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L'imagerie par résonance magnétique pondérée en diffusion est une modalité unique sensible aux mouvements microscopiques des molécules d'eau dans les tissus biologiques. Il est possible d'utiliser les caractéristiques de ce mouvement pour inférer la structure macroscopique des faisceaux de la matière blanche du cerveau. La technique, appelée tractographie, est devenue l'outil de choix pour étudier cette structure de façon non invasive. Par exemple, la tractographie est utilisée en planification neurochirurgicale et pour le suivi du développement de maladies neurodégénératives.

Dans cette thèse, nous exposons certains des biais introduits lors de reconstructions par tractographie, et des méthodes sont proposées pour les réduire. D'abord, nous utilisons des connaissances anatomiques a priori pour orienter la reconstruction. Ainsi, nous montrons que l'information anatomique sur la nature des tissus permet d'estimer des faisceaux anatomiquement plausibles et de réduire les biais dans l'estimation de structures complexes de la matière blanche. Ensuite, nous utilisons des connnaissances microstructurelles a priori dans la reconstruction, afin de permettre à la tractographie de suivre le mouvement des molécules d'eau non seulement le long des faisceaux, mais aussi dans des milieux microstructurels spécifiques. La tractographie peut ainsi distinguer différents faisceaux, réduire les erreurs de reconstruction et permettre l'étude de la microstructure le long de la matière blanche. Somme toute, nous montrons que l'utilisation de connaissances anatomiques et microstructurelles a priori, en tractographie, augmente l'exactitude des reconstructions de la matière blanche du cerveau.

L'image de droite présente l'intégrale radiale du propagateur de diffusion (ODF de diffusion, moment radial d'ordre 2 [Ozarslan et al. 2013]). 1.8 Propagateurs de diffusion dans la matière blanche, in-vivo. Les trois images centrales présentent la fonction de densité de probabilités du déplacement de la molécule d'eau jusqu'à un maximum de 20 µm en vues latérale, antérieure et supérieure (∆ = 17.8ms). L'image de droite présente l'intégrale radiale du propagateur de diffusion (ODF de diffusion, moment radial d'ordre 2 [Ozarslan et al. 2013]). . . . . . 1.9 Modèle compartimental ActiveAx. S 1 , ..., S 4 présentent respectivement les propagateur de diffusion des compartiments de diffusion intraaxonale, extra-axonale, libre et stationnaire. S * présente le propagateur de diffusion du signal mesuré ( déplacement maximum de 20 µm, ∆ = 17.8ms, vue latérale). Les facteurs f i pondèrent la proportion des mélécules d'eau dans chacun des compartiments. . . . . . . . . . . . . 2 Algorithmes de tractographie locale avec la fODF. La tractographie suit la distribution locale des faisceaux de façon itérative avec des pas de longeur ∆t. La direction de propagation doit avoir un rayon de courbure supérieur à R (la déviation maximum est indiquée par l'angle θ, R = ∆t/(2 • sin(θ/2))). a) l'algorithme de tractographie déterministe suit toujours le maximum de la fODF le plus aligné avec la direction précédente. b) L'algorithme de tractographie probabiliste choisi aléatoirement une direction dans le cône d'angle θ, pondérée par les valeurs de la fODF. Images adaptées de Côté et al. [2013]. . . . 2.3 L'interaction de trois spins (s, s b , s f ) représentés par les cercles bleus.

Jeu de données

Les angles α j de l'équation 2.2 sont schématisés. Image adaptée de 
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3.1 Comparison between deterministic and probabilistic tractography algorithms on synthetic data with SNR 10, 20 and 30. In-house : tracking within a binary mask, In-house P F T : in-house tracking using CMC and PFT. All metrics are reported in %. . . . . . . . . . . . . . . . . . . . 3.2 Comparison between in-house algorithms and in-house algorithms using PFT on synthetic bundles reconstruction of various diameters (2mm (10 bundles), 3mm (5 bundles), 4mm (10 bundles)). In-house : tracking within a binary mask, In-house P F T : in-house tracking using CMC and PFT. All metrics are reported in % ± the standard deviation. . . . . 3.3 Streamline distribution and average length, seeding from WM/GM interface. Included streamlines end in the GM. Extra P F T shows the increase in percentage of streamlines included using PFT. [START_REF] Van Essen | The Human Connectome Project: a data acquisition perspective[END_REF], il est possible de mesurer l'organisation microstructurelle de la matière blanche chez l'homme, in vivo [par exemple [START_REF] Assaf | AxCaliber: a method for measuring axon diameter distribution from diffusion MRI[END_REF][START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF][START_REF] Daducci | Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data[END_REF][START_REF] Scherrer | Characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion-compartment imaging (DIAMOND)[END_REF]. Notamment, le diamètre axonal est variable d'une région de la matière blanche à l'autre [START_REF] Aboitiz | Individual differences in brain asymmetries and fiber composition in the human corpus callosum[END_REF] ; Le signal IRM est mesuré pour chaque voxel (pixel 3D) du cerveau, pour former une image 3D du cerveau. La taille des voxels de l'IRMd pour l'être humain est typiquement de 2 mm isotrope (2 mm × 2 mm × 2 mm). Le bruit présent dans le signal, la puissance de l'aimant et le temps d'acquisition sont certains des facteurs limitant la résolution de l'image 3D. L'image du cerveau pondérée en diffusion à quatre dimensions (4D), où la quatrième dimension correspond aux mesures de diffusion (une image 3D du cerveau est acquise pour chacune des mesures de diffusion). La complexité de ces images soulève de nombreux problèmes mathématiques et calculatoires. Notamment, plusieurs techniques de représentation du phénomène de diffusion ont été proposées [START_REF] Descoteaux | Comprehensive Biomedical Physics[END_REF] La tractographie est une classe d'algorithmes dont l'objectif est d'estimer la structure de la matière blanche en suivant les orientations cohérentes, obtenues de l'IRM pondérée en diffusion, parmi les voxels voisins. Les algorithmes de tractographie ont pour défi d'utiliser au mieux l'information présente dans chaque voxel et de produire un résultat respectant les hypothèses de structure et de connectivité du réseau d'axones du cerveau [START_REF] Hagmann | MR connectomics: Principles and challenges[END_REF][START_REF] Descoteaux | High Angular Resolution Diffusion MRI : from Local Estimation to Segmentation and Tractography[END_REF]Tournier et al. 2012 ;[START_REF] Jones | Diffusion MRI: Theory, Methods, and Applications[END_REF][START_REF] Johansen-Berg | Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy[END_REF]. La tractographie produit des courbes 3D, appelées tractes, tangentes aux orientations estimées. L'ensemble des tractes calculées est appelé un tractogramme.

Depuis une quinzaine d'années, plusieurs approches ont été proposées pour estimer la structure de la matière blanche [par exemple [START_REF] Fillard | Quantitative Evaluation of 10 Tractography Algorithms on a Realistic Diffusion MR Phantom[END_REF] ; Jbabdi et matière blanche demeure un problème difficile [Jones 2010a ;[START_REF] Jones | White Matter Integrity, Fiber Count, and Other Fallacies: The Do's and Don'ts of Diffusion MRI[END_REF][START_REF] Jbabdi | Tractography: Where Do We Go from Here?[END_REF]. Notamment, la distribution spatiale des tractes peut être biaisée par la position, la forme, la taille et la longueur des faisceaux de matière blanche. D'autre part, une portion des tractes reconstruites est anatomiquement invalide [Côté et al. 2013], c'est-à-dire que ces tractes ne représentent pas de faisceaux de matière blanche existants. Néanmoins, les applications de la tractographie sont nombreuses, notamment dans l'étude des maladies neurodégénératives et en planification neurochirurgicale [par exemple [START_REF] Fortin | Tractography in the Study of the Human Brain : A Neurosurgical Perspective[END_REF] ; Johansen-Berg et Mathematical reasoning may be regarded rather schematically as the exercise of a combination of two facilities, which we may call intuition and ingenuity. L'imagerie par résonance magnétique (IRM) de diffusion permet de mesurer le déplacement des molécules d'eau in vivo. Le déplacement des molécules d'eau est influencé par leur environnement. Par exemple, l'eau se déplace davantage le long des parois cellulaires qu'au travers. La matière blanche du cerveau est un environnement particulièrement intéressant en IRM pondérée en diffusion, car elle est constituée d'axones organisées en faisceaux. Les figures 1.1 a) et 1.4 a) schématisent la diffusion de l'eau dans la matière blanche. Les variations mesurées dans le signal dans plusieurs orientations permettent d'inférer les orientations principales des axones. Pour ce faire, une estimation de la diffusion est calculée en chacun des voxels à partir des données acquises en IRM pondérée en diffusion. Une multitude de techniques ont été développées estimant localement le signal de diffusion, chacune ayant ses avantages et ses limites [START_REF] Seunarine | Multiple fibers: beyond the diffusion tensor[END_REF]. Cette section présente les estimations locales les plus utilisées dans la littérature dans le processus de tractographie et prépare le lecteur pour le chapitre suivant, présentant une revue des algorithmes de tractographie utilisant ces représentations locales.

-Alan Turing

Chapitre 1

Représentations locales du phénomène de diffusion

Tenseur de diffusion

Le tenseur de diffusion [START_REF] Basser | In vivo fiber tractography using DT-MRI data[END_REF][START_REF] Basser | Diffusion-tensor MRI: theory, experimental design and data analysis -a technical review[END_REF][START_REF] Bihan | Diffusion tensor imaging: concepts and applications[END_REF][START_REF] Arsigny | Log-Euclidean metrics for fast and simple calculus on diffusion tensors[END_REF]] a été proposé pour estimer l'anisotropie dans la diffusion de l'eau au sein d'un voxel. Cette estimation repose sur l'hypothèse que la diffusion de l'eau suit une distribution gaussienne 3D caractérisée par une matrice D 3x3, symétrique, définie positive. Le tenseur de diffusion est souvent représenté par un ellipsoïde orienté selon les vecteurs propres de la matrice D, où les longueurs des axes de l'ellipsoïde correspondent aux valeurs propres associées(voir figure 1.1 b), c)). Un minimum de 6 mesures de diffusion est nécessaire afin d'estimer le tenseur de diffusion dans un voxel (généralement, une douzaine de directions sont mesurées). L'imagerie par tenseur de diffusion (DTI) repose sur l'hypothèse qu'un seul faisceau de fibres de la matière blanche traverse chaque voxel (voir figure 1.1 a)). Le cas échéant, le vecteur propre principal e 1 (le vecteur propre associé à la valeur propre la plus grande) de la matrice D coïncidera avec l'orientation principale des fibres traversant le voxel. Or, il a été démontré qu'il a plus d'un faisceau de matière blanche par voxel dans plus des deux tiers des voxels de la matière blanche [START_REF] Jeurissen | Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution[END_REF][START_REF] Descoteaux | High Angular Resolution Diffusion MRI : from Local Estimation to Segmentation and Tractography[END_REF]. L'hypothèse de la présence d'un seul faisceau de matière blanche par voxel étant fausse pour la majorité des voxels, le vecteur propre principal e 1 du tenseur de diffusion ne coïncidera possiblement pas avec l'orientation d'un faisceau de matière blanche dans ces cas. Malgré cette faiblesse, le DTI est très utilisé pour sa simplicité et pour le peu de données requises pour l'estimer. Des méthodes d'imagerie de diffusion à haute résolution angulaire (HARDI) permettent de surpasser cette limite du tenseur de diffusion. Le DTI permet néanmoins de reconstruire plusieurs des grands faisceaux de la matière blanche. Le DTI permet également de produire des cartes scalaires dont la plus répandue est la carte d'anisotropie fractionnaire (FA) révélant de l'information sur la structure et la nature des tissus présents dans chacun des voxels. La FA est calculée suivant l'équation : La carte couleur directionally-encoded color (DEC) est complémentaire à la carte FA. Elle encode l'orientation principale du tenseur de diffusion : la direction du vecteur propre associé à la valeur propre la plus grande de la matrice D. La couleur représente l'orientation suivant la convention rouge : gauche/droite, vert : antérieur/postérieur, blue : inférieur/supérieur [Calamante et al. 2012 ;[START_REF] Pajevic | Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain[END_REF]. La carte peut être combinée à la carte FA, de manière à ce que l'intensité soit proportionnelle à la valeur de la FA et que la couleur corresponde à l'orientation. La [1999]). b) Schéma du tenseur de diffusion estimé dans un voxel ayant une seule orientation principale de diffusion (image de Descoteaux [2008]). c) Décomposition en vecteurs (orientation 3D) et valeurs propres (étirement 3D) du tenseur de diffusion (image de Descoteaux [2008]).

F A = 1 2 (λ 1 -λ 2 ) 2 + (λ 1 -λ 3 ) 2 + (λ 2 -λ 3 ) 2 λ 2 1 + λ 2 2 + λ 2 3 , (1.1) avec λ 1 ≥ λ 2 ≥ λ 3 ,

Techniques à haute résolution angulaire

Le développement de techniques d'imagerie de diffusion à haute résolution angulaire (HARDI) est motivé par les limites du DTI. Les méthodes HARDI ne reposent pas sur l'hypothèse d'une diffusion gaussienne dans les voxels et permettent la reconstruction de croisements de fibres de matière blanche au sein d'un voxel. Pour ce faire, ces méthodes dépendent d'un schéma d'acquisition d'images en IRMd souvent beaucoup plus riche en mesures que le DTI (généralement, plus de 30 directions mesurées [START_REF] Descoteaux | High Angular Resolution Diffusion MRI : from Local Estimation to Segmentation and Tractography[END_REF]]), le temps d'acquisition sera proportionnellement plus long pour les méthodes HARDI. Plusieurs méthodes HARDI sont proposées dans la littérature [START_REF] Tuch | Diffusion MRI of Complex Tissue Structure[END_REF][START_REF] Tuch | Diffusion MRI of complex neural architecture[END_REF][START_REF] Tuch | Q-ball imaging[END_REF][START_REF] Jbabdi | A Bayesian framework for global tractography[END_REF] 

Fonction de distribution des orientations

La fonction de distribution des orientations (ODF) [START_REF] Tuch | Diffusion MRI of Complex Tissue Structure[END_REF][START_REF] Descoteaux | Regularized, fast, and robust analytical Q-ball imaging[END_REF] [START_REF] Descoteaux | Regularized, fast, and robust analytical Q-ball imaging[END_REF]], l'ODF de diffusion s'avère trop lisse pour détecter correctement tous les croisements, particulièrement les croisements où l'angle est faible [START_REF] Descoteaux | Regularized, fast, and robust analytical Q-ball imaging[END_REF][START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF][START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution[END_REF]]. De plus, l'ODF de diffusion représente la probabilité de diffusion des molécules d'eau dans le voxel et non la probabilité de présence des fibres de matière blanche. Ces deux probabilités sont reliées, mais la distribution de l'orientation des fibres de matière blanche est une information utile pour plusieurs algorithmes de tractographie (voir chapitre 2).

ODF de fibres

La fonction de distribution des orientations de fibres (fODF ou FOD) est une estimation locale représentant la probabilité de la présence d'une fibre pour chacune des orientations sur la sphère. Les fODF sont calculées, par exemple, en déconvoluant l'ODF de diffusion [START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF]] ou par déconvolution du signal de diffusion [START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution[END_REF]]. La figure 1.4 e) présente la fODF obtenue dans un voxel ayant deux faisceaux de fibres de matière blanche se croisant à 90 degrés. Les maxima de la fODF correspondent aux orientations principales des faisceaux de fibres de matière blanche. La fODF est une approximation de la distribution de la structure des fibres de matière blanche. Elle offre par conséquent, des caractéristiques recherchées par les algorithmes de tractographie [par exemple [START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF][START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Dell'acqua | Combining Spherical Deconvolution and Streamline Tractography : Preliminary Results[END_REF].

De façon similaire à la carte couleur DEC (voir figure 1.3), il est possible d'extraire l'orientation principale de la fODF, reflétant l'orientation moyenne locale des structure de la matière. Plutôt que d'obtenir l'orientation principale à partir du vecteur propre associé à la valeur propre principale du tenseur de diffusion D, Dhollander et al.

[2015] proposent de calculer l'orientation du vecteur correspondant à l'orientation moyenne de la fODF (intégrale des orientations pondérées par leurs amplitudes). La figure 1.5 présente un exemple de cette carte couleur, la carte DEC-FOD. De plus, Dhollander et al. [2015] proposent de pondérer la carte couleur résultante par l'intégrale de l'amplitude de la fODF (voir figure 1.5). L'intégrale de l'amplitude de la fODF est proportionnelle au volume intra-axonal dans chacun des voxels [START_REF] Raffelt | Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images[END_REF]. En comparaison avec la carte DEC-FA, la carte couleur DEC-FOD pondérée par l'amplitude de l'ODF de fibre incorpore l'information angulaire plus riche de la fODF et réduit les biais d'intensité de la carte FA dans les croisement de fibres. La fODF est cependant dépendante des hypothèses liées au processus de déconvolution utilisé [START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF][START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution[END_REF][START_REF] Dell'acqua | A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging[END_REF][START_REF] Tax | Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data[END_REF]. Les cartes d'orientations structurelles locales ont un potentiel d'application en visualisation et dans l'identification des faisceaux de matière blanche [Dhollander et al. 2015]. 

DEC-FOD FOD amp.

Mesures de diffusion angulaires et radiales

L'IRM pondérée en diffusion est sensible aux mouvements microscopiques des molécules d'eau dans les tissus biologiques. En particulier, il est possible de mesurer l'orientation du mouvement des molécules d'eau et d'en estimer l'orientation des faisceaux de la matière blanche (par exemple, voir section 1.2.2). En sus, l'IRM pondérée en diffusion est sensible à l'amplitude du déplacement radial des molécules d'eau. La 1.3. Mesures de diffusion angulaires et radiales figure 1.6 présente des mesures de diffusion d'un même cerveau dans différentes orientations et différentes amplitudes. Pour ce faire, des protocoles d'acquisitions particuliers doivent être utilisés au moment de l'acquisition des images. Avec ces protocoles, nous obtenons des images sensibles à fois à l'amplitude et à l'orientation de la diffusion de l'eau dans les tissus biologiques. À partir de ces images, des propriétés de l'organisation microstructurelle sous-jacente peuvent être estimées. Par exemple, [START_REF] Wedeen | Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers[END_REF] et Descoteaux et al. [2011] proposent des techniques d'acquisition et reconstruction pour estimer la probabilisté de déplacement 3D des molécules d'eau dans chaque voxels. D'autres techniques reposent sur des modèles caractéristique de la diffusion 3D des molécules d'eau pour représenter le signal de diffusion mesuré [par exemple [START_REF] Assaf | Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain[END_REF][START_REF] Assaf | AxCaliber: a method for measuring axon diameter distribution from diffusion MRI[END_REF][START_REF] Alexander | A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features[END_REF][START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF][START_REF] Daducci | Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data[END_REF][START_REF] Scherrer | Characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion-compartment imaging (DIAMOND)[END_REF]Ozarslan et al. 2013 ;Fick et al. 2016]. Une fois le signal de diffusion modélisé, les caractéristiques du modèle permettent d'inférer les propriétés microstructurelles des tissus.

Propagateur de diffusion

L'IRM pondérée en diffusion mesure le déplacement des molécules d'eau dans différents compartiments tels que les axones et les astrocytes. Le propagateur de diffusion (EAP -Ensemble Average Propagateur) [Descoteaux et al. 2011 ;[START_REF] Cheng | Estimation and Processing of Ensemble Average Propagator and Its Features in Diffusion MRI[END_REF]Ozarslan et al. 2013 ;Ning et al. 2015] décrit la probabilité de déplacement moyen 3D d'une molécule d'eau, suivant : transformation de Fourier [START_REF] Stejskal | Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient[END_REF] : 

P (r -r ; ∆) = c∈C ρ c (r )
E(q; ∆) = F r-r P (r -r ; ∆) (q), tel que q = γδG 2π ,

ActiveAx

ActiveAx est une technique d'estimation de la microstructure de la matière blanche proposée par [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF]. Elle repose sur un modèle de la matière blanche à quatre compartiments (diffusion intra-axonale, diffusion extra-axonale, diffusion libre, eau stationnaire), où les molécules d'eau ne peuvent pas diffuser d'un compartiment à l'autre. ActiveAx cherche les paramètres optimaux de ces compartiments, pour lesquels leurs signaux de diffusion respectifs somment à S * , le signal de diffusion mesuré. Le modèle est décrit par [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF]. S * 0 représente le signal IRM mesuré sans pondération de diffusion. Dans ce modèle, S 1 représente le signal provenant des molécules d'eau diffusant dans des cylindres de diamètre fixe et parallèles aux axones (diffusion intra-axonale). S 2 représente le signal de diffusion des molécules d'eau à l'extérieur des cylindres, mais contraints par leurs parois (diffusion extra-axonale).

S * = S * 0 4 i=1 f i S i , ( 1 
≤ f i ≤ 1, 4 i=1 f i = 1)
S 3 et S 4 représentent le signal de diffusion de l'eau libre (diffusion libre) et de l'eau stationnaire (sans diffusion), par exemple l'eau prise dans les structures cellulaires [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF]. La figure 1.9 schématise le modèle ActiveAx [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF]. À partir des proportions f i , des indices de densité sont dérivés. Par exemple, f 1 /(f 1 + f 2 ) est la fraction du volume intra-axonal de la matière blanche. Également, le diamètre des cylindres (S 1 ) est un indice de la taille axonale moyenne. Ce modèle à été appliqué dans des études de la matière blanche [par exemple Dyrby et al. 2012 ;[START_REF] Panagiotaki | Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison[END_REF][START_REF] Zhang | Optimization of b-value sampling for diffusion-weighted imaging of the kidney[END_REF]]. L'optimisation des paramètre d'ActiveAx a, par la suite, été posée dans un cadre d'optimisation convexe par [START_REF] Daducci | Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data[END_REF]. Cette formulation est détaillée au chapitre 5, où nous présentons un algorithme de tractographie reposant sur le modèle ActiveAx pour extraire de l'information microstructurelle des tissus et réduire les ambiguités dans la reconstruction de la matière blanche.

Nature uses only the longest threads to weave her patterns, so that each small piece of her fabric reveals the organization of the entire tapestry.

-Richard Phillips Feynman

Chapitre 2

Tractographie des fibres de la matière blanche en imagerie par résonance magnétique de diffusion Ce chapitre présente les différentes méthodes de tractographie de la matière blanche. Substanciellement, l'objectif de la tractographie est d'extraire de l'information sur la connectivité cérébrale, notamment à partir de l'IRM pondérée en diffusion [par exemple Mori et al. 2005 ;Mori et al. 1999 ;[START_REF] Behrens | Characterization comparison to principal diffusion direction techniques[END_REF][START_REF] Fortin | Tractography in the Study of the Human Brain : A Neurosurgical Perspective[END_REF][START_REF] Johansen-Berg | Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy[END_REF][START_REF] Hagmann | Mapping human whole-brain structural networks with diffusion MRI[END_REF]]. Le développement de la tractographie est un défi de taille puisque les détails de l'anatomie du cerveau humain sont inconnus. La validation des résultats est, par conséquent, difficile. Les comportements et les paramètres des algorithmes reposent donc sur des hypothèses déduites de l'information disponible. Pour faciliter la validation des algorithmes de tractographie, des jeux de données ont été simulés [Common DTI Dataset ;Neher et al. 2013 ;[START_REF] Caruyer | On facilitating the use of HARDI in population studies by creating rotation-invariant markers[END_REF][START_REF] Bach | A High Resolution Tractography Phantom[END_REF][START_REF] Wilkins | Development and Evaluation of a Simulated FiberCup Phantom[END_REF]] et des objets ont été mesurés à l'IRM [START_REF] Fillard | Quantitative Evaluation of 10 Tractography Algorithms on a Realistic Diffusion MR Phantom[END_REF][START_REF] Lorenz | Anisotropic Fiber Phantom for DTI validation on a clinical scanner[END_REF][START_REF] Perrin | Validation of q-ball imaging with a diffusion fibre-crossing phantom on a clinical scanner[END_REF][START_REF] Poupon | New diffusion phantoms dedicated to the study and validation of high-angularresolution diffusion imaging (HARDI) models[END_REF]. Cependant, ces modèles ne reflètent pas toujours les mêmes caractéristiques que les tissus cérébraux. Par conséquent, la validation est souvent faite qualitativement sur un cerveau humain, malgré ses inconnues.

À partir des informations fournies par les représentations locales, les algorithmes de tractographie estiment la connectivité entre des voxels ou des régions, souvent représentée par des courbes 3D, appelées tractes. L'ensemble des tractes produites par l'algorithme est un tractogramme. Le tractogramme est généralement analysé et segmenté pour ensuite être visualisé et analysé qualitativement et quantitativement [par exemple [START_REF] Vaillancourt | A Fiber Navigator for Neurosurgical Planning[END_REF][START_REF] Côté | Tractometer: Online evaluation system for tractography[END_REF][START_REF] Fillard | Quantitative Evaluation of 10 Tractography Algorithms on a Realistic Diffusion MR Phantom[END_REF][START_REF] Hagmann | DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection[END_REF]Dyrby et al. 2007 ;[START_REF] Descoteaux | Comprehensive Biomedical Physics[END_REF][START_REF] Daducci | COMMIT: Convex Optimization Modeling for Micro-structure Informed Tractography[END_REF]. La figure 2.1 a) présente un exemple de tractogramme du jeu de données FiberCup [START_REF] Fillard | Quantitative Evaluation of 10 Tractography Algorithms on a Realistic Diffusion MR Phantom[END_REF][START_REF] Poupon | New diffusion phantoms dedicated to the study and validation of high-angularresolution diffusion imaging (HARDI) models[END_REF]] provenant d'un objet imagé à l'IRM (ensemble de fils tendus, imergés dans une solution à base d'eau [START_REF] Poupon | New diffusion phantoms dedicated to the study and validation of high-angularresolution diffusion imaging (HARDI) models[END_REF]). La figure 2.1 b) présente la reconstruction par un algorithme de tractographie des faisceaux présents dans le jeu de données (voir figure 2.1 c)). Les paires de régions terminales, affichées en blanc dans la figure 2.1 c), sont utilisées pour segmenter le tractogramme produit par l'algorithme de tractographie.

Les méthodes de tractographie se divisent en deux catégories principales, soit les méthodes dites locales (présentées à la section 2.1) et celles dites globales (présentées à la section 2.2). Les méthodes locales de tractographie sont généralement divisées en 

La tractographie locale

La direction initiale correspond à un maximum de l'estimation locale de la position initiale ou encore à une direction tirée de façon probabiliste de l'estimation locale [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF]]. Afin d'obtenir un ensemble de positions initiales, deux stratégies d'initialisation sont généralement utilisées [Mori et al. 1999 ;[START_REF] Basser | In vivo fiber tractography using DT-MRI data[END_REF][START_REF] Catani | Virtual in vivo interactive dissection of white matter fasciculi in the human brain[END_REF][START_REF] Descoteaux | High Angular Resolution Diffusion MRI : from Local Estimation to Segmentation and Tractography[END_REF][START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF]Li et al. 2012a] :

-Initialisation complète : Initialiser des tractes dans un masque complet de la matière blanche ou dans un masque défini par un seuil sur la carte d'anisotropie fractionaire (voir section 1.1) , -Initialisation par régions : Initialiser des tractes dans une région d'intérêt ou un sous-ensemble du masque. Dans les deux cas, une ou plusieurs initialisations peuvent être faites par voxel. Si plusieurs initialisations sont faites au sein d'un même voxel, le centre du voxel ne sera pas nécessairement choisi comme position initiale. Une position à l'intérieur du voxel sera choisie aléatoirement, puis une interpolation sera faite sur les représentations locales afin d'obtenir la représentation locale à la position initiale [Tournier et al. 2012]. Autrement, des positions initiales peuvent aussi être tirées aléatoirement dans le masque d'initialisation jusqu'à l'obtention d'un nombre de tractes déterminés [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF] et la propagation est alors arrêtée. En supposant que des erreurs dans les données de diffusion ont mené à cette situation, ces tractes sont exclues du tractogramme. La contrainte de longueur minimum (δ min ) permet d'exclure les tractes trop courtes pour être d'intérêt dans une étude. À titre d'exemple, les tractes ayant terminées rapidement dues à des erreurs de segmentation du masque de tractographie peuvent être exclues par le critère de longueur minimum.

La tractographie déterministe

La tractographie locale déterministe est la première catégorie de méthodes proposées pour reconstruire le réseau de connectivités cérébrales. Elle consiste à suivre les maxima des représentations locales de façon itérative jusqu'à l'atteinte d'un critère d'arrêt [par exemple Mori et al. 1999 ;[START_REF] Basser | In vivo fiber tractography using DT-MRI data[END_REF][START_REF] Poupon | Détection des faisceaux de fibres de la substance blanche pour l'étude de la connectivité anatomique cérébrale[END_REF][START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Johansen-Berg | Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy[END_REF][START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF][START_REF] Centuro | Tracking neuronal fiber pathways in the living human brain[END_REF][START_REF] Catani | Virtual in vivo interactive dissection of white matter fasciculi in the human brain[END_REF][START_REF] Jones | Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI[END_REF][START_REF] Hagmann | Mapping human whole-brain structural networks with diffusion MRI[END_REF][START_REF] Savadjiev | 3D curve inference for diffusion MRI regularization and fibre tractography[END_REF][START_REF] Merlet | Tractography via the Ensemble Average Propagator in diffusion MRI[END_REF][START_REF] Lazar | White matter tractography using diffusion tensor deflection[END_REF]]. Généralement, s'il y a plus d'une direction à la position courante, la direction la plus alignée avec la direction précédente est choisie. La figure 2.2 a) présente un algorithme déterministe suivant les maxima des fODFs. L'algorithme suit de façon itérative le maximum de la fODF le plus aligné avec la direction précédente, jusqu'à l'atteinte d'un critère d'arrêt, formant ainsi une tracte.

La tractographie probabiliste

La tractographie locale probabiliste est analogue aux méthodes déterministes, mais elle considère une incertitude dans les maxima ou une distribution probabiliste de la position des fibres de matière blanche. Certaines méthodes estiment la variation dans la position des maxima, par exemple avec des techniques de bootstrap, et produisent une fonction de densité de probabilité de présence de fibres ou un cône d'incertitude pour chacun des maxima et al. 2007 ;[START_REF] Hagmann | DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection[END_REF]]. Les cartes de connectivité peuvent être calculées à partir de tous les types de tractogrammes, mais elles sont principalement utilisées suite à une tractographie probabiliste.

La tractographie globale

Les méthodes dites globales s'opposent aux stratégies itératives locales en cherchant des tractes optimales plutôt qu'en suivant localement les directions préférentielles tracte par tracte. Une première catégorie de méthodes sont dites globales, car l'ensemble des tractes du tractogramme sont calculées simultanément. Ces méthodes cherchent un tractogramme avec une configuration de tractes minimisant une certaine fonction de coût (distance) globale [par exemple [START_REF] Fillard | Spin Tracking: A Novel Global Tractography Algorithm[END_REF][START_REF] Kreher | Gibbs tracking: a novel approach for the reconstruction of neuronal pathways[END_REF][START_REF] Reisert | Global fiber reconstruction becomes practical[END_REF]. Une seconde catégorie de méthodes globales calcule une ou plusieurs tractes minimisant une fonction de distance ou maximisant une probabilité de connexion entre deux régions et considère l'ensemble des données disponibles. Il existe notamment des approches basées sur des graphes, des méthodes de recherche de chemin le plus court et des approches maximisant les probabilités de connexion. Cette section présente certaines des stratégies de tractographie globale.

Minimisation d'énergie globale

Cette catégorie de méthodes cherche une configuration de tractes maximisant l'attache aux données de diffusion et respectant des hypothèses sur l'organisation physiologique des fibres de la matière blanche. La tractographie est formulé en problème de minimisation de l'énergie du système de segments interagissant entre eux [START_REF] Fillard | Spin Tracking: A Novel Global Tractography Algorithm[END_REF][START_REF] Kreher | Gibbs tracking: a novel approach for the reconstruction of neuronal pathways[END_REF][START_REF] Reisert | Global fiber reconstruction becomes practical[END_REF]. Les algorithmes cherchent la configuration de segments expliquant de façon optimale les mesures.

La méthode du verre de spins proposée par [START_REF] Fillard | Spin Tracking: A Novel Global Tractography Algorithm[END_REF] est une extension du travail introduit par [START_REF] Mangin | A framework based on spin glass models for the inference of anatomical connectivity from diffusion-weighted MR data -a technical review[END_REF]. Dans ce modèle, la matière blanche est caractérisée par un ensemble S d'éléments appelés spins. Les spins ont une position x et une orientation v. Ils peuvent se déplacer, pivoter et se dupliquer. Ces actions sont contrôlées par trois énergies : l'énergie de diffusion E d , l'énergie d'association E int et l'énergie de génération E gen . L'énergie de diffusion attire les spins vers les directions de diffusion les plus fortes localement. L'énergie d'interaction encourage les spins à former de longues chaînes ayant une faible courbure. L'énergie générative empêche les chaînes de terminer à l'intérieur du domaine Ω (par exemple un masque de la matière blanche) en permettant la création de nouveaux spins. La méthode cherche une configuration optimale S * , minimisant ces trois énergies dans tout le domaine. Cette configuration sera d'abord de longues chaînes de spins terminant en bordure du domaine, puis ayant la plus faible courbure tout en s'alignant localement avec les directions de plus forte diffusion.

L'énergie de diffusion E d d'un spin est minimale lorsque son orientation coïncide avec une haute probabilité de trouver une fibre de matière blanche au sein du voxel et sera maximale lorsque la probabilité est faible. E d tend vers l'infini lorsque la probabilité de trouver une fibre tend vers 0. La formulation de cette énergie sera dépendante de la représentation locale utilisée. De façon générale,

E d (x, v) = -log(p(x, v)),
(2.1) avec p(x, v) la probabilité de trouver une fibre à la position x et à l'orientation v. L'énergie d'interaction E int contrôle la façon dont les spins s'associent et encourage la formation de longues chaînes de spins. Cette énergie est basée sur l'hypothèse de faible courbure des fibres de la matière blanche. Chacun des spins forme un lien avec un spin en avant s f (en fonction de l'orientation v) et un spin en arrière s b , dans un voisinage défini par une distance maximale r. On note N b (s) le voisinage arrière du spin s et N f (s) le voisinage avant de s. L'énergie d'interaction est calculée suivant l'équation :

E int (s, s b , s f ) = - 1 5 5 j=1 log cos α j -cos α max 1 -cos α max (2.2) avec s un spin, s b ∈ N b , s f ∈ N f et α max l'angle maximal. Les α j sont les angles définis par : v b et x -x b , x -x b et v, v et x f -x, x f -x et v f , v b et v f . La figure 2.
3 illustre les cinq angles. Si un angle α j est plus grand que α max , E int = ∞. Si l'orientation v d'un spin mène à l'extérieur du domaine, i.e. x ± r • v / ∈ Ω, l'extrémité de la chaîne est atteinte et l'énergie d'interaction ne cumule pas d'interaction avec l'extérieur du domaine.

L'énergie de génération E gen assure que les chaînes de spins ne terminent pas à l'intérieur du domaine et que le niveau d'énergie du système demeure fini. Un nouveau spin est généré dans le voisinage de s ayant une orientation permettant la formation d'une chaîne d'énergie finie lorsqu'aucun spin s b ou s f n'est disponible pour former un lien avec un spin s ou lorsque E int (s, s b , s f ) = ∞. L'énergie de génération est définit par l'équation

E gen (s) =      ∞ si ∀ (s b , s f ) ∈ N b (s)x N f (s), E int (s, s b , s f ) = ∞, 0 autrement. (2.3)
La solution optimale est l'ensemble S * de N spins minimisant la somme des trois énergies (équations 2.1, 2.2 et 2.3) et se formule

S * = arg min S N i=1 E d s i + λE int (s i , s b i , s f i ) + E gen (s i ), (2.4) 
où λ pondère l'importance de la faible courbure par rapport à l'alignement des spins à l'orientation des tissus provenant des données de diffusion. Chacune des chaînes de spins forme une tracte, l'ensemble forme le tractogramme.

Géodésique

Une géodésique est une généralisation de la notion de ligne droite dans un espace courbe. Par exemple, la distance la plus courte entre un point A et un point B, sur une sphère, est le segment d'arc le plus court d'un grand cercle (tous cercles de diamètre et de centre égaux à la sphère) passant par A et B. Étant donné un domaine et une métrique, l'objectif est de trouver le chemin le plus court entre deux points. La figure 2.3 -L'interaction de trois spins (s, s b , s f ) représentés par les cercles bleus. Les angles α j de l'équation 2.2 sont schématisés. Image adaptée de Fillard et al. [2009]. métrique peut être vue comme une fonction de coût définie en tous points du domaine. La solution correspond à la solution de l'équation eikonale (l'équation de propagation de la lumière) pour une onde initiée au point A et terminant au point B.

Les algorithmes de tractographie géodésique recherchent une tracte connectant deux points A et B et ayant une distance minimale dans l'espace des représentations locales. Il est cependant difficile de définir la distance entre des représentations locales de la structure de la matière blanche. Plusieurs méthodes ont été proposées pour retrouver le chemin géodésique [par exemple [START_REF] Jbabdi | Accurate anisotropic fast marching for diffusion-based geodesic tractography[END_REF][START_REF] Sepasian | Multi-Valued Geodesic Tractography for Diffusion Weighted Imaging[END_REF]d'initialisation. FMT s'effectue dans l'espace voxélique, il n'y aura donc pas d'interpolation des données de diffusion. Étant donné un voxel initial, ses 26 voisins sont des candidats potentiels à la propagation de la surface. La vitesse de la surface est défini par la normale à la surface et le vecteur propre principal du tenseur de diffusion à la position correspondante. La surface se propage plus rapidement vers les voxels ayant un vecteur propre 1 aligné avec le vecteur normal à la surface à cet endroit. Puisque le tenseur de diffusion assume la symétrie dans les directions de diffusion, l'opposé du vecteur propre 1 sera choisi s'il est davantage aligné avec la normale à la surface. À partir d'une position initiale, on obtient une carte 3D où la valeur de chacun des voxels correspond au temps de propagation nécessaire à la surface pour l'atteindre [START_REF] Parker | Diffusion Tensor Imaging[END_REF].

L'image obtenue peut être interprétée comme le coût associé à la propagation. La tracte liant une position et la position initiale peut être calculée avec une descente de gradient dans la carte 3D du temps de propagation. Il est alors possible de trouver une tracte liant toute position à la position initiale. La vraisemblance des tractes est ensuite évaluée pour conserver uniquement les tractes ayant une vraisemblance supérieure à un seuil. La fonction de vraisemblance proposée par [START_REF] Parker | Diffusion Tensor Imaging[END_REF] est le minimum de la valeur absolue du produit scalaire entre la tangente à la tracte et le vecteur propre 1 du tenseur de diffsuion, à tous les points de la tracte. Au final, l'algorithme produit un ensemble de tractes liant une position initiale à la région étant la plus près selon la métrique proposée et s'alignant le plus avec les données de diffusion. L'algorithme est exécuté à chacun des voxels pour obtenir le tractogramme d'un cerveau.

Graphes

Contrairement aux approches géodésiques où un graphe est construit et exploré dynamiquement dans l'espace de diffusion, cette catégorie de méthodes construit explicitement un graphe à partir de l'image, où les noeuds sont généralement liés aux voxels et où les arêtes représentent la distance ou probabilité de connexion entre les noeuds. Différents algorithmes de parcours de graphe sont ensuite appliqués pour rechercher les caractéristiques de connectivité du graphe [par exemple Collins et al.

Zalesky 2008].

Une technique de minimum-cost flow dans un graphe de courbure a été proposée par [START_REF] Collins | Network Connectivity via Inference over Curvature-regularizing Line Graphs[END_REF]. Elle consiste à modéliser d'abord la connectivité voxélique par un graphe G = {V, E}, où les noeuds V sont les voxels et les arêtes E sont les liens entre deux voxels. Le graphe adjoint de G, noté G = {E , L}, est ensuite calculé, où les noeuds E sont les arêtes E du graphe G. Il existe une arête élément de L entre deux noeuds E i et E j , si E i et E j partagent un noeud dans G. Le poids des arêtes du graphe adjoint correspond au minimum d'une fonction d'énergie ajustant une spline cubique d'Hermite sur les données d'orientation du tenseur de diffusion. L'énergie sera minimale pour une spline s'ajustant parfaitement sur les données d'orientation du tenseur de diffusion et ayant une faible courbure. L'énergie de la courbure est contrôlée par un paramètre définit par l'utilisateur. La connectivité entre deux régions est inférée suivant la résolution d'un problème de minimum-cost flow [START_REF] Collins | Network Connectivity via Inference over Curvature-regularizing Line Graphs[END_REF].

Oguz et al. [2012] proposent une construction de graphe différente, basée sur les maxima de l'ODF. À partir d'un noeud initial, l'algorithme (F*) parcourt un graphe en considérant les différents maxima à chacun des noeuds (voxels) comme des directions de sortie possibles. La direction d'arrivée au noeud courant (direction de sortie du noeud précédent) de l'algorithme de parcourt influence le choix de la direction de sortie pour le noeud courant. Les noeuds interagissent avec tous leurs voisins directs (26). Le coût de la transition d'un noeud à un voisin est calculé par une fonction considérant l'ODF associée au noeud courant et au noeud voisin et une direction de sortie. Une fonction de pénalité augmente le coût de la transition en fonction de l'angle entre la position des noeuds, la direction d'arrivée et la direction de sortie pour la transition. Le coût associé à un noeud est le coût minimal moyen entre le noeud initial et le noeud courant. L'algorithme itère dans le graphe jusqu'à convergence des coûts pour tous les noeuds du graphe. Le coût associé aux noeuds avant la première itération est ∞, à l'exception du noeud initial qui a un coût de 0. L'algorithme produit une carte 3D de distances (coût) entre les voxels de l'image et le noeud initial. L'algorithme est exécuté à chacun des voxels pour obtenir le tractogramme d'un cerveau.

Approches probabilistes globales

Ces méthodes cherchent une ou plusieurs tractes ayant la plus forte probabilité de connecter deux régions. Le problème de tractographie est posé dans un cadre d'inférence bayésienne. L'avantage de ces approches est de fournir naturellement de l'information sur l'incertitude d'une connexion [par exemple [START_REF] Jbabdi | A Bayesian framework for global tractography[END_REF][START_REF] Friman | A Bayesian approach for stochastic white matter tractography[END_REF][START_REF] Zhang | Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling[END_REF][START_REF] Pontabry | Probabilistic tractography using Q-ball modeling and particle filtering[END_REF][START_REF] Wu | Genetic white matter fiber tractography with global optimization[END_REF][START_REF] Zalesky | DT-MRI fiber tracking: a shortest paths approach[END_REF][START_REF] Schreiber | Plausibility Tracking: A method to evaluate anatomical connectivity and microstructural properties along fiber pathways[END_REF]Bjornemo et al. 2002b ;Bjornemo et al. 2002a]. [START_REF] Jbabdi | A Bayesian framework for global tractography[END_REF] propose un cadre bayésien pour inférer les régions connectées entre elles et la position des tractes les liant avec la plus forte probabilité. Le modèle utilise l'information de connectivité globale pour inférer des directions de propagation locales lorsque l'incertitude est élevée au sein d'un voxel. [START_REF] Wu | Genetic white matter fiber tractography with global optimization[END_REF] proposent un algorithme génétique pour optimiser la structure et la position de courbes entre deux régions. L'algorithme cherche la configuration globale maximisant les probabilités de connexions locales et contrainte par un critère de régularité. [START_REF] Zhang | Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling[END_REF] proposent une technique de filtre particulaire où la propagation des particules repose sur une distribution probabiliste des directions estimées à partir du tenseur de diffusion. L'incertitude dans les directions tirées aléatoirement est incorporée en ajustant le poids des particules. [START_REF] Pontabry | Probabilistic tractography using Q-ball modeling and particle filtering[END_REF] proposent une extension du modèle sur l'ODF. À partir d'une région initiale, les particules se propagent suivant un modèle probabiliste. Celles suivant des directions avec moins d'incertitude sont favorisées et itérativement celles suivant des directions de plus forte incertitude sont défavorisées. L'algorithme élimine les particules ayant un poids plus faible et multiplie les particules ayant un poids plus élevé, estimant itérativement la distribution des tractes connectant la région initiale.

Filtrage a posteriori

Étant donné un tractogramme, une famille de méthodes optimise un poids associé à chacune des tractes afin d'expliquer au mieux les mesures de diffusion [START_REF] Daducci | COMMIT: Convex Optimization Modeling for Micro-structure Informed Tractography[END_REF][START_REF] Smith | SIFT: Sphericaldeconvolution informed filtering of tractograms[END_REF][START_REF] Sherbondy | MicroTrack: an algorithm for concurrent projectome and microstructure estimation[END_REF]Smith et al. 2015a]. L'objectif est de corriger les erreurs dans le tractogramme en associant des poids faibles aux tractes correspondant peu aux mesures. Cependant, afin de rejeter les tractes erronées, ces méthodes nécessitent un tractogramme initial contenant l'ensemble des tractes permettant d'expliquer les mesures de diffusion. Une stratégie pour augmenter la couverture de la matière par les tractes est de combiner les tractogrammes de plusieurs algorithmes avant d'en faire le filtrage [START_REF] Sherbondy | MicroTrack: an algorithm for concurrent projectome and microstructure estimation[END_REF][START_REF] Daducci | COMMIT: Convex Optimization Modeling for Micro-structure Informed Tractography[END_REF][START_REF] Takemura | Ensemble Tractography[END_REF]]. [START_REF] Smith | SIFT: Sphericaldeconvolution informed filtering of tractograms[END_REF] ont proposé la méthode Spherical-deconvolution informed filtering (SIFT) qui associe la densité et l'orientation des tractes au profil local de la fonction de distribution des orientations des fibres (fODFs, voir section 3.A.1). La figure 2.4 illustre la fonction objectif de SIFT. L'hypothèse de SIFT est que la distribution des segments de tractes traversant les voxels devrait suivre le profil des fODFs, qui elles, reflètent localement la distribution axonale. SIFT cherche le sous ensemble de tractes dans le tractogramme maximisant la similarité entre le profil des tractes et des fODFs, rejetant ainsi des tractes supposées erronées. Smith et al. [2015b] ont par la suite montré que SIFT augmentait la reproductibilité et la précision dans l'estimation de la connectivité structurelle.

SIFT

Tractographie informée par la microstructure

Cette approche consiste à optimiser le poids et les propriétés microstructurelles des tractes d'un tractogramme avec un modèle génératif, afin d'expliquer au mieux le signal de diffusion mesurée dans la matière blanche. La méthode MicroTrack, proposé par [START_REF] Sherbondy | MicroTrack: an algorithm for concurrent projectome and microstructure estimation[END_REF], associe un modèle de la matière blanche similaire à ActiveAx [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF]] (voir section 1.3.2). Ce modèle multi-compartiments comporte des compartiments où la diffusion des molécules d'eau est libre, restreinte de façon isotropique, restreinte de façon anisotropique ou contrainte à l'intérieur de cylindres parallèles aux fibres de la matière blanche. L'objectif est d'optimiser le système où les paramètres sont le volume et le rayon des cylindres pour chacune des tractes ainsi que le volume et les paramètres de diffusion isotropique et anisotropique de chacun des compartiments associé au voxel. Ce modèle a été revisité par Daducci Subséquemment, les techniques proposées ont été appliquées dans des études de la matière blanche. Notamment, dans Ghaziri et al. [2015a] pour l'étude de la connectivité du cortex insulaire, où l'algorithme de tractographie P F T déterministe a été utilisé. L'emploi de cet algorithme est justifié par ses reconstructions plus complètes des régions étroites de matière blanche en périphérie du cortex insulaire, importantes dans l'étude. Dans St-Onge et al. [2016], l'algorithme de tractographie P F T a été combiné à la technique Surface-Enhanced Tractography (SET ) utilisant la géométrie du cortex pour déterminer la direction initiale de propagation. SET permet une distribution uniforme des points initiaux de la tractographie sur la surface du cortex et fournit une direction initiale à l'algorithme P F T , permettant ainsi d'atteindre plus facilement la matière blanche sous-jacente. Dans Hau et al. [2016], l'algorithme de tractographie probabiliste P F T a été utilisé pour reconstruire les faisceaux unciné (UN) et fronto-occipital inférieur (IFOF). Les résultats de tractographie suggèrent une organisation partitionnée de la structure interne du faisceau unciné, coïncidant avec certaines descriptions anatomiques de ce faisceau.

Then, we propose to relax the tractography stopping criterion with a novel probabilistic stopping criterion and a particle filtering method, both based on tissue partial volume estimation maps calculated from a T1-weighted image. We show that optimizing tractography parameters, stopping and seeding strategies can reduce the biases in position, shape, size and length of the streamline distribution. These tractography biases are quantitatively reported using in-vivo and synthetic data. This is a critical step towards producing tractography results for quantitative structural connectivity analysis.

Introduction

Diffusion-weighted (DW) magnetic resonance imaging (MRI) tractography is used to reconstruct white matter (WM) pathways between brain regions. A growing number of connectomics studies exploit structural properties of these pathways or streamlines to make 'connectivity' comparisons between groups or individuals [START_REF] Hagmann | Mapping human whole-brain structural networks with diffusion MRI[END_REF][START_REF] Sporns | Networks of the brain[END_REF]Ng et al. 2013;[START_REF] Fornito | Graph analysis of the human connectome: Promise, progress, and pitfalls[END_REF]]. However, white matter bundles have various position, shape, thickness and length making their reconstruction a challenge for tractography algorithms [Jones 2010a;[START_REF] Jones | White Matter Integrity, Fiber Count, and Other Fallacies: The Do's and Don'ts of Diffusion MRI[END_REF][START_REF] Jbabdi | Tractography: Where Do We Go from Here?[END_REF][START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF]. Bundles positioned in partial volume with cerebrospinal fluid (CSF) are harder to completely reconstruct because streamline propagation is more likely to be stopped (e.g. corpus callosum, fornix). Narrow bundles are harder to reconstruct because they are more likely to be affected by error in the tracking mask, potentially stopping the streamline propagation (e.g. cingulum, lower part of the corticospinal tracts). Curved bundles are also harder to reconstruct because noise can make the tracking direction harder to follow in curved regions, especially because discrete steps are taken in the estimated tangent direction (e.g. cingulum, uncinate fasciculus, U-fibers). Lastly, the length of white matter bundles raise two opposite effects that bias their reconstruction: i) seeding from the white matter increases the density because there are more streamlines that are initiated in longer bundles than in shorter bundles, ii) longer bundles are harder to completely recover because of premature stops, which decreases the density of streamlines.

Therefore, it is clear that streamline reconstruction is biased by the seeding strategy, the stopping and masking criterion and the tractography parameters themselves. Hence, quantitative measures of connectivity based on the streamline distribution in the brain such as streamline count (density), average length and spatial extent (volume) are biased by erroneous streamlines produced by tractography algorithms [Jones 2010a;[START_REF] Jones | White Matter Integrity, Fiber Count, and Other Fallacies: The Do's and Don'ts of Diffusion MRI[END_REF][START_REF] Jbabdi | Tractography: Where Do We Go from Here?[END_REF]. Yet these effects are rarely addressed and reported in the literature even though they may lead to incorrect connectivity measures between areas. It is thus crucial and timely for the DW-MRI community to tackle tractography limitations before it can be robustly used in connectomics studies.

In the majority of cases, tractography is done inside a mask defined by a white matter segmentation of the T1-weighted image or fractional anisotropy (FA) thresholded mask [START_REF] Tournier | Diffusion tensor imaging and beyond[END_REF][START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF][START_REF] Li | The effects of connection reconstruction method on the interregional connectivity of brain networks via diffusion tractography[END_REF]Côté et al. 2013;[START_REF] Hagmann | Mapping human whole-brain structural networks with diffusion MRI[END_REF]]. Starting from an initial point within the mask, the tractography process follows diffusion orientations in the forward and backward directions until a stopping criterion is reached. Typical stopping criteria are when the tracking takes a step outside the tracking mask, when a minimum FA value or a minimum fiber Orientation Distribution Function (ODF) amplitude value is reached, or when a maximum curvature constraint is exceeded [START_REF] Tournier | Diffusion tensor imaging and beyond[END_REF][START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Toosy | Characterizing function-structure relationships in the human visual system with functional MRI and diffusion tensor imaging[END_REF]]. The tracking mask selection and the stopping parameters are thus very important as they will determine when the streamline is included in the reconstructed white matter pathway. Discrete binary masks derived from thresholded FA or T1-weighted images result in aggressive stopping criteria which can have a strong impact on connectivity results. For example, Côté et al. [2013] studied streamlines produced by tractography pipelines using the Tractometer (tractometer.org) system analysis on the FiberCup dataset [START_REF] Fillard | Quantitative Evaluation of 10 Tractography Algorithms on a Realistic Diffusion MR Phantom[END_REF][START_REF] Poupon | New diffusion phantoms dedicated to the study and validation of high-angularresolution diffusion imaging (HARDI) models[END_REF][START_REF] Poupon | A Diffusion Hardware Phantom Looking Like a Coronal Brain Slice[END_REF]. Out of all tractography pipelines that found the seven out of seven true bundles of the FiberCup (6,360 out of 57,096 tested pipelines), between 58% and 97% of streamlines did not connect gray matter (GM) regions [Côté et al. 2013]. Although these observations are based on a phantom mimicking a coronal slice [START_REF] Poupon | New diffusion phantoms dedicated to the study and validation of high-angularresolution diffusion imaging (HARDI) models[END_REF] of the brain, similar observations are seen using brain imaging data. For instance, in [START_REF] Hagmann | Mapping human whole-brain structural networks with diffusion MRI[END_REF]], the authors reported that one third to half of streamlines did not reach the WM/GM interface mask and thus, are excluded from the structural connectivity analysis.

To overcome the effect of binary masks, one can use tissue partial volume estimation (PVE) maps obtained from a structural T1-weighted image [START_REF] Zhang | Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[END_REF]]. The tissue PVE maps have values between 0 and 1 in voxels near the boundary between distinct tissues and in voxels of the subcortical gray matter. The discretization of these voxels set their value to 1 in the tissue mask for the highest PVE value and 0 for other tissues. This can creates holes in the white matter mask if the highest PVE value varies from one tissue to an other, or makes some white matter pathways narrower (see Figure 3.1). This makes streamlines stop prematurely in these regions. This problem is especially important when tracking corticospinal fibers or fibers involved in the motor system as shown in [Girard et al. 2012]. Recently, [START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF] proposed a method called Anatomically-Constrained Tractography (ACT) taking advantage of the tissue PVE maps. They proposed relaxing the stopping criterion by using WM, GM and CSF PVE maps to determine when a streamline stops and if it is included or excluded in the reconstruction. Therefore, biological tissue properties are used to better determine the tracking mask and stopping criteria. They proposed to threshold interpolated PVE maps to define stopping criterion. However, they observed that subcortical gray matter have low PVE values, leading to streamline going through these regions, connecting other gray matter regions or reaching CSF regions excluding the streamline. The authors suggested to cut streamlines going through binary segmentation of the subcortical gray matter and include only valid segments. However, it is challenging to choose which regions to define in such a binary mask construction.

Aside from stopping criterion, the seeding strategy can also bias the streamline distribution and change estimation of the brain connectivity. The seeding mask defines all the potential voxels where streamlines are initiated. It can either be the tracking mask [START_REF] Tournier | Diffusion tensor imaging and beyond[END_REF][START_REF] Centuro | Tracking neuronal fiber pathways in the living human brain[END_REF][START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Huang | Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach[END_REF]], a WM/GM interface mask [START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF][START_REF] Li | The effects of connection reconstruction method on the interregional connectivity of brain networks via diffusion tractography[END_REF]] or a region of interest [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Toosy | Characterizing function-structure relationships in the human visual system with functional MRI and diffusion tensor imaging[END_REF][START_REF] Huang | Analysis of noise effects on DTI-based tractography using the brute-force and multi-ROI approach[END_REF][START_REF] Tournier | Diffusion tensor imaging and beyond[END_REF][START_REF] Jbabdi | A Bayesian framework for global tractography[END_REF][START_REF] Parker | Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue[END_REF]. Seeding from a whole white matter mask biases the number of reconstructed streamlines in bundles with various lengths because streamlines are more likely to be initialized in longer white matter bundles, covering a larger part of the white matter mask [Jones 2010a;[START_REF] Smith | SIFT: Sphericaldeconvolution informed filtering of tractograms[END_REF]. For example, if two linear bundles have the same thickness but one twice the length of the other, the number of streamlines in the longer bundle will be approximately doubled. This increase of density is not related to the connectivity of the bundle, it is a seeding bias of the tractography. Recently, [START_REF] Smith | SIFT: Sphericaldeconvolution informed filtering of tractograms[END_REF] proposed a method called Spherical-deconvolution informed filtering (SIFT) to reduce local bias in the streamline density. The method filters the tractography results to improve the fit between the streamline distribution in each voxel and the fiber ODF estimated from DW-MRI. SIFT produces streamlines that better represent the measured diffusion information. Red circles highlight differences between the WM binary mask and the WM PVE map.

In particular, SIFT reduces density bias resulting from the seeding strategy. However, streamlines are still affected by the choice of masking and stopping criterion, and tractography parameters used by the tractography algorithm.

In this work, we show that careful selection of tractography parameters and optimal seeding, masking and stopping criterion choices significantly reduces the biases in position, shape, thickness and length of the streamline distribution. Firstly, inspired by the work of [START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF] which uses anatomical information from a T1weighted image for tractography, we propose a novel probabilistic stopping criteria based on tissue PVE maps. Secondly, we propose a particle filtering method using anatomical information for tractography to enforce streamlines connecting gray matter regions. Thirdly, we make recommendations on the most important tractography parameters and optimize the parameter selection in terms of global connectivity using the Tractometer [Côté et al. 2013] evaluation strategy on in-vivo and synthetic data. Our overall contribution is a new tractography framework optimized in terms of quantitative connectivity, which reduce tractography biases in position, shape, thickness and length of white matter bundles.

Method

Streamline Tractography

In this work, we relax the tractography stopping criterion using tissue partial volume estimation (PVE) maps. Since our proposed strategy does not represent a new tractography algorithm as such, we compared and applied this relaxation to previously published state-of-the-art fiber ODF deterministic and probabilistic algorithms [START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF][START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Tournier | Diffusion tensor imaging and beyond[END_REF]]. In-house implementations of these tractography algorithms are used, which have been validated against MRtrix [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF]] by the Tractometer [Côté et al. 2013]. In our implementation, the spherical harmonics of the fiber ODFs are projected on a discrete evenly distributed symmetric sphere of 724 vertices [START_REF] Daducci | IEEE International Symposium on Biomedical Imaging (ISBI) Reconstruction Challenge[END_REF]]. Propagation directions are always a vector of orientation corresponding to one vertex of the sphere and of length ∆s = 0.2mm [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF]. A propagation direction is valid if its corresponding value is greater than a fraction of the maximum value of the fiber ODF τ , and form an angle smaller than θ with the previous propagation direction [START_REF] Jbabdi | A Bayesian framework for global tractography[END_REF][START_REF] Tournier | Diffusion tensor imaging and beyond[END_REF][START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF]]. If there is no valid propagation direction, algorithms assume an error in the fiber ODF and continues in the previous propagation direction. This is done for a maximum distance of δ undeviated . Implementation details are given in 3.A.

Continuous Map Criterion -CMC

In the current study, we propose a novel approach that takes advantage of the complete WM, GM and CSF partial volume estimation (PVE) maps to change the way tractography stopping events are triggered. We call our novel strategy Continuous Map Criterion (CMC). It uses PVE maps to define the probability of stopping the tracking process. This provides smooth boundaries between tissues as ACT [START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF]] and additionally encodes a stopping behavior in subcortical gray matter. Streamlines reaching the cortex and going through large regions of low GM PVE such as the subcortical gray matter are proportionaly likely to be stopped. Using CMC, streamlines can propagate close to subcortical gray matter without having to define binary segmentation blocking some of the propagation pathways.

CMC uses an inclusion map, defined as M ap in , and exclusion map, defined as M ap ex , to stop the streamline propagation. An example of M ap in and M ap ex based on GM and CSF PVE maps are shown in Figure 3.2. We hypothesize that the amount of streamlines stopping in a voxel and included should be proportional to M ap in . Similarly, the amount of streamlines stopping at a voxel and rejected should be proportional to M ap ex . Using CMC, the probability that a streamline continues its propagation at position p is given by

P continue p = (1 -(M ap in p + M ap ex p )) ∆s/ρ , (3.1)
with ρ the maps voxel size (ρ = 1 for voxel size of 1x1x1 mm 3 ) and ∆s the step size. ∆s/ρ allows the probability of stopping to be stable with respect to the step size ∆s.

Otherwise, since the tracking probability is evaluated at each tracking step, using a step size ∆s < ρ will increase the probability of stopping the tractography and decrease the probability when ∆s > ρ. Alternatively, P continue can be computed and adjusted to the step size following Equation 3.1 for each voxels and used directly. If the tracking process stops, the streamline is included (added to the estimated set of streamlines) with a probability given by

P included p = M ap in p /(M ap in p + M ap ex p ), (3.2)
otherwise the streamline is excluded (rejected from estimated set of streamlines).

Trilinear interpolation is done over M ap in and M ap ex to get the probability of continuing the propagation (Equation 3.1) and the probability of including the streamline (Equation 3.2). 

Particle Filtering Tractography -PFT

In addition to CMC, we propose using a modular add-on to streamline tractography algorithm, called Particle Filtering Tractography (PFT), to reduce the number of streamlines that prematurely stop in the white matter or in the cerebrospinal fluid, and do not connect the gray matter. Streamline tractography can be modeled as a state system evolving over time using noisy measurements, where states are the tracking position, the propagation direction and the tracking status (e.g. 'in the WM' or 'stopped in the GM'), and are connected over time by a Markov chain. The particle filtering algorithm is described in 3.B.

PFT is initiated before the premature stopping event and weighs propagation pathways based on the PVE maps to enforce the tracking in the white matter, as illustrated in Figure 3 The propagation process then continues using the principal tractography algorithm (deterministic).

to stop in the CSF and reach the gray matter [Bloy et al. 2012;[START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF].

A backtracking approach for probabilistic tractography has been proposed in [START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF]] which incrementally truncates and re-tracks the streamline when it reaches a premature stop. It shows an increase of the white matter bundle coverage and helps the reconstruction of some white matter bundles. However, higher backtracking distances can bias the streamline reconstruction, especially in crossing regions. PFT uses a backtracking idea by simultaneously estimating many propagation pathways at a short distance of the premature stopping event.

The proposed Particle Filtering Tractography (PFT) estimates a likely streamline using M ap in and M ap ex (see Section 3.2.2) whenever the tractography reaches a stopping criterion excluding a streamline, as illustrated in Figure 3.3 (a). The key idea is to backtrack δ b mm and compute a valid streamline after K = (δ b + δ f )/∆s steps, where δ b and δ f are respectively the backward and forward distances. If the total propagation distance of the streamline is less than δ b , δ b is set to the propagation distance done so far. The goal is to estimate a likely streamline initialized at δ b mm before the stopping criterion is reached, and then go δ f mm further to ensure the local stopping event is solved. That is, the streamline stops correctly in an including region or the streamline continues its propagation in the white matter. If the streamline stops in an including region, the tracking is done. If the streamline is in the white matter, the tractography continues normally until another stopping criterion is reached.

Method

PFT uses a set {x

(i) k , w (i) k } N i=1 of N discrete samples (referred as particles) x (i) k
with an associated weight w

(i)
k to characterize the estimated streamline distribution. Weights are normalized over all particles to have N i=1 w [p, v, status] has a the tracking position p, a propagation direction v and a status ∈ {active, inactive} which represents the tracking process propagating (active) or stopped in an including region (inactive). At each iteration k, if status = active, the particle position p and propagation direction v are updated following the probabilistic tractography algorithm (see 3.A). Otherwise, if status = inactive, the tracking reached a valid stopping region and is stopped (p and v are not updated). The status stays active with a probability of

(i) k = 1. A particle x (i) k =
P active p = (1 -M ap in p ) ∆s/ρ ,
following the CMC strategy (see Section 3.2.2). The exclusion map M ap ex p , is used to estimate the likelihood of the particle x (i) k , which is the likelihood of a streamline propagating at p. The weight w (i) k , at time k, of a particle at position p is calculated following

w (i) k = w (i) k-1 • (1 -M ap ex p ) ∆s/ρ . w (i)
k is set to 0 if no valid propagation direction is available for a distance δ undeviated (see Section 3.2.1).

PFT estimates a valid streamline distribution around the stopping event and iteratively estimates subsequent valid streamline distributions from the previous one. The resulting streamline is drawn from the final valid streamline distribution. As shown in Figure 3.3 (c-e), this algorithm generates multiple probabilistic streamlines and penalizes particles propagating in the excluding region (white). Reddish particles have low weights and greenish have high weights. The output of the PFT is either an inactive streamline ending in the including region (M ap in ) or an active streamline continuing its propagation in the white matter. If at any iteration k the weights

w (i) k = 0 ∀ x (i)
k , the streamline is excluded because no valid streamline is found (e.g.

M ap ex p = 1 ∀ x (i) k ).
The principal tractography algorithm used (deterministic or probabilistic) is done until the propagation reaches a stopping criterion excluding 54 3.2. Method the streamline, as determined by the CMC (see section 3.2.2). In this case, PFT is triggered to find an alternative valid pathway.

Seeding From the White Matter -Gray Matter Interface

In this study, we want tractography algorithms to produce a similar density for bundles with the similar thickness but various lengths. To achieve this, we seed from the WM/GM interface as in [START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF][START_REF] Li | The effects of connection reconstruction method on the interregional connectivity of brain networks via diffusion tractography[END_REF]]. We propose to define the WM/GM interface mask by segmenting all voxel having a GM PVE > 0.1 and a WM PVE > 0.1. This results in a ribbon of voxels at the boundary between gray matter and white matter (see Figure 3.4). Most of the voxels of the subcortical gray matter are included in the interface since they are partially segmented as white matter and gray matter (see Figure 3.4). An approach based on a dilatation of the gray matter mask could have been used to obtain the WM/GM interface such as [START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF][START_REF] Li | The effects of connection reconstruction method on the interregional connectivity of brain networks via diffusion tractography[END_REF]]. Further investigation is required to quantify the effect of the definition of the WM/GM interface on tractography, but are outside the scope of this paper.

The seeding mask contains a partial volume of gray matter, which can lead to premature stopping the streamline propagation using CMC. To overcome this, CMC (see Equation 3.1) is only triggered once the streamline has reached a position p where M ap in p = 0 (e.g. in the white matter). Otherwise, propagation stops only when reaching M ap in p = 1 (included), M ap ex p = 1 (excluded) or when no valid direction is available for distance δ undeviated (excluded). This allows streamlines to exit the initial region before stopping the propagation (see Section 3.2.2).

When a voxel is identified to initiate a streamline in it, the seed position is randomly chosen within the voxel boundary [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF]. A trilinear interpolation over the spherical harmonic coefficients of the fiber ODFs image is done to obtain the fiber ODF at the seed position. The fiber ODF is then thresholded to a predefined value τ init , a fraction of the maximum value of the fiber ODF. The initial propagation direction is drawn from the empirical distribution defined by thresholded fiber ODF.

τ init aims at starting tractography in a tangent direction to the bundle.

Datasets for the Experiments Synthetic Dataset

The simulated dataset produced for the IEEE International Symposium on Biomedical Imaging (ISBI) 2013 Reconstruction Challenge [START_REF] Daducci | IEEE International Symposium on Biomedical Imaging (ISBI) Reconstruction Challenge[END_REF][START_REF] Caruyer | On facilitating the use of HARDI in population studies by creating rotation-invariant markers[END_REF]] is used to evaluate quantitatively the quality of tractography algorithms. The synthetic dataset consists of 27 simulated known ground truth white matter bundles, mimicking challenging branching, kissing, crossing structures at angles between 30 • and 90 • , with various curvature, and diameters ranging from 2mm to 6mm, as seen in Figure 3. 5 (a). The DWI signal is simulated in each voxel based on the Numerical Fiber Generator [START_REF] Close | A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms[END_REF]] and some free-water CSF-like partial volume effects. The simulated signal is obtained using a hindered and restricted diffusion model [START_REF] Assaf | Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain[END_REF], and adding Rician noise. In this study, we used 64 uniformly distributed gradient directions using a b-value of b = 1000 s/mm 2 at signal to noise ratio (SNR) 10, 20 and 30. The dataset has a spherical shape with the extremities of the simulated white matter bundles ending on the surface of the sphere. The bundles mask is defined as all voxel having a white matter PVE greater 0.1. The simulated gray matter consists of the voxels in the three outer layers of the sphere, obtained by three erosion iterations and intersecting the bundles mask. The white matter mask is composed of all voxels of the bundles mask and not part of the 

Healthy Brain Dataset

DWI were acquired on a single volunteer along 64 uniformly distributed directions using a b-value of b = 1000 s/mm 2 and a single b = 0 s/mm 2 image using the single-shot echo-planar imaging (EPI) sequence on a 1.5 Tesla SIEMENS Magnetom (128x128 matrix, 2mm isotropic resolution, TR/TE 11000/98 ms and GRAPPA factor 2). An anatomical T1-weighted 1mm isotropic MPRAGE (TR/TE 6.57/2.52 ms) image was also acquired. Diffusion data were upsampled to 1mm isotropic resolution using a trilinear interpolation [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF]Dyrby et al. 2011;Girard et al. 2012;[START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF]]. The T1-weighted image was registered to a 1mm isotropic DWI using FSL/FLIRT [START_REF] Jenkinson | A global optimisation method for robust affine registration of brain images[END_REF]. Quality control was done to make sure the registration was done robustly by manual inspection. The Fractional Anisotropy (FA) map and color-FA were overlaid on the T1-weighted image to make sure optimal alignment between images. The Brain Extraction tool (FSL/BET [START_REF] Smith | Fast robust automated brain extraction[END_REF]) and FSL/FAST [START_REF] Zhang | Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[END_REF] were also used to extract both binary and PVE maps of the WM, GM and CSF. M ap in and M ap ex are respectively set as the gray matter PVE and CSF PVE maps. Additionally, all voxels not in the brain are set to 1 in M ap in to keep streamlines exiting the brain mask. Diffusion tensors, FA, fiber ODFs reconstruction and all tractography algorithms are carefully detailed in 3.A. White matter bundles have been manually segmented using the Fibernavigator software (scilus.github.io/fibernavigator/) and using FreeSurfer T1-weighted image white matter and gray matter segmentations [START_REF] Fischl | Automatically Parcellating the Human Cerebral Cortex[END_REF]]. Streamlines are colored by their orientation (the vector connecting their extremities) using the standard red-green-blue convention (red: left-right, green: anterior-posterior, blue: inferior-superior) [Calamante et al. 2012;[START_REF] Pajevic | Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain[END_REF].

Quantitative Connectivity Evaluation

To compare and evaluate reconstructed streamlines, we use the Tractometer [Côté et al. 2013] connectivity analysis. We computed the four metrics of the Tractometer, namely the Valid Connections (V C), the Invalid Connections (IC), the No Connections (N C) and the Average Bundle Coverage (ABC). The definition of these connectivity metrics are listed in 3.C. The Tractometer identifies two types of erroneous streamlines: streamlines either connecting unexpected regions (IC) or not connecting any regions (N C). For in-vivo data, N C can be identified and removed, which is not the case for IC (IC and V C are all streamlines connecting gray matter regions). Thus, we defined two new global connectivity metrics to quantify reconstructed streamlines:

- 

S = V C + IC + N C), CSR = (V C + IC)/(V C + IC + N C).
Thus, V CCR is a measure of the precision of the estimated connections and CSR is an indicator of the performance of the tractography. All metrics are reported in percentages (%). An optimal tractography algorithm should produce global connectivity metrics with the following properties : i) all seeds should lead to streamlines connecting 58
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gray matter regions (high connection to seed ratio CSR), ii) all connected gray matter regions should match the ground truth (high valid connection to connection ratio V CCR) and iii) streamlines should cover all voxels within a bundle (high average bundle coverage ABC). V CCR cannot be computed on in-vivo data because the ground truth is not known. Nevertheless, CSR can be estimated on in-vivo data by defining a connection as any streamline connecting two gray matter regions and having a minimum length δ min = 10mm and a maximum length δ max = 300mm [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF]]. However, an increase in CSR could be due to an increase in invalid connections and must be interpreted carefully.

Hence, parameters are chosen to increase the valid connection to connection ratio

V CCR s on synthetic data and the connection to seed ratios CSR s and CSR b , on both synthetic and in-vivo data. Here, the subscript b is used to indicate that the metric is computed on in-vivo brain data, as opposed to the subscript s for synthetic data. CSR s and V CCR s are computed seeding from all white matter voxels of the synthetic dataset and CSR b is estimated seeding randomly in the white matter mask of the in-vivo dataset.

To evaluate the optimal value for each parameter, we fixed all parameters to a default value: θ = 0 • , τ = 0, τ init = 0, δ undeviated = 0mm, δ f = 0mm, δ b = 0mm. Iterativly, starting with θ, parameters are fixed to a value within the range of value maximizing V CCR s , CSR s and CSR b . The order of the parameters optimization were chosen starting with parameters producing the most changes of metrics value for in-house algorithms. First, we optimized parameters for in-house tractography algorithms (θ, τ , τ init , δ undeviated ). Then, using previously found optimal parameters, we optimized parameters for the PFT algorithm (δ f , δ b ). the maximum deviation angle θ. Higher θ decreases the stopping issue in the white matter for both algorithms, by allowing the propagation to curve more rapidly. This can lead to an increase in invalid connections IC if the direction selected is associated to more than one white matter bundle. Thus, lower θ is preferred to reduce this effect. Using deterministic tractography, the metrics on synthetic data tend to stabilize using θ det > 45 • . Using in-vivo data, they stabilize for θ det > 60 • . Probabilistic tractography shows higher values for V CCR s using angle in range 15 • < θ < 30 • . CSR s reaches maximum values using 20 • < θ < 40 • (Figure 3.6 (a)). Based on these results, we fix
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Choosing Optimal Tractography Parameters

θ det = 45 • and θ prob = 20 • , which provide high V CCR s , CSR s and CSR b .
Fiber ODF Threshold τ = 0.1 and τ init = 0.5 Figure 3.6 (b) shows connection to seed ratio CSR s , valid connection to connection ratio V CCR s and CSR b varying the fiber ODF threshold τ . The objective of the τ parameter is to remove noisy directions from the fiber ODF, but keep true and small white matter volume fraction contributions in the fiber ODF. We see that τ ∈ [0.0 -0.2] has little effect on synthetic data for deterministic tractography. τ > 0.4 tends to reduce CSR s , removing some of the local maxima of the fiber ODF. Increasing τ parameter has a positive effect on V CCR s using probabilistic tractography, but tends to decrease CSR s using τ > 0.5. CSR b decreases with the increase of τ . Removing some of the propagation directions increases the stopping issue in the white matter, especially when tracking in low white matter partial volume fraction regions, where the fiber ODF has lower values. We thus fix τ = 0.1 since it does not reduce the score of metrics on synthetic data. However, CSR b is reduced by 15% for probabilistic tractography. Figure 3.7 shows examples of streamline varying τ , seeding 1,000 streamlines using probabilistic tractography from a single voxel of the synthetic dataset. Thresholding the fiber ODF helps reducing erroneous streamlines. Then, we varied τ init (using τ = 0.1) to increase the inital propagation direction tangency to the white matter bundle. It has little effect on CSR s , V CCR s , and CSR b when τ init ≥ 0.5 (see Figure 3.6 (c)). Lower value of τ init reduces CSR s , especially using low SNR. Based on this observation, we fixed τ init = 0.5. δ undeviated affects tractography results. Increasing δ undeviated decreases the number of streamlines stopping in the white matter by allowing the tracking to propagate through regions where propagation directions are missing. δ undeviated has little effect on synthetic data, meaning that the propagation rarely stops in the white matter. This is not the case on in-vivo data, where δ undeviated increases connection to seed ratio CSR b , especially using deterministic tractography (see Figure 3.6 (d), black curve). We observed that bigger value of δ undeviated produces more erroneous streamlines exiting the white matter bundles. This parameter has a similar effects as increasing the step size when no valid direction are available and thus, produces similar behavior as using a bigger step size. For this reason, we set δ undeviated to a maximum distance of 1mm, half the size of the in-vivo diffusion space voxel size.

Results

Forward and Backward Distances δ

b = 2mm, δ f = 1mm
Figures 3.6 (e,f) show the effect of the forward δ f and the backward δ b tracking distances using PFT on connection to seed ratios CSR s and CSR b , valid connection to connection ratio V CCR s . Figure 3.6 (e) shows an increase of the connection to seed ratios with δ f ≥ 0.2 and a small decrease of V CCR s , especially for deterministic

Results

tractography. Results varying the parameter δ b are shown in Figure 3.6 (f). We can observe an increase of the connection to seed ratios until δ b ≥ 2mm, where it tends to stabilize. Based on these observations, we set δ b = 2mm and δ f = 1mm, which increase both CSR s and CSR b , and keep the tracking process near the stopping voxel.

Number of Particles N = 25

The number of particles N should be large enough to produce a good approximation of the distribution and small enough to keep to computation requirement low [Doucet et al. 2001;[START_REF] Arulampalam | A Tutorial on Particle Filters for Online Nonlinear / Non-Gaussian Bayesian Tracking[END_REF]. In our experiments, we observe (results not shown) that all metrics are stable using N ≥ 15. In this work, results are obtained using N = 25.

Connectivity Analysis on Synthetic Data

Table 3.1 shows the average bundle coverage ABC s , the connection to seed ratio CSR s and the valid connection to connection ratio V CCR s for our in-house probabilistic and deterministic tractography algorithms, (seeding from the WM/GM interface and using CMC) used with and without the Particle Filtering Tractography (PFT) (in-house P F T ). Results are shown on synthetic data at SNR 10, 20 and 30. PFT increases the connection to seed ratio CSR s by 37.1% on average using deterministic tractography and by 51.8% on average using probabilistic tractography. Out of the 6 experiments shown in Table 3.1, in-house P F T algorithms have on average 89.0% of connection to seed ratio CSR s , against 44.6% for in-house algorithms. This means that on average, the tracking connects gray matter regions from a seed position twice as often using particle filtering approach. However, in-house P F T shows a decrease in valid connection to connection ratio V CCR s by 8.3% on average using deterministic tractography and 2.5% on average using probabilistic tractography. V CCR s is always lower for probabilistic algorithms than for deterministic algorithms (see Table 3.1). Thus, the decrease of V CCR s is expected for in-house P F T deterministic tractography since a probabilistic algorithm is used with PFT. The average bundle coverage ABC s is always higher for in-house P F T , which suggests that that streamlines recovered by PFT propagate in regions previously not covered by streamlines produced by the Table 3.1: Comparison between deterministic and probabilistic tractography algorithms on synthetic data with SNR 10, 20 and 30. In-house: tracking within a binary mask, In-house P F T : in-house tracking using CMC and PFT. All metrics are reported in %. Next, in Table 3.2, we study the effect of Particle Filtering Tractography (PFT) on the connection to seed ratio CSR s on the individual bundles of the synthetic dataset, seeding from its WM/GM interface using SN R = 20 dataset. We grouped bundles by their diameter size (thickness), and computed the average (µ) and the standard deviation (σ) of CSR s and V CCR s . Two of the 27 bundles have been omitted because they share a common ending region, making CSR s and V CCR s not relevant over these bundles independently. Similarly to what is shown in Table 3.1, Table 3.2 shows a decrease in valid connection to connection ratio V CCR s using in-house P F T (deterministic: 7.1%, probabilistic: 3.6%) but the standard deviation σ of V CCR s is reduced by 7.9% for deterministic tractography and 8.6% for probabilistic tractography. This decrease is higher for small white matter bundles. This means that, on average, the valid connection to connection ratio V CCR s is less biased by various bundle thickness and shapes. Most importantly, in-house P F T shows a clear increase of connection to seed ratio CSR s using both probabilistic and deterministic tractography (see Table 3.2). It reflects that more alternative connections are found due to the relaxation of the stopping criterion of in-house P F T . CSR s shows increases from 45.8% ± 23.1% to 91.9% ± 5.3% for deterministic tractography and from 32.8% ± 21.9% to 90.8% ± 5.2% for probabilistic tractography. This means that streamlines are more uniformly distributed amongst white matter bundles having various shapes and thickness. This is observed by a higher increase of CSR s on white matter bundle having small diameter and a lower standard deviation σ of CSR s in individual bundle reconstruction.

Table 3.2: Comparison between in-house algorithms and in-house algorithms using PFT on synthetic bundles reconstruction of various diameters (2mm (10 bundles), 3mm (5 bundles), 4mm (10 bundles)). In-house: tracking within a binary mask, In-house P F T : in-house tracking using CMC and PFT. All metrics are reported in % ± the standard deviation. 

Connectivity Analysis on In-vivo Data

Table 3.3 shows the distribution of included and excluded streamlines on in-vivo data. Streamlines are obtained by seeding from the WM/GM interface. The included streamlines are those ending in the gray matter and having a length in the range [δ min = 10mm, δ max = 300mm]. The distribution of included and excluded streamlines in the brain (see Table 3.3) shows that for deterministic tractography, 50.0% of the seeds produced included streamlines and 21.2% of the seeds produced excluded streamlines either ending in the CSF or in the white matter (62.9% and 13.6% for probabilistic tractography respectively). Using PFT, the streamlines previously included (not using PFT) are exactly the same, but additionally 19.0% of the excluded streamlines are recovered by the particle filtering approach using deterministic tractography, and 10.7% using probabilistic tractography (indicated in the Extra P F T row). These additional streamlines do not share the same length distribution as the previously included streamlines. This can be observed in Table 3.3 by the higher average length of the recovered streamlines (50.6mm and 54.6mm) than average length of the other included streamlines (32.5mm and 37.2mm), using deterministic and probabilistic algorithms respectively.

Finally, Table 3.4 shows the streamline count and their average length for seven invivo data bundles using deterministic and probabilistic tractography. Each experiment reports 100,000 included streamlines using the in-house and the in-house P F T algorithms, seeding from the WM/GM interface. For comparison, 100,000 streamlines with default MRtrix parameters are reported. We also randomly select 100,000 streamlines obtained using the particle filter (see Extra P F T in Table 3.4). In-houses P F T streamlines can be seen as a fraction of in-house streamlines plus a fraction of Extra P F T streamlines (previously excluded streamlines). We observe in Table 3.4 that shorter bundles (Uncinate Fasciculus (UF), and short association fibers U 1 and U 2 ) have a higher streamline count using in-house and in-house P F T algorithms than using MRtrix (e.g.

U 1 : 619, 639 and 105 streamlines using in-house, in-house P F T and MRtrix deterministic tractography respectively). Longer bundles (the corticospinal tract (CST), the corpus callosum (CC), the superior longitudinal fasciculus (SLF) and the inferior longitudinal fasciculus (ILF)) are overrepresented seeding from the white matter (e.g. CST: 159, 289 and 584 streamlines using in-house, in-house P F T and MRtrix deterministic tractography respectively). However, the streamline count is generally higher for in-house P F T in long white matter bundles (e.g. CC: 3,139 and 4,078 streamlines using in-house and in-house P F T deterministic tractography respectively). This can be observed in Figures 3.8, 3.9, 3.11 and 3.10. Longer white matter bundles are well reconstructed using MRtrix, seeding from the white matter mask, because there are Table 3.4: Comparison between MRtrix, in-house and in-house P F T algorithms on brain white matter bundles. Extra P F T shows streamlines included using PFT, that would have been excluded otherwise. The streamline count and the average streamline length is shown for each bundle. From left to right: All streamlines, the corticospinal tract (CST), the Corpus Callosum (CC), the Superior Longitudinal Fasciculus (SLF), the Inferior Longitudinal Fasciculus (ILF), the Uncinate Fasciculus (UF), the association fibers between the precentral gyrus and postcentral gyrus (U 1 ) and the association fibers between the superior frontal gyrus and middle frontal gyrus (U 2 ). more seeds that are initiated in these bundles than in shorter bundles. However, seeding from the WM/GM interface with in-house P F T algorithms provide a less biased reconstruction of bundles with respect to their length. Finally, MRtrix reconstructed the UF with the lowest streamline density. It is likely caused by both the seeding strategy and the use of a binary white matter tracking mask.

Discussion

Optimal parameters We used the Tractometer strategy [Côté et al. 2013] to investigate the influence of tractography parameters on in-vivo and synthetic datasets. Optimal tractography parameters were chosen using two new global connectivity metrics: the valid connection to connection ratio V CCR and the connection to seed ratio CSR. The proposed metrics provide information on the precison (V CCR) and on the performance (CSR) of the reconstructions. However, we observed interactions between individual tractography parameters. For instance, an increase of both θ and τ for probabilistic tractography can provide similar CSR and V CCR results. The rationale was to find the optimal deviation angle θ considering all the directional information of the fiber ODF. Then, to find the optimal threshold τ , improving the results by removing noisy directions in the fiber ODF. In a similar fashion, we successively fixed parameters to a value in the range maximizing both CSR and V CCR. Parameter values are not strongly set because V CCR can only be obtained on synthetic data. An increase in CSR b could be due to an increase in invalid connections IC and must be interpreted carefully. Nonetheless, we can get a general tendency. Hence, using the deterministic and probabilistic tractography algorithms described in 3.2.1, we recommend

θ det ∈ [45, 60] • , θ prob ∈ [20, 30] • , τ ∈ [0.1, 0.2],
τ init ∈ [0.2, 0.5] and δ undeviated set to a maximum of half the diffusion acquisition voxel size. Taken together, setting these tractography parameters accordingly is the first step towards reducing position, shape, thickness and length biases.

Deterministic versus probabilistic tractography

We observed from Tables 3.1 and 3.2 that deterministic tractography always shows better performance in terms of valid connection to connection ratio V CCR s and similar or better performance in terms of connection to seed ratio CSR s . Probabilistic tractography shows an average bundle coverage ABC s always higher with both in-house and in-house P F T algorithms. Deterministic tractography tends to reduce the proportion of invalid connection IC in comparison to probabilistic tractography, but decreases the average bundle coverage ABC. Thus, the tractography algorithm (deterministic or probabilistic) must be chosen to be the most suitable for the streamline analysis (less IC or more ABC), which will be application-driven.

New seeding, stopping and masking strategies Through our novel Continuous Map Criterion (CMC) and Particle Filtering Tractography (PFT), we have shown that injecting anatomical prior information into tractography seeding, stopping and masking reduces biases in the streamline distribution. CMC determines where the valid and invalid stopping regions are. PFT gives a more uniform streamline distribution, finding alternative valid pathways for streamlines stopping in invalid regions, such as in the white matter or in the CSF. It uses the partial volume estimation (PVE) maps to reduce the biases in long and curved bundles. It increases the average bundle coverage ABC (see Table 3.1) and the connection to seed ratio CSR (see Table 3.2). Qualitatively, PFT provides a better coverage of known white matter pathways of the brain and helps reduce bias in the streamline distribution. We showed that this relaxation of the stopping criterion enhances the density of complex streamline bundles (e.g. high curvature or narrow white matter pathways). This is in-line with recent works that show that anatomical information and filtering can help reduce tractography biases [START_REF] Smith | SIFT: Sphericaldeconvolution informed filtering of tractograms[END_REF][START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF]Bloy et al. 2012;[START_REF] Li | The effects of connection reconstruction method on the interregional connectivity of brain networks via diffusion tractography[END_REF]].

Reducing the position, shape and thickness biases White matter bundles have various positions, shapes and thicknesses, making their reconstruction a challenge for tractography algorithms. Bundles positioned in partial volume of CSF are harder to completely reconstruct because the streamline propagation is more likely to be stopped. Narrow bundles are more likely to be affected by errors in the tracking mask that could stop the streamline propagation, making their reconstruction harder.

Because tractography algorithms follow tangent directions of bundles, curved bundles are harder to reconstruct. Noise can make the tracking direction harder to follow in curved region, especially because discrete steps in the estimated tangent direction are taken. CMC reduces biases in position and thickness by making smooth boundaries between distinct tissues. PFT reduces biases in position, shape and thickness by finding alternative pathways when errors in the propagation lead to premature stops.

Reducing the length bias There are two opposite effects that bias the streamline density due to white matter bundles length: i) seeding from the white matter increases the density because there are more streamlines that are initiated in longer bundles than in shorter bundles, ii) longer bundles are harder to completely recover because of premature stops (in WM or CSF), which decreases the streamline density. Seeding from WM/GM interface reduces the effect of i) by initiating the propagation at extremities of bundles. Thus, bundles of similar thickness, but various lengths, have a similar number of seeds initiated in them. The premature stop bias caused by ii) is reduced using CMC and PFT in the same fashion as the position, thickness and shape biases. This can be observed in Table 3.3 where the average length of streamlines connecting gray matter regions is increased using PFT. This means that more seeds initated in longer bundles are included in the final result, reducing the effect of ii).

In the end, in-house P F T generates streamlines connecting gray matter regions together with more than 95% of success rate for streamlines reaching a length of 10mm, for both deterministic and probabilistic tractography. PFT improves streamline distribution and can be triggered in conjunction with any streamline tractography algorithm. Our results suggest that that streamlines recovered by PFT propagate in regions previously not covered by streamlines. PFT reduces the portion of prematurely stopping streamlines and can have a positive effect on brain connectivity studies. However, inaccuracies in the registration of anatomical and diffusion images might occur [START_REF] Glasser | The Minimal Preprocessing Pipelines for the Human Connectome Project[END_REF], and could impact the performance of tractography algorithms using information from anatomical images.

It is worth pointing out that tractography algorithms based on graph models or energy minimization method, often referred to as global tractography algorithms, can also encode anatomical information and enforce connections between gray matter regions. For instance, the graph-based tractography algorithm proposed in [START_REF] Iturria-Medina | Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory[END_REF]] penalized pathways going through CSF PVE when searching for a shortest path. Global tractography techniques have shown promising results in recent years [START_REF] Mangin | Towards global tractography[END_REF]] and their development is of interest. However, in most cases, anatomical information is not used in global tractography algorithms. Reconstructed pathways are thus not guaranteed to connect gray matter regions and make premature stops bias the structural connectivity analysis. Moreover, interpretation of connectivity based on global tractography is challenging, making 'classical' streamline tractography often used in connectomics studies [START_REF] Fornito | Graph analysis of the human connectome: Promise, progress, and pitfalls[END_REF].

Finally, Particle Filtering Tractography (PFT) does not address the issue of invalid connections IC. Many included streamlines result from noise and errors in the propagation directions and manage to connect gray matter regions. They do not represent anatomical connections as such. In this sense, one of the next big challenge is to reduce the invalid connections and to perform better brain structural connectivity estimation. We believe PFT, CMC and the proposed tractography parameters are important steps towards tackling this challenge.

Conclusion

We have shown that optimizing tractography parameters, stopping and seeding strategies can reduce the biases in position, shape, thickness and length of the streamline distribution. These tractography biases are quantitatively reported on both in-vivo and synthetic data. These findings are critical for future quantitative structural connectivity analysis. We have therefore proposed a novel framework for tractography. Information from the T1-weighted image must be included in tractography and can no longer be ignored. This represents a paradigm shift in tractography and strengthens the message that tractography cannot be a DW-MRI-only technique, as also proposed by [START_REF] Smith | Structurally-Informed Tractography : Improved Diffusion MRI Streamlines Tractography using Anatomical Information[END_REF]. Other prior information could be included from brain atlases, white matter bundles probability maps, blood vessels [START_REF] Vigneau-Roy | Regional variations in vascular density correlate with resting-state and task-evoked blood oxygen level-dependent signal amplitude[END_REF]] map or functional connectivity maps. Our novel tractography framework is flexible to these future add-ons and is therefore promising for new developments in quantitative connectomics.

fiber ODF. Given the discrete set of potential propagation directions, v i+1 is :

-Deterministic: The chosen propagation direction v i+1 is the closest aligned maximum of the fiber ODF with the previous propagation direction. Maxima of the fiber ODF are defined as any values greater than all its neighbors (6 to 9 vertices) in a cone of an angle of π/16 (≈ 11 • ). No bias was observed due to the use of this strategy. However, other methods exist to extract maxima of the fiber ODF such as those proposed in [START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF][START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF]Bloy and Verma 2008;[START_REF] Ghosh | A polynomial approach for extracting the extrema of a spherical function and its application in diffusion MRI[END_REF]. Further investigation on the maxima extraction method on brain connectivity study are of interest but outside the scope of this paper. -Probabilistic: The chosen propagation direction v i+1 is drawn from the empirical distribution defined by the fiber ODF values of the potential propagation directions [START_REF] Jbabdi | A Bayesian framework for global tractography[END_REF][START_REF] Parker | Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue[END_REF]. The higher the value associated with a direction (vertex) is, the higher the probability of propagating the streamline in this direction is. The new tracking position is p i+1 = p i + ∆s • v i+1 . If the discrete set of potential propagation directions is empty, v i+1 = v i . The tractography algorithm assumes an error in the fiber ODF and continues in the previous propagation direction. This is done for a maximum distance of δ undeviated . This can be seen as allowing the step size ∆s to increase up to the size of δ undeviated if there is no propagation direction locally available. MRtrix and most other algorithms stop the propagation if no valid direction is available.

From an initial propagation direction, the streamline propagates by making discrete steps of size ∆s until a stopping criteria is reached. Then, the same is done in the opposite initial direction, creating the streamline. The seeding position and the initial propagation direction are obtained following the seeding strategy (see Section 3.2.4). The next propagation directions are obtained following the tractography algorithm.

Once the tractography is done, streamlines with length within the interval [δ min mm, δ max mm] are included in the estimated set of streamlines and excluded otherwise. The minimum length criterion (δ min ) ensures that connections are between minimally distanced gray matter regions. The maximum length (δ max ) criterion eliminates spurious streamlines that loop around or have impossible trajectories.

3.B Particle Filtering

The particle filter model has been widely used for vehicule localization [Doucet et al. 2001;[START_REF] Arulampalam | A Tutorial on Particle Filters for Online Nonlinear / Non-Gaussian Bayesian Tracking[END_REF] using sensor measurements to estimate position. Recently, it has also been used for white matter tractography [START_REF] Zhang | Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling[END_REF][START_REF] Pontabry | Probabilistic tractography using Q-ball modeling and particle filtering[END_REF][START_REF] Savadjiev | A geometry-based particle filtering approach to white matter tractography[END_REF]. Particle filtering methods aim to estimate a sequence of target state variables X 0:t = {X k , k = 0, ..., t} from a sequence of observation variables Y 0:t = {Y k , k = 0, ..., t}. The goal is to sequentially estimate the posterior distribution p(X k |Y 0:k ). X 0:t is a first order Markov process such that

X k |X k-1 ∼ p(X k |X k-1
) with a known initial distribution p(X 0 ) and Y 0:k are conditionally independent if X 0:k are known. The posterior distribution p(X k |Y 0:k ) is represented by a set of random samples with associated weights. It estimates the target distribution based on the samples and weights [Doucet et al. 2001;[START_REF] Arulampalam | A Tutorial on Particle Filters for Online Nonlinear / Non-Gaussian Bayesian Tracking[END_REF]. {x

(i) k , w (i) k } N
i=1 denotes the set of N discrete random samples that characterize the posterior distribution, where {x (i) k = 1. Such a discrete model suffers of degeneracy since the variance of the weights increases over time, leading to a situation where all samples except one have a weight close to zero. To overcome this problem a resampling method is applied when a significant degeneracy is observed. The degeneracy problem can be observed when the number of effective samples N ef f falls below some threshold N T [START_REF] Arulampalam | A Tutorial on Particle Filters for Online Nonlinear / Non-Gaussian Bayesian Tracking[END_REF]. N ef f is obtained following

N ef f = 1/ N i=1 (w (i) k ) 2 .
The resampling eliminates samples with low weights and concentrates on samples that have high weights. The resampling generates N new samples with equal weights from the current discrete estimation of p(X k |Y 0:k ) [START_REF] Arulampalam | A Tutorial on Particle Filters for Online Nonlinear / Non-Gaussian Bayesian Tracking[END_REF]. In this study, the resampling is done when N ef f < N T = N/10 [START_REF] Arulampalam | A Tutorial on Particle Filters for Online Nonlinear / Non-Gaussian Bayesian Tracking[END_REF]. 

3.C. Global Connectivity Metrics Defined in the Tractometer

3.C Global Connectivity Metrics Defined in the Tractometer

The Tractometer is a novel tractography evaluation system based on new global connectivity measures detailed in [Côté et al. 2013]. Here, we recall them for completeness.

-Valid Connections (V C): streamlines connecting expected regions of interest (ROIs) and not exiting the expected bundle mask [Côté et al. 2013] (see Figure 3.12 (a)). -Invalid Connections (IC): streamlines connecting unexpected ROIs or streamlines connecting expected ROIs but exiting the expected bundle mask. These streamlines are spatially coherent, have managed to connect ROIs, but do not agree with the ground truth [Côté et al. 2013] (see Figure 3.12 (b)). -No Connections (N C): streamlines that do not connect two ROIs. These streamlines either stop prematurely due for example to angular constraints or due to hitting the boundaries of the tracking mask [Côté et al. 2013] (see Figure 3.12 (c)). -Average Bundle Coverage (ABC): average of the number of voxels crossed by streamlines divided by the total number of voxels in the bundle [Côté et al. 2013]. This is the average proportion of bundles covered by streamlines. 

Introduction

Un nombre grandissant d'études exploitent les propriétés de la reconstruction de la matière blanche par tractographie pour identifier des caractéristiques structurelles des tissus cérébraux [START_REF] Hagmann | Mapping the structural core of human cerebral cortex[END_REF][START_REF] Pannek | The average pathlength map: a diffusion MRI tractography-derived index for studying brain pathology[END_REF][START_REF] Fornito | Graph analysis of the human connectome: Promise, progress, and pitfalls[END_REF]Calamante et al. 2012 ;Calamante et al. 2010, e.g.]. Il est donc d'intérêt de Le même ensemble S de tractes a été utilisé pour calculer toutes les cartes couleur (DEC-TWI, C-DEC) et scalaires (TDI, APM). Les tractes ont été générées avec l'algorithme de tractographie probabiliste P F T présenté au chapitre 3 (tractographie initiée de l'interface entre la matière grise et la matière blanche, 5 tractes/voxel). Les données utilisées ainsi que les différentes étapes de traitement pour obtenir les tractes sont identiques à celles décrites à la section 3.2.5. 

Méthode

Résultats et discussion

Conclusion

Nous avons proposé une nouvelle carte couleur qui peut être calculée à partir de n'importe quel ensemble de tractes. La carte C-DEC nous informe sur l'orientation globale moyenne des faisceaux de matière blanche traversant la grille tri-dimensionnelle. Nous pensons que la carte C-DEC peut aider à la visualisation et à l'identification des faisceaux de matière blanche.

Research is to see what everybody else has seen, and to think what nobody else has thought.

-Albert Szent-Györgyi Résumé L'imagerie par résonance magnétique (IRM) pondérée en diffusion est devenue l'outil de choix pour l'exploration in vivo de la matière blanche cérébrale. Dans cet article, nous introduisons un nouvel algorithme de tractographie, AxTract, qui incorpore des mesures caractéristiques du diamètre des axones dans le processus de reconstruction. L'algorithme réduit les ambiguïtés dans la reconstruction de régions de la matière blanche ayant une structure complexe (e.g. croisements, entrelacement) en utilisant des mesures microstructurelles caractéristiques de chaque faisceau. Malgré les limites actuelles des acquisitions en IRM de diffusion et des modèles de la matière blanche, nous montrons des améliorations dans la reconstruction de la matière blanche par tractographie. Nous rapportons d'abord une diminution des tractes erronées en utilisant l'information microstructurelle sur données simulées. Nous montrons ensuite les résultats de l'algorithme sur la reconstruction in vivo de faisceaux de la matière blanche. L'information microstructurelle permet de distinguer l'orientation d'un faisceau parmi l'orientation des autres faisceaux. Ce faisant, AxTract réduit les erreurs de reconstruction, permet l'étude des caractéristiques microstructurelles le long des faisceaux reconstruits et apporte un nouvel outil pour estimer l'organisation de la matière blanche.

Contributions

-AxTract, un algorithme de tractographie utilisant l'information microstructurelle issue de l'IRM pondérée en diffusion pour réduire les erreurs de reconstruction. C'est la première technique de reconstruction à utiliser cette information au moment de l'estimation des tractes. -Méthode d'estimation des caractéristiques microstructurelles le long des faisceaux de matière blanche. -Observations sur la distribution spatiale de caractéristiques microstructurelles de la matière blanche chez l'homme. 

Commentaires

Introduction

Diffusion-weighted (DW) magnetic resonance imaging (MRI) tractography has become the tool of choice to probe the human brain's white matter in vivo. However, the relationship between the resulting streamlines and underlying white matter microstructure characteristics, such as axon diameter, remains poorly understood [Jones 2010a]. In this work, we introduce a new approach to trace white matter fascicles while simultaneously characterizing the apparent distribution of axon diameters within the fascicle. To achieve this, our method takes full advantage of current DW-MRI microstructure models [e.g. [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF][START_REF] Panagiotaki | Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison[END_REF][START_REF] Daducci | Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data[END_REF][START_REF] Huang | Linking functional connectivity and structural connectivity quantitatively: A comparison of methods[END_REF][START_REF] Scherrer | Characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion-compartment imaging (DIAMOND)[END_REF]. The distinctive characteristic of our tractography algorithm is that it incorporates an explicit tissue model. This enables us to solve areas of complex tissue configuration and separate parallel fascicles with different microstructure characteristics, hence improving the overall result of the tractography process.

Despite recent advances in axon diameter estimation from DW-MRI, to the best of our knowledge, none of them has been used to improve tractography during the estimation. Two post-processing approaches have been proposed to combine microstructure information and tractography [START_REF] Sherbondy | MicroTrack: an algorithm for concurrent projectome and microstructure estimation[END_REF][START_REF] Daducci | COMMIT: Convex Optimization Modeling for Micro-structure Informed Tractography[END_REF]]. To solve complex white matter areas (e.g. crossing, kissing or fanning fibre configurations), these approaches use microstructure information to reject spurious tracts from a full brain tractography reconstruction. This is sensitive to the choice of the tractography algorithm used, since these approaches can only filter out unlikely tracts and they require the tractography algorithm to provide a dense sample of all tract configurations inside the complex region. Our novel tractography algorithm, AxTract, addresses the complex configuration problem differently. AxTract incorporates axon diameter characteristics in the tractography algorithm and uses it during the tracking process. This produces tracts with embedded microstructure information and enables the possibility of solving the tracking through white matter areas using axon diameters information.

Materials and methods

AxTract: microstructure-driven tractography

The main purpose of our novel tractography algorithm, AxTract, is to simultaneously trace axon fascicles and estimate their axon diameter characteristics. The main hypothesis driving AxTract is that the mean diameter of the axons composing a fascicle varies slowly along its pathway [START_REF] Ritchie | On the relation between fibre diameter and conduction velocity in myelinated nerve fibres[END_REF][START_REF] Debanne | Axon physiology[END_REF][START_REF] Liewald | Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque[END_REF]].

To formulate our algorithm, we start from the classical equation driving streamline tractography [START_REF] Basser | In vivo fiber tractography using DT-MRI data[END_REF]]:

dr(s) ds = t(s), t(0) = t 0 ,
where the curve r(s) is the streamline tracking the axon fascicle that traverses t 0 and t(s) is the tangent vector to r(s). Generally, the streamline t(s) is estimated using a fixed step size ∆s. Using the diffusion tensor (DT) [START_REF] Basser | In vivo fiber tractography using DT-MRI data[END_REF]], t(s) is taken to be the eigenvector corresponding to the maximal eigenvalue at the tracking position. Generally, tractography algorithms based on the DT rely on the hypothesis that fibre tracts are locally tangent to the direction of maximal diffusivity. Specifically, the DT model cannot express complex geometries such as tract crossings and kissings. Hence, several algorithms have been proposed to extend this algorithm and be able to trace through these geometries [e.g. [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution[END_REF][START_REF] Descoteaux | Regularized, fast, and robust analytical Q-ball imaging[END_REF][START_REF] Dell'acqua | A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging[END_REF][START_REF] Tristán-Vega | Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging[END_REF][START_REF] Tuch | Q-ball imaging[END_REF][START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF][START_REF] Weinstein | Tensorlines: advection-diffusion based propagation through diffusion tensor fields[END_REF][START_REF] Malcolm | Filtered Tractography : Validation on a Physical Phantom[END_REF]. In some of these approaches, t(s) is one of the directions of maximal diffusivity

t(s) = arg max SF(s),
where SF is a spherical function describing orientations of tissues, e.g. the diffusion orientation distribution function (ODF) [START_REF] Tuch | Q-ball imaging[END_REF][START_REF] Descoteaux | Regularized, fast, and robust analytical Q-ball imaging[END_REF][START_REF] Tristán-Vega | Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging[END_REF] or the fibre ODF [START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF][START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution[END_REF][START_REF] Dell'acqua | A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging[END_REF]]. These algorithms rely on the same hypothesis that a direction of maximum diffusivity is enough to trace fascicles and add, in one way or another, a new hypothesis of preservation of the previous tracking direction. In most cases, if more than one tracking direction is plausible, t(s) is chosen to minimize the angular deviation from the previous direction. he tracking direction t(s) is select from the M directions of maximal diffusivity of SF following

t(s) = arg min d(s) arccos r(s) • d(s) , d(s) ∈ [d 1 (s), . . . , d M (s)], s.t. arccos r(s) • d(s) < θ.
(5.1)

Moreover, d(s) is constrained to form an angle smaller than θ to enforce smoothness in the streamline r(s).

With AxTract, we aim at not only preserving the direction but the axon diameter, adding a biologically-driven hypothesis. This enables tractography to traverse complex structures with more confidence on the results [START_REF] Ritchie | On the relation between fibre diameter and conduction velocity in myelinated nerve fibres[END_REF][START_REF] Debanne | Axon physiology[END_REF][START_REF] Liewald | Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque[END_REF]. Using AxTract, the definition of t(s) in Equation 5.1 becomes

t(s) = arg min d(s) C(r(s)) -C(d(s)) 2 , d(s) ∈ [d 1 (s), . . . , d M (s)], s.t. arccos r(s) • d(s) < θ. (5.2)
Where C(r(s)) is the estimated streamline's axon diameter index (defined in Section 5.2.2) and C(d(s)) is the estimated axon diameter index in direction d(s). Equation 5.2 allows tractography to follow the direction with the axon diameter index the closest to the one of the current streamline, while enforcing low curvature in the streamline r(s).

Axon diameter index estimation

In this work, we formulated our streamline propagation algorithm, AxTract, to follow consistant axon diameter characteristics. Several multi-compartment white matter models have been proposed to obtain microstructure characteristics from DW-MRI [e.g [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF][START_REF] Assaf | AxCaliber: a method for measuring axon diameter distribution from diffusion MRI[END_REF][START_REF] Panagiotaki | Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison[END_REF][START_REF] Zhang | Optimization of b-value sampling for diffusion-weighted imaging of the kidney[END_REF][START_REF] Scherrer | Characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion-compartment imaging (DIAMOND)[END_REF]. AxTract is not dependant on a specific white matter model, but requires a model capable to distinguish axon diameter characteristics in voxels with multiple fibre populations, i.e. with more than one direction of maximum diffusivity. In Dyrby et al. 2012, authors showed that the ActiveAx model [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF]] can reproducibly distinguish axon diameter characteristics using feasable acquisition protocols. Moreover, [START_REF] Auría | Accelerated microstructure imaging via convex optimisation for regions with multiple fibres (AMICO X)[END_REF] showed that the ActiveAx model can be extended to multiple fibre populations per voxel and can efficiently recover axon diameter population characteristics with up to three fibre populations per voxel. We thus based our local microstructure estimation problem using the ActiveAx model [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF]] generalized to multiple fibre populations per voxel [START_REF] Auría | Accelerated microstructure imaging via convex optimisation for regions with multiple fibres (AMICO X)[END_REF]] implemented in the efficient AMICO framework (Accelerated Microstructure Imaging via Convex Optimization) [START_REF] Daducci | COMMIT: Convex Optimization Modeling for Micro-structure Informed Tractography[END_REF]. AMICO [START_REF] Auría | Accelerated microstructure imaging via convex optimisation for regions with multiple fibres (AMICO X)[END_REF][START_REF] Daducci | Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data[END_REF]] uses a linear formulation to express the multi-compartment mapping problem as

S S 0 = Φx + η,
where S ∈ R N is the vector of diffusion weighted signal measurements, S 0 the signal without diffusion weighting, x ∈ R K the coefficients of the dictionary Φ ∈ R N ×K and η ∈ R N the acquisition noise [START_REF] Daducci | Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data[END_REF]. The dictionary Φ is builded from different matrices:

Φ = [Φ iso | Φ intra 1 | Φ extra 1 | . . . | Φ intra M | Φ extra M ],
where Φ iso ∈ R N ×K iso are isotropic response functions accounting for free and isotropically restricted water [START_REF] Panagiotaki | Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison[END_REF]] with diffusivity ranging from 3 × 10 -3 to 1 × 10 -3 mm 2 /s, and Φ intra i ∈ R N ×K intra the intra-axonal and Φ extra i ∈ R N ×Kextra extra-axonal compartments to account for the DW signal attenuation along the M fibre directions d i . The intra-axonal compartments Φ intra i models the DW signal decay of water molecules restricted within parallel cylinders [START_REF] Panagiotaki | Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison[END_REF][START_REF] Daducci | Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data[END_REF][START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF]Dyrby et al. 2012] of diameter ranging from 2 to 10 µm. The intra-axonal diffusivity was fixed to 1.7 × 10 -3 mm 2 /s [START_REF] Panagiotaki | Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison[END_REF]Dyrby et al. 2012]. The parallel diffusivity of the extra-axonal compartments Φ extra i was also fixed to 1.7 × 10 -3 mm 2 /s, and distinct perpendicular diffusivity ranging from 0.06 × 10 -3 to 0.42 × 10 -3 mm 2 /s [START_REF] Panagiotaki | Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison[END_REF][START_REF] Daducci | Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data[END_REF]. The model assumes no exchange between compartments.

Given the DW signal and the directions of maximum diffusivity, AMICO solves

arg min x≥0 1 2 Φx - S S 0 2 2 + λ 1 2 x 2 2 ,
where • 2 2 is the 2 norm and the parameter λ > 0 controls the trade-off between the data and the regularisation terms. Doing so, it enables the estimation of the mean diameter of cylinders along each fibre direction

C(d i ) = j 2R j x intra i j j x intra i j , where x intra i j
is the volume fraction of the compartment Φ intra i j corresponding to cylinder of radius R j µm in the direction of maximum diffusivity d i . AMICO uses up to three fiber directions in the estimation [START_REF] Auría | Accelerated microstructure imaging via convex optimisation for regions with multiple fibres (AMICO X)[END_REF]. We refer to C(d i ) as the axon diameter index [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF]Dyrby et al. 2012;[START_REF] Auría | Accelerated microstructure imaging via convex optimisation for regions with multiple fibres (AMICO X)[END_REF].

Implementation details

At each point along the streamline, we first interpolate linearly the fibre ODF [START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution[END_REF][START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF]] to get the directions of maximal diffusivity using Dipy [Garyfallidis et al. 2014a]. Then, we interpolate linearly the DWIs and use AMICO [START_REF] Auría | Accelerated microstructure imaging via convex optimisation for regions with multiple fibres (AMICO X)[END_REF]] to obtain the axon diameter index in all directions of maximal diffusivity. The streamline propagation follows the direction with the axon diameter index closest to the streamline's estimated axon diameter index C(r(s)).

C(r(s)) is estimated using the axon diameter index over previous tracking directions. The axon diameter index may vary along the fascicle (e.g. fanning, kissing, branching), thus the streamline's axon diameter index estimation is set to the median axon diameter index over a arbitrary fixed distance of 5 cm of the current tracking position. We hypothesized that the median over a short distance from the tracking position provides information on the fascicle microstructure, while allowing for smooth changes along the fascicle. Directions forming an angle greater than θ = 45 • with the previous tracking direction are discarded [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Girard | Towards quantitative connectivity analysis: reducing tractography biases[END_REF]]. Streamlines stop when a position outside the white matter volume is reached. If no direction is available, the streamline propagates in the previous valid direction. The tracking stops after a distance of 2mm without valid direction [START_REF] Girard | Towards quantitative connectivity analysis: reducing tractography biases[END_REF]]. The initial tracking direction t 0 is randomly chosen from the directions of maximal diffusivity at the initial position. Once the tracking stops, it is re-initiated in the opposite initial direction to form the complete streamline. The tracking step size ∆s is fixed to 0.5mm [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Girard | Towards quantitative connectivity analysis: reducing tractography biases[END_REF]].

Human dataset and experiements

We used the Human Connectome Project (HCP) MGH adult diffusion dataset (34 subjects) [START_REF] Setsompop | Pushing the limits of in vivo diffusion MRI for the Human Connectome Project[END_REF]]. The diffusion acquisition scheme consists of 552 volumes with b-values up to 10, 000s/mm 2 , including 40 non-diffusion (b-value = 0) images (δ = 12.9ms, ∆ = 21.8ms). The diffusion data was acquired at 1.5mm isotropic voxel size using a Spin-echo EPI sequence (TR/TE = 8800/57 ms). We used the provided pre-processed DWIs corrected for motion and EDDY currents [START_REF] Andersson | A comprehensive Gaussian Process framework for correcting distortions and movements in diffusion images[END_REF][START_REF] Greve | Accurate and robust brain image alignment using boundary-based registration[END_REF]. Diffusion Tensor estimation and corresponding Fractional Anisotropy (FA) map generation were done using Dipy [Garyfallidis et al. 2014a]. From this, a single averaged fibre response function was estimated in FA values above a threshold of 0.7, within the white matter volume, from all subjects. The fibre response was used as input for spherical deconvolution [START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution[END_REF][START_REF] Raffelt | Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images[END_REF] to compute the fibre ODFs using DWIs volume on a single b-value shell of 3000s/mm 2 (maximum spherical harmonic order 8). A T1-weighted 1mm isotropic resolution 3D MPRAGE (TR/TE/TI 2530/1.15/1100 ms) image was also acquired. The T1-weighted image brain parcellation was obtained using FreeSurfer [START_REF] Fischl | Automatically Parcellating the Human Cerebral Cortex[END_REF]] and white matter volume was obtain using FSL/FAST [START_REF] Zhang | Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[END_REF]]. Five streamlines were initiated per voxel of the white matter volume.

Fascicles were obtained using the TractQuerier [START_REF] Wassermann | The white matter query language: a novel approach for describing human white matter anatomy[END_REF]]. The mean axon diameter index, the mean apparent fibre density (AFD) [START_REF] Raffelt | Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images[END_REF]] and mean FA are reported along each fascicles.

Synthetic dataset and experiments

We first used Phantomas [START_REF] Caruyer | On facilitating the use of HARDI in population studies by creating rotation-invariant markers[END_REF] to generate a kissing configuration between two fascicles, from which, fascicle directions were obtained at each voxel. For each fascicle direction, the DW signal was independently simulated for a distribution of parallel cylinders diameter, with a fixed distinct mean diameter per fascicle [START_REF] Auría | Accelerated microstructure imaging via convex optimisation for regions with multiple fibres (AMICO X)[END_REF]]. The synthetic DW signal was generated using the Camino [START_REF] Hall | Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI[END_REF] Monte-Carlo diffusion simulator, with the in vivo HCP acquisition parameters. The synthetic signal S was contaminated with Rician noise [START_REF] Gudbjartsson | The rician distribution of noisy mri data[END_REF] at signal to noise ratio (SNR) 10, 20 and 30 as follows:

S noisy = (S + η 1 ) 2 + η 2 2 ,
with η 1 , η 2 ∼ N (0, σ 2 ), σ = S0 /SN R and S0 the mean of the non-diffusion signal.

Tractography was initiated both from fascicles interfaces (100 streamlines per voxel; 18,800 streamlines) or from all voxels of the white matter volume (20 streamlines per voxel; 22,400 streamlines). To evaluate reconstructed streamlines, we used the Tractometer [Côté et al. 2013] connectivity analysis. We report the following Tractometer metrics:

-Valid Connections (V C): streamlines connecting expected regions of interest (ROIs) and not exiting the expected fascicle mask [Côté et al. 2013], -Invalid Connections (IC): streamlines connecting unexpected ROIs or streamlines connecting expected ROIs but exiting the expected fascicle mask. These streamlines are spatially coherent, have managed to connect ROIs, but do not agree with the ground truth [Côté et al. 2013], -No Connections (N C): streamlines not connecting two ROIs. These streamlines either stop prematurely due to angular constraints or exit the boundaries of the tracking mask [Côté et al. 2013],

Results

AxTract streamlines are compared to the same deterministic tractography algorithm without using the axon diameter index information. The only difference between

AxTract and deterministic tractography is thus the selection of the propagation direction at tracking positions with more than one valid direction: deterministic tractography always selects the propagation direction that minimize the curvature of the streamline, AxTract selects the propagation direction with an axon diameter index the closest to the streamline's axon diameter index estimation (see Section 5.2.3).

Results

Synthetic dataset

AxTract reconstruction on the synthetic kissing dataset (SNR=20) is shown in Figure 5.1. Figure 5.1 (a,b,c) shows the ground truth segment-wise directions used to generate the data, the estimated fiber ODF and the extracted directions of maximal diffusivity, respectively. Figure 5.1 (d) shows the segment-wise direction and axon diameter index estimated along the fibre ODF directions of maximal diffusivity, both with their segment length scaled by the axon diameter index. Figure 5.1 (e-h) show valid (VC) and invalid connections (IC) for AxTract and deterministic tractography. The left fascicle (blue) and right fascicle (green) have a mean cylinder diameter of 2.44µm and 6.88µm, respectively. Table 5.1 reports the Tractometer evaluation on the synthetic kissing configuration (SNR=10, 20, 30), initiating the tractography both from fascicles interfaces or from all voxels. AxTract produces 87.2% of valid connections (VC) compared to 52.5% with deterministic tractography, with SNR=20 and initiating tractography at the interface (71.3% and 54.7%, respectively initiating from the white matter volume). The invalid connections (IC) decrease proportionally, while the no connections (NC) stay similar for AxTract and deterministic tractography. Table 5.2 reports the mean of the median axon diameter index along each streamline, for each fascicle (valid connections). The median axon diameter index is similar for both interface and white matter volume tractography initializations. The mean median axon diameter index of right fascicles is always underestimated and the mean median axon diameter index of the left fascicle is always overestimated. For both fascicles, the axon diameter index increases as the SNR decreases. 

Human dataset

Figures 5.2 and 5.3 show the axon diameter index estimation along four white matter fascicles of one subject (mgh_1001): the arcuate fasciculus (AF), the corticospinal tract (CST), the inferior fronto-occipital fasciculus (IFOF) and the uncinate fasciculus (UF). We report both the axon diameter index estimated locally at the tracking position (column 2) and the median axon diameter index estimated along the length of each streamline (column 4). The histogram of segments' index is shown in column 3 and the histogram median index of the streamlines is shown in column 5. Differences in segment and median distributions can be observed across fascicles. Figure 5.4 shows the same information for the superior part of the corpus callosum (CC). The CC is split in 5 sub-fascicles using the FreeSurfer parcellation (posterior, mid-posterior, central, mid-anterior, anterior).

Results

AF Left

Figure 5.5 shows the superior part of the corpus callosum (CC) of the same subject with streamlines coloured using the axon diameter index per segment (Figure 5.5 (a)) and using the median axon diameter index (Figure 5.5 (b)), in sagittal and inferior views. A midsagittal cut of the same CC is shown in Figure 5.6. The highest axon diameter index (green) can be observed in the central part of the CC using segmentwise estimation. However, the trend disappears using the median estimation. diameter index can be observed, both on the segment-wise and median colouring. Finally, Figure 5.8 shows voxels where the direction followed by AxTract was different than the direction that would be followed by deterministic tratography. AxTract, using knowledge of the axon diameter index, changed the propagation direction at least once in ∼ 18% of voxels of the white matter volume, and on average once every 89.2mm (the average streamline length is 45.5mm).

Finally, the mean axon diameter index across the 34 healthy subjects for the previous fascicles is reported in Figure 5.9. Projection and association fascicles are computed for each hemisphere and averaged for each subject. The mean apparent fibre density (AFD) and the mean fractional anisotropy (FA) are shown as reference. The profile of these metrics is different and values vary accross fascicles, bringing 

Discussion

In this paper we introduced a novel algorithm using axon diameter estimation as a prior for tractography to trace fascicles through complex white matter areas such as kissings. AxTract provides the means to study axon diameter index of the reconstructed white matter fascicles.

In fibre kissing areas, AxTract distinguishes fascicles with different axon diameter indexes. We can observe in Figure 5.1 that the tractography needs to follow a direction with higher local deviations to keep following the fascicle with the closest axon diameter index. This decreases the invalid connections, as shown in Figure 5.1 (f).

Always following the direction with the lowest local deviation, as with deterministic tractography, leads to errors in the kissing configuration reconstruction. This is quantitatively reported by the Tractometer [Côté et al. 2013] metrics in Table 5.1.

AxTract always increases the valid connections and decreases the invalid connections compared to the deterministic tractography. The valid connections also increase with an increase in SNR for AxTract, while staying more stable than for deterministic tractography. The increase in valid connections is also higher for AxTract initiating the tractography from fascicle extremities, i.e. the white matter / gray matter interface. This is because the tracking starts in regions where the axon diameter index is characteristic of the fascicle, i.e. the estimated axon diameter index segment-wise tend toward the ground truth axon diameter index. This is not the case when the tracking starts in the central part of the dataset, where only one direction is obtained from the fibre ODF (the ground thruth as two directions, see Figure 5.1 (a,c)). Since those two directions are almost aligned, this results in an average axon diameter index in this single direction. This makes AxTract unable to distinguish which direction to follow in subsequent tractography steps. Nonetheless, AxTract performs similarly to the deterministic tractography when initiated in regions where fascicles population cannot be distinguished.

The axon diameter index estimated with AMICO [START_REF] Auría | Accelerated microstructure imaging via convex optimisation for regions with multiple fibres (AMICO X)[END_REF] along streamlines is different in the two synthetic fascicles, but similar across SNR and tractography initialization techniques (see Table 5.2). However, the mean streamlines' axon diameter index is always underestimated for the fascicle with the highest cylinder diameter, and overestimated for the fascicle with the lowest cylinder diameter. Diameter estimation across SNRs could be improved using a regularization term λ adapted to the noise level, as suggested by [START_REF] Daducci | Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data[END_REF]. Although the cylinder diameter estimated at each segment is not the same as the ground truth, the estimation is consistent across segment and streamlines of the same fascicle. This can be observed in Figure 5.1 (d) where axon diameter indexes of fibre ODF directions of maximal diffusivity are consistently estimated with AMICO [START_REF] Auría | Accelerated microstructure imaging via convex optimisation for regions with multiple fibres (AMICO X)[END_REF] in crossing and single fibre population configuration. Table 5.2 shows that increasing the noise in DWI increases both the axon diameter index and the standard deviation, in both fascicles. This perturbed the selection of the propagation direction by AxTract, which decreases the percentage of valid connections obtained with AxTract, from 90.5% at SNR=30 to 72.1% at SNR=10 initiating from fascicles extremities, respectively from 73.9% to 60.9% initiating from the white matter volume.

fascicles in-vivo. Axon diameter index estimated with AMICO [START_REF] Auría | Accelerated microstructure imaging via convex optimisation for regions with multiple fibres (AMICO X)[END_REF] along the tracking process with AxTract seems to be spatially coherent as shown in Figures 5.2,5.3 and 5.4, both on local estimation and on the median along streamlines.

The value observed in the CC (see Figure 5.6 (b)) follows the low-high-low trend observed in histology [Aboitiz et al. 1992a], with lower values in the splenium and genu, and higher value in the body of the CC. However, as shown in Figures 5.5 and 5.6, this is visible only in the midsagittal slice of the CC. [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF] suggested the trend observed in the midsagittal slice could be related to more complex axon geometry within those voxels, such as bending and fanning, not well supported by the ActiveAx model, and biasing the fitting. [START_REF] Ronen | Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histology[END_REF], suggested that axonal angular dispersion can bias the axon diameter index estimation. Further investigation is needed to better understand why the trend low-high-low is only visible through the midsagittal slices and help improving the fitting elsewhere in the brain. Consistent differences between fascicles in the mean axon diameter index segment-wise can be observed across subjects (see Figure 5.9). This provides an additional fascicle index that could be studied alongside with e.g. the AFD and the FA. Further research is needed to assess the mean axon diameter index to axon physiology [START_REF] Daducci | Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data[END_REF][START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF][START_REF] Debanne | Axon physiology[END_REF]Aboitiz et al. 1992a;[START_REF] Liewald | Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque[END_REF].

On in-vivo data, most voxels where the axon diameter index changed the tracking direction are located in fascicles crossing areas, underneath to the cerebral cortex (see Figure 5.8). On average, these changes in direction happened less than once per streamline, which suggest that the direction picked by deterministic tractography is also a direction that shows less variation in the axon diameter index. Nonetheless, a single change in the direction followed can affect the reconstruction of fascicles. More research is needed to assess the effect of the axon diameter index in in-vivo tractography.

Finally, Figure 5.7 shows the SLF and the pyramidal tracts crossing below the precentral gyrus, with various axon diameter index. The spatial consistency of the axon diameter index enables AxTract to follow specific characteristics of white matter fascicles in the reconstruction. AxTract brings new insight on the organization of the white matter and it would be of interest to validate them anatomically. AxTract will directly benefit from advances in local axon diameter characterization. In future work, it will be of interest to extend the current tracking algorithm to follow not only the median axon diameter index of the fascicle, but to follow the axon diameter index distribution of a fascicle [START_REF] Assaf | AxCaliber: a method for measuring axon diameter distribution from diffusion MRI[END_REF]. This would help distinguishing fascicles overlapping in directions of maximal diffusivity. Alternatively, axon diameter index estimation could be extended to more orientation than the directions maximal diffusivity and incorporated in probabilistic [e.g. [START_REF] Jbabdi | A Bayesian framework for global tractography[END_REF]Jeurissen et al. 2011] or global [e.g. [START_REF] Fillard | Spin Tracking: A Novel Global Tractography Algorithm[END_REF][START_REF] Reisert | Global fiber reconstruction becomes practical[END_REF][START_REF] Jbabdi | A Bayesian framework for global tractography[END_REF]] tractography algorithms.

Conclusion

To conclude, in this work we presented AxTract, a novel algorithm that uses axon diameter characterization to better resolve the crossing/kissing problem of fascicles passing through areas of complex white matter configurations. Doing so, AxTract reduces ambiguities in the tractography, reduce invalid connections and increase valid connections. This will enable the study of microstructure characteristics of white matter fascicles.

Imagination will often carry us to worlds that never were. But without it we go nowhere.

-Carl Sagan

Conclusion

L'étude non invasive de la connectivité cérébrale est de haute importance dans la compréhension du fonctionnement cérébral [START_REF] Granziera | Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo[END_REF][START_REF] Hagmann | Mapping the structural core of human cerebral cortex[END_REF][START_REF] Fornito | Graph analysis of the human connectome: Promise, progress, and pitfalls[END_REF]. En particulier, dans des applications cliniques, relatives à l'étude des maladies neurodégénératives comme la schizophrénie [START_REF] Rose | Evidence of altered prefrontal-thalamic circuitry in schizophrenia: an optimized diffusion MRI study[END_REF]] ou l'épilepsie [START_REF] Thivard | Interictal diffusion MRI in partial epilepsies explored with intracerebral electrodes[END_REF]], au suivi de la plasticité cérébrale après un traumatisme crânien [START_REF] Granziera | A new early and automated MRI-based predictor of motor improvement after stroke[END_REF]] et à la planification neurochirurgicale [Fortin et al. 2012]. Les neurosciences ont besoin de mesures quantitatives de la connectivité cérébrale. Cependant, la plupart des algorithmes de tractographie reposent seulement sur l'information d'orientation obtenue par l'imagerie par résonance magnétique de diffusion. La reconstruction est alors plus difficile dans les régions complexes de la matière blanche, diminuant ainsi la densité des tractes dans les faisceaux étroits, longs ou courbés, par exemple.

Dans cette thèse, nous avons montré qu'en utilisant l'information anatomique mesurée par une image IRM pondéré T1, nous améliorons les reconstructions de la matière blanche par tractographie en diminuant les biais dans la distribution des tractes. Nous avons montré qu'en modifiant le critère d'arrêt de la tractographie en ajoutant l'information sur la nature des tissus (CM C et P F T ), le pourcentage de tractes se terminant dans des régions anatomiquement invalides peut être réduit. Ensuite, nous avons montré que l'information microstructurelle mesurée par un échantillonnage dense du signal de diffusion permet de réduire les ambiguïtés dans le choix de la direction de propagation des tractes (AxTract). Nous avons montré les bénéfices d'intégrer l'information microstructurelle dans l'estimation de la structure de la matière blanche sur des données simulées et sur des données in-vivo. Ainsi, parce que les faisceaux de matière blanche du cerveau ont des propriétés microstructurelles différentes, l'algorithme peut différencier les orientations des différents faisceaux. De plus, ces propriétés sont accessibles pour l'étude a posteriori de l'organisation microstructurelle de la matière blanche. Pour conclure, nous avons proposé d'ajouter de nouvelles hypothèses sur l'anatomie du cerveau et sa microstructure pour orienter la reconstruction par tractographie. Les algorithmes proposés repoussent les limites de la reconstruction de la matière blanche in vivo et permettent d'obtenir des mesures plus quantitatives de la matière blanche cérébrale.

Perspectives

Généralisation de l'estimation des propriétés microstructurelles D'un point de vue biologique, il est fondamental d'étudier les propriétés microstructurelles des tissus pendant le développement cérébral. Dans le chapitre 5, nous avons utilisé le cadre d'optimisation convexe Accelerated Microstructure Imaging via Convex Optimization (AMICO) pour mesurer localement l'information microstructurelle des tissus et produire une tractographie avec a priori microstructurels. Nos travaux reposent sur la méthode d'optimisation proposée par [START_REF] Auría | Accelerated microstructure imaging via convex optimisation for regions with multiple fibres (AMICO X)[END_REF], utilisant les orientations principales de l'ODF de fibre pour réduire la complexité du problème d'optimisation. AMICO estime ainsi les indices de diamètre axonal dans un sous-ensemble d'orientations (limité à trois orientations, avec l'algorithme AxTract), limitant ainsi la tractographie aux orientations sélectionnées par AMICO. Il est cependant intéressant, dans la reconstruction de la matière blanche, d'utiliser l'ensemble de l'information d'orientation disponible (par exemple, en tractographie probabiliste ou pour l'algorithme P F T présenté au chapitre 3). Il serait nécessaire de généraliser AMICO afin d'estimer les indices de diamètre axonal dans plus, voir toutes, les orientations de l'ODF de fibre. La tractographie pourrait alors suivre une orientation selon la probabilité de la présence de fibres mais aussi selon la cohérence de l'information microstructurelle des faisceaux suivis et de cette orientation. Pour ce faire, nous devons poursuivre le développement des outils d'estimation locale de l'information microstructurelle.

Développement de la tractographie avec a priori microstructurels

Au chapitre 5, nous avons montré que l'indice de diamètre axonal peut réduire les erreurs de tractographie. Pour ce faire, la direction de propagation est choisie afin de minimiser la variation dans l'indice de diamètre axonal du faisceau en reconstruction. L'indice associé au faisceau est déterminé par la médiane de l'indice de diamètre axonal des orientations sélectionnées précédemment. En choisissant systématiquement la direction minimisant la variation dans l'indice, certaines orientations ne seront jamais explorées par la tractographie. Il serait particulièrement intéressant de suivre d'autres orientations lorsque la différence d'indice est négligeable entre les orientations. Par exemple, AxTract pourrait estimer une distribution d'indices caractéristiques du faisceau, pour ensuite sélectionner l'orientation de propagation de façon probabiliste par une mesure de distance entre la distribution caractéristique du faisceau et les indices locaux. De façon alternative, l'information microstructurelle pourrait être prise en compte dans un algorithme de tractographie global par minimisation d'énergie (voir section 2.2.1). Notamment, en ajoutant un terme d'énergie lié à la variation dans les indices microstructurels entre les spins connectés. Nos résultats, aux chapitres 3 et 5, montrent le besoin d'utiliser de l'information additionnelle pour réduire les erreurs de tractographie et produire des reconstructions plus quantitatives de la connectivié cérébrale.

Validation sur données microstructurelles simulées

Nous devons valider davantage la tractographie assistée par la microstructure dans un environnement contrôlé. Par exemple, il sera intéressant de quantifier la performance de la tractographie assistée par la microstructure dans un ensemble varié de configurations de faisceaux, telles que des croisements, des superpositions. Nous avons alors besoin d'un jeu de données simulées similaire à celui utilisé au chapitre 3 (figure 3.5), avec des configurations complexes, mais aussi incorporer des propriétés microstructurelles spécifiques aux faisceaux (par exemple, diamètre axonal, volume extra axonal). Nous pourrions ensuite contrôler le schéma d'acquisition des données de diffusion et le niveau de bruit. Il serait par la suite possible d'étendre l'expérience de superposition des deux faisceaux, proposée au chapitre 5 (voir figure 5.1), par exemple en utilisant Phantomas [START_REF] Caruyer | On facilitating the use of HARDI in population studies by creating rotation-invariant markers[END_REF] pour créer une géométrie 3D complexe des faisceaux et Camino [START_REF] Hall | Convergence and parameter choice for Monte-Carlo simulations of diffusion MRI[END_REF] pour générer le signal de diffusion par simulation de l'environnement microstructurel. Finalement, l'évaluation de la connectivité pourrait être réalisée avec le Tractometer [Côté et al. 2013 ;Neher et al. 2015] et celle de la précision structurelle locale (voxélique) pourrait être réalisée avec COMMIT [START_REF] Daducci | COMMIT: Convex Optimization Modeling for Micro-structure Informed Tractography[END_REF]. Cela permettrait d'évaluer les différents choix de paramètres de tractographie, d'estimation de la microstructure locale et de schéma d'acquisition d'images de diffusion. De plus, cela permettra de confronter les modèles de la matière blanche à des configurations microstructurelles complexes connues (par exemple, la présence de courbure à une échelle sous-voxélique ou la présence de pores de formes et de tailles variées).

Validation in-vivo

La validation quantitative de la tractographie in-vivo est difficile car la vérité terrain est inconnue. Cependant, de nouveaux outils permettent d'obtenir des mesures quantitatives globales liant les tractogrammes et les mesures de l'IRM de diffusion [START_REF] Daducci | COMMIT: Convex Optimization Modeling for Micro-structure Informed Tractography[END_REF][START_REF] Smith | SIFT: Sphericaldeconvolution informed filtering of tractograms[END_REF][START_REF] Sherbondy | MicroTrack: an algorithm for concurrent projectome and microstructure estimation[END_REF]]. Il sera intéressant d'utiliser ces outils pour comparer les tractogrammes avec et sans a priori anatomiques et microstructurels. Notamment, COMMIT [START_REF] Daducci | COMMIT: Convex Optimization Modeling for Micro-structure Informed Tractography[END_REF]] optimise un paramètre de taille axonale pour expliquer le signal de diffusion (voir section 2.3.2). Il sera possible de comparer ce paramètre avec le diamètre moyen obtenu par AxTract. De plus, cela permettra d'identifier des régions ou les connaissances a priori modifie l'erreur entre les données de diffusion et le tractogramme optimisé par COMMIT . D'autre part, la tractographie peut être résumée par un profil de connectivité région à région par une matrice de connectivité [par exemple [START_REF] Hagmann | Mapping human whole-brain structural networks with diffusion MRI[END_REF][START_REF] Hagmann | Mapping the structural core of human cerebral cortex[END_REF][START_REF] Fornito | Graph analysis of the human connectome: Promise, progress, and pitfalls[END_REF]. Dans la section B, nous présentons des travaux préliminaires comparant les profils de connectivité de plusieurs algorithmes de tractographie pour plusieurs acquisitions du même sujet (distances intra-sujets) et pour plusieurs sujets (distances inter-sujets). Nous montrons qu'avec ces multiples acquisitions, il est possible d'évaluer la reproductibilité des algorithmes de tractographie sur des données in-vivo. De plus, la spécificité des algorithmes de tractographie peut être évaluée en comparant la distance moyenne intra-sujet et inter-sujet. Un bon algorithme de tractographie devrait minimiser les distances intra-sujets (reproductibiité), tout en maximisant les distances inter-sujets (spécificité). Natomment, nous montrons que l'algorithme de tractographie probabiliste testé offre un ratio distance inter-sujet à distance intra-sujet supérieur à l'algorithme de tractographie déterministe. Ce cadre offre le potentiel d'évaluer l'impact de l'information microstructurelle sur les profils de connectivité estimés. Pour ce faire, des données provenant de plusieurs acquisitions de plusieurs sujets et permettant l'estimation de mesures microstructurelles seront nécessaires.

Vers des méthodes cliniquement réalisables

En plus de la validation, il sera important de diminuer le temps d'acquisition requis dans l'estimation des propriétés microstructurelles et dans la reconstruction par tractographie avec a priori microstructurels. Les méthodes proposées dans cette thèse dépendent de protocoles d'acquisitions longs (552 mesures, 89 minutes d'acquisition) [START_REF] Setsompop | Pushing the limits of in vivo diffusion MRI for the Human Connectome Project[END_REF]] et d'appareils IRM état de l'art (force maximum des gradients de diffusion de 300 mT/m) [START_REF] Van Essen | The Human Connectome Project: a data acquisition perspective[END_REF]. Dyrby et al. [2012] ont montré qu'il est possible de mesurer l'information microstructurelle avec moins de mesures de diffusion (300) et des requis matériel plus faible (force maximum des gradients de diffusion de 60 mT/m). Il sera d'intérêt d'optimiser le protocole d'acquisition en évaluant quantitativement la tractographie sur des données in vivo et sur des données simulées.

Finalement, l'imagerie par résonance magnétique pondérée en diffusion est une modalité d'imagerie uniques de l'architecture cérébrale, à partir de laquelle les propriétés microscopiques et macroscopiques des tissus cérébraux peuvent être mesurées in-vivo. Nous devons poursuivre le développement des méthodes de reconstruction de la structure de la matière blanche afin d'augmenter leurs applicabilité clinique. L'estimation du connectome structurel du cerveau est crucial pour mieux comprendre son dévelopement, sa plasticité et son fonctionnement.

Résumé

Nous proposons une méthode estimant de façon simultanée les caractéristiques microstructurelles et la structure des faisceaux de matière blanche. Les développements récents en imagerie par résonance magnétique de diffusion permettent de mesurer le propagateur de diffusion in-vivo avec des acquisitions de données ayant des b-value allant jusqu'à 10,000 s/mm 2 . En représentant le signal de diffusion sur une base continue, par exemple avec la méthode Mean Apparent Propagator (MAP) MRI [Ozarslan et al. 2013], nous pouvons estimer des propriétés microstructurelles des tissus biologiques. Pourtant, les algorithmes de tractographie actuels reposent essentiellement sur l'information d'orientation extrait du signal de diffusion sans considérer la microstructure de la matière blanche. Cela limite les performances de la tractographie, en particulier dans les régions où l'organisation de la matière blanche est complexe. Par exemple, deux faisceaux parallèles de matière blanche sont indistinguables en ne considérant que l'information d'orientation dans le voxel. Pour résoudre cette problématique, nous proposons d'abord d'utiliser la méthode MAP MRI pour étendre les modèles théoriques proposés par Callaghan [1995] décrivant la distribution du diamètre axonal dans les tissus de matière blanche. Ensuite, un algorithme de tractographie et d'estimation du diamètre axonal est proposé, permettant de réduire les erreurs de reconstruction. La méthode est validée avec des données simulées et avec des données in-vivo du Human Connectome Project.

Contributions

-Formulation paramétrique du propagateur de diffusion pour la diffusion de la molécule d'eau dans un compartiment cylindrique. -Mesure d'un indice du diamètre axonal moyen par le propagateur de diffusion. -Algorithme de tractographie reconstruisant des faisceaux parallèles de matière blanche superposés, en utilisant l'information microstructurelle.

the direction of the axons within the probed tissue before the acquisition as well as the tissue to be highly organized. Our contributions are twofold. First, we extend the theoretical DWI models proposed by Callaghan et al.

to characterize the distribution of axonal calibers within the probed tissue taking advantage of the MAP-MRI model. Second, we develop a simultaneous tractography and axonal caliber distribution algorithm based on the hypothesis that axonal caliber distribution varies smoothly along a WM fascicle. To validate our model, we test it on in-silico phantoms and on dataset of the Human Connectome Project.

A.1 Introduction

In recent years, Diffusion-weighted (DW) magnetic resonance imaging (MRI) has empowered the analysis of the brain's white matter (WM) anatomy and its relationship with function and pathologies. DWI has provided great tools to advance the study of neuroscience and neuropathology. However, the relationship between the measures obtained from the DWI signal and their underlying biological process is still unclear. In this work, we build upon current advances in DWI acquisition and signal modelling to develop a new technology to trace WM fascicles while simultaneously characterizing the distribution of axonal calibers (i.e. diameters) within the fascicle. In doing this, we expect to provide better tools to characterize the WM. Examples of these possible applications could be pathology-oriented, for instance through the detection of axonal swelling and quantification of the connectivity between two cortical areas; or neuroscience oriented, as axonal caliber has been shown to be closely related to the efficiency of electrical signal propagation within the axons [START_REF] Ritchie | On the relation between fibre diameter and conduction velocity in myelinated nerve fibres[END_REF]].

Despite recent advances in axonal caliber quantification from DWI, to the best of our knowledge, none of them has been used to improve tractography at the moment of the tract tracing process. Two post-processing approaches to combine microstructure information and tractography have been proposed [START_REF] Daducci | COMMIT: Convex Optimization Modeling for Micro-structure Informed Tractography[END_REF][START_REF] Sherbondy | MicroTrack: an algorithm for concurrent projectome and microstructure estimation[END_REF]]. To solve complex WM areas (e.g. branching, crossing, merging, and bottlenecks), these approaches reject tracts from a full brain tractography based on microstructure information. This is sensitive to the choice of the tractography algorithm used, since this requires all plausible configurations of tracts inside the complex region. Our novel tractography algorithm, AxTract, addresses the complex configuration problem differently. AxTract incorporates the axonal caliber estimation in the tractography algorithm and uses it during the tracing process. This produces tracts with embedded microstructure information and enables the possibility of solving the tracing through WM areas using axonal calibers information.

In developing AxTract to be useful for reasonably long DWI acquisitions, we base our model solely on the ensemble average propagator (EAP) [Ozarslan et al. 2013] at a fixed gradient separation time. This relaxes the requirements of axonal caliber estimation techniques such as AxCaliber [START_REF] Assaf | AxCaliber: a method for measuring axon diameter distribution from diffusion MRI[END_REF] and ActiveAx [Alexander 123 et al. 2010] which focus on the signal attenuation and need a sampling over different gradient separation times. Our approach has the main advantage of simultaneously modelling, through the Fourier slice theorem, all measurements on the perpendicular plane to the cylinder population. To prove the soundness of our model, we developed the first contribution of this work: a generalized return-to-axis probability (RTAP) measure [Ozarslan et al. 2013] showing that even at gradient separation times used in current clinical protocols, axonal caliber can be quantified. This enabled our second contribution: the AxTract algorithm which estimates axonal caliber during the tractography process using it as a prior for the traced tract.

A.2 Theory

The DWI signal within a voxel measures diffusion of water particles within different compartments, such as axons and astrocytes. It is possible to characterize the diffusion process as the displacement probability density of water particles within these compartments, the ensemble average propagator (EAP) [Ozarslan et al. 2013]:

P (r -r ; ∆) = c∈C ρ c (r ) R 3 P 0 (r ; c)P c (r; r , ∆)dr (A.1)
where r , r are the particle's start and end positions; ∆ the diffusion time; C is the set of compartments; ρ c (r ) is the probability of r being inside compartment c; P 0 the probability of the initial position in c; and P c the compartment-specific propagator.

The EAP is related to the attenuation of the DWI signal by the Fourier transform:

E(q; ∆) = F r-r P (r -r ; ∆) (q),
Within the study of the human brain WM, the axons present a specific interest. Within a voxel, axons can be modelled as cylindrical segments, for which specific formulations of P and E exist [Callaghan 1995]. In compartments where diffusion takes place within a set of cylinders oriented along direction r with negligible tortuosity and permeability, the displacement rr is decomposable in the parallel and perpendicular directions to the cylinder [START_REF] Assaf | New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter[END_REF]]. We write this as 124 A.2. Theory rr = (rr ) + (r ⊥ -r ⊥ ) leading to separable formulations of P and E [START_REF] Assaf | New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter[END_REF]:

P (r -r ; ∆) = P (r -r ; ∆) P (r ⊥ -r ⊥ ; ∆) = R P 0 (r )P c (r -r ; ∆)dr R 2 P 0 (r ⊥ )P c ⊥ (r ⊥ -r ⊥ ; ∆)dr ⊥ E(q; ∆) = E(q ; ∆) E(q ⊥ ; ∆). (A.2)
This decomposition enables the use of theoretical models for P c [Callaghan 1995]. If the propagator P c is measured at a cylinder of cross-sectional area A and it's filled with water with diffusion coefficient D, we derive the following expressions [Callaghan 1995]:

P cyl (r ; r , ∆) = e - r -r 2 4D∆ √ 2πD∆ P cyl ⊥ (r ⊥ ; r ⊥ , ∆, A) = nk 2 1 n=0 e - πγ 2 nk D∆ A γ 2 nk J n (γ 2 nk )(γ 2 nk -n 2 )A J n √ πγ nk r ⊥ √ A J n √ πγ nk r ⊥ √ A cos(nθ) cos(nθ ) (A.3)
where 1 n=0 is the indicator function for n = 0, θ and θ are the respective angles of r ⊥ and r ⊥ when expressed in polar coordinates in their respective plane perpendicular to r and r , J n is the n-th cylindrical Bessel function and γ kn the k-th the root of its derivative: J n (γ kn ) = 0.

Having a specific model for cylindrical compartments, i.e. axons, we can derive the theory to estimate the axonal cross-sectional area. Different techniques to capitalize the theoretical model in Equation A.3 for cylinder compartments and measure axonal radii have been proposed. The main exponents of these are AxCaliber [START_REF] Assaf | AxCaliber: a method for measuring axon diameter distribution from diffusion MRI[END_REF]; ActiveAx [START_REF] Alexander | Orientationally invariant indices of axon diameter and density from diffusion MRI[END_REF]; and the Return-to-Axis-Probability (RTAP) [Ozarslan et al. 2013]. However, the applicability of these techniques is limited, even in current state-of-the-art whole human brain acquisitions such as the HCP project: AxCaliber relies on a relatively dense sampling along the q and ∆ dimensions; ActiveAx estimates a single-parameter which experimentally correlates 125 A.2. Theory with the mean caliber without an explicit formal relationship to it; and RTAP which needs very large diffusion times (∆) for the perpendicular EAP to become [Ozarslan et al. 2013]

Pcyl ⊥ (r ⊥ ; r ⊥ ; A, ∆) ∆→∞ ---→ 4 cos -1 r ⊥ √ π 2 √ A -r ⊥ √ π 2 √ A 4 -r ⊥ 2 π A 2πA
and converge to the reciprocal of the cross-sectional area of the axonal population

RTAP(∆) = R 2 E ⊥ (q ⊥ ; ∆)dq ⊥ = Pcyl ⊥ (0, ∆) ∆→∞ ---→ A -1 .
The first contribution of our work is to prove that, even at small ∆ values, the propagator along the cylinder has a specific relationship with the distribution of cross-sectional areas in a cylinder population. We base our model on the EAP as opposed to the AxCaliber and RTAP approaches which focus on the signal attenuation. This has the main advantage of simultaneously modelling, through the Fourier slice theorem, all measurements on the perpendicular plane to the cylinder population. We start our model in the style of AxCaliber and "infinite ∆" RTAP and attach a density to the cross-sectional area of a cylinder population. Our density is based on three hypotheses given by Ozarslan et al. [2013]. First, each particular cylinder's contribution to the overall signal is proportional to the ratio of water particles in it, which is in direct relationship with the cylinder's cross-sectional area. Second, the cylinder population is Gamma-distributed [START_REF] Assaf | AxCaliber: a method for measuring axon diameter distribution from diffusion MRI[END_REF]. This leads to specific EAP formulation, Equation A.1, for N cylinders:

P (r -r ; ∆, α, β, N ) = N i=1 A i N j A j
Pcyl (rr ; ∆, A), A i ∼ Γ(α, β), (A.4) where each A i is an independent and identically distributed random variable with Gamma distribution, of shape α and rate β, of the cross-sectional area. Finally, our third hypothesis assumes that the population is large enough to be approximated by locally tangent to direction of maximal diffusion probability. Specifically, the DT model cannot express complex geometries such as tract crossings and kissings. Hence, several algorithms have been proposed to extend this algorithm and be able to trace through these geometries [e.g. [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Tristán-Vega | Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging[END_REF][START_REF] Tuch | Q-ball imaging[END_REF]]. These algorithms rely on the same hypothesis of that the direction of maximum probability is enough to trace these tracts and add, in one way or another, a new hypothesis of preservation of the previous tracking direction.

With AxTract, we aim to preserve not only direction but average axonal caliber, adding a biologically-driven hypothesis and enabling to traverse complex structures with more confidence on the results. At each point along the tract, we fit a model of the EAP based on the theoretical models presented in Section A.2. We develop a multi-compartment fitting model to separate the EAP data corresponding to a particular population from other compartments. Hence, we assign to each ODF peak an EAP formulation for a cylindrical population and we add to the whole ensemble an isotropic tensor representing the combination of extra-cellular water and spherical compartments such as astrocytes. The formulation of our tract-point model To fit Equation A.11 and to extract the ODF peaks, we use a continuous representation of P which is analytically estimated from the DWI signal attenuation, MAP-MRI [Ozarslan et al. 2013]. This provides us with the means to obtain the ODF peaks and optimize our objective function over a dense sampling on r.

Tractography

Streamlines propagate in a WM volume and stop when a position outside the volume is reached [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF]]. The tracking process propagates a seed from the initial position (placed within the volume) following diffusion properties. To obtain these properties, the signal at the tracking position is obtained with trilinear interpolation of the DWIs. Then, MAP-MRI is used to represent the signal locally [Ozarslan et al. 2013], from which the ODF peaks are extracted. Using the peak directions and the signal representation from MAP-MRI, AxTract estimates each peak's caliber (see EquationA.11). The streamline propagation follows the peak with the estimated axonal caliber closest to the median caliber of the current streamline. The estimated streamline caliber is given by median caliber over previous tracking directions for a fixed maximum distance of 5mm. Peaks forming an angle greater than θ = 75 • with the previous tracking direction are discarded from the selection to enforce smoothness in streamline reconstruction [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF]]. The tracking stops if no peaks are available. The initial tracking direction is set to the direction associated with the maximum value of the ODF locally. Once the tracking stops, it is re-initiated in the opposite initial direction to form the complete streamline. Additionally, we fixed the tracking discrete step size to 0.5mm. 

A.6 Discussion and Conclusion

In this paper, we introduced a novel algorithm to simultaneously perform tractography and axonal caliber estimation. In doing this, our algorithm is able to use the axonal caliber as a prior to trace fascicles through complex WM areas such as kissings.

Simplified parametric formula for the EAP in a cylindrical population:

The first contribution of our work is to establish the grounds for axonal caliber measurement on DWI acquisitions which holds when the diffusion time ∆ is short. We based our analysis on the theoretical models for diffusivity within cylinders provided by Callaghan [1995] and derived a series-based expression of the EAP at limited ∆ in terms of the axonal caliber. Our resulting formula (Equation A.8) shows that, even at limited ∆, RTAP is an estimator of axonal caliber. Moreover, through the Fourier slice theorem, the EAP along the axis parallel to the cylinder population noise level (see Figures A.1,A.4). Even though the estimation is not as accurate as in single population cases, it showed improvements in the streamline reconstruction, both at SNR=20 and SNR=100 (see Figure A.5). The median caliber estimated locally seems to be robust to misestimation of the caliber at some of the tracking steps. We can observe in Figure A.5 that the tractography needs in some cases to follow peaks with higher local deviations to keep following the fascicle with the closest caliber. Always following peaks with the lowest local deviation, as with deterministic peak tractography, leads to error in the kissing configuration reconstruction. A smaller tracking step size would help following the fascicle tangent direction and reduce the maximum deviation angle θ parameter, thus producing a smoother WM pathway reconstruction. AxTract allows the streamline propagation to follow pathways otherwise not explored by the deterministic tractography. Those results are preliminary, but expose a potential use of the microstructural information in tractography to properly reconstruct complex WM architectures such as kissing and branching configurations. Future work on full brain WM reconstruction is planned. The main limitation of the current implementation is the computational requirements.

To conclude, in this work we presented AxTract, a novel algorithm that uses simultaneous axonal caliber estimation and tractography to resolve WM fascicle tracking through areas of complex WM configurations. In order to develop this algorithm, we provided mathematical grounds for the feasibility of caliber estimation and evidence for both in silico and human data. Finally, we tested our tractography algorithm which was able to tract through a fiber kissing using a priori information of the traced fascicle which was previously not possible.

Résumé

L'imagerie par résonance magnétique de diffusion permet l'étude de la connectivité structurelle in-vivo. Dans ce travail, nous étudions la reproductibilité et la spécificité des matrices de connectivité [START_REF] Hagmann | Mapping human whole-brain structural networks with diffusion MRI[END_REF][START_REF] Hagmann | Mapping the structural core of human cerebral cortex[END_REF][START_REF] Sporns | Networks of the brain[END_REF]] entre les régions du cortex. Nous comparons les matrices obtenues à partir d'algorithmes de tractographie déterministe et probabiliste. Nous montrons que la tractographie probabiliste produit des matrices de connectivité ayant un plus grand ratio de distance inter-sujet à distance intra-sujet. De plus, nous montrons que les matrices de connectivité structurelle peuvent être utilisées comme outil de comparaison des reconstructions par tractographie en terme de leur reproductibilité et leur spécificité.

Contributions

-Méthode de comparaison des méthodes de reconstruction par tractographie in vivo, reposant sur les matrices de connectivité structurelle. -Analyse de la reproductibilité et de la spécificité d'algorithmes de tractographie (déterministe et probabiliste).

Commentaires

Ce travail a été présenté à la conférence internationale Organization for Human Brain Mapping (OHBM), juin 2015, Honolulu, Hawaii, États-Unis.

B.1 Introduction

Diffusion-weighted imaging is often used as a starting point for in vivo white matter (WM) connectivity to reconstruct potential white matter pathways between brain areas. In this study, we investigate the reproducibility and the specificity of connectivity matrices [START_REF] Hagmann | Mapping the structural core of human cerebral cortex[END_REF][START_REF] Hagmann | Mapping human whole-brain structural networks with diffusion MRI[END_REF][START_REF] Sporns | Networks of the brain[END_REF]] in cortical to cortical connectivity using probabilistic and deterministic local streamline tractography, seeding both from the whole white matter and from the interface between the white matter and the grey matter (WM-GM interface). Tractography pipelines are compared in their ability to both identify individual brains accross multiple acquisitions and to differentiate brains accross subjects.

B.2 Methods

Diffusion-weighted images were acquired on three volunteers (V1, V2, V3) along 64 uniformly distributed directions using a b-value of 1000 s/mm2, a single-shot echo-planar imaging (EPI) sequence on a 1.5 Tesla SIEMENS Magnetom (128x128 matrix, 2 mm isotropic resolution, TR/TE 11000/98 ms) and a GRAPPA factor of 2. An additional b0 image was acquired in reversed phase-encode direction to correct for susceptibility-induced distortions [START_REF] Andersson | How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging[END_REF] using FSL [START_REF] Smith | Overview of fMRI analysis[END_REF]]. An anatomical T1-weighted 1 mm isotropic MPRAGE (TR/TE 6.57/ 2.52 ms) image was also acquired. The whole sequence was repeated four times (A1, A2, A3, A4) for each of the three volunteers (in two acquisition sessions in the same week), to obtain four distinct datasets of each brain. Freesurfer [START_REF] Fischl | Automatically Parcellating the Human Cerebral Cortex[END_REF]] was used to obtain the cortical parcellation from the T1-weigthed image into 150 regions [Destrieux et al. 2010]. Each of the 150 grey matter regions were inflated by 3mm into the white matter to compute the connectivity between pairs of regions (number of streamlines connecting two regions) using Dipy [Garyfallidis et al. 2014a]. Fiber Orientation Distribution Functions (fODFs) from spherical deconvolution [START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution[END_REF] were estimated using MRtrix [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF]] and used for tractography. Partial volume estimation maps from the T1-weighted image were obtained using FSL/FAST [START_REF] Zhang | Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[END_REF]] and used in the tracking process as proposed in [Girard et al. B.2. Methods 2014c]. We use the deterministic and probabilistic streamline tractography enforcing grey matter to grey matter connectivity using anatomical priors [START_REF] Girard | Towards quantitative connectivity analysis: reducing tractography biases[END_REF]]. Streamlines were generated seeding from both the white matter mask using 5 seeds per voxel (2,114,375 seeds on average) and the WM-GM interface using 10 seeds per voxel (1,315,843 seeds on average). This results on an average to 222,084 streamlines connecting 2 of the 150 regions of the cortex for white matter seeding and an average of 172,772 streamlines for the WM-GM interface seeding. The difference between two connectivity matrices is computed with the total variation distance

δ(M 1 , M 2 ) = 1 2 x |M 1 (x) -M 2 (x)|, (B.1)
where x are unique pairs of regions in connectivity matrices M i . Every connectivity matrices M i are normalized to sum to 1. This can be interpreted as the percentage of streamlines that connect different regions in both matrices. We used the Davies-Bouldin (DB) index [START_REF] Davies | A Cluster Separation Measure[END_REF] to evaluate both the intra-subject similarity of the connectivity matrices and the inter-subject differences. The Davies-Bouldin index is computed following

DB = 1 n n i=1 max j =i σ i + σ j δ( Mi , Mj ) , Mi = 1 K K k=1 M (k) i , σ i = 1 K K k=1 δ( Mi , M (k) i ,
where σ i is the intra-subject distance and Mi is the mean connectivity matrix of subject i. The intra-subject distance σ i is computed as the mean distance between the K = 4 connectivity matrices and the mean connectivity matrice Mi of subject i.

The DB index is defined as a ratio of intra-subject distances to inter-subject distance, thus low values indicate a good subject separation, in terms of the total variation distance between connectivity matrices (Equation B.1).

B.3. Results

Table B.1: Connectivity matrix analysis. The average inter-subject distance is computed as the average distance between subjects' mean connectivity matrices (reported in %). The intra-subject distance is computed as the average distance between each acquisition and their associated mean connectivity matrix (reported in %). Probabilistic tractography shows a lower DB index than deterministic tractography. WM-GM interface seeding reduces both the average intra-subject and average inter-subject distances compared to white matter seeding. 

B.4 Conclusions

Connectivity matrices from all pipelines show concistency for both inter-subject and intra-subject distance, as shown in Figure B.2. Probabilistic tractography have lower DB indexes (0.93, 0.93) than deterministic tractography (1.21, 1.16). The interface seeding produces both a lower inter-subject and intra-subject distances. Furthermore, WM-GM interface seeding is preferable to white matter seeding strategy since it limits the bias in the streamline distribution introduced by the over seeding in longer bundles [START_REF] Girard | Towards quantitative connectivity analysis: reducing tractography biases[END_REF][START_REF] Hagmann | Mapping human whole-brain structural networks with diffusion MRI[END_REF]]. Overall, the probabilistic WM-GM interface tractography has an average of 16.8% of streamlines connecting different brain regions for intra-subject reconstructions and 27.3% for inter-subject reconstructions (see Table B.1). In this study, we showed that probabilistic tractography pipelines produce connectivity matrices with higher ratio of inter-subject distances to intra-subject distances. Moreover, we showed that connectivity matrices can be used as a tool to compare tractography algorithms in terms reproducibility and specificity.
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  figure I.1 -Image anatomique IRM pondérée T1 de la tête d'un homme adulte en plan axial, montrant le LCS, la matière grise du cortex ainsi que la matière blanche sous-jacente.

  figure I.2 -Schéma de la structure d'un neurone. Image adaptée de Wikipedia 1 .

  figure I.3 -Image en microscopie avec agent de contraste des axones traversant le corps calleux, chez l'homme. Les axones apparaissent comme des cercles noirs entourés de myéline, en noir. L'image de gauche montre des axones dans la partie antérieure du corps calleux et l'image de droite montre de plus gros axones dans la partie postérieure du faisceau (la barre horizontale mesure 10µm). Image deAboitiz et al. [1992a].

  figure 1.1 -Représentation locale par le tenseur de diffusion. a) Mouvement des molécules d'eau dans un faisceau de fibres de matière blanche (image de Poupon[1999]). b) Schéma du tenseur de diffusion estimé dans un voxel ayant une seule orientation principale de diffusion (imagede Descoteaux [2008]). c) Décomposition en vecteurs (orientation 3D) et valeurs propres (étirement 3D) du tenseur de diffusion (imagede Descoteaux [2008]).

  figure 1.2 -Image anatomique IRM pondérée T1 et carte scalaire d'anisotropie fractionnaire (FA).

  de diffusion représente la probabilité de diffusion des molécules d'eau dans chaque le voxel. La figure 1.4 d) présente une ODF reconstruite dans un voxel ayant deux faisceaux se croisant à 90 degrés (figure 1.4 a),b)). Les maxima de l'ODF (en rouge sur la figure 1.4 d)) correspondent aux directions des fibres de la matière blanche. Le tenseur de diffusion, par son hypothèse de diffusion gaussienne, n'estime pas correctement le croisement. Dans l'exemple de la figure 1.4 c) le tenseur a la forme d'un disque, le vecteur propre principal e 1 de la matrice D ne sera pas nécessairement aligné avec un des faisceaux de fibres de matière blanche. Même si l'ODF permet la détection de l'orientation des fibres lors de croisements

  figure 1.3 -Carte couleur d'orientation principale du tenseur de diffusion (DEC) et carte couleur DEC combinée à la carte FA (DEC-FA).

  figure 1.4 -Reconstruction d'un croisement de fibres de matière blanche. a) Déplacement des molécules d'eau dans un voxel où deux faisceaux de fibres de matière blanche se croisent à 90 • , b) schéma du croisement, c) reconstruction du tenseur de diffusion, d) reconstruction de l'ODF de diffusion, e) reconstruction de l'ODF de fibres. Images adaptées de Descoteaux et Poupon [2014].
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 5 figure 1.5 -Carte couleur d'orientation moyenne de la fODF (DEC-FOD), carte scalaire de l'intégrale de l'amplitude de la fODF (FOD amp.) et carte couleur DEC-FOD combinée à la carte FOD amp. (DEC-FOD amp.).

R 3 P 0

 30 figure 1.6 -Vue axiale d'images de diffusion d'un même cerveau dans plusieurs orientations et plusieurs amplitudes. Image adaptée de Assaf et Basser [2005].

  figure 1.8 -Propagateurs de diffusion dans la matière blanche, in-vivo. Les trois images centrales présentent la fonction de densité de probabilités du déplacement de la molécule d'eau jusqu'à un maximum de 20 µm en vues latérale, antérieure et supérieure (∆ = 17.8ms). L'image de droite présente l'intégrale radiale du propagateur de diffusion (ODF de diffusion, moment radial d'ordre 2 [Ozarslan et al. 2013]).

  figure 2.1 -Jeu de données FiberCup provenant d'un objet imagé. a) Tractogramme produit par un algorithme de tractographie. b) Approximation des faisceaux synthétiques du jeu de données FiberCup. c) Schéma des faisceaux, avec leurs régions terminales utilisées pour segmenter le tractogramme.

  figure 2.2 -Algorithmes de tractographie locale avec la fODF. La tractographie suit la distribution locale des faisceaux de façon itérative avec des pas de longeur ∆t. La direction de propagation doit avoir un rayon de courbure supérieur à R (la déviation maximum est indiquée par l'angle θ, R = ∆t/(2 • sin(θ/2))). a) l'algorithme de tractographie déterministe suit toujours le maximum de la fODF le plus aligné avec la direction précédente. b) L'algorithme de tractographie probabiliste choisi aléatoirement une direction dans le cône d'angle θ, pondérée par les valeurs de la fODF. Images adaptées de Côté et al. [2013].

  [par exemple Jones 2008 ; Jeurissen et al. 2011 ; Lazar et Alexander 2005 ; Jones et Pierpaoli 2005 ; Behrens et al. 2007 ; Behrens et al. d'importance par rapport à la densité des tractes faisant partie du faisceau recherché. Ces cartes de connectivité s'avèrent des outils intéressants pour quantifier et comparer la connectivité [par exemple Anwander et al. 2006 ; Koch et al. 2002 ; Parker et Alexander 2005 ; Lazar et Alexander 2005 ; Behrens et al. 2007 ; Parker et Alexander 2005 ; Jbabdi et Johansen-Berg 2011 ; Friman et al. 2006 ; Dyrby

  figure 2.4 -a) Illustration schématique d'un voxel contenant deux faisceaux se croisant à 90 • . Le volume du faisceau inférieur-supérieur (bleu) est deux fois plus grand que le volume du faisceau gauche-droite (rouge). b) Suivant le processus de déconvolution, la fODF devrait être deux fois plus large la direction inférieur-supérieur. c) Une reconstruction sans biais devrait produire, dans chacun des voxels, un nombre de tracte proportionnelles au volume de la fODF. Image de Smith et al. [2013].
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 3 Figure 3.1: The WM binary mask (first row) and the WM PVE maps (second row).Red circles highlight differences between the WM binary mask and the WM PVE map.

Figure 3 . 2 :

 32 Figure 3.2: The tracking include map M ap in (first row) is the GM PVE map plus all voxels not part of the brain mask (voxels containing GM, WM or CSF). The exclude map M ap ex (second row) is equal to the CSF PVE map.

  Figure 3.3: PFT algorithm. (a) A streamline prematurely stops in the CSF (white) and (b) a backtracking step is done. (c,d,e) shows the particles at three iterations of PFT. PFT estimates the distribution of possible streamlines using probabilistic samples and weighs them using anatomical information. Redish particles have low weight and greenish have high weight. (f) A path is drawn from the particles distribution. (g) The propagation process then continues using the principal tractography algorithm (deterministic).
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 3 Figure 3.4: The WM/GM interface. All voxels of the interface have a GM PVE > 0.1 and a WM PVE > 0.1.

Figure 3 . 5 :

 35 Figure 3.5: Synthetic Dataset. (a) Sphere of CSF (black) with WM (white), connecting GM at the extremity of the WM (green), (b) M ap in , (c) M ap ex .

  The Valid Connection to Connection Ratio (V CCR): relation between valid connections and all connections estimated V CCR = V C/(V C + IC). -The Connection to Seed Ratio (CSR): relation between the number of connections estimated and the number of seeds S used by the tractography algorithm, i.e. CSR = (V C + IC)/S. If all seeds produced a streamline (

Maximum

  Figure 3.6 (a) shows valid connection to connection ratio V CCR s , and connection to seed ratios CSR s and CSR b for deterministic and probabilistic tractography varying
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 3 Figure 3.7: Streamlines estimated varying the fiber ODF threshold τ parameter using probabilistic tractography. A thousand streamlines were initiate at the seed voxel indicated by the arrow. Increasing τ reduce the number of erroneous streamlines.
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 38393 Figure 3.8: Deterministic and probabilistic tractography of the Corticospinal Tracts (CST) in sagittal and coronal views. (a) MRtrix, (b) in-house algorithms with CMC, (c) in-house algorithms with CMC and PFT, (d) additonally included streamlines using PFT. In-houses P F T streamlines can be seen as a fraction of in-house streamlines plus a fraction of Extra P F T .

  = 1, ..., N } is the set of random samples with {w (i) k , i = 1, ..., N } their associated weights. The weight of a sample x (i) k at time k corresponds to its weight at time k -1 times the likelihood of the observation y (i) k . Weights are then normalized over all particles to have N i=1 w

Figure 3

 3 Figure 3.12: Examples of Valid Connections (V C), Invalid Connections (IC) and No Connections (N C) on the synthetic dataset [Côté et al. 2013]. A thousand streamlines were initiate at the seed voxel indicated by the arrow.

  Dans ce chapitre, nous abordons la visualisation de la matière blanche reconstruite par tractographie. En particulier, la visualisation des caractéristiques structurelles de la matière blanche par images scalaires à trois dimensions et images couleur à trois dimensions. Nous introduisons la carte tri-dimensionnelle Connectivity directionallyencoded color (C-DEC) pour la visualisation de la connectivité structurelle.

  développer de nouveaux outils pour visualiser ces caractéristiques. De façon similaire à Calamante et al. [2012], nous nous intéressons aux propriétés des tractes intersectant une grille tri-dimensionnelle. Cette grille tri-dimensionnelle peut avoir une résolution supérieure aux images de diffusion puisque les calculs sont faits directement à partir des tractes. Dans Calamante et al. [2012], les auteurs proposent la méthode directionallyencoded color Track-Weighted Imaging (DEC-TWI) représentant l'orientation moyenne des segments de tractes dans chaque voxel. Un exemple de carte DEC-TWI est présenté à la figure 4.1. La couleur indique l'orientation suivant la convention : rouge (gauche/droite), vert (antérieur/postérieur), bleu (inférieur/supérieur) [Calamante et al. 2012 ; Pajevic et Pierpaoli 1999 ; Pierpaoli 1997]). Cette carte permet la visualisation de l'orientation principale des tissus estimés par la tractographie. Elle est complémentaire à la carte directionally-encoded color (DEC) estimée soit à partir du tenseur de diffusion (voir figure 1.3) ou de l'ODF de fibre (voir figure 1.5). Dans Calamante et al. [2010], les auteurs proposent la méthode Tract Density Imaging (TDI) qui produit une carte de densité locale à partir des tractes. La carte TDI met en évidence la variation de la densité voxélique des tractes. Elle est proposée pour identifier des anomalies de la matière blanche [Calamante et al. 2010]. Ces deux dernières cartes, TDI et DEC-TWI, peuvent être combinées en une seule carte couleur (DEC-TDI) de sorte que la couleur indique l'orientation et l'intensité du voxel indique la densité locale des tractes (voir figure 4.1). Dans Pannek et al. [2011], les auteurs corrélant la longueur moyenne des tractes et la présence d'un traumatisme crânien. Notamment, une diminution significative de la longueur moyenne des tractes est observée chez les sujets atteints d'un traumatisme crânien. Les auteurs proposent la carte scalaire average pathlength map (APM) [Pannek et al. 2011], obtenue en calculant la longueur moyenne des tractes traversant chacun des voxels de la grille tri-dimensionnelle (voir figure 4.2).

  figure 4.1 -Carte scalaire de la densité des tractes (TDI), carte couleur de l'orientation moyenne des segments des tractes (DEC-TWI) et carte couleur combinée orientationdensité des segments (DEC-TDI).

  figure 4.3 -Calcul des couleurs des cartes d'orientations à partir des tractes. La carte DEC-TWI est calculée selon l'orientation des segments traversant le voxel, alors que la carte C-DEC est calculée à partir de l'orientation des tractes traversant le voxel. La carte DEC, calculée à partir du tenseur de diffusion, est donnée en référence.

Figure 5 . 1 :

 51 Figure 5.1: Synthetic kissing dataset (SN R = 20). The left fascicle (blue) and right fascicle (green) have a mean axon diameter of 6.88µm and 2.44µm, respectively. (a) shows the ground truth directions used to generate the data with their length scaled by the axon diameter, (b) the estimated fibre ODF, (c) their directions of maximal diffusivity and (d) the same directions with their length scaled by the axon diameter index α, (e,f) show valid connections (VC) and invalid connections (IC) for AxTract and (g,h) show the VC and IC for deterministic tractography.

Figure 5

 5 Figure 5.2: Axon diameter index along the arcuate fasciculus (AF) and the corticospinal tract (CST). Column 1 shows a sagittal view of the T1-weighted image with the blue squares indicating the zooming areas for streamlines visualization. Column 2 shows fascicles coloured by the axon diameter index estimated per segment, with the histogram in column 3. Columns 4 and 5 show respectively fascicles with streamlines coloured by their median axon diameter index and the histogram of median axon diameter index along each streamline.

Figure 5

 5 Figure 5.3: Axon diameter index along the inferior fronto-occipital fasciculus (IFOF) and the uncinate fasciculus (UF). Column 1 shows a sagittal view of the T1-weighted image with the blue squares indicating the zooming areas for streamlines visualization. Column 2 shows fascicles coloured by the axon diameter index estimated per segment, with the histogram in column 3. Columns 4 and 5 show respectively fascicles with streamlines coloured by their median axon diameter index and the histogram of median axon diameter index along each streamline.

Figure 5

 5 Figure 5.4: Axon diameter index along the corpus callosum sub-fascicles. Column 1 shows the regions used to split the fascicle. Column 2 shows sub-fascicles coloured by the axon diameter index estimated per segment, with the histogram in column 3. Columns 4 and 5 show respectively sub-fascicles with streamlines coloured by their median axon diameter index and the histogram of median axon diameter index along each streamline.

Figure 5 . 5 :

 55 Figure 5.5: Axon diameter index of the corpus callosum. Streamlines coloured using (a) the axon diameter index estimated per segment and (b) the median axon diameter index along each streamline.

  Figure 5.7: Sagittal cut of streamlines crossing below the precentral gyrus, with various axon diameter index.

Figure 5 . 8 :

 58 Figure 5.8: AxTract trigger map. Yellow voxels show where knowledge of the axon diameter index resulted in a change of the propagating direction from deterministic tractography. AxTract changed the tracking direction at least once in ∼ 18% of voxels of the white matter volume, and on average once every 89.2mm (the average streamline length is 45.5mm).

Figure 5

 5 Figure 5.9: (a) Mean axon diameter index, (b) mean apparent fibre density, (c) mean fractional anisotropy, along streamline fascicles 34 healthy subjects. Results are shown for five fascicles: the arcuate fasciculus (AF), the corticospinal tract (CST), the inferior fronto-occipital fasciculus (IFOF), the uncinate fasciculus (UF) and the corpus callosum (CC). The CC is split in 5 sub-fascicles using the FreeSurfer parcellation (posterior, mid-posterior, central, mid-anterior, anterior) and TractQuerier. Projection and association fascicles are computed for each hemisphere and averaged for each subject.

  Pfit (r; D, f 1 , . . . , f N , A 1 , . . . , A N , d 1 , . . . , d N ) =N i f i Pcyl (r; A i , d i ) + (1 -N i f i ) Pec (r; D), N i f i ≤ 1, f i ∈ [0, 1] (A.10)where N is the number of non-collinear tracts crossing that point, namely of ODF peaks; A i the average calibers; d i the tract orientation; Pcyl the propagator of a cylindrical ensemble, where for implementation speed, we assume a large diffusion time. Pec (r, D) is the extra-cylindrical compartment propagator accounting for free and isotropically restricted water: and f are the mixing factors.Then, for a given an EAP P (r), we fit our model in Equation A.10 by minimizing 129 A.3. Methods the squared loss function with combined global-local optimisers argmin D,f 1 ,...,f N ,A 1 ,...,A N = R 3 [ P (r) -Pfit (r; D, f 1 , . . . , f N , A 1 , . . . , A N , d 1 , . . . , d N )] 2 dr (A.11)

  Figure A.1: Error on synthetic fiber calibers estimation using Equation A.11. (a, b) Single fiber caliber estimation. The ground truth caliber is shown by the dashed blue line. (b, d) 90 • crossing fibers caliber estimation. The second fiber has a constant caliber of 12µm shown by the dashed green line.

  Figure A.3: Synthetic kissing configuration dataset at SNR=20. The fiber on the left has a caliber of 12µm and the fiber on the right has a caliber of 4µm. (a) ODFS, (b, c) EAP value at fixed radii r, (d) peaks extracted from ODFs, (e, f) peaks with the minimum, respectively the maximum, caliber in each voxel.

Figure B. 1

 1 Figure B.1 shows example of connectivity matrices. Differences in the connectivity matrices can be observed between probabilistic and deterministic tractography, and between both subjects. FigureB.2 shows the distances between each matrix (three subjects V, four acquisitions A) of the four pipelines. The first row shows the probabilistic tractography pipelines and the second row the deterministic tractography pipelines. Distance ranges vary among pipelines, but consistently shows lower values for intra-subject than inter-subject connectivity matrices. TableB.1 shows the DB index for the four tractography pipelines. Probabilistic tractography shows a lower DB index than deterministic tractography. WM-GM interface seeding reduces both the average intra-subject and average inter-subject distances compared to white matter seeding.

Figure B. 1 :

 1 Figure B.1: Connectivity matrices using WM-GM interface seeding. The first row shows connectivity matrices of deterministic and probabilistic tractography for the same subject and acquisition. The second row shows the connectivity matrices of probabilistic tractography algorithms for two acquisitions of the same subject. Differences in the connectivity matrices can be observed between probabilistic and deterministic tractography, and between both subjects.

  

  

  

  

  

  

  

  Comparison between MRtrix, in-house and in-house P F T algorithms on brain white matter bundles. Extra P F T shows streamlines included using PFT, that would have been excluded otherwise. The streamline count and the average streamline length is shown for each bundle. From left to right : All streamlines, the corticospinal tract (CST), the Corpus Callosum (CC), the Superior Longitudinal Fasciculus (SLF), the Inferior Longitudinal Fasciculus (ILF), the Uncinate Fasciculus (UF), the association fibers between the precentral gyrus and postcentral gyrus (U 1 ) and the association fibers between the superior frontal gyrus and middle frontal gyrus (U brales de manière non invasive. L'IRM a permis le développement d'outils uniques de diagnostic d'anomalies cérébrales et a permis d'enrichir notre compréhension du cerveau. Les tissus cérébraux sont souvent séparés en trois catégories : la matière grise, la matière blanche et le liquide cérébro-spinal (LCS). La matière grise est constituée du corps des cellules neuronales et est responsable des fonctions cérébrales. La matière blanche est responsable des communications entre les différentes régions de matière grise du cerveau et avec le reste du corps. Elle est organisée en faisceaux d'axones (groupe d'axones) liant les régions fonctionnelles entre elles et formant le réseau de connectivités principal du système nerveux central. Ces axones sont appelées les fibres de la matière blanche. Le LCS est le liquide biologique dans lequel baigne le système nerveux central. De manière générale, trois plans orthogonaux sont utilisés pour la visualisation d'images anatomiques chez l'être humain. Le plan coronal est un plan vertical séparant le corps en une partie antérieure et une partie postérieure. Le plan sagittal est le plan vertical divisant le corps en une partie gauche et une partie droite. Le plan axial est le plan horizontal divisant le corps entre une partie inférieure et une partie supérieure. La figure I.1 présente une image IRM anatomique pondérée T1 en vue axiale d'un cerveau humain. La figure I.2 présente le schéma de la structure d'un neurone ainsi que les portions faisant partie de la matière grise et de la matière blanche.En plus des images de type anatomique, l'IRM permet notamment d'estimer la structure des tissus en mesurant le mouvement des molécules d'eau dans différentes directions grâce à une technique appelée IRM pondérée en diffusion ou IRM de diffusion (IRMd)[START_REF] Le Bihan | Imagerie de diffusion in-vivo par résonance magnétique nucléaire[END_REF][START_REF] Bihan | Diffusion tensor imaging: concepts and applications[END_REF] Basser 

Excluded streamlines either stop in the CSF or in the WM, or end in the GM but have a length not in [δ min = 10mm, δ max = 300mm]. . . . . . . . xxvi 3.4 2 ). . . . . . . . . . . . . . . . . . . . . . . 5.1 Tractometer evaluation on the synthetic kissing dataset. Tractography initialization was done both in fascicles interfaces (100 streamlines per voxel ; 18,800 streamlines) and in the white matter volume (20 streamlines per voxel ; 22,400 streamlines). . . . . . . . . . . . . . . . 5.2 Axon diameter index α estimated on the synthetic kissing dataset. The ground truth and the mean median axon diameter index estimated on both fascicles are reported in µm (± standard deviation). The mean median axon diameter index of right fascicles is always underestimated and the mean median axon diameter index of the left fascicle is always overestimated, both with a small standard deviation across streamlines.

B.1 Connectivity matrix analysis. The average inter-subject distance is computed as the average distance between subjects' mean connectivity matrices (reported in %). The intra-subject distance is computed as the average distance between each acquisition and their associated mean connectivity matrix (reported in %). Probabilistic tractography shows

Introduction

L'imagerie par résonance magnétique (IRM) permet l'acquisition d'images céré-
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;

  Johansen-Berg et Behrens 2014 ; Descoteaux 2008 ; Aganj et al. 2010 ; Assaf et Basser 2005 ; Jian et Vemuri 2007 ; Jansons et Alexander 2003 ; Ozarslan et al. 2005 ; Sotiropoulos et al. 2010 ; Sotiropoulos et al. 2012], le lecteur est référé à [Seunarine et Alexander 2009 ; Descoteaux et Poupon 2014] pour une revue de ces méthodes.

  Modèle compartimental ActiveAx. S 1 , ..., S 4 présentent respectivement les propagateur de diffusion des compartiments de diffusion intra-axonale, extraaxonale, libre et stationnaire. S * présente le propagateur de diffusion du signal mesuré ( déplacement maximum de 20 µm, ∆ = 17.8ms, vue latérale). Les facteurs f i pondèrent la proportion des mélécules d'eau dans chacun des compartiments. où f i représente la proportion des molécules d'eau dans le compartiment S i (0

	figure 1.9 -
	.2)

2.1 La tractographie locale . . . . . . . . . . . . . . . . . . . . 24

  

	2.1.1 La tractographie déterministe . . . . . . . . . . . . . . . . . 27
	2.1.2 La tractographie probabiliste . . . . . . . . . . . . . . . . . 28

2.2 La tractographie globale . . . . . . . . . . . . . . . . . . . 29

  

	2.2.1 Minimisation d'énergie globale . . . . . . . . . . . . . . . . 29
	2.2.2 Géodésique . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
	2.2.3 Graphes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
	2.2.4 Approches probabilistes globales . . . . . . . . . . . . . . . 35
	2.3

Filtrage a posteriori . . . . . . . . . . . . . . . . . . . . . . 35

  

	2.3.1 SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
	2.3.2 Tractographie informée par la microstructure . . . . . . . . 36

]. Deux stratégies de pas de propagation ∆t sont généralement utilisées : -Un pas de propagation fixe : Généralement entre 0.2mm et 1mm [Desco-

  

	-Le masque de tractographie : La tractographie de la matière blanche doit
	être contrainte aux tissus de matière blanche où les directions extraites des
	données de diffusion sont plus cohérentes. Souvent, un masque seuillé de la FA
	est utilisé, car la FA est généralement plus grande dans la matière blanche que
	dans la matière grise ou dans le LCS. Cependant, la FA peut être inférieure
	au seuil choisi dans des voxels où il y a des croisements de faisceaux de
	matière blanche. Cela causera des trous dans le masque de la matière blanche.
	Guevara et al. [2011] ont montré qu'un masque de matière blanche segmentée
	de l'image pondérée T1 produit des tractogrammes plus riches et plus précis
	qu'un masque seuillé de la FA. Certaines régions de la matière blanche n'étaient
	pas incluses dans le masque seuillé de la FA, rendant la tractographie de ces
	régions impossible. Le masque calculé de l'image pondérée T1 inclut les voxels
	traversés par notamment le fornix, la commissure postérieure et la commissure
	antérieure. Les résultats de tractographie sont alors plus cohérents avec nos
	connaissances anatomiques de la matière blanche. Dans tous les cas, lorsque
	la tracte se propage à l'extérieur du masque de tractographie, l'algorithme
	considère que les données de diffusion ne sont plus suffisamment cohérentes
	pour poursuivre et termine la propagation de la tracte, en l'incluant dans le
	tractogramme. Les choix du masque et des critères d'arrêts sont discutés en
	détail dans le chapitre 3.
	-L
	teaux 2008 ; Tournier et al. 2012 ; Centuro et al. 1999] combiné à une
	méthode d'interpolation des représentations locales ou des données de diffusion,
	pour obtenir la représentation locale à la position courante [Tournier et al.
	2012 ; Descoteaux 2008 ; Arsigny et al. 2006],
	-Un pas de propagation variable : Les directions de propagation sont déter-
	minées par voxel et le pas de propagation correspond à la distance nécessaire
	pour traverser le voxel [Mori et al. 1999 ; Jones 2008]. L'interpolation des
	représentations locales n'est donc pas nécessaire avec cette stratégie.
	Les algorithmes de tractographie locaux sont liés à un ensemble de paramètres
	déterminant les critères d'arrêt de la propagation des tractes.

'angle d'ouverture (θ) : La direction de propagation d'une tracte

  

	est
	contrainte par un angle de déviation maximum θ. Cette contrainte est soutenue
	par l'hypothèse de régularité des fibres de la matière blanche. Si l'algorithme
	de tractographie mène à une situation où l'angle entre la direction courante et
	la direction suivante est supérieur à θ, l'algorithme suppose une erreur dans les
	données de diffusion et termine le processus. Ces tractes sont parfois incluses,
	parfois exclues du tractogramme. Cette contrainte peut être exprimée en terme
	de minimum de rayon de courbure R = ∆t/(2•sin(θ/2)) [Tournier et al. 2012 ;
	Jones et al. 1999] avec ∆t le pas de propagation. La figure 2.2 schématise ce
	paramètre.
	-

La longueur maximum et minimum (δ max , δ min ) : Les

  tractes plus grandes qu'un seuil δ max sont considérées trop longues pour représenter de réels faisceaux

  Particle Filtering Tractography (P F T ), une méthode utilisant un filtre particulaire pour estimer un segment de tracte valide lorsque l'algorithme de tractographie termine dans la matière blanche ou dans le liquide cérébro-spinal. P F T est modulaire et applicable à la plupart des algorithmes de tractographie locale.

	Contributions
	-Continuous Map Criterion (CMC), une méthode utilisant l'information
	des cartes probabilistes des tissus cérébraux pour déterminer si l'al-
	gorithme de tractographie doit continuer ou s'arrêter. Il s'agit d'une
	alternative à l'utilisation d'un masque de tractographie binaire.
	-
	tout deux
	reposant sur les cartes de volume partiel estimées d'une image anatomique
	pondérée T1. Nous montrons que les bais dans la distribution des tractes
	sont réduits en optimisant les paramètres de tractographie, le critère d'arrêt
	et la technique d'initialisation. Les résultats sont rapportés sur des données
	in-vivo et simulées. La réduction des biais dans la tractographie est une
	étape importante pour obtenir des résultats quantitatifs dans l'étude de la
	connectivité structurelle.

Résumé

La tractographie par IRM de diffusion est l'une des méthodes de choix pour estimer et mesurer la connectivité structurelle entre les différentes régions du cerveau. Toutefois, une portion des connexions reconstruites sont biaisées par la position, la forme, la taille et la longueur des faisceaux estimés. Les connexions structurelles sont alors non uniformément distribuées dans tous les faisceaux de la matière blanche. Les mesures quantitatives reposant sur la distribution des tractes telles que la densité, la longueur moyenne ou le volume sont biaisées par des tractes erronées produites par les algorithmes de tractographie. Dans cet article, nous proposons des méthodes pour réduire les biais introduits dans la distribution de tractes par la position, la forme, la taille et la longueur des faisceaux. D'abord, nous proposons d'optimiser les paramètres de tractographie selon des critères de connectivité. Ensuite, nous proposons de relaxer le critère d'arrêt de la tractographie à l'aide d'un nouveau critère d'arrêt probabiliste et d'un filtre particulaire, -Étude de l'impact des paramètres des algorithmes locaux

de 

tractographie déterministes et probabilistes sur la reconstruction des faisceaux. Les reconstructions sont comparées et évaluées quantitativement sur des données simulées avec l'outil d'évaluation Tractometer. -Identification des biais dans la distribution des tractes pour les algorithmes locaux de tractographie déterministes et probabilistes. La tractographie est faite sur un cerveau sain, avec et sans l'utilisation des méthodes proposées, puis les résultats sont comparés de façon quantitative et qualitative. Commentaires L'article a été accepté pour publication à NeuroImage le 28 avril 2014. Ce travail succède au travail présenté à l'atelier Computational diffusion MRI (CDMRI), en marge de la conférence internationale Medical Image Computing and Computer Assisted Intervention (MICCAI, 2012) [Girard et Descoteaux 2012]. Dans l'article NeuroImage, nous présentons et détaillons l'effet des méthodes P F T et CM C sur la reconstruction des connexions structurelles de la matière blanche. Notamment, nous mettons en évidence les biais introduits lors de cette reconstruction par les algorithmes locaux de tractographie déterministes et probabilistes et nous quantifions l'effet des méthodes proposées sur ces biais.

  ABC s CSR s V CCR s ABC s CSR s V CCR s ABC s CSR s V CCR s ABC s CSR s V CCR s

	SNR						Algorithms					
				Deterministic					Probabilistic		
			In-house			In-house P F T		In-house			In-house P F T	
	10	18.3	48.5	58.3	51.1	86.6	49.5	31.6	32.6	38.5	59.3	85.7	36.0
	20	24.1	53.5	66.1	53.2	90.2	57.6	38.8	38.7	48.3	63.4	89.4	47.0
	30	25.8	54.7	68.9	54.7	91.1	61.3	42.2	39.4	53.5	63.7	91.1	49.7
	default algorithms.										

Table 3 .

 3 3: Streamline distribution and average length, seeding from WM/GM interface. Included streamlines end in the GM. Extra P F T shows the increase in percentage of streamlines included using PFT. Excluded streamlines either stop in the CSF or in the WM, or end in the GM but have a length not in [δ min = 10mm, δ max = 300mm].

	Streamlines		Algorithms	
			Deterministic	Probabilistic
			In-house In-house P F T	In-house In-house P F T
			50.0%	50.0%	62.9%	62.9%
	Included	Extra P F T	32.5mm	32.5mm 19.0% 50.6mm	37.2mm	37.2mm 10.7% 54.6mm
		CSF	2.6% 42.8mm	0.1% 57.2mm	3.4% 48.9mm	0.1% 56.7mm
	Excluded	WM	18.6% 29.7mm	3.4% 34.5mm	10.2% 34.5mm	3.2% 38.9mm
		δ min , δ max	28.8% 7.2mm	27.6% 6.7mm	23.5% 8.3mm	23.2% 7.3mm

  L'article a été soumis à NeuroImage le 19 févier2016 (manuscrit NIMG-16- 388). Ces travaux font suite au travail publié à la conférence internationale Information Processing in Medical Imaging (IPMI, juin 2015, Skye, Écosse). Le manuscrit IPMI est présenté à l'annexe A. Nous y présentons des résultats préliminaires de tractographie sur données simulées avec a priori microstructurels estimés à partir du propagateur de diffusion.Dans l'article suivant, nous utilisons le cadre d'optimisation convexe AMICO, reposant sur l'atténuation du signal de diffusion, pour l'estimation des caractéristiques microstructurelles. Dans les deux articles (chapitre 5 et annexe A), les propriétés microstructurelles sont estimées en représentant la matière blanche par le même modèle, ActiveAx. AMICO permet d'obtenir une estimation plus précise et plus rapide des caractéristiques microstructurelles de la matière blanche que la méthode présentée à l'annexe A.
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 5 

	.1: Tractometer evaluation on the synthetic kissing dataset. Tractogra-
	phy initialization was done both in fascicles interfaces (100 streamlines per voxel;
	18,800 streamlines) and in the white matter volume (20 streamlines per voxel; 22,400
	streamlines).											
					Tractography Algorithm				
			Interface				White Matter		
		AxTract		Deterministic		AxTract		Deterministic
	SNR 10	20	30	10	20	30	10	20	30	10	20	30
	VC 72.1 87.2 90.5 55.9 52.5 53.9 60.9 71.3 73.9 54.1 54.7 55.3
	IC 15.3 8.5 7.9 31.9 42.6 44.2 19.6 15.4 15.2 27.4 32.3 34.2
	NC 12.7 4.3 1.7 12.2 4.9 1.9 19.6 13.3 10.9 18.6 13.0 10.5

Table 5 .

 5 2: Axon diameter index α estimated on the synthetic kissing dataset. The ground truth and the mean median axon diameter index estimated on both fascicles are reported in µm (± standard deviation). The mean median axon diameter index of right fascicles is always underestimated and the mean median axon diameter index of the left fascicle is always overestimated, both with a small standard deviation across streamlines.

		SNR Right facicle Left fascicle
	Ground Truth		6.88	2.44
		10	6.15 ± 0.08 4.42 ± 0.06
	AxTract Interface	20	5.83 ± 0.03 4.22 ± 0.04
		30	5.73 ± 0.03 4.17 ± 0.03
		10	6.17 ± 0.08 4.43 ± 0.06
	AxTract White Matter 20	5.85 ± 0.05 4.23 ± 0.04
		30	5.74 ± 0.04 4.19 ± 0.03

Quasar Jarosz [CC BY-SA 3.0], via Wikimedia Commons.

Behrens 2014 ; Jones 2010b ;[START_REF] Rose | Evidence of altered prefrontal-thalamic circuitry in schizophrenia: an optimized diffusion MRI study[END_REF][START_REF] Thivard | Interictal diffusion MRI in partial epilepsies explored with intracerebral electrodes[END_REF][START_REF] Granziera | A new early and automated MRI-based predictor of motor improvement after stroke[END_REF].Le chapitre 1 présente les représentations locales du signal de diffusion les plus répandues dans la littérature. Par la suite, le chapitre 2 expose les différentes classes d'algorithmes de tractographie. Le chapitre 3 présente un nouvel algorithme de tractographie utilisant l'information d'une image anatomique pondérée T1 pour contraindre et orienter la reconstruction de la matière blanche. Le chapitre 4 présente une nouvelle méthode de visualisation et d'identification des faisceaux de matière blanche, utilisant les reconstructions obtenues au chapitre précédent. Finalement, le chapitre 5 propose l'utilisation d'information microstructurelle a priori pour réduire les erreurs de reconstruction et permettre l'étude de caractéristiques microstructurelles des faisceaux de la matière blanche du cerveau.

Ces méthodes sont dites locales, car chacune des tractes est calculée individuellement, et la direction de propagation est déterminée en fonction d'un voisinage et non de l'ensemble de l'image. Comme nous l'avons mentionné, les méthodes de tractographie locales se catégorisent en deux groupes, soit les méthodes déterministes et les méthodes probabilistes. Les méthodes déterministes sont basées sur l'utilisation des maxima des représentation locales, alors que les méthodes probabilistes sont basées sur une distribution de probabilités de fibres de matière blanche calculée à partir des mêmes représentations locales. L'idée est de propager la tracte le long d'une direction initiale, jusqu'à atteindre un critère d'arrêt. Le processus est ensuite relancé de la position initiale dans la direction initiale opposée. C'est ainsi que chaque tracte est formée.

;[START_REF] Malcolm | Filtered multitensor tractography[END_REF][START_REF] Friman | A Bayesian approach for stochastic white matter tractography[END_REF]]. La fODF (voir section 1.2.2) est intéressante pour ce type d'algorithme, car elle peut être considérée comme la fonction de densité de probabilité de fibres pour la tractographie probabiliste[START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF][START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Tournier | Improved probabilistic streamlines tractography by 2 nd order integration over fibre orientation distributions[END_REF][START_REF] Raffelt | Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images[END_REF]]. Itérativement, les méthodes probabilistes propagent la tracte suivant des transitions basées sur une fonction de distribution modélisant l'incertitude des données, jusqu'à l'atteinte d'une contrainte d'arrêt (voir figure 2.2 b).Les algorithmes probabilistes tendent à produire des tractogrammes moins conservateurs que les algorithmes déterministes. C'est-à-dire que dans un cadre probabiliste, chaque voxel est connecté aux autres voxels avec une certaine probabilité. Si suffisamment de tractes sont calculées, la plupart des voxels seront connectés par au moins une tracte. Les tractogrammes probabilistes contiennent plus de tractes erronées, mais aussi des estimations de faisceaux plus riches et complètes[Côté et al. 2013]. Ces propriétés des algorithmes probabilistes sont démontrées au chapitre 3 et à l'annexe B. D'autre part, il est intéressant d'estimer des cartes de connectivité probabilistes entre des régions, avec une grande quantité de tractes. Les tractes erronées ont alors moins

[START_REF] Tuch | A Path Integral Approach to White Matter Tractography[END_REF][START_REF] Lenglet | Geometric and Variational Methods for Diffusion Tensor MRI Processing[END_REF][START_REF] Lenglet | Inferring White Matter Geometry from Diffusion Tensor MRI : Application to Connectivity Mapping[END_REF][START_REF] Parker | Diffusion Tensor Imaging[END_REF][START_REF] Pichon | A Hamilton-Jacobi-Bellman approach to high angular resolution diffusion tractography[END_REF][START_REF] Campbell | Diffusion Imaging of White Matter Fibre Tracts[END_REF] Campbell et al. 2005].La méthode de tractographie géodésique Fast Marching Tractography (FMT) a été proposée par[START_REF] Parker | Diffusion Tensor Imaging[END_REF] afin de calculer la distance minimale entre deux points pour une représentation locale par tenseur de diffusion. Cette méthode consiste d'abord à faire évoluer une surface à partir d'un point d'initialisation suivant une fonction de propagation. Une image 3D pourra ensuite être créée, où la valeur de chacun des voxels correspond au temps requis à la surface pour atteindre ce voxel. Un ensemble de tractes potentielles peut ensuite être extrait suivant un algorithme de descente à partir d'un ensemble de points. Chacune de ces tractes potentielles est ensuite évaluée par une métrique de connectivité. En répétant ce processus pour un ensemble de paires de points, la méthode estime un tractogramme dont les tractes ont une métrique de connectivité inférieure à un seuil déterminé par l'utilisateur.La première étape consiste à faire évoluer une surface à partir d'une position

voxels (voir figure 2.5 B), même si ce n'est pas imposé dans l'optimisation. COMMIT permet de corriger les biais dans la densité des tractes dans les voxels (voir figure 2.5 A) en utilisant un modèle microstructurel de la matière blanche. Ce faisant, COMMIT produit des cartes de la microstructure de la matière blanche, un ensemble de tractes pondérées par leur importance dans l'explication du signal de diffusion (les tractes erronées ont vraisemblablement une pondération faible) et une approximation du diamètre axonal associé à chacune des tractes[START_REF] Daducci | COMMIT: Convex Optimization Modeling for Micro-structure Informed Tractography[END_REF]. COMMIT permet une analyse du tractogramme plus quantitative de la matière blanche[START_REF] Daducci | COMMIT: Convex Optimization Modeling for Micro-structure Informed Tractography[END_REF]].
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Appendix

3.A Streamline Tractography

3.A.1 Local Reconstruction Technique

Diffusion Tensor estimation and corresponding Fractional Anisotropy (FA) map generation were done using MRtrix [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF]. From this, the single fiber response function was estimated from all FA values above a threshold of 0.7, within the WM binary mask. This single fiber response was used as input for spherical deconvolution [START_REF] Tournier | Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution[END_REF][START_REF] Descoteaux | Deterministic and probabilistic tractography based on complex fibre orientation distributions[END_REF] to compute the fiber ODFs, with spherical harmonic order 8, at every voxel. In this work, we used the efficient implementation publicly available in MRtrix [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF]].

3.A.2 Implementation Details

In this study, we used deterministic and probabilistic streamline tractography algorithms. In our implementation, the spherical harmonics of the fiber ODFs are estimated on a discrete evenly distributed symmetric sphere of 724 vertices [START_REF] Daducci | IEEE International Symposium on Biomedical Imaging (ISBI) Reconstruction Challenge[END_REF]Garyfallidis et al. 2014a]. Propagation directions are always a vector of orientation corresponding to one vertex of the sphere and of length ∆s = 0.2mm. 'Overshoot' errors have been observed when using large ∆s in curved structures, and small ∆s increases the computational burden and increases the sensitivity to noise in diffusion direction [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF]. The single difference between probabilistic and deterministic algorithms is the way the propagation direction v i+1 is chosen. Given a position p i , a propagation direction v i , the maximum deviation angle θ, and the fiber ODF threshold τ , the discrete set of potential propagation directions can be estimated: all discrete directions on the sphere with an associated value greater than a fraction of the maximum value of the fiber ODF τ , and within the aperture cone define by θ and v i . The maximum deviation angle θ between two consecutive steps (or a minimum radius of curvature R = ∆s/(2 • sin(θ/2)) [START_REF] Tournier | MRtrix: Diffusion tractography in crossing fiber regions[END_REF][START_REF] Jbabdi | A Bayesian framework for global tractography[END_REF]), limits high anglar variations of streamlines and addresses the smoothness assumption of WM fibers. The fiber ODF threshold τ removes some of the noisy directions of the Everyone should have their mind blown once a day. 

-Neil deGrasse Tyson

Abstract

We propose a novel method to simultaneously trace brain white matter (WM) fascicles and estimate WM microstructure characteristics. Recent advancements in diffusion-weighted imaging (DWI) allow multi-shell acquisitions with b-values of up to 10,000 s/mm 2 in human subjects, enabling the measurement of the ensemble average propagator (EAP) at distances as short as 10 µm. Coupled with continuous models of the full 3D DWI signal and the EAP such as Mean Apparent Propagator (MAP) MRI, these acquisition schemes provide unparalleled means to probe the WM tissue in vivo. Presently, there are two complementary limitations in tractography and microstructure measurement techniques. Tractography techniques are based on models of the DWI signal geometry without taking specific hypotheses of the WM structure. This hinders the tracing of fascicles through certain WM areas with complex organization such as branching, crossing, merging, and kissing that are indistinguishable using the orientation-only part of the DWI signal. Microstructure measuring techniques, such as AxCaliber, require A.2. Theory an infinite number of cylinders. Combining Equations A.1 and A.4

where the integral over A takes in account all possible cross-sectional areas; f (A; α, β) is the probability density function of a Gamma distribution with shape α and rate β; and αβ -1 is the average cross-sectional area under the distribution Γ(α, β). By using the separability of the EAP (see Equation A.2) and assuming a uniform probability of finding a water particle within the cylinder population, we marginalize Equation A.5 for the return-to-axis probability, i.e. r ⊥ = r ⊥ ,

where P 0 (r; A) is the uniform distribution of r within the disc of surface A. Then, replacing Equation A.3 into Equation A.7, we reach our first result

where K is the modified Bessel function. Finally, the calculating P ⊥ (0; ∆, α, β) from the 3D signal combining Equations A.8 and A.2 is the same as RTAP

This characterization of P ⊥ in the case of an axonal population has two main advantages: first, it doesn't depend on a very large ∆ for its relationship with the axonal radii to be true; second, as a corollary of the relationship between the EAP P ⊥ and the attenuation E ⊥ , Equation A.8 aggregates information from all measurements perpendicular to the cylinder population and, by using a full 3D model with analytic

A.3. Methods

Fourier transform such as Mean Apparent Propagator (MAP) MRI [Ozarslan et al. 2013], takes advantage of the full extent of q-space measurements in the acquisition protocol.

A.3 Methods

A.3.1 AxTract: Microstructure-driven Tractography Model Fitting

The main purpose of our novel tractography algorithm, AxTract, is to simultaneously trace WM fascicle and estimate their axonal caliber. The main hypothesis driving AxTract is that the average caliber of the axons composing a tract varies slowly along its pathway.

To formulate our algorithm we start from the classical equation driving streamline tractography [START_REF] Basser | In vivo fiber tractography using DT-MRI data[END_REF]]:

where the curve r(s) is the streamline tracing the WM fascicle that traverses t 0 , and t(s) is the tangent vector to r(s), and taken to be the eigenvector corresponding to the maximal eigenvalue of the diffusion tensor (DT). More generally, using the DTI EAP model, t(s) is equivalent to the direction of maximal diffusion probability

where ODF is the orientation distribution function [START_REF] Tuch | Q-ball imaging[END_REF]] We used the Human Connectome Project (HCP) MGH adult diffusion dataset (subject mgh1010) [START_REF] Setsompop | Pushing the limits of in vivo diffusion MRI for the Human Connectome Project[END_REF]]. The diffusion acquisition scheme consists of 552 volumes with b-values ranging from 1000 to 10,000 s/mm 2 (δ = 12.9ms, ∆ = 21.8ms). The data were acquired using at 1.5mm isotropic voxel size using a Spin-echo EPI sequence (TR/TE 8800/57ms).

A.4.2 Synthetic Dataset

We used Phantomas [START_REF] Caruyer | On facilitating the use of HARDI in population studies by creating rotation-invariant markers[END_REF] to generate in silico data using the acquisition scheme of the HCP dataset. The DWI signal is simulated in each voxel based on the Numerical Fiber Generator [START_REF] Close | A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms[END_REF]]. The simulated signal is obtained using a hindered and restricted diffusion model [START_REF] Assaf | Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain[END_REF], and adding Rician noise. Synthetic data with signal-to-noise ratio (SNR) of 20 and 100 are used in this study. We further test Equation A.11 in kissing configuration. aggregates information of the signal attenuation on whole plane perpendicular to the cylinders, providing a simplified mean to use all information available from a multi-shell acquisition for caliber estimation.

A.5 Results

Average Axonal caliber is measurable through the EAP at limited ∆: Having grounds for using RTAP to measure axonal caliber at limited ∆, we proceeded to test its sensitivity in different scenarios. [START_REF] Mcnab | The Human Connectome Project and beyond: initial applications of 300 mT/m gradients[END_REF], the recovered calibers are generally higher in the body of the CC than in the genu and the splenium of the CC. However, no axonal calibers difference was observed between the genu and the splenium of the CC in this single subject. Further investigation is required to quantify the difference between AxCaliber axonal caliber estimation and AxTract. Nevertheless, Figure A.2 shows that axon populations with various caliber can be identified in vivo, which can be used within the choice of the propagation direction of the tractography.

AxTract effectively solves kissings using axonal caliber as a prior: In fiber crossing regions, AxTract distinguishes axonal caliber population, specially at low Girard, G., Whittingstall, K., Deriche, R., Descoteaux, M. (2015). « Structural connectivity reproducibility through multiple acquisitions ». Organization for Human brain mapping (HBM'15). Honolulu, Hawaii, États-Unis.
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