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École doctorale InfoMath, ED 512
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Résumé-Abstract

Résumé

Cette thèse a pour contexte la combinatoire énumérative et décrit la
construction de plusieurs bijections entre modèles combinatoires connus ou
nouveaux de suites d’entiers et polynômes, plus particulièrement celle des
nombres de Genocchi (et de leurs extensions, les polynômes de Gandhi) qui
interviennent dans diverses branches des mathématiques et dont les proprié-
tés combinatoires sont de ce fait activement étudiées, et celles de polynômes
q-eulériens associés aux quatre statistiques fondamentales de MacMahon sur
les permutations ainsi qu’à des statistiques analogues.

On commence par définir les permutations de Dumont normalisées, un
modèle combinatoire des nombres de Genocchi médians normalisés q-étendus,
notés c̄n(q) et définis par Han et Zeng, puis l’on construit une première bijec-
tion entre ce modèle et l’ensemble des configurations de Dellac, autre inter-
prétation combinatoire de c̄n(q) mise en évidence par Feigin dans le contexte
de la géométrie des grassmanniennes de carquois. En s’appuyant sur la théo-
rie des fractions continues de Flajolet, on en construit finalement un troisième
modèle combinatoire à travers les histoires de Dellac, que l’on relie aux pre-
miers modèles sus-cités au moyen d’une seconde bijection.

On s’intéresse ensuite à la classe combinatoire des k-formes irréductibles
définies par Hivert et Mallet dans l’étude des k-fonctions de Schur, et qui fai-
saient l’objet d’une conjecture supposant que les polynômes de Gandhi sont
générés par les k-formes irréductibles selon la statistique des k-sites libres.
On construit une bijection entre les k-formes irréductibles et les pistolets
surjectifs de hauteur k − 1 (connus pour générer les polynômes de Gandhi
selon la statistique des points fixes) envoyant les k-sites libres des premières
sur les points fixes des seconds, démontrant de ce fait la conjecture.

Enfin, on établit une nouvelle identité combinatoire entre deux polynômes
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q-eulériens définis par des statistiques eulériennes et mahoniennes sur l’en-
semble des permutations d’un ensemble fini, au moyen d’une dernière bijec-
tion sur les permutations, qui envoie une suite finie de statistiques sur une
autre.
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Abstract
This work is set in the context of enumerative combinatorics and con-

structs several statistic-preserving bijections between known or new combina-
torial models of sequences of integers or polynomials, espacially the sequence
of Genocchi numbers (and their extensions, the Gandhi polynomials) which
appear in numerous mathematical theories and whose combinatorial prop-
erties are consequently intensively studied, and two sequences of q-Eulerian
polynomials associated with the four fundamental statistics on permutations
studied by MacMahon, and with analog statistics.

First of all, we define normalized Dumont permutations, a combinatorial
model of the q-extended normalized median Genocchi numbers c̄n(q) intro-
duced by Han and Zeng, and we build a bijection between the latter model
and the set of Dellac configurations, which have been proved by Feigin to
generate c̄n(q) by using the geometry of quiver Grassmannians. Then, in
order to answer a question raised by the theory of continued fractions of
Flajolet, we define a new combinatorial model of c̄n(q), the set of Dellac his-
tories, and we relate them with the previous combinatorial models through
a second statistic-preserving bijection.

Afterwards, we study the set of irreducible k-shapes defined by Hivert
and Mallet in the topic of k-Schur functions, which have been conjectured
to generate the Gandhi polynomials with respect to the statistic of free k-
sites. We construct a statistic-preserving bijection between the irreducible
k-shapes and the surjective pistols of height k−1 (well-known combinatorial
interpretation of the Gandhi polynomials with respect to the fixed points
statistic) mapping the free k-sites to the fixed points, thence proving the
conjecture.

Finally, we prove a new combinatorial identity between two eulerian poly-
nomials defined on the set of permutations thanks to Eulerian and Mahonian
statistics, by constructing a bijection on the permutations, which maps a fi-
nite sequence of statistics on another.
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Notations

Soit (n,m) un couple d’entiers naturels tels que n < m, et soit σ une
permutation de l’ensemble {1, 2, . . . , n}. On se permet d’identifier σ avec le
mot σ(1)σ(2) . . . σ(n).

Si un ensemble d’entiers S = {n1, n2, . . . , nk} vérifie n1 < n2 < . . . < nk,
on utilise parfois la notation S = {n1, n2, . . . , nk}<.

[|n,m|] Ensemble d’entiers {n, n+ 1, . . . ,m}.

[n] Ensemble d’entiers {1, 2, . . . , n}.
Ä
n
2

ä
Nombre triangulaire n(n− 1)/2.

|S| Cardinal d’un ensemble fini S.

N Ensemble des entiers naturels {0, 1, 2, 3, . . .}.

N>0 Ensemble N \{0}.

Z Ensemble des entiers relatifs.

Sn Ensemble des permutations de [n].

Sym Espace des fonctions symétriques f(x1, x2, . . .) sur l’anneau Z.

IdS Fonction identité d’un ensemble S.

Im(f) Ensemble image d’une fonction f .



Introduction

La combinatoire énumérative est le domaine des mathématiques qui s’in-
téresse au dénombrement des éléments d’ensembles discrets. Elle se subdivise
en plusieurs théories, comme par exemple celles des séries génératrices, des
posets ou encore des P-partitions (voir [Sta11]). Pour mettre ces théories
en pratique, on se ramène souvent à construire des bijections entre deux
ensembles et qui démontrent incidemment certaines propriétés des nombres
ou polynômes dont les ensembles considérés constituent une interprétation
combinatoire (c’est-à-dire, qui sont comptés par les nombres en question, ou
qui génèrent les polynômes en question par le biais de statistiques, autre-
ment dit des fonctions qui envoient les éléments des ensembles considérés sur
des entiers naturels), telles que la parité d’un nombre ou la symétrie d’un
polynôme.

Le premier thème de cette thèse est la suite des nombres de Genocchi,
intervenant dans diverses branches des mathématiques et dont les relations
combinatoires sont nombreuses, notamment avec la classe combinatoire des
permutations. On s’intéresse dans un premier temps à des q-analogues (po-
lynômes en q généralisant un nombre) d’une suite de nombres reliés aux
nombres de Genocchi, introduits par Han et Zeng : les nombres de Genocchi
médians normalisés q-étendus, dont Feigin a déterminé une nouvelle inter-
prétation combinatoire à travers les configurations de Dellac dans le contexte
de la géométrie des grassmanniennes de carquois, et à l’aide de la théorie des
fractions continues de Flajolet. On fait ici le lien entre ce résultat et l’étude
combinatoire de ces polynômes en construisant deux bijections entre les confi-
gurations de Dellac et des modèles combinatoires préexistants. L’autre tra-
vail consacré aux nombres de Genocchi dans cette thèse a pour sujet la ré-
solution d’une conjecture formulée par Hivert et Mallet, selon laquelle une
famille d’objets intervenant dans la théorie des k-fonctions de Schur, les k-
formes irréductibles, constitue un nouveau modèle combinatoire des nombres
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xiv INTRODUCTION

de Genocchi, et plus précisément des polynômes de Gandhi, extensions bien
connues des nombres de Genocchi. On démontre la conjecture en construi-
sant une bijection entre les k-formes irréductibles et un modèle combinatoire
connu des polynômes de Gandhi, les pistolets surjectifs de hauteur k − 1.

La dernière partie de ce mémoire se place dans le contexte des statistiques
de permutations, sujet initié par MacMahon au début du XXème siècle et de-
venu par la suite une branche importante de la combinatoire énumérative.
On y établit une nouvelle égalité entre polynômes q-eulériens, des q-analogues
des polynômes eulériens classiques apparus dans les travaux d’Euler, riches
en interprétations combinatoires (notamment sur les permutations et selon
les statistiques introduites par MacMahon) et activement étudiés en mathé-
matiques et informatique. L’égalité proprement dite est la conséquence d’une
bijection que l’on construit sur les permutations et qui envoie un triplet de
statistiques définissant le premier polynôme eulérien sur un triplet définis-
sant le second. Cette égalité généralise au passage un résultat obtenu par
Shareshian et Wachs au moyen de techniques faisant intervenir les fonctions
quasi-symétriques.

Dans les lignes suivantes, on commence par donner des éléments de vo-
cabulaire de la combinatoire énumérative et bijective, puis l’on introduit la
classe combinatoire des permutations où l’on définit les quatre statistiques
fondamentales de MacMahon, et l’on finit par présenter la suite des nombres
de Genocchi, leurs extensions et interprétations combinatoires, avant de ré-
sumer les trois chapitres qui constituent le corps de ce mémoire.

La combinatoire énumérative
On nomme classe combinatoire un ensemble A muni d’une fonction taille,

c’est-à-dire une fonction τ : A → N telle que le sous-ensemble
An = {a ∈ A : τ(a) = n}, dit des objets de A de taille n, soit fini pour
tout n ∈ N. Quand il n’y a pas d’ambiguïté sur la nature de la fonction taille
d’une classe combinatoire (A, τ), on se permet de désigner cette dernière par
l’ensemble sous-jacent A. Une statistique d’une classe combinatoire A est
une fonction st : A → N. Si st1, st2, . . . , stm sont m statistiques de A, le
polynôme générateur de An selon le m-uplet de statistiques (st1, st2, . . . , stm)
est défini comme le polynôme en m variables

Pn(x1, x2, . . . , xm) =
∑
a∈An

x
st1(a)
1 x

st2(a)
2 . . . xstm(a)

m .
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On dit alors que Pn(x1, x2, . . . , xm) est généré par An selon le m-uplet de sta-
tistiques (st1, st2, . . . , stm), ou encore que la donnée de An et de
(st1, st2, . . . , stm) constitue une interprétation combinatoire de
Pn(x1, x2, . . . , xm). Si deux m-uplets de statistiques (st11, st12, . . . , st1m) et
(st21, st22, . . . , st2m) sur une même classe combinatoire A vérifient

∑
a∈An

x
st11(a)
1 x

st12(a)
2 . . . xst1m(a)

m =
∑
a∈An

x
st21(a)
1 x

st22(a)
2 . . . xst2m(a)

m ,

on dit qu’ils sont équidistribués.
Déterminer une formule close d’un polynôme générateur, et, inversement,

interpréter combinatoirement un polynôme à coefficients entiers (c’est-à-dire
déterminer une classe combinatoire et un ensemble de statistiques dont il
apparaît comme le polynôme générateur) constituent deux champs d’activi-
tés de la combinatoire énumérative, dont les implications dépassent le seul
contexte de la combinatoire et sont à même de fournir des informations gé-
nérales sur des familles de polynômes, comme par exemple la positivité des
coefficients d’un polynôme donné (voir par exemple [HRW15]) ou l’explicita-
tion de polynômes de Poincaré (voir [Fei12, Fei11, IFR12]).

Il existe diverses façons d’énumérer les éléments d’un ensemble fini (ou
plus généralement de calculer le polynôme générateur d’un ensemble fini se-
lon un m-uplet de statistiques). Il peut par exemple s’agir d’établir une for-
mule de récurrence. Une autre méthode repose sur une notion importante en
combinatoire énumérative, celle des séries génératrices [Sta11, FS09]. Etant
donnée une suite de polynômes (Pn(x1, x2, . . . , xm))n≥0, les série génératrice
ordinaire et série génératrice exponentielle de (Pn(x1, x2, . . . , xm))n≥0 sont
respectivement définies comme les séries formelles

∑
n≥0

Pn(x1, x2, . . . , xm)t
n et

∑
n≥0

Pn(x1, x2, . . . , xm)
tn

n!
.

L’étude de ces séries formelles peut révéler des propriétés combinatoires ou
analytiques des suites polynômiales considérées, et l’on s’en sert souvent pour
en déterminer des formules exactes ou encore des égalités entre deux suites
polynômiales, obtenues en montrant l’égalité des séries génératrices corres-
pondantes.

Une dernière méthode, plus fondamentale, consiste à construire une bijec-
tion entre l’ensemble fini dont on veut déterminer le cardinal ou le polynôme
générateur, et un ensemble pour lequel les caractéristiques en question sont
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connues. La combinatoire bijective est la partie de la combinatoire énuméra-
tive s’intéressant à cette approche, et vise ainsi à établir des bijections entre
classes combinatoires, c’est-à-dire, pour deux classes combinatoires A et B
données, des suites de fonctions (fn)n≥0 où fn : An → Bn est une bijection
envoyant un m-uplet de statistiques (stA1 , stA2 , . . . , stAm) sur un m-uplet de
statistiques (stB1 , stB2 , . . . , stBm), c’est-à-direÄ

stB1 (fn(a)), st
B
2 (fn(a)), . . . , st

B
m(fn(a))

ä
=
Ä
stA1 (a), st

A
2 (a), . . . , st

A
m(a)

ä
pour tout n ≥ 0 et a ∈ An. Les classes A et B, munies des statistiques
sus-nommées, apparaissent alors comme deux interprétations combinatoires
d’une même suite polynômiale. L’intérêt de la démarche peut être de dé-
terminer de nouvelles interprétations combinatoires d’une suite polynômiale
donnée à partir d’interprétations connues, ou de déterminer de nouvelles
identités entre suites polynômiales. Il est par ailleurs naturel de chercher à
faire correspondre deux modèles combinatoires d’une même expression (par
exemple obtenue en montrant l’égalité des séries génératrices des deux classes
combinatoirées considérées) par une bijection reliant les statistiques associées.

La classe combinatoire des permutations
On note Sn l’ensemble des permutations de [n] = {1, 2, . . . , n}, c’est-

à-dire les bijections de [n] dans lui-même. L’ensemble ⊔n≥1 Sn, muni de la
fonction τ : σ �→ |Im(σ)|, constitue une classe combinatoire classique.

Au début du XXème siècle, MacMahon [Mac15] a étudié quatre statis-
tiques fondamentales sur les permutations 1 : les statistiques respectives des
descentes, exédents, inversions, et l’indice majeur.

Une descente (respectivement un excédent) d’une permutation σ ∈ Sn

est un entier i ∈ [n − 1] vérifiant σ(i) > σ(i + 1) (resp. σ(i) > i). On note
DES(σ) (resp. EXC(σ)) l’ensemble des descentes (resp. excédents) de σ, et
l’on note des(σ) (resp. exc(σ)) son cardinal. MacMahon [Mac15] a montré
que les statistiques des et exc sont équidistribuées, c’est-à-dire que∑

σ∈Sn

tdes(σ) =
∑

σ∈Sn

texc(σ)

pour tout n ≥ 1, en prouvant plus précisément que les séries génératrices de
ces deux polynômes en t sont égales. Riordan [RS73] a plus tard démontré

1. Plus généralement sur les permutations de multiensembles.
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que ce polynôme est en réalité le nème polynôme eulérien An(t) apparaissant
(voir [Eul55] et [Sta11, page 34]) dans la formule

∑
n≥0

An(t)
xn

n!
=

t− 1

t− exp((t− 1)x)
. (1)

Les polynômes eulériens apparaissent dans différents contextes des mathé-
matiques et possèdent une combinatoire riche (voir par exemple [FS70] et
[Knu98, section 5.1]). De manière générale, une statistique st sur les permu-
tations, dont le polynôme générateur associé ∑σ∈Sn t

st(σ) vaut An(t), est dite
eulérienne. Outre les statistiques des et exc, la statistique asc, qui envoie
σ ∈ Sn sur le nombre d’ascensions asc(σ) = |ASC(σ)| de σ, c’est-à-dire les
entiers i ∈ [i − 1] vérifiant σ(i) < σ(i + 1), et la statistique ides définie par
ides(σ) = des(σ−1), sont deux autres exemples de statistiques eulériennes.

Une inversion de σ ∈ Sn est un couple (i, j) ∈ [n]2 tel que i < j et
σ(i) > σ(j). On note INV(σ) l’ensemble des inversions de σ et inv(σ) son
cardinal. Il est bien connu (voir par exemple [Mac15] ou [Sta11, Sta99]) que∑

σ∈Sn

qinv(σ) = [n]q!

où le q-factoriel [n]q!, q-analogue du factoriel n!, est défini comme le polynôme
en q

[n]q! =
n∏

i=1

1− qi

1− q
.

Toute statistique st sur les permutations est alors dite mahonienne si le
polynôme générateur associé ∑σ∈Sn

qst(σ) vaut le q-factoriel [n]q!. MacMa-
hon [Mac15] a défini l’indice majeur, une statistique sur les permutations
envoyant σ ∈ Sn sur l’entier naturel

maj(σ) =
∑

i∈DES(σ)

i,

et a démontré qu’elle est mahonienne en montrant l’égalité des séries géné-
ratrices des suites

Ä∑
σ∈Sn q

inv(σ)
ä
n≥1

et
Ä∑

σ∈Sn q
inv(σ)

ä
n≥1

.

Nombres de Genocchi et polynômes de Gandhi
Les nombres de Bernoulli et de Genocchi apparaissent dans des domaines

aussi divers que la théorie des nombres, l’analyse asymptotique, la topologie
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différentielle ou encore la théorie des formes modulaires. Leurs propriétés
combinatoires font ainsi l’objet d’études intensives (voir par exemple [Ara14,
AABS13, AAS13, Kim10, Gen52, SKS12, Sri11]).

Les nombres de Bernoulli (Bn)n≥0 = (1,−1/2, 1/6, 0,−1/30, 0, 1/42, . . .)
[OEIa, OEIb] sont des nombres rationnels pouvant être définis par la formule

t

et − 1
=
∑
n≥0

Bn
tn

n!
.

Les nombres de Genocchi (G2n)n≥1 = (1, 1, 3, 17, . . .) [OEIc] (de signes
constants, il s’agit d’une définition alternative des nombres de Genocchi de
signes alternés présentés dans [Sta99, page 74]) ont pour série génératrice

2t

1 + et
= t+

∑
n≥1

(−1)nG2n
t2n

(2n)!

et sont reliés aux nombres de Bernoulli par la formule

G2n = 2(−1)n(1− 22n)B2n.

Il s’agit d’entiers naturels, propriété plus visible dans la définition suivante,
fournie par le triangle de Seidel [DV80] (gi,j)1≤j≤�i/2� défini par g1,1 = 1 et,
pour tout p ≥ 1,

g2p,j = g2p−1,j + g2p,j+1 pour tout 1 ≤ j ≤ p,
g2p+1,j = g2p+1,j−1 + g2p,j pour tout 1 ≤ j ≤ p+ 1,

en posant également g2p,p+1 = g2p+1,0 = 0 pour tout p ≥ 1 : les nombres
de Genocchi (G2n)n≥1 sont les entiers (g2n−1,n)n≥1, qui apparaissent encadrés
dans la Figure 1 représentant le triangle de Seidel, chaque entier gi,j y étant
la somme des entiers desquels partent une flèche vers gi,j. Toujours dans la
Figure 1, les entiers (g2n,1)n≥1, apparaissant encerclés, sont nommés nombres
de Genocchi médians et notés (H2n+1)n≥0 = (1, 2, 8, 56, . . .) [OEId]. Il est bien
connu [BD81] que l’entier H2n+1 est divisible par 2n pour tout n. Les nombres
de Genocchi médians normalisés (hn)n≥0 = (1, 1, 2, 7, . . .) [OEIe] sont alors
définis par

hn = H2n+1/2
n. (2)

Les nombres de Genocchi (G2n+2)n≥1 apparaissent également comme des
évaluations des polynômes de Gandhi définis ci-après.
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i\j 0 1 2 3 4 . . .

1 1
↓

2 1 ← 0
↓ ↓

3 0 → 1 → 1
↓ ↓

4 2 ← 1 ← 0
↓ ↓ ↓

5 0 → 2 → 3 → 3
↓ ↓ ↓

6 8 ← 6 ← 3 ← 0
↓ ↓ ↓ ↓

7 0 → 8 → 14 → 17 → 17
↓ ↓ ↓ ↓

8 56 ← 48 ← 34 ← 17 ← 0
↓ ↓ ↓ ↓

...
...

...
...

...
...

. . .

Figure 1 – Triangle de Seidel (gi,j) des nombres de Genocchi.

Définition 0.1 (polynômes de Gandhi [Gan70]). Les polynômes de Gandhi
(Qn(x))n≥1 sont définis par la récurrence⎧⎨⎩Q1(x) = 1,

Qn(x) = (x+ 1)2Qn−1(x+ 1)− x2Qn−1(x), n ≥ 2.

Il s’agit de polynômes à coefficients entiers positifs. Par exemple, les trois
premiers polynômes de Gandhi sont :

Q1(x) = 1,

Q2(x) = 2x+ 1,

Q3(x) = 6x2 + 8x+ 3.

Théorème 0.2 ([Car71, RS73]). Pour tout n ≥ 1, l’entier naturel Qn(1) est
le nombre de Genocchi G2n+2.
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Interprétations combinatoires

Dumont [Dum74, DR94] a défini plusieurs modèles combinatoires des
nombres de Genocchi et nombres de Genocchi médians.

Le nombre de Genocchi médian H2n+1 compte entre autres les permuta-
tions de Dumont d’ordre 2n+2 [DR94], c’est-à-dire les éléments de l’ensemble

Dn+1 = {σ ∈ S2n+2 : σ(2i) < 2i et σ(2i− 1) > 2i− 1 pour tout i}. (3)

Par exemple, pour n = 2, les H5 = 8 éléments de D3 ⊂ S6 sont les permuta-
tions

214365, 215364, 314265, 315264, 415263, 415362, 514263, 514362.

Le nombre de Genocchi G2n (où n ≥ 2) peut compter quant à lui les pis-
tolets surjectifs de hauteur n− 1. Plus précisément, le polynôme de Gandhi
Qn−1(x) est généré par les pistolets surjectifs de hauteur n − 1 selon la sta-
tistique des points fixes, définis ci-dessous.

Définition 0.3. Un pistolet surjectif de hauteur k ≥ 1 est une fonction
surjective de [2k] dans {2, 4, . . . , 2k} vérifiant f(j) ≥ j pour tout j. On note
SPk l’ensemble de ces fonctions. On se permet d’identifier chaque pistolet
surjectif f ∈ SPk avec la suite (f(j))j∈[2k]. On définit alors une statistique fix
sur les pistolets, comptant les points fixes d’un pistolet f ∈ SPk, c’est-à-dire
les entiers j ∈ [2k] tels que f(j) = j.

Une manière de représenter un pistolet surjectif est de tracer un tableau
constitué de k rangées de 2, 4, 6, . . . , 2k cases (du bas vers le haut) justi-
fiées à gauche (présentant ainsi la forme d’un pistolet orienté vers la droite),
de sorte que chaque rangée contienne au moins un point (traduisant la sur-
jectivité) et chaque colonne exactement un point (traduisant le statut de
fonction). La fonction f correspondant à un tel tableau est alors définie par
f(j) = 2(�j/2� + zj) où la jème colonne du tableau (de gauche à droite)
contient son point dans sa (1+zj)

ème case (de bas en haut) pour tout j ∈ [2k].
Par exemple, si f = (2, 4, 4, 8, 8, 6, 8, 8) ∈ SP4, le tableau correspondant à f
est représenté dans la Figure 2. En particulier, un entier j est un point fixe
de f si et seulement si j est pair et si le point de la jème colonne du tableau
associé à f se trouve dans sa case la plus basse. Par exemple, le pistolet de la
Figure 2 a pour points fixes les entiers 6 et 8 (il est clair par ailleurs que 2k
est nécessairement le point fixe de tout pistolet f ∈ SPk, d’où fix(f) ≥ 1).

On doit à Dumont le résultat suivant.
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Figure 2 – Pistolet surjectif f = (2, 4, 4, 8, 8, 6, 8, 8) ∈ SP4.

Théorème 0.4 ([Dum74]). Pour tout k ≥ 1, le polynôme de Gandhi Qk(x)
est généré par les pistolets surjectifs de hauteur k selon l’égalité

Qk(x) =
∑

f∈SPk

xfix(f)−1.

En particulier, en évaluant Qk(x) en x = 1, on obtient effectivement
G2k+2 = |SPk|. Par exemple, les G6 = 3 elements de SP2 sont

f1 = (2, 2, 4, 4)

f2 = (2, 4, 4, 4)

f3 = (4, 2, 4, 4)

et l’on retrouve xfix(f1)−1 + xfix(f2)−1 + xfix(f3)−1 = x+ 1 + x = Q2(x).

Résumé du mémoire

Chapitre 1 : étude combinatoire des configurations de
Dellac et des nombres de Genocchi médians q-étendus
normalisés

Une configuration de Dellac de taille n[Del00] est un tableau rectangulaire
C constitué de 2n rangées de n cases et contenant 2n points répartis selon
les conditions suivantes :

– chaque rangée de C contient exactement un point ;
– chaque colonne de C contient exactement deux points ;
– si le coin inférieur gauche de la case la plus basse et la plus à gauche de
C a pour coordonnées cartésiennes (0, 0), chaque point de C est situé
entre les deux droites y = x et y = n+ x.
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Figure 3 – Les h3 = 7 éléments de DC(3).

On note DC(n) l’ensemble des configurations de Dellac de taille n. Une statis-
tique, nommée fal, compte le nombre de chutes (falls) d’une configuration de
Dellac, c’est-à-dire les couples de points de coordonnées cartésiennes (x1, y1)
et (x2, y2) telles que x1 < x2 et y1 > y2. Il est connu (voir par exemple [Fei11])
que DC(n) a pour cardinal le nombre de Genocchi médian normalisé hn pour
tout n ≥ 1. Par exemple, la Figure 3 illustre les h3 = 7 configurations de
Dellac de taille 3, dont les chutes sont représentées par des segments.

A travers la géométrie des grassmaniennes de carquois [IFR12] et la théo-
rie des fractions continues de Flajolet [Fla80], Feigin [Fei12] a montré que la
fonction génératrice h̃n(q) (voir Definition 1.5) des configurations de Dellac
C ∈ DC(n) selon une statistique reliée à fal, égale le nombre de Genocchi
médian q-étendu normalisé c̄n+1(q) introduit par Han et Zeng [HZ99b]. Plus
précisément, en définissant la suite (λn(q))n≥1 par

λ2p−1(q) = (1− qp+1)(1− qp)/((1− q2)(1− q))

et λ2p(q) = qλ2p−1(q) pour tout p ≥ 1, Feigin a démontré que la série
génératrice ∑n≥0 h̃n(q)t

n égale la fraction continue

1

1− λ1(q)t

1− λ2(q)t

1− λ3(q)t

. . .

(4)

que Han et Zeng ont déjà prouvé être la série génératrice ∑n≥0 c̄n+1(q)t
n.

Dans ce chapitre, on fait la jonction entre ces résultats par la combinatoire
bijective en définissant tout d’abord deux nouveaux modèles combinatoires
D′

n+1 et DH(n) du polynôme c̄n+1(q), puis en construisant deux bijections
φ : DC(n) → D′

n+1 et φ : DC(n) → DH(n) entre les différents modèles.
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Le premier modèle D′
n+1 ⊂ S2n+2 est l’ensemble des permutations de

Dumont normalisées d’ordre 2n+2 (voir Définition 1.8). La construction de
φ : DC(n) → D′

n+1 (voir Définition 1.24) consiste à étiqueter les points des
configurations de Dellac avec des entiers de 1 à 2n de sorte que la permutation
φ(C) apparaisse naturellement sur la configuration étiquetée C ∈ DC(n).

Le second modèle DH(n) est l’ensemble des histoires de Dellac de lon-
gueur 2n (voir Définition 1.45). Il s’agit de chemins de Dyck à 2n pas et
dont les pas descendants sont étiquetés par des couples d’entiers vérifiant
certaines conditions. La construction de l’application ψ : DC(n) → DH(n)
(voir Définition 1.53) consiste à reprendre l’étiquetage des points d’une confi-
guration de Dellac C ∈ DC(n) défini dans la première partie du chapitre, de
considérer les points de C dans un certain ordre et de tracer successivement
des pas ascendants ou descendants selon la parité des étiquettes des points,
tout en étiquetant les pas descendants par des couples d’entiers dépendant
du nombre de chutes faisant intervenir les points considérés. Par rapport à
la première bijection φ, qui se contente d’impliquer l’égalité h̃n(q) = c̄n+1(q),
la bijection ψ implique également que la série génératrice ∑n≥1 h̃n(q)t

n égale
la fraction continue de la Formule (4) via la théorie de Flajolet [Fla80].

Chapitre 2 : une bijection entre k-formes irréductibles et
pistolets surjectifs de hauteur k − 1

Soit k un entier naturel. L’étude des k-formes (k-shapes) intervient dans
celle des k-fonctions de Schur (voir [LLMS13]). Les k-fonctions de
Schur [LM05] sont des fonctions symétriques formant une base de l’ensemble
Sym(k), sous-ensemble de Sym généré par les fonctions symétriques complè-
tement homogènes hλ, où λ parcourt les partitions dont aucune part n’excède
k. Les k-formes sont des partitions (c’est-à-dire des suites finies et décrois-
santes d’entiers naturels) particulières apparaissant dans la décomposition
des k-fonctions de Schur dans la base des fonctions de Schur classiques, les
coefficients de ladite décomposition faisant intervenir l’énumération de che-
mins dans le poset des k-formes [LLMS13].

Hivert et Mallet [HM11] ont montré que la fonction génératrice des k-
formes (selon une statistique comptant le nombre de cases dont la longueur
d’équerre, hook length en anglais, vaut au plus k dans le diagramme de Ferrers
des k-formes) est une fraction rationnelle dont le numérateur Pk(t) est le po-
lynôme générateur de k-formes particulières nommées k-formes irréductibles
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(voir Définition 2.6). L’appellation irréductible vient d’une opération sur les
k-formes, définie par Hivert et Mallet, permettant de définir de nouvelles k-
formes à partir d’une k-forme donnée, les k-formes irréductibles apparaissant
comme les k-formes ne pouvant être obtenues par cette opération. La suite
des nombres de k-formes irréductibles (Pk(1))k≥1 semblait alors être celle
des nombres de Genocchi (G2k)k≥1 = (1, 1, 3, 17, 155, 2073, . . .). Plus précisé-
ment, en définissant une statistique sur les k-formes comptant le nombre de
«k-sites libres» d’une k-forme donnée, Hivert et Mallet ont conjecturé que le
polynôme générateur des k-formes irréductibles relativement à cette dernière
statistique était le (k − 1)ème polynôme de Gandhi Qk−1(x), extension bien
connue du nombre de Genocchi G2k [Car71, RS73].

Le but de ce chapitre est de construire une bijection ϕ : SPk−1 → ISk (voir
Définition 2.16) entre les pistolets surjectifs de hauteur k− 1, modèle combi-
natoire des polynômes de Gandhi, et les k-formes irréductibles, envoyant les
points fixes des premiers sur les k-sites libres des secondes et prouvant ainsi la
conjecture de Hivert et Mallet tout en fournissant un algorithme permettant
de générer les k-formes irréductibles à partir des pistolets surjectifs.

On étudie ensuite les nouvelles interprétations combinatoires des poly-
nômes de Dumont-Foata (extensions des polynômes de Gandhi) produites
par cette bijection.

Chapitre 3 : une nouvelle bijection connectant des poly-
nômes q-eulériens

Dans [SW14], Shareshian et Wachs manipulent des statistiques raffinant
les notions de descentes, ascensions et inversions des permutations. On s’in-
téresse ici aux statistiques des2, asc2 et inv2 comptant respectivement les
2-descentes (2-descents), 2-ascensions (2-ascents) et 2-inversions d’une per-
mutation σ ∈ Sn, c’est-à-dire les éléments des ensembles respectifs

DES2(σ) = {i ∈ [n− 1] : σ(i) > σ(i+ 1) + 1},
ASC2(σ) = {i ∈ [n− 1] : σ(i) < σ(i+ 1) + 1},
INV2(σ) = {(i, j) ∈ [n]2 : σ(i) = σ(j) + 1}.

A noter que la statistique inv2 est eulérienne par l’égalité facilement véri-
fiable inv2(σ) = des(σ−1) pour toute permutation σ. On considère également
l’indice 2-majeur maj2 défini par maj2(σ) =

∑
i∈DES2(σ) i, et son analogue

amaj2 pour les 2-ascensions, défini par amaj2(σ) =
∑

i∈ASC2(σ) i.
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Un polynôme q-eulérien à m variables est un polynôme Pn(x1, x2, . . . , xm)
égalant le polynôme eulérien classique An(t) en spécifiant xi0 = t pour un
certain i0 ∈ [m] et xi = 1 pour tout i �= i0. Dans le cadre de la théorie
des fonctions quasisymétriques, Shareshian et Wachs [SW14] ont démontré
l’égalité entre polynômes q-eulériens à 2 variables∑

σ∈Sn

xmaj2(σ)yinv2(σ) =
∑

σ∈Sn

xmaj(σ)−exc(σ)yexc(σ). (5)

De façon analogue, Hance et Li [HL12] ont prouvé l’égalité entre polynômes
q-eulériens à 3 variables∑

σ∈Sn

xamaj2(σ)yãsc2(σ)zinv2(σ) =
∑

σ∈Sn

xmaj(σ)−exc(σ)ydes(σ)zexc(σ) (6)

où la statistique fiasc2 envoie une permutation σ sur asc2(σ) si σ(1) = 1, et
sur asc2(σ) + 1 autrement.

Le but de ce chapitre est de définir une statistique fldes2 (analogue à fiasc2
en cela qu’elle compte le nombre des2(σ) d’une permutation σ en ajoutant
1 à la somme si σ vérifie une condition géométrique au niveau d’un certain
graphe), puis de construire une bijection Ψ : Sn → Sn (voir §3.4) qui envoie
le triplet de statistiques (maj2,fldes2, inv2) sur le triplet (maj− exc, des, exc),
fournissant en particulier l’égalité entre polynômes q-eulériens à 3 variables

∑
σ∈Sn

xmaj2(σ)yd̃es2(σ)zinv2(σ) =
∑

σ∈Sn

xmaj(σ)−exc(σ)ydes(σ)zexc(σ), (7)

qui généralise au passage la Formule (5).
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1

Nomenclature

Let (n,m) be a pair of positive integers such that n < m, and σ be a
permutation of the set {1, 2, . . . , n}. By abuse of notation, we identify σ
with the word σ(1)σ(2) . . . σ(n).

If a set S = {n1, n2, . . . , nk} of integers is such that n1 < n2 < . . . < nk,
we sometimes use the notation S = {n1, n2, . . . , nk}<.

[|n,m|] Set of integers {n, n+ 1, . . . ,m}.

[n] Set of integers {1, 2, . . . , n}.
Ä
n
2

ä
Triangular number n(n− 1)/2.

|S| Cardinality of a finite set S.

N Set of the nonnegative integers {0, 1, 2, 3, . . .}.

N>0 Set of the positive integers N \{0}.

Z Set of all integers.

Sn Set of the permutations of [n].

Sym Set of the symmetric functions f(x1, x2, . . .) over the ring Z.

IdS Identity map of a set S.

Im(f) Image of a function f .



2 INTRODUCTION



Chapter 1

Combinatorial study of Dellac
configurations and q-extended
normalized median Genocchi
numbers

1.1 Abstract
In two recent chapters [Fei12, Fei11], by using mainly geometric consid-

erations, Feigin proved that the Poincar polynomials of the degenerate flag
varieties have a combinatorial interpretation through Dellac configurations,
and related them to the q-extended normalized median Genocchi numbers
c̄n(q) introduced by Han and Zeng [HZ99a].

In this chapter, we give combinatorial proofs of these results by con-
structing statistic-preserving bijections between Dellac configurations and
two other combinatorial models of c̄n(q).

1.2 Introduction
This chapter largely follows [Big14].
The following lines recall the definition of Genocchi numbers. The new

content starts at §1.2.1.
The Genocchi numbers (G2n)n≥1 = (1, 1, 3, 17, . . .) [OEIc] and the median

Genocchi numbers (H2n+1)n≥0 = (1, 2, 8, 56, . . .) [OEId] can be defined (see

3
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i\j 0 1 2 3 4 . . .

1 1
↓

2 1 ← 0
↓ ↓

3 0 → 1 → 1
↓ ↓

4 2 ← 1 ← 0
↓ ↓ ↓

5 0 → 2 → 3 → 3
↓ ↓ ↓

6 8 ← 6 ← 3 ← 0
↓ ↓ ↓ ↓

7 0 → 8 → 14 → 17 → 17
↓ ↓ ↓ ↓

8 56 ← 48 ← 34 ← 17 ← 0
↓ ↓ ↓ ↓

...
...

...
...

...
...

. . .

Figure 1.1: Seidel triangle (gi,j) of the Genocchi numbers.

[DV80]) as the positive integers (g2n−1,n)n≥1 and (g2n+2,1)n≥0 respectively in
the Seidel triangle (gi,j)1≤j≤�i/2� (see Figure 1.1 where the Genocchi numbers
are boxed and the median Genocchi numbers are circled) defined by g1,1 = 1
and, for all p ≥ 1,

g2p,j = g2p−1,j + g2p,j+1 for all 1 ≤ j ≤ p,
g2p+1,j = g2p+1,j−1 + g2p,j for all 1 ≤ j ≤ p+ 1

(where g2p,p+1 = g2p+1,0 = 0 for all p ≥ 1). It is well known that H2n+1 is
divisible by 2n (see [BD81]) for all n ≥ 0. The normalized median Genocchi
numbers (hn)n≥0 = (1, 1, 2, 7, . . .) [OEIe] are the positive integers defined by

hn = H2n+1/2
n.
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1.2.1 Combinatorial interpretations of the (normalized)
median Genocchi numbers

Dumont [DR94] gave several combinatorial models of the Genocchi num-
bers and the median Genocchi numbers, among which are the Dumont per-
mutations. We denote by Sn the set of permutations of the set [n] :=
{1, 2, . . . , n}, and by inv(σ) the number of inversions of a permutation σ ∈
Sn, i.e., the number of pairs (i, j) ∈ [n]2 with i < j and σ(i) > σ(j). Broadly
speaking, the number of inversions inv(w) of a word w = l1l2 . . . ln with n
letters in the alphabet N is the number of pairs (i, j) ∈ [n]2 such that i < j
and li > lj. In particular, the number inv(σ) associated with a permutation
σ ∈ Sn is the number inv(w) associated with the word w = σ(1)σ(2) . . . σ(n).

Definition 1.1. A Dumont permutation of order 2n is a permutation
σ ∈ S2n such that σ(2i) < 2i and σ(2i − 1) > 2i − 1 for all i. We de-
note by Dn the set of these permutations.

It is well-known (see [DR94]) that H2n+1 = | Dn+1 | for all n ≥ 0. In
[HZ99b], Han and Zeng introduced the set G ′′

n of normalized Genocchi per-
mutations, which consists of permutations σ ∈ Dn such that for all j ∈ [n−1],
the two integers σ−1(2j) and σ−1(2j + 1) have the same parity if and only if
σ−1(2j) < σ−1(2j +1), and they proved that hn = | G ′′

n+1 | for all n ≥ 0. The
number hn also counts the Dellac configurations of size n (see [Fei11]).

Definition 1.2. A Dellac configuration of size n is a tableau of width n and
height 2n which contains 2n dots between the lines y = x and y = n + x,
such that each row contains exactly one dot and each column contains exactly
two dots. Let DC(n) be the set of Dellac configurations of size n. A fall of
C ∈ DC(n) is a pair (d1, d2) of dots whose Cartesian coordinates in C are
respectively (j1, i1) and (j2, i2) such that j1 < j2 and i1 > i2. We denote by
fal(C) the number of falls of C.

For example, the tableau depicted in Figure 1.2 is a Dellac configuration
C ∈ DC(3) with fal(C) = 2 falls (represented by two segments).

1.2.2 q-extended normalized median Genocchi numbers

In [HZ99a, HZ99b], Han and Zeng defined the q-Gandhi polynomials
of the second kind (Cn(x, q))n≥1 by C1(x, q) = 1 and Cn+1(x, q) = (1 +
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Figure 1.2: Dellac configuration C ∈ DC(3) with fal(C) = 2 falls.

qx)Δq(xCn(x, q)), where

ΔqP (x) = (P (1 + qx)− P (x))/(1 + qx− x)

for all polynomial P (x). They proved that the polynomials Cn(1, q) are q-
analogs of the median Genocchi numbers (H2n+1)n≥0 = (1, 2, 8, 56, . . .) via
Cn(1, 1) = H2n−1 for all n ≥ 1. Furthermore, they gave a combinatorial
interpretation of Cn(1, q) through the set Dn of Dumont permutations.

Theorem 1.3 (Han and Zeng, 1997). Let n ≥ 1. For all σ ∈ Dn, we define
st(σ) as the number

st(σ) = n2 −
n∑

i=1

σ(2i)− inv(σo)− inv(σe) (1.1)

where σo and σe are the words σ(1)σ(3) . . . σ(2n− 1) and σ(2)σ(4) . . . σ(2n)
respectively (and where we define the number of inversions inv(w) of a word
w whose letters are integers as the number of pairs (i, j) ∈ N

2
>0 such that wi

and wj are defined and such that i < j and wi > wj).
Then, the polynomial Cn(1, q)has the following combinatorial interpreta-

tion:
Cn(1, q) =

∑
σ∈Dn

qst(σ). (1.2)

By introducing the subset G ′′
n ⊂ Dn of normalized Genocchi permuta-

tions and using the combinatorial interpretation provided by Theorem 1.3,
Han and Zeng proved combinatorially that the polynomial (1+ q)n−1 divides
Cn(1, q), which gives birth to polynomials (c̄n(q))n≥1 defined by

c̄n(q) = Cn(1, q)/(1 + q)n−1. (1.3)

This divisibility had previously been proved in the same chapter with a con-
tinued fraction approach, as a corollary of the following theorem and a well-
known result on continued fractions (see [Fla80]).



1.2. INTRODUCTION 7

Theorem 1.4 (Han and Zeng, 1997). The generating function of the se-
quence (c̄n+1(q))n≥0 is

∑
n≥0

c̄n+1(q)t
n =

1

1− λ1(q)t

1− λ2(q)t

1− λ3(q)t

. . .

(1.4)

where λ2p−1(q) is the q-binomial coefficient{
p+ 1

2

}
q

:= (1− qp+1)(1− qp)/((1− q2)(1− q))

and λ2p(q) = qλ2p−1(q) for all p ≥ 1.

The polynomials (c̄n(q))n≥1 are q-refinements of the normalized median
Genocchi numbers: c̄n(1) = hn−1 for all n ≥ 1. They are named q-extended
normalized median Genocchi numbers. In §1.3.1, we give a combinatorial in-
terpretation of c̄n(q) by slightly adjusting the definition of normalized Genoc-
chi permutations.

In [Fei11, Fei12], Feigin introduced a q-analog of the normalized median
Genocchi number hn with the Poincar polynomial PFa

n
(q) of the degenerate

flag variety Fa
n (whose Euler characteristic is PFa

n
(1) = hn), and gave a

combinatorial interpretation of PFa
n
(q) through Dellac configurations.

Theorem 1.5 (Feigin, 2012). For all n ≥ 0, the polynomial PFa
n
(q) is gen-

erated by DC(n):
PFa

n
(q) =

∑
C∈DC(n)

q2fal(C).

The degree of the polynomial PFa
n
(q) being n(n + 1) (for algebraic con-

siderations, or because every Dellac configuration C ∈ DC(n) has at mostÄ
n
2

ä
falls, see §1.3.1), Feigin introduced the following q-analog of hn:

h̃n(q) = q(
n
2)PFa

n
(q−1/2) =

∑
C∈DC(n)

q(
n
2)−fal(C), (1.5)

and proved the following theorem by using the geometry of quiver Grass-
mannians (see [IFR12]) and Flajolet’s theory of continued fractions [Fla80].
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Theorem 1.6 (Feigin, 2012). The generating function ∑n≥0 h̃n(q)t
n has the

continued fraction expansion of Formula (1.4).

Corollary 1.7 (Feigin, 2012). For all n ≥ 0, we have h̃n(q) = c̄n+1(q).

This raises two questions.

1. Prove combinatorially Corollary 1.7 by constructing a bijection between
Dellac configurations and some appropriate model of c̄n(q) which pre-
serves the statistics.

2. Prove combinatorially Theorem 1.6 within the framework of Flajo-
let’s theory of continued fractions by defining a combinatorial model of
h̃n(q) related to Dyck paths (see [Fla80]), and constructing a statistic-
preserving bijection between Dellac configurations and that new model.

The aim of this chapter is to answer above two questions.
We answer the first one in §1.3. In §1.3.1, we define a combinatorial

model of c̄n(q) through normalized Dumont permutations, and we provide
general results about Dellac configurations. In §1.3.2, we enounce and prove
Theorem 1.23, which connects Dellac configurations to normalized Dumont
permutations through a stastistic-preserving bijection, and implies immedi-
atly Corollary 1.7.

We answer the second question in §1.4. In §1.4.1, we recall the definition
of a Dyck path and some results of Flajolet’s theory of continued fractions.
In §1.4.2, we define Dellac histories , which consist of Dyck paths weighted
with pairs of integers, and we show that their generating function has the
continued fraction expansion of Formula (1.4). In §1.4.3, we enounce and
prove Theorem 1.48, which connects Dellac configurations to Dellac histories
through a statistic-preserving bijection, thence proving Theorem 1.6 combi-
natorially.

1.3 Connection between Dellac configurations
and Dumont permutations

In §1.3.1, we define normalized Dumont permutations of order 2n, whose
set is denoted by D′

n, and we prove that they generate c̄n(q) with respect to
the statistic st defined in Formula (1.1), then we define the label of a Dellac
configuration and a switching transformation on the set DC(n).
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In §1.3.2, we enounce Theorem 1.23 and we prove it. To do so, we first
give two maps φ : DC(n) → D′

n+1 and φ̃ : Dn+1 → DC(n), and we prove
that φ and φ̃| D′

n+1
are inverse maps. Then, we show that Equation (1.6)

is true for all C ∈ DC(n), by showing that it is true for some particular
C0 ∈ DC(n), then by connecting C0 to every other C ∈ DC(n) thanks to a
switching transformation, which happens to preserve Equation (1.6).

1.3.1 Preliminaries

Combinatorial interpretation of c̄n(q).

Definition 1.8. A normalized Dumont permutation of order 2n is a permu-
tation σ ∈ Dn such that, for all j ∈ [n − 1], the two integers σ−1(2j) and
σ−1(2j + 1) have the same parity if and only if σ−1(2j) > σ−1(2j + 1). Let
D′

n ⊂ Dn be the set of these permutations.

Proposition 1.9. For all n ≥ 1, we have c̄n(q) =
∑

σ∈D′
n
qst(σ).

Proof. Let j ∈ [n− 1] and σ ∈ Dn. Recall that

st(σ) = n2 −
n∑

i=1

σ(2i)− inv(σo)− inv(σe).

It is easy to see that the composition σ′ = (2j, 2j + 1) ◦ σ of σ with the
transposition (2j, 2j+1) is still a Dumont permutation, and that if σ fits the
condition C(j) defined as

”σ−1(2j) > σ−1(2j + 1) ⇔ σ−1(2j) and σ−1(2j + 1) have the same parity”,

then st(σ′) = st(σ) + 1.
Now, if we denote by Dj

n ⊂ Dn the subset of permutations that fit the
condition C(j), then Dn is the disjoint union

Dj
n �
Ä
(2j, 2j + 1) ◦ Dj

n

ä
,

where (2j, 2j + 1) ◦Dj
n is the set defined as {(2j, 2j + 1) ◦ σ, σ ∈ Dj

n}. Since
st((2j, 2j + 1) ◦ σ) = st(σ) + 1 for all σ ∈ Dj

n, Formula (1.2) of Theorem 1.3
becomes

Cn(1, q) = (1 + q)
∑

σ∈Dj
n

qst(σ).
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Figure 1.3: Label of a Dellac configuration C ∈ DC(3).

This yields immediatly:

Cn(1, q) = (1 + q)n−1
∑

σ∈⋂n−1
j=1 Dj

n

qst(σ) = (1 + q)n−1
∑

σ∈D′
n

qst(σ).

The proposition then follows from Formula (1.3).

Label of a Dellac configuration

Definition 1.10. Let C ∈ DC(n). For all i ∈ [n], the dot of the i-th line of
C (from bottom to top) is labelled by the integer ei = 2i+ 2, and the dot of
the (n+ i)-th line is labelled by the integer en+i = 2i− 1 (see Figure 1.3 for
an example).

From now on, we will assimilate each dot of a Dellac configuration into
its label.

Definition 1.11 (Particular dots). Let C ∈ DC(n). For all j ∈ [n], we
define iC1 (j) < iC2 (j) such that the two dots of the j-th column of C (from
left to right) are eiC1 (j) and eiC2 (j). When there is no ambiguity, we write ei1(j)
and ei2(j) instead of eiC1 (j) and eiC2 (j).

Afterwards, for all i ∈ [n], we define the integers pC(i) and qC(i) such
that epC(i) and en+qC(i) are respectively the i-th even dot and i-th odd dot of
the sequence Ä

ei1(1), ei2(1), ei1(2), ei2(2), . . . , ei1(n), ei2(n)
ä
.

For example, in Figure 1.3, the two dots ei1(2) and ei2(2) of the second
column are respectively 6 = e2 = epC(3) and 3 = e5 = e3+qC(1).
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Remark 1.12. For all i ∈ [2n], if the dot ei appears in the ji-th column of
C, then, by Definition 1.2, we have ji ≤ i ≤ ji + n. As a result, the first j
columns of C always contain the j even dots

e1, e2, . . . , ej,

and the only odd dots they may contain are

en+1, en+2, . . . , en+j.

Likewise, the last n − j + 1 columns of C always contain the n − j + 1 odd
dots

en+j, en+j+1, . . . , e2n,

and the only even dots they may contain are

ej, ej+1, ej+2, . . . , en.

Remark 1.13. Let C ∈ DC(n) and j ∈ [n]. If the j-th column of C contains
the even dot ei≤n = 2i + 2, then, since j ≤ i, we have ei ∈ {2j + 2, 2j +
4, . . . , 2n + 2}. Similarly, if the j-th column of C contains the odd dot
ei>n = 2(i − n) − 1, since i ≤ j + n, we have ei ∈ {1, 3, . . . , 2j − 1}. As a
result, the three following conditions are equivalents :

(i) eiC1 (j) > eiC2 (j);

(ii) iC1 (j) ≤ n < iC2 (j);

(iii) eiC1 (j) and eiC2 (j) have different parities.

Definition 1.14 (Particular configurations). For all n ≥ 1, we denote by
C0(n) (respectively C1(n)) the Dellac configuration of size n such that
(ei1(j), ei2(j)) = (e2j−1, e2j) (resp. (ei1(j), ei2(j)) = (ej, en+j)) for all j ∈ [n].

For example C0(3) and C1(3) are the two configurations depicted in Figure
1.4. It is obvious that C0(n) is the unique Dellac configuration of size n with
0 fall, and that fal(C1(n)) =

Ä
n
2

ä
. We can also prove by induction on n ≥ 1

that every Dellac configuration C ∈ DC(n) has at most
Ä
n
2

ä
falls with equality

if and only if C = C1(n).
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Figure 1.4: C0(3) (on the left) and C1(3) (on the right).

Figure 1.5: C ∈ DC(3) �→ Sw2(C) ∈ DC(3).

Refinements of the fal statistic on DC(n)

Definition 1.15. Let C ∈ DC(n) and i ∈ [2n]. We define the number lC(ei)
(resp. rC(ei)) as the number of falls of C between the dot ei and any dot ei′
with i′ > i (resp. i′ < i).

For example, if C = C1(3) (see Figure 1.4), then lC(6) = rC(3) = 1 and
rC(1) = lC(8) = 2.

Switching of a Dellac configuration

In the following definition, we provide a tool which transforms a Dellac
configuration of DC(n) into a slightly modified tableau, which is not necessar-
ily a Dellac configuration and consequently brings the notion of switchability
(still being a Dellac configuration after a switching transformation).

Definition 1.16. Let C ∈ DC(n) and i ∈ [2n − 1]. We denote by Swi(C)
the tableau obtained by switching the two consecutive dots ei and ei+1 (i.e.,
inserting ei in ei+1’s column and ei+1 in ei’s column). If the tableau Swi(C)
is still a Dellac configuration, we say that C is switchable at i.

In Figure 1.5, we give an example C ∈ DC(3) switchable at 2.
It is easy to verify the following facts.



1.3. DELLAC CONFIGURATIONS AND DUMONT PERMUTATIONS13

Fact 1.17. If C ∈ DC(n) is switchable at i, then |fal((Swi(C)))−fal(C)| ≤ 1.

Fact 1.18. A Dellac configuration C ∈ DC(n) is switchable at i ∈ [2n − 1]
if and only if C and i satisfy one of the two following conditions:

(1) i ≤ n and if ei+1 is in the ji+1-th column of C, then ji+1 < i+ 1;
(2) i > n and if ei is in the ji-th column of C, then ji > i− n.

In particular :

Fact 1.19. If C is switchable at i, then Swi(C) is still switchable at i and
Swi(Swi(C)) = C.

Fact 1.20. If ei and ei+1 are in the same column of C, then C is switchable
at i and C = Swi(C).

Fact 1.21. If (ei, ei+1) is a fall of C, then C is switchable at i and
fal(Swi(C)) = fal(C)− 1 (like in Figure 1.5).

Fact 1.22. A Dellac configuration C ∈ DC(n) is always switchable at n.

1.3.2 Construction of a statistic-preserving bijection

In this part, we intend to prove the following result.

Theorem 1.23. There exists a bijection φ : DC(n) → D′
n+1 such that the

equality

st(φ(C)) =

(
n

2

)
− fal(C) (1.6)

is true for all C ∈ DC(n).

In the following, we define φ : DC(n) → D′
n+1 and in order to prove that

it is bijective, we construct φ̃ : Dn+1 → DC(n) such that φ and φ̃| D′
n+1

are
inverse maps.

Bijections

Definition 1.24 (definition of φ). We define φ : DC(n) → S2n+2 by mapping
C ∈ DC(n) to the permutation φ(C) ∈ S2n+2 defined by

φ(C)−1 = 2ei2(1)ei1(1)ei2(2)ei1(2) . . . ei2(n)ei1(n)(2n+ 1),
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Figure 1.6: C ∈ DC(3).

where we recall that ei1(j) and ei2(j) are respectively the lower and upper
dots of the j-th column of C for all j ∈ [n].

In other words, the permutation σ = φ(C) is defined by⎧⎨⎩(σ(2), σ(2n+ 1)) = (1, 2n+ 2),Ä
σ
Ä
ei1(j)

ä
, σ
Ä
ei2(j)

ää
= (2j + 1, 2j) for all j ∈ [n].

(1.7)

Example 1.25. If C ∈ DC(3) is the Dellac configuration depicted in Figure
1.6, we obtain φ(C)−1 = 28416537.

Proposition 1.26. For all C ∈ DC(n), the permutation φ(C) is a normal-
ized Dumont permutation.

Proof. Let σ = φ(C).
It is a Dumont permutation : (σ(2), σ(2n + 1)) = (1, 2n + 2) and for all

i ∈ {2, 3, . . . , n− 1}, if the dot 2i = ei−1 is in the j-th column of C (resp. if
the dot 2i+ 1 = en+1+i is in the j′-th column of C), then

σ(2i) = σ(ei−1) ≤ 2j + 1 < 2i

because j ≤ i− 1 (respectively

σ(2i+ 1) = σ(en+1+i) ≥ 2j′ > 2i+ 1

because n+ 1 + i ≤ j′ + n).
It is also normalized according to Remark 1.13.

Definition 1.27 (definition of φ̃). Let T n be the set of rectangular tableaux
of size n × 2n whose each row contains one dot and each column contains
two dots.
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We define φ̃ : Dn+1 → T n by mapping σ ∈ Dn+1 to the tableau φ̃(σ) ∈ T n

whose j-th column contains the two dots labelled by σ−1(2j) and σ−1(2j+1)
for all j ∈ [n].

Proposition 1.28. For all σ ∈ Dn+1, the tableau φ̃(σ) is a Dellac configu-
ration.

Proof. Let j ∈ [n] and i ∈ [2n] such that φ̃(σ) contains a dot in the box
(j, i) (i.e., the j-th column of φ̃(σ) contains the dot ei). By definition, we
have

2j ≤ σ(ei) ≤ 2j + 1.

If i ≤ n, then ei = 2i+ 2 and 2j ≤ σ(2i+ 2) < 2i+ 2 thence j ≤ i < j + n.
Else ei = 2(i − n) − 1 and 2j + 1 ≥ σ(2(i − n) − 1) > 2(i − n) − 1 thence
j ≥ i− n > 0 ≥ j − n.

In either case we obtain j ≤ i ≤ j + n so φ̃(σ) ∈ DC(n).

Example 1.29. Consider the permutation σ = 41726583 ∈ D4. From σ−1 =
24816537, we obtain the Dellac configuration φ̃(σ) illustrated in Figure 1.6.

It is easy to verify that φ ◦ φ̃| D′
n+1 = IdD′

n+1
and φ̃ ◦ φ = IdDC(n).

Remark 1.30. There is a natural interpretation in terms of group action : in
the proof of Proposition 1.9, we show that the subgroup of S2n+2 generated
by the n permutations (2, 3), (4, 5), . . . , (2n, 2n + 1), freely operates by left
multiplication on Dn+1, and that each orbit of that action contains exactly
one normalized Dumont permutation. Also, the orbits are indexed by ele-
ments of DC(n) : two permutations σ1 and σ2 ∈ Dn+1 are in the same orbit
if and only if φ̃(σ1) = φ̃(σ2), and for all σ ∈ Dn+1, the permutation φ(φ̃(σ))
is the unique normalized Dumont permutation in the orbit of σ.

Example 1.31. In Examples 1.25 and 1.29, we have φ̃(φ(C)) = C and
φ(φ̃(σ)) = (2, 3) ◦ σ.

Alternative algorithm

Definition 1.32. Let (y1, y2, . . . , y2n) be the sequence (3, 2, 5, 4, . . . , 2n +
1, 2n).

For all C ∈ DC(n), we define a permutation τC ∈ S2n by φ(C)(ei) = yτC(i)

for all i ∈ [2n].
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Lemma 1.33. Let C ∈ DC(n) and (p, q) ∈ [2n]2 such that p < q. The
pair (ep, eq) is a fall of C if and only if (p, q) is an inversion of τC, i.e., if
τC(p) > τC(q).

Proof. Recall that if the dot ei is located in the j-th column of C, then
φ(C)(ei) = 2j or 2j+1. Consequently, since yi = i if i is even, and yi = i+2
if i is odd, then τC(i) = 2j or 2j − 1.

Now let 1 ≤ p < q ≤ 2n, and let (jp, jq) such that the dot ep (resp. eq)
is located in the jp-th column (resp. jq-th column) of C. If (ep, eq) is a fall
of C, i.e., if jp > jq, then τC(p) ≥ 2jp − 1 > 2jq ≥ τC(q) and (p, q) is an
inversion of τC .

Reciprocally, if τC(p) > τC(q), then 2jp ≥ τC(p) > τC(q) ≥ 2jq − 1, hence
jp ≥ jq. Now suppose that jp = jq =: j. It means that ep and eq are the
lower dot and the upper dot of the j-th column respectively, which translates
into yτC(p) = φ(C)(ep) = 2j + 1 and yτC(q) = φ(C)(eq) = 2j. Consequently,
we obtain τC(p) = 2j − 1 and τC(q) = 2j, which is in contradiction with
τC(p) > τC(q). So jp > jq and (ep, eq) is a fall of C.

Proposition 1.34. Let C ∈ DC(n). For all i ∈ [2n], we have τC(i) =
i+ lC(ei)− rC(ei).

Proof. From Lemma 1.33, we know that⎧⎨⎩lC(ei) = |{k > i : τC(k) < τC(i)}|,
rC(ei) = |{k < i : τC(k) > τC(i)}|.

Thus, the lemma follows from the well-known equality

π(i) = i+ |{k > i : π(k) < π(i)}| − |{k < i : π(k) > π(i)}|

for all permutation π ∈ Sm and for all integer m ≥ 1.

This immediatly yields the following result.

Corollary 1.35 (Alternative algorithm for the map φ : DC(n) → D′
n+1).

For all C ∈ DC(n), the permutation σ = φ(C) ∈ D′
n+1 is defined by⎧⎪⎪⎨⎪⎪⎩

σ(2) = 1,

σ(2n+ 1) = 2n+ 2,

σ(ei) = yi+lC(ei)−rC(ei) for all i ∈ [2n].
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Example 1.36. Consider the following Dellac configuration C ∈ DC(3).

By Corollary 1.35, we obtain φ(C) = 21736584. This is coherent with the
algorithm given in Definition 1.24, which confirms that φ(C)−1 = 21486537.

Switchability and Dumont permutations

We have built a bijection φ : DC(n) → D′
n+1. To demonstrate Formula

(1.6), we will use the notion of switchability defined in §1.3.1, by showing that
if Formula (1.6) is true for some particular configuration C0, and if C1 is a
configuration connected to C0 by a switching transformation, then Formula
(1.6) is also true for C1. We will also need Lemma 1.37 and Proposition
1.38 to prove (in Proposition 1.39) that any two Dellac configurations are
connected by a sequence of switching transformations.

Lemma 1.37. Let σ ∈ Dn+1 and i ∈ [2n − 1]. We denote by σ′ the compo-
sition σ ◦ (ei, ei+1) of the transposition (ei, ei+1) with the permutation σ.

The Dellac configuration φ̃(σ) is switchable at i if and only if σ′ is still a
Dumont permutation, and in that case φ̃(σ′) = Swi(φ̃(σ)).

Proof. Let T be the tableau Swi(φ̃(σ)). If T is a Dellac configuration, one
can check that σ′ ∈ Dn+1 thanks to Fact 1.18.

Reciprocally, if σ′ is a Dumont permutation, we may consider the Dellac
configuration φ̃(σ′). For all j ∈ [n], let

Ä
ei1(j), ei2(j)

ä
(with i1(j) < i2(j)) be

the two dots of the j-th column of φ̃(σ), and
Ä
ei′1(j), ei′2(j)

ä
(with i′1(j) < i′2(j))

the two dots of the j-th column of φ̃(σ′). Then, we have

ei′1(j) = σ′−1(2j + 1) = (ei, ei+1) ◦ σ−1(2j + 1) = (ei, ei+1)
Ä
ei1(j)

ä
ei′2(j) = σ′−1(2j) = (ei, ei+1) ◦ σ−1(2j) = (ei, ei+1)

Ä
ei2(j)

ä
for all j, which exactly translates into φ̃(σ′) = Swi(φ̃(σ)) = T .

The following result is easy.
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Proposition 1.38. In the setting of Lemma 1.37, if φ̃(σ) is switchable at i,
then the following conditions are equivalent.

1. φ̃(σ′) �= φ̃(σ);
2. the two dots ei and ei+1 are not in the same column of φ̃(σ);
3. fal(φ̃(σ′))− fal(φ̃(σ)) = ±1;
4. φ(φ̃(σ)) ◦ (ei, ei+1) ∈ D′

n+1;
5. φ(φ̃(σ′)) = φ(φ̃(σ)) ◦ (ei, ei+1).

Proposition 1.39. Let (C1, C2) ∈ DC(n)2. There exists a finite sequence of
switching transformations from C1 to C2, i.e., a sequence (C0, C1, . . . , Cm)
in DC(n) for some m ≥ 0 such that (C0, Cm) = (C1, C2) and such that
Ck = Swik−1(Ck−1) for some index ik−1 ∈ [2n], for all k ∈ [m].

Proof. From Fact 1.19, it is sufficient to prove that for all C ∈ DC(n), there
exists a finite sequence of switching transformations from C to C0(n), which
is the unique Dellac configuration of size n with 0 fall (see Definition 1.14).

If C = C0(n), the statement is obvious. Else, let C0 = C. From Lemma
1.33, for all i ∈ [2n], the pair (ei, ei+1) is a fall of C0 if and only if the in-
teger i is a descent of τC0 , i.e., if τC0(i) > τC0(i + 1). Now, from Corollary
1.35, the permutation τC0(n) is the identity map Id of S2n+2. Consequently,
since C0 �= C0(n), we have τC0 �= IdS2n , so τC0 has at least one descent.
Let i0 be one of those descents, and let C1 = Swi0(C0) ∈ DC(n). Since
(ei0 , ei0+1) is a fall of C0, in particular ei0 and ei0+1 are not in the same col-
umn, so, from Proposition 1.38, we have φ(C1) = φ(C0) ◦ (ei0 , ei0+1), hence
τC1 = τC0 ◦(i0, i0+1). Consequently, since i0 is a descent of τC0 , it is not a de-
scent of τC1 . Iterating the process with C1, and by induction, we build a finite
sequence of switching transformations (C0, C1, . . . , Cm) such that τCm has no
descent, i.e., such that τCm = Id = τC0(n), which implies Cm = C0(n).

Example 1.40. In Figure 1.7, we give a graph whose vertices are the h3 = 7
elements of DC(3), and in which two Dellac configurations are connected by
an edge if they are connected by a switching transformation.

Proof of the statistic preservation formula (1.6)

To finish the proof of Theorem 1.23, it remains to prove that Formula
(1.6) is true for all C ∈ DC(n).

This is done in Appendix A.1.
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Figure 1.7: The switching transformations of DC(3).

Remark 1.41. In [HZ99a], Han and Zeng proved that c̄n(q) is divisible by
1 + q if n is odd, but requested a combinatorial proof of this statement.
Now, if n is odd, one can prove that every Dellac configuration C ∈ DC(n−
1) is switchable at some even integer, which yields a natural involution I
on DC(n − 1) such that inv(I(C)) = fal(C) ± 1 for all C. This proves
combinatorially the divisibility of c̄n(q) by 1 + q in view of Theorem 1.23.

1.4 Dellac histories

1.4.1 Weighted Dyck paths

Recall (see [Fla80]) that a Dyck path γ of length 2n is a sequence of
points (p0, p1, . . . , p2n) in N

2 such that (p0, p2n) = ((0, 0), (2n, 0)), and for all
i ∈ [2n], the step (pi−1, pi) is either an up step (1, 1) or a down step (1,−1).
We denote by Γ(n) the set of Dyck paths of length 2n. Furthermore, let
μ = (μn)n≥1 be a sequence of elements of a ring. A weighted Dyck path is a
Dyck path γ = (pi)0≤i≤2n ∈ Γ(n) whose each up step has been weighted by 1,
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and each down step (pi−1, pi) from height h (i.e., such that pi−1 = (i− 1, h))
has been weighted by μh.
The weight

ωμ(γ) (1.8)
of the weighted Dyck path γ is the product of the weights of all steps.
Remark 1.42. If γ = (pi)0≤i≤2n ∈ Γ(n), then pi = (i, nu(i) − nd(i)) where
nu(i) and nd(i) are defined as the numbers of up steps and down steps on
the left of pi respectively (in particular nu(i) + nd(i) = i). Consequently,
since the final point of γ is p2n = (2n, 0), the path γ has exactly n up steps
and n down steps, and for all j ∈ [n], the points p2j−1 and p2j are at heights
respectively odd and even.

Definition 1.43 (Labelled steps). Let γ = (pi)0≤i≤2n ∈ Γ(n). For all i ∈ [n],
we denote by sui (γ) (resp. sdi (γ)) the i-th up step (resp. down step) of γ.
When there is no ambiguity, we write sui and sdi instead of sui (γ) and sdi (γ).

Remark 1.44. If sui (γ) = (p2j−2, p2j−1) or (p2j−1, p2j) where p2j−2 = (2j −
2, 2k) for some k ≥ 0, then, following Remark 1.42, we know that 2k =
nu(2j − 2)− nd(2j − 2) = 2nu(2j − 2)− (2j − 2), and by definition of sui (γ)
it is necessary that nu(2j − 2) = i − 1, and we obtain 2k = 2(i − j) hence
i = j + k. In the same context, if sdi (γ) = (p2j−1, p2j) or (p2j−2, p2j−1), then
we obtain i = j − k by an analogous reasoning.

1.4.2 Dellac histories

Definition 1.45. A Dellac history of length 2n is a pair (γ, ξ) where γ =
(pi)0≤i≤2n ∈ Γ(n) and ξ = (ξ1, ξ2, . . . , ξn) where ξi is a pair of nonnegative
integers (n1(i), n2(i)) with the following conditions. Let j ∈ [n] be such that
the i-th down step sdi of γ is one the two steps (p2j−2, p2j−1) and (p2j−1, p2j),
and let 2k be the height of p2j−2. There are three cases.

1. If sdi = (p2j−2, p2j−1) such that (p2j−1, p2j) is an up step (see Figure
1.8,(1)), then

k ≥ n1(i) > n2(i) ≥ 0,

and we attach a weight ωi = q2k−n1(i)−n2(i) to sdi .
2. If sdi = (p2j−1, p2j) such that (p2j−2, p2j−1) is an up step (see Figure

1.8,(2)), then
0 ≤ n1(i) ≤ n2(i) ≤ k,

and we attach a weight ωi = q2k−n1(i)−n2(i) to sdi .
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Figure 1.8: Three cases of down steps in a Dyck path.

3. If (p2j−2, p2j−1) and (p2j−1, p2j) are both down steps (see Figure 1.8,(3)),
we can suppose that sdi = (p2j−2, p2j−1) and sdi+1 = (p2j−1, p2j), then

k − 1 ≥ n1(i) ≥ n2(i) ≥ 0,

and we attach a weight ωi = q2k−1−n1(i)−n2(i) to sdi , also

0 ≤ n1(i+ 1) ≤ n2(i+ 1) ≤ k − 1,

and we attach a weight ωi+1 = q2k−2−n1(i+1)−n2(i+1) to sdi+1.

The weight ω(γ, ξ) of the history (γ, ξ) is the product of the weights of all
down steps. We denote by DH(n) the set of Dellac histories of length 2n.

Prior to connecting Dellac histories to weighted Dyck paths, one can
easily verify the two following results.

Lemma 1.46. For all p ≥ 1, the polynomial∑
0≤n1≤n2≤p−1

q2p−2−n1−n2

is the q-binomial coefficient
¶
p+1
2

©
q
= (1− qp+1)(1− qp)/((1− q2)(1− q)).

Proposition 1.47. For all γ0 ∈ Γ(n), we have the equality∑
(γ0,ξ)∈DH(n)

ω(γ0, ξ) = ωλ(q)(γ0)

where ωλ(q) has been defined in (1.8), and where λ(q) = (λn(q))n≥1 is the
sequence defined in Theorem 1.4.
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Proof. By Definition 1.45, the polynomial ∑(γ0,ξ)∈DH(n) ω(γ0, ξ) is the prod-
uct of the weights of all down steps of γ0, where the weight of a down step
sdi (γ0) is a sum of monomials over pairs of nonnegative integers with condi-
tions depending on the three cases 1.,2. or 3. in which sdi (γ0) may be found.

If sdi (γ0) is a down step (p2j−1, p2j) from height 2k− 1 in the case 3., then
it is weighted by the polynomial∑

0≤n1≤n2≤k−1

q2k−2−n1−n2 ,

which, in view of Lemma 1.46, equals
¶
k+1
2

©
q
= λ2k−1(q).

If sdi (γ0) is a down step (p2j−2, p2j−1) from height 2k, still in the case 3.,
then it is weighted by the polynomial

∑
k−1≥n1≥n2≥0

q2k−1−n1−n2 = q

{
k + 1

2

}
q

= λ2k(q).

If sdi (γ0) is a down step (p2j−1, p2j) from height 2k+1 in the case 2., then
it is weighted by the polynomial

∑
0≤n1≤n2≤k

q2k−n1−n2 =

{
k + 2

2

}
q

= λ2k+1(q).

Finally, if sdi (γ0) is a down step (p2j−2, p2j−1) from height 2k in the case
1., then it is weighted by the polynomial∑

k≥n1>n2≥0

q2k−n1−n2 ,

which, by setting m1 = n1 − 1 and m2 = n2, equals

∑
k−1≥m1≥m2≥0

q2k−1−m1−m2 = q

{
k + 1

2

}
= λ2k(q)

in view of Lemma 1.46.
Following Proposition 1.47, we have∑

(γ,ξ)∈DH(n)

ω(γ, ξ) =
∑

γ∈Γ(n)
ωλ(q)(γ)

for all n ≥ 0. Therefore, from a well-known result due to Flajolet [Fla80], the
generating function ∑

n≥0

Ä∑
(γ,ξ)∈DH(n) ω(γ, ξ)

ä
tn is the continued fraction
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expansion of Formula (1.4). Consequently, to demonstrate Theorem 1.6, it
suffices to prove that h̃n(q) =

∑
(γ,ξ)∈DH(n) ω(γ, ξ), which is a straight corollary

of the following theorem.

Theorem 1.48. There exists a bijective map ψ : DC(n) → DH(n) such that

ω(ψ(C)) = q(
n
2)−fal(C) (1.9)

for all C ∈ DC(n).

1.4.3 Proof of Theorem 1.48

In this part, we give preliminaries and connections between Dellac config-
urations and Dyck paths. Then, we define the map ψ : DC(n) → DH(n) and
we demonstrate the statistic preservation formula (1.9). Finally, we prove
that ψ is bijective by giving a map ψ̃ : DH(n) → DC(n) which happens to
be ψ−1.

Preliminaries on Dellac configurations

Definition 1.49. Let C ∈ DC(n). If i ≤ n, we denote by leC(ei) the number
of falls of C towards ei from any even dot ei′≤n with i′ > i. In the same way,
if i > n, we denote by roC(ei) the number of falls of C from ei towards any
odd dot ei′>n with i′ < i.

Definition 1.50. Let C ∈ DC(n) and j ∈ [n]. We define the height h(j) of
the integer j as the number ne(j) − no(j) where ne(j) (resp. no(j)) is the
number of even dots (resp. odd dots) in the first j − 1 columns of C (with
ne(1) = no(1) = 0).

Remark 1.51. Since the first j−1 columns of C contain exactly 2j−2 dots and,
from Remark 1.12, always contain the j − 1 even dots e1, e2, . . . , ej−1, there
exists k ∈ {0, 1, . . . , j− 1} such that ne(j) = j− 1+ k and no(j) = j− 1− k.
In particular h(j) = 2k.

Lemma 1.52. Let C ∈ DC(n), let j ∈ [n] and k ≥ 0 such that h(j) = 2k in
view of Remark 1.51. If the j-th column of C contains two odd dots, there
exists j′ < j such h(j′+1) = 2k and such that the j′-th column of C contains
two even dots.
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Proof. From Remark 1.51, we have ne(j) = j − 1 + k and no(j) = j −
1 − k. Since the only j odd dots that the first j columns may contain are
en+1, en+2, . . . , en+j−1, en+j, and since the j-th column already contains two
odd dots, the first j − 1 columns contain at most j − 2 odd dots. In other
words, since they contain no(j) = j − 1 − k odd dots, we obtain k ≥ 1.
Thus h(j) = 2k > 0. Since h(1) = 0, there exists j′ ∈ [j − 1] such that
h(j′ + 1) = 2k and h(j′) < 2k. Obviously h(j′ + 1) − h(j′) ∈ {−2, 0, 2}, so
h(j′) = 2k − 2 and the j′-th column of C contains two even dots.

Map ψ : DC(n) → DH(n)

Definition 1.53 (definition of ψ). Let C ∈ DC(n), we define ψ(C) as (γ, ξ),
where γ = (pi)0≤i≤2n (which is a path in Z

2 whose initial point p0 is defined
as (0, 0)) and ξ = (ξ1, . . . , ξn) (which is a sequence of pairs of nonnegative
integers) are provided by the following algorithm. For j = 1 to n, let ei1(j)
and ei2(j) (with i1(j) < i2(j)) be the two dots of the j-th column of C.

1. If i2(j) ≤ n, then (p2j−2, p2j−1) and (p2j−1, p2j) are defined as up steps.

2. If i1(j) ≤ n < i2(j), let i ∈ [n] such that i− 1 down steps have already
been defined. We define ξi as (leC(ei1(j)), r

o
C(ei2(j)). Afterwards,

(a) if leC(ei1(j)) > roC(ei2(j)), we define (p2j−2, p2j−1) as a down step and
(p2j−1, p2j) as an up step (see Figure 1.8,(1));

(b) if leC(ei1(j)) ≤ roC(ei2(j)), we define (p2j−2, p2j−1) as an up step and
(p2j−1, p2j) as a down step (see Figure 1.8,(2)).

3. If n < i1(j), let i ∈ [n] such that i − 1 down steps have already been
defined. We define (p2j−2, p2j−1) and (p2j−1, p2j) as down steps (see
Figure 1.8,(3)). Afterwards, let k ≥ 0 such that p2j−2 = (2j − 2, 2k).
Obviously, the number nu(2j − 2) = j − 1 + k of up steps (resp. the
number nd(2j − 2) = j − 1− k of down steps) that have already been
defined is the number ne(j) of even dots (resp. the number no(j) of
odd dots) in the first j − 1 columns of C, thence h(j) = 2k. From
Lemma 1.52, there exists j′ < j such that h(j′+1) = 2k (which means
p2j′ = (2j′, 2k)) and such that the j′-th column of C contains two even
dots, which means (p2j′−2, p2j′−1) and (p2j′−1, p2j′) are two consecutive
up steps (see Figure 1.9). Now, we consider the maximum jm < j of
the integers j′ that verify this property, and we consider the two dots
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Figure 1.9: Two consecutive up steps and down steps at the same level.

Figure 1.10: C ∈ DC(6).

ei1(jm) and ei2(jm) (with i1(jm) < i2(jm)) of the jm-th column of C.
Finally, we define ξi and ξi+1 as

ξi = (leC(ei1(jm)), l
e
C(ei2(jm))),

ξi+1 = (roC(ei1(j)), r
o
C(ei2(j))).

Example 1.54. The Dellac configuration C ∈ DC(6) of Figure 1.10 yields
the data ψ(C) = (γ, ξ), which is in fact a Dellac history, depicted in Figure
1.11 (since ψ(C) is a Dellac history, we have indicated the weight ωi of the
i-th down step sdi of γ for all i ∈ [6], see Definition 1.45).

Remark 1.55. If ψ(C) = (γ, ξ), let j ∈ [n], the number of up steps (resp.
down steps) among the first 2j steps of γ, is in fact the number of even dots
(resp. odd dots) in the first j columns of C. With precision, for all i ∈ [n],
the even dot epC(i) and the odd dot en+qC(i) (see Definition 1.11) give birth to
the i-th up step and the i-th down step of γ respectively. In particular, the
path γ has n up steps and n down steps, so p2n = (2n, 0). To prove that γ is
a Dyck path, we still have to check that it never goes below the horizontal
line y = 0.
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Figure 1.11: ψ(C) ∈ DH(6).

Remark 1.56. In the context (3) of Definition 1.53, if h(j) = 2k (i.e., if
p2j−2 = (2j − 2, 2k)), then the maximum jm of the integers j′ < j such
that h(j′ + 1) = 2k and such that the j′-th column contains two even dots,
is such that the two steps (p2jm−2, p2jm−1) and (p2jm−1,2jm) are the last two
consecutive up steps from level 2k − 2 towards level 2k in γ.

Proposition 1.57. Let C ∈ DC(n) and (γ, ξ) = ψ(C). The path γ is a Dyck
path.

Proof. From Remark 1.55, it suffices to prove that γ = (p0, p1, . . . , p2n)
never goes below the line y = 0. If we suppose the contrary, there ex-
ists i0 ∈ {0, 1, . . . , 2n − 1} such that pi0 = (i0, 0) and (pi0 , pi0+1) is a down
step. From Remark 1.42, we know that pi0 = (i0, 0) = (i0, 2nu(i0) − i0), so
i0 = 2nu(i0). Let j0 = nu(i0) + 1 ∈ [n]. In the first j0 − 1 columns of C,
from Remark 1.55, there are nu(i0) = j0 − 1 even dots and nd(i0) = j0 − 1
odd dots. Consequently, since those first j0 − 1 columns always contain the
j0 − 1 even dots e1, e2, . . . , ej0−1 and cannot contain any other odd dot than
en+1, en+2, . . . , en+j0−1 (see Remark 1.12), the 2j0 − 2 dots they contain are
precisely e1, e2, . . . , ej0−1 and en+1, en+2, . . . , en+j0−1. Therefore, the only two
dots that the j0-th column may contain are ej0 and en+j0 . But then, it forces
leC(ej0) and roC(en+j0) to equal 0. In particular leC(ej0) ≤ roC(en+j0). Following
the case 2(b) of Definition 1.53, it means (pi0 , pi0+1) is defined as an up step,
which is absurd by hypothesis.

Proposition 1.58. For all C ∈ DC(n), the data ψ(C) is a Dellac history of
length 2n.
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Proof. Let ψ(C) = (γ, ξ) = ((p0, p1, . . . , p2n), (ξ1, ξ2, . . . , ξn)). We know
that γ ∈ Γ(n). It remains to prove that ξ fits the appropriate inequalities
described in Definition 1.45. Let j ∈ [n] and let ei1(j) and ei2(j) (with j ≤
i1(j) < i2(j) ≤ j + n) be the two dots of the j-th column of C.

– If (p2j−1, p2j) is the down step sdi in the context 2(a) of Definition 1.53,
then ξi = (n1, n2) = (leC(ei1(j))), r

o
C(ei2(j))) with leC(ei1(j)) > roC(ei2(j)).

Here, the appropriate inequality to check is k ≥ n1 > n2 (this is the
context 1. of Definition 1.45). Since the first j−1 columns of C contain
j−1+k even dots, including the j−1 dots e1, e2, . . . , ej−1 (with j−1 <
i1(j)), there is no fall from any of these dots to ei1(j). Consequently, in
the first j− 1 columns of C, there are at most (j− 1+ k)− (j− 1) = k
even dots ei with n ≥ i > i1(j), thence n1 = leC(ei1(j)) ≤ k.

– Similarly, if (p2j−2, p2j−1) is the down step sdi set in the context 2(b)
of Definition 1.53, then we have ξi = (n1, n2) = (leC(ei1(j))), r

o
C(ei2(j))),

with leC(ei1(j)) ≤ roC(ei2(j)). Now, the appropriate equality to check is
n1 ≤ n2 ≤ k (this is the context 2. of Definition 1.45). The first j
columns of C contain j − k odd dots and the i2(j) − n lines from the
(n + 1)-th line to the i2(j)-th line contain i2(j) − n odd dots, so, in
the n − j last columns, the number of odd dots ei with n < i < i2(j)
is at most (i2(j) − n) − (j − k) = k + (i2(j) − j − n) ≤ k, thence
n2 = roC(ei2(j)) ≤ k.

– Finally, if (p2j−2, p2j−1) and (p2j−1, p2j) are two consecutive down steps
sdi and sdi+1 in the context 3. of Definition 1.53, then

ξi = (leC(ei1(jm)), l
e
C(ei2(jm))),

ξi+1 = (roC(ei1(j)), r
o
C(ei2(j)))

and the two inequalities to check (this is the context 3. of Definition
1.45) are:

k − 1 ≥ leC(ei1(jm)) ≥ leC(ei2(jm)), (1.10)
roC(ei1(j)) ≤ roC(ei2(j)) ≤ k − 1. (1.11)

– Proof of (1.10): since i1(jm) < i2(jm), obviously
leC(ei1(jm)) ≥ leC(ei2(jm)). Afterwards, since p2jm−2 is at the level
h(jm) = 2k − 2, there are jm − 1 + (k − 1) = jm + k − 2 even
dots in the first jm − 1 columns of C. Since the first jm − 1 rows
of C contain the jm − 1 even dots e1, e2, . . . , ejm−1, the first jm − 1
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columns of C contain at most (jm + k − 2)− (jm − 1) = k − 1 even
dots ei with n ≥ i > i1(jm), thence leC(ei1(jm)) ≤ k − 1.

– Proof of (1.11): since i1(j) < i2(j), obviously roC(ei1(j)) ≤ roC(ei2(j)).
Afterwards, since p2j is at the level h(j + 1) = 2k − 2, there are
j − (k − 1) = j − k + 1 odd dots in the first j columns of C. Since
the j rows, from the (n + 1)-th row to the (n + j)-th row of C,
contain j odd dots, the n − j last columns of C contain at most
j − (j − k + 1) = k − 1 odd dots ei with n < i < i2(jm), thence
roC(ei2(j)) ≤ k − 1.

So ψ(C) is a Dellac history of length n.

Proof of the statistic preservation formula (1.9)

Let C ∈ DC(n) and ψ(C) = (γ, ξ) with γ = (p0, p1, . . . , p2n) and ξ =
(ξ1, ξ2, . . . , ξ2n). By definition, we have ω(ψ(C)) = Πn

i=1ωi where ωi is the
weight of the i-th down step sdi of γ. In the contexts 1. or 2. of Definition
1.45, we have

ωi = q2k−leC(ei1(j))−roC(ei2(j)). (1.12)

Since p2j−2 is at the level h(j) = 2k, the first j − 1 columns of C contain
j−1−k odd dots. Consequently, following Definition 1.53, the step sdi is the
(j− k)-th down step of γ, i.e., the integer i equals j− k. Also, since the first
j columns of C contain j+k even dots, the last n−j columns of C (from the
(j+1)-th column to the n-th column) contain n− (j+k) = n− j−k = i−k
even dots. As a result, we obtain the equality

rC(ei2(j)) = roC(ei2(j)) + i− k. (1.13)

In view of (1.13), Equality (1.12) becomes ωi = qn−i−(leC(ei1(j))+rC(ei2(j))).
With the same reasoning, if sdi and sdi+1 are two consecutive down steps in
the context 3. of Definition 1.45, then by commuting factors of ωi and ωi+1,
we obtain the equality

ωiωi+1 =
Å
qn−i−(leC(ei1(jm))+rC(ei2(jm)))

ãÅ
qn−(i+1)−(leC(ei1(j))+rC(ei2(j)))

ã
.

From ω(ψ(C) = Πn
i=1ωi, it follows that

ω(ψ(C)) = q(
∑n

i=1 n−i)−(
∑

i≤n leC(ei)+
∑

i>n rC(ei)). (1.14)
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Now, it is easy to see that fal(C) =
∑

i≤n l
e
C(ei) +

∑
i>n rC(ei). In view of the

latter remark, Formula (1.14) becomes Formula (1.9).

Proof of the bijectivity of ψ : DC(n) → DH(n)

To end the proof of Theorem 1.48, it remains to show that ψ is bijective.
To this end, we construct (in Definition A.2) a map ψ̃ : DH(n) → DC(n)
and we prove in Lemma A.6 that ψ and ψ̃ are inverse maps. This is done in
Appendix A.2.

As an illustration of the whole chapter, the table depicted in the next
page makes explicit the statistic-preserving bijections between the h3 = 7
objects of DC(3), D′

4 and DH(3).
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C ∈ DC(3) φ(C) ∈ D′
4 ψ(C) ∈ DH(3)

41736285

41736582

71436285

71436582

51436287

21736584

21436587



Chapter 2

A bijection between the
irreducible k-shapes and the
surjective pistols of height k − 1

2.1 Abstract

This chapter constructs a bijection between irreducible k-shapes and sur-
jective pistols of height k − 1, which carries the "free k-sites" to the fixed
points of surjective pistols. It confirms a conjecture of Hivert and Mallet (FP-
SAC 2011) that the number of irreducible k-shapes is the Genocchi number
G2k, and, with precision, that the irreducible k-shapes (with k ≥ 2) generate
the Gandhi polynomial Qk−1(x) with respect to the statistic of free k-sites.

2.2 Introduction

This chapter largely follows [Big15a].
Recall that a partition is a a finite sequence of positive integers

λ = (λ1, λ2, . . . , λm) such that λ1 ≥ λ2 ≥ . . . ≥ λm. By abuse of defini-
tion, we consider that a partition may be empty (in which case m = 0).
The integers λi are called the parts of the partition λ. Let p = λ1. For all
i ∈ [n], if the integer i appears qi times among the parts of λ, we use the
notation λ = pqp . . . 2q21q1 , and if qi = 0 for some i, we allow ourselves not to
write ipi in this notation. For example, the partition λ = (4, 2, 2, 1) equals
41302211 = 412211. If λ and μ are two partitions, we define their union λ∪ μ

31
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Figure 2.1: Ferrers diagram [(4, 2, 2, 1)].

as the sequence obtained by inserting the parts of μ between the parts of λ so
that the final result is still a partition. For example, the union of the parti-
tions λ = (4, 2, 2, 1) and μ = (6, 3, 2) is the partition λ∪μ = (6, 4, 3, 2, 2, 2, 1).

A convenient way to visualize a partition λ = (λ1, . . . , λm) is to consider
its Ferrers diagram (denoted by [λ]), which is composed of cells organized in
left-justified rows such that the i-th row (from bottom to top) contains λi

cells. The hook length of a cell c is defined as the number of cells located to
its right in the same row (including c itself) or above it in the same column.
If the hook length of a cell c equals h, we say that c is hook lengthed by the
integer h. For example, the Ferrers diagram of the partition λ = (4, 2, 2, 1) is
represented in Figure 2.1, in which every cell is labelled by its hook length.

We will sometimes assimilate partitions into their Ferrers diagrams.
The study of k-shapes arises naturally in the combinatorics of k-Schur

functions (see [LLMS13]). Recall that the regular Schur functions sλ, indexed
by the partitions λ, are symmetric functions which form a basis of the space
of symmetric functions Sym, and which may be defined by

sλ =
∑
T

xT

where the sum is over all semi standard young tableaux of shape λ (tableaux
obtained by labelling the Ferrers diagram of λ with positive integers that
increase from left to right and from bottom to top) and where xT is the
monomial ∏i≥1 x

μi
i where μi is the number of occurences of the integer i

among the labels of T for all i. Another basis of Sym lies in the complete
homogeneous symmetric functions hλ, indexed by the partitions and defined
by

hλ =
m∏
i=1

hλi

where λ = (λ1, λ2, . . . , λm) and hn is the sum of all monomials xα1
1 xα2

2 . . .
such that ∑αi = n.
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Now, let k be a positive integer and Sym(k) the subspace of Sym gener-
ated by the homogeneous symmetric functions hλ indexed by the k-bounded
partitions, i.e. the partitions λ whose parts do not exceed k. The k-Schur
functions [LM05] s(k)λ are symmetric functions that form a basis of Sym(k), in
which they play the same role as the regular Schur functions sλ in the space
Sym. They may be defined by

hλ = s
(k)
λ +

∑
μ

K
(k)
μ,λs

(k)
μ

for all k-bounded partition λ, where K
(k)
μ,λ is the number of tableaux named

k-tableaux related to the k-bounded partitions λ and μ. The k-shapes (see
Definition 2.1) appear thereafter in the expansion of the k-Schur functions
in terms of the regular Schur functions, the coefficients of the latter ex-
pansion being related to the enumeration of some paths in the poset of k-
shapes [LLMS13].

In a 2011 FPSAC paper [HM11], Hivert and Mallet showed that the gen-
erating function of all k-shapes is a rational function whose numerator Pk(t)
is defined in terms of what they called irreducible k-shapes. The sequence
of numbers of irreducible k-shapes (Pk(1))k≥1 seemed to be the sequence of
Genocchi numbers (G2k)k≥1 = (1, 1, 3, 17, 155, 2073, . . .), which we recall are
the positive integers that can be defined by G2k = Qk−1(1) for all k ≥ 2
(see [Car71, RS73]) where Qk(x) is the k-th Gandhi polynomial [Gan70],
defined by the recursion Q1(x) = 1 and

Qk(x) = (x+ 1)2Qk−1(x+ 1)− x2Qk−1(x). (2.1)

Hivert and Mallet defined a statistic fr(λ) counting the so-called free k-
sites on the partitions λ in the set of irreducible k-shapes ISk, and conjectured
that

Qk−1(x) =
∑

λ∈ISk

xfr(λ) (2.2)

for all k ≥ 2. We recall that Qk−1(x) is generated by the surjective pistols of
height k − 1 with respect to the statistic of fixed points [Dum74], i.e.,

Qk−1(x) =
∑

f∈SPk−1

xfix(f)−1 (2.3)

where the set of surjective pistols of height k − 1, denoted by SPk−1, is the
set of surjective maps f : [2k − 2] → {2, 4, . . . , 2k − 2} such that f(j) ≥
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j for all j ∈ [2k − 2], and where fix(f) is the number of fixed points of
f ∈ SPk−1, that is, the number of integers j ∈ [2k − 2] such that f(j) = j.
Recall that we assimilate every surjective pistol f ∈ SPk−1 into the sequence
(f(1), f(2), . . . , f(2k − 2)), and that SPk−1 is in bijection with the set of
tableaux made of k − 1 left-justified rows of length 2, 4, 6, . . . , 2k − 2 (from
bottom to top, thence giving the tableau the shape of a pistol) such that
each row contains at least one dot and each column contains exactly one
dot. Indeed, a simple bijection consists in mapping such a tableau T to the
surjective pistol f defined by f(j) = 2(�j/2�+zj) where the j-th column of T
contains a dot in its (1+ zj)-th cell (from top to bottom) for all j ∈ [2k− 2].
For example, if f = (2, 4, 4, 8, 8, 6, 8, 8) ∈ SP4, the tableau corresponding to
f is depicted in Figure 2.2.

Figure 2.2: Tableau of f = (2, 4, 4, 8, 8, 6, 8, 8) ∈ SP4.

The goal of this chapter is to construct a bijection between the irreducible
k-shapes and the surjective pistols of height k − 1, such that the free k-sites
of an irreducible k-shape are carried to the fixed points of the corresponding
surjective pistol. In view of Formula (2.3), this bijection will imply the
conjectured Formula (2.2).

The rest of this chapter is organized as follows. In §2.3, we give some
background about skew partitions and k-shapes (in § 2.3.1), then we focus
on irreducible k-shapes (in § 2.3.2) and enounce Conjecture 2.9 raised by
Mallet (which implies Formula 2.2), and the main result of this chapter,
Theorem 2.10, whose latter conjecture is a straight corollary. In §2.4, we give
preliminaries of the proof of Theorem 2.10 by introducing the notion of partial
k-shapes. In §2.5, we demonstrate Theorem 2.10 by defining two inverse
maps ϕ (in § 2.5.1) and ϕ̃ (in § 2.5.2) which connect irreducible k-shapes and
surjective pistols together while keeping track of the two statistics. Finally,
in §2.6, we explore the corresponding interpretations of some generalizations
of the Gandhi polynomials, generated by the surjective pistols with respect
to refined statistics, on the irreducible k-shapes.
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Figure 2.3: Skew partition λ\μ.

2.3 Definitions and main result

2.3.1 Skew partitions and k-shapes

If two partitions λ = (λ1, . . . , λp) and μ = (μ1, . . . , μq) (with q ≤ p) are
such that μi ≤ λi for all i ≤ q, then the Ferrers diagram [μ] appears naturally
in the bottom left-hand side of [λ] and we define the skew partition s = λ\μ
as the diagram [λ]\[μ]. For example, if λ = (4, 2, 2, 1) and μ = (2, 1, 1), then
λ\μ is the diagram depicted in Figure 2.3.

For every skew partition s, we name row shape (respectively column
shape) of s, and we denote by rs(s) (resp. cs(s)), the sequence of the lengths
of the rows from bottom to top (resp. the sequence of the heights of the
columns from left to right) of s. Those sequences are not necessarily parti-
tions. For example, if s is the skew partition depicted in Figure 2.3, then
rs(s) = (2, 1, 1, 1) and cs(s) = (1, 2, 1, 1) (in particular cs(s) is not a parti-
tion). The lower border of a skew partition s is the set of polygonal paths
made of the bottom left-hand side vertical and horizontal edges of the cells
of s with no cell beneath it or on the left of it. The left edge (respectively
bottom edge) of such a cell is then called a south step (resp. east step) of the
lower border of s. If the lower border of s is a continuous polygonal path,
i.e., if it is not fragmented into several pieces, we also define a canonical
partition < s > obtained by inserting cells in the empty space beneath every
column and on the left of every row of s. For example, in Figure 2.3, the
lower border of s = λ/μ is the polygonal path drawn in red, and < s > is
simply the original partition λ = (4, 2, 2, 1). Now, consider a positive inte-
ger k. For every partition λ, it is easy to see that the diagram composed
of the cells of [λ] whose hook length does not exceed k, is a skew partition,
which we name k-boundary of λ and denote by ∂k(λ). Incidentally, we name
k-rim of λ the lower border of ∂k(λ), and we denote by rsk(λ) (respectively
csk(λ)) the sequence rs(∂k(λ)) (resp. the sequence cs(∂k(λ)). For example,
the 2-boundary of the partition λ = (4, 2, 2, 1) depicted in Figure 2.1, is in
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fact the skew partition s = λ/μ of Figure 2.3. Note that if the k-rim of λ is
a continuous polygonal path, then the partition < ∂k(λ) > is simply λ.

Definition 2.1 (Lam et al [LLMS13]). A k-shape is a partition λ such that
the sequences rsk(λ) and csk(λ) are also partitions.

For example, the partition λ = (4, 2, 2, 1) depicted in Figure 2.1 is not a
2-shape since cs2(λ) = (1, 2, 1, 1) is not a partition, but it is a k-shape for any
k ≥ 4 (for instance cs5(λ) = (3, 3, 1, 1) and rs5(λ) = (3, 2, 2, 1) are partitions,
so λ is a 5-shape, see Figure 2.4). Note that the k-rim of a k-shape λ is always
a continuous polygonal path and that λ =< ∂k(λ) >. Consequently, we will
sometimes assimilate a k-shape into its k-boundary.

2.3.2 Irreducible k-shapes

This part largely follows Section 3 of [HM11]. It deals first with an
operation which maps a k-shape and a k− or (k − 1)-rectangle (namely, a
partition whose Ferrers diagram is a rectangle whose largest hook length is
k or k − 1) to a new k-shape. Irreducible k-shapes will then be defined as
k-shapes that cannot be defined in such a way.

Definition 2.2 ([LLM03]). A k-rectangle is a partition of the form uv for
some positive integers u and v such that u+ v = k+1. The Ferrers diagram
of such a partition is a rectangle made of v rows of length u. In particular,
the greatest hook length of this diagram is the hook length of the cell in its
bottom left side corner, which equals u+ v − 1 = k.

Definition 2.3. Let λ be a k-shape and let u and v be two positive integers.
We denote by Hk

u(λ) (respectively V k
v (λ)) the set of the cells of the skew

partition ∂k(λ) that are contained in a row of length u (resp. in a column of
height v).

For example, consider the 5-shape λ = (4, 2, 2, 1). The sets (H5
u(λ))u≥1

and (V 5
v (λ))v≥1 are outlined in Figure 2.4 (in this example the set V 5

2 (λ) is
empty). Note that for every k-shape λ and for every pair of positive integers
(u, v), if the set Hk

u(λ)∩V k
v (λ) is not empty, then there exists a cell in V k

v (λ)
whose hook length is at least u + v − 1. Consequently, every cell of ∂k(λ)
appears in Hk

u(λ) ∩ V k
v (λ) for some pair (u, v) such that u+ v ≤ k + 1.
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Figure 2.4: Skew partition ∂5((4, 2, 2, 1)).

Proposition 2.4 ([HM11]). Let λ be a k-shape and uv be a k- or
(k− 1)-rectangle. Then, the k-rim of λ crosses the space delimited by the set
Hk

u(λ) ∩ V k
v (λ).

For example, in the 5-shape λ = (4, 2, 2, 1) depicted in Figure 2.4, the 5-
rim of λ crosses the square delimited by the set H5

2 (λ)∩V 5
3 (λ), the rectangle

delimited by the set H5
3 (λ) ∩ V 5

3 (λ), and the segment delimited by the set
H5

3 (λ) ∩ V 5
2 (λ) (which is empty).

Proposition/Definition 2.5 ([HM11]). Let λ be a k-shape and uv be a k-
or (k − 1)-rectangle. Then, there exists a unique k-shape, which we denote
by λ+ uv, such that

rsk(λ+ uv) = rsk(λ) ∪ uv,

csk(λ+ uv) = csk(λ) ∪ vu.

The principle of construction of λ + uv is to insert the rectangle uv in the
skew partition ∂k(λ) as follows : we first choose any point p of the k-rim of
λ such that the Cartesian coordinates of p are integers (thus p is a left-side
corner of a cell of the skew partition ∂k(λ)) and such that p is in the space
delimited by the set Hk

u(λ) ∩ V k
v (λ) (there exists at least one such point p

in view of Proposition 2.4). Then, we decompose the skew partition ∂k(λ)
into three regions : the set F of the cells located to the right of p and above
it, the set A of the cells located to the left of F , and the set B of the cells
located below F (see Figure 2.5). We keep in mind that F ⊂ Hk

u(λ)∩V k
v (λ),

which means we can consider its complement F̄ in the rectangle uv, which
is delimited by dotted lines in Figure 2.5. Then, the k-shape λ + uv is the
partition whose k-boundary is like depicted in Figure 2.6, where F2 is a copy
of F . This construction does not depend on the choice of p.
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Figure 2.5: Decomposition of ∂k(λ).

Figure 2.6: k-boundary of the k-shape λ+ uv.

For example, consider the 4-shape λ = (5, 2, 1, 1) and the 4-rectangle 23,
the construction of the 4-shape λ+ 23 is depicted in Figure 2.7.

Definition 2.6 ([HM11]). An irreducible k-shape is a k-shape that cannot
be obtained from another k-shape by inserting a k- or (k − 1)-rectangle as
described in Definition 2.5. The set of irreducible k-shapes is denoted by ISk.

The following proposition gives another characterisation of the irreducible
k-shapes, which we will use from now.

Proposition 2.7 ([HM11]). Let λ be a k-shape, and let uv be a k- or (k−1)-
rectangle. The following are equivalent :

1. there exists a k-shape μ such that λ = μ+ (uv),
2. there exist two points (x1, y1) and (x2, y2) of the k-rim of λ lying in

Hk
u(λ) ∩ V k

v (λ) such that x2 − x1 ≥ u,
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Figure 2.7: Construction of (5, 2, 1, 1) + 23.

3. there exist two points (x1, y1) and (x2, y2) of the k-rim of λ lying in
Hk

u(λ) ∩ V k
v (λ) such that y1 − y2 ≥ v.

Proof. The statement (i) ⇒ (ii) is obvious from Figure 2.6. Suppose now
that (ii) is true. Let q = (x1, y1) and r = (x2, y2) be two points of the k-rim
of λ lying in Hk

u(λ) ∩ V k
v (λ) such that x2 − x1 ≥ u. We can suppose that

x1, x2, y1, y2 are integers, i.e., that q and r are corners of cells of the skew
partition ∂k(λ). We can also suppose that x2−x1 = u. Then, we decompose
∂k(λ) into five regions (see Figure 2.8):

1. the set G ⊂ Hk
u(λ) ∩ V k

v (λ) of the cells located simultaneously to the
right of q and below it, and to the left of s and above it;

2. the set F ⊂ V k
v (λ) of the cells located above G;
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Figure 2.8: Decomposition of ∂k(λ).

3. the set H ⊂ Hk
u(λ) of the cells located to the right of G;

4. the set A of the cells located to the left of F ;
5. the set B of the cells located below H.

Let R and C be respectively the first row (from top to bottom) and the last
column (from left to right) of the region G. The top left-side corner of R
is the point q, and its length is u. Likewise, the bottom right-side corner of
C is the point r, and its height is v. Now, let R′ be the row above R. By
definition of a k-shape, the length of R′ is at most the length u of R. With
no loss of generality, we can suppose that the first cell (from left to right)
of R′ appears in the region A, i.e., since the length of R′ is at most u, that
there is no cell of the column C in the region F . Consequently, the integer
y1 − y2 is the height of the column C, i.e. y1 − y2 = v (see Figure 2.9), so
(ii) ⇒ (iii). The proof of (iii) ⇒ (ii) is analogous. Finally, always under
the assumption that (ii) (or (iii)) is true and that ∂k(λ) is decomposed as
depicted in Figure 2.9, it is obvious from this latter picture that the regions
F ⊂ V k

v (λ) and H ⊂ Hk
u(λ) are copies of the complement of G in the rect-

angle uv. So, by Definition 2.5, we obtain λ = μ+ uv where μ is the k-shape
whose k-boundary ∂k(μ) is depicted in Figure 2.10 (this is indeed a k-shape
because the hook lengths of the cells of the regions A,F and B in Figure
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Figure 2.9: Decomposition of ∂k(λ).

Figure 2.10: k-boundary ∂k(μ).

2.10 are exactly the same as in Figure 2.9 : this is obvious for A and F , and
this is true for B because H is a copy of F ).

Thus, from Proposition 2.7, a k-shape λ is irreducible if and only if the
intersections Hk

i (λ) ∩ V k
k−i(λ) and Hk

j (λ) ∩ V k
k+1−j(λ) contain respectively at

most i−1 and j−1 east steps of the k-rim of λ for all i ∈ [k−1] and j ∈ [k].
For example, the 5-shape λ = (4, 2, 2, 1) (see Figure 2.11) is irreducible:

the sets H5
i (λ) ∩ V 5

5−i(λ) and H5
j (λ) ∩ V 5

6−j(λ) are empty if i �= 2 and j �= 3,
and the two sets H5

2 (λ)∩V 5
3 (λ) and H5

3 (λ)∩V 5
3 (λ) contain respectively 1 < 2

and 1 < 3 east steps of the k-rim of λ.
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Figure 2.11: Skew partition ∂5((4, 2, 2, 1)).

In general, it is easy to see that for any k-shape λ to be irreducible, the
sets Hk

1 (λ)∩V k
k (λ) and Hk

k (λ)∩ V k
1 (λ) must be empty, and by definition the

set Hk
1 (λ)∩V k

k−1(λ) must contain no east step of the k-rim of λ. In particular,
for k = 1 or 2 there is only one irreducible k-shape: the empty partition.

Definition 2.8 (Hivert and Mallet [HM11, Mal11]). Let λ be an irreducible
k-shape with k ≥ 3. For all i ∈ [k − 2], we say that the integer i is a free
k-site of λ if the set Hk

k−i(λ)∩V k
i+1(λ) is empty. We define

−→
fr (λ) as the vector

(t1, t2, . . . , tk−2) ∈ {0, 1}k−2 where ti = 1 if and only if i is a free k-site of λ.
We also define fr(λ) as ∑k−2

i=1 ti (the number of free k-sites of λ).

For example, the irreducible 5-shape λ = (4, 2, 2, 1) depicted in Fig-
ure 2.11 is such that

−→
fr (λ) = (1, 0, 1).

In order to prove the conjecture of Formula 2.2, and in view of Theo-
rem 0.4, Hivert and Mallet proposed to construct a bijection ϕ̃ : ISk → SPk−1

such that fix(ϕ̃(λ)) = fr(λ) + 1 for all λ. Mallet [Mal11] refined the conjec-
ture by introducing a vectorial version of the statistic of fixed points: for
all f ∈ SPk−1, we define

−→
fix(f) as the vector (t1, . . . , tk−2) ∈ {0, 1}k−2 where

ti = 1 if and only if f(2i) = 2i (in particular ∑i ti = fix(f)− 1).

Conjecture 2.9 (Mallet [Mal11]). Let k ≥ 3. For all vector
−→v = (v1, . . . , vk−2) ∈ {0, 1}k−2, the number of irreducible k-shapes λ such
that

−→
fr (λ) = −→v is the number of surjective pistols f ∈ SPk−1 such that−→

fix(f) = −→v .

The main result of this chapter is the following theorem, which implies
Conjecture 2.9.
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Figure 2.12: Partial 6-shape s.

Theorem 2.10. There exists a bijection ϕ : SPk−1 → ISk such that
−→
fr (ϕ(f)) =

−→
fix(f)

for all f ∈ SPk−1.

We intend to demonstrate Theorem 2.10 in §2.4 and §2.5.

2.4 Partial k-shapes
Definition 2.11 (labelled skew partitions, partial k-shapes and saturation
property). A labelled skew partition is a skew partition s whose columns are
labelled by the integer 0 or 1. If cs(s) is a partition (i.e., if the heights of the
columns of s decrease from left to right) and if the hook length of every cell
c of s doesn’t exceed k− b where b is the label of the column that contains c,
we say that s is a partial k-shape. In that case, if C0 is a column labelled by
0 which is rooted in a row R0 (i.e., whose bottom cell is located in R0) whose
greatest hook length is k, we say that C0 is saturated. For all i ∈ [k − 1], if
every column of s whose height is i+ 1 and whose label is 0 is saturated, we
say that s is saturated in i. If s is saturated in i for all i, we say that s is
saturated.

We represent labelled skew partitions by painting in dark blue columns
labelled by 0, and in light blue columns labelled by 1. For example, the skew
partition depicted in Figure 2.12 is a partial 6-shape, which is not saturated
because its unique column labelled by 0 is rooted in a row whose greatest
hook length is 5 instead of 6.

Definition 2.12 (Sum of partial k-shapes with rectangles). Let s be a partial
k-shape, and let j ≥ 1 with the condition that the height of every column of
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Figure 2.13: s̃, obtained by gluing the rectangle �(j + 1)/2�z to s.

s is at least �(j+2)/2� (since the heights of the columns of a partial k-shape
may equal at most k by definition, we also have j ≤ 2k − 1). Let z be a
nonnegative integer, and define the integer t(j) by

t(j) = j mod 2.

We consider the labelled skew partition s̃ obtained by gluing right to the last
column of s, the amount of z columns of height �(j+1)/2� (see Figure 2.13)
labelled by the integer t(j) (if s is empty then the result is simply the rectan-
gle made of the z columns of height �(j+1)/2� and label t(j), this rectangle
being itself the empty partition if z = 0).

The following algorithm aims at transforming s̃ into a partial k-shape. It
consists in lifting the columns of s̃ following the conditions depicted in the
next algorithm. Note that, whenever we refer to the bottom cell of a column,
we refer to a cell which is prone to moving.

Algorithm : as long as there exists a column of s̃ that is concerned by
one of the three following rules, we consider the first one (from right to left)
of these colums, denoted by C, and we apply the corresponding rules by
decreasing order of priority. We will prove that this algorithm is finite after
enunciating the rules.

1. Let C ′ be the column of s̃ located to the right of C. If C ′ is labelled
by 0, if C has not the same label or height as C ′, and if C and C ′ are
rooted in a same row, then we lift every column rooted in the same
row as C and on the left of C (including C itself), i.e., we erase the
bottom cells of these columns and we draw a cell on the top of each of
them (see Figure 2.14). In particular, the bottom cell c′ of C ′ becomes
a corner in s̃ (i.e., a cell of s̃ with no other cell beneath it or on the left
of it).

2. If the hook length h of the bottom cell c of C is such that h > k+1−t(p),
then we lift every column rooted in the same row as C and on the left
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Figure 2.14: Rule 1.

Figure 2.15: Rule 2.

of C, including C itself (i.e., we erase the bottom cells of these columns
and we draw a cell on the top of each of them, see Figure 2.15) as long
as the hook length h of c is such that h > k + 1− t(p). These columns
may then be lifted several times.

3. The goal of this rule is to prevent the saturated columns of s from not
being saturated any more in the final version of s̃ at the end of the
algorithm. We suppose that C is a column of s̃ labelled by 0 such that
C was saturated in s but is no more saturated in s̃. Following Rule 1 of
the present algorithm, the first column (from left to right) in which C
is rooted, which we denote by C ′, has the same height and label as C,
and by definition C ′ is not saturated in s̃ since C is not. Consequently,
the bottom cell c′ of C ′ is a corner of s̃ whose hook length h′ equals
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Figure 2.16: N -th step of the algorithm.

k− l < k for some l ≥ 1. Consider now (in s̃) the last column (from left
to right) C0 that intersects the row R in which C and C ′ are rooted, and
consider also the l columns C1, C2, . . . , Cl (from left to right) located
on the right of C0. Then, for i from 1 to l, we lift Ci so that its top
cell is at the same level as the row R (potentially lifting some columns
located to its left so that its bottom cell is not located higher than in
the row in which Ci−1 is rooted, which is necessary for s̃ to remain a
skew partition). Thus, in the resulted version of s̃, the hook length h′

of c′ equals k − l + l = k, which implies that both C and C ′ are now
saturated.

We prove that this algorithm is finite : we can construct a partial k-shape
smax whose columns C1, C2, . . . (from right to left) are the columns of s̃ (in the
same order) and for which none of the three rules are requested : it consists
in placing the bottom right-hand side corner of Ci+1 at the same place as
the top left-hand side corner of Ci for all i (see Figure 2.16), then in lifting
(from left to right) every column in order to saturate the columns that are
saturated in s. By definition of the three rules, the level of the column Ci in
s̃ cannot exceed the level of Ci in smax for all i, so the algorithm is finite.

We define the t(j)-sum of the partial k-shape s with the rectangle made
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of z columns of height �(j + 1)/2� and label t(j) as the final version of s̃. It
is a partial k-shape by construction. We denote such a sum by

s⊕k
t(j) �(j + 1)/2�z.

For example, with k = 4, j = 2 (so t(j) = 0) and z = 2, consider the
partial 4-shape s depicted in Figure 2.17. The height of every column of s is
at least �(j+2)/2� = 2. To compute the 0-sum s⊕4

12
2 of s with the rectangle

composed of z = 2 columns of height �(j + 1)/2� = 2 and label t(j) = 0, we
first glue the latter rectangle to the right of the last column of s (see Figure
2.18). In Figure 2.18, the Rule 1 forces the third column (from left to right)
of s̃ to be lifted up to one cell, providing the picture depicted in Figure 2.19.
Then, the Rule 2 forces the second and third columns to be lifted up to one
cell, producing the picture depicted in Figure 2.20, where the Rule 2 must
be applied again to lift the first column up to two cells (see Figure 2.21).
But then, the Rule 3 forces the second column to be lifted up to one cell
in order to preserve the saturation of the first column, which produces the
partial 4-shape depicted in Figure 2.22.
Remark 2.13. The Rule 3 of Definition 2.12 guarantees that any saturated
column of s is still saturated in s ⊕k

t(j) �(j + 1)/2�z. In particular, if s is
saturated in i ∈ [k − 2], then s⊕k

t(j) �(j + 1)/2�z is also saturated in i.

Lemma 2.14. Let s be a partial k-shape obtained by adding rectangles to the
empty partition, i.e., such that s is the result of a sequence of sums

s0 = s0 ⊕k
t(j0)

�(j0 + 1)/2�z0 ,
s2 = s1 ⊕k

t(j1)
�(j1 + 1)/2�z1 ,

...

s = sm ⊕k
t(jm) �(jm + 1)/2�zm

where s0 is the empty partition. Let j ∈ [2k − 4] such that every column of
s is at least �(j + 2)/2� cells high, and let z ∈ {0, 1, . . . , k − 1− �j/2�}. We
consider two consecutive columns of s⊕k

t(j) �(j + 1)/2�z, which we denote by
C1 (on the left) and C2 (on the right), with the same height and the same
label but not the same level, and such that C1 has been lifted by the Rule 2
of Definition 2.12 (note that it cannot be by the Rule 1 because C1 is not the
first column from right to left to have its height and label). If C2 has been
lifted at the same level as C1 in s⊕k

t(j) �(j+1)/2�z, then it is not by the Rule
2 of Definition 2.12.
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Figure 2.17: Partial 4-shape s. Figure 2.18: Glueing of 22 to s.

Figure 2.19: Lifting following Rule 1. Figure 2.20: Lifting following Rule 2.

Figure 2.21: Lifting following Rule 2. Figure 2.22: Lifting following Rule 3.

Proof. See Appendix B.1.

Lemma 2.15. Let s be a partial k-shape in the context of Lemma 2.14, and
let j ≥ 1 such that the height of every column of s is at least �(j+2)/2�, and
such that the quantity of integers i ∈ [k− 2] in which s is not saturated is at
most �j/2�. If s is not saturated in i0 ∈ [k − 2], then there exists a unique
integer z ∈ [k − 1 − �j/2�] such that the partial k-shape s ⊕k

t(j) �(j + 1)/2�z
is saturated in i0.

Proof. See Appendix B.2
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2.5 Proof of Theorem 2.10
We first construct the two key maps in the first two subsections.

2.5.1 Map ϕ : SPk−1 → ISk

Definition 2.16 (map ϕ). Let f ∈ SPk−1. We define s2k−3(f) as the empty
partition. For j from 2k−4 down to 1, let i ∈ [k−1] such that f(j) = 2i, and
suppose that the hypothesis H(j+1) defined as "the height of every column
of sj+1(f) is at least �(j + 2)/2�, and the number of integers i′ in which
sj+1(f) is not saturated is at most �j/2�" is true (in particular H(2k − 3) is
true so we can initiate the algorithm).

1. If f(2i) > 2i, if j = min{j′ ∈ [2k − 4] : f(j′) = 2i} and if the partial
k-shape sj+1(f) is not saturated in i, then we define sj(f) as

sj+1(f)⊕k
t(j) �(j + 1)/2�zj(f)

where zj(f) is the unique element of [k−1−�j/2�] such that the partial
k-shape sj+1(f)⊕k

t(j) �(j + 1)/2�zj(f) is saturated in i (see Lemma 2.15
in view of Hypothesis H(j + 1)).

2. Else, we define sj(f) as

sj+1(f)⊕k
t(j) �(j + 1)/2�zj(f)

where f(j) = 2(�j/2� + zj(f)) (note that zj(f) ∈ {0, 1, . . . , k − 1 −
�j/2�} by definition of a surjective pistol).

In either case, the height of every column of sj(f) is at least �(j + 1)/2�.
Also, suppose there exist at least �(j−1)/2�+1 different integers i′ ∈ [k−2]
in which sj(f) is not saturated. For each of these i′, there must exist some
j′ < j such that f(j′) = 2i′ (otherwise we would have

min{j′ ∈ [2k − 4] : f(j′) = 2i′} ≥ j

which forces i′ to be saturated in sj(f) by the Rule 2 of the present algorithm).
Since each of those i′ is such that i′ + 1 ≥ �(j + 2)/2� (following H(j + 1)),
this implies there are at least �(j − 1)/2� + 1 integers j′ ≤ j − 1 such that
f(j′) ≥ 2�j/2�. Also, since f is surjective, there exist at least �j/2� −
1 integers j′′ ≤ j − 1 such that f(j′) ≤ 2(�j/2� − 1). Consequently, we
obtain (�(j − 1)/2�+ 1) + (�j/2� − 1) ≤ j − 1, which is false because �(j −
1)/2� + �j/2� = j. So the hypothesis H(j) is true and the algorithm goes
on. Ultimately, we define ϕ(f) as the partition < s1(f) >.



50 CHAPTER 2. IRREDUCIBLE K-SHAPES

Figure 2.23: Surjective pistol f = (2, 8, 4, 10, 10, 6, 8, 10, 10, 10) ∈ SP5.

j 8, 7, 6 5 4 3 2 1

sj(f)

Figure 2.24: Sequence (sj(f))j∈[8].

Proposition 2.17. For all f ∈ SPk−1, the partition λ = ϕ(f) is an irre-
ducible k-shape such that ∂k(λ) = s1(f) and

−→
fr (λ) =

−→
fix(f).

For example, consider the following surjective pistol oh height 5 : the
map f = (2, 8, 4, 10, 10, 6, 8, 10, 10, 10) ∈ SP5, whose tableau is depicted in
Figure 2.23. Apart from 10, the only fixed point of f is 6, so

−→
fix(f) =

(0, 0, 1, 0).
Definition 2.16 provides the sequence (s8(f), s7(f), . . . , s1(f)) depicted in

Figure 2.24 (note that s8(f) = s7(f) = s6(f) because z7(f) = z6(f) = 0).
Thus, we obtain s1(f) = ∂6(λ) where λ is the partial 6-shape

ϕ(f) =< s1(f) >. In particular, the sequences rs6(λ) = (5, 4, 4, 3, . . . , 1)
and cs6(λ) = (5, 3, 3, 3, . . . , 1) are partitions, so λ is a 6-shape. Finally, we
can see in Figure 2.25 that λ is irreducible and

−→
fr (λ) = (0, 0, 1, 0) =

−→
fix(f).

See also Appendix B.5 for the detailed computation of another example :
ϕ(f) where f = (4, 2, 6, 8, 6, 10, 8, 10, 10, 10) ∈ SP5.

We split the proof of Proposition 2.17 into Lemmas 2.18, 2.19 and 2.20.

Lemma 2.18. For all f ∈ SPk−1, we have ∂k(ϕ(f)) = s1(f).
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Figure 2.25: 6-boundary ∂6(λ) = s1(f) of the irreducible 6-shape λ = ϕ(f).

Figure 2.26: Anticorner of s1(f). Figure 2.27: Lifting by the Rule 1

Proof. By construction, the skew partition s1(f) is a saturated partial k-
shape (the saturation is guaranteed by Hypothesis H(1) of Definition 2.16).
As a partial k-shape, the hook length of every cell of s1(f) doesn’t exceed
k. Consequently, to prove that ∂k(ϕ(f)) = s1(f), we only need to show that
the hook length h of every anticorner of s1(f) (namely, a cell of ϕ(f) glued
simultaneously to the left of a row R of s1(f) and beneath a column C of
s1(f), see Figure 2.26) is such that h > k.
Anticorners of s1(f) have been created by lifting columns by one of the three
Rules 1,2 or 3 of Definition 2.12. Let x (resp. y) be the length of the row R
(resp. the height of the column C).

1. If C has been lifted by the Rule 2, then x + y > k (if C is labelled by
0) or x + y > k − 1 (if C is labelled by 1). In either case, we obtain
h = 1 + x+ y > k.

2. If C has been lifed by the Rule 1, then the first cell (from left to right)
of the row R is a corner, whose hook length is denoted by h′, and it is



52 CHAPTER 2. IRREDUCIBLE K-SHAPES

Figure 2.28: s1(f). Figure 2.29: sj(f).

the bottom cell of a column C ′ labelled by 0 (see Figure 2.27). Let y′ be
the height of C ′. Since C ′ is saturated, the hook length h′ = x+ y′ − 1
of its bottom cell equals k. Consequently, since y ≥ y′ by construction,
we obtain h = x+ y + 1 > k.

3. Else C has been lifted by the Rule 3 Let C ′ be the column following
C in s1(f), and C0 the saturated column of s1(f) such that C is the
column which contains the last cell (from left to right) of the row R0

in which C0 is rooted (see Figure 2.28).
Let j ∈ [2k−4] such that C0 is saturated in the partial k-shape sj+1(f)
and such that C0 loses momentarily its saturation from sj+1(f) to sj(f).
By definition of the Rule 3 of Definition 2.12, it is easy to see that the
column C ′ already exists in sj+1(f), that the columns C and C ′ have
the same height and the same label 1, and that there exists a column
C ′′ labelled by 0 in sj(f) which lifts the column C ′ by the Rule 1 of
Definition 2.12, so that the partial k-shape sj(f) is like depicted in
Figure 2.29. Also, the hook length h′ of the bottom cell of C ′ equals
k−1 in sj+1(f), so that the hook length h′ equals k−1−l′ in sj(f) where
l′ ≥ 1 is the number of gray cells introduced by Figure 2.29. Now, by
construction, every column labelled by 0 in s1(f) must be saturated. In
the case of C ′′, whose bottom cell is a corner, the hook length h′′ of the
latter bottom cell must be k, which is not the case yet in sj(f) because
otherwise C ′′ would have lifted C ′′ by the Rule 2 of Definition 2.12
instead of the Rule 1 from sj+1(f) to sj(f). Consequently, in order to
saturate C ′′ from sj(f) to s1(f), i.e., to make h′′ equal k, it is necessary
to lift the l′ gray cells. Indeed, otherwise, the column C ′′ would become
saturated by lifting some columns C1, C2, . . . , Cm whose top cells would
be glued to the right of the last gray cells, meaning those columns have
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Figure 2.30: s1(f).

the same height y and the same label t as the l′ columns whose top
cells are the gray cells. Obviously, since C ′′ is not saturated yet at that
moment, the columns C1, C2, . . . , Cm are not lifted by the Rule 3 of
Definition 2.12. In view of Lemma 2.14, these columns must have been
lifted by the Rule 2, which implies every column of height y and label
t are lifted to the same level as the last gray cell. But then it would lift
the column C ′′ by the Rule 2 of Definition 2.12 instead of saturating it
(because C ′′ was necessarily lifted by the columns of height y and label
t in sj+1(f) and it could only be by the Rule 2), which is absurd. So the
l′ gray cells are necessarily lifted in s1(f), which forces the hook length
h′ to equal, in s1(f), what it equaled in sj+1(f), i.e. the integer k − 1.
In particular, in s1(f), the hook length h equals h′ + 2 = k + 1 > k.

Anticorners of s1(f) being hook lengthed by integers exceeding k, we obtain
s1(f) = ∂k(ϕ(f)).

Lemma 2.19. For all f ∈ SPk−1, the partition λ = ϕ(f) is a k-shape.

Proof. From Lemma 2.18 we know that s1(f) = ∂k(λ), and since s1(f) is
a partial k-shape by construction, the sequence csk(λ) = cs(s1(f)) is a par-
tition. To prove that λ is a k-shape, it remains to show that the sequence
rsk(λ) = rs(s1(f)) is a partition. Let R and R′ be two consecutive rows
(from bottom to top) of s1(f). If the first cell (from left to right) of R′ is
not a corner (i.e., in this case, if there exists a cell beneath it, which is nec-
essarily the first cell of R by construction) then the length of R obviously
equals or exceeds the length of R′. Otherwise, the rows R and R′ are like
depicted in Figure 2.30, in which we introduce three columns from left to
right C1, C2 and C3, such that C1 is the column whose bottom cell is the
first cell of R′ (which is a corner), C3 is the column which contains the first
cell of R (which is not necessarily a corner), and C2 is the column which
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preceeds C3. Let x, x′ be the respective lengths of R,R′ and y1 ≥ y2 ≥ y3
the respective heights of the columns C1, C2, C3. We also introduce h1 and
h2 the respective hook lengths of the bottom cells of C1 and C2, h3 the hook
length of the first cell of R, and h the hook length of the cell of ϕ(f) be-
neath C2 (this cell doesn’t belong to s1(f)). Since s1(f) = ∂k(λ), we know
that y2 + x + 1 = h > k hence k ≤ y2 + x. Also, we have h1 ≤ k, so
x′ = h1 − y1 + 1 ≤ k − y1 + 1 ≤ k − y2 + 1 ≤ x + 1. Now suppose that
x′ = x + 1. Then h1 = y1 + x′ − 1 = y1 + x ≥ y2 + x ≥ k, so h1 = k and
y1 = y2. Consequently C1 and C2 are two columns of height y1 = y2, and C1

is labelled by 0 because h1 = k. Also, since columns of height y1 and labelled
by 1 are on the left of columns of height y1 and labelled by 0 (like C1) by
construction of ϕ(f) (see Definition 2.16), then C2 is also labelled by 0.
Now, since y2 + x = k, the column C2 cannot have been lifted by the Rule
2 of Definition 2.12. Since h3 ≤ y3 + x − 1 ≤ y1 + x′ − 2 = k − 1, it cannot
have been lifted by the Rule 1 (because otherwise the first cell of R would
have been the bottom cell of a column C3 labelled by 0, forcing h3 to equal k
because every column labelled by 0 is saturated in s1(f)). So C2 must have
been lifted by the Rule 3, which is absurd because it would imply that its
label is 1, which is not the case. Consequently, it is necessary that x ≥ x′,
thence rsk(λ) is a partition and λ is a k-shape.

Lemma 2.20. For all f ∈ SPk−1, the k-shape λ = ϕ(f) is irreducible and−→
fr (λ) =

−→
fix(f).

Proof. For all i ∈ [k − 2], let ni (resp. mi) be the number of east steps
of the k-rim of λ inside the set Hk

k−i(λ) ∩ V k
i+1(λ) (resp. inside the set

Hk
k−i(λ) ∩ V k

i (λ)). Recall that λ is irreducible if and only if (ni,mi) ∈
{0, 1, . . . , k − 1 − i}2 for all i ∈ [k − 2]. Consider i0 ∈ [k − 2]. The num-
ber ni0 is precisely the number of saturated columns of height i0 + 1 of the
partial k-shape s1(f) = ∂k(λ). Since s1(f) is saturated by construction, this
number is the quantity z2i0(f) < k − i0 according to Definition 2.16. This
statement being true for any i0 ∈ [k − 2], in particular, if i0 > 1, there are
ni0−1 = z2i0−2(f) columns of height i0 and label 0 in s1(f), so the quan-
tity mi0 is precisely the number z2i0−1(f) < k − i0 of columns of height i0
and label 1. Also, the columns of height 1 are necessarily labelled by 1, so
m1 = z1(f) < k − 1. Consequently, the k-shape λ is irreducible. Finally, for
all i ∈ [k − 2], we have the equivalence f(2i) = 2i ⇔ z2i(f) = 0. Indeed,
if f(2i) = 2i then by definition z2i(f) = f(2i)/2 − i = 0. Reciprocally, if
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f(2i) > 2i, then either z2i(f) is defined by the Rule 2 of Definition 2.16, in
which case z2i(f) > 0, or z2i(f) = f(2i)/2−i > 0. Therefore, the equivalence
is true and exactly translates into

−→
fix(f) =

−→
fr (λ).

2.5.2 Map ϕ̃ : ISk → SPk−1

Definition 2.21. Let λ be an irreducible k-shape. For all i ∈ [k − 2],
we denote by xi(λ) the number of east steps of the k-rim of λ inside the
set Hk

k−i(λ) ∩ V k
i+1(λ), and by yi(λ) the number of east steps inside the set

V k
i (λ)\Hk

k+1−i(λ)∩V k
i (λ) =

⊔k−i
j=1 H

k
j (λ)∩V k

i (λ). Finally, for all j ∈ [2k− 4],
we set

zj(λ) =

⎧⎨⎩yi(λ) if j = 2i− 1,

xi(λ) if j = 2i.

For example, if λ is the irreducible 6-shape represented in Figure 2.25,
then (zj(λ))j∈[8] = (3, 2, 1, 3, 2, 0, 0, 1). Note that in general, if λ is an ir-
reducible k-shape and (t1, t2, . . . , tk−2) =

−→
fr (λ), then ti = 1 if and only if

xi(λ) = 0 for all i.

Lemma 2.22. For all λ ∈ ISk and for all j ∈ [2k − 4], we have

zj(λ) ∈ {0, 1, . . . , k − 1− �j/2�}.

Proof. See Appendix B.3

Definition 2.23. Let λ ∈ ISk. We define a sequence (sj(λ))j∈[2k−3] of partial
k-shapes by s2k−3(λ) = ∅ and

sj(λ) = sj+1(λ)⊕k
t(j) �(j + 1)/2�zj(λ).

Lemma 2.24. We have s1(λ) = ∂k(λ) for all λ ∈ ISk.

Proof. See Appendix B.4

Note that the statement of Lemma 2.24 is obvious if λ = ϕ(λ) for some
surjective pistol f ∈ SPk−1, because in that case sj(λ) = sj(f) for all j.
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Definition 2.25 (Map ϕ̃). Let λ ∈ ISk. We define m(λ) ∈ {0, 1, . . . , k − 2}
and

1 ≤ i1(λ) < i2(λ) < . . . im(λ) ≤ k − 2

such that

{i1(λ), i2(λ), . . . , im(λ)(λ)} = {i ∈ [k − 2] : xi(λ) > 0}

(this set is empty when m(λ) = 0). For all p ∈ [m(λ)], let

jp(λ) = max{j ∈ [2ip(λ)− 1] : sj(λ) is saturated in ip(λ)}.

Let L(λ) = [2k−4]. For j from 1 to 2k−4, if j = jp(λ) for some p ∈ [m(λ)],
and if there is no j′ ∈ L(λ) such that j′ < j and �j′/2� + zj′ = ip(λ), then
we set L(λ) := L(λ)\{jp(λ)}. Now we define ϕ̃(λ) ∈ N

[2k−2] as the following:
the integers ϕ̃(λ)(2k− 2) and ϕ̃(λ)(2k− 3) are defined as 2k− 2; afterwards,
let j ∈ [2k − 4].

– If j ∈ L(λ) then ϕ̃(λ)(j) is defined as 2(�j/2�+ zj(λ)).
– Else there exists a unique p ∈ [m(λ)] such that j = jp(λ), and we define
ϕ̃(λ)(j) as 2ip(λ).

Proposition 2.26. For all λ ∈ ISk, the map ϕ̃(λ) is a surjective pistol of
height k − 1, such that

−→
fix(ϕ̃(λ)) =

−→
fr (λ).

For example, consider the irreducible 6-shape λ of Figure 2.25, such that
(zj(λ))j∈[8] = (3, 2, 1, 3, 2, 0, 0, 1). In particular (x1(λ), x2(λ), x3(λ), x4(λ)) =
(2, 3, 0, 1) so m(λ) = 3 and (i1(λ), i2(λ), i3(λ)) = (1, 2, 4). Moreover, by
considering the sequence of partial 6-shapes (s8(λ), . . . , s1(λ)), which is in fact
(because λ = ϕ(f) where f is the surjective pistol of Figure 2.23) the sequence
(s8(f), . . . , s1(f)) depicted in Figure 2.24, we obtain (j2(λ), j3(λ), j1(λ)) =
(3, 2, 1). Applying the algorithm of Definition 2.25 on L(λ) = [8], we quickly
obtain L(λ) = {4, 5, 6, 7, 8}. Consequently, if g = ϕ̃(λ), then automatically
g(10) = g(9) = 10, afterwards

g(1), g(2), g(3)) = (g(j1(λ)), g(j3(λ), g(j2(λ))

= (2i1(λ), 2i3(λ), 2i2(λ))

= (2, 8, 4)

because jp(λ) �∈ L(λ) for all p ∈ [3], and g(j) = 2(�j/2� + zj(λ)) for all
j ∈ L(λ). Finally, we obtain g = (2, 8, 4, 10, 10, 6, 8, 10, 10, 10) = f (and
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−→
fix(g) =

−→
fr (λ)).

Proof of Proposition 2.26. Let λ ∈ ISk and f = ϕ̃(λ). We know that
f(2k − 2) = f(2k − 3) = 2k − 4. Consider j ∈ [2k − 4].

1. If j = jp(λ) for some p ∈ [m(λ)] and if j �∈ L(λ), then f(j) = 2ip(λ).
By definition 2ip(λ) > jp(λ), so 2k − 2 ≥ f(j) > j.

2. Else f(j) = 2(�j/2�+zj(λ)), so 2k−2 ≥ f(j) ≥ j following Lemma 2.22.
Consequently f is a map [2k − 2] → {2, 4, . . . , 2k − 2} such that f(j) ≥ j
for all j ∈ [2k − 2]. Now, we prove that f is surjective. We know that
2k − 2 = f(2k − 2). Let i ∈ [k − 2].

– If i = ip(λ) for some p ∈ [m(λ)], then either jp(λ) �∈ L(λ), in which case
2i = f(jp(λ)), or there exists j < jp(λ) in L(λ) such that �j/2�+zj = i,
in which case 2i = f(j).

– Else z2i(λ) = 0 and s2i(λ) = s2i+1(λ) ⊕k
1 (i + 1)zj(λ) = s2i+1(λ), which

implies that 2i cannot equal any jp(λ). Consequently 2i ∈ L(λ), thence
f(2i) = 2(i+ z2i(λ)) = 2i.

Therefore f ∈ SPk−1. Finally, for all i ∈ [k − 2], we have just proved that
z2i(λ) = 0 implies f(2i) = 2i. Reciprocally, if f(2i) = 2i, then necessarily
2i ∈ L(λ) (otherwise 2i would be jp(λ) for some p and f(2i) would be 2ip(λ) >
jp(λ) = 2i), meaning 2i = f(2i) = 2(i + z2i(λ)) thence z2i(λ) = 0. The
equivalence z2i(λ) = 0 ⇔ f(2i) = 2i for all i ∈ [k− 2] exactly translates into−→
fr (λ) =

−→
fix(f).

2.5.3 Proof of Theorem 2.10

At this stage, we know that ϕ is a map SPk−1 → ISk which carries the
statistic

−→
fix to the statistic

−→
fr . The bijectivity of ϕ is a consequence of the

following proposition.

Proposition 2.27. The maps ϕ : SPk−1 → ISk and ϕ̃ : ISk → SPk−1 are
inverse maps.

Lemma 2.28. Let (f, λ) ∈ SPk−1 × ISk such that λ = ϕ(f) or f = ϕ̃(λ).
Let p ∈ [m(λ)] and jp(λ) := min{j ∈ [2k − 4] : f(j) = 2ip(λ)}. The two
following assertions are equivalent.

1. jp(λ) �∈ L(λ).
2. jp(λ) = jp(λ).
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Proof. Let f ∈ SPk−1 and λ = ϕ(f). In particular, we have sj(λ) = sj(f)
and zj(λ) = zj(f) for all j ∈ [2k−4]. For all p ∈ [m(λ)], by Definition 2.16 the
partial k-shape sj

p(λ)(f) = sj
p(λ)(λ) is necessarily saturated in ip(λ), thence

jp(λ) ≥ jp(λ).
1. If jp(λ) �∈ L(λ), suppose that jp(λ) > jp(λ). Then, the partial k-

shape sjp(λ)+1(f) = sj
p(λ)+1(λ) is saturated in ip(λ), meaning the integer

zjp(λ)(f) = zjp(λ)(λ) is defined as f(jp(λ))/2 − �jp(λ)/2� = ip(λ) −
�jp(λ)/2�. Consequently, since jp(λ) �∈ L(λ) and jp(λ) < jp(λ), the
integer jp(λ) cannot belong to L(λ) either. So jp(λ) = jp1(λ) for some
p1 �= p because jp(λ) �= jp(λ). Also, since f(jp1(λ)) = 2ip(λ) �= 2ip1(λ),
then jp1(λ) > jp1(λ) (and jp1(λ) = jp(λ) �∈ L(λ)). By iterating, we
build an infinite decreasing sequence (jpn(λ))n≥1 of distinct elements of
[2k− 4], which is absurd. Therefore, it is necessary that jp(λ) = jp(λ).

2. Reciprocally, if jp(λ) = jp(λ), suppose that jp(λ) ∈ L(λ). Then, there
exists j ∈ L(λ) such that j < jp(λ) and zj(λ) = ip(λ) − �j/2�. Let
i ∈ [k − 1] such that f(j) = 2i (since j < jp(λ) = jp(λ), we know
that i �= ip(λ)). Suppose sj(f) is defined by the Rule 2 of Defini-
tion 2.16. In particular i = ip1(λ) for some p1 ∈ [m(λ)] (because
f(2i) > 2i which implies z2i(λ) = z2i(f) > 0), and j = jp1(λ) and
sj+1(f) is not saturated in i. Then, by definition the partial k-shape
sj(f) is the first partial k-shape to be saturated in ip1(λ) in the se-
quence (s2k−4(f) = s2k−4(λ), . . . , s1(f) = s1(λ)), meaning j = jp1(λ).
To sum up, the integer j = jp1(λ) = jp1(λ) doesn’t belong to L(λ),
and p1 �= p because f(j) = 2ip1(λ) and j < jp(λ) = jp(λ). By iter-
ating, we build an infinite decreasing sequence (jpn(λ))n≥1 of elements
of [2k − 4], which is absurd. So sj+1(f) is necessarily defined by the
Rule 1 of Definition 2.16, meaning zj(f) = f(j)/2 − �j/2�). Since
zj(f) = zj(λ) = ip(λ) − �j/2�, we obtain f(j) = 2ip(λ), which is in
contradiction with jp(λ) = jp(λ) > j. As a conclusion, it is necessary
that jp(λ) �∈ L(λ).

Now let λ ∈ ISk and f = ϕ̃(λ). We consider p ∈ [m(λ)].
1. If jp(λ) �∈ L(λ), suppose that jp(λ) �= jp(λ). Then, by definition

f(jp(λ)) = 2ip(λ), meaning jp(λ) > jp(λ). Suppose now that jp(λ) ∈
L(λ), then 2ip(λ) = f(jp(λ)) = 2(�jp(λ)/2� + zjp(λ)(λ)). As a result,
we obtain zjp(λ)(λ) = ip(λ)− �jp(λ)/2�, which is in contradiction with
jp(λ) �∈ L(λ). So jp(λ) �∈ L(λ), which implies jp(λ) = jp1(λ) for some
p1 �= p, and necessarily jp1(λ) �= jp1(λ) since f(jp1(λ)) = 2ip(λ) �=
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2ip1(λ). By iterating, we build a sequence (jpn(λ))n≥1 of distinct ele-
ments of [2k − 4], which is absurd. So jp(λ) = jp(λ).

2. Reciprocally, if jp(λ) = jp(λ), suppose that jp(λ) ∈ L(λ). Then, there
exists j ∈ L(λ) such that j < jp(λ) and zj(λ) = ip(λ) − �j/2�. Let
i ∈ [2k − 4] such that f(j) = 2i. Because jp(λ) > j, we have i �= ip(λ).
And since j ∈ L(λ), we obtain 2i = f(j) = 2(�j/2� + zj(λ)) = 2ip(λ),
which is absurd. So jp(λ) �∈ L(λ).

Proof of Proposition 2.27. Let f ∈ SPk−1 and λ = ϕ(f) and g = ϕ̃(λ).
Let j ∈ [2k − 4] and i ∈ [k − 1] such that f(j) = 2i.

1. If sj(f) is defined by the Rule 2 of Definition 2.16, then there exists
p ∈ [m(λ)] such that i = ip(λ) and j = jp(λ) = jp(λ). Consequently, in
view of Lemma 2.28 with λ = ϕ(f), we know that j �∈ L(λ), implying
g(j) = g(jp(λ)) = 2ip(λ) = 2i = f(j).

2. If sj(f) is defined by the Rule 1 of Definition 2.16, then zj(f) = f(j)/2−
�j/2� = i − �j/2�. Now it is necessary that j ∈ L(λ): otherwise
j = jp(λ) for some p ∈ [m(λ)], and from Lemma 2.28 we would have
j = jp(λ) = jp(λ), which is impossible because we are by the Rule 1
of Definition 2.16. So j ∈ L(λ), implying g(j) = 2(�j/2� + zj(λ)) =
2(�j/2�+ zj(f)) = 2i = f(j).

As a conclusion, we obtain g = f so ϕ̃ ◦ ϕ is the identity map of SPk−1.
Reciprocally, let μ ∈ ISk and h = ϕ̃(μ). We are going to prove by induction
that sj(μ) = sj(h) for all j ∈ [2k−3]. By definition s2k−3(μ) = s2k−3(h) = ∅.
Suppose that sj+1(μ) = sj+1(h) for some j ∈ [2k − 4].

1. If sj(h) is defined by the Rule 2 of Definition 2.16, then there exists
p ∈ [m(λ)] such that h(j) = 2ip(μ), such that j = jp(μ) and such that
sj+1(h) is not saturated in ip(μ). Since the partial k-shape sj+1(μ) =
sj+1(h) is not saturated in ip(μ), by definition j ≥ jp(μ). Suppose
that j > jp(μ). Since j = jp(μ), we know from Lemma 2.28 (with
λ = μ and f = ϕ̃(λ) = h) that jp(μ) ∈ L(μ). It means there exists
j′ < jp(μ) < j such that j′ ∈ L(μ) and �j′/2�+zj′(μ) = ip(μ), implying
h(j′) = 2ip(μ) = h(j), which contradicts j = jp(μ). So j = jp(μ),
therefore sj(μ) is saturated in ip(μ). But since we are by the Rule 2 of
Definition 2.16, the partial k-shape sj(h) is defined as sj+1(h)⊕k

t(j)(�(j+
1)/2�zj(h) where zj(h) is the unique integer z ∈ [k−1−�j/2�] such that
sj+1(h)⊕k

t(j)(�(j+1)/2�z is saturated in ip(μ). Since the partial k-shape
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Figure 2.31: Tableau of f = (2, 4, 4, 8, 8, 6, 8, 8) ∈ SP4.

sj(μ) = sj+1(μ)⊕k
t(j) (�(j +1)/2�zj(μ) = sj+1(h)⊕k

t(j) (�(j +1)/2�zj(μ) is
saturated in ip(μ), we obtain zj(μ) = zj(h) and sj(μ) = sj(h).

2. If sj(h) is defined by the Rule 1 of Definition 2.16, then sj(h) =
sj+1(μ) ⊕k

t(j) �(j + 1)/2�zj(h) with zj(h) = h(j)/2 − �j/2�. Now ei-
ther h(j) = 2(�j/2�+ zj(μ)), in which case we obtain zj(h) = zj(μ), or
h(j) = 2ip(μ) for some p ∈ [m(μ)] such that j = jp(μ) �∈ L(μ)). In view
of Lemma 2.28, it means j = jp(μ), which cannot happen because oth-
erwise we would be by the Rule 2 of Definition 2.16. So zj(h) = zj(μ)
and sj(h) = sj(μ).

By induction, we obtain s1(μ) = s1(h), thence μ = ϕ(h). Consequently, the
map ϕ ◦ ϕ̃ is the identity map of ISk.

2.6 Extensions

Dumont and Foata [DF76] introduced a refinement of the Gandhi poly-
nomials (Qk(x))k≥1 through the polynomial sequence (Fk(x, y, z))k≥1 defined
by F1(x, y, z) = 1 and

Fk+1(x, y, z) = (x+ y)(x+ z)Fk(x+ 1, y, z)− x2Fk(x, y, z).

Note that Fk(x, 1, 1) = Qk(x) for all k ≥ 1 in view of Definition 0.1. Now,
for all k ≥ 2 and f ∈ SPk, let max(f) be the number of maximal points
of f (integers j ∈ [2k − 2] such that f(j) = 2k) and pro(f) the number of
prominent points (integers j ∈ [2k−2] such that f(i) < f(j) for all i ∈ [j−1]).
For example, if f is the surjective pistol (2, 4, 4, 8, 8, 6, 8, 8) ∈ SP4 depicted
in Figure 2.31, then the maximal points of f are {4, 5}, and its prominent
points are {2, 4}. Dumont and Foata gave a combinatorial interpretation of
Fk(x, y, z) in terms of surjective pistols.
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Theorem 2.29 ([DF76]). For all k ≥ 2, the Dumont-Foata polynomial
Fk(x, y, z) is symmetrical and generated by SPk:

Fk(x, y, z) =
∑

f∈SPk

xmax(f)yfix(f)zpro(f).

In 1996, Han [Han96] gave another interpretation by introducing the
statistic sur(f) defined as the number of surfixed points of f ∈ SPk (in-
tegers j ∈ [2k − 2] such that f(j) = j + 1; for example, the surfixed points
of the surjective pistol f ∈ SP4 of Figure 2.31 are {1, 3}).
Theorem 2.30 (Han [Han96]). For all k ≥ 2, the Dumont-Foata polynomial
Fk(x, y, z) has the following combinatorial interpretation:

Fk(x, y, z) =
∑

f∈SPk

xmax(f)yfix(f)zsur(f).

Theorem 0.4 then appears as a particular case of Theorem 2.29 or Theo-
rem 2.30 by setting x = z = 1 (and by applying the symmetry of Fk(x, y, z)).
It has been proved by Gessel and Zeng that the Dumont-Foata polynomials
are the moments of orthogonal polynomials named continuous dual Hahn
polynomials.

Furthermore, for all f ∈ SPk and j ∈ [2k − 2], we say that j is a lined
point of f if there exists j′ ∈ [2k − 2]\{j} such that f(j) = f(j′). We define
mo(f) (resp. me(f)) as the number of odd (resp. even) maximal points of
f , and fl(f) (resp. fnl(f)) as the number of lined (resp. non lined) fixed
points of f , and sl(f) (resp. snl(f)) as the number of lined (resp. non lined)
surfixed points of f . Dumont [Dum95] defined generalized Dumont-Foata
polynomials (Γk(x, y, z, x̄, ȳ, z̄))k≥1 by

Γk(x, y, z, x̄, ȳ, z̄) =
∑

f∈SPk

xmo(f)yfl(f)zsnl(f)x̄me(f)ȳfnl(f)z̄sl(f).

This is a refinement of Dumont-Foata polynomials in view of the equality
Γk(x, y, z, x, y, z) = Fk(x, y, z). Dumont conjectured the following induction
formula:
Γ1(x, y, z, x̄, ȳ, z̄) = 1 and

Γk+1(x, y, z, x̄, ȳ, z̄) = (x+ z̄)(y + x̄)Γk(x+ 1, y, z, x̄+ 1, ȳ, z̄)

+ (x(ȳ − y) + x̄(z − z̄)− xx̄)Γk(x, y, z, x̄, ȳ, z̄). (2.4)
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This was proven independently by Randrianarivony [Ran94] and
Zeng [Zen96]. See also [JV11] for a new combinatorial interpretation of
Γk(x, y, z, x̄, ȳ, z̄).

Now, let f ∈ SPk−1 and λ = ϕ(f) ∈ ISk. For all j ∈ [2k − 4], we
say that j is a chained k-site of λ if j �∈ L(λ). Else, we say that it is
an unchained k-site. In view of Lemma 2.28, an integer j ∈ [2k − 4] is a
chained k-site if and only if j = jp(λ) = jp(λ) for some p ∈ [m(λ)], in which
case f(j) = 2ip(λ) (the integer j is forced to be mapped to 2ip(λ)). If j is
an unchained k-site, by definition f(j) = 2(�j/2� + zj(λ)). Consequently,
every statistic of Theorems 2.29, 2.30 and Formula 2.4 has its own equivalent
among irreducible k-shapes. However, the objects counted by these statistics
are not always easily pictured or formalized. We only give the irreducible
k-shapes version of Theorem 2.30.

Recall that for all i ∈ [k − 2], the integer 2i is a fixed point of f if and
only if 2i is a free k-site of λ, which is also equivalent to z2i(λ) = 0. We
extend the notion of free k-site to any j ∈ [2k − 4]: the integer j is said to
be a free k-site if zj(λ) = 0. Note that the free k-sites of λ are necessarily
unchained because zj(λ) = 0 implies sj(λ) = sj+1(λ) thence j �= jp(λ) for
all p ∈ [m(λ)]. We denote by fro(λ) the quantity of odd free sites of λ. We
denote by ful(λ) the quantity of full k-sites of λ (namely, unchained k-sites
j ∈ L(λ) such that zj(λ) = k − 1 − �j/2�), and by sch(λ) the quantity of
surchained k-sites (chained k-sites j ∈ [2k − 4] such that j = jp(λ) for some
p ∈ [m(λ)] such that 2ip(λ) = j+1). Theorem 2.30 can now be reformulated
as follows.

Theorem 2.31. For all k ≥ 3, the Dumont-Foata polynomial Fk−1(x, y, z)
has the following combinatorial interpretation:

Fk−1(x, y, z) =
∑

λ∈ISk

xful(λ)yfr(λ)zfro(λ)+sch(λ).

Proof. First of all, maximal points of f ∈ SPk−1 are full k-sites of λ =
ϕ(f) ∈ ISk: if f(j) = 2k − 2 then zj(f) is necessarily defined by the Rule 1
of Definition 2.16, thence zj(λ) = zj(f) = f(j)/2 − �j/2� = k − 1 − �j/2�,
and j ∈ L(λ) because otherwise f(j) would equal 2ip(λ) < 2k − 2 = f(j)
for some p ∈ [m(λ)]. So j is a full k-site of λ. Reciprocally, if j ∈ L(λ) is
such that zj(λ) = k − 1 − �j/2�, then f(j) = 2(�j/2� + zj(λ)) = 2k − 2 so
j is a maximal point of f . Afterwards, the set of surfixed points of f is the
union set of the odd free k-sites and surchained k-sites of λ: if f(j) = j + 1,
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then j = 2i − 1 for some i ∈ [k − 1] and either j ∈ L(λ), in which case
f(j) = 2(i + zj(λ)) = 2i hence zj(λ) = 0 and j is an odd free k-site, or
j = jp(λ) = jp(λ) for some p ∈ [m(λ)] such that 2ip(λ) = 2i = j + 1, i.e.,
the integer j is a surchained k-site. Reciprocally, if j is an odd free k-site
then f(j) = 2(�j/2� + zj(λ)) = 2(�j/2�) = j + 1, and if j is a surchained
k-site then in particular f(j) = 2ip(λ) = j + 1 for some p ∈ [m(λ)]. As a
conclusion, the result comes from Theorem 2.10.

As for now, constructing a combinatorial interpretation of the Dumont-
Foata polynomials that makes their symmetry obvious is still an open prob-
lem.
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Chapter 3

A new bijection relating
q-Eulerian polynomials

3.1 Abstract
On Sn, we construct a bijection which maps the 3-vector of statistics

(maj− exc, des, exc) to a 3-vector (maj2,fldes2, inv2) associated with the q-
Eulerian polynomials introduced by Shareshian and Wachs in Chromatic
quasisymmetric functions, arXiv:1405.4269(2014) (to appear in Advances in
Math).

3.2 Introduction
This chapter faithfully follows [Big15b].
We first give a reminder about the combinatorial class of permutations.

Recall that for all permutation σ ∈ Sn, the numbers des(σ) and exc(σ) count
the number of descents and excedances of σ respectively, i.e., the elements
of the respective sets

DES(σ) = {i ∈ [n− 1] : σ(i) > σ(i+ 1)},
EXC(σ) = {i ∈ [n− 1] : σ(i) > i}.

It is due to MacMahon [Mac15] and Riordan [RS73] that∑
σ∈Sn

tdes(σ) =
∑

σ∈Sn

texc(σ) = An(t),

65
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where An(t) is the n-th Eulerian polynomial [Eul55], which may be defined
by the generating function

∑
n≥0

An(t)
xn

n!
=

t− 1

t− exp((t− 1)x)
(3.1)

(see [Sta11, page 34]). A statistic equidistributed with des or exc is said to
be Eulerian. The statistic ides defined by ides(σ) = des(σ−1) obviously is
Eulerian. It is also easy to see that the number asc(σ), which counts the
number of ascents of σ ∈ Sn, i.e., the elements of the set

ASC(σ) = {i ∈ [n− 1] : σ(i) < σ(i+ 1)},

defines an Eulerian statistic.
Afterwards, recall that the number inv(σ) counts the number of inversions

of σ, i.e., the elements of the set

INV(σ) = {(i, j) ∈ [n]2 : i < j, σ(i) > σ(j)},

and that the q-factorial [n]q! =
∏n

i=1

∑i−1
k=0 q

k is generated by Sn with respect
to the statistic inv, i.e., that

[n]q! =
∑

σ∈Sn

qinv(σ)

(see for example [Mac15]). MacMahon [Mac15] also defined the major index
maj defined by

maj(σ) =
∑

i∈DES(σ)

i

for all σ ∈ Sn, and proved that it is equidistributed with inv. In general,
any statistic equidistribued with inv is said to be Mahonian.

In this chapter, we study the combinatorics of the permutations with
respect to statistics which refine those defined above : for all σ ∈ Sn, the
numbers des2(σ), asc2(σ) and inv2(σ) count the 2-descents, 2-ascents and
2-inversions of σ respectively, i.e., the elements of the respective sets

DES2(σ) = {i ∈ [n− 1] : σ(i) > σ(i+ 1) + 1},
ASC2(σ) = {i ∈ [n− 1] : σ(i) < σ(i+ 1) + 1},
INV2(σ) = {(i, j) ∈ [n]2 : i < j, σ(i) = σ(j) + 1}.
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The 2-major index maj2 is then defined by

maj2(σ) =
∑

i∈DES2(σ)

i

for all σ ∈ Sn.
By using quasisymmetric function techniques, Shareshian and

Wachs [SW10, SW14] and Hance and Li [HL12] proved the equalities∑
σ∈Sn

xmaj2(σ)yinv2(σ) =
∑

σ∈Sn

xmaj(σ)−exc(σ)yexc(σ). (3.2)

∑
σ∈Sn

xamaj2(σ)yãsc2(σ)zinv2(σ) =
∑

σ∈Sn

xmaj(σ)−exc(σ)ydes(σ)zexc(σ) (3.3)

respectively, where, similarly as for maj2, the statistic amaj2 is defined by

amaj2(σ) =
∑

i∈ASC2(σ)

i,

and where

fiasc2(σ) =

⎧⎨⎩asc2(σ) if σ(1) = 1,
asc2(σ) + 1 if σ(1) �= 1.

Definition 3.1. Let σ ∈ Sn and (p, q) ∈ [n]2 such that p < q. A sequence
of 2-inversions from p to q is a finite sequence

((i1, j1), (i2, j2), . . . , (ik, jk)) ∈ (INV2(σ))
k

(for some k ≥ 1) such that :
– i1 = p;
– jl = il+1 for all l ∈ [k − 1];
– jk = q.

The length of such a sequence is defined as k.

Definition 3.2. Let σ ∈ Sn. We consider the smallest 2-descent d2(σ) of σ
such that σ(i) = i for all i ∈ [d2(σ) − 1] (if there is no such 2-descent, we
define d2(σ) as 0 and σ(0) as +∞).

Now, let d′2(σ) > d2(σ) be the smallest 2-descent of σ greater than d2(σ)
(if there is no such 2-descent, we define d′2(σ) as n).

We define an inductive property P(d2(σ)) by :
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1. for all (i, j) ∈ INV2(σ) such that d2(σ) < i < d′2(σ) and such that there
is no sequence of 2-inversions from d2(σ) to i, we have σ(d2(σ)) < σ(i);

2. if (d′2(σ), j) ∈ INV2(σ) for some j, then either :
– σ(d2(σ)) < σ(d′2(σ)),
– or there exists a sequence of 2-inversions of σ from d2(σ) to d′2(σ),
– or d′2(σ) has the property P(d′2(σ)) (where the role of d2(σ) is played

by d′2(σ) and that of d′2(σ) by d′′2(σ) where d′′2(σ) > d′2(σ) is the
smallest 2-descent of σ greater than d′2(σ), defined as n if there is no
such 2-descent).

This property is well-defined because (n, j) �∈ INV2(σ) for all j ∈ [n].
Finally, we define a statistic fldes2 by :

fldes2(σ) =

⎧⎨⎩des2(σ) if the property P(d2(σ)) is true,
des2(σ) + 1 otherwise.

For example, consider the permutation σ = 7153426 ∈ S7, whose set of
2-descents is DES2(σ) = {1, 3, 5}, and whose set of 2-inversions is INV2(σ) =
{(1, 7), (3, 5), (4, 6)}. We have d2(σ) = 1 and d′2(σ) = 3. The requirement
(1) of Definition 3.2 is fulfiled because there is no beginning of a 2-inversion
of σ between d2(σ) = 1 and d′2(σ) = 3. However, the requirement (2) is not
fulfiled because σ(d2(σ)) > σ(d′2(σ)), and there is no sequence of 2-inversions
of σ from d2(σ) to d′2(σ), and d′2(σ) doesn’t have the property P(d′2(σ)) : the
requirement (1) of P(d′2(σ)) is not fulfiled because d′2(σ) < 4 < d′′2(σ) = 5
and 4 is the beginning of the 2-inversion (4, 6) ∈ INV2(σ) such that there
is no sequence of 2-inversions from d′2(σ) to 4, and σ(d′2(σ)) > σ(4). Sofldes2(σ) = des2(σ) + 1 = 4.

In the present chapter, we prove the following theorem.

Theorem 3.3. There exists a bijection Ψ : Sn → Sn such that

(maj2(σ), fides2(σ), inv2(σ)) = (maj(Ψ(σ))−exc(Ψ(σ)), des(Ψ(σ)), exc(Ψ(σ))).

As a straight corollary of Theorem 3.3, we obtain the equality

∑
σ∈Sn

xmaj2(σ)yd̃es2(σ)zinv2(σ) =
∑

σ∈Sn

xmaj(σ)−exc(σ)ydes(σ)zexc(σ) (3.4)

which implies Equality (3.2).
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Figure 3.1: Linear graph of σ = 34251 ∈ S5.

The rest of this chapter is organised as follows.
In Section 3.3, we introduce two graphical representations of a given

permutation so as to highlight either the statistic (maj− exc, des, exc) or
(maj2,fldes2, inv2). Practically speaking, the bijection Ψ of Theorem 3.3 will
be defined by constructing one of the two graphical representations of Ψ(σ)
for a given permutation σ ∈ Sn.

We define Ψ in Section 3.4.
In Section 3.5, we prove that Ψ is bijective by constructing Ψ−1.
In Section 3.6, we show how Theorem 3.3 also proves a quasisymmetric

function generalization of (3.2).
In Section 3.7, we discuss the potential use of Theorem 3.3 to prove

combinatorially Equality (3.3).

3.3 Graphical representations

3.3.1 Linear graph

Let σ ∈ Sn. The linear graph of σ is a graph whose vertices are (from
left to right) the integers σ(1), σ(2), . . . , σ(n) aligned in a row, where every
σ(k) (for k ∈ DES2(σ)) is boxed, and where an arc of circle is drawn from
σ(i) to σ(j) for every (i, j) ∈ INV2(σ).

For example, the permutation σ = 34251 ∈ S5 (such that
(maj2(σ),fldes2(σ), inv2(σ)) = (6, 3, 2)) has the linear graph depicted in Fig-
ure 3.1.

3.3.2 Planar graph

Let τ ∈ Sn. The planar graph of τ is a graph whose vertices are the
integers 1, 2, ..., n, organized in ascending and descending slopes (the height
of each vertex doesn’t matter) such that the i-th vertex (from left to right)
is the integer τ(i), and where every vertex τ(i) with i ∈ EXC(τ) is encircled.
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Figure 3.2: Planar graph of τ = 32541 ∈ S5.

For example, the permutation τ = 32541 ∈ S5 (such that
(maj(τ) − exc(τ), des(τ), exc(τ)) = (6, 3, 2)) has the planar graph depicted
in Figure 3.2.

3.4 Definition of the map Ψ of Theorem 3.3
Let σ ∈ Sn. We set (r, s) = (des2(σ), inv2(σ)), and

DES2(σ) =
¶
dk2(σ) : k ∈ [r]

©
,

INV2(σ) = {(il(σ), jl(σ)) : l ∈ [s]}

with dk2(σ) < dk+1
2 (σ) for all k and il(σ) < il+1(σ) for all l.

We intend to define Ψ(σ) by constructing its planar graph. To do so,
we first construct (in Subsection 3.4.1) a graph G(σ) made of n circles or
dots organized in ascending or descending slopes such that two consecutive
vertices are necessarily in a same descending slope if the first vertex is a
circle and the second vertex is a dot. Then, in Subsection 3.4.2, we label the
vertices of this graph with the integers 1, 2, . . . , n in such a way that, if yi is
the label of the i-th vertex vi(σ) (from left to right) of G(σ) for all i ∈ [n],
then :

1. yi < yi+1 if and only if vi and vi+1 are in a same ascending slope;
2. yi > i if and only if vi is a circle.

The permutation τ = Ψ(σ) will then be defined as y1y2 . . . yn, i.e. the
permutation whose planar graph is the labelled graph G(σ).

With precision, we will obtain

τ (EXC(τ)) = {jk(σ) : k ∈ [s]}

(in particular exc(τ) = s = inv2(σ)), and

DES(τ) =

⎧⎨⎩{dk(σ) : k ∈ [1, r]} if fldes2(σ) = r,

{dk(σ) : k ∈ [0, r]} if fldes2(σ) = r + 1
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for integers 0 ≤ d0(σ) < d1(σ) < . . . < dr(σ) ≤ n (with d0(σ) = 0 ⇔fldes2(σ) = des2(σ)) defined by

dk(σ) = dk2(σ) + ck(σ)

(with d02(σ) := 0) where (ck(σ))k∈[0,r] is a sequence defined in Subsection
3.4.1 such that ∑k ck(σ) = inv2(σ) = exc(τ). Thus, we will obtain des(τ) =fldes2(σ) and maj(τ) = maj2(σ) + exc(τ).

3.4.1 Construction of the unlabelled graph G(σ)
We set (d02(σ), σ(d

0
2(σ))) = (0, n+ 1) and

Ä
dr+1
2 (σ), σ(n+ 1)

ä
= (n, 0).

For all k ∈ [r], we define the top tk(σ) of the 2-descent dk2(σ) as

tk(σ) = min{dl2(σ) : 1 ≤ l ≤ k, dl2(σ) = dk2(σ)− (k − l)}, (3.5)

in other words tk(σ) is the smallest 2-descent dl2(σ) such that the 2-
descents dl2(σ), d

l+1
2 (σ), . . . , dk2(σ) are consecutive integers.

The following algorithm provides a sequence (c0k(σ))k∈[0,r] of nonnegative
integers.

Algorithm 3.4. Let Ir(σ) = INV2(σ). For k from r = des2(σ) down to 0,
we consider the set Sk(σ) of sequences (ik1(σ), ik2(σ), . . . , ikm(σ)) such that :

1. (ikp(σ), jkp(σ)) ∈ Ik(σ) for all p ∈ [m];

2. tk(σ) ≤ ik1(σ) < ik2(σ) < . . . < ikm(σ);

3. σ(ik1(σ)) < σ(ik2(σ)) < . . . < σ(ikm(σ)).

The length of such a sequence is defined as l = ∑m
p=1 np where np is the length

of the maximal sequence of 2-inversions from ikp to some integer j > ikp . If
Ik(σ) �= ∅, we consider the sequence (ikmax

1
(σ), ikmax

2
(σ), . . . , ikmax

m
(σ)) ∈ Sk(σ)

whose length lmax =
∑m

p=1 n
max
p is maximal and whose sequence

(ikmax
1

(σ), ikmax
2

(σ), . . . , ikmax
m

(σ)) also is maximal with respect to the lexico-
graphic order (defined by (a1, a2, . . . , am) < (b1, b2, . . . , bm) if and only if
a1 < b1 or if there exists p ∈ [m − 1] such that ai = bi for all i ≤ p and
ap+1 < bp+1). Then,

– if Ik(σ) �= ∅, we set c0k(σ) = lmax and

Ik−1(σ) = Ik(σ)\
Ä
∪m

p=1{(ikmax
i

(σ), jkmax
i

(σ)) : i ∈ [nmax
p ]}

ä
;
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– else we set c0k(σ) = 0 and Ik−1(σ) = Ik(σ).

Example 3.5. Consider the permutation σ = 549321867 ∈ S9, with DES2(σ) =
{3, 7} and I2(σ) = INV2(σ) = {(1, 2), (2, 4), (3, 7), (4, 5), (5, 6), (7, 9)}. In
Figure 3.3 are depicted the des2(σ) + 1 = 3 steps k ∈ {2, 1, 0} (at each step,
the 2-inversions of the maximal sequence are drawed in red then erased at
the following step) :

Figure 3.3: Computation of (c0k(σ))k∈[0,des2(σ)] for σ = 549321867 ∈ S9.

– k = 2 : there is only one legit sequence (ik1(σ)) = (7), whose length is
l = n1 = 1. We set c02(σ) = 1 and I1(σ) = I2(σ)\{(7, 9)}.

– k = 1 : there are three legit sequences (ik1(σ)) = (3) (whose length
is l = n1 = 1) then (ik1(σ)) = (4) (whose length is l = n1 = 2)
and (ik1(σ)) = (5) (whose length is l = n1 = 1). The maximal
sequence is the second one, hence we set c01(σ) = 2 and I0(σ) =
I1(σ)\{(4, 5), (5, 6)}.

– k = 0 : there are three legit sequences (ik1(σ), ik2(σ)) = (1, 3) (whose
length is l = n1 + n2 = 2 + 1 = 3) then (ik1(σ), ik2(σ)) = (2, 3) (whose
length is l = n1 + n2 = 1 + 1 = 2) and (ik1(σ)) = (3) (whose length
is l = n1 = 1). The maximal sequence is the first one, hence we set
c00(σ) = 3 and I−1(σ) = I0(σ)\{(1, 2), (2, 4), (3, 7)} = ∅.

Lemma 3.6. The sum ∑
k c

0
k(σ) equals inv2(σ) (i.e. I−1(σ) = ∅) and, for all

k ∈ [0, r] = [0, des2(σ)], we have c0k(σ) ≤ dk+1
2 (σ) − dk2(σ) with equality only

if c0k+1(σ) > 0 (where c0r+1(σ) is defined as 0).

Proof. With precision, we show by induction that, for all k ∈ {des2(σ), . . . , 1, 0},
the set Ik−1(σ) contains no 2-inversion (i, j) such that dk2(σ) < i. For k = 0,
it will mean I−1(σ) = ∅ (recall that d02(σ) has been defined as 0).

� If k = des2(σ) = r, the goal is to prove that c0r(σ) < n−dr2(σ). Suppose
there exists a sequence (ik1(σ), ik2(σ), . . . , ikm(σ)) of length c0r(σ) ≥ n−dr2(σ)
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with tr(σ) ≤ ik1(σ) < ik2(σ) < . . . < ikm(σ). In particular, there exist
c0r(σ) ≥ n− dr2(σ) 2-inversions (i, j) such that dr2(σ) < j, which forces c0r(σ)
to equal n−dr2(σ) and every j > dr2(σ) to be the arrival of a 2-inversion (i, j)
such that tr(σ) ≤ i. In particular, this is true for j = dr2(σ) + 1, which is
absurd because σ(i) ≥ σ (dr2(σ)) > σ (dr2(σ) + 1) + 1 for all i ∈ [tr(σ), d

r
2(σ)].

Therefore c0r(σ) < n− dr2(σ). Also, it is easy to see that every i > dr2(σ) that
is the beginning of a 2-inversion (i, j) necessarily appears in the maximal
sequence

Ä
ikmax

1
(σ), ikmax

2
(σ), . . . , ikmax

m
(σ)
ä

whose length defines c0r(σ), hence
(i, j) �∈ Ir−1(σ).

� Now, suppose that c0k(σ) ≤ dk+1
2 (σ)− dk2(σ) for some k ∈ [des2(σ)] with

equality only if c0k+1(σ) > 0, and that no 2-inversion (i, j) with dk2(σ) < i
belongs to Ik−1(σ).

If tk−1(σ) = tk(σ) (i.e., if dk−1
2 (σ) = dk2(σ) − 1), since Ik−1(σ) does not

contain any 2-inversion (i, j) with dk2(σ) < i, then c0k−1(σ) ≤ 1 = dk2(σ) −
dk−1
2 (σ). Moreover, if c0k−1(σ) = 1, then there exists a 2-inversion (i, j) ∈

Ik−1(σ) ⊂ Ik(σ) such that i ∈ [tk−1(σ), d
k
2(σ)]. Consequently (i) was a legit

sequence for the computation of c0k(σ) at the previous step (because tk(σ) =
tk−1(σ)), which implies c0k(σ) equals at least the length of (i). In particular
c0k(σ) > 0.

Else, consider a sequence (ik1(σ), ik2(σ), . . . , ikm(σ)) that fits the three
conditions of Algorithm 3.4 at the step k− 1. In particular tk−1(σ) ≤ ik1(σ).
Also ikm(σ) ≤ dk2(σ) by hypothesis. Since σ(ikp(σ)) < σ(ikp+1(σ)) for all p,
and since σ(tk−1(σ)) > σ(tk−1(σ)+1) > . . . > σ

Ä
dk−1
2 (σ)

ä
> σ

Ä
dk−1
2 (σ) + 1

ä
,

then only one element of the set [tk−1(σ), d
k−1
2 (σ) + 1] may equal ikp(σ) for

some p ∈ [m]. Thus, the length l of the sequence verifies l ≤ dk2(σ)−dk−1
2 (σ),

with equality only if ikm(σ) = dk2(σ) (which implies c0k(σ) > 0 as in the
previous paragraph). In particular, this is true for l = c0k−1(σ).

Finally, as for the k = des2(σ) case, every i ∈ [dk−1
2 (σ) + 1, dk2(σ)] that is

the beginning of a 2-inversion (i, j) necessarily appears in the maximal se-
quence

Ä
ikmax

1
(σ), ikmax

2
(σ), . . . , ikmax

m
(σ)
ä

whose length defines c0k−1(σ), hence
(i, j) �∈ Ik−2(σ).

So the lemma is true by induction.

Definition 3.7. We define a graph G0(σ) made of circles and dots organised
in ascending or descending slopes, by plotting :

– for all k ∈ [0, r], an ascending slope of c0k(σ) circles such that the first
circle has abscissa dk2(σ)+1 and the last circle has abscissa dk2(σ)+c0k(σ)
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Figure 3.4: (c0k(σ0))k∈[0,3] = (1, 1, 2, 0).

Figure 3.5: Graph G0(σ0).

(if c0k(σ) = 0, we plot nothing). All the abscissas are distinct because

c0k(σ) < dk+1
2 (σ)− dk2(σ) + c0k+1(σ)

for all k ∈ [0, r] in view of Lemma 3.6;
– dots at the remaining n − s = n − inv2(σ) abscissas from 1 to n,

in ascending and descending slopes with respect to the descents and
ascents of the word w(σ) defined by

ω(σ) = σ(u1(σ))σ(u2(σ)) . . . σ(un−s(σ)) (3.6)

where

{u1(σ) < u2(σ) < . . . < un−s(σ)} := Sn \{i1(σ) < i2(σ) < . . . < is(σ)}.
Example 3.8. The permutation σ0 = 425736981 ∈ S9 (with DES2(σ0) =
{1, 4, 8} and INV2(σ0) = {(1, 5), (2, 9), (4, 6), (7, 8)}), which yields the se-
quence (c0k(σ0))k∈[0,3] = (1, 1, 2, 0) (see Figure 3.4 where all the 2-inversions
involved in the computation of a same c0k(σ0) are drawed in a same color)
and the word w(σ0) = 53681, provides the unlabelled graph G0(σ0) depicted
in Figure 3.5.

Lemma 3.9. For all i ∈ [n], if the i-th vertex (from left to right) v0i (σ) of
G0(σ) is a dot and if i is a descent of G0(σ) (i.e., if v0i (σ) and v0i+1(σ) are
two dots in a same descending slope) whereas i �∈ DES2(σ), let ki such that

dki2 (σ) + c0ki(σ) < i < dki+1
2 (σ)

and let p ∈ [n−s] such that v0i (σ) is the p-th dot (from left to right) of G0(σ).
Then:
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1. up(σ) is the greatest integer u < dki+1
2 (σ) that is not the beginning of a

2-inversion of σ;

2. dki+1
2 (σ) is the beginning of a 2-inversion of σ;

3. i = dki+1
2 (σ)− 1;

4. there exists k ∈ [des2(σ)] such that tk(σ) = dki+1
2 (σ) and c0k(σ) > 0.

Proof. (1) implies (3) and (2) implies (4). The proofs of (1) and (2) come
from σ(up(σ)) > σ(up+1(σ)) (since i is a descent of G0(σ)) and the fact that

σ(uq(σ)) < σ(uq′(σ))

for all (q, q′) such that dki2 (σ) < uq(σ) < uq′(σ) ≤ dki+1
2 (σ).

Lemma 3.9 motivates the following definition.

Definition 3.10. For i from 1 to n− 1, let ki ∈ [0, r] such that

dki2 (σ) + c0ki(σ) < i < dki+1
2 (σ).

If i fits the conditions of Lemma 3.9, then we define a sequence (cik(σ))k∈[0,r]
by

ciki(σ) = ci−1
ki

(σ) + 1,

ciki+1(σ) = ci−1
ki+1(σ)− 1,

cik(σ) = ci−1
k (σ) for all k �∈ {ki, ki + 1}.

Else, we define (cik(σ))k∈[0,r] as (ci−1
k (σ))k∈[0,r].

The final sequence (cnk(σ))k∈[0,r] is denoted by

(ck(σ))k∈[0,r].

By construction, and from Lemma 3.6, the sequence (ck(σ))k∈[0,r] has the
same properties as (c0k(σ))k∈[0,r] detailed in Lemma 3.6.

Consequently, we may define an unlabelled graph

G(σ)

by replacing (c0k(σ))k∈[0,r] with (ck(σ))k∈[0,r] in Definition 3.7.
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Figure 3.6: Graph G(σ0).

Example 3.11. In the graph G0(σ) depicted in Figure 3.5 where σ0 =
425736981 ∈ S9, we can see that the dot v03(σ0) is a descent whereas 3 �∈
DES2(σ0), hence, from the sequence (c0k(σ0))k∈[0,3] = (1, 1, 2, 0), we compute
(ck(σ0))k∈[0,3] = (1, 2, 1, 0) and we obtain the graph G(σ0) depicted in Figure
3.6.

Let v1(σ), v2(σ), . . . , vn(σ) be the n vertices of G(σ) from left to right.

Lemma 3.12. The descents of the unlabelled graph G(σ) (i.e., the integers
i ∈ [n − 1] such that vi(σ) and vi+1(σ) are in a same descending slope) are
the integers

dk(σ) = dk2(σ) + ck(σ)

for all k ∈ [0, r].

Proof. By Definition 3.7, the descents of G0(σ) are made of :

1. the integers dk2(σ) + c0k(σ),

2. the integers i ∈ [n− 1] that fit the conditions of Lemma 3.9.

Definition 3.10 consists in potentially moving the upper circle of given as-
cending slopes of circles to the previous slope, so the integers dk2(σ) + ck(σ)
are descents of the graph G(σ), and the possible other descents of G(σ) are of
the kind j ∈ [n−1] such that i = j−1 fits the conditions of Lemma 3.9. Now,
if i fits the conditions of Lemma 3.9, by using the same notations as those of
the lemma, we know that i = dki+1

2 (σ)−1, so if j = i+1 is a descent of G(σ),
since the vertices v

d
ki+1
2 (σ)

(σ), v
d
ki+1
2 (σ)+1

(σ), . . . , v
d
ki+1
2 (σ)+cki+1(σ)

(σ) form an
ascending slope (whose last cki+1(σ) elements are circles), then cki+1(σ) = 0
and j = dki+1

2 (σ) + cki+1(σ).
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3.4.2 Labelling of the graph G(σ)
Labelling of the circles

We intend to label the s circles of G(σ) with the integers

j1(σ), j2(σ), . . . , js(σ)

so that each circle is labelled by an integer that exceeds its abscissa.

Algorithm 3.13. We first label, from right to left, the circles of G(σ) with
sets of integers that exceed the abscissas of the circles. Consider a maximal
descending slope of circles from abscissa x to abscissa x + a ≥ x, and let b
and c be the nonnegative integers such that vx+a(σ), vx+a+1(σ), . . . , vx+a+b(σ)
form a maximal ascending slope of circles, and vx+a+b(σ), vx+a+b+1(σ), . . . , vx+a+b+c(σ)
form a maximal descending slope of circles (see Figure 3.7). By construction

Figure 3.7: Sequence of circles.

of G(σ) and in view of Lemma 3.12, the integers x, x + 1, . . . , x + a − 1 are
2-descents of σ but the integers x+a, x+a+1, . . . , x+a+ b−1 are not. Let
k ∈ [0, r] such that x+a−1 = dk2(σ). Because the a+ b+1 vertices from ab-
scissa x to abscissa x+a+b are circles, it is necessary that there exist at least
a+b+1 two inversions (i, j) such that tk(σ) ≤ i, which forces every of the cor-
responding j to equal at least x+a+1 because tk(σ)+1, tk(σ)+2, . . . , x+a−1
are 2-descents. Consequently, for all l ∈ {0, 1, . . . , b}, there exist at least
a+b+1− l elements of {j1(σ), . . . , js(σ)} that exceed x+a+ l. Likewise, the
existence of the c circles vx+a+b+1(σ), . . . , vx+a+b+c(σ) implies the existence of
c other (and distinct) jk(σ) ≥ x+ a+ b. As a result, for all l ∈ {0, 1, . . . , b},
there exist at least a+ b+ c+1− l elements of {j1(σ), j2(σ), . . . , js(σ)} that
exceed x+ a+ l. This proves that the following labelling by non-empty sets
is well-defined :
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– we label vx+a(σ) with the set {jk(σ) : jk(σ) > x+ a} (wich contains at
least a + b + c + 1 elements) from which we delete the a + b greatest
values;

– for l from a−1 down to 1, we label vx+l(σ) with the set {jk(σ) : jk(σ) >
x + l} (which contains at least a + b + c + 1 elements) from which we
delete the l greatest values and the minimal element of the label of
vx+l+1(σ);

– for l from 1 to b − 1, we label vx+a+l(σ) with the set {jk(σ) : jk(σ) >
x+a+ l} (which contains at least a+b+c+1− l elements) from which
we delete the b− l greatest values and the minimal element of the label
of vx+a+l−1(σ) if it appears in the resulted set (it is easy to see that in
that case the number of integers jk(σ) that exceed x+ a+ l is at least
a+ b+ c+ 2− l, so that the label of vx+l(σ) is not empty);

– we label vx+a+b(σ) with the set {jk(σ) : jk(σ) > x + a + b} (which
contains at least a+ c+1 elements) from which we remove the c small-
est elements and the minimal element of the label of vx+a+b−1(σ) if it
appears in the resulted set (like before, if it is the case, then there are
necessarily at least a+ c+ 2 integers jk(σ) that exceed x+ a+ b).

Note that the circle vx(σ) is not labelled at this step but at the next one.

When every circle is labelled by a set, if an integer jk(σ) appears in only
one label of a circle vi(σ), then we replace the label of vi(σ) with jk(σ).
Afterwards, we consider the greatest integer m ∈ [s] such that jm(σ) is not
the label of a circle, we consider the last (from left to right) circle whose label
is still a set and contains jm(σ), we label this circle with jm(σ) and we repeat
the process of this paragraph until every circle is labelled by an integer.

Example 3.14. For σ0 = 425736981 (see Figure 3.4) whose graph G(σ0) is
depicted in Figure 3.6, we have s = inv2(σ) = 4 and {j1(σ0), j2(σ0), j3(σ0), j4(σ0)} =
{5, 6, 8, 9}, which provides first the graph labelled by sets depicted in Figure
3.8. Afterwards, since the label of v2(σ0) is the only set that contains 5, then
we label v2(σ0) with 5 (see Figure 3.9). Finally, the subsequence L = (9, 6, 8)
of (j1(σ0), j2(σ0), j3(σ0), j4(σ0)) = (5, 9, 6, 8) gives the order (from left to
right) of apparition of the remaining integers 6, 8, 9 (see Figure 3.10).
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Figure 3.8: Incomplete
G(σ0).

Figure 3.9: Incomplete G(σ0).
Figure 3.10: Incomplete
G(σ0).

Labelling of the dots

Let

{p1(σ) < p2(σ) < . . . < pn−s(σ)} = [n]\
r⊔

k=0

]dk2(σ), d
k(σ)].

We intend to label the dots {vpi(σ)(σ) : i ∈ [n − s]} of G(σ) with the
elements of

{1 = e1(σ) < e2(σ) < . . . < en−s(σ)} = [n]\{j1(σ), j2(σ), . . . , js(σ)}.

Lemma 3.15. Let k ∈ [n−s] and let l ∈ [0, r] such that dl2(σ)+1 �∈ DES2(σ)
and such that uk(σ) ∈ [tl(σ), d

l+1
2 (σ)[. Then:

1. If uk(σ) ∈ [tl(σ), d
l
2(σ)], we have uk(σ) ≥ pk(σ). With precision, the

nonnegative integer uk(σ) − pk(σ) is the number of 2-inversions (i, j)
of σ such that i ∈ [tl(σ), uk(σ)[ and such that (i, j) generates a circle
whose abscissa exceeds i (i.e., such that (i, j) is part of a sequence of
2-inversions whose length defines cl′(σ) for some l′ ≥ i).

2. If uk(σ) = dl2(σ) + 1,

(a) if there exists a 2-inversion (i, j) with i ∈ [tl(σ), d
l
2(σ)] that is

part of the sequence of 2-inversions whose length defines cl(σ) (we
know that there exists at most one such 2-inversion and that if it
exists then i is the greatest integer not exceeding dl2(σ) that is the
beginning of a 2-inversion), then uk(σ) > pk(σ), with precision the
positive integer uk(σ) − pk(σ) is the number of 2-inversions (i, j)
of σ such that i ∈ [tl(σ), d

l
2(σ)] and such that (i, j) generates a

circle whose abscissa exceeds i;

(b) otherwise uk(σ) ≤ pk(σ), with precision the nonnegative integer
pk(σ)− uk(σ) equals cl(σ).



80 CHAPTER 3. Q-EULERIAN POLYNOMIALS

3. If uk(σ) ∈]dl2(σ) + 1, dl+1
2 (σ)[, we have uk(σ) ≤ pk(σ). With precision,

the nonnegative integer pk(σ) − uk(σ) is the number of 2-inversions
(i, j) of σ such that i ∈]uk(σ), d

l+1
2 (σ)] and such that (i, j) generates a

circle whose abscissa exceeds dl2(σ) (i.e., such that (i, j) is part of the
sequence of 2-inversions whose length defines cl(σ)).

Proof. Let n1 (respectively n2) be the number of 2-inversions (i, j) of σ
such that i ∈ [tl(σ), d

l
2(σ)] and such that (i, j) generates a circle whose

abscissa exceeds i (resp. the number of 2-inversions (i, j) of σ such that
i ∈ [dl2(σ) + 1, dl+1

2 (σ)] and such that (i, j) generates a circle whose abscissa
belongs to [dl2(σ), d

l
2(σ)+cl(σ)]). In fact, the integer n2 equals either cl(σ)−1

(if there exists a 2-inversion (i, j) with i ∈ [tl(σ), d
l
2(σ)] that is part of the

sequence of 2-inversions whose length defines cl(σ)) or cl(σ).
If n2 = cl(σ) (resp. n2 = cl(σ) − 1), then the n1 2-inversions (i, j) such

that i ∈ [tl(σ), d
l
2(σ)] (resp. the n1 − 1 first such 2-inversions) generate

n1 (respectively n1 − 1) circles at the abscissas dl2(σ) − n1 + 1, . . . , dl2(σ)
(resp. dl2(σ) − n1 + 2, . . . , dl2(σ)), and the n2 = cl(σ) 2-inversions (i, j)
such that i ∈ [dl2(σ) + 1, dl+1

2 (σ)] (resp. the n2 + 1 = cl(σ) 2-inversions
of the sequence that defines cl(σ)) generate cl(σ) circles at the abscissas
dl2(σ) + 1, . . . , dl2(σ) + cl(σ). Now, every integer uk(σ) ∈ [tl(σ), d

l
2(σ) + 1]

(resp. [tl(σ), d
l
2(σ)]) generates a dot vpk(σ)(σ) whose abscissa pk(σ) is the

integer uk(σ) that has been "pushed to the left" by the insertion of the
n1 (resp. n1 − 1) circles at the abscissas dl2(σ) − n1 + 1, . . . , dl2(σ) (resp.
dl2(σ) − n1 + 2, . . . , dl2(σ)), and it has been pushed to the left a number of
times that equals the number of (i, j) ∈ INV2(σ) such that i ∈ [tl(σ), uk(σ)[.
Likewise, every integer uk(σ) ∈]dl2(σ) + 1, dl+1

2 (σ)[ (resp. [dl2(σ) + 1, dl+1
2 (σ)[)

generates a dot vpk(σ)(σ) whose abscissa pk(σ) is the integer uk(σ) that has
been "pushed to the right" by the insertion of the cl(σ) circles at the ab-
scissas dl2(σ) + 1, . . . , dl2(σ) + cl(σ), and it has been pushed to the right
a number of times that equals the number of (i, j) ∈ INV2(σ) such that
i ∈]uk(σ), d

l+1
2 (σ)] and such that (i, j) is part of the sequence of 2-inversions

which defines cl(σ).

Algorithm 3.16. We first label, from left to right, the dots vpk(σ)(σ) with
sets of integers that do not exceed min(pk(σ), uk(σ)). Not exceeding uk(σ)
will be necessary to insure the map Ψ is surjective. Consider a maximal
ascending slope of dots from abscissa x to abscissa x+a ≥ x, and let b and c
be the nonnegative integers such that vx+a(σ), . . . , vx+a+b(σ) form a maximal
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descending slope of dots (if b = 0 then vx+a+1(σ) is a circle), and such that
vx−c(σ), . . . , vx(σ) form a maximal ascending slope of circles (if c = 0 then
vx−1(σ) is a dot), see Figure 3.11. There exists k such that x = pk(σ) (hence

Figure 3.11: Sequence of dots.

x+ q = pk+q(σ) for all q ∈ [0, a+ b]). Suppose that every dot vpk′ (σ)(σ) with
k′ < k (and with k′ = k if c = 0, i.e., if vx−1(σ) is a dot) has already been
labelled by a set of integers not exceeding min(uk′(σ), pk′(σ)). We intend to
label vx(σ), vx+1(σ), . . . , vx+a+b−1(σ) with sets of appropriate integers.

By construction of G(σ), and in view of Lemma 3.12, the integers
x − c − 1, x + a, x + a + 1, . . . , x + a + b − 1 are 2-descents of σ, and the
integers x − c, x − c + 1, . . . , x + a − 1 are not 2-descents. Let l such that
x − c − 1 = dl2(σ). Following the proof of Lemma 3.15, we know that there
exist exactly c or c− 1 elements of [x− c, x+ a− 1] that are the beginnings
of arcs of circles, which implies that the other a or a+ 1 elements are of the
kind uk′(σ). With precision, the a greatest elements among these uk′(σ) are
uk(σ), uk+1(σ), . . . , uk+a−1(σ) and belong to ]dl2(σ)+1, dl+1

2 (σ)[=]x−c, x+a[,
and still following Lemma 3.15, each of these uk′(σ) verifies uk′(σ) ≤ pk′(σ).
Now, either uk′(σ) is of the kind ei(σ) (i.e., is not the arrival of an arc of
circle), or it is the arrival of a sequence of 2-inversions whose beginning is
of the kind ei(σ) < uk′(σ) ≤ pk′(σ). Since uk(σ), . . . , uk+a−1(σ) are not the
beginnings of arcs of circles, the a integers of the kind ei(σ) that they induce
are necessarily distinct, hence, for all q ∈ [0, a− 1], there exist at least q + 1
integers of the kind ei(σ) that do not exceed min(uk+q(σ), pk+q(σ)) = uk+q(σ).

Afterwards, since the vertices vx+a(σ), . . . , vx+a+b(σ) are dots and x +
a, . . . ,
x + a + b − 1 are 2-descents, there exist at most one element of
[x+a, x+a+ b] that is the beginning of an arc of circle (otherwise vx+a+b(σ)
would be a circle by construction since x+a = dl+1

2 (σ) = tl+1(σ) by hypothe-
sis). Consequently, at least b elements of [x+a, x+a+b] are of the kind uk′(σ)
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and the b first of them are more precisely uk+a(σ), uk+a+1(σ), . . . , uk+a+b−1(σ).
By definition of the uk′(σ), it implies that, for all q ∈ [0, b − 1], the integer
σ−1(σ(uk+a+q(σ))− 1) < uk+a+q(σ), and since the elements of [x+ a, x+ a+
b− 1] are 2-descents, we have in fact σ−1(σ(uk+a+q(σ))− 1) < x + a. Obvi-
ously the b integers σ−1(σ(uk+a+q(σ))− 1) are b distinct integers of the kind
ei(σ), so there exist at least b integers of the kind ei(σ) that do not exceed
x+a−1 < x+a+q = pk+a+q(σ) = min(uk+a+q(σ), pk+a+q(σ)) for all q ∈ [0, b]
according to Lemma 3.15. Moreover, either x + a = dl+1

2 (σ) is of the kind
ei(σ), or it is the arrival of a sequence of 2-inversions whose beginning is of
the kind ei(σ) < x+ a ≤ x+ a+ q = pk+a+q(σ) = min(uk+a+q(σ), pk+a+q(σ))
for all q ∈ [0, b], so there are finally at least b + 1 integers of the kind ei(σ)
that do not exceed min(uk+a+q(σ), pk+a+q(σ)) for all q ∈ [0, b].

This proves that the following labelling by non-empty sets is well-defined
:

– for q from 0 to b, we label vx+a+q(σ) with the set
{ei(σ) : ei(σ) ≤ min(pk+a+q(σ), uk+a+q(σ)) = x+a+q} (which contains
at least max(a, b+1) elements) from which we delete the b− q smallest
integers and the q greatest integers;

– for q from 1 to a (or a−1 if vx(σ) has already been labelled by a set), we
label vx+a−q(σ) with the set {ei(σ) : ei(σ) ≤ min(pk+a−q(σ), uk+a−q(σ)) =
uk+a−q(σ)} (which contains at least a− q+ 1 elements) from which we
delete the a−q smallest integers, and eventually the maximal integer of
the label of vx+a−q+1(σ) if it appears in the resulted set (in which case,
there are in fact at least a−q+2 integers ei(σ) ≤ uk+a−q(σ) because the
a integers of the kind ei(σ) induced by the a integers uk(σ), uk+1(σ), . . . ,
uk+a−1(σ) and x+ a are distinct), so the final set is not empty.

When every dot is labelled by a set, if an integer ei(σ) appears in only
one label of a dot, then we replace the label of this dot with ei(σ).

Finally, for k from 1 to n− s, let

wk
1(σ) < wk

2(σ) < . . . < wk
qk(σ)

(σ) (3.7)

such that

{pwk
i (σ)

(σ) : i} = {pi(σ) : ek(σ) appears in the label of pi(σ)} ,

and let i(k) ∈ [qk(σ)] such that

σ
Å
uwk

i(k)
(σ)(σ)

ã
= min{σ

(
uwk

i (σ)
(σ)

)
: i ∈ [qk(σ)]}.
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Then, we replace the label of the dot pwk
i(k)

(σ)(σ) with the integer ek(σ) and
we erase ek(σ) from any other label (and if an integer l appears in only one
label of a dot vi(σ), then we replace the label of vi(σ) with l).

Example 3.17. For σ0 = 425736981 whose graph G(σ0) has its circles la-
belled in Figure 3.10, the sequence (u1(σ0), u2(σ0), u3(σ0), u4(σ0), u5(σ0)) =
(3, 5, 6, 8, 9) provides first the graph labelled by sets depicted in Figure 3.12.
The rest of the algorithm goes from k = 1 to n− s = 9− 4 = 5.

Figure 3.12: Incomplete G(σ0). Figure 3.13: Incomplete G(σ0).

Figure 3.14: Complete graph G(σ0).

– k = 1 : in Figure 3.12, the integer e1(σ0) = 1 appears in the labels of the
dots vp1(σ0)(σ0) = v4(σ0), vp2(σ0)(σ0) = v6(σ0) and vp5(σ0)(σ0) = v9(σ0),
so, from

(σ0(u1(σ0)), σ0(u2(σ0)), σ0(u5(σ0)) = (5, 3, 1),

we label the dot vp5(σ0)(σ0) = v9(σ0) with the integer e1(σ0) = 1 and we
erase 1 from any other label, and since the integer 4 now only appears
in the label of the dot v7(σ0), then we label v7(σ0) with 4 (see Figure
3.13).

– k = 2: in Figure 3.13, the integer e2(σ0) = 2 appears in the labels of
the dots vp1(σ0)(σ0) = v4(σ0) and vp2(σ0)(σ0) = v6(σ0) so, from

(σ0(u1(σ0)), σ0(u2(σ0))) = (5, 3),

we label the dot vp2(σ0)(σ0) = v6(σ0) with the integer e2(σ0) = 2 and
we erase 2 from any other label, which provides the graph labelled by
integers depicted in Figure 3.14.
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– The three steps k = 3, 4, 5 change nothing because every dot of G(σ0)
is already labelled by an integer at the end of the previous step.

So the final version of the labelled graph G(σ0) is the one depicted in Figure
3.14.

3.4.3 Definition of Ψ(σ)

By construction of the labelled graph G(σ), the word y1y2 . . . yn (where the
integer yi is the label of the vertex vi(σ) for all i) obviously is a permutation
of the set [n], whose planar graph is G(σ).

We define Ψ(σ) ∈ Sn as this permutation.
For the example σ0 = 425736981 ∈ S9 whose labelled graph G(σ0) is

depicted in Figure 3.14, we obtain Ψ(σ0) = 956382471 ∈ S9.
In general, by construction of τ = Ψ(σ) ∈ Sn, we have

τ (EXC(τ)) = {jk(σ) : k ∈ [inv2(σ)]} (3.8)

and

DES(τ) =

⎧⎨⎩{dk(σ) : k ∈ [1, des2(σ)]} if c0(σ) = 0(⇔ d0(σ) = 0),

{dk(σ) : k ∈ [0, des2(σ)]} otherwise.
(3.9)

Equality (3.8) provides
exc(τ) = inv2(σ).

By dk(σ) = dk2(σ) + ck(σ) for all k, Equality (3.9) provides

maj(τ) = maj2(σ) +
∑
k≥0

ck(σ),

and by definition of (ck(σ))k and Lemma 3.6 we have∑
k≥0

ck(σ) =
∑
k≥0

c0k(σ) = inv2(σ) = exc(τ)

hence
maj(τ)− exc(τ) = maj2(σ)

Finally, it is easy to see that fldes2(σ) = des2(σ) if and only if c0(σ) = 0, so
Equality (3.9) also provides

des(τ) =fldes2(σ).
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As a conclusion, we obtain

(maj(τ)− exc(τ), des(τ), exc(τ)) = (maj2(σ),fldes2(σ), inv2(σ))

as required by Theorem 3.3.

3.5 Construction of Ψ−1

To end the proof of Theorem 3.3, it remains to show that Ψ : Sn → Sn

is surjective. Let τ ∈ Sn. We introduce integers r ≥ 0, s = exc(τ), and

0 ≤ d0,τ < d1,τ < . . . < dr,τ < n

such that

DES(τ) = {dk,τ : k ∈ [0, r]} ∩ N>0,

d0,τ = 0 ⇔ τ(1) = 1.

In particular des(τ) =

⎧⎨⎩r if τ(1) = 1,
r + 1 otherwise.

For all k ∈ [0, r], we define

cτk = EXC(τ)∩]dk−1,τ , dk,τ ] (with d−1,τ := 0),

dk,τ2 = dk,τ − cτk.

We have
0 = d0,τ2 < d1,τ2 < . . . < dr,τ2 < n

and similarly as Formula 3.5, we define

tτk = min{dl,τ2 : 1 ≤ l ≤ k, dl,τ2 = dk,τ2 − (k − l)} (3.10)

for all k ∈ [r].
We intend to construct a graph H(τ) which is the linear graph of a per-

mutation σ ∈ Sn such that Ψ(σ) = τ .
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3.5.1 Skeleton of the graph H(τ)

We consider a graph H(τ) whose vertices vτ1 , vτ2 , . . . , vτn (from left to right)
are n dots, aligned in a row, among which we box the dk,τ2 -th vertex vτ

dk,τ2

for
all k ∈ [r]. Afterwards, we draw the end of an arc of circle above every vertex
vτj such that j = τ(i) for some i ∈ EXC(τ). Also, if the first (from left to
right) non-excedance point of τ is i ∈ [n], in order to obtain Ψ(στ )(i) = τ(i)
we draw beginnings of arcs of circles above the vertices vτ1 , v

τ
2 , . . . , v

τ
τ(i)−1

(because the first dot from left to right of G(στ ) will be labelled with an
integer that does not exceed u1(στ )).

For the example τ0 = 956382471 ∈ S9 (whose planar graph is depicted
in Figure 3.14), we have r = des(τ0)− 1 = 3 and

(cτ0k )k∈[0,3] = (1, 2, 1, 0),

(dk,τ02 )k∈[0,3] = (1− 1, 3− 2, 5− 1, 8− 0) = (0, 1, 4, 8),

τ0(EXC(τ0)) = {5, 6, 8, 9},
τ0 (min{i ∈ [n] : τ0(i) ≤ i}) = 3,

and we obtain the graph H(τ0) depicted in Figure 3.15.

Figure 3.15: Incomplete graph H(τ0).

In general, by definition of Ψ(σ) for all σ ∈ Sn, if Ψ(σ) = τ , then
r = des2(σ) and dk2(σ) (respectively ck(σ), d

k(σ), tk(σ)) equals dk,τ2 (resp.
cτk, d

k,τ , tτk) for all k ∈ [0, r] and {jl(σ) : l ∈ [inv2(σ)]} = τ(EXC(τ)). Conse-
quently, the linear graph of σ necessarily have the same skeleton as that of
H(τ).

The following lemma is easy.

Lemma 3.18. If τ = Ψ(σ) for some σ ∈ Sn, then :
1. If j = τ(l) with l ∈ EXC(τ) such that l ∈]dk,τ2 , dk,τ ], and if (i, j) ∈

INV2(σ), then tτk ≤ i ≤ tτk′ where tτk′ = dk
′,τ

2 is the smallest 2-descent of
σ such that tτk < tτk′ (if there is no such 2-descent, then we define tτk′ as
n).
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Figure 3.16: Incomplete graph H(τ0).

2. A pair (i, i+ 1) cannot be a 2-inversion of σ if i ∈ DES2(σ) (⇔ if the
vertex vτi of H(τ) is boxed).

3. For all pair (l, l′) ∈ EXC(τ)2, if the labels of the two circles vl(σ) and
vl′(σ) can be exchanged without modifying the skeleton of G(σ), let i and
i′ such that (i, l) ∈ INV2(σ) and (i′, l′) ∈ INV2(σ), then i < i′ ⇔ l < l′.

4. If (i, j) ∈ INV2(σ) such that j ∈]dk,τ2 + 1, dk+1,τ
2 [, then either i = j − 1,

or i ≤ dk,τ2 .

Consequently, in order to construct the linear graph of a permutation
σ ∈ Sn such that τ = Ψ(σ) from H(τ), it is necessary to extend the arcs of
circles of H(τ) to reflect the facts of Lemma 3.18. When it becomes known,
at any step of this section, that a vertex is necessarily the beginning of an arc
of circle, we draw the beginning of an arc of circle above it. When there is
only one vertex vτi that can be the beginning of an arc of circle, we complete
the latter by making it start from vτi .

Example 3.19. For τ0 = 956382471 ∈ S9, the graph H(τ0) becomes as
depicted in Figure 3.16. Note that the arc of circle ending at vτ06 cannot
begin at vτ05 because otherwise, from the third point of Lemma 3.18, and
since (6, 8) = (τ0(l), τ0(l

′)) with 3 = l < l′ = 5, it would force the arc of
circle ending at vτ08 to begin at vτ0i′ with 6 ≤ i′, which is absurd because a
permutation σ ∈ S9 whose linear graph would be of the kind H(τ0) would
have c2(σ) = 2 �= 1 = cτ02 . Also, still in view of the third point of Lemma
3.18, and since τ−1

0 (9) < τ−1(6), the arc of circle ending at vτ09 must start
before the arc of circle ending at vτ06 , hence the configuration of H(τ0) in
Figure 3.16.

The following two facts are obvious.

Fact 3.20. If τ = Ψ(σ) for some σ ∈ Sn, then :
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Figure 3.17: Incomplete graph H(τ0).

1. A vertex vτi of H(τ) is boxed if and only if i ∈ DES2(σ). In that case,
in particular i is a descent of σ.

2. If a pair (i, i+ 1) is not a 2-descent of σ and if vτi is not boxed, then i
is an ascent of σ, i.e. σ(i) < σ(i+ 1).

To reflect Facts 3.20, we draw an ascending arrow (respectively a descend-
ing arrow) between the vertices vτi and vτi+1 of H(τ) whenever it is known
that σ(i) < σ(i+1) (resp. σ(i) > σ(i+1)) for all σ ∈ Sn such that Ψ(σ) = τ .

For the example τ0 = 956382471 ∈ S9, the graph H(τ0) becomes as
depicted in Figure 3.17. Note that it is not known yet if there is an ascending
or descending arrow between vτ07 and vτ08 .

3.5.2 Completion and labelling of H(τ)

The following lemma is analogous to the third point of Lemma 3.18 for
the dots instead of the circles and follows straightly from the definition of
Ψ(σ) for all σ ∈ Sn.

Lemma 3.21. Let σ ∈ Sn such that Ψ(σ) = τ . For all pair (l, l′) ∈
([n]\EXC(τ))2, if the labels of the two dots vl(σ) and vl′(σ) can be exchanged
without modifying the skeleton of G(σ), let k and k′ such that l = pk(σ) and
l′ = pk′(σ) (by hypothesis, we have τ(l′) ≤ pk(σ)), if we also suppose that
τ(l′) ≤ uk(σ), then τ(l) < τ(l′) ⇔ σ(uk(σ)) < σ(uk′(σ)).

Proof. This comes from Algorithm 3.16 in view of τ(l′) ≤ min(uk(σ), pk(σ))
and τ(l) ≤ min(uk(σ), pk(σ)) < min(uk′(σ), pk′(σ)).

Now, the ascending and descending arrows between the vertices of H(τ)
introduced earlier, and Lemma 3.21, induce a partial order on the set {vτi :
i ∈ [n]}:

Definition 3.22. We define a partial order � on {vτi : i ∈ [n]} by :
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– vτi ≺ vτi+1 (resp. vτi � vτi+1) if there exists an ascending (resp. descend-
ing) arrow between vτi and vτi+1;

– vτi � vτj (with i < j) if there exists an arc of circle from vτi to vτj ;
– if two vertices vτi and vτj are known to be respectively the k-th and
k′-th vertices of H(τ) that cannot be the beginning of a complete arc
of circle, let l and l′ be respectively the k-th and k′-th non-excedance
point of τ (from left to right), if (l, l′) fits the conditions of Lemma 3.21,
then we set vτi ≺ vτj (resp. vτi � vτj ) if τ(l) < τ(l′) (resp. τ(l) > τ(l′)).

Example 3.23. For the example τ0 = 956382471, according to the first point
of Definition 3.22, the arrows of Figure 3.17 provide

vτ01 � vτ02 ≺ vτ03 ≺ vτ04 � vτ05 ≺ vτ06 ≺ vτ07

and
vτ08 � vτ09 .

Remark 3.24. As a consequence of Lemma 3.21, if vτu and vτu′ (with u < u′)
are two vertices that must not be the beginnings of arcs of circles (in order
for H(τ) to be the skeleton of the planar graph of a permutation σ such that
Ψ(σ) = τ), that correspond with two dots d and d′ of the planar graph of τ
whose abscissas are respectively l and l′ (i.e., if d and d′ are respectively the
p-th and p′-th dots of the planar graph of τ , then vτu and vτu′ are respectively
the p-th and p′-th vertices of H(τ) not to be the beginnings of arcs of circles),
and such that τ(l) < τ(l′) and vτu � vτu′ , then it is necessary that u < τ(l′).

Remark 3.24 eventually brings information on vertices of H(τ) that won’t
be the beginnings of arcs of circles, and at any step of this section, we will
immediatly complete the arcs of circles of the graph as soon as it is known
that they must begin at a given vertex in view of Remark 3.24.

Definition 3.25. A vertex vτi of H(τ) is said to be minimal on a subset
S ⊂ [n] if vτi �� vτj for all j ∈ S.

Let
1 = eτ1 < eτ2 < . . . < eτn−s

be the non-excedance values of τ (i.e., the labels of the dots of the planar
graph of τ).
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Algorithm 3.26. Let S = [n] and l = 1. While the vertices {vτi : i ∈
[n]} have not all been labelled with the elements of [n], apply the following
algorithm.

1. If there exists a unique minimal vertex vτi of τ on S, we label it with l,
then we set l := l + 1 and S := S\{vτi }. Afterwards,
(a) If vτi is the ending of an arc of circle starting from a vertex vτj ,

then we label vτj with the integer l and we set l := l + 1 and
S := S\{vτj }.

(b) If vτi is the arrival of an incomplete arc of circle (in particular
i = τ(l) for some l ∈ EXC(τ)), we intend to complete the arc
by making it start from a vertex vτj for some integer j ∈ [tτk, j[

(where l ∈]dk,τ2 , dk,τ ]) in view of the first point of Lemma 3.18. We
choose vτj as the rightest minimal vertex on [tτk, j[∩S from which
it may start in view of the third point of Lemma 3.18, and we
label this vertex vτj with the integer l. Then we set l := l + 1 and
S := S\{vτj }.

Now, if there exists an arc of circle from vτj (for some j) to vτi , we apply
above steps (a) and (b) to the vertex vτj in place of vτi .

2. Otherwise, let k ≥ 0 be the number of vertices vτi that have already
been labelled and that are not the beginning of arcs of circles. Let

l1 < l2 < . . . < lq

be the integers l ∈ [n] such that l ≥ τ(l) ≥ eτk+1 and such that we
can exchange the labels of dots τ(l) and eτk+1 in the planar graph of
τ without modifying the skeleton of the graph. It is easy to see that
q is precisely the number of minimal vertices of τ on S. Let lik+1

=
τ−1(eτk+1) and let vτj be the ik+1-th minimal vertex (from left to right)
on S. We label vτj with l, then we set l := l + 1 and S := S\{vτj }, and
we apply steps 1.(a) and (b) to vτj instead of vτi .

By construction, the labelled graph H(τ) is the linear graph of a permu-
tation σ ∈ Sn such that

DES2(σ) = {dk,τ2 : k ∈ [r]}

and
{jl(σ) : l ∈ [inv2(σ)]} = τ(EXC(τ)).
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Figure 3.18: Beginning of the labelling of H(τ0).

Example 3.27. Consider τ0 = 956382471 ∈ S9 whose unlabelled and in-
complete graph H(τ0) is depicted in Figure 3.17.

– As stated in Example 3.23, the minimal vertices of τ0 on S = [9] are
(vτ02 , vτ05 , vτ09 ). Following step 2 of Algorithm 3.26, k = 0 and the integers
l ∈ [9] such that τ0(l) ≥ eτ0k+1 = 1 and such that the labels of dots τ0(l)
can be exchanged with 1 in the planar graph of τ0 (see Figure 3.14) are
(l1, l2, l3) = (4, 6, 9). By τ−1

0 (1) = 9 = l3, we label the third minimal
vertex on [9], i.e. the vertex vτ09 , with the integer l = 1.
Afterwards, following step 1.(b), since vτ09 is the arrival of an incomplete
arc of circle starting from a vertex vτ0j with 1 = tτ01 ≤ j, and with j < 5
because that arc of circle must begin before the arc of circle ending at
vτ06 in view of Fact 3 of Lemma 3.18, we complete that arc of circle by
making it start from the unique minimal vertex vτ0j on [1, 5[, i.e. j = 2,
and we label vτ02 with the integer l = 2 (see Figure 3.18). Note that
as from now we know that the arc of circle ending at vτ05 necessarily
begins at vτ01 , because otherwise vτ01 , being the beginning of an arc of
circle, would be the beginning of the arc of circle ending at vτ06 , which
is absurd in view of Fact 3 of Lemma 3.18 because τ−1

0 (9) < τ−1(6), so
we complete that arc of circle by making it start from vτ01 , which has
been depicted in Figure 3.18.
We now have S = [9]\{2, 9} and l = 3.

– From Figure 3.18, the minimal vertices on S = [9]\{2, 9} are (vτ03 , vτ05 ).
Following step 2 of Algorithm 3.26, k = 1 and the integers l ∈ [9]
such that l ≥ τ0(l) ≥ eτ0k+1 = 2 and such that the labels of dots τ0(l)
can be exchanged with 2 in the planar graph of τ0 (see Figure 3.14)
are (l1, l2) = (4, 6). By τ−1

0 (2) = 6 = l2, we label the second minimal
vertex on S, i.e. the vertex vτ05 , with the integer l = 3.
Afterwards, following step 1.(a), since vτ05 is the arrival of the arc of
circle starting from the vertex vτ01 , we label vτ01 with the integer l = 4
(see Figure 3.19).
We now have S = [9]\{1, 2, 5, 9} and l = 5.
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Figure 3.19: Beginning of the labelling of H(τ0).

Figure 3.20: Beginning of the labelling of H(τ0).

– From Figure 3.19, the minimal vertices on S = {3, 4, 6, 7, 8} are
(vτ03 , vτ06 ). Following step 2 of Algorithm 3.26, k = 2 and the inte-
gers l ∈ [9] such that l ≥ τ0(l) ≥ eτ0k+1 = 3 and such that the labels of
dots τ0(l) can be exchanged with 3 in the planar graph of τ0 (see Figure
3.14) are (l1, l2) = (4, 7). By τ−1

0 (3) = 4 = l1, we label the first mini-
mal vertex on S, i.e. the vertex vτ03 , with the integer l = 5 (see Figure
3.20). Note that as from now we know that the arc of circle ending
at vτ06 necessarily begins at vτ04 since it it is the only vertex left it may
start from. Consequently, the arc of circle ending at vτ08 necessarily
starts from vτ07 (otherwise it would start from vτ06 , which is prevented
by Definition 3.22 because we cannot have vτ08 ≺ vτ06 ≺ vτ07 ≺ vτ08 ). The
two latter remarks are taken into account in Figure 3.20.
We now have S = {4, 6, 7, 8} and l = 6.

– From Figure 3.20, there is only one minimal vertex on S = {4, 6, 7, 8},
i.e. the vertex vτ06 . Following step 1 of Algorithm 3.26, we label vτ06
with l = 6.
Afterwards, following step 1.(a), since vτ06 is the arrival of the arc of
circle starting from the vertex vτ04 , we label vτ04 with the integer l = 7
(see Figure 3.21).
We now have S = {7, 8} and l = 8.

– From Figure 3.21, there is only one minimal vertex on S = {7, 8}, i.e.
the vertex vτ06 . Following step 1 of Algorithm 3.26, we label vτ06 with
l = 8.
Afterwards, following step 1.(a), since vτ08 is the arrival of the arc of
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Figure 3.21: Beginning of the labelling of H(τ0).

Figure 3.22: Labelled graph H(τ0).

circle starting from the vertex vτ07 , we label vτ07 with the integer l = 9
(see Figure 3.22).

As a conclusion, the graph H(τ0) is the linear graph of the permutation
σ0 = 425736981 ∈ S9, which is mapped to τ0 by Ψ.

Proposition 3.28. We have Ψ(σ) = τ , hence Ψ is bijective.

Proof. We first show that G(στ ) and the planar graph of τ have the same
skeleton. By construction of στ , for all k ∈ [0, des2(στ )] = [0, r],

dk2(στ ) = dk,τ − cτk,

c0k(στ )− cτk ∈ {−1, 0, 1}.

With precision, we know that if c0k(στ ) = cτk − 1 for some k (which easily
implies k < r), then c0k+1(στ ) = cτk+1 + 1. For any such k, it is easy to
see that necessarily dk2(στ ) < dk+1

2 (στ ) − 1 and that the
Ä
dk+1,τ
2

ä
-th andÄ

dk+1,τ + 1
ä
-th vertices of the planar graph of τ are dots, which implies

that the vertices v0
dk+1
2 (στ )−1

and v0
dk+1
2 (στ )

of G0(στ ) are two consecutive dots,
say, the p-th and (p + 1)-th dots of G0(στ ). Now, following step (2)(b)
of Algorithm 3.26, the vertex vτ

dk+1,τ
2

of H(τ) necessarily is the beginning
of an arc of circle, and in order to respect Lemma 3.21 as requested by
this step, it is necessary that στ (up(στ )) > στ (up+1(στ )), which, following
Definition 3.7 of G0(σ), implies that dk+1,τ

2 − 1 = dk+1
2 (στ ) − 1 is a de-

scent of G0(στ ) whereas dk+1
2 (στ ) − 1 �∈ DES2(στ ) since we have dk2(στ ) <

dk+1
2 (στ ) − 1 < dk+1

2 (στ ). So, following Lemma 3.9 and Definition 3.10 of
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G(στ ), we obtain (ck(στ ), ck+1(στ )) = (cτk, c
τ
k+1). Consesquently G(στ ) and

the planar graph of τ have the same skeleton, i.e. DES(Ψ(στ )) = DES(τ)
and EXC(Ψ(στ )) = EXC(τ).

Afterwards, the labels of the circles of G(στ ) are the elements of

{jl(στ ) : l ∈ [s]} = τ(EXC(τ)),

and following step (2)(b) of Algorithm 3.26, which respects the third point
of Lemma 3.18, every pair (l, l′) ∈ EXC(τ)2 such that we can exchange the
labels τ(l) and τ(l′) in the planar graph of τ is such that

i < i′ ⇔ l < l′

where (i, τ(l)) and (i, τ(l′)) are the two corresponding 2-inversions of στ .
Consequently, by definition of Ψ(στ ), the labels of the circles of G(στ ) appear
in the same order as in the planar graph of τ (i.e. Ψ(στ )(i) = τ(i) for all
i ∈ EXC(Ψ(στ )) = EXC(τ)).

As a consequence, the dots of G(στ ) and the planar graph of τ are labelled
with the elements

1 = e1(στ ) = eτ1 < e2(στ ) = eτ2 < . . . < en−s(στ ) = eτn−s.

To show that the above integers appear in the same order in G(στ ) and the
planar graph of τ , it suffices to prove that

Ψ(στ )
−1(eτi ) < Ψ(στ )

−1(eτj ) ⇔ τ−1(eτi ) < τ−1(eτj ) (3.11)

for all pair (i, j) with i < j and such that we can exchange the labels eτi
and eτj in the planar graph of τ . Let i ∈ [n − s − 1] and suppose that
the equivalence is true for all i′ ≤ i − 1 ∈ [0, n − s − 2] and for all j ∈
]i′, n − s] where we set Ψ(στ )(0) = τ(0) = 0 (so the equivalence is true for
i′ = 0 and for all j ∈ [n − s]). In particular Ψ(στ )

−1(eτi′) = τ−1(eτi′) for
all i′ < i. Consider j ∈]i, n − s], and let (k, k′) ∈ [n − s]2 and (l, l′) ∈
([n]\EXC(τ))2 such that (Ψ(στ )

−1(eτi ),Ψ(στ )
−1(eτj )) = (pk(στ ), pk′(στ )) and

(τ−1(eτi ), τ
−1(eτj )) = (l, l′). The equivalence of (3.11) is straightforward if

the label of vτuk(στ )
has been defined in the context (1)(b) of Algorithm 3.26.

Now, since the equivalence of (3.11) is true for all i′ < i, if there exists
l′′ ∈] min(l, l′),max(l, l′)[ such that τ(l′′) ≤ l′′ and τ(l′′) is of the kind eτi′ with
i′ < i, then the equivalence of (3.11) is true by transitivity. Otherwise, for
all l′′ ∈] min(l, l′),max(l, l′)[, either τ(l′′) > l′′, or τ(l′′) is of the kind eτi′′ with
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i′′ > i. In fact, since the labels eτi and eτj can be exchanged by hypothesis,
then ] min(l, l′),max(l, l′)[ is not empty and τ(l′′) > max(eτi , e

τ
j ) = eτj for all

l′′ ∈] min(l, l′),max(l, l′)[. It implies that uk(στ ) and uk′(στ ) are both minimal
vertices on S at the step of the computation of the label of vτuk(στ )

, thence
we are in the context (1)(b) of Algorithm 3.26 (we are not in the context (2)
because vτuk(στ )

is not the beginning of an arc of circle by definition of uk(στ ))
and the equivalence of (3.11) is true in this situation as stated earlier.

As a conclusion, the planar graph of τ is in fact G(σ), i.e. τ = Ψ(σ).

3.6 Extension
For all subset S of [n− 1], let D(S) be the set of functions f from [n] to

N>0 = {1, 2, . . .} such that f(i) ≥ f(i+1) for all i ∈ [n−1] and f(i) > f(i+1)
for all i ∈ S. The functions

Fn,S =
∑

f∈D(S)

xf(1)xf(2) . . .

for S ⊂ [n − 1] are named Gessel’s fundamental quasisymmetric functions.
They form a basis for the free Z-module of homogeneous degree n quasisym-
metric functions with coefficients in Z (see [SW12]).

Afterwards, let [n̄] = {1̄, 2̄, . . . , n̄}, we totally order the alphabet [n̄]� [n]
by

1̄ < 2̄ < . . . < n̄ < 1 < 2 < . . . < n.

For a permutation τ = τ(1)τ(2) . . . τ(n) ∈ Sn, let τ̄ be the word over [n̄]� [n]
obtained from τ by replacing τ(i) with τ(i) for all i ∈ EXC(τ). For example,
if τ = Ψ(σ0) = 956382471 (see Figure 3.18), we obtain τ̄ = 9̄5̄6̄38̄2471. We
define a descent in a word ω = ω1ω2 . . . ωn over any totally ordered alphabet
to be any i ∈ [n− 1] such that ωi > ωi+1. Now, for all τ ∈ Sn, let

DEX(τ) := DES(τ̄).

For the example τ = Ψ(σ0) = 956382471, we obtain DEX(τ) = {1, 4, 8} =
DES2(σ0). In general, for all σ ∈ Sn, since EXC(Ψ(σ)) =

⊔r
k=0]d

k
2(σ), d

k(σ)]
in view of Lemma 3.12, it is straightforward that DEX(Ψ(σ)) = DES2(σ).
Consequently, Theorem 3.3 proves bijectively the following quasisymmet-
ric function generalization of (3.2) obtained by Shareshian and Wachs (see
[[SW12], Eq. (4.8)]):
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∑
σ∈Sn

tinv2(σ)Fn,DES2(σ) =
∑

σ∈Sn

texc(σ)Fn,DEX(σ). (3.12)

3.7 Open problem
In view of Formula (3.3) and Theorem 3.3, it is natural to look for a

bijection Sn → Sn that maps (maj2,fldes2, inv2) to (amaj2,fiasc2, inv2).
Recall that for a permutation σ ∈ Sn, the equality fldes2(σ) = des2(σ)

is equivalent to Ψ(σ)(1) = 1, which is similar to the equivalence fiasc2(τ) =
asc2(τ) ⇔ τ(1) = 1 for all τ ∈ Sn.

Note that if DES2(σ) =
⊔r

p=1[ip, jp] with jp + 1 < ip+1 for all p, the
permutation π = ρ1 ◦ ρ2 ◦ . . . ◦ ρr ◦ σ, where ρp is the (jp − ip + 2)-cycle

Ç
ip ip + 1 ip + 2 . . . jp jp + 1

σ(jp + 1) σ(jp) σ(jp − 1) . . . σ(ip + 1) σ(ip)

å

for all p, is such that DES2(σ) ⊂ ASC2(π) and INV2(σ) = INV2(π). One
can try to get rid of the eventual unwanted 2-ascents i ∈ ASC2(π)\DES2(σ)
by composing π with adequate permutations.

See also [Lin13, LZ15] for other interpretations and problems related to
the polynomials which appear in this chapter.



Appendix A

Dellac configurations and
Genocchi numbers

A.1 Proof of the statistic preservation formula
(1.6)

First notice that Formula formula (1.6) is true for C = C1(n), the unique
Dellac configuration with

Ä
n
2

ä
falls (see Definition 1.14): indeed φ(C1(n)) is

the involution σ = 214365 . . . (2n+ 2)(2n+ 1) ∈ D′
n+1, consequently the two

words

φ(C1(n))
e = 135 . . . (2n+ 1)

φ(C1(n))
o = 246 . . . (2n+ 2)

have no inversion, hence

st(φ(C1(n))) = (n+ 1)2 − (1 + 3 + 5 + . . .+ (2n+ 1)) = 0.

Let C ∈ DC(n). From Lemma 1.39, there exists a finite sequence of switching
transformations (C0, C1, . . . , Cm) from C0 = C1(n) to Cm = C. For all
k ∈ {0, 1, . . . ,m − 1}, let ik ∈ [2n] such that Ck+1 = Swik(Ck). We can
suppose that Ck+1 �= Ck, i.e., that fal(Ck+1) = fal(Ck) ± 1. Since Formula
(1.6) is true for C1(n), it will be true for C by induction if we show that

st(φ(Ck+1))− st(φ(Ck)) = fal(Ck)− fal(Ck+1)

for all k. We know that the number fal(Ck) − fal(Ck+1) equals ±1. From
Fact 1.19, we have Swik(Ck+1) = Ck. Then, provided that Ck is replaced by

97
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Swik(Ck) = Ck+1, we can assume that the number fal(Ck)− fal(Ck+1) equals
1, which means the pair (eik , eik+1

) is a fall of Ck. Consequently, to achieve
the proof of Theorem 1.23, it suffices to prove the equality

st(φ(Ck+1))− st(φ(Ck)) = 1 (A.1)

under the hypothesis fal(Ck) − fal(Ck+1) = 1. Let σk = φ(Ck) and σk+1 =
φ(Ck+1). Since eik and eik+1 are not in the same column of Ck, we have
σk+1 = σk ◦ (eik , eik+1) in view of Proposition 1.38.

(a) If eik and eik+1 have the same parity (which is always true except for
ik = n), then the two integers eik and eik+1 appear in the same subset
{1, 3, . . . , 2n + 1} or {2, 4, . . . , 2n + 2}. Consequently, we obtain the two
equalities

n+1∑
i=1

σk+1(2i) =
n+1∑
i=1

σk(2i)

and

(fal(σe
k+1)− fal(σe

k), fal(σo
k+1)− fal(σo

k)) = (−1, 0) or (0,−1),

thence st(σk+1) = st(σk) + 1, which brings Equality (A.1).

(b) Else ik = n and (eik , eik+1) = (2n + 2, 1). From σk+1 = σk ◦ (eik , eik+1),
we obtain

σe
k+1 = σk(2)σk(4) . . . σk(2n)σk(1),

σo
k+1 = σk(2n+ 2)σk(3)σk(5) . . . σk(2n+ 1).

This provides the three following equations.
n+1∑
i=1

σk+1(2i) =

(
n+1∑
i=1

σk(2i)

)
− σk(2n+ 2) + σk(1), (A.2)

fal(σe
k+1) = fal(σe

k)− |{2i < 2n+ 2 : σk(2i) > σk(2n+ 2)}|
+ |{2i < 2n+ 2 : (A.3)

fal(σo
k+1) = fal(σo

k)− |{1 < 2i+ 1 : σk(2i+ 1) < σk(1)}|
+ |{1 < 2i+ 1 : σk(2i+ 1) < σk(2n+ 2)}|. (A.4)

We need the following lemma to make explicit Equalities (A.3) and (A.4).
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Lemma A.1. We have the equalities

|{2i < 2n+ 2 : σk(2i) > σk(2n+ 2)}| = rCk(2n+ 2) +
Ä
1 + (−1)σk(2n+2)

ä
/2,

(A.5)

|{2i < 2n+ 2 : σk(2i) > σk(1)}| = rCk(1)−
Ä
1− (−1)σk(1)

ä
/2,

(A.6)

|{1 < 2i+ 1 : σk(2i+ 1) < σk(1)}| = lCk(1) +
Ä
1− (−1)σk(1)

ä
/2,

(A.7)

|{1 < 2i+ 1 : σk(2i+ 1) < σk(2n+ 2)}| = lCk(2n+ 2)−
Ä
1 + (−1)σk(2n+2)

ä
/2.

(A.8)

Proof. We only demonstrate Equalities (A.5) and (A.6), because the proof
of (A.7) is analogous to that of (A.5) and the proof of (A.8) is analogous to
that of (A.6).

– Proof of (A.5): if the dot eik = 2n + 2 appears in the jk-th column
of Ck, and if the dot ei−1 = 2i (with 1 ≤ i − 1 ≤ n = ik) appears
in the ji−1-th column of Ck, then σk(2n + 2) ∈ {2jk, 2jk + 1} and
σk(2i) ∈ {2ji−1, 2ji−1 + 1}. Consequently, the two following assertions
are equivalent:
– σk(2i) > σk(2n+ 2);
– either ji−1 > jk, or ji−1 = jk and σk(2n + 2) = 2ji−1 (which forces
σk(2i) to be 2ji−1 + 1).

As a result,

|{2i < 2n+ 2 : σk(2i) > σk(2n+ 2)}| = rCk(2n+ 2) + δσk(2n+2)

where δσk(2n+2) = 1 if σk(2n+2) is even, and δσk(2n+2) = 0 if σk(2n+2)

is odd, i.e., where δσk(2n+2) =
Ä
1 + (−1)σk(2n+2)

ä
/2.

– Proof of (A.6): with the same reasoning as for (A.5), we find the equal-
ity

|{2i < 2n+ 2 : σk(2i) > σk(1)}| = rCk(1)− 1 +
Ä
1 + (−1)σk(1)

ä
/2

(with rCk(1)− 1 instead of rCk(1) because there is a fall from 1 = eik+1

to 2n+ 2 = eik , whereas 2n+ 2 is not counted in the number
|{2i < 2n + 2 : σk(2i) > σk(1)}|). Since −1 +

Ä
1 + (−1)σk(1)

ä
/2 =

−
Ä
1− (−1)σk(1)

ä
/2, we obtain (A.6).
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In view of Lemma A.1, Equalities (A.3) and (A.4) become

fal(σe
k+1)−fal(σe

k) = rCk(1)−rCk(2n+2)−1+
Ä
(−1)σk(1) − (−1)σk(2n+2)

ä
/2,

(A.9)

fal(σo
k+1)−fal(σo

k) = lCk(2n+2)−lCk(1)−1+
Ä
(−1)σk(1) − (−1)σk(2n+2)

ä
/2.

(A.10)
Now, from Lemma 1.35, we know that

σk(1) = yn+1+l
Ck (1)−r

Ck (1),

σk(2n+ 2) = yn+l
Ck (2n+2)−r

Ck (2n+2).

From yi = i+ 1− (−1)i for all i, we deduce the two following formulas.

σk(1) = n+ 2 + (−1)n + lCk(1)− rCk(1) + (−1)n+1
Ä
1− (−1)lCk (1)−r

Ck (1)
ä
, (A.11)

σk(2n+ 2) = n+ 1− (−1)n + lCk(2n+ 2)− rCk(2n+ 2)

+ (−1)n
Ä
1− (−1)lCk (2n+2)−r

Ck (2n+2)
ä
. (A.12)

By substituting Equalities (A.11) and (A.12) in Equalities (A.2), (A.9)
and (A.10), we obtain the three new equalities

n+1∑
i=1

σk+1(2i)−
n+1∑
i=1

σk(2i) = 1 + lCk(1)− lCk(2n+ 2) + rCk(2n+ 2)− rCk(1)

+ (−1)n+l
Ck (1)−r

Ck(1) + (−1)n+l
Ck (2n+2)−r

Ck (2n+2), (A.13)

fal(σe
k+1)− fal(σe

k) = rCk(1)− rCk(2n+ 2)− 1

−
Ä
(−1)n+l

Ck (1)−r
Ck (1) + (−1)n+l

Ck (2n+2)−r
Ck (2n+2

ä
/2, (A.14)

fal(σo
k+1)− fal(σo

k) = lCk(2n+ 2)− lCk(1)− 1

−
Ä
(−1)n+l

Ck (1)−r
Ck (1) + (−1)n+l

Ck (2n+2)−r
Ck (2n+2

ä
/2. (A.15)

Finally, we obtain Equality (A.1) by summing Equalities (A.13), (A.14)
and (A.15). This proves Theorem 1.23.
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A.2 Proof of the bijectivity of ψ : DC(n) →
DH(n)

Definition A.2. Let S = (γ, ξ) ∈ DH(n) with γ = (p0, p1, . . . , p2n) and
ξ = (ξ1, . . . , ξn). We define ψ̃(S) as a tableau T of width n and height 2n,
in which we insert the 2n dots e1, e2, . . . , e2n according to the two following
(analogous and independant) algorithms.

1. Insertion of the n odd dots en+1, en+2, . . . , e2n. Let Io
0 be the se-

quence (1, 2, . . . , n). For i = 1 to n, consider ji ∈ [n] such that the i-th
down step sdi of γ is one of the two steps (p2ji−2, p2ji−1) or (p2ji−1, p2ji).
If the sequence Io

i−1 is defined, we denote by H(i) the hypothesis "Io
i−1

has length n+1− i such that for all j ∈ {i, i+1, . . . , n}, the (j− i+1)-
th element of Io

i−1 is inferior to n + j". If the hypothesis H(i + 1)
is true, then we iterate the algorithm to i + 1. At the beginning, the
sequence Io

0 is defined and H(1) is obviously true so we can initiate the
algorithm.
(a) If sdi is a down step in the context 1. or 2. of Definition 1.45, let

(n1, n2) = ξi. In particular, since n2 ≤ k = ji − i (see Remark
1.44) and ji ≤ n, we have 1 + n2 ≤ n− i+ 1 so, from Hypothesis
H(i), we can consider the (1 + n2)-th element of Io

i−1, say, the
integer q. We insert the odd dot en+q in the ji-th column of T .
From Hypothesis H(i), the (ji−i+1)-th element of Io

i−1 is inferior
to n+ji, and 1+n2 ≤ 1+k = ji−i+1. Consequently, the dot en+q

is between the lines y = x and y = x+n. Afterwards, we define Io
i

as the sequence Io
i−1 from which we have removed q (by abusing

the notation, we write Io
i := Io

i−1 \{q}). Thus, the sequence Io
i

has length n + 1 − (i + 1). Also, if j ∈ {i + 1, i + 2, . . . , n}, then
following Hypothesis H(i), the (j−i)-th element of Io

i−1 is inferior
to n+ j − 1, so the (j − (i+1)+ 1)-th element of Io

i is inferior to
n+ j − 1 < n+ j. Therefore, Hypothesis H(i+ 1) is true and we
can iterate the algorithm to i+ 1.

(b) If sdi and sdi+1 are two consecutive down steps in the context 3. of
Definition 1.45, let (n1, n2) = ξi+1. In particular n1 ≤ n2 ≤ k−1 =
ji− i−1 ≤ n− i−1, so 1+n1 < 2+n2 ≤ ji− i+1. Consequently,
following Hypothesis H(i), we can consider the (1+n1)-th element
of Io

i−1, say, the integer q1, and the (2+n2)-th element of Io
i−1, say,

the integer q2 > q1. We insert the two odd dots en+q1 and en+q2
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in the j-th column of T . With precision, by the same argument
as for (a), those two dots are located between the lines y = x and
y = x + n. Afterwards, we set Io

i+1 := Io
i−1 \{q1, q2}. Thus, the

sequence Io
i+1 has length n−(i+2)+1, and if j ∈ {i+2, i+3, . . . , n}

then, by Hypothesis H(i), the (j − i − 1)-th element of Io
i−1 is

inferior to n+ j − 2, so the (j − (i+ 2) + 1)-th element of Io
i+1 is

inferior to n + j − 2 < n + j. Therefore, Hypothesis H(i + 2) is
true and we can iterate the algorithm to i+ 2.

2. Insertion of the n even dots e1, e2, . . . , en. Let Ie
0 = (n, n−1, . . . , 1).

For i = 1 to n, consider ji ∈ [n] such that the (n + 1 − i)-th up step
sun+1−i of γ is one of the two steps (p2ji−2, p2ji−1) or (p2ji−1, p2ji). If the
sequence Ie

i−1 is defined, we denote by H ′(i) the hypothesis "Ie
i−1 has

length n+ 1− i such that for all j ∈ [n− i+ 1], the (n− i+ 2− j)-th
element of Io

i−1 is greater than j". If Hypothesis H ′(i + 1) is true, we
iterate the algorithm to i + 1. In particular, the set Ie

0 is defined and
H ′(1) is true so we can initiate the algorithm.
(a) If sun+1−i is an up step in the the context 1. or 2. of Definition

1.45, then let i0 ∈ [n] such that {(p2ji−2, p2ji−1), (p2ji−1, p2ji)} =
{sun+1−i, s

d
i0
}. Let (n1, n2) = ξi0 . From Remark 1.44, we have

1+n1 ≤ 1+k = n− i+2− ji ≤ n− i+1 so, following Hypothesis
H ′(i), we can consider the (1 + n1)-th element of Ie

i−1, say, the
integer p. We insert the even dot ep in the ji-th column of T . By
Hypothesis H ′(i), the (n− i+2− ji)-th element of Ie

i−1 is greater
than ji, and 1 + n1 ≤ 1 + k = n − i − ji + 2 so the dot ep is
located between the lines y = x and y = x + n. Afterwards, we
set Ie

i := Ie
i−1 \{p}. The sequence Ie

i has length n + 1 − (i + 1).
Also, if j ∈ {1, 2, . . . , n+ 1− (i+ 1)}, then, by Hypothesis H ′(i),
the (n − i − j)-th element of Ie

i−1 is greater than j + 1, so the
(n − (i + 1) + 1 − j)-th element of Ie

i is greater than j + 1 > j.
Therefore, Hypothesis H ′(i + 1) is true and we can iterate the
algorithm to i+ 1.

(b) If sun+1−(i+1) and sun+1−i are two consecutive up steps (p2ji−2, p2ji−1)
and (p2ji−1, p2ji) from level 2k−2 towards level 2k in γ, let j0 > ji
such that the two steps (p2j0−2, p2j0−1) and (p2j0−1, p2j0) are the
next two consecutive down steps sdi0 and sdi0+1 from level 2k to-
wards level 2k−2 (see Figure 1.9). Let (n1, n2) = ξi0 . Being in the
context 3. of Definition 1.45, we have n2 ≤ n1 ≤ k−1 = n−i−j0 ≤
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n − i − 1, hence 1 + n2 < 2 + n1 ≤ n − i + 1. Consequently, by
Hypothesis H ′(i), we can consider the (1+n2)-th element of Ie

i−1,
say, the integer p1, and the (2 + n1)-th element of Ie

i−1, say, the
integer p2 < p1. We insert the two even dots ep2 and ep1 in the
ji-th column of T . With precision, for the same argument as for
(a), those two dots are between the lines y = x and y = x + n.
Afterwards, we set Ie

i+1 := Ie
i−1 \{p2, p1}. The sequence Ie

i+1 has
length n− (i+2)+ 1. Also, if j ∈ {1, 2, . . . , n+1− (i+2)}, then
by Hypothesis H ′(i), the (n− i− j)-th element of Ie

i−1 is greater
than j+2, so the (n− (i+2)+2− j)-th element of Ie

i+1 is greater
than j + 2 > j. Therefore, Hypothesis H ′(i + 2) is true and we
can iterate the algorithm to i+ 2.

By construction, it is clear that ψ̃(S) = T is a Dellac configuration.

Remark A.3. Let S = (γ, ξ) ∈ DH(n) and C = ψ̃(S) ∈ DC(n). For all
i ∈ [n], the i-th up step sui (resp. down step sdi ) of γ gives birth to the even
dot epC(i) (resp. to the odd dot en+qC(i)) (see Definition 1.11).

Example A.4. If S ∈ DH(6) is the Dellac history ψ(C) of Example 1.54,
we obtain ψ̃(S) = C.

Following Remark A.3, it is easy to prove the following lemma by induc-
tion on i ∈ [n].

Lemma A.5. Let S ∈ DH(n). We consider the two sequences (Io
i )i and (Ie

i )i
defined in the computation of C = ψ̃(S) (see Definition A.2). Then for all
i ∈ [n], the integer qC(i) is the (1 + roC(en+qC(i)))-th element of the sequence
Io
i−1, and the integer pC(n + 1 − i) is the (1 + leC(epC(n+1−i)))-th element of

the sequence Ie
i−1.

Proposition A.6. The maps ψ : DC(n) → DH(n) and ψ̃ : DH(n) → DC(n)
are inverse maps.

Proof. From Remarks 1.55 and A.3, it is easy to see that ψ ◦ ψ̃ = IdDH(n).
The equality ψ̃ ◦ ψ = IdDC(n) is less straightforward. Let C ∈ DC(n) and
S = (γ, ξ) = ψ(C) ∈ DH(n). We are going to show, by induction on i ∈ [n],
that qψ̃(S)(i) = qC(i) and pψ̃(S)(i) = pC(i) for all i, hence ψ̃(S) = C. The two
proofs of qψ̃(S)(i) = qC(i) and pψ̃(S)(i) = pC(i) respectively being independant
and analogous, we only prove qψ̃(S)(i) = qC(i) for all i. Let i = 1. In the con-
text 1(a) of Definition A.2, from Remark 1.55, the first odd dot to be inserted
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is en+qψ̃(S)(1)
. Therefore, by definition, the integer qψ̃(S)(1) is the (1 + n2)-th

element of Io
0 (i.e., we obtain qψ̃(S)(1) = 1 + n2 where (n1, n2) = ξ1). In this

situation, since S = ψ(C), we know that n2 = roC(en+qC(1)). Consequently,
from Lemma A.5, we obtain qψ̃(S)(1) = 1 + roC(en+qC(1)) = qC(1). The proof
in the context 1(b) is analogous. Now let i ∈ {2, 3, . . . , n}. Suppose that
qψ̃(S)(k) = qC(k) for all k < i. In the context 1(a) of Definition A.2, from
Remark 1.55, the i-th odd dot to be inserted is en+qψ̃(S)(i)

. Therefore, by def-
inition, if ξi = (n1, n2), then qψ̃(S) is the (1 + n2)-th element of Ie

i−1 = J e
i−1.

Since S = ψ(C), we know that n2 = roC(en+qC(i)) so, from Lemma A.5, we
obtain qψ̃(S)(i) = qC(i). The proof in the context 1(b) is analogous.

This proves Theorem 1.48.



Appendix B

Irreducible k-shapes and
surjective pistols

B.1 Proof of Lemma 2.14
Lemma 2.14. Let s be a partial k-shape obtained by adding rectangles to
the empty partition, i.e., such that s is the result of a sequence of sums

s0 = s0 ⊕k
t(j0)

�(j0 + 1)/2�z0 ,
s2 = s1 ⊕k

t(j1)
�(j1 + 1)/2�z1 ,

...

s = sm ⊕k
t(jm) �(jm + 1)/2�zm

where s0 is the empty partition. Let j ∈ [2k − 4] such that every column of
s is at least �(j + 2)/2� cells high, and let z ∈ {0, 1, . . . , k − 1− �j/2�}. We
consider two consecutive columns (from left to right) of s, which we denote
by C1 and C2, with the same height and the same label but not the same level,
and such that C1 has been lifted by the Rule 2 of Definition 2.12 (note that
it cannot be by the Rule 1). If C2 has been lifted at the same level as C1 in
s⊕k

t(j) �(j + 1)/2�z, then it is not by the Rule 2 of Definition 2.12.

Proof. Let R1 (resp. R2) be the row in which C1 (resp. C2) is rooted,
and let R be the row beneath R1. Let l be the length of R. Since C1 and C2

have the same height and the same label, and since C1 has been lifted by the
Rule 2 of Definition 2.12, then it is necessary that the length of R2 equals l

105
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Figure B.1: Partial k-shape s.

as well. Consequently, the partial k-shape s is like depicted in Figure B.1.
We also consider the last column C3 to be rooted in R2, and the column C4

that follows C3.
Now, suppose that, in s⊕k

t(j) �(j + 1)/2�z, the column C2 has been lifted at
the same level as C1 by the Rule 2 of Definition 2.12. To do so, it is necessary
that the row R gains cells from s to s⊕k

t(j) �(j+1)/2�z, i.e., that the column
C4 is lifted at the same level as C3. By hypothesis, it means that C4 must
be lifted down to at least �(j + 2)/2� cells from s to s ⊕k

t(j) �(j + 1)/2�z.
Obviously, every column have been lifted up to at most �(j+1)/2� cells from
s to s ⊕k

t(j) �(j + 1)/2�z, so it is necessary that �(j + 1)/2� = �(j + 2)/2�,
i.e., that there exists p ∈ [k − 2] such that j = 2p. This means that the z
columns that we glue on the right of s in order to compute s⊕k

t(j) �(j+1)/2�z
are �(j + 1)/2� = p+ 1 cells high and labelled by t(j) = 0, which cannot be
because, according to the Rule 1 of Definition 2.12, only the p top cells of
those z columns may lift the columns of s by the Rule 2, i.e., the columns of
s are lifted up to at most p cells in this context, implying that C4 cannot be
lifted at the same level as C3.

B.2 Proof of Lemma 2.15

Lemma 2.15. Let s be a partial k-shape in the context of Lemma 2.14, and
let j ≥ 1 such that the height of every column of s is at least �(j+2)/2�, and
such that the quantity of integers i ∈ [k− 2] in which s is not saturated is at
most �j/2�. If s is not saturated in i0 ∈ [k − 2], then there exists a unique
integer z ∈ [k − 1 − �j/2�] such that the partial k-shape s ⊕k

t(j) �(j + 1)/2�z
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Figure B.2: Partial k-shape s. Figure B.3: Partial k-shape sk−�j/2�.

is saturated in i0.

Proof. It is easy to see that, in the partial k-shape s, the columns of height
i0 + 1 and label 0 are organized in m ≥ 1 groups of columns rooted in a
same row, such that the m − 1 first groups from right to left are made of
saturated columns, i.e., such that the columns of these groups are rooted in
rows whose greatest hook length is k, and such that the m-th group is made
of non-saturated columns, i.e., such that the columns C1, C2, . . . , Cq of this
group (from left to right) are rooted in a row whose greatest hook length is
h < k (see Figure B.2).

Now, for all p ∈ [k−�j/2�], let sp be the partial k-shape s⊕k
t(j)�(j+1)/2�p.

For all p ≥ 2, the partial k-shape sp is obtained by gluing a column of height
�(j + 1)/2� and label t(j) right next to the last column of sp−1, then by
applying the three rules of Definition 2.12 so as to obtain a partial k-shape.
We now focus on sk−�j/2�. Let C be a column of s. Since the height of C is at
least �(j+2)/2�, if the bottom cell c of C is located in the same row as one of
the cells of the rectangle �(j+1)/2�k−�j/2� during the computation of sk−�j/2�,
then the hook length of c will be at least �(j + 2)/2� + k − �j/2� ≥ k + 1.
Consequently, by the Rule 2 of Definition 2.12, the column C is lifted as
long as its bottom cell is in the same row as one of the cells of the rectangle
�(j+1)/2�k−�j/2�, and since this holds for every column C of s, then the par-
tial k-shape sk−�j/2� is obtained by drawing the rectangle �(j + 1)/2�k−�j/2�

in the bottom right-hand corner of s (see Figure B.3). In particular, the
columns C1, C2, . . . , Cq must have been been lifted �(j + 1)/2� times from s
to sk−�j/2�. The idea is to prove there exists a unique p0 ∈ [k−1−�j/2�] such
that C1 has been lifted by the Rule 2 of Definition 2.12 in sp0+1, implying the
hook length h of its bottom cell c1 equals k in sp0 , which means sp0 is satu-
rated in i0 according to Remark 2.13. Note that the columns C1, C2, . . . , Cq
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cannot be lifted by the Rule 3 of Definition 2.12 because their label is 0.
If m ≥ 2, the columns C1, C2, . . . , Cq cannot be lifted by the Rule 1, hence
they are lifted by the Rule 2, so the existence and unicity of the integer p0
is obvious. If m = 1, suppose C1 is never lifted by the Rule 2, i.e., that
it is lifted �(j + 1)/2� times by the Rule 1 between s and sk−�j/2�. Each of
these �(j + 1)/2� times, the first column labelled by 0 (from right to left)
prompting the chain reaction of liftings by the Rule 1 (which leads to the
lifting of C1), cannot be saturated because from Remark 2.13 they would still
be saturated when glued to the columns of different height or label that are
lifted, meaning their bottom cell would be hooked lengthed by k and that
the lifting would be due to the Rule 2, which is not the case by hypothesis.
This non-saturation also implies that each time, the height i+ 1 of this first
column prompting the liftings must be different from the other ones (because
the columns of height i + 1 and label 0 are also organized like depicted in
Figure B.2). As a conclusion, it is necessary that in addition to i0, there
would exist �(j + 1)/2� ≥ �j/2� different integers i < i0 such that s is not
saturated in i, which is absurd by hypothesis.

B.3 Proof of Lemma 2.22
Lemma 2.22. For all λ ∈ ISk and for all j ∈ [2k − 4], we have

zj(λ) ∈ {0, 1, . . . , k − 1− �j/2�}.

Proof. By definition of an irreducible k-shape, we automatically have
z2i(λ) = xi(λ) < k− i for all i ∈ [k−2]. The proof of z2i−1(λ) = yi(λ) < k− i
is less straightforward. Suppose that yi(λ) ≥ k − i. Let C0 be the first col-
umn (from left to right) of ⊔k−i

j=1 H
k
j (λ) ∩ V k

i (λ), let R0 be the row in which
C0 is rooted, and let R1 be the row beneath R0. We denote by l ∈ [yi(λ)]
the number of consecutive columns (from left to right) of ⊔k−i

j=1 H
k
j (λ)∩V k

i (λ)
whose bottom cells are located in R0, and l′ the length of R1 (see Figure B.4).

The hook length h = i + l′ + 1 of the cell glued to the left of R1 exceeds
k because it is not in ∂k(λ), so l′ ≥ k − i. Now suppose that l ≥ k − i
: consequently, the hook length h0 ≤ k − 1 of the bottom cell of C0 is
such that h0 ≥ i + l − 1 ≥ k − 1 hence h0 = k − 1. As a result, the first
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Figure B.4: λ ∈ ISk. Figure B.5: λ ∈ ISk.

l columns of ⊔k−i
j=1 H

k
j (λ) ∩ V k

i (λ) are in fact located in Hk
k−i(λ) ∩ V k

i (λ),
therefore |Hk

k−i(λ) ∩ V k
i (λ)| ≥ l ≥ k − i, which cannot be because λ is ir-

reducible. So l ≤ k − i − 1 < yi(λ). Consequently, there exists a column
of ⊔k−i

j=1 H
k
j (λ) ∩ V k

i (λ) which intersects R1. Consider the first column C1

that does so, then its bottom cell c1 is located in a row R2 (whose length is
denoted by l′′ ≥ l′) and c1 is hook lengthed by the integer h1 = i+ l′′−1 < k,
thence k − i ≤ l′ ≤ l′′ ≤ k − i, which implies l′ = l′′ = k − i. Now, let
l′′′ ∈ {0, 1, . . . , k− i} be the number of columns of ⊔k−i

j=1 H
k
j (λ)∩ V k

i (λ) inter-
secting R1 but whose top cells are not located in R1 (see Figure B.5). Since
h0 = i − 1 + l + l′′′ ≤ k − 1, we obtain l + l′′′ ≤ k − i. With precision, it
is necessary that l + l′′′ ≤ k − i − 1: otherwise, l + l′′′ = k − i would imply
h0 = k − 1 hence the first l + l′′′ = k − i columns of ⊔k−i

j=1 H
k
j (λ) ∩ V k

i (λ)
would be located in Hk

k−i(λ) ∩ V k
i (λ), which cannot be because λ is irre-

ducible. So l + l′′′ < k − i ≤ yi(λ). It means there exists a column C2 of⊔k−i
j=1 H

k
j (λ)∩ V k

i (λ) whose top box is located in R1 (we may consider that it
is the first from left to right), which forces its bottom cell to be located in
a row R3 of length k − i (see Figure B.6) because the length of R2 is k − i
and rs(λ) is a partition (and the hook length h2 of the bottom cell of C2

being at most k− 1, the length of R3 is at most k− i hence equals k− i and
h2 = k − 1).
But then the bottom cells of the k− i columns intersecting R1 are located in
a row of length k − i, therefore the bottom cells of those k − i columns are
elements of the set Hk

k−i(λ)∩V k
i (λ), which cannot be because λ is irreducible.

As a conclusion, it is necessary that yi(λ) < k − i.
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Figure B.6: λ ∈ ISk.

B.4 Proof of Lemma 2.24

Lemma 2.24. We have s1(λ) = ∂k(λ) for all λ ∈ ISk.
Proof. Let n be the number of columns of ∂k(λ), which is obviously the
same as for s1(λ). For all q ∈ [n], we define ∂k(λ)q (respectively s1(λ)q) as
the skew partition obtained by considering the q first columns (from right to
left) of ∂k(λ) (resp. s1(λ)). The idea is to prove that ∂k(λ)q = s1(λ)q for all
q ∈ [n] by induction (the statement being obvious for q = 1). In particular,
for q = n, we will obtain ∂k(λ) = s1(λ). Suppose that ∂k(λ)q = s1(λ)q for
some q ≥ 1. From right to left, the (q + 1)-th column C (whose bottom cell
is denoted by c) of ∂k(λ)q+1 is glued to the left of ∂k(λ)q, at the unique level
such that the hook length h of c doesn’t exceed k, and the hook length x of
the cell beneath c exceeds k (see Figure B.7). Since the hook length of every
cell of s1(λ) doesn’t exceed k, the (q + 1)-th column C ′ (whose bottom cell
is denoted by c′ with the hook length h′) of s1(λ)q+1 is necessarily positioned
above or at the same level as C (see Figure B.8). Note that in Figures B.7
and B.8, the q-th columns Cq and C ′

q of respectively ∂k(λ)q+1 and s1(f)q+1

are at the same level because ∂k(λ)q = s1(f)q by hypothesis.
Now, suppose that the columns C and C ′ are not at the same level, i.e., that
C ′ is at a higher level. In particular, the hook length x′ of the cell beneath
c′ (see Figure B.8) is such that x′ ≤ h ≤ k. Also, the bottom cell c′q (whose
hook length is denoted by h′

q) of the q-th column C ′
q of s1(λ)q+1 is a corner.

1. If C ′ has been lifted by the Rule 2 of Definition 2.12, then since x′ ≤ k,
then it is necessary that C ′ (as a column of a labelled skew partition)
is labelled by 1 and that x′ = k. Consequently, since the bottom cell c
of C, hook lengthed by h ≤ k, is at the same level or beneath the cell
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Figure B.7: ∂k(λ)q+1. Figure B.8: s1(f)q+1.

hook lengthed by x′ = k, then h = k and those two cells are in fact at
the same level. In particular, this implies that C ′ must be labelled by
0, which is absurd.

2. If C ′ has been lifted by the Rule 1 of Definition 2.12, then in particular
C ′

q is a column labelled by 0. Consequently, the hook length h′
q of c′q,

which is the same as the hook length hq of cq because s1(λ)q = ∂k(λ)q by
hypothesis, equals the integer k. Since rsk(λ) and csk(λ) are partitions,
this implies h > hq = k, which is absurd.

3. Therefore, the column C ′ has necessarily been lifted by the Rule 3 of
Definition 2.12. It implies that :

(a) C ′ and C ′
q have the same height and the same label 1 (and h′

q =
k − 1);

(b) C ′ is located one cell higher than C ′
q.

In particular, from (b), since C ′ is supposed to be located at a higher
level than C, then the bottom cell c of C is glued to the left of the
bottom cell cq of Cq. Since h > hq = h′

q = k − 1, we obtain h = k,
which is in contradiction with C ′ being labelled by 1.

So C and C ′ are located at the same level, thence ∂k(λ)q+1 = s1(λ)q+1.

B.5 Illustration of Definition 2.16

Let k = 6 and f = (4, 2, 6, 8, 6, 10, 8, 10, 10, 10) ∈ SP5. The partial 6-
shape s2k−3(f) = s9(f) is defined as the empty partition.
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1. j = 8 : f(8) = 10 and f(10) = 10, so we are in the second case of
Definition 2.16 and s8(f) is defined as s9(f)⊕6

0 5
z where z = f(8)/2−

�8/2� = 1, i.e. s8(f) is simply one column of height 5 and label 0 (see
Figure B.9).

Figure B.9: s8(f) = s7(f).

2. j = 7 : f(7) = 8 and f(8) > 8 but 7 �= min{j′ : f(j′) = 8} so we are
still in the second case, and since f(7)/2−�7/2� = 0, the 6-shape s7(f)
is still s8(f) (see Figure B.9).

3. j = 6 : f(6) = 10 and f(10) = 10 so we are in the second case and
s6(f) = s7(f)⊕6

0 4
z where z = f(6)/2− �6/2� = 2, see Figure B.10.

Figure B.10: s6(f) = s5(f).

4. j = 5 : as for the step j = 7, we obtain s5(f) = s6(f).
5. j = 4 : f(4) = 8, f(8) > 8, 4 is the smallest integer mapped to 8

by f , and s5(f) is not saturated in i = 8/2 = 4 : indeed, the only
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column C of s5(f) whose height is i + 1 = 5 and whose label is 0 has
its bottom cell hook lengthed by 5 instead of 6. So we are in the first
case of Definition 2.16, and we look for the unique integer z ∈ {1, 2, 3}
such that s5(f)⊕6

0 3
z saturates C. We find z = 2 and s4(f) is defined

as s5(f)⊕6
0 3

2, see Figure B.11.

Figure B.11: s4(f).

6. j = 3 : f(3) = 6, f(6) > 6, 3 is the smallest integer mapped to 6 by
f , and s4(f) is not saturated in i = 6/2 = 3 : from left to right, the
columns of s4(f) whose heights are i + 1 = 4 and whose labels are 0,
are the second and first columns C2 and C3 of s4(f), and C2 is not
saturated (but C3 is). So we are in the first case and we define s3(f)
as s4(f)⊕6

1 2
z (with z ∈ {1, 2, 3}) so that C2 becomes saturated, in this

case z = 3 (see Figure B.12).
7. j = 2 : f(2) = 2 so we are in the second case and s2(f) = s3(f) (see

Figure B.12).
8. j = 1 : f(1) = 4, f(4) > 4, 1 is the smallest integer mapped to 4 by f ,

and s2(f) is not saturated in i = f(1)/2 = 2 : from left to right, the
columns of height i + 1 = 3 and label 0 in s are the fourth column C4

and the fifth column C5, and C4 is not saturated (but C5 is). So we are
in the first case, and we define s1(f) as s2(f)⊕6

11
z (with z ∈ {1, 2, 3, 4})

so that C4 becomes saturated, in this case z = 3 (see Figure B.13).
Finally, the irreducible 6-shape ϕ(f) ∈ IS6 is the partial 6-shape depicted

on Figure B.13 (on the right).
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Figure B.12: s3(f) = s2(f).



B.5. ILLUSTRATION OF DEFINITION 2.16 115

Figure B.13: s1(f).
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Bijective combinatorics of permutations and
Genocchi numbers

Abstract: This work is set in the context of enumerative combinatorics
and constructs several statistic-preserving bijections between known or new
combinatorial models of sequences of integers or polynomials, espacially the
sequence of Genocchi numbers (and their extensions, the Gandhi polynomi-
als) which appear in numerous mathematical theories and whose combina-
torial properties are consequently intensively studied, and two sequences of
q-Eulerian polynomials associated with the four fundamental statistics on
permutations studied by MacMahon, and with analog statistics.

First of all, we define normalized Dumont permutations, a combinatorial
model of the q-extended normalized median Genocchi numbers c̄n(q) intro-
duced by Han and Zeng, and we build a bijection between the latter model
and the set of Dellac configurations, which have been proved by Feigin to
generate c̄n(q) by using the geometry of quiver Grassmannians. Then, in
order to answer a question raised by the theory of continued fractions of
Flajolet, we define a new combinatorial model of c̄n(q), the set of Dellac his-
tories, and we relate them with the previous combinatorial models through
a second statistic-preserving bijection.

Afterwards, we study the set of irreducible k-shapes defined by Hivert
and Mallet in the topic of k-Schur functions, which have been conjectured
to generate the Gandhi polynomials with respect to the statistic of free k-
sites. We construct a statistic-preserving bijection between the irreducible
k-shapes and the surjective pistols of height k−1 (well-known combinatorial
interpretation of the Gandhi polynomials with respect to the fixed points
statistic) mapping the free k-sites to the fixed points, thence proving the
conjecture.

Finally, we prove a new combinatorial identity between two eulerian poly-
nomials defined on the set of permutations thanks to Eulerian and Mahonian
statistics, by constructing a bijection on the permutations, which maps a fi-
nite sequence of statistics on another.

Keywords: Genocchi numbers; Gandhi polynomials; Dellac congigura-
tions; Dellac histories; Irreducible k-shapes; Surjective pistols; q-Eulerian
polynomials.



Combinatoire bijective des permutations

et nombres de Genocchi

Résumé : Cette thèse a pour contexte la combinatoire énumérative et décrit la construction de plu-
sieurs bijections entre modèles combinatoires connus ou nouveaux de suites d’entiers et polynômes, plus
particulièrement celle des nombres de Genocchi (et de leurs extensions, les polynômes de Gandhi) qui
interviennent dans diverses branches des mathématiques et dont les propriétés combinatoires sont de ce
fait activement étudiées, et celles de polynômes q-eulériens associés aux quatre statistiques fondamentales
de MacMahon sur les permutations ainsi qu’à des statistiques analogues.
On commence par définir les permutations de Dumont normalisées, un modèle combinatoire des nombres
de Genocchi médians normalisés q-étendus, notés c̄n(q) et définis par Han et Zeng, puis l’on construit
une première bijection entre ce modèle et l’ensemble des configurations de Dellac, autre interprétation
combinatoire de c̄n(q) mise en évidence par Feigin dans le contexte de la géométrie des grassmanniennes
de carquois. En s’appuyant sur la théorie des fractions continues de Flajolet, on en construit finalement
un troisième modèle combinatoire à travers les histoires de Dellac, que l’on relie aux premiers modèles
sus-cités au moyen d’une seconde bijection.
On s’intéresse ensuite à la classe combinatoire des k-formes irréductibles définies par Hivert et Mallet dans
l’étude des k-fonctions de Schur, et qui faisaient l’objet d’une conjecture supposant que les polynômes de
Gandhi sont générés par les k-formes irréductibles selon la statistique des k-sites libres. On construit une
bijection entre les k-formes irréductibles et les pistolets surjectifs de hauteur k − 1 (connus pour générer
les polynômes de Gandhi selon la statistique des points fixes) envoyant les k-sites libres des premières sur
les points fixes des seconds, démontrant de ce fait la conjecture.
Enfin, on établit une nouvelle identité combinatoire entre deux polynômes q-eulériens définis par des
statistiques eulériennes et mahoniennes sur l’ensemble des permutations d’un ensemble fini, au moyen
d’une dernière bijection sur les permutations, qui envoie une suite finie de statistiques sur une autre.

Mots clés : Nombres de Genocchi ; Polynômes de Gandhi ; Configurations de Dellac ; Histoires de Dellac ;
k-formes irréductibles ; Pistolets surjectifs ; Polynômes q-eulériens.

Bijective combinatorics of permutations and Genocchi numbers

Keywords : Genocchi numbers ; Gandhi polynomials ; Dellac congigurations ; Dellac histories ; Irreducible
k-shapes ; Surjective pistols ; q-Eulerian polynomials.
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