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Notations & Acronyms

Mathematical Notation

R Field of real numbers.

Rn Linear space of real vectors of dimension n.

Rn×m Ring of matrices of size n×m.

Rn
≥0 For a vector x, xi ≥ 0, i = 1, . . . , n.

xi The i-th element of the vector x.

xij xij = col(xi, xi+1, . . . , xj) where i, j are integers such that 1 ≤ i < j ≤ n.

In The identity matrix of size n× n.

0n×s Matrix of zeros of n× s

0n column vector of zeros of dimension n.

diag(·) Diagonal matrix of the input arguments

col(·) Column vector of the input arguments

sym(·) Returns the symmetric part of a square matrix.

|x|2 Square of the Euclidean norm, i.e., |x|2 := x>x

‖x‖2
S The weighted square Euclidean norm, i.e., ‖x‖2

S := x>Sx.

g† Pseudo inverse of the full-rank matrix g, i.e., g† := (g>g)−1g>.

F?, F̃ (x) For the distinguished element x? ∈ Rn and any mapping F : Rn → Rs,

we denote F ∗ := F (x∗) and F̃ (x) := F (x)− F ∗.

g′, g′′ For mappings of scalar argument g : R→ Rs denote, respectively,

first and second order differentiation.

∇H(x) For H : Rn → R, it refers to the gradient operator of a function,

i.e.,∇H(x) :=
(
∂H(x)
∂x

)>
.
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∇2H(x) For H : Rn → R, it refers to the Hessian operator of a function,

i.e.,∇2H(x) :=
(
∂2H(x)
∂x2

)>
.

∇C(x) For C : Rn → Rm, ∇C(x) = [∇C1(x), . . . ,∇Cm(x)].

arg max f(x) Returns the argument x of the maxima of a function f : Rn → R.

Acronyms

PBC Passivity-Based Control

SPBC Standard Passivity-Based Control

PMSG Permanent Magnet Synchronous Generator

AS Asymptotically Stable

UAS Uniformly Asymptotically Stable

GAS Global Asymptotically Stable

PI Proportional and Integral

PID Proportional-Integral-Derivative

PDE Partial Differential Equations

LMI Linear Matrix Inequalities



Aperçu de la thèse

Le régulateur PID (Proportionnel-Intégral-Dérivée) est la commande par retour d’état

la plus connue. Elle permet d’aborder un bon nombre de problèmes de commande,

particulièrement pour des systèmes faiblement non linéaires et dont la performance

requise est relativement modeste. En plus, en raison de sa simplicité, la commande

PID est largement utilisée dans l’industrie. Étant donné que les méthodes de réglage

de la commande PID sont basées sur la linéarisation, la synthèse d’une commande au-

tour d’un point d’équilibre est relativement simple, néanmoins, la performance sera

faible dans des modes de fonctionnement loin du point d’équilibre. Pour surmonter

ce désavantage, une pratique courante consiste à adapter les gains du PID, procédure

connue sous le nom de séquencement de gain (ou gain-scheduling en anglais). Il y a

plusieurs désavantages à cette procédure, comme la commutation des gains de la com-

mande et la définition –non triviale– des régions de l’espace d’état dans lesquelles cette

commutation aura lieu. Ces deux problèmes se compliquent quand la dynamique est

fortement non linéaire.

L’un des avantages à utiliser la passivité est son caractère intuitif, qui exploite les

propriétés physique des systèmes. Grosso modo, l’idée centrale d’un système pas-

sif est que le flux de puissance entrante au système n’est pas inférieur à l’incrément

de son énergie de stockage. Par conséquence, ces systèmes ne peuvent pas stocker

plus d’énergie que celle fournie, dont la différence correspond à l’énergie dissipée.

En introduisant le concept d’énergie, cette méthodologie nous permet de formuler le

problème de commande comme celui de trouver un système dynamique dont la fonc-

tion de stockage d’énergie prend la forme désirée. En incorporant le concept d’énergie,

cette méthode devient accessible à la communauté de praticiens et permet de fournir

des interprétations physiques de l’action de commande.

Dans ce contexte, ce travail de thèse a comme objectif de synthétiser des comman-

des PI, basées sur la passivité, de telle sorte que la stabilité globale du système en

boucle fermé soit garantie.

Ce travail de thèse est principalement la continuation de [16,23,32,35,65,69]. Parti-

culièrement dans [65], il est prouvé que si un système non-linéaire est rendu passif par

11
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une loi de commande constante, il est stabilisable par une commande PI. En partant

de ce résultat, dans [32], une commande PI pour une classe de systèmes bilinéaires

est proposée pour traiter le problème de régulation et appliqué aux convertisseurs de

puissance. Dans cette thèse nous étendons ce dernier résultat au problème de suivi.

D’autre part, dans [35], des conditions suffisantes pour une classe de système dy-

namique sont énoncées telles que s’il est passif, sa représentation incrémentale l’est

aussi. Dans ce travail, en utilisant ce résultat, nous proposons une commande PI ro-

buste qui dépend seulement des paramètres de la matrice d’entrée.

Une contribution finale concerne le domaine de recherche développée par [23].

Nous proposons une méthodologie constructive pour la synthèse d’une commande

PI pour une classe de systèmes port-Hamiltoniens. Cette commande nous permet de

façonner l’énergie du système en boucle fermée.

Présentation de la thèse

La thèse est organisée de la manière suivante :

- Dans le Chapitre 2, nous présentons la commande PI-PBC qui adresse le problème

de suivi d’une classe de systèmes bilinéaires. Ce résultat est appliquée aux con-

vertisseurs de puissance qui sont décrits par les équations dynamiques de la

forme ẋ(t) = [A + ∑
i ui(t)Bi]x(t) + B0u + d(t). L’approche est validée par des

simulations numériques.

- En Chapitre 3 nous étudions le problème de commande des systèmes non linaires

qui sont partiellement connus. Nous identifions une classe de systèmes dans

laquelle une commande PI basée sur la passivité peut stabiliser les système au-

tour d’un point d’équilibre désiré en connaissant seulement les paramètres de la

matrice d’entrée.

- Le Chapitre 4 propose une commande PI, complètement constructive, pour une

classe de systèmes porte-Hamiltoniens. En utilisant la sortie passive de façonnage

de puissance, cette commande nous permet de assigner, au système en boucle

fermée, le point minimum désiré de la fonction d’énergie du système en boucle

fermée.

- Le Chapitre 5 est consacré à des applications de la commande PI-PBC. En util-

isant la théorie des chapitres précédents, nous proposons deux systèmes d’énergie

éolienne et faisons la synthèse de sa commande. Cette commande a comme ob-

jectif de garantir la l’extraction de la puissance maximale provenant du vent.



Résumé 13

- Ce travail est terminé avec des conclusions et des travaux futurs, présentés dans

le Chapitre 6.
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Chapter 1

Introduction

Automatic feedback control systems have been known and used for more than 2000

years. There is evidence that the ancient romans and greeks developed devices to

regulate the water level [10]. In late medieval, attempts to provide speed regulation

by primitive feedback devices were made. Along the history, ingenious inventions

concerning feedback control systems have been reported: mechanisms to control tem-

perature, governors for steam engines, steering engines or servo-mechanisms, pneu-

matic feedback amplifiers, anti-aircraft control and many others. Actually, the word

feedback is a 20th century neologism introduced in the 1920s by radio engineers to

describe parasitic, positive feeding back of the signal from the output of an ampli-

fier to the input circuit. Interested reader is referred to [9, 10], where an interesting

monograph about the history of automatic control is presented.

The idea of feedback is at the same time, simple and powerful. It has had a pro-

found influence on technology. Application of the feedback principle has resulted in

major breakthroughs in control, communication, and instrumentation. The principle

of the (negative) feedback relies on increasing a manipulated variable (control input)

when the process variable is smaller than the setpoint (reference) and decrease the ma-

nipulated variable when the process variable is larger than the setpoint [6]. In general,

a process or system to be controlled is fed-back by a function of its measured signals.

One of the best known forms of feeding back a system is through a three-term con-

trol law known as PID (Proportional-Integral-Derivative) controller, which was firstly

presented with an analytical formalism by N. Minorsky. In a traditional scheme, an

error signal is derived from the difference between the measured signals and its de-

sired values. In the non-interacting PID, the control signal is based on a sum of the

weighted integral, proportional and derivative of the error. The transfer function of

15
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this controller is of the form

HPID(s) = K
(

1 + 1
TIs

+ TDs
)
.

The three term functionalities include:

1. The proportional term provides an overall control action proportional to the er-

ror signal through the allpass gain factor.

2. The integral term reduces steady-state errors through low-frequency compensa-

tion.

3. The derivative term improves transient response through high-frequency com-

pensation.

Other classical PID realization is the interacting PID, which is implemented as a cas-

cade of a PI and PD controller [6]. The transfer function of such PID is

HPID(s) = K
(

1 + 1
TIs

)
(1 + sTd) .

Trying to improve transient performance has given rise to other control schemes such

as PI-D (type B) or I-PD (type C) controllers, see [3, 44] for a description.

PID controllers are sufficient for many control problems, particularly when process

dynamics are not highly nonlinear and the performance requirements are modest. Be-

sides, because of its simple structure, the PID controller is the most adopted control

scheme by industry and practitioners. However, many practitioners opt to switch off

the derivative term. Actually, many controllers applied in the industry are only PI

controllers [7].

An important issue when implementing a PID is to determine its parameters that

influence the performance of the system.In order to make this tuning of the PID gains

more constructive, some procedures have been appear in the literature. This methods

determine the gains values based on some parameters taken from the system response.

They are divided in frequency and step response methods. The first and more classical

method is the Ziegler-Nichols, which is frequently adopted because of its simplicity

to implement. In its step response version, two parameters are registered from the

straight line tangent at the inflection point of the step response of the system. Then,

the PI(D) controller parameters are obtained from a table. In its frequency response

version, the point at which the Nyquist curve intersects with the negative real axis is

determined. To do so, the process is fed back with a proportional controller, the pro-

portional gain is increased until the system and starts to oscillate. The proportional
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gain and the period of the oscillations are registered and using a table, the parameter

values of the PI(D) can be obtained. As discussed in [6], a fundamental drawback in

the Ziegler-Nichols Method is that the design criterion is focused in the decay ratio,

i.e., the ratio between two consecutive maxima of the error for a step change in set-

point or load. In this method, the closed–loop system has a quarter amplitude decay

ratio. This may cause good rejection of load disturbances but also poor damping and

stability margins. In order to improve the control performance, new tuning methods

have been developed [6]. In these methods the system response is characterized us-

ing three parameters instead of two, as in Ziegler-Nichols method. Even though these

methods improves substantially the performance, there is a trade-off between the sim-

plicity of the methods and its performance.

As stated in [6], many tuning strategies proposed can easily be eliminated if they

are compared with a well–tuned PID. Also, since these methods are based on the lin-

earization, commissioning a PI to operate around a single operating point is relatively

easy, however, the performance will be below par in wide operating regimes, which

is the scenario in modern high–performance applications. To overcome this draw-

back the current practice is to re–tune the gains of the PI controllers based on a linear

model of the plant evaluated at various operating points, a procedure known as gain–

scheduling. There are several disadvantages of gain–scheduling including the need

to switch (or interpolate) the controller gains and the non–trivial definition of the re-

gions in the plants state space where the switching takes place—both problems are

exacerbated if the dynamics of the plant is highly nonlinear. Another common com-

missioning procedure is to use auto–tuners, that heavily rely on the availability of a

“good” linear approximation of the plant dynamics. Besides, in other scenarios, a lit-

tle or no information about the dynamics of the process/system is known, thus no

stability of the system can be proved.

The current thesis work is aimed at the designing of PI controllers, based on the

passivity theory, such that the stability of the closed–loop system is guarantied. The

main objective is to develop constructive procedures that are applicable to physical

systems.

1.1 Passivity : A Control Design Tool [58, 63, 73].

Passivity concepts offer a physical and intuitive appeal. This is one of its main advan-

tage that explains the longevity of the concept from the time of its appearance —60

years ago. The primary idea in passive systems is that the power flowing into the sys-

tem is not less that the increase of storage. Thus, they cannot store more energy than
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is supplied to it from the outside, with the difference being the dissipated energy.

It is clear from this energy interpretation that the concept of passivity is related

with the stability properties of the systems. For instance, rationalizing a feedback in-

terconnection as a process of energy exchange it is not surprising to learn that passivity

is invariant under negative feedback interconnection. In other words, the feedback in-

terconnection of two passive systems is still passive. If the overall energy balance is

positive, in the sense that the energy generated by one subsystem is dissipated by the

other one, the closed loop will be stable.

Viewing dynamics systems as energy-transformation devices is particularly useful

in studying complex nonlinear systems by decomposing them into simpler subsys-

tems that,upon interconnection, add up their energies to determine the full system’s

behavior. This allows to recast the control problem as finding a dynamical system

and an interconnection pattern such that the overall energy function takes the de-

sired form. This ”energy-shaping” approach is the essence of passivity-based control

(PBC). Moreover, because of the universality of the concepts of energy, this formula-

tion allows to facilitate the communication between practitioners and control theorists

incorporating prior knowledge and providing physical interpretations of the control

action.

The idea of energy shaping from a control point of view dates back to [77] where

a robot manipulator control methodology was proposed using this philosophy. Using

the fundamental notion of passivity, the principle was later formalized in [61], where

the term PBC was coined to define a controller design methodology whose aim is to

render the closed-loop system passive with a given storage function. Although there

are many variations of this basic idea, PBCs may be broadly classified into two large

groups, ”classical” PBC where we a priori select the storage function to be assigned

(typically quadratic in the increments) and then design the controller that renders the

storage function non-increasing. This approach, clearly reminiscent of standard Lya-

punov methods, has been very successful to control physical systems described by

Euler-Lagrange equations of motion, which as thoroughly detailed in, includes me-

chanical, electrical and electromechanical applications. Approaches within this cate-

gory are the energy balancing (EB), standard passivity based control (SPBC) [58] and

the PI-PBCs. In the second class of PBCs we do not fix the closed-loop storage function,

but instead select the desired structure of the closed- loop system, for example, La-

grangian or port-controlled Hamiltonian (PCH), and then characterize all assignable

energy functions compatible with this structure. This characterization is given in terms

of the solution of a partial differential equation (PDE). The most notable examples

of this approach are the controlled Lagrangian, the interconnection and damping as-
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signment (IDA) and power-shaping control methods which yields static controllers

(see [13, 29, 54] for further details). There has been reported a dynamic version of the

IDA-PBC, however as proved in [5], this extension is unnecessary since a system can

be stabilized by IDA-PBC if and only if it can be stabilized by the dynamic IDA-PBC.

In the same category is found the so-called control by interconnection (CBI). In this ap-

proach, a dynamic controller is obtained such that plant and the controller are coupled

via a power-preserving interconnection-generating an overall PCH system with stor-

age function the sum of the plant and controller storage functions. Roughly speaking,

in this methodology it is desired to achieve stabilization making the desired equilib-

rium a minimum of the new storage function [53].

The present thesis work is placed within this line of research. Particularly, we are

interested in deriving controllers, based on passivity theory, such that they admit a PI-

like structure. We called these controllers PI passivity-based controllers or simple PI-

PBC. The result presented is twofold. Firstly, we derived PI controllers that are widely

accepted by practitioners due to its simplicity and then we find application of these

controllers in physical systems. Secondly, the procedures here adopted encompass a

large class of nonlinear dynamic systems and do not need to solve PDEs, a situation

that commonly emerges when it is desired to shape the system energy.

1.2 Thesis Overview & Contributions

The work presented along this thesis follows mainly from [16, 23, 32, 35, 65, 69]. Thus,

the PI controllers here formulated extend the methodology presented therein. A brief

introduction of this line of research as well as the contributions of the thesis is de-

scribed in the following.

Borrowing the concepts of incremental passivity and energy in the increment of [85],

in [69] is shown that the energy in the increment of a broad class of switched converters

is a Lyapunov function for a given nominal trajectory, so the nominal trajectory is

stable. Furthermore, a control law of the incremental input is proposed to regulate

switched converters. This incremental input is a deviation of the control signal from

its value at the desired equilibrium (also known as nominal value). To represent the

original system control input from its increment, the knowledge of its nominal value

is needed.

In [65] is proved that if a nonlinear system is passifiable via a constant action, then

it is stabilizable with a PI controller depending on its passive output. Using this result,

in [32] is designed a completely constructive PI passivity-based controller for a class

of bilinear system and motivated by the application to power converters.
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On the other hand, in [35] sufficient conditions are stated under which a class of

nonlinear systems defining a passive mapping u 7→ y, also defines a passive mapping

in its incremental representation, i.e. the mapping ũ 7→ ỹ is passive —the symbol (̃)
represents, respectively, the increments on the control input and output respect to their

value at the desired equilibrium point.

In the current thesis is presented an extension of the regulation case of power con-

verters system, addressed in [32], to the tracking problem. As a result, we prove that

the fulfillment of some given conditions makes possible to obtain —time-varying— PIs

controllers tracking admissible system trajectories. We apply this approach to some

benchmark examples and a wind energy system. Furthermore, experimental applica-

tions were reported in [21]. Another contribution of this thesis is intended to robustify

the PI-PBC controller introduced in [35]. To carry out this robustification we identify a

class of systems to which this technique is applicable when the system parameters are

unknown. This approach is motivated by its application to temperature regulation.

A final contribution of the thesis concerns the line of research developed in [23].

In that paper, it has been proposed for mechanical systems to abandon the objective

of structure preservation and attention has been concentrated on the energy shaping

objective only. That is, to look for a static state–feedback that stabilizes the desired

equilibrium assigning to the closed-loop a Lyapunov function of the same form as

the energy function of the open–loop system but with new, desired inertia matrix and

potential energy function. However, it was not required that the closed-loop system

is a mechanical system with this Lyapunov function qualifying as its energy function.

In this way, the need to solve the matching equations is avoided. Under the same

philosophy, we consider now the case of port–Hamiltonian (pH) systems. The starting

point of the design is the well–known power shaping output [55]. Then, we construct

the new storage function from the original energy function of the system and its power

shaping output. We find out that under some conditions, PI controllers that regulate

the system behavior and guarantee the stability of the system.

1.3 Outline of the Thesis

The current thesis is organized as follows.

- In Chapter 2, we present a PI-PBC for the tracking problem of a class of bilin-

ear systems. We extend the result reported in [32], where a PI depending on

a passive output is developed to solve the regulation problem in power con-

verters . The class of systems under consideration has the form ẋ(t) = [A +∑
i ui(t)Bi]x(t) + B0u + d(t). A set of matrices {A,Bi} are identified, via a linear
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matrix inequalities, for which it is possible to ensure global tracking of (admis-

sible, differentiable) trajectories with a simple linear time–varying PI controller.

Instrumental to establish the result is the construction of an output signal with

respect to which the incremental model is passive. The result is illustrated by the

application to some conventional DC/DC converters.

- In Chapter 3, We deal with the problem of control of partially known nonlin-

ear systems, which have an open–loop stable equilibrium, but we would like to

add a PI controller to regulate its behavior around another operating point. We

identify a class of nonlinear systems for which a globally stable PI can be de-

signed knowing only the systems input matrix and measuring only the actuated

coordinates.

- In Chapter 4 a new, fully constructive, procedure to shape the energy for a class

of port–Hamiltonian systems that obviates the solution of partial differential

equations is proposed. Proceeding from the well–known passive, power shaping

output we propose a nonlinear static state–feedback that preserves passivity of

this output but with a new storage function. A suitable selection of a controller

gain makes this function positive definite, hence it is a suitable Lyapunov func-

tion for the closed–loop. The resulting controller may be interpreted as a classical

PI—connections with other standard passivity–based controllers are also identi-

fied.

- Chapter 5 is advocated to the application of the PI-PBC. This chapter is mainly

divided in two parts. First, we propose a maximum power extraction control

with a PI-PBC for a wind system consisting of a turbine, a permanent mag-

net synchronous generator (PMSG), a rectifier, a load and one constant volt-

age source, which is used to form the DC bus. We propose a linear PI con-

troller, based on passivity, whose stability is guaranteed under practically rea-

sonable assumptions. In the second part, we consider the problem of control-

ling small–scale wind turbines providing energy to the grid. In this section, the

overall system consists of a wind turbine plus a PMSG connected to a single–

phase ac grid through a passive rectifier, a boost converter and an inverter. We

present a high performance, nonlinear, passivity–based controller combining

two Passivity-Based Control techniques: the Standard PBC and the tracking PI-

PBC. Asymptotic convergence to the maximum power extraction point together

with regulation of the dc link voltage and grid power factor to their desired val-

ues is ensured. The performance of the proposed controllers is compared via

computer simulations.
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- Finally, in Chapter 6, we wrap out the present thesis with some concluding re-

marks and possible future work in the same line of research.
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Chapter 2

The Tracking PI–PBC of Bilinear

Systems : Application to Power

Converters

Bilinear systems are a class of nonlinear systems that describe a broad variety of phys-

ical and biological phenomena [51] serving, sometimes, as a natural simplification of

more complex nonlinear systems. In this chapter we propose a PI Passivity-Based

controller for the global tracking of admissible, differentiable trajectories of a class of

bilinear systems.

The objective of this chapter is to provide a theoretical framework—based on the prop-

erty of passivity [34,81] of the incremental model—to establish such a result. Our mo-

tivation to pursue a passivity framework is that it naturally leads to the design of PI

controllers, which are known to be simple, robust and widely accepted by practition-

ers. The result presented in this chapter is an extension to the problem of tracking

trajectories, of [32, 35] that treat the regulation case (see Section 2.3). The proposed

result is illustrated by an application to power converters.

2.1 The PI-PBC of Bilinear system for the regulation and

tracking problem

Consider the bilinear system1

ẋ = Ax+ d+
m∑
i=1

uiBix+B0u (2.1)

1For brevity, in the sequel the time argument is omitted from all signals.

23
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where x ∈ Rn, d ∈ Rn are the state and the known time-varying signal vector, respec-

tively, u ∈ Rm, m ≤ n, is the control vector, and A ∈ Rn×n, Bi ∈ Rn×n, B0 ∈ Rn×m are

real constant matrices.

We will say that a function x? : R+ → Rn is an admissible trajectory of (2.1), if it is

differentiable, bounded and verifies

ẋ? =Ax? + d+
m∑
i=1

u?iBix? +B0u? (2.2)

for some bounded control signal u? : R+ → Rm.

The global tracking problem is to find, if possible, a dynamic state–feedback con-

troller of the form

ż = F (x, x?, u?) (2.3)

u = H(x, x?, z, u?), (2.4)

where F : Rn × Rn × Rm → Rq, q ∈ Z+, and H : Rn × Rn × Rm → Rm, such that all

signals remain bounded and

lim
t→∞

[x(t)− x?(t)] = 0, (2.5)

for all initial conditions (x(0), z(0)) ∈ Rn × Rq and all admissible trajectories.

We characterize a set of matrices {A,Bi} for which it is possible to solve the global

tracking problem with a simple linear time–varying PI controller. The class is identified

via the following LMI.

Assumption 2.1. ∃P ∈ Rn×n such that

P = P> > 0 (2.6)

sym(PA) ≤ 0 (2.7)

sym(PBi) = 0, (2.8)

where the operator sym : Rn×n → Rn×n computes the symmetric part of the matrix,

that is

sym(PA) = 1
2(PA+ A>P ).

To simplify the notation in the sequel the positive semidefinite matrix has been de-

fined

Q := −sym(PA). (2.9)
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2.2 Passivity of the Bilinear Incremental Model

Instrumental to establish the main result of the paper is the following lemma.

Lemma 2.1. Consider the system (2.1) verifying the LMI of Assumption 2.1 and an

admissible trajectory x?. Define the incremental signals (̃·) := (·) − (·)?, and the m–

dimensional output function

y := C(x?)x̃ (2.10)

where the map C : Rn → Rm×n is defined as

C(x?) :=



x>? B

>
1

...

x>? B
>
m

+B>0

P. (2.11)

The operator ũ 7→ y is passive with storage function

V (x̃) := 1
2 x̃
>Px̃. (2.12)

Hence, it verifies the dissipation inequality

V̇ ≤ ũ>y.

Proof. Combining (2.1) and (3.30) yields

˙̃x =(A+
m∑
i=1

uiBi)x̃+
m∑
i=1

ũiBix? +B0ũ. (2.13)

Now, the time derivative of the storage function (2.12) along the trajectories of (2.13) is

V̇ (x̃) = x̃>P

[
(A+

m∑
i=1

uiBi)x̃+
m∑
i=1

ũiBix? +B0ũ

]

= −x̃>Qx̃+ x̃>P

[
m∑
i=1

ũiBix? +B0ũ

]

≤ x̃>P

[
m∑
i=1

ũiBix? +B0ũ

]

= x̃>P
([
B1x?| . . . |Bmx?

]
+B0

)
ũ

= y>ũ,

where (2.8) of Assumption 2.1 has been used to get the second identity, (2.7) for the

first inequality, (2.8) again for the third equation and (2.10) for the last identity. ���
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Remark 2.1. A key step for the utilization of the previous result is the derivation of the

desired trajectories x? and their corresponding control signals u?, which satisfy (3.30).

As shown in the examples below this may prove to be a very complicated task and

some approximations may be needed to derive them. Indeed, it is shown in [52] that

even for the simple boost converter this task involves the search of a stable solution

of an Abel ordinary differential equation, whose only stable trajectory is known to be

highly sensitive to initial conditions.

2.3 A PI Global Regulating Controller [32]

In this section we recall the result reported in [32] about the regulation in systems of

the form (2.1). For this case, we consider d and x? constant vectors. Then, it can be

seen that (3.30) becomes an algebraic equation, i.e., x? is an admissible equilibrium

point satisfying

0 = Ax? + d+
m∑
i=1

u?iBix? +B0u? (2.14)

for some u? ∈ Rm.

Lemma 2.2. Consider the system (2.1) verifying Assumption 2.1 with d and x?, u? such

that (2.14). Then, the system (2.1) in closed–loop with the PI controller

ż =− y

u =−Kpy +Kiz
(2.15)

with output y given in 2.10 andKp, Ki > 0. For all initial conditions (x(0), z(0)) ∈ Rn+m

the trajectories of the closed–loop system are bounded.

Proof: The reader is referred to [32].

2.4 A PI Global Tracking Controller

From Lemma 2.1 the next proposition follows immediately.

Proposition 2.1. Consider the system (2.1) verifying Assumption 2.1 and an admissi-

ble trajectory x? in closed loop with the PI controller

ż =− y

u =−Kpy +Kiz + u?
(2.16)
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with output (2.10), (4.12) and Kp > 0, Ki > 0. For all initial conditions (x(0), z(0)) ∈
Rn × Rm the trajectories of the closed-loop system are bounded and

lim
t→∞

ya(t) = 0, (2.17)

where the augmented output ya : R+ → Rm+n is defined as

ya :=
C(x?)
Q

1
2

 x̃,
with Q

1
2 the square root of Q given in (2.9). Moreover, if

rank

C(x?)
Q

1
2

 = n, (2.18)

then state global tracking is achieved, i.e., (2.5) holds.

Proof. The PI controller (2.16) is equivalent to

ũ =−Kpy +Kiz

ż =− y.
(2.19)

Consider the following radially unbounded Lyapunov function candidate

W (x̃, z) := V (x̃) + 1
2z
>Kiz, (2.20)

whose time derivative is

Ẇ = −x̃>Qx̃+ y>ũ− z>Kiy

= −x̃>Qx̃− y>Kpy

≤ −λmin{Kp}|y|2 − |Q
1
2 x̃|2 ≤ 0.

Notice that the closed-loop system (2.13) and (2.19) is non-autonomous because of its

dependence on u? and x? which are time-varying signals. Consequently, we cannot

invoke LaSalle’s Invariance Principle and proceed, instead, applying the generaliza-

tion of Barbalat’s Lemma reported in [79] and some standard signal chasing. Invoking

the aforementioned result, we must prove that ya ∈ L2 and ẏa ∈ L∞ to conclude that

limt→∞ ya(t) = 0. Since the derivative of the Lyapunov function is negative, the trajec-

tories are bounded, namely, z, x̃ ∈ L∞. In the same way, from the last inequality we

conclude that y,Q
1
2 x̃ ∈ L2, consequently ya ∈ L2. To conclude that ẏa ∈ L∞ first notice
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that x̃, x? ∈ L∞ implies x ∈ L∞ and, this in its turn, implies from (2.10) that y ∈ L∞.

Now, y, z, u? ∈ L∞ implies, from (2.16), u ∈ L∞. That implies, from (2.13), ˙̃x ∈ L∞.

Now, compute

ẏ =


ẋ>? B

>
1

...

ẋ>? B
>
m

Px̃+



x>? B

>
1

...

x>? B
>
m

+B>0

P ˙̃x, (2.21)

which is bounded because ẋ? ∈ L∞. Then, ẏa is bounded and it follows that ya(t)→ 0.

The proof of global state tracking follows noting that ya(t) → 0 ensures (2.5) if the

rank condition (2.18) holds. ���

Remark 2.2. Notice that the matrix C depends on the reference trajectory. Therefore,

the rank condition (2.18) identifies a class of trajectories for which global tracking is

ensured.

Remark 2.3. To assess the effect of the approximations mentioned in Remark 2.1, con-

sider the following scenario where m = 1 and B0 = 0. Defining x̄ = x? + ξ and

ū = u? + ς as, respectively, the approximation of x? and u? with ξ and ς two bounded

signals, the measurable output is

ȳ = (x? + ξ)>B>Px

= y + ξ>B>Px.

Then, in this setting, the controller (2.19) becomes

ż = −y + ξ>B>P (x̃+ x?)

ũ = −Kpy +Kiz −Kpξ
>B>Px+ ς.

Furthermore, the derivative of (2.20) yields

Ẇ = −x̃>Qx̃− y>Kpy + y>(ς −Kpξ
>B>Px) + z>Kiξ

>B>P (x̃+ x?).

Hence, from the latter, we cannot conclude stability since (2.20) is not a strict Lyapunov

function and there is no way to dominate the new terms appearing in its derivative.

Notice that for simplicity we adopt the case m = 1 however, it can be readily ex-

tended for m ≥ 2.
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Figure 2.1: Representation of the ideal Buck Converter.
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Figure 2.2: Simulation result of the tracking PI-PBC for the Buck Converter

2.5 Application to Power Converters

The present section is intended to exemplify the use approach proposed within this

chapter. Experimental results have been reported in [21].

2.5.1 The Buck Converter

Consider the well-known normalized average model of the Buck Converter depicted

in Fig. 2.1:
ẋ1 =− x2 + u

ẋ2 =x1 −
x2

D
,

(2.22)

where D := R
√

C
L

. Also, E,C, L and R are the system parameters and u the control

input. The relation between the physical variables i, v and x is given by the following

transformation x1

x2

 =
 1
E

√
L
C

0
0 1

E

 i
v

 . (2.23)
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Clearly, defining

A =
0 −1

1 − 1
D

 , B0 =
1

0

 , Q = P = I2, (2.24)

the system satisfies Assumption 2.1. Furthermore,

y = B>0 Px̃ = x̃1. (2.25)

The control objective is to drive x2 to a desired time-varying reference x2?. Thus, from

second equation of (2.22),

x1? =ẋ2? + x2?

D
, (2.26)

which substituted in the first equation of (2.22) yields

u? = ẍ2? + ẋ2?

D
+ x2?. (2.27)

Considering x2? = V0 + a sin(ωt), (2.26) and (2.27) becomes

u? =− aω2 sin(ωt) + a

D
ω cos(ωt) + a sin(ωt) + V0

x1? =aω cos(ωt) + a

D
sin(ωt) + V0

D
.

Fig. 2.2 shows the simulation results of the system (2.22) in closed–loop with the

controller (2.16). The system parameters are [75]: R = 25 Ω, C = 50 µC, L =
19.91 mH, E = 24 V. Also, we select a = 0.3, ω = 0.8, V0 = 0.6, and gains Kp =
0.3, Ki = 0.1.

2.5.2 The Boost Converter

The well-known normalized average model of the Boost shown in Fig. 2.3 is

ẋ1 =− x2u+ 1

ẋ2 =x1u−
x2

D

(2.28)

where D := R
√

C
L

. Also, E,C, L and R are the system parameters and u the control

input. The relation between the physical variables i, v and x is given by (2.23). Clearly,
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Figure 2.3: Representation of the ideal Boost Converter.
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Figure 2.4: Simulation result of the tracking PI-PBC for the Boost Converter.

defining

A =
0 0

0 − 1
D

 , B1 =
0 −1

1 0

 , Q = P = I2, (2.29)

the system satisfies Assumption 2.1. Furthermore,

y = x>? B
>
1 Px̃ = x̃2x1? − x̃1x2?. (2.30)

The control objective is x2, which is selected as x2? = V0 +a sin(ωt). On the other hand,

from the second equation of (2.28) we have

u? = 1
x1?

(
ẋ2? + x2?

D

)
. (2.31)

Substituting the latter equation in the first equation of (2.28) yields

ẋ1?x1? = x1? − x2?

(
ẋ2? + x2?

D

)
. (2.32)

As claimed in Remark 2.1, since the system contains only one stable solution, finding

x1? from (2.32) is a difficult task. Instead, we take the approximation of the solution of
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such system proposed in [27]. Here below we write the expression of x̂1?, the approxi-

mation of x1? —refer [27] for further details:

x̂1? = c0 + 1
2ωc0

[
8V0a

D
cos(ωt)− 4V0aω sin(ωt) + a2ω cos(2ωt) + a2

D
sin(2ωt)

]
(2.33)

where c0 := 1
D

(
V 2

0 + a2

2

)
.

Under this approximation, signal û?, the approximation of (2.31), becomes

û? = 1
x̂1?

(cos(ωt) + 1
D
a sin(ωt) + V0) (2.34)

In Fig. 2.4 the simulation plots are shown for the system (2.28) in closed–loop with

(2.16), when L = 18mH, C = 220µC, E = 50 V0 = 135 V, a = 15, ω = 0.6252 Kp =
Ki = 0.5. A close-up view of the plot must reveal a steady-state error due to the

approximation of x1?.



Chapter 3

A Robust PI Passivity–Based Control of

a class of Nonlinear Systems :

Application to Temperature Regulation

In many practical applications the plant to be controlled has an open–loop stable equi-

librium, e.g., at the origin, and we would like to add a controller to regulate its behavior

around another operating point. In the case of linear systems the dynamics remains

invariant under coordinate shifts, therefore this task can be easily accomplished using

the incremental model of the plant. Unfortunately, this is not the case for nonlinear

systems, for which there is no obvious advantage of working with the incremental

model. To carry out this regulation task, in this chapter we identify a class of (input

affine) nonlinear systems for which it is possible to design a PI controller with the

following features.

F1 Regulation of the closed–loop system around the desired (non–zero) operating

point should be guaranteed.

F2 The PI controller should be robust, in the sense that reduced knowledge of the

system parameters is required.

F3 To simplify the controllers commissioning, a well defined admissible range of

variation for the PI proportional and integral gains, preserving closed–loop sta-

bility, should be provided.

We propose the construction of a PI controller with the features F1–F3 for plants with

unknown dynamics verifying the following assumptions.

A1 The open–loop system is unknown but has a stable equilibrium at the origin.

33



34

A2 The desired equilibrium belongs to the assignable set and admits a convex Lya-

punov function.

A3 The Lyapunov function is the sum of two functions, depending on the un–actuated

and actuated coordinates, respectively. The first function is unknown while the

second one is separable and linearly parameterized in terms of some unknown

parameters.

A4 The input matrix is constant, known and has n−m zero rows, where n and m are

the dimensions of the state and input vectors, respectively.

As indicated in the article’s title we exploit the fundamental property of passivity to

design the PI, which will be referred in the sequel as PI Passivity–based Control (PI–

PBC). The first step in the design is to, relying on A1 above, invoke the celebrated

theorem of Hill and Moylan [81] to identify a suitable passive output for the system,

with storage function the Lyapunov function of the open–loop system. Since our in-

terest is the regulation of non–zero equilibria, we then use the results of [35] to create

a new passive output for the incremental model with a storage function that has a

minimum at the desired equilibrium. As shown in [35], feeding back the passive out-

put through a PI controller ensures stability of the desired equilibrium for all positive

definite PI gains. It is important to underscore that, since the passivity property has

been established for the incremental model, the equilibrium can also be stabilized set-

ting the control input equal to the (constant) value that assigns the equilibrium, say u?,

which is univocally defined. However, this open–loop control will, obviously, be non–

robust. In the robustness context of the present chapter neither the plant dynamics nor

the Lyapunov function are known and, consequently, we cannot compute neither the

passive output nor u?. It is at this point that we invoke A3 and A4 above to prove that,

under these assumptions, it is possible to define suitable proportional and integral

gains that make the PI–PBC implementable and, consequently, guarantee stability of

the equilibrium. Another important feature of the proposed PI–PBC is that it requires

only partial measurement of the state, namely, only the m state variables associated to

the non–zero rows of the input matrix, referred in the sequel as actuated coordinates. In

this way, our approach is oriented towards a characterization of a class of systems that

can be regulated by means of the PI–PBC with a minimum knowledge of the system

parameters.

Several practical applications of PI–PBC have been reported in the literature. This

include, RLC circuits [16], power converters [32], fuel cells [78], electric drives [47] and

mechanical systems [49]. In [22] a procedure to add an integral action to a non–passive

output for a class of port–Hamiltonian systems was first proposed, and later extended
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in [60], [68]. To the best of our knowledge, the present result is the first attempt to

design PI–PBCs with guaranteed stability properties for systems with partially known

dynamics.

A natural question that arises at this point is the incorporation of adaptation in

the design of the PI (or PID). In the power converter application of [32] a parameter

that enters in the definition of the passive output, i.e., the load resistance, is adaptively

identified—however, all other parameters are assumed to be known. In the interesting

paper [4] it is shown that it is possible to adaptively estimate u? for a general nonlin-

ear system with scalar input, keeping the estimate in a known interval, provided the

passive output is known. In spite of a large number of publications the problem of

designing a provably stable adaptive PID for systems with unknown parameters re-

mains, as far as we know, open. The difficulty of this task was identified already in

1984 in [56]. As is well–known [70], the stability of indirect adaptive methods relies

on parameter convergence that, in its turn, requires persistency of excitation—a prop-

erty that is not satisfied in the regulation tasks where PI control is effective. On the

other hand, the application of direct methods is stymied by the absence of a suitable

parameterization of this structure–constrained controller. For the PI–PBC studied in

this chapter the main difficulty is the need to estimate two objects, that appear multi-

plicatively in the Lyapunov analysis: the passive output and the ideal control signal

u?. This point is further elaborated in Subsection 5.2.5.

3.1 Problem Formulation

In this section we formulate the control problem addressed along the chapter, enun-

ciate the assumptions made on the plant to solve it and make some remarks on these

assumptions.

3.1.1 Robust PI control problem

Consider the nonlinear, input affine, system

ẋ = f(x) +Gu, (3.1)

where x ∈ Rn, u ∈ Rm, n > m, f : Rn → Rn is an unknown smooth mapping, G ∈ Rn×m

is constant verifying rank(G) = m.

The following is a key assumption made throughout the chapter.
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Assumption 3.1. The matrix G has n − m zero rows. Without lost of generality1 it is

assumed of the form

G =
0(n−m)×m

G2

 , (3.2)

where G2 ∈ Rm×m is known.

This assumption can be easily obviated introducing state and input changes of coor-

dinates. Indeed, it is well–known—see, e.g., Theorem 2 of Section 2.7 of [43]—that for

any full rank, matrix G ∈ Rn×m there exists (elementary) full rank matrices T ∈ Rn×n

and S ∈ Rm×m such that

TGS =
0(n−m)×m

Im

 .
Consequently, introducing z = Tx and v = S−1u the system (3.1) takes the desired

form

ż = w(z) +
0(n−m)×m

Im

 v,
where w(z) = Tf(T−1z). We should note, however, that a change of state representa-

tion destroys—in general—the original structure of the system, whose knowledge may

be critical for the verification of the second assumption below. This fact is clearly illus-

trated in the physical examples considered in Section 5.2.6. For this reason, we prefer

to leave it as an standing assumption.

Motivated by Assumption 3.1 we find convenient to define a partition of the state

vector into its un–actuated and actuated components as

x =
 xu

xa

 , xu :=



x1

x2
...

xn−m

 , xa :=



xn−m+1

xn−m+2
...

xn

 .

It is assumed that only xa is available for measurement.

The unforced system, that is, ẋ = f(x), has a stable equilibrium at the origin with

a partially known Lyapunov function. We are interested in controlling the system with

a PI at a non–zero equilibrium—a situation that arises in most practical applications.

Thus, we are given a desired equilibrium point, x? ∈ Rn, and the control goal is to

1See R6 in the next subsection and Subsection 5.2.5 for more general forms of G.
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ensure stability of this equilibrium using a PI control law of the form

ż = −KIψ(xa, x?)

u = −KPψ(xa, x?) + z

where z ∈ Rm is the controller state, KP ∈ Rm×m and KI ∈ Rm×m are tuning gains

and ψ : Rm × Rn → Rm is a mapping designed with the partial knowledge of the

aforementioned Lyapunov function.

The following, practically reasonable, assumption is made throughout the chapter.

Assumption 3.2. The desired equilibrium point x? belongs to the assignable equilib-

rium set, that is,

x? ∈ E :=
{
x ∈ Rn |

[
In−m | 0(n−m)×n

]
f(x) = 0

}
. (3.3)

3.1.2 Assumptions on the open–loop plant

The following assumption identifies the class of vector fields f(x) for which we pro-

vide an answer to the problem.

Assumption 3.3. For the system (3.1) there exists a twice–differentiable, positive defi-

nite function H : Rn → R≥0, verifying the following.

(i) [∇H(x)]>f(x) ≤ 0.

(ii) [∇H(x)−∇H(x?)]>f̃(x) =: −Q(x) ≤ 0.

(iii) The function H(x) is of the form

H(x) = Hu(xu) +Ha(xa) (3.4)

with

Ha(xa) =
n∑

i=n−m+1
diφi(xi), (3.5)

where the function Hu : Rn−m → R and the constants di > 0 are unknown but the

functions φi : R→ R are known.

(iv) The functions Hu(xu) and φi(xi) are convex.
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3.1.3 Discussion

The following remarks regarding the assumptions are in order.

R1 Although the set of assignable equilibria E is not known, it is reasonable to as-

sume that we have enough prior knowledge about the plant to select the desired

operating point as a feasible equilibrium. Hence, Assumption 3.2 is practically

reasonable.

R2 A corollary of Assumption 3.2 is that the constant input u?, that assigns the equi-

librium, is uniquely defined as

u? :=
(
G>2 G2

)−1 [
0m×(n−m) G>2

]
f ?. (3.6)

Notice that, without knowledge of f(x), this constant cannot be computed.

R3 Since the open–loop system (3.1) has a stable equilibrium at the origin Assump-

tion 3.3 (i) follows as a corollary of Lyapunov’s converse theorems [39]. As will

become clear below Assumption 3.3 (ii) and (iv) are required to prove passivity

of the incremental model as done in [35].

R4 We underscore that no assumption, beyond twice differentiability and convex-

ity, is imposed on the unknown component Hu(xu) of the Lyapunov function of

the open–loop system H(x). On the other hand, stricter conditions are imposed

on the second component Ha(xa), with uncertainty captured by the unknown

constants di.

R5 Assumptions 3.3 (iii) and Assumption 3.1 are the key requirements imposed on

the plant to design the robust PI–PBC. This assumption is satisfied by a large

class of physical systems, including the thermal systems studied in Section 5.2.6

and a class of port–Hamiltonian systems [81].

R6 It can be noticed that the class of port-Hamiltonian systems of the form:

ẋ = (J −R)∇H(x) +Gu (3.7)

with constant interconnection J = −J > and damping R = R> ≥ 0 matrices

satisfies Assumption 3.3 (i) and (ii). Indeed, Assumption 3.3 (i) is satisfied since

[∇H(x)]>(J −R)∇H(x) = −[∇H(x)]>R∇H(x) ≤ 0.
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Similarly, Assumption 3.3 (ii) e

[∇H(x)−∇H(x?)]>(J −R)[∇H(x)−∇H(x?)] =

−[∇H(x)−∇H(x?)]>R[∇H(x)−∇H(x?)] ≤ 0.

R7 Regarding Assumptions 3.1, in the more general case when G is not of the form

(3.2) an additional shuffling of the rows of G is needed in the design. This proce-

dure is explained in Subsection 5.2.5.

R8 For quadratic Lyapunov functions of the form H(x) = x>Px, with P > 0, As-

sumption 3.3 (ii) is satisfied if the open–loop system is convergent in the sense of

Demidovich [64]. That is, if it satisfies

P∇f(x) + [∇f(x)]>P ≤ 0.

3.2 Preliminary Lemmata

Unless otherwise indicated, throughout the rest of the chapter Assumption 3.1 holds.

Define for the system (3.1) the output

y = G>∇H(x) = G>2 DΦ(xa), (3.8)

where

D :=



dn−m+1 0 . . . 0
0 dn−m+2 . . . 0
...

...
...

...

0 0 . . . dn

 > 0

Φ(xa) :=


φ′n−m+1(xn−m+1)

...

φ′(xn)

 .

A corollary of the theorem of Hill and Moylan [81] is that, if Assumption 3.3 (i) holds,

the system (3.1), (3.8) defines a passive mapping u 7→ y with storage function H(x).

To operate the system at a non–zero equilibrium it is necessary to shift the mini-

mum of the storage function and define the passivity property between the incremen-

tal input and the output error. Towards this end, we recall Proposition 1 of [35] and

state it as a lemma below.
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Lemma 3.1. Consider the incremental model of the system (3.1), (3.8)

ẋ = f(x) +Gu? +Gũ,

e = G>2 DΦ̃(xa),
(3.9)

where ũ = u − u? is the incremental input. Under Assumptions 3.1–3.3 the mapping

ũ 7→ e is passive with storage function U : Rn → R≥0 given by

U(x) = H(x)− x>u∇Hu? − x>aDΦ? + k, (3.10)

where k is a constant that ensures U(x?) = 0. More precisely,

U̇ = −Q(x) + e>ũ, (3.11)

where Q(x) is defined in Assumption 3.3 (ii).

One of the main interests of passive systems is that they can be globally stabilized

with PI controls (with arbitrary positive definite gains). This well–known fact is stated

in the lemma below, whose proof is given to streamline the presentation of our main

result.

Lemma 3.2. Consider the system (3.1) verifying Assumptions 3.1–3.3 in closed–loop

with the PI–PBC
e = G>2 DΦ̃(xa)

ż = −KIe

u = −KP e+ z.

(3.12)

For all positive definite gain matrices KP ∈ Rm×m and KI ∈ Rm×m all trajectories

are bounded, the equilibrium point (x, z) = (x?, u?) is globally stable (in the sense of

Lyapunov) and the augmented error signal

ea :=
 Q(x)

e

 (3.13)

where Q(x) is defined in Assumption 3.3 (ii), verifies

lim
t→∞

ea(t) = 0. (3.14)

Moreover, if ea is a detectable output for the closed–loop system then the equilibrium

point is asymptotically stable.

Proof. Defining z̃ := z−u? the last two equations of the controller (3.12) may be written
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in the form
˙̃z = −KIe

ũ = −KP e+ z̃.
(3.15)

Consider the Lyapunov function candidate

W (z̃, x) = U(x) + 1
2 z̃
>ΛI z̃, (3.16)

where ΛI > 0. The time derivative of the Lyapunov function along the trajectories of

the closed–loop system is

Ẇ = −Q(x) + e>ũ+ z̃>ΛI
˙̃z

= −Q(x)− e>KP e+ z̃>e− z̃>ΛIKIe.
(3.17)

Setting ΛI = K−1
I yields

Ẇ = −Q(x)− e>KP e.

The proof is complete invoking standard Lyapunov arguments [39]. ���

3.3 The Robust PI–PBC

As indicated in R4 of Subsection 5.2.2 the matrixD is unknown. Hence, the error signal

e cannot be constructed and the PI–PBC (3.12) is not implementable. This motivates

our main result given below.

Proposition 3.1. Consider system (3.1) verifying Assumptions 3.1–3.3 in closed–loop

with the robust PI–PBC
u = −KP Φ̃(xa) + z

ż = −KIΦ̃(xa),
(3.18)

with the controller gains

KP = G−1
2 ΓP

KI = G−1
2 ΓI . (3.19)

For all diagonal, positive definite matrices ΓP ∈ Rm×m and ΓI ∈ Rm×m we have the

following.

(i) All trajectories are bounded and the equilibrium point (x, z) = (x?, u?) is globally

stable (in the sense of Lyapunov).

(ii) The augmented error signal ea defined in (3.13) verifies (3.14).
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(iii) If ea is a detectable output for the closed–loop system then the equilibrium point

is globally asymptotically stable.

Proof. Some simple manipulations prove that

KP Φ̃(xa) = G−1
2 ΓPD−1G−>2 G>2 DΦ̃(xa) = ΛP e, (3.20)

where we defined the matrix

ΛP := G−1
2 ΓPD−1G−>2 , (3.21)

and used the definition of e in (3.12). Invoking Sylvester’s Law of Inertia [43], and the

fact that ΓP and D are diagonal and positive definite, we have that ΛP > 0.

Next choose

ΛI := G>2 DΓ−1
I G2, (3.22)

that is, also, positive definite for all diagonal, positive definite ΓI . Then

ΛIKIΦ̃(x) = G>2 DΦ̃(xa) = e. (3.23)

Replacing (3.20) and (3.23) in the controller equations yields

ũ = −ΛP e+ z̃

˙̃z = −Λ−1
I e.

Consequently, the time derivative of the Lyapunov function (3.17) becomes now

Ẇ = −Q(x)− e>ΛP e, (3.24)

completing the proof. ���

To obtain an implementable version of the robust PI–PBC it was necessary to carry–

out two tasks. First, to make the damping injection, introduced by the proportional

term, function of the unknown matrix D. Indeed, replacing (3.21) in (3.20) we get

KP Φ̃(x) = G−1
2 ΓPD−1G−>2 e.

Second, make the gain ΛI of the Lyapunov function (5.54) also a function of D—see

(3.22).

An important observation is that, even though the controller only requires mea-

surement of the actuated terms of the state xa, it achieves regulation of the full state
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vector.

3.4 Additional Remarks on the PI–PBC

In this section we explain how to proceed when G is not of the form (3.2), discuss the

reasons that stymie the use of adaptation and the inability to state a robustness result

based on continuity and approximate prior knowledge of the matrix D.

3.4.1 General G (with n−m zero rows)

Instrumental to design the robust PI–PBC was the particular form of H(x) defined in

Assumption 3.3 (iii). In view of the construction of the robust PI–PBC, it is clear that

if G is not of the form (3.2) the assumption must be modified redefining the actuated

and un–actuated coordinates.

To avoid cluttering the notation we will explain the procedure only for the case

when n = 3 and m = 2—the general case follows verbatim. Assume, furthermore, that

G is of the form

G =


g>1

01×2

g>3

 .
The form of H(x) given in Assumption 3.3 (iii) must be, accordingly, modified to

H(x) = Hu(x2) + d1φ(x1) + d3φ(x3).

In this case the passive output e for the incremental model becomes

G>[∇H(x)−∇H(x?)] = Gs

 d1 0
0 d3

 Φ̃1(x1)
Φ̃3(x3)

 .
where

Gs :=
[
g1 | g3

]
.

The robust PI–PBC is given by

u = −G−1
s ΓP

 Φ̃1(x1)
Φ̃3(x3)

+ z

ż = −G−1
s ΓI

 Φ̃1(x1)
Φ̃3(x3)

 ,
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where ΓP and ΓI are arbitrary, diagonal, positive definite matrices.

Before closing this subsection we remark that our construction critically relies on

the assumption of existence of n−m zero rows in G. Indeed, it is possible to show that

if this is not the case, even assuming H(x) of the form

H(x) =
n∑
i=1

diφi(xi)

it is not possible to find an m × m positive definite matrix Λ, which will depend on

D, such that the matrix ΛG>D is independent of D. The fact that this is not possible for

all matrices G is obvious considering the counterexample G = col(1, 1). Hence, the

assumption of existence of n−m zero rows in G is necessary to solve the problem.

3.4.2 Difficulties for adaptation

A natural alternative to the robust PI–PBC presented above is to assume a parametri-

sation of f(x) and try to estimate this parameters or, in a direct approach, estimate the

matrix D that defines the passive output. The indirect approach, as is well–known, re-

lies on parameter convergence that requires persistency of excitation—a property that

is not satisfied in the regulation tasks where PI control is effective.

Let us see what are the difficulties for the application of a direct adaptation ap-

proach. Towards this end, we propose the adaptive PI–PBC

˙̂
D = F (x, z)

ê = G>2 D̂ Φ̃(xa)

ż = −KI ê

u = −KP ê+ z,

where the parameter adaptation law F : Rn × Rm → Rm×m is to be defined.2 Defining

ẽ := ê− e the last two equations of the controller may be written in the form

˙̃z = −KI(e+ ẽ)

ũ = −KP (e+ ẽ) + z̃.

The time derivative of the Lyapunov function (5.54) with ΛI = K−1
I is now

Ẇ = −Q(x)− ê>KP ê− ũ>ẽ

= −Q(x)− ê>KP ê− ũ>G>2 D̃Φ̃(xa)

2Notice that, in contrast to the robust PI–PBC, we have assumed that the full state is measurable.
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where we underscore the presence of the last right hand term. If ũ were known the

standard procedure of augmenting the Lyapunov function with a term trace(D̃>D̃)
and cancelling the sign–indefinite term with a suitable choice of F (x, z) would do the

job. Alas, u? is not known, hence this approach is not feasible.

Adding an adaptation for the constant u? is also not a trivial task, because of the

bilinear nature of the joint estimation problem.

3.4.3 Comments on robustness based on continuity

The availability of a bona fide Lyapunov function for the known parameters PI–PBC,

i.e., W (x, z̃), suggests that stability will be preserved if the matrix D is replaced by a

“good”, constant estimate of it, say D0. More precisely, it is expected that replacing the

controller (3.12) by
e0 = G>2 D0Φ̃(xa)

ż = −KIe0

u = −KP e0 + z,

where

D = D0 + ∆, ∆ := diag{δi}

would ensure stability if |col(δi)| is sufficiently small. Unfortunately, since the Lya-

punov function is not strict, this conjecture cannot be analytically validated. Indeed, in

this case the time derivative of the Lyapunov function (5.54) with ΛI = K−1
I is now

Ẇ = −Q(x) + e>ũ− z̃>(e−G>2 ∆Φ̃(xa))

= −Q(x)− e>0 KP e0 − (KP e0 − z̃)>G>2 ∆Φ̃(xa).

While the term e>0 KPG
>
2 ∆Φ̃(xa) can be dominated for “small” ∆, there is no way we

can dominate the remaining term z̃>KIG
>
2 ∆Φ̃(xa) and the Lyapunov analysis cannot

be completed with standard techniques.

This unfortunate situation does not mean, of course, that a continuity result of this

type cannot be established. It simply reveals our inability to do it with the tools used

to analyze the ideal case.

3.5 Application to Temperature Regulation

In this subsection we design a robust PI–PBC for the temperature regulation of a class

of thermal systems—the so–called, Rapid Thermal Processes (RTP). Attention is con-

centrated on the verification of Assumption 3.3. Hence, unless otherwise indicated,
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Assumption 3.1 is not imposed.

3.5.1 System Description

Similarly to [25, 72] we consider the following model of Rapid Thermal Processes

Ṫ = A1 [Ψ(T )−Ψ(Trad)] + A2 (T − Tconv) +Gu, (3.25)

where T ∈ Rn
≥0 represents the vector of temperatures, Ψ(T ) := col(T 4

i ) and Trad, Tconv ∈
Rn
≥0 are, respectively, the vectors of temperatures related to the radiation heat emission

from environment and the convection air flows. The constant matrices A1, A2 ∈ Rn×n

are Hurwitz and contain the radiation and the convection heat transfer coefficients.

Also, the entries of G ∈ Rn×m correspond to the heat transfer coefficients of the heat-

ing elements. Finally, u ∈ Rm is the controlled power applied to the heating elements.

Physically, considering matrix G as (3.2) means that for m heating elements there are

n−m measured points that are not directly heated by these elements.

In the model above, as in [72], it is considered that the plant is heated almost uni-

formly so that the contribution of energy from conduction is too small with respect

to the radiation transfer. Hence, the conduction heat transfer is neglected. We also

assume the steady environment conditions, i.e., the values Trad and Tconv are constant.

To simplify the notation we re–write the system (3.25) in the form

Ṫ = A1Ψ(T ) + A2T + E +Gu (3.26)

where

E := −A1Ψ(Trad)− A2Tconv.

Unlike A1, A2 and E that are highly uncertain, the input matrix G—that is defined by

the induced heat flow—can be precisely identified. The control objective is then to de-

sign a robust PI, i.e., that does not require the knowledge of the uncertain parameters,

to regulate the process around some desired temperature, which is not equal to the

open–loop equilibrium, but belongs to the assignable equilibrium set, that is,

T ? ∈
{
T ∈ Rn

≥0 | G⊥[A1Ψ(T ) + A2T + E] = 0
}
, (3.27)

where G⊥ ∈ R(n−m)×n is a full-rank left-annihilator of G.

To place the problem in the context of Proposition 3.1 we first shift the equilibrium

of the open–loop system to the origin and then proceed to verify Assumption 3.3. For,
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we introduce the standard change of coordinates

x = T − T̄

where T̄ is the open–loop equilibrium that satisfies

A1Ψ(T̄ ) + A2T̄ + E = 0. (3.28)

Thus, the system (3.25) in the new coordinates takes the form (3.1) with

f(x) := A1Ψ(x+ T̄ ) + A2(x+ T̄ ) + E, (3.29)

Associated to the desired temperature T ? we define the equilibrium to be stabilised

x? := T ? − T̄ . (3.30)

3.5.2 Passivity of the thermal system.

The lemma below identifies conditions under which the system (3.25) satisfies As-

sumption 3.3 without imposing Assumption 3.1, that is, avoiding the partition of the

coordinates into actuated and un–actuated. Towards this end, the following assump-

tion is needed.

Assumption 3.4. The matrix A1 is diagonally stable [38]. That is, there exists P ∈ Rn×n,

P = diag{pi} > 0 such that

PA1 + A>1 P =: −2S < 0. (3.31)

Moreover, the matrix A2 verifies

A>2 Pdiag{T 3
i }+ diag{T 3

i }PA2 ≤ 0. (3.32)

Conditions for diagonal stability of a matrix have been studied intensively, see [38]

for a survey. Necessary and sufficient conditions were first reported in [8]—see also

[74] for a simpler proof. For a Hurwitz matrix, a sufficient condition given in [26] is

that it is a Metzler matrix (namely, its non diagonal elements are nonnegative). Note

that due to physical nature of RTP systems the matrix A1 usually belongs to this class.

SinceA2 is Hurwitz and Ti ≥ 0, condition (3.32) is trivially satisfied ifA2 is diagonal,

which is assumed in RTP models [71, 72].
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Lemma 3.3. If Assumption 3.4 holds the vector field (3.29) satisfies Assumption 3.3

with

H(x) =
n∑
i=1

piφi(xi) + k (3.33)

where

φi(xi) = 1
5(xi + T̄i)5 −Ψi(T̄ )xi. (3.34)

and

k = −1
5

n∑
i=1

piT̄
5
i .

Proof. Point (iii) of Assumption 3.3 is trivially satisfied by (3.33).

We proceed now to prove point (i). Replacing (3.34) in (3.33) and grouping terms

yields

H(x) = 1
5

n∑
i=1

pi(xi + T̄i)5 − x>PΨ(T̄ ) + k,

Now, notice that

∇H(x) = PΦ(x),

where

Φ(x) := Ψ(x+ T̄ )−Ψ(T̄ ). (3.35)

On the other hand, from (3.28) it follows that the systems vector field may be written

as

f(x) = A1Φ(x) + A2x.

Consequently,

[∇H(x)]>f(x, θ) = Φ>(x)P [A1Φ(x) + A2x]

= −Φ>(x)SΦ(x) + Φ>(x)PA2x,

where we have used (3.31) to obtain the second identity. Now, condition (3.32) ensures

that the function h : Rn → Rn

h(x) := A>2 PΨ(x),

is monotonically decreasing [64]. That is, for all a, b ∈ Rn,

[h(a)− h(b)]>(a− b) ≤ 0.

Consequently,

Φ>(x)PA2x = [h(x+ T̄ )− h(T̄ )]>x ≤ 0

completing the proof of point (i).
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To prove point (ii) we notice that

f̃(x) = A1Φ̃(x) + A2x̃,

while

∇H(x)−∇H(x?) = P Φ̃(x).

Hence, the claim is established invoking the same arguments used above and defining

Q(x) = Φ̃>(x)SΦ̃(x).

Finally, the second derivative of the functions φi(xi) yields

φ′′i (xi) = 4(xi + T̄i)3 = 4T 3
i ,

which is non–negative because Ti ≥ 0. Hence, the functions φi(xi) are convex as re-

quested by condition (iv) of Assumption 3.3. This completes the proof. ���

Direct application of Lemma 1 leads to the following.

Corollary 3.1. If Assumption 3.4 holds, the thermal system (3.25) defines a passive

map ũ 7→ e with storage function U(x), where

e = G>P Φ̃(x)

U(x) = H(x)− x>PΦ(x?)−H(x?) + (x?)>PΦ(x?)

3.5.3 Robust PI–PBC of the thermal system

To present the robust PI–PBC for systems verifying Assumption 3.1 we partition the

vector of temperatures into its un–actuated and actuated components

T =
 Tu

Ta

 , Tu :=



T1

T2
...

Tn−m

 , Ta :=



Tn−m+1

Tn−m+2
...

Tn

 ,

partition P as

P =
 P1 0(n−m)×m

0m×(n−m) D

 ,
and do the same with the vector function Ψ(T ).

The following proposition is a consequence of Lemma 3.3 and Proposition 3.1.
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Proposition 3.2. Consider the system (3.25) verifying Assumptions 3.1 and 3.4. Fix

any desired temperature T? verifying (3.27) and define the PI–PBC

u = −KP Ψ̃a(Ta) + z

ż = −KIΨ̃a(Ta),

and the controller gains KP and KI are given by (3.19). For all diagonal, positive defi-

nite matrices ΓP ∈ Rm×m and ΓI ∈ Rm×m all trajectories are bounded and the equilib-

rium point (T, z) = (T?, u?) is globally asymptotically stable.

Proof. The proof of stability is established invoking item (i) of Proposition 1 and iden-

tifying

Φ̃a(xa)|xa=Ta−T̄a = Ψ̃a(Ta).

To prove asymptotic stability we invoke item (ii) and observe that the augmented error

signal (3.13) is given in this case by

ea =
Ψ̃>(T )S
G>2 D

 Ψ̃(T ).

Since ea verifies (3.14) and S is positive definite we conclude that Ψ̃(T (t)) → 0 and

consequently T (t)→ T ?. ���

3.5.4 Numerical Simulation:

Consider the thermal system (3.26) with

A1 =
−a11 a12

a21 −a22

 , A2 =
−α1 0

0 −α2

 , G =
0
g

 , C =
c1

c2


where aij ≥ 0, αi ≥ 0. Notice that the system satisfies Assumption 3.4. Then, the

assignable equilibria set is

E = {T : T2 ∈ R+, −a11T
4
1 + a12T

4
2 − α1T1 + c1 = 0} (3.36)

From Proposition 3.2, the controller

ż = −KI

(
T 4

2 − (T2?)4
)

u = −KP

(
T 4

2 − (T2?)4
)

+ z
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Figure 3.1: Simulation Result showing the system response : (a) For different gains Kp letting KI =
3× 10−6. (b) For different gains KI letting Kp = 6× 10−6.

where Kp = 1
g
Γp, KI = 1

g
ΓI and ΓP ,ΓI ∈ R+ asymptotically stabilizes the system at

T = T?. The parameter values used in the simulation where: a11 = 1 × 10−9, a12 =
1
2 ××10−9, a21 = 1× 10−9, a22 = 1× 10−9, α1 = 1× 10−4, α2 = 1

2 × 10−4, g = 1, c1 =
3, c2 = 1.7, Γp = 8 × 10−5 and ΓI = 1 × 10−5. In the simulation, the control objective

is initially fixed at T2? = 500 K, then it is suddenly changed to T2? = 700 K. From

(3.36), the corresponding values for T1? are, respectively, 430.06 K and 592.20 K. Fig.

3.1 shows the simulation results. In Fig. 3.1a the response of the system when varying

control parameter Kp and letting KI = 3× 10−6 is depicted. As it can be noticed from

the same figure, the larger is the value in Kp the faster is the convergence. In Fig. 3.1b

it is shown the response of the system when KI is varying while KP = 6× 10−6. From

the figure, it can be seen that large values in KI causes overshoots in the response of

T2.
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Chapter 4

Energy Shaping PI of Port–Hamiltonian

Systems

An energy shaping controller for mechanical systems that does not require the solution

of partial differential equations (PDEs) has been recently proposed in [23]. In this chap-

ter we pursue this research line considering the more general case of port–Hamiltonian

(pH) systems [81].

The starting point of the design is the well–known power shaping output [55], which

defines a passive output for the pH system with storage function its energy function.

As is well–known a PI controller around this output preserves the passivity of the

closed–loop. It is then shown that, if the power shaping output is “integrable”, the

integral action of the PI is passive with a storage function a quadratic term of the “in-

tegral” of the power shaping output, which depends on the plant state. In this way we

can generate a new storage function for the closed–loop constructed as the sum of this

function and the original energy function of the pH system. Adding a suitably chosen

constant to the control makes this function positive definite, which then qualifies as a

Lyapunov function for the closed–loop system. The condition imposed on the power

shaping output boils down to a classical integrability condition of some computable

vector fields, hence it can be readily verified.

.

4.1 Problem Formulation and Main Assumptions

The standard input–state representation of pH systems is of the form [24, 81]

ẋ = [J (x)−R(x)]∇H(x) + g(x)u, (4.1)

53
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where x ∈ Rn is the state vector, u ∈ Rm, m ≤ n, is the control vector, H : Rn → R is the

systems Hamiltonian, J ,R : Rn → Rn×n, with J (x) = −J >(x) and R(x) = R>(x) ≥
0, are the interconnection and damping matrices, respectively, and g : Rn → Rn×m is

the input matrix, which is full rank. To simplify the notation in the sequel we define

the matrix F : Rn → Rn×n

F (x) := J (x)−R(x).

The control objective is to stabilise an equilibrium x?, which is an element of the set

of assignable equilibria defined as

E :=
{
x ∈ Rn | g⊥(x)F (x)∇H(x) = 0

}
, (4.2)

where g⊥ : Rn → R(n−m)×n is a full–rank, left–annihilator of g(x), that is, g⊥(x)g(x) = 0
and rank{g⊥(x)} = n−m.

The following assumptions identify the class of pH systems for which the proposed

control strategy is applicable.

Assumption 4.1. The matrix F (x) is full rank.

Assumption 4.2. The vector fields F−1(x)gi(x), with gi(x), i = 1, . . . ,m, the columns

of the matrix g(x), are gradient vector fields. That is,

∇
(
F−1(x)gi(x)

)
= [∇

(
F−1(x)gi(x)

)
]>.

If Assumption 4.1 holds, it is possible to define the power shaping output as follows

yPS := −g>(x)F−>(x) [F (x)∇H(x) + g(x)u] . (4.3)

As shown in [55,62] yPS is a cyclo–passive output1 for the pH system (4.1) with storage

function H(x). More precisely, the following dissipation inequality holds

Ḣ ≤ u>yPS. (4.4)

Noting that yPS may be written as

yPS = −g>(x)F−>(x)ẋ (4.5)
1We recall that, in contrast to passive systems where the storage function is bounded from below, in

cyclo–passive systems this is not necessary [24].
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and recalling Poincare’s Lemma it is easy to see that Assumption 4.2 ensures the exis-

tence of a function γ : Rn → Rm such that

γ̇ = (∇γ)>ẋ = yPS, (4.6)

with yPS defined in (4.3).

4.2 Energy Shaping

In this section we define a static state–feedback such that the system (4.1) in closed–

loop with this control preserves passivity of the mapping v 7→ yPS but with a suitably

modified storage function.

Proposition 4.1. Suppose Assumptions 4.1 and 4.2 hold. Define the mapping uPS :
Rn → Rm

uPS(x) :=[I −KPg
>(x)F−>(x)g(x)]−1 [−KI(γ(x) + C) +

KPg
>(x)F−>(x)F (x)∇H(x)

]
(4.7)

where2

∇γ(x) := −F−1(x)g(x) (4.8)

and C ∈ Rm and KP , KI ∈ Rm×m, KI , KP > 0, are free parameters. The system (4.1) in

closed–loop with the control u = uPS(x) + v defines a cyclo–passive mapping v 7→ yPS

with storage function

Hd(x) = H(x) + 1
2‖γ(x) + C‖2

KI
. (4.9)

Proof. To establish the proof, first, notice that from (4.5) and (4.6) the control (4.7) re-

duces to

uPS(x) = − [KI(γ + C) +KPyPS] . (4.10)

Therefore, differentiating (4.9) we get

Ḣd = Ḣ + y>PSKI(γ + C)

≤ y>PS [u+KI(γ + C)]

= y>PS(v −KPyPS)

≤ y>PSv,

2Notice that the existence of γ(x) is ensured by Assumption 4.2 and it can be computed via direct
integration.
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where we used (4.6) in the first equality, (4.4) in the first inequality, (4.10) for the second

equality, respectively, and KP > 0 for the last inequality. ���

Remark 4.1. From (4.10) and (4.6) it is easy to see that the control u = uPS(x) + v is a PI

of the form

u(t) = −KPyPS(t)−KI

∫ t

0
yPS(τ)dτ +D + v, (4.11)

where D := −KI [C + γ(x(0))]. This establishes the connection with the PI–like con-

troller proposed for mechanical systems in [23]. Notice that in its state space realiza-

tion (4.7) the pH structure is not preserved in closed–loop. However, it does if the PI

(4.11) is implemented via a dynamic extension.

Remark 4.2. The condition of integrability of the vector fields F−1(x)gi(x) appears

also in the context of Control–by–Interconnection of pH systems, as a necessary and

sufficient condition for existence of Casimir functions, see [53] for further details.

4.3 Stabilization

From Proposition 4.1 it is clear that if the new storage function Hd(x) is positive def-

inite (with respect to the desired equilibrium x?) it qualifies as a bona fide Lyapunov

function for the closed–loop system (with v = 0) that ensures stability of x?. This fact

is stated in the proposition below where we also give easily verifiable condition to

check positivity of Hd(x).

Proposition 4.2. Consider the system (4.1), verifying Assumptions 4.1 and 4.2, in

closed–loop with the control u = uPS(x), where uPS(x) is given by (4.7). Fix

C := K−1
I g†∗F∗(∇H)∗ − γ∗. (4.12)

If x∗ ∈ E and

(∇2Hd)∗ > 0 (4.13)

with Hd(x) defined in (4.9), then x∗ is stable (in the sense of Lyapunov) with Lyapunov

function Hd(x). It is asymptotically stable if yPS, defined in (4.3), is a detectable output,

that is, if the following implication is true

yPS(t) ≡ 0⇒ lim
t→∞

x(t) = x∗.

Proof. First, we will prove that x∗ is an equilibrium point of the closed–loop sys-

tem. From (4.3) we have that yPS∗ = 0, hence (4.10)—at the equilibrium—becomes
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uBC∗ = −KI(γ∗+C). The proof is completed noting that the choice of C given in (4.12),

together with the fact that x∗ ∈ E , guarantees that

F∗(∇H)∗ − g∗ [KI(γ∗ + C)] = 0. (4.14)

To prove the stability claim we recall that from Proposition 4.1 and v = 0 we have that

Ḣd ≤ −KP |yPS|2 ≤ 0. Hence, invoking classical Lyapunov theory [39], it suffices to

prove that Hd(x) is a positive definite function. From (4.14) we get

(∇H)∗ = F−1
∗ g∗KI(γ∗ + C). (4.15)

Computing the gradient of Hd(x) at the equilibrium yields

(∇Hd)∗ = (∇H)∗ + (∇γ)∗KI(γ∗ + C)

= (∇H)∗ − F−1
∗ g∗KI(γ∗ + C) = 0,

where the second and third identities are obtained replacing (4.8) and (4.15), respec-

tively. This ensures that x∗ is a critical point of Hd(x). The proof is completed recalling

that (4.13) is a sufficient condition for x∗ to be an isolated minimum of Hd(x). ���

Remark 4.3. From the proof of Proposition 4.2 it is clear that—for the purpose of

stabilization—the constant vector C, which ensures x? is an equilibrium point of the

closed–loop, is uniquely defined by (4.12).

4.4 Relation with Classical PBCs

In this section we discuss the relationship between the new controller and the classical

PBC techniques of EB and IDA.3

4.4.1 Energy–balancing PBC

The basic idea of EB–PBC (with the output yPS) is to look for a state feedback uEB :
Rn → Rm such that

Ḣa = −u>EByPS,

3The interested reader is referred to [54, 62, 63] for further details on EB–PBC and IDA–PBC.
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for some “added” energy function Ha : Rn → R. In this case, setting u = uEB(x)
transforms the cyclo–pasivity inequality (4.4) into

Ḣ + Ḣa ≤ 0,

and if H(x) +Ha(x) is positive definite the closed–loop system will have a stable equi-

librium at x∗. The following proposition states that, for a suitable choice of the tuning

gains, the new controller is an EB–PBC.

Proposition 4.3. Consider the pH system (4.1) verifying Assumptions 4.1 and 4.2. Fix

KP = 0 in uPS(x). Then, the control u = uPS(x) is an EB–PBC with added energy

function

Ha(x) := 1
2‖γ(x) + C‖2

KI
. (4.16)

Proof. For KP = 0 the mapping uPS(x), given in (4.10), reduces to

uPS(x) = −KI [γ(x) + C]. (4.17)

On the other hand, from (4.6) and (4.16) we have

Ḣa = y>PSKI(γ + C) = −y>PSuPS,

completing the proof. ���

4.4.2 Interconnection and damping assignment PBC

In IDA–PBC we fix the desired interconnection and damping matrices, hence, fix the

matrix Fd : Rn → Rn×n such that Fd(x) + F>d (x) ≤ 0, and look for a control u = uIDA(x)
such that the closed–loop has the form

ẋ = Fd(x)∇HIDA(x);

for some energy function HIDA : Rn → R>0, which has a minimum at the desired

equilibrium. It is easy to show that the assignable energy functions HIDA(x) are char-

acterized by the solutions of the following PDE

g⊥(x) [Fd(x)∇HIDA(x)− F (x)∇H(x)] = 0, (4.18)
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and the control is uniquely defined as

uIDA(x) := g†(x) [Fd(x)∇HIDA(x)− F (x)∇H(x)] . (4.19)

The proposition below establishes the relation between IDA–PBC and the con-

troller of Proposition 4.1.

Proposition 4.4. Consider the pH system (4.1) verifying Assumptions 4.1 and 4.2. Fix

KP = 0 in uPS(x) and select the desired interconnection and damping matrices as

Fd(x) = F (x). (4.20)

Then, the energy function Hd(x) defined in (4.9) and the control u = uPS(x) given in

(4.7) satisfy the IDA–PBC equations (4.18) and (4.19), respectively.

Proof. Replacing the gradient of Hd(x), given by

∇Hd(x) = ∇H(x)− F−1(x)g(x)KI(γ(x) + C),

in the PDE (4.18) we get

g⊥
{
F
[
∇H − F−1gKI(γ + C)

]
− F∇H

}
= g⊥gKI(γ + C)

= 0.

On the other hand, the control law (4.7) is given by (4.17), which satisfies (4.19) since,

using (4.20),

uIDA = g†
{
F
[
∇H − F−1gKI(γ + C)

]
− F∇H

}
= −g†gKI(γ + C)

= uPS.

���

4.5 Examples

In this section we apply the proposed controller to three physical systems and investi-

gate, with the example of LTI systems, some of the limitations of the method.
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4.5.1 Micro electro–mechanical optical switch [14, 83]

Consider the optical switch system with pH model

ẋ =


0 1 0
−1 −b 0
0 0 −1

r

∇H(x) +


0
0
1

u (4.21)

where in order to simplify, the original control input ū has been scaled, i.e. u := 1
r
ū.

The energy function of the system is

H(x) = 1
2mx2

2 + 1
2a1x

2
1 + 1

4a2x
4
1 + 1

2c1(x1 + c0)x
2
3,

where x1, x2 are the mass of the comb driver actuator and its momentum, respectively;

x3 denotes the charge in the capacitor, u is the voltage applied o the electrodes, a1 >

0, a2 > 0 are the spring constants, b > 0, r > 0 are resistive elements, c0 > 0, c1 > 0 are

constants that determine the capacitance function and, finally, m > 0 denotes the mass

of the actuator. It is important to underscore the physical constraint x1 > 0. See [14]

for further details on the model.

The set of assignable equilibria for this system is

x2? = 0

x3? = (c0 + x1?)
√

2c1x1?(a1 + a2x2
1?)

(4.22)

and the goal is to stabilize at x1? > 0.

Clearly, F is full rank. Also, some simple calculations using (4.3) prove that yPS =
rẋ3, therefore γ(x) = rx3. Hence, Assumptions 4.1 and 4.2 hold. It only remains to

show that sufficient conditions of Proposition 4.2 holds. For this purpose, we evaluate

the Hessian of H at the equilibrium. Some simple calculations yield

(∇2Hd)? =


a1 + 3a2x

2
1? + d2

1d2 0 −d1d2

0 1
m

0
−d1d2 0 d2

+ kI


0 0 0
0 0 0
0 0 r2


where

d1 :=
√

2c1x1∗(a1 + a2x2
1∗) (4.23)

d2 := 1
c1(c0 + x1∗) . (4.24)
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Figure 4.1: Simulation results when parameter KP varies.

It can be seen that for all KI > 0, the condition (4.13) holds. Hence, x? is a stable

equilibrium for the closed–loop system.

To prove asymptotic stability we verify the detectability of yPS. First, from (4.12) we

get

C = − 1
KI

x3∗

rc1(c0 + x1∗) − rx3∗ . (4.25)

Second, in the residual set where yPS ≡ 0, we have that x3 is a constant, denoted x̄3.

Thus, the control law is also a constant given by

uBC = −KI(rx̄3 + C), (4.26)

which substituted in the third equation of (4.21) yields

− x̄3

rc1(x̄1 + c0) −KI(rx̄3 + C) = 0. (4.27)

From the latter equation is clear that x̄1 is a constant. Moreover, replacing (4.25) in

(4.27) and using (4.21) we can conclude , invoking LaSalle’s Invariance Principle, that

x̄1 = x1∗ and x̄3 = x3∗ is an asymptotic equilibrium point.

Simulation results are presented in Fig. 4.1. Based on the results reported in [14],

the system parameters were chosen as c0 = 15 × 10−6, c1 = 35.6 × 10−9, m = 2.35 ×
10−9, a1 = 0.46, a2 = 0.0973, b = 5.5 × 10−7 and r = 100. Fig. 4.1 shows the system

response for three different values of KP when KI = 5× 10−3. The control objective is

to stabilize x1 at x1∗ = 7× 10−5. Thus, from (4.22), x2∗ = 0 and x3∗ = 1.0601× 10−10. As

it can be noticed from the plot, x1 > 0, which agrees with the physical constraint.
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Figure 4.2: The two-tanks system

4.5.2 Two-Tanks Level Regulation Problem [62]

Consider the two-tank system shown in Fig. 4.2. The state variables x1, x2 ∈ R+

represent, respectively, the water level in Tank 1 and 2. the control action ũ := A1
Γ u ≥ 0

is the flow pumped from the reservoir. The valve parameter is a constant 1 ≥ Γ ≥ 0,

with Γ = 0 when the valve is fully open and Γ = 1 if it is closed. The pH model of

system is

ẋ =
−α1

√
x1 α2

√
x2

−α2
√
x2 0

∇H(x) +
 1
g2

 ũ (4.28)

H(x) = x1 + A1

A2
x2, (4.29)

with the parameters

αi := ai
√

2G
Ai

, i = 1, 2, g2 := 1− Γ
Γ , (4.30)

where ai, Ai are the cross-sections of the outlet holes and the tanks, and G the gravi-

tation constant. To simplify the notation, we assume A1 = A2. The assignable equilib-

rium set is given by

x2? =
[
a1

a2
(1− Γ)

]2
x1?,

and the control objective is to regulate the water level at some x1? > 0.

As pointed out in [62] the vector field F−1(x)g is not integrable, as required by

Assumption 4.2. However, the system dynamics can be alternatively written as

ẋ =
− 1

a
1
d

0 −1
d

∇H̄(x) +
 1
g2

 ũ (4.31)

H̄(x) = 2
3aα1x

3
2
1 + 2

3dα2x
3
2
2
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where a, d are free parameters satisfying 4d ≥ a > 0. In this form the obstacle can be

overcome. Indeed, from (4.31) and (4.3) we get

yPS = a(1 + g2)ẋ1 + dgẋ2

and

γ(x) = a(1 + g2)x1 + dgx2.

After some computations we have

(∇2Hd)? =

aα1x
1
2
1? 0

0 dα2x
1
2
2?

+KI

 a2(1 + g2)2 a(1 + g2)dg2

dg2a(1 + g2) d2g2
2,


and clearly condition (4.13) holds. Therefore, the proposed controller will render x? a

stable equilibrium point for the closed–loop system.

4.5.3 LTI systems: Controllability is not enough

In the important paper [66] it was shown that IDA–PBC for LTI systems is a universal

stabiliser, in the sense that it is applicable to all stabilisable systems. On the other hand,

it was shown in [57] that stabilisability is not enough for IDA–PBC of mechanical sys-

tem. Indeed, in Proposition 4.1 of [57] it is shown that if the system has uncontrollable

modes, an additional condition of the pole location, which is stronger than stabilisabil-

ity, must be imposed for stabilisation with IDA–PBC.

The difference between these two cases is that, while for general IDA–PBC there is

no constraint on the structure of the desired energy function, for mechanical systems

a particular structure is imposed to it. Since in the methodology proposed in this paper

there is also a constraint on the desired energy function, namely (4.9), it is expected that

a condition stronger than stabilisability should be imposed for the method to apply—a

conjecture that we prove in this subsection via a counter–example. Actually, we will

prove that unlike IDA–PBC for mechanical systems even controllability is not enough

for the proposed method to work.

Now, recall that for LTI systems the energy function is of the form H(x) = 1
2x
>Qx,

the matrices F and g are constant and, without loss of generality, we can take x? =
0. Therefore, the control (4.7) becomes a simple linear, state–feedback of the form

uPS(x) = Kx with

K :=
(
I −Kpg

>F−>g
)−1

(Kpg
>F−>FQ+KIg

>F−>). (4.32)
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Notice that for linear systems, with x? = 0, the constant vectorC given in (4.12) is equal

to zero. To prove the aforementioned conjecture we will construct an LTI, controllable

pH system for which the controller (4.32) yields an unstable closed–loop system for all

values of the tuning gains Kp, KI . It is important to note that the Lyapunov stability

test utilised in Proposition 4.2 is sufficient, but not necessary—even for LTI systems.

Therefore, instability must be proved checking directly the closed–loop system matrix.

Also, the sign constraints imposed to the tuning gains, which are required to ensure

positivity of the shaped energy function, need not be imposed in the LTI case where,

as indicated above, a stability analysis—other than Lyapunov—will be carried out.

Consider the following controllable, LTI system

ẋ =
 0 1
a1 1− a1

x+
0

1

u, (4.33)

with a1 < 0. Some simple calculations show that it admits a pH representation

ẋ = FQx+ gu (4.34)

with g := col(0, 1),

F :=
−1 a1

1
2a1 −a2

1


Q := − 2

a2
1

a2
1 a1

a1 1− a1
2

 , (4.35)

which satisfies F + F> < 0 and Assumption 4.1.4

Proposition 4.5. Consider the LTI, pH system (4.34), (4.35) in closed–loop with the

controller (4.32). For all values of the controller gains Kp and KI the closed–loop sys-

tem is unstable.

Proof. The closed–loop system is given by

ẋ =
 0 1
a1 − a1k̃ 1− a1 − k̃

x
where

k̃ := 2
a2

1

(
1 + 2Kp

a2
1

)−1

(KI +Kp).

4Assumption 4.2 is always satisfied for single input LTI systems.
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Clearly, the closed–loop system matrix is Hurwitz if and only if the following condi-

tions can be satisfied

a1 − a1k̃ < 0

1− a1 − k̃ < 0.

Since a1 < 0, these inequalities are equivalent to

k̃ < 1

k̃ > 1− a1,

Since 1− a1 > 1 the inequalities cannot be simultaneously satisfied. ���
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Chapter 5

Applications of the PI-PBC to Wind

Energy Systems

The concern over the environment has made us look for alternatives sources of power

generation. Within this new tendency, electrical power generation from wind has be-

come one of the most adopted. In both Europe, which has the greater wind source,

and North America, large scale developments to exploit wind power have been un-

dertaken from some time ago. Since then, the power electronics technologies used in

wind power application have been dramatically changed due to the growing capacity

and the increasing presence of wind turbine systems in the power grid. An evidence

of this growth is the world wind power capacity cumulated during the first years of

the current century, from 13.6 in 2000 GW to 370 GW in 2014 [11, 67]. Besides, it is

expected that in 2020 this value ranges 760 MW. In fact, the wind power grows more

significant compared to any other renewable source and it is an important component

in the modern power supply system.

A wind energy system is composed of interconnected mechanical and electrical

systems. The mechanical part consists of a turbine which captures energy from the

wind. When the wind velocity is not too high to exceed the capacity limits of the

—variable-speed— turbine and generator units, it is customary to require that the tur-

bine operates at a rotational speed ensuring the maximum power extraction from the

wind. This captured power is transform into electric energy and flows to the electrical

system to which the wind system is connected. Common uses of this electrical en-

ergy include charging a battery in stand–alone windmill systems, injection of reactive

power for grid–connected windmills or minimizing power losses for a given load.

In this chapter we address the control problem of two different wind energy sys-

tem topologies, which will be detail in the sequel. One of the main difference in their

topology is the rectification stage, being active for the first system and passive for the

67
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second one. Indeed, active rectification offers more degrees of freedom when design-

ing a controller at the expense of increasing the cost implementation of such systems.

Some previous work in the literature about control of windmill systems make use

of MMPT algorithms based on the so–called Hill–climb search procedures. Many

publications, including some variants of this approach, can be found. See, for in-

stance, [1, 41, 86] and references therein. The most widely used method, the perturb

& observe algorithm, presents some undesirable drawbacks. These include oscilla-

tions around the maximum power point [33] and the failure to track fast–changing

wind [18]. There are also papers, like [18, 91], considering the linearization of the sys-

tem dynamics. In [30, 40] the problem is tackled by means of the extremum seeking

control technique. Some fuzzy logic–based schemes have been developed, for exam-

ple [15, 89]. In the current chapter a passivity–based strategy is derived in order to

tackle the problem. The control technique adopted follows mainly from Chapter 2.

It is worth to mention that, in contrast with the previous approaches, our work is

model–based, with all (relevant) nonlinearities of the dynamic system considered in

the model.

5.1 PI–PBC for Maximum Power Extraction of a Wind

Energy System with Guaranteed Stability Properties

In this section we propose a maximum power extraction control for a wind system

The approach adopted in this paper follows the line pursued in [32, 35, 90]. The final

objective is to design a simple linear PI with guaranteed stability properties. Towards

this end, we identify a passive output for the nonlinear incremental model around to

which the stabilizing PI is designed. Interestinlgy, as shown in [32, 90] the PI scheme

that results from the application of this method is closely related to the well–known

instantaneous active power control of [2]. In this way, an important connection with

current practice is established.

5.1.1 System Modeling

Depicted in Fig. 5.1, the system consists of a turbine, surface-mounted PMSG and a

rectifier connected to a load, a capacitor, a load and one constant voltage source, which

is used to form the dc bus.
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vw
PMSG

C

Rectifier Voltage

RSRL

VS

Source

Figure 5.1: System under consideration

Wind Turbine

The mechanical power extracted from the wind is given by the power function

Pw = 1
2ρACp(λ)v3

w,

where ωm is the shaft’s rotational speed, ρ is the air density, A is the area swept by

the blades and Cp is the turbine’s coefficient power1, λ, which is defined as

λ := rωm
vw

, (5.1)

is the blades’ tip speed, r the blades’ radius, ρ the air density, and vw the wind speed,

which is assumed constant and known. The shape of the function Cp(λ) depends on

the geometry of the windmill. Fig. 5.2 shows a typical curve that can be obtained

from experimental measurements. Since we are interested in the maximum power

extraction, it is required that the system operates in the point

λ? = arg maxCp(λ). (5.2)

which is assumed to be known. It is important to note that, if vw is known the control

task boils down, in view of (5.1), to regulation of the shaft’s speed ωm around the

reference speed

ωm? = λ?vw
r

. (5.3)

The dynamic equation of a one-mass turbine is obtained from Newton’s equation of

motion

Jω̇m = −fωm + Tm − Te (5.4)

1The power coefficient is also a function of the blade pitch angle, which acts as an additional control
input. We are interested in the operation regime where this angle is kept constant, consequently we
have omitted this additional argument in the function Cp.
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Cp⋆

λ⋆

Figure 5.2: Function Cp(λ)

where J is the rotor inertia, f > 0 is a friction coefficient, Tm is the mechanical torque

applied to the windmill shaft

Tm = Pw
ωm

= 1
2ρArv

2
w

Cp(λ)
λ

, (5.5)

and Te is the electrical torque provided by the generator.

Permanent Magnet Synchronous Generator

The dynamic equations of the generator in dq-coordinates are

Li̇d = −Rid + Liqωe − vd
Li̇q = −Riq − Lidωe + φωe − vq

(5.6)

where iq, id, vq, vd are respectively the q and d components of the current and volt-

age, R and L are the stator resistance and inductance respectively, φ is the permanent

magnetic flux and ωe is the electrical frequency. The electrical frequency satisfies the

relation

ωe = P

2 ωm. (5.7)

where P is the number of pole pairs. The electrical torque Te is given by

Te = 3
2
P

2 φiq. (5.8)

The input voltages in the generator are

vd = vCd1, vq = vCd2 (5.9)
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where d1 and d2 are duty ratio of the rectifier control signals in dq-coordinates. Finally,

from Kirchhoff’s current law we have

Cv̇C = −RevC + VS
RS

+ idd1 + iqd2 (5.10)

where C is the capacitance value, Re := RL+RS
RLRS

, RL is a resistive load and RS and VS

are, respectively, the supply internal resistance and dc voltage.

The Overall System

Subsituting (5.5) and (5.8) in (5.4), (5.9) and (5.7) in (5.6) and from (5.10), the overall

system becomes

Li̇d = −Rid + P

2 Liqωm − d1vC

Li̇q = −Riq −
P

2 Lidωm + P

2 φωm − d2vC

Jω̇m = −fωm + 1
2ρAv

3
m

1
ωm

Cp

(
vwωm
r

)
− 3

2
P

2 φiq

Cv̇C = −RevC + VS
RS

+ d1id + d2iq

Introducing the following definitions

φ1 := φP

2 , γ := P

2 , J1 := 2
3J, f1 := 2

3f,

and the change of variables x = col(Lid, Liq, J1ωm, CvC), u = col(d1, d2), the system

can be rewritten as

ẋ1 =− R

L
x1 + γ

J1
x2x3 −

x4

C
u1 (5.11)

ẋ2 =− γ

J1
x1x3 −

R

L
x2 + φ1

J1
x3 −

x4

C
u2 (5.12)

ẋ3 =− f1x3 + Φ(x3)− φ1

L
x2 (5.13)

ẋ4 =− Re

C
x4 + x1

L
u1 + x2

L
u2 + VS

RS

(5.14)

where

Φ(x3) := 1
3ρAJ1v

3
w

1
x3
Cp

(
rx3

J1vw

)
.

Now, notice that the system admits the following representation

ẋ = A0(x3)x+
2∑
i=1

Bixu+ E0(x3) (5.15)
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where E0(x3) := col
(
0, 0,Φ(x3), VS

RS

)
and

A0(x3) :=


−R
L

γ
J1
x3 0 0

− γ
J1
x3 −R

L
φ1
J1

0
0 − φ

J1
−f1 0

0 0 0 −Re
C

 , B1 :=


0 0 0 − 1

C

0 0 0 0
0 0 0 0
x1
L

0 0 0

 B2 :=


0 0 0 0
0 0 0 − 1

C

0 0 0 0
0 1

L
0 0

 ,

Control Objectives as Desired Equilibrium Points

The control objectives are: 1) Minimize the copper loss and maximize the efficiency of

the generator, this is carried out whenever x1? = 0; 2) Operate at the maximum power

extraction point x3? := J1λ?vw
r

.

Lemma 5.1. The assignable equilibrium points of the system (5.11)-(5.14), compatible
with the control objectives, are defined by the set

E =
{
x|x1 = 0, x2 = L

φ1
(Φ? − f1x3?) , x3 = x3?, h1(x4) = 0

}

where Φ? := Φ(x3?) and

h1(x4) := Re
C2x

2
4 −

VS
RSC

x4 + R

φ2
1
(Φ? − f1x3?)2 + f1

J2
1
x2

3? −
x3?
J1

Φ?

Proof: At the equilibrium, (5.15) satisfies

0 =A0(x3)x+
2∑
i=1

Bixu+ E0(x3)

=A0(x3)x+G(x)u+ E0(x3) (5.16)

where

G(x) :=


−x4

C
0

0 −x4
C

0 0
x1
L

x2
L

 . (5.17)

A full–rank left–annihilator of G(x) is

G⊥(x) =
x>P
e>3

 , (5.18)

where P := diag
(

1
L
, 1
L
, 1
J1
, 1
C

)
and e3 := col(0, 0, 1, 0). Pre-multiplying (5.16) by G⊥(x)
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yields

−x>Qx+ 1
J1
x3Φ(x3) + VS

RSC
x4

−f1x3 + Φ(x3)− φ1
L
x2

 = 0

where Q := diag (R,R, f1, Re) = −sym(PA) > 0. Then, fixing x1 = 0 and x3 = x3?, we

get from the second equation, x2 = L
φ1

Φ? − f1x3? := x2?. Substituting the last value in

the first equation yields the expression for h1(x4). ���

Remark 5.1. The necessary and sufficient condition for the existence of the desired

equilibrium point is

R

φ2
1
(Φ? − f1x3?)2 + f1

J2
1
x2

3? −
x3?

J1
Φ? ≤

V 2
S

4ReR2
S

5.1.2 Control Design : The PI-PBC Approach

To proceed with the design of the PI–PBC we make the usual assumption that the me-

chanical dynamics is much slower than the electrical one, which translates into the

following standing assumption.

Assumption 5.1. The system dynamics is represented by

ẋ = Ax+
2∑
i=1

Bixui + E. (5.19)

where we defined A := A0(x3?) and E := E0(x3?).

Notice that we assume x3 to be constant only when it appears in the matrix A0 and

the external force E0, but it remains a state variable in the overall dynamics.

Following [32,35], and also recalled in Section 2.2 , we prove the following passivity

property.

Lemma 5.2. (Passivity) The system (5.19) defines a passive mapping ũ 7→ y with stor-

age function

V (x̃) = 1
2 x̃
>Px̃, (5.20)

where (̃·) = (·)− (·)?, P := diag
(

1
L
, 1
L
, 1
J1
, 1
C

)
and the passive output defined as

y := G>(x?)Px̃. (5.21)

with G(·) defined in (5.17).
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Proof. First, as in Section 2.2, we define the incremental system of (5.19) as

˙̃x =(A+
2∑
i=1

Biui)x̃+
2∑
i=1

Bix?ũi. (5.22)

Then, since that sym(PA) = diag(R,R, f1, Re) =: Q > 0 and sym(PB) = 0, proceeding

as in Section 2.3 yields

V̇ = −x̃>Qx+ x̃>P

[ 2∑
i=1

Bix?ũi

]
(5.23)

≤ x̃>PG>(x?)ũ (5.24)

= y>ũ, (5.25)

which completes the proof. ���

From Section 2.2, we state the following proposition.

Proposition 5.1. (PI-PBC) Consider the system (5.19) in closed–loop with the PI con-

troller
ż = −y

u = −Kpy +Kiz,
(5.26)

where y is given in (5.21) and the tuning gains verify Kp > 0 and Ki > 0. For all initial

conditions (x(0), z(0)) the trajectories of the closed-loop system are bounded and

lim
t→∞

x̃(t) = 0. (5.27)

Proof. Notice that (5.26) can be expressed as

˙̃z = −y

ũ = −Kpy +Kiz̃,
(5.28)

where z? := K−1
i u?. Consider the Lyapunov function candidate

W (x̃, z̃) = V (x̃) + 1
2 z̃
>Kiz̃.
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Differentiating this function and using (5.24) and (5.28) yields

Ẇ = −x̃>Qx+ y>ũ− z̃>Kiy

= −x̃>Qx̃− y>Kpy

≤ −α|x̃|2,

where | · | is the Euclidean norm and

α := λmin{Q} > 0.

Boundedness of the trajectories follows from Lyapunov’s Direct Method. The proof is

completed from La Salle’s Invariance Principle which implies (5.27). ���

Remark 5.2. The passive output used in the PI controller of Proposition 5.1 is

y = 1
LC

x1?x̃4 − x̃1x4?

x2?x̃4 − x̃2x4?

 ,
which in the original system coordinates becomes

y =
id?ṽC − ĩdvC?
iq?ṽC − ĩqvC?

 .
As discussed in [32, 90] our PI scheme is closely related to the well–known instanta-

neous active power control of [2].

5.1.3 Simulation Results

The power coefficient is assumed to be given by [31]

Cp(λ) = c1

(
c2

λi
− c5

)
exp

(
−c6

λi

)
,

where c1 = 0.5, c2 = 116, c5 = 5, c6 = 21 and

λi =
(1
λ
− 0.035

)−1
.

The maximum value is Cp? = 0.411 and λ? = 7.954.

The parameters of the system were taken from [20] and are shown in Table 5.1. To

test the controller in a real scenario, the simulation setting was realized in a switching

based model. The considered PMSG wind turbine rectifier system is shown in Fig.
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Table 5.1: Wind system parameters

Item Value

Turbine

Inertia J = 7.856 kg·m2

Blades radius r = 1.84 m

PMSG

Nominal Power Sn = 5 kVA

Poles P = 28
Synchronous resistance R = 0.3676 Ω
Synchronous inductance L = 3.55 mH

Flux φ = 0.2867 Wb

Friction coefficient f = 3.035× 10−4 N·m·s
Rectifier & Electrical Parameters

Capacitance C = 3.3 mF

System Load RL = 60 Ω
Power Supply Voltage VS =400 V

Power Supply Resistance RS = 0.1 Ω

5.1. A constant voltage source is adopted at the dc output terminal to set the constant

dc bus condition, which is normally maintained by the back-end converter. Space

vector pulse width modulation was adopted to generate the gate signals in the rectifier

switches.

The control implementation diagram is shown in Fig. 5.3. The wind profile is

shown at the bottom of the figure. to verify the controller performance under changing

conditions, the wind profile involves two step variations. As it can be noticed from

the profiles of iq and id currents in Fig. 5.4 , they present typical switching noise,

which is maintained in small range. A good transient performance is seen without

any overshoot and oscillation.

5.2 Passivity–Based Control of a Grid–Connected Small–

Scale Windmill with Limited Control Authority

In the present section we design a passivity-based control of wind energy system con-

sisting of a wind turbine plus a permanent magnet synchronous generator connected

to a single–phase ac grid through a passive rectifier, a boost converter and an single–

phase inverter. The control is intended to regulate the generator speed and the dc link
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Figure 5.3: Block diagram of the control implementation of the PI-PBC
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Figure 5.4: Simulation results.

voltage and power factor of the current injected into the ac grid. The controller design

of the overall system becomes complicated for two reasons. On one hand, the genera-

tor dynamics cannot be neglected—as usually done for large wind turbines [19, 36]—

leading to a system behavior described by highly–coupled set of nonlinear differential

equations. On the other hand, due to the use of a “simple” generator and power elec-
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Figure 5.5: Circuit schematic of a grid–connected windmill system.

tronic interface, the control authority is quite restricted 2.

To design the controller, the overall system is decomposed as a cascade connec-

tion of two subsystems. One consisting of the windmill and PMSG and the other

containing the boost converter and the inverter. The PMSG rotor speed of the first

subsystem is regulated around the maximum power extraction point with a standard

passivity–based controller (SPBC)—which is a nonlinear, dynamic, state feedback that

shapes the energy of the subsystem and adds damping and an integral action [58].

The dc link voltage and the injection of reactive power to the grid is controlled in the

second subsystem, via a tracking PI-PBC — see Chapter 2 — whose reference is suit-

ably tailored to compensate for the coupling term coming from the first subsystem.

The development of this tracking PI is an extension of the regulation PI schemes (for

systems whose incremental model is passive) reported in [32, 35]. The main result in

this section is the proof that the overall controlled system has an asymptotically stable

equilibrium point at the desired operating regime. Simulation results are shown com-

paring the controllers performance with that of the typical PI control utilized in power

engineering.

5.2.1 Mathematical Model of the System

In this section we describe the components of the system, whose schematic diagram

is given in Fig.5.5. The system consists of a wind turbine with a PMSG, a passive

diode bridge rectifier, a boost converter, a dc link and an inverter connected to the

grid through a simple L filter. Although the passive rectifier injects current harmonics

into the PMSG, this topology is preferred due to its low cost and simplicity of im-

plementation. On the other hand, it is clear that it significantly reduces the available

control authority.

In [46] we considered a similar system, replacing the dc link by a battery and re-

moving the inverter and the grid. The reader is referred to [46] for additional details on

2More precisely, the number of control signals (three) is smaller than the order of the system (six)
and equals the number of signals to be regulated.
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the modeling of the first three elements that, in the interest of brevity, are only briefly

summarized below.

5.2.2 Dynamics of the PMSG

The electrical equations which describe the behavior of the surface–mounted PMSG in

the rotor (dq) reference frame are given by

L
_̇
i d = −Rid + Liqωe − vd,

L
_̇
i q = −Riq − Lidωe + φωe − vq,

(5.29)

where id, iq, vd, vq, are the currents and voltages in the d − q reference frame, L and R

are the stator winding’s inductance and resistance, ωe is the electric frequency that is

related to the mechanical speed via

ωe = P

2 ωm,

φ is the permanent magnetic flux produced by the rotor magnets, and P is the number

of poles. The magnetic flux φ is a constant that depends on the material used for the

realization of the magnets. A detailed derivation of this standard model may be found

in [42]. An important observation is that, in normal operating conditions, i2d + i2q > 0.

See Remark 5.5 below.

Mechanical and wind turbine dynamics

The mechanical dynamics is described by

Jω̇m = Tm − Te. (5.30)

where J is the rotor inertia, ωm is the shaft’s rotational speed, Te is the electrical torque

defined as

Te = 3
2
P

2 φiq,

and Tm is the mechanical torque applied to the windmill shaft that, as in the Section

5.1, is given by

Tm = 1
2ρAr

Cp(λ)
λ

v2
w,

where Cp(λ) is the power coefficient, the blades’ tip speed λ is defined in (5.1) — see

Section 5.1 for the parameters descriptions and considerations. As in the last section,
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we are interested in operating the system at the point of maximum power extraction.

ωm? = λ?vw
r

.

Power electronic interface and grid

As shown in Fig. 5.5 the PMSG is linked to the grid through a passive rectifier a dc–dc

boost converter, a dc link and an inverter. As discussed in [46], in this configuration

the PMSG voltages may be expressed as

vd = id√
i2
d
+i2q
MvdcD,

vq = iq√
i2
d
+i2q
MvdcD,

(5.31)

where D is the duty ratio of the dc–dc boost converter, M = π
3
√

3 is the gain of the

passive diode rectifier and vdc is the voltage of the dc link. The well–known average

model of the dc link and inverter (in dq coordinates) is given by

Cv̇dc = 3M
2 (i2d + i2q)u1 −

1
2Idu2 −

1
2Iqu3,

Lg İd = −RgId + LgωIq − Vd + vdcu2,

Lg İq = −LgωId −RgIq + vdcu3, (5.32)

where C is the capacitance of the dc link, Id, Iq are the d and q components of the grid

currents, respectively, Vd is the amplitude of the grid’s voltage, Lg, Rg are the inverter’s

inductance and resistance. We defined in (5.32)

u1 := D√
i2d + i2q

,

and u2 and u3 are the d and q components, respectively of the inverter modulating

signal. Finally, ω is the (constant) frequency of the ac grid voltage. It is well–known

that the inverter is operational only if the voltage of the dc link is kept above a minimal

(positive) value. See Remark 5.5 below.

Overall dynamic model

Collecting (5.29), (5.30), (5.31) and (5.32), defining the state vector

x := col(id, iq, rωm, vdc, Id, Iq),
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the constants C2 := ρA
3 , L1 := PL

2r , φ1 := Pφ
2r , J1 := 2J

3r2 , and the function

Φ(x3) := C2
v3
w

x3
Cp

(
x3

vw

)
. (5.33)

the system state equations may be written as

Lẋ1 =−Rx1 + L1x2x3 −Mx1x4u1

Lẋ2 =−Rx2 − L1x1x3 + φ1x3 −Mx2x4u1

J1ẋ3 =− φ1x2 + Φ(x3)

Cẋ4 =3M
2 (x2

1 + x2
2)u1 −

1
2x5u2 −

1
2x6u3

Lgẋ5 =−Rgx5 + Lgωx6 − Vd + x4u2

Lgẋ6 =− Lgωx5 −Rgx6 + x4u3

(5.34)

where u := col(u1, u2, u3) is the control input vector.

Remark 5.3. The total energy of the system (5.34) is given by

H(x) = 1
4x
>diag{3L, 3L, 3J1, 2C,Lg, Lg}x,

whose derivative, as expected, verifies the power balance equation

Ḣ = −3R
2 (x2

1 + x2
2)− Rg

2 (x2
5 + x2

6)︸ ︷︷ ︸
dissipation

+ 3
2Φ(x3)x3︸ ︷︷ ︸

mechanical power

− 1
2x5Vd.︸ ︷︷ ︸

electrical power

5.2.3 Assignable Equilibria and Problem Formulation

The control objective is three–fold: (i) to operate the system of (5.34) in the point of

maximum wind power extraction which translates into an optimal shaft speed x3?; (ii)

to keep the dc link voltage at a desired constant value x4? > 0; and (iii) to inject current

in to the grid at a given power factor. It is assumed that the current is injected at unity

power factor, that is, x6? = 0. These objective should be achieved independently of the

wind speed.

Under the assumptions of known λ? and vw, the control task reduces to a standard

problem of stabilization of an (assignable) equilibrium point x? of the system (5.34)

with

x3? := λ?vw > 0, x4? = vdc? > 0, x6? = 0. (5.35)
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Assignable equilibria

The proposition below characterizes the set of assignable equilibria compatible with

the constraint (5.35).

Lemma 5.3. Consider the system (5.34). Fix x6? = 0 and x3? > 0. Then, for any x4? > 0,

the set of assignable equilibria is given by

E := {x ∈ R6 | `1(x1) = 0, x2 = Φ?

φ1
, `2(x1, x5) = 0}, (5.36)

where

`1(x1) := x2
1 −

φ1

L1
x1 + Φ2

?

φ2
1

(5.37)

`2(x1, x5) := Rgx
2
5 + Vdx5 + 3Rφ1

L1
x1 − 3x3?Φ?,

(5.38)

with Φ? := Φ(x3?).

Proof. Fix x3 = x3?. From the third equation in (5.34) we get

x2? = Φ?

φ1
. (5.39)

Then, eliminating u1 from the first and second equations in (5.34) and using (5.39) we

obtain

L1(x1?)2x3? − φ1x1?x
?
3 + L1

Φ2
?

φ2 x
?
3 = 0 (5.40)

which is equivalent to `1(x?1) = 0.

Finally, at the equilibrium, the power balance equation of Remark 5.3 is equal to

zero. Then, substituting x?2 from (5.39), the balance equation becomes

0 = Rg(x?5)2 + Vdx
?
5 + 3R[(x?1)2 + Φ2

?

φ2 ]− 3Φ?x?3. (5.41)

Also, from (5.40)

(x?1)2 = φ

L1
x?1 −

Φ2
?

φ2
1

which is substituted in (5.41) to complete the proof. ���
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Remark 5.4. Necessary and sufficient conditions for the existence of equilibria are

φ2
1

2L1
≥ Φ?

V 2
d ≥ 12Rg

(
Rφ1

L1
x?1 − x?3Φ?

)
, (5.42)

where x1? is a solution of `1(x1?) = 0.

Control problem formulation

Given the system (5.34) and an equilibrium x? ∈ E , verifying (5.35), find (if possible) a

state–feedback controller that ensures asymptotic stability of the closed–loop system.

Remark 5.5. As explained in Section 5.2.1 the physical operation of the system is re-

stricted to a subset of R6. In particular, it is necessary that

x2
1(t) + x2

2(t) ≥ κ1

x4(t) ≥ κ2, (5.43)

for some κ1, κ2 > 0, and all t ≥ 0. We will prove below that the closed–loop system

is asymptotically stable. This, together with the fact that x? ∈ R6
+, ensures that (5.43)

holds if the initial conditions are sufficiently close to the equilibrium.

Remark 5.6. In reality the control signals, being duty cycles, live in a compact set.

Unfortunately, the theoretical results presented later cannot take into account this con-

sideration.

5.2.4 A Cascade Decomposition of the System

The following decomposition of the system allows us to simplify the controller design

task. Recalling (5.43), and defining the new control signal

v1 := −Mx4u1, (5.44)

it is possible to write the overall system (5.34) as a cascade connection of the subsystem

Lẋ1 = −Rx1 + L1x2x3 + x1v1

Lẋ2 = −Rx2 − L1x1x3 + φ1x3 + x2v1

J1ẋ3 = −φ1x2 + Φ(x3)

y1 = (x2
1 + x2

2)v1, (5.45)
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Subsystem (19) Subsystem (20)

u2, u3

v1 y1

Figure 5.6: The cascade connection between subsystems (5.45) and (5.46).

with input v1 and output y1, and the subsystem

Cẋ4 = −1
2x5u2 −

1
2x6u3 −

3
2x4

y1

Lgẋ5 = −Rgx5 + Lgωx6 − Vd + x4u2

Lgẋ6 = −Lgωx5 −Rgx6 + x4u3, (5.46)

with external input y1 and controls u2, u3. A cascade connection between subsystems

is presented in Fig. 5.6.

The cascade decomposition from Fig.5.6 suggests the following controller design

procedure.

(S1) Design an SPBC to generate the control signal v1 that renders the desired equi-

librium x13? of subsystem (5.45) asymptotically stable. This step is similar to the

one done in [46], but with the difference that, to improve the transient perfor-

mance of the closed–loop system, we have followed the suggestion made in the

concluding remarks of [46] and explored an alternative construction of the SPBC.

See Remark 5.7 below.

(S2) In the spirit of [32], design for the subsystem (5.46) a PI controller for an output

with respect to which the incremental model is passive. Here, again, there is a

fundamental difference with respect to the design proposed in [32]. Indeed, due

to the presence of the term coupling the two subsystems, we are dealing now

with a tracking and not a regulation problem like the one addressed in [32].

Since the controller design is based on the aforementioned decomposition, to en-

hance readability, we first present the individual controller designs in the next two

sections. The main result of this section, given in Proposition 5.4, is the proof that the

overall controller renders the equilibrium of the complete system (5.34) asymptotically

stable.

5.2.5 Standard PBC of Subsystem (5.45)

The control design for the subsystem (5.45) is based on the SPBC, which is a variation

of PBC that is particularly suited for systems described by Euler–Lagrange equations.
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As shown in [58], it has been successful in a wide range of applications including

mechanical, electromechanical and power electronic systems.

For the sake of clarity, we present in this section the three steps that are followed to

design an SPBC. First, the Euler–Lagrange representation of (5.45) is given . Second,

since SPBC requires a stable invertibility condition [58], the stability of the zero dy-

namics of (5.45)—for some suitably defined output—is studied and the design of the

stabilizing SPBC is carried out. Finally, to improve performance, further damping and

an integral robustifying term are added.

Euler–Lagrange model

In order to apply SPBC, the subsystem equations (5.45) are written in Euler–Lagrange

form3

Dẋ13 + [C(x3) +R]x13 = G(x12)v1 + b(x3) (5.47)

where we defined the generalized inertia, damping and interconnection matrices

D := diag{L,L, J1},R := diag{R,R, 0}

C(x3) :=


0 −L1x3 0

L1x3 0 −φ1

0 φ1 0

 . (5.48)

The right hand side terms in (5.47) are the external forces, where

b(x3) :=


0
0

Φ(x3)

 , G(x12) :=


x1

x2

0

 . (5.49)

Notice that, consistent with their physical interpretation,

D > 0, C(x3) = −C>(x3), R ≥ 0.

Hence, differentiating the systems energy function

H1(x13) = 1
2x
>
13Dx13, (5.50)

3See [58, 81] for further details on Euler–Lagrange systems in control applications.
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yields the power–balance equation

Ḣ1 = −R|idq|2︸ ︷︷ ︸
dissipation

− |vdq||idq|︸ ︷︷ ︸
elec. power

+ 2
3Tmωm,︸ ︷︷ ︸

mech. power

where | · | is the Euclidean norm.

A stable invertibility property of the system (5.47)

As explained in Section 3.1 of [58], SPBC performs a “partial inversion” of the system

dynamics. Indeed, the controller is a copy of part of the system’s equations with the

remaining states set equal to constants—plus some damping injection terms which

vanish at the equilibrium. Consequently, to ensure internal stability, it is necessary

that the zero dynamics of the system, with respect to the “outputs” (the states that are

fixed to constant) is asymptotically stable.

The SPBC proposed here takes as “output” the state x1. Hence, the need of the

lemma below.

Lemma 5.4. Given an assignable equilibrium x? ∈ E verifying (5.35). The zero dynam-

ics of the system (5.45) with output x1 − x1? has an asymptotically stable equilibrium at

(x2?, x3?).

Proof. Setting x1 = x1? and ẋ1 = 0, in the first equation of (5.47) yields the (zeroing

output) control4

v1 = R− L1

x1?
x2x3,

which replaced in ẋ2 yields

ẋ2 = −L1

L
x1?x3 + φ1

L
x3 −

L1

Lx1?
x2

2x3

= − L1

Lx1?
x3

(
(x1?)2 − φ1

L1
x1? + x2

2

)

= L1

x1?
x3[(x2?)2 − x2

2]

=: m1(x2, x3), (5.51)

where we have used (5.36) and (5.37) to get the second and third equations. The zero

dynamics is completed with the third equation of (5.47)

ẋ3 = −φ1

J
x2 + 1

J
Φ(x3) =: m2(x2, x3). (5.52)

4To avoid cluttering, but with some obvious abuse of notation, we use the same symbols for the
system and its restricted dynamics.
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The Jacobian of the zero dynamics vector field col(m1(x2, x3),m2(x2, x3)) is given

by  − 2L1
Lx?1

x2x3
L1
Lx1?

[(x2?)2 − x2
2]

−φ1
J1

1
J1

Φ′(x3)

 ,
which evaluated at the equilibrium (x2?, x3?) yields

 − 2L1
Lx1?

x2?x3? 0
−φ1
J1

1
J1

Φ′(x3?)

 . (5.53)

Now, from the definition of Φ(x3) given in (5.33) and the fact that Cp(λ?) > 0 and

C ′p(λ?) = 0 we conclude that

Φ′(x?3) < 0.

This, together with the fact that x?2x
?
3

x1?
> 0 ensures that (5.53) is a Hurwitz matrix. The

proof is completed invoking Lyapunov’s first method. ���

Design of the SPBC

To enhance readability, the SPBC design is done in three steps: (i) energy–shaping, (ii)

damping injection and (iii) explicit definition of the controller.

The first step in the SPBC procedure is to modify the energy function (5.50) assign-

ing to the closed–loop system the energy function

W1(e13) := 1
2e
>
13De13, (5.54)

where

e13 := x13 − xd13. (5.55)

is an error signal and the vector xd13, which is a signal that will converge to x13?, is

defined below. Towards this end, a copy of the system dynamics is proposed

Dẋd13 + [C(x3) +R]xd13 = b(x3) +G(x12)v1 +


0
0

R3ae3

 , (5.56)

where R3ae3, with R3a > 0, is an additional damping injection signal. Substracting

(5.47) and (5.56) and using (5.55) yields the error equation

Dė13 + [C(x3) +Rd]e13 = 0 (5.57)
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where

Rd := R+ diag{0, 0, R3a} > 0.

Taking the derivative of (5.54), along the trajectories of (5.57), yields

Ẇ1 = −e>13Rde13

≤ −2min{R,R3a}
max{L, J1}

W1

establishing that e13(t)→ 0, exponentially fast.

The controller dynamics is obtained setting xd1 = x1? in (5.56), which yields

Lẋd2 = −L1x3x1? −Rxd2 + φ1x
d
3 + x2v1

J1ẋ
d
3 = −φ1x

d
2 + Φ(x3)−R3a(x3 − xd3)

v1 = 1
x1

(Rx?1 − L1x
d
2x3). (5.58)

Notice that the control signal v1 is obtained from the first equation in (5.56), which

becomes an algebraic equation because x?1 is a constant.

The stability properties of this SPBC are summarized in the following.

Proposition 5.2. Consider the system (5.45) in closed–loop with the controller (5.58).

The equilibrium x?13 is asymptotically stable.

Proof. The derivations above established that x13−xd13 is bounded, and |x13(t)−xd13(t)| →
0, exponentially fast. Therefore, it only remains to prove that, for a suitable set of ini-

tial conditions, xd13 is bounded and xd13(t)→ x?13. Towards this end, replace the control

v1 in the first equation of (5.58) and write—with obvious definitions—the controller

equations in the compact form

ẋd2 = f1(x1, x3, x
d
2, x

d
3)

ẋd3 = f2(x3, x
d
2, x

d
3).

Make now the key observation that these functions verify

f1(x?1, xd3, xd2, xd3) = m1(xd2, xd3)
f2(xd3, xd2, xd3) = m2(xd2, xd3),

where the functions mi(x2, x3), i = 1, 2 are defined in (5.51) and (5.52)—and corre-

spond to the vector field of the asymptotically stable zero dynamics studied in Lemma

5.4. Adding and substracting the functions mi(xd2, xd3), the controller equations can be
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written in the form
ẋd2 = m1(xd2, xd3) + ∆1(xd2, xd3, e1, e3)
ẋd3 = m2(xd2, xd3) + ∆2(xd2, xd3, e3),

with the signals

∆1(xd2, xd3, e1, e3) := f1(e1 + x?1, e3 + xd3, x
d
2, x

d
3)− f1(x?1, xd3, xd2, xd3)

∆2(xd2, xd3, e3) := f2(e3 + xd3, x
d
2, x

d
3)− f2(xd3, xd2, xd3)

viewed as perturbations to an asymptotically stable system. The proof is completed

recalling that e13(t)→ 0 exponentially fast, noting that

∆1(xd2, xd3, 0, 0) = 0, ∆2(xd2, xd3, 0) = 0

and invoking standard results of (local) asymptotic stability of cascaded systems. ���

The corollary below, is instrumental for the analysis of the overall closed–loop sys-

tem. Its proof follows immediately from the definition of Lyapunov stability of an

equilibrium, Lemma 5.3 and Proposition 5.2.

Corollary 5.1. Consider the system (5.45) in closed–loop with the controller (5.58). For

any ε > 0 there exists (sufficiently small) δ > 0 such that for all initial conditions

verifying

|col(x13(0), xd2(0), xd3(0))− col(x?13, x
?
2, x

?
3)| ≤ δ

the corresponding trajectory satisfies the following.

(P1) x13(t) ∈ R3
+ and xd23(t) ∈ R2

+ for all t ≥ 0.

(P2) The error signal ỹ1 := y1 − y?1 , with

y?1 := −1
3[Rg(x?5)2 + Vdx

?
5] < 0, (5.59)

verifies

|ỹ1(t)| ≤ ε, ∀t ≥ 0

lim
t→∞

ỹ1(t) = 0 (exp). (5.60)

Remark 5.7. In the SPBC above we fixed xd1 = x?1, this should be contrasted with the

SPBC of [46], where we fixed xd2 = x?2 instead. As discussed in [46] this was moti-

vated by the fact that the zero dynamics of the system with the output x1 − x?1 has a
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unique (asymptotically stable) equilibrium point in the operating region—as shown in

Lemma 5.4. On the other hand, it was shown in Lemma 2 of [46], that the zero dy-

namics with output x2 − x?2 has two equilibria in the operating region, one of them

unstable. Consequently, it is reasonable to expect that the domain of attraction of the

new controller is larger than the one in [46].

Performance improvement

As usual in PBC, the performance of the controller can be improved injecting ad-

ditional damping and incorporating integral actions [58]. In the present case, the

third right hand side term in (5.56) can be replaced by col(R1ae1, R2ae2, R3ae3), with

R1a, R2a > 0, to inject additional damping and improve the convergence speed of the

error e13.5

An integral term can easily be added to the SPBC replacing the second equation in

(5.58) by

J1ẋ
d
3 = −φ1x

d
2 + Φ(x3)−R3a(x3 − xd3) + z, (5.61)

where z is an integral term defined by

ż = −Kiwe3, (5.62)

with Kiw = K>iw > 0 an integral gain. The error equation (5.57) becomes

Dė13 + [C(x3) +R+ diag{R1a, R2a, R3a}]e13 =


0
0
1

 z (5.63)

Stability of the modified scheme is established with the total energy function

V1(e13, z) = 1
2e
>
13De13 + 1

2Kiw

z2,

whose derivative verifies

V̇1 ≤ min{R +R1a, R +R2a, R3a}|e13|2.

The interested reader is referred to [58] for additional details.

5This fact, together with the performance improvement discussed in Remark 5.7, were verified by
simulations, but are omitted from Section 5.2.9 for brevity.



Applications of the PI-PBC to Wind Energy Systems 91

5.2.6 A Tracking PI PBC for Subsystem (5.46)

In this section we design the controller for the subsystem (5.46). We notice that the

subsystem is perturbed by the coupling term coming from the first subsystem, which

we view as an additive (measurable) disturbance y1(t). In the absence of the latter, the

PI PBC of [32] would solve the problem. In order to take into account this disturbance,

we add to the regulation PI schemes of [32,35] a suitably tailored reference, yielding a

tracking PI PBC.

Proposition 5.3. Consider subsystem (5.46) with y1 and external signal verifying (5.60).

Define the tracking PI controller

ξ̇ = y2

u23 = ud23 −Kpy2 −Kiξ (5.64)

with Kp = K>p > 0, Ki = K>i > 0 and

y2 = 1
2

 x?4x5 − xd5x4

x?4x6

 , (5.65)

ud23 =


− 3
x?4x

d
5
y1

Lgω
xd5
x?4

 (5.66)

and xd5 the solution of the differential equation

Lgẋ
d
5 = −Rgx

d
5 − Vd −

3
xd5
y1, x

d
5(0) > 0. (5.67)

There exists εc > 0 such that for all ε ≤ εc the closed–loop system with state (x46, ξ, x
d
5)

has a globally asymptotically stable equilibrium point at (x?46, 0, x?5).

Proof. First, we show that under the conditions of the proposition the solution of (5.67)

is well–defined and verifies xd5(t) > 0, for all t ≥ 0, and xd5(t) → x?5. Towards this end,

we write (5.67) in the equivalent form

Lgẋ
d
5 = −Rgx

d
5 − Vd −

3
xd5
y∗1 −

3
xd5
ỹ1. (5.68)

Using (5.59) the equation above with ỹ1 ≡ 0 becomes

Lgẋ
d
5 = −Rgx

d
5 − Vd + 1

xd5
[Rg(x?5)2 + Vdx

?
5],
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which has an asymptotically stable equilibrium at x?5. Moreover, since xd5(0) > 0 and

x?5 > 0, the set {xd5 > 0} is invariant. The proof that these properties are preserved for

the perturbed equation is completed by invoking (5.60), a continuity argument and

taking εc sufficiently small.

The subsystem (5.46) can be expressed in the following form

ẋ46 = Ad(u23)x46 + E (5.69)

where Ad(u23) := A+B2u2 +B3u3 and

E := −


3

2Cx4
y1

Vd
Lg

0

 , A :=


0 0 0
0 −Rg

Lg
ω

0 −ω −Rg
Lg

 , B2 :=


0 − 1

2C 0
1
Lg

0 0
0 0 0

 , B3 :=


0 0 − 1

2C

0 0 0
1
Lg

0 0

 .

Similarly to the construction in Chapter 2 —Section 2.1—, the key observation is that

with the matrix

P :=


C 0 0
0 1

2Lg 0
0 0 1

2Lg

 > 0,

Assumption 2.1 is verified, i.e.,

PAd(u23) + A>d (u23)P = −1
2diag{0, Rg, Rg} ≤ 0. (5.70)

Now, define the vector xd46 := col(x?4, xd5, 0). With (5.65)- (5.67), it is easy to prove

that

ẋd46 = Ad(ud23)xd46 + E.

Hence, the error e46 := x46 − xd46 verifies the equation

ė46 = Ad(u23)e46 + (eu2B2 + eu3B3)xd46, (5.71)

where we defined the input error

eu23 := u23 − ud23.

Notice that substituting y1 of (5.45) and u1 of (5.58), the vector ud23 in (5.66) becomes

ud23 =

 − 3|x12|2
x1x?4x

d
5
(Rx?1 − L1x

d
2x3)

Lgω
xd5
x?4

 . (5.72)
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Motivated by (5.70) define the function

W2(e46) := 1
2e
>
46Pe46,

whose derivative along the trajectories of (5.71) satisfies

Ẇ2 = −Rg

2 |e56|2 + y>2 e
u
23.

This proves that (5.71) defines a passive map eu23 7→ y2, hence it can be controlled with

a PI.

The proof is completed with the proper Lyapunov function candidate

V2(e46, ξ) = W2(e46) + 1
2ξ
>Kiξ,

whose derivative yields

V̇2 = −Rg

2 |e56|2 + y>2 e
u
23 + ξ>Kiy2

= −Rg

2 |e56|2 − y>2 Kpy2,

which establishes stability of the equilibrium. The proof of attractivity follows doing

some standard signal chasing. ���

Remark 5.8. The proof given above relies in a, far from elegant, perturbation argu-

ment. This argument is avoided in the proof of the main result in Section 5.2.7 where

a basic lemma of cascades of asymptotically stable systems is invoked.

5.2.7 Main result

The proposition below shows that the combination of both controllers ensures the con-

trol objective is asymptotically achieved. The proof relies on the following lemma

established in [84].

Lemma 5.5. Consider the following cascaded system

ẋ = f(x, y, t)

ẏ = g(y, t),
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with |∂f
∂x
| and |∂y

∂y
| bounded and

0 = f(x?, y?, t)

0 = g(y?, t).

The following statements are equivalent.

(C1) (x?, y?) is a uniformly asymptotically stable (UAS) equilibrium of the cascaded

system.

(C2) y? is a UAS equilibrium of ẏ = g(y, t) and x? is a UAS equilibrium of ẋ =
f(x, y?, t).

Proposition 5.4. Consider the system (5.34) and an equilibrium x? ∈ E , verifying

(5.35), in closed–loop with the dynamic state–feedback controller

Standard PBC:

Lẋd2 = −L1x3x
?
1 −Rxd2 + φ1x

d
3 + x2

x1
(Rx?1

−L1x
d
2x3

)
(5.73a)

J1ẋ
d
3 = −φ1x

d
2 + Φ(x3)−R3a(x3 − xd3) + z (5.73b)

ż = −Kiw(x3 − xd3) (5.73c)

u1 = − 1
Mx1x4

(Rx?1 − L1x
d
2x3) (5.73d)

PI PBC:

Lgẋ
d
5 = −Rgx

d
5 − Vd −

3
x1xd5

|x12|2 (Rx?1

−L1x
d
2x3

)
(5.74a)

ξ̇ = 1
2

 x?4x5 − xd5x4

x?4x6

 (5.74b)

u23 =

 − 3|x12|2
x1x?4x

d
5
(Rx?1 − L1x

d
2x3)

Lgω
xd5
x?4

−Kp

 x?4x5 − xd5x4

x?4x6

−Kiξ

with xd5(0) > 0, R3a > 0, Kp = K>p > 0, Ki = K>i > 0. The equilibrium point of the

closed–loop system

(x?, x?23, 0, 0, x?5) ∈ R11

is asymptotically stable.
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Proof. From the derivations of Proposition 5.2 we identify the cascade of subsystems

Σ1 and Σ2 given by

Σ1 : ė13 = A(t)e13

Σ2 : ẋd23 = m12(xd23) + ∆12(xd23, e13),

where

A(t) := −D−1[C(x3(t)) +Rd],

and m12(xd23),∆12(xd23, e13) are given in the proof. The cascade fits into the paradigm of

Lemma 5.5, with Σ1 UGAS (actually, exponentially) and Σ2 AS, therefore the cascade

is UAS—see Fig. 5.7.

UGES AS AS UGAS

H(·, ·)Σ1 Σ2 Σ3 Σ4
e13 xd23 ỹ1 xd5 (e46, ξ)

Figure 5.7: Block diagram of Proposition 5.4.

Now, from Proposition 5.2 we identify the cascade of a static map

ỹ1 = H(xd23, e13)

with the systems Σ3 and Σ4 given by

Σ3 : ẋd5 = m3(xd5) + ∆3(xd5, ỹ1)

Σ4 :
 ė46

ξ̇

 = F (e46, ξx
d
5(t), ỹ1(t)).

See (5.68) and (5.71). Σ3 is AS and Σ4 is UAS (actually, globally). Invoking Lemma 5.5

we conclude AS of the overall system. A block diagram of Proposition 5.4 is presented

in Fig. 5.7. ���

5.2.8 Control Implementation

In order to be implemented, the controller interconnection must have the structure de-

picted in Fig. 5.8. Of course, an implementation of the control implies the use of sen-

sors that measure physical magnitudes as currents and angular velocities otherwise

observers can also carry out this task. From this measurements the state variables of

system (5.34) are derived.
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Figure 5.8: Implementation diagram of the passivity based controllers.
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Figure 5.9: Block diagram of the PI–based benchmark control scheme. The matrices Tdq , T dq , and the
ac grid phase angle θgrid represent a consistent transformation of variables in the single–phase time
domain to the synchronous d− q reference frame [12, 37].

As shown, the figure is mainly composed of two blocks representing the speed

control (performed by the SPBC) and the current/speed control (performed by the PI

PBC). The ”dynamical system” blocks describes the dynamics of the variables written

on the right corner in the bottom. The script ”NL” means that the block represents a

non-linear mapping of the input arguments. Notice that the PI PBC block is composed

of two non-linear mappings, namely, the passive output y2 in (5.65) and the term ud23

showed in (5.72), a dynamical system which generates xd5 (required by y2) and the

block containing the sum of the proportional and integral part (PI) of y2. Therefore,

this block output stands for equation (5.74c).

On the other hand, the standard PBC controller block is the dynamical system of

equation (5.73) with an output u1. This controller requires the value of x?1. To compute

it, it is necessary to solve the two degree equation (5.37) which depends on the value

Φ?, the evaluation of (5.33) in x?3.
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5.2.9 Benchmark system

The performance of the controller introduced in this section is compared against an

industry standard PI control–based architecture [88]. The block diagram of the control

scheme utilized as a benchmark is illustrated in Fig. 5.9.

Parameters of the system (5.34)

As is customary, the power coefficient is assumed to be given by the function

Cp(λ) = e−
cp1
λ

(
cp2
λ
− cp3

)
+ cp4λ, (5.75)

where the coefficients cpi, i = 1, . . . , 4—that are windmill–specific, but independent

of vw and ωm—are known. These coefficients were taken from [48, 87], and have the

following values: cp1 = 21.0000, cp2 = 125.229, cp3 = 9.7803, and cp4 = 0.0068. This

yields λ? = 8.1 and C?
p = 0.48. Parameters for the windmill system were taken from

[80], and adapted to fit the physical constraints of the dc–dc converter. Table 5.2 shows

the various numerical values. In order to use a boost dc–dc converter, a larger dc link

voltage of v?dc = 400 (V), is considered—this can be implemented with just a diode

and a MOSFET as suggested in Fig. 5.5 [82]. The stiffness constraints required by the

converter [50] are naturally given by the inductor of the PMSG on the pole side of the

converter, and by the dc link capacitor in the throw side.

Controllers

As stated, the performance of two different schemes of control are compared. For

simplicity, we will refer as PBC controllers for the controllers whose methodology is

proposed in the current section. The structure of this scheme has been defined in the

previous sections. On the other hand, the PI–based benchmark control scheme of Fig.

5.9 will be labelled as PI controllers. The various gains of both controllers were tuned

using the well–known pole placement method. Numerical values are given below.

PBC controller gains

R3a = 0.8; Kiw = 0.5;

Kp =
0.007 0

0 0.009

 ; Ki =
1 0

0 0.90

 .
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Table 5.2: Grid–connected windmill system parameters

Item Value

Turbine

Inertia J = 7.856 (kg m2)

Blades radius r = 1.84 (m)

PMSG

Nominal Power Sn = 5 (kVA)

Poles P = 28
Synchronous resistance R = 0.3676 (Ω)
Synchronous reactance L = 3.55 (mH)

Flux φ = 0.2867 (Wb)

H–bridge inverter

dc link voltage v?dc = 400 (V)

dc link capacitance C =800 (µF)

L–filter Lg = 5 (mH)

R–filter Rg = 0.1 (Ω)

Single–phase ac grid

Nominal voltage Vg = 240 (V)

Frequency Fg = 60 (Hz)

PI controllers gains

Kp x3 = 0.00967472; Ki x3 = 0.10516;

Kp x4 = −4; Ki x4 = −5;

Kp x5 = 0.05; Ki x5 = 0.8;

Kp x6 = 0.05; Ki x6 = 0.8.

Wind speed profile

The wind speed profile illustrated in Fig. 5.10 is utilized for the simulation studies. It

was constructed using real measurements collected by the National Wind Technology

Center in Boulder, Colorado, USA. The wind speed was measured at 100Hz at 36.6m

above the ground using a cup anemometer. As may be observed in the figure, the

profile is rich in turbulence and exhibits gusty behavior at times.
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Figure 5.10: Real wind speed profile utilized in the simulation studies.
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Figure 5.11: Robustness test. — x?
3 — x3. A 30% step–like change in Lg is applied. We show the

response of x3. It may be observed that under the PBC controllers, x3 is able to follow x?
3 indifferent to

the variation of Lg . On the other hand, the PI controllers are unable to perform the tracking function,
rendering the system unstable.

5.2.10 Computer simulations

In this section, the performance of both the PBC (defined by (5.73)-(5.74)) and PI (Fig.

5.9) controllers are tested via computer simulations considering a detailed model for

the system of Fig. 5.5, with parameters specified in Section 5.2.9. All simulations are

executed using the Matlab–Simulink® mathematical analysis software package.

Recalling (5.35), the theoretical considerations for PBC design were developed as-

suming x?3 = λ?vw, that is, the reference for the optimal shaft rotational speed shall

be computed using the actual wind speed. However, in a real setting the wind speed

will likely be filtered before being utilized to track x3. This is performed in order to

provide smooth power to the turbine shaft. Alternatively, if the wind speed is un-

available for measurement —which will very likely be the case for a small–scale wind

turbine— one could estimate its value and utilized it for tracking purposes. Several

estimation algorithms featuring an acceptable performance have been proposed in the

literature [76]. In the simulation study we consider all three cases. We study the sys-

tem’s response utilizing to generate x?3 the actual wind speed (x?3 = λ?vw), a filtered

wind speed (x?3 = λ?v
f
w) and an estimated wind speed (x?3 = λ?v̂w). The filtered wind

speed is computed utilizing a simple low–pass filter,
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Figure 5.12: Simulation results. The left, middle and right columns presents the comparative
evaluation utilizing the actual, filtered and estimated wind speed, respectively. Recall x :=
col(id, iq, rωm, vdc, Id, Iq), hence the units for the various plots are: x1 (A), x2 (A), x3 (m/s), x4 (V),
x5 (A), x6 (A). Control signals are unitless and because of their physical interpretation they must be
contained within 0 and 1.
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vfw(s) = 1
1 + τs

vw(s),

with τ = 0.7s. The estimation of the wind speed is performed through the Immersion

& Invariance (I&I) estimator proposed in [59],

˙̂vw = γ

J1
[φ1x2 − Φ(x3, v̂w + γx3)],

where γ = 0.2 is an adaptation gain.

Fig. 8 shows the results. The left, middle and right columns presents the compar-

ative evaluation utilizing the actual, filtered and estimated wind speed, respectively.

PBC controllers rely on a copy of the system’s zero dynamics to generate references.

Because of this, when using the actual wind speed the PBC controller is unable to

accurately track x?3. As a result, the efficiency of the power extraction process is sac-

rificed as observed in the tip–speed ratio plot. On the other hand, PI controllers are

able to quickly respond and properly perform the tracking function. This comes at a

cost of introducing large noise levels on the states and control signals. However, when

using a filtered or estimated wind speed signals to feed the control schemes, the PBC

controller approximately matches the tracking performance of the PI controllers. Both

controllers track the tip–speed ratio to a similar degree of accuracy, and the compro-

mise between speed and noise still exists. It is worth mentioning that the system’s

response was very sensitive to the gain’s tuning for the PI controller, while the PBC

controller exhibited an acceptable performance throughout a large range of gains’ se-

lection. Furthermore, the robustness of both controllers was tested by introducing a

30% disturbance in the value of the filter/grid inductance. Results are presented in

Fig. 5.11. It may be observed that, unlike the PI controller, the PBC controller is able

to remain stable.
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Chapter 6

Conclusions & Future Work

The following concluding remarks are in order.

In Chapter 2, the trajectory tracking problem for power converters based on pas-

sivity foundations has been solved. The resulting controller is a simple PI and the

stability results are global and hold for all positive definite gains of the PI. In fact, this

outcome extends previous results obtained for the regulation case.

In Chapter 3, we identify a class of nonlinear systems for which it is possible to

design robust PI controllers with guaranteed stability properties. The class consists of

input affine systems with known, constant input matrix G and n −m zero rows. We

assume that only the states associated to the non–zero rows of G are measurable.The

systems have an open–loop stable equilibrium, but is different from the desired op-

erating point. To handle this situation, we follow [35] and generate new passive out-

puts for the incremental model, hence the name PI–PBC. Associated to the open–loop

stable equilibrium a Lyapunov function of the form (3.4) is assumed to exist. We un-

derscore that, besides convexity, there is no assumption on the function Hu(xu), which

is unknown. Moreover, the controller does not require the measurement of xu. The

functions φi(xi) are assumed convex and known, but the coefficient di are unknown.

Under these conditions, we show that, for a well identified class of PI tuning gains,

global stability of the proposed PI–PBC is guaranteed. Conditions that ensure global

asymptotic stability, are also derived.

In Chapter 4, we have presented a new energy shaping method to stabilize pH sys-

tems that, in contrast with the classical PBC methods, does not require the solution of

PDEs. The key modification introduced here is to abandon the objective of preserva-

tion in closed–loop of the pH structure, which is the condition that gives rise to the

PDEs.

The class of systems for which the method is applicable is identified by Assump-

tions 4.1 and 4.2, which can be easily verified from the systems data. The invertibility
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Assumption 4.1 is rather weak, and is satisfied in many practical examples. Notice

that if it does not hold then there exists equilibria for the open–loop system, which

are not extrema of the energy function—a situation that its not expected to happen in

physical systems. The integrability Assumption 2 is a technical condition needed to

create the term added to the open–loop energy function (4.9). As indicated at the end

of Section 5.2.1, this term may be interpreted as an integral term on the power shaping

output. Unfortunately, besides this nice interpretation, we don’t have at this point any

physical, nor practical motivation, for Assumption 4.2. The controller design param-

eters are introduced to ensure that Hd(x) is positive definite, hence, it qualifies as a

Lyapunov function.

Finally, in Chapter 5, we present two different wind energy systems to which we

control by means of PBC controllers. In Section 5.1 we present a maximum power

extraction PI-PBC control for a wind energy system consisting of a turbine, a perma-

nent magnet synchronous generator, a rectifier, a load and one constant voltage source,

which is used to form the DC bus. Invoking practically considerations we proved sta-

bility. In Section 5.2 an asymptotically convergent PBC for a basic windmill system

connected to the grid which ensures maximum power extraction and regulation of the

dc link voltage and injection of reactive power has been proposed.

In order to design the controller, the overall systems has been divided in two cou-

pled subsystems: the windmill with the PMSG and the power converters with the

grid. For the first subsystem a SPBC, similar to that of [46], was realized. The sec-

ond subsystem was controlled by means of a tracking PI-PBC controller presented in

Chapter 2. Endowing the PI controller with tracking capabilities allows for a faster

response with respect to the standard regulation PI of [32].

These results have motivated the following future work.

• From Chapter 4, a future research is intended to construct not only PIs but also

PIDs controllers based on other passive outputs besides yps. It was recently re-

vealed in [53,83] that there exists a large class of passive outputs that can be used

for this purpose.

• To develop an unifying theoretical framework for the PIDs based on passivity.

• Proposed alternative PBC methods to address the wind energy systems than

those introduced in Chapter 5 and make a comparative study between them.

• Also, a future work could include a comparative performance between our con-

trol approach and the standard one implemented by the power engineering com-
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Figure 6.1: A scheme of the complete wind generation system

munity [17].

• To validate the proposed controller through experimentation. Particularly, that

of Section 5.1 is part of the research carried out within the framework of the

FREEDM System Center whose main objective is the implementation and testing

of a solid–state transformer enabled microgrid. A complete picture of the system

model is depicted in Fig. 6.1. As shown in the figure, the configuration consists

of a surface-mounted PMSG, the SST and a load [28]. The SST is constituted by

three stages: an AC-DC rectifier, a Dual Active Bridge (DAB) converter with a

high frequency transformer and a DC-AC inverter. Besides, unlike the classical

topologies using a diode bridge rectifier with a DC-DC converter [46, 80], one of

the advantages in the SST topology is due to its larger number of control inputs.

Indeed, it offers more degrees of freedom when designing a controller. It can be

noticed from the figure that there are control inputs at each stage. Other advan-

tage is that the DAB topology allows seamless control for bidirection power flow.

Real power flows from the bridge with leading phase angle to the bridge with

lagging phase angle.
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