is based on

concepts described in an ontology underlied by the Description Logic (DL) SHOIQ.

2.1 Models for smart environments

Developing applications dedicated to smart environments is inherently complex as it

requires to adapt to various changing context information, in particular those associated

to users, connected devices and computational resources. These constantly evolving envi-

ronments calls for designing adequate models and reasoning techniques in order to support

the creation of evolvable context-aware applications [BBH+10]. Over the last ten years,

the pervasive computing community has produced different modelling approaches directed

in this goal, i.e., to formally describe connected devices, applications and environments.

While these approaches were made to support some common requirements (e.g., to lower

20 Chapter 2. Related Works

services or data heterogeneity, to capture service mobility, to represent dependencies be-

tween services, to describe state, time and planning associated to a service, etc.), all of

them differ in their expressiveness, the reasoning that they allow and the computation

time which is required to process them.

Early models focused on representing context and were mostly dominated by key-value as

well as markup scheme based approaches. The major weakness of these approaches, how-

ever, was their inability to derive higher level information e.g., using a reasoning procedure.

As pointed out by [BBH+10], the introduction of the W3C standard for description of mo-

bile devices, Composite Capabilities / Preference Profile (CC/PP), saw the first context

modelling approaches to include elementary constraints and relationships between context

types. Based on the Resource Description Framework (RDF) – a language designed by the

W3C to represent any resources on the Web – CC/PP was inheriting a simple entailment

regime 1 allowing to derive higher level context information. Limitations of RDF-based

context modelling were however pointed out in various works [IRRH03, SLP04] and fi-

nally led to the design of more expressive approaches based on database or knowledge

management techniques that the following subsections will detail.

2.1.1 Role-based approaches

Role-based approaches are mostly applied to context modelling and take their foun-

dations from ORM (standing for Object Role Modelling) a method used to model the

semantics of a universe of discourse. Mostly used in order to design conceptual models for

information systems (in particular databases), ORM models are based on the paradigm

of objects that play roles (e.g. a Person jogs, a Person is employed by a Company since

an Entry Date, etc.). Specifically ORM describes relations between one or more object

types through fact types, drawn as sequences of roles (accounting for representing n-ary

relations). Each object type is assigned a name and a representation type (e.g., a type

name can be Person and the representation can be an Id associated to a Person). Fact

types are annotated with uniqueness constraints spanning over one or several roles, allow-

ing to define restrictions. Represented through diagrams, object-role models are usually

considered as close to what is expressed in natural language and are consequently assumed

as easy to understand for developers and designers.

Based on ORM, the prominent work about context modelling was formalized by Henrick-

1. RDF Entailment Regime, http://www.w3.org/TR/rdf-mt/#entail

http://www.w3.org/TR/rdf-mt/#entail

2.1. Models for smart environments 21

sen et al. through their Context Modelling Language (CML) [HIR02, HI04, HI06] in which

they described extensions enabling to label fact types in order to let them represent types

of context information. In particular, in CML a fact can be:

— static, e.g. as part of the basic description of an object type

— sensed, e.g. resulting from the output of a sensor

— derived, i.e. resulting from a deductive process

— profiled, e.g. resulting from user preferences

In addition, Henricksen et al. provided annotations allowing to label a fact as possibly

transient (e.g., a role which is valid during a certain period of time, which records histori-

cal data or that predicts future data) as well capable of managing ambiguous information

(e.g., describing conflicting location reports from a variety of location sensors).

Henricksen et al. also proposed to model situations through rules involving facts. In

their approach, situations are defined as predicates of zero or more variables and checked

against a set of facts defined in a CML model. Situations can further be coupled using

logical connectives such as conjunction, disjunction, negation, universal and existential

operators. Evaluation of the rules is either ‘true’, ‘false’ or ‘possibly true’ a state implied

by their support for managing ambiguous information.

According to Henricksen et al., CML is much more adapted than the technologies

underlain by Description Logics to model context information (in particular the Semantic

Web technologies). Their argumentation relies on four major points: The possibility in

CML to represent and reason over imperfect context data, the possibility in CML to

represent temporal roles, the ability to represent n-ary relations in a ‘natural language’

fashion and the easiness to understand ORM compared to the Web Ontology Language

(OWL) underlying Semantic Web approaches.

Such argumentation can however be discussed, especially the three first points. Indeed, in

the Semantic Web roles can be annotated, these annotations being either a free text tag

or a concept formally defined. Such annotations may comprehend temporal indications

or quality of the information. As pointed in a note published by the W3C by Noy et

al. n-ary relations can be emulated by using dedicated patterns when representing data.

Such pattern can also be used in order to associate to a role additional attributes such as a

probability that the role holds or some temporalities. It is however true that such patterns

22 Chapter 2. Related Works

complicate the understanding of the whole model. Finally additional SPARQL 2 queries

can be written to emulate the management of uncertain data. As an instance, suppose

that two sensors have located Ben. The first one is in the Kitchen, while the other is in

the living room. While asking the system if ‘Ben is in the Kitchen’ would return ‘possibly

true’ in a CML approach, it would return ‘true’ in a Semantic Web approach. To emulate

a ‘possibly true’ answer, one would have to submit another query such that counting the

locations where Ben is located and to count the number of results being returned. A

result higher than ‘1’ would entail that Ben is in the Kitchen (learnt from the first query)

and somewhere else, leading to deducting an uncertain data and modifying the answer

to something being ‘possibly true’. Notwithstanding, one have to agree that such queries

represent additional works for designers as the information is not encoded in the model.

One drawback of CML, however, lies in the flat structure entailed by the ORM method

in which none of the object type (resp. role type) can be a sub/super-type of another. In

this vision, it is for instance impossible to describe that a HD TV is a specialization of

a TV, that a smart phone is a specialization of a phone, a camera and other connected

devices. While this may not be important in some cases, we believe that it would limit the

support of searching connected devices suitable for a given scenario. In particular, being

able to compute similarity measurements would be quite limited if using this approach.

A second drawback of CML is implied by its expressiveness. In particular, its ability to

define situation with disjunction and negation may suffer from computation time required

to evaluate if some known facts match a rule.

2.1.2 Ontological models and semantic middlewares

Aside the role-based approach, the increasing popularity of ontologies at the beginning

of the 2000’s [BLHL01] led to the development of ontology-based models and semantic

middleware solutions. In particular, such models and solutions gained momentum and

became an important area of research [NAA09], with an enthusiasm accentuated by the

advances performed in the Semantic Web community. Indeed, the development of (compu-

tationally) tractable Semantic Web profiles – OWL-DL – together with the realization of

efficient reasoning tools paved the way to developing rich and processable context models

i.e., where higher level context information could be derived.

Over the years, a plethora of models and associated middlewares have been designed,

2. SPARQL Query Language for RDFhttp://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query/

2.1. Models for smart environments 23

all of them focusing on a particular domain (healthcare [LLD, PG11] , tourism [Knu04,

DD09], transport [NK09, BGM+10, BVAC13], building automation [SVVB12, DP14],

home [CNS+06, BC08, WH11, CKY+11], agriculture [CPLM11, WWG13], etc.) in order

to better automate user’s daily activities and tasks. Many studies focused on deriving con-

text information [Che03, GS04, SLPF03, RMCM03, PBW+04, CGZK04, SPL06] as well

as providing frameworks to enable the realization of composite and reconfigurable services,

e.g. through agents or applications [KKK+08, MPG+08, ILMF11, RNS+08, SCM10]. The

rise of the development of senseable objects resulted in multiple efforts to build models

enabling to recognize a situation [CNS+06, KHF+11, CNW12, MDEK13]. Other models

[ELES06, HWG07, Goo, CNBC10] as well as those surveyed in [CHN+09] were also dedi-

cated to providing generic descriptions for sensors and the entities that they measure.

All these approaches share the point that defining a common semantics for connected de-

vices, sensors, tasks, etc. enables to leverage their interoperability, stepping toward the

vision expressed by [Las05] in which the Semantic Web technologies are sensed as being

particularly well-suited to solve the “interoperability nightmare” introduced by ubiquitous

computing.

The following subsections will present a large overview of the existing models and middle-

wares that we consider as relevant in the scope of this dissertation. In particular, we will

concentrate on the models and middlewares enabling to derive context information and

device discovery. We will however leave aside vertical models, too specific to a particular

domain and consequently overlooking many aspects that this dissertation intends to cover.

Models to derive context information

Chen et al. [Che03] coupled the use of ontologies with agents, interconnected using

the FIPA 3 specifications in order to develop a middleware allowing heterogeneous devices

to cooperate. Specifically, Chen et al. used context-aware agents together with an au-

tonomous broker (CoBrA, see [Che03]), to collect and process information about a given

context (e.g. a weekly meeting in a given room). Computation of such context relied on the

use of a Standard Ontology for Ubiquitous and Pervasive Applications (SOUPA) [CFJ05],

defining formally intelligent agents (their actions, events, time & space constraints, etc.).

Chen et al. also modelled users’ privacy policies enabling the selection of connected devices

3. FIPA specifications represent a collection of standards which are intended to promote the inter-
operability of heterogeneous agents and the services that they can represent. http://www.fipa.org/
specifications/index.html

http://www.fipa.org/specifications/index.html
http://www.fipa.org/specifications/index.html

24 Chapter 2. Related Works

according to users’ rights. Note that the idea developed by Chen et al. was further reused

in other studies, such that [BJH+04] which focused on sharing descriptions of context data

to build context-aware architectures.

Gandon et al. [GS04] proposed the semantic e-Wallet concept to support automated identi-

fication of and access to personal resources (calendars, location functionalities, databases,etc.)

in a context of multiple agents assisting a user to realize different tasks. Towards this goal,

each resource was considered as a Semantic Web Service i.e., with semantically described

functionalities. Additionally, the semantic e-Wallet let users create privacy policies (using

a semantic model) enabling to prevent that agents access to restricted information.

Strang et al. [SLPF03] proposed an Aspect-Scale-Context (ASC) model represented

through the CoOL ontology. In this model, an aspect is a feature of interest (Temperature,

Pressure, etc.) while a scale is a metric (Meter, Celsius, Pascal, etc.). An aspect can be

linked to several scales while a scale can be associated with several context information.

The CoOL ontology has been specifically developed in order to support the evaluation of

context queries, to detect context information inconsistencies.

Wang et al. designed the CONON [WZGP04] ontology for smart home environments and

built the SOCAM [GPZ04] middleware. The idea of the authors was to avoid inconsisten-

cies in objects’ representation, enabling then their interoperability and the derivation of

higher level context information.

The DAML+OIL ontology language has been the basis of the GAIA [RMCM03] middle-

ware, introduced by Ranganathan et al. In GAIA, reasoning for deriving new context data

was performed by means of rule-based inferences and statistical learning. Ontologies were

used to provide a clear semantics to data derived through different reasoning techniques.

Preuveneers et al. [PBW+04] designed a context ontology in order to enable application

adaptation, automatic code generation and mobility as well as generation of device specific

user interfaces. Their approach focused on offering a definition for many context informa-

tion in order to give as much processable information as possible to any application.

Christopoulou et al. [CGZK04] defined an ontology to enable the composition of different

applications. In their approach, an object is modelled as an eGadget associated to a Plug

representing functionalities offered by the object as well as its physical properties (e.g.,

shape). Composition of objects is modelled through a concept eGW that accounts for as-

sociating at least 2 functionalities of different objects. Orchestration, availability, location

and applicative requirements are however out of the scope of this paper.

2.1. Models for smart environments 25

Singh et al. [SPL06] proposed a framework enabling the collaboration of different per-

vasive computing environments (called AS, standing for Autonomous Systems) by using

Semantic Web technologies. Such ASes were semantically described, allowing then inter-

connections to be created. ASes were envisioned to be linked to places such as office,

home or pub. Each AS runs a knowledge base maintaining the current context of a place

(in terms of functionalities, privacy and trust), the resources and people it managed. The

ASes came with a set of RDQL 4 rules allowing to take decision regarding what to do when

a new resource joined the AS.

Situation recognition had also led to several middlewares participating to deriving higher

level context information. Amongst other initiatives, Chen et al. [CNW12] described

a middleware for continuous activity recognition based on multi-sensor data streams in

smart homes. Underpinned by an ontology, their work consisted of modelling context in-

formation associated to smart homes as well as what they called “Activities Daily Living”

(ADL), consisting of activities performed by users. Context information was represented

by descriptions for sensors, actuators and other home entities, including time and location

attributes. Activities were represented with a richer Description Logic, taking into ac-

count conditions, goals, effects and durations. Situation recognition was performed using

semantic subsumption reasoning algorithms.

Kurtz et al. [KHF+11] proposed the OPPORTUNITY framework to recognize human ac-

tivities with limited guarantees about placement, nature and availability of sensors. They

divided their approach in three steps, including coordinating the recruitment of sensors

according to a high level recognition goal and, the instantiation of data elements to infer

activities. In their approach the coordination and recruitment of sensors is performed

based on a semantic mapping between the descriptions of the goals and the descriptions of

the sensors (capabilities, characteristics, etc.). Such descriptions are based on a common

and formal model using OWL enabling to abstract and structure goals as well as function-

alities of sensors. Such abstraction is important as it enables sensors to be superseded by

others (when not available) or complex activities to be seen as a set of atomic ones.

More recently Mediskos et al. [MDEK13] proposed to define activity patterns in an on-

tology. Based on the Domain and Situations (DnS) pattern [GM03] described in the

DOLCE+DnS Ultralite ontology 5, their patterns are further used in rules enabling to

4. RDQL, a Query Language for RDF, http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
5. DOLCE+DnS Ultralite (DUL) ontology. http://www.loa.istc.cnr.it/ontologies/DUL.owl

http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
http://www.loa.istc.cnr.it/ontologies/DUL.owl

26 Chapter 2. Related Works

recognize whether an activity takes place or not. In their representation, an activity con-

tains participants and physical entities. An activity is also linked with location and time

attributes. Two patterns have been developed, the first one enabling to determine if an

activity is a specialization of a situation, and the second representing a situation as a

sequence of activities. As relying on OWL, the authors are however unable to take into

account the order in which activities must be performed to realize a situation.

Models to discover and compose devices

Aligned with Chen et al., Katasonov et al. [KKK+08] developed a middleware allowing

heterogeneous devices to cooperate, based on the FIPA specifications. In particular, the

authors relied on Semantic Web Service ideas [PL04] to create a Semantic Web of Things

composed of agents presenting the semantic profiles of devices that they were monitoring.

Their resulting infrastructure was processing incoming semantic requests by triggering ap-

propriate device functionalities.

Song et al. [SCM10] proposed a middleware focused on task computing, i.e. enabling

users to select different and heterogeneous devices to realize a task. They created an ap-

plication layer to enhance interoperability and composability of services offered by these

different devices, which consisted of wrapping the device semantics brought by existing

specifications (such as Bluetooth, UPnP, etc.) into semantic services.

With Construct, Coyle et al. [CNS+06] proposed a semantic middleware to unify the

data and service representation of diverse home automation systems. In Construct, each

device in a smart home is considered as either a sensor or an actuator. Once semantically

annotated, these devices are integrated into smart home applications.

Bonino et al. proposed DOGOnt, an ontology dedicated to classifying the appliances found

in a smart home as well as the possible actions to perform on them [BC08].

With EASY, Ben Mokhtar et al. [MPG+08] associated semantics to devices of perva-

sive environments to further enable their discovery. They defined a Capability concept

allowing service requesters to express their needs and service providers to advertise their

capabilities. Besides, they defined conformance rules for matching services with requested

properties. Finally, Ibrahim et al. [ILMF11] defined semantic equivalence relations be-

tween services to enable service substitution in pervasive environments.

The work done by Ruta et al. [RNS+08] consisted of defining an ubiquitous knowledge-

based system to enable object discovery in smart environments. Smart environments are

2.1. Models for smart environments 27

considered as composed of micro devices, each of them annotated with semantic descrip-

tions referring to concepts defined in ontologies. The description of a micro device provides

intentional knowledge, i.e., characteristics specific to the micro device. Discovery of micro

devices involves two steps. Upon the reception of a request, a pre-selection based on an

ontology reference is made, to select a ‘type’ of resources. Thus, a matching is performed

amongst semantic annotations of selected resources and an on-demand request.

Ostermaier et al. [ORM+10] proposed to search for real-world entities having certain

properties. Their idea consisted of associating a Web page to a real-world entity (e.g.

a meeting room) containing additional structured metadata about the sensors connected

to it. The requests were made using a simple search language (e.g. ‘room ABC occu-

pancy:empty’) and were composed of a ‘static’ part (e.g. ‘room ABC’) and a ‘dynamic’

part (e.g. ‘occupancy:empty’). When a request was received by the search engine, the

‘static’ part was analyzed to filter the sensors providing a capability (e.g. filter the sensors

of room ABC that provide ‘occupancy’). The search engine was further using predictive

models to compute the probability that filtered sensors return a given value (e.g. proba-

bility that sensors giving ‘occupancy’ in room ABC return ‘empty’). When sufficient hits

were found, the process was stopped and the results about a given property (occupancy)

were returned to the user.

Pfisterer et al. [PRB+11] proposed an architecture aiming to open access to sensors, en-

hancing integration of data and services of heterogeneous sensors and facilitating novel

applications. They provided vocabularies allowing to integrate descriptions of sensors and

things with the Linked Open Data (LOD) cloud 6 and proposed search mechanisms tak-

ing into account states of sensors (e.g. availability). Their approach in answering a user

request was to query a triple store by using the SPARQL protocol.

He et al. proposed the use of semantics to define the context of a thing in order to further

build composite services [HZHC12].

Finally, a number of European initiatives revolving around the IoT have led to the descrip-

tion of reference architectures 7 and middlewares 8 designed to improve interoperability and

creation of services and applications.

6. Linking Open Data Cloud, http://richard.cyganiak.de/2007/10/lod/
7. IoT-a, Internet of Things Architecture, http://www.iot-a.eu
8. The Linksmart middleware (previously known as the Hydra middleware), http://sourceforge.net/

projects/linksmart/

http://richard.cyganiak.de/2007/10/lod/
http://www.iot-a.eu
http://sourceforge.net/projects/linksmart/
http://sourceforge.net/projects/linksmart/

28 Chapter 2. Related Works

Analysis

While a lot of various ontology-based models and semantic middlewares have been

designed in the area of modelling context information as well as pervasive environments

and their constituents, all of them come with shortcomings if replaced in the scope that

this dissertation addresses.

In particular privacy policies tied to users, connected devices and applications are only

fully covered in [SPL06] and partially covered in [Che03, GS04].

While associating location information to a user or a connected device is tackled in many

approaches [Che03, GS04, WZGP04, SPL06] none of the approaches defines a formal

location model enabling e.g., to deduce if a device is in the vicinity of a user. In other

words, if some approaches allow to say that ‘a TV is located in room 123’, none is capable

of determining if this ‘TV is close to room 456’ because none provides a model enabling

to localized ‘room 123’ from ‘room 456’ 9.

Temporalities implied by the mobility of the constituents of IoT systems are covered in

some works through annotations. A consequence is that additional reasoning procedures

– w.r.t what OWL and rules offer – must be programmed e.g., to deduce the availability

of a connected device or an application at a given time.

Another important weakness associated to these studies is their dependency to OWL or

rules reasoning. Similar to the argument pointed by Henricksen that these approaches are

unable to deal with uncertainty, returning results to a query implies that all requirements

expressed in this query be satisfied. In other words, in a context where one is searching

a connected device with some requirements; answers are provided if and only if the whole

set of requirements are handled. This ‘all or nothing’ approach has however drawbacks,

especially as it precludes distinguishing between prominent and negligible requirements to

provide sufficiently good answers.

Another weakness of these models lies on the lack of support for user preferences and user

profiles. While personalized results based on privacy policies may be returned to users

in [Che03, GS04, SPL06], none of the approaches is capable of appreciating results in

function of other user criteria such as his potential disabilities, his age, etc. Concurrency

accesses inherent to offering connected devices to multiple users are also not covered in

any of these works.

9. Note that the IoT-A project provides support for such a modelling, as a result of being one of
the projects in which this dissertation has contributed, see IoT-A deliverable D4.3 (Section 3.2.2), http:
//www.iot-a.eu/public/public-documents/documents-1/1/1/copy2_of_d4.2/at_download/file

http://www.iot-a.eu/public/public-documents/documents-1/1/1/copy2_of_d4.2/at_download/file
http://www.iot-a.eu/public/public-documents/documents-1/1/1/copy2_of_d4.2/at_download/file

2.2. Searching through semantic similarity measures 29

Finally, all the approaches providing query support and reasoning capabilities do not

pay attention to the way such reasoning should be performed. In particular, reasoning

is performed in a dedicated place and has to deal with all the modelled information.

The rise of mobile connected devices as well as the plurality of applications and users

calls however for localized and interconnected reasoning procedures to avoid potential

scalability problems.

2.2 Searching through semantic similarity measures

As mentioned in the previous chapter, we believe that establishing semantic similarity

measures to support the discovery of connected devices in smart environment is a key

requirement. As the topic is widely covered by the Semantic Web community, this sec-

tion provides a review of the most well known measures and places them in the context

of concepts described in ontologies almost devoid of instances and underlied by the DL

SHOIQ. Choice of this DL comes from the complexity of the models established in the

Chapter 3 of this dissertation. Amongst the various possibilities to classify the existing

semantic similarity measures, one is to consider two groups: the extensional-based and

the intentional-based approaches.

2.2.1 Extensional-based similarity measures

The extensional-based similarity measures use the extensions of the concepts that they

compare (i.e. their instances) to determine a similarity value.

In this category, many methods have considered the overlap of the extensions of two con-

cepts being compared in order to produce similarity measurements. Grounded by the

work of Jaccard [Jac01], D’amato et al. [dFE05] proposed a semantic similarity measure

using the ratio of instances belonging to the intersection of the concepts that they com-

pare with the number of instances belonging to their union. Resnik [Res95], proposed

a slightly different approach, defining the semantic distance of two concepts in terms of

the IC (Information Content) conveyed by their LCA. To compute the IC of a concept,

Resnik used the work of Ross [Ros09] i.e. where the Information Content is quantified as

a negative log likelihood (IC(C) = − log(p(C)) and where p(C) is a probability associated

to the concept C. In his work, Resnik defined p(C) as the probability of occurrence of

C in a corpus. Further works done by Jiang & Conrath [JC97] as well as Lin [Lin98]

30 Chapter 2. Related Works

have extended Resnik’s vision, by considering the variation between the IC conveyed by

the concepts being compared and the IC conveyed by their LCA, to obtain a semantic

similarity. In these works the probability associated to any concept C accounts for the

fraction of the instances belonging to C divided by the total number of instances in the

ontology.

Another set of methods were developed to cope with the semantics of ontologies under-

lied with expressive DLs (at least DLs up to ALC). In particular, D’amato, Fanizzi et

al. [dFE05, dFE06, FDE08] proposed several measures eliciting the semantics of any con-

cepts defined in such ontologies. In each of their works, the concepts of the ontology are

rewritten in their normal forms and a semantic similarity measure is proposed, relying on

the overlap of the extensions of the concepts being compared.

The main drawback of these methods however, is that they do not correctly interpret the

semantics underlying any two concepts that they compare. In particular, they consider

that two concepts are totally dissimilar if they do not share any instances, whatever they

contain common semantics or not (see [DSF08] for a discussion on this point).

To cope with this limitation, D’amato et al. [DSF08] proposed to compute the semantic

similarity of ontological concepts by relying on the variation between the number of in-

stances in the concept extensions and the number of instances in the extension of what

they call the “good common subsumer” (GCS) of the compared concepts. The use of the

GCS – a variant of LCS but for concepts expressed through operators of the ALE DL

– allows this measure to take into account the semantics underlying the concepts being

compared, while the computation of the variation of the extensions (instead of the their

overlap) allows to address the aforementioned drawback. However, this measure has two

other limitations. First it does not bring much difference in the case of ontologies under-

pinned by a DL above of ALE and in particular does not take into account the special

features s of DLs allowing hierarchy of (possibly) transitive roles. Second, it assumes that

the ontology covers both the concepts and (at least) a large portion of the instances of

a given domain, which again is not always the case. To summarize, we believe that this

measure should be chosen in the case of ontologies defining both concepts and instances

of a given domain and where the semantics underlying this ontology is based on a DL up

to ALE . Experimentations performed in Chapter 6 allows to appreciate how this measure

fails in the case of ontologies devoid of instances or underlied by an expressive DL such as

SHOIQ.

2.2. Searching through semantic similarity measures 31

2.2.2 Intentional-based similarity measures

Unlike extensional measures, intentional measures focus on the structure of the con-

cept definitions in order to evaluate their similarity. In this category, a lot of semantic

similarity measures have been proposed as functions of the path distance between concepts

in the hierarchical graph underlying the ontology. In this context, Rada et al. [RMBB89]

proposed that the semantic distance of two concepts accounts for the length of their short-

est path (given by their LCA). Leacock & Chodorow [LCM98] further transformed this

distance to a similarity, considering the highest path length existing in the hierarchical

graph. Wu & Palmer [WP94] considered the computation of the path between the >

element of the hierarchical graph and the LCA of both compared concepts. Finally, Gan-

jisaffar [GANJ06] set weights on each concept of the graph based on the maximum length

of the existing paths between this concept and the > concept and further used the LCA

of two compared concepts to get a similarity measure. All these four measures, have in

common that they only consider the hierarchical graph of concepts to compute semantic

similarity measures. As a consequence, they can be equally applied on ontologies whether

they contain instances or not. However, these methods share the point that they are not

able to evaluate the semantics that underlies a concept. As relying on the hierarchical

graph of concepts, these methods give the same similarity value to any pair of concepts

sharing the same LCA, whatever these concepts share some common semantics or not.

Other works proposed to consider all possible relations (i.e., in NR ∪ {v}) between any

two concepts to compute their similarity. In this context, Sussna [Sus93] used weights

on all edges linking two concepts to compute a semantic similarity distance. Although

this method computes a different “shortest path” between two concepts, it does not al-

low any further to consider the semantics that they convey. In 2011, Pirro et al. [PE10]

proposed to assign a score of informativeness to each concept by using the whole set of

relations defined in the ontology. For each concept definition, they defined an extended

Information Content (eIC) consisting of the sum of the intrinsic Information Content (iIC)

[SVH04] applied on each property in the definition of the concept. Computing the iIC of

a concept involves the ratio between the number of sub-concepts in the hierarchical graph

and the number of concepts defined in the ontology. This method, however, has the same

drawbacks than the aforementioned ones, that is, it is not able to convey the semantics

underlying any concept as it does not consider the type of restrictions (e.g. universal,

existential, on cardinality, etc.) applied to the properties in the definition of a concept.

32 Chapter 2. Related Works

As a consequence – and as stated by the authors – their work does not cover ontologies

underlied with expressive DLs.

Another method [MS02] focused on the problem of ontology alignment and proposed a

semantic similarity method based on the taxonomic overlap of two hierarchies of concepts.

In this work, Maedche et al. used the semantic cotopy of a concept. The similarity of

two concepts is then a function of their semantic cotopy, i.e. the ratio between the in-

tersection of the two semantic cotopies and their union. Again as mentioned in [DSF08],

this measure strongly depends on the hierarchy of concepts and thus, does not capture

the semantics conveyed by concepts defined with an expressive DL. Based on the works

of D’amato [dFE06], Janowicz et al. [Jan06] proposed a method based on the syntactic

definitions of the concepts. Their method however, does not allow to recognize equivalent

concepts and as a consequence does not return a similarity equals to 1 as soon as two

equivalent concepts are written differently. Janowicz et al. further refined this work in

[JW09] by proposing a method using a modified tableau algorithm (compared to [HS05])

as well as alignment matrices. In this second work, they reduced the similarity of two

normalized concepts expressed with a DL SHI to an inter-instance computation problem.

As a consequence, their method requires the presence of instances in order to compute

similarities. Moreover, their works do not handle the specific features of a DL containing

nominals.

Chapter 3

Defining models to support mobile

users

In this chapter we motivate our choice of using Semantic Web technologies to define

models for connected devices and applicative requirements. We continue by presenting

the different concepts defining the representations of connected devices and applicative

requirements. In particular, these concepts cover the following aspects:

— Standardizing the functional behavior and utilized structures of connected devices

— Human-oriented representation of connected device capabilities

— Access rights and time constraints associated to connected devices

— Spatial configuration of an indoor smart environment

— Expressiveness of applicative requirements

We also present our thoughts that led to searching how to design user profiles. In partic-

ular, we explain our choice of proposing a PhD thesis based on the investigation of fuzzy

logic in order to cope with the limitations pertaining to the sole use of Semantic Web

technologies when representing user profiles.

We conclude this chapter by proposing what we think to be the minimal Description Logic

underlying the semantics of connected devices, allowing further the design of a semantic

similarity measure detailed in the following Chapter 4.

Ideas exposed in this chapter have been presented in a related way in publications writ-

ten over the last 3 years in which we proposed a semantic representation of Web-enabled

devices [Chr11, CBL+11] and applications [CBTB12] possibly dispatched in a modelled

indoor environment [Chr12].

34 Chapter 3. Defining models to support mobile users

3.1 Rationale in using Semantic Web technologies

The previous Chapter 2 highlights the weaknesses of the diverse existing models to

support mobile users roaming across different smart environments, calling for the definition

of new ones. An open question, however, lies on the selection of an appropriate formalism

to provide models. While the weaknesses of CML and ORM based approaches (also

pointed in the previous Chapter 2) led us to privilege Semantic Web technologies, our

choice was emphasized by the conclusion drawn by Lassila [Las05], considering that the

use of Semantic Web technologies was particularly well suited to improve interoperability

as enabling a rich and flexible representation of any resource able to be described. More

specifically, this choice has been made for three reasons:

— The ability to describe a connected device and an applicative requirement through

a set of logical axioms capturing most of their respective semantics.

— The necessity for a search engine supporting mobile users to exploit ‘processable’

descriptions,

— The ability to design semantic similarity measures leading to an efficient selection

of connected devices when requested.

Thus, the resulting descriptions benefit from the following:

An identification scheme: In the Semantic Web, all entities defined in a model are

referenced by URIs.

Extensibility: This is one of the main concepts of the Semantic Web illustrated through

OWL. The Open-World Assumption (OWA) states that everything not explicitly stated

in a model is undetermined. This concept allows integration of additional models to

refine connected device descriptions. According to the opposed Closed-World Assumption

(CWA) something that is not explicitly stated does not exist. In this vision, the whole set

of connected devices (resp. applicative requirements) would have to be modeled within

itself, constricting extensibility.

Ability of domain-driven models to be interlinked: Although a particular domain is

commonly represented by a model, it is possible for every entity composing such a model

to reference other entities from a different model by using arbitrary relations. Therefore

a decentralized, dynamic and extensible collaborative information space can be built.

Use of standardized languages: The use of standardized languages enables computers

to automatically read and interpret information so that applications or programs can

3.2. Modelling connected devices 35

gather the desired information from different sources in a generic way.

Model expressiveness: The use of Description Logic allows Semantic Web based engines

to infer logical consequences from a set of asserted facts or axioms. In particular, one of the

major task of a semantic engine is to classify the concepts defined in the ontology. Leading

to a hierarchical graph composed of super/sub-concepts, procedures can be developed in

order to find semantic similarities between concepts, helping to support mobile users to

find (partially) equivalent resources when roaming across smart environments. As an

illustration, a reasoning procedure would propose either a phone or a loudspeaker as

devices able to ‘emit a sound’ just because both of them have a description covering all

what is required to ‘emit a sound’.

3.2 Modelling connected devices

From a computer scientist viewpoint, the most obvious way to start the representation

of a connected device is to speak about the functionalities that it offers. In particular,

functionalities are likely to be associated with a device state, this state changing accord-

ing to the different actions performed on the device. Grounded by initiatives such that

[MBH+04] who considered services as processes and [GD06] who described the semantics of

Petri nets, the representation of connected device comprises concepts allowing to describe

its associated finite-state machine. In particular, we consider a device as constituted of

states, each state giving access to a set of functionalities. Each functionality is primarily

considered as realizing a capability, i.e. a service as understood by an end-user (detailed in

Section 3.4 as underlying the modelling of applicative requirements). In its simple form,

we represent the State and Functionality concepts by the logical descriptions detailed by

Equation (3.1) and Equation (3.2).

State v ≥ 1hasFunctionality.Functionality (3.1)

Functionality v ≥ 1 realizes.Capability (3.2)

These definitions allow linking functionalities with states and, as such, enable a first level

of deductions to be performed: the functionalities available in a state as well as the set of

states giving access to a particular functionality.

Building the FSM of a connected device further accounts for the ability to describe the

36 Chapter 3. Defining models to support mobile users

transitions that happen when triggering functionalities of such device. As such, we define

the Transition concept by the following Equation (3.3) conveying the fact that actuation

on any functionality may possibly change the state of the device. In this definition, we

consider a functionality as always triggered from an initial state and always reaching a

final state. Note that both states are not necessarily different. In our approach, defining

the semantics of the Transition concept also accounts for ensuring that two transitions

described with the same incoming state and the same functionality necessarily go to the

same outgoing state 1. Additionally, these two transitions will be considered as equivalent.

To enforce such condition, the Transition concept definition is completed by associating a

key (as defined in OWL) on the properties hasFunctionality and hasIncomingState. The

semantics of this key, is defined in Equation (3.4).

Transition v = 1 hasIncomingState.State u

= 1 hasOutgoingState.State u

= 1 hasFunctionality.Functionality

(3.3)

∀x, y, f1, s1 such that:

x, y ∈ TransitionI2
,

(x, f1) ∈ hasFunctionalityI ∧ (y, f1) ∈ hasFunctionalityI

(x, s1) ∈ hasIncomingStateI , (y, s1) ∈ hasIncomingStateI

then x = y

(3.4)

As an illustration, an excerpt of the representation of a connected TV could be represented

by the statements displayed in Table 3.1 (three states, three functionalities, four transitions

with three of them keeping the device unchanged from a state point of view). Describing

all possible transitions would allow building a simple graph accounting for the FSM of the

TV (see Figure 3.1).

While we kept the representation of the FSM of a connected device as simple as possible,

additional information are required in order to sufficiently describe any connected device.

Indeed, the previous three definitions solely participate to build a static representation of

the device and do not represent e.g., who can access a functionality, if particular roles or

access rights are required or if the connected device can support simultaneous accesses.

1. Note that different approaches may be adopted e.g., one taking into account the values of the
parameters consumed by the functionality being triggered in a given incoming state to decide whether it
always reaches the same outgoing state or not

3.2. Modelling connected devices 37

{ON, OFF, Displaying} ∈ StateI3

{TurnOn, TurnOff, PressButton1, PressButton2, IncreaseVolume} ∈ FunctionalityI5

{T1, T2, T3, T4} ∈ TransitionI4

{(T1,OFF), (T2,ON), (T3,Displaying), (T4,Displaying)} ∈ hasIncomingStateI4

{(T1,ON), (T2,Displaying), (T3,Displaying), (T4,Displaying)} ∈ hasOutgoingStateI4

{(T1,TurnOn), (T2,PressButton1), (T3,PressButton2), (T4, IncreaseVolume)} ∈ hasFunctionalityI4

Table 3.1 – An excerpt of the representation of a connected TV

Figure 3.1 – Example of the finite state machine associated with the TV description

38 Chapter 3. Defining models to support mobile users

In this dissertation, we believe that accessing a functionality of a device will likely depend

on the context in which the device is used. In particular we foresee four situations affecting

the determination of whether a functionality of a device is available or not:

— taking into account access right policies (accessing only the functionalities a user

has been granted to)

— distinguishing the current user from other authorized users (A user currently watch-

ing a TV is able to switch between different programs vs. other authorized users

temporarily not granted to access such functionality)

— aligned with the previous case, determining the kind of simultaneous accesses that

can be supported (while aforementioned authorized users may not be able to switch

between programs they could still be able to trigger the recording of their favourite

drama)

— distinguishing between the roles of different users (prioritizing the owner of the

device compared to any other user, managing the permissions of the operator of

the device vs. the beneficiary of the device, etc.)

The third case is of utmost importance since that unlike Web services that can be spawned

in several instances to allow multiple accesses; each connected device is unique due to its

footprint on the real world. In this context, concurrent accesses may become problematic

and must be taken into account. Specifically, while simultaneous accesses on some con-

nected devices may be perfectly fine (e.g., readings on the value generated by a sensor

may be done in parallel), other cases may lead to offering a degraded service to users (e.g.,

one user turning on the first channel on a TV while a second user turning the TV off).

Undoubtedly, representing the functional behaviour of a connected device accounts for

modelling more complex relations where (at least) states, functionalities, access right poli-

cies and user roles are tightly intertwined. Taking the form of n-ary relations, these

definitions require to model additional concepts.

First, the role of the user must be defined. In particular in this dissertation we distinguish

between five different user roles defined in the hierarchy described by Table 3.2. Each

role of the hierarchy is defined as a nominal concept (all nominals asserted as different

individuals). The choice of using a hierarchy is the ability to infer, e.g., that the owner of a

device is a specialization of a user currently using a device itself specializing an authorized

user. Thus, such hierarchy enables to position access rights and to determine if a user

as a sufficient role to access or not a functionality. Note that we distinguish between the

3.2. Modelling connected devices 39

Owner v Operator Owner ≡ {owner}I
Operator v Beneficiary Operator ≡ {operator}I
Beneficiary v CurrentUser Beneficiary ≡ {beneficiary}I
CurrentUser v AllUsers CurrentUser ≡ {using}I
AuthorizedUsers v UserRole AuthorizedUsers ≡ {authorized}I
{owner}I , {operator}I , {beneficiary}I , {using}I , {authorized}I pairwise differents

Table 3.2 – Hierarchy of roles. Each role is defined as a nominal. A role includes in another
accounts for a role with higher accesses.

owner of a device and the beneficiary of the device, to model situations where e.g., an

electrical company owns and operates an electricity meter that benefits a user. Defining

the roles of users enables to manage simultaneous as well as restricted accesses. Indeed,

any transition of a connected device can now be scoped (contextualized) with one role

allowing to say that in a particular state, the functionality is restricted to users with some

roles. Representing such a context accounts for specializing the aforementioned Transition

concept and is detailed in the Equation (3.5)

ScopedTransition v Transition u = 1 requiresRole.UserRole (3.5)

Following on the example of TV, suppose that a user switches the TV on channel 1, leading

to the State “Displaying”. The association of a UserRole on each of the functionalities

associated to this State could lead to the following rights: “Turning OFF the TV” granted

to the current user (and according to the hierarchy of roles, granted to the owner, the

operator and the beneficiary of the device), “Accessing the backlogs of the TV” granted to

the operator and e.g., “Turning up and down the volume” granted to all authorized users.

Aside to the roles that users can hold, access rights must also be defined to further give

information about who can access what. In particular, in one case, one user may be

granted to access to some functionalities of a first connected device, while it may be

denied to access to functionalities of a second one (both possibly possessed by a same

second user). Grounded by studies having already investigated how to set up access rights

to users using ontologies and rules [LZWQ05, mAYKGS09], we propose to define user

rights by the patterns shown in Equation (3.6) that associate to any user a set of rights

40 Chapter 3. Defining models to support mobile users

consisting of tuples linking transitions to a required role.

User v ∃ hasRight.Right u

∀ hasRight.Right

Right v = 1 hasRole.UserRole u

≥ 1 hasTransition.Transition

(3.6)

Note that to further enable the support of authentication protocols such that WebID 2,

the concept of User defined in Equation (3.6) may be defined as equivalent to the concept

of Agent defined in the Friend Of A Friend ontology 3.

Another aspect characterizing connected devices relies on the temporal relations that

can be associated to them. Indeed, a connected device can be “busy all the day for

maintenance purpose”, can “become unavailable between 5pm and 9am”, can “be used

only after another one”, etc. A possible result of such time constraints is that they can

impact the functional behaviour of the device (as possibly changing over the time). To

allow modelling these constraints, this dissertation relies on the work of Batsakis et al.

[BP10] that proposed an ontology to describe qualitative time relations, based on the

thirteen relations described in Allen’s theory[All83].

In details, the ontology proposed by Batsakis et al. is grounded by the works of Welty

et al. [WF06] who proposed to represent time relations in an ontology using a four-

dimensionalist approach. The work of Welty et al. relied on the problem of representing

fluents – a term defined by Mc Carthy et al. [MH69] as a function mapping objects and

situations to truth. Considering a fluent as a relation that holds within a certain time

interval [All84] (with defined starting and ending points of time), Welty’s work was about

modelling diachronic facts, i.e., facts regarded as having developments in time. Instead

of using a reification-based method, Welty proposed to consider any entity of an ontology

as having temporal parts, each of these parts being given different properties to represent

the entity at an interval of time. In this 4D-view, any entity having temporal parts

can be seen as a spacetime worm where temporal parts are slices of the worm [Sid03].

Such a spacetime worm is illustrated by Figure 3.2. Batsakis et al. further extended the

work of Welty et al. with qualitative temporal relations holding between time intervals

whose starting and ending points are not specified. In particular, they introduced the

2. WebID, http://www.w3.org/wiki/WebID
3. Friend Of A Friend defines relationships between peoples, http://xmlns.com/foaf/spec/

http://www.w3.org/wiki/WebID
http://xmlns.com/foaf/spec/

3.2. Modelling connected devices 41

Figure 3.2 – An entity with temporal parts as a spacetime worm

thirteen spatial relations described in Allen’s temporal theory from which additional time

inference can be performed [All83] using rules. Figure 3.3 illustrates the thirteen Allen’s

time relations, while Equation (3.7) shows the main definitions of the concepts (coming

from works of Welty) that we have included in the description model of the connected

devices. Note that unlike Batsakis, we provide seven additional rules allowing to position

any pair of time intervals in the classification of Allen’s time relations. All these rules are

presented in Table 3.3 that also describes six Allen’s temporal relations as inverses of six

others. Finally, Table 3.4 shows rules expressing what is learnt when composing different

Allen’s relations. Note that some are also defined in Batsakis work and that in the studies

underlying this dissertation we have considered the sole compositions yielding to a unique

result (accounting to modelling 71 rules).

TimeInterval v = 1 startsAt.DateTime u = 1 finishesAt.DateTime

TemporalPart v = 1 hasTemporalExtent.TimeInterval u

∀ hasTemporalExtent.TimeInterval u

∀ isTemporalPartOf.>

(3.7)

42 Chapter 3. Defining models to support mobile users

Figure 3.3 – The 13 temporal relations of Allen’s theory

Associating temporal constraints to any connected device simply accounts for considering

the connected device as the collection of its temporal parts, each of these parts associated

to a particular time interval. Thus, while such approach entails declaring a potentially

huge set of instances to speak about the same entity, it does not require to create any

additional links at the concept level (i.e., there is no need to change the definition of

our concepts). As an illustration, the assertions excerpt presented in Table 3.5 shows

the transition T1 (as defined in the previous example of the connected TV) represented

through three “slices”. The first slice illustrates that T1 can be granted to any authorized

user between 9am. to 5pm. The second slice shows that T1 is restricted to the current user

between 5pm. and 1am. Finally, the last slice shows that T1 can only be performed by the

owner during 1am and 9am. Obviously, unavailability of the transition T1 accounts for

the impossibility for any remote user to use the functionality TurnOn when the TV is off.

Allen’s combination of relations may also be illustrated in scenarios where functionalities

must be composed in a given order to realize some applications, i.e., one functionality

being triggered after another one.

The last concepts defined in this section rely on the inputs and outputs associated to

any functionality. Accounting for the description of types of content, peripherals, etc.

that any functionality may require, generate or use; we propose that these concepts be

described through another one called ‘Structure’, defined by a transitive property called

‘isComposedOf’ to allow a ‘Structure’ to be composed of other ‘Structures’. Equation (3.8)

and (3.9) show the definition of the Input (Output being the same) and the Structure

3.2. Modelling connected devices 43

Before(x, y) : − TimeInterval(x),TimeInterval(y),finishesAt(x, xf), startsAt(y, ys),
greaterThan(ys, xf)

Meets(x, y) : − TimeInterval(x),TimeInterval(y),finishesAt(x, xf), startsAt(y, ys),
equal(xf, ys)

Overlaps(x, y) : − TimeInterval(x),TimeInterval(y),finishesAt(x, xf), startsAt(x, xs),
startsAt(y, ys), lessThan(xs, ys), lessThan(ys, xf)

Starts(x, y) : − TimeInterval(x),TimeInterval(y),finishesAt(x, xf),finishesAt(y, yf),
startsAt(x, xs), startsAt(y, ys), equal(xs, ys), greaterThan(yf, xf)

During(x, y) : − TimeInterval(x),TimeInterval(y),finishesAt(x, xf),finishesAt(y, yf),
startsAt(x, xs), startsAt(y, ys), greaterThan(yf, xf), lessThan(ys, xs)

Finishes(x, y) : − TimeInterval(x),TimeInterval(y),finishesAt(x, xf),finishesAt(y, yf),
startsAt(x, xs), startsAt(y, ys), equal(xf, yf), greaterThan(xs, ys)

Equals(x, y) : − TimeInterval(x),TimeInterval(y),finishesAt(x, xf),finishesAt(y, yf),
startsAt(x, xs), startsAt(y, ys), equal(xf, yf), equal(xs, ys)

After ≡ Before−1

MetBy ≡ Meets−1

OverlappedBy ≡ Overlaps−1

StartedBy ≡ Starts−1

Contains ≡ During−1

FinishedBy ≡ Finishes−1

Table 3.3 – Allen’s concepts defined through rules or as inverse properties

Before(x, z) : − During(x, y),Before(y, z)
Before(x, z) : − Overlaps(x, y),Meets(y, z)
During(x, z) : − Starts(x, y),Finishes(y, z)

Table 3.4 – Learning from composing Allen’s concepts in rules

(T1,OFF) ∈ hasIncomingStateI
(T1,ON) ∈ hasOutgoingStateI
(T1,TurnOn) ∈ hasFunctionalityI

{T1@day,T1@evening,T1@night} ∈ TemporalPartI3

{(T1@day,T1), (T1@evening,T1), (T1@night,T1)} ∈ temporalPartOfI3

{(day, 9am), (evening, 5pm), (night, 1am)} ∈ startsAtI3

{(day, 5pm), (evening, 1am), (night, 9am)} ∈ finishesAtI3

{(T1@day,day), (T1@evening, evening), (T1@night, night)} ∈ temporalExtentI3

{(T1@day, authorized), (T1@evening, current), (T1@night, owner)} ∈ temporalExtentI3

Table 3.5 – An excerpt including temporal representations of a described connected TV

44 Chapter 3. Defining models to support mobile users

concepts.

Input v = 1 isMadeOf.Structure (3.8)

Structure v ∀ isComposedOf.Structure (3.9)

The transitivity of this property enables then a semantic engine to retrieve all sub-

structures of one structure by issuing a unique query.

Note that unlike the other concepts and properties presented in this section, ‘Struc-

ture’ and ‘isComposedOf’ are abstract concepts that must be specialized e.g., by device

providers when describing their devices. For instance, a phone provider may define a ‘Call-

Input’ concept, specializing ‘Structure’ and having the property ‘hasCalleePhoneNumber’

specializing ‘isComposedOf’. Another specialization related to peripherals could be that

of a ‘TV’ (specializing ‘Structure’), using the property ‘hasUSBPorts’ (specializing ‘is-

ComposedOf’) and linked to a third and four ‘USB2.0’ and ‘USB3.0’ structures. This

way, resource providers are free to use their own vocabularies (and ontologies) to declare

the structures used by their connected devices. The counterpart of this approach is that

each connected device may come with a different representation of the structures it re-

quires/generates or uses. To cope with this challenge an additional process in charge of

establishing similarities between structures must be defined, using as much as possible the

specificities of the DL underlying such representation (see Chapter 4).

Definitions of the concepts detailed in this subsection do not preclude a set of assertional

axioms to embed additional facts and should be considered as the minimal requirements

to be typed as ‘State’, ‘Functionality’, ‘Transition’, etc. Thus, by providing these details,

this model enables users to know which connected device’ functionalities are available at

a given time, based on their access rights, their roles, the state the device currently is and

the context in which the device is used. In the case of programs running applications, this

model also allows determining the chain of states that must be crossed in order to access

to a given functionality.

The recapitulative Figure 3.4 shows the interlinks between the main concepts defined in

this section. In particular, these links arise from the semantics of the concepts. In other

words, these links are what are required to conform with the model thus, nothing pre-

cludes to have more links, in particular when linking a functionality with some inputs and

outputs.

3.3. Modelling the location associated to smart environments 45

Figure 3.4 – Interlinks entailed by the semantics of concepts

3.3 Modelling the location associated to smart environments

One of the peculiarities of IoT-enabled smart environments is that they involve con-

nected devices, users (and their applications) located outdoors (e.g. temperature sensors

deployed within the city) as well as in indoor environments (e.g. different rooms of a

building providing a set of connected devices such as light sensors or surveillance cam-

eras). While describing location of outdoor devices can be achieved through WGS-84 4

or Geonames 5 vocabularies; describing the location of devices, applications or users in

indoor environments requires a refined description of the location concept. As an exam-

ple, consider the building of one company composed of several labs, conference rooms and

other premises. One may be willing to create a smart environment in each of these rooms

as managing different various kind of connected devices and different profiles of persons.

Detecting the neighborhood, i.e. the set of nearest smart environments of a given user in

order to propose scalable search mechanisms when configuring his application would then

become impossible if relying on the aforementioned vocabularies only. Based on the same

thoughts than projects such that CoolTown [KBM+02], we propose to associate location

information to any connected device, application and nomadic user. We however take a

different approach than Cooltown, by proposing that such location information be under-

lied by a unified and logical representation model. Revolving around the results exposed

4. Basic RDF Geo Vocabulary, http://www.w3.org/2003/01/geo/wgs84_pos#
5. GeoNames, http://www.geonames.org/ontology/documentation.html

http://www.w3.org/2003/01/geo/wgs84_pos#
http://www.geonames.org/ontology/documentation. html

46 Chapter 3. Defining models to support mobile users

Figure 3.5 – Indoor location concepts

by Randell et al. [RCC92], the indoor location model is composed of various concepts

(room, corridor, stairs, etc.) as well as a set of properties denoting possible relationships

between instances of the aforementioned concepts (a room is adjacent to another, a room

is at the same floor than another, a room shares a door with another, etc.). Instantiating

this model accounts for creating a logical representation of the blueprint of a building,

enabling e.g., a semantic engine to make some deductions. The main indoor location con-

cepts, represented in Figure 3.5 are then attached to the descriptions of any connected

device, any application or to any representation of a nomadic user.

Goals of this model are twofold. The first intent is to provide an efficient search mechanism

by taking into account the spatial distribution of connected devices when a nomadic and

localized user is searching for a connected device (recall the scenario in the Introduction

section). In particular, this information is used to elaborate search strategies in buildings

where multiple smart environments are deployed, as detailed in Chapter 5. The second

intent of this model is to capture constraints (e.g., stairs) of a building to ensure that

users will be able to reach the devices with which they want to interact. In particular, this

information is to be coupled with user profiles (defined in the next section) when propos-

ing search results. As an illustration, a search mechanism could overlook some connected

devices matching a user functional need because they would entail for such a user to go up

3.3. Modelling the location associated to smart environments 47

or down some stairs while it was indicated in his profile that the user was in a wheelchair.

The resulting model proposes to describe different places gathered under the Place con-

cept and representing structures of buildings, rooms, or other premises. Due to the various

types of places that may be described, the Place concept has a broader meaning that can

be narrowed to a building, a floor, a stair or other kind of structures. Some of these

concepts are formally defined (based on logical predicates), allowing reasoning tasks to be

performed. As an instance, the Building concept is modelled as an entity that contains at

least some Floor. Its formal definition is given by Equation (3.10). A stair is also given a

formal representation as connecting at least two floors (see Equation (3.11)).

Building v ∃ contains.Floor (3.10)

Stair v ∃ connectsFloor.Floor (3.11)

Along with these concepts, some properties have been defined allowing different places to

be interlinked and localized relatively to others (e.g. a Room can be adjacent to another

Room). This set of properties, summarised in Table 3.6, provides a small but necessary

core of relations between different places enabling e.g., to define knowledge sharing rules

such that the ones that will be presented in Chapter 5). In particular, spatial localization

and accessibility between different premises are performed by defining rules, shown in

Table 3.7. Finally, the properties defined towards others, as well as the properties having

specific characteristics (e.g., transitivity), are listed in Table 3.8. Note that although this

model contains a small set of premises and properties, nothing precludes to extend it

with additional concepts. In particular, if the model is instantiated in a language that

makes the open world assumption (OWA) such as OWL, it is always possible to extend

the knowledge of the model by adding definitions of other types of premises 6. Besides,

more complex relationships between places may be envisioned. Finally, note that the

current proposed model assumes that places have a simple geometrical form (we only

consider rectangular or circular places) to describe their relative localizations. Additional

properties and concepts may therefore be defined in order to take into account places with

more complex geometrical form (e.g. torus, L-shaped structures, etc.).

6. OWL can import new ontologies extending its Knowledge Base with additional definitions. This
mechanism is done using the import tag in the headers of a given ontology, http://www.w3.org/TR/
owl-ref/#Header

http://www.w3.org/TR/owl-ref/#Header
http://www.w3.org/TR/owl-ref/#Header

48 Chapter 3. Defining models to support mobile users

Property Name (Domain, Range)
Description
contains (Place, Place)
Allows a Place to contain other places (e.g. a floor containing some rooms)
isAdjacentTo (Place, Place)
When a place is next to another, e.g. when both share a wall
inEast (Place, Place)
inWest (Place, Place)
inNorth (Place, Place)
inSouth (Place, Place)
Refinement of isAdjacentTo
sharesDoor (Premise, Premise)
Means that some premises may have a door in common
connectsFloor (Stair, Floor)
Means that a stair serves a floor
requiresRole (Place, UserRole)
Means that accessing a place may require a role
In particular UserRole is the concept defined in Section 3.2
hasFloorNumber (Floor, Integer)
Further allows to say whether a room is above or under another one

Table 3.6 – Semantics of properties interlinking places

isIntraFloorConnected(x, y) :- shareDoor(x, z), shareDoor(z, y), DifferentFrom(x, y)
Two premises opening on the same corridor are connected.
isInterFloorConnected(x, y) :- contains(fx, x), contains(fy, y),

connectsFloor(s, fx), connectsFloor(s, fy),
DifferentFrom(fx, fy)

Two premises contained in different floors both served by the same stair are connected.
sharesFloor(x, y) :- contains(z, x), contains(z, y)
Two premises contained by the same floor, share this floor.
isLowerThan(x, y) :- hasFloorNumber(x, n1),hasFloorNumber(y, n2),

lessThan(n1, n2)
The floor with the min number is under the other
isLowerThan(x, y) :- contains(fx, x), contains(fy, y), isLowerThan(fx, fy)
The room located in the floor with the min number is under the other

Table 3.7 – Spatial localization of premises, performed with rules

isUpperThan ≡ isLowerThan−1

Both properties are also transitive, asymmetric and irreflexive
contains ≡ isIncludedIn−1

Both properties are also transitive, asymmetric and irreflexive
isConnected ≡ sharesDoor
Two premises sharing a door are connected.
These properties are also symmetric and irreflexive

Table 3.8 – Characteristics of the semantics of some properties

3.4. Semantic models for application templates 49

3.4 Semantic models for application templates

Although various applications involving different actors have been presented in the

illustrative scenario (presented in the Introduction of this dissertation), the pre-requisite

they all have in common relies on the ability for expressing and processing requirements

and capabilities. In details, users and applications must express what they need through

requirements while smart environments with their resources need to express the services

that they can provide through capabilities. A reasoning procedure must finally be per-

formed so as to match requirements with capabilities e.g., in order to provide the mobile

user with some guidance when configuring an application. In this context, allowing ap-

plications to be instantiated with connected devices accounts for defining a formal and

processable semantics further shared by the involved stakeholders.

In this section, we propose to model the semantics of capabilities (Section 3.4.1) allowing

to use them with the aforementioned Functionality concept. We then propose a bottom-

up approach where we learn from different scenarios in order to extrapolate a semantic

for requirements (Section 3.4.2). The semantics consists of a set of logic formulas relying

on the the model describing capabilities. As these requirements are implied by the user’

mobility and are likely to be considered as requests (to find a device, to reconfigure an

application, etc.), we propose to encode them in a query language allowing as much as

possible an OWL entailment regime. In this perspective, this section further proposes a

mapping function to translate our semantic to SPARQL-DL [SP07] queries (Section 3.4.3).

3.4.1 Modelling connected device capabilities for human understanding

In our vision, we make a distinction between the capabilities realized by connected

devices and the functionalities that they offer (concept defined in Section 3.2). In partic-

ular, we consider that a capability accounts for a mean to represent a goal that a user

can understand. Conversely – and as said in a previous section – a functionality deals

with the formal representation associated to inputs/outputs/access rights/temporalities,

etc. to realize a goal.

To go towards a formal definition associated to a capability, we design a model by concep-

tually defining a Capability by the following sentence: “a Capability has a mandatory

action verb, may have multiple modalities to be sensed and may actuate on

an object”. The resulting model is displayed in Figure 3.6 and shows interlinks between

50 Chapter 3. Defining models to support mobile users

Figure 3.6 – Capability and its relationships with Functionality

connected devices and capability models. In particular, each Functionality is associated

with one or more Capability.

Using logical constructs, the formal definition of a capability is given by Equation (3.12),

indicating that a capability is equivalent to a mandatory action verb (e.g. “display”,

“setup”, “turn on”, “turnoff”) an optional target (e.g. “lamp”, “TV”, “webcam”) and

some optional perception modalities (e.g. “can be heard”, “can be seen”). Thus, we con-

sider the case of complex capabilities (i.e. not directly describable with the aforementioned

three attributes) and we adjunct the possibility for a capability to be described through a

set of (possibly ordered) other capabilities. We define then two additional concepts, Com-

plexCapability and OrderedComplexCapability to convey this idea (see Equation (3.13)).

The difference between these concepts results in considering that in the latter, capabilities

need to be realized in a certain oder. In other words, in some case a capability is seen

as allowing capabilities to be defined by others (e.g. “blinking” capability defined as the

repetition of “provide light – provide dark” capabilities). Thus, such concept enables a

semantic engine processing Capability descriptions to supersede one capability by a set of

others.

3.4. Semantic models for application templates 51

Capability ≡
(
∀ hasUserActionVerb.UserActionVerb u

≥ 1 hasUserActionVerb.UserActionVerb u

∀ hasPerceptionModality.Perception u

∀ hasTarget.Target
)

(3.12)

ComplexCapability v Capability u

≥ 2 isMadeOf.Capability

OrderedComplexCapability v ComplexCapability u

= 1hasFirst.Capability u

∀ hasRest.OrderedComplexCapability

(3.13)

The aforementioned Equation (3.12) entails the definition of other concepts being respec-

tively UserActionVerb, Perception and Target.

The UserActionVerb concept is formally defined by a set of verbs expressing an action

that a user or an application is willing to do. Although containing a fix list of verbs, use of

OWL and its “import” mechanism allows easily extending this list with new terms. Note

that for our experimentations (detailed in Section 6.2.4, we use a list composed of around

30 verbs resulting from a survey asking users to tell us a list of verbs that they were using

to describe a situation involving actions on objects.

The Perception concept is also defined by a list of terms which gather the common five

modalities of sensing something: Seeing, Hearing, Smelling, Tasting, Touching. Finally,

the Target concept conveys the idea that an object may actuate on another one (e.g. ac-

tuating on a Lamp by turning on a button switch). Thus, as explained in Section 3.4.2,

this concept is required when defining a requirement, in order to further link it with a

connected device. Hence, the Target concept is defined as equivalent to connected device

(see the use of owl:sameAs link in Figure 3.6).

The semantics associated to capability is further used when defining the formal semantics

to represent applicative requirements.

3.4.2 A semantics to model applicative requirements

Unlike capabilities, expressing requirements is a hard task due to the various numbers

of constraints that they can embed. Some may be expressed with restrictions on the

52 Chapter 3. Defining models to support mobile users

content they want to get (e.g. recall the Metro Warning application requiring a public

transportation feed). Some others may have restrictions on both the functionality provided

by a device and its localization (e.g. recall the Local Slideshow application requesting

a locally available device able to display pictures) and finally, some others may have

restrictions based on some human perception (e.g. recall the Metro Warning requesting

a device that can “warn” a user with a signal, whatever the sensory form it might take).

Besides, although not highlighted in our scenario, it may be plausible having application

templates containing requirements expressed with restrictions on time.

In our view, we consider a requirement as a collection of restrictions that apply on some

attributes (functionalities, location, ownership, etc.) associated to a connected device.

In other words, requirements can be considered as conditions that a system would check

against a set of connected devices. Connected devices respecting all necessary conditions

would then be returned for an application template to be configured.

To define the semantics of requirements, we adopt a bottom-up approach divided in three

steps. First we gather the different restrictions of the scenario presented in the Introduction

of this dissertation. Then, we write these restrictions as logic formulas (using predicate

logic constructs) in order to see the types of expressions being formed. Finally, the last

step of our method is to deduce the overall (i.e. not constricted to our scenario) semantics

tied to requirements by writing a grammar based on the formulas obtained in the second

step.

The first step leads to six restrictions: requiring a device consuming (1) or generating (2)

a given type of content, located at a particular place (3), realizing a given capability (4),

currently available (5) and aligned with access rights (6). Note that a different approach

is used in order to ensure that returned results are compliant with restrictions put in the

profile of the requester. The second step results in a set of formulas displayed in Table 3.9

and composed of the following:

— Named rules with parameters, e.g. RealizeCapability(x, y, z, t)

— Unary predicates C(x), denoting that x is an instance of the concept C.

— Binary predicates P (x, y), expressing that x and y are in relation with P , e.g.

x realizes y

— Material conditional formulas x→ F (y, x) meaning that if we have x then we must

verify F (y, x)

3.4. Semantic models for application templates 53

ConsumeContent(x, “c”) ≡ CD(x) u isMadeOf(x, y) u isRealizedBy(y, z) u consume(z, “c”)
Connected devices consuming a type of content
“x” is a variable, CD accounts for “connected device”, “c” is an instance of the concept Content and “y, z” are bound variables

GenerateContent(x, “c”) ≡ CD(x) u isMadeOf(x, y) u isRealizedBy(y, z) u generate(z, “c”)
Connected devices generating a type of content

LocallyAccessible(x, “loc”) ≡ CD(x) u isLocatedIn(x, “loc”)
Connected Devices accessible at a given location “loc”. “x” is a variable while “loc” refers to an instance of Location concept

RealizeCapability(x, “a”, “p”, “t”) ≡ CD(x) u isMadeOf(x, y)
u “a”→ hasUserActionVerb(y, “a”)
u “p”→ hasPerceptionModality(y, “p”)
u “t”→ hasTarget(y, “t”)

Connected devices realizing a given capability. “x” is a variable while “a”, “p”, “t” are values. “y” is a bound variable

Available(x, “t”) ≡ CD(x) u isMadeOf(x, y)
u isRealizedBy(y, z) u hasFunctionality(t, z)
u isTemporalPartOf(tp, t) u hasTemporalExtent(tp, ti)
u “t”→ contains(“t”, ti)

Connected devices available at the time interval “t”. “x” is a variable while “t” is a value. “y, z, t, tp, ti” are bound variables

Available(x, “u”, “r”, “t”) ≡ CD(x) u isMadeOf(x, y)
u isRealizedBy(y, z) u hasFunctionality(t, z)
u isTemporalPartOf(tp, t) u hasTemporalExtent(tp, ti)
u “t”→ contains(“t”, ti)
u requiresRole(t, ur)
u “r”→ hasRole(“r”, ur) u hasRight(“u”, “r”)

Connected devices accessible by the user “u” with the right “r” at the time interval “t”.
“x” is a variable while “u”, “r”, “t” are values. “y, z, t, tp, ti, ur” are bound variables

Table 3.9 – Expressions of restrictions, using predicate logic

In the aforementioned terms, x and y are either variables, OWL individuals (e.g. a user

action verb) or data values. Besides, parameters only appearing at the right-hand side of a

rule (i.e. not in the list of parameters of the rule) account for bound variables. Finally, all

terms appearing in the left-hand side of a rule are universally quantified. In other words,

a term such that isMadeOf(x, y) accounts for “all pairs (x, y) in relation by the property

isMadeOf”. Although required to build the formulas, the values that these variables can

take are not of interest. As an example, the first expression of Table 3.9 is composed of

the following terms:

— CD(x) where CD is an OWL concept (representing a Connected Device) while x

is a variable. The meaning conveyed is: all x of type CD

— hasFunctionality(x, y), an OWL property with 2 variables x and y. The meaning

conveyed is: “all x having the functionality y”

— consume(y, z), an OWL property with 2 variables y and z. The meaning conveyed

is: “all y that consume the content z”.

54 Chapter 3. Defining models to support mobile users

Equation (3.14) shows the semantics of requirements that we deduce from above Table 3.9

formulas (with material conditional formulas expressed through disjunctions).

R(x1, . . . , xm, . . . , xn) =
∨p
i=1 Fi(zk, zl)

F (zk, zl) =
∧q
j=1AF (zk, zl)

AF (zk, zl) = C(zk) ∨ P (zk, zl) ∨MCF (zk, zl)

MCF (zk, zl) = (zk → P (zl, zk))

= (¬zk ∨ P (zl, zk))

(3.14)

Where:

— x1, · · · , xm are free variables

— xm+1, · · · , xn are OWL individuals or values

— zk, zl (appearing in Fi(zk, zl)) are mapped on free or bound variables (xk)

— R(x1, · · · , xn) is a restriction expressed as a set of disjunctive formulas

— F (zk, zl) are conjunctions of atomic formulas

— AF (zk, zl) is an atomic formula involving either the OWL type of a given zk or

an OWL property linking a given pair of (zk, zl) possibly nested in a material

conditional formula.

— C(zk) is a condition on the OWL type of a zk (i.e., zk ∈ CI)

— P (zk, zl) is a condition on an OWL property involving zk and zl ((i.e., (zk, zl) ∈ P I)

— MCF (zk, zl) is a material conditional formula

As an example, the requirement issued by the Metro Application and consisting of requir-

ing an object outputting content of type “PublicTransportation” would be expressed by

the following restriction:

R(x, “PublicTransportationInfo”) = CD(x)

∧ isMadeOf(x, y)

∧ isRealizedBy(y, z)

∧ generate(z, “PublicTransportationInfo”)



x : a free variable on the set of connected devices (CD)

y, z : bound variables on the sets of respectively Capability and Functionality

“PublicTransportationInfo” : an OWL Individual referring to a Concept specializing

“Structure” (see Section 3.2)

3.4. Semantic models for application templates 55

3.4.3 SPARQL-DL requests for requirements

As seen in the previous subsection, requirements can contain individuals or values. As

an instance, the third requirement presented in Table 3.9, is about finding connected de-

vices at a given location where location could refer to places expressed using the aforemen-

tioned model of Section 3.3 or using an ontology such that Geonames. While expressing

such requirements remains possible in OWL (i.e. defining a LocallyAvailable concept with

OWL); two reasons preclude following this approach:

— A very large number of instances that may belong to a concept (regarding the third

requirement, there could be as many instances as geo-coordinates possibly formed)

requiring heavy computation resources to process them.

— The re-computation of the Knowledge Base, each time a new requirement (repre-

sented by a new OWL expression) would be required.

Moreover, the use of disjunctions in the semantics defined in Section 3.4.2 does not allow

expressing requirements with SWRL.

φ : Requirements → SPARQL−DL

R(x1, . . . , xm, . . . , xn) →

SELECT ?x1, . . . , ?xm
WHERE {φ(F1(zk1 , zl1))}

OR WHERE {. . . }

. . .

OR WHERE {φ(Fp(zkp , zlp))}

F (zk, zl) → φ(AF1(zk1 , zl1)) , . . . , φ(AFq(zkq , zlq))

C(zk) →


Type(?zk, C) if zk a variable

Type(A,C) with A a constant, otherwise

P (zk, zl) →


PropertyValue(?zk, P, ?zl) if zl variable

PropertyValue(?Xk, P, A) with A a constant, otherwise

MCF (zk, zl) → φ(P (zl, zk))
(3.15)

SPARQL-DL queries can however be formed from this semantics, allowing therefore such

requirements to be written down and further processed. Equation (3.15) presents a bijec-

56 Chapter 3. Defining models to support mobile users

tive function that binds the semantics of requirements to SPARQL-DL expressions. 7. As

an example, Listing 3.2 contains the SPARQL-DL request corresponding to the require-

ment issued by the Metro Warning application used in the illustrative scenario.

1PREFIX device: <http://webofdevices.appspot.com/models/device.owl#>

2PREFIX cap: <http://webofdevices.appspot.com/models/capability.owl#>

3SELECT ?x WHERE

4{Type(?x,dev:ConnectedDevice),

5PropertyValue(?x, dev:hasState, ?y),

6PropertyValue(?z, dev:isAccessibleFromState, ?y),

7PropertyValue(?z, dev:realizes, ?c),

8PropertyValue(?c, cap:hasUserActionVerb, cap:EmitSignal)}

Listing 3.1 – SPARQL-DL query to be wrapped in an HTTP call

3.5 Representing user profiles

Offering search mechanisms which can deliver meaningful results to nomadic users

calls for designing a system capable of interpreting user specificities and preferences. In

the context of multiple places of the same building (rooms, floors, etc.) equipped with

connected devices, a meaningful result would typically account for not only matching func-

tional requirements, but also entailing an easy access for the user considering e.g., distances

separating the user and the device vs. the capability for such user to walk. Interpreting

user profiles and preferences however, accounts for the ability to perceive the discriminant

pieces of information (e.g., age, health situation, size, role) as well as to understand the

meaning conveyed by their values (e.g., meaning of age = 30 or role = project leader).

In the past three decades, many studies tried to identify the relevant features character-

izing a user by developing learning algorithms as well as formal models. Amongst others,

feature-based filtering was a technique developed in order to learn preferences and inter-

ests of a user from usage data [PB07]. Collaborative filtering [GNOT92, SKKR01] was

another example consisting of comparing similar users to reveal additional interests and

preferences. In the context of interests seen as topics and organized hierarchically, domain

based inferences were applied on user profiles to infer the probability that a topic be of

interest for a given user, based on previously known interests [FK02]. In the field of In-

7. Note that this function does not display the PREFIX headers that should be associated to
R(x1, · · · , xn), for readability.

3.5. Representing user profiles 57

formation Retrieval, studies also emphasized the exploitation of immediate search context

to compute user interests [STZ05] instead of using a long-term collection of information.

Related to formal representations, various ontological models describing the major cate-

gories of user preferences were designed, many of them surveyed in [JT09].

To cope with the challenge of representing user profiles, we launched and supervised a re-

search work – under the form of a PhD – with the goal of determining a set of discriminant

categories defining a user. In the scope of our research, these categories were further used

in order, for each user looking for connected devices, to filter resources corresponding to

its profile. As an example these categories were at the basis of determining the maximal

distance that can be travelled by a user when searching for a connected device from a

given location.

Amongst the different categories having been determined, it appeared that some of them

were taking continuous values e.g., age of a user while some other were not e.g., being in

a wheelchair. While ontologies allow to formally categorize discrete data values (e.g., such

that representing the statement “a user has the property being in a wheelchair equals to

true”), they are however not able to qualify attributes having continuous values (such as

age). Indeed, understanding the meaning of a value depends on a global context more

than the intrinsic quantity itself (e.g. in some context the feature age = 50 accounts for

classifying someone as old, while in some other cases it would be classified as young).

We therefore proposed that the research work makes use of fuzzy logic theory, a branch

of logic able to handle continuous values.

Formalized by Prof. Lotfi Zadeh in mid. 70’s [Zad75a, Zad75b, Zad75c], fuzzy logic theory

consists of a multi-valued logic allowing to attach to any “fuzzy” variables a truth-value

ranging between 0 and 1. Extending binary sets theory (where variables are either true or

false), fuzzy logic is considered as a possibility to apply a more human-like way of thinking

in the programming of computers [Zad84], allowing e.g., notions such that “rather X” or

“very Y” to be formulated mathematically. In fuzzy logic theory, these notions are repre-

sented through linguistic variables.

More precisely, following the ideas of [MBKV+02] as well as the formal classification estab-

lished by Jiang et al. [JT09], we proposed that this work led to the representation of user

preferences and interests through a set of features, all of them referring to concepts and

properties defined in an ontology. We also suggested that all these features be associated

to as many as linguistic variables and that the features having their values in a continuous

58 Chapter 3. Defining models to support mobile users

interval, be supported by membership functions (their expressions being detailed in the

corresponding dissertation [Xu15]).

As an example, this chapter presents six variables deriving from the result of this research

work.

— Age

— Body Mass Indice

— Physical activity

— Lower limb pain

— Pregnancy

— Wheelchair

Aligned with these variables, Equation (3.16) shows the semantics associated to the profile

of the user, while Listing 3.2 presents an example of user profile, relying on preferences

expressed as RDF triples, i.e., processable by a semantic engine. Thus, the example high-

lights that preferences are represented by properties defined in the user profile ontology.

User v = 1 hasAge.Integer u

= 1 hasBMI.Integer u

= 1 hasPhysicalActivity.Integer u

= 1 hasLowerLimbPain.Integer u

= 1 isPregnant.Boolean u

= 1 inWheelchair.Boolean u

(3.16)

1<owl:NamedIndividual rdf:about=”&userprofile;Benoit”>

2<rdf:type rdf:resource=”&userprofile;UserProfile”/>

3<hasLowerLimbPain rdf:datatype=”&xsd;int”>0</hasLowerLimbPain>

4<hasPhysicalActivity rdf:datatype=”&xsd;int”>2</hasPhysicalActivity>

5<hasBMI rdf:datatype=”&xsd;int”>21</hasBMI>

6<hasAge rdf:datatype=”&xsd;int”>34</hasAge>

7<isPregnant rdf:datatype=”&xsd;boolean”>false</isPregnant>

8<isInWheelchair rdf:datatype=”&xsd;boolean”>false</isInWheelchair>

9</owl:NamedIndividual>

Listing 3.2 – Example of user profile using RDF statements

This approach is aligned with the strategy that we propose in the next Chapter 6 where

is defined the overall search strategy aiming to support nomadic users roaming in smart

environments. Briefly, the intention of using the aforementioned variables is to propose a

3.6. Conclusions 59

mechanism allowing to filter places where a matching between user requirements and con-

nected device semantics will be performed. Filtering the places accounts for determining

the max distance that a user may be able to travel, based on the values of the features

found in his profile. Determining the max distance further allows to select a set of places

in the vicinity of the localized user.

Interpreting the max distance that a given user will be able to travel, depends on how the

values of the different features will be categorized and has also been investigated in the

aforementioned research work.

3.6 Conclusions

After having identified the different stakeholders involved in the context of this disser-

tation, this chapter has analyzed their semantics to further propose representation models.

A large part of the modelling is underlied by Description Logics and in particular, when

all concepts and rules are interconnected, by the Description Logics SROIQ(D) which,

compared to SHOIQ detailed in the Introduction adds the fact that:

— Some roles are combined (which happens in the rules that we have defined) and,

— Some properties have a range defined by a data type (Integer, Boolean, etc.)

The recapitulative Figure 3.7 shows the main concepts of our models, interlinked together

by following the different requirements expressed in the diverse equations of this chapter.

In addition to the semantic modelling of most of the concepts triggered in this dissertation,

the profile of the user is underlied by linguistic variables, making use of fuzzy logic. Once

described the representations of connected devices, users and applicative requirements can

be processed by a searching procedure, such that the one presented in Chapter 4.

60 Chapter 3. Defining models to support mobile users

Figure 3.7 – Recapitulative view of the main concepts modelling users, devices and re-
quirements

Chapter 4

Towards producing efficient

searching procedures

Together with the definition of a unified representation describing connected devices,

users and smart environments; supporting nomadic users roaming across different smart

environments requires the development of appropriate searching procedures.

In particular, such mechanisms must deliver customized results, i.e. corresponding to user

preferences. They must also take into account user profile and take care of the localization

of users and devices, e.g., in order to propose relevant results, as close as possible from

(and in any case, accessible to) the user.

Assuming that the user has been reaching an environment (i.e., has been localized) and

is requesting some connected devices, we believe that an efficient search procedure results

in the two following steps:

— Filtering devices by coupling the profile of the user with spatial and temporal

information about devices.

— Amongst the filtered devices, performing an analysis to deduce the ones corre-

sponding best to requirements and preferences expressed in the user’ query.

Aligned with the representation models defined in Chapter 3, we believe that such a pro-

cess can be embodied by performing the steps represented in Figure 4.1.

In this view, the filtering step is performed by using the linguistic variables – recall that

they define the user profile – together with the semantic representation of the location

concepts in order to define a set of places in which a refined analysis can be performed.

In particular, the linguistic variables can typically be the inputs of a Fuzzy Inference Sys-

62 Chapter 4. Towards producing efficient searching procedures

Figure 4.1 – An example of a searching procedure comprising a filtering followed by an
analysis

63

tem (FIS), a rule engine based on IF – THEN clauses and capable of evaluating the values

taken by different linguistic variables (i.e. labels having been previously determined us-

ing membership functions). Independently of the type of FIS being chosen (Mamdani et

al. [Mam77], Sugeno [SY93], Tsukamoto [Tsu79], Jang [Jan93] or Kasabov[KS02]), such

a system could be in charge of computing a set of places leading to a set of connected

devices (the ones hosted by the determined places). This kind of filtering may also be

continued by making use of the temporal constraints associated to the representation of a

connected device, mainly to discard those not accessible for a user at a given time.

Representations of these devices are then further used by an algorithm in charge of finding

the devices that best answer the requirements expressed in the user’ query.

While filtering amongst connected devices does not require particular research and can be

done using tools found in the literature, we believe that the open point to offer an efficient

search mechanism relies on analyzing how a device answers the requirements expressed in

a user’ query. In this context, the challenge in proposing relevant connected devices to

users accounts for the capability to provide a sound analysis evaluating the similarities

between the semantics of a requirement and the remaining semantics of a connected device

(SHOIQ).

Accordingly, this chapter focuses on the second step of the searching procedure and de-

tails a method performing similarity measurements of any entities described with the DL

SHOIQ. The strength of this method is that it is designed to solely rely on the theoretical

ground enabling the creation of any ontology underlied by the DL SHOIQ. As a conse-

quence, this method is independent of any “applicative” context and can be used in other

areas involving the creation of ontologies up to SHOIQ. This independence is especially

emphasized in the experimentations that have been driven, making use of well-known and

accepted ontologies available on the Web, all of them addressing diverse domains such as

food, wine or biological classifications (details provided in Chapter 6).

64 Chapter 4. Towards producing efficient searching procedures

4.1 Preamble

Determining the semantic similarity or relatedness of different data (or services) is

an important concept in information systems. Usually based on topological or statistical

analysis, it is for instance used in information retrieval to expand a query with similar

terms [Voo94] or to return ranked results. In information fusion, it is used to reduce uncer-

tainty when merging data from different sources, allowing for instance the creation of an

ontology using a bottom-up approach [SM01]. Finally, in data or service maintenance, it

allows failure recovery by analyzing which data (resp. service) can be replaced by others.

In this chapter, we address the problem of comparing raw data having been associated to

concepts 1 or properties defined in ontologies underlied by the expressive DL SHOIQ (see

Section 1.1.1). Usually, these ontologies contain the definitions of a domain of expertise

(e.g. automotive, biology, wine, etc.) and may embed few instances of concepts mostly to

setup the definition of other concepts (so-called nominals) 2. Generally, designing a seman-

tic similarity assessment process able to compare different ontological concepts consists of

defining a measure whose objective is to quantify the common (and in the case of [Tve77],

the different distinguishing) features amongst each pair of compared concepts. Up to now,

a plethora of such measures (some surveyed by [Sch08]) has been designed and applied

on elements of an ontology, referring to different point of views that one can have about

how elements should be compared. Initially, most of the existing methods were based on

an adaptation of measures defined for different and less expressive representations (e.g.

feature vectors or trees, as mentioned in [d’A]). However such measures are unable to con-

vey the underlying semantics of most ontological representations. Then, some measures

coping with expressive ontologies were developed. However, none of them truly address

ontologies defined with a DL above than ALCHN . Finally, most of the recent approaches

have considered using the extensions of concepts to compute semantic similarity measure-

ments. This assumption however, is problematic when considered ontologies solely define

the concepts of a domain (and consequently do not intend to embed instances). Moreover,

these methods tend to place any defined concept under the Closed World Assumption (as

in these approaches, the concept is assimilated as equal to its set of instances) which, by

1. Using an annotation mechanism such as Semantic Annotations for Web Resources (SA-REST)
[LGSpt]

2. In some cases an ontology represents an entire domain of interest i.e., its concepts and instances (e.g.
in an automotive context). In some other cases it may focus on representing the concepts and include very
few (even none) instances (e.g. the OWL-S ontology)

4.2. A semantic similarity measure for SHOIQ concepts 65

definition, is a wrong assumption when representing concepts in OWL.

To the best of our knowledge, no work has been done in the specific case of ontologies un-

derlied by the expressive DL SHOIQ where roles can be transitive, inverse of other roles

and organized in a hierarchy and where concepts can be defined with instances (nominals).

In particular, no work has been done in the context of SHOIQ ontologies having almost

all their concepts devoid of instances. What we do propose then, is a novel semantic sim-

ilarity measure for such ontologies. Our method relies on an algorithm that expands the

classification graph of any ontology underlied by a DL up to SHOIQ and that weights all

the concepts of this expanded graph. Based on these weights, we define a measure that

solely relies on the semantics of the concept definitions (i.e. that can work on ontologies

devoid of instances) and that is able to respect all the requirements formulated by [DSF08]

who theorized a set of criteria that a semantic similarity measure should follow.

4.2 A semantic similarity measure for SHOIQ concepts

This section introduces a new semantic similarity measure that relies on an algorithm

expanding the classification graph of any ontology underlied by the DL SHOIQ and

weighting the nodes of such graph. Based on a SHOIQ Normal Form (see Section 1.2)

and a family of generative functions, the algorithm uses various subsumption properties

(see Appendix A for details) taking into account the specificities of the DL SHOIQ to

generate a set of pseudo-concepts (denoted by PS in the rest of the manuscript, see also

Section 1.2) allowing a semantic Web engine to determine additional inferences when

reclassifying the ontology. Although useless from the domain definition point of view,

these pseudo-concepts are useful when computing semantic similarity as making explicit

the underlied semantics implied by the concepts originally defined. All the concepts of

this expanded graph are further weighted using their in-degree as well as the weight of

their children (0 if the node is a leaf). These weights are further used when computing

the semantic similarity of any two concepts, in the case of such concepts having dissimilar

fragments of semantics in their descriptions.

4.2.1 Expanding the classification graph

As mentioned in the state of the art (refer to Section 2.2), intentional-based methods

studying the structure of the definitions of concepts are hardly able to capture the seman-

66 Chapter 4. Towards producing efficient searching procedures

(a) The sole computation of the semantic
neighborhoods of A and B seems indicat-
ing a high similarity.

(b) Considering the semantic neighbor-
hoods of C and D refines (by decreasing)
the semantic similarity of A and B.

Figure 4.2 – Illustration of the impact of the semantics of a concept when computing
similarity of other concepts.

tics that these concepts convey. To cope with this issue, some methods have introduced

the use of LCS (or GCS) consisting of finding the best common subsumer of two concepts

with regards to the common semantics that these concepts share. What we propose in

this work, is grounded on these approaches and consists of generating the semantic neigh-

borhood that is implied by a SHOIQ-based concept. The idea behind generating the

semantic neighborhood of each concept, is twofold. First, it allows to elicit the semantics

conveyed by the concepts. Second, it allows to find what is the common semantics shared

by two concepts and to get the best super-concept of the union of the semantics that both

concepts do not share.

Unlike the other methods, we believe that generating the semantic neighborhood of all

concepts must be done before starting any similarity computation. Indeed, we believe

that computing the similarity of two concepts must be performed when (an only when)

all possible semantics have been extracted from all defined concepts. In other words, we

believe that the semantics of a concept C can impact the measure of similarity of two

other concepts A and B. This idea is a generalization of what has been pointed out in

[DSF08], except that it is applied on the semantics conveyed by each concept and not on

the extensions of such concepts. It can be visualized in Figure 4.2. In our approach, the

semantic neighborhood of any concept is built by using the subsumption relations that

exist between restrictions, the hierarchy of roles as well as their transitivity. In addition,

we also consider the subsumption axioms that exist between this concept and other defi-

4.2. A semantic similarity measure for SHOIQ concepts 67

nitions. Consider for instance, the following excerpt of the Wine 3 ontology:

CabernetSauvignon ≡ vinu
∃madeFromGrape.{CSGrape}u
≤ 1 madeFromGrape.>

RedBurgundy ≡ Burgundy u RedWine
Burgundy ≡ vin u ∃locatedIn.{BourgogneRegion}
RedWine ≡ vin u ∃hasColor.{Red}
CabernetSauvignon v ∀hasBody.{Full, Medium}
CabernetSauvignon v ∃hasColor.{Red}
CabernetSauvignon v ∀hasFlavor.{Moderate, Strong}
CabernetSauvignon v ∃hasSugar.{Dry}
RedBurgundy v ∃madeFromGrape.{PinotNoirGrape}
RedBurgundy v ≤ 1 madeFromGrape.>
Burgundy v ∃hasSugar.{Dry}
vin v ≥ 1 madeFromGrape.>
vin v = 1 hasFlavor.>
vin v = 1 hasSugar.>
vin v ∃locatedIn.Region
vin v = 1 hasColor.>
vin v = 1 hasBody.>
vin v ∀hasMaker.Winery
vin v = 1 hasMaker.>
madeFromGrape v madeFromFruit
hasFlavor v hasWineDescriptor
hasSugar v hasWineDescriptor
hasColor v hasWineDescriptor
hasBody v hasWineDescriptor
locatedIn(BourgogneRegion, FrenchRegion) = >
locatedIn ∈ NR+ (i.e., locatedIn is transitive)

The semantic neighborhood of RedBurgundy that we would like to establish, should

consist of the semantics that this concept conveys, to further generate the pieces of seman-

tics that are not represented in the ontology. In particular, this semantic neighborhood

should include the disjunctive expressions that are semantically close to the definition of

RedBurgundy (once written in Normal Form) such that:

∃locatedIn.{BourgogneRegion} u ∃hasColor.{Red}

Then, the semantic neighborhood should include the DL expressions that can be learnt

3. The Wine ontology is a well-known ontology underlied by the DL SHOIQ(D), see http://www.w3.
org/TR/owl-guide/wine.rdf

http://www.w3.org/TR/owl-guide/wine.rdf
http://www.w3.org/TR/owl-guide/wine.rdf

68 Chapter 4. Towards producing efficient searching procedures

from the subsumption assertions declared in the ontology, e.g.

∃madeFromGrape.{PinotNoirGrape}

or, from Burgundy description,

∃hasSugar.{Dry}

The semantic neighborhood should also include the DL expressions derived from the hi-

erarchy of roles, e.g.

∃hasWineDescriptor.{Red}

resulting from the fact that hasWineDescriptor is a super-property of hasColor.

Finally, the semantic neighborhood of RedBurgundy should contain the DL expressions

reflecting the transitiveness of some properties involved in its description, e.g.

∃locatedIn.{FrenchRegion}

eliciting the relation between BurgundyRegion and FrenchRegion through the property

locatedIn.

Towards this goal, we propose defining a family of generative functions that is able to

build the semantic neighborhood of any concept written in Normal Form and underlied

by a DL up to SHOIQ.

Definition 4.1. Considering an ontology O, with R ∈ NR a role, the generative function

family FG consists of 6 functions defined from WO ×M to P , (with M and P subsets of

WOk, k ∈ N) as follows.

4.2. A semantic similarity measure for SHOIQ concepts 69

WO ×M → P

Φ : C, {mp} → Φ1(C, {mp})
⋃

Φ2(C, {mp})
Φ : C, {mp} → Φ1(C, {mp})

⋃
Φ2(C, {mp})

Φ1 : C 6∈ {mp} →
{
C ′ ∈ O/C @ C ′

}⋃{
X ∈ Φ(C ′, {mp})/C @ C ′

}
Φ2 : ∀R.D 6∈ {mp} → {∀S.D, S @ R}

⋃
{∀S.X, S v R,X ∈ Φ(D, {mp} t C)}

∃R.D 6∈ {mp} → {∃S.D,R @ S}
⋃

{∃S.X,R v S,X ∈ Φ(D, {mp} t C)}

≥ nR.D 6∈ {mp} →
{≥ nS.D,R @ S}

⋃
{≥ nS.X,R v S,X ∈ Φ(D, {mp} t C)}

≤ nR.D 6∈ {mp} →
{≤ nS.D, S @ R}

⋃
{≤ nS.X, S v R,X ∈ Φ(D, {mp} t C)}

∃R.D 6∈ {mp}
→
{∃R.X,X ≡ {b1, · · · , bp},

R ∈ NR+ , ∀ε ∈ D,∃η ∈ X such that
D nominal R.{ε} v R.{η}

uNi=1Ci 6∈ {mp} →

N⋃
k=1
{ukl=1Cjl ,∀jl ∈ [1, k]∧

1 ≤ j1 < · · · < jl < · · · < jk}

otherwise → ∅

Φ1 : C 6∈ {mp} → {C ′ ∈ O/C ′ @ C}
⋃

{X ∈ Φ(C ′, {mp})/C ′ @ C}

Φ2 : ∀R.D 6∈ {mp} → {∀S.D,R @ S}
⋃

{∀S.X,R v S,X ∈ Φ(D, {mp} t C)}

∃R.D 6∈ {mp} → {∃S.D, S @ R}
⋃

{∃S.X, S v R,X ∈ Φ(D, {mp} t C)}

≥ nR.D 6∈ {mp} →
{≥ nS.D, S @ R}

⋃
{≥ nS.X, S v R,X ∈ Φ(D, {mp} t C)}

≤ nR.D 6∈ {mp} →
{≤ nS.D,R @ S}
{≤ nS.X,R v S,X ∈ Φ(D, {mp} t C)}

tNi=1Ci 6∈ {mp} →

N⋃
k=1
{tkl=1Cjl ,∀jl ∈ [1, k]∧

1 ≤ j1 < · · · < jl < · · · < jk}

otherwise → ∅
In this definition, P represents a set of elements generated by the functions of FG while

M represents the concepts having been processed by any function of FG .

70 Chapter 4. Towards producing efficient searching procedures

The definitions of the generative functions take their foundations from subsumption

properties whom almost are detailed in the Appendix A of this dissertation.

This means, for example, that Φ2 applied to a concept C ≡ ∃R.D generates all concepts

E ≡ ∃S.X where S is a super-property of R(R v S) and where X belongs to Φ(D) which,

as proved by Theorem 4.2 hereafter, is the set of the subsumers of D. In other words,

applying Φ2 on such a concept accounts for considering the subsumption properties P.3

and P.4 described in Appendix A. Now suppose that C ≡ ∃R.D with D is a set of nom-

inals (D ≡ {a1, · · · , an}). The application of Φ2 on such a concept results in considering

the subsumption property P.9 described in the Appendix A. Applying Φ2 on C ≡ ∀R.D

accounts for considering subsumption properties P.1 and P.2 described in the Appendix.

Applying Φ2 on cardinal restrictions results in generating concepts that will further allow

a semantic engine to take part of the properties P.5–8 when classifying the ontology. Fi-

nally, applying Φ2 on a conjunction accounts for generating other conjunctions subsuming

this one. In other words, for a concept C ≡ A u B u D u E, Φ2 generates the concepts

A uB,A uD, · · · , B uD u E.

The same arguments can be applied to Φ2.

Note that when implemented in an algorithm, the use of Φ2 (resp. Φ2) over intersections

(unions) leads to an exponential increase of the number of time this same function is

re-applied (for an intersection composed of 30 terms, Φ2 generates around 230 new in-

tersections that must further be processed by the same function). As a consequence, we

restricted its use in some of the experimentations that we drove (see Section 6.2.3) in

particular when working with subsets of SNOMED-CT 4 containing concepts defined as a

conjunction of 30 terms when written in their SHOIQ Normal Form.

Finally, this definition also comprises Φ1 (resp. Φ1) to take into account subsumers (sub-

sumees) of any concept of the ontology, learnt from the assertions found in the ontology

(e.g., if the ontology has GCIs, etc.).

These generative functions allow to build the semantic neighborhood of any concept, tak-

ing the form of a set of pseudo-concepts representing either subsumers (if the concept is a

conjunction) or subsumees (the concept is a disjunction) of the concept. Thus, with the

definition of FG , we have the following theorems.

Theorem 4.2. For any defined concept C in O, Φ(C) contains only subsumers of C.

4. SNOMED-CT, Systematized Nomenclature of Medicine - Clinical Terms, http://bioportal.
bioontology.org/ontologies/SNOMEDCT

http://bioportal.bioontology.org/ontologies/SNOMEDCT
http://bioportal.bioontology.org/ontologies/SNOMEDCT

4.2. A semantic similarity measure for SHOIQ concepts 71

Proof. Suppose that C0 is a defined concept and that there is α ∈ Φ(C0) such that C0 6v α.

By using the notations C1 = {X ∈ O/C0 @ X}, C2 = {X ∈ O/∀Y ∈ C1, Y @ X} · · · and

by noticing that it always exists a step N such that CN = ∅ (as the set of defined concepts

is finite, it exists a concept [in fact >] which is not subsumed by any other concepts) ,

we have Φ(C0) = C1 ∪ · · · ∪ CN−1 ∪ Φ2(CN) ∪ · · · ∪ Φ2(C0). By definition, any concept

Y ∈ Ci, i = 1 · · ·N subsumes C0. As a consequence, if such concept α exists it has to be

in the subset Φ2(CN) ∪ · · · ∪ Φ2(C0).

Six cases happen then:

— Ci is a primitive concept, a set of nominals or a union of concepts. Hence, according

to the definition of Φ2, Φ2(Ci) = ∅ and the proposition that α exists is false.

— Ci is an intersection of other concepts. In this case, however α cannot exist as Φ2

only generates intersections that contain (and therefore subsume) Ci.

— Ci ≡ ∃R.D. As for any S ∈ NR such that R v S, we have ∃R.D v ∃S.D, then α

exists if (and only if) it is in the subset {∃S.X,R v S,X ∈ Φ(D, {mp} t C). In

other words, the existence of α depends on the existence of X, which exists only if

D is a restriction, an intersection or a concept subsumed by other concepts.

— Ci ≡≥ nR.D. As for any S ∈ NR such that R v S, we have ≥ nR.D v≥ nS.D,

then α exists if (and only if) it is in the subset {≥ nS.X,R v S,X ∈ Φ(D, {mp} t

C)}. Again, the existence of α depends on the existence of X, which exists only if

D is a restriction, an intersection or a concept subsumed by other concepts.

— Ci ≡ ∀R.D. As for any S ∈ NR such that S v R, we have ∀R.D v ∀S.D, then

α exists if (and only if) it is in the subset {∀S.X, S v R,X ∈ Φ(D, {mp} t C)}.

Again, the existence of α depends on the existence of X, which exists only if D is

a restriction, an intersection or a concept subsumed by other concepts.

— Ci ≡≤ nR.D. As for any S ∈ NR such that S v R, we have ≤ nR.D v≤ nS.D,

then α exists if (and only if) it is in the subset {≤ nS.X, S v R, Y ∈ Φ(D, {mp} t

C)}. Here, the existence of α depends on the existence of X, which exists only if

D is a restriction, a union or a concept that subsumes other concepts.

Regarding the last four cases, the first part of the proof allows to say that if X is a concept

or an intersection, then α cannot exist. By symmetry we also know that α cannot exist if

X is a union of concepts onto which we apply Φ.

Finally, the only case to consider is X being a restriction. By recursion, we deduce then

that such α exists if (and only if) Ci ≡ ρ1R1.(ρ2R2. · · · ρn(Rn. · · ·)), with ρj ∈ {∀,∃,≥,≤}

72 Chapter 4. Towards producing efficient searching procedures

and n→∞, which is not possible as the expression of any Ci is finite. As a consequence,

α does not exist and the Theorem 4.2 is true.

Theorem 4.3. For any defined concept C in O, Φ(C) contains only subsumees of C.

Proof. Using the symmetry between Φ and Φ.

Based on FG , the algorithms written in the Appendix B can then be used to generate

PS, leading to Theorem 4.4.

Theorem 4.4. (Total Correctness). For any concept C ∈ O, the set of pseudo-concepts

generated by the algorithms detailed in Appendix B contains either subsumers or subsumees

of C. Moreover, the algorithm always terminates.

Proof. As the algorithm is based on the definitions of FG and as any concept C ∈ O is in

SHOIQ Normal Form, we know that for any concept C ∈ O, the set of pseudo-concepts

generated by the algorithm contains either subsumers or subsumees of C (according to

Theorems 4.2 and 4.3).

Besides, for the same reasons than in the proof of Theorem 4.2, we know that Φ1 termi-

nates (for any concept C in an ontology O, it exists a finite number of concepts defined

in O that subsume C. By symmetry, we also deduce that Φ1 terminates.

Because each concept C in O is a finite expression of terms, the number of nested restric-

tions in C is finite. Moreover, because we maintain a list of the concepts having been

processed (through the set M), we avoid calling infinitely the different functions of FG .

For these reasons, Φ2 (resp. Φ2) terminates. As a consequence, subsumers, subsumees

and the whole Algorithm 2 terminate.

By applying the algorithm on each concept of GO, pseudo-concepts can be extracted

and further used by a classical semantic Web reasoner, to produce a refined classification

graph EO.

4.2.2 Computing similarity of concepts

Based on EO, we can now propose a semantic similarity measure for any two concepts

of GO. Our idea is that this measure focuses on evaluating the common and the different

semantics that these two concepts share. Towards this goal, and for any two concepts

in GO, we propose that their common semantics be based on the number of semantically

4.2. A semantic similarity measure for SHOIQ concepts 73

equivalent pseudo-concepts that they share in their descriptions. We also propose to

determine a relevant common subsumer (RCS) in EO subsuming (at least) the union of

the dissimilar semantics of these two concepts 5.

Determining the RCS of two concepts

In our approach, the RCS of two concepts accounts for the concept in EO realizing two

conditions:

— The RCS must convey at least the union of the semantics of these two concepts

and,

— Amongst the concepts that may realize the first condition, the RCS is the one

with the most restrictive semantics (i.e., its semantics conveys as few concepts as

possible, especially very generic concepts).

Towards this goal, we propose to associate a weight ω on each concept of EO, using the

number of its direct subsumers as well as the weight of its direct subsumees (if any). This

weight represents the abstraction of a concept. In other words, the higher ω is, the more

generic the concept.

Definition 4.5. The weight of a concept C in EO is defined by the function ω such that:

ω(C) =

1 +
∑

α∈SD(C)
ω(α)

#SD(C)
·

Note that for the most abstract concept of the ontology (so without subsumers), the

weight is set to +∞.

The definition of ω has been motivated by some rules depicted in Figure 4.3. Figures 4.3a

and 4.3b illustrate that the weight of a concept is function of its number of subsumees.

The more subsumees a concept has, then the more abstract it is (and the higher is its

weight). Figures 4.3c and 4.3d reflect our thought that a concept with more subsumers

is one that matters more (i.e., it conveys important semantics w.r.t the domain which is

modelled). As a consequence, such a concept must have a lower weight than one with few

subsumers. Along with ω, we define a branch between two concepts of EO as follows.

5. Note that this method is computationally expensive and, although it is detailed in the following
section, we did not applied it on very large ontologies (such as those used in Section 6.2.3). In the context
of large ontologies the RCS simply accounts for the union of the dissimilar semantics of the two concepts
compared (potentially leading to generating a new concept that was not in EO, i.e. not computed through
FG).

74 Chapter 4. Towards producing efficient searching procedures

(a) ω(A) = 5 (b) ω(A) = 3

(c) ω(A) = 4
3

(d) ω(A) = 4

Figure 4.3 – The weight of a node is proportional to the weight of its subsumees and
inversely proportional to its number of subsumers

Definition 4.6. A branch between two concepts E, F in EO and such that E v F , is an

ordered set of concepts that allows to go from E to F using the inclusion property. In this

set, all the concepts are ordered by the inclusion property.

B(E → F) = {Ci ∈ EO, E v C1 · · · v Ci v Ci+1 · · · v F}.

We further add to the definition of a branch that any concept Ci verifying the afore-

mentioned inclusion property must be in the set of concepts (so in a branch). Moreover,

because any concept in EO may have several direct subsumers (e.g. E v C1 and E v C2

with C1, C2 direct subsumers of E and C1 6v C2, C2 6v C1), several branches between two

concepts of EO may exist. Accordingly, we define a branch set.

Definition 4.7. A branch set B(E → F) between two concepts E,F in EO and such that

E v F , contains all possible branches from E to F .

B(E → F) = {Bi(E → F),Bi a branch between E and F}.

4.2. A semantic similarity measure for SHOIQ concepts 75

Defining a branch allows to associate a weight giving an indication about how a concept

is semantically close to one of its subsumers and therefore helps in determining the RCS

of two concepts. Such weight is defined as follows.

Definition 4.8. The weight of a branch between two concepts E,F in EO is defined by

the function Ω such that :

Ω(B(E → F)) =
∑

Ci∈B(E→F)
ω(Ci).

The formula that we use to compute the weight of a branch takes into account sub-

sumers, subsumees as well as siblings of a concept (as based on ω). Consider for instance

the example displayed in Figure 4.4. In this example, two branches connect A to C. By

computing the different weights, we derive that the best branch to consider is B2. Indeed,

the subsumers that it contains are not generic (i.e. they do not contain a lot of concepts)

and hence, even if they are more numerous than in B1, they are still better to consider.

B(A→ C) = {B1(A→ C),B2(A→ C)}

B1(A→ C) = {A,B1, C}

B2(A→ C) = {A,B2, B3, B4, B5, C}

Ω(B1(A→ C)) = 59

Ω(B2(A→ C)) = 58, 5

Based on the aforementioned definitions, we consider that the RCS C0 of two concepts E

and F in EO is one of the direct subsumers of E tF minimizing the sum of the weights of

the two branches B(E → C) and B(F → C). In case of several concepts minimizing this

sum, an arbitrary one is chosen.

Formally, C0 ∈ arg min
C∈SD(EtF)

Ψ(C) with Ψ defined as follows:

Ψ : SD(E t F) → R

C → min
Bi∈B(E→C)

(Ω(Bi(E → C))) + min
Bi∈B(F→C)

(Ω(Bi(F → C)))

The semantic similarity formula

With the expanded graph and the RCS of any two concepts, we propose to define a

semantic similarity measure respecting the following requirements.

76 Chapter 4. Towards producing efficient searching procedures

Figure 4.4 – Computing the weight of a branch. Ω(B1(A → C)) = 59; Ω(B2(A → C)) =
58, 5.

— The similarity of two concepts is maximized if each of them share the same seman-

tics. Specifically, suppose C1 ≡ D1 uD2, C2 ≡ D1 uD2 uD3 and C3 ≡ D1 uD2,

then sim(C1, C2) ≤ sim(C1, C3).

— The similarity of two concepts must be symmetric. In other words, sim(C1, C2) =

sim(C2, C1).

— The similarity of two concepts is inversely proportional to the ratio of concepts

subsumed by the two compared concepts to the concepts covered by their RCS. In

other words, suppose that two concepts have different semantics (which is likely

to happen), the more the RCS of their disjoint semantics is abstract w.r.t these

concepts, the less similar the two concepts will be.

— the more concepts are similar, the more the value returned by our formula is

close to 1. In other words, two concepts C,D are said to be completely similar

if sim(C,D) = 1 and completely dissimilar if sim(C,D) = 0.

Based on these rules, the formula that we propose to apply is defined as follows.

sim(A,B) = 2× nc(A,B)
nt(A,B) +

[(
1− 2× nc(A,B)

nt(A,B)

)
×
(2× IC(RCS(δ(A,B), δ(B,A)))

IC(δ(A,B)) + IC(δ(B,A))

)]
.

4.2. A semantic similarity measure for SHOIQ concepts 77

In this formula, nc(A,B) accounts for the number of semantically equivalent concepts in

SD(A) and SD(B). nt(A,B) = #SD(A) + #SD(B) and represents the number of direct

subsumers of A and B. IC is the Information Content function that we define as follows:

IC(A) = − log
(1 + ns(A)

1 + ns(>)

)
,

where ns(A) is the total number of subsumees of A in the expanded graph EO. Finally the

function δ(A,B) is used to evaluate the different semantics of two concepts and is defined

as follows:

δ : GO × GO → WO

(A,B) →

 uiCi such that Ci ∈ SD(A) u ¬SD(B)

A if ∀Ci ∈ SD(A), Ci ∈ SD(B)

This formula is inline with our requirements and indeed is symmetric (although δ is not

a symmetric function, IC and RCS are symmetric), maximizes the similarity score of

concepts sharing the same semantics (considering the left part of the formula), and takes

into account their dissimilar semantics by computing their RCS (right part of the for-

mula). If two concepts C,D share the same semantics and are determined by a reasoner

as equivalent concepts, the value nc(C,D) will be half of nt(C,D). As a consequence,

sim(C,D) will be equal to 1. Finally, if two concepts C,D do not share any equivalent

semantics (nc(C,D) = 0), their similarity value will be equal to the right part of the

formula. This value will be equal to zero if and only if IC(RCS(C,D)) = 0 (as both δ

functions respectively return C and D) accounting for the RCS of C and D equals to >.

This case however, means that the two concepts share absolutely no common semantics

in the expanded graph EO and is coherent with a similarity value determined at 0.

As our method does not rely on the use of extensions, it is able to recognize the semantic

similarities of concepts asserted as disjoints (i.e. that will not share a common instance)

and satisfies to the criterion of disjointness incompatibility formulated in [DSF08]. Be-

cause our method applies rewriting rules (it writes any concept of the ontology into its

SHOIQ normal form) to expand the classification graph, it is able to elicit the underly-

ing semantics of any concept and consequently can recognize when two different concepts

are semantically equivalent. As a consequence, it satisfies the soundness and equivalence

soundness criteria also formulated in [DSF08].

78 Chapter 4. Towards producing efficient searching procedures

4.3 Example of application

Using the excerpt presented in Section 4.2.1 the semantic similarity of the concepts
CabernetSauvignon and RedBurgundy would be computed as follows.
First, Algorithm 2 (see Appendix B) would compute the SHOIQ normal forms as follows.
For CabernetSauvignon:
Wine u ∃ madeFromGrape.{CSGrape}u ≤ 1 madeFromGrape.>.
For RedBurgundy:
Wine u ∃ hasColor.{Red} u ∃ locatedIn.{BourgogneRegion}.
Then, Algorithm 3 would generate their semantic neighborhood and return, for Cabernet-
Sauvignon, the following:

∀hasFlavor.{Moderate, Strong}
∀hasBody.{Full,Medium}
∃hasSugar.{Dry}
∃hasColor.{Red}
∃hasWineDescriptor.{Dry}
∃hasWineDescriptor.{Red}
≤ 1 madeFromGrape.>
∃madeFromGrape.{CSGrape}
∃madeFromFruit.{CSGrape}
∃madeFromGrape.{CSGrape}u ≤ 1 madeFromGrape.>
Wine
= 1 hasBody.>
= 1 hasColor.>
∃locatedIn.{Region}
PotableLiquid
∀hasMaker.{Winery}
= 1 hasSugar.>
≥ 1 madeFromGrape.>
= 1 hasFlavor.>
= 1 hasMaker.>
≥ 1 madeFromFruit.>

Wineu ≤ 1 madeFromGrape.>
Wine u ∃madeFromGrape.{CSGrape}

and for RedBurgundy:

4.3. Example of application 79

∃hasColor.{Red} u ∃locatedIn.{BourgogneRegion}
Wine u ∃locatedIn.{BourgogneRegion}
Wine u ∃hasColor.{Red}
Wine
∃locatedIn.{BourgogneRegion}
∃hasColor.{Red}
∃locatedIn.{FrenchRegion}
∃hasWineDescriptor.{Red}
≤ 1 madeFromGrape.>
∃madeFromGrape.{PinotNoirGrape}
∃madeFromFruit.{PinotNoirGrape}
= 1 hasBody.>
= 1 hasColor.>
∃locatedIn.{Region}
PotableLiquid
∀hasMaker.{Winery}
= 1 hasSugar.>
≥ 1 madeFromGrape.>
= 1 hasFlavor.>
= 1 hasMaker.>
≥ 1 madeFromFruit.>
∃hasSugar.{Dry}
∃hasWineDescriptor.{Dry}

Based on these semantic neighborhoods, a set of pseudo-concepts is generated which,
together with all pseudo-concepts generated from other concepts defined in the Wine
ontology, refines the direct subsumers of CabernetSauvignon and RedBurgundy concepts
to the following.
For CabernetSauvignon:

DryRedWine
Wine u ∃hasSugar.{Dry}u ≤ 1 madeFromGrape.>
∀hasFlavor.{Moderate, Strong}
∀madeFromGrape.{CSGrape, MerlotGrape}
∀hasBody.{Full, Medium}
Wine u ∃madeFromGrape.{CSGrape}
Wine u ∀madeFromGrape.
{CFGrape, CSGrape, MalbecGrape,
MerlotGrape, PetiteVerdotGrape}

For RedBurgundy:

80 Chapter 4. Towards producing efficient searching procedures

DryRedWine
Wine u ∃hasSugar.{Dry}u ≤ 1 madeFromGrape.>
PinotNoir
Burgundy

As a consequence, the following values are derived:

nc(RedBurgundy,CabernetSauvignon) = 2

nt(RedBurgundy,CabernetSauvignon) = 11.

δ(CabernetSauvignon,RedBurgundy) corresponds to the last five direct subsumers of Caber-

netSauvignon displayed above.

δ(RedBurgundy, CabernetSauvignon) corresponds to the last two direct subsumers of Red-

Burgundy displayed above.

A simulation taking into account all other concepts of the Wine ontology further returns

the following values:

The RCS of both δ equals to RedWine.

ns(>) = 266.

ns(δ(CabernetSauvignon, RedBurgundy)) = 4.

ns(δ(RedBurgundy,CabernetSauvignon)) = 2.

ns(RCS) = 19.

Finally, the semantic similarity of CabernetSauvignon and RedBurgundy that is obtained,

is as follows:

sim(RedBurgundy,CabernetSauvignon) = 4
11+

[
7
11 ×

(
−2× log(1+19

1+266)
− log(1+2

1+266)− log(1+4
1+266)

)]
=

0, 75.

4.4 Conclusions

This chapter proposes that supporting nomadic users roaming in smart environments

be realized by a searching process taking into account representation models defined in

Chapter 3. Divided in two parts, this dissertation envisions that such a process may first

be a succession of filters making use of the information provided by the representations

of the connected devices, the involved user preferences, the location of both, etc. While

the creation of such filters does not involve particular challenge, this chapter concentrates

then on detailing a method to realize the second part of the process. In particular, this

4.4. Conclusions 81

method tries to provide answers to the two following challenges:

— Identifying similar connected devices (so that one may be used on behalf of an other,

e.g. in failure recovery scenario) based on the semantics of their representation (at

least the one not used in the filtering step of the searching process)

— Delivering a very accurate results set to an incoming user query, in case of a perfect

match (provided by DL reasoners) may not be found

The method presented in this chapter addresses these two challenges by carefully designing

a semantic similarity process taking into account a large portion of the semantics under-

lied by the DL SHOIQ. Involving the creation of pseudo-concepts, this method is the

cornerstone upon which other components providing user support can rely on (see Section

6.1 detailing the implementation of a system providing support to nomadic users).

Chapter 5

Distributing knowledge amongst

smart environments

With the rise of the IoT and the plethora of devices now available from the Internet,

supporting the nomadic users roaming across smart environments poses new challenges

consisting of providing scalable processes able to associate devices with user or applicative

requirements. This challenge is particularly emphasized by the fact that Semantic Web

technologies – while they allow defining a unified representation to leverage the interop-

erability between devices, user and applicative requirements – heavily require time and

process consumption to handle large collections of described entities, something that may

likely to happen in wide smart environments. As a consequence, the benefits of using Se-

mantic Web technologies are counter-balanced by the time and process that they require.

Towards providing scalable search procedures, this chapter details the design of a dis-

tributed architecture consisting of federated semantic-enabled nodes. Each node of this

architecture represents a delineated area of the smart environment (e.g., if the smart en-

vironment is composed of several rooms, a such area may be one of these rooms). A node

further hosts and processes any semantic representation of devices, users and applications

localized in the associated area. Finally, the solution proposes an interconnection scheme

enabling any node to share what it has been able to compute (e.g., associations between

a device and an application or a user) with other nodes managing neighboring areas.

This chapter takes back the idea published in [Chr12].

84 Chapter 5. Distributing knowledge amongst smart environments

Figure 5.1 – IoT’s three layers cake - Entities of Interest, connected devices and applica-
tions

5.1 Preamble

Aside pervasive and ubiquitous computing, the Internet of Things (IoT) is a paradigm

that has recently gained momentum by proposing to extend the Internet to a variety of

things, commonly sensed as physical entities of interest (EoI) to humans (e.g. a table, a

room or even another human being). In this vision, these EoIs are represented through a

set of properties that can be observed, measured or triggered through devices such as Ra-

dio Frequency IDentification (RFID) tags, sensors, actuators or other smart technological

components (e.g. smartphones). These devices can further be coupled and orchestrated to

provide digested information or complex services about things of interest to users (Figure

5.1).

While the IoT shares common goals with pervasive and ubiquitous computing – i.e. to en-

able that computing resources “weave themselves into the fabric of everyday life until they

are indistinguishable from it” [Wei91] – this new paradigm brings additional challenges to

5.1. Preamble 85

supporting nomadic users roaming in smart environments, in particular regarding to the

complexity of selecting the right devices for a user or an application amongst the plethora

that are now available.

Addressing this challenge poses indeed scalability issues, emphasized by the recent inter-

est in providing sensors, actuators and connected devices through different platforms. As

an example, the Xively 1 platform – offering a Web Application Programming Interface

(API) to get information about sensors as well as to provide actuation capabilities – had

an approximate pool of always reachable 115000 devices (as of March, 2012) distributed

all over the world. Nimbits 2, ThinkSpeak 3 or Thingworx 4 are other examples of similar

platforms. Considering that both users and connected devices may be mobile or may be-

come temporarily unavailable, adds another layer of complexity as entailing to recompute

such associations over the time.

While the Semantic Web technologies enable to create homogeneous, standardized and

machine-processable representations (refer to Chapter 3), they however lack in providing

efficient algorithms to reason over a large collection of descriptions and, depending on the

DL underlying these descriptions, can turn to a computation nightmare if the whole set of

descriptions has to be analyzed by a centralized Knowledge Base. To overcome scalability

issues while still enabling accurate interoperability, we believe that the use of Semantic

Web technologies must be thought of with deployment considerations in mind i.e. inte-

grating the distributed and ubiquitous aspect of the IoT, in particular when involved EoIs

and connected devices are dispatched in an indoor environment, prone to a high mobility.

In this chapter, we propose then a distributed framework composed of nodes capable of

processing Semantic Web descriptions and organized in a federated architecture. More

precisely we propose that each node of the framework has local reasoning capabilities –

i.e. be capable of processing semantic descriptions of connected devices (such that defined

in Chapter 3) – and be able to cooperate with other nodes by exchanging the knowledge it

has acquired about the devices, users and applications that it manages. We also propose

that such knowledge be shared across geographically nearby nodes, considering location as

a very important criterion when searching or associating users or applicative requirements

1. Xively – Public Cloud for the Internet of Things, https://xively.com/
2. Nimbits is a service you can use to record and share data on the cloud, http://www.nimbits.com/

index.html
3. ThinkSpeak an open application platform designed to enable meaningful connections between things

and people, https://www.thingspeak.com/
4. ThingWorx enables businesses to rapidly develop applications that connect people, systems, and the

intelligent devices, http://www.thingworx.com

https://xively.com/
http://www.nimbits.com/index.html
http://www.nimbits.com/index.html
https://www.thingspeak.com/
http://www.thingworx.com

86 Chapter 5. Distributing knowledge amongst smart environments

with connected devices (the likelihood that a device may be associated with someone is

inversely proportional to their distance).

Our expectation is that incoming requests requiring associations will refer highly to a

given location. Hence, we hope that having a geographically distributed management of

knowledge about devices will enable an efficient discovery process through each node hav-

ing gathered a sufficiently rich amount of knowledge about the devices living in (or nearby

to) the geographical area it is bound to.

5.2 Federated architecture of nodes

In the literature, federated network systems refer to shared resources amongst multiple

loosely coupled nodes [HM85] in order to optimise the use of those resources, improve

the quality of network-based services, and/or reduce costs. Widely used in scenarios

involving information sharing between different tiers [BBS04], such distributed systems

can cope with storage and computation limitations and offer efficient – i.e. fast – search

processes using optimization techniques [TOD05]. Due to these advantages, our view is

that designing a federated system composed of semantic-enabled nodes may be a solution

to speed up searching processes triggered in IoT-enabled Smart Environments, each node

managing a limited set of connected devices, users and applicative requirements, but

exchanging its knowledge with other peers to further enhance search results.

Supporting the aforementioned IoT paradigm through a federated system, is achieved

by considering each loosely coupled node as the digital representation of a place hosting

physical world objects. In the context of this dissertation, the concept of place is typically

an indoor premise (e.g. a building, a room, etc.) as defined in Section 3.3. Note however

that the idea developed in this chapter can be further readapted to address other kinds of

places such as outdoor areas (e.g. a crossroad, a district, etc.). An example of node (say

N) presented in this chapter may represent a meeting room equipped with a webcam,

a presence sensor and other equipment. It may also be aware that some user (say U)

with his set of applications (say A) is in this meeting room. Embedding storage and

computing capabilities, each node manages then a pool of semantically described IoT

stakeholders (referring to the Introduction of this dissertation) and can determine all

possible associations between them (following our previous example, a node N computes

and stores the representation of the webcam which is further associated with an application

5.2. Federated architecture of nodes 87

from A, as matching an applicative requirement). Interconnecting these nodes allows

a communication scheme where descriptions of IoT stakeholders as well as associations

can be exchanged to maximize the aforementioned determination process of associations

(e.g. the node N sharing semantic descriptions with another node M , so that M may

prepare that some applications A of user U may be associated with another webcam).

The following subsections describe the building blocks that would compose a node of such

a federated system as well the interconnection scheme followed by these nodes.

5.2.1 Architecture of a node

Each node of a federated system has been designed to provide the following four ca-

pabilities:

— The storage and the processing of representations of users, applications and con-

nected devices.

— The association process determining all possible interactions, e.g. realized by a

SPARQL-DL engine if the representations are those detailed in Chapter 3.

— The propagation of aforementioned descriptions to other nodes in order to maximize

the set of associations that such nodes will (re)compute.

— The capability to process user’s queries and contact nearby nodes in case no results

can be found. In particular, this step refers to the scenario presented in the Intro-

duction and may be realized by the searching procedure as described in Chapter

4.

Figure 5.2 details the architecture of each node composing the federation. Although dif-

ferent implementations of such a node may be investigated, a possible embodiment can

be a personal computer embedding computing and networking capabilities, and capable

of handling a pool of processable resources.

In the context of this dissertation, the three kinds of resources that are managed by a

node are the users, the applications and the connected devices. All these resources have a

representation that can be processed and stored. While the node may try to associate ap-

plications with connected devices, user’ queries may be handled differently. We recall that

any considered resource can be mobile and therefore can enter or exit from a geographic

place. We also assume the existence of a trigger process that notifies a node about such

a join/exit event and provides it with the processable representation of the corresponding

resource.

88 Chapter 5. Distributing knowledge amongst smart environments

Figure 5.2 – Building blocks of a node

5.2. Federated architecture of nodes 89

That being said, upon an incoming resource, the Processing and Storage functionality

block of a node performs management functionalities including checking the validity of

the representation of such resource. This check relies on semantic models such as those

defined in Chapter 3. If compliant, the semantic description is translated to a set of RDF

triples and inserted into the triple store of the node.

The stored semantic descriptions of the resources are then employed by the Association

Manager that processes the requirements expressed by applications to find relevant con-

nected devices i.e., providing the expected behavior. In the context of this dissertation,

the association mechanism relies on using a SPARQL-DL engine [SP07] to process applica-

tive requirements (we recall here that we have proposed a bijective function to translate

a requirement in a SPARQL-DL query).

The Knowledge Propagation block uses Knowledge sharing rules defining the strategy of

information sharing. Defined by a node manager (e.g. someone with administrative rights,

managing the node by accessing to its configuration), examples of such rules can be the

sharing of all representations of incoming devices, applicative requirements or users. Note

however that in order to limit the generation of a high number of messages between nodes,

trade-off such that restricting the sharing of information to the descriptions of incoming

devices may be envisioned.

The Knowledge Propagation algorithm also uses the location model detailed in Section 3.3.

Implemented by each node, the model enables to share information with nearby nodes (re-

call that a node is mapped to a geographic area). This location model allows localizing a

place relatively to others (e.g. Chemistry lab is next to Computer Science lab) and serves

as a basis to initialize and keep updated the federation system by defining how nodes are

interconnected.

Finally, the Query manager processes incoming query sent by a user e.g., searching for

some connected devices. In each node, finding results for a query involves two steps. First,

a searching procedure such that the one described in Chapter 4 can be applied over the

connected devices managed by the node. Benefiting from knowledge exchanged between

nearby nodes, this first step allows finding corresponding devices that are in the vicinity

of the user (either localized at the same place or in a nearby one). If no result is found,

the request is forwarded to such nearby nodes that can themselves try to find relevant

devices. As these nodes have other neighbors, the query is matched against a wider set of

connected devices.

90 Chapter 5. Distributing knowledge amongst smart environments

5.2.2 Interconnecting nodes and creating the federation system

To build a federated system composed of aforementioned nodes, we propose to create

interconnections based on a ‘container’ approach, meaning that a place ‘containing’ other

places results in as many interconnections as number of contained places (see for instance

the curved arrows in Figure 5.3 interconnecting N2 to N4 and N5 as a consequence of

having the Chemistry lab and the Computer Science lab located in the 2nd floor of a given

building). In our vision, the place containing other places acts as a ‘manager’ of the places

it ‘contains’. The resulting federated system has moreover always a ‘top-node’ i.e. hav-

ing no manager and representing the place that ‘contains’ all others (e.g., the University

Building A in Figure 5.3).

Conceptually, a federation is represented as a directed acyclic graph (DAG) with no undi-

rected cycles and where each non source node has an in-degree strictly equal to 1 and

an out-degree above or equal to 0. The different places mapped to as many nodes in the

federation are described using the model defined in Section 3.3 and as such, make use of

the property ‘contains’ – also defined in this model, see Table 3.6 – to enable the afore-

mentioned container approach.

By following this simple placement of rooms relatively to corridors, floors, etc. a feder-

ated system can be quickly deployed and extended, i.e. when a room is newly mapped

to a node, such a node only needs to contact its ‘manager’ in order to declare itself as a

new node of the federated system. This approach must however be used in conjunction

with another process, enabling information acquired by a given node to be shared only

with relevant nodes, i.e. those mapped to places nearby the place managed by the given

node. As an example, Figure 5.3 presents the nodes of the Computer Science lab and the

Chemistry lab as being interconnected to the node mapped to the 2nd Floor of a Univer-

sity Building. However, it is not because both labs are in the 2nd floor that they should

exchange knowledge (consider for instance the case of a floor being 300 meters long, with

both labs localized at the opposite corners. Exchanging knowledge may, in this case, be

irrelevant as the distance separating both labs seems too high). By implementing the

location model defined in Section 3.3, each node can be aware of all its ‘neighbours’ i.e.

the ones it will share information with. This is made possible through a double cascading

process (represented by black straight arrows in Figure 5.3) executed by each node when

‘initializing’ (recall that a node is a piece of software that is mapped to a place. Equipping

a place with a node consists of starting this piece of software). Hence, at initialization,

5.2. Federated architecture of nodes 91

Figure 5.3 – Gathering overall nodes’ location of a given federation network

92 Chapter 5. Distributing knowledge amongst smart environments

each node communicates the description of the place it manages to the top node using a

cascading process. The top node uses a semantic engine to merge this data from all nodes

to obtain the overall distribution of nodes in the federation. The same cascading process

is then used to relay this inferred distribution data to all nodes. When a new node (i.e. a

place implementing some indoor location model concept and containing some connected

objects) is added, the above cascading process is performed again. The new node can then

begin sharing knowledge about the devices it manages.

5.3 Sharing knowledge between federated nodes

Our approach to share knowledge between nodes is applied on each node and can be

divided in two steps. First, the process executes a set of rules against the aggregated

location data, in order to select a set of nearby peers. Then, for each fact learnt by a

node (e.g. new device or association detected), a message is created from this node to

all selected recipients that update their respective Triple Stores dedicated to storing both

semantic descriptions and such shared fact.

5.3.1 Customized Semantic Web rules

We define a set of processable rules using SWRL (recall Section 1.1.2) to enable facts

discovered by one node to be shared with a subset of selected nodes, using customized

SWRL built-ins triggering the initiation of notification messages. In addition, a learning

process is coupled to these rules in order to attach a degree of confidence to the information

that one node shares with the others. This point comes with the idea of anticipating the

fact that some users or devices can move across different nodes. As an instance, assume

that we have detected the following pattern in Ben’s office: “Most people go by the coffee

machine, then the corridor XY then the open offices AB”. Knowing that Ben has moved

from the coffee machine to the corridor XY may be sufficient to let the semantic node

associated to the open offices AB knows that Ben is coming and may be interested in

some connected devices “hosted” in the open offices, upon the reception of a message

notifying that he has left the corridor XY. This would allow the node attached to the

open offices to not replay its rule set after having been notified that Ben has entered

the open offices. Although the set of rules is not finite and may be extended using the

OWL import mechanism, this section details six particular rules (see Table 6.1 for their

5.3. Sharing knowledge between federated nodes 93

expressions in SWRL) forming a basic strategy about the way a node could exchange

knowledge with its peers. Such rules use the term resources to refer to described users,

applications or connected devices.

— Rule 1: When a resource has joined a place P , notify all the places accessible from

P about such fact.

— Rule 2: When a resource has left a place P , notify all the places accessible from

P that such resource could reach them.

The next two rules replace the concept of accessibility in the first two rules with the

concept of adjacency (a lower confidence score will then be computed, as adjacency does

not imply direct accessibility).

— Rule 3: When a resource has joined a place P , notify all the places adjacent to P

about such fact.

— Rule 4: When a resource has left a place P , notify all the places adjacent to P

that such resource may reach them.

The final two rules take into account mobility of devices and EoIs by associating a learning

process allowing nodes to notify other selected nodes that a device (resp. user) should join

them in a near future. In detail, the fifth rule consists of notifying a place P2 that a device

(resp. user) may reach it soon. P2 can then discover beforehand the associations between

this device (resp. user) and the other resources it currently manages. As such associations

are predicted, P2 “locks” them (i.e. makes them unretrievable from searches) by tagging

them as being “prepared”. The sixth rule, finally, consists of unlocking these aforemen-

tioned associations by tagging them as being “available” (i.e. retrievable if searched).

— Rule 5: When it has been learnt that any mobile resource always reaches a place

P2 after having reached P1 and if a resource has just joined P1, notify P2 that such

resource will join

— Rule 6: When the previous pattern has been learnt and that a resource leaves P1,

notify P2 that a resource is joining

The benefit of using SWRL rules to define how knowledge between nodes has to be ex-

changed is twofold.

First, it allows any Place owner to define additional rules, processable by a Semantic Web

engine without requiring code to be developed (as long as the rules do not contain calls to

customized built-ins unassociated with the engine). Thus, it allows policies to be associ-

ated to a strategy of knowledge sharing. As an instance, two different place managers may

94 Chapter 5. Distributing knowledge amongst smart environments

decide two different strategies to share knowledge between nodes of the same federated

network. Two different federated networks could also lead to different knowledge exchange

models. Finally, different policies may be applied depending on their associated business

models.

Second, use of SWRL allows built-ins to be developed and in particular, allows to link

notification features to the “head” of a rule. Therefore, assuming a deployment where the

different built-ins and models are known allows one to develop specific exchange protocols

and rules.

5.3.2 Notification mechanism

Once having selected a set of peers with which to share some knowledge, a given node

needs to send appropriate messages so that such peers will be notified of new content.

Therefore, a notification mechanism needs to be implemented on each node and must be

composed of a payload containing results to share and a header containing the appropriate

route that a message has to follow to reach a previously selected peer.

Knowledge to share arises from the execution of aforementioned rules (Section 5.3.1) and

is therefore a set of triples (the base unit in the Semantic Web).

Determining the path between a given node and the recipient of a message relies on the

organizational aspect of the federation (recall Section 5.2 and Figure 5.3). Such path is

exactly the list of nodes that need to be crossed, in order to find a “common manager” of

both considered nodes.

Computing this path relies on the gathered and inferred location of all nodes and involves

the anonymous property “inverse of givesAccessTo” (with givesAccessTo referring to the

location model of Section 3.3 and its inverse provided by a Semantic Web engine). In

more details, to establish a graph between two nodes A and B willing to share knowledge

(considering a case were the knowledge has to be exchanged from A to B), we use the prop-

erty givesAccessTo to build two subgraphs, respectively called left subgraph (starting with

node A) and right subgraph (starting with node B). Building the left subgraph consists of

asking a Semantic Web engine to provide all nodes {Ni} such that “A givesAccessTo Ni”

and to reiterate this request on the nodes having been found. The right subgraph uses the

inverse of (givesAccessTo) property and therefore returns the list of nodes Nj such that “B

inverseOf(givesAccessTo) Nj”. Use of the property givesAccessTo allows one to find the

ancestors of both the issuer and the recipient nodes. Hence, with this property, we build

5.4. Conclusions 95

two sub-graphs, one starting with the issuer and the other one starting with the recipient.

Each time we found ancestors, we check if the two sub-graphs have a common node. If

so, we merge them into a single graph over which we apply the Dijkstra [Dij71] algorithm

which gives the shortest – and only – path between both nodes. Due to the particular

nature of a federated infrastructure (recall that in Section 5.2 we said that the federation

is a DAG with no undirected cycles), we are assured that the algorithm converges to one

unique solution. Algorithm 1 details the building of these two subgraphs.

For a given result to share, the notification mechanism consists then of the generation

of K messages (assuming K selected peers to notify). Each message contains a payload

composed of a simple envelope to be routed properly as well as the result to share. Such

envelope is composed of a list of nodes that need to be crossed. Accordingly, sharing a

result consists of sending the message to the first node of the list and then goes through

all other nodes appearing in the envelope. Upon receiving a message, a selected node

processes it and updates its Triple Store. Figure 5.4 describes how the aforementioned

components are used in a semantic node. From the semantic description of a resource (de-

vice or user), some triples are extracted (if joining the place) or retrieved (if leaving) from

the Triple Store. Then, the triples feed the Association Manager that checks whether some

associations can be created, updated or deleted. This leads to a list of resulting triples

that are pushed into the Triple Store as updates. Finally, resulting triples also go to a

Result Dispatcher that creates and conveys appropriate messages to a determined list of

nodes.

5.4 Conclusions

To allow scalable search and management mechanisms for the IoT, this chapter details

a distributed framework composed of nodes capable of processing Semantic Web descrip-

tions and organized in a federated architecture. In addition to other approaches using

Semantic Web technologies to enhance interoperability between devices or EoIs part of

the IoT, our approach considers a particular deployment infrastructure where each node

of such infrastructure is mapped to a physical environment (e.g. buildings, rooms, etc.).

Considering such a set of nodes allows reasoning mechanisms local to each node to be

setup and enables knowledge to be locally stored, avoiding a single and centralized repos-

itory to be flooded by queries (and data). This chapter also details a simple notification

96 Chapter 5. Distributing knowledge amongst smart environments

Algorithm 1 Compute the left or right subgraphs SG of a given node n
// Create a DAG using JGraphT library
SG← JgraphT.create DAG(Node,DefaultEdge);

procedure create subgraph(n)(:)
JGraphT.add node(SG,n);
analyze(n, direction);

end procedure
procedure analyze(node, direction)(:)

// Analyze node to build its subgraph SG
subnodes← [];
predicate← “”;
if direction = “left” then

predicate← “loc:giveAccessTo”;
else

predicate← “inverseOf(loc:givesAccessTo)”;
end if
subnodes← get rdf objects(node, predicate);
if subnodes 6= NULL and subnodes.length ≥ 1 then

for all sn in subnodes do
if sn 6= NULL then

add node(sn, node);
analyze(sn);

end if
end for

end if

end procedure
procedure add node(node, parent)(:)

// Add a node in the DAG
if node 6∈ SG and parent ∈ SG then

JGraphT.add edge(SG, parent, node);
end if

end procedure
procedure get rdf objects(subject, predicate)(:)

// Get a collection of objects object such as (subject, predicate, object) exist in the
knowledge base

objects← [];
objects← Reasoner.get objects(subject, predicate);

return objects;
end procedure

5.4. Conclusions 97

Figure 5.4 – Sharing knowledge between nearby nodes: Overall process

98 Chapter 5. Distributing knowledge amongst smart environments

message mechanism, to enable nodes of the federation to share common interesting knowl-

edge. Through this architecture, this chapter tries to keep the benefits provided by the

Semantic Web (enhancing interoperability) without taking the drawbacks (reasoning tasks

possibly computationally expensive).

Chapter 6

Experimentations

In this chapter we discuss experiments undertaken to validate the different ideas pro-

posed in this dissertation.

These experimentations rely on the implementation of a Virtual Resource Gateway (VR

Gateway), a framework able to host and process (descriptions of) connected devices and

applications (referring to models detailed in Chapter 3) and to actuate upon them, based

on requests received from users. One of the components of the VR Gateway handles search

capabilities, implementing the semantic similarity measure presented in Chapter 4 as well

as a SPARQL-DL engine to find connected devices matching applicative requirements.

Jointly the implementation of a federated network of VR Gateways has been realized,

enabling knowledge and search results to be shared between different VR Gateways (re-

alizing the ideas exposed in Chapter 5). One of the components of the VR Gateway is

therefore in charge of managing the communications entailed by the federated network.

The first section of this chapter details all these implementations.

The different experiments having been driven are further presented and overall serve to

validate our approach to support nomadic users roaming across smart environments. More

specifically the experimentations assess the search capabilities that the components de-

signed in the chapters 3 to 5 provide.

Analysis of these capabilities revolves around three experimentations, each of them ad-

dressing a specific focus.

The first experiment evaluates the ability of the whole implemented system to cluster

similar representations. In particular, this experimentation assesses the semantic similar-

ity measure (refer to Chapter 4) and if it is able to provide better results compared to

100 Chapter 6. Experimentations

other methods existing in the literature. As this method does not rely on any particu-

lar applicative context (like the one of this dissertation referring to connected devices),

the assessment of the measure is based on well-known datasets anybody can find on the

Web. Thus, the results of this first experimentation allow to suppose that user queries or

applicative requirements are likely to be better understood when sent to the system for

searching results.

The second experiment evaluates the ability of the system to handle different types of

queries, corresponding to what we think to be the typical applicative requirements sent

from applications to configure. Consisting of assessing the mapping function defined in

Section 3.4.3, this second experiment results in analyzing how the implemented system is

capable of processing queries. In particular, the complexity of the semantics entailed by

these queries is analyzed.

Finally the last experiment evaluates the relevance of the federated architecture and in par-

ticular checks the legitimacy of exchanging knowledge and search results amongst nearby

nodes. We evaluate the scalability of this architecture compared to a centralized one, when

performing search and we quantify the impact of the relocation of a connected device or

an application on the federated architecture.

6.1 Implementations

The implementations described in the following subsections result from the different

studies having led to several publications, such that the ones in [BCBT11, Chr12] and

[CBTB12].

6.1.1 Exposing and processing connected devices and applications for

users

To perform the different experiments, we have developed the VR Gateway, revolving

around the realization of a framework adopting RESTful principles to expose connected

devices and applications on the Web.

This framework accounts for representing a smart environment and relies on the concept

of Virtual Resources, comprising the virtual representation of connected devices and ap-

plications. Virtual representation of devices represent the connected device, both to users

through a digital representation (XHTML), and to other software components (other VRs)

6.1. Implementations 101

Figure 6.1 – VR Lamp Illustration

through a processable description and an exposed HTTP API (see Figure 6.1). For exam-

ple, a connected lamp is represented through a Lamp VR exposing:

— REST APIs to enable the use of exposed functionalities and retrieve the XHTML

representation.

— An OWL-based semantic description (aligned with the model presented in Chapter

3) to support reasoning on the composition or mash-up of this lamp with other

VRs or applications.

— A user representation for visualization and interaction (described in XHTML),

aiming to provide a single control point for interacting with resources of a smart

environment, as well as enabling composition of these resources to create ambient

intelligence.

In our implementation, considered applications accounts for XHTML “templates” i.e.,

containing a list of requirements to fulfill. For each application, this list of requirements

is based on semantic annotations (RDFa) that are embedded in the template and that

JavaScript controls – also embedded in this page – are able to retrieve and process. In

particular, these controls translate a set of requirements to as many as necessary SPARQL-

102 Chapter 6. Experimentations

Figure 6.2 – Loading and configuring templates

DL requests (referring to Chapter 4) that are further sent to the VR Gateway which can

finally process them and initiate searching mechanisms (see Figure 6.2). In terms of im-

plementation, the VR Gateway is built on top of Equinox, an implementation of OSGi

Framework R4.2 specifications [JMA10], and is therefore composed of OSGi bundles. We

follow this approach because it provides an easy solution to enrich the set of functionalities

and permits the implementation of VRs by third parties. The VR Gateway consists then

to a hosting environment including VR implementations (i.e: HTML file, HTTP APIs and

OWL description) of connected devices in the considered smart environment (e.g: lamp,

phone, TV screen, mailbox). Thus, OSGi mechanisms allow dynamic instantiation of new

VRs by adding required OSGi bundles at runtime, enabling then to handle dynamic re-

configuration of the smart environment i.e., supporting mobile devices and applications.

The following describes the principal components of the VR Gateway, while Figure 6.3

displays the interactions that take place between the mobile phone of a nomadic user and

the components of the VR Gateway.

VR Provisioning: The VR provisioning component manages the life-cycle of VRs and as-

signs them URLs. Since each VR must implement an OSGi service called VirtualResource,

it is possible to catch a VR instantiation or deletion event using OSGi service discovery

6.1. Implementations 103

Figure 6.3 – Implemented Framework

104 Chapter 6. Experimentations

mechanism, and thus keep up to date the list of VRs handled by the VR Gateway. The

VR Provisioning element also exposes APIs that list instantiated VRs, instantiate new

ones and access to their attribute values.

Persistency: The persistency component is used to automatically instantiate VRs when

the gateway is starting. VR states are persisted into files so that they can be restored.

Eventing: The eventing component notifies clients of any changes on a VR. It defines the

NotificationEngineService OSGi service which contains two features that post VR notifi-

cations and retrieve the event channel associated to a given VR. Each VR is responsible to

disseminate its event channel through its ‘eventchannel’ attribute. The current implemen-

tation relies on Comet long poll mechanism [ME06], meaning that any client interested in

changes on a dedicated VR should perform an HTTP GET on its event channel until a

change occurs and resend it to catch the next one.

Representation Manager: This tool underlies the ideas presented in this dissertation

(Chapter 3 to Chapter 5) by processing the semantic representations of connected devices

and applicative requirements. In particular, one component of this tool performs similar-

ity measurements (details in Section 6.1.2). Another one handles SPARQL-DL requests

sent from applications or even users (details in Section 6.1.3). Finally, a last one initiates

knowledge sharing and request forwarding (details in Section 6.1.4). Thus, managing the

representation of devices and applications relies on Fact++, a DL-reasoner, as well as on

the OWL API (providing Java constructs mapped to OWL concepts) allowing to process

OWL descriptions.

Gateway Registerer: When the VR Gateway starts, the Gateway Registerer informs

a component named the Gateway Resolver, acting as a repository maintaining the list of

available VR Gateways. The Gateway Registerer also indicates to the Gateway Resolver

its current location (referring to the location model described in Chapter 4). Afterwards,

the Registerer sends periodical keep-alive requests. With the Gateway Resolver, any user

willing to search for connected devices can send a query with his location (again, following

model presented in Chapter 4). The Gateway resolver can then provide the URL of the

relevant VR Gateway to contact.

6.1.2 Semantic similarity computation

Aligned with the developments made for the VR Gateway, the Similarity Computation

block (see Figure 6.3) contains the implementation of the semantic similarity measure. De-

6.1. Implementations 105

veloped in Java, this component makes use of a Java Native Interface (JNI) to further rely

on the Fact++ DL reasoner for ontology management. As the semantic similarity method

heavily requires the computation of branches between two concepts (recall Section 4.2.2),

we setup a cache mechanism allowing to highly decrease the overall computation time to

establish similarities between concepts (as an indication, the computation time decreased

from 5 hours to 15 minutes by using this cache mechanism when testing our method on

the Wine ontology). The component that we have released is articulated between seven

different steps.

First, it loads an ontology where similarity computations have to be performed. In the

context of this dissertation, this ontology would typically be a set of concepts refining the

concept Structure defined in Chapter 3. Second it computes inferences, using the original

ontology. The third step consists of rewriting any concept definition by replacing, when

possible, any defined concept appearing in the left-hand side of the definition, by its ex-

pression. This step allows to detect cyclic definitions (e.g. C ≡ ∃R.C) and is mandatory

to compute SHOIQ Normal Forms. The fourth step consists of replacing all defined

concepts appearing in subsumption axioms (e.g. C v D), by their expression computed

in the third step. A consequence of this rewriting is that any subsumption axiom may

become a GCI (as for instance a axioms such that C v D may be rewritten as the GCI

AuB v E tF). The fifth step consists of rewriting all concepts in their SHOIQ Normal

Forms. The sixth step of our method consists of generating the pseudo-concepts of each

concept originally defined in the ontology and having been rewritten in Normal Form.

To achieve this operation, the default strategy having been implemented follows the algo-

rithms detailed in Appendix B, i.e., is based on the definitions of Φ and Φ. Once having

generated the pseudo-concepts, we update the Knowledge Base by performing again a

classification task.

The last step of our method consists of computing the similarity of concepts and in par-

ticular, in finding the RCS of any two fragments of dissimilar semantics.

6.1.3 Handling applicative requirements

Assessing the semantics defined in Section 3.4 entails the development of components

enabling both the VR Gateway and a classical Web browser to present a list of matching

devices to a user having downloaded an application template. While the former is im-

106 Chapter 6. Experimentations

plemented in the VR Gateway under an Applicative Requirement Manager used together

with the Fact++ DL reasoner; the latter is realized by a Javascript library complementing

the XHTML description of an application template and capable of the following function-

alities:

— Parsing semantic annotations (RDFa) of the XHTML description of the application

template to retrieve requirements expressed as SPARQL-DL queries

— Sending these requests to the VR Gateway for processing

— Displaying the matching objects as a list to the user configuring the application

template

Applicative Requirement Manager dynamics

Upon the reception of a SPARQL-DL query, the VR Gateway performs “local” deduc-

tions, involving the sole VRs monitored by this Gateway. This component is offered as

an OSGI service embedded in the VR Gateway and relies on a SPARQL-DL library of-

fered by Derivo 1. This library is settled on top of the OWL API and extends the standard

SPARQL specification with reasoning services that a semantic engine (in our case Fact++)

provides. To not overwhelm the user with too many results an additional filter is set to

each incoming SPARQL-DL query, limiting the number of returned results to at most ten

per query. In case no results are found in the VR Gateway, the Applicative Requirement

Manager relies on the sharing mechanism primarily built to set up the federated network

of VR Gateways. Thus, instead of sharing a result this mechanism is asked to forward the

request to nearby semantic nodes to help in finding relevant matches.

Javascript library

To initiate matching requirements with capabilities, a JavaScript library is linked to

any application template description and executed by the Web browser of the user. When

loading an application template, this library starts reading the semantic annotations and

relies on the RDFQuery 2 library to extract the different SPARQL-DL queries. Then

each request found is sent to the VR Gateway the user is associated with (recall that

such association is made possible thanks to the Gateway Resolver). In particular, such

SPARQL-DL queries are sent sequentially through HTTP POST requests (see Listing 6.1

1. Derivo SPARQL-DL API, http://www.derivo.de/en/resources/sparql-dl-api.html
2. RDFQuery, https://code.google.com/p/rdfquery/

http://www.derivo.de/en/resources/sparql-dl-api.html
https://code.google.com/p/rdfquery/

6.1. Implementations 107

representing a requirement used during our experimentation).

After having processed a request, the VR Gateway returns a JSON structure containing

a set of matching VRs, which is evaluated by the library in order to display a list to the

user configuring the application template.

Figure 6.4 summarizes the interactions between our JS library (considered as active when

parsed by the Web browser) and the VR Gateway, upon the download of an application

template.

1POST <gateway address>/sw/query HTTP/1.1

2

3

4Content−Length:456

5PREFIX vr: <http://webofdevices.appspot.com/models/device.owl#>

6PREFIX cap: <http://webofdevices.appspot.com/models/capability.owl#>

7SELECT ?x WHERE

8{Type(?x,vr:Device),

9PropertyValue(?x, vr:hasState, ?y),

10PropertyValue(?z, vr:isAccessibleFromState, ?y),

11PropertyValue(?z, vr:realizes, ?c),

12PropertyValue(?c, cap:hasUserActionVerb, cap:EmitSignal)}

Listing 6.1 – SPARQL-DL query wrapped in an HTTP call

6.1.4 Creating the federation of semantic nodes

Handled by the Knowledge Sharing Manager, the implementation of a semantic node

(and especially of all the components required to enabling intercommunications between

different nodes, see Figure 5.2 of Chapter 5), relies on various Semantic Web technologies.

To store and retrieve RDF descriptions of devices, applicative or user requirements, we

have customized OWLDB [HKGB09] – a database backend for storing OWL triples – to-

gether with the OWL API [HB08]. In order to reason on these triples, we coupled them

with Pellet[SPG+07], the only OWL-DL reasoner supporting the addition of customized

SWRL built-ins, required to enable knowledge sharing process.

We used the JGraphT 3 open source library, providing features to build graphs as well as al-

gorithms such as Dijkstra [Dij71] to find the path between two nearby nodes of a federated

network. Establishing a path between two nodes A and B willing to share knowledge, is

performed by feeding JGraphT with data retrieved from the aggregated and inferred loca-

3. JGraphT, a free Java graph library providing mathematical graph-theory objects and algorithms,
http://jgrapht.org/

http://jgrapht.org/

108 Chapter 6. Experimentations

Figure 6.4 – Retrieving the VRs associated to connected devices complying with applica-
tion template requirements

6.1. Implementations 109

tion data (referring to the double cascading process detailed in Section 5.2.2). As already

detailed in Section 5.3.2, considering the case where the knowledge has to be exchanged

from A to B, we build two subgraphs with JGraphT, using the property loc:givesAccessTo

– loc denoting the prefix used to refer to the location model of Section 3.3 – as well as its

inverse inverseOf (loc:givesAccessTo). Implementation of the algorithm 1 is performed in

Java and results in two subgraphs respectively called left subgraph (starting with node A)

and right subgraph (starting with node B). Building the left subgraph consists of asking

a Semantic Web engine to provide all nodes {Ni} such as “A loc:givesAccessTo Ni” and

to reiterate this request on the nodes having been found. The right subgraph uses the

inverse of loc:givesAccessTo property and therefore returns the list of nodes Nj such that

“B inverseOf(loc:givesAccessTo) Nj”.

Rules mentioned in Section 5.3.1 have been written using SWRL. As an instance, Table

6.1 shows expressions corresponding respectively to rules 1 and 5 of the referenced sec-

tion. These rules make use of prefixes referring to the indoor location model described in

Section 3.3 (loc prefix), the representations defined in Section 3.2 (the srv prefix) as well

as SWRL built-ins connected to machine learning processes (the pattern prefix) or notifi-

cation mechanisms (alert, notify and pnotify patterns). They involve concepts, properties

and constants that can be found on aforementioned models. About developed patterns,

the features mentioned in these rules act as follows:

— pattern:isNext checks if the next node that a resource will join is a given node and

returns a probabilistic score.

— alert:notify simply checks if a resource has joined or left a given node.

— notif:notify sends messages to nearby nodes about a fact that has (or will) hap-

pen(ed). Its associated probability score is equal to 1.

— notif:pnotify sends messages to nearby nodes about one fact that may happen

with a certain probability. Getting such probability will not be described in this

dissertation. Thus, the overall idea is to return a score taken into account the

number of nodes that are accessible from or adjacent to a considered node.

To enable results to be shared between nodes, we rely on the SPARQL 1.1 specification

that defines a dedicated section to update a graph with some triples – through “insert

data” and “delete data” operations. The content of a notification message consists then of

a SPARQL Update query containing the triple(s) to push to the Triple Store of the recip-

ient of such information. Notification messages fired by SWRL built-ins are implemented

110 Chapter 6. Experimentations

loc:Place(?p1) ∧ loc:Place(?p2) ∧ loc:givesAccessTo(p1, ?p2) ∧
srv:IoTService(?s) ∧ alert:notify(?p1, ?s, loc:JOIN)
→ notif:notify(?p2, ?p1, ?s,loc:JOIN);

loc:Place(?p1) ∧ loc:Place(?p2) ∧
srv:IoTService(?s) ∧ srv:isMobile(?s, xsd:true) ∧
pattern:isNext(?p1, ?p2) ∧ alert:notify(?p1, ?s,loc:JOIN)
→ notif:pnotify(?p2, ?p1, ?s,loc:WILL JOIN);

Table 6.1 – Rules 1 & 5 mentioned in Section 5.3.1

as HTTP messages containing one customized HTTP Request header (X-nodes) set up

with the ordered list of nodes retrieved when establishing the path between two nodes.

The message is sent to the first node to cross and then goes through all other nodes ap-

pearing in X-nodes. Each time the message is forwarded by a given node, its IP address

appears in the standardized “via” header while it is removed from the X-nodes one.

As an example, Listing 6.2 contains a SPARQL Update query wrapped in an HTTP mes-

sage sent from a node N1 to a node N6 (following the representation of Figure 5.3), to

inform of an updated association involving one webcam and one person.

1POST <N3 ip address>/store/update HTTP/1.1

2

3Content−Type : application/sparql−update

4X−nodes : <N4 ip address>, <N5 ip address>, <N6 ip address>

5Via :

6Content−length : 340

7Prefix assoc: <http://models.iot−a.eu/association.owl>

8DELETE DATA { <http://[N1 ip address]/service/webcam1234.rdf> assoc:isAssociatedWith <http://dblp.l3s.de/d2r/

resource/authors/Benoit Christophe> } ;

9INSERT DATA { http://[N1 ip address]/service/webcam1234.rdf> assoc:isAssociatedWith <http://dblp.l3s.de/d2r/

resource/authors/Suparna De> }

Listing 6.2 – Message sent between two nodes

6.2 Experimentations

Sections 6.2.1 to 6.2.3 present various tests to assess the semantic similarity formula

described in chapter 4, while Section 6.2.4 present tests assessing the semantics for ap-

plicative requirements. All these tests have been performed by using a standard Personal

Computer equipped with a Pentium Core i5 processor and with 12GB of memory. The

program is working on a 64 bits architecture with a maximum memory allocation setup at

6.2. Experimentations 111

Ontology DL # concepts # roles
Wine SHOIQ(D) 133 17

FMA/NCI small ALCN (D) 3696 0
FMA whole ontology ALCN (D) 78988 0

NCI/FMA small ALCH(D) 6488 63
NCI/SNOMED small ALCH(D) 23958 82
NCI whole ontology ALCH(D) 66724 123

Table 6.2 – Some characteristics of the sets having been used

10GB. Note that as we are relying on other libraries, we can not optimize our program to

make it run in parallel on each of the cores of our processor. Moreover, in order to assess

the ideas presented in Chapter 5, Section 6.2.5 details an experimental setup consisting of

20 VR Gateways deployed on as many PCs, each PC being installed in a room or a corri-

dor of a building (see also Figure 6.12). In this setup, each VR Gateway was exchanging

HTTP messages – such as the one presented in Listing 6.2 – with its neighbors.

6.2.1 Towards the analysis of the semantic similarity measure

We assess our method on multiple sets available on the Web 4, the characteristics of

which are displayed in Table 6.2. We use the Wine ontology to compare our approach

with others found in the literature. In particular, we compare our method with approaches

using the extensions of concepts. Results and discussion of this first experimentation can

be found in Section 6.2.2. Then, we evaluate how our approach is able to process large

datasets. Results of this second experimentation are reported in Section 6.2.3.

6.2.2 Comparison with the state of the art

In this first experimentation, we perform an evaluation of the results that our method

produces compared to some methods of the state of the art. The goal of this first exper-

imentation is twofold. First, it must enable to detect whether our approach seems to be

a simple adaptation of some existing methods or if it really behaves differently when pro-

cessing ontologies underlied with an expressive DL. Second, from the semantic similarity

results being computed, this experimentation must allow to draw qualitative conclusions

regarding to how our method handles complex definitions of concepts compared to the

state of the art.

4. The Wine ontology, http://www.w3.org/TR/owl-guide/wine.rdf
The different subsets provided by the Ontology Alignment Evaluation Initiative, http://oaei.
ontologymatching.org

http://www.w3.org/TR/owl-guide/wine.rdf
http://oaei.ontologymatching.org
http://oaei.ontologymatching.org

112 Chapter 6. Experimentations

To this purpose, we use the Wine ontology and compare our approach to the methods

presented in [dFE06, DSF08, LCM98, Lin98]. The results displayed in graphs 6.5a to 6.5d

show that our method is not a simple transformation of the previous ones. Indeed, in

these different graphs each point represents a pair of semantic similarity values between

two concepts of the Wine ontology. The X-value of the point is what has been returned

by one method of the state of the art while the Y-value has been computed with our

approach. The absence of a curve in any of these graphs shows that our approach is not a

transformation (linear, polynomial, exponential, etc.) of other existing approaches which,

to some extent, tends to assess its novelty.

To drive the qualitative analysis, we select some pairs of concepts where our method

presents different results from what is obtained by the state of the art (see an excerpt in

Table 6.3).

From this table, the first row emphasizes the limitation of the approach used in [LCM98]

as it associates a high semantic similarity value to two concepts that do not share any se-

mantics (other than the fact than both of them are subsumed by the very abstract concept

“PotableLiquid”, like all other beverages in this ontology). Indeed, this is due to the fact

that the method proposed in [LCM98] only relies on path computation and that the small

a path between two concepts is the higher their semantic similarity is. In the example of

abstract concepts close to an even more abstract concept, the semantic similarity which

is computed can be high, even if no common semantics is shared.

The second rows shows the limitation of the approach used by [Lin98]. Indeed, although

“Alsatian Wine” and “Wine” share some semantics (an Alsatian Wine is a Wine which is

in the Alsatian region), the method used in [Lin98] does not find any similarities because

it relies on the instances of both wines. However, because the Wine ontology does not

contain any instances of Alsatian wine, the result obtained by the approach in [Lin98] is

null. Note that this problem clearly highlights the fact that most ontologies will never

contain all possible instances of a given domain of interest and that consequently, adopting

an approach that uses extensions of concepts may lead to inaccurate results.

Finally, the last row shows the limitations of methods used in [dFE06] and [DSF08]. In-

deed, although “RedBordeaux” and “Sauternes” wines share some semantics (a Sauternes

Wine is a Bordeaux Wine and the Sauternes Region is located in the Bordeaux Region),

the method used in [dFE06] is not able to return a score other than 0, because the frag-

ments of common semantics do not share any common instances. The method used in

6.2. Experimentations 113

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●●●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●
●
●●
●
●
●
●
●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●●

●

●
●
●●
●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●●
●

●

●●
●
●
●

●

●

●

●●

●

●

●

●

●●●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●●

●●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

● ●

●● ●●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●● ●●●●

●

●

●

●●●

●

●

●●

●
●●●
●

●●

●●

●
●●

●

●
●
●●●●
●●

●

●

●
●

●

●●●

●●●

●

●

●

●●

●●

●

●
●

●

●

●● ●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●● ●●●●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●● ●●●●

●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●● ●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●●

●
●

●
●

●●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●●
●●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

● ●

●● ●●●●

●

●● ● ●● ●●● ●●● ●● ●● ●●●

●●

●● ●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●
●

● ●

●● ●●●●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●● ●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●●●●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●●

●●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●● ●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●●
●

●

●

●

●
●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●●
●●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●●● ●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●●

●●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●●
●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●

●● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●
●

●●●
●

●
●●
●
●

●

●

●

●

●●

●
●

●

●

●

●●●●

●
●

●

●● ●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●
●

● ●

●●

●

●

●●

●●

●

●

●

●

●

●
●

●●

●
●●●●

●

●

●

●

●
●

●

●●

●
● ●●●

●

●

●●
●
●●●
●
●●
●
●
●●

●●

●

●
●

●

●●●

●●●●●

●

●●●

●

●

●●

●●

● ●

●
●

●●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
● ●●●

●

●

●●
●
●●●
●●●
●●
●
●
●
●

●●

●

●
●

●

●●●

●●
●●●

●

●●●

●

●

●●

●●

●
●

● ●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●●●

●

●

●

●●
●●

●

●

●

●
●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●●
●

●

●●
●
●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●●
●
●

●

●

●

●

●●

●

●

●
●

●

●

●●● ●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●
●●●

●●
●●
●
●
●
●

●
●

●

●

●

●

●

●

●

●●
●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●●●●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●
●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●● ●

●

●●●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●● ●

●

●●●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●

●●●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●●

●●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●●●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●●

●●

●

●

●
●

●

●

●

●
●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●● ●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●●

●

●●
●
●

●

●

●

●

●●

●

●

●
●

● ●

●●● ●

●

●●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●●

● ●

●●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●●
●

●

●●
●
●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●
●●

●

●●
●
●

●

●

●

●

●●

●●

●

●

●

●

●●● ●

●

●●●

●

●
●

●

●

●●● ●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●

●

●●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●● ●●●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●●

●●

●

●●
●

●

●●●●

●

●

●●

●●

●●
●

●

●

●

●● ●●●●

●

●●●●●●●●●●●●●●●

●

●●●

●●

●●●●●● ●

●

●●●

●

●

●

●

●●●

●

●

●●

●

●
●●

●

●
●

●
●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●●

●●
●

●

●

●

●

●●

●

●

●

●●

●

●
●
●

●

●●

●
●
●

●

●
●

●

●
●

●

●

●●●

●
●
●
●●

●

●

●●
●
●●
●
●●
●●
●
●
●●
●
●
●
●

●
●

●

●
●

●

●
●
●●

●●

●

●●●

●

●●●●

●

●

●●

●●

●●
●
●

●

●

●● ●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●
●●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●● ●●●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●●

●

●

●
●

●

●
●●

●
●●

●●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●●●

●●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●●●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●
●

●●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●
●●●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●
●

●

●●

●

●
●
●●
●●

●

●

●

●

●

●●●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●●●● ●●●●●●●●●●

●

●● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●● ●●●●

●

●●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●
●

●

●

●●●●

●

●●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●● ●●● ●●● ●●●●●●●● ● ●●● ●● ●●● ●● ● ●●●● ●● ●●● ●● ●● ●● ●●●● ●●● ●● ●●● ●●●●● ●● ●● ●● ●● ●●● ●● ● ●●● ●●● ●● ● ●●●● ●● ●● ● ● ●● ●● ● ●● ●● ● ●●● ●●●●●● ● ●

●

●

●

●

●

●

●●●●● ●●● ●●● ●●●● ●● ● ●● ●● ● ●●● ●● ●● ●●● ●● ●●● ●●●●●● ●●●● ●● ● ●● ●●● ●●●● ●● ●● ●● ●● ●● ●●● ●●●● ● ●

●●

●●●●●●●●●●●

●

●●●

●●

●●●●● ●●●●

●

●●● ●●● ●●●● ●●●● ●● ● ●●●● ●● ●●● ●● ●● ●● ●●● ●●● ●● ●●● ●●●●● ●●● ●● ●● ●●● ●● ● ●● ●●● ●●● ●● ●● ● ●● ●● ●● ●● ● ●●● ●●●●● ● ●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●● ●●●●

●

●● ●●●● ●●●

●

●●●●●●●●●

●

●●●

●●

●●●● ●●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●●●

●

●●
●
●

●

●

●

●

●●

●●

●

● ●

●● ●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Damato

P
C

(a) X-axis: D’amato [dFE06]

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●
●●
●
●
●
●
●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●
●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

● ●●
●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●●●●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●
●

●●

●●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●● ●●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●● ●●●●

●

●

●

●●●

●

●

●●

●
●●●

●

●●

● ●

●
●●

●

●
●
●● ●●
● ●

●

●

●
●

●

●● ●

● ●●

●

●

●

●●

● ●

●

●
●

●

●

●● ● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
● ●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●●●●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●● ●●●●

●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●●● ●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

● ●

●

●

●

●●

●
●

●
●

●●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●●
●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●

●● ●●●●

●

●●● ●● ●●● ●●●●● ●●●●●

●●

●●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●
●

●●

●● ●●●●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●● ●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●● ●●● ●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●●●●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●● ●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●●
●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●●●
●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●●

●

● ●●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●● ●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●●

●●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●● ●●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●

●● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●
●

●●●
●

●
●●

●
●

●

●

●

●

●●

●
●

●

●

●

●● ●●

●
●

●

●● ●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●
●

●●

●●

●

●

●●

●●

●

●

●

●

●

●
●

●●

●
● ●●●

●

●

●

●

●
●

●

● ●

●
● ●●●

●

●

●●
●
●●●

●
●●

●
●

● ●

●●

●

●
●

●

●●●

●● ●● ●

●

●● ●

●

●

●●

●●

● ●

●
●

●●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●
●● ●●

●

●

● ●
●
●●●

●●●
●●

●
●

●
●

● ●

●

●
●

●

● ●●

●●
●● ●

●

●● ●

●

●

●●

●●

●
●

●●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●●●

●

●

●

●●
●●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●●
●

●

●●
●
●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●● ●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●
●●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●
●● ●

●

●● ●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●●●●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●
●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●● ●

●

●●●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●● ●

●

●●●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●

●●●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●●● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●●●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●● ●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

● ●

●

●

● ●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●●

●●● ●

●

●●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●

● ●

●●

●●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●●

●

●●
●

●

●●
●
●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●●

●

●●
●

●

●

●

●

●

●●

●●

●

●

●

●

●●● ●

●

●●●

●

●
●

●

●

●● ● ●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●● ●●●●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
● ●

●●

●

●●
●

●

●● ●●

●

●

●●

●●

● ●
●

●

●

●

● ●●● ●●

●

● ●●● ●● ●●● ● ●●●● ●

●

●● ●● ●● ● ●● ● ●●● ● ●● ●●● ●●●● ●● ●●●● ●●● ●●●●● ●●●●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●●●●● ● ●● ● ●●● ●● ●●● ●● ● ●●●

●●

● ●● ● ●●●

●

●● ●

●

●

●

●

●●●

●

●

●●

●

●
●●

●

●
●

●
●

●
●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●●

●●
●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●● ●

●
●

●
●●

●

●

● ●
●
●●

●
●●

●●
●

●
●●

●
●

●
●

●
●

●

●
●

●

●
●
●●

●●

●

●● ●

●

●● ●●

●

●

●●

●●

●●
●

●

●

●

●● ●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●
●●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●●●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●●

●●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●●●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●●●

●
●

●

●●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●
●

●●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●
●●●

●

●

●● ●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●
●

●

● ●

●

●
●

●●
● ●

●

●

●

●

●

●● ●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●● ●● ● ●●●● ● ● ●● ●●

●

●●●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●● ●●●●

●

●●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●● ●●

●

●●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

● ●● ●●● ●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●●●●● ●● ●●●●● ●● ●●●● ●●● ●●●●● ●●●●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●●●● ●●● ● ● ●● ●● ● ●● ●● ● ●●● ●●● ●●●●●

●

●

●

●

●

●

● ●● ●●● ●● ●●● ● ●● ●●● ●● ●●● ● ●●● ●● ●● ●●● ●●●●● ●●●●●● ●●●● ●● ●●●● ●● ●●● ●●● ●● ●● ●● ● ● ●●● ●●● ●●●

●●

●● ●●● ●● ●● ●●

●

●● ●●● ● ●●● ● ●● ●● ● ●●●● ●● ●●● ●●● ●●●●● ●●●●● ●●● ●● ●● ●●● ●● ●●● ●●● ●●●● ● ●● ●●● ●● ●● ●● ● ●●●

●●

● ● ●●●●●● ●

●

● ●●● ●● ●●●● ● ●● ●●● ●● ●●●●● ●● ●●●●● ●● ●●● ●●● ●●●●● ●●●●● ●●● ●● ●● ●●● ●● ●●●● ●● ●●●● ●●● ● ●● ●● ●● ●● ● ●●● ●●● ●●●●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●●● ●●

●

●● ● ●●● ●● ● ●●● ●● ● ●● ●● ●● ● ●●● ●●● ●● ●●●●●● ●●●● ●●● ●● ●● ●●● ●●● ●● ●● ● ● ●●●●● ●

●

● ●●● ●● ● ●●

●

●● ● ●●● ●● ●●● ●●● ●●●● ●●● ●●●●● ●●●●●● ●●●●●● ●●● ●●● ●●● ● ●● ●●●● ●● ●●●

●●

●● ● ●● ●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

● ●●
●

●

●●
●

●

●

●

●

●

●●

● ●

●

●●

●● ●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Damato_Staab

P
C

(b) X-axis: D’amato [DSF08]

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●

●●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●

●●

●
●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●● ● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●
●

●●

●●

●●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

● ●

● ●●● ● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

● ●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●
●

● ●●● ● ●

●

●

●

●● ●

●

●

●●

●
●●●

●

●●

●●

●
●●

●

●
●

●●●●
●●

●

●

●
●

●

●●●

●●●

●

●

●

●●

● ●

●

●
●

●

●

●● ●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●● ●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●●● ● ●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●●● ● ●

●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
● ●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●●

●

● ● ●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●

●

●●

●
●

●
●

● ●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●●
● ●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

● ●

● ●●● ● ●

●

● ●● ● ●●● ●●● ●●● ●● ●● ●

●●

● ●●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●
●

● ●

● ●●● ● ●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ● ●●

●

● ● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●● ● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●● ● ●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●● ● ●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●●●

●

●●

●

●

●

●

●●

●
●

●

●

● ●

●
●

●

●

●●
●

●

●

●

●
●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●●●
● ●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●●

●

● ● ●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

● ●●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●● ● ●

● ●

●●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
● ●

●●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

● ●

●

●●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●● ● ●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●

●● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●●

●
●

●●●
●

●
●●
●
●

●

●

●

●

●●

●
●
●

●

●

●● ● ●

●
●

●

●● ●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●
●

● ●

● ●

●

●

●●

●●

●

●

●

●

●

●
●

●●

●
●●●●

●

●

●

●

●
●

●

●●

●
●● ●●

●

●

● ●
●

●●●
●

●●
●

●
●●

● ●

●

●
●

●

●●●

●●●●●

●

●●●

●

●

●●

●●

● ●

●
●

●● ● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●● ●●

●

●

● ●
●

●●●
●●●

●●
●

●
●

●

● ●

●

●
●

●

●●●

●●
●●●

●

●●●

●

●

●●

●●

●
●

● ●

●● ● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●●●

●

●

●

●●
● ●

●

●

●

●
●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●●
●

●

● ●
●
●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

● ●

●

●●
●
●

●

●

●

●

●●

●

●

●
●

●

●

● ● ●●

●

● ● ●

●

●

●●

●

●

●
●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

● ●

●

●●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●
●

●●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●
●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●● ● ●

●

●

●● ●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●● ●●● ● ●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●
●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ● ●●

●

● ● ●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

● ● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

● ●

● ●

●●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ● ●●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ● ●●

●

● ● ●

●

● ●

●●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ● ●●

●

● ● ●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●● ● ●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●● ● ●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ● ●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●● ● ●

●
●

●●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ● ●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
● ●

●

●●
●
●

●

●

●

●

●●

●

●

●
●

● ●

● ● ●●

●

● ● ●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●

● ●

● ●

● ●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●●

●

●●
●

●

● ●
●
●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

● ●

●

●●
●
●

●

●

●

●

●●

●●

●

●

●

●

● ● ●●

●

● ● ●

●

●
●

●

●

●● ●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●●
●
●

●

●

●

●

●●

●

●

●
●

●
●

● ●●● ● ●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●● ● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

● ●

●

●●

●

●●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●
●●

●●

●

●●
●

●

●●●●

●

●

●●

●●

●●
●

●

●

●

● ●●● ● ●

●

● ●●●●●●●●● ●● ●●●

●

● ●●●●● ● ●●● ●● ●● ●●●●●●● ● ●● ●●● ●●●● ●● ●● ● ●● ● ●●● ●●●● ●●● ●●● ●● ●●● ●● ●●● ● ●●● ●●●● ●●● ● ●●● ●● ●●●●● ●●●

●●

●● ●● ● ● ●

●

●● ●

●

●

●

●

●● ●

●

●

●●

●

●
●●

●

●
●

●
●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●●

●●
●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●●

●
●
●

●

●
●

●

●
●

●

●

●●●

●
●

●
●●

●

●

● ●
●

●●
●

●●
●●

●
●

●●
●

●
●

●

●
●

●

●
●

●

●
●
●●

●●

●

●●●

●

●●●●

●

●

●●

●●

●●
●
●

●

●

● ●●● ● ●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●● ● ●

●

● ●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●
● ●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●●● ● ●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●
●●

●
●●

●●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●● ● ●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

● ● ●

● ●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●●● ● ●

●

●

●

●● ●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

● ● ●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

● ●

●●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●● ● ●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

● ●

●
●

●●

●

●

●

●

●●● ●

●
●

●

●

●

●

●

●
●●●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

● ●

●

●

●●

●
●

●

●●

●

●
●

●●
●●

●

●

●

●

●

●●●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●

●●

●

●

●

●

●

●●

●

●

●

●

● ● ●● ●●● ●●● ●● ●● ●

●

● ● ●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●

● ●●● ● ●

●

●●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●●
●

●

●●
●
●

●

●

●

●

●●

●
●

●

●

●● ● ●

●

●●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

● ●● ●●●●●●●●● ●● ●●● ●● ●●●●● ● ●●● ●● ●● ●●●●●●● ● ●● ●●● ●●●● ●● ●● ● ●● ● ●●● ●●●● ●●● ●●● ●● ●●● ●● ●●● ● ●● ●● ●●●● ●●● ● ●●● ●● ●●●●● ●●● ●●●● ●● ● ●

●

●

●

●

●

●

●● ● ●●●●●●● ● ●●● ● ●●● ●●●●●●● ●● ●● ●●● ●● ●● ● ●● ● ●●●● ●●● ●● ●●● ● ●●● ●●●● ●●●●●● ●●●● ●●● ●●● ● ● ●

●●

●● ●●●●●●●● ●

●

●● ● ●●● ●● ●● ●●●●●●● ● ●● ●●● ●●● ●● ●● ● ●● ● ●●● ●●● ●●● ●●● ●● ●●● ● ●●● ●●●●● ●●● ●●●● ●●●●● ●●●

●●

● ●● ● ● ●●● ●

●

● ●●●●●●●● ● ●●● ● ●●● ●● ●● ●●●●●●● ● ●● ●●● ●●● ●● ●● ● ●● ● ●●● ●●● ●●● ●●● ●● ●●● ● ●●● ●●●●● ●●● ●●●● ●●●●● ●●● ●●● ●● ● ●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●●● ● ●

●

● ●● ●● ●● ●● ●●●●●●● ● ●● ●●● ●●●●● ●● ●●● ●●● ●● ●●● ●● ●● ●●● ●●● ●●●● ●●●● ●●● ●●● ●

●

● ●●●●●●● ●

●

●● ● ●●● ●●●●●●● ●● ●● ●●● ●● ●● ● ●● ● ●●●● ●●● ●● ●●● ● ●●● ●●●● ●●●●● ●●● ●●●

●●

● ● ● ●● ●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●●●
●

●

●●
●
●

●

●

●

●

●●

● ●

●

● ●

● ●●● ● ●

0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LC

P
C

(c) X-axis: Leacock & Chodorow [LCM98]

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●
●
●●
●
●
●
●
●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●●

●
●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●●
●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

●●●●

●
●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●
●

●●

●●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●●●●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●●

●

●

●

●●●

●

●

●●

●
●●●

●

●●

● ●

●
●●

●

●
●
●● ●●
● ●

●

●

●
●

●

●● ●

● ●●

●

●

●

●●

● ●

●

●
●

●

●

●● ●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
● ●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●●

●

●●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

● ●

●

●

●

●●

●
●

●
●

●●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●●
●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●●●●●●

●

●● ● ●● ●●● ●●● ●● ●● ●●●

●●

● ●●

●

●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●
●

● ●

●●●●●●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●

●●●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●● ●●● ●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●● ●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●●
●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●●●
●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●● ●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●●

●●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
● ●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●●●●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●
●

●●●
●

●
●●

●
●

●

●

●

●

●●

●
●

●

●

●

●●●●

●
●

●

●● ●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●
●

● ●

●●

●

●

●●

●●

●

●

●

●

●

●
●

●●

●
●● ●●

●

●

●

●

●
●

●

● ●

●
● ●●●

●

●

●●
●
●●●

●
●●

●
●

● ●

●●

●

●
●

●

●● ●

●● ●● ●

●

●● ●

●

●

●●

●●

●●

●
●

●●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●
● ●●●

●

●

●●
●
●●●

●●●
●●

●
●

●
●

●●

●

●
●

●

●● ●

●●
●● ●

●

●● ●

●

●

●●

●●

●
●

● ●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●●●

●

●

●

●●
●●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●●
●

●

●●
●
●

●
●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●
●●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●
●● ●

●

●● ●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●●●●●●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●
●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●

●●●

●

●●

●●

●

●
●

●

●

●
●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●●●●●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●

●●●

●

●●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●
●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●

●
●

●●●●

●

●●●

●

●●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●
●●
●●

●

●

●

●

●
●●
●

●

●

●

●

●
●
●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●●● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●●●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

● ●

●●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●●●

●
●

●●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

● ●

●●●●

●

●●●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●●

●●

● ●

●●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●●

●

●●
●

●

●●
●
●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●●

●

●●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●●●●

●

●●●

●

●
●

●

●

●● ●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●●●●●●

●

● ●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
● ●

●●

●

●●
●

●

●● ●●

●

●

●●

●●

● ●
●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●

●●

●●●●●●●

●

●●●

●

●

●

●

●●●

●

●

●●

●

●
●●

●

●
●

●
●

●
●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●●

●●
●

●

●

●

●

● ●

●

●

●

●●

●

●
●
●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●● ●

●
●

●
●●

●

●

●●
●
●●

●
●●

●●
●

●
●●

●
●

●
●

●
●

●

●
●

●

●
●
● ●

●●

●

●● ●

●

●● ●●

●

●

●●

●●

● ●
●

●

●

●

●●●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●●

●

●
●

●●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●
●●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●●

●
●●

●●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●●

●●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●●●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●●

●

●

●

●●●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●

●
●

●

●

●
●

●●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●
●

●
●

●●●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●●

●●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●
●●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●

●●

●
●

●
●

●●●●

●
●

●

●●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●
●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●●

●
●

●●

●

●

●

●

●●
● ●

●
●

●

●

●

●

●

●
●●●

●

●

●● ●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●●

●
●

●

● ●

●

●
●

●●
● ●

●

●

●

●

●

●● ●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●

●

●●●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

● ●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●●●●

●

●●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●

● ●

●●●●●●●●●●●

●

●●●

●●

●●●●● ●●● ●

●

●●●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●●

●

●●●

●

●●●●●●●●●

●

●●●

●●

●●●●●●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●●
●

●

●●
●

●

●

●

●

●

●●

● ●

●

● ●

●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lin

P
C

(d) X-axis: Lin [Lin98]

Figure 6.5 – Semantic similarity computation performed on the Wine ontology. Each
point represents a semantic similarity between two concepts. (X-value is computed using
a method of the state of the art and Y-value corresponds to the value returned by our
method)

114 Chapter 6. Experimentations

Concept 1 Concept 2 D’amato D’amato L&C Lin Pseudo-concept[dFE06] [DSF08] [LCM98] [Lin98]
Juice Sweet Riesling 0 0 0,6 0 0,23

Alsatian Wine Wine 0,5 0 0,9 0 0,28
Red Bordeaux Sauternes 0 0,25 0,73 0,82 0,79

Table 6.3 – Different results when computing the semantic similarity of some concepts in
the Wine ontology

[DSF08] is able to recognize that the concepts have some similarities mainly because of the

GCS that they compute. This method however, can not take benefits of the transitiveness

of the property isLocatedIn as well as of the use of nominals in the definitions of these

concepts. As a consequence, the value returned is not as high as the one found by our

method that does consider transitiveness and use of nominals.

6.2.3 Test against large ontologies

Unlike the other approaches, our method requires a lot of computation in order to

produce results, especially because of the three following steps:

— Rewriting all concepts of the ontology in their SHOIQ Normal Form (see Section

1.2).

— Deriving all pseudo-concepts using the algorithms in Appendix B, embodying the

generative functions defined in Section 4.2.1.

— Computing the RCS of each pair of concepts, involving additional computation

costs e.g., computation of branches (see Section 4.2.2).

Although a short execution time is not always a requirement when doing semantic sim-

ilarity computation on concepts that do not evolve with time (in the context of this

dissertation, measurements could primarily be performed on ontologies referring to struc-

tures defined by device providers. The similarity computation could then be performed

by a cron process, e.g. everyday starting at 2am) we tried to investigate how our method

was behaving with large ontologies. To this goal we run our approach on all the subsets

presented in Table 6.2. During this second experimentation, we run into a number of

problems that led to adapting our method with the three following changes. First, we

realized that generating the SHOIQ Normal Forms of concepts was incredibly slow. We

discovered that this was due to the current implementation of the OWL API that we were

6.2. Experimentations 115

using (use of a Java “TreeSet” structure that was trying to “order” elements composing a

DL expression; this order being extremely long to compute). As a consequence, we decided

to complement the OWL API with additional functionalities using a different structure

(i.e., a “HashSet” where order does not matter).

Second, we realized that the computation of pseudo-concepts for concepts expressed through

a long conjunctive form was leading to a huge computation time. Indeed, consider for in-

stance a conceptD ≡ C1u. . .uCn. Obtaining all these pseudo-concepts using the definition

of Φ accounts for generating 2n−2−n intersections (C1uC2, · · · , Cn−1uCn, · · · , C2u· · ·u

Cn−1) and re-applying Φ and Φ to each of them. In particular in the different SNOMED-

CT subsets used in the second experimentation, some concepts were equal to a conjunctive

form composed of 30 elements (hence 230 − 32 intersections to generate). To cope with

this issue, we implemented a second strategy allowing the user to select the maximum

number of intersections to build, by positioning a parameter giving the maximum length

of an intersection that our algorithm can create. With this parameter, we voluntarily

downgraded our method but ensured that large ontologies could possibly be processed (in

an acceptable time).

Third, we realized that computing the RCS of the dissimilar semantics happening in the

descriptions of any two concepts defined in a large ontology was not scalable. To address

this problem, we then decided to set the RCS as accounting to the union of the two dissim-

ilar fragments of semantics. As an instance, for C ≡ A0uA1uA2 and D ≡ A0uA3uA4, the

RCS(A1uA2, A3uA4) accounts for a potentially new concept E ≡ (A1uA2)t (A3uA4) 5.

Note that because these subsets do not contain individuals, we did not try to compare

our method with [dFE06, DSF08] and [Lin98] as such methods were not applicable. We

however compared our approach to the one in [LCM98] and obtained the same kind of

results than those displayed in Figure 6.5c (consistent with what was said in the previous

section as the method proposed by Leacock & Chodorow is not able to provide accurate

measurements for ontologies underlied by a DL, whatever its expressivity).

Figures 6.6 to 6.8 give indications on how the time increases with the complexity and the

size of the datasets when respectively:

— computing the SHOIQ Normal Form of the concepts,

— generating the pseudo-concepts and,

— computing semantic similarity measurements (the graph displayed in Figure 6.8

5. In this context, the RCS accounts then for the LCS, as defined by [CBH92]

116 Chapter 6. Experimentations

FMA/NCI FMA whole NCI/FMA NCI/SNOMED NCI whole

Sets

T
im

e
in

 m
ill

is
ec

on
ds

 (
lo

ga
rit

hm
ic

 Y
−

sc
al

e)

1e
−

02
1e

+
00

1e
+

02
1e

+
04

Rewriting concepts in their SHOIQ Normal Form

218

129598

1951

37800

185303

Figure 6.6 – Rewriting concepts in their SHOIQ Normal Form.

represents the average time to compute one single semantic similarity measure

between two concepts).

Although these figures do not intend to give a generalization of the behavior of our ap-

proach, they allow to visualize that our approach can be computationally expensive (e.g.

Figure 6.7 shows that it takes more than a full day to compute the entire set of pseudo-

concepts for the subset “NCI whole ontology”). However, they also show that by doing

concessions in regards to our original approach, large datasets can be processed while the

similarity measurements being found are still much better than the methods known in the

state of the art. Finally, Figures 6.9a to 6.9e represent the different steps of our process

applied to the various sets represented in Table 6.2 (all except the Wine ontology). These

steps are recalled hereafter:

1. Loading the ontology.

2. Computing inferences of the original datasets.

3. Detecting cycles in concept definitions.

4. Rewriting subsumption axioms.

5. Rewriting concepts in their SHOIQ Normal Form.

6. Computing pseudo-concepts.

6.2. Experimentations 117

FMA/NCI FMA whole NCI/FMA NCI/SNOMED NCI whole

Sets

T
im

e
in

 m
ill

is
ec

on
ds

 (
lo

ga
rit

hm
ic

 Y
−

sc
al

e)

1e
+

00
1e

+
02

1e
+

04
1e

+
06

1e
+

08

Generating pseudo−concepts

1421

691282

1740860

30568878

132871514

Figure 6.7 – Generating Pseudo-concepts.

FMA/NCI FMA whole NCI/FMA NCI/SNOMED NCI whole

Sets

T
im

e
in

 m
ill

is
ec

on
ds

 (
lo

ga
rit

hm
ic

 Y
−

sc
al

e)

1e
−

02
1e

+
00

1e
+

02
1e

+
04

Computing one semantic similarity measure

0.027555556

0.28426544

79.54222222

1320.496889

9422.904

Figure 6.8 – Computing one semantic similarity measure.

118 Chapter 6. Experimentations

7. Recomputing inferences with new concepts.

8. Computing 1000 similarity measurements.

In these figures, the generation of pseudo-concepts clearly appears as the step that requires

the most computation time.

6.2.4 Assessing the support for applicative requirements

In this experimentation, we essentially look at the time and memory required by the

VR Gateway to find connected devices matching applicative requirements. In this context,

the experimentation is performed by considering 10 requirements (Table 6.4) of various

complexities focusing on finding connected devices either generating a specific content

(referring to the concept Structure defined in Section 3.2) or realizing some capabilities

(referring to the Capability concept defined in Section 3.4.1).

Each requirement is sent to the VR Gateway having pre-loaded a set of instances of respec-

tively connected devices, capabilities and contents beforehand. To test if the size of data

is impacting the time taken by the system to analyze requirements, various sets containing

either little or high numbers of connected devices, capabilities and contents are generated

(see Table 6.5). For each of these sets, the experimentation measures the memory and

time required by the Applicative Requirement Manager (and indirectly by the Fact++ DL

reasoner) to load and process it. Results show that all sets are processed using less than

500MB of memory, fostering the idea that smart environments can be created at a little

cost, simply by using a Personal Computer to host a VR Gateway. Thus, this test reports

that the time spent to process representations tends to follow an exponential function

based on the number of RDF triples (recall that an RDF triple is the base unit enabling

to express OWL statements), and emphasizes the use of a federated network to manage

smart environment with a huge number of connected devices. Table 6.5 summarizes the

measures obtained during this test. The second test of this experimentation consists

of measuring the time taken to answer to applicative requirements. Reported in the two

Figures 6.10 and 6.11, this test reveals that the complexity of a SPARQL-DL query, the

absence of constraints in the query and the size of the dataset are three factors affecting

the computation time required to handle an applicative requirement.

In particular, in both figures it is shown that Requirement 4 is processing time-guzzler

compared to Requirements 5 and 6, while the only difference between them is the addition

of constraints (Requirement 4 is less constrained than Requirement 5 itself less constrained

6.2. Experimentations 119

●

●
●

●

●

●

●

●

1 2 3 4 5 6 7 8

2

3

4

5

6

7

8

Step

C
um

ul
at

iv
e

tim
e

in
 s

ec
on

ds

(a) FMA small overlap NCI

●

●
●

●

●

● ●
●

1 2 3 4 5 6 7 8

5

10

20

50

100

200

500

1000

Step

C
um

ul
at

iv
e

tim
e

in
 s

ec
on

ds

(b) FMA whole ontology

●

●

● ●

●

● ●
●

1 2 3 4 5 6 7 8

2

5

10

20

50

100

200

500

1000

2000

Step

C
um

ul
at

iv
e

tim
e

in
 s

ec
on

ds

(c) NCI small overlap FMA

●

●

● ●

●

● ●
●

1 2 3 4 5 6 7 8

5

10

50

100

500

1000

5000

10000

Step

C
um

ul
at

iv
e

tim
e

in
 s

ec
on

ds

(d) NCI small overlap SNOMED

●

●

● ●

●

● ●
●

1 2 3 4 5 6 7 8

1e+01

1e+02

1e+03

1e+04

1e+05

Step

C
um

ul
at

iv
e

tim
e

in
 s

ec
on

ds

(e) NCI whole

Figure 6.9 – Cumulative time of our process applied on large ontologies.

120 Chapter 6. Experimentations

Req. 1. Get all VOs known by the semantic framework
Req. 2. Get all functionalities of all known VOs
Req. 3. VOs realizing a given Capability (knowing they were no solution)
Req. 4. VOs realizing a Capability having a given UserActionVerb
Req. 5. Complementing Req. 4 by adding a constraint on Target
Req. 6. Complementing Req. 5 by adding a constraint on PerceptionModality
Req. 7. VOs realizing either a Capability A or a Capability B (testing disjunctions)
Req. 8. VOs generating a kind of content (knowing they were no solution)
Req. 9. VOs generating a kind of content
Req. 10. VOs generating a kind of content (say “A”) or

a content made of this “A” (testing disjunctions and use of a transitive property)

Table 6.4 – The 10 requirements used in the 2nd experimentation

Set VO Capabilities Content Max memory peak (MB) Processing time (sec.)
1 5 25 35 20 4,5
2 20 100 140 17 6,0
3 50 250 350 28 8,3
4 100 500 700 95 23,4
5 200 1000 1400 275 35,8
6 500 2500 3500 457 93,3
7 1000 5000 7000 470 237,3

Table 6.5 – Datasets used in the 2nd experimentation

than Requirement 6).

Both figures also highlight that Requirement 10 requires much more time than Require-

ment 9, showing that the use of transitive properties or disjunctions may lead to a query

which is computationally expensive to process. In other words, this test gives indication

about the fact that our method, although capable of processing expressive requirements

is relatively slow. This conclusion is emphasized by Figure 6.11 that shows that the time

required to handle applicative requirements grows up exponentially with the size of the

connected devices managed by the VR Gateway. In particular, Requirements 4 and 10 are

already slow to process for a relatively little number of connected devices (50). While this

may sound problematic in the context of Internet of Things – where billions of devices

may become connected, it however emphasizes the need for a distributed management

approach, where queries are checked against a limited set of connected devices and further

sent to other management systems in case of no answer can be provided. The result of

this experimentation explain why this dissertation further considers the idea of creating a

federated network of semantic nodes to deliver scalable search capabilities.

6.2. Experimentations 121

1 2 3 4 5 6 7 8 9 10

Requirements

T
im

e
in

 m
ill

is
ec

on
ds

0
20

00
0

40
00

0
60

00
0

80
00

0

Processing requirements with Set 3 pre−loaded

55

17962

1009

70654

11598 11438 12133

850

11840

50416

Figure 6.10 – Requirements sent against a framework configured with set numbered “3”.

122 Chapter 6. Experimentations

Requirements

T
im

e
in

 m
ill

is
ec

on
ds

1e
+

05
2e

+
05

3e
+

05
4e

+
05

5e
+

05

35 2363 18 906 266 252 188 303 552 171468

52544

3468

491487

62377

42402

63957

3364

43953

211932

Processing requirements with resp. Sets 1 to 4 pre−loaded

Figure 6.11 – Processing requirements in different configurations.

6.2. Experimentations 123

6.2.5 Assessing sharing message protocol of the federation

To evaluate a federated network of semantic nodes, the indoor location model (pre-

sented in Section 3.3) has been instantiated with different types of places, namely, floors,

corridors and various types of rooms (offices, meeting rooms and labs), all in the same

building. A node has then been deployed in each described premises to build up a fed-

erated architecture, comprising four levels of management (i.e. the maximum distance

between the root and any leaf node). Our evaluation approach consists of testing the ap-

plicability of the implemented sharing knowledge mechanism through a scenario showing

the feasibility of the approach by quantitatively evaluating the scalability of the federation.

Scenario Validation

The sharing knowledge mechanism has been applied to a scenario that is representative

of dynamic IoT systems. The testbed consists of a number of sensors deployed in rooms

in a building, with four floors in the building. We organized the testbed into a federated

network of nodes, comprising up to 4 management levels (i.e. building, floor, open space

and room). The distribution on a given floor is as shown in Figure 6.12 (gray circles

represent a VR gateway acting as a semantic node and associated with a place). The

deployment of the connected devices in each node triggers its Processing and Storage

block which processes the corresponding semantic descriptions and stores them in the

triple store. Once this is done for each node, the double cascading process (Section 5.2.2)

allows the information related to the distribution of the nodes to be shared within the

federation. The first case of the scenario consists of a nomadic user, Ben, who moves

around the building and is interested in finding the relevant connected devices that can

give him an idea of his ambient temperature at any given location. A user application

allows to retrieve Ben’s location (in terms of the Place Ben is currently roaming), contact

the Gateway Resolver and setup Ben’s VR Gateway client with the appropriate IP address

of the VR Gateway to contact. Ben registers then to the VR Gateway, sending its user

profile (referring to Chapter 3) further registered in a triple store associated to the semantic

node. Finally, Ben sends a request to the UserQuery component of this VR Gateway,

asking for sensor given information of type “Temperature” (this type typically refers to a

sub-concept of Structure, as defined in Chapter 3, and could be defined as equivalent to

the “ThermodynamicTemperature” concept defined in the QUDT 6 ontologies).

6. QUDT – Quantities, Units, Dimensions and Data Types Ontologies http://www.qudt.org/

http://www.qudt.org/

124 Chapter 6. Experimentations

Figure 6.12 – Deployed semantic nodes in our building

This request then feeds the Association Manager component which tries finding matching

sensors to the request of Ben, taking into account its profile and location. Since the

room contains a temperature sensing service, it is associated to Ben. The result of this

association is further stored in the Triple store of the node then shared with neighbor

places to Ben localization.

The second case of the scenario showcases relocation of a connected device from one room

to another, and thus a change in the Knowledge Base of several nodes. A generated event

(connected device joining a place) triggers the Association Manager that tries finding new

or updating existing associations. Next, the Rule Manager of the Knowledge Propagation

block executes the relevant knowledge sharing rules to determine the set of nodes to be

updated. The Results Dispatcher finally employs the notification algorithm to determine

the path to the selected nodes and both the connected device representation and the newly

determined (or updated) associations, are sent to these nodes.

Performance Measurements

Our evaluation approach consisted of a number of performance related experiments.

The first experiment we performed was to assess the time taken to compute associations,

by varying the number of connected devices to be taken into account by the Association

6.2. Experimentations 125

Manager, from 20 to 2000. We used a centralized triple store containing all the semantic

descriptions of the considered connected devices. To determine associations, we also used

a fixed set of four described physical quantities (all described in the QUDT ontology:

Pressure, Temperature, Luminous Intensity and Length). Associations were then derived

using the logic of the Association Manager. The results displayed in Figure 6.13 show the

exponential growth of the time required to derive associations, in function of the number

of connected devices. This experiment highlights the computationally expensive task of

recomputing associations and validates the inappropriate use of a centralized approach to

do so. As an example, Figure 6.13 shows that 20 seconds are required to recompute asso-

ciations involving 200 connected devices, a number that may however be quickly reached

when deploying devices in a whole building. This conclusion bolsters our belief that a

federated architecture would be a more feasible deployment option in IoT-enabled Smart

Environments, where each node would manage only a limited number of connected de-

vices.

We assess the scalability of the federated framework by a second experimentation quanti-

fying the number of messages exchanged with different nodes sharing information as well

as the time taken to process these messages. For this experimentation, we used 20 nodes

of the federated system associated to the Building displayed in Figure 6.12 and deployed

50 connected devices in each of them (i.e. the overall system was managing 1000 de-

vices). We then simulated the relocation of groups of devices to evaluate how the number

of relocations was impacting the federated system compared to a centralized approach.

Tests involved respectively the relocation of 1, 20 and finally 50 devices. For this exper-

imentation, we used a node sharing knowledge with only one other node. Consequently,

respectively 1, 20 and 50 messages were generated. Upon receptions of these messages,

semantic descriptions of relocated sensors were retrieved by the node and, finally, associa-

tions were derived. Figure 6.14 summarizes the overall times that we have obtained. These

times are decomposed in the time taken to send the set of messages, the time taken to

load the semantic descriptions associated to these messages and the time taken to recom-

pute associations. This figure indicates that the time spent in sending messages follows

a linear growth (function of the number of messages to send) resulting in a significant

amount of time added by the knowledge sharing process. Besides, this figure shows that

the time taken to load semantic profiles of connected devices was constant. Finally the

time to compute associations follows a similar curve than what was presented in Figure

126 Chapter 6. Experimentations

● ●
●

●

●

●

0 200 400 600 800 1000

0

100

200

300

400

Number of connected devices

T
im

e
in

 s
ec

on
ds

1.047
1.875 6.719

18.954

145.406

450.187

Figure 6.13 – Association computation measurements

6.2. Experimentations 127

1 representation
exchanged

20 representations
exchanged

50 representations
exchanged

Recomputing Association(s)
Processing representation(s)
Sending representation(s) (network transmission)

T
im

e
in

 s
ec

on
ds

0
5

10
15

20
25

30

Measurements for maintaining the federated system
when connected devices are relocated

Figure 6.14 – Measurements for maintaining the federated system when connected devices
are relocated

128 Chapter 6. Experimentations

6.13. Compared to a centralized approach deriving associations with 1000 connected de-

vices, these times stay however much more acceptable (see Figure 6.13 showing a time of

645 seconds to derive associations with 1000 connected devices).

Finally, we did a third experimentation checking whether the number of nodes crossed by

a knowledge sharing message was impacting the federated system or not. We then run

the scenario of the relocation of one connected device multiple times; varying the route

of this relocation by changing the recipient room. Such scenario provided us with a set

of messages, each having been propagated differently (i.e. having crossed up to 5 nodes).

Although the time increased linearly with the number of nodes having been crossed, the

results displayed in Figure 6.15 shows that it could be disregarded compared to others

(i.e. time to load the semantic description of the relocated sensor and time to recompute

associations using 50+1 representations of connected devices).

6.3 Conclusions

This chapter presents the instantiation and assessment of the ideas having been pro-

posed in the three previous chapters. Embodied in a VR Gateway, these ideas refer to:

— the semantic similarity measure detailed in Chapter 4 and,

— the matching of applicative requirements against representations of connected de-

vices exposed in Chapter 3.

Further deployed in a federated network, these VR Gateways implement the sharing pro-

tocol exposed in Chapter 5.

Based on this implementation, experimentations have been driven to assess the accuracy

of the results returned by the semantic similarity measure, the time taken to answer to

applicative requirements (when relying on DL reasoning) as well as the validity to create

a distributed architecture instead of a centralized one in order to address scalability issues

inherent to the growth in Internet of Things.

Some insights that can be derived from these experimentations validate different points

tackled in this dissertation.

First, our semantic similarity measure seems to provide qualitatively better results than

the state of the art when dealing with rich semantic descriptions and consequently may be

a better approach when comparing representations of connected devices and applicative

requirements, both of them likely to be underlied by the DL SHOIQ (see Chapter 3).

6.3. Conclusions 129

1 2 3 4 5

Recomputing Association(s)
Processing representation(s)
Sending representation(s) (network transmission)

T
im

e
in

 s
ec

on
ds

0
5

10
15

Measurements for maintaining the federated system
when connected devices are relocated.

With varying number of nodes to be crossed

Figure 6.15 – Maintaining the federated system when one connected device is relocated

130 Chapter 6. Experimentations

Aside the relevance of the results provided by the entailment of regime of a SPARQL-DL

engine, the second experimentation highlights that the time taken to handle applicative

requirements can drastically get longer by three factors: the absence of constraints in the

query, the use of complex properties and expressions to form the query (transitive prop-

erty, union, etc.) and the size of the data the engine has to deal with. Sounding like an

impediment to the development of applications in IoT-enabled Smart Environments, this

experimentation on the contrary allows writing recommendations to developers reducing

the use of consuming queries as much as possible. Finally, this second experimentation

emphasizes the strong limitations of the DL reasoning when dealing with a huge number of

concepts defined with a rich logic. In particular, this second experimentation validates the

idea of creating a distributed infrastructure of cooperating nodes empowered with search

capabilities.

The last experiment focuses on the distributed infrastructure and shows that the time

induced by the transmission of learnt results is ridiculous compared to the time spared by

processing well delineated datasets.

Conclusions

Over the last few years, the realization of the early vision of Ubiquitous and Pervasive

Computing coined by Weiser [Wei91] and Satyanarayanan [Sat01] has begun a tangible

reality through the developments of smart environments, made possible by the growth in

the Internet of Things and in particular, the rise of connected devices (sensors, actuators

or other smart components).

Together with the preponderant place that smartphones take in the daily life of users,

these nascent smart spaces pave the way to the development of novel types of interactions

between the user and these smart spaces, typically embodied as applications carried by

the phone of nomadic users and dynamically reconfiguring themselves by opportunistically

making use of appropriate and available devices.

Summary of contributions

This dissertation contributes towards the realization of such applications by summariz-

ing research efforts driven over the last six years and consisting of designing tools enabling

the efficient selection of meaningful devices, i.e. a service or data offered by one (or a

composition of) device(s), satisfying user needs in terms of the functionality or informa-

tion that it delivers. Thus, this service or data is accessible, available, aligned with the

specificities of the user and, depending on the scenario is “localized” in the vicinity of the

user.

Research works presented in this dissertation revolve around the proposal of the eco-system

resulting from the IoT as it is implemented today and from the concepts triggered by the

Ubicomp community.

Based on the identification of the stakeholders of the eco-system as well as how they are

interlinked, the dissertation highlights some of the challenges and proposes to dig into

three research axes resulting from as many as studies having been driven:

132 Summary of contributions

Definition of Representation models. The diversity of connected devices, the ser-

vices they offer, the data they generate, the peripherals that they use, their localization,

their potential mobility, their associated ownership and access rights, their changing avail-

ability, etc. are as many as characteristics that call for representation models defining the

associated semantics and computational details so that they will make possible the cre-

ation of pervasive applications. A formal approach based on the use of Description Logics

is proposed to tackle this challenge. Overall three representation models are presented,

one centered around the concepts defining a connected device, another one focusing on

the expressions associated to applicative requirements and a last one going towards the

definition of user profiles and preferences.

Design of a method to compute accurate semantic similarity measurements.

The induced complexity associated with the aforementioned representation models drove

our research efforts to the establishment of a process able to compute accurate semantic

similarity measurements. Accordingly, we have defined a measure capable of an in-depth

and refined analysis for any representation underlied by the Description Logic SHOIQ.

More specifically, the semantics conveyed in the representation models is elicited based on

a family of generative functions that consist of building semantic neighborhoods composed

of what we call “pseudo-concepts”. Once retrieved, all the pseudo-concepts populate their

original semantic model, allowing a classical Semantic Web reasoner to build a much more

refined classification graph. A semantic similarity formula uses this expanded classification

graph to cope with known limitations associated to the approaches of the state of the art.

Indeed unlike intensional approaches, the method can be used even if the semantic model

is devoid of instances or if it does not contain all possible instances of a given domain

of interest. In other words, as soon as the concepts of a domain of interest have been

defined in an ontology, our method can be used. Besides, the generative functions that we

apply prior to the generation of the classification graph, enable our method to outperform

extensional approaches that are not able to cope with ontologies underlied by a rich DL.

Having solely relied on the theoretical foundations (Description Logics) underlying the

representations of connected devices and applicative requirements gives another interest

to our process. Indeed, whatever the domain of interest being addressed, the process can

be used as is.

Summary of contributions 133

Design of a scalable search infrastructure. The high number of connected de-

vices, as well as the heterogeneity of the data, services and peripherals that compose them,

led some of our initial research works focusing on improving the interoperability between

the aforementioned actors. Resulting to representation models making use of Semantic

Web technologies, first experimentations highlighted however that complex applicative

requirements were hard to process in a system having to handle a large collection of se-

mantically described connected devices. This situation was further emphasized by the

high mobility characterizing IoT systems where users, applications and devices are likely

to roam across different smart environments. In particular, other experimentations shown

the hardness to create a responsive system having to maintain (recompute) multiple as-

sociations (device-device, device-application, device-user). Consequently, we proposed to

overcome this limitation by designing a distributed framework composed of nodes capable

of processing Semantic Web descriptions and organized in a federated architecture. In

addition to other approaches using Semantic Web technologies to design IoT systems, the

approach taken in this dissertation considers a particular deployment infrastructure where

each node of such infrastructure is mapped to a physical environment (e.g. a building, a

room, etc.). Considering such a set of nodes allows reasoning mechanisms local to each

node to be setup and enables knowledge to be locally stored, avoiding a single and cen-

tralized database (or Triple Store) to be flooded by queries (and data).

Ideas exposed in this dissertation have been embodied in a (set of) VR Gateway(s).

Associated with a place (a building, a room, etc.), a VR gateway is capable of processing

representations of connected devices, applications and users. Upon the reception of queries

coming from users (resp. applicative requirements coming from applications) the VR Gate-

way selects the most appropriate connected devices, potentially taking into account user

profile and preferences. The VR Gateway either uses semantic similarity computation or

DL reasoning to return results. In case no results are found, the VR Gateway forwards

the request to its nearby peers, so that the search space in which relevant devices can be

found is expanded but still well-delineated to not return devices too far away from the

localization of the place the request (applicative requirement) has been sent. Thus, the

VR Gateway is based on RESTful principles and allows to interact between connected

devices through a Web-based API. Experimentations passed on the VR Gateway have

134 Short and medium term perspectives

allowed to assess the ideas summarized in this dissertation.

To summarize, this dissertation gathers six years of research efforts under the thematic

of supporting nomadic users roaming across IoT-enabled Smart Environments; responding

to the evolving trend of connecting devices on the Internet. Once made accessible to the

masses such ideas, as well as the VR Gateway embodying them could lead to making a

step ahead in the concrete use of Smart Environments and the realization of the vision

envisioned by Mark Weiser.

Perspectives

Different kinds of perspectives can be envisioned whether one considers the contribu-

tions of this dissertation or the topic (the IoT) in which these contributions take place.

The former would entail research works performed in the continuation of the studies pre-

sented in this manuscript as well as launch of public working groups to strengthen the

adoption of the IoT. They could be seen as short or medium term works. Conversely,

research perspectives relying on the IoT topic – and how it is implemented now – could be

seen as longer term works. Tackling challenges that the IoT is currently facing (security,

data processing, etc.), these works would require an in-depth investigation, first to under-

stand the research barriers entailed by these challenges and second to find the technical

ways to solve them.

Short and medium term perspectives

First of all, an expected output of this work accounts for fostering the adoption of the

ideas exposed in this dissertation. A possible way toward this goal may lie in the creation

of working groups into standard organizations (e.g., the W3C), to produce efficient mod-

els – refining the ones presented in this manuscript – adopted by a large community of

different stakeholders (device manufacturers, application developers, etc.).

In terms of research work pursuing this thesis, one of them may consist of studying a

particular mechanism to realize the filtering step of the searching mechanism exposed at

the beginning of Chapter 4. A possible way in which research may be driven, could be

the creation of a novel type of fuzzy inference system or – more probably – a novel way

to feed an existing FIS.

Long term perspectives 135

Another improvement of the work presented in this dissertation may also rely on inves-

tigating different approaches to handle applicative requirements, i.e., relying on a richer

semantic allowing the expression of complex statements.

Different strategies to distribute knowledge within a network of smart environments may

also be studied (e.g., using a peer to peer scheme instead of a federation).

Last but not least, limitations brought by the use of Description Logics to represent pro-

files of connected devices and applicative requirements may also drive interesting research

works. In particular the inability of Description Logics to capture the dynamics of a sys-

tem, as well as the scalability issues that semantic engines often encounter when handling

a huge number of descriptions, open the door for using and assessing different logics (e.g.,

allowing to represent temporalities) and algorithms.

Long term perspectives

With the advent of more and more connected devices, the IoT is no more “coming”

but is already here. While the ramp-up has already begun, several reports point out that

the adoption of the IoT intrinsically depends on the data generated by the plurality of

connected devices (not only about mobile phones, tablets, laptops and wearables, but spe-

cialized sensors on people, clothing, cars, animals, houses, weather stations, video cams,

drone flying machines, etc.). Indeed, the expected enormous number of connected devices,

coupled with the sheer volume, velocity and structure of IoT data, creates challenges,

particularly in the areas of security, privacy, data processing and network design. The

following suggests some points in which research may be driven.

Security in the IoT. The increasing digitization and automation of the multitudes

of devices deployed across different areas (smart environments, cities, etc.) are likely to

create new security challenges. In particular, as it is expected that more data are going

to transit between different points of the network, attacks focusing on obtaining unautho-

rized access to data being transmitted may happen. Putting in place the right security

control mechanisms for IoT-based system becomes then a requirement. The challenge lies

on the ability to define these requirements and to further bring technological components

enabling to secure IoT systems. In particular, a technical barrier to overcome may rely

on setting up a secure communication protocol between connected devices while most of

them may be devoid of high computing capabilities.

136 Long term perspectives

Data protection in the IoT. As is already the case with smart-metering equipment

and increasingly digitized automobiles, there will be a vast amount of data providing in-

formation on users’ personal use of devices that, if not secured, can give rise to breaches of

privacy. Applications in particular may be able to collect a wide range of data types about

individuals roaming across different smart environments. The information collected may

potentially give insights (or even reveal) user habits, location, interests and other prefer-

ences. Aggregated with other services and data, such information may even lead to infer

knowledge on the user that would not have been found by examining data separately (sim-

ilar to the Amalgamation paradox 7). This is particularly challenging as the information

generated by the IoT is a key to bringing better services. Research on anonymizing the

data to avoid tracking users may therefore be a field of research to consider. The diversity

of contexts in which IoT scenarios can take place suggests however the development of

different approaches from what is found in the state of the art. Till now only few early

research works (such that [MDG14]) seem going in this direction, indicating that this field

of research is almost unexplored.

Data processing in the IoT. Processing all of the data in the IoT accounts for the

capability to perform (at least) three steps. Data ingestion and cleansing (or the capability

to harvest relevant but heterogeneous data coming from diverse devices and applications),

data storage (potentially triggering the design of new types of databases) and real-time

data analytics. If research works to allow data ingestion may be based on the ideas devel-

oped in this dissertation (semantic profiles), developing new design of databases as well

as algorithms capable of extracting knowledge from data are two promising research areas

that may require attention.

Elasticity of the network for IoT systems. Existing data center links are sized for

the moderate-bandwidth requirements generated by human interactions with applications.

The IoT promises to dramatically change these patterns by transferring massive amounts

of small message sensor data to the data center for processing, dramatically increasing

inbound data center bandwidth requirements.

7. Simpson’s Paradox, http://en.wikipedia.org/wiki/Simpson%27s_paradox

http://en.wikipedia.org/wiki/Simpson%27s_paradox

Appendix A

Subsumption relations in SHOIQ

The following presents the different subsumption relations that ground the definition

of the generative function family FG . These properties involve the role hierarchy R of a

KB as well as the logical operators of the DL SHOIQ (see Section 1.1.1).

For a given role R ∈ R, we will note S+ any of its super-property and S− any of its

subproperty. With these conventions, we have the following subsumption properties:

Subsumption properties on universal restrictions.

P.1. > ⇒ ∀S+.X v ∀R.X v ∀S−.X

P.2. X v Y ⇒ ∀R.X v ∀R.Y

Proof. We will start by proving ∀S+.X v ∀R.X.

Suppose ∃α ∈ ∀S+.X and α 6∈ ∀R.X. Using De Morgan laws, we then have ∃α ∈ ∀S+.X

and α ∈ ∃R.¬X which mean the following:

α ∈ ∀S+.X ⇒ S+(α, β) = > → β ∈ X, (A.1)

α ∈ ∃R.(¬X)⇒ ∃β ∈ ¬X/R(α, β) = >. (A.2)

However, we also have:

R v S+ ⇒ ∀(α, β), R(α, β) = > → S+(α, β). (A.3)

Hence, by Equation (A.2) and Equation (A.3), we have that:

α ∈ ∃R.(¬X)⇒ ∃β ∈ ¬X/S+(α, β) = >, (A.4)

138 Appendix A. Subsumption relations in SHOIQ

which contradicts Equation (A.1).

The same arguments can then be used to prove ∀R.X v ∀S−.X.

Finally, about P.2., suppose ∃α ∈ ∀R.X and α 6∈ ∀R.Y . Again, by using De Morgan laws

we have ∃α ∈ ∀R.X and α ∈ ∃R.¬Y which means the following:

α ∈ ∀R.X ⇒ R(α, β) = > → β ∈ X, (A.5)

α ∈ ∃R.(¬Y)⇒ ∃β ∈ ¬Y/R(α, β) = >, (A.6)

which obviously contradicts X v Y (as such β should exist in Xu¬Y which is empty).

Subsumption properties on existential restrictions.

P.3. > ⇒ ∃S−.X v ∃R.X v ∃S+.X

P.4. X v Y ⇒ ∃R.X v ∃R.Y

Proof. By negating the expression of P.3. and applying De Morgan laws, we have:

∀S+.¬X v ∀R.¬X v ∀S−.¬X, (A.7)

which is equivalent to P.1. that has been proved.

The same can be done for P.4., noticing that X v Y ⇐⇒ ¬Y v ¬X. We then have:

¬Y v ¬X ⇒ ∀R.¬Y v ∀R.¬X, (A.8)

which is equivalent to P.2. that has been proved.

Subsumption properties on minimal cardinality restrictions.

P.5. > ⇒ ≥ nS−.X v ≥ nR.X v ≥ nS+.X

P.6. X v Y ⇒ ≥ nR.X v ≥ nR.Y

Proof. Again, we prove P.5. and P.6. by showing that the contrary is false.

For the left-side of P.5., suppose we do not have ≥ nS−.X v≥ nR.X. Then it means that

∃α ∈≥ nS−.X and α 6∈≥ nR.X. Using De Morgan laws, we then have ∃α ∈≥ nS−.X and

α ∈< nR.X. We then have the following:

#{x ∈ X/S−(α, x) = >} ≥ n, (A.9)

139

#{x ∈ X/R(α, x) = >} < n. (A.10)

However, with S− v R, we have S−(α, x) ⇒ R(α, x) (∀α and x) that coupled with

Equation (A.9), lead to the following:

#{x ∈ X/R(α, x) = >} ≥ n, (A.11)

which contradicts Equation (A.10). As a consequence, the left-side of P.5. is true. The

same deductions can be applied to prove ≥ nR.X v≥ nS+.X (as R v S+).

To prove P.6., supposing the contradiction is true, it holds that: X v Y and ∃α ∈≥ nR.X

and α 6∈≥ nR.Y . This leads to the following equations:

#{z ∈ X/R(α, z) = >} ≥ n, (A.12)

#{z ∈ Y/R(α, z) = >} < n. (A.13)

Equation (A.12) accounts for saying that it exists at least n instances of X that are in

relation with α through the property R. However, knowing that X v Y , we know that

all these instances are Y . As a consequence, Equation (A.12) and X v Y implies the

following equation:

#{z ∈ Y/R(α, z) = >} ≥ n, (A.14)

which contradicts Equation (A.13). As a consequence, P.6. is true.

Subsumption properties on maximal cardinality restrictions.

P.7. > ⇒ ≤ nS+.X v ≤ nR.X v ≤ nS−.X

P.8. X v Y ⇒ ≤ nR.Y v ≤ nR.X

Proof. By negating the expression of P.7. and applying De Morgan laws, we have:

> nS−.X v> nR.X v> nS+.X (A.15)

The same reasoning than the one applied on P.5. can then be performed to prove P.7.

The same can be done for P.8., noticing that X v Y ⇐⇒ ¬Y v ¬X. We then have:

¬Y v ¬X ⇒> nR.Y v> nR.X (A.16)

140 Appendix A. Subsumption relations in SHOIQ

Again the same reasoning that the one applied on P.6 can be performed to prove P.8.

Subsumption properties on existential restrictions involving a transitive property and

nominals.

P.9. R ∈ NR+∧

∃R.{a0, · · · , an}∧

∀ε ∈ {a0, · · · , an},∃η ∈ {b0, · · · , bp} such that R(ε, η) = >

⇒

∃R.{a0, · · · , an} v ∃R.{b0, · · · , bp}

Proof. Again, using De Morgan laws we will prove that the opposite of the proposition is

absurd.

Suppose we have α ∈ R.{a0, · · · , an} and α 6∈ R.{b0, · · · , bp}. We then have the following:

∃ε ∈ {a0, · · · an}/R(α, ε) = >, (A.17)

∀η ∈ {b0, · · · bp}/R(α, η) = ⊥. (A.18)

However Equation (A.17) and the two conditions:

— R ∈ NR+ and,

— ∀ε ∈ {a0, · · · , an},∃η ∈ {b0, · · · , bp} such that R(ε, η) = >

imply that ∃η ∈ {b0, · · · , bp} such that R(α, η) = > which contradicts Equation (A.18).

As a consequence, P.9. is true.

Appendix B

Algorithms generating

pseudo-concepts

Algorithm 2 Generate the pseudo-concepts PS of an ontology O

PS ← ∅
procedure generate PS(O):

for all concepts C ∈ O do
M ← ∅
CSHOIQ ← normalize(C)

end for
if CSHOIQ ≡ tiDi then
PS ← subsumees(CSHOIQ,M)

else
PS ← subsumers(CSHOIQ,M)

end if
end procedure

142 Appendix B. Algorithms generating pseudo-concepts

Algorithm 3 Generate the pseudo-concepts subsumed by a concept C in O
procedure subsumees(C,M):
PS ← Φ1(C,M)

⋃
Φ2(C,M)

end procedure

procedure Φ1(C,M)
for all D ∈ GO and D @ C do
PS ← D
for all X ∈ subsumees(D,M) do
PS ← X

end for
end for

end procedure

procedure Φ2(C,M)
if (C ≡ ∀R.D) or (C ≡ ∃R.D) or (C ≡≥ nR.D) or (C ≡≤ nR.D) then

S+ ← {S ∈ NR / R v S}
S− ← {S ∈ NR / S v R}

end if
if (C ≡ ∀R.D and C 6∈M) then

for all S ∈ S+ do
if (R @ S) then
PS ← ∀S.D

end if
for all X ∈ subsumees(D,M t {C}) do
PS ← ∀S.X

end for
end for

else if (C ≡ ∃R.D) and C 6∈M then
for all S ∈ S− do

if (S @ R) then
PS ← ∃S.D

end if
for all X ∈ subsumees(D,M t C) do
PS ← ∃S.X

end for
end for

else if (C ≡≥ nR.D) then
for all S ∈ S− do

if (S @ R) then
PS ←≥ nS.D

end if
for all X ∈ subsumees(D,M t C) do
PS ←≥ nS.X

end for
end for

else if (C ≡≤ nR.D) then
for all S ∈ S+ do

if (R @ S) then
PS ←≤ nS.D}

end if
for all X ∈ subsumers(D,M t C) do
PS ←≤ nS.X

end for
end for

else if C ≡
⋃N
i=1Ci and C 6∈M then

for k = 1 · · ·N do
PS ←

⋃k
l=1Cjl such that 1 ≤ j1 < jl < jk ≤ N

end for
end if

end procedure

143

Algorithm 4 Generate the pseudo-concepts that subsume a concept C in O
procedure subsumers(C,M):
PS ← Φ1(C,M)

⋃
Φ2(C,M)

end procedure

procedure Φ1(C,M)
for all D ∈ GO and C @ D do
PS ← D
for all X ∈ subsumers(D,M) do
PS ← X

end for
end for

end procedure

procedure Φ2(C,M)
if (C ≡ ∀R.D) or (C ≡ ∃R.D) or (C ≡≥ nR.D) or (C ≡≤ nR.D) then

S+ ← {S ∈ NR / R v S}
S− ← {S ∈ NR / S v R}

end if
if (C ≡ ∀R.D and C 6∈M) then

for all S ∈ S− do
if (S @ R) then
PS ← ∀S.D

end if
for all X ∈ subsumers(D,M t {C}) do
PS ← ∀S.X

end for
end for

else if (C ≡ ∃R.D) and C 6∈M then
for all S ∈ S+ do

if (R @ S) then
PS ← ∃S.D

end if
for all X ∈ subsumers(D,M t C) do
PS ← ∃S.X

end for
end for
if (R ∈ NR+ and D ≡ {ε1 · · · εm}) then

if (X ≡ {η1 · · · ηn} and ∀εi ∈ D,∃ηj ∈ X such that ∃R.{εi} v ∃R.{ηj} and
∀ηj ∈ X,∃εi ∈ D such that ∃R.{εi} v ∃R.{ηj}) then

PS ← ∃R.X
end if

end if
else if (C ≡≥ nR.D) then

for all S ∈ S+ do
if (R @ S) then
PS ←≥ nS.D

end if
for all X ∈ subsumers(D,M t C) do
PS ←≥ nS.X

end for
end for

else if (C ≡≤ nR.D) then
for all S ∈ S− do

if (S @ R) then
PS ←≤ nS.D}

end if
for all X ∈ subsumees(D,M t C) do
PS ←≤ nS.X

end for
end for

else if C ≡
⋂N
i=1Ci and C 6∈M then

for k = 1 · · ·N do
PS ←

⋂k
l=1Cjl such that 1 ≤ j1 < jl < jk ≤ N

end for
end if

end procedure

List of Figures

1 The different stakeholders and their interconnections in the Internet of Things 5

3.1 Example of the finite state machine associated with the TV description . . 37

3.2 An entity with temporal parts as a spacetime worm 41

3.3 The 13 temporal relations of Allen’s theory 42

3.4 Interlinks entailed by the semantics of concepts 45

3.5 Indoor location concepts . 46

3.6 Capability and its relationships with Functionality 50

3.7 Recapitulative view of the main concepts modelling users, devices and re-

quirements . 60

4.1 An example of a searching procedure comprising a filtering followed by an

analysis . 62

4.2 Illustration of the impact of the semantics of a concept when computing

similarity of other concepts. 66

4.3 The weight of a node is proportional to the weight of its subsumees and

inversely proportional to its number of subsumers 74

4.4 Computing the weight of a branch. Ω(B1(A→ C)) = 59; Ω(B2(A→ C)) =

58, 5. 76

5.1 IoT’s three layers cake - Entities of Interest, connected devices and appli-

cations . 84

5.2 Building blocks of a node . 88

5.3 Gathering overall nodes’ location of a given federation network 91

5.4 Sharing knowledge between nearby nodes: Overall process 97

6.1 VR Lamp Illustration . 101

146 List of Figures

6.2 Loading and configuring templates . 102

6.3 Implemented Framework . 103

6.4 Retrieving the VRs associated to connected devices complying with appli-

cation template requirements . 108

6.5 Semantic similarity computation performed on the Wine ontology. Each

point represents a semantic similarity between two concepts. (X-value is

computed using a method of the state of the art and Y-value corresponds

to the value returned by our method) . 113

6.6 Rewriting concepts in their SHOIQ Normal Form. 116

6.7 Generating Pseudo-concepts. 117

6.8 Computing one semantic similarity measure. 117

6.9 Cumulative time of our process applied on large ontologies. 119

6.10 Requirements sent against a framework configured with set numbered “3”. . 121

6.11 Processing requirements in different configurations. 122

6.12 Deployed semantic nodes in our building . 124

6.13 Association computation measurements . 126

6.14 Measurements for maintaining the federated system when connected devices

are relocated . 127

6.15 Maintaining the federated system when one connected device is relocated . 129

Bibliography

[All83] James F. Allen. Maintaining knowledge about temporal intervals. Commun.
ACM, 26(11):832–843, November 1983.

[All84] James F. Allen. Towards a general theory of action and time. Artif. Intell.,
23(2):123–154, July 1984.

[BBH+10] Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska,
Daniela Nicklas, Anand Ranganathan, and Daniele Riboni. A survey of
context modelling and reasoning techniques. Pervasive Mob. Comput.,
6(2):161–180, April 2010.

[BBS04] Magdalena Balazinska, Hari Balakrishnan, and Mike Stonebraker.
Contract-based load management in federated distributed systems. In Pro-
ceedings of the 1st Conference on Symposium on Networked Systems Design
and Implementation - Volume 1, NSDI’04, pages 15–15, Berkeley, CA, USA,
2004. USENIX Association.

[BC08] Dario Bonino and Fulvio Corno. Dogont - ontology modeling for intel-
ligent domotic environments. In Amit Sheth, Steffen Staab, Mike Dean,
Massimo Paolucci, Diana Maynard, Timothy Finin, and Krishnaprasad
Thirunarayan, editors, The Semantic Web - ISWC 2008, volume 5318 of
Lecture Notes in Computer Science, pages 790–803. Springer Berlin Heidel-
berg, 2008.

[BCBT11] Mathieu Boussard, Benoit Christophe, Olivier Le Berre, and Vincent
Toubiana. Providing user support in web-of-things enabled smart spaces.
In Dominique Guinard, Vlad Trifa, and Erik Wilde, editors, WoT, page 11.
ACM, 2011.

[BGM+10] Norbert Baumgartner, Wolfgang Gottesheim, Stefan Mitsch, Werner Rets-
chitzegger, and Wieland Schwinger. Beaware! - situation awareness, the
ontology-driven way. Data Knowl. Eng., 69(11):1181–1193, 2010.

[BJH+04] R A Belecheanu, G Jawaheer, A Hoskins, J McCann, and T Payne. Se-
mantic web meets autonomic ubicomp. In The 3rd International Semantic
Web Conference, 2004. Event Dates: November 7 -11, 2004.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific American, 284(5):34–43, May 2001.

[BP10] Sotiris Batsakis and Euripides G. M. Petrakis. Sowl: Spatio-temporal rep-
resentation, reasoning and querying over the semantic web. In Proceedings
of the 6th International Conference on Semantic Systems, I-SEMANTICS
’10, pages 15:1–15:9, New York, NY, USA, 2010. ACM.

[BVAC13] A.J. Bermejo, J. Villadangos, J.J. Astrain, and A. Córdoba. Ontology based
road traffic management. In Giancarlo Fortino, Costin Badica, Michele Mal-

148 Bibliography

geri, and Rainer Unland, editors, Intelligent Distributed Computing VI, vol-
ume 446 of Studies in Computational Intelligence, pages 103–108. Springer
Berlin Heidelberg, 2013.

[CBH92] William W. Cohen, Alex Borgida, and Haym Hirsh. Computing least com-
mon subsumers in description logics. In Proceedings of the tenth national
conference on Artificial intelligence, AAAI’92, pages 754–760. AAAI Press,
1992.

[CBL+11] Benoit Christophe, Mathieu Boussard, Monique Lu, Alain Pastor, and Vin-
cent Toubiana. The web of things vision: Things as a service and interaction
patterns. Bell Labs Technical Journal, 16(1):55–61, 2011.

[CBTB12] Benoit Christophe, Mathieu Boussard, Vincent Toubiana, and Olivier Le
Berre. A semantics to define web templates for adaptive ubicomp applica-
tions. In GreenCom, pages 217–224, 2012.

[CFJ05] Harry Chen, Tim Finin, and Anupam Joshi. The soupa ontology for perva-
sive computing. In Ontologies for Agents: Theory and Experiences, pages
233–258. BirkHauser, 2005.

[CGZK04] Eleni Christopoulou, Christos Goumopoulos, Ioannis Zaharakis, and
Achilles Kameas. An ontology-based conceptual model for composing
context-aware applications. In Proc. 6th. International Conference on Ubiq-
uitous Computing, 2004.

[Che03] Harry Chen. An intelligent broker for context-aware systems. In In Adjunct
Proceedings of Ubicomp, pages 183–184, 2003.

[CHN+09] Michael Compton, Cory Henson, Holger Neuhaus, Laurent Lefort, Amit
Sheth, Kerry Taylor, Arun Ayyagari, and David De Roure. A survey of the
semantic specification of sensors. In Proceedings of the 2nd International
Workshop on Semantic Sensor Networks (SSN09) at ISWC 2009, volume
522, pages 17–32. CEUR Workshop Proceedings, November 2009.

[Chr11] B. Christophe. Semantic profiles to model the ”web of things”. In Seman-
tics Knowledge and Grid (SKG), 2011 Seventh International Conference on
Semantics, Knowledge and Grid, pages 51 –58, oct. 2011.

[Chr12] Benoit Christophe. Managing massive data of the internet of things through
cooperative semantic nodes. In ICSC, pages 93–100, 2012.

[CKY+11] Yun-Gyung Cheong, Yeo-Jin Kim, Seung Yeol Yoo, Hosub Lee, Sunjae
Lee, Seung Chul Chae, and Hyun-Jin Choi. An ontology-based reasoning
approach towards energy-aware smart homes. In Consumer Communica-
tions and Networking Conference (CCNC), 2011 IEEE, pages 850–854, Jan
2011.

[CNBC10] Michael Compton, Holger Neuhaus, Luis Bermudez, and Simon Cox. An
ontology for sensor network. Geophysical Research Abstracts, 12(EGU2010-
3817-1), 2010.

[CNS+06] Lorcan Coyle, Steve Neely, Graeme Stevenson, Mark Sullivan, Simon Dob-
son, Paddy Nixon, and Gaëtan Rey. Sensor fusion-based middleware for
smart homes, 2006.

[CNW12] Liming Chen, C.D. Nugent, and Hui Wang. A knowledge-driven approach
to activity recognition in smart homes. Knowledge and Data Engineering,
IEEE Transactions on, 24(6):961–974, June 2012.

Bibliography 149

[CPLM11] Yongyun Cho, Sangjoon Park, Jongchan Lee, and Jongbae Moon. An
owl-based context model for u-agricultural environments. In Beniamino
Murgante, Osvaldo Gervasi, Andrés Iglesias, David Taniar, and BernadyO.
Apduhan, editors, Computational Science and Its Applications - ICCSA
2011, volume 6785 of Lecture Notes in Computer Science, pages 452–461.
Springer Berlin Heidelberg, 2011.

[d’A] Claudia d’Amato. Similarity-based learning methods for the semantic web.
[DD09] Danica Damljanovic and Vladan Devedzic. Applying Semantic Web to E-

Tourism, pages 243–265. The Semantic Web for Knowledge and Data Man-
agement: Technologies and Practices. IGI Global, 8 2009.

[dFE05] C. d’Amato, N. Fanizzi, and F. Esposito. A semantic similarity measure
for expressive description logics. In A. Pettorossi, editor, Proceedings of
Convegno Italiano di Logica Computazionale (CILC05) 21-22 June 2005,
Rome, Italy, 2005.

[dFE06] Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito. A dissimilarity
measure for ALC concept descriptions. In Hisham M. Haddad, editor, Pro-
ceedings of the 2006 ACM Symposium on Applied Computing (SAC 2006),
April 23-27, 2006, Dijon, France, pages 1695–1699. ACM, New York, NY,
USA, 2006.

[Dij71] Edsger W. Dijkstra. A short introduction to the art of programming. Au-
gust 1971.

[DLNN91] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt.
The complexity of concept languages. In Information and Computation,
pages 151–162. Morgan Kaufmann, 1991.

[DP14] Alessandra De Paola. An ontology-based autonomic system for ambient
intelligence scenarios. In Salvatore Gaglio and Giuseppe Lo Re, editors,
Advances onto the Internet of Things, volume 260 of Advances in Intelligent
Systems and Computing, pages 1–17. Springer International Publishing,
2014.

[DSF08] Claudia D’Amato, Steffen Staab, and Nicola Fanizzi. On the influence
of description logics ontologies on conceptual similarity. In Proceedings
of the 16th international conference on Knowledge Engineering: Practice
and Patterns, EKAW ’08, pages 48–63, Berlin, Heidelberg, 2008. Springer-
Verlag.

[ELES06] M. Eid, Ramiro Liscano, and A. El Saddik. A novel ontology for sensor
networks data. In Computational Intelligence for Measurement Systems
and Applications, Proceedings of 2006 IEEE International Conference on,
pages 75–79, July 2006.

[FDE08] Nicola Fanizzi, Claudia D’Amato, and Floriana Esposito. Learning with
kernels in description logics. In Proceedings of the 18th international con-
ference on Inductive Logic Programming, ILP ’08, pages 210–225, Berlin,
Heidelberg, 2008. Springer-Verlag.

[FHHM01] Dieter Fensel, Frank Van Harmelen, Ian Horrocks, and Deborah L. Mcguin-
ness. Oil: An ontology infrastructure for the semantic web. IEEE Intelligent
Systems, pages 38–45, 2001.

[FK02] Josef Fink and Alfred Kobsa. User modeling for personalized city tours.
Artif. Intell. Rev., 18(1):33–74, September 2002.

150 Bibliography

[GANJ06] Yasser Ganjisaffar, Hassan Abolhassani, Mahmood Neshati, and Mohsen
Jamali. A similarity measure for owl-s annotated web services. In Web
Intelligence, pages 621–624. IEEE Computer Society, 2006.

[GD06] Dragan Gasevic and Vladan Devedzic. Petri net ontology. Knowledge-Based
Systems, 19(4):220 – 234, 2006.

[GM03] Aldo Gangemi and Peter Mika. Understanding the semantic web through
descriptions and situations. In Proceedings of ODBASE03 Conference,
pages 689–706. Springer, 2003.

[GNOT92] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using
collaborative filtering to weave an information tapestry. Commun. ACM,
35(12):61–70, December 1992.

[Goo] Caleb Goodwin. An ontology-based sensor network prototype environment.
[GPZ04] Tao Gu, Hung Keng Pung, and Da Qing Zhang. A middleware for building

context-aware mobile services. In Vehicular Technology Conference, 2004.
VTC 2004-Spring. 2004 IEEE 59th, volume 5, pages 2656 – 2660 Vol.5,
may 2004.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifica-
tions. Knowl. Acquis., 5(2):199–220, June 1993.

[GS04] Fabien L. Gandon and Norman M. Sadeh. Semantic web technologies to
reconcile privacy and context awareness. J. Web Sem., 1(3):241–260, 2004.

[Hay79] P. J. Hayes. The logic of frames. In D. Metzing, editor, Frame Conceptions
and Text Understanding, pages 46–61. Walter de Gruyter and Co., Berlin,
Germany, 1979.

[HB08] Matthew Horridge and Sean Bechhofer. The owl api: A java api for working
with owl 2 ontologies. In Rinke Hoekstra and Peter F. Patel-Schneider, edi-
tors, OWLED, volume 529 of CEUR Workshop Proceedings. CEUR-WS.org,
2008.

[HI04] Karen Henricksen and Jadwiga Indulska. Modelling and using imperfect
context information. In Pervasive Computing and Communications Work-
shops, 2004. Proceedings of the Second IEEE Annual Conference on, pages
33–37. IEEE, 2004.

[HI06] Karen Henricksen and Jadwiga Indulska. Developing context-aware perva-
sive computing applications: Models and approach. Pervasive and mobile
computing, 2(1):37–64, 2006.

[HIR02] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Modeling
context information in pervasive computing systems. In Pervasive Comput-
ing, pages 167–180. Springer Berlin Heidelberg, 2002.

[HKGB09] Jörg Henß, Joachim Kleb, Stephan Grimm, and Jürgen Bock. A Database
Backend for OWL. In Rinke Hoekstra and Peter F. Patel-Schneider, edi-
tors, Proceedings of the 6th International Workshop on OWL: Experiences
and Directions (OWLED 2009), volume 529, http://ceur-ws.org, 2009.
CEUR Workshop Proceedings.

[HM85] Dennis Heimbigner and Dennis McLeod. A federated architecture for in-
formation management. ACM Trans. Inf. Syst., 3(3):253–278, July 1985.

[HS05] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for shoiq.
In In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI,
pages 448–453. Morgan, 2005.

http://ceur-ws.org

Bibliography 151

[HWG07] Yuheng Hu, Zhendong Wu, and Ming Guo. Ontology driven adaptive data
processing in wireless sensor networks. In Proceedings of the 2Nd Inter-
national Conference on Scalable Information Systems, InfoScale ’07, pages
46:1–46:2, ICST, Brussels, Belgium, Belgium, 2007. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing).

[HZHC12] Jing He, Yanchun Zhang, Guangyan Huang, and Jinli Cao. A smart web
service based on the context of things. ACM Trans. Internet Technol.,
11(3):13:1–13:23, February 2012.

[ILMF11] Noha Ibrahim, Frédéric Le Mouël, and Stéphane Frénot. Semantic Service
Substitution in Pervasive Environments. International Journal of Services,
Economics and Management (IJSEM), 2011. ”Service-Oriented Engineer-
ing” special issue.

[IRRH03] Jadwiga Indulska, Ricky Robinson, Andry Rakotonirainy, and Karen Hen-
ricksen. Experiences in using cc/pp in context-aware systems. In In Proc.
of the Intl. Conf. on Mobile Data Management (MDM, pages 247–261.
Springer, 2003.

[Jac01] P. Jaccard. Distribution de la flore alpine dans le bassin des dranses et
dans quelques régions voisines. Bulletin de la Société Vaudoise des Sciences
Naturelles, 37:241–272, 1901.

[Jan93] J.-S.R. Jang. Anfis: adaptive-network-based fuzzy inference system. Sys-
tems, Man and Cybernetics, IEEE Transactions on, 23(3):665–685, May
1993.

[Jan06] Krzysztof Janowicz. Sim-dl: Towards a semantic similarity measurement
theory for the description logic alcnr in geographic information retrieval.
In SeBGIS 2006, OTM Workshops 2006. Volume 4278 of Lecture Notes in
Computer Science. Springer, 2006.

[JC97] J.J. Jiang and D.W. Conrath. Semantic similarity based on corpus statistics
and lexical taxonomy. In Proc. of the Int’l. Conf. on Research in Compu-
tational Linguistics, pages 19–33, 1997.

[JMA10] Paul VanderLei Jeff McAffer and Simon Archer. OSGi and Equinox: Cre-
ating Highly Modular Java Systems. 2010.

[JT09] Xing Jiang and Ah-Hwee Tan. Learning and inferencing in user ontology
for personalized semantic web search. Inf. Sci., 179(16):2794–2808, July
2009.

[JW09] Krzysztof Janowicz and Marc Wilkes. Sim-dla: A novel semantic similarity
measure for description logics reducing inter-concept to inter-instance sim-
ilarity. In Lora Aroyo, Paolo Traverso, Fabio Ciravegna, Philipp Cimiano,
Tom Heath, Eero Hyvönen, Riichiro Mizoguchi, Eyal Oren, Marta Sabou,
and Elena Paslaru Bontas Simperl, editors, ESWC, volume 5554 of Lecture
Notes in Computer Science, pages 353–367. Springer, 2009.

[KBM+02] Tim Kindberg, John J. Barton, Jeff Morgan, Gene Becker, Debbie Caswell,
Philippe Debaty, Gita Gopal, Marcos Frid, Venky Krishnan, Howard Mor-
ris, John Schettino, Bill Serra, and Mirjana Spasojevic. People, places,
things: Web presence for the real world. MONET, 7(5):365–376, 2002.

[KHF+11] Marc Kurz, Gerold Hölzl, Alois Ferscha, Alberto Calatroni, Daniel Roggen,
Gerhard Tröster, Hesam Sagha, Ricardo Chavarriaga, José del R. Millán,

152 Bibliography

David Bannach, Kai Kunze, and Paul Lukowicz. The opportunity frame-
work and data processing ecosystem for opportunistic activity and context
recognition. International Journal of Sensors, Wireless Communications
and Control, Special Issue on Autonomic and Opportunistic Communica-
tions, pages 102–125, December 2011.

[KKK+08] Artem Katasonov, Olena Kaykova, Oleksiy Khriyenko, Sergiy Nikitin, and
Vagan Y. Terziyan. Smart semantic middleware for the internet of things.
In Joaquim Filipe, Juan Andrade-Cetto, and Jean-Louis Ferrier, editors,
ICINCO-ICSO, pages 169–178. INSTICC Press, 2008.

[Knu04] Holger Knublauch. Ontology-driven software development in the context
of the semantic web: An example scenario with protege/owl. In David S.
Frankel, Elisa F. Kendall, and Deborah L. McGuinness, editors, 1st In-
ternational Workshop on the Model-Driven Semantic Web (MDSW2004),
2004.

[KS02] N.K. Kasabov and Qun Song. Denfis: dynamic evolving neural-fuzzy infer-
ence system and its application for time-series prediction. Fuzzy Systems,
IEEE Transactions on, 10(2):144–154, Apr 2002.

[Las05] Ora Lassila. Applying semantic web in mobile and ubiquitous computing:
Will policy-awareness help. In in the proceedings of the Semantic Web and
Policy Workshop, 4th International Semantic Web Conference, 2005.

[LCM98] Claudia Leacock, Martin Chodorow, and George A. Miller. Using corpus
statistics and wordnet relations for sense identification. Computational Lin-
guistics, 24(1):147–165, 1998.

[LGSpt] J. Lathem, K. Gomadam, and A.P. Sheth. Sa-rest and (s)mashups : Adding
semantics to restful services. In Semantic Computing, 2007. ICSC 2007.
International Conference on, pages 469–476, Sept.

[Lin98] Dekang Lin. An Information-Theoretic Definition of Similarity. In Jude W.
Shavlik and Jude W. Shavlik, editors, ICML, pages 296–304. Morgan Kauf-
mann, 1998.

[LLD] Fatiha Latfi, Bernard Lefebvre, and Céline Descheneaux. Ontology-based
management of the telehealth smart home, dedicated to elderly in loss of
cognitive autonomy.

[LZWQ05] Huiying Li, Xiang Zhang, Honghan Wu, and Yuzhong Qu. Design and
application of rule based access control policies. In Proc of the Semantic
Web and Policy Workshop, pages 34–41, 2005.

[Mam77] E. H. Mamdani. Application of fuzzy logic to approximate reasoning using
linguistic synthesis. IEEE Trans. Computers, 26(12):1182–1191, 1977.

[mAYKGS09] Ching man Au Yeung, Lalana Kagal, Nicholas Gibbins, and Nigel Shadbolt.
Providing access control to online photo albums based on tags and linked
data. In AAAI Spring Symposium: Social Semantic Web: Where Web 2.0
Meets Web 3.0, pages 9–14. AAAI, 2009.

[MBH+04] David Martin, Mark Burstein, Erry Hobbs, Ora Lassila, Drew Mcdermott,
Sheila Mcilraith, Srini Narayanan, Bijan Parsia, Terry Payne, Evren Sirin,
Naveen Srinivasan, and Katia Sycara. Owl-s: Semantic markup for web
services. Technical report, November 2004.

Bibliography 153

[MBKV+02] M. J. Martin-Bautista, D. H. Kraft, M. A. Vila, J. Chen, and J. Cruz. User
profiles and fuzzy logic for web retrieval issues. Soft Computing, 6(5):365–
372, 2002.

[MDEK13] Georgios Meditskos, Stamatia Dasiopoulou, Vasiliki Efstathiou, and Ioannis
Kompatsiaris. Ontology patterns for complex activity modelling. In Leora
Morgenstern, Petros Stefaneas, François Lévy, Adam Wyner, and Adrian
Paschke, editors, Theory, Practice, and Applications of Rules on the Web,
volume 8035 of Lecture Notes in Computer Science, pages 144–157. Springer
Berlin Heidelberg, 2013.

[MDG14] Maria Laura Maag, Ludovic Denoyer, and Patrick Gallinari. Graph
anonymization using machine learning. In AINA, pages 1111–1118, 2014.

[ME06] Brett McLaughlin and Justin Edelson. Java and XML, 3rd Edition. 2006.
[MFHS02] Deborah L. McGuinness, Richard Fikes, James Hendler, and Lynn Andrea

Stein. Daml+oil: An ontology language for the semantic web. IEEE Intel-
ligent Systems, 17(5):72–80, September 2002.

[MFSH03] Deborah L. McGuinness, Richard Fikes, Lynn Andrea Stein, and James A.
Hendler. Daml-ont: An ontology language for the semantic web. In Di-
eter Fensel, James A. Hendler, Henry Lieberman, and Wolfgang Wahlster,
editors, Spinning the Semantic Web, pages 65–93. MIT Press, 2003.

[MH69] John Mccarthy and Patrick J. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In Machine Intelligence, pages 463–502.
Edinburgh University Press, 1969.

[MPG+08] Sonia Ben Mokhtar, Davy Preuveneers, Nikolaos Georgantas, Valérie Is-
sarny, and Yolande Berbers. Easy: Efficient semantic service discovery in
pervasive computing environments with qos and context support. J. Syst.
Softw., 81(5):785–808, May 2008.

[MS02] Alexander Maedche and Steffen Staab. Measuring similarity between on-
tologies. In Proceedings of the 13th International Conference on Knowl-
edge Engineering and Knowledge Management. Ontologies and the Semantic
Web, EKAW ’02, pages 251–263, London, UK, UK, 2002. Springer-Verlag.

[NAA09] Hideyuki Nakashima, Hamid Aghajan, and Juan Carlos Augusto. Hand-
book of Ambient Intelligence and Smart Environments. Springer Publishing
Company, Incorporated, 1st edition, 2009.

[NK09] Abolghasem Sadeghi Niaraki and Kyehyun Kim. Ontology based personal-
ized route planning system using a multi-criteria decision making approach.
Expert Syst. Appl., 36(2):2250–2259, March 2009.

[ORM+10] Benedikt Ostermaier, Kay Römer, Friedemann Mattern, Michael Fahrmair,
and Wolfgang Kellerer. A real-time search engine for the web of things.
In Proceedings of Internet of Things 2010 International Conference (IoT
2010), Tokyo, Japan, November 2010.

[PB07] Michael J. Pazzani and Daniel Billsus. The adaptive web. chapter Content-
based Recommendation Systems, pages 325–341. Springer-Verlag, Berlin,
Heidelberg, 2007.

[PBW+04] Davy Preuveneers, Jan Van Den Bergh, Dennis Wagelaar, Andy Georges,
Peter Rigole, Tim Clerckx, E Berbers, Karin Coninx, and Koen De Boss-
chere. Towards an extensible context ontology for ambient intelligence. In

154 Bibliography

In: Proceedings of the Second European Symposium on Ambient Intelli-
gence, pages 148–159. Springer-Verlag, 2004.

[PE10] Giuseppe Pirrò and Jérôme Euzenat. A feature and information theoretic
framework for semantic similarity and relatedness. In International Seman-
tic Web Conference (1), pages 615–630, 2010.

[PG11] F. Paganelli and D. Giuli. An ontology-based system for context-aware and
configurable services to support home-based continuous care. Information
Technology in Biomedicine, IEEE Transactions on, 15(2):324–333, March
2011.

[PL04] Terry R. Payne and Ora Lassila. Guest editors’ introduction: Semantic web
services. IEEE Intelligent Systems, 19(4):14–15, 2004.

[PRB+11] Dennis Pfisterer, Kay Römer, Daniel Bimschas, Oliver Kleine, Richard Mi-
etz, Cuong Truong, Henning Hasemann, Alexander Kröller, Max Pagel,
Manfred Hauswirth, Marcel Karnstedt, Myriam Leggieri, Alexandre Pas-
sant, and Ray Richardson. Spitfire: toward a semantic web of things. IEEE
Communications Magazine, 49(11):40–48, 2011.

[RCC92] David A. Randell, Zhan Cui, and Anthony Cohn. A Spatial Logic Based on
Regions and Connection. In Bernhard Nebel, Charles Rich, and William
Swartout, editors, KR’92. Principles of Knowledge Representation and Rea-
soning: Proceedings of the Third International Conference, pages 165–176.
Morgan Kaufmann, San Mateo, California, 1992.

[Res95] Philip Resnik. Using information content to evaluate semantic similarity in
a taxonomy. In IJCAI, pages 448–453. Morgan Kaufmann, 1995.

[RMBB89] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and applica-
tion of a metric on semantic nets. Systems, Man and Cybernetics, IEEE
Transactions on, 19(1):17–30, 1989.

[RMCM03] Anand Ranganathan, Robert E McGrath, Roy H. Campbell, and M. Dennis
Mickunas. Use of ontologies in a pervasive computing environment. Knowl.
Eng. Rev., 18(3):209–220, September 2003.

[RNS+08] Michele Ruta, Tommaso Di Noia, Eugenio Di Sciascio, Floriano Scioscia,
and Eufemia Tinelli. A ubiquitous knowledge-based system to enable rfid
object discovery in smart environments. In IWRT, pages 87–100, 2008.

[Ros09] Sheldon Ross. First Course in Probability, A (8th Edition). Prentice Hall,
8 edition, January 2009.

[Sat01] M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE
Personal Communications, 8:10–17, 2001.

[Sch08] A. Schwering. Approaches to semantic similarity measurement for geo-
spatial data: A survey. Transactions in GIS, 12(1):5–29, 2008.

[SCM10] Zhexuan Song, Alvaro A. Cárdenas, and Ryusuke Masuoka. Semantic mid-
dleware for the internet of things. In 2010 Internet of Things (IOT), IoT
for a green Planet, Tokyo, Japan, November 29 - December 1, 2010. Pro-
ceedings, 2010.

[Sid03] T. Sider. Four-dimensionalism: An Ontology of Persistence and Time.
Mind Association Occasional Series. Clarendon Press, 2003.

[SKKR01] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-
based collaborative filtering recommendation algorithms. In Proceedings of

Bibliography 155

the 10th International Conference on World Wide Web, WWW ’01, pages
285–295, New York, NY, USA, 2001. ACM.

[SLP04] Thomas Strang and Claudia Linnhoff-Popien. A context modeling survey.
In In: Workshop on Advanced Context Modelling, Reasoning and Manage-
ment, UbiComp 2004 - The Sixth International Conference on Ubiquitous
Computing, Nottingham/England, 2004.

[SLPF03] Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank. Cool: A
context ontology language to enable contextual interoperability. In LNCS
2893: Proceedings of 4th IFIP WG 6.1 International Conference on Dis-
tributed Applications and Interoperable Systems (DAIS2003). Volume 2893
of Lecture Notes in Computer Science (LNCS)., Paris/France, pages 236–
247. Springer Verlag, 2003.

[SM01] G. Stumme and A. Maedche. FCA–Merge: Bottom-Up Merging of On-
tologies. In IJCAI-2001 – Proceedings of the 17th International Joint Con-
ference on Artificial Intelligence, Seattle, USA, August, 1-6, 2001, pages
225–234, San Francisco, 2001. Morgen Kaufmann.

[SP07] Evren Sirin and Bijan Parsia. Sparql-dl: Sparql query for owl-dl. In In 3rd
OWL Experiences and Directions Workshop (OWLED-2007, 2007.

[SPG+07] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
owl-dl reasoner. Web Semantics: Science, Services and Agents on the World
Wide Web, 5(2):51–53, June 2007.

[SPL06] Sachin Singh, Sushil Puradkar, and Yugyung Lee. Ubiquitous comput-
ing: connecting pervasive computing through semantic web. Inf. Syst. E-
Business Management, 4(4):421–439, 2006.

[STZ05] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Implicit user modeling for
personalized search. In Proceedings of the 14th ACM international confer-
ence on Information and knowledge management, CIKM ’05, pages 824–
831, New York, NY, USA, 2005. ACM.

[Sus93] Michael Sussna. Word sense disambiguation for free-text indexing using
a massive semantic network. In Proceedings of the second international
conference on Information and knowledge management, CIKM ’93, pages
67–74, New York, NY, USA, 1993. ACM.

[SVH04] Nuno Seco, Tony Veale, and Jer Hayes. An intrinsic information content
metric for semantic similarity in wordnet, 2004.

[SVVB12] Thanos G. Stavropoulos, Dimitris Vrakas, Danai Vlachava, and Nick Bassil-
iades. Bonsai: A smart building ontology for ambient intelligence. In Pro-
ceedings of the 2Nd International Conference on Web Intelligence, Mining
and Semantics, WIMS ’12, pages 30:1–30:12, New York, NY, USA, 2012.
ACM.

[SY93] M. Sugeno and T. Yasukawa. A fuzzy-logic-based approach to qualitative
modeling. Fuzzy Systems, IEEE Transactions on, 1(1):7+, February 1993.

[TOD05] S. Ternier, D. Olmedilla, and E. Duval. Peer-to-peer versus federated search:
Towards more interoperable learning object repositories. Lecture Notes in
Computer Science, 2005.

[Tsu79] Y. Tsukamoto. An Approach to Fuzzy Reasoning Method. North-Holland
Pub. Co., 1979.

156 Bibliography

[Tve77] A. Tversky. Features of similarity. Psychological Review, 84:327–352, 1977.
[Voo94] E.M. Voorhees. Query expansion using lexical-semantic relations. In

W. Bruce Croft and C. J. van Rijsbergen, editors, Proceedings of the 17th
Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR ’94), July 3-6, 1994, Dublin, Ireland,
pages 61–69. Springer New York Inc., NY, USA, 1994.

[Wei91] Mark Weiser. The computer for the 21st century. Scientific American,
265(3):66–75, September 1991.

[WF06] Chris Welty and Richard Fikes. A reusable ontology for fluents in owl.
In Proceedings of the 2006 Conference on Formal Ontology in Information
Systems: Proceedings of the Fourth International Conference (FOIS 2006),
pages 226–236, Amsterdam, The Netherlands, The Netherlands, 2006. IOS
Press.

[WH11] Zachary Wemlinger and Lawrence Holder. The cose ontology: Bringing
the semantic web to smart environments. In Proceedings of the 9th In-
ternational Conference on Toward Useful Services for Elderly and People
with Disabilities: Smart Homes and Health Telematics, ICOST’11, pages
205–209, Berlin, Heidelberg, 2011. Springer-Verlag.

[WP94] Zhibiao Wu and Martha Palmer. Verb semantics and lexical selection. In
32nd. Annual Meeting of the Association for Computational Linguistics,
pages 133 –138, New Mexico State University, Las Cruces, New Mexico,
1994.

[WWG13] Anusha Indika Walisadeera, Gihan N. Wikramanayake, and Athula Ginige.
An ontological approach to meet information needs of farmers in sri lanka.
In Proceedings of the 13th International Conference on Computational Sci-
ence and Its Applications - Volume 1, ICCSA’13, pages 228–240, Berlin,
Heidelberg, 2013. Springer-Verlag.

[WZGP04] Xiao Hang Wang, Da Qing Zhang, Tao Gu, and Hung Keng Pung. Ontology
based context modeling and reasoning using owl. pages 18–22, 2004.

[XMC13] Wenyi Xu, Christophe Marsala, and Benoit Christophe. Matching objects
to user’s queries in web of things’ applications. In Computational Intelli-
gence for Communication Systems and Networks (CIComms), 2013 IEEE
Symposium on, pages 31–38. IEEE, 2013.

[Xu15] Wenyi Xu. Modeling and exploiting the knowledge base of web of things.
PhD thesis, Université Pierre et Marie Curie-Paris VI, 2015.

[Zad75a] Lotfi A. Zadeh. The concept of a linguistic variable and its application to
approximate reasoning - i. Inf. Sci., 8(3):199–249, 1975.

[Zad75b] Lotfi A. Zadeh. The concept of a linguistic variable and its application to
approximate reasoning - ii. Inf. Sci., 8(4):301–357, 1975.

[Zad75c] Lotfi A. Zadeh. The concept of a linguistic variable and its application to
approximate reasoning-iii. Inf. Sci., 9(1):43–80, 1975.

[Zad84] L.A. Zadeh. Making computers think like people: The term ‘fuzzy thinking’
is pejorative when applied to humans, but fuzzy logic is an asset to machines
in applications from expert systems to process control. Spectrum, IEEE,
21(8):26–32, Aug 1984.

	Cover Page
	Acknowledgments
	Abstract
	Résumé
	Table of contents
	Introduction
	Emerging eco-system
	Difficulties in enabling the use of smart spaces
	Contributions
	Outline of the thesis

	Preliminaries
	Background
	Notations and Definitions

	Related Works
	Models for smart environments
	Searching through semantic similarity measures

	Defining models to support mobile users
	Rationale in using Semantic Web technologies
	Modelling connected devices
	Modelling the location associated to smart environments
	Semantic models for application templates
	Representing user profiles
	Conclusions

	Towards producing efficient searching procedures
	Preamble
	A semantic similarity measure for SHOIQ concepts
	Example of application
	Conclusions

	Distributing knowledge amongst smart environments
	Preamble
	Federated architecture of nodes
	Sharing knowledge between federated nodes
	Conclusions

	Experimentations
	Implementations
	Experimentations
	Conclusions

	Conclusions
	Summary of contributions
	Perspectives

	Subsumption relations in SHOIQ
	Algorithms generating pseudo-concepts
	List of Figures
	List of Tables
	Bibliography

