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Introduction

The simplest mechanism by which a rearrangement of covalent bonds occurs is the ionization of

a molecule through the loss/gain of a proton H+. This phenomenon is of paramount importance

since it represents the foundation of the concept of pH, of the functioning of many ecological

devices which exploit proton transfer (PT) (i.e., Nafion membranes, Direct Methanol Fuel Cells,

etc.), and of (neuro)biology and biochemical sciences in general [1–3].

The common textbook example is centered on the water case because it clearly represents one

of the most abundant substances on Earth and surely the most studied compound in condensed

matter physics. In liquid water the process through which a H2O molecule dissociates, thus

setting the acid or basic character of an aqueous solution, is known as protolysis and occurs

according to the reaction

2H2O ⇋ OH− +H3O
+ ,

in which, formally, a PT occurs between two water molecules.

The great importance played by this fundamental reaction is historically signed, among the

others, by the fact that its basic peculiarities were elucidated before the discovery of the correct

atomistic composition of the water molecule. In particular, in 1806 von Grotthuss [4], in an

inspirational burst (trait de lumiére), develops a theory of water decomposition caused by

galvanic electricity [5]. Moreover, he suggested a primitive, but logically correct, diffusive
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model for the charges that he thought to compose the water molecule. The proposed original

mechanism allows to account for the ultra-fast mobility of the proton H+ which is about seven

times than that of a sodium cation and five times than that of K+. Although the Grotthuss

mechanism of charge transport has been proved also by many ab initio simulations [6–8], the

exact details of this fundamental process remain undisclosed and many models were presented

in order to reproduce the available experimental evidences [9]. The tools provided by first-

principles approaches are very suitable to tackle and treat chemical reactions which occur at

this length-scale. Indeed by directly following the atomistic dynamical evolution it is possible

to trace the relevant physical quantities and the local structural changes in assisting molecular

dissociations and PT.

Atomic-scale computer experiments represent the state-of-the-art of computational science since

they are capable to test very sophisticated theories - i.e., quantum mechanics, quantum electro-

dynamics, etc. - via a direct comparison of their own predictions with real experimental results.

Since these kind of theories deal with many-body systems governed by difficult-/impossible-to-

solve differential equations, computational physicists and mathematicians have developed smart

and tricky algorithms and informatic tools in order to make concrete the possibility to simulate

incredibly complex problems. However, the mere effort of computer sciences is not enough

to account for the colorful multiplicity of ordinary condensed matter systems when treated in

their most intimate details. Indeed, it has been necessary to develop many theoretical and

mathematical apparata in order to make treatable the dynamical evolution of large-scale sets

of molecules. Firstly, in order to make computationally solvable the electronic problem, Kohn

and Sham (KS) [10] gave one of the dominant contributions to the Density Functional Theory

(DFT) by considering an auxiliary non-interacting (quantum) system sharing the same ground

state density with the real interacting one. This way, an ensemble of fermions (electrons) can

be (efficiently) computationally treated.

In addition to the just mentioned electron-electron part, the fundamental interactions that
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govern the nature of ordinary matter are ruled also by the proton-proton and the proton-

electron terms. In most cases treating the behavior of a set of protons is order of magnitude less

problematic than the electronic case. Indeed the quantum nature of the proton plays a central

role only in a restricted number of phenomena and this allows us to use newtonian equations of

motion for the nuclei; this classical nuclei approximation makes atoms computationally easily

manageable. Moreover, Born and Oppenheimer [11] have shown that there is no mixing between

different electronic steady states caused by the interaction with the nuclei.

The KS scheme together with the last two introduced approximations for the nuclei define the

Born-Oppenheimer Molecular Dynamics. This widely employed approach is the founder of the

ab initio methods. Within this scheme the electronic problem has to be solved at each timestep

and this leads to an increase of a factor greater than 1000 in the computational cost with respect

to classical Molecular Dynamics. Historically this not negligible limitation of the ab initio

simulations created more problems than it is doing nowadays because of the speed of growth

of computing power. This circumstance led Roberto Car and Michele Parrinello in 1985 [12]

to develop an incredibly smart ab initio method which overcomes the abovementioned time

limitation. Their basic idea was to map the quantum-mechanical adiabatic time scale separation

of fast electronic and slow nuclear motion into a classical-mechanical adiabatic energy-scale

separation in the framework of dynamical system theory. This technique allows to tackle

larger systems and for longer times than the previously employed first-principles methods, thus

making feasible simulations of vastly different systems and phenomena. This approach has

been thoroughly employed in most simulations carried out and here presented.

Coming back to our main subjects concerning molecular dissociation and PT, several exper-

imental [13–16] and ab initio [6–8, 17, 18] studies were conducted in water samples. Despite

the manifest importance of the liquid phase, investigating the PT in some of its crystalline

structures can lead to new insights about this intricate phenomenon. Indeed the greater sta-

bility of the H-bonds and the increased atomic order of the solid phases with respect to the
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bulk liquid help to address more easily any detailed aspect in which molecular dissociation and

PT can be decomposed. In this respect, ice phases are good candidates where to study both

the static and the dynamical properties of the PT mechanism. At ambient conditions, the

stable crystalline phase is ice Ih, whose molecules are positionally arranged in an hexagonal lat-

tice while being orientationally disordered (i.e., the proton sublattice is randomly distributed).

Starting from the standard ice crystalline structure it is possible to obtain its proton-ordered

counterpart (ice XI) [19, 20], whose molecules are oriented along the c-axis (i.e., ferroelectric

phase). The ordering of the proton sublattice obviously affects the properties of the material

and, in particular, the electrical polarizability and the conductivity. In this respect ice can be

described as a “protonic semiconductor”. Indeed, ionic defects (i.e., hydronium and hydroxide)

together with Bjerrum orientational defects are responsible for electrical transport processes in

ice phases [21].

In the literature, some relevant efforts have been recently done to understand the PT mecha-

nism, so as to fill the gap between theory and experiment [22–26]. One of the main difficulties

is associated with the extremely rare nature of the protolysis phenomenon. In this respect,

Saitta and coworkers [18] have shown, in an ab initio study of water dissociation, that it is

possible to stimulate the proton-transport process – and hence to investigate it in a systematic

fashion – by applying an external electric field. In this thesis we extend this computational

approach to crystalline phases of water. In fact, the peculiar symmetries of Ih and XI ices allow

a qualitative and quantitative investigation of the entropic and energetic contributions to the

PT phenomenon.

As a logical consequence, in order to shed more light on this apparently elaborate phenomenon

also by considering the ices mechanical response to the external field, we present in this thesis

a series of further ab initio simulations performed to understand and exploit the symmetry

differences between ice Ih and ice XI. This aim is achieved by applying a static electric field

along two different crystalline directions. We investigate several dynamical aspects of the H-
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bond structure during the proton migration process, which can be compared with the similar

mechanism in liquid water. In this way it is possible to obtain a more exhaustive comprehension

of the mechanical and electrical responses of ice Ih and ice XI subject to the action of a static

electrical perturbation.

Although the most important reactions which involve a PT between molecular entities occur

certainly in aqueous environments, this phenomenon is so basic, fundamental, and vital for the

occurrance of other related chemical reactions that its study should not be restricted to the

water case. For this reason we extended our approach to the liquid methanol case. This way it

is possible to highlight some of the relevant reaction coordinates which intervene in the complex

interplay between intra- and inter-molecular interactions that assist the whole PT phenomenon

in H-bonded systems. Single-donor H-bonds confer upon methanol an important role for the

understanding of the PT mechanism and of the molecular dissociation process. Like water,

liquid methanol displays a fast PT. In particular, it is believed that the PT process takes place

along the H-bond structure via the Grotthuss mechanism [4], whose exact nature has been (and

still is) a source of vivid controversies [27] and open debate.

Although its mere physico-chemical importance, this compound has a strong and multifaceted

industrial involvement. As far as the proton conduction is concerned, methanol is used in ap-

paratus for the production of electrical energy based on its fundamental molecular dissociation.

One example is provided by Direct Methanol Fuel Cell (DMFC) technology where electrical

energy is produced by transferring protons [3]. Hence, a deeper understanding of the micro-

scopic mechanism that leads to the molecular dissociation and/or to a net proton flow is of

paramount importance to increase the efficiency of several ecological systems which produce

energy from methanol.

In this thesis we present the first, to the best of our knowledge, ab initio Molecular Dynamics

study of bulk liquid methanol under the effect of a static electric field and several analogies

and differences with the corresponding liquid water case are highlighted.
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As it is clear, the molecular dissociation event is extremely rare at ambient conditions. Indeed

once an ionic pair is formed, the most likely circumstance is the ionic recombination. On aver-

age, the pH of ambient water implies that only about once, every 10 h, a randomly chosen water

molecule will successfully dissociate spontaneously because of the local electric field fluctuations

due to the molecular librations. A similar estimate can be obtained also for the methanol case

since its dissociation constant is comparable with that of water. As already mentioned, in

order to improve the statistical weight of the events in (almost) all the presented simulations,

we applied a progressively increasing static and homogenoeus electric field, after several ps of

Car-Parrinello Molecular Dynamics at ambient conditions. This way it was possible to stimu-

late the occurrance of molecular dissociations and to study the fundamental coupling between

the molecules and the external field. Moreover, at slightly higher field strengths also the ionic

conduction and the underlying PT mechanism could be analyzed.

Although our main interest was devoted to the detailed study of molecular dissociation and

consequent PT in H-bonded systems, at moderate-to-high field strengths the chemical sce-

narios may be clearly more complex, as also recently proven in a prebiotic context [28]. Of

course, in the ice samples no chemical reactions were observed beyond the molecular dissocia-

tion/recombination but in the liquid methanol case the situation is deeply different. Indeed the

atomistic reactivity of the carbon and oxygen atoms combined with intense field strengths leads

to the onset of a multifaceted spectrum of “philicity” regions which are susceptible to nucle-

ophilic or electrophilic attacks. Moreover, the electric field contributes to the cleveage of C-O,

C-H, and O-H covalent bonds in the methanol molecules and subsequently to the formation of

other combinations of these. Its entropic supply allows for the formation of species which are

more or less complex than the methanol one such as formaldehyde (H2CO), methane (CH4), or

dimethyl ether (CH3OCH3), and the evolution of these typical reactions can be predicted by

exploiting many conceptual DFT tools such as the Fukui functions and indices [29,30].

In despite of the importance of the apparatus supplied by global and local (regio)selectivity
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parameters of modern conceptual DFT, one key aspect in analyzing any chemical reaction is

represented by its energetics. The evaluation of the free energy suface (FES) can be tackled

via disparate theoretical methods [31–33] but the most reliable (and maybe used) ones are

some metadynamics (MetD) approaches [34]. Basically, by introducing a history-dependent

potential that fills the minima in the FES [34], it is possible to explore in principle every

energetic landscape in the space spanned by few collective variables (CV) on which the free

energy depends. In the last years different theoretical tools based on the MetD philosophy have

been developed which circumvent the problem of choosing the correct CV (i.e., the irriducible

set on which a specific FES relies upon). One of the most powerful is the path-CV one [35] but

it presents the drawback of knowing all the elementary steps via which a given reaction occurs

before performing the MetD calculation. However, a new kind of path-CV MetD has been very

recently presented [36] that allows one to explore – and in some simple cases also to sample

during the same simulation – the FES of in principle every kind of chemical reaction. The

minimal a priori knowledge that this method requires are the simple approximated contact

matrices of the atoms in the state of the reactants and in that of the products. From this

perspective it represents an extremely powerful technique in exploring the FES of a chemical

reaction. For more complex systems – i.e. FESs with many basins – the convergence of the

MetD calculation is not so direct. Indeed, generally speaking, in principle the MetD exploration

of the FES does not imply in any case its sampling! Hence once the “exploratory” FES has

been obtained, other techniques must be employed in order to sample it. Umbrella sampling

(US) [33] is one of the most widely used methods for the determination of accurate free energies

from atomistic simulations [33, 37]. In this technique, independent simulations are carried

out in different locations of the CV space with different biasing potentials in order to probe

the underlying probability distributions. The just mentioned theoretical apparatus has been

employed in order to accurately reproduce the energetics of some chemical reactions which were

observed in previous Car-Parrinello Molecular Dynamics simulations in liquid methanol under
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the effect of a static electric field.

The present thesis is structured as follows. In Chapter 1 the main theoretical background

thoroughly employed in this work will be presented. A less exhaustive appendix (Appendix

A) has been also included in order to briefly accompany the reader in the conceptual DFT

framework. In Chapter 2 we illustrate the results concerning the effects of applying moderate

electric field intensities on three samples: ice Ih, ice XI, and liquid methanol. In these systems

instantaneous molecular dissociations occur and a net proton flow can be appreciated above

determined field thresholds. At moderate/high field regimes several chemical reactions can be

observed in the methanol sample and their study is carried out in Chapter 3 by invoking the

theoretical apparatus shown in Appendix A and some marginal results presented in Appendix B.

Finally, some preliminary results on the energetics associated with one of the observed chemical

reactions are shown at the end of Chapter 3. Beyond the Conclusions, the present thesis will

close with the usual bibliographic references.
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Chapter 1

Theoretical Background

1.1 Density Functional Theory

1.1.1 Hohenberg-Kohn Theorem

The fundamental theorem on which DFT is builded is the HK theorem [38]. It represents

the most basic of a number of existence theorems which ensure that stationary many-particle

systems can be fully characterized by the ground-state density and intimately related quanti-

ties [38,39]. This theorem, published in 1965, has been subsequently developed in order to in-

clude also systems at finite temperature [40], systems under the action of magnetic field [41,42],

and in general for all kinds of systems of (not only) physical domain.

Let us consider the standard Hamiltonian (in this paragraph in reduced units, and thoroughly

in the thesis the convention 1
4πǫ0

= 1 will be employed) of a stationary system of N interacting

electrons under the action of the external potential vext(r):

Ĥ = −1
2

N
∑

i=1

∇i
2 +

N
∑

i=1

vext(ri) +
1
2

N
∑

i=1

N
∑

j 6=i

1
|ri − rj|

= T̂ + V̂ext + V̂ee , (1.1)
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where T̂ is the kinetic operator, V̂ext is the external potential operator, and V̂ee is the operator

which describes the electron-electron interaction. The first two terms on the right side of eq.

(1.1) are one-body operators whereas the third one is clearly a two-body operator. Let gen-

eralize the just introduced Hamiltonian by underspecializing the mutual electronic interaction

by imposing V̂ext = Ŵ , where

Ŵ =
1
2

N
∑

i6=j

w(ri, rj) =
1
2

∑

σ,σ′=↑,↓

∫ ∫

â†(rσ)â†(r′σ′)w(r, r′)â(r′σ′)â(rσ)d3 rd3 r′ (1.2)

whereas

V̂ext =
N
∑

i=1

vext(ri) =
∫

vext(r)n̂(r)d3 r . (1.3)

In eq. (1.2) ri is the position of the i-th particle, σi is the z-projection of its spin, and â(†)(rσ) is

the field operator which describes the creation/annihilation of one particle with spin σ at point

r and which satisfies the general anticommutation rules. At this level is not necessary to specify

the interaction w(r, r
′

) in detail. The fundamental formalism of the whole DFT is independent

of the form of w: it will be sufficient to assume that it is symmetric, w(r, r
′

) = w(r
′

, r).

The many-body eigenstates |Ψk〉 corresponding to the Hamiltonian (1.1) are obtained as a

solution of the stationary Schrödinger equation; more precisely, this is true for the solution

referred to the ground state |Ψ0〉 on which we will focus. Let consider now the set of all

Hamiltonians of the form (1.1) with non-degenerate ground state, such as the set of all the

local potentials vext for which the Schrödinger equation leads to non-degenerate ground states,

whereas the interaction (1.2) is kept fixed. This set contains an infinite number of fictitious

copies (i.e., an ensemble) of any given vext(r), which are obtained by simply adding an arbitrarily

constant to vext(r). This treatment can be otherwise generalized to the case of degenerate

ground states. The solution to the Schrödinger equation can be interpreted as a relation

between the set V of external potentials which differ from each other for more than a constant
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(i.e., v′
ext 6= vext + cost) and the set G of resulting ground states such that |Ψ′

0〉 6= eiϕ|Ψ0〉,
where ϕ is any global phase. Let define the map from V to G as A:

A : V → G .

Since the ground state density n0 is

n0(r) = 〈Ψ0|n̂0|Ψ0〉 (1.4)

it can be defined a second relationship B between the set G and the set N of all the ground state

densities resulting from some element of G via (1.4), i.e., N = {n0|n0(r) = 〈Ψ0|n̂0|Ψ0〉, |Ψ0〉 ∈
G }. This way,

B : G → N .

By construction both maps A and B are surjective. Does can occur that the same |Ψ0〉 is

obtained from two or more different external potentials or that the same n0 results from two

distinct ground states? Since in this context we are considering only non-degenerate ground

states, given a vext in V it exists only one |Ψ0〉 in G . But, given a |Ψ0〉, does it can be

simultaneously the ground state corresponding to two or more external potential which differ

for more than a constant?

The answer to this part of the question is less trivial and has been obtained by Hohenberg and

Kohn by means of a reductio ad absurdum. Let assume indeed that |Ψ0〉 is simultaneously the

ground state of two different potentials vext and v′
ext 6= vext + const. Thus |Ψ0〉 satisfies two

Schrödinger equations:

Ĥ|Ψ0〉 = [T̂ + V̂ext + Ŵ ]|Ψ0〉 = E0|Ψ0〉 (1.5)
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Ĥ ′|Ψ0〉 = [T̂ + V̂ ′
ext + Ŵ ]|Ψ0〉 = E ′

0|Ψ0〉 . (1.6)

By subtracting side to side the two equations one obtains

[V̂ext − V̂ ′
ext]|Ψ0〉 = [E0 − E ′

0]|Ψ0〉 . (1.7)

If we rewrite the eq. (1.7) in the first quantized formalism rather than in that of the second,

it is possible to divide by the ground state wavefunction thanks to the multiplicative character

(i.e., local) of the potential and thus one can obtain:

N
∑

i=1

[vext(ri) − v′
ext(ri)] = E0 − E ′

0 . (1.8)

For all the ri such that the wavefunction does not vanish, let keep fixed N − 1 of them in eq.

(1.8), whereas let vary the remainder position. This process leads to an evident contradiction

since at the right-hand side, by construction of the set V , we have a quantity which cannot be

a constant, whereas at the left-hand side we have actually a constant. As a consequence the

map A is injective. Now let us turn to the map B. Its definition implies that it is impossible

to relate |Ψ0〉 to two distinct n0 and n′
0. This way, in order to prove the injectivity of B, one

has to show that two different |Ψ0〉 ∈ G cannot result in the same n0. The proof relies again

on a reductio ad absurdum: let us assume that |Ψ0〉 and |Ψ′
0〉 ∈ G are linked to the same n0.

From the Ritz variational principle for the ground state energy one has

E0 = 〈Ψ0|Ĥ|Ψ0〉 < 〈Ψ′
0|Ĥ|Ψ′

0〉 , (1.9)

where Ĥ is the unique Hamiltonian leading to |Ψ0〉 (due to the uniqueness of A) and the strict

inequality is due to the non-degeneracy of |Ψ0〉 and |Ψ′
0〉. The right-hand side of (1.9) can be

evaluated by adding and subtracting the unique potential V̂ ′
ext corresponding to |Ψ′

0〉:
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E0 < E ′
0 + 〈Ψ′

0|V̂ext − V̂ ′
ext|Ψ′

0〉 . (1.10)

Because of the local character of the potential and due to the (1.3) one obtains

E0 < E ′
0 +

∫

n0(r)[vext(r) − v′
ext(r)]d3 r . (1.11)

However, the same argumentation could be further conducted by exchanging the apex which

distinguishes the distinct potentials leading in such a case to

E ′
0 < E0 +

∫

n0(r)[v′
ext(r) − vext(r)]d3 r . (1.12)

Upon addition of (1.11) and (1.12) one arrives to a clear contradiction:

E0 + E ′
0 < E ′

0 + E0 . (1.13)

Is is possible to conclude that the map B is unique: it exists a one-to-one correspondence

between |Ψ0〉 and n0. Q.E .D .

Physical Insights

The HK theorem has a series of physical implications of primary importance. Indeed, due to

the uniqueness of the relationships between vext, |Ψ0〉, and n0, the ground state is a unique

functional of the ground state density and it can be labeled as |Ψ0〉 = |Ψ0[n0]〉 by inverting the

map B (i.e., B−1). It has been noticed that no assumptions were made on the specific form of

vext in constructing |Ψ0[n0]〉 from n0; |Ψ0[n0]〉 has the same functional form for every kind of

many-particle system with the same interaction w. |Ψ0[n0]〉 is then a universal functional from

which it is possible to determine every physical observable,

O[n] = 〈Ψ[n]|Ô|Ψ[n]〉 , (1.14)
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such as the ground state energy

E[n] = 〈Ψ[n]|Ĥ|Ψ[n]〉 = F [n] +
∫

vext(r)n(r)d3 r , (1.15)

where

F [n] = 〈Ψ[n]|T̂ + Ŵ |Ψ[n]〉 (1.16)

is the universal part. It exists a minimum principle for E[n], according to which

E[n0] < E[n′
0] ⇐⇒ E0 = min

n∈G
E[n] . (1.17)

Hence the E[n] domain is restricted to the densities belonging to N ; only the ground state

densities stemming from the Schrödinger equation are legitimate and not all the arbitrarily

functions of r which are non-negative and with finite norm.

From a strictly physical perspective of course the particle react to every arbitrarily small change

of vext, such that their total energy can be minimized, and this response is unique. Because of

the local character of the potential, no changes will occur in vext without a modification of the

electronic wave function and thus of the density distribution.

1.1.2 The Levy approach and the Kohn-Sham scheme

Up to now we do not faced the problem of v-representability or of theN -representability because

the HK theorem, in despite of its conceptual and historical importance, is not the best starting

point for this topic. A very useful approach is that of the constrained-search introduced by

Levy [43,44] and further developed by Lieb [45]. Eq. (1.17) can be explicitly derived from the

following variational problem
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δ







〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉







= 0 . (1.18)

This equation highlights that the ground state energy can be found by minimizing 〈Ψ|Ĥ|Ψ〉
over all the N-particle antisymmetric normalized wavefunctions:

E = min
Ψ

〈Ψ|Ĥ|Ψ〉 . (1.19)

Let us divide the minimization process of this expression in two steps.

1. Let us consider all the wavefunctions which produce a given density n(r) and let us

minimize the Hamiltonian with respect to these eigenfunctions:

min
Ψ→n

〈Ψ|Ĥ|Ψ〉 = min
Ψ→n

〈Ψ|T̂ + V̂ee|Ψ〉 +
∫

vext(r)n(r)d3 r (1.20)

where we replaced the electron-electron interaction V̂ee and where we exploited the fact

that all the |Ψ〉 which leads to the same n(r), leads also to the same 〈Ψ|V̂ext|Ψ〉. Let

us now redefine the universal functional of (1.16) in the restricted domain of all the

eigenfunctions |Ψmin
n 〉 that minimize the value of T̂ + V̂ee for a given n(r).

2. Finally, let us minimize over all the N-electrons densities n(r):

E = min
n
E[n] = min

n

{

F [n] +
∫

vext(r)n(r)d3 r
}

(1.21)

where vext(r) is kept fixed. The density that minimizes the term in the parenthesis is the

ground state density.

The constraint of keeping fixed the number of electrons N can be managed by means of the

Lagrange multiplier µ:
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δ
{

F [n] +
∫

vext(r)n(r)d3 r − µ
∫

n(r)d3 r
}

= 0 (1.22)

which is equivalent to the Euler equation:

δF

δn(r)
+ vext(r) = µ , (1.23)

in which µ will be adjusted until the equation for the (electronic) mass conservation (i.e.,
∑

σ

∫

nσ(r)d3 r = N) is satisfied. The Euler equation (1.23) shows that the external poten-

tial vext(r) is uniquely determined by the ground state density (or by one of them in case of

degeneracy). The functional F [n] of the expression (1.16) is defined for all the densities n(r)

which are “N -representable”; in other words, for the densities stemming from a N-electrons an-

tisymmetric wavefunction. The functional derivative δF [n]
δn(r)

is defined by the Euler equation for

all the densities n(r) which are “v-representable”; in other words, for the densitites stemming

from ground state N-electrons antisymmetric wavefunctions corresponding to a given external

potential vext(r).

The Levy approach is also the most natural method which allows one to introduce the Kohn-

Sham (KS) scheme [10]. The basic idea arises from the necessity of solving the static and the

dynamics of a set of interacting electrons. Kohn and Sham considered an auxiliary electronic

system (i.e., the KS system) which was characterized by the same electron density of the “real”

one but without interactions between the fermions. This mathematical artifact allows one to

remove the operator associated with the mutual electronic interaction – i.e., V̂ee = 0 – by

displacing the focus on the fictitious potential vs(r) (KS potential) that produces the same

density and that satisfies the Euler equation (1.23) in this fashion:

δTs

δn(r)
+ vs(r) = µ (1.24)

where
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Ts[n] = min
Ψ→n

〈Ψ|T̂ |Ψ〉 = 〈Φmin
n |T̂ |Φmin

n 〉 . (1.25)

The minimizing wavefunction |Φmin
n 〉 for a given density should be a non-interacting one in

the sense that it should be obtained as a product of one-particle states such as a single Slater

determinant or a linear combination of them, correspondingly to an external potential operator

V̂s. In eq. (1.24), the KS potential vs(r) is a functional of n(r) and, if it was present a difference

between µ and µs (i.e., the chemical potentials of the interacting and non-interacting systems,

respectively), it would be adsorbed in vs(r).

Let us define now the exchange-correlation (XC) energy Exc[n]:

F [n] = Ts[n] + U [n] + Exc[n] (1.26)

where U [n] is the Coulomb integral or Hartree term. The Euler equations (1.23) and (1.24) are

mutually consistent if and only if:

vs(r) = vext(r) +
δU [n]
δn(r)

+
δExc[n]
δn(r)

. (1.27)

It has to be noticed that by means of the functional derivative process the KS potential can be

set in the form

vs(r) = vext(r) + vH [n0](r) + vxc[n0](r) , (1.28)

where the external potential, the Hartree contribution (i.e., purely electrostatic repulsion), and

the XC potential are present. Clearly, the unknown potential vs is by itself a density functional,

thus the Schrödinger equations result to be non linear; the solutions |ψi〉 determine the density

n0 by means of the relationship
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n0σ(r) =
∑

σ=↑,↓

∑

i

Θ(µ− Eiσ)|ψi(rσ)|2 , (1.29)

where i is the set of quantum numbers (regardless of the spin component) and Θ is the Heaviside

step function which ensures that all the KS spin orbitals with Eiσ < µ are singly occupied

because of the Pauli esclusion principle and that those with Eiσ > µ are empty. Hence, the

previous equation determines the KS potential vs via eq. (1.28). The KS equations result from

the substitution of eq. (1.28) in the one-particle Schrödinger equation,

{

− ~
2

2m
∇2 + vext(r) + vH [n](r) + vxc[n](r)

}

ψi(rσ) = εiψi(rσ) (1.30)

and they has to be solved self-consistently. The starting point is a suitable choise of a given

test density n(1) which allows to build the initial KS potential

v(1)
s (r) = vext(r) + vH [n(1)](r) + vxc[n(1)](r) (1.31)

provided that the functional derivative of Exc[n] is known. This KS potential will be employed

in order to solve eq. (1.30) which produces some wavefunctions ψ(2)
i which in turn lead to

an “improved” density by means of eq. (1.29). Density n(2) may in turn be used to obtain

other potentials, vH [n(2)](r) e vxc[n(2)](r), which better fit the real system. This iterative proce-

dure has to be continued until the difference between two densities obtained in two successive

iterations is lower than a previously chosen threshold of accuracy.

1.1.3 The exchange and correlation functional

The XC functional Exc[n] is the sum of two distinct terms:

Exc[n] = Ex[n] + Ec[n] , (1.32)
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where

Ex[n] = 〈Ψmin
n |V̂ee|Ψmin

n 〉 − U [n] . (1.33)

If Ψmin
n is a single Slater determinant, eq. (1.33) is the usual Hartee-Fock applied to the KS

orbitals. As an example, it differs from the HF exchange energy at the same way in which the

KS orbitals or Ts[n] differ from the HF orbitals and from the HF kinetic energy, respectively.

The correlation energy can be defined as

Ec[n] = F [n] −
{

Ts[n] + U [n] + Ex[n]
}

=

〈Ψmin
n |T̂ + V̂ee|Ψmin

n 〉 − 〈Φmin
n |T̂ + V̂ee|Φmin

n 〉. (1.34)

In this latter Ψmin
n is the eigenfunction that produces the density n and that minimizes 〈T̂+V̂ee〉,

whereas Φmin
n is the eigenfunction which corresponds to the same density but that minimizes

〈T̂ 〉. It is clear that, by the definition of the universal functional F [n], the correlation energy

is non-positive.

The XC functional is then necessary in order to include all that is not involved, within the

KS scheme, in the kinetic term Ts, in the mutual electronic interaction, and in the external

potential, in order to determine the ground state energy. Basically if the exact dependence of

the XC functional on the densities n↑ and n↓ was known, the KS equations would predict the

exact ground state energy and the exact spin densities of a many-electron system. The forces

acting on the nuclei and their equilibrium positions could be then evaluated by means of the

spatial gradient of this energy with the sign changed.

In practice Exc has to be approximated. For a long while the most used approximation was

the Local Spin Density Approximation (LSD) [41] or, in the spin-unpolarized case the Local

Density Approximation (LDA) [10]; by considering the spin densities, one has
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ELSD
xc [n↑, n↓] =

∫

n(r)exc(n↑(r), n↓(r))d3 r , (1.35)

where exc(n↑(r), n↓(r)) is the XC energy per particle referred to an electronic gas with uniform

spin densities n↑ and n↓ and which is known. By treating the electronic density as homogeneous,

this approximation cannot take into account the high complexity of the energy functional

dependence on the densities. More recently, approximations such as the Generalized Gradient

Approximations (GGA) have been developed which consider also the functional dependence on

the density gradient:

EGGA
xc [n↑, n↓] =

∫

f(n↑, n↓,∇n↑,∇n↓)d3 r . (1.36)

Even if Exc is often a relatively small fraction of the total energy of an atom or a molecule, its

contribution is comparable to the bond energy or to the atomization one. Without this term

the atoms would be in the most favored cases only weakly bonded. It is clear that a central

issue of the whole DFT framework is to have more and more accurate approximations, such

as those hybrid [46, 47] that include to some extent Hartree-Fock (HF) exchange or full exact

exchange (EXX) [48] in addition to the standard GGA expression. Another schemes which

go beyond GGA are the meta-GGA (MGGA) [49] (which include higher-order powers of the

gradient) and the hyper-GGA (HGGA) [50] (which uses, in addition to the characteristics of

the MGGAs, the exact exchange energy density).

In this thesis we will apply mainly the Perdew-Burke-Ernzerhof (PBE) [51] and secondly the

Becke-Lee-Yang-Parr (BLYP) [52] functionals, both belonging to the GGA class.

PBE

Let us at first remember the exchange part of the energy density of the homogeneous electron

gas (HEG):
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ǫX
HEG[n] = −3

4

( 3
π

)1/3

n1/3 , (1.37)

whereas for the correlation part one can split it into two terms depending on the density regime

(i.e., its solutions are known only in the low- and high-density limits).

The analytical expression of the correlation part of the so-called PBE functional reads as

EC
P BE[n] =

∫

n(ǫC
HEG(n) +HC [n, t])dr , t =

∇n
2ksn

(1.38)

where t is a dimensionless density gradient, 1/ks is the Thomas-Fermi screening wave-length,

and

HC(n, t) =
a2m

~2
ln
[

1 +
a1

a2

t2
( 1 + At2

1 + At2 + A2t4

)]

, (1.39)

where

A =
a1

a2

1
exp (−ǫC

HEG/(a2m/~2)) − 1
(1.40)

with a1 = 0.066725 and a2 = (1 − ln 2)/π2.

For the exchange part one has:

EX
P BE[n] =

∫

n(r)ǫX
HEG[n]FX(s)dr , s = 2(3π2/2)1/3√

rst , (1.41)

where s is a dimensionless gradient and

FX(s) = 1 + b1 − b1

1 + b2s2

b1

(1.42)

with b1 = 0.804 and b2 = a2π
2/3.
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BLYP

Becke proposed to correct the exchange density from LDA (eq. 1.37) in the following manner

EX
B [n] =

∫

nǫX
HEG[n]

(

1 +
4
3

(π

3

)1/3
a1

x2

1 + 6a1x sinh−1 x

)

dr , x =
|∇n|
n4/3

, (1.43)

where a1 = 0.0042 is obtained via a least square fit on the exact HF exchange of noble gases.

The well-known LYP correlation functional has been obtained from a semplification and a

reformulation of the Colle-Salvetti formula in terms of n and ∇n only:

EC
LY P [n] = −

∫ b1

1 + b4n−1/3

(

n+ b2n
−2/3

(

CFn
5/3 − 2tw +

tw
9

+
∇2n

18

)

e−b3n−1/3
)

dr , (1.44)

where

CF =
3
10

(3π)2/3 , tw =
1
8

( |∇n|2
n

− ∇2n
)

. (1.45)

tw is the kinetic energy density, and b1 = 0.04918, b2 = 0.132, b3 = 0.2533, and b4 = 0.349.

1.1.4 Plane waves and pseudopotentials

The total energy of a solid can be evaluated through a direct calculation of the KS wavefunc-

tions. This is very useful since the periodicity of the problem can be clearly exploited. For

finite systems, such as molecules, clusters and so on, it is always possible to take advantage of

the plane waves mathematical properties in a super-cell approach. By considering the infinite

replication of the super-cell it is quite straightforward to solve the KS equations in the Fourier

space. Moreover, in many cases one is interested to small variations of the total energy associ-

ated with the valence electrons rearrangement regardless of the core contribution. Indeed inner

electrons are often chemically inert and do not significantly contribute in bonding. This led to
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the introduction of pseudopotentials felt by the valence electrons and which are generated by

the joint effect of the nuclear charge and the inner electrons.

Within a super-cell approach and by making use of a plane waves basis set, it is possible to

divide the solutions of the Schrödinger equation Ĥ|Ψn〉 = En|Ψn〉 in two sets, |Ψc〉 and |Ψv〉,
i.e., for the inner electrons and the valence ones, respectively (n = c, v). The valence orbitals

can be written as the sum of a smooth function |φv〉, the pseudofunction, with an oscillating

function which results from the orthogonalization of the valence to the inner orbitals

|Ψv〉 = |φv〉 +
∑

c

αcv|Ψc〉 , (1.46)

where αcv = −〈Ψc|φv〉. The Schrödinger equation for the smooth orbital |φv〉 leads to

Ĥ|φv〉 = Ev|φv〉 +
∑

c

(Ec − Ev)|Ψc〉〈Ψc|φv〉 . (1.47)

This latter highlights the fact that the states |φv〉 satisfy a Schrödinger-like equation with an

energy-dependent pseudo-Hamiltonian

ĤP (E) = Ĥ −
∑

c

(Ec − Ev)|Ψc〉〈Ψc| . (1.48)

As a consequence

ω̂P (E) = v̂ −
∑

c

(Ec − E)|Ψc〉〈Ψc| , (1.49)

where v̂ is the true potential in which valence electrons move. Far away the core region ω̂P

becomes v̂. The valence electrons are subject to an effective potential which is the combination

of the screening of the nuclear charge due to the core electrons, the Pauli repulsion, and the

XC effects between the valence and core electrons. Generally the pseudopotential can be cast

into the form
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ω(r, r′) =
∑

l

l
∑

m=−l

Ylm
∗(r̂)ωl(r, r′)Ylm(r̂′) , (1.50)

where Ylm are the spherical harmonics.

In a plane wave basis set calculation and with pseudopotentials, the external potential vext is

simply the sum of all pseudopotentials of all atoms in the system. If atom α is located in the

unit (super-)cell at rα and its pseudopotential is ωα(r, r′), vext becomes

ω(r, r′) =
∑

j,α

ωα(r − Rj − rα, r
′ − Rj − rα) , (1.51)

where Rj are the lattice vectors.

The KS wavefunctions ψi(r), according to the Bloch’s theorem will be

ψk,n(r) = eik·r
∑

G

ck,n(G)eiG·r , (1.52)

where k is the wavevector, n the band index, and G are the reciprocal lattice vectors. From

this latter expression one can obtain the density and its Fourier transform

n(G) =
∑

k,n

∑

G′

f(ǫk,n)ck,n
∗(G′ − G)ck,n(G′) . (1.53)

The kinetic energy is thus rewritten as

T =
1
2

∑

k,n

∑

G

f(ǫk,n)|ck,n(G)|2|k + G|2 , (1.54)

and the Hartree energy

EH =
Ω
2

∑

G

vH(G)n(G) , (1.55)

where Ω is the unit cell volume. It has to be noticed that one way to obtain the Hartree

potential is through the respective Poisson equation.
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The electron-nuclei interaction energy can be then expressed as

Ee−n =
∑

k,n

∑

G,G′

f(ǫk,n)c∗
k,n(G)ck,n(G′)ω(k + G,k + G′) . (1.56)

Ee−n, the Hartree potential, and the nucleus-nucleus interaction energy diverge at G = 0 but

their sum is a constant value equal to Erep +EEwald, if the system is electrically neutral [53–55],

where Erep = Ztot(1/Ω)
∑

α Λα and

Λα =
1
Ω

∫ [

vα,local(r) +
Zα

r

]

. (1.57)

Zα is the electric charge of nuclei α and vα,local is the local part of the pseudopotential of

atom α. By separating the short- and the long-range non-divergent parts of the nuclei-nuclei

interaction, EEwald, one obtains

EEwald =
1
2

∑

α,α′

ZαΓα,α′Zα′ , (1.58)

where Γα,α′ is the typical term appearing in the Ewald summations over the reciprocal lattice

vectors and on the specific atomic positions and which does not depend on the density.

Finally, the total energy in the Fourier space is given by

Etot = T + E ′
Hartree + E ′

e−n + Exc + EEwald + Erep , (1.59)

with the terms G,G′= 0 excluded from the Hartree and pseudopotential contributions. Hence

the KS equations become

∑

G′

ĤG,G′(k)ck,n(G′) = ǫk,nck,n(G) , (1.60)

where
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ĤG,G′(k) =
1
2

|k + G|2δG,G′ + ω(k + G,k + G′) + vH(G − G′) + vxc(G − G′) , (1.61)

and are solved by diagonalizing the Hamiltonian.

The adoption of plane waves basis sets even for systems that are not ordered can be justified in

view of the important consequences that its use has in ab initio molecular dynamics (AIMD)

simulations. Indeed as shown before, being plane waves a complete and orthonormal set of func-

tions, they can used in order to expand the orbitals including only those G vectors that satisfy

the periodic boundary conditions (PBC). Moreover, by introducing this originless basis set one

avoid the onset of spurious forces - i.e., the Pulay forces - which arises from atom-centered

(or localized) basis sets such as, e.g., Gaussians basis sets. This advantage, which occurs even

within a finite basis and a restricted number of plane waves, leads in AIMD simulations to an

extremely lower computational demand in particular in evaluating forces and stress tensors.

The simple and only way to improve the quality of the basis set is to increase the so-called

“energy cutoff”. Indeed the KS potential converges very rapidly with increasing of the modulus

of G. Hence, at each k-point, only G vectors with a kinetic energy lower than a given maximum

cutoff

1
2

|k + G|2 ≤ Ecut (1.62)

will be included in the basis.

Finally, plane waves seems really to be one of the most natural way of implementing basis sets

in numerical calculations. Indeed, being defined very easily in the Fourier space, all the related

calculations can be made here and the derivatives of real space becomes multiplications. This

leads again to a computational saving and the results in the wavevector space can be efficiently

mapped into the real one via Fast Fourier Transforms (FFTs).
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1.2 Ab initio simulations

Up to now, we considered the nuclei as static entities since they are involved in pure DFT

calculations only as charged particles in the external potential operator. In order to obtain

the dynamical evolution of a set of atoms or molecules one has to derive specific equations of

motion that take into account all the relevant degrees of freedom.

The Hamiltonian of any real system cannot transcend on the nuclear variables; in its more

general structure it can be written as

Ĥ = −
P
∑

I=1

~
2

2MI

∇2
I −

N
∑

i=1

~
2

2m
∇2

i +
e2

2

P
∑

I 6=J

ZIZJ

|RI − RJ |

+
e2

2

N
∑

i6=j

1
|ri − rj|

− e2
P
∑

I=1

N
∑

i=1

ZI

|RI − ri|
, (1.63)

where {RI} is the set of the P nuclear coordinates and {ri} is that of the N electronic ones,

while ZI and MI are the nuclear charges and masses, respectively. An analytical solution to

the Schrödinger equation corresponding to the Hamiltonian (2.63) can be achieved only in very

few cases. Indeed, because of the correlations between all the involved particles one has to

deal with 3(N + P ) coupled degrees of freedom. In order to simplify the electronic part of the

problem one can introduce the just treated pseudopotentials and, for what concern the nuclear

part, two approximations were proposed in first-principles calculations: the adiabatic and the

classical nuclei approximations.

The first one stems from a perturbative analysis of the stationary Hamiltonian (2.63) with

respect to the mass ratio κ = (m/M)1/4 and by considering a new nuclear coordinates set de-

fined as R = R0 + κu, where u represents the displacement of the nuclei from the equilibrium

position R0. Under suitable conditions, Born and Oppenheimer proved the practical abscence

of mixing between distinct electronic states caused by the interaction with the nuclei [11]. In

other words, while the nuclei follow their own dynamics, the electrons istantaneously adjust
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their total wavefunction according to the total nuclear wavefunction: these states are adiabatic.

Thus, under proper external conditions it is legitimate to separate the electronic and the nu-

clear variables. It has been shown that the correction to the evaluation of the eigenvalues is

proportional to κ4 = m/M , which in the worst cases is lower than the 0.5% [56]. Neglecting

these corrective terms constitutes the Born-Oppenheimer approximation.

The classical nuclei approximation is based on the observation that the de Broglie wavelength

of most of the nuclei is comparable with the interatomic distances only at temperatures of the

order of few units of Kelvin. Hence the quantum coherence effects associated with the nuclei

are extremely relevant only in these regimes (or almost only in these cases!). This circumstance

allows one to treat the nuclei as classical objects and to compute the relative forces via some

variants of the Hellmann-Feynman theorem [57,58]. The set of newtonian equations of motion

for the nuclear degrees of freedom is

MI
d2RI(t)
dt2

= − ∂

∂RI

〈Ψ(R)|ĥe|Ψ(R)〉 − ∂Vnn(R)
∂RI

, (1.64)

where

ĥe = − ~
2

2m

N
∑

i=1

∇2
i +

e2

2

N
∑

i6=j

1
|ri − rj|

+
P
∑

I=1

N
∑

i=1

vext(ri − RI) (1.65)

and

Vnn(R) =
e2

2

P
∑

I 6=J

ZIZJ

|RI − RJ | , (1.66)

can be numerically integrated in order to obtain physical trajectories in the phase space. Within

this scheme the electronic problem has to be solved at each integration step of the molecular

dynamics (MD), tipically leading to an increase of the computational cost of a factor of 1000

or more with respect to the classical simulations. This kind of simulation is mandatory when
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the chemistry of the system plays a relevant role, such as in chemical reactions, during which

the breaking and the reforming processes of covalent bonds take place.

A self-consistent first-principles MD approach can be obtained by solving the electronic problem

within the KS scheme:

〈Ψ(R)|ĥe(R)|Ψ(R)〉 = EKS[n](R)

= Ts[n] +
1
2

∫ n(r)n(r′)
|r − r′| d

3 rd3 r′ + EXC [n]

+
P
∑

I=1

∫

n(r)vext(r − RI)d3 r +
1
2

P
∑

I 6=J

ZIZJ

|RI − RJ | , (1.67)

and the force on the nuclear coordinates can be obtained by simple derivation:

FI = −∂EKS[n](R)
∂RI

= −
∫

n(r)
∂vext(r − RI)

∂RI

d3 r +
P
∑

I 6=J

ZIZJ
RI − RJ

|RI − RJ |3 . (1.68)

The standard procedure before the Car and Parrinello seminal article [12], was that of mini-

mizing the electronic structure at each step of the MD simulation. This method is known as

Born-Oppenheimer MD (BOMD) [59] and several calculations presented in this thesis have been

performed also within this approach. But at the time in which this method has been set up,

in 1983, requiring the self-consistency of the electronic wavefunctions at each step represented

the limiting step of the size and/or of the time length of the simulated sample.

1.2.1 Car-Parrinello Molecular Dynamics

The massive computational implementation of DFT started historically since 1985 thanks to

the Car-Parrinello (CP) method [12]. Indeed it was presented an alternative approach to the
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BOMD by considering the possibility to maintain the electronic density sufficiently close to the

adiabatic density during distinct MD steps. By introducing a fictitious conservative term at

the second order of the dynamics of the KS orbitals, this purpose has been reached. The CP

molecular dynamics (CPMD) scheme can be described by a dynamical system represented by

the following Lagrangian:

LCP =
1
2

P
∑

I=1

MIṘ2
I + µ

N
∑

i=1

fi

∫

|ψ̇i(r)|2d3 r

−EKS[ψi(r)](R) +
N
∑

i=1

fi

N
∑

j=1

Λij

(

∫

ψ∗
i (r)ψi(r)d3 r − δij

)

, (1.69)

where the KS energy is given by

EKS[ψi(r)](R) =
N
∑

i=1

fi

∫

ψ∗
i (r)ĥ1(R, r)ψi(r)d3 r

+
1
2

∫ ∫ n(r)n(r′)
|r − r′| d

3 rd3r′ + EXC [n] +
1
2

P
∑

I 6=J

ZIZJ

|RI − RJ | . (1.70)

The operator ĥ1 is the one-electron Hamiltonian in which are present the free kinetic term and

the external potential, whereas the electronic density in terms of the dynamical KS orbitals

and of their occupation numbers can be written as

n(r) =
N
∑

i=1

fi

∫

ψ∗
i (r)ψi(r)d3 r . (1.71)

The first term in the CP Lagrangian (2.69) represents the nuclear kinetic energy while the last

one guarantees the orthonormality, which is necessary to describe electronic densities arising

from a Slater determinant of the KS orbitals at each simulation time step. The Lagrange

multipliers Λij should be determined in such a way that this condition is satisfied. From a com-

putational point of view, there exist many orthonormalization algorithms. Some of them do
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not guarantee the energy conservation - i.e., the Gram-Schmidt algorithm - and are exploitable

only in the earliest minimization steps of the energy. On the other hand, within a CP dynam-

ics it exists only one orthonormalization procedure which is consistent with the equations of

motion [60].

The second term in the CP Lagrangian (2.69) represents (with the orthonormalization con-

straints) the most important innovation introduced. It corresponds indeed to a fictitious kinetic

energy

Ke[ψi(r)] = µ
N
∑

i=1

fi

∫

|ψ̇i(r)|2d3 r (1.72)

associated with the dynamical evolution of the KS orbitals. Ke is simply a convenient term

that allows the KS orbitals evolution independently of (but coupled with) the nuclear degrees

of freedom. Ke is a measure of the deviations from the exact BO surface and in the limit µ → 0

one recovers the BOMD scheme. The fictitious mass, which is also known as adiabaticity or

inertia parameter, assigned to the orbital degrees of freedom has the units of an energy times

a squared time only for dimensionality reasons.

The equations of motion stemming from (2.69) are

d

dt

(

∂LCP

∂ṘI

)

= −∂LCP

∂RI

, (1.73)

d

dt

(

δLCP

δψ̇∗
i (r)

)

= − δLCP

δψ∗
i (r)

. (1.74)

The second equation involves functional derivatives because the wavefunctions are continuous

scalar fields. However, in practice the wavefunctions are expressed with respect to a discrete

basis or in terms of plane waves components leading to partial derivatives. This way one obtain

the CP equations of motion
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MIR̈I = −∂EKS[ψi(r)](R)
∂RI

, (1.75)

µψ̈i(r, t) = −δEKS[ψi(r)](R)
δψ∗

i (r)
+

N
∑

j=1

Λijψj(r, t)

= −ĤKSψi(r, t) +
N
∑

j=1

Λijψj(r, t) . (1.76)

The introduction of the electronic inertia parameter µ leads obviously to a twofold temper-

ature concept in CP simulations. Indeed the instantaneous physical temperature, which is

proportional to
∑

I MIṘI , associated with the nuclear motion has now the fictitious electronic

counterpart ∝ ∑

i µ〈ψi|ψi〉. A central point is related to the decoupling of the two energy scales

because during a CP simulation no energy transfer must be observed between the nuclear and

the electronic subsystems. By maintaining the electrons sufficiently “cold” and the nuclei “hot”

enough (but not too much!) it is possible to prevent a non-adiabatic time evolution and this

aim is in practice achieved by accurately checking the relative power spectra. As an example, by

considering the Fourier transform of the statistically averaged velocity autocorrelation function

of the classical fields representing the orbitals

f(ω) =
∫ ∞

0
cos (ωt)

∑

i

〈ψ̇i; t|ψ̇i; 0〉dt (1.77)

and by comparing it to the highest frequancy phonon mode ωmax
n , one can establish if the

adiabaticity will be fulfilled. Indeed if no overlap is present between the two spectra, no energy

transfer can occur between the two subsystems according to nonlinear classical dynamics theory.

In practice a harmonic analysis should be sufficient in evaluating this particular issue [60]. It

has been shown [60] that the frequency spectrum of the classical orbitals close to the ground

state is
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ωij =





2(ǫi − ǫj)
µ





1/2

, (1.78)

where ǫi and ǫj are the eigenvalues of unoccupied and occupied orbitals, respectively. By

following this simple harmonic approximation [60], one can determine the lowest electronic

“vibrational” frequency:

ωmin
e ∝





Egap

µ





1/2

. (1.79)

This latter shows that by taking greater and greater values of µ, the minimum electronic

frequency shifts to lower values increasing the overlap probability with the phonon spectrum.

Hence, in order to guarantee the adiabaticity one has to choose a value of µ small enough to

have the biggest difference ωmin
e −ωmax

n as possible. However, the fictitious mass parameter has

other responsabilities. For instance, decreasing µ not only shifts the lower frequency at higher

values but also stretches the whole frequency spectrum because of the following relation

ωmax
e ∝





Ecut

µ





1/2

, (1.80)

where Ecut is the largest kinetic energy in a plane waves expansion. Moreover a great limitation

in arbitrarily decreasing the value of µ is due to its relationship with the allowed maximum

time step

∆tmax ∝




µ

Ecut





1/2

. (1.81)

Hence, depending on the specific system under investigation and by playing with µ and Ecut

one can set up the desired CP simulation under adiabatic conditions.

Of course, the insertion of µ has also several drawbacks. The primary effects is clearly due to

the fact that the electronic subsystem has a mass! This means that the electronic degrees of
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freedom exert some inertia on the nuclei making them effectively heavier and this circumstance

manifests itself sometimes mainly in thermodynamic and structural properties. Fortunately,

by means of a perturbative treatment of the CP single-particle wavefunctions with respect to

the corresponding BO ones [61, 62], one recovers not only suitable relationships between the

respective forces, but also renormalization values for the nuclear masses and for the relative

phonon frequency scaling; this a way, a proper temperature scaling can be adapted.

1.2.2 Static electric fields in ab initio simulations

The theoretical development and the implementation of electric fields in ab initio codes is all

other than trivial. A wide literature exists in this field [63–67] and it is impossible to resume

all the conceptual steps which started since the definition of polarization.

One of the key points that one has to face in dealing with this delicate aspect is the common

presence of PBC. The first problem that arises is the inherent discontinuity carried by the

infinite replication of the simulation box. At the edges of the boxes infinite electric field

strengths clearly occur when a linear electrostatic potential is applied within. However, this

problem can be more or less easily handled by confining the MD with some specific constraint

even if this solution is not so rewarding.

More seriously, the periodicity in the presence of a macroscopic electric field E will lead to

a change in the electron potential in each replication of the simulation box. The intrinsic

problem resides in the non-periodic nature of the position operator. In particular, the electric

field changes by a factor of eE · R under a traslation by a lattice vector R and even a small

field varies the nature of the energy eigenstates. Moreover, because the potential is unbounded

from below, the ground state is ill-defined [63,68,69].

Many perturbative treatments of the application of an electric field have been proposed but

only within the Modern Theory of Polarization and Berry’s phases this delicate issue can be
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efficiently tackled [67,70]. Few of them [63] are founded on a Wannier-function-based solution to

the finite-field problem that was not very useful in practice [67]. By means of the use of Bloch’s

functions, Nunes and Gonze [64] showed how the common perturbative treatments could be

directly obtained from a variational principle based on minimizing an energy functional F of

the following form

F = EKS({ψkn}) − E · P({ψkn}) . (1.82)

EKS({ψkn}) represents the KS energy per unit volume as a function of all occupied Bloch’s

functions and P({ψkn}) is the usual zero-field Berry’s phase expression for the electronic polar-

ization. In practice this equation has to be minimized with respect to all {ψkn} in the presence

of the field. This way also the Bloch’s functions will become functions of E , and F develops

into a function that implicitly depends on the field.

Within the KS scheme the Berry’s phase polarization of the non-interacting KS system is in

general not the correct one [71,72]. One way to circumvent this problem is to consider a general-

ized HK theorem in which n(r) and P(r) uniquely determine any ground state property [71,72].

Moreover, in the corresponding KS scheme one has to find an effective periodic potential and

an effective electric field EKS that yield for a non-interacting system the same n(r) and P(r).

In this theory [71,72] the polarization is the correct one by construction, whereas a correction

EKS − E has to be introduced (i.e., one has to introduce a sort of “exchange-correlation electric

field”).

Only in 2002, Umari and Pasquarello [65] demonstrated that the functional (1.82) is suitable

for use as an energy functional for a variational approach to the finite-field problem as well.

The proof is not obvious since the occupied wavefunctions {ψkn} are not eigenstates of the

Hamiltonian. Hence, the problem of computing the polarization P in an electric field provides

from a certain point of view the solution to the problem of computing any property of an
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insulator in a finite homogeneous electric field; it is in fact the introduction of the Berry’s

phase [70] polarization into the funcional F of eq. (1.82) that solves the problem. In particular,

by considering an electric field along the x direction, the following variational energy functional

can be builded

EE [{ψi}] = E0[{ψi}] − E · P [{ψi}] , (1.83)

where E0[{ψi}] is the well-known energy functional in the zero-field system and P [{ψi}] is the

polarization defined by Resta [66]:

P [{ψi}] = −L

π
Im(ln detS[{ψi}]) , (1.84)

where L is the periodicity of the cell and S[{ψi}] is the following matrix

Si,j = 〈ψi|e2πix/L|ψi〉 (1.85)

for the set of doubly occupied wavefunctions. By comparing their results with other perturba-

tional approaches [64], Umari and Pasquarello conclude that their method is applicable “even

when the periodic symmetry is relaxed” [65]. Moreover, this formulation allows not only to

treat finite homogeneous electric fields in first-principles calculations but also can be extended

to yield the atomic forces. Indeed by adding the following term to the functional (1.83)

EE
ion=−E · Pion , Pion=

Nion
∑

i=1

Zi ·Ri , (1.86)

where Pion is the ionic polarization, Ri is the position coordinate in the field direction and Zi

is the charge of the ionic core, this definition leads to an extra-term on the force acting on the

ith atom equal to Fi = EZi.

Finally, we want to remark that the briefly treated methodology developed by Umari and

Pasquarello [65] has been thoroughly employed in the simulations presented in this thesis when
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an electric field has been applied.

1.3 Collective variables and Metadynamics

As stated before, ab initio methods are by their nature an extremely powerful tool in predicting

and analyzing chemical reactions. However, one of the most important parameters in describing

activated processes is of course its free energy surface (FES). This latter is represented by a

function that tipically depends on a number of variables (i.e., collective variables (CV)) which

can be either few and relatively numerous depending on the specific reaction. There exist

several theoretical and computational methods that are capable to reproduce the FES of a

chemical process and few of them have been employed in this thesis.

Let us consider a system in the canonical ensemble; we introduce a collective variable q(R), a

function of the atomic coordinates, that is able to distinguish the relevant metastable states of

the system (i.e., reactants and products). The probability of finding the system in a specific

configuration characterized by the reaction coordinate s is given by

P (s) =
1
Q

∫

e
−

U(R)
kBT δ(s(R) − s)dNR . (1.87)

The free energy is related to this quantity by

F (s) = −kBT lnP (s) , (1.88)

and thus P (s) ∝ e
−

F (s)
kBT . As a consequence, if it were be possible to explore the entire configura-

tion space of a system, what is in principle feasible by means of an extremely long equilibrium

Molecular Dynamics (MD) trajectory, it would be straightforward to reconstruct its FES. Un-

fortunately, the rates at which chemical reactions evolve are easily smaller than 1 hour−1 making

infeasible the application of even classical MD techniques in most cases. However, enhanced
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sampling algorithms allow overcoming this limitation and reconstruct the FES: in this thesis

we employed metadynamics (MetD) [34]. This approach biases the potential energy along a

CV to enhance the sampling of, in principle, the corresponding free energy landscape. The bias

is represented by a history dependent function which, as the dynamics evolve, decreases the

probability of visiting configurations already explored. In particular, by depositing (tipically

Gaussian) hills of potential energy centered in the visited points of the CV space, MetD is able

to fill and escape the local free energy minima and, at the end of the simulation, to reconstruct

the underlying FES. At time t, the bias at s is

W (s, t) =
Nhills(t)
∑

i=1

he
− 1

2
(

s−s(ti)

σi
)2

, ti = i · τ , (1.89)

where τ is the inverse of the hills deposition rate (i.e., the MetD time step). Step by step

the filling procedure of the “valleys” characterizing the FES will lead to a flattening of this

latter once the convergence of the calculation has been achieved. Indeed a central assumption

of MetD is that

− lim
t→∞

W (s, t) ≃ F (s) + const. (1.90)

The statistical convergence of every MetD calculation is a key aspect in accurately recon-

structing the correct FES. Although in expression 1.90 the concept of infinite limit has been

introduced, for practical purposes this circumstance is achieved when the free energy profile

show a parallel growth of the FES (flattening). This circumstance occurs when fixed-height

Gaussian hills of potential are deposited but it exists also the possibility to employ the well-

tempered MetD variant [73]. In this approach, potential hills of progressively reduced heights

are deposited when the simulation proceeds, becoming almost negligible once the convergence

is achieved.

When MetD is exploited in conjuction with CPMD (due to the high computational cost of
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ab initio forces), the history dependent potential has to force the system to cross the energy

barriers in few picoseconds. This implies that a huge amount of energy is injected in the

sample in the form of bias potential and this may lead to a significant dishomogeneity in

the temperature distribution and to instability in the dynamics. To address this problem an

extended Lagrangian approach has been introduced [74], and auxiliary fictitious variables have

been added to the CP Lagrangian:

L = LCP +
Ns
∑

α=1

1
2
µs

αṡ
2
α(t) −

Ns
∑

α=1

1
2

[Sα(R(t)) − sα(t)]2 + V (t, [s]) , (1.91)

where the second term is the fictitious kinetic energy associated with the fictitious variables

{sα}. These variables are auxiliary degrees of freedom with associated fictitious masses µs
α which

are introduced to explore the CV space. In this way, the dynamics of these extra-degrees of

freedom can be explicitly controlled by suitable thermostats. An important requirements within

CPMD is indeed the adiabatic separation with respect to the electronic degrees of freedom. If

µα is very large, the CV will relax to equilibrium distribution very slowly, reducing the efficiency

of the method. Although its formulation appears to be elegant and conceptually generalizing,

in practice the adiabatic separation can be maintained without the briefly presented extended

Lagrangian approach, as it is in our cases [75].

As briefly stated in the Introduction, the necessity of the a priori choise of the CV which

drive the reaction hugely limit the applicability of pure MetD techniques. Indeed it is not

straightforward to predict which is the minimum set of CV that, describing the dynamical

evolution of the system, are essential in reconstructing the FES. Moreover, the volume of the

space of the CV grows exponentially with the number of CV making use of more than ≈ 2

computationally expensive.
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1.3.1 Path Collective Variables with a new definition of distance

By the knowledge of the dynamical evolution of a given chemical reaction - i.e., its trajectory

- the problem of the a priori choise of a set of CV can, in principle, be bypassed. Branduardi

et al. [35] introduced the so-called “path-CV” which are constructed from a tentative reaction

path {R0} connecting the reactants and the products states. By defining a measure D of the

distance between the current reaction {R} and the reference one {R0} as, e.g., the mean square

difference between all pairs of the interatomic distances computed in the reference states (say

A and B for the reactants and the products states, respectively)

D({RA}, {RB}) =
2

N(N − 1)

N
∑

J>I

(|RA
I − RA

J | − |RB
I − RB

J |)2 , (1.92)

one can construct a CV that mark the progress of the reaction along the path:

s(t) =
∑Nf

k=1 ke
−λD(R(t),Rk)

∑Nf

k′=1 e
−λD(R(t),Rk)

. (1.93)

Of course, one can define the measure D in many different manners. Moreover, another impor-

tant CV is introduced within this approach:

z(t) = − 1
λ

ln
( Nf
∑

k=1

e−λD(R(t),Rk)
)

, (1.94)

which measures the distance away from – i.e., orthogonal to – the reference path.

The reference frame {Rk} composing the tentative path can be built based on the available

information about the system (i.e., transition state at T = 0), or by some interpolation between

the end points. The big advantage of this approach is that the system is guided along the

transition, still retaining the freedom to find a new path.

As an extension of path-CV, a new metric D suitable for chemical reactions has been very

recently developed by Pietrucci and Saitta [36].
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These latter define a new metrical concept of the measure D which reads

D(R(t),Rk) =
∑

IS

[CIS(t) − Ck
IS]2 , (1.95)

where CIS is the coordination number between atom I of species S ′ and all atoms J of species

S whereas Ck
IS is its value referred to the reference structure {Rk}. This definition of distance

is well-suited to reactions since coordination numbers are permutation invariant with respect to

atoms belonging to a given species S: any hydrogen, for instance, can take part in a protonation

event (i.e., it can come from the solvent, from the solute, etc.). In practice the quantity CIS is

defined by means of the switching function

CIS(t) =
∑

J

[

1 −
(

RIJ (t)
R0

SS′

)N]

[

1 −
(

RIJ (t)
R0

SS′

)M] , (1.96)

whereR0
SS′ take into account the natural bond lengths between distinct atoms (see also Fig. 1.1).

But the most striking advantage of this technique resides in the fact that in principle no insights

might be known about the reaction under study. For instance, no predetermined trajectories

are needed in order to produce a desired dynamical evolution of the atomic entities. Indeed a

simple contact matrix description of the initial and of the end states is required and uniquely the

structural formulas of these latter are mandatory. In practice, using the Ck
IS entries obtained

from a short MD simulation of the end states can improve the resolution of the intermediate and

transition states. Moreover, by its formulation, this new method represents a straightforward

way to compute FESs in topologically equivalent CV spaces of gas phase and condensed phase

chemical reactions. In this way, also a direct comparison between these two situations can

be made highlighting the role of the solvent in assisting more or less complex reactions. This

method has been employed in all the free energy calculations presented in this thesis.

In many cases MetD calculations converge and accurate evaluations of the free energies can
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Figure 1.1: Construction principle of topological path-CV [36]. Arrows highlight changes of coordination
numbers whereas all other matrix elements are free to change. Courtesy of the authors of Ref. [36].

be made directly [36]. In more articulated reaction processes it has been proved that reaching

the convergence is not trivial, neither using MetD with fixed Gaussian heights nor in the well-

tempered variant [73]. Despite this, “exploratory” simulations can be carried out in order to

discover the position in the CV space of the relevant basins characterizing the FES and of

the (putative) transition states connecting them. Once obtained the “map” of the free energy

landscape it is possible to perform a series of parallel umbrella sampling (US) [33] simulations

in order to sample the reaction path and accurately evaluate the underlying FES. For the sake

of completeness, a brief mention to the US technique follows.
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1.3.2 Umbrella Sampling and the Weighted

(and Dynamic) Histogram Analysis Methods

The sampling probability (1.87) can be modified by virtue of a biased potential added to the

system which depends only on the CV. For the sake of simplicity now we will take only one CV

but the following treatment can be straightforwardly extended to multi-dimensional FESs. The

potential energy will be thus modified in U(R) → U(R) + V (s). Hence the biased distribution

of the CV will be

P ′(s) ∝
∫

e
−

U(R)+V (s)
kBT δ(s− s(R))dNR ∝ e

−
V (s)
kBT P (s) , (1.97)

and the biased free energy F ′(s) results to be

F ′(s) = −kBT lnP ′(s) = F (s) + V (s) + const. (1.98)

The additional constant is irrelevant in determing FESs since only energy differences are mean-

ingful. By removing a posteriori the bias potential one can simply recover the unbiased FES

F (s)

F (s) = F ′(s) − V (s) + const. (1.99)

In practice, one of the most used bias potential is the harmonic one defined as

V (s) =
1
2
k(s− s0)2 , (1.100)

which depending on the strength of the constant k is able to sample even very difficult-to-sample

free energy barriers. A biased MD with such a kind of bias potential is known as Umbrella

Sampling (US). One has to keep in mind that for a two-dimensional case - i.e., a FES that

depends on two CV, s and z - the just defined harmonic potential has the form V (s, z) =

48



1
2
ks(s− s0)2 + 1

2
kz(z − z0)2. Clearly in the one-dimensional case, the sampled distribution will

be

P ′(s) ∝ P (s)e−
k(s−s0)2

2kBT , (1.101)

and the consequent biased free energy can be evaluated as (1.98), whereas by means of eq.

(1.99) one can recover the unbiased free energy.

Of course, in general when performing US simulations the bias produces an enhanced sampling

in regions close to the minimum s0 of the bias. In order to sample a relevant portion of the FES

one has to combine multiple independent US simulations centered in distinct si. Moreover, to

the aim of gather enough statistical information, each sampled window has to overlap with

the other nearest sampled regions as better as possible. This way, by applying the Weighted

Histogram Analysis Method (WHAM) [37, 76–78] it is possible to combine in a statistically

well-founded manner the sampled windows in the CV space and to map the whole unbiased

FES. In practice, if we have to collect Nsims distinct US simulations, WHAM equations that

are able to reconstruct the underlying free energy over the sampled (distinct) regions are

P (s) =
∑Nsims

i=1 ni(s)

∑Nsims
i=1 ni(s)e

[

(Fi(s)−Vi,bias(s))

kBT

] , (1.102)

Fi(s) = −kBT ln
(

∑

Sbins

P (s)e−
Vi,bias(s)

kBT

)

. (1.103)

In these two equations, which have to be solved by iteration to self consistency, ni(s) is the

number of counts in histogram bin associated with a given value of s. Vi,bias is the biasing

potential in the (US) simulation i and Fi(s) is the free energy shift. Finally P (s), which is

unknown as well as Fi(s), is the best estimate of the unbiased probability distribution provided

that a predetermined tolerance threshold has been imposed in the iterative procedure.
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Although WHAM is the most used technique in order to combine multiple US simulations

and thus obtain accurate free energy estimates, its reliability resides on the achievement of

the equilibrium in each sampled window. Indeed each US simulation has to fully sample (in

principle) the corresponding equilibrium probabilities. In practice this circumstance is not

always verified leading to instabilities in the WHAM estimates of the FES [79]. Very recently,

a dynamic version of this method (i.e., the DHAM) has been introduced [79]. DHAM has been

proved to be more general than WHAM, with the latter representing only a special limiting

case of its dynamical variant [79]. It makes use of a global Markov state model in order to

obtain the free energy over a number of CV. In particular, a maximum likelihood estimate

of the Markov transition matrix is constructed by joint unbiasing of the transition counts

along discretized reaction coordinates. Finally, within DHAM an explicit approximation of the

stationary distribution of the resulting Markov matrix has been introduced, which does not

require the above presented iterative procedure characterizing WHAM.

In this thesis the US method has been used in order to converge the “exploratory” MetD

sampling obtained by means of the new CV approach developed by Pietrucci and Saitta [36].

At the end of this process, a recombination of the multiple US simulations has been performed

via WHAM and thus the FESs reconstructed.
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Chapter 2

Results on Proton Transfer in

H-bonded Systems

2.1 Water ices under an electric field

Introduction

Water is one of the most abundant substances on Earth and likely is the most studied compound

in condensed matter physics. It has a rather baroque phase diagram with at least sixteen

crystalline phases and three amorphous phases [21]. However, despite the huge experimental

evidence and theoretical results which have accumulated so far, some structural and dynamical

properties of the liquid and solid phases of water are not yet fully understood [21,80].

Of paramount relevance is the phenomenon of molecular dissociation and the related phe-

nomenon of proton transfer (PT). This process, which in liquid water is known as (auto)protolysis,

plays a crucial role in many disparate domains, from neurobiology to electrolytic batteries and

hydrogen-based technology [1,2]. At standard conditions this phenomenon is as rare as funda-

mental since, among other things, it represents the basis of the definition of the pH concept via
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the well-known reaction

2H2O ⇋ OH− +H3O
+, (2.1)

where two water molecules ionize by transferring one proton. Although the way in which

this process – known as Grotthuss mechanism [4] – occurs along hydrogen-bonded chains of

water molecules is phenomenologically clear since the ’800s, a coherent theoretical framework

which may explain in detail all the relevant aspects characterizing the protolysis and the PT

mechanism is still missing.

In principle, the study of the H-bond network of solid water phases is easier than that of the

liquid phase and hence ice phases are good candidates where to study the properties of the

PT mechanism. At ambient conditions, the stable crystalline phase is ice Ih, whose molecules

are positionally arranged in an hexagonal lattice while being orientationally disordered (i.e.,

the proton sublattice is randomly distributed). Upon cooling KOH-doped ice Ih down to a

temperature of 72 K, it is possible to obtain its proton-ordered counterpart (ice XI) [19, 20],

whose molecules are oriented along the c-axis (i.e., the z-component of the dipole moments

is everywhere positive). In the Ih to XI first-order phase transition, the KOH hydroxide ions

catalyze the rearrangement of H bonds, via defects formation, which leads to an enhanced

molecular mobility. This way, water molecules exploit a more stable condition by reducing the

original symmetry of the crystalline phase from hexagonal to orthorhombic, thus giving rise to

the ferroelectric ice XI phase.

Because of the extremely rare nature of the protolysis phenomenon, Saitta and coworkers [18]

have shown that it is possible to stimulate and study the proton transport process in a system-

atic fashion by applying an external electric field.

In this Section, as already done in a correspective paper [81], we apply this computational

approach to crystalline phases of water. We use the Car-Parrinello technique [12] to determine
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the energetic profiles of the molecular dissociation phenomenon and monitor some dynamic

properties of the system, with particular emphasis on PT along H-bonded water molecules.

We also carry out some comparisons with the experimental results available in ices with high

defects concentrations.

Finally, in order to shed more light on these apparently elaborate phenomena, we present a

series of ab initio simulations that are performed to understand and exploit the symmetry

differences between ice Ih and ice XI. This aim is achieved by applying a static electric field

along two different crystalline directions. Upon monitoring and analyzing the PT activity in

the two topologically different materials, important conclusions can be drawn. This kind of

analysis is of paramount importance because the hydrogen migration properties are relevant in

many disparate fields [82] and the related (an)isotropic piezoelectric effects are important [83]

also for H-bonded systems [84]. Moreover, here we investigate (as already done in a paper [85])

several dynamical properties of H-bonded molecular “wires” in the bulk during the proton

migration process.

In the following Section the computational methods employed in these specific works concerning

the ice phases are presented in detail.

Computational methods

By using the Car-Parrinello approach [12] we performed a series of static and dynamic ab initio

simulations on two ice phases, i.e., ice Ih and ice XI, under the effect of intense electric fields,

applied along the c cell parameter, in order to study the phenomenon of ionic conduction. All

data were obtained using the software suite Quantum ESPRESSO [86] for ab initio electronic

structure calculations within which it is possible to handle macroscopic polarization and finite

electric field by exploiting the modern theory of polarization (Berry’s phases) [65,70].

Our systems were composed of 64 H2O molecules arranged in an orthorhombic cell with pa-
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rameters a = 9.05 Å, b = 15.67 Å, and c = 14.87 Å. In order to test potential size effects along

the field direction, we also performed some numerical calculations on samples with 96 and 128

molecules, built with a c cell parameter whose values were 22.31 Å and 29.74 Å, respectively.

Periodic boundary conditions were applied in all simulations.

The positions occupied by the oxygen atoms are the same in the two ice structures; however,

the arrangements of the hydrogen atoms differ significantly. In fact, the orientations of the

molecules that compose the Ih phase, while complying with the Bernal-Fowler ice rules [87], are

disordered, giving rise to a P63/mmc symmetry; instead, those belonging to the ice XI phase

are orientationally ordered, and form a crystalline structure that belongs to the Cmc21 space

group.

The calculation of the molecular dissociation energy profiles is performed via electronic mini-

mization by using, sequentially, the Gram-Schmidt and Davidson algorithms. In the following,

we shall refer to such total energy profiles as “single”, “double” or “triple” barriers according

to the number of protons involved in the jump from their original sites. In the case of a double

(triple) barrier, in which two (three) protons of H-bonded molecules simultaneously move, the

protons were selected in this way: one belonging to the donor, one to the acceptor molecule,

which in turn becomes the donor, and so on. We verified that the single and double-barrier

cases cannot account for a potentially alternative scenario which may justify the jump of a

proton on the energetic side. Hence, we limit our discussion to the triple-barrier profiles that

are displayed in Fig. 2.1, whose inset also shows three snapshots of the molecular configurations

involved in the calculations. These configurations were chosen because the molecular dipole

moments are partially aligned with the field direction (positive z component). In particular,

the configuration shown in Fig. 2.1-a is the same as the one used in the ferroelectric case and

is obviously the most favored one for PT in the arrangement of the present numerical exper-

iment. Barriers along the selected reaction coordinates were calculated via single, double or

triple proton shift(s) of 0.038 Å.
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The dynamic ab initio simulations were performed at the nominal temperature of 300 K which,

according to the literature [88–90], corresponds to a real temperature of about 250 K. The

effect of the electric field was explored for intensities less or equal to 0.36 V/Å, with a step

increment of approximately 0.036 V/Å , which leads to a total simulation time of more than ten

picoseconds (for each value of the field intensity the duration of the simulation was at least 1 ps).

Several dynamic runs were conducted also for stronger electric fields (up to about 0.73 V/Å),

in order to obtain a full description of the current-voltage diagram of ice Ih. The fictitious

electronic mass was set at a value of 300 a.u., with a cutoff energy ranging between 25 and 35

Ry and a cutoff energy for the charge density of 200 − 280 Ry: these values made it possible

to adopt a Car-Parrinello timestep of about 0.1 fs. We used the Perdew-Burke-Ernzerhov

(PBE) functional [51], which belongs to the generalized gradient approximation (GGA), as an

exchange and correlation functional because of its well known reliability when dealing with

aqueous systems [18, 91–93]. The electronic interaction with the nuclei was described through

ultrasoft pseudopotentials (USPP) and the ion dynamics was carried out in the NVT ensemble,

using the Verlet algorithm and Nosé-Hoover thermostat at a frequency of 13.5 THz. Protons

were treated as classical particles. Although nuclear quantum effects do certainly play a role in

proton barriers and diffusion, we focused more on relative values as emerge from a comparison

between proton-ordered and proton-disordered phases.

The conductivities were obtained by exploiting Ohm’s law. The current intensity is related to

the number of charge carriers and to the time interval considered. The former quantity was

obtained from the simulation data by calculating the number of protons travelling through

a section area of the simulation box, orthogonal to the electric field direction. The other

quantities, such as the potential difference in the simulation box and the correspoding resis-

tance/conductivity, can be computed in a straightforward way.

Once the general properties of the PT mechanism in the abovementioned ice phases have been

elucidated, a detailed investigation of the mechanical and the electrical responses is proposed
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under the action of intense electric fields applied along two directions, viz., the c-axis and

the b-axis. For each value of the field, we run the dynamics for about 2 ps, cumulating a

total simulation time longer than 20 ps for each sample and field direction. Although all

the calculations performed here exploit the PBE functional [51], in the light of some recent

debate on its reliability for aqueous systems [92,94,95], we carry out some calculations with the

BLYP functional [52] as well. The energies of the distorted structures and the corresponding

equations of state (EOS) are also calculated using the same DFT-based Quantum ESPRESSO

code. Following the energy-strain approach, we execute a series of relaxation simulations by

using the steepest-descent technique combined with the damping dynamics of the ions for

different values of the cell parameters, while keeping the cell volume fixed over the whole range

of explored field strengths. With this approach it is also possible to calculate, inter alia, the

c66 component of the stiffness tensor (i.e., one of the elastic constants), that is related to the

curvature of the EOS around its minimum. In hexagonal systems five stiffness constants only

are independent, viz., c11, c12, c13, c33, and c44, since c66 = 1
2
(c11 − c12) [96]. It is possible to

determine this latter quantity through the relation (expressed here in the Voigt matrix notation)

c66 =
1
V

∂2E

∂ε6∂ε6













E=E0

, (2.2)

where V is the volume, ε denotes an infinitesimal deformation, and E is the self-consistent total

energy of the system. In practice, the derivative is carried out on a quadratic fit of the data

for the energy.

General results and discussion

In liquid water molecules start to dissociate for field intensities of about 0.25 V/Å [17,18,97,98],

while a net proton flow is observed along the z-direction for values of the intensity above

0.36 V/Å [18]. We found that the same thresholds apply to ice Ih which, in this respect,
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Figure 2.1: Relative energies corresponding to proton shifts of a given distance along an H-bonded chain
formed by three water molecules, for an electric field intensity of 0.36 V/Å, in a system with 64 molecules; the
solid blue line refers to ice XI while the other curves refer to ice Ih and were generated using three different
molecular configurations that are shown in the inset; panel (a): configuration of three water molecules present
in both Ih and XI structures leading to the blue curve and green curve with circles, respectively, upon displacing
protons as discussed in the text; panel (b): configuration of three water molecules in ice Ih leading to the red line
with crosses; panel (c): configuration of three water molecules in ice Ih leading to the black line with diamonds.

behaves as liquid water; this finding is not particularly surprising since the dipole moments

orientational distributions are similar in both phases. Instead, in ice XI the angular symmetry

is broken in that the z-component of the dipole moments is, on average, positive, a condition

that leads to the emergence of an internal electric field (ferroelectric phase). As a result, the

electrostatic coupling with the external field is significantly enhanced. Correspondingly, the

first dissociation events are observed for field intensities in the range 0.18 V/Å −0.22 V/Å, at

which threshold protons also start to flow in a sustained way. The simultaneous onset of such

two phenomena is a distinguishing feature of ice XI as compared with the two-stage behavior

observed in ice Ih and liquid water.
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In order to investigate the mechanism underlying molecular dissociation and PT we first per-

formed a series of “static” calculations of the potential-energy profiles, obtained in both ice

structures at 0 K after displacing – along the field direction and by the same distance from

their original sites – up to three protons, while keeping the oxygen atoms fixed at their original

positions: one selected proton belonging to a molecule which possesses at least one hydro-

gen atom which can be shifted along the positive direction of the field, a proton covalently

bonded to a first-neighbor oxygen atom, and one more proton belonging to a molecule that

is hydrogen-bonded to the second one. In ice XI all choices are equivalent since they at most

differ for the orientation of the central molecule with respect to the other two; instead, in ice

Ih there are three configurations only of three “wired” molecules such that on each molecule

it is possible to find at least one hydrogen atom, bonding a neighboring oxygen, which can be

displaced along the field direction (i.e., along the positive z axis). The results of these static

calculations are shown in Fig. 2.1 for a field strength of 0.36 V/Å, which corresponds to the

proton conduction regime. We see that, in addition to the energy minimum associated with the

unperturbed configuration, all the curves show a secondary minimum at the distance where the

displaced proton might covalently bond with the nearby oxygen atom. However, even for very

high field strengths this minimum is not deep enough to justify, on a mere energetic basis, the

PT and the corresponding formation of an ionic pair. Hence, a scenario where oxygen atoms

are held fixed while protons move along a “chain” does not suffice to explain the dissociation

of a water molecule. Note, however, that, notwithstanding the failure of our constrained model

calculation in accounting for the energetics of the PT, the height of the barrier separating the

two minima in the most favorable Ih configuration (∼ 1.4 eV) turns out to be in fair agreement

with the available experimental data for the activation energy of the process leading to the

formation of an ionic pair [21].

The role of the network formed by the oxygen atoms in assisting, locally, the PT event can be

elucidated by dynamical simulations. We observed that the external field produces a notable
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Figure 2.2: Donor-acceptor distances during the first ionization events (identified by the arrows) in a system
with 64 molecules: the solid blue line refers to ice XI while the dashed red line refers to ice Ih. The inset shows (a)
the standard ice XI structure and (b) the field-induced planes flattening, with pertinent angles labeled as Greek
letters; panel (a): α = β = γ = δ = ǫ = ζ = 109.45◦; panel (b): α = 113.2◦, β = 112.9◦, γ = 102.3◦, δ = 114.8◦,
ǫ = 114.8◦, and ζ = 102.4◦, a configuration which exhibits a shortening of the in-plane intermolecular lengths.

effect in that it “flattens” the planes parallel to its direction. This phenomenon is more clearly

resolved in ice XI, as shown in the inset of Fig. 2.2, and can be assimilated to a sort of

“pressure” [18,99] exerted by the applied field which forces the mutual alignment of molecular

dipole moments. The resulting polarization effect ultimately enhances the electrostatic coupling

between the molecular dipole moments and the external field in a powered manner. In ice Ih the

flattening of the planes was not observed as clearly as in the ferroelectric case, because a larger

energy is needed, on average, to align disordered dipole moments with the field direction. In ice

XI we further observed the alignement of the oxygen planes perpendicular to the applied field:

molecular orientations are restored after a diffusion process has taken place via a Grotthuss

mechanism [4], which causes an inversion of the involved dipole moments.
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As a consequence of the flattening process described above, the mutual distances between

oxygen atoms decrease: this structural rearrangement enhances the probability of occurrence

of correlated proton jumps which enable the phenomenon of diffusion. Correspondingly, the

potential barrier that protons must overcome when migrating from a donor to an acceptor

molecule, following the formation of a Zundel complex (H3O++H2O→H5O2
+), decreases [100]

and attains its minimum value for an oxygen-oxygen distance of about 2.4 Å [101, 102]. In

both crystalline structures we observed a shortening of the hydrogen-bond chain whenever an

ionization event occurred (see Fig. 2.2). This behavior is coherent with the phenomenology

observed by Hassanali and coworkers [103] in liquid water and confirms that the diffusion

event is the result of a highly cooperative molecular motion. When the H3O+−H2O distance

decreases, the proton localization probability decreases as well and, correspondingly, the PT

probability increases along the hydrogen-bond chain [100]. The process is Zundel-to-Zundel

type and is mediated by water molecules as in the liquid phase [103]: when an H3O+ ion gets

sufficiently close to an H2O molecule, a Zundel ion forms and, after multiple exchanges of the

ionic roles between the two entities, the complex eventually propagates with a Grotthuss-type

dynamics.

As soon as a sustained proton diffusion has been activated, both ices display an ionic ohmic

behavior (see Fig. 2.3), which has been observed experimentally in the common phase of ice

for voltages up to about 10 V [104]. We calculated the static conductivities of ice Ih and ice XI

which turned out to be 6.9 Ω−1cm−1 and 5.8 Ω−1cm−1, respectively. Indeed, these values are

many orders of magnitude higher than those obtained experimentally for pure crystalline phases

of ice which, however, refer to significantly lower field strengths (10−10 V/Å−10−4 V/Å) [104,

105]. Following Jaccard who explained proton mobility in ices in terms of defects [106], we

attribute the discrepancy between our estimates and the experimental data to the largely

different concentrations of ionic defects that are generated by the applied field. Moreover,

as shown in Fig. 2.3, no significant and systematic differences emerge between the estimates
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Figure 2.3: Ionic current-voltage characteristic for an orthorhombic cell with edges a = 9.05 Å, b = 15.67 Å
and c = 14.87 Å: solid circles: samples of ice Ih with 64 molecules; open circles: samples of ice XI with 64
molecules; diamonds: samples of ice Ih with 96 molecules; triangle: samples of ice Ih with 128 molecules (lines
are a guide for the eye).
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obtained with different sample sizes.

Table 2.1 shows the percent fractions of defects that are present in the two simulated crystalline

structures for increasing field strengths; the values corresponding to the most intense applied

field (0.73 V/Å) range between 16% and 19%. Such concentrations are actually typical of

doped materials. Grimm et al. [107] investigated ice Ih doped with CaCl2 and other salts for

increasing molarities (1 M, 2.25 M, 3.14 M, and 3.96 M), over a wide range of temperatures.

In fact, the concentration of defects generated via the formation of HCl (see Table 2.2) with

a salt molarity of 3.96 is comparable with the values displayed in Table 2.1. The estimates of

the percent fractions of defects present in experimentally heavily-doped ices were obtained by

considering a one-to-one correspondence between doping and defect levels, as shown in [108].

Upon extrapolating the low-temperature conductivity data of this material outside the sampled

range – i.e., well above the eutectic point, up to the temperature of our numerical experiments

– one would recover values of the same order or even larger than those reported above for

non-doped ice.

Another comparison can be made with the conductivity of KOH-doped ice Ih as measured

by Zaretskii et al. [109] with alternate currents. However, beyond a temperature threshold of

about 200 K such a frequency-dependent conductivity does no longer depend, in an appreciable

way, on the frequency of the applied field. For instance, in 1 M KOH-doped ice Ih, where the

fraction of ionic defects is about 2%, the conductivity measured by Zaretskii et al. at 283 K was

about 10−1 Ω−1cm−1. Again, the discrepancy between this value and our results for the static

conductivities of non-doped ices can be largely accounted for by the different temperatures

and defects concentrations. Indeed, upon extrapolating the experimental conductivity curves,

we recover values whose orders of magnitude are comparable with the data extracted by the

present simulations.

62



Electric field strength (V/Å) Ice Ih Ice XI

0.22 3%

0.25 5%

0.29 6%

0.33 8%

0.36 8% 9%

0.47 11%

0.55 13%

0.73 19% 16%

Table 2.1: Percent fractions of ionic defects induced in ice Ih and ice XI by increasing electric-field strengths.

Salt molarity Fraction of ionic defects

1 4.0%

2.25 8.4%

3.14 11.6%

3.96 14.4%

Table 2.2: Percent fractions of defects present in ice Ih doped with increasing molarities of CaCl2 [107].
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Mechanical properties

In order to evaluate the equation of state (EOS), we perform a series of relaxation simulations

by applying the field along the c-axis in ices Ih and XI, and along the b-axis in the proton-

ordered structure only. In this way we obtain the energy profiles versus deformation over the

range of the explored field intensities that are shown in Fig. 2.4. In ice XI, when the field is

oriented along the c-axis, upon increasing the field strength the minimum of the energy shifts

to lower values of the ratio between the cell parameters c and a (Fig. 3.4-a); instead, no shift

at all is observed in the Ih phase (Fig. 3.4-b) or when the field is oriented along the b-axis of

the ferroelectric sample (Fig. 3.4-c). However, the most significant difference is found in the

curvature: in ice XI the shape of the EOS changes with the field strength when the field is

oriented along the c-axis, a behavior that, instead, is not exhibited by ice Ih as well as by ice

XI under the effect of a field parallel to the b-axis.

Figure 2.5 shows the elastic constant c66, plotted as a function of the field intensity; in ice

Ih the value of this quantity computed for vanishing electric field (1.9 GPa) turns out to

be lower than both the available experimental results [21, 108, 110] and another independent

theoretical estimate [111] by about 1.5 GPa. A manifestly different behavior is observed in the

two crystalline structures: in ice Ih the elastic constant c66 shows a weak dependence on the

field strength, while in ice XI it actually decreases with the field intensity in a linear way. This

difference is ultimately related to the structural symmetries. The proton-ordered sublattice of

ice XI allows for an enhanced coupling between the molecular dipole moments and the external

field when this is oriented along the ferroelectric axis. It turns out that this circumstance makes

the system softer by forcing a partial molecular alignment along the field direction. In the cases

of ice Ih subject to a field along the c-axis and of ice XI under the effect of an electric field

acting along the b-cell parameter direction, the coupling of the local molecular dipole moments

with the external field is not as straightforward; the different distributions of dipole moments,
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Figure 2.4: Equations of state (EOS) for various field intensities: a) ice XI under the action of a field oriented
along the c-axis: note the change of the curvature and the shift of the minimum towards lower values of the
ratio c/a as the intensity of the field increases; in the inset we plot the value of c/a which minimizes the energy
as a function of the field strength. b) ice Ih: the curvature is almost independent of the field; c) ice XI under
the action of a field oriented along the b-axis: note that the curvature does not change with the field strength.
Black lines correspond to the vanishing field cases; red dashed lines, blue dotted lines, green dot-dashed lines,
and magenta dot-dot-dashed lines refer to field strengths of 0.11, 0.18, 0.29, and 0.36 V/Å, respectively. Each
curve is rigidly shifted in energy for clarity.
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Figure 2.5: The c66 element of the stiffness tensor plotted as a function of the electric field intensity: red
diamonds and blue solid circles refer to the case of an electric field oriented along the c-axis of ice Ih and ice XI,
respectively; blue open circles refer to the case in which the electric field is oriented along the b-axis of ice XI.

whose projection onto the field direction varies from negative to positive values, prevent a

softening of the two structures since a conspicuous molecular re-orientation of the dipoles is

impossible in the mentioned crystalline phases during the relaxation experiment. We finally

note that the dielectric constants of the two samples, when calculated with the PBE and with

other exchange and correlation functionals [112–114], exhibit very similar values; hence, we

may argue that they do not influence in an appreciable way the ambivalent behavior of the

mechanical response discussed above.

Electrical properties

We had already presented a series of results about the proton static conductivities of ices Ih and

XI under the action of an external electric field oriented along the c-axis [001] direction [81].

We had interpreted the differences in the respective dissociation and current thresholds by

considering the different orientational distributions of the water molecules in the two crystalline

structures. In addition, we had explained the resulting static conductivities through the percent
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fractions of field-induced defects. Here we want to discuss the intrinsic electrical anisotropy

that is due to the proton arrangements by orienting the electric field along another direction

of the crystal, i.e., the b-axis [010] direction, in the common hexagonal phase of ice as well

as in its proton-ordered counterpart. The close correspondence of the dissociation (0.25 V/Å)

and current (0.36 V/Å) thresholds in ice Ih and liquid water [18,97] was explained through the

similarity of the distributions of dipole moments in the two phases.

However, in the proton-ordered case we found substantially similar threshold values of the field

strength for both processes of molecular dissociation and sustained proton diffusion (0.18 −
0.22 V/Å). We noted that these latter estimates fall in a range of values lower than those found

in ice Ih and liquid water as a consequence of the enhanced coupling between the external

field and the dipole moments; moreover, since the polarization effects are more important

in the ferroelectric case, the local electrical environment enhances the probability of molecular

dissociation and protonic diffusion along the field direction thus giving rise to a single-threshold

process, at variance with the Ih and liquid water cases. The PT mechanism occurs along a

sequence of H-bonds until a proton has travelled a certain path which becomes infertile as

for the transfer of another proton. The re-activation of a given proton transmitting H-bonds

passage is achieved via the formation of Bjerrum defects [21,106].

Upon orienting the external electric field along the b-axis direction, it is possible to compare

and understand the coupling between dipole moments and the external electric field, thus

obtaining partial insights on the time-dependent local polarization effects. On account of the

quasi-random molecular orientation distribution in common ice, one would expect a cartesian

axis reversal invariance with respect to a change in the field propagation direction. However,

in the ferroelectric phase, a different coupling - as compared with the case shortly described

above (electric field along the ferroelectric axis) - arises from the intrinsic electrical anisotropy

of the material [19,20,115].

These predictions are confirmed by the present simulations. In fact, in ice Ih no sensible change
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Figure 2.6: Donor-acceptor distance between two molecules measured on the occasion of the first molecular
dissociation events when the field is oriented along the b-axis of ice Ih (red dashed line) and of ice XI (blue solid
line). The instant in which the ionization occurs is signalled by the arrow.
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Figure 2.7: a) Average donor-acceptor distances of an H-bond chain of ice Ih in which the first dissociation
events occur for E=0.22 V/Å (the process is signalled by the absolute minimum pointed by the arrow); b)
average molecular distances in an H-bond wire in ice XI under the action of a field oriented along the c-axis and
in which the first dissociation events occur for E=0.18 V/Å; the intermolecular length shows a huge increment
after attaining its absolute minimum.
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is found in the molecular dissociation and sustained proton diffusion threshold values, for any

orientation of the field; instead, in the ice XI samples these thresholds are modified in a sensitive

way and a two-stage process takes place.

In ordinary ice the ionization event becomes manifest for 0.22 V/Å, but a net proton flow occurs

for field intensities of 0.32−0.36 V/Å. We note that, notwithstanding the fact that a net proton

flow can be measured for a field strength of about 0.32 V/Å, the discrepancy with the result

obtained after orienting the field along the c-axis falls within the error of our calculations;

moreover, this discrepancy can be related to the small enhancement of the dielectric anisotropy

introduced by the DFT exchange and correlation functional used [116].

The field strength threshold of the dissociation events in ice XI is also registered, somewhat

surprisingly, for 0.22 V/Å , but the most favourable circumstance after molecular dissociation

is the rattling of the proton shared between the two forming ions, and only for an intensity of

0.29 V/Å we do observe the first net proton flow events. This two-stage process is the first neat

alteration of the response behavior as compared to the case in which the field direction is parallel

to the ferroelectric axis. We also note that the corresponding molecular dissociation thresholds

in the simulations carried out with the BLYP functional are 0.25 V/Å and 0.22 − 0.25 V/Å

for ice Ih and ice XI, respectively. Differences with respect to the PBE results fall within the

error range of our calculations, and the estimates of protonic current thresholds are the same

for the two functionals.

Dynamics of H-bond chains

With regard to the local dynamics, when the dissociation events occur we observe a shortening

of the H-bond lengths that allows for a fast PT along the respective reaction coordinates, as

shown in Fig. 2.6 for the two crystalline phases. In the ice XI case the average oxygen-oxygen

distances are slightly shorter than in the hexagonal common phase, which suggests a more
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efficient transfer process of defects.

We define the H-bond wire length as the sum of the individual donor-acceptor distances be-

tween H-bond connected oxygen atoms in which a molecular dissociation has occurred. Figure

2.7-a shows the behavior of an ice Ih H-bond wire, whose length has been rescaled by dividing

it by the number of involved intermolecular distances and in which a combined PT between

the oxygens has occurred in a few hundreds femtoseconds, followed by a ready proton recombi-

nation. A pronounced relative minimum is visible just before the global one indicating a first

(unsuccessful) attempt at molecular dissociation and local PT. We observe another curious

aspect which characterizes all the investigated H-bond wires: after dissociation, the length of

the “wire” always increases with respect to the average one and attaines a global maximum just

after the global minimum, showing a sort of chain “breath”; in all cases (even in the ferroelectric

one-stage mechanism of PT shown in Fig. 2.7-b) subsequent correlated molecular dissociations,

produced immediately later along the same H-bond path, do not occur. This finding is consis-

tent with the Jaccard theory of defects propagation [106]. Hence, we argue that the mechanism

underlying molecular dissociation, which implies a certain degree of cooperation between the

oxygen atoms, is the same in liquid water [22, 103] as well as in the crystalline phases that we

have investigated.

Ice Ih vs. ice XI: anisotropy effects

As already noted, the field intensity value that allows for a sustained protonic current in

common ice is comparable to that observed in liquid water (0.36 V/Å) [18, 81, 97] and does

not substantially depend on the field direction. The response of ice Ih to static electrical

perturbations is intrinsically isotropic on account of the topological isotropy conferred to this

ice phase by its proton sublattice. Incidentally, this result recalls the hypothesized isotropic

nature of the G correlation parameter (also known as dipolar autocorrelation coefficient) in ice
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Ih; this finding is also supported by Monte Carlo simulations and is intimately related to the

electrical response via the dipole moments distribution [117].

However, when the field is oriented along the b-axis of ice XI, the behavior of the material

changes significantly if compared with that of the same structure under an electric field oriented

along the c-axis. In these conditions the molecular dissociation events and the subsequent

proton diffusion are not simultaneous, as previously noticed for ice XI under the action of a

field parallel to the ferroelectric direction. In particular, as the concentration of both types of

defects becomes relevant, the system starts to conduct in almost the same way as in the case

of ice XI when the field lies along the ferroelectric axis, evolving, from a certain point of view,

to a partial (unstable and field-induced) ferroelectricity.

In order to give a more complete description of the ionic conduction in these systems, we also

calculate the ionic current-voltage diagrams corresponding to our unit cells. The results are

displayed in Fig. 2.8-a for the two phases when the electric field is oriented along the b-axis;

Figure 2.8-b/c shows the comparison with the previously investigated cases where the field

is oriented along the c-axis for ice Ih and XI, respectively [81]. All the ionic current-voltage

diagrams show a ohmic behavior after a net PT process has taken place. These results confirm

those found in several experiments performed on ice Ih samples [104, 105]. It is not surprising

to observe a good agreement between the two different situations (see Fig. 2.8-b); a similar

conclusion follows from the calculations performed with the BLYP functional. However, as

far as ice XI is concerned, we observe a different behavior below the current threshold value

(Fig. 2.8-c). This result can be interpreted at relatively low voltages (up to about 5 V for

our unit cell) by considering that the system under the action of a field oriented along the

b-axis, generates a sufficient concentration of defects, up to a field strength of 0.29 V/Å (ionic

current threshold). Above this value, the sample is somewhat indistinguishable, as for the

electrical response, from a similar sample under the effect of an electric field acting along the

ferroelectric axis. The hypothetic slight differences in the derivatives (i.e., in the conductivities)
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Figure 2.8: a) Ionic current-voltage diagrams corresponding to a field oriented along the cell parameter
b=15.67 Å; red solid diamonds refer to a sample of ice Ih; blue solid circles refer to a sample of ice XI. b) Ionic
current-voltage diagrams of ice Ih under the action of a field oriented along the b-axis (red open circles) and the
c-axis (red solid circles). c) Ionic current-voltage diagrams of ice XI under the action of a field oriented along
the b-axis (blue open circles) and the c-axis (blue solid circles).
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Figure 2.9: The Cmc21 ice XI orthorhombic centered unit cell (partially modified from Fig. 1 in Ref. [20]).

of the respective ionic current-voltage diagrams do actually fall within the error bars of our

calculations. The reliability of the present estimate for the current intensity flowing in ice XI at

the current threshold is confirmed by the equivalent results obtained with the BLYP functional.

Partial ferroelectricity along the b-axis of ice XI

When a sample of ice XI is subject to a field strength equal to or greater than 0.29 V/Å

along the b-axis, it is possible to observe a sort of partially ferroelectric domains along the

field axis in the presence of a conspicuous amount of defects. The process can be explained as

follows: starting from the symmetry of the dipole moments distribution of the ice XI molecular

structure, one can observe that there are some planes (as the middle plane almost parallel

to the xy plane in the orthorhombic centered unit cell shown in Fig. 2.9) in which molecules

(3- and 4-type in Fig. 2.9) are hosted which exhibit a large positive y-component of dipole

moments. In the absence of the field, this component falls in a range of 2.51 D−2.69 D and
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2.90 D−3.10 D for the 3- and 4-type molecules shown in Fig. 2.9, respectively [118, 119]. One

half of the ice XI planes are ferroelectric with respect to the b-axis direction and the remaining

ones are anti-ferroelectric.

Also ice Ih has a certain number of molecules that are mostly oriented along the b-axis with

a similar y component of their dipole moment as reported above, but there are only triplets

of connected molecules with this peculiarity, whose chain extremities are H-bonded to other

chains of H-bonded molecules that consistently exhibit lower (and in most cases negative) y-

components of their dipole moments, and so on. In this way, when a field is applied along any

direction, the surrounding environment prevents any potential ferroelectric transition in the

common ice phase, even for high field intensities.

These observations become crucial when a static electric field is applied along the b-axis. In

fact, the first molecules which start to dissociate in ice XI are those belonging to the planes

mentioned above and, as the concentration of defects increases with the external field intensity,

the system develops a partial ferroelectricity along the Hamiltonian discontinuity axis along

which the field is oriented. This behavior is likely due to the collective positive dipole moment

(with respect to the field direction) exhibited by these planes, which is enhanced by the field

itself. This leads, in turn, to an enhancement of the local electric field which produces more

and more defects and, correspondingly, favors a larger molecular mobility. These circumstances

are accompanied by a shortening of the transition time [19]. It is also known that the H-bond

network is slightly distorted by defects [21]. The H-bonds that lie transversal to the field

direction get weaker and weaker as the field intensity increases [120]. All these considerations

justify the fact that the molecules have the opportunity of slightly rotating around the more

robust H-bond, making a statistical attempt at the formation of Bjerrum defects. The creation

of ionic propagating defects, beyond the current threshold, is not by itself sufficient to explain

the ionic conductivity. The formation of Bjerrum defects is crucial in that they can “open”

new protonic paths along H-bonds [21,106] after an ion has diffused away. The propagation of
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defects takes place via the Grotthuss mechanism [4].

Summing up, different pieces of evidence - such as the basic PT mechanism, the field-induced

enhancement of molecular mobility, the generation of ionic defects, and the stronger local

polarization effects created in one half of the ab planes - make the formation of ferroelectric

patches possible in ice XI under the effect of an electric field with a strength larger than

0.29 V/Å and projected along the b-axis.

This phase is obviously different from the standard ice XI structure as one can see from the

distribution of H-bonds (i.e., the simmetry along the b-axis is different from the simmetry along

the c-axis). However, by looking at the problem simply from the electrical point of view, the

two conductors are practically the same. In fact, also in the ice XI case subject to a field along

the c-axis and above the current threshold, it is possible to find molecular configurations in

which molecules are obviously present that have a negative z-component of the dipole moment

just after/before being involved in PT: this behavior is inherent to the conduction process

generated by protonic defects.

It is important to remark that a complete ferroelectric phase transition is impossible; in fact,

in such a case, the system would melt because of the formation of alternating series of D- and

L-defects between those planes that we have formerly called ferroelectric and anti-ferroelectric

(with respect to the b-axis) (see Fig. 2.10). Moreover, the condition of partial ferroelectricity is

only a non-equilibrium situation induced by the field and by the related conspicuous amount

of defects (see Fig. 2.11). Because of the formation of defects and their propagation via field

interactions, one can argue that the conduction properties of ice XI are very similar to those

discussed in the two cases in which a field along the ferroelectric axis or along the b one is

involved, provided that the current threshold of the latter has been reached and overcome.

This finding is not particularly striking if one imagines that also in a ferroelectric sample under

the effect of a field parallel to the c-axis at some instants some molecules are oriented oppositely

with respect to the field in order to eventually “open” some H-bond paths for another PT or
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Figure 2.10: “Impossible” ferroelectric phase (along the b-axis) of ice XI.

Figure 2.11: A realistic sketch, without H-bond perturbations, of the molecular arrangement when an electric
field stronger than 0.29 V/Å is applied along the b-axis of ice XI. Some molecules are not shown.
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to “close” them after a PT has taken place along a given path.
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2.2 Liquid methanol under an electric field

Introduction

Methanol (CH3OH) is the simplest aliphatic alcohol. Single-donor H-bonds, confer upon this

system an important role for the understanding of the proton transfer (PT) mechanism which

can be basically schematized according to the following reaction:

2CH3OH ⇋ CH3O
− + CH3OH2

+ . (2.3)

Indeed, because of the nature of the methanol molecule, its H-bond organization can be seen

as a set of cluster structures characterized by different topologies [121–131].

Liquid methanol displays a fast PT and incidentally this process takes place along the H-bond

structure via the Grotthuss mechanism [4]. In this latter one assumes that a protonic defect

migrates along an H-bond network through a series of correlated hoppings. As a consequence,

the orientation of the molecular dipole vector changes soon after a PT has occurred. A deeper

understanding of the PT phenomenon is of crucial importance since it represents the basis of

the operational mode of many biologically and technologically important systems [1, 2].

The H-bond structure of liquid methanol has been extensively studied experimentally [121,122,

124, 132–137] as well as with theoretical [121, 138] and computational methods [130, 139, 140].

Tetrahedrally coordinated networks are present in water whereas methanol molecules form

linear chains which are interrupted by bifurcations [124,132–134]; an enormous effort has been

done in investigating methanol clusters [139,141].

The H-bond network certainly plays a crucial role in assisting the PT phenomenon both in

water [18, 27] as well as in methanol [131, 142] but the microscopic comprehension of this phe-

nomenon is not fully clear yet. To obtain a more realistic picture of the process which underlies

the PT activity, several attempts have been made by simulating, with ab initio methods, pure
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liquid methanol with an excess proton [131] and methanol-water solutions [143]. The response

to an external electric field and the consequential rearrangements of methanol clusters have

also been investigated [144,145].

Methanol is used in apparatus for the production of electrical energy based on the chemical

reaction cited above. One example is provided by direct methanol fuel cell (DMFC) tech-

nology where electrical energy is produced by transferring protons from the alcoholic group of

methanol molecules through a membrane [3]. Hence, a deeper understanding of the microscopic

mechanism that leads to the molecular dissociation and/or to a net proton flow is of paramount

importance to increase the efficiency of several ecological systems which produce energy from

methanol.

In the following, as already presented in a recent paper [160], we present the first, to the best of

our knowledge, ab initio molecular dynamics study of bulk liquid methanol under the effect of

a static electric field. By applying an external field it is possible to study, in a systematic way,

the PT phenomenon and to disclose the relevant reaction coordinates that underlie molecular

dissociation and ionic (protonic) conduction processes. Analogies and differences with the

corresponding phenomena in liquid water are also highlighted.

Theory and simulation

We used the software package Quantum ESPRESSO [86], based on the Car-Parrinello (CP)

approach [12], to perform ab initio calculations of a sample of methanol molecules under the

action of intense electric fields applied along a given direction (corresponding to the z axis).

Our sample contained 32 CH3OH molecules (i.e., 192 atoms) arranged in a cubic cell with side

parameter a = 12.93 Å , so as to reproduce the experimental density of 0.79 g/cm3 at about

300 K. As is customary, the structure was replicated in space by using periodic boundary

conditions.
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We carried out ab initio simulations at the nominal temperature of 300 K. We gradually in-

creased the intensity of the electric field with a step increment of about 0.051 V/Å from zero

up to a maximum of 0.51 V/Å. In the zero-field case we executed a dynamics of almost 6 ps

whereas, for each other value of the field intensity, we ran the dynamics for about 2 ps, thus

cumulating a total simulation time longer than 25 ps.

The fictitious electronic mass was set to a value of 300 a.u., with a cutoff energy of 35 Rydberg

(Ry) and a cutoff energy for the charge density of 280 Ry, which allowed us to adopt a timestep

of 0.12 fs. With such cutoff values the sample is described in a realistic way since the core

electronic interaction is being depicted through ultrasoft pseudopotentials (USPP). As for ex-

change and correlation effects, we adopted the Perdew-Burke-Ernzerhof (PBE) functional [51],

which belongs to the generalized gradient approximation (GGA) regime. This choice was moti-

vated not only by the adherence of previous results [18] with the available experimental data for

systems under a static electric field [97, 98, 147] but also by the good performance of the PBE

functional in H-bonded systems because of an appropriate description of polarization [148]. The

dynamics of ions was simulated classically within a constant number, volume, and temperature

(NVT) ensemble, using the Verlet algorithm and a Nosé-Hoover thermostat set at a frequency

of 13.5 THz.

We performed a structural analysis of the H-bond network and identified an H-bond through the

following geometric conditions (that should be simultaneously fulfilled) [128,130]: (i) r(O· · · H)

bond distance smaller than 2.6 Å; (ii) O· · · O distance smaller than 3.5 Å; (iii) ∠HO· · · O bond

angle smaller than 30◦. We calculated also the time autocorrelation function of H-bonds as:

CI(t) =
∑

〈i,j〉 sij(t0)sij(t0 + t)
∑

〈i,j〉 sij(t0)
, (2.4)

where the indices i and j run on all pairs of first-neighbor molecules which at t0 were H-

bonded, t0 being the time at which the measurement process begins; sij = 1 if the criterion

for the presence of an H-bond is fulfilled, sij = 0 otherwise. The results were averaged over
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R1st peak PBE Experiment BLYP MC MD

O-O 2.71 2.74 2.94 2.88 2.81

C-O 3.54 3.58 3.76 3.62 3.56

C-C 4.23 3.97 4.22 4.10 4.21

O-H 1.71 1.77 1.91 1.96 1.87

C-H 2.66 2.68 2.87 2.90 N.A.

H-H 2.34 2.42 2.51 2.50 N.A.

Table 2.3: Positions (Å) of the first peak of atomic radial distribution functions for zero electric field. Column
2: present estimates obtained with the PBE exchange and correlation functional; column 3: experimental
data [132, 133]; column 4: results obtained with the BLYP functional [131]; column 5: results obtained with
Monte Carlo simulations [151]; column 6: data extracted from classical Molecular Dynamics simulations [153].

different initial configurations.

We finally computed the conductivity σ using Ohm’s law in the field regime where this law is

satisfied by our model liquid.

Results

Average instantaneous correlations and H-bond dynamics

The way H-bonds model the structure of liquid methanol is manifest in the oxygen-oxygen (O-

O) and oxygen-hydrogen (O-H) radial distribution functions (RDF) that are shown in Fig. 2.12;

carbon-carbon (C-C), carbon-oxygen (C-O), carbon-hydrogen (C-H), and hydrogen-hydrogen

(H-H) RDFs are also plotted in Fig. 2.13. As usual, hydrogen atoms involved in the computed

RDFs are those bonded to the oxygen atom in the methanol molecule.

In the past decades the local structure of pure liquid methanol has been studied by neutron

diffraction [132,133,149], X-ray scattering [124], and DFT-level simulations [130,131,135,150].

The accuracy of the ab initio methods in reproducing the average molecular arrangements has
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Figure 2.12: Oxygen-oxygen (a) and oxygen-hydrogen (b) radial distribution functions (continuous lines)
plotted, with pertaining coordination numbers (dashed lines), as a function of the radial separation for zero
electric field.
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Figure 2.13: Carbon-carbon (a), carbon-oxygen (b), carbon-hydrogen (c), and hydrogen-hydrogen (d) radial
distribution functions plotted as a function of the radial separation for zero electric field.
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been confirmed by several works, such as those by Morrone et al. [131] and Pagliai et al. [130],

who used the Becke-Lee-Yang-Parr (BLYP) functional. In this work we used instead the PBE

functional, whose reliability has been already tested for water [91–93]; the results listed in

Table 2.3 for the position of the first peak of atomic RDFs show that this functional is a

very good choice for liquid methanol as well; indeed, the present PBE results compare with

the experimental data more favorably than the corresponding BLYP estimates [131] or the

estimates obtained with Monte Carlo simulations [151]. Moreover, the O-O RDF determined by

Pagliai et al. [130], which is in excellent agreement with the experimental data of Yamaguchi et

al. [132, 133], was obtained for a liquid density of 0.888 g/cm3, significantly higher than the

experimental value (0.79 g/cm3) at 298 K. Hence, we surmise that the less enhanced liquid

structure observed by Morrone et al. is not likely to occur due to the relatively small value

used for the truncation of the plane-wave series (25 Ry) but more plausibly is an artifact of

the BLYP functional. Rather surprisingly, Handgraaf et al. [150] recovered a good agreement

of some RDFs with neutron diffraction data [132, 133] by using the same setup of Pagliai et

al. [130] (i.e., BLYP functional, Martins-Troulliers pseudopotentials, and a plane-wave basis

cutoff of 70 Ry), but for a liquid density of 0.791 g/cm3.

Another characteristic of interest that can be obtained from the O-H RDF is the mean number

of H-bonds per molecule 〈nHB〉, which was evaluated by integrating the RDF up to the position

of the first minimum. The results are in fair agreement with those obtained with the procedure

suggested by Rapaport [152], in which one separately determines the numbers of methanol

molecules that are involved in zero-H, single-H, double-H, and triple-H-bonds. By adopting

the geometric criterion for the identification of an H-bond in liquid methanol [128, 130], the

calculation leads to the following H-bond percent fraction distribution in the absence of an elec-

tric field: f0 = 6.25%, f1 = 12.5%, f2 = 68.75%, and f3 = 12.5%, which imply a mean value

of H-bonds 〈nHB〉 = 1.88, in excellent agreement with other two independent numerical esti-

mates obtained, respectively, for deuterated systems (1.89) [130] and with a classical Molecular
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Figure 2.14: Oxygen-oxygen radial distribution function calculated for increasing values of the electric field.
Black solid line: E = 0 V/Å; red dashed line: E = 0.15 V/Å; green dotted line: E = 0.31 V/Å; blue dash-dotted
line: E = 0.46 V/Å. Inset: heights of the first peak (black solid circles) and of the first dip (red solid circles)
plotted as a function of the field intensity.

Dynamics study (1.902) [153] as well as with the available experimental data (1.9) [132,133].

The reliability of the PBE functional in the absence of an external field is a good premise for

testing this functional and the changes in the average local structure of the system it accounts

for when a static and uniform electric field has been switched on. We first run a zero-field

CP dynamics about 5.5 ps long at 300 K and then applied a field of increasing intensity. As

shown in Fig. 2.14, pair correlations between oxygen atoms are initially enforced; both maxima

and minima of the O-O RDF are enhanced and sharpened; in other words, the liquid gets

more ordered at short and medium distances. However, as the field intensity grows, this trend

changes in a significant way: in fact, the height of the first peak, after reaching a maximum

for E ≈ 0.15 V/Å (see the inset of Fig. 2.14), exhibits a rather abrupt drop of about 50% for

field intensities between 0.25 V/Å and 0.35 V/Å, and stays approximately constant thereon.

Correspondingly, the first dip rises as also does the second peak. The first peak and the
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Figure 2.15: Oxygen-hydrogen radial distribution function calculated for increasing values of the electric
field. Black solid line: E = 0 V/Å; red dashed line: E = 0.15 V/Å; green dotted line: E = 0.31 V/Å; blue
dash-dotted line: E = 0.46 V/Å. Inset: heights of the first peak (black solid circles) and of the first dip (red
solid circles) plotted as a function of the field intensity.

Figure 2.16: O· · ·HO angle distribution function plotted for several electric field strengths. Black solid
line: E = 0 V/Å; red dashed line: E = 0.10 V/Å; green dotted line: E = 0.26 V/Å; blue dash-dotted line:
E = 0.36 V/Å. The peak of the distribution function shifts to lower values of the O· · ·HO angle as the field
strength increases up to 0.26 V/Å (green dotted line).
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immediately following dip of the O-H RDF behave in a similar way (see Fig. 2.15). In addition,

the first coordination shell moves to moderately shorter distances and a weak shoulder gradually

emerges at about 1Å, which indicates an increasing freedom of hydrogens in sampling shorter

relative distances from an oxygen atom.

Figure 2.16 shows the ∠HO· · · O bond angle distribution function: for increasing values of the

field intensity the distribution gets sharper, the height of the peak increases while the position

shifts to lower values of the angle. A similar trend was found by Sun et al. [153] in a classical

Molecular Dynamics which, however, did not capture the reentrant feature discovered with the

ab initio scheme. As noted before for other structural properties of methanol, the reported

trend is reversed for fields approximately stronger than 0.3 V/Å.

As far as the other structural properties are concerned, we found that the C-C and C-O RDFs

of liquid methanol do not show a significant sensitivity to the external field intensity, at least

for not too strong fields; just the C-H RDF exhibits a weak dependence on the field strength

similar to that observed in the O-H RDF.

A further consequence of the application of the electric field on the system is the gradual aligning

of increasing fractions of molecular dipole moments along the field direction. Let θ be the angle

formed by dipoles with the z axis; as can be seen from Fig. 2.17, in the absence of the field

the distribution P (θ) of molecular dipole orientations exhibits a maximum for θ = 90◦ [138].

However, when an electric field has been switched on, the maximum of the distribution shifts

to lower values of θ since molecules tend to align with the field axis, the larger the number the

stronger the field.

The perturbing effect of too strong electric fields on the stability of the H-bond network can be

further appreciated through the behavior of the time autocorrelation function defined by Eq. 2

and plotted in Fig. 2.18. In the absence of an external field, the function decays rather slowly

and, notwithstanding the time limitations of CP simulations, we can infer an average lifetime

of H-bonds of the order of 10 ps or even longer, whereas for a field strength of 0.36 V/Å this
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Figure 2.17: Distribution of the angle θ formed by the molecular dipole moment vector with the electric field
(z) axis. Black curve: E = 0; red curve: E = 0.26 V/Å.

Figure 2.18: Time autocorrelation function of H-bonds for the zero-field case (black solid line) and for a field
strength of 0.36 V/Å (red dotted curve).

88



value dramatically drops to 2 − 3 ps.

Summing up, the structural and dynamical evidence presented above clearly indicate that

the effects of a stationary and uniform electric field on the stability of the H-bonds formed by

methanol molecules in the liquid phase critically depend on the intensity of the field: moderately

high fields enforce and stabilize the H-bond network while too strong fields eventually break

the bonds and disrupt the network. This phenomenology can be explained by considering that

molecular dipoles tend to align with the field direction, a circumstance which enhances the

formation probability of H-bonds [138]. However, for very high field intensities a full alignment

of molecular dipoles with the field direction is not possible because of the topological constraint

imposed by the location of the H-bond donor/acceptor sites on the oxygen atoms. The resulting

geometrical frustration likely weakens the structural stability of the H-bond network.

Molecular dissociation and protonic current

The average dipole moment of methanol molecules in the liquid phase has been already cal-

culated with ab initio methods implementing the BLYP functional [130]. Depending on the

number of H-bonds in which a methanol molecule is involved, its dipole moment can assume

values equal to 2.06 D (no H-bonds), 2.24 D (one H-bond), 2.71 D (two H-bonds), and 2.99 D

(three H-bonds), corresponding to an average value of 2.64 D [130]. Our result for this lat-

ter quantity is 2.65 D. A similar calculation for water molecules leads to an average value of

2.95 D [154–157], higher than for methanol molecules. Correspondingly, the molecular dis-

sociation threshold of liquid methanol turns out to be higher than that of liquid water [18]

as well as of water ices [81, 85]. In fact, although we observed an increased vibration am-

plitude of the hydroxyl group for (and above) a field strength of about 0.26 V/Å, indicating

that some molecules are preparing for ionization, the first dissociation events were recorded

for field strengths of 0.31 V/Å and beyond. It has been shown that in liquid and solid water
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Figure 2.19: “Zundel-like” ionic complex [C2H6O2H3]+ during a PT event.

the oxygen atoms play a crucial role in facilitating the PT events by reducing their mutual

distances [81,103]. In methanol a direct analysis of the O-O distances revealed that the oxygen

atoms involved in a PT event spend, on average, much more time closer to their respective

partners in order to transfer the proton. This means that the ionic complex [C2H6O2H3]+ (see

Fig. 2.19) forms during the PT process, but the molecular cooperativity turns out to be much

lower than in liquid water, presumably because of steric effects; the [C2H6O2H3]+ complex can

be considered as the counterpart of the Zundel ion that is involved in the PT mechanism in

liquid water.

As a result of the molecular dissociation induced by the electric field, the sample is characterized

by the presence of ionic species such as CH3OH2
+ and CH3O−. The local H-bond environment

is obviously perturbed by charge defects; at the same time, as already discussed, the H-bond

lifetime decreases. These two circumstances lead in liquid water to an enhanced PT probability

as a result of the increased fluctuations of the first solvation shell of H3O+ species. In this way,

the hydronium ion can propagate, with corresponding variations of the coordination numbers

of the solvation shells. In fact, the first coordination shell of H3O+ includes, on average, three
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Figure 2.20: Ionic current-voltage diagram for a cubic sample of 12.93 Å side. The proton conduction process
is characterized by an ohmic behavior beyond the current threshold. The dots represent the calculated values,
while the solid line is a guide for the eye. For a comparison with the electrical response of liquid water see
Ref. [18].

water molecules. The formation of a positive ion implies that the coordination number of a

water molecule must change from a value of almost 4 (neutral molecule) to 3, an event that is

statistically amplified by the external electric field.

The increase of the rate of H-bond breaking and reforming processes (i.e., of fluctuations in the

H-bond network) due to the field cannot lead in methanol to a PT enhancement comparable

with that of water. In fact, the average coordination number of a neutral methanol molecule

is 2 and the same value is obviously found for the protonated species CH3OH2
+. Hence, larger

H-bond fluctuations do not give rise to a significant increase of the PT activity as in liquid

water. This is the main reason for the flow of a feeble protonic current even for intense field

strengths (see Fig. 2.20). In fact, although the onset of a net proton flow has been observed for

the same field intensity recorded for liquid water (≈ 0.35 V/Å) [18], the efficiency of the process

is extremely lower than in water: very weak currents of the order of tenths of µA are induced
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by fields with a strength of 0.36 − 0.51 V/Å. The resulting conductivity has an average value

of 0.40 S cm−1, which is more than one order of magnitude lower than that exhibited by liquid

and solid water under the action of fields with similar intensities [18,81,85]. Ionic conductivities

of such an order of magnitude are involved in DMFC devices [158] and are, on average, one

order of magnitude higher than those tipically involved in modified Nafion membranes [159].
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Chapter 3

Results on Methanol Chemical

Reactions

3.1 Methanol chemistry at high electric fields

We report on an ab initio Molecular Dynamics study of bulk liquid methanol under the effect

of strong static electric fields. We found that an unknown chemical reaction occurs leading

to the production of formaldehyde and methane. Moreover, other reactions are observed by

further increasing the field strength yielding, inter alia, dimethyl ether. Incidentally the two

microscopic reaction mechanisms that give rise to formaldehyde and methane on the one hand

and to dimethyl ether on the other, involve the presence of the methanol cation CH3OH2
+

and methoxide CH3O− as precursor species. To the aim to clarify the contributions of the

atomic reactivities in assisting the electrostatic effects during this double channel reaction,

a Fukui analysis and a Noncovalent Interactions study have been conducted on the two ionic

species, also with respect to their neutral parent. In particular we found an appreciable increase

of the carbon reactivity when considered in the cationic structure which, under some (local)
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circumstances, may lead to the release of CH3
+ as a transient species. Depending on the

topological molecular arrangement of the methoxide in the neighborhood of the CH3OH2
+

cation, the reaction can evolve by following two drastically different paths: one leading to the

formaldehyde and methane formation and the other producing dimethyl ether.

3.1.1 Field-induced chemical reactions

A brief overview

Althuogh the electrochemistry of methanol should be an almost definitively explored topic,

some chemical reactions which occur when an external electric field is applied on the bulk

liquid are still unknown. At relatively weak field strengths it is possible to induce the cleavage

of the alcoholic covalent bond which results in the concept of pH of methanol. Recently, it has

been possible to quantify some of the parameters involved in this process; indeed, by applying

on a sample of pure liquid methanol a static electric field equal to or greater than 0.30 V/Å,

it is possible to induce molecular dissociations in which the alcoholic proton can migrate via a

Grotthuss-like mechanism [4] along the H-bond network [160]. Of course this process is assisted

by a certain fraction of ionic species, such as the methanol cation CH3OH2
+ and the methoxide

CH3O−, which transiently exist and are responsible for the (ionic) charge flow in the system.

But, what happens at higher field intensities? Interestingly, at field intensities stronger than

0.50 V/Å it is possible to observe several field-induced chemical reactions. As a consequence,

at these field strengths the carbon-carbon radial distribution function exhibits the onset of a

new first peak at shorter distances than the standard one, as shown in Fig. 3.1. Moreover, from

this latter it is also possible to notice that the peak becomes more and more pronounced by

further increasing the field strength. The appearance of a new typical length in the system is

the signature of the birth of different chemical species stemming from methanol.

A field strength of 0.55 V/Å, assisted by not negligible local (i.e., solvent) advantageous circum-
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Figure 3.1: Carbon-carbon radial distribution function determined at different field strengths. At and above
a threshold of 0.55 V/Å the system shows the onset of new chemical species. Pink and light green triangles are
referred to field intensities of 0.55 V/Å and 0.60 V/Å, respectively.

stances, is able to break some covalent bonds in the methyl groups of few methoxide molecules

and to create formaldehyde molecules. The formation of this species is of course accompained

by the release of water and methane according to the following reaction

2CH3OH
E−→ H2CO + CH4 +H2O . (3.1)

To our best knowledge this is an unknown chemical reaction which involves three of the most

widely employed molecular species in industries, such as methanol, methane, and formaldehyde.

This latter is an extremely reactive compound that gives rise to a progressive complexification

of the species in the system. Going in order of increasing complexity, another observed molecule

is a consequence of the formaldehyde hydration:

H2CO +H2O
E−→ CH2(OH)2, (3.2)
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which is known as methanediol, formaldehyde monohydrate, or methylene glycol.

By experiencing the field action, methanol molecules can also formally react to each other

in order to give rise to dimethyl ether species (also known as methoxymethane, CH3OCH3)

accordingly to the reaction

2CH3OH
E−→ CH3OCH3 +H2O, (3.3)

which leads to the release of water molecules. Incidentally, as it will explained later, this

kind of reaction can also proceed through the intervention of the already present formaldehyde

molecules but the most likely circumstance is so far the peculiar recombination process which

takes place between the intermediate species CH3OH2
+ and CH3O−.

Finally, the biggest molecule produced by the action of the field is the so called methoxyme-

thanol, which is known also as methanolic formaldehyde or formaldehyde methyl hemiacetal.

Indeed formaldehyde, as an extremely reactive compound, can directly react with the sorround-

ing methanol molecules. The nominal reaction which yields methoxymethanol can be expressed

as

H2CO + CH3OH
E−→ CH3OCH2OH. (3.4)

Analysis of the chemical reactions mechanisms

As already explained [160], at low/mild-field regime (i.e., ≈ 0.30 V/Å) despite obvious polar-

ization effects, it is possible to observe a series of proton transfers. Indeed, intensities of this

magnitude are able to break the alcoholic covalent bond and release protons in the sample.

Hence, above this threshold, the field effects will be manifest also as a consequence of the pres-

ence of several ions. This leads to locally enhanced contributions to the electrostatic potential

which in turn produces an increase of the molecular reactivities.
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Here we want to outline several reaction mechanisms that are observable at our thermodynamic

conditions, leaving the detailed (atomic) reactivity study to the homonym section. For the sake

of clarity we treat here the chemical reactions in a no-chronological way, introducing them in

order of increasing importance of the respective reaction products and not in order of occurrence

during the numerical experiment which, in turn, was conducted by increasing step by step the

field intensity. The reader should only to keep in mind that the first nontrivial chemical

reaction (i.e., the dissociation of the alcoholic hydrogen can be regarded as a trivial reaction)

that occurs in the sample is the formation of formaldehyde, methane, and water, observable at

a field strength of 0.55 V/Å. Hence, starting from this threshold the original sample of pure

methanol is also characterized by the presence of these species.

Methoxymethanol

One of the simplest reaction mechanisms leads to the formation of the most complex species

observed in our sample: the methoxymethanol molecule. The first appearance of this lat-

ter occurs at a field strength of 0.60 V/Å, when are already present molecules such as water,

formaldehyde, and methane, besides the obvious methanol and its cationic and anionic counter-

parts. If in the system there is a sequence of adjacent molecules (and ions) such as H2O, H2CO,

CH3OH, and CH3O−, as schematically shown in the left side of Fig. 3.2, the water molecule

can dissociate under the field action and hence donate a proton to its H-bonded formaldehyde

which obviously becomes an H2COH+ cation (Fig. 3.2, central sketch). In concert, the nearest

methanol can lose a proton in favor of the adjacent methoxide along the field direction. The

neutralization of the two resulting ions, H2COH+ and CH3O−, is the last natural consequence

of the effect of the applied field that gives rise to the methoxymethanol formation (Fig. 3.2,

right).

Although the interesting behavior of the species involved in this process, which react all together
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Figure 3.2: Methoxymethanol formation mechanism. Starting from water, formaldehyde, methanol, and the
anion of this latter (left), the displacement of the negative charge against the electric field direction (center and
right) leads to a recombination process which produces the methoxymethanol molecule (right).

in concert, the reaction product is not a molecule of particular scientific or industrial interest.

It is in fact a transient equilibrium species found usually in mixtures of formaldehyde and

methanol, which may also contain water. This compound is not produced as a pure chemical

entity, since it is normally unstable, and its primary application is as chemical intermediate in

the manifacture of various urea formaldehyde and melamine formaldehyde resins [161].

Dimethyl ether

The formation of a species of great relevance has been observed in our numerical experiment:

the dimethyl ether. It represents the simplest ether and it is usually employed as a chemical

reagent or as a propellant for aerosol. Even more interestingly, it is used as “clean” fuel because

of the reduced amounts of NOx and CO as products [162]. Commercially, methoxymethane

(one of the several names of dimethyl ether) is produced via dehydration of methanol in the

presence of a compound which acts as a catalyst - i.e., alumina - [163, 164] whereas in our

numerical experiment the catalyst of the chemical reactions is obviously the electric field.

There exist two main processes which lead to the onset of dimethyl ether; one of these, involv-

ing also a formaldehyde, can be depicted and dissected in few steps as shown in Fig. 3.3. If

a methanol cation, CH3OH2
+, has its own methyl group oriented toward a nearby formalde-
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Figure 3.3: Dimethyl ether and the least favored formaldehyde formation mechanisms. a) Starting from a
formaldehyde and a methanol cation (left), the positive charge migration toward the field direction (center)
leads to the formation of a dimethyl ether cation with the release of water (right). b) By obtaining an hydride
from a methanol molecule (left), a dimethyl ether is formed (center) whereas another formaldehyde is created
via the deprotonation of the ionic methanol species (center and right).

hyde along the field direction (Fig. 3.3-a, left), the positive charge transfer is energetically less

favorable if it occurs via a cation rotation in order to donate its proton to the aldehyde. In

fact, since the redistribution of the electronic density is a faster process than a whole molecular

re-orientation and because of the energetic contribution carried by the electric field at this

strength - i.e., 0.60 V/Å- the positive charge can migrate along the cation itself reaching the

methyl group. Moreover, this process is enhanced by the presence of the nearby formaldehyde

which, being highly polarized and oriented by the field action, attracts the positive charge in

a not negligible way. The concerted action of the aldehyde and of the external field, together

with the surrounding presence of other ionic species, leads to the cleavage of the CO bond of

the methanol cation (Fig. 3.3-a, center). As a consequence, a methenium CH3
+ is released and,

after the well-known umbrella inversion, approaches the partially negative head of the formalde-

hyde molecule, i.e., the oxygen atom, leading to the formation of a dimethyl ether cation with
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Figure 3.4: Dimethyl ether formation mechanism. Starting from the two common methanol ions (left), the
neutralization process begins with the field-induced displacement of the positive charge toward the cation body
reaching its own methyl group. The presence of the negative head of the anion not only enhances this process
but also contributes to the release of a methenium (center) which can bonds with it giving rise to dimethyl
ether and water (right).

a resulting release of a water molecule (Fig. 3.3-a, right). The newly formed positively charged

ion readly receives an hydride on its (pseudo)methylene group from a methanol (Fig. 3.3-b,

left) becoming a dimethyl ether molecule. Incidentally, the just mentioned hydride stems from

the methyl group of the methanol molecule, which of course evolves in a formaldehyde cation

which in turn loses the excess proton in favor of the solvent; in this way a new formaldehyde is

formed again in the sample at the expense of a previously present one (Fig. 3.3-a). Finally, just

as a marginal note, it has been observed that the newly formed formaldehyde can also undergo

to hydration leading to the formation of formaldehyde monohydrate CH2(OH)2 (not shown in

the sketch).

It should be clear that the local environment plays a crucial role in assisting all the presented

chemical reactions since it acts as a reservoir of proton accepting/donating sites. Moreover,

when the field strength is intense enough, some hydrides, always stemming from methyl groups,

act in a hyper-reactive manner in the system. It is important also to remark that the above

discussed “transition states” have been in truth hyperdissected and the concerted motions

shown in Fig. 3.3 occur in a hundred of femtoseconds.

The just described methodology by which a dimethyl ether molecule rises is not the only one
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and another reaction channel, even simpler and more favored, can be followed in the system.

Indeed, as a first consequence of the presence of an electric field, some molecules/ions tends to

aligne their less electronegative sites toward the field direction as it is the case for the methoxide

depicted in Fig. 3.4 (left). On the other hand, because of the activated proton transfer some

methanol cations can be instantaneously found with their positively charged part against the

field direction. As a consequence, at 0.60 V/Å it is possible to observe methanol cations and

anions neighbour pairs (Fig. 3.4, left) oriented each other in such a way that, with respect

to the field direction, different alternating slices (orthogonal to the field) of positively and

negatively charged portions of space can be detected. The neutralization process can hence

take place as depicted in Fig. 3.4. The positive charge carried by the proton belonging to

the methanol cation can reach the methyl group of its own molecule (Fig. 3.4, left). In this

configuration the combined action of the external field and of the neighbour negative head of

the methoxide cleaves the CO bond of the cation and results in the release of a methenium

(Fig. 3.4, center). After the renowned “umbrella inversion”, this transient species approaches

the negatively charged methanol ion and a new species of dimethyl ether (with the release of

water) can be detected in the sample (Fig. 3.4, right).

Again, this kind of process occurs in an handful of decades of femtoseconds. Since it is clearly

simpler than the mechanism described in Fig. 3.3 and because of the nature of the sample, is

the most likely reaction channel for the onset of dimethyl ether.

Formaldehyde and methane

Among the species formed in our sample, one of the most important is formaldehyde promi-

nently but not only because of its hypotesized key role in the prebiotic world [165]. It is the

simplest aldehyde and an intermediate oxydation state one carbon molecule. The relevance of

this molecule lies in its potential prebiotic role suggested by its enormous chemical reactivity.
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Formaldehyde readily undergoes a variety of addition and redox reactions to give products of

biological importance such as sugars (i.e., in the formose reaction) and amino acids [165]. In

particular, although there exists a not negligible amount of uncertainty on the efficiency of the

formose reaction [166], it is still believed that H2CO may be a precursor to ribose and other

sugars, thus having given rise to the RNA or pre-RNA world.

In despite of the prebiotic implications which can rise from the fact that formaldehyde is at

the same time the smallest aldehyde and an incredibly reactive species, this molecule covers a

wide commercial importance in the world industrial economy. In this respect, the relevance of

formaldehyde is indisputable since it has been estimated that only in the U.S. and in Canada

over 4 millions of workers are directly or indirectly involved in its business. The products of

H2CO industry are pervasive and they generate a substantial volume of sales, provide a sizable

number of jobs, and contribute to the local economies in countless visible and not-so-visible

ways. Moreover, despite for the Second World War period, the economy related to formaldehyde

has steadly grown with time [167]. Industrially, the conversion of methanol in formaldehyde

covered a big slice of this business but the known transformation processes employed were

operative at gas-phase conditions [168]. For all these reasons, a deep comprehension of the

ways by which this fundamental molecule can originate is hence of primary interest.

Incidentally, the otherwise unknown chemical reaction that we have found (reaction 3.1) involves

also another product of unquestionable industrial interest: the methane. Although the usual

practice is to reduce methanol to methane, a single (i.e., one step) chemical reaction involving

these two species with formaldehyde has never been observed, nor in nature, nor in a laboratory.

Here we want to show the basics of this reaction that is ubiquitous in our sample and it is also

the most favorable one; it occurs in fact for the first time at the lowest of the field intensities

able to induce some chemical variations (i.e., 0.55 V/Å).

Because of the field-induced ionizations of the methanol molecules - at and above a field intensity

of 0.30 V/Å - the system is characterized also by the presence of two ionic species: CH3OH2
+
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methenium and an hydride release stemming from the cation and the anion, respectively (center). This leads
to the formation of water, methane, and formaldehyde (right).

and CH3O−, i.e., the methanol cation and the methoxide, respectively. Although the strength

of 0.55 V/Å is surely considerable, the role of the solvent appears to be central in the observed

typical reaction mechanism for the birth of formaldehyde and methane species stemming from

liquid methanol. Indeed in a condensed phase, at a given instant, are present several molecules

arranged in such a way that the most electronegative “pole” is oriented in favor of the field

direction (e.g., see the methoxide in the left side of Fig. 3.5). Moreover, also as a consequence of

the activated proton transfer which occurs along the H-bond network, several methanol cation

may be oriented with the excess proton in opposition to the electric field direction (Fig. 3.5,

left). This circumstance, as already briefly explained, reaches its minimum energy configuration

through the cleavage of the CO bond and the release of a methenium as a transient species.

Such a process is observable because this recombination process involves a re-arrangement of

the electronic structures rather than a full re-orientation of both molecules which would led to

a proton transfer. Of course, the methenium release is strongly encouraged by the mechanical

stress exerted on the CO bond of the CH3OH2
+ not only because of the bare external field

action, but also because of the highly polarized states in which lie the two species in this

configuration.
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Figure 3.6: Concerted cooperative molecular motions which allows the onset of a formaldehyde in the sample
(a). This species will be employed for the formation of a dimethyl ether molecule (b). These sketches show
also the key role played by the solvent in assisting these chemical reactions as a reservoir of proton and hydride
accepting/donating sites (b). The overall process occurs in about 300 fs.

The transition state is characterized by the known “umbrella inversion” of the methenium just

after the rupture of the CO bond and the release of an hydride stemming from the methyl

group of the methoxide (Fig. 3.5, center). Hence, the recombination process between these

two transient species leads to the formation of a methane whereas a formaldehyde and a water

molecule appear all together as the final and stable equilibrium state (Fig. 3.5, right).

The chemical reaction just qulitatively described represents a new link between three important

species: methanol, formaldehyde, and methane. This latter molecule is substantially inert and

it does not participate in any other chemical reaction. On the other hand, the oxidation of

methanol to formaldehyde leads to an increase of the molecular reactivity in the system. Indeed,

the newly created aldehyde will be employed in the formation of many more complex species

under the action of the field, as also described in the previous two Subsections.

What is really important is that the mechanism through which formaldehyde forms in our
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numerical experiment is in practice that one just analyzed. The reported example of the release

of formaldehyde via the interaction between a dimethyl ether cation and a methanol molecule

(Fig. 3.3-b) is statistically irrelevant with respect to the mechanism depicted in Fig 3.5. This

is likely a consequence of the nature of our original system: a sample of pure liquid methanol.

In order to show the multiplicity and the field-induced cooperation between the species, it is

also possible to observe a mixture of the processes described in Fig. 3.3 and 3.5, as shown in

Fig. 3.6. Here, a newly formed formaldehyde through the common process (Fig. 3.6-a) can

interact with a just created methanol cation giving rise to the onset of a dimethyl ether species

(Fig. 3.6-b).

From the left side of Fig. 3.6-a it is clear that the formaldehyde (and methane) formation via the

ionic channel interaction picture does not depend on the relative orientation of the methanol

cation and anion with respect to the field orientation, since in Fig. 3.3 the configuration is

reversed if compared with this one. Indeed the relative orientation between the two ions drives

the reaction and not only the external electric field. Further investigations, conducted by

performing both Car-Parrinello [12] and Born-Oppenheimer Molecular Dynamics in the gas

phase of the two ions in this configuration, has shown that the reaction proceeds spontaneously

without any external electric field. The gas phase example indicates that if the two methyl

groups are close to each other (i.e., they are the first neighbours), the neutralization process

takes place via the formation of formaldehyde, methane, and water.

Finally, by comparing Fig. 3.4 and Fig. 3.5, it is clear that two very different reaction channel

can be chosen depending on the relative orientation of the methoxide with respect to its cationic

counterpart. Hence if the closer parts are the hydrophobic methyl group of the cation and the

hydrophilic head of the anion, this molecular arrangement will point in the dimethyl ether and

water formation, as shown in Fig. 3.4. Moreover as it has been tested for the formaldehyde

formation case (i.e., reaction 3.1), in the gas phase the reaction 3.3 proceeds also spontaneously

- i.e., without any external perturbation - if the initial configuration of the two ions is that one
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Figure 3.7: A double channel reaction. Depending on the relative orientation of the methoxide CH3O− with
respect to its cationic counterpart CH3OH2

+, the reaction proceeds yielding formaldehyde, methane, and water
(a,b,c) or dimethyl ether and water (d,e,f). These two reactions occur in the bulk liquid under the effect of an
external electric field and also in the gas phase without any external perturbation with the same mechanisms
(i.e., the same transition states).

shown in the left side of Fig. 3.4. On the other hand, if the closer parts of the two neighbouring

ions are represented by the respective methyl groups, the reaction will evolve in the formation

of formaldehyde, methane, and water. This double channel reaction is schematically depicted

in Fig. 3.7.

These latter two important and still unknown reactions will be the topic of the next Sections.

In particular, since the transient ionic species of methanol appear to play a central role in

the synthesis and in the catalysis of several crucial species, the focus will be pointed on their

reactivity at an atomic scale which will be also compared with that of the neutral methanol

molecule.
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Stability of the formed species

At this point it is relevant to clarify the stability of the species in the system. The numerical

experiment has been conducted by progressively increasing the field strength with a step incre-

ment of 0.05 V/Å from zero up to a maximum of 0.75 V/Å. In the zero-field case a dynamics

of almost 6 ps has been ran whereas, for each other value of the field intensity, a dynamics

of at least 2 ps has been performed, thus cumulating a total simulation time of almost 40 ps.

Moreover, in order to test the stability of the created species also in absence of the field, a

dynamics longer than 10 ps for each just formed molecular species in the sample has been

conducted by turning off the external field.

At the end of the investigation performed when the field intensity has been rised up to 0.55 V/Å,

in the sample was present the equivalent of ≈ 3 % of water, ≈ 3 % of methane, and ≈ 3 % of

formaldehyde; this circumstance corresponds in having ≈ 6 % of dissociated methanol molecules

if compared with the number of methanol molecules which were present at the beginning

of our numerical experiment. Therefore, the percent fractions shown in Table 3.1, are de-

termined as the ratio between the number of molecules of a given species and the number

of total methanol molecules composing the sample at the beginning of the simulation (i.e.,

32 molecules=192 atoms).

When the field intensity has been increased up to 0.60 V/Å and 0.65 V/Å, the formalde-

hyde molecules created in the meanwhile have been employed in the formation of dimethyl

ether, formaldehyde monohydrate, and methoxymethanol, yielding the percent fractions of

these species shown in Table 3.1 (second data column). These values correspond to have had

≈ 22 % of methanol molecules which have been formally involved in the abovementioned chem-

ical reactions via molecular dissociation.

For higher field strengths (i.e., 0.70 and 0.75 V/Å) the system is characterized by an elevated

degree of mixture of species since it is possible to observe the presence of all of the species
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Molecular species 0.55 V/Å 0.65 V/Å 0.75 V/Å

Formaldehyde 3 0 0

Methane 3 6 6

Water 3 6 16

Formaldehyde monohydrate 0 3 0

Dimethyl ether 0 3 9

Methoxymethanol 0 3 6

Table 3.1: Percent fractions of the molecular species present at the end of each field exploration. The lack
of formaldehyde above the field threshold which is able to create it (i.e., 0.55 V/Å) does not means that it is
not present in a remarkable amount during the total simulation. Indeed formaldehyde acts as an intermediate
species which contributes to the complexification of the system.

which has been possible to create. However, after 2.5 ps of dynamics performed for each

of these two field intensities, only the existence of water, dimethyl ether, and methoxyme-

thanol (in order of decreasing amount) has been possible to observe. Formaldehyde in fact

is a sort of intermediate species which mainly and ultimately contributes to the process of

polymerization/complexification; it appears the most reactive species among the neutral ones,

as it is already known.

Because of the lack of traces of formaldehyde at the end of our numerical experiment (i.e.,

at 0.75 V/Å), the mean lifetime of this species has been evaluated at different electric field

strengths, as shown in Table 3.2. As a result, it is no possible to find a relationship between

these two quantities and what is clear from the analysis of the trajectories is that the local

environment (i.e., the solvent) is much more decisive on the reactivity of a given species than

the field strength. This latter acts as a catalyst in the sense that it can manipulate the pH of

a solution: in all the observed chemical reactions it is evident the key role played not only by

the methanol cations/anions but also by the hydronium and hydroxide species obtained as a
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Field strength (V/Å) τ (ps)

0.55 1.1

0.60 0.1

0.65 1.6

0.70 0.7

0.75 n.a.

Table 3.2: Formaldehyde mean lifetimes at different field intensities.

consequence of a precursor water molecules release.

As briefly abovementioned, another kind of study on the molecular stabilities has been con-

ducted. Indeed by turning off the external field, at a field strength of 0.55 V/Å, once the

first observed formaldehyde, water, and methane molecules have been formed in the system,

they rest totally stable. In fact, by performing a dynamics longer than 10 ps, during which

the (un)protonated methanol species neutralize by recombining, the species of water, methane,

and formaldehyde rest totally stable. Only the water molecule has been involved in some of

the proton transfer processes necessary for the neutralization of the ionic species.

Finally, it must be stressed that by switching off the electric field when all the studied neutral

species have been already appeared in the system - i.e., above 0.60 V/Å- all of them rest

stable, suggesting that the free energy minima in which they have fallen is deep enough at our

thermodynamic condition (i.e., T=300 K).

3.1.2 Reactivity and (regio)selectivity

Since the most important chemical reactions observed in our numerical experiment are those

leading to the formation of H2CO, CH4, and H2O (reaction 3.1) and CH3OCH3 and H2O

(reaction 3.3), it is important to clarify the roles played by each atom. The two species that
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Figure 3.8: NCIs between the two local reactants just before the formation of formaldehyde, methane, and
water (a) and dimethyl ether and water (b).

cover the central part in assisting these two reactions are the cation CH3OH2
+ and the anion

CH3O− (methoxide) of the methanol molecule, as shown in Fig. 3.7. As a consequence, the

variations in the global and regional reactivities of these ions with respect to their neutral

parent will be treated.

However, before to do that, a preliminary analysis of the intermolecular interactions between

the local reactants within the Noncovalent Interactions (NCI) framework could be of interest.

Indeed, as briefly abovementioned, the two reactions proceed also without any external appli-

cation of the electric field in the gas phase and the path followed in each process is strongly

dependent on the initial configuration of the two ions, as shown in Fig. 3.7. By considering the

reduced density gradient after a single point calculation performed via the PBE [51] exchange

and correlation (XC) functional, the NCI have been evaluated, as shown in Fig. 3.8.

This kind of calculation has been conducted by following the standard procedure [169] for the
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evaluation of the reduced density gradient and therefore by selecting a correct isosurface in order

to map the real space region in which the NCI acts. As it is clear in both cases, strong NCI arise

when the two counterions are close to each other. This means that a not negligible force will

act in both cases just in the portion of space which lies in the middle of the two considered ionic

configurations. This neighbouring effect, as confirmed also by some standard electron density

calculations (not shown here), perturbs the respective molecular orbitals. This interaction

leads inter alia to a weakening of the CO bond of the CH3OH2
+ cation which will result in

the release of a water molecule and of a methenium in both the reaction paths. Of course, as

the reaction 3.1 proceeds, the neutralization between the transiently formed hydride H− and

the methenium CH3
+ (Fig. 3.7-b/c) will occur via a well-known electron-transfer process [170].

For instance, the same process takes place in the reaction 3.3 between the transient CH3
+ and

the methoxide (Fig. 3.7-e/f).

The kind of analysis performed via the NCI approach cannot be easily managed by using the

Fukui functions (FF), especially for the reactants (i.e., the two ionic configurations) in question.

Indeed, it is clear that in order to detect the nucleophilic (electrophilic) attack regions, it is

mandatory to consider the same configuration with N + 1 (N − 1) electrons. In such a case

of an ionic pair configuration, it is straightforward to understand that the extra electron will

accomodate into the cation, whereas when extracting an electron from the system, it will

come from the anion: a situation that distorts any kind of information achievable from this

analysis. Moreover, it is a common practice to use the Fukui functions/indices and some of

their related local quantities as “inner” reactivity or selectivity descriptors [171–174] that are

able to elucidate which specific atom will participate in a specific kind of reaction within a

given molecule. To our purposes, in addition, Fukui indices are essential in the fundamental

understanding of the re-distribution of the reactivity atomic centers due to the transformation

of a given species - i.e., the neutral methanol - into its cationic or anionic counterparts - i.e.,

CH3OH2
+ or CH3O−. In fact, the behavior of the specific relative atomic contributions to the
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Figure 3.9: Fukui functions of methanol for the nucleophilic (a) and eletrophilic (b) attacks.

Figure 3.10: Fukui function for the nucleophilic attack of the methanol cation.

different kind of chemical philicities can be compared without infringing the requirement of

constraining the external potential.

As stated before, the chemical species under investigation are CH3OH, CH3OH2
+, and CH3O−.

In Fig. 3.9 are shown the nucleophilic and the electrophilic FF for the methanol molecule,

whereas in Fig. 3.10 and Fig. 3.11 the nucleophilic and the electrophilic regions for its cation

and anion are respectively shown.

Although it could be important to identify and visualize the spatial regions in which a specific

chemical attack may occur, it is worth to be more quantitative. All the plotted spatial FF are
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Figure 3.11: Fukui function for the electrophilic attack of the methoxide.

indeed susceptible to a more or less arbitrary choise of an isosurface value. To this purpose

a detailed analysis of the Fukui indices has been carried out by exploiting four different XC

functionals. The first (i.e., PBE [51]) is the XC functional employed in the Car-Parrinello

Molecular Dynamics simulation described in the previous Sections. The BLYP [52] and the

PW91 [175] have been tested because their respective hybrid versions are the best for this kind

of calculations [176] while the last (i.e., PZ [177]) has been used because it is builded via the

Local Density Approximation; all the performed calculations show that the achievable physical

insights are undependent on the nature of the XC functional used.

By evaluating the wavefunctions projections over the atomic orbitals, a Löwdin population

analysis has been performed in order to obtain the condensed-to-atom Fukui indices and clarify

the relative atomic contributions to the global reactivity of each of the abovementioned species.

Methanol molecule displays two relevant reaction sites for nucleophilic f+ and electrophilic

f− attacks, as shown in Fig. 3.9-a/b and quantitatively in Table 3.3. As expected indeed

the hydrogen atom is responsible for the regional propensity to undergo an attack from a

nucleophile, whereas the oxygen atom is the most susceptible site for an electrophilic attack.

This feature leads in the condensed phase to the formation of the H-bond network since the

alcoholic hydrogen atoms can be regarded as the (electronic) acceptor sites and the oxygen
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CH3OH PBE BLYP PW91 PZ (LDA)

Atom f+ f− f0 f+ f− f0 f+ f− f0 f+ f− f0

H1 0.0197 0.0916 0.0557 0.0340 0.0961 0.0651 0.0248 0.0903 0.0575 0.0430 0.0875 0.0653

O 0.0098 0.4609 0.2354 0.0021 0.4598 0.2305 0.0117 0.4597 0.2357 0.0144 0.4579 0.2362

C 0.0070 0.0848 0.0459 0.0177 0.0729 0.0453 0.0063 0.0758 0.0411 0.0119 0.0814 0.0933

H3 0.0058 0.1613 0.0836 0.0087 0.1314 0.0701 0.0085 0.1624 0.0855 0.0127 0.1626 0.0877

H4 0.0097 0.0882 0.0490 0.0097 0.1251 0.0674 0.0112 0.0924 0.0518 0.0141 0.0924 0.0666

H5 0.0058 0.1615 0.0837 0.0088 0.1594 0.0841 0.0083 0.1627 0.0855 0.0127 0.1629 0.0878

Table 3.3: Condensed-to-atom Fukui indices for nucleophilic (f+), electrophilic (f−), and radical attack (f0)
for the methanol molecule evaluated with different XC functionals. In red are highlighted the highest values of
the indices for each specific kind of chemical attack. Note that the atom H1 represents the alcoholic hydrogen.

ones as the donors.

The situation becomes different when the methanol cation is considered. As shown in Table 3.4,

the positive extra-charge leads to a delocalization of the reaction centers for several type of

chemical processes. Indeed the carbon atom, while almost totally inert in the neutral methanol

structure, is here comparably reactive with other atomic sites. As an example, its values of

the Fukui indices for nucleophilic and electrophilic attacks in principle suggest the capability

of this atomic species to experience both kind of chemical reactions, especially when the PBE

XC functional is employed. Moreover, it is important to remark that in this kind of calculation

the neighbouring effects are not taken into account and when a nucleophile species, such as

the oxygen of the methoxide, is closer to the cationic methyl group, the “nucleophilic appeal”

of the carbon atom increases through polarization effects. The nucleophilic power of carbon

atom relative to that of the alcoholic hydrogen(s) - i.e., the f+,C/f+,H ratio - doubles when

passing from the CH3OH structure to its cationic counterpart CH3OH2
+ in the PBE framework,

whereas on average it increases from 35% to 56%. Moreover, as shown in Table B.6 of Appendix
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CH3OH2
+ PBE BLYP PW91 PZ (LDA)

Atom f+ f− f0 f+ f− f0 f+ f− f0 f+ f− f0

H1 0.1790 0.0726 0.1258 0.2174 0.0730 0.1457 0.2162 0.0703 0.1433 0.2218 0.0677 0.1448

H2 0.1791 0.0726 0.1258 0.2174 0.0740 0.1457 0.2163 0.0702 0.1433 0.2217 0.0677 0.1447

O 0.1146 0.2682 0.1914 0.1176 0.2670 0.1923 0.1202 0.2684 0.1943 0.1214 0.2642 0.1928

C 0.1277 0.2126 0.1702 0.1115 0.2050 0.1583 0.1139 0.2086 0.1613 0.1109 0.2199 0.1654

H3 0.0428 0.1249 0.0839 0.0471 0.1251 0.0861 0.0475 0.1251 0.0863 0.0489 0.1260 0.0875

H4 0.0429 0.1249 0.0839 0.0470 0.1250 0.0860 0.0475 0.1250 0.0862 0.0489 0.1260 0.0875

H5 0.0388 0.1951 0.1170 0.0437 0.1907 0.1172 0.0443 0.1911 0.1177 0.0458 0.1887 0.1173

Table 3.4: Condensed-to-atom Fukui indices for nucleophilic (f+), electrophilic (f−), and radical attack (f0)
for the methanol cation evaluated with different XC functionals. In red are highlighted the highest values of
the indices for each specific kind of chemical attack: it is visible a spread of the reactivity over the atoms with
respect to the neutral molecule. Note that H1 and H2 represent the alcoholic hydrogen atoms.

B, the relative local philicities patterns of various atomic sites of the neutral methanol and of

its cation, evaluated by employing the PBE XC functional, are as follows:

• CH3OH - ω+: H > O > C; ω−: O > H > C; ω0: O > H > C.

• CH3OH2
+ - ω+: H > C > O; ω−: O > C > H; ω0: O > C > H ,

where H is an alcoholic hydrogen atom. This enhancement of the carbon reactivity coupled

with the homogeneization of the local chemical selectivity, when assisted by a specific local

environment, can lead to the release of the CH3
+. This latter, as a transient species, can easily

combine with an H− or with a CH3O−, as shown in Fig. 3.7-b and Fig. 3.7-e, respectively. Of

course, the enhancement of the atomic philicities is further achievable when an external electric

field is applied [178].

The physical insights stemming from the investigation of the methoxide Fukui indices are
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informative in the same way of the FF plotted in Fig. 3.11: the oxygen atom is the most reactive

site. In particular, it is of course the preferred site for an electrophilic attack. As shown also

in Table 3.5, the second most reactive species, the methyl hydrogen atoms, does not show an

appreciable susceptivity to nucleophilic or electrophilic attacks. Hence, here uniquely solvent

and external effects are responsible for the release of the H− species when an advantageous

topological arrangement of its molecular partner exists (see Fig. 3.7-a/b). The carbon atom

appears to be strongly inert in this ion and the Fukui analysis fails if a LDA is employed,

leading to the negative index for the nucleophilic attack f+ (see the PZ (LDA) data column of

Table 3.5).

Direct electric field effects can be important in evaluating the induced enhancement of the

nucleophilic character at a molecular level of nucleophile species such as CH3O−. Indeed the

responses of liquid methanol to strong electric fields are multifaceted, involving not only po-

larization effects and ions formation, but also a net decrease of the mean lifetime of the H-

bonds [160]. It is well-known that these latter in protic polar solvents stabilize the nucleophiles

reducing their reactivity. Hence, methoxide, which is per se a very good nucleophile charac-

terized by a minimum steric inhibition, gets more nucleophilic in character through a relevant

increase in the H-bonds fluctuations.

Some comments within the Hard and Soft Acids and Bases (HSAB) [179] “theory” are in order.

First of all, the double channel reaction depicted in Fig. 3.7 comprises two different reaction

paths which are both hard-hard in character in the first analyzed step: CH3OH2
+ is an hard

acid and CH3O− is an hard base. On the other hand, the interaction between these two species,

which is mostly (but not totally as we have shown through the NCI and the Fukui analysis

on the CH3OH2
+) charge-controlled, splits in two reactions that are deeply different in kind.

On the one hand, it has been observed the formation of the CH3
+ and the H− as transient

species, which are a soft acid and a soft base, respectively, as shown in Fig. 3.7-b. On the

other hand, the formation of CH3
+ that instantaneously reacts with the methoxide (Fig. 3.7-e),
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CH3O− PBE BLYP PW91 PZ (LDA)

Atom f+ f− f0 f+ f− f0 f+ f− f0 f+ f− f0

O 0.0186 0.3894 0.2040 0.0399 0.3572 0.2095 0.0151 0.3958 0.2045 0.0210 0.3958 0.2084

C 0.0004 0.0108 0.0056 0.0014 0.0051 0.0033 0.0001 0.0002 0.0002 −0.0001 0.0008 0.0004

H3 0.0046 0.1147 0.0597 0.0115 0.01184 0.0650 0.0040 0.1244 0.0642 0.0058 0.1255 0.0657

H4 0.0046 0.1149 0.0598 0.0115 0.1187 0.0651 0.0039 0.1246 0.0643 0.0058 0.1256 0.0971

H5 0.0046 0.1151 0.0599 0.0115 0.1188 0.0652 0.0039 0.1248 0.0644 0.0058 0.1259 0.0659

Table 3.5: Condensed-to-atom Fukui indices for nucleophilic (f+), electrophilic (f−), and radical attack (f0)
for the methoxide evaluated with different XC functionals. In red are highlighted the highest values of the
indices for each specific kind of chemical attack: the oxygen atom appears to be the most reactive site for all
kind of chemical attacks.

which are a soft acid and an hard base, respectively. This distinction is able to account for

the relative production yields. Indeed, since “soft likes soft and hard likes hard” [179] the first

reaction path (i.e., that leading to formaldehyde, methane, and water) is more favored than

the second one. Of course, as shown in Fig. 3.6-b, formaldehyde, being an extremely reactive

molecular species, can be further employed in the dimethyl ether production. As a corollary,

several different calculations within this theorethical context have been performed; all of them

carry the same informations of the Fukui analysis (see Appendix B) and more or less obvious

quantitative descriptions about the global molecular electrophilic power (e.g., see Table B.4 of

Appendix B) and the other global and local quantities.
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3.1.3 (Preliminary) Free Energy landscape of

formaldehyde formation

As extensively treated in the previous Sections and in Ref. [28], the application of a static elec-

tric field is capable to induce disparate chemical reactions and change the nature of the starting

sample. In liquid methanol a field strength of 0.55 V/Å is able to break some covalent bonds

in the methyl groups of methoxide molecules and thus lead to the formation of formaldehyde,

methane, and water molecules (see reaction 3.1), as copiously highlighted in this thesis. Al-

though its microscopic mechanism and the associated atomistic reactivities have been already

treated, an even more important aspect is currently under investigation: its energetics.

To the aim of investigating reaction 3.1, a series of Born-Oppenheimer simulations have been

carried out in the gas phase in conjuction with a very recently presented path-CV MetD ap-

proach [36]. As briefly mentioned in the Introduction and in the relative Theoretical Back-

ground Section, although this method represents an extremely powerful tool in sampling the

CV space and thus in accurately reproducing the free energy landscape of very simple chemical

reactions, when a relatively complex system (such as methanol) is tackled, MetD simulations

based on the path-CV show problems in two-dimensional landscapes containing several (up to

5) free energy minima. This means that if one is interested only in the location of the relevant

free energy basins of the reaction, the exclusive employment of MetD is sufficient whereas, when

an accurate estimation of the free energy is desired, other techniques such as US [33] can be

suitably exploited in a complementary fashion.

For the gas phase variant of reaction 3.1 we limited our investigation to the exploration of

the accessible basins by exploiting the just mentioned extension of the path-CV MetD [36].

This preliminary study has been performed in the zero-field regime and in the presence of a

moderate field (0.25 V/Å). By comparing Figs. 3.12 and 3.13, a field-induced increase of the

reaction selectivity can be straightforwardly appreciated. Indeed, while in the zero-field case
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Figure 3.12: “Exploratory” (not converged: the depth of the basins is meaningless!) FES projected onto
the path-CV space of reaction 3.1 performed in the gas phase and in the zero-field regime. Three basins
separate the reactants and the products. In ascending order of S (progress along the reaction path) we have: 1)
reactants: two methanol molecules; 2) a methanol, a formaldehyde, and a hydrogen molecule; 3) a formaldehyde
monohydrate and a methane molecule; 4) a methane, a hydrogen, and a formic acid molecule; 5) products: a
formaldehdye, a methane, and a water molecule.

the reactants (two methanol molecules) have to overcome three basins, in which the associated

(meta)stable configurations are described in the caption of Fig. 3.12, in the presence of the field

(Fig. 3.13) only one intermediate state survives.

Although the field-induced selective character of the gas phase reaction is an interesting in-

dication of the role played by an electric field in assisting a given chemical reaction, more

exhaustive and quantitative investigations are currently under study in the condensed phase

at several field strengths. Indeed the solvent appears to be essential in lowering the relative

energy barrier between the initial and the final states. Also in the liquid state, an “exploratory”

MetD calculation in the zero-field regime with the extended path-CV MetD approach has been
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Figure 3.13: “Exploratory” (not converged: the depth of the basins is meaningless!) FES of reaction 3.1
performed in the gas phase under the effect of a field strength of 0.25 V/Å. Two of the three basins previously
observed in the absence of the electrical perturbation are not accessible under these circumstances. In ascending
order of S we have: 1) reactants: two methanol molecules; 2) a formaldehyde monohydrate and a methane
molecule; 3) products: a formaldehdye, a methane, and a water molecule.
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already performed. It revealed that only the reactants and the products basins are relevant

(i.e., the reaction occurs directly without involving other intermediate metastable states). Also

in the presence of the electric field we observed that it was possible to converge the underlying

probability distributions in a relatively confined region of the CV space, in which only the

products and the reactants states were present.

In order to achieve statistical convergence, the final sampling on the CV space has been con-

ducted via the US [33] technique, as previously mentioned. In particular, only the zero-field

regime “umbrellas” have (at this moment) a reliable statistical convergence. For this particular

case, 66 parabolic potentials have been employed in order to fill and probe the CV space and,

in some critical cases, also in conjuction with proper linear corrections to the functional form

of the bias potential. These 66 independent biased simulations were recollected by means of

WHAM [37, 76–78], which is capable to reconstruct the underlying free energy, as shown in

Fig. 3.14. As it is clear, the energy barrier that the reactants have to overcome without the

electrical assistance is of order of 50 kcal·mol−1, making impracticable the evolution of the

reaction.

The preliminary results on the free energy landscape of this chemical reaction in the presence

of an electric field (at various strengths) suggest that this latter is capable not only to drive

the reaction via a strong reduction of the energy barrier, but also to “open” and/or “close”

peculiar reaction pathways (i.e., the transition states) as succinctly shown in Table 3.6. The

statistically converged evaluation of the FESs at different field strengths is currently under

investigation. Finally, the solvent plays a central role in assisting this chemical reaction as it

has been possible to observe via an indicative comparison of the free energies associated with

the gas phase and the liquid phase cases. Further analysis are ongoing.
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Figure 3.14: FES of reaction 3.1 in the zero-field regime. The energy scale (depth) is in kcal·mol−1 whereas
the S-axis and the Z-axis represent the progress along the reaction and a sort of distance from its ideal
path, respectively. Low values of S characterize a system of pure liquid methanol whereas high values of this
parameter describe a sample composed by a formaldehyde, a methane, and a water molecule in a bath of
methanol molecules.

Field strength (V/Å) Observed reaction mechanism

0.00 CH3OH + CH3OH
+
2 → H2COH

+ + CH+
3 +H− +H2O

0.55 CH3O
− + CH3OH

+
2 → H2CO + CH+

3 +H− +H2O

Table 3.6: Observed mechanisms of reaction 3.1 in liquid in absence (metadynamics driven reaction) and in
presence of a field strength (0.55 V/Å) that makes spontaneous the reaction.
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Conclusions

In this thesis the molecular dissociation and the proton transfer phenomena have been exsten-

sively investigated in different H-bonded systems.

In particular, analyzing the effect of proton ordering on the transport properties of water ices Ih

and XI under intense electric fields allowed us to find that the enhanced coupling between the

dipole moments and the internal electric field makes it simpler for water molecules to dissociate

in the ferroelectric phase than in ice Ih. On the other side, restoring the dipole moments

distribution after a proton has migrated via the Grotthuss mechanism is less problematic in ice

Ih than in ice XI, where all molecular dipoles need to be re-tilted in order for another proton to

be transferred along a given path. This leads to a higher static conductivity of common ice as

compared with that of its proton-ordered counterpart. This “ambivalent” role played by proton

(dis)order was an unexpected and so far unreported feature of water dissociation and proton

conduction in ices. Concerning this specific aspect, we conclude that orientational order favors,

on an energetic basis, the dissociation of water molecules but hinders the proton diffusion which,

instead, is promoted and amplified by proton disorder with its associated contribution to the

entropy of the system. Moreover, the fact that the dissociation and current thresholds are the

same in liquid water and ice Ih suggests that the stability of the molecular interactions does

not affect the conductivity and that the symmetry of the problem plays a crucial role in the

protolysis as well as in the proton transfer phenomena.
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In order to complete the study on the topological dependencies associated with the proton

migration, we have investigated some aspects concerning the dynamics of the proton transfer

mechanism in ice Ih and ice XI under the action of a static electric field which has been oriented

along two different directions in both samples. After obtaining the equation of state, we have

calculated the mechanical response through the stiffness tensor. We notice that it does not

depend of the field intensity – at least in the investigated regime – when the field is applied

along the c-axis of the Ih phase. Moreover, also ice XI shows the same trend when the field is

oriented along the b-axis. This is no longer true when the field is parallel to the ferroelectric

axis. In fact, a monotonic decrease of the elastic constant c66 has been observed when the field

intensity increases, which suggests a softening of the structure.

In addition to the mechanical behavior of the samples, we also have focused on their electrical

responses. As far as the ice XI is concerned, as expected from its intrinsic anisotropy, some

differences are observed when different directions of the external field are chosen. In particular,

the one-stage mechanism, involving at the same time molecular dissociation and proton transfer,

observed when the field direction coincides with the ferroelectric axis, disappears when the field

is oriented along another axis (e.g., the b-axis), in which case the process develops in two stages.

Moreover, for high field strengths dipole moments tend to align with the field in ice XI more

easily than in the Ih phase because of the ferroelectric nature exhibited by many of its planes

along the b-axis direction. This pseudo-ferroelectricity is enhanced and propagated by field-

induced defects formation.

A significant finding of this study is the acquisition that the underlying mechanism of molecular

dissociation is substantially the same in liquid as well as in solid water, involving a high degree

of cooperation of the oxygen sublattice. The dynamics of the molecules is characterized by a

compression of the H-bond wires that participate in the dissociation events, independently of

the symmetry of the system. Another common feature shared by all the investigated ice systems

is the increase of the length of the H-bond chain which immediately follows its compression, a

124



circumstance that prevents the transfer of a proton along the same path.

The investigation of another sample led us to highlight some relevant properties in assisting

the molecular dissociation and the ionic conduction. In this work we thus analyzed the effects

of a static and spatially uniform electric field on bulk liquid methanol.

We found that the effect of the field on the local structure of the liquid, as monitored through

the radial correlation functions, critically depends on its intensity: in fact, weak and moderately

intense fields stabilize the H-bond network while too strong fields eventually break the bonds

and disrupt the network. Correspondingly, the molecular dipole moment gets, on average, more

and more aligned with the field direction, a circumstance that favors the transfer of protons

along the H-bond structure until molecular dissociation occurs for a field strength of about

0.31 V/Å, a value slightly larger than that for water. However, we observed a net proton flow

for fields above 0.36 V/Å with an ohmic current-voltage diagram as is also the case for water.

Although it is evident that the underlying mechanism of ionic defects migration is Grotthuss-

like, the proton transport efficiency is at least one order of magnitude lower in methanol as

compared with its counterpart for water. We interpreted this difference by considering the

field-induced fluctuations in the H-bond distribution of the ionic solvation shells. In fact, these

fluctuations enhance the matching probability between the coordination number of a charge

carrier such as an hydronium ion and that of a neutral water molecule, thus making the ionic

transfer process possible. However, in liquid methanol the coordination numbers of a neutral

CH3OH molecule and that of the ionic species CH3OH2
+ are the same, a circumstance that

does not produce an enhancement of the proton transfer efficiency via H-bond fluctuations as

in liquid water.

Finally, above the field threshold of about 0.55 V/Å, the chemical nature of a sample of pure

liquid methanol dramatically changes. Indeed, the formation of several chemical species has

been observed starting from this field intensity. Among the others, the most important formed

compounds are formaldehyde (H2CO), methane (CH4), and dimethyl ether (CH3OCH3). Con-

125



cerning the previously unknown chemical reactions in which the simultaneous formation of

H2CO and CH4 has been observed, a preliminary investigation of the associated energetics,

via the evaluation of the free energy surface in the zero-field regime and only partially also in

presence of electrical perturbations, has been performed. This preliminary study revealed that

the electric field strongly affects the evolution of the reaction by means of not only a drastic

change of the mutual stability of the reactants and the products basins but also of the accessible

reaction pathways.

By comparing this reaction mechanism with that leading to the formation of CH3OCH3, a

double channel reaction can be argued. In particular, in both reactions the putative transition

state is the ionic pair composed by methoxide CH3O− and the methanol cation CH3OH2
+.

Moreover, depending on their mutual orientation and independently on their orientation with

respect to the field direction, a chemical reaction can proceed leading to H2CO and CH4, in one

case, and to CH3OCH3 in the other. In order to disclose the relative atomistic reactivities, a

detailed study of the Fukui indices has been thus performed. This latter revealed an increased

general reactivity of the carbon atom when considered within the cationic state CH3OH2
+

rather than in the neutral methanol CH3OH one. This finding, among the others, accounts for

the observed chemistry of methanol under the effect of a static and homogeneous electric field.
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Appendix A

Theoretical background on Fukui

Functions, (Regio)Selectivity, and

Reactivity Descriptors

A.1 Global reactivity descriptors

As it is well-known in DFT the electron density plays the protagonist role since in principle from

its knowledge can be possible to determine any physical observable. However, when dealing

with the reactivity of an atom or of a molecule, the absolute value of the electron density is not

enough by itself. Indeed during a chemical reaction the structural changes or the variations of

the external potential are more important in the evaluation of the route that the process will

take.

Actually, there exist many global parameters that are somewhat the reflection of the response

of the electron density to a given well specified perturbation. The chemical potential µ, elec-

tronegativity χ, hardness η, and softness S are defined as follows [180]:
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µ =





∂E

∂N





v(r)

= −χ (A.1)

η =
1
2





∂µ

∂N





v(r)

=
1
2





∂2E

∂N2





v(r)

(A.2)

S =
1
2η

(A.3)

where of course E, N , and v are the energy, the number of electrons, and the external poten-

tial of the molecular system under consideration, respectively. Hence, µ and η represent the

slope and curvature of the energy with respect to the electron number variation. Since this

latter can only change in a discrete manner, the practical way to face the discontinuity is to

apply the finite difference approximation. Moreover, since all the just defined quantities are

evaluable at fixed external potential v, a geometry optimization with fixed parameters of the

molecule and of its electronic anionic and cationic counterparts is mandatory. This way, once

the energies of the neutral molecules and of its “electronically perturbed” analogues are known,

it is straightforward to evaluate all the global reactivity descriptors as follows:

µ = (EN+1 − EN−1)/2 = −(IE + EA)/2 (A.4)

η = (EN+1 + EN−1 − 2EN)/2 = (IE − EA)/2, (A.5)

where IE and EA are the ionization energy and the electron affinity, respectively. In the

frozen orbital method these values can be associated to the highest occupied molecular orbital

(HOMO) and to the lowest unoccupied one (LUMO) energies.

Although all these descriptors have been used inter alia to give a theoretical justification to the

well-known hard and soft acids and bases (HSAB) principle [179,181] and it exists a fundamental

link between softness and polarizability [182–184], their use can give only an indication on the

reactivity behavior of a global molecular system.
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Since chemical reactions occur almost always between different molecular species it is impor-

tant to know in which proportions the two molecules are somewhat responsible for what is

happening. Recently, from an empirical relationship [185] an electrophilicity index ω has been

developed [174]. This parameter can be related to the others because it is possible to expand

in a Taylor series up to the second order the energy change as follows:

∆E = E(N + ∆N, v) − E(N, v) ≈ µ∆N +
1
2
η(∆N)2, (A.6)

since µ and η are defined as in eqs. A.1 and A.2. If we define ∆Nmax as the maximum number of

electrons that an electrophile can accept and ω = −∆Emin as the related stabilization energy,

it follows that

ω =
1
2
µ2S = −1

2
µ∆N → ∆Nmax = −µS → ω =

µ2

2η
. (A.7)

Although the electrophilic power ω is an extremely important quantity, it is not able by itself

to perform reactivity comparisons between different molecular sites and for this purpose a local

version of this parameter has been proposed [172]. This local index distributes ω over a given

molecule making use of the Fukui functions (FF).

The FF are so called in honor of the Nobel Prize for Chemistry of 1981 Kenichi Fukui who was

awarded for his developments of Frontier Molecular Orbital (FMO) theory “[...] concerning the

course of a chemical reaction”. The FF have been introduced in 1984 by Parr and Yang [29] as

a consequence of other works previously published by Parr et al. [30] concerning the chemical

DFT and on the already briefly treated concepts such as the chemical potential µ and the

hardness η. Historically the equalization of the electronic chemical potential to the electroneg-

ativity changed in sign suggested the possibility of treating electronic structure theory in a

thermodynamics fashion. Ergo, Parr et al. wrote the total differential of the energy E[N ,v(r)]

as
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dEv,N =





∂Ev,N

∂N





v(r)

dN +
∫





δEv,N

δv(r)



δv(r)dr = µv,NdN +
∫

nv,N(r)δv(r)dr. (A.8)

By extending the thermodynamic analogy it is possible to obtain the DFT-equivalent of the

Legendre-transform structure of classical thermodynamics and the following Maxwell rela-

tion [186]





δµv,N

δv(r)





N

=





∂nv,N (r)
∂N





v(r)

. (A.9)

In analogy to Eq. A.8 the total differential for the chemical potential µ[N, v(r)] is

dµ =





∂µ

∂N





v(r)

dN +
∫





δµ

δv(r)





N

δv(r)dr = ηdN +
∫

f(r)δv(r)dr (A.10)

where the chemical hardness η appears. The role played by this latter (or by the chemical

softness S, obviously) is not negligible as it enters as a protagonist in the HSAB principle [180].

Therefore also the function f(r) - i.e., the Fukui function - must hold a relevant part and by

exploiting the Maxwell relation it is clear that this function is defined as the differential change

in electron density due to an infinitesimal change in the number of electrons:

f(r) =





∂n(r)
∂N





v(r)

. (A.11)

Because of the derivative discontinuity for isolated molecules at zero temperature, the FF are

defined from above and below using the one-sided derivatives and in such a way that one has

f+(r) and f−(r), respectively. For practical purposes and since the number of electrons can

vary, in principle, in a discrete manner, the FF can be simply written as

f+
v,N(r) = nv,N+1(r) − nv,N(r) (A.12)
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f−
v,N(r) = nv,N(r) − nv,N−1(r) (A.13)

which in the frozen orbital approximation can be seen as the squares of LUMO and HOMO (i.e.,

their density). Because of the FMO regioselectivity analogs that can be made for nucleophilic

(f+
v,N) and electrophilic (f−

v,N) attack, it is possible to define a reactivity indicator for a radical

attack:

f 0
v,N(r) =

1
2

(f+
v,N(r) + f−

v,N(r)) =
1
2

(nv,N+1(r) − nv,N−1(r)). (A.14)

From the FF denition stems the fundamental concept for which they can be regarded as

an important quantity in identifying the chemical character of a given portion of space in

a molecule. Indeed it can be demonstrated that for a given amount of charge transfer ∆N ,

the most stable way to distribute the additional charge in a molecular species corresponds to

∆n(r) = ∆Nf(r) [187]. As shown, although the name of these functions has been taken from

the pioneer of the frontier orbital reactivity descriptors, the concept of FF is entirely DFT-

based; therefore in principle the achievable results with them are correct, taking into account

the electron correlations and orbitals relaxations.

A.2 Local reactivity descriptors

Although the global FF have their importance, it is more likely that one is interested not in

having the reactivity description of a point in space but rather to give a reactivity indicator to

each atom in a molecule. More precisely, one whishes to identify which atom in a molecule is

most likely to react with an attacking electrophile or nucleophile. To this purpose it has been

developed the concept of condensed-to-atom Fukui in which it is possible to have an expression

depending on the atomic populations [188]:
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f+,α
v,N =

∫





∂n(α)(r)
∂N





+

v(r)

dr =





∂p(α)

∂N





+

v(r)

= p
(α)
v,N+1 − p

(α)
v,N (A.15)

f−,α
v,N =

∫





∂n(α)(r)
∂N





−

v(r)

dr =





∂p(α)

∂N





−

v(r)

= p
(α)
v,N − p

(α)
v,N−1, (A.16)

or, in terms of the atomic charges q(α),

f+,α
v,N = q

(α)
v,N+1 − q

(α)
v,N (A.17)

f−,α
v,N = q

(α)
v,N − q

(α)
v,N−1 (A.18)

f 0,α
v,N =

1
2

(q(α)
v,N+1 − q

(α)
v,N−1) , (A.19)

where α labels the atom and these relationships are for the nucleophilic, electrophilic, and

radical attack, respectively.

The condensed-to-atom Fukui concept is extremely important in chemical DFT because it rep-

resents the link between the global and the local reactivity descriptors. Indeed it is possible to

reformulate the theoretical framework presented in the previous Section with an atomic reso-

lution by modulating each global reactivity indicator via the condensed Fukui (i.e., Eqs. A.17,

A.18, A.19). After having chosen a given population analysis scheme such as that by Hirsh-

feld [189] or Löwdin, is then possible to easily evaluate the condensed-to-atom softness from

the following relation

sk,α = S · fk,α (k = +,−, or 0) (A.20)

which, obeying to the HSAB principle, can be exploited in order to predict which atom of a

nucleophile species will interact with which atom of an electrophile molecule [178]. Indeed it

is possible to show that considering the ith atom of a species A and the jth atom of a species
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B, then the most favorable situation that arises from the minimization of the grand canonical

potentials of A and B leads to sAi=sBj.

Up to now the introduced mathematical objects are of a certain importance which is unfor-

tunately constrained by the fact that FF and their condensed-to-atom equivalents are always

referred to the given molecule to which they refer. Indeed they are defined at fixed exter-

nal potential and no comparisons can be made between different molecular entities. On the

other hand, it has been recently introduced a local quantity called philicity [172] which is the

local counterpart of the electrophilic power ω defined in Eq. A.7 and which need again the

condensed-to-atom FF aid:

ωk,α = ω · fk,α (k = +,−, or 0) . (A.21)

This local reactivity descriptor, as well as the local softness, have the peculiarity to take ad-

vantage from the local regiosensitivity which is proper of the condensed-to-atom FF and at

the same time to allow to perform reactivity comparisons between a set of (not so) different

molecules. In particular, it has been recently shown that in a series of substitued molecules,

when the substituent represents a small portion of the molecule and the softnesses are very

similar, the philicity can give a better resolution of the sites reactivity of the species [190]. The

last selectivity index having an atomic resolution is the local hardness [191]. This condensed-to-

atom reactivity descriptor is again related to the definition of FF but encompasses the necessity

of imposing the knowledge of having an electrophilic, a nucleophilic, or a radical attack. Mak-

ing use of the HOMO and LUMO energies of the neutral molecule, this descriptor is proper to

describe the intramolecular selectivity regions and it is defined as in the following:

ηα = ǫLUMOf
+,α − ǫHOMOf

−,α , (A.22)

where ǫLUMO and ǫHOMO are the LUMO and HOMO energies, respectively. The local hardness
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demonstrated its usefulness as an intramolecular reactivity descriptor for electrophilic aromatic

substitution, addition reactions, and alkylation and acylation of lithium enolates [191].

Finally, we want to stress that still exists an amount of doubtfulness concerning some criteria

about the FF. Their importance can be indeed elucidated via several pertubarbation analysis

which led to somewhat clouded conclusions about their employment. In particular, it was

believed that for hard-hard reactions the most reactive sites were those showing the minima

values of the Fukui indices [192], whereas it has been more recently clarified [193] that this

minimum condition belongs to a more general situation in which the most preferred site is that

which contains the maximum net charge. This sometimes may coincide with the minimum

criterion. The soft-soft reactions are orbital controlled and there exists a total consesus about

the reliability of a maximum Fukui index criterion which reflects itself in the maximization of

the other local reactivity and selectivity descriptor parameters: the most reactive site is that

which shows the maxima FF values. Since conceptual (or chemical) DFT has to face with

concepts that are quantitative but at same time may be not perfectly rigorous, one must to pay

more attention in analyzing each quantity. For this reason a systematic study by exploiting

also different levels of DFT approximations should be recommended in some cases.

A.3 Another approach: the Noncovalent Interactions

Though this method, to our best knowledge, has never been used before in conjunction with

the FF approach or with the global reactivity descriptors, we propose to use it in order to

visualize better the behavior of the electronic density and of its derivatives during the chemical

reactions under investigation. After all, the Noncovalent Interactions (NCI) approach shares

some similarities with the previously described methods despite the obvious requirement of a

single point calculation. Indeed, again the quantum-mechanical electron density n(r) plays

the unique and maybe irreplaceable role of protagonist, as almost always occurs in DFT. The
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reduced density gradient, stemming from the electron density itself and from its first derivative,

s =
1

2(3π2)1/3

|∇n|
n4/3

, (A.23)

is also a key quantity since it is employed in order to describe the deviation from a homogeneous

electron distribution [38, 194, 195]. Moreover, its properties were a crucial aspect during the

development of new and more accurate functionals [196].

The NCI (or noncovalent contacts) can be identified with the regions of the real space charac-

terized by a small reduced density gradient at low electron density [169, 197]. In their imple-

mentation for the visualization, these regions are mapped by plotting an isosurface of s for a

reasonably low value of the reduced density gradient. Moreover, the sign of the second eigen-

value of the Hessian times the density itself can be used in order to identify different regions in

the isosurfaces maps allowing to discerne the intensity as well as the stability of the nature of

these interactions. At the same time, the sign of the Laplacian ∇2n gives informations about

the net flux, i.e., ∇2n < 0 (near the nuclei) if it is incoming and ∇2n > 0 if it is outcoming

from an infinitesimal volume in the neighbourhood of a given reference point.

In order to distinguish each weak interaction, the contributions to the Laplacian along the axes

of its maximum variation have to be analyzed. These are the eigenvalues λi of the Hessian

matrix of the electron density (second derivatives) such that

∇2n = λ1 + λ2 + λ3 , (λ1 < λ2 < λ3) . (A.24)

In the neighbourhood of the nuclei, all the λi are negative, whereas far from them λ3 > 0.

Obviously, in molecules the λ3 values can vary along the internuclear direction while λ1 and

λ2 gives informations about the fluctuations of n in the orthogonal plane of the eigenvector of

λ3; λ2 can be either positive or negative depending on the nature of the interaction. Bond-

ing interactions such as the H-bond are characterized by an accumulation of electron density
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Figure A.1: A typical methanol-methanol H-bond as seen in the Noncovalent Interaction formalism.

orthogonal to the bond direction, as shown in Fig. A.1, and λ2 < 0.

Non-bonding interactions such as steric repulsion produce a decrease in n such that λ2 > 0,

whereas Van der Waals interactions are characterized by a negligible overlap of the electron

densities and λ2 . 0.
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Appendix B

Supplemental Results on the

Reactivity Descriptors

B.1 Global and (other) local indicators

Hardness η (eV)

Molecule PBE BLYP PW91 PZ (LDA)

CH3OH 4.4247 4.1093 4.4639 4.4306

CH3OH2
+ 6.1157 6.4714 6.5563 6.4495

CH3O− 0.9278 1.1897 0.9403 0.9725

Table B.1: Chemical hardness in eV of the analyzed molecular species.
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Chemical potential µ (eV)

Molecule PBE BLYP PW91 PZ (LDA)

CH3OH −5.4883 −5.7502 −5.4943 −5.5388

CH3OH2
+ −9.4597 −10.3616 −10.3862 −10.4289

CH3O− −2.1888 −2.3385 −2.1901 −2.2416

Table B.2: Chemical potential in eV of the analyzed molecular species.

Softness S (eV)

Molecule PBE BLYP PW91 PZ (LDA)

CH3OH 0.1130 0.1217 0.1120 0.1129

CH3OH2
+ 0.0818 0.0773 0.0763 0.0775

CH3O− 0.5389 0.4203 0.5317 0.5141

Table B.3: Global chemical softness in eV of the analyzed molecular species.

Electrophilic Power ω (eV)

Molecule PBE BLYP PW91 PZ (LDA)

CH3OH 3.4038 4.0232 3.3813 3.4621

CH3OH2
+ 7.3161 8.2952 8.2267 8.4318

CH3O− 2.5818 2.2983 2.5505 2.5834

Table B.4: Global electrophilic power in eV of the analyzed molecular species. As expected, the electrophilic
character of the methanol cation CH3OH2

+ is considerably the higher one whereas, on the other hand, the
nucleophilic tendency of methoxide is clearly evident by its ω minimum value.

138



Local philicity CH3OH CH3OH2
+ CH3O

−

Atom ω+ ω− ω0 ω+ ω− ω0 ω+ ω− ω0

H1 0.0671 0.3118 0.1896 1.3096 0.5311 0.9204

H2 1.3096 0.5311 0.9204

O 0.0333 1.5688 0.8011 0.8384 1.9622 1.4003 0.0480 1.0054 0.5167

C 0.0238 0.2886 0.1562 0.9343 1.5554 1.2452 0.0010 0.0279 0.0145

H3 0.0197 0.5490 0.2846 0.3131 0.9138 0.6138 0.0119 0.2961 0.1541

H4 0.0330 0.3002 0.1668 0.3139 0.9138 0.6138 0.0119 0.2966 0.1544

H5 0.0197 0.5497 0.2849 0.2839 1.4274 0.8560 0.0119 0.2972 0.0599

Table B.5: Local philicity indices (ωk,α=ωfk,α) for nucleophilic (ω+,α), electrophilic (ω−,α), and radical
attack (ω0,α) of the atomic sites α of the investigated samples. Note that H1 and H2 represent the alcoholic
hydrogen atoms of the methanol cation and, at the same time, H1 is the alcoholic hydrogen of the methanol
molecule.

Local hardness H1 H2 O C H3 H4 H5

CH3OH 0.5549 2.8506 0.5211 0.9961 0.5404 0.9971

CH3OH2
+

0.1051 0.1051 2.8393 2.0855 1.3697 1.3697 2.2653

CH3O−
0.5731 0.0160 0.1697 0.1700 0.1703

Table B.6: Local hardness indices (ηα) for the α atoms of the three investigated molecular species. Note that
H1 and H2 represent the alcoholic hydrogen atoms of the methanol cation and, at the same time, H1 is the
alcoholic hydrogen of the methanol molecule.
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