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Thèse prés Compositi

R n Linear space of real vectors of dimension n.

R n×m

Ring of matrices of size n × m.

R n

≥0

For a vector x, x i ≥ 0, i = 1, . . . , n.

x i The i-th element of the vector x.

x ij x ij = col(x i , x i+1 , . . . , x j ) where i, j are integers such that 1 ≤ i < j ≤ n.

I n

The identity matrix of size n × n. 

S

The weighted square Euclidean norm, i.e., x 2 S := x Sx. g † Pseudo inverse of the full-rank matrix g, i.e., g † := (g g) -1 g .

F , F (x) For the distinguished element x ∈ R n and any mapping F : R n → R s , we denote F * := F (x * ) and F (x) := F (x) -F * .

g , g

For mappings of scalar argument g : R → R s denote, respectively, first and second order differentiation.

∇H(x)

For H : R n → R, it refers to the gradient operator of a function, i.e., ∇H(x) := ∂H(x) ∂x .

∇ 2 H(x) For H : R n → R, it refers to the Hessian operator of a function, i.e., ∇ 2 H(x) := ∂ 2 H(x) ∂x 2 .

∇C(x)

For C : R n → R m , ∇C(x) = [∇C 1 (x), . . . , ∇C m (x)].

arg max f (x) Returns the argument x of the maxima of a function f : R n → R. L'un des avantages à utiliser la passivité est son caractère intuitif, qui exploite les propriétés physique des systèmes. Grosso modo, l'idée centrale d'un système passif est que le flux de puissance entrante au système n'est pas inférieur à l'incrément de son énergie de stockage. Par conséquence, ces systèmes ne peuvent pas stocker plus d'énergie que celle fournie, dont la différence correspond à l'énergie dissipée.

Acronyms

En introduisant le concept d'énergie, cette méthodologie nous permet de formuler le problème de commande comme celui de trouver un système dynamique dont la fonction de stockage d'énergie prend la forme désirée. En incorporant le concept d'énergie, cette méthode devient accessible à la communauté de praticiens et permet de fournir des interprétations physiques de l'action de commande.

Dans ce contexte, ce travail de thèse a comme objectif de synthétiser des commandes PI, basées sur la passivité, de telle sorte que la stabilité globale du système en boucle fermé soit garantie.

Ce travail de thèse est principalement la continuation de [START_REF] Casta Ños | Proportional plus integral control for set-point regulation of a class of nonlinear RLC circuits[END_REF][START_REF] Donaire | Shaping the energy of mechanical systems without solving partial differential Equations[END_REF][START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF][START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF][START_REF] Perez | Passivity-based PI control of switched power converters[END_REF][START_REF] Sanders | Lyapunov-based control for switched power converters[END_REF]. Particulièrement dans [START_REF] Perez | Passivity-based PI control of switched power converters[END_REF], il est prouvé que si un système non-linéaire est rendu passif par une loi de commande constante, il est stabilisable par une commande PI. En partant de ce résultat, dans [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF], une commande PI pour une classe de systèmes bilinéaires est proposée pour traiter le problème de régulation et appliqué aux convertisseurs de puissance. Dans cette thèse nous étendons ce dernier résultat au problème de suivi.

D'autre part, dans [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF], des conditions suffisantes pour une classe de système dynamique sont énoncées telles que s'il est passif, sa représentation incrémentale l'est aussi. Dans ce travail, en utilisant ce résultat, nous proposons une commande PI robuste qui dépend seulement des paramètres de la matrice d'entrée.

Une contribution finale concerne le domaine de recherche développée par [START_REF] Donaire | Shaping the energy of mechanical systems without solving partial differential Equations[END_REF].

Nous proposons une méthodologie constructive pour la synthèse d'une commande PI pour une classe de systèmes port-Hamiltoniens. Cette commande nous permet de fac ¸onner l'énergie du système en boucle fermée.

Présentation de la thèse

La thèse est organisée de la manière suivante :

-Dans le Chapitre 2, nous présentons la commande PI-PBC qui adresse le problème de suivi d'une classe de systèmes bilinéaires. Ce résultat est appliquée aux convertisseurs de puissance qui sont décrits par les équations dynamiques de la forme ẋ(t) = [A + i u i (t)B i ]x(t) + B 0 u + d(t). L'approche est validée par des simulations numériques.

-En Chapitre 3 nous étudions le problème de commande des systèmes non linaires qui sont partiellement connus. Nous identifions une classe de systèmes dans laquelle une commande PI basée sur la passivité peut stabiliser les système autour d'un point d'équilibre désiré en connaissant seulement les paramètres de la matrice d'entrée.

-Le Chapitre 4 propose une commande PI, complètement constructive, pour une classe de systèmes porte-Hamiltoniens. En utilisant la sortie passive de façonnage de puissance, cette commande nous permet de assigner, au système en boucle fermée, le point minimum désiré de la fonction d'énergie du système en boucle fermée.

-Le Chapitre 5 est consacré à des applications de la commande PI-PBC. En utilisant la théorie des chapitres précédents, nous proposons deux systèmes d'énergie éolienne et faisons la synthèse de sa commande. Cette commande a comme objectif de garantir la l'extraction de la puissance maximale provenant du vent.

-Ce travail est terminé avec des conclusions et des travaux futurs, présentés dans le Chapitre 6.

Publications

Ce travail de thèse a fait l'objet des articles de conférence et revue suivantes. 

Articles

Chapter 1 Introduction

Automatic feedback control systems have been known and used for more than 2000 years. There is evidence that the ancient romans and greeks developed devices to regulate the water level [START_REF] Bennett | A brief history of automatic control[END_REF]. In late medieval, attempts to provide speed regulation by primitive feedback devices were made. Along the history, ingenious inventions concerning feedback control systems have been reported: mechanisms to control temperature, governors for steam engines, steering engines or servo-mechanisms, pneumatic feedback amplifiers, anti-aircraft control and many others. Actually, the word feedback is a 20th century neologism introduced in the 1920s by radio engineers to describe parasitic, positive feeding back of the signal from the output of an amplifier to the input circuit. Interested reader is referred to [START_REF] Bennett | Development of the pid controller[END_REF][START_REF] Bennett | A brief history of automatic control[END_REF], where an interesting monograph about the history of automatic control is presented.

The idea of feedback is at the same time, simple and powerful. It has had a profound influence on technology. Application of the feedback principle has resulted in major breakthroughs in control, communication, and instrumentation. The principle of the (negative) feedback relies on increasing a manipulated variable (control input)

when the process variable is smaller than the setpoint (reference) and decrease the manipulated variable when the process variable is larger than the setpoint [START_REF] Astrom | PID Controllers[END_REF]. In general, a process or system to be controlled is fed-back by a function of its measured signals.

One of the best known forms of feeding back a system is through a three-term control law known as PID (Proportional-Integral-Derivative) controller, which was firstly presented with an analytical formalism by N. Minorsky. In a traditional scheme, an error signal is derived from the difference between the measured signals and its desired values. In the non-interacting PID, the control signal is based on a sum of the weighted integral, proportional and derivative of the error. The transfer function of this controller is of the form

H PID (s) = K 1 + 1 T I s + T D s .
The three term functionalities include:

1. The proportional term provides an overall control action proportional to the error signal through the allpass gain factor.

2. The integral term reduces steady-state errors through low-frequency compensation.

3. The derivative term improves transient response through high-frequency compensation.

Other classical PID realization is the interacting PID, which is implemented as a cascade of a PI and PD controller [START_REF] Astrom | PID Controllers[END_REF]. The transfer function of such PID is

H PID (s) = K 1 + 1 T I s (1 + sT d ) .
Trying to improve transient performance has given rise to other control schemes such as PI-D (type B) or I-PD (type C) controllers, see [START_REF] Ang | PID control system analysis, design, and technology[END_REF][START_REF] Li | Conventional and novel control designs for direct driven PMSG wind turbines[END_REF] for a description.

PID controllers are sufficient for many control problems, particularly when process dynamics are not highly nonlinear and the performance requirements are modest. Besides, because of its simple structure, the PID controller is the most adopted control scheme by industry and practitioners. However, many practitioners opt to switch off the derivative term. Actually, many controllers applied in the industry are only PI controllers [START_REF] Astrom | The future of PID control[END_REF].

An important issue when implementing a PID is to determine its parameters that influence the performance of the system.In order to make this tuning of the PID gains more constructive, some procedures have been appear in the literature. This methods determine the gains values based on some parameters taken from the system response.

They are divided in frequency and step response methods. The first and more classical method is the Ziegler-Nichols, which is frequently adopted because of its simplicity to implement. In its step response version, two parameters are registered from the straight line tangent at the inflection point of the step response of the system. Then, the PI(D) controller parameters are obtained from a table. In its frequency response version, the point at which the Nyquist curve intersects with the negative real axis is determined. To do so, the process is fed back with a proportional controller, the proportional gain is increased until the system and starts to oscillate. The proportional gain and the period of the oscillations are registered and using a table, the parameter values of the PI(D) can be obtained. As discussed in [START_REF] Astrom | PID Controllers[END_REF], a fundamental drawback in the Ziegler-Nichols Method is that the design criterion is focused in the decay ratio, i.e., the ratio between two consecutive maxima of the error for a step change in setpoint or load. In this method, the closed-loop system has a quarter amplitude decay ratio. This may cause good rejection of load disturbances but also poor damping and stability margins. In order to improve the control performance, new tuning methods have been developed [START_REF] Astrom | PID Controllers[END_REF]. In these methods the system response is characterized using three parameters instead of two, as in Ziegler-Nichols method. Even though these methods improves substantially the performance, there is a trade-off between the simplicity of the methods and its performance.

As stated in [START_REF] Astrom | PID Controllers[END_REF], many tuning strategies proposed can easily be eliminated if they are compared with a well-tuned PID. Also, since these methods are based on the linearization, commissioning a PI to operate around a single operating point is relatively easy, however, the performance will be below par in wide operating regimes, which is the scenario in modern high-performance applications. To overcome this drawback the current practice is to re-tune the gains of the PI controllers based on a linear model of the plant evaluated at various operating points, a procedure known as gainscheduling. There are several disadvantages of gain-scheduling including the need to switch (or interpolate) the controller gains and the non-trivial definition of the regions in the plants state space where the switching takes place-both problems are exacerbated if the dynamics of the plant is highly nonlinear. Another common commissioning procedure is to use auto-tuners, that heavily rely on the availability of a "good" linear approximation of the plant dynamics. Besides, in other scenarios, a little or no information about the dynamics of the process/system is known, thus no stability of the system can be proved.

The current thesis work is aimed at the designing of PI controllers, based on the passivity theory, such that the stability of the closed-loop system is guarantied. The main objective is to develop constructive procedures that are applicable to physical systems.

Passivity : A Control Design Tool [58, 63, 73].

Passivity concepts offer a physical and intuitive appeal. This is one of its main advantage that explains the longevity of the concept from the time of its appearance -60 years ago. The primary idea in passive systems is that the power flowing into the system is not less that the increase of storage. Thus, they cannot store more energy than is supplied to it from the outside, with the difference being the dissipated energy.

It is clear from this energy interpretation that the concept of passivity is related with the stability properties of the systems. For instance, rationalizing a feedback interconnection as a process of energy exchange it is not surprising to learn that passivity is invariant under negative feedback interconnection. In other words, the feedback interconnection of two passive systems is still passive. If the overall energy balance is positive, in the sense that the energy generated by one subsystem is dissipated by the other one, the closed loop will be stable.

Viewing dynamics systems as energy-transformation devices is particularly useful in studying complex nonlinear systems by decomposing them into simpler subsystems that,upon interconnection, add up their energies to determine the full system's behavior. This allows to recast the control problem as finding a dynamical system and an interconnection pattern such that the overall energy function takes the desired form. This "energy-shaping" approach is the essence of passivity-based control (PBC). Moreover, because of the universality of the concepts of energy, this formulation allows to facilitate the communication between practitioners and control theorists incorporating prior knowledge and providing physical interpretations of the control action.

The idea of energy shaping from a control point of view dates back to [START_REF] Takegaki | A new feedback method for dynamic control of manipulators[END_REF] where a robot manipulator control methodology was proposed using this philosophy. Using the fundamental notion of passivity, the principle was later formalized in [START_REF] Ortega | Adaptive motion control of rigid robots: A tutorial[END_REF], where the term PBC was coined to define a controller design methodology whose aim is to render the closed-loop system passive with a given storage function. Although there are many variations of this basic idea, PBCs may be broadly classified into two large groups, "classical" PBC where we a priori select the storage function to be assigned (typically quadratic in the increments) and then design the controller that renders the storage function non-increasing. This approach, clearly reminiscent of standard Lyapunov methods, has been very successful to control physical systems described by Euler-Lagrange equations of motion, which as thoroughly detailed in, includes mechanical, electrical and electromechanical applications. Approaches within this category are the energy balancing (EB), standard passivity based control (SPBC) [START_REF] Ortega | Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications[END_REF] and the PI-PBCs. In the second class of PBCs we do not fix the closed-loop storage function, but instead select the desired structure of the closed-loop system, for example, Lagrangian or port-controlled Hamiltonian (PCH), and then characterize all assignable energy functions compatible with this structure. This characterization is given in terms of the solution of a partial differential equation (PDE). The most notable examples of this approach are the controlled Lagrangian, the interconnection and damping as-signment (IDA) and power-shaping control methods which yields static controllers (see [START_REF] Blankenstein | The matching conditions of controlled Lagrangians and IDA-Passivity based control[END_REF][START_REF] García-Canseco | Lagrangian and Hamiltonian Methods for Nonlinear Control[END_REF][START_REF] Ortega | Interconnection and damping assignment passivity-based control: A survey[END_REF] for further details). There has been reported a dynamic version of the IDA-PBC, however as proved in [START_REF] Astolfi | Dynamic extension is unnecessary for stabilization via interconnection and damping assignment passivity-based control[END_REF], this extension is unnecessary since a system can be stabilized by IDA-PBC if and only if it can be stabilized by the dynamic IDA-PBC.

In the same category is found the so-called control by interconnection (CBI). In this approach, a dynamic controller is obtained such that plant and the controller are coupled via a power-preserving interconnection-generating an overall PCH system with storage function the sum of the plant and controller storage functions. Roughly speaking, in this methodology it is desired to achieve stabilization making the desired equilibrium a minimum of the new storage function [START_REF] Ortega | New results on control by interconnection and energybalancing passivity-based control of port-Hamiltonian systems[END_REF].

The present thesis work is placed within this line of research. Particularly, we are interested in deriving controllers, based on passivity theory, such that they admit a PIlike structure. We called these controllers PI passivity-based controllers or simple PI-PBC. The result presented is twofold. Firstly, we derived PI controllers that are widely accepted by practitioners due to its simplicity and then we find application of these controllers in physical systems. Secondly, the procedures here adopted encompass a large class of nonlinear dynamic systems and do not need to solve PDEs, a situation that commonly emerges when it is desired to shape the system energy.

Thesis Overview & Contributions

The work presented along this thesis follows mainly from [START_REF] Casta Ños | Proportional plus integral control for set-point regulation of a class of nonlinear RLC circuits[END_REF][START_REF] Donaire | Shaping the energy of mechanical systems without solving partial differential Equations[END_REF][START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF][START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF][START_REF] Perez | Passivity-based PI control of switched power converters[END_REF][START_REF] Sanders | Lyapunov-based control for switched power converters[END_REF]. Thus, the PI controllers here formulated extend the methodology presented therein. A brief introduction of this line of research as well as the contributions of the thesis is described in the following.

Borrowing the concepts of incremental passivity and energy in the increment of [START_REF] Vidyasagar | Feedback Systems: Input-Output Properties[END_REF],

in [START_REF] Sanders | Lyapunov-based control for switched power converters[END_REF] is shown that the energy in the increment of a broad class of switched converters is a Lyapunov function for a given nominal trajectory, so the nominal trajectory is stable. Furthermore, a control law of the incremental input is proposed to regulate switched converters. This incremental input is a deviation of the control signal from its value at the desired equilibrium (also known as nominal value). To represent the original system control input from its increment, the knowledge of its nominal value is needed.

In [START_REF] Perez | Passivity-based PI control of switched power converters[END_REF] is proved that if a nonlinear system is passifiable via a constant action, then it is stabilizable with a PI controller depending on its passive output. Using this result, in [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF] is designed a completely constructive PI passivity-based controller for a class of bilinear system and motivated by the application to power converters.

On the other hand, in [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF] sufficient conditions are stated under which a class of nonlinear systems defining a passive mapping u → y, also defines a passive mapping in its incremental representation, i.e. the mapping ũ → ỹ is passive -the symbol () represents, respectively, the increments on the control input and output respect to their value at the desired equilibrium point.

In the current thesis is presented an extension of the regulation case of power converters system, addressed in [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF], to the tracking problem. As a result, we prove that the fulfillment of some given conditions makes possible to obtain -time-varying-PIs controllers tracking admissible system trajectories. We apply this approach to some benchmark examples and a wind energy system. Furthermore, experimental applications were reported in [START_REF] Cisneros | Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters[END_REF]. Another contribution of this thesis is intended to robustify the PI-PBC controller introduced in [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF]. To carry out this robustification we identify a class of systems to which this technique is applicable when the system parameters are unknown. This approach is motivated by its application to temperature regulation.

A final contribution of the thesis concerns the line of research developed in [START_REF] Donaire | Shaping the energy of mechanical systems without solving partial differential Equations[END_REF].

In that paper, it has been proposed for mechanical systems to abandon the objective of structure preservation and attention has been concentrated on the energy shaping objective only. That is, to look for a static state-feedback that stabilizes the desired equilibrium assigning to the closed-loop a Lyapunov function of the same form as the energy function of the open-loop system but with new, desired inertia matrix and potential energy function. However, it was not required that the closed-loop system is a mechanical system with this Lyapunov function qualifying as its energy function.

In this way, the need to solve the matching equations is avoided. Under the same philosophy, we consider now the case of port-Hamiltonian (pH) systems. The starting point of the design is the well-known power shaping output [START_REF] Ortega | Power shaping: A new paradigm for stabilization of nonlinear RLC circuits[END_REF]. Then, we construct the new storage function from the original energy function of the system and its power shaping output. We find out that under some conditions, PI controllers that regulate the system behavior and guarantee the stability of the system.

Outline of the Thesis

The current thesis is organized as follows.

-In Chapter 2, we present a PI-PBC for the tracking problem of a class of bilinear systems. We extend the result reported in [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF], where a PI depending on a passive output is developed to solve the regulation problem in power converters . The class of systems under consideration has the form The objective of this chapter is to provide a theoretical framework-based on the property of passivity [START_REF] Isidori | Asymptotic stability of interconnected passive non-linear systems[END_REF][START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF] of the incremental model-to establish such a result. Our motivation to pursue a passivity framework is that it naturally leads to the design of PI controllers, which are known to be simple, robust and widely accepted by practitioners. The result presented in this chapter is an extension to the problem of tracking trajectories, of [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF][START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF] that treat the regulation case (see Section 2.3). The proposed result is illustrated by an application to power converters.

ẋ(t) = [A + i u i (t)B i ]x(t) + B 0 u + d(t

The PI-PBC of Bilinear system for the regulation and tracking problem

Consider the bilinear system1 

ẋ = Ax + d + m i=1 u i B i x + B 0 u (2.1)
where x ∈ R n , d ∈ R n are the state and the known time-varying signal vector, respectively, u ∈ R m , m ≤ n, is the control vector, and A ∈ R n×n , B i ∈ R n×n , B 0 ∈ R n×m are real constant matrices.

We will say that a function x : R + → R n is an admissible trajectory of (2.1), if it is differentiable, bounded and verifies

ẋ =Ax + d + m i=1 u i B i x + B 0 u (2.2)
for some bounded control signal u :

R + → R m .
The global tracking problem is to find, if possible, a dynamic state-feedback controller of the form

ż = F (x, x , u ) (2.3) u = H(x, x , z, u ), (2.4) 
where

F : R n × R n × R m → R q , q ∈ Z + , and 
H : R n × R n × R m → R m , such that all signals remain bounded and lim t→∞ [x(t) -x (t)] = 0, (2.5) 
for all initial conditions (x(0), z(0)) ∈ R n × R q and all admissible trajectories.

We characterize a set of matrices {A, B i } for which it is possible to solve the global tracking problem with a simple linear time-varying PI controller. The class is identified via the following LMI.

Assumption 2.1. ∃P ∈ R n×n such that

P = P > 0 (2.6) sym(P A) ≤ 0 (2.7) sym(P B i ) = 0, (2.8) 
where the operator sym : R n×n → R n×n computes the symmetric part of the matrix, that is sym(P A) = 1 2 (P A + A P ).

To simplify the notation in the sequel the positive semidefinite matrix has been defined Q := -sym(P A).

(2.9)

Passivity of the Bilinear Incremental Model

Instrumental to establish the main result of the paper is the following lemma. where the map C : R n → R m×n is defined as

C(x ) :=           x B 1 . . . x B m      + B 0      P.
(2.11)

The operator ũ → y is passive with storage function

V (x) := 1 2 x P x. (2.12) 
Hence, it verifies the dissipation inequality V ≤ ũ y.

Proof. Combining (2.1) and (3.30) yields

ẋ =(A + m i=1 u i B i )x + m i=1 ũi B i x + B 0 ũ. (2.13)
Now, the time derivative of the storage function (2.12) along the trajectories of (2.13) is

V (x) = x P (A + m i=1 u i B i )x + m i=1 ũi B i x + B 0 ũ = -x Qx + x P m i=1 ũi B i x + B 0 ũ ≤ x P m i=1 ũi B i x + B 0 ũ = x P B 1 x | . . . |B m x + B 0 ũ = y ũ,
where (2.8) of Assumption 2.1 has been used to get the second identity, (2.7) for the first inequality, (2.8) again for the third equation and (2.10) for the last identity. As shown in the examples below this may prove to be a very complicated task and some approximations may be needed to derive them. Indeed, it is shown in [START_REF] Josep | Stable inversion of abel equations: Application to tracking control in DC--DC nonminimum phase boost converters[END_REF] that even for the simple boost converter this task involves the search of a stable solution of an Abel ordinary differential equation, whose only stable trajectory is known to be highly sensitive to initial conditions.

A PI Global Regulating Controller [32]

In this section we recall the result reported in [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF] about the regulation in systems of the form (2.1). For this case, we consider d and x constant vectors. Then, it can be seen that (3.30) becomes an algebraic equation, i.e., x is an admissible equilibrium point satisfying

0 = Ax + d + m i=1 u i B i x + B 0 u (2.14)
for some u ∈ R m .

Lemma 2.2. Consider the system (2.1) verifying Assumption 2.1 with d and x , u such that (2.14). Then, the system (2.1) in closed-loop with the PI controller

ż = -y u = -K p y + K i z (2.15)
with output y given in 2.10 and K p , K i > 0. For all initial conditions (x(0), z(0)) ∈ R n+m the trajectories of the closed-loop system are bounded.

Proof: The reader is referred to [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF].

A PI Global Tracking Controller

From Lemma 2.1 the next proposition follows immediately.

Proposition 2.1. Consider the system (2.1) verifying Assumption 2.1 and an admissible trajectory x in closed loop with the PI controller

ż = -y u = -K p y + K i z + u (2.16)
with output (2.10), (4.12) and K p > 0, K i > 0. For all initial conditions (x(0), z(0)) ∈ R n × R m the trajectories of the closed-loop system are bounded and lim t→∞ y a (t) = 0, (2.17)

where the augmented output y a : R + → R m+n is defined as

y a :=   C(x ) Q 1 2   x, with Q 1 2 the square root of Q given in (2.9). Moreover, if rank   C(x ) Q 1 2   = n, (2.18)
then state global tracking is achieved, i.e., (2.5) holds.

Proof. The PI controller (2.16) is equivalent to

ũ = -K p y + K i z ż = -y. ( 2.19) 
Consider the following radially unbounded Lyapunov function candidate

W (x, z) := V (x) + 1 2 z K i z, (2.20)
whose time derivative is

Ẇ = -x Qx + y ũ -z K i y = -x Qx -y K p y ≤ -λ min {K p }|y| 2 -|Q 1 2 x| 2 ≤ 0.
Notice that the closed-loop system (2. 

=      ẋ B 1 . . . ẋ B m      P x +           x B 1 . . . x B m      + B 0      P ẋ, (2.21) 
which is bounded because ẋ ∈ L ∞ . Then, ẏa is bounded and it follows that y a (t) → 0. 

= -y + ξ B P (x + x ) ũ = -K p y + K i z -K p ξ B P x + ς.
Furthermore, the derivative of (2.20) yields

Ẇ = -x Qx -y K p y + y (ς -K p ξ B P x) + z K i ξ B P (x + x ).
Hence, from the latter, we cannot conclude stability since (2.20) is not a strict Lyapunov function and there is no way to dominate the new terms appearing in its derivative.

Notice that for simplicity we adopt the case m = 1 however, it can be readily ex- 

tended for m ≥ 2. C + v E + i L R - u Figure 2.1: Representation of the ideal Buck Converter. x 1 , x 1⋆ 0 0.5 1 x 2 , x 2⋆ 0 0.5 1 x 1⋆ , x 2⋆ x 1 , x 2 , u 5 

Application to Power Converters

The present section is intended to exemplify the use approach proposed within this chapter. Experimental results have been reported in [START_REF] Cisneros | Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters[END_REF].

The Buck Converter

Consider the well-known normalized average model of the Buck Converter depicted in Fig. 2.1:

ẋ1 = -x 2 + u ẋ2 =x 1 - x 2 D , ( 2.22) 
where D := R C L . Also, E, C, L and R are the system parameters and u the control input. The relation between the physical variables i, v and x is given by the following

transformation   x 1 x 2   =   1 E L C 0 0 1 E     i v   .
(2.23)

Clearly, defining

A =   0 -1 1 -1 D   , B 0 =   1 0   , Q = P = I 2 , (2.24)
the system satisfies Assumption 2.1. Furthermore,

y = B 0 P x = x1 . (2.25)
The control objective is to drive x 2 to a desired time-varying reference x 2 . Thus, from second equation of (2.22),

x 1 = ẋ2 + x 2 D , ( 2.26) 
which substituted in the first equation of (2.22) yields

u = ẍ2 + ẋ2 D + x 2 .
(2.27) 

Considering x 2 = V 0 + a sin(ωt), (2.26) and (2.27) becomes u = -aω 2 sin(ωt) + a D ω cos(ωt) + a sin(ωt) + V 0 x 1 =aω cos(ωt) + a D sin(ωt) + V 0 D .

The Boost Converter

The well-known normalized average model of the Boost shown in Fig. 2.3 is

ẋ1 = -x 2 u + 1 ẋ2 =x 1 u - x 2 D (2.28)
where D := R C L . Also, E, C, L and R are the system parameters and u the control input. The relation between the physical variables i, v and x is given by (2.23). Clearly, defining

C + v E + i R - u L Figure 2.3: Representation of the ideal Boost Converter. x 1 , x 1⋆ 0 4 8 x 2 , x 2⋆ 0 2 4 x 1 , x 2 , u x 1⋆ , x 2⋆
A =   0 0 0 -1 D   , B 1 =   0 -1 1 0   , Q = P = I 2 , ( 2.29) 
the system satisfies Assumption 2.1. Furthermore,

y = x B 1 P x = x2 x 1 -x1 x 2 .
(2.30)

The control objective is x 2 , which is selected as x 2 = V 0 + a sin(ωt). On the other hand, from the second equation of (2.28) we have

u = 1 x 1 ẋ2 + x 2 D . (2.31)
Substituting the latter equation in the first equation of (2.28) yields

ẋ1 x 1 = x 1 -x 2 ẋ2 + x 2 D . (2.32)
As claimed in Remark 2.1, since the system contains only one stable solution, finding

x 1 from (2.
32) is a difficult task. Instead, we take the approximation of the solution of such system proposed in [START_REF] Fossas | Iterative approximation of limit cycles for a class of abel equations[END_REF]. Here below we write the expression of x1 , the approximation of x 1 -refer [START_REF] Fossas | Iterative approximation of limit cycles for a class of abel equations[END_REF] for further details:

x1 = c 0 + 1 2ωc 0 8V 0 a D cos(ωt) -4V 0 aω sin(ωt) + a 2 ω cos(2ωt) + a 2 D sin(2ωt) (2.33)
where

c 0 := 1 D V 2 0 + a 2 2
. Under this approximation, signal û , the approximation of (2.31), becomes

û = 1 x1 (cos(ωt) + 1 D a sin(ωt) + V 0 ) (2.34)
In Fig. 

Application to Temperature Regulation

In many practical applications the plant to be controlled has an open-loop stable equilibrium, e.g., at the origin, and we would like to add a controller to regulate its behavior around another operating point. In the case of linear systems the dynamics remains invariant under coordinate shifts, therefore this task can be easily accomplished using the incremental model of the plant. Unfortunately, this is not the case for nonlinear systems, for which there is no obvious advantage of working with the incremental model. To carry out this regulation task, in this chapter we identify a class of (input affine) nonlinear systems for which it is possible to design a PI controller with the following features.

F1 Regulation of the closed-loop system around the desired (non-zero) operating point should be guaranteed.

F2

The PI controller should be robust, in the sense that reduced knowledge of the system parameters is required.

F3 To simplify the controllers commissioning, a well defined admissible range of variation for the PI proportional and integral gains, preserving closed-loop stability, should be provided.

We propose the construction of a PI controller with the features F1-F3 for plants with unknown dynamics verifying the following assumptions.

A1 The open-loop system is unknown but has a stable equilibrium at the origin.

A2 The desired equilibrium belongs to the assignable set and admits a convex Lyapunov function.

A3 The Lyapunov function is the sum of two functions, depending on the un-actuated and actuated coordinates, respectively. The first function is unknown while the second one is separable and linearly parameterized in terms of some unknown parameters.

A4 The input matrix is constant, known and has n -m zero rows, where n and m are the dimensions of the state and input vectors, respectively.

As indicated in the article's title we exploit the fundamental property of passivity to design the PI, which will be referred in the sequel as PI Passivity-based Control (PI-PBC). The first step in the design is to, relying on A1 above, invoke the celebrated theorem of Hill and Moylan [START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF] to identify a suitable passive output for the system, with storage function the Lyapunov function of the open-loop system. Since our interest is the regulation of non-zero equilibria, we then use the results of [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF] to create a new passive output for the incremental model with a storage function that has a minimum at the desired equilibrium. As shown in [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF], feeding back the passive output through a PI controller ensures stability of the desired equilibrium for all positive definite PI gains. It is important to underscore that, since the passivity property has been established for the incremental model, the equilibrium can also be stabilized setting the control input equal to the (constant) value that assigns the equilibrium, say u , which is univocally defined. However, this open-loop control will, obviously, be nonrobust. In the robustness context of the present chapter neither the plant dynamics nor the Lyapunov function are known and, consequently, we cannot compute neither the passive output nor u . It is at this point that we invoke A3 and A4 above to prove that, under these assumptions, it is possible to define suitable proportional and integral gains that make the PI-PBC implementable and, consequently, guarantee stability of the equilibrium. Another important feature of the proposed PI-PBC is that it requires only partial measurement of the state, namely, only the m state variables associated to the non-zero rows of the input matrix, referred in the sequel as actuated coordinates. In this way, our approach is oriented towards a characterization of a class of systems that can be regulated by means of the PI-PBC with a minimum knowledge of the system parameters.

Several practical applications of PI-PBC have been reported in the literature. This include, RLC circuits [START_REF] Casta Ños | Proportional plus integral control for set-point regulation of a class of nonlinear RLC circuits[END_REF], power converters [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF], fuel cells [START_REF] Talj | A controller tuning methodology for the air supply system of a PEM fuel-cell system with guaranteed stability properties[END_REF], electric drives [START_REF] Marmidis | A passivity-based PI control design for DC-drives[END_REF] and mechanical systems [START_REF] Meza | Analysis via passivity theory of a class of nonlinear PID global regulators for robot manipulators[END_REF]. In [START_REF] Donaire | On the addition of integral action to port-controlled Hamiltonian systems[END_REF] a procedure to add an integral action to a non-passive output for a class of port-Hamiltonian systems was first proposed, and later extended in [START_REF] Ortega | Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances[END_REF], [START_REF] Romero | Robust energy shaping control of mechanical systems[END_REF]. To the best of our knowledge, the present result is the first attempt to design PI-PBCs with guaranteed stability properties for systems with partially known dynamics.

A natural question that arises at this point is the incorporation of adaptation in the design of the PI (or PID). In the power converter application of [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF] a parameter that enters in the definition of the passive output, i.e., the load resistance, is adaptively identified-however, all other parameters are assumed to be known. In the interesting paper [START_REF] Antonelli | Continuous stirred tank reactors: Easy to stabilise?[END_REF] it is shown that it is possible to adaptively estimate u for a general nonlinear system with scalar input, keeping the estimate in a known interval, provided the passive output is known. In spite of a large number of publications the problem of designing a provably stable adaptive PID for systems with unknown parameters remains, as far as we know, open. The difficulty of this task was identified already in 1984 in [START_REF] Ortega | PID self-tuners: Some theoretical and practical aspects[END_REF]. As is well-known [START_REF] Sastry | Adaptive Control: Stability, convergence, and robustness[END_REF], the stability of indirect adaptive methods relies on parameter convergence that, in its turn, requires persistency of excitation-a property that is not satisfied in the regulation tasks where PI control is effective. On the other hand, the application of direct methods is stymied by the absence of a suitable parameterization of this structure-constrained controller. For the PI-PBC studied in this chapter the main difficulty is the need to estimate two objects, that appear multiplicatively in the Lyapunov analysis: the passive output and the ideal control signal u . This point is further elaborated in Subsection 5.2.5.

Problem Formulation

In this section we formulate the control problem addressed along the chapter, enunciate the assumptions made on the plant to solve it and make some remarks on these assumptions.

Robust PI control problem

Consider the nonlinear, input affine, system

ẋ = f (x) + Gu, ( 3.1) 
where

x ∈ R n , u ∈ R m , n > m, f : R n → R n is an unknown smooth mapping, G ∈ R n×m is constant verifying rank(G) = m.
The following is a key assumption made throughout the chapter. 

G =   0 (n-m)×m G 2   , (3.2)
where G 2 ∈ R m×m is known.

This assumption can be easily obviated introducing state and input changes of coordinates. Indeed, it is well-known-see, e.g., Theorem 2 of Section 2.7 of [START_REF] Lancaster | The theory of matrices[END_REF]-that for any full rank, matrix G ∈ R n×m there exists (elementary) full rank matrices T ∈ R n×n and S ∈ R m×m such that

T GS =   0 (n-m)×m I m   .
Consequently, introducing z = T x and v = S -1 u the system (3.1) takes the desired form

ż = w(z) +   0 (n-m)×m I m   v, where w(z) = T f (T -1 z).
We should note, however, that a change of state representation destroys-in general-the original structure of the system, whose knowledge may be critical for the verification of the second assumption below. This fact is clearly illustrated in the physical examples considered in Section 5.2.6. For this reason, we prefer to leave it as an standing assumption.

Motivated by Assumption 3.1 we find convenient to define a partition of the state vector into its un-actuated and actuated components as

x =   x u x a   , x u :=          x 1 x 2 . . . x n-m          , x a :=         
x n-m+1

x n-m+2 . . .

x n         
.

It is assumed that only x a is available for measurement.

The unforced system, that is, ẋ = f (x), has a stable equilibrium at the origin with a partially known Lyapunov function. We are interested in controlling the system with a PI at a non-zero equilibrium-a situation that arises in most practical applications.

Thus, we are given a desired equilibrium point, x ∈ R n , and the control goal is to ensure stability of this equilibrium using a PI control law of the form

ż = -K I ψ(x a , x ) u = -K P ψ(x a , x ) + z
where z ∈ R m is the controller state, K P ∈ R m×m and K I ∈ R m×m are tuning gains and ψ : R m × R n → R m is a mapping designed with the partial knowledge of the aforementioned Lyapunov function.

The following, practically reasonable, assumption is made throughout the chapter.

Assumption 3.2. The desired equilibrium point x belongs to the assignable equilibrium set, that is,

x ∈ E := x ∈ R n | I n-m | 0 (n-m)×n f (x) = 0 . (3.3)

Assumptions on the open-loop plant

The following assumption identifies the class of vector fields f (x) for which we provide an answer to the problem.

Assumption 3.3. For the system (3.1) there exists a twice-differentiable, positive definite function H : R n → R ≥0 , verifying the following.

(i) [∇H(x)] f (x) ≤ 0. (ii) [∇H(x) -∇H(x )] f (x) =: -Q(x) ≤ 0. (iii) The function H(x) is of the form H(x) = H u (x u ) + H a (x a ) (3.4) with H a (x a ) = n i=n-m+1 d i φ i (x i ), (3.5) 
where the function H u : R n-m → R and the constants d i > 0 are unknown but the functions φ i : R → R are known.

(iv) The functions H u (x u ) and φ i (x i ) are convex.

Discussion

The following remarks regarding the assumptions are in order.

R1 Although the set of assignable equilibria E is not known, it is reasonable to assume that we have enough prior knowledge about the plant to select the desired operating point as a feasible equilibrium. Hence, Assumption 3.2 is practically reasonable.

R2 A corollary of Assumption 3.2 is that the constant input u , that assigns the equilibrium, is uniquely defined as

u := G 2 G 2 -1 0 m×(n-m) G 2 f . (3.6)
Notice that, without knowledge of f (x), this constant cannot be computed.

R3 Since the open-loop system (3.1) has a stable equilibrium at the origin Assumption 3.3 (i) follows as a corollary of Lyapunov's converse theorems [START_REF] Khalil | Nonlinear Systems[END_REF]. As will become clear below Assumption 3.3 (ii) and (iv) are required to prove passivity of the incremental model as done in [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF]. and a class of port-Hamiltonian systems [START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF].

R6 It can be noticed that the class of port-Hamiltonian systems of the form:

ẋ = (J -R)∇H(x) + Gu (3.7)
with constant interconnection J = -J and damping R = R ≥ 0 matrices satisfies Assumption 3.3 (i) and (ii). Indeed, Assumption 3.3 (i) is satisfied since

[∇H(x)] (J -R)∇H(x) = -[∇H(x)] R∇H(x) ≤ 0.
Similarly, Assumption 3.3 (ii) e

[∇H(x) -∇H(x )] (J -R)[∇H(x) -∇H(x )] = -[∇H(x) -∇H(x )] R[∇H(x) -∇H(x )] ≤ 0.
R7 Regarding Assumptions 3.1, in the more general case when G is not of the form (3.2) an additional shuffling of the rows of G is needed in the design. This procedure is explained in Subsection 5.2.5.

R8 For quadratic Lyapunov functions of the form H(x) = x P x, with P > 0, As-

sumption 3.3 (ii) is satisfied if the open-loop system is convergent in the sense of
Demidovich [START_REF] Pavlov | Convergent dynamics, a tribute to Boris Pavlovich Demidovich[END_REF]. That is, if it satisfies

P ∇f (x) + [∇f (x)] P ≤ 0.

Preliminary Lemmata

Unless otherwise indicated, throughout the rest of the chapter Assumption 3.1 holds.

Define for the system (3.1) the output

y = G ∇H(x) = G 2 DΦ(x a ), (3.8) 
where

D :=          d n-m+1 0 . . . 0 0 d n-m+2 . . . 0 . . . . . . . . . . . . 0 0 . . . d n          > 0 Φ(x a ) :=      φ n-m+1 (x n-m+1 ) . . . φ (x n )     
.

A corollary of the theorem of Hill and Moylan [START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF] is that, if Assumption 3.3 (i) holds, the system (3.1), (3.8) defines a passive mapping u → y with storage function H(x).

To operate the system at a non-zero equilibrium it is necessary to shift the minimum of the storage function and define the passivity property between the incremental input and the output error. Towards this end, we recall Proposition 1 of [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF] and state it as a lemma below. 

ẋ = f (x) + Gu + Gũ, e = G 2 D Φ(x a ), (3.9) 
where ũ = u -u is the incremental input. Under Assumptions 3.1-3.3 the mapping ũ → e is passive with storage function U : R n → R ≥0 given by

U (x) = H(x) -x u ∇H u -x a DΦ + k, (3.10)
where k is a constant that ensures U (x ) = 0. More precisely,

U = -Q(x) + e ũ, (3.11) 
where Q(x) is defined in Assumption 3.3 (ii).

One of the main interests of passive systems is that they can be globally stabilized with PI controls (with arbitrary positive definite gains). This well-known fact is stated in the lemma below, whose proof is given to streamline the presentation of our main result. Moreover, if e a is a detectable output for the closed-loop system then the equilibrium point is asymptotically stable.

Proof. Defining z := z-u the last two equations of the controller (3.12) may be written in the form ż = -K I e ũ = -K P e + z.

(3.15)

Consider the Lyapunov function candidate

W (z, x) = U (x) + 1 2 z Λ I z, (3.16) 
where Λ I > 0. The time derivative of the Lyapunov function along the trajectories of the closed-loop system is

Ẇ = -Q(x) + e ũ + z Λ I ż = -Q(x) -e K P e + z e -z Λ I K I e.
(3.17)

Setting Λ I = K -1 I yields Ẇ = -Q(x) -e K P e.
The proof is complete invoking standard Lyapunov arguments [START_REF] Khalil | Nonlinear Systems[END_REF].

The Robust PI-PBC

As indicated in R4 of Subsection 5.2.2 the matrix D is unknown. Hence, the error signal e cannot be constructed and the PI-PBC (3.12) is not implementable. This motivates our main result given below. 

= -K P Φ(x a ) + z ż = -K I Φ(x a ), (3.18) 
with the controller gains

K P = G -1 2 Γ P K I = G -1 2 Γ I . (3.19)
For all diagonal, positive definite matrices Γ P ∈ R m×m and Γ I ∈ R m×m we have the following.

(i) All trajectories are bounded and the equilibrium point (x, z) = (x , u ) is globally stable (in the sense of Lyapunov).

(ii) The augmented error signal e a defined in (3.13) verifies (3.14).

(iii) If e a is a detectable output for the closed-loop system then the equilibrium point is globally asymptotically stable.

Proof. Some simple manipulations prove that

K P Φ(x a ) = G -1 2 Γ P D -1 G - 2 G 2 D Φ(x a ) = Λ P e, ( 3.20) 
where we defined the matrix

Λ P := G -1 2 Γ P D -1 G - 2 , (3.21)
and used the definition of e in (3.12). Invoking Sylvester's Law of Inertia [START_REF] Lancaster | The theory of matrices[END_REF], and the fact that Γ P and D are diagonal and positive definite, we have that Λ P > 0.

Next choose

Λ I := G 2 DΓ -1 I G 2 , (3.22)
that is, also, positive definite for all diagonal, positive definite Γ I . Then Consequently, the time derivative of the Lyapunov function (3.17) becomes now

Λ I K I Φ(x) = G 2 D Φ(x a ) = e. ( 3 
Ẇ = -Q(x) -e Λ P e, ( 3.24) 
completing the proof.

To obtain an implementable version of the robust PI-PBC it was necessary to carryout two tasks. First, to make the damping injection, introduced by the proportional term, function of the unknown matrix D. Indeed, replacing (3.21) in (3.20) we get

K P Φ(x) = G -1 2 Γ P D -1 G - 2 e.
Second, make the gain Λ I of the Lyapunov function (5.54) also a function of D-see

(3.22).
An important observation is that, even though the controller only requires measurement of the actuated terms of the state x a , it achieves regulation of the full state vector.

Additional Remarks on the PI-PBC

In this section we explain how to proceed when G is not of the form (3.2), discuss the reasons that stymie the use of adaptation and the inability to state a robustness result based on continuity and approximate prior knowledge of the matrix D.

General G (with n -m zero rows)

Instrumental to design the robust PI-PBC was the particular form of H(x) defined in Assumption 3.3 (iii). In view of the construction of the robust PI-PBC, it is clear that if G is not of the form (3.2) the assumption must be modified redefining the actuated and un-actuated coordinates.

To avoid cluttering the notation we will explain the procedure only for the case when n = 3 and m = 2-the general case follows verbatim. Assume, furthermore, that

G is of the form G =      g 1 0 1×2 g 3     
.

The form of H(x) given in Assumption 3.3 (iii) must be, accordingly, modified to

H(x) = H u (x 2 ) + d 1 φ(x 1 ) + d 3 φ(x 3 ).
In this case the passive output e for the incremental model becomes

G [∇H(x) -∇H(x )] = G s   d 1 0 0 d 3     Φ 1 (x 1 ) Φ 3 (x 3 )   .
where

G s := g 1 | g 3 .
The robust PI-PBC is given by

u = -G -1 s Γ P   Φ 1 (x 1 ) Φ 3 (x 3 )   + z ż = -G -1 s Γ I   Φ 1 (x 1 ) Φ 3 (x 3 )   ,
where Γ P and Γ I are arbitrary, diagonal, positive definite matrices.

Before closing this subsection we remark that our construction critically relies on the assumption of existence of n -m zero rows in G. Indeed, it is possible to show that if this is not the case, even assuming H(x) of the form

H(x) = n i=1 d i φ i (x i )
it is not possible to find an m × m positive definite matrix Λ, which will depend on D, such that the matrix ΛG D is independent of D. The fact that this is not possible for all matrices G is obvious considering the counterexample G = col(1, 1). Hence, the assumption of existence of n -m zero rows in G is necessary to solve the problem.

Difficulties for adaptation

A natural alternative to the robust PI-PBC presented above is to assume a parametrisation of f (x) and try to estimate this parameters or, in a direct approach, estimate the matrix D that defines the passive output. The indirect approach, as is well-known, relies on parameter convergence that requires persistency of excitation-a property that is not satisfied in the regulation tasks where PI control is effective.

Let us see what are the difficulties for the application of a direct adaptation approach. Towards this end, we propose the adaptive PI-PBC

Ḋ = F (x, z) ê = G 2 D Φ(x a ) ż = -K I ê u = -K P ê + z,
where the parameter adaptation law F : R n × R m → R m×m is to be defined. 2 Defining ẽ := ê -e the last two equations of the controller may be written in the form

ż = -K I (e + ẽ) ũ = -K P (e + ẽ) + z.
The time derivative of the Lyapunov function (5.54) with

Λ I = K -1 I is now Ẇ = -Q(x) -ê K P ê -ũ ẽ = -Q(x) -ê K P ê -ũ G 2 D Φ(x a )
where we underscore the presence of the last right hand term. If ũ were known the standard procedure of augmenting the Lyapunov function with a term trace( D D)

and cancelling the sign-indefinite term with a suitable choice of F (x, z) would do the job. Alas, u is not known, hence this approach is not feasible.

Adding an adaptation for the constant u is also not a trivial task, because of the bilinear nature of the joint estimation problem.

Comments on robustness based on continuity

The availability of a bona fide Lyapunov function for the known parameters PI-PBC, i.e., W (x, z), suggests that stability will be preserved if the matrix D is replaced by a "good", constant estimate of it, say D 0 . More precisely, it is expected that replacing the controller (3.12) by

e 0 = G 2 D 0 Φ(x a ) ż = -K I e 0 u = -K P e 0 + z,
where

D = D 0 + ∆, ∆ := diag{δ i }
would ensure stability if |col(δ i )| is sufficiently small. Unfortunately, since the Lyapunov function is not strict, this conjecture cannot be analytically validated. Indeed, in this case the time derivative of the Lyapunov function (5.54) with

Λ I = K -1 I is now Ẇ = -Q(x) + e ũ -z (e -G 2 ∆ Φ(x a )) = -Q(x) -e 0 K P e 0 -(K P e 0 -z) G 2 ∆ Φ(x a ).
While the term e 0 K P G 2 ∆ Φ(x a ) can be dominated for "small" ∆, there is no way we can dominate the remaining term z K I G 2 ∆ Φ(x a ) and the Lyapunov analysis cannot be completed with standard techniques.

This unfortunate situation does not mean, of course, that a continuity result of this type cannot be established. It simply reveals our inability to do it with the tools used to analyze the ideal case.

Application to Temperature Regulation

In this subsection we design a robust PI-PBC for the temperature regulation of a class of thermal systems-the so-called, Rapid Thermal Processes (RTP). Attention is concentrated on the verification of Assumption 3.3. Hence, unless otherwise indicated, Assumption 3.1 is not imposed.

System Description

Similarly to [START_REF] Ebert | Model-based control of rapid thermal processing for semiconductor wafers[END_REF][START_REF] Schaper | Low-order modeling and dynamic characterization of rapid thermal processing[END_REF] we consider the following model of Rapid Thermal Processes

Ṫ = A 1 [Ψ(T ) -Ψ(T rad )] + A 2 (T -T conv ) + Gu, ( 3.25) 
where T ∈ R n ≥0 represents the vector of temperatures, Ψ(T ) := col(T 4 i ) and T rad , T conv ∈ R n ≥0 are, respectively, the vectors of temperatures related to the radiation heat emission from environment and the convection air flows. The constant matrices A 1 , A 2 ∈ R n×n are Hurwitz and contain the radiation and the convection heat transfer coefficients. Also, the entries of G ∈ R n×m correspond to the heat transfer coefficients of the heating elements. Finally, u ∈ R m is the controlled power applied to the heating elements.

Physically, considering matrix G as (3.2) means that for m heating elements there are n -m measured points that are not directly heated by these elements.

In the model above, as in [START_REF] Schaper | Low-order modeling and dynamic characterization of rapid thermal processing[END_REF], it is considered that the plant is heated almost uniformly so that the contribution of energy from conduction is too small with respect to the radiation transfer. Hence, the conduction heat transfer is neglected. We also assume the steady environment conditions, i.e., the values T rad and T conv are constant.

To simplify the notation we re-write the system (3.25) in the form

Ṫ = A 1 Ψ(T ) + A 2 T + E + Gu (3.26)
where

E := -A 1 Ψ(T rad ) -A 2 T conv .
Unlike A 1 , A 2 and E that are highly uncertain, the input matrix G-that is defined by the induced heat flow-can be precisely identified. The control objective is then to design a robust PI, i.e., that does not require the knowledge of the uncertain parameters, to regulate the process around some desired temperature, which is not equal to the open-loop equilibrium, but belongs to the assignable equilibrium set, that is,

T ∈ T ∈ R n ≥0 | G ⊥ [A 1 Ψ(T ) + A 2 T + E] = 0 , ( 3.27) 
where G ⊥ ∈ R (n-m)×n is a full-rank left-annihilator of G.

To place the problem in the context of Proposition 3.1 we first shift the equilibrium of the open-loop system to the origin and then proceed to verify Assumption 3.3. For, we introduce the standard change of coordinates

x = T - T
where T is the open-loop equilibrium that satisfies

A 1 Ψ( T ) + A 2 T + E = 0. (3.28)
Thus, the system (3.25) in the new coordinates takes the form (3.1) with

f (x) := A 1 Ψ(x + T ) + A 2 (x + T ) + E, ( 3.29) 
Associated to the desired temperature T we define the equilibrium to be stabilised

x := T -T .
(3.30)

Passivity of the thermal system.

The lemma below identifies conditions under which the system (3.25) satisfies Assumption 3.3 without imposing Assumption 3.1, that is, avoiding the partition of the coordinates into actuated and un-actuated. Towards this end, the following assumption is needed.

Assumption 3.4. The matrix A 1 is diagonally stable [START_REF] Kaszkurewicz | Matrix diagonal stability in systems and computation[END_REF]. That is, there exists P ∈ R n×n ,

P = diag{p i } > 0 such that P A 1 + A 1 P =: -2S < 0. (3.31) 
Moreover, the matrix A 2 verifies

A 2 P diag{T 3 i } + diag{T 3 i }P A 2 ≤ 0. (3.32)
Conditions for diagonal stability of a matrix have been studied intensively, see [START_REF] Kaszkurewicz | Matrix diagonal stability in systems and computation[END_REF] for a survey. Necessary and sufficient conditions were first reported in [START_REF] Barker | Positive diagonal solutions to the Lyapunov equations[END_REF]-see also [START_REF] Shorten | An alternative proof of the Barker, Berman, Plemmons (BBP) result on diagonal stability and extensions[END_REF] for a simpler proof. For a Hurwitz matrix, a sufficient condition given in [START_REF] Farina | Positive Linear Systems: Theory and Applications[END_REF] is that it is a Metzler matrix (namely, its non diagonal elements are nonnegative). Note that due to physical nature of RTP systems the matrix A 1 usually belongs to this class.

Since A 2 is Hurwitz and

T i ≥ 0, condition (3.32) is trivially satisfied if A 2 is diagonal,
which is assumed in RTP models [START_REF] Schaper | Dynamics and control of a rapid thermal multiprocessor[END_REF][START_REF] Schaper | Low-order modeling and dynamic characterization of rapid thermal processing[END_REF]. 

H(x) = n i=1 p i φ i (x i ) + k (3.33)
where

φ i (x i ) = 1 5 (x i + Ti ) 5 -Ψ i ( T )x i . (3.34) and k = - 1 5 n i=1 p i T 5 i .
Proof. Point (iii) of Assumption 3.3 is trivially satisfied by (3.33).

We proceed now to prove point (i). Replacing (3.34) in (3.33) and grouping terms yields

H(x) = 1 5 n i=1 p i (x i + Ti ) 5 -x P Ψ( T ) + k, Now, notice that ∇H(x) = P Φ(x),
where

Φ(x) := Ψ(x + T ) -Ψ( T ). (3.35) 
On the other hand, from (3.28) it follows that the systems vector field may be written as

f (x) = A 1 Φ(x) + A 2 x.
Consequently,

[∇H(x)] f (x, θ) = Φ (x)P [A 1 Φ(x) + A 2 x] = -Φ (x)SΦ(x) + Φ (x)P A 2 x,
where we have used (3.31) to obtain the second identity. Now, condition (3.32) ensures that the function h :

R n → R n h(x) := A 2 P Ψ(x), is monotonically decreasing [64]. That is, for all a, b ∈ R n , [h(a) -h(b)] (a -b) ≤ 0.
Consequently,

Φ (x)P A 2 x = [h(x + T ) -h( T )] x ≤ 0
completing the proof of point (i).

To prove point (ii) we notice that

f (x) = A 1 Φ(x) + A 2 x, while ∇H(x) -∇H(x ) = P Φ(x).
Hence, the claim is established invoking the same arguments used above and defining

Q(x) = Φ (x)S Φ(x).
Finally, the second derivative of the functions φ i (x i ) yields

φ i (x i ) = 4(x i + Ti ) 3 = 4T 3 i ,
which is non-negative because T i ≥ 0. Hence, the functions φ i (x i ) are convex as requested by condition (iv) of Assumption 3.3. This completes the proof.

Direct application of Lemma 1 leads to the following. 

Robust PI-PBC of the thermal system

To present the robust PI-PBC for systems verifying Assumption 3.1 we partition the vector of temperatures into its un-actuated and actuated components

T =   T u T a   , T u :=          T 1 T 2 . . . T n-m          , T a :=          T n-m+1
T n-m+2 . . .

T n         
, partition P as

P =   P 1 0 (n-m)×m 0 m×(n-m) D   ,
and do the same with the vector function Ψ(T ).

The following proposition is a consequence of Lemma 3. To prove asymptotic stability we invoke item (ii) and observe that the augmented error signal (3.13) is given in this case by

e a =   Ψ (T )S G 2 D   Ψ(T ).
Since e a verifies (3.14) and S is positive definite we conclude that Ψ(T (t)) → 0 and consequently T (t) → T .

Numerical Simulation:

Consider the thermal system (3.26) with

A 1 =   -a 11 a 12 a 21 -a 22   , A 2 =   -α 1 0 0 -α 2   , G =   0 g   , C =   c 1 c 2  
where a ij ≥ 0, α i ≥ 0. Notice that the system satisfies Assumption 3.4. Then, the assignable equilibria set is

E = {T : T 2 ∈ R + , -a 11 T 4 1 + a 12 T 4 2 -α 1 T 1 + c 1 = 0} (3.36)
From Proposition 3.2, the controller 

ż = -K I T 4 2 -(T 2 ) 4 u = -K P T 4 2 -(T 2 ) 4 + z 300 450 600 T 1 , T 1 ⋆ (K ) k p =1× 10 -4 → ← k p =5×
T 1 , T 1 ⋆ (K ) K I =2× 10 -5 → ← K I =5× 10 -6 ← K I =9× 10 -7 T 1⋆ 300 550 800 T 2 , T 2 ⋆ (K ) 20 (sec/div) K I =2× 10 -5 → ← K I =5× 10 -6
← K I =9× 10 where K p = 1 g Γ p , K I = 1 g Γ I and Γ P , Γ I ∈ R + asymptotically stabilizes the system at T = T . The parameter values used in the simulation where:

a 11 = 1 × 10 -9 , a 12 = 1 2 × ×10 -9 , a 21 = 1 × 10 -9 , a 22 = 1 × 10 -9 , α 1 = 1 × 10 -4 , α 2 = 1 2 × 10 -4 , g = 1, c 1 = 3, c 2 = 1.
7, Γ p = 8 × 10 -5 and Γ I = 1 × 10 -5 . In the simulation, the control objective is initially fixed at T 2 = 500 K, then it is suddenly changed to T 2 = 700 K. From (3.36), the corresponding values for T 1 are, respectively, 430.06 K and 592.20 K. Fig. 3.1 shows the simulation results. In Fig. 3.1a the response of the system when varying control parameter K p and letting K I = 3 × 10 -6 is depicted. As it can be noticed from the same figure, the larger is the value in K p the faster is the convergence. In Fig. 3.1b it is shown the response of the system when K I is varying while K P = 6 × 10 -6 . From the figure, it can be seen that large values in K I causes overshoots in the response of

T 2 .

Chapter 4 Energy Shaping PI of Port-Hamiltonian

Systems

An energy shaping controller for mechanical systems that does not require the solution of partial differential equations (PDEs) has been recently proposed in [START_REF] Donaire | Shaping the energy of mechanical systems without solving partial differential Equations[END_REF]. In this chapter we pursue this research line considering the more general case of port-Hamiltonian (pH) systems [START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF].

The starting point of the design is the well-known power shaping output [START_REF] Ortega | Power shaping: A new paradigm for stabilization of nonlinear RLC circuits[END_REF], which defines a passive output for the pH system with storage function its energy function.

As is well-known a PI controller around this output preserves the passivity of the closed-loop. It is then shown that, if the power shaping output is "integrable", the integral action of the PI is passive with a storage function a quadratic term of the "integral" of the power shaping output, which depends on the plant state. In this way we can generate a new storage function for the closed-loop constructed as the sum of this function and the original energy function of the pH system. Adding a suitably chosen constant to the control makes this function positive definite, which then qualifies as a Lyapunov function for the closed-loop system. The condition imposed on the power shaping output boils down to a classical integrability condition of some computable vector fields, hence it can be readily verified. .

Problem Formulation and Main Assumptions

The standard input-state representation of pH systems is of the form [START_REF] Duindam | Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach[END_REF][START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF] 

ẋ = [J (x) -R(x)]∇H(x) + g(x)u, ( 4.1) 
where x ∈ R n is the state vector, u ∈ R m , m ≤ n, is the control vector, H : R n → R is the systems Hamiltonian, J , R : R n → R n×n , with J (x) = -J (x) and R(x) = R (x) ≥ 0, are the interconnection and damping matrices, respectively, and g : R n → R n×m is the input matrix, which is full rank. To simplify the notation in the sequel we define the matrix

F : R n → R n×n F (x) := J (x) -R(x).
The control objective is to stabilise an equilibrium x , which is an element of the set of assignable equilibria defined as

E := x ∈ R n | g ⊥ (x)F (x)∇H(x) = 0 , ( 4.2) 
where g ⊥ : R n → R (n-m)×n is a full-rank, left-annihilator of g(x), that is, g ⊥ (x)g(x) = 0

and rank{g ⊥ (x)} = n -m.
The following assumptions identify the class of pH systems for which the proposed control strategy is applicable.

Assumption 4.1. The matrix F (x) is full rank.

Assumption 4.2. The vector fields F -1 (x)g i (x), with g i (x), i = 1, . . . , m, the columns of the matrix g(x), are gradient vector fields. That is,

∇ F -1 (x)g i (x) = [∇ F -1 (x)g i (x) ] .
If Assumption 4.1 holds, it is possible to define the power shaping output as follows

y PS := -g (x)F -(x) [F (x)∇H(x) + g(x)u] . (4.3)
As shown in [START_REF] Ortega | Power shaping: A new paradigm for stabilization of nonlinear RLC circuits[END_REF][START_REF] Ortega | Control by interconnection and standard passivity-based control of port-Hamiltonian systems. Automatic Control[END_REF] y PS is a cyclo-passive output 1 for the pH system (4.1) with storage function H(x). More precisely, the following dissipation inequality holds

Ḣ ≤ u y PS . (4.4)
Noting that y PS may be written as

y PS = -g (x)F -(x) ẋ (4.5)
and recalling Poincare's Lemma it is easy to see that Assumption 4.2 ensures the existence of a function γ : R n → R m such that γ = (∇γ) ẋ = y PS , (

with y PS defined in (4.3).

Energy Shaping

In this section we define a static state-feedback such that the system (4.1) in closedloop with this control preserves passivity of the mapping v → y PS but with a suitably modified storage function. 

R n → R m u PS (x) :=[I -K P g (x)F -(x)g(x)] -1 [-K I (γ(x) + C) + K P g (x)F -(x)F (x)∇H(x) (4.7) 
where2 ∇γ(x) := -F -1 (x)g(x) (4.8)

and C ∈ R m and K P , K I ∈ R m×m , K I , K P > 0, are free parameters. The system (4.1) in closed-loop with the control u = u PS (x) + v defines a cyclo-passive mapping v → y PS with storage function

H d (x) = H(x) + 1 2 γ(x) + C 2 K I . (4.9)
Proof. To establish the proof, first, notice that from (4.5) and (4.6) the control (4.7) reduces to

u PS (x) = -[K I (γ + C) + K P y PS ] . (4.10)
Therefore, differentiating (4.9) we get

Ḣd = Ḣ + y PS K I (γ + C) ≤ y PS [u + K I (γ + C)] = y PS (v -K P y PS ) ≤ y PS v,
where we used (4.6) in the first equality, (4.4) in the first inequality, (4.10) for the second equality, respectively, and K P > 0 for the last inequality.

Remark 4.1. From (4.10) and (4.6) it is easy to see that the control u = u PS (x) + v is a PI of the form

u(t) = -K P y PS (t) -K I t 0 y PS (τ )dτ + D + v, ( 4.11) 
where D := -K I [C + γ(x(0))]. This establishes the connection with the PI-like controller proposed for mechanical systems in [START_REF] Donaire | Shaping the energy of mechanical systems without solving partial differential Equations[END_REF]. Notice that in its state space realization (4.7) the pH structure is not preserved in closed-loop. However, it does if the PI (4.11) is implemented via a dynamic extension.

Remark 4.2. The condition of integrability of the vector fields F -1 (x)g i (x) appears also in the context of Control-by-Interconnection of pH systems, as a necessary and sufficient condition for existence of Casimir functions, see [START_REF] Ortega | New results on control by interconnection and energybalancing passivity-based control of port-Hamiltonian systems[END_REF] for further details.

Stabilization

From 

y PS (t) ≡ 0 ⇒ lim t→∞ x(t) = x * .
Proof. First, we will prove that x * is an equilibrium point of the closed-loop system. From (4.3) we have that y PS * = 0, hence (4.10)-at the equilibrium-becomes

u BC * = -K I (γ * + C).
The proof is completed noting that the choice of C given in (4.12), together with the fact that x * ∈ E, guarantees that

F * (∇H) * -g * [K I (γ * + C)] = 0. (4.14)
To prove the stability claim we recall that from Proposition 4.1 and v = 0 we have that Ḣd ≤ -K P |y PS | 2 ≤ 0. Hence, invoking classical Lyapunov theory [START_REF] Khalil | Nonlinear Systems[END_REF], it suffices to prove that H d (x) is a positive definite function. From (4.14) we get

(∇H) * = F -1 * g * K I (γ * + C). (4.15)
Computing the gradient of H d (x) at the equilibrium yields

(∇H d ) * = (∇H) * + (∇γ) * K I (γ * + C) = (∇H) * -F -1 * g * K I (γ * + C) = 0,
where the second and third identities are obtained replacing (4.8) and (4.15), respectively. This ensures that x * is a critical point of H d (x). The proof is completed recalling that (4.13) is a sufficient condition for x * to be an isolated minimum of H d (x).

Remark 4.3. From the proof of Proposition 4.2 it is clear that-for the purpose of stabilization-the constant vector C, which ensures x is an equilibrium point of the closed-loop, is uniquely defined by (4.12).

Relation with Classical PBCs

In this section we discuss the relationship between the new controller and the classical PBC techniques of EB and IDA.3 

Energy-balancing PBC

The basic idea of EB-PBC (with the output y PS ) is to look for a state feedback u EB :

R n → R m such that Ḣa = -u EB y PS ,
for some "added" energy function H a : R n → R. In this case, setting u = u EB (x)

transforms the cyclo-pasivity inequality (4.4) into Ḣ + Ḣa ≤ 0, and if H(x) + H a (x) is positive definite the closed-loop system will have a stable equilibrium at x * . The following proposition states that, for a suitable choice of the tuning gains, the new controller is an EB-PBC. Proof. For K P = 0 the mapping u PS (x), given in (4.10), reduces to

u PS (x) = -K I [γ(x) + C]. ( 4.17) 
On the other hand, from (4.6) and (4.16) we have

Ḣa = y PS K I (γ + C) = -y PS u PS ,
completing the proof.

Interconnection and damping assignment PBC

In IDA-PBC we fix the desired interconnection and damping matrices, hence, fix the matrix for some energy function H IDA : R n → R >0 , which has a minimum at the desired equilibrium. It is easy to show that the assignable energy functions H IDA (x) are characterized by the solutions of the following PDE

F d : R n → R n×n such that F d (x) + F d (x) ≤ 0,
g ⊥ (x) [F d (x)∇H IDA (x) -F (x)∇H(x)] = 0, (4.18) 
and the control is uniquely defined as

u IDA (x) := g † (x) [F d (x)∇H IDA (x) -F (x)∇H(x)] . (4.19)
The proposition below establishes the relation between IDA-PBC and the controller of Proposition 4.1.

Proposition 4.4. Consider the pH system (4.1) verifying Assumptions 4.1 and 4.2. Fix K P = 0 in u PS (x) and select the desired interconnection and damping matrices as

F d (x) = F (x). (4.20)
Then, the energy function H d (x) defined in (4.9) and the control u = u PS (x) given in (4.7) satisfy the IDA-PBC equations (4.18) and (4.19), respectively.

Proof. Replacing the gradient of H d (x), given by

∇H d (x) = ∇H(x) -F -1 (x)g(x)K I (γ(x) + C),
in the PDE (4.18) we get

g ⊥ F ∇H -F -1 gK I (γ + C) -F ∇H = g ⊥ gK I (γ + C) = 0.
On the other hand, the control law (4.7) is given by (4.17), which satisfies (4.19) since, using (4.20),

u IDA = g † F ∇H -F -1 gK I (γ + C) -F ∇H = -g † gK I (γ + C) = u PS .

Examples

In this section we apply the proposed controller to three physical systems and investigate, with the example of LTI systems, some of the limitations of the method.

Micro electro-mechanical optical switch [14, 83]

Consider the optical switch system with pH model

ẋ =      0 1 0 -1 -b 0 0 0 -1 r      ∇H(x) +      0 0 1      u (4.21)
where in order to simplify, the original control input ū has been scaled, i.e. u := 1 r ū. The energy function of the system is

H(x) = 1 2m x 2 2 + 1 2 a 1 x 2 1 + 1 4 a 2 x 4 1 + 1 2c 1 (x 1 + c 0 ) x 2 3 ,
where x 1 , x 2 are the mass of the comb driver actuator and its momentum, respectively;

x 3 denotes the charge in the capacitor, u is the voltage applied o the electrodes, a 1 > 0, a 2 > 0 are the spring constants, b > 0, r > 0 are resistive elements, c 0 > 0, c 1 > 0 are constants that determine the capacitance function and, finally, m > 0 denotes the mass of the actuator. It is important to underscore the physical constraint x 1 > 0. See [START_REF] Borovic | Control of a MEMS optical switch[END_REF] for further details on the model.

The set of assignable equilibria for this system is

x 2 = 0 x 3 = (c 0 + x 1 ) 2c 1 x 1 (a 1 + a 2 x 2 1 ) (4.22)
and the goal is to stabilize at x 1 > 0.

Clearly, F is full rank. Also, some simple calculations using (4.3) prove that y PS = r ẋ3 , therefore γ(x) = rx 3 . Hence, Assumptions 4.1 and 4.2 hold. It only remains to

show that sufficient conditions of Proposition 4.2 holds. For this purpose, we evaluate the Hessian of H at the equilibrium. Some simple calculations yield

(∇ 2 H d ) =      a 1 + 3a 2 x 2 1 + d 2 1 d 2 0 -d 1 d 2 0 1 m 0 -d 1 d 2 0 d 2      + k I      0 0 0 0 0 0 0 0 r 2     
where It can be seen that for all K I > 0, the condition (4.13) holds. Hence, x is a stable equilibrium for the closed-loop system.

d 1 := 2c 1 x 1 * (a 1 + a 2 x 2 1 * ) (4.23) d 2 := 1 c 1 (c 0 + x 1 * ) . ( 4.24) 
To prove asymptotic stability we verify the detectability of y PS . First, from (4.12) we get

C = - 1 K I x 3 * rc 1 (c 0 + x 1 * ) -rx 3 * . (4.25)
Second, in the residual set where y PS ≡ 0, we have that x 3 is a constant, denoted x3 .

Thus, the control law is also a constant given by

u BC = -K I (rx 3 + C), ( 4.26) 
which substituted in the third equation of (4.21) yields

- x3 rc 1 (x 1 + c 0 ) -K I (rx 3 + C) = 0. (4.27)
From the latter equation is clear that x1 is a constant. Moreover, replacing (4.25) in it can be noticed from the plot, x 1 > 0, which agrees with the physical constraint. 

Two-Tanks Level Regulation Problem [62]

Consider the two-tank system shown in Fig. 4.2. The state variables x 1 , x 2 ∈ R + represent, respectively, the water level in Tank 1 and 2. the control action ũ := A 1 Γ u ≥ 0 is the flow pumped from the reservoir. The valve parameter is a constant 1 ≥ Γ ≥ 0, with Γ = 0 when the valve is fully open and Γ = 1 if it is closed. The pH model of system is

ẋ =   -α 1 √ x 1 α 2 √ x 2 -α 2 √ x 2 0   ∇H(x) +   1 g 2   ũ (4.28) H(x) = x 1 + A 1 A 2 x 2 , ( 4.29) 
with the parameters

α i := a i √ 2G A i , i = 1, 2, g 2 := 1 -Γ Γ , ( 4.30) 
where a i , A i are the cross-sections of the outlet holes and the tanks, and G the gravitation constant. To simplify the notation, we assume A 1 = A 2 . The assignable equilibrium set is given by

x 2 = a 1 a 2 (1 -Γ) 2 x 1 ,
and the control objective is to regulate the water level at some x 1 > 0.

As pointed out in [START_REF] Ortega | Control by interconnection and standard passivity-based control of port-Hamiltonian systems. Automatic Control[END_REF] the vector field F -1 (x)g is not integrable, as required by Assumption 4.2. However, the system dynamics can be alternatively written as

ẋ =   -1 a 1 d 0 -1 d   ∇ H(x) +   1 g 2   ũ (4.31) H(x) = 2 3 aα 1 x 3 2 1 + 2 3 dα 2 x 3 2
where a, d are free parameters satisfying 4d ≥ a > 0. In this form the obstacle can be overcome. Indeed, from (4.31) and (4.3) we get

y PS = a(1 + g 2 ) ẋ1 + dg ẋ2 and γ(x) = a(1 + g 2 )x 1 + dgx 2 .
After some computations we have

(∇ 2 H d ) =    aα 1 x 1 2 1 0 0 dα 2 x 1 2 2    + K I   a 2 (1 + g 2 ) 2 a(1 + g 2 )dg 2 dg 2 a(1 + g 2 ) d 2 g 2 2 ,  
and clearly condition (4.13) holds. Therefore, the proposed controller will render x a stable equilibrium point for the closed-loop system.

LTI systems: Controllability is not enough

In the important paper [START_REF] Prajna | An LMI approach to stabilization of linear port-Controlled Hamiltonian systems[END_REF] it was shown that IDA-PBC for LTI systems is a universal stabiliser, in the sense that it is applicable to all stabilisable systems. On the other hand, it was shown in [START_REF] Ortega | Control via interconnection and damping assignment of linear time-invariant systems: A tutorial[END_REF] that stabilisability is not enough for IDA-PBC of mechanical system. Indeed, in Proposition 4.1 of [START_REF] Ortega | Control via interconnection and damping assignment of linear time-invariant systems: A tutorial[END_REF] it is shown that if the system has uncontrollable modes, an additional condition of the pole location, which is stronger than stabilisability, must be imposed for stabilisation with IDA-PBC.

The difference between these two cases is that, while for general IDA-PBC there is no constraint on the structure of the desired energy function, for mechanical systems a particular structure is imposed to it. Since in the methodology proposed in this paper there is also a constraint on the desired energy function, namely (4.9), it is expected that a condition stronger than stabilisability should be imposed for the method to apply-a conjecture that we prove in this subsection via a counter-example. Actually, we will prove that unlike IDA-PBC for mechanical systems even controllability is not enough for the proposed method to work. Now, recall that for LTI systems the energy function is of the form H(x) = 1 2 x Qx, the matrices F and g are constant and, without loss of generality, we can take x = 0. Therefore, the control (4.7) becomes a simple linear, state-feedback of the form

u PS (x) = Kx with K := I -K p g F -g -1 (K p g F -F Q + K I g F -). (4.32)
Notice that for linear systems, with x = 0, the constant vector C given in (4.12) is equal to zero. To prove the aforementioned conjecture we will construct an LTI, controllable pH system for which the controller (4.32) yields an unstable closed-loop system for all values of the tuning gains K p , K I . It is important to note that the Lyapunov stability test utilised in Proposition 4.2 is sufficient, but not necessary-even for LTI systems.

Therefore, instability must be proved checking directly the closed-loop system matrix.

Also, the sign constraints imposed to the tuning gains, which are required to ensure positivity of the shaped energy function, need not be imposed in the LTI case where, as indicated above, a stability analysis-other than Lyapunov-will be carried out.

Consider the following controllable, LTI system

ẋ =   0 1 a 1 1 -a 1   x +   0 1   u, (4.33)
with a 1 < 0. Some simple calculations show that it admits a pH representation

ẋ = F Qx + gu (4.34)
with g := col(0, 1), Proof. The closed-loop system is given by

F :=   -1 a 1 1 2 a 1 -a 2 1   Q := - 2 a 2 1   a 2 1 a 1 a 1 1 -a 1 2   , ( 4 
ẋ =   0 1 a 1 -a 1 k 1 -a 1 - k  x where k := 2 a 2 1 1 + 2K p a 2 1 -1 (K I + K p ).
Clearly, the closed-loop system matrix is Hurwitz if and only if the following conditions can be satisfied

a 1 -a 1 k < 0 1 -a 1 -k < 0.
Since a 1 < 0, these inequalities are equivalent to

k < 1 k > 1 -a 1 ,
Since 1 -a 1 > 1 the inequalities cannot be simultaneously satisfied.

Chapter 5

Applications of the PI-PBC to Wind Energy Systems

The concern over the environment has made us look for alternatives sources of power generation. Within this new tendency, electrical power generation from wind has become one of the most adopted. In both Europe, which has the greater wind source, and North America, large scale developments to exploit wind power have been undertaken from some time ago. Since then, the power electronics technologies used in wind power application have been dramatically changed due to the growing capacity and the increasing presence of wind turbine systems in the power grid. An evidence of this growth is the world wind power capacity cumulated during the first years of the current century, from 13.6 in 2000 GW to 370 GW in 2014 [START_REF] Blaabjerg | Future on power electronics for wind turbine systems. Emerging and Selected Topics in Power Electronics[END_REF][START_REF]renewable global status report[END_REF]. Besides, it is expected that in 2020 this value ranges 760 MW. In fact, the wind power grows more significant compared to any other renewable source and it is an important component in the modern power supply system.

A wind energy system is composed of interconnected mechanical and electrical systems. The mechanical part consists of a turbine which captures energy from the wind. When the wind velocity is not too high to exceed the capacity limits of the -variable-speed-turbine and generator units, it is customary to require that the turbine operates at a rotational speed ensuring the maximum power extraction from the wind. This captured power is transform into electric energy and flows to the electrical system to which the wind system is connected. Common uses of this electrical energy include charging a battery in stand-alone windmill systems, injection of reactive power for grid-connected windmills or minimizing power losses for a given load.

In this chapter we address the control problem of two different wind energy system topologies, which will be detail in the sequel. One of the main difference in their topology is the rectification stage, being active for the first system and passive for the second one. Indeed, active rectification offers more degrees of freedom when designing a controller at the expense of increasing the cost implementation of such systems.

Some previous work in the literature about control of windmill systems make use of MMPT algorithms based on the so-called Hill-climb search procedures. Many publications, including some variants of this approach, can be found. See, for instance, [START_REF] Ahmed | MPPT control algorithm for grid integration of variable speed wind energy conversion system[END_REF][START_REF] Kortabarria | Maximum power extraction algorithm for a small wind turbine[END_REF][START_REF] Wai | Implementation of novel maximum-power-extraction algorithm for PMSG wind generation system without mechanical sensors[END_REF] and references therein. The most widely used method, the perturb & observe algorithm, presents some undesirable drawbacks. These include oscillations around the maximum power point [START_REF] Hohm | Comparative study of maximum power point tracking algorithms[END_REF] and the failure to track fast-changing wind [START_REF] Chun | Design of MPPT controller for small scale wind power system with PMSG[END_REF]. There are also papers, like [START_REF] Chun | Design of MPPT controller for small scale wind power system with PMSG[END_REF][START_REF] Zou | Stability analysis of maximum power point tracking (mppt) method in wind power systems[END_REF], considering the linearization of the system dynamics. In [START_REF] Ghaffari | Power optimization and control in wind energy conversion systems using extremum seeking[END_REF][START_REF] Komatsu | Output maximization control of wind turbine based on extremum control strategy[END_REF] the problem is tackled by means of the extremum seeking control technique. Some fuzzy logic-based schemes have been developed, for example [START_REF] Calderaro | A fuzzy controller for maximum energy extraction from variable speed wind power generation systems[END_REF][START_REF] Zeng | Fuzzy-logic-based maximum power point tracking strategy for PMSG variable-speed wind turbine generation systems[END_REF]. In the current chapter a passivity-based strategy is derived in order to tackle the problem. The control technique adopted follows mainly from Chapter 2.

It is worth to mention that, in contrast with the previous approaches, our work is model-based, with all (relevant) nonlinearities of the dynamic system considered in the model.

PI-PBC for Maximum Power Extraction of a Wind Energy System with Guaranteed Stability Properties

In this section we propose a maximum power extraction control for a wind system

The approach adopted in this paper follows the line pursued in [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF][START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF][START_REF] Zonetti | Modeling and Control of HVDC Transmission Systems from Theory to Practice and Back[END_REF]. The final objective is to design a simple linear PI with guaranteed stability properties. Towards this end, we identify a passive output for the nonlinear incremental model around to which the stabilizing PI is designed. Interestinlgy, as shown in [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF][START_REF] Zonetti | Modeling and Control of HVDC Transmission Systems from Theory to Practice and Back[END_REF] the PI scheme that results from the application of this method is closely related to the well-known instantaneous active power control of [START_REF] Akagi | Instantaneous Power Theory and Applications to Power Conditioning[END_REF]. In this way, an important connection with current practice is established.

System Modeling

Depicted in Fig. 5.1, the system consists of a turbine, surface-mounted PMSG and a rectifier connected to a load, a capacitor, a load and one constant voltage source, which is used to form the dc bus. 

Wind Turbine

The mechanical power extracted from the wind is given by the power function

P w = 1 2 ρAC p (λ)v 3 w ,
where ω m is the shaft's rotational speed, ρ is the air density, A is the area swept by the blades and C p is the turbine's coefficient power 1 , λ, which is defined as

λ := rω m v w , ( 5.1) 
is the blades' tip speed, r the blades' radius, ρ the air density, and v w the wind speed, which is assumed constant and known. The shape of the function C p (λ) depends on the geometry of the windmill. Fig. 5.2 shows a typical curve that can be obtained from experimental measurements. Since we are interested in the maximum power extraction, it is required that the system operates in the point

λ = arg max C p (λ). (5.2)
which is assumed to be known. It is important to note that, if v w is known the control task boils down, in view of (5.1), to regulation of the shaft's speed ω m around the reference speed

ω m = λ v w r .
(5.

3)

The dynamic equation of a one-mass turbine is obtained from Newton's equation of motion

J ωm = -f ω m + T m -T e (5.4) C p (λ) λ C p⋆ λ ⋆ Figure 5.2: Function C p (λ)
where J is the rotor inertia, f > 0 is a friction coefficient, T m is the mechanical torque applied to the windmill shaft

T m = P w ω m = 1 2 ρArv 2 w C p (λ) λ , (5.5)
and T e is the electrical torque provided by the generator.

Permanent Magnet Synchronous Generator

The dynamic equations of the generator in dq-coordinates are

L id = -Ri d + Li q ω e -v d L iq = -Ri q -Li d ω e + φω e -v q
(5.6)

where i q , i d , v q , v d are respectively the q and d components of the current and voltage, R and L are the stator resistance and inductance respectively, φ is the permanent magnetic flux and ω e is the electrical frequency. The electrical frequency satisfies the relation

ω e = P 2 ω m . (5. 7 
)
where P is the number of pole pairs. The electrical torque T e is given by

T e = 3 2 P 2 φi q .
(5.8)

The input voltages in the generator are

v d = v C d 1 , v q = v C d 2 (5.9)
where d 1 and d 2 are duty ratio of the rectifier control signals in dq-coordinates. Finally, from Kirchhoff's current law we have

C vC = -R e v C + V S R S + i d d 1 + i q d 2 (5.10)
where C is the capacitance value, R e := R L +R S R L R S , R L is a resistive load and R S and V S are, respectively, the supply internal resistance and dc voltage.

The Overall System

Subsituting (5.5) and (5.8) in (5.4), (5.9) and (5.7) in (5.6) and from (5.10), the overall system becomes

L i d = -Ri d + P 2 Li q ω m -d 1 v C L iq = -Ri q - P 2 Li d ω m + P 2 φω m -d 2 v C J ωm = -f ω m + 1 2 ρAv 3 m 1 ω m C p v w ω m r - 3 2 P 2 φi q C vC = -R e v C + V S R S + d 1 i d + d 2 i q
Introducing the following definitions

φ 1 := φP 2 , γ := P 2 , J 1 := 2 3 J, f 1 := 2 3 f,
and the change of variables x = col(Li d , Li q , J 1 ω m , Cv C ), u = col(d 1 , d 2 ), the system can be rewritten as

ẋ1 = - R L x 1 + γ J 1 x 2 x 3 - x 4 C u 1 (5.11) ẋ2 = - γ J 1 x 1 x 3 - R L x 2 + φ 1 J 1 x 3 - x 4 C u 2 (5.12) ẋ3 = -f 1 x 3 + Φ(x 3 ) - φ 1 L x 2 (5.13) ẋ4 = - R e C x 4 + x 1 L u 1 + x 2 L u 2 + V S R S (5.14)
where

Φ(x 3 ) := 1 3 ρAJ 1 v 3 w 1 x 3 C p rx 3 J 1 v w .
Now, notice that the system admits the following representation

ẋ = A 0 (x 3 )x + 2 i=1 B i xu + E 0 (x 3 ) (5.15)
where E 0 (x 3 ) := col 0, 0, Φ(x 3 ), V S R S and

A 0 (x 3 ) :=         -R L γ J 1 x 3 0 0 -γ J 1 x 3 -R L φ 1 J 1 0 0 -φ J 1 -f 1 0 0 0 0 -Re C         , B 1 :=         0 0 0 -1 C 0 0 0 0 0 0 0 0 x 1 L 0 0 0         B 2 :=         0 0 0 0 0 0 0 -1 C 0 0 0 0 0 1 L 0 0         ,

Control Objectives as Desired Equilibrium Points

The control objectives are: 1) Minimize the copper loss and maximize the efficiency of the generator, this is carried out whenever x 1 = 0; 2) Operate at the maximum power extraction point x 3 := J 1 λ vw r .

Lemma 5.1. The assignable equilibrium points of the system (5.11)-(5.14), compatible with the control objectives, are defined by the set

E = x|x 1 = 0, x 2 = L φ 1 (Φ -f 1 x 3 ) , x 3 = x 3 , h 1 (x 4 ) = 0
where Φ := Φ(x 3 ) and

h 1 (x 4 ) := R e C 2 x 2 4 - V S R S C x 4 + R φ 2 1 (Φ -f 1 x 3 ) 2 + f 1 J 2 1 x 2 3 - x 3 J 1 Φ
Proof: At the equilibrium, (5.15) satisfies

0 =A 0 (x 3 )x + 2 i=1 B i xu + E 0 (x 3 ) =A 0 (x 3 )x + G(x)u + E 0 (x 3 ) (5.16)
where

G(x) :=         -x 4 C 0 0 -x 4 C 0 0 x 1 L x 2 L         .
(5.17)

A full-rank left-annihilator of G(x) is

G ⊥ (x) =  
x P e 3   , (5.18) where

P := diag 1 L , 1 L , 1 J 1 , 1
C and e 3 := col(0, 0, 1, 0). Pre-multiplying (5.16) by G ⊥ (x)

yields   -x Qx + 1 J 1 x 3 Φ(x 3 ) + V S R S C x 4 -f 1 x 3 + Φ(x 3 ) -φ 1 L x 2   = 0
where Q := diag (R, R, f 1 , R e ) = -sym(P A) > 0. Then, fixing x 1 = 0 and x 3 = x 3 , we get from the second equation,

x 2 = L φ 1 Φ -f 1 x 3 := x 2 .
Substituting the last value in the first equation yields the expression for h 1 (x 4 ).

Remark 5.1. The necessary and sufficient condition for the existence of the desired equilibrium point is

R φ 2 1 (Φ -f 1 x 3 ) 2 + f 1 J 2 1 x 2 3 - x 3 J 1 Φ ≤ V 2 S 4R e R 2 S

Control Design : The PI-PBC Approach

To proceed with the design of the PI-PBC we make the usual assumption that the mechanical dynamics is much slower than the electrical one, which translates into the following standing assumption.

Assumption 5.1. The system dynamics is represented by

ẋ = Ax + 2 i=1 B i xu i + E. ( 5.19) 
where we defined A := A 0 (x 3 ) and E := E 0 (x 3 ).

Notice that we assume x 3 to be constant only when it appears in the matrix A 0 and the external force E 0 , but it remains a state variable in the overall dynamics.

Following [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF][START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF], and also recalled in Section 2.2 , we prove the following passivity property.

Lemma 5.2. (Passivity) The system (5.19) defines a passive mapping ũ → y with storage function

V (x) = 1 2 x P x, (5.20) 
where

(•) = (•) -(•) , P := diag 1 L , 1 L , 1 J 1 , 1
C and the passive output defined as

y := G (x )P x. (5.21) 
with G(•) defined in (5.17).

Differentiating this function and using (5.24) and (5.28) yields

Ẇ = -x Qx + y ũ -z K i y = -x Qx -y K p y ≤ -α|x| 2 ,
where | • | is the Euclidean norm and

α := λ min {Q} > 0.
Boundedness of the trajectories follows from Lyapunov's Direct Method. The proof is completed from La Salle's Invariance Principle which implies (5.27).

Remark 5.2. The passive output used in the PI controller of Proposition 5.1 is

y = 1 LC   x 1 x4 -x1 x 4 x 2 x4 -x2 x 4   ,
which in the original system coordinates becomes

y =   i d ṽC -ĩd v C i q ṽC -ĩq v C   .
As discussed in [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF][START_REF] Zonetti | Modeling and Control of HVDC Transmission Systems from Theory to Practice and Back[END_REF] our PI scheme is closely related to the well-known instantaneous active power control of [START_REF] Akagi | Instantaneous Power Theory and Applications to Power Conditioning[END_REF].

Simulation Results

The power coefficient is assumed to be given by [START_REF] Heier | Grid Integration of Wind Energy[END_REF] C

p (λ) = c 1 c 2 λ i -c 5 exp - c 6 λ i ,
where c 1 = 0.5, c 2 = 116, c 5 = 5, c 6 = 21 and

λ i = 1 λ -0.035 -1
.

The maximum value is C p = 0.411 and λ = 7.954.

The parameters of the system were taken from [START_REF] Cisneros | Passivity-based control of a gridconnected small-scale windmill with limited control authority. Emerging and Selected Topics in Power Electronics[END_REF] and are shown in Table 5.1. To test the controller in a real scenario, the simulation setting was realized in a switching based model. The considered PMSG wind turbine rectifier system is shown in Fig. 

Synchronous resistance R = 0.3676 Ω Synchronous inductance L = 3.55 mH Flux φ = 0.2867 Wb Friction coefficient f = 3.035 × 10 -4 N•m•s Rectifier & Electrical Parameters Capacitance C = 3.3 mF System Load R L = 60 Ω Power Supply Voltage V S =400 V Power Supply Resistance R S = 0.1 Ω 5.1.
A constant voltage source is adopted at the dc output terminal to set the constant dc bus condition, which is normally maintained by the back-end converter. Space vector pulse width modulation was adopted to generate the gate signals in the rectifier switches.

The control implementation diagram is shown in Fig. 5.3. The wind profile is shown at the bottom of the figure. to verify the controller performance under changing conditions, the wind profile involves two step variations. As it can be noticed from the profiles of i q and i d currents in Fig. 5.4 , they present typical switching noise, which is maintained in small range. A good transient performance is seen without any overshoot and oscillation.

Passivity-Based Control of a Grid-Connected Small-Scale Windmill with Limited Control Authority

In the present section we design a passivity-based control of wind energy system consisting of a wind turbine plus a permanent magnet synchronous generator connected to a single-phase ac grid through a passive rectifier, a boost converter and an singlephase inverter. The control is intended to regulate the generator speed and the dc link voltage and power factor of the current injected into the ac grid. The controller design of the overall system becomes complicated for two reasons. On one hand, the generator dynamics cannot be neglected-as usually done for large wind turbines [START_REF]Technical brochure, modeling and dynamic behavior of wind generation as it relates to power system control and dynamic performance[END_REF][START_REF] Johnson | Control of variable speed wind turbines[END_REF]leading to a system behavior described by highly-coupled set of nonlinear differential equations. On the other hand, due to the use of a "simple" generator and power elec- tronic interface, the control authority is quite restricted2 .

To design the controller, the overall system is decomposed as a cascade connection of two subsystems. One consisting of the windmill and PMSG and the other containing the boost converter and the inverter. The PMSG rotor speed of the first subsystem is regulated around the maximum power extraction point with a standard passivity-based controller (SPBC)-which is a nonlinear, dynamic, state feedback that shapes the energy of the subsystem and adds damping and an integral action [START_REF] Ortega | Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications[END_REF].

The dc link voltage and the injection of reactive power to the grid is controlled in the second subsystem, via a tracking PI-PBC -see Chapter 2 -whose reference is suitably tailored to compensate for the coupling term coming from the first subsystem.

The development of this tracking PI is an extension of the regulation PI schemes (for systems whose incremental model is passive) reported in [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF][START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF]. The main result in this section is the proof that the overall controlled system has an asymptotically stable equilibrium point at the desired operating regime. Simulation results are shown comparing the controllers performance with that of the typical PI control utilized in power engineering.

Mathematical Model of the System

In this section we describe the components of the system, whose schematic diagram is given in Fig. 5.5. The system consists of a wind turbine with a PMSG, a passive diode bridge rectifier, a boost converter, a dc link and an inverter connected to the grid through a simple L filter. Although the passive rectifier injects current harmonics into the PMSG, this topology is preferred due to its low cost and simplicity of implementation. On the other hand, it is clear that it significantly reduces the available control authority.

In [START_REF] Mancilla-David | Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems[END_REF] we considered a similar system, replacing the dc link by a battery and removing the inverter and the grid. The reader is referred to [START_REF] Mancilla-David | Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems[END_REF] for additional details on the modeling of the first three elements that, in the interest of brevity, are only briefly summarized below.

Dynamics of the PMSG

The electrical equations which describe the behavior of the surface-mounted PMSG in the rotor (dq) reference frame are given by

L ˙ i d = -Ri d + Li q ω e -v d , L ˙ i q = -Ri q -Li d ω e + φω e -v q , ( 5.29) 
where i d , i q , v d , v q , are the currents and voltages in the d -q reference frame, L and R are the stator winding's inductance and resistance, ω e is the electric frequency that is related to the mechanical speed via

ω e = P 2 ω m ,
φ is the permanent magnetic flux produced by the rotor magnets, and P is the number of poles. The magnetic flux φ is a constant that depends on the material used for the realization of the magnets. A detailed derivation of this standard model may be found in [START_REF] Krause | Analysis of Electric Machinery[END_REF]. An important observation is that, in normal operating conditions, i 2 d + i 2 q > 0. See Remark 5.5 below.

Mechanical and wind turbine dynamics

The mechanical dynamics is described by

J ωm = T m -T e .
(5.30)

where J is the rotor inertia, ω m is the shaft's rotational speed, T e is the electrical torque defined as

T e = 3 2 P 2 φi q ,
and T m is the mechanical torque applied to the windmill shaft that, as in the Section 5.1, is given by

T m = 1 2 ρAr C p (λ) λ v 2 w ,
where C p (λ) is the power coefficient, the blades' tip speed λ is defined in (5.1) -see Section 5.1 for the parameters descriptions and considerations. As in the last section, we are interested in operating the system at the point of maximum power extraction.

ω m = λ v w r .

Power electronic interface and grid

As shown in Fig. 5.5 the PMSG is linked to the grid through a passive rectifier a dc-dc boost converter, a dc link and an inverter. As discussed in [START_REF] Mancilla-David | Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems[END_REF], in this configuration the PMSG voltages may be expressed as

v d = i d √ i 2 d +i 2 q M v dc D, v q = iq √ i 2 d +i 2 q M v dc D, (5.31) 
where D is the duty ratio of the dc-dc boost converter,

M = π 3 √
3 is the gain of the passive diode rectifier and v dc is the voltage of the dc link. The well-known average model of the dc link and inverter (in dq coordinates) is given by

C vdc = 3M 2 (i 2 d + i 2 q )u 1 - 1 2 I d u 2 - 1 2 I q u 3 , L g İd = -R g I d + L g ωI q -V d + v dc u 2 , L g İq = -L g ωI d -R g I q + v dc u 3 , (5.32) 
where C is the capacitance of the dc link, I d , I q are the d and q components of the grid currents, respectively, V d is the amplitude of the grid's voltage, L g , R g are the inverter's inductance and resistance. We defined in (5.32)

u 1 := D i 2 d + i 2 q ,
and u 2 and u 3 are the d and q components, respectively of the inverter modulating signal. Finally, ω is the (constant) frequency of the ac grid voltage. It is well-known that the inverter is operational only if the voltage of the dc link is kept above a minimal (positive) value. See Remark 5.5 below.

Overall dynamic model

Collecting (5.29), (5.30), (5.31) and (5.32), defining the state vector

x := col(i d , i q , rω m , v dc , I d , I q ),
the constants C 2 := ρA 3 , L 1 := P L 2r , φ 1 := P φ 2r , J 1 := 2J 3r 2 , and the function

Φ(x 3 ) := C 2 v 3 w x 3 C p x 3 v w .
(5.33)

the system state equations may be written as

L ẋ1 = -Rx 1 + L 1 x 2 x 3 -M x 1 x 4 u 1 L ẋ2 = -Rx 2 -L 1 x 1 x 3 + φ 1 x 3 -M x 2 x 4 u 1 J 1 ẋ3 = -φ 1 x 2 + Φ(x 3 ) C ẋ4 = 3M 2 (x 2 1 + x 2 2 )u 1 - 1 2 x 5 u 2 - 1 2 x 6 u 3 L g ẋ5 = -R g x 5 + L g ωx 6 -V d + x 4 u 2 L g ẋ6 = -L g ωx 5 -R g x 6 + x 4 u 3 (5.34) 
where u := col(u 1 , u 2 , u 3 ) is the control input vector.

Remark 5.3. The total energy of the system (5.34) is given by

H(x) = 1 4 x diag{3L, 3L, 3J 1 , 2C, L g , L g }x,
whose derivative, as expected, verifies the power balance equation

Ḣ = - 3R 2 (x 2 1 + x 2 2 ) - R g 2 (x 2 5 + x 2 6 ) dissipation + 3 2 Φ(x 3 )x 3 mechanical power - 1 2 x 5 V d .
electrical power

Assignable Equilibria and Problem Formulation

The control objective is three-fold: (i) to operate the system of (5.34) in the point of maximum wind power extraction which translates into an optimal shaft speed x 3 ; (ii) to keep the dc link voltage at a desired constant value x 4 > 0; and (iii) to inject current in to the grid at a given power factor. It is assumed that the current is injected at unity power factor, that is, x 6 = 0. These objective should be achieved independently of the wind speed.

Under the assumptions of known λ and v w , the control task reduces to a standard problem of stabilization of an (assignable) equilibrium point x of the system (5.34) with

x 3 := λ v w > 0, x 4 = v dc > 0, x 6 = 0. (5.35) 

Assignable equilibria

The proposition below characterizes the set of assignable equilibria compatible with the constraint (5.35).

Lemma 5.3. Consider the system (5.34). Fix x 6 = 0 and x 3 > 0. Then, for any x 4 > 0, the set of assignable equilibria is given by

E := {x ∈ R 6 | 1 (x 1 ) = 0, x 2 = Φ φ 1 , 2 (x 1 , x 5 ) = 0}, (5.36) 
where

1 (x 1 ) := x 2 1 - φ 1 L 1 x 1 + Φ 2 φ 2 1
(5.37)

2 (x 1 , x 5 ) := R g x 2 5 + V d x 5 + 3Rφ 1 L 1 x 1 -3x 3 Φ , (5.38) 
with Φ := Φ(x 3 ).

Proof. Fix x 3 = x 3 . From the third equation in (5.34) we get

x 2 = Φ φ 1 . ( 5.39) 
Then, eliminating u 1 from the first and second equations in (5.34) and using (5.39) we obtain

L 1 (x 1 ) 2 x 3 -φ 1 x 1 x 3 + L 1 Φ 2 φ 2 x 3 = 0 (5.40)
which is equivalent to 1 (x 1 ) = 0.

Finally, at the equilibrium, the power balance equation of Remark 5.3 is equal to zero. Then, substituting x 2 from (5.39), the balance equation becomes

0 = R g (x 5 ) 2 + V d x 5 + 3R[(x 1 ) 2 + Φ 2 φ 2 ] -3Φ x 3 .
(5.41) Also, from (5.40)

(x 1 ) 2 = φ L 1 x 1 - Φ 2 φ 2 1
which is substituted in (5.41) to complete the proof.

Remark 5.4. Necessary and sufficient conditions for the existence of equilibria are

φ 2 1 2L 1 ≥ Φ V 2 d ≥ 12R g Rφ 1 L 1 x 1 -x 3 Φ , ( 5.42) 
where x 1 is a solution of 1 (x 1 ) = 0.

Control problem formulation

Given the system (5.34) and an equilibrium x ∈ E, verifying (5.35), find (if possible) a state-feedback controller that ensures asymptotic stability of the closed-loop system.

Remark 5.5. As explained in Section 5.2.1 the physical operation of the system is restricted to a subset of R 6 . In particular, it is necessary that

x 2 1 (t) + x 2 2 (t) ≥ κ 1 x 4 (t) ≥ κ 2 , ( 5.43) 
for some κ 1 , κ 2 > 0, and all t ≥ 0. We will prove below that the closed-loop system is asymptotically stable. This, together with the fact that x ∈ R 6 + , ensures that (5.43) holds if the initial conditions are sufficiently close to the equilibrium. Remark 5.6. In reality the control signals, being duty cycles, live in a compact set.

Unfortunately, the theoretical results presented later cannot take into account this consideration.

A Cascade Decomposition of the System

The following decomposition of the system allows us to simplify the controller design task. Recalling (5.43), and defining the new control signal

v 1 := -M x 4 u 1 , (5.44)
it is possible to write the overall system (5.34) as a cascade connection of the subsystem

L ẋ1 = -Rx 1 + L 1 x 2 x 3 + x 1 v 1 L ẋ2 = -Rx 2 -L 1 x 1 x 3 + φ 1 x 3 + x 2 v 1 J 1 ẋ3 = -φ 1 x 2 + Φ(x 3 ) y 1 = (x 2 1 + x 2 2 )v 1 , (5.45) 
Subsystem ( 19) Subsystem [START_REF] Cisneros | Passivity-based control of a gridconnected small-scale windmill with limited control authority. Emerging and Selected Topics in Power Electronics[END_REF] u2, u3 v1 y1 with input v 1 and output y 1 , and the subsystem

C ẋ4 = - 1 2 x 5 u 2 - 1 2 x 6 u 3 - 3 2x 4 y 1 L g ẋ5 = -R g x 5 + L g ωx 6 -V d + x 4 u 2 L g ẋ6 = -L g ωx 5 -R g x 6 + x 4 u 3 , (5.46) 
with external input y 1 and controls u 2 , u 3 . A cascade connection between subsystems is presented in Fig. 5.6.

The cascade decomposition from Fig. 5.6 suggests the following controller design procedure.

(S1) Design an SPBC to generate the control signal v 1 that renders the desired equilibrium x 13 of subsystem (5.45) asymptotically stable. This step is similar to the one done in [START_REF] Mancilla-David | Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems[END_REF], but with the difference that, to improve the transient performance of the closed-loop system, we have followed the suggestion made in the concluding remarks of [START_REF] Mancilla-David | Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems[END_REF] and explored an alternative construction of the SPBC.

See Remark 5.7 below.

(S2) In the spirit of [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF], design for the subsystem (5.46) a PI controller for an output with respect to which the incremental model is passive. Here, again, there is a fundamental difference with respect to the design proposed in [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF]. Indeed, due to the presence of the term coupling the two subsystems, we are dealing now with a tracking and not a regulation problem like the one addressed in [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF].

Since the controller design is based on the aforementioned decomposition, to enhance readability, we first present the individual controller designs in the next two sections. The main result of this section, given in Proposition 5.4, is the proof that the overall controller renders the equilibrium of the complete system (5.34) asymptotically stable. (5.45) The control design for the subsystem (5.45) is based on the SPBC, which is a variation of PBC that is particularly suited for systems described by Euler-Lagrange equations.

Standard PBC of Subsystem

As shown in [START_REF] Ortega | Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications[END_REF], it has been successful in a wide range of applications including mechanical, electromechanical and power electronic systems.

For the sake of clarity, we present in this section the three steps that are followed to design an SPBC. First, the Euler-Lagrange representation of (5.45) is given . Second, since SPBC requires a stable invertibility condition [START_REF] Ortega | Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications[END_REF], the stability of the zero dynamics of (5.45)-for some suitably defined output-is studied and the design of the stabilizing SPBC is carried out. Finally, to improve performance, further damping and an integral robustifying term are added.

Euler-Lagrange model

In order to apply SPBC, the subsystem equations (5.45) are written in Euler-Lagrange

form 3 D ẋ13 + [C(x 3 ) + R]x 13 = G(x 12 )v 1 + b(x 3 ) (5.47) 
where we defined the generalized inertia, damping and interconnection matrices

D := diag{L, L, J 1 }, R := diag{R, R, 0} C(x 3 ) :=      0 -L 1 x 3 0 L 1 x 3 0 -φ 1 0 φ 1 0     
.

(5.48)

The right hand side terms in (5.47) are the external forces, where

b(x 3 ) :=      0 0 Φ(x 3 )      , G(x 12 ) :=      x 1 x 2 0      . ( 5.49) 
Notice that, consistent with their physical interpretation,

D > 0, C(x 3 ) = -C (x 3 ), R ≥ 0.
Hence, differentiating the systems energy function A stable invertibility property of the system (5.47) As explained in Section 3.1 of [START_REF] Ortega | Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications[END_REF], SPBC performs a "partial inversion" of the system dynamics. Indeed, the controller is a copy of part of the system's equations with the remaining states set equal to constants-plus some damping injection terms which vanish at the equilibrium. Consequently, to ensure internal stability, it is necessary that the zero dynamics of the system, with respect to the "outputs" (the states that are fixed to constant) is asymptotically stable.

H 1 (x 13 ) = 1 
The SPBC proposed here takes as "output" the state x 1 . Hence, the need of the lemma below.

Lemma 5.4. Given an assignable equilibrium x ∈ E verifying (5.35). The zero dynamics of the system (5.45) with output x 1 -x 1 has an asymptotically stable equilibrium at (x 2 , x 3 ).

Proof. Setting x 1 = x 1 and ẋ1 = 0, in the first equation of (5.47) yields the (zeroing output) control4 

v 1 = R - L 1 x 1 x 2 x 3 , which replaced in ẋ2 yields ẋ2 = - L 1 L x 1 x 3 + φ 1 L x 3 - L 1 Lx 1 x 2 2 x 3 = - L 1 Lx 1 x 3 (x 1 ) 2 - φ 1 L 1 x 1 + x 2 2 = L 1 x 1 x 3 [(x 2 ) 2 -x 2 2 ] =: m 1 (x 2 , x 3 ), (5.51) 
where we have used (5.36) and (5.37) to get the second and third equations. The zero dynamics is completed with the third equation of (5.47)

ẋ3 = - φ 1 J x 2 + 1 J Φ(x 3 ) =: m 2 (x 2 , x 3 ).
(5.52)

The Jacobian of the zero dynamics vector field col(m 1 (x 2 , x 3 ), m 2 (x 2 , x 3 )) is given by

  -2L 1 Lx 1 x 2 x 3 L 1 Lx 1 [(x 2 ) 2 -x 2 2 ] -φ 1 J 1 1 J 1 Φ (x 3 )   , which evaluated at the equilibrium (x 2 , x 3 ) yields   -2L 1 Lx 1 x 2 x 3 0 -φ 1 J 1 1 J 1 Φ (x 3 )   .
(5.53)

Now, from the definition of Φ(x 3 ) given in (5.33) and the fact that C p (λ ) > 0 and C p (λ ) = 0 we conclude that

Φ (x 3 ) < 0.
This, together with the fact that (5.55) is an error signal and the vector x d 13 , which is a signal that will converge to x 13 , is defined below. Towards this end, a copy of the system dynamics is proposed

D ẋd 13 + [C(x 3 ) + R]x d 13 = b(x 3 ) + G(x 12 )v 1 +      0 0 R 3a e 3      , ( 5.56) 
where R 3a e 3 , with R 3a > 0, is an additional damping injection signal. Substracting where

R d := R + diag{0, 0, R 3a } > 0.
Taking the derivative of (5.54), along the trajectories of (5.57), yields

Ẇ1 = -e 13 R d e 13 ≤ -2 min{R, R 3a } max{L, J 1 } W 1
establishing that e 13 (t) → 0, exponentially fast.

The controller dynamics is obtained setting x d 1 = x 1 in (5.56), which yields

L ẋd 2 = -L 1 x 3 x 1 -Rx d 2 + φ 1 x d 3 + x 2 v 1 J 1 ẋd 3 = -φ 1 x d 2 + Φ(x 3 ) -R 3a (x 3 -x d 3 ) v 1 = 1 x 1 (Rx 1 -L 1 x d 2 x 3 ).
(5.58)

Notice that the control signal v 1 is obtained from the first equation in (5.56), which becomes an algebraic equation because x 1 is a constant.

The stability properties of this SPBC are summarized in the following.

Proposition 5.2. Consider the system (5.45) in closed-loop with the controller (5.58).

The equilibrium x 13 is asymptotically stable.

Proof. The derivations above established that x 13 -x d 13 is bounded, and |x 13 (t)-x d 13 (t)| → 0, exponentially fast. Therefore, it only remains to prove that, for a suitable set of initial conditions, x d 13 is bounded and x d 13 (t) → x 13 . Towards this end, replace the control v 1 in the first equation of (5.58) and write-with obvious definitions-the controller equations in the compact form

ẋd 2 = f 1 (x 1 , x 3 , x d 2 , x d 3 ) ẋd 3 = f 2 (x 3 , x d 2 , x d 3 ).
Make now the key observation that these functions verify

f 1 (x 1 , x d 3 , x d 2 , x d 3 ) = m 1 (x d 2 , x d 3 ) f 2 (x d 3 , x d 2 , x d 3 ) = m 2 (x d 2 , x d 3 ),
where the functions m i (x 2 , x 3 ), i = 1, 2 are defined in (5.51) and (5.52)-and correspond to the vector field of the asymptotically stable zero dynamics studied in Lemma 5.4. Adding and substracting the functions m i (x d 2 , x d 3 ), the controller equations can be unique (asymptotically stable) equilibrium point in the operating region-as shown in Lemma 5.4. On the other hand, it was shown in Lemma 2 of [START_REF] Mancilla-David | Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems[END_REF], that the zero dynamics with output x 2 -x 2 has two equilibria in the operating region, one of them unstable. Consequently, it is reasonable to expect that the domain of attraction of the new controller is larger than the one in [START_REF] Mancilla-David | Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems[END_REF].

Performance improvement

As usual in PBC, the performance of the controller can be improved injecting additional damping and incorporating integral actions [START_REF] Ortega | Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications[END_REF]. In the present case, the third right hand side term in (5.56) can be replaced by col(R 1a e 1 , R 2a e 2 , R 3a e 3 ), with R 1a , R 2a > 0, to inject additional damping and improve the convergence speed of the error e 13 . 5An integral term can easily be added to the SPBC replacing the second equation in (5.58) by

J 1 ẋd 3 = -φ 1 x d 2 + Φ(x 3 ) -R 3a (x 3 -x d 3 ) + z, (5.61) 
where z is an integral term defined by ż = -K iw e 3 , (5.62)

with K iw = K iw > 0 an integral gain. The error equation (5.57) becomes

D ė13 + [C(x 3 ) + R + diag{R 1a , R 2a , R 3a }]e 13 =      0 0 1      z (5.63)
Stability of the modified scheme is established with the total energy function

V 1 (e 13 , z) = 1 2 e 13 De 13 + 1 2K iw z 2 ,
whose derivative verifies

V1 ≤ min{R + R 1a , R + R 2a , R 3a }|e 13 | 2 .
The interested reader is referred to [START_REF] Ortega | Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications[END_REF] for additional details. (5.46) In this section we design the controller for the subsystem (5.46). We notice that the subsystem is perturbed by the coupling term coming from the first subsystem, which we view as an additive (measurable) disturbance y 1 (t). In the absence of the latter, the PI PBC of [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF] would solve the problem. In order to take into account this disturbance, we add to the regulation PI schemes of [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF][START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF] a suitably tailored reference, yielding a tracking PI PBC. Define the tracking PI controller

A Tracking PI PBC for Subsystem

ξ = y 2 u 23 = u d 23 -K p y 2 -K i ξ (5.64) with K p = K p > 0, K i = K i > 0 and y 2 = 1 2   x 4 x 5 -x d 5 x 4 x 4 x 6   ,
(5.65)

u d 23 =       -3 x 4 x d 5 y 1 L g ω x d 5 x 4      
(5.66) and x d 5 the solution of the differential equation

L g ẋd 5 = -R g x d 5 -V d - 3 x d 5 y 1 , x d 5 (0) > 0.
(5.67)

There exists c > 0 such that for all ≤ c the closed-loop system with state (x 46 , ξ, x d 5 ) has a globally asymptotically stable equilibrium point at (x 46 , 0, x 5 ).

Proof. First, we show that under the conditions of the proposition the solution of (5.67) is well-defined and verifies x d 5 (t) > 0, for all t ≥ 0, and x d 5 (t) → x 5 . Towards this end, we write (5.67) in the equivalent form

L g ẋd 5 = -R g x d 5 -V d - 3 x d 5 y * 1 - 3 x d 5 ỹ1 . 
(5.68)

Using (5.59) the equation above with ỹ1 ≡ 0 becomes

L g ẋd 5 = -R g x d 5 -V d + 1 x d 5 [R g (x 5 ) 2 + V d x 5 ],
which has an asymptotically stable equilibrium at x 5 . Moreover, since x d 5 (0) > 0 and x 5 > 0, the set {x d 5 > 0} is invariant. The proof that these properties are preserved for the perturbed equation is completed by invoking (5.60), a continuity argument and taking c sufficiently small. The subsystem (5.46) 

E := -      3 2Cx 4 y 1 V d Lg 0      , A :=      0 0 0 0 -Rg Lg ω 0 -ω -Rg Lg      , B 2 :=      0 -1 2C 0 1 Lg 0 0 0 0 0      , B 3 :=      0 0 -1 2C 0 0 0 1 Lg 0 0     
.

Similarly to the construction in Chapter 2 -Section 2.1-, the key observation is that with the matrix Notice that substituting y 1 of (5.45) and u 1 of (5.58), the vector u d 23 in (5.66) becomes

P :=      C 0 0 0 1 2 L g 0 0 0 1 2 L g      > 0, Assumption 
u d 23 =    -3|x 12 | 2 x 1 x 4 x d 5 (Rx 1 -L 1 x d 2 x 3 ) L g ω x d 5 x 4    .
( This proves that (5.71) defines a passive map e u 23 → y 2 , hence it can be controlled with a PI.

The proof is completed with the proper Lyapunov function candidate

V 2 (e 46 , ξ) = W 2 (e 46 ) + 1 2 ξ K i ξ, whose derivative yields V2 = - R g 2 |e 56 | 2 + y 2 e u 23 + ξ K i y 2 = - R g 2 |e 56 | 2 -y 2 K p y 2 ,
which establishes stability of the equilibrium. The proof of attractivity follows doing some standard signal chasing.

Remark 5.8. The proof given above relies in a, far from elegant, perturbation argument. This argument is avoided in the proof of the main result in Section 5.2.7 where a basic lemma of cascades of asymptotically stable systems is invoked.

Main result

The proposition below shows that the combination of both controllers ensures the control objective is asymptotically achieved. The proof relies on the following lemma established in [START_REF] Vidyasagar | Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability[END_REF]. The following statements are equivalent.

(C1) (x , y ) is a uniformly asymptotically stable (UAS) equilibrium of the cascaded system.

(C2) y is a UAS equilibrium of ẏ = g(y, t) and x is a UAS equilibrium of ẋ = f (x, y , t). 

L ẋd 2 = -L 1 x 3 x 1 -Rx d 2 + φ 1 x d 3 + x 2 x 1 (Rx 1 -L 1 x d 2 x 3 (5.73a) J 1 ẋd 3 = -φ 1 x d 2 + Φ(x 3 ) -R 3a (x 3 -x d 3 ) + z (5.73b) ż = -K iw (x 3 -x d 3 ) (5.73c) u 1 = - 1 M x 1 x 4 (Rx 1 -L 1 x d 2 x 3 ) (5.73d)
PI PBC: 

L g ẋd 5 = -R g x d 5 -V d - 3 x 1 x d 5 |x 12 | 2 (Rx 1 -L 1 x d 2 x 3 (5.74a) ξ = 1 2   x 4 x 5 -x d 5 x 4 x 4 x 6   (5.74b) u 23 =    -3|x 12 | 2 x 1 x 4 x d 5 (Rx 1 -L 1 x d 2 x 3 ) L g ω x d 5 x 4    -K p   x 4 x 5 -x d 5 x 4 x 4 x 6   -K i ξ with x d 5 (0) > 0, R 3a > 0, K p = K p > 0, K i = K i > 0.

Control Implementation

In order to be implemented, the controller interconnection must have the structure depicted in Fig. 5.8. Of course, an implementation of the control implies the use of sensors that measure physical magnitudes as currents and angular velocities otherwise observers can also carry out this task. From this measurements the state variables of system (5.34) are derived. x ⋆

1

A root of ( 11) x ⋆ 6 = 0 As shown, the figure is mainly composed of two blocks representing the speed control (performed by the SPBC) and the current/speed control (performed by the PI PBC). The "dynamical system" blocks describes the dynamics of the variables written on the right corner in the bottom. The script "NL" means that the block represents a non-linear mapping of the input arguments. Notice that the PI PBC block is composed of two non-linear mappings, namely, the passive output y 2 in (5.65) and the term u d 23 showed in (5.72), a dynamical system which generates x d 5 (required by y 2 ) and the block containing the sum of the proportional and integral part (PI) of y 2 . Therefore, this block output stands for equation (5.74c).

Φ(•) λ⋆ x ⋆ 3 Φ⋆ (7) u 1 x d 2 x 13 x 13 , x d 2 , x ⋆ 1 u 23 v w x ⋆ 4 , x 4 x 56 x ⋆ 4 - + θ grid T dq m |x12| 1 
x ⋆ 5 m u 2 u 3 + + - + + + + + - - x 5 x 6 θ grid + - dc voltage control θ grid x ⋆ 4 x 4 I V d V q = 0 T dq Current control ωL g ωL g 1 x4 T dq PI x 6 PI x 5 PI x 4 1 x4 PI x 3 + - Speed control x ⋆ 3 x 3 v w D λ ⋆ r ω m
On the other hand, the standard PBC controller block is the dynamical system of equation (5.73) with an output u 1 . This controller requires the value of x 1 . To compute it, it is necessary to solve the two degree equation (5.37) which depends on the value Φ , the evaluation of (5.33) in x 3 .

Benchmark system

The performance of the controller introduced in this section is compared against an industry standard PI control-based architecture [START_REF] Yazdani | Voltage-Sourced Converters in Power Systems[END_REF]. The block diagram of the control scheme utilized as a benchmark is illustrated in Fig. 5.9. (5.34) As is customary, the power coefficient is assumed to be given by the function

Parameters of the system

C p (λ) = e -c p1 λ c p2 λ -c p3 + c p4 λ, ( 5.75) 
where the coefficients c pi , i = 1, . . . , 4-that are windmill-specific, but independent of v w and ω m -are known. These coefficients were taken from [START_REF]Simpowersystems blockset user's guide[END_REF][START_REF] Xia | Wind turbine power coefficient analysis of a new maximum power point tracking technique[END_REF], and have the following values: c p1 = 21.0000, c p2 = 125.229, c p3 = 9.7803, and c p4 = 0.0068. This yields λ = 8.1 and C p = 0.48. Parameters for the windmill system were taken from [START_REF] Valenciaga | Power control of a solar/wind generation system without wind measurement: A passivity/sliding mode approach[END_REF], and adapted to fit the physical constraints of the dc-dc converter. Table 5.2 shows the various numerical values. In order to use a boost dc-dc converter, a larger dc link voltage of v dc = 400 (V), is considered-this can be implemented with just a diode and a MOSFET as suggested in Fig. 5.5 [START_REF] Venkataramanan | Variable speed operation of permanent magnet alternator wind turbines using a single switch power converter[END_REF]. The stiffness constraints required by the converter [START_REF] Mohan | Power Electronics: Converters, Applications, and Design[END_REF] are naturally given by the inductor of the PMSG on the pole side of the converter, and by the dc link capacitor in the throw side.

Controllers

As stated, the performance of two different schemes of control are compared. For simplicity, we will refer as PBC controllers for the controllers whose methodology is proposed in the current section. The structure of this scheme has been defined in the previous sections. On the other hand, the PI-based benchmark control scheme of Fig.

5.9 will be labelled as PI controllers. The various gains of both controllers were tuned using the well-known pole placement method. Numerical values are given below.

PBC controller gains

R 3a = 0.8; K iw = 0.5; 

K p =   0.007 0 0 0.009   ; K i =   1 0 0 0.90   .

Wind speed profile

The wind speed profile illustrated in Fig. 5.10 is utilized for the simulation studies. It was constructed using real measurements collected by the National Wind Technology Center in Boulder, Colorado, USA. The wind speed was measured at 100Hz at 36.6m above the ground using a cup anemometer. As may be observed in the figure, the profile is rich in turbulence and exhibits gusty behavior at times. We show the response of x 3 . It may be observed that under the PBC controllers, x 3 is able to follow x 3 indifferent to the variation of L g . On the other hand, the PI controllers are unable to perform the tracking function, rendering the system unstable.

Computer simulations

In this section, the performance of both the PBC (defined by (5.73)-(5.74)) and PI (Fig. 5.9) controllers are tested via computer simulations considering a detailed model for the system of Fig. 5.5, with parameters specified in Section 5.2.9. All simulations are executed using the Matlab-Simulink® mathematical analysis software package.

Recalling (5.35), the theoretical considerations for PBC design were developed assuming x 3 = λ v w , that is, the reference for the optimal shaft rotational speed shall be computed using the actual wind speed. However, in a real setting the wind speed will likely be filtered before being utilized to track x 3 . This is performed in order to provide smooth power to the turbine shaft. Alternatively, if the wind speed is unavailable for measurement -which will very likely be the case for a small-scale wind turbine-one could estimate its value and utilized it for tracking purposes. Several estimation algorithms featuring an acceptable performance have been proposed in the literature [START_REF] Soltani | Estimation of rotor effective wind speed: A comparison[END_REF]. In the simulation study we consider all three cases. We study the system's response utilizing to generate x 3 the actual wind speed (x 3 = λ v w ), a filtered wind speed (x 3 = λ v f w ) and an estimated wind speed (x 3 = λ vw ). The filtered wind speed is computed utilizing a simple low-pass filter, where γ = 0.2 is an adaptation gain.

Fig. 8 shows the results. The left, middle and right columns presents the comparative evaluation utilizing the actual, filtered and estimated wind speed, respectively.

PBC controllers rely on a copy of the system's zero dynamics to generate references.

Because of this, when using the actual wind speed the PBC controller is unable to accurately track x 3 . As a result, the efficiency of the power extraction process is sacrificed as observed in the tip-speed ratio plot. On the other hand, PI controllers are able to quickly respond and properly perform the tracking function. This comes at a cost of introducing large noise levels on the states and control signals. However, when using a filtered or estimated wind speed signals to feed the control schemes, the PBC controller approximately matches the tracking performance of the PI controllers. Both controllers track the tip-speed ratio to a similar degree of accuracy, and the compromise between speed and noise still exists. It is worth mentioning that the system's response was very sensitive to the gain's tuning for the PI controller, while the PBC controller exhibited an acceptable performance throughout a large range of gains' selection. Furthermore, the robustness of both controllers was tested by introducing a 30% disturbance in the value of the filter/grid inductance. Results are presented in Fig. 5.11. It may be observed that, unlike the PI controller, the PBC controller is able to remain stable. In order to design the controller, the overall systems has been divided in two coupled subsystems: the windmill with the PMSG and the power converters with the grid. For the first subsystem a SPBC, similar to that of [START_REF] Mancilla-David | Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems[END_REF], was realized. The second subsystem was controlled by means of a tracking PI-PBC controller presented in Chapter 2. Endowing the PI controller with tracking capabilities allows for a faster response with respect to the standard regulation PI of [START_REF] Hernandez-Gomez | Adaptive PI stabilization of switched power converters[END_REF].

These results have motivated the following future work.

• From Chapter 4, a future research is intended to construct not only PIs but also PIDs controllers based on other passive outputs besides y ps . It was recently revealed in [START_REF] Ortega | New results on control by interconnection and energybalancing passivity-based control of port-Hamiltonian systems[END_REF][START_REF] Venkatraman | Energy shaping of port-Hamiltonian systems by using alternate passive input-output pairs[END_REF] that there exists a large class of passive outputs that can be used for this purpose.

• To develop an unifying theoretical framework for the PIDs based on passivity.

• Proposed alternative PBC methods to address the wind energy systems than those introduced in Chapter 5 and make a comparative study between them.

• Also, a future work could include a comparative performance between our control approach and the standard one implemented by the power engineering com-

v w PMSG C 1 Rectifier C 2 v hac i hac i dab L 1 L 2

DAB Inverter

v hv v lv Figure 6.1: A scheme of the complete wind generation system munity [START_REF] Chinchilla | Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[END_REF].

• To validate the proposed controller through experimentation. Particularly, that of Section 5.1 is part of the research carried out within the framework of the FREEDM System Center whose main objective is the implementation and testing of a solid-state transformer enabled microgrid. A complete picture of the system model is depicted in Fig. 6.1. As shown in the figure, the configuration consists of a surface-mounted PMSG, the SST and a load [START_REF] Gao | Solid-State Transformer Interfaced PMSG Wind Energy Conversion System[END_REF]. The SST is constituted by three stages: an AC-DC rectifier, a Dual Active Bridge (DAB) converter with a high frequency transformer and a DC-AC inverter. Besides, unlike the classical topologies using a diode bridge rectifier with a DC-DC converter [START_REF] Mancilla-David | Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems[END_REF][START_REF] Valenciaga | Power control of a solar/wind generation system without wind measurement: A passivity/sliding mode approach[END_REF], one of the advantages in the SST topology is due to its larger number of control inputs. Indeed, it offers more degrees of freedom when designing a controller. It can be noticed from the figure that there are control inputs at each stage. Other advantage is that the DAB topology allows seamless control for bidirection power flow.

Real power flows from the bridge with leading phase angle to the bridge with lagging phase angle. 
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Lemma 2 . 1 .

 21 Consider the system (2.1) verifying the LMI of Assumption 2.1 and an admissible trajectory x . Define the incremental signals (•) := (•) -(•) , and the mdimensional output function y := C(x )x (2.10)

Remark 2 . 1 .

 21 A key step for the utilization of the previous result is the derivation of the desired trajectories x and their corresponding control signals u , which satisfy (3.30).

Figure 2 . 2 :

 22 Figure 2.2: Simulation result of the tracking PI-PBC for the Buck Converter

Fig. 2 .

 2 Fig. 2.2 shows the simulation results of the system (2.22) in closed-loop with the controller (2.16). The system parameters are [75]: R = 25 Ω, C = 50 µC, L = 19.91 mH, E = 24 V. Also, we select a = 0.3, ω = 0.8, V 0 = 0.6, and gains K p = 0.3, K i = 0.1.

Figure 2 . 4 :

 24 Figure 2.4: Simulation result of the tracking PI-PBC for the Boost Converter.

2 . 4

 24 the simulation plots are shown for the system (2.28) in closed-loop with (2.16), when L = 18mH, C = 220µC, E = 50 V 0 = 135 V, a = 15, ω = 0.6252 K p = K i = 0.5. A close-up view of the plot must reveal a steady-state error due to the approximation of x 1 .

Assumption 3 . 1 .

 31 The matrix G has n -m zero rows. Without lost of generality 1 it is assumed of the form

R4

  We underscore that no assumption, beyond twice differentiability and convexity, is imposed on the unknown component H u (x u ) of the Lyapunov function of the open-loop system H(x). On the other hand, stricter conditions are imposed on the second component H a (x a ), with uncertainty captured by the unknown constants d i . R5 Assumptions 3.3 (iii) and Assumption 3.1 are the key requirements imposed on the plant to design the robust PI-PBC. This assumption is satisfied by a large class of physical systems, including the thermal systems studied in Section 5.2.6

Lemma 3 . 1 .

 31 Consider the incremental model of the system (3.1),(3.8) 

Lemma 3 . 2 .

 32 Consider the system (3.1) verifying Assumptions 3.1-3.3 in closed-loop with the PI-PBC e = G 2 D Φ(x a ) ż = -K I e u = -K P e + z. (3.12) For all positive definite gain matrices K P ∈ R m×m and K I ∈ R m×m all trajectories are bounded, the equilibrium point (x, z) = (x , u ) is globally stable (in the sense of Lyapunov) and the augmented error signal e a := x) is defined in Assumption 3.3 (ii), verifies lim t→∞ e a (t) = 0. (3.14)

Proposition 3 . 1 .

 31 Consider system (3.1) verifying Assumptions 3.1-3.3 in closed-loop with the robust PI-PBC u

. 23 )

 23 Replacing (3.20) and (3.23) in the controller equations yields ũ = -Λ P e + z ż = -Λ -1 I e.

Lemma 3 . 3 .

 33 If Assumption 3.4 holds the vector field (3.29) satisfies Assumption 3.3 with

Corollary 3 . 1 .

 31 If Assumption 3.4 holds, the thermal system (3.25) defines a passive map ũ → e with storage function U (x), where e = G P Φ(x) U (x) = H(x) -x P Φ(x ) -H(x ) + (x ) P Φ(x )

3 and Proposition 3. 1 . 3 . 2 .

 132 Proposition Consider the system (3.25) verifying Assumptions 3.1 and 3.4. Fix any desired temperature T verifying (3.27) and define the PI-PBC u = -K P Ψa (T a ) + z ż = -K I Ψa (T a ), and the controller gains K P and K I are given by (3.19). For all diagonal, positive definite matrices Γ P ∈ R m×m and Γ I ∈ R m×m all trajectories are bounded and the equilibrium point (T, z) = (T , u ) is globally asymptotically stable. Proof. The proof of stability is established invoking item (i) of Proposition 1 and identifying Φa (x a )| xa=Ta-Ta = Ψa (T a ).

Figure 3 . 1 :

 31 Figure 3.1: Simulation Result showing the system response : (a) For different gains K p letting K I = 3 × 10 -6 . (b) For different gains K I letting K p = 6 × 10 -6 .

Proposition 4 . 1 .

 41 Suppose Assumptions 4.1 and 4.2 hold. Define the mapping u PS :

Proposition 4 . 3 .

 43 Consider the pH system (4.1) verifying Assumptions 4.1 and 4.2. Fix K P = 0 in u PS (x). Then, the control u = u PS (x) is an EB-PBC with added energy function H a (x) := 1 2 γ(x) + C 2 K I . (4.16)

  and look for a control u = u IDA (x) such that the closed-loop has the form ẋ = F d (x)∇H IDA (x);

Figure 4 . 1 :

 41 Figure 4.1: Simulation results when parameter K P varies.

( 4 .

 4 27) and using (4.21) we can conclude , invoking LaSalle's Invariance Principle, that x1 = x 1 * and x3 = x 3 * is an asymptotic equilibrium point. Simulation results are presented in Fig. 4.1. Based on the results reported in [14], the system parameters were chosen as c 0 = 15 × 10 -6 , c 1 = 35.6 × 10 -9 , m = 2.35 × 10 -9 , a 1 = 0.46, a 2 = 0.0973, b = 5.5 × 10 -7 and r = 100. Fig. 4.1 shows the system response for three different values of K P when K I = 5 × 10 -3 . The control objective is to stabilize x 1 at x 1 * = 7 × 10 -5 . Thus, from (4.22), x 2 * = 0 and x 3 * = 1.0601 × 10 -10 . As

1 Figure 4 . 2 :

 142 Figure 4.2: The two-tanks system

. 35 ) 4 Proposition 4 . 5 .

 35445 which satisfies F + F < 0 and Assumption 4.1. Consider the LTI, pH system (4.34),(4.35) in closed-loop with the controller(4.32). For all values of the controller gains K p and K I the closed-loop system is unstable.

Figure 5 . 1 :

 51 Figure 5.1: System under consideration

2 PMSGFigure 5 . 3 :Figure 5 . 4 :

 25354 Figure 5.3: Block diagram of the control implementation of the PI-PBC

Figure 5 . 5 :

 55 Figure 5.5: Circuit schematic of a grid-connected windmill system.

Figure 5 . 6 :

 56 Figure 5.6: The cascade connection between subsystems (5.45) and (5.46).

2 x 13 3 T

 133 Dx 13 , (5.50) yields the power-balance equation Ḣ1 = -R|i dq | 2 dissipation -|v dq ||i dq | elec. power + 2 m ω m , mech. power where | • | is the Euclidean norm.

x 2 x 3 x 1 > 0 2 e 13

 10213 ensures that (5.53) is a Hurwitz matrix. The proof is completed invoking Lyapunov's first method. Design of the SPBC To enhance readability, the SPBC design is done in three steps: (i) energy-shaping, (ii) damping injection and (iii) explicit definition of the controller. The first step in the SPBC procedure is to modify the energy function (5.50) assigning to the closed-loop system the energy function W 1 (e 13 ) := 1 De 13 , (5.54) where e 13 := x 13 -x d 13 .

( 5 .

 5 [START_REF] Marmidis | A passivity-based PI control design for DC-drives[END_REF]) and (5.56) and using (5.55) yields the error equationD ė13 + [C(x 3 ) + R d ]e 13 = 0(5.57)

Proposition 5 . 3 .

 53 Consider subsystem (5.46) with y 1 and external signal verifying (5.60).

. 72 ) 2 e 46 P e 46 ,

 7224646 Motivated by (5.70) define the function W 2 (e 46 ) := 1 whose derivative along the trajectories of (5.71) satisfies Ẇ2 = -R g 2 |e 56 | 2 + y 2 e u 23 .

Lemma 5 . 5 .

 55 Consider the following cascaded system ẋ = f (x, y, t) ẏ = g(y, t), with | ∂f ∂x | and | ∂y ∂y | bounded and 0 = f (x , y , t) 0 = g(y , t).

Proposition 5 . 4 .

 54 Consider the system (5.34) and an equilibrium x ∈ E, verifying (5.35), in closed-loop with the dynamic state-feedback controller Standard PBC:

Figure 5 . 7 :

 57 Figure 5.7: Block diagram of Proposition 5.4.

x d 5 PI

 5 

1 Figure 5 . 8 :

 158 Figure 5.8: Implementation diagram of the passivity based controllers.

Figure 5 . 9 :

 59 Figure 5.9: Block diagram of the PI-based benchmark control scheme. The matrices T dq , T dq , and the ac grid phase angle θ grid represent a consistent transformation of variables in the single-phase time domain to the synchronous d -q reference frame[START_REF] Blaabjerg | Overview of control and grid synchronization for distributed power generation systems[END_REF][START_REF] Karimi-Ghartemani | A unifying approach to single-phase synchronous reference frame PLLs[END_REF].

28

 28 Synchronous resistance R = 0.3676 (Ω) Synchronous reactance L = 3.55 (mH) Flux φ = 0.2867 (Wb) H-bridge inverter dc link voltage v dc = 400 (V) dc link capacitance C =800 (µF) L-filter L g = 5 (mH) R-filter R g = 0.1 (Ω) Single-phase ac grid Nominal voltage V g = 240 (V) Frequency F g = 60 (Hz) PI controllers gains K p x3 = 0.00967472; K i x3 = 0.10516; K p x4 = -4; K i x4 = -5; K p x5 = 0.05; K i x5 = 0.8; K p x6 = 0.05; K i x6 = 0.8.

Figure 5 . 10 :Figure 5 . 11 :

 510511 Figure 5.10: Real wind speed profile utilized in the simulation studies.

  Filt. wind speedv f w -v w . Estim. wind speedvwv w . Tracking statesx 3 -x 3 . Tracking statesx 3 -x 3 . Tracking statesx 3 -x 3 .

  Tip-speed ratio (λ = 8.1).

  Tip-speed ratio (λ = 8.1).

Figure 5 . 12 :

 512 Figure 5.12: Simulation results. The left, middle and right columns presents the comparative evaluation utilizing the actual, filtered and estimated wind speed, respectively. Recall x := col(i d , i q , rω m , v dc , I d , I q ), hence the units for the various plots are: x 1 (A), x 2 (A), x 3 (m/s), x 4 (V), x 5 (A), x 6 (A). Control signals are unitless and because of their physical interpretation they must be contained within 0 and 1.

1 [φ 1 x 2 -

 12 v w (s), with τ = 0.7s. The estimation of the wind speed is performed through the Immersion & Invariance (I&I) estimator proposed in[START_REF] Ortega | A globally convergent wind speed estimator for wind turbine systems[END_REF],vw = γ J Φ(x 3 , vw + γx 3 )],

Assumption 4 .

 4 1 is rather weak, and is satisfied in many practical examples. Notice that if it does not hold then there exists equilibria for the open-loop system, which are not extrema of the energy function-a situation that its not expected to happen in physical systems. The integrability Assumption 2 is a technical condition needed to create the term added to the open-loop energy function (4.9). As indicated at the end of Section 5.2.1, this term may be interpreted as an integral term on the power shaping output. Unfortunately, besides this nice interpretation, we don't have at this point any physical, nor practical motivation, for Assumption 4.2. The controller design parameters are introduced to ensure that H d (x) is positive definite, hence, it qualifies as a Lyapunov function.Finally, in Chapter 5, we present two different wind energy systems to which we control by means of PBC controllers. In Section 5.1 we present a maximum power extraction PI-PBC control for a wind energy system consisting of a turbine, a permanent magnet synchronous generator, a rectifier, a load and one constant voltage source, which is used to form the DC bus. Invoking practically considerations we proved stability. In Section 5.2 an asymptotically convergent PBC for a basic windmill system connected to the grid which ensures maximum power extraction and regulation of the dc link voltage and injection of reactive power has been proposed.

  Le régulateur PID (Proportionnel-Intégral-Dérivée) est la commande par retour d'état la plus connue. Elle permet d'aborder un bon nombre de problèmes de commande, particulièrement pour des systèmes faiblement non linéaires et dont la performance

	Aperçu de la thèse
	PBC	Passivity-Based Control
	SPBC Standard Passivity-Based Control
	PMSG Permanent Magnet Synchronous Generator
	AS	Asymptotically Stable
	UAS	Uniformly Asymptotically Stable
	GAS	Global Asymptotically Stable
	PI	Proportional and Integral
	PID	Proportional-Integral-Derivative
	PDE	Partial Differential Equations
	LMI	Linear Matrix Inequalities

requise est relativement modeste. En plus, en raison de sa simplicité, la commande PID est largement utilisée dans l'industrie. Étant donné que les méthodes de réglage de la commande PID sont basées sur la linéarisation, la synthèse d'une commande autour d'un point d'équilibre est relativement simple, néanmoins, la performance sera faible dans des modes de fonctionnement loin du point d'équilibre. Pour surmonter ce désavantage, une pratique courante consiste à adapter les gains du PID, procédure connue sous le nom de séquencement de gain (ou gain-scheduling en anglais). Il y a plusieurs désavantages à cette procédure, comme la commutation des gains de la commande et la définition -non triviale-des régions de l'espace d'état dans lesquelles cette commutation aura lieu. Ces deux problèmes se compliquent quand la dynamique est fortement non linéaire.

Chapter 2 The Tracking PI-PBC of Bilinear Systems : Application to Power Converters

  Instrumental to establish the result is the construction of an output signal with respect to which the incremental model is passive. The result is illustrated by the
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). A set of matrices {A, B i } are identified, via a linear matrix inequalities, for which it is possible to ensure global tracking of (admissible, differentiable) trajectories with a simple linear time-varying PI controller.

  , consequently y a ∈ L 2 . To conclude that ẏa ∈ L ∞ first notice that x, x ∈ L ∞ implies x ∈ L ∞ and, this in its turn, implies from (2.10) that y ∈ L ∞ . Now, y, z, u ∈ L ∞ implies, from (2.16), u ∈ L ∞ . That implies, from (2.13), ẋ ∈ L ∞ .

	13) and (2.19) is non-autonomous because of its dependence on u and x which are time-varying signals. Consequently, we cannot invoke LaSalle's Invariance Principle and proceed, instead, applying the generaliza-tion of Barbalat's Lemma reported in [79] and some standard signal chasing. Invoking the aforementioned result, we must prove that y a ∈ L 2 and ẏa ∈ L ∞ to conclude that lim t→∞ y a (t) = 0. Since the derivative of the Lyapunov function is negative, the trajec-tories are bounded, namely, z, x ∈ L ∞ . In the same way, from the last inequality we conclude that y, Q 1 2 x ∈ L 2 Now, compute ẏ
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		1: Wind system parameters
	Item	Value
		Turbine
	Inertia	J = 7.856 kg• m 2
	Blades radius	r = 1.84 m
		PMSG
	Nominal Power	S n = 5 kVA
	Poles	P = 28

  can be expressed in the following form ẋ46 = A d (u 23 )x 46 + E (5.69) where A d (u 23 ) := A + B 2 u 2 + B 3 u 3 and

  The equilibrium point of the closed-loop system (x , x 23 , 0, 0, x 5 ) ∈ R 11 is asymptotically stable.Proof. From the derivations of Proposition 5.2 we identify the cascade of subsystems Σ 1 and Σ 2 given by and m 12 (x d 23 ), ∆ 12 (x d 23 , e 13 ) are given in the proof. The cascade fits into the paradigm of Lemma 5.5, with Σ 1 UGAS (actually, exponentially) and Σ 2 AS, therefore the cascade is UAS-see Fig. 5.7.

		Σ 1 : ė13 = A(t)e 13				
		Σ 2 : ẋd 23 = m 12 (x d 23 ) + ∆ 12 (x d 23 , e 13 ),	
	where									
			A(t) := -D -1 [C(x 3 (t)) + R d ],		
	UGES		AS				AS		UGAS	
	Σ 1	e 13	Σ 2	x d 23	H(•, •)	ỹ1	Σ 3	x d 5	Σ 4	(e 46 , ξ)

Table 5 .

 5 

	2: Grid-connected windmill system parameters
	Item	Value
	Turbine	
	Inertia	J = 7.856 (kg m 2

For brevity, in the sequel the time argument is omitted from all signals.

See R6 in the next subsection and Subsection 5.2.5 for more general forms of G.

Notice that, in contrast to the robust PI-PBC, we have assumed that the full state is measurable.

We recall that, in contrast to passive systems where the storage function is bounded from below, in cyclo-passive systems this is not necessary[START_REF] Duindam | Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach[END_REF].

Notice that the existence of γ(x) is ensured by Assumption 4.2 and it can be computed via direct integration.

The interested reader is referred to[START_REF] Ortega | Interconnection and damping assignment passivity-based control: A survey[END_REF][START_REF] Ortega | Control by interconnection and standard passivity-based control of port-Hamiltonian systems. Automatic Control[END_REF][START_REF] Ortega | Putting energy back in control[END_REF] for further details on EB-PBC and IDA-PBC.

The power coefficient is also a function of the blade pitch angle, which acts as an additional control input. We are interested in the operation regime where this angle is kept constant, consequently we have omitted this additional argument in the function C p .

More precisely, the number of control signals (three) is smaller than the order of the system (six) and equals the number of signals to be regulated.

See[START_REF] Ortega | Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications[END_REF][START_REF] Van Der Schaft | L 2 -Gain and Passivity Techniques in Nonlinear Control[END_REF] for further details on Euler-Lagrange systems in control applications.

To avoid cluttering, but with some obvious abuse of notation, we use the same symbols for the system and its restricted dynamics.

This fact, together with the performance improvement discussed in Remark 5.7, were verified by simulations, but are omitted from Section 5.2.9 for brevity.
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Proof. First, as in Section 2.2, we define the incremental system of (5. [START_REF]Technical brochure, modeling and dynamic behavior of wind generation as it relates to power system control and dynamic performance[END_REF]) as

(5. [START_REF] Donaire | On the addition of integral action to port-controlled Hamiltonian systems[END_REF] Then, since that sym(P A) = diag(R, R, f 1 , R e ) =: Q > 0 and sym(P B) = 0, proceeding as in Section 2.3 yields

B i x ũi (5.23)

= y ũ, (5.25) which completes the proof.

From Section 2.2, we state the following proposition.

Proposition 5.1. (PI-PBC) Consider the system (5.19) in closed-loop with the PI con-

where y is given in (5.21) and the tuning gains verify K p > 0 and K i > 0. For all initial conditions (x(0), z(0)) the trajectories of the closed-loop system are bounded and lim t→∞ x(t) = 0.

(5.27)

Proof. Notice that (5.26) can be expressed as

where z := K -1 i u . Consider the Lyapunov function candidate

written in the form

with the signals

viewed as perturbations to an asymptotically stable system. The proof is completed recalling that e 13 (t) → 0 exponentially fast, noting that

and invoking standard results of (local) asymptotic stability of cascaded systems.

The corollary below, is instrumental for the analysis of the overall closed-loop sys- (P2) The error signal ỹ1 := y 1 -y 1 , with

verifies

(5.60)

Remark 5.7. In the SPBC above we fixed x d 1 = x 1 , this should be contrasted with the SPBC of [START_REF] Mancilla-David | Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems[END_REF], where we fixed x d 2 = x 2 instead. As discussed in [START_REF] Mancilla-David | Adaptive passivity-based control for maximum power extraction of stand-alone windmill systems[END_REF] this was motivated by the fact that the zero dynamics of the system with the output x 1 -x 1 has a Chapter 6

Conclusions & Future Work

The following concluding remarks are in order.

In Chapter 2, the trajectory tracking problem for power converters based on passivity foundations has been solved. The resulting controller is a simple PI and the stability results are global and hold for all positive definite gains of the PI. In fact, this outcome extends previous results obtained for the regulation case.

In Chapter 3, we identify a class of nonlinear systems for which it is possible to design robust PI controllers with guaranteed stability properties. The class consists of input affine systems with known, constant input matrix G and n -m zero rows. We assume that only the states associated to the non-zero rows of G are measurable.The systems have an open-loop stable equilibrium, but is different from the desired operating point. To handle this situation, we follow [START_REF] Jayawardhana | Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits[END_REF] and generate new passive outputs for the incremental model, hence the name PI-PBC. Associated to the open-loop stable equilibrium a Lyapunov function of the form (3.4) is assumed to exist. We underscore that, besides convexity, there is no assumption on the function H u (x u ), which is unknown. Moreover, the controller does not require the measurement of x u . The functions φ i (x i ) are assumed convex and known, but the coefficient d i are unknown.

Under these conditions, we show that, for a well identified class of PI tuning gains, global stability of the proposed PI-PBC is guaranteed. Conditions that ensure global asymptotic stability, are also derived.

In Chapter 4, we have presented a new energy shaping method to stabilize pH systems that, in contrast with the classical PBC methods, does not require the solution of PDEs. The key modification introduced here is to abandon the objective of preservation in closed-loop of the pH structure, which is the condition that gives rise to the PDEs.

The class of systems for which the method is applicable is identified by Assumptions 4.1 and 4.2, which can be easily verified from the systems data. The invertibility