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Le NVP (Problème du Vendeur de Journaux) a 

été étudiée de façon continue au cours des 

dernières décennies pour la prise de décision 

dans les industries manufacturières et de 

services. Bien que beaucoup de travail a été fait 

dans le domaine du NVP, l'intérêt sur ce sujet 

ne diminue pas. Alors que de nouvelles 

tendances émergent dans les affaires, par 

exemple flux internationaux de produits et de e-

commerce, les détaillants sont confrontés à de 

nouvelles situations et la littérature de NVP doit 

être enrichi.  

Dans ce travail, nous proposons trois nouvelles 

extensions NVP compte tenu des questions 

importantes rencontrées par le NV: plusieurs 

soldes, variété de produits et d'assortiment ainsi 

que des problèmes de drop-shipping et de retour 

des produits qui sont liés à l'e-commerce. Notre 

travail ajoute de la valeur à partir des travails 

antérieurs dans plusieurs aspects: 

assouplissement des hypothèses, l'examen de 

nouvelles questions, de nouvelles formulations 

et de la méthodologie ainsi que des aperçus 

intéressants. Nous formulons les modèles et 

donner les conditions d'optimalité de la quantité 

de commande. Aperçus utiles sont fournis sur la 

base des études numériques. 
 

 

Title : Modeling and Analysis of New Extensions for the News-Vendor Problem 
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The NVP (News-Vendor Problem) has been 

continuously studied over the last decades for 

decision making in manufacturing and service 

industries. Although a lot of work has been 

done in the NVP area, interest on this topic 

does not decrease. As new trends emerge in 

business, e.g. international flow of products 

and e-commerce, retailers are facing new 

situations and the literature of NVP needs to be 

enriched.  

In this work, we propose three NVP extensions 

considering important issues faced by the NV: 

multiple discounts, product variety and 

assortment as well as drop-shipping and 

product return problems that are related to e-

commerce. Our work adds value from earlier 

achievements in several aspects: relaxation of 

assumptions, consideration of new issues, new 

formulations and methodology as well as 

interesting insights. We formulate the models 

and give the optimality conditions of the order 

quantity. Useful insights are provided based on 

numerical studies. 
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Abstract

The News-Vendor Problem (NVP) has been continuously studied over the

last decades for the decision making in manufacturing and service indus-

tries. Although a lot of work has been done in the NVP area, interest on

this topic does not decrease. As new trends emerge in business, e.g. interna-

tional flow of products and e-commerce, retailers are facing new situations

and the literature of NVP needs to be enriched. In this work, we propose

three new NVP extensions considering important issues faced by the NV:

multiple discounts, product variety and assortment as well as drop-shipping

and product returns problems that are related to e-commerce. Our work

adds value from earlier achievements in several aspects: relaxation of as-

sumptions, consideration of new issues, new formulations and methodology

as well as interesting insights. We formulate the models and give the opti-

mality conditions of the order quantity. Useful insights are provided based

on numerical studies.

In particular, for dealing with overstock, we present a NVP model with

price-dependent demand and multiple discounts. We prove the concavity of

the expected profit on order quantity under general demand distributions.

The optimal initial price and discount scheme are also analyzed. The prod-

uct variety is treated in a multi-product NVP with demand transfer (the

demands of products not included in the assortment proposed in the store

are partly transferred to products retained in the assortment) and demand

substitution between products that are included in the assortment, by fo-

cusing on the joint determination of optimal product assortment decision

and optimal order quantities for products that are included in the assort-

ment to optimize the expected total profit. For e-commerce, we consider

a NV managing both a physical store inventory and a sale channel on in-

ternet that is fulfilled by a drop-shipping option, as well as the possibility



of reselling products that are returned by consumers during the selling sea-

son. The concavity of the expected profit is proven and various results are

obtained from a numerical analysis.

Some managerial insights are derived from these models: using multiple

discounts can increase the expected profit remarkably and it is shown that

it is better to decrease the selling price slowly in the beginning of the selling

season. The increase of the fixed cost related to including a product variant

in the assortment will reduce the optimal assortment size and also the ex-

pected profit. Moreover, drop-shipping, can bring some important increase

of the expected profit.

Key words: Inventory management, News-Vendor Problem, Multiple dis-

counts, Substitution, Assortment, Drop-shipping, Product returns



Contents

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Context: the News-Vendor Problem . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Basic problem: classical NVP model . . . . . . . . . . . . . . . . 3

1.2.2 Early achievements . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2.1 Extensions concerning the supplier . . . . . . . . . . . . 6

1.2.2.2 Extensions concerning the NV . . . . . . . . . . . . . . 8

1.2.2.3 Extensions concerning consumers . . . . . . . . . . . . 9

1.2.2.4 Extensions concerning products . . . . . . . . . . . . . 10

1.2.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Description of the manuscript and main contributions . . . . . . . . . . 14

2 NVP with price-dependent demand and multiple discounts 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The problem under study . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Optimal pricing and ordering decisions for additive price-dependent de-

mand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Optimal expected profit and optimal order quantity . . . . . . . 24

2.4.2 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2.1 First case: Linear discount scheme . . . . . . . . . . . . 25

2.4.2.2 Second case: Non-linear discount scheme . . . . . . . . 29

v



CONTENTS

2.4.3 Approximation of the optimal expected profit and condition for

the optimal initial price . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Optimal pricing and ordering decisions for multiplicative price-dependent

demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Optimal expected profit and optimal order quantity . . . . . . . 34

2.5.2 Approximation of the expected profit function . . . . . . . . . . 34

2.5.3 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.3.1 First case: discount prices are exponentially declining . 36

2.5.3.2 Second case: the prices are not exponentially declining 37

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Assortment and Demand Substitution in a Multi-Product NVP 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Problem modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Modeling the transfer of demand . . . . . . . . . . . . . . . . . . 47

3.4.2 Modeling the various policies . . . . . . . . . . . . . . . . . . . . 49

3.4.3 Algorithm for policy 3, 4 and 5 . . . . . . . . . . . . . . . . . . . 53

3.5 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Sensitivity to demand uncertainty . . . . . . . . . . . . . . . . . 58

3.5.3 Sensitivity to L . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.4 Sensitivity to K . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.5 Impact of the market share type . . . . . . . . . . . . . . . . . . 62

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 The NVP with Drop-shipping Option and Resalable Returns 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Problem modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1.1 Special case: β1 = β2 = β3 = 0 . . . . . . . . . . . . . . 79

vi



CONTENTS

4.4.1.2 Special case: β1 = β2 = β3 = β . . . . . . . . . . . . . . 79

4.4.1.3 Special case: x1 = 0 . . . . . . . . . . . . . . . . . . . . 79

4.4.1.4 Special case: no drop-shipping option . . . . . . . . . . 81

4.4.2 Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.2.1 Special case: β1 = β2 = β3 = 0 . . . . . . . . . . . . . . 84

4.4.2.2 Special case: β1 = β2 = β3 = β . . . . . . . . . . . . . . 85

4.4.2.3 Special case: µ1 = 0, σ1 = 0 . . . . . . . . . . . . . . . 85

4.4.2.4 Special case: no drop-shipping option . . . . . . . . . . 85

4.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.1 Impact of w1, w2, wr, s, β1, β2, β3 . . . . . . . . . . . . . . . . . . 86

4.5.2 impact of v1, v2, p, t . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.2.1 µ1 = 100, µ2 = 100, cv = 0.1, 0.2, 0.3 . . . . . . . . . . . 91

4.5.2.2 µ1 = 100, µ2 = 10, cv = 0.1, 0.2, 0.3 . . . . . . . . . . . 91

4.5.3 impact of ignoring product returns . . . . . . . . . . . . . . . . . 92

4.5.4 impact of drop-shipping . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Conclusion and perspectives 99

6 Appendices 103

6.1 Appendix of chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Appendix of chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 Appendix of chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 123

vii



CONTENTS

viii



List of Figures

1.1 4 categories of NVP extensions . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Sequence of events for a selling season . . . . . . . . . . . . . . . . . . . 22

2.2 Expected profit E(π(Q∗)), as a function of the discount number, for

normally distributed demand . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Expected profit E(π(Q∗)), as a function of the intial price . . . . . . . . 26

2.4 Discount schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Expected profit as function of discount number n . . . . . . . . . . . . . 37

2.6 Discount percentages at v0 = 6 for different schemes . . . . . . . . . . . 38

2.7 Expected profit as function of initial price . . . . . . . . . . . . . . . . . 38

3.1 Considered model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Policies analysed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Flow chart of the algorithm for calculating the optimal order quantities 54

3.4 Expected optimal profit for different policies with σ=10, 20, 25, 30, 40

and K=10, L=0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Optimal order quantities for σ=30, K=10, L=0.3 . . . . . . . . . . . . 56

3.6 Optimal expected profit for policy 5 with the exponential market share

type as a function of K (with L=0.3) or L (with K=10), with σ=10, 20,

30, 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Optimal assortment size for policy 5 with the exponential market share

type as a function of K (with L=0.3) or L (with K=10), with σ=10, 20,

30, 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 Optimal assortment size and expected profit as functions of L, for σ = 20,

exponential market sharing . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



LIST OF FIGURES

3.9 The optimal expected profit as a function of σ, with K=10, L” = 0.3 for

exponential market sharing . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.10 Optimal assortment size and expected profit as functions of K, for σ =

20, exponential market sharing . . . . . . . . . . . . . . . . . . . . . . . 62

3.11 Optimal expected profit as a function of L, with σ = 20, for exponential

market sharing, linear market sharing and uniform market sharing . . . 62

3.12 Optimal assortment size as a function of L, with σ = 20, for exponential

market sharing, linear market sharing and uniform market sharing . . . 63

3.13 The expected profit as a function of K, with σ = 20, for exponential

market sharing, linear market sharing and uniform market sharing . . . 63

3.14 The assortment size as a function of K, with σ = 20, for exponential

market sharing, linear market sharing and uniform market sharing . . . 63

4.1 Problem modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 3 cases for model 1 as the realized values X1 and X2 change . . . . . . . 77

4.3 3 cases for model 2 as the realized values X1 and X2 change . . . . . . . 82

4.4 impact of w1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 impact of w2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 impact of s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 impact of wr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.8 impact of β1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9 impact of β2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.10 impact of β3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.11 impact of µ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.12 impact of v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.13 impact of v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.14 impact of v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.15 impact of v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.16 impact of t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.17 impact of p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.18 impact of return with µ1 = 100, µ2 = 100, β2 = β3 = 0.3 . . . . . . . . . 94

4.19 impact of return with µ1 = 100, µ2 = 100, β1 = β3 = 0.3 . . . . . . . . . 95

4.20 impact of return with µ1 = 100, µ2 = 100, β1 = 0.2, β2 = 0.4 . . . . . . 95

x



LIST OF FIGURES

4.21 impact of drop-shipping with µ1 = 100, µ2 = 100, β1 = 0.1, β3 = 0.2 . . 96

4.22 impact of drop-shipping with µ1 = 100, µ2 = 100, β1 = 0.1, β2 = 0.3 . . 97

4.23 impact of drop-shipping with µ1 = 100, β1 = 0.1, β2 = 0.2, β3 = 0.2 . . . 97

6.1 The value of (E(π(Q∗)) − Eσ), as a function of discount number, with

normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 The value of (E(π(Q∗)) − Eσ), as a function of discount number, with

uniform distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 First derivative of the expected profit function for identical return prob-

abilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 First derivative of the expected profit function for identical return prob-

abilities, with s = 5, β1 = 0.1, β2 = 0.24 and β3 = 0.6 . . . . . . . . . . 120

6.5 First derivative of the expected profit function for identical return prob-

abilities, with s = 5, β1 = 0.1, β2 = 0.15 and β3 = 0.6 . . . . . . . . . . 120

6.6 Optimal order quantity as a function of unit return cost . . . . . . . . . 121

6.7 Optimal expected profit as a function of unit return cost . . . . . . . . . 122

xi



LIST OF FIGURES

xii



List of Tables

2.1 Comparison with the work of Khouja (1995,2000) . . . . . . . . . . . . . 21

2.2 The optimal order initial price, order quantity and expected profit for

different combinations of n,b,σ0 for normally distributed demand . . . . 28

2.3 Optimal epected profit for different discount schemes . . . . . . . . . . . 29

2.4 Expected profit function for uniform and normal distributions . . . . . . 31

2.5 Expected profit function for uniform and normal distributions . . . . . . 35

3.1 Optimal assortment size for different policies with σ = 10, 20, 30, 40 . . . 57

4.1 Total sale and return for 3 cases in model 1 . . . . . . . . . . . . . . . . 77

4.2 Total sale and return for 4 cases in model 2 . . . . . . . . . . . . . . . . 83

4.3 Data for the numerical examples . . . . . . . . . . . . . . . . . . . . . . 86

xiii



LIST OF TABLES

xiv



1

Introduction

In this chapter, we give a general introduction for the work carried out in this thesis.

The objective of this chapter is: first, to provide a description of the various types of

products for which the inventory modelling approach used in this thesis can be applied;

second, to give details on the News-Vendor Problem (NVP) which is the inventory

control problem that our work is based on; third, to describe the work done in this

thesis and present our main contributions.

1.1 Background

The News-Vendor (NV) context which this thesis is based on is particularly adapted

for some types of products characterized by a short life cycle, long replenishment times

and/or seasonal demand patterns. Indeed, the world economy is six times larger than

it was half a century ago, growing at an annual rate of 4% during the period. New

technologies have paved the way for more efficient production systems in a wide range of

industries and have promoted the economic growth. The rise of globalization, especially

over the past two decades with the growing trade and financial integration of the world

economy led to much faster diffusion of ideas and cultural products [1]. One of the most

profound changes in the last decade is the dramatic shrinkage of product life cycles [2]

because of the ever-increasing competition: a manufacturer faces competition from

many other global companies in addition to local manufacturers and everyone offers

more and more new products to the market with innovations brought by technological

advances. For example, electronic products update very fast: iPhone has tens of major

1



1. INTRODUCTION

releases since the original one born in 2007. For fashion, apparel, luxury and other soft-

good industries, the product life cycle is also very short. Zara, for instance, delivers

new products twice a week to its 1,670 stores around the world. This adds up to more

than 10,000 new designs each year [3].

The second important characteristic for products of interest (those for which the

NVP is well suited) is the seasonal profile observed in sales. Many retail businesses see

a great part of their profits generated in one or two seasons during the year, the end-of

year or Christmas season being such a typical busy period. Examples of products with

highly seasonal demand include: Christmas gifts, Valentine gifts, fireworks, swimwear,

holidays, clothes, etc. Another obvious example of demand seasonality is the great

online sale peak (in 2015 for example, 91.2 billion CNY in 24 hours) which happens on

11 November, the ”singles day” in China.

These products which have short selling periods are called seasonal products com-

pared to permanent products which are displayed in markets all the time. Seasonal

products bring many challenges especially for retailers because the demand is uncer-

tain: they need to make a purchasing order before the selling season because of the

long production and/or distribution lead time compared with the short selling period;

if the stock is not enough, there is a risk that there will be an underage in the selling

period and a penalty cost should be paid in many situations; if the order quantity is too

big, there will be depreciation at the end of the season. Managers often have to make

decisions regarding the inventory level over a very limited period, this is the case, for

example with seasonal products such as Christmas cards that should satisfy all demand

in December, but any cards left in January have almost no value.

Retailers of seasonal products need to sell products within a short time while the

needs of consumers are constantly changing. A successful retailer managing seasonal

products must satisfy two requirements: to adjust for trends and to improve revenue.

Three characteristics should be especially considered for such products.

• dealing with overstock (discount)

• product variety

• free product returns policy

2
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Indeed, using discounting can permit to reduce the risk of overage for products sold

in the season. Besides, product variety and assortment decision is a key factor for prod-

ucts offered to consumers. Furthermore, product returns is a more and more observed

phenomenon in contexts such as retail e-commerce. The goal of the present thesis is to

consider these three extensions in order to contribute to enhance the understanding of

challenges associated with the NV inventory control problem. Our aim is to contribute

to the development of models pertaining to the NVP, so as to gain useful guidelines for

practitioners.

1.2 Context: the News-Vendor Problem

The NVP, also known as the single-period inventory problem or Newsboy Problem, is a

classical problem in inventory management aiming at finding the optimal order quantity

which maximizes the expected profit under probabilistic demand. Its name derives from

the context of a NV purchasing newspapers to sell before knowing how many will be

demanded that day. The optimal order quantity is deduced from the trade-off between

two situations: if the order quantity is not enough, the NV loses some possible profit; on

the other hand, if the order quantity is too large, overstock happens. It occurs whenever

the demand is random, a decision must be made regarding the order quantity prior to

finding out how much is needed, and the economic consequences of having ”too much”

and ”too little” are known. The NVP has a long history that can be retrospected to [4]

in which a variant is used to describe and solve a bank cash-flow problem. The NVP

has been paid more and more attention over the past half century. The increasing

attention can be explained that the NVP is applicable in many real situations: service

industries [5] that have gained increased dominance, fashion and sporting industries

[6], etc.

In Sect. 1.2.1, we will firstly present the basic model of NVP. In Sect. 1.2.2, we

will present early achievements on NVP by dividing the extensions of the NVP into 4

categories.

1.2.1 Basic problem: classical NVP model

To solve the classical NVP, researchers have developed an approach by maximizing the

expected profit. To show how this research approach works, we define the following
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notations. These notations will be used throughout the thesis.

x the demand during the selling season, a

random variable

f(x) the probability density function of x

F(x) the cumulative distribution function of x

v unit selling price

w unit purchasing cost

s unit salvage value

p unit shortage penalty

Q order quantity, the decision variable

Since the demand is not realized before the selling season, the NV does not know

the future profit. The traditional approach is based on assuming a risk neutral NV

who decides the optimal order quantity before the selling season to get the maximum

expected profit. The profit per period is:

π =

{
vx− wQ+ s(Q− x) if x < Q

vQ− wQ− p(x−Q) otherwise
(1.1)

By taking the expected value of π, we get the following expected profit:

E(π) =

∫ Q

0
(s− w)Qf(x)dx+

∫ Q

0
(v − s)xf(x)dx+∫ ∞

Q
(v − w + p)Qf(x)dx+

∫ ∞
Q
−pxf(x)dx (1.2)

By using Leibniz’s rule to obtain the first and second derivatives, we show that E(π)

is strictly concave. The optimal order quantity (Q*) condition satisfies the following

formula:

F (Q∗) =
p+ v − w
p+ v − s

(1.3)
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1.2 Context: the News-Vendor Problem

The expected profit corresponding to the optimal order quantity Q∗ turns to be:

E(π(Q∗)) = (v − s)µ− (v − s+ p)

∫ inf

Q∗
xf(x)dx (1.4)

Some researchers use also a cost minimizing approach to solve the problem in terms

of balancing the costs of underestimating and overestimating demand and they find

same results. We use the expected profit maximizing approach in our work.

1.2.2 Early achievements

After [7] formulated the NVP, interest in the NVP remains unabated and many ex-

tensions to it have been proposed in the last decades. [8] reviewed these extensions

and classified them into 11 categories: 1. Extensions to different objectives and utility

functions. 2. Extensions to different supplier pricing policies. 3. Extensions to different

NV pricing policies and discounting structures. 4. Extensions to random yields. 5. Ex-

tensions to different states of information about demand. 6. Extensions to constrained

multi-product. 7. Extensions to multi-product with substitution. 8. Extensions to

multi-echelon systems. 9. Extensions to multi-location models. 10. Extensions to

models with more than one period to prepare for the selling season. 11. Other exten-

sions. [9] extended the prior review by considering several specific extensions such as

integrating marketing effort, stock dependent demand, and buyer risk profiles and how

they influence the determination of the optimal NV order quantity.

These two works bring lot of convenience for future research, however, there are some

extensions of NVP not included in these categories, e.g. NVP extensions considering

the product assortment problem or product returns. We use a more intuitive way

to classify the research works on the NVP by considering three actors (supplier, NV

and consumers) and one object (product). Therefore, we can classify the different

extensions developed so far into four categories as illustrated in Figure 1.1. In fact,

the extensions on the NVP are based on different assumptions according to activities

that can be described in these 4 categories. For example, the extension considering

quantity discounts comes from the fact that suppliers often provide discounts for the

NV according to the quantity he/she orders. This discount activity is operated by the

supplier. The NV also uses discount to attract consumers, this activity is operated by

the NV. By using this method, we provide an intuitive way to present the extensions

on NVP and future extensions can find their positions in this classification.
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Figure 1.1: 4 categories of NVP extensions

1.2.2.1 Extensions concerning the supplier

Extensions in this category consist of random yields (the production capacity of the

supplier is a random variable), quantity discounts, emergency supply option, etc, for

both single- and multi-supplier cases. Some of these extensions are described below.

Random yield: [10] reviewed random yield models, and presented five basic ap-

proaches: (i) a Bernoulli process; (ii) stochastically proportional yield; (iii) stochastic

yield proportional to order quantity; (iv) random capacity; and (v) general model that

specifies the probability of each output for each order quantity. [11] solved the NVP

under multiple suppliers with stochastic yield. [12] derived the optimal order quantity

for interdependent demand and supply for a NV facing stochastic supply yield, in addi-

tion to stochastic demand. Increasing product complexity, manufacturing environment

complexity and product quality all lead to uncertainties in production. [13] assumed

the productive capacity is a random variable y, f0(y) is the probability density of y,

and F0(y) is the cumulative distribution function of y. The planned production is Q,

so the actual production is min{Q, y}. [13] proved that the expected profit is concave

on order quantity and the optimal quantity is the same with the classical NVP model.

Quantity discounts: The determination of the optimal order quantity when the
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1.2 Context: the News-Vendor Problem

supplier offers quantity discounts has been treated in many NVP extensions [14, 15,

16]. There are basically three types of quantity discounts [14]: a. All-units quantity

discounts (for Q such that qj < Q < qj+1, the cost per unit is wj . The discount

applies to all units purchased); b. Incremental quantity discounts (the discount applies

only to the additional units after the break-points); c. Carload-lot discounts (any

quantity in the ”carload-lot” interval assesses the maximum cost). [14] showed that the

behavior of a NV facing an all-units quantity discount depends on the cost of disposing

of excess inventory which can be: (i) zero, (ii) negative and (iii) positive. [17] proposed

algorithms for solving a NVP in which Q is made up of a number of containers with

standard sizes. The NV can choose any combination of container sizes. The larger the

container the smaller the unit cost. [16] considered all-units and incremental quantity

discounts and dual performance measures. [15] proposed three extensions to the NVP:

(1) supply of inventory is a random variable due to a supplier with variable capabilities,

(2) suppliers are charged a penalty for not being able to meet contract obligations; the

penalty can be fixed or proportional to the quantity of shortage and (3) a secondary

supplier can supply additional units when the primary supplier can’t provide Q∗. The

secondary supplier charges a higher unit price.

Emergency supply option: [18] assumed that when the primary supplier can not

provide Q∗, a secondary supplier can supply additional units. But only a proportion of

demand can be satisfied from the emergency supply option in case of a shortage. r is

the unit cost from the emergency supply option while w < r < v + p. [18] showed that

the optimal order quantity is smaller than the optimal order quantity in the classical

problem: in presence of emergency supply, some demand is not lost when there is a

shortage. [19] incorporated the drop-shipping as an emergency option into the single-

period model framework and showed that it can lead to a significant increase in expected

profit. [20] assessed three different organizational forms that can be used when a store-

based sales network coexists with a web site order network. The three organizational

forms are store-picking, dedicated warehouse-picking and drop shipping. Authors used

a NV type order policy model to compare the three different models and to analyze the

impact of some parameters on inventory policies in the supply chain. [21] proposed a

mixed mode that utilizes both traditional and drop-shipping modes for seasonal fashion

and textiles chains, in order to take full advantage of demand fluctuation and improve

the profit-making ability.
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Multiple suppliers: [22] studied a supplier selection problem, where a buyer,

while facing random demand, is to decide ordering quantities from a set of suppliers

with different yields and prices. [23] considered the problem of a NV that is served by

multiple suppliers, where any given supplier is defined to be either perfectly reliable

or unreliable. [24] addressed the supplier selection and purchase problem with fixed

selection cost and limitation on minimum and maximum order sizes under stochastic

demand.

1.2.2.2 Extensions concerning the NV

Extensions in this category consist of different objectives and profiles of the NV, ini-

tial inventory, multiples discounts and marketing effort. Some of these extensions are

described below.

The NV with other objectives: Besides the objective to maximize the expected

profit or minimize the expected cost, some researchers consider the maximization of the

probability of achieving a target profit [25, 26, 27]. They suggested that maximizing

the probability of achieving a target profit level is a realistic managerial objective in

the NVP.

Risk profile: The NV can have various risk preferences including, risk-neutral,

risk-averse and risk-seeking preferences. Alternative risk preferences such as loss-

aversion, have also been analyzed in the context of the NVP. [28] provided a detailed

investigation of the effects of risk, risk aversion and changes in various price and cost

parameters for a risk-averse retailer. [29] investigated the pricing, ordering and promo-

tion policies of a risk-sensitive (risk-averse or risk-seeking) NV under price-dependent

and stochastic demand. [30] examined the ordering policy of a loss-averse NV.

Initial inventory: This situation occurs in practice when there is an initial stock

I or a stock of convertible units that can be transformed into end items [31, 32, 33].

[32] showed that expected profit is concave in I and Q and that there is a critical level

of I above which no order will be placed under certain yield, and this level is the same

under random yield.

Multiple discounts: It happens frequently in practice that multiple discounts are

progressively used to sell excess inventory. Multiple discounts are especially common

in the apparel industry where discounts get steeper as the season draws to an end. [27]

solved a NVP with multiple discounts with these assumptions: every discount results
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1.2 Context: the News-Vendor Problem

an additional demand, which is proportional to the original demand; the remaining

inventory can be sold at the final discount. [27] proved that for the NVP under pro-

gressive multiple discounts, the expected profit is concave and developed the optimality

condition.

Marketing effort: The assumption is that the demand is influenced by marketing

effort (e.g. advertising). An increase in mean demand due to marketing effort leads to

an increase in the optimal stocking quantity Q∗, but it is not so clear for the impact of

an increase in demand variability. [34] proved that the optimal marketing effort can be

determined by the following formula, where C is the unit cost of effort: (v−w)dude −
dc
de =

0. The analysis presented is extended to a situation where marketing effort affects

demand in a way that demand variance decreases as more effort is made in the selling

season. [35] examined the effects of demand randomness on optimal order quantities

and the associated expected costs by applying mean-preserving transformations to the

demand variable.

1.2.2.3 Extensions concerning consumers

Price-dependent demand: The demand can be influenced by the selling price. Ex-

tensions on this subject give some basic price-demand relationship assumptions. The

linear and multiplicative relationships are the basic ones.

In the classic NVP, the selling price is considered as exogenous, over which the

retailer has no control. This is true in a perfectly competitive market where buyers are

mere pricetakers. However, retailers may adjust the current selling price in order to

increase or decrease demand. Therefore, several researchers have suggested extensions

of NVP in which demand is assumed to be price dependent. [36] assumed that price-

dependent demand is affected additively by a random variable, which is independent

of the selling price. [37] introduce the case of a multiplicative model in which the

stochastic demand is affected multiplicatively by a random variable. Price-dependent

demand NVP has then been largely studied [26, 31, 38, 39, 40, 41].

Location: Multi-location NVP extensions can be divided into two types: (1) all lo-

cations have the same selling season and (2) the selling seasons of the different locations

lag each other. [42] analyzed the effects of centralization on the multi-location NVP.

In this model, there are n retail centers which raises the opportunity for centralization.

[42] compared the expected cost of two configurations: (a) a decentralized system in
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which a separate inventory is kept at each center and (b) a centralized system in which

inventory is kept at central warehouse. [42] assumed normal demand distribution and

linear holding and penalty costs and showed that the expected cost of the decentral-

ized facilities exceeds that of the centralized facility with the difference depending on

the correlation of demands. For uncorrelated and identically distributed demands, the

expected cost of the centralized facility increases as the square root of the number of

consolidated centers. [43] considered the situation where a NV exploits the difference

in timing of selling seasons of geographically dispersed markets. For example, a US

garment maker can sell his/her remaining summer fashion in Australia where summer

is about to begin. [43] treated both centralized and decentralized case.

Stock-dependent demand: [44] was the first to consider stochastic demand when

inventories stimulate demand within a single-product, single-period setting. [45] devel-

oped a stochastic model that jointly optimized inventory and price and captured the

effects of a store’s fill-rate on consumer utility. [46] proposed a more general, stochas-

tic demand modeling framework that encapsulates the influence of inventory on the

demand distribution. They provided insights on the optimal inventory policy of a sin-

gle product when price is also a decision variable. [47] employed the same modeling

framework to capture the dependence of demand on inventory in a stochastic setting

and extended it to the case of two products under product substitution.

1.2.2.4 Extensions concerning products

In the real situation, it is not usual for a retailer to sell only one product. Two products

or even multiple products could be involved in the business. With multiple products,

the NV needs to consider the substitution effect (some consumers preferring one product

which is out of stock could buy other products for substitution) and to decide which

products to sell in the selling season. In addition, product return is also an important

issue for retailers to considering when they are making decisions. Here are some related

extensions on NVP.

Substitution: The topic of product substitution in inventory management first

appears in [48]. Papers on this topic can be divided into 3 categories according to the

substitution type: papers of the first category deal with one-direction substitution or

firm-driven substitution, where only a higher grade (e.f. quality, size, etc.) product

can substitute a lower grade product, when the supplier makes decisions for consumers
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on choosing substitutes (see, e.g., [49, 50, 51, 52, 53]). The second category consists of

papers where arriving consumers’ number follows a stochastic function and consumers

make purchasing decisions under probabilistic substitution when their preferred product

is out of stock (see, e.g., [54] and [55]). The third category consists of papers considering

that each product can substitute for other products and the fraction that one out-

of-stock product is substituted by another product is deterministic (see[48, 56, 57,

58, 59, 60, 61, 62, 63, 64]). [61] obtained optimality conditions for both competitive

and centralized versions of the single period multi-product inventory problem with

substitution.

Assortment and substitution: Assortment planning in the area of NVP has been

extensively studied too. [65] made a comprehensive review of the recent literature. In

some papers, the substitution effect and the assortment planning are simultaneously

considered. Two major types of demand modelling were used in earlier achievements:

utility maximization (see [55, 66, 67]) and exogenous demand models (see [54, 68]). [66]

considered a static substitution model with multinomial logit (MNL) demand distribu-

tions assuming that consumers are rational utility maximizers. They show that in this

model the optimal solution consists of the most popular product. [55] studied a joint

assortment and inventory planning problem with stochastic demands under dynamic

substitution (assuming that a consumer’s choice is made from stock on hand) and gen-

eral preferences where each product type has per-unit revenue and cost, and the goal

is to maximize the expected profit. Assuming that consumer sequences can be sam-

pled, they propose a sample path gradient-based algorithm, and show that under fairly

general conditions it converges to a local maximum. [67] consider a single-period joint

assortment and inventory planning problem under dynamic substitution with stochastic

demands, and provide complexity and algorithmic results as well as insightful structural

characterizations of near-optimal solutions for important variants of the problem.

Product returns: In the literature, consumer returns are typically assumed to be

a proportion of products sold (e.g.[69, 70, 71, 72, 73]), which obviously implied that if

more items are sold, more products will be returned from consumers. [74] empirically

showed that the amount of returned products has a strong linear relationship with

the amount of products sold. Based on the assumption that a fixed percentage of

sold products will be returned and that products can be resold at most once in a

single period, [70] investigated optimization of order quantities for a NV style problem

11
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in which the retail price is exogenous. [75] considered a manufacturer and a retailer

supply chain in which the retailer faces consumer returns. [76] also assumed that a

portion of sold products would be returned and discussed the coordination issue of a

one manufacturer and one retailer’s supply chain. [73] examined the pricing strategy

in a competitive environment with product returns. [77] considered consumer return

for retailer who is confronted with two kinds of demand: one needs immediate delivery

after placing an order and the other accept delayed shipment, and a NV model with

resalable returns and an additional order is developed. However, the model was under

assumption that total demand distribution is given and each kind of demand presents

a proportion of the total demand and concavity is not proved.

1.2.3 Motivations

Although lots of work have been done in the NVP area, interest in the NVP is still

important. The literature of NVP has seen a big rise in the last decade. As economic

activities are showing new tendencies, e.g. international cooperation and e-commerce,

retailers are facing new situations. As a result, the literature of the NVP needs to be

enriched. In the following, we highlight some motivations with regard to models we

develop in this thesis.

Our models aim at solving problems encountered in practice within a NV framework.

Multiple discounts, product variety and e-commerce (i.e. drop-shipping and product

returns) are three important issues that we consider.

First, we are inspired by the fact that most retailers use several discounts to sell

excess inventory. In this situation demand depends on product selling price and dis-

counts are a certain percentage of the initial selling price. Indeed, in many situations,

demand depends on product’s selling price since demand would increase when selling

price decreases. This relationship enables retailers to adjust the selling price to influ-

ence demand. In chapter 2, we consider this problem and assume that demand is price

dependent. Two special demand-price relations are considered: additive and multi-

plicative cases. The motivation for the assumption of multiple discounts is reported

in [27]. In realistic situations, multiple discounts are progressively used to sell excess

inventory that, in turn, impact demand. This is for instance encountered in the apparel

industry where the initial selling price has an important influence on demand realized
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during the regular selling period and discounts get deeper as the season draws to the

end.

Second, product variety is another key element that is interesting to analyze in a

NV context. Demand for variety comes both from the taste of diversity for an indi-

vidual consumer and diversity in tastes for different consumers. However, despite the

advantages of product variety, the full range of variety cannot be supplied generally,

owning to the increase in inventory, shipping, and merchandise presentation (i.e. prod-

uct display cost), etc. Within this context, the optimization of product assortment (i.e.

products that will be offered for purchase within the store), and the optimal order quan-

tity for each product, is a relevant decision that retailers face. By considering multiple

products, two important factors should be considered to optimize the assortment and

the optimal order quantities. First, product variety brings possible substitution when

underage happens: the different variants of the same product (variants are products of

different colors for instance), may act as substitutes when the consumer finds that a

product is out of stock. Second, besides the purchasing cost which increases with the

order quantity, there is a fixed cost associated with each variant of product included in

the assortment, e.g. the material handling and merchandise presentation cost stemming

mainly from the space and labor cost required to display products in the store, etc.

Joint assortment planning and inventory management problems with substitution have

been extensively studied in the literature [65]. However, some limits exist in earlier

works, e.g. [54] assumed that the order quantities are set to achieve a fixed service

level and give two bounds of the product demand. The final results are based on the

approximation of the demand and the numerical examples are mainly in the case of

items with uniform market share. We consider two effects in a multi-product NVP: the

transfer of demand owning to the unlistment of some products, then the substitution

between products included in the assortment and give the formulation of the expected

total profit.

Third, e-commerce activity along with the drop-shipping option is another variant

that we analyze. In recent years, retailers have used the drop-shipping mode as an

order fulfilment strategy. Drop shipping is especially interesting for seasonal products.

Seasonal products have short selling season and long lead replenishment time thus the

order is placed to a faraway supplier before the selling season and it is not possible to

place another one during the season when the retailer finds that the product is out of
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stock. Then drop shipping can be used to fulfill this part of demand. We assume a

mixed strategy to satisfy demand: use both store inventory and drop shipping option.

The motivation of this assumption is reported in [19]. A disadvantage of e-commerce

is that product returns are especially problematic: products sold through e-commerce

tend to have higher return rate than traditional process [70]. As the classical NVP,

store demand (the demand of consumers shopping physically in the store) is satisfied

by store inventory. The NV can use the store inventory to satisfy internet demand

and has in addition a drop shipping option for internet demand. When products are

delivered, some consumers are unsatisfied and then a portion of products is returned

to the store.

1.3 Description of the manuscript and main contributions

This thesis consists of 3 main parts. Those three parts deal with the inventory man-

agement for a NV by focusing on specific points. Chapter 2 addresses particularly the

pricing and overstock issues by introducing multiple discounts. Chapter 3 rather fo-

cuses on the assortment planning problem by considering the substitution effect for a

NV who provides multiple products. Chapter 4 focuses on the mixed supplying strategy

for a NV who uses drop-shipping to satisfy Internet demand and has a free return pol-

icy. Those chapters are all organized in the same way: introduction, related literature

revue, modeling, formulation of the model, numerical results and conclusion.

In more details, Chapter 2 considers a NVP with multiple discounts that are used

progressively after the regular selling season. The demand is price dependent and the

NV decides the initial selling price to make a maximal profit. As we know, the optimal

initial price is affected by the discount scheme (which consists of discount frequency

and discount percentages), and the initial price itself affects the optimal inventory

decision. Therefore, we analyze the joint determination of optimal order quantity,

optimal initial selling price and optimal discount scheme. Firstly, we prove the concavity

of the expected profit in function of the order quantity. We develop a general expression

of the optimal order quantity for both the additive and multiplicative price-dependent

demand cases with general demand distributions and provide a simple expression of

the expected profit corresponding to the optimal order quantity. In addition, these

expected profit equations show a much clearer insight into the impact of initial price and
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discount number on the expected profit. Approximate functions for the expected profit

are derived. Numerical examples show that at a given initial price, the expected profit

increases with the discount number, but it has an upper bound. It is not reasonable to

use too many discounts, because the increasing speed of the expected profit decreases

and tends to be zero. For additive demand, the expected profit is approaching the

maximum value with the linear discount scheme and with the exponentially declining

scheme for multiplicative demand. Numerical examples show also that the approximate

functions provide accurate results.

In Chapter 3, we extend the classical NVP to consider the assortment and substitu-

tion effects. We develop a model considering demand transfer and demand substitution.

The transfer and substitution fractions are formulated. Then, a random-walk Monte

Carlo method provides an efficient computational approach to get the value of the ex-

pected optimal profit and optimal order quantities for a product assortment. Numerical

examples show insights regarding the performances of the NVP. Our examples indicate

that demand transfer and substitution have important impacts on the assortment, ex-

pected profit, and optimal order quantities. With a global optimization policy, several

results can be derived from numerical results: the expected profit decreases with the

fixed cost value, the fraction of lost sale and demand uncertainty. Assortment size in-

creases with the fraction of lost sale but decreases with the fixed cost value. The model

can easily be adapted to problems with other kinds of substitution such as one-item

substitution, which can be treated in the same way by our model only changing the

demand transfer and substitution equations.

In Chapter 4, we consider a NVP with drop-shipping option to satisfy demand.

Many retailers use a mixed drop-shipping and store inventory strategy to satisfy de-

mand. In this chapter we formulate a NV model for inventory management of a mixed

supplying strategy considering different return rates for different kinds of delivery: store

inventory to store demand, drop-shipping for internet demand and store inventory to

internet demand. We provide the optimal solution for store order quantity under gen-

eral demand distributions and the expression of the corresponding expected profit. In

a situation where the return rate of drop-shipping is higher than the one of store inven-

tory to internet demand delivery, the expected profit is proved to be a concave function

of the store order quantity under a reasonable condition. Our examples indicated a high

reliance on store inventory for the NV and thus it is not reasonable for the e-retailer to
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use only drop-shipping option and the higher is the return rate related to drop-shipping

option, the higher is the reliance on store inventory.

At the end of the manuscript, we close the thesis by giving general concluding

remarks and highlighting directions for future research.

The work associated with Chapter 2 was presented on the 5th International Confer-

ence on Information Systems Logistics and Supply Chain held at the Castle of Breda,

Netherlands. We have submitted it to ”Journal of Industrial and Management Op-

timization”. The work of Chapter 3 was presented on the International Conference

on Industrial Engineering and Systems Management held at Seville, Spain and has

been submitted to ”OR Spectrum”. The work of Chapter 4 has been submitted to

”International Journal of Production Research”.
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NVP with price-dependent

demand and multiple discounts

Existing papers on the NVP that deal with price dependent demand and multiple

discounts often analyze those two problems separately. This chapter considers a setting

where price dependence and multiple discounts are observed simultaneously, as is the

case of the apparel industry. Henceforth, we analyze the optimal order quantity, initial

selling price and discount scheme in the NVP context. The term ”discount scheme”

is often used to specify the number of discounts as well as the discount percentages.

We present a solution procedure of the problem with general demand distributions and

two types of price-dependent demand: additive and multiplicative case. We provide

interesting insights based on a numerical study. An approximation method is proposed

which confirms our numerical results.

2.1 Introduction

Pricing and multiple discounts are common features observed in real life NVP. In many

situations, demand depends on product’s selling price since demand would increase

when selling price decreases. This relationship enables retailers to adjust the selling

price to influence demand. Furthermore, multiple discounts mean that the retailer uses

a certain number of discounts to sell excess inventory, rather than performing only

one discount. In realistic situations, multiple discounts are progressively used to sell

excess inventory that, in turn, impact demand. This is often encountered in the apparel
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industry where the initial selling price has an important influence on demand realized

during the regular selling period and discounts get deeper as the season draws to the

end. This end of season, for example, is called the discount period in France, which

happens twice every year.

The work we carry in this chapter is motivated by the fact that most retailers use

several discounts to sell excess inventory. In this situation demand depends on the

selling price and discounts are a certain percentage of the initial selling price. The

term ”discount scheme” is often used to specify the number of discounts as well as the

discount percentages. A special discount scheme where the discount prices are equally

spaced, is called a linear discount scheme. In this work, given the unit purchasing

cost, salvage value and the price-demand relationship, we are concentrating on the

determination of the order quantity, the initial selling price and the discount scheme

that would maximize the expected profit. Two special demand-price relations are

considered: additive and multiplicative cases. In the additive case, the mean demand

decreases linearly with the selling price, while in multiplicative case, the mean demand

decreases exponentially. These two relations are common expressions used to represent

the price-dependent demand in practice [9]. [27] obtains the optimality condition of

the order quantity for a NV considering multiple discounts. [78] extends to the case

where multiple discounts are used and the demand is price-dependent. The concavity

is proved for the NVP with uniformly distributed demand, the condition of optimal

order quantity is obtained while the discount prices are linear and the demand-price

relationship is considered to be additive.

This chapter extends the work of [78] since: (1) we demonstrate the concavity for

the NVP with multiple discounts and price-dependent demand under general demand

distributions and obtain the optimality condition of the order quantity, i.e. the con-

cavity is not limited to uniform distribution; (2) we provide a simple expression of the

optimal expected profit; (3) we obtain optimality conditions of the order quantity for

both additive and multiplicative demand case; (4) based on a numerical study, we show

some new insights, e.g. on the optimal discount scheme; (5) under some conditions we

write the expected profit function in a manner that enables to search the numerical

optimal initial selling price. This approximation method confirms the insights observed

in numerical studies.
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2.2 Literature review

The rest of this chapter is organized as follows. Section 2.2 presents the literature

review related to the work we carry in this chapter. In section 2.3, we formulate the

multiple discounts and price-dependent NVP. In Section 2.4, we solve the order quantity

and initial pricing decisions with the objective of maximizing the expected profit, for

additive price-dependent demand. Numerical examples are then provided. In Section

2.5, we treat the case of multiplicative demand in the same way. Section 2.6 contains

further discussions and some suggestions for future research.

2.2 Literature review

Interest in price-dependent and multiple discounts problem goes on in the last decades.

One of the latest work is [79] who consider the price-dependent and multiple dis-

counts problem with multiple periods over a product’s life. [79] review works on price-

dependent and multiple discounts problem, but they are not focused on the NVP.

Therefore, we review the earlier achievements in the area of NVP, which consists of

two streams, i.e.: (1) the NVP with price-dependent demand and (2) the NVP with

multiple discounts.

In the classic NVP, the selling price is considered as exogenous, over which the

retailer has no control. This is true in a perfectly competitive market where buyers

are merely pricetakers. However, retailers may adjust the current selling price in order

to increase or decrease demand. Therefore, several researchers have suggested exten-

sions of NVP in which demand is assumed to be price dependent. [36] assumes that

price-dependent demand is affected additively by a random variable, which is indepen-

dent of the selling price. [37] introduce the case of a multiplicative model in which the

stochastic demand is affected multiplicatively by a random variable. [26] examine the

pricing and ordering policies of a NV facing a random price-dependent demand under

two different objectives, (1) the objective of maximizing the expected profit and (2) the

objective of maximizing the probability of achieving a certain profit level. Analytical

solutions are obtained for the additive price-demand relationship with normal distri-

bution. They develop numerical procedures for another case of demand: the demand

distribution is constructed using a combination of statistical data analysis and experts’

subjective estimates. [31] investigates the joint pricing and ordering decisions under

general demand uncertainty, aiming to reveal the fundamental properties independent
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of demand pattern. Unimodality of the expected profit function that traces the best

price trajectory over the order-up-to decision was proved under the assumptions that

the mean demand is a monotone decreasing function of price. [38] investigate the price-

dependent NV model in a competitive environment. They show the conditions for the

existence of the pure-strategy Nash equilibrium and its uniqueness. [39] introduces a

price-dependent demand with stochastic selling price into the classical NV, analyses

the expected average profit for a general distribution function of price and obtains

an optimal order quantity. [40] studies the channel coordination with a return policy

that lets the manufacturer share the risk of demand uncertainty. The manufacturer’s

decision is to identify both the optimal wholesale price and the return policy, based

on the retailer’s reaction on that offer. The retailer in turn optimizes the retail price

and the order quantity to meet a price-dependent uncertain demand. [41] develops a

distribution free approach to NVP with price-dependent demand for the situations in

which the NV may be missing demand distribution information or historical demand

data may not fit any standard probability distributions. Lower bounds on the expected

profit are shown to be jointly concave in price and order quantity.

[27] solves a NVP in which multiple discounts are used to sell excess inventory.

In this model, retailers progressively increase the number of discounts until all excess

inventories are sold out. The product is initially sold at a regular price v0. After some

time, if any inventories remain, the unit price is reduced to v1, v0 > v1. Then, a second

discount with a selling price v2(v1 > v2) is made, etc. The amount demanded for each

value of vi is assumed to be a multiple of the demand realized at the regular selling price

and moreover, the coefficients are assumed to be given. [27] solves the problem under

two objectives: (a) maximizing the expected profit and (b) maximizing the probability

of achieving a target profit. [27] shows that the expected profit is concave and derived

the sufficient optimality condition for the order quantity. A closed-form expression for

the optimal order quantity is obtained for the objective of maximizing the probability

of achieving a target profit. [80] develops an algorithm for identifying the optimal

order quantity for the multi-discount NVP when the supplier offers the NV an all-units

quantity discount. [81] provide a solution algorithm to the multi-product multi-discount

constrained NVP. [78] extends the NVP to the case where demand is additively price

dependent and multiple discount prices are used to sell excess inventory. Given the

initial price and linear discount scheme, he solved the condition of the order quantity
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which maximizes the expected profit prior to any demand being realized. [82] consider

an inventory problem for gradually obsolescent products with price-dependent demand

and multiple discounts. They assume that the increase of demand due to price change

is linearly correlated with the difference between prior and present prices. However,

the demand is assumed to be deterministic as a function of time, which is a limited

assumption for the NVP context.

Our work focuses on the NVP and differs from previous works according to the dif-

ferent points summarized in Table 2.1. We generalize the NVP with multiple discounts

in three aspects: price-demand relation, demand distribution and discount scheme.

parameter [27] [78] our work

price-demand relation fixed additive additive and multiplicative

demand distribution general uniform and normal general

discount prices known linear all types (linear and non-linear)

Table 2.1: Comparison with the work of Khouja (1995,2000)

2.3 The problem under study

Figure 2.1 represents the sequence of events in a selling season. A season consists of

n+1 sub-periods where each sub-period i (i=0,...,n) is characterized by a unit selling

price and a stochastic demand which depends on the selling price offered to customers

during the sub-period. At the beginning of the season, the NV buys from the supplier a

quantityQ of products at unit price w. This quantity has to cover all demand during the

selling season since we assume in this model that the NV can not buy products during

the season. In sub-period i=0, i.e. the regular selling period, the product unit selling

price is v0, the random demand is X0 and the realization of X0 is x0. In sub-period i=1,

i.e. the first discount period, the product unit selling price is v1, the total demand until

the end of this period (including X0) is X1, and x1 is the realization of X1. The rest of

periods can be deduced in the same way. As selling season goes on, the discounts get

deeper and the NV captures some additional demand in each discount period, until the

final discount period, i.e. sub-period i=n, where all remaining products are disposed

of at a unit price s where s = vn. These discount prices are not given, but for a linear
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scheme, the discount prices are equally spaced between v0 and s. Otherwise, we call it

a non-linear scheme.

The objective of our problem is to find the order quantity Q that maximizes the

expected profit.

Figure 2.1: Sequence of events for a selling season

Define the following notations used in Chapter 2:

X0 Demand during the regular period with mean µ0 and standard deviation
σ0

x0 Realization of X0

f Density function of X0

F Cumulative distribution of X0

Xi(i > 0) Demand accumulated till the sub-period i, with mean µi and standard
deviation σi, µn =∞ (all products are disposed of with s)

xi(i > 0) Realization of Xi

Given variables:

s Salvage price per unit, s = vn
w Purchase price per unit

Decision variables:
v0 Regular selling price (initial price) per unit,
n The number of discounts during the season
vi Unit selling price at the i-th discount period, v0 > v1 > · · · > vi > · · · > vn
Q Order quantity

The random profit function is a multivariate function of selling prices and the order
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quantity:

π(Q) =



v0Q− wQ x0 > Q

v0x0 + (Q− x0)v1 − wQ x0 ≤ Q < x1

v0x0 + (x1 − x0)v1 + (Q− x1)v2 − wQ x1 ≤ Q < x2
...

v0x0 + (x1 − x0)v1 + · · ·+ (xi−1 − xi−2)vi−1 + (Q− xi−1)vi − wQ xi−1 ≤ Q < xi
...

v0x0 + (x1 − x0)v1 + · · ·+ (xn−1 − xn−2)vn−1 + (Q− xn−1)vn − wQ xn−1 ≤ Q

(2.0)

The profit related to the interval: xi−1 < Q < xi, is the sum of the revenue of the

regular period v0x0, the first i-1 periods (x1 − x0)v1 + · · ·+ (xi−1 − xi−2)vi−1, and the

i-th period (Q− xi−1)vi, subtracted by the total purchase cost wQ.

Let us remark that the quantity demanded at the i-th discount period is a function

of the quantity demanded in the first (regular) period and the selling price associated

with the i-th discount. This function depends on how the price-demand relation is

modeled. Hence two cases are considered, the additive price-dependent demand (cf.

Section 2.4) and the multiplicative price-dependent demand (cf. Section 2.5).

2.4 Optimal pricing and ordering decisions for additive

price-dependent demand

In the case of additive price-dependent demand, the mean demand µ decreases linearly

with the price v, i.e., µ = a − bv, a and b are both positive constants obtained from

historical data. [78] assumes that v = W − Bx, where B is a positive constant known

to the NV (it equals to 1/b in our model), and W is a random variable with a known

probability distribution whose realization becomes known only after ordering. At the

end of the regular period, x0 becomes known, thus W can be calculated by: W = v0+x0
b .

We refer readers for more details to [78], which has considered the additive price-

dependent demand case, as explained in the literature review section. Then xi =

(W − vi)b can be written as:

xi = x0 + µi − µ0 (2.1)
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2.4.1 Optimal expected profit and optimal order quantity

If we replace xi in the profit function π(Q) by x0 (equation 2.0), we can derive the

expected profit function E(π(Q)) (c.f. Appendix 1).

The expected profit can be developed to (c.f. Appendix 1):

E(π(Q)) =

Q[−w + v0 +

n−1∑
i=0

(vi+1 − vi)F (Q+ µ0 − µi)] +

n−1∑
i=0

∫ Q+u0−ui

0
(vi − vi+1)(x+ ui − u0)f(x)dx

(2.2)

Lemma 1. The expected profit function E(π(Q)) is concave.

Proof. The proof is provided in Appendix 2.

The condition of the optimal order quantity is given by:

n−1∑
i=0

(vi − vi+1)F [Q∗ + µ0 − µi]− v0 + w = 0 (2.3)

When n=1, we get the optimality condition for the classical NVP:

F (Q∗) =
v0 − w
v0 − s

(2.4)

According to equation 2.3, the first term of equation 2.2 is zero for Q∗. So, we have:

E(π(Q∗)) =

n−1∑
i=0

∫ Q∗+µ0−µi

0
(vi − vi+1)(x+ µi − µ0)f(x)dx (2.5)

Equation 2.5 gives the optimal expected profit. We note that when n=1, we get the

profit associated with the classical NVP:

E(π(Q∗)) =

∫ Q∗

0
(v0 − s)xf(x)dx (2.6)
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2.4.2 Numerical Analysis

We use normally distributed demand (e.g. [78]) in our examples. Other demand distri-

butions will also work. The concavity enables us to search the optimal order quantity

by using a Golden Section method (The golden section search is a technique for finding

the extremum of a strictly unimodal function by successively narrowing the range of

values inside which the extremum is known to exist). Given a discount scheme, we

obtain the expected profit for an arbitrary value of the initial selling price by equation

2.5. Thus we can search the optimal initial price by numerical global optimization

methods.

Consider a practical example: A supplier provides a new type of T-shirt at a price

w = 3 Euros per piece. The amount of demand(X0) has a normal distribution N(µ0, σ0),

the mean µ0 will decrease linearly with the price(v0): µ0 = a − bv0. T-shirts can be

disposed of at the end of the selling season with a price s. A manager finds that multiple

discounts can improve the profit. The problem is: before the selling season, he needs

to determine the order quantity, the initial selling price and discount scheme in order

to maximize the profit.

2.4.2.1 First case: Linear discount scheme

vi = αi ∗ v0, and in the linear discount case, αi = 1 −
1− s

v0
n i(i = 1, ..., 5). Consider

σ0 = 0 (deterministic distribution), 2, 4, 6, 8; n increases from 2 to 21, a = 80, b = 8,

and s = 2. By setting v0 = 8, we have µ0 = 16. Figure 2.2 shows E(π(Q∗)) as a

function of n.

The graph shows that the expected profit E(π(Q∗)) increases with the discount

number n (with σ = 2, the expected profit is improved by about 100% with n = 5

compared with the classical case n = 1), but the increase speed is decreasing and tends

to be 0 when n → ∞. The reason for this result is that when n > 1, the NV has

more opportunity to sell more products at unit price bigger than s and the opportunity

tends to a limit when n → ∞. We find that the expected profit decreases with σ0.

This is reasonable because for the classical NVP with normally distributed demand,

the expected profit decreases with the uncertainty too. We repeated computations

similar to figure 2.2 for many different combinations of w(w ∈ [2, 4]), s(s ∈ [1, 3]),

a(a ∈ [60, 100]), b(b ∈ [6, 12]), v0(v0 ∈ [6, 12]), and similar results are obtained.
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Figure 2.2: Expected profit E(π(Q∗)), as a function of the discount number, for normally

distributed demand

In real life, the value of n would be limited. So we consider n = 5 in our analysis.

Then v0 changes from 7 to 11. For each value of v0, equation 2.5 gives the related

expected profit value. Figure 2.3 is the computing graph of the expected profit.

Figure 2.3: Expected profit E(π(Q∗)), as a function of the intial price

The graph shows that for the different σ0 = 0, 2, 4, 6, 8, the expected profit is con-

cave, thus we can derive the optimal value of the initial price from the graph. Similar

results are got repeating the computations with different combinations of w, s, a, b, n.

σ0 reflects the degree of uncertainty in demand forecast and according to µ0 =

a − bv0, b’s magnitude reflects demand’s sensitivity to price. The value of σ0 and

µ0 determine the probability function f(x). Using equation 2.5, table 2.2 gives the

values of v∗0, Q∗ and E(π(Q∗, v∗0)) for various combinations of b, σ0 and n. v∗0, Q∗ and

E(π(Q∗, v∗0)) all increase with n; the effects of b follow intuitive expectation too: a lower
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value of b enables the firm to set a higher price, have a larger quantity of products,

and realize a higher expected profit. When the uncertainty increases, E(π(Q∗, v∗0))

decreases. This reflects the potential value of reducing demand uncertainty.
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test n b σ0 v∗0 Q∗ E(π(Q∗, v∗0))

1 4 6 2 10.20 55.8 249.0

2 4 6 4 10.18 55.9 246.9

3 4 6 6 10.24 56.1 245.0

4 4 6 8 10.23 56.9 243.4

5 4 8 2 8.54 50.4 153.3

6 4 8 4 8.58 49.8 151.6

7 4 8 6 8.59 49.6 150.2

8 4 8 8 8.57 50.0 148.6

9 4 10 2 6.60 46.3 95.0

10 4 10 4 6.64 44.5 94.3

11 4 10 6 6.64 44.3 93.6

12 4 10 8 6.61 44.6 92.2

13 5 6 2 11.41 56.6 263.9

14 5 6 4 11.51 56.4 262.0

15 5 6 6 11.47 56.7 260.2

16 5 6 8 11.54 57.4 258.2

17 5 8 2 8.81 51.9 159.8

18 5 8 4 8.71 50.9 158.6

19 5 8 6 8.75 50.8 157.4

20 5 8 8 8.81 51.2 155.8

21 5 10 2 7.09 45.7 100.1

22 5 10 4 7.06 45.0 99.8

23 5 10 6 7.01 45.1 98.8

24 5 10 8 7.09 45.3 97.6

25 6 6 2 11.90 57.6 271.5

26 6 6 4 11.90 57.2 270.0

27 6 6 6 11.88 57.5 268.3

28 6 6 8 12.0 58.2 266.3

29 6 8 2 8.91 52.6 164.5

30 6 8 4 8.91 51.5 163.7

31 6 8 6 8.94 51.6 162.6

32 6 8 8 8.91 52.1 161.0

33 6 10 2 7.16 44.8 103.8

34 6 10 4 7.18 45.7 103.3

35 6 10 6 7.19 45.8 102.3

36 6 10 8 7.18 46.1 100.0

Table 2.2: The optimal order initial price, order quantity and expected profit for different

combinations of n,b,σ0 for normally distributed demand
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2.4.2.2 Second case: Non-linear discount scheme

Consider the numerical example n = 5, σ = 4, w = 3, s = 2, a = 80, b = 8. The

discount prices were produced as: α1v0, α2v0, α3v0, α4v0, s. In the linear case, αi =

1−
1− s

v0
n i(i = 1, ..., 5). Then αi is generated by adding a term to these proportions for

non-linear cases. We produce a series of discount scheme produced with a certain logic

in order to asses the sensitivity of the linear discount scheme.

αi = 1−
1− s

v0
n i+coe(5−i)i(i = 1, ..., 5). We change the coefficient coe to control the

perturbation of the linear discount scheme. We show here 7 series of discounts (coe=-

0.03, -0.02, -0.01, 0, 0.01, 0.02, 0.03) (Figure2.4), and compute the optimal expected

profit (Table 2.3).

Figure 2.4: Discount schemes

scheme coe optimal expected profit

linear 0 158.5

1 -0.03 144.9

2 -0.02 151.1

3 -0.01 155.8

4 0.01 159.1

5 0.02 157.8

6 0.03 153.4

Table 2.3: Optimal epected profit for different discount schemes

The first line in table 2.3 is the linear case. Others are non-linear. For coe > 0,

when coe is larger, the discount scheme curve is farther from the linear discount line

and we found that the maximum expected profit decreases. The optimal initial price

tends to decrease two. For coe < 0, when coe decreases, we find the same properties.
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And when the coe has the same absolute value, the positive one lead to bigger expected

profit,e.g. the expected profit of scheme 5 is bigger than that of scheme 2. In our cases,

the linear scheme gives almost the largest expected profit, but the expected profit of

scheme 4 is a little bigger. The extreme case of non-linearity is the case where all the

first four discounts are 100% or the same to s. This is the same to the case that only

one discount s happens: the classical NVP.

To summarize, after the discount number is fixed, it is more profitable to cut down

the price slowly at the beginning of the season and then at a faster magnitude at the

end of the selling season. The linear discount scheme brings an expected profit which

is very close to the best one.

2.4.3 Approximation of the optimal expected profit and condition for

the optimal initial price

The above numerical examples show some interesting properties, e.g. the expected

profit seems to be a parabola function of the initial price and the optimal initial prices

for different demand uncertainties are close to each other, see figure 2.3. However,

they are not obvious to be explained from equation 2.5. An approximation method is

proposed in order to explain them and it provides a faster way for the NV to make

decisions. We write equation 2.5 in another way, by two steps. In the first step we

consider the deterministic demand case. In the second step, we introduce the impact

of the uncertainty of demand. The equation of the expected profit can therefore be

decomposed in 2 components:

E(π(Q∗)) = Eσ + Ev + ε (2.7)

Eσ is a part of expected profit depending on σ only, Ev is a part of expected profit

depending on the prices the NV uses only and ε is an error. Equation 2.7 allows us to

get the optimality condition of v0. In order to be clearer, principle results are presented

in table 2.4
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Distribution U [µ0 − σ0, µ0 + σ0] N(µ0, σ0)

Condition for ε = 0 ∀j, σ0 ≤ µj−µj−1

2 ∀j, σ0 ≤ µj−µj−1

4

E(π(Q∗)) Eσ + Ev Eσ + Ev

E(π(Q∗)) for linear case equation 2.11 equation 2.11

Ev equation 2.8 equation 2.8

Eσ equation 2.9 equation 2.10

v∗0 equation 4.14 equation 4.15

Table 2.4: Expected profit function for uniform and normal distributions

We have:

E(π(Q∗)) =

n−1∑
i=0

∫ Q∗+µ0−µi

0
(vi − vi+1)(x+ µi − µ0)f(x)dx;

and
n−1∑
i=0

(vi − vi+1)F [Q∗ + µ0 − µi] = v0 − w

For a NVP with uniformly distributed demand for example, if ∀j, uj − uj−1 > σ0/2.

There must be a i that if j > i, then F (Q∗ − µj + µ0) = 0 and if j < i, we have

F (Q∗ − µj + µ0) = 1.

Thus, F (Q∗ − µi + µ0) = vi−w
vi−vi+1

.

We have F (Q∗−µi +µ0) ≥ 0, as a result, vi−w
vi−vi+1

≥ 0, thus vi ≥ w. In other words,

the inventory with quantity Q∗ is all sold with prices higher than the purchasing price

w. In fact, when the total discount number n is fixed, the latter discounts are unused,

as a result, if the NV cuts the price slower in the beginning (before the price is cutten to

be lower than w), more discounts are really used. This explains why the best discount

scheme cuts down the price slowly in the beginning of the selling season and faster in

the ending, in our numerical examples. Though the demand distributions have higher

uncertainties, it can be explained in the same way. The optimal expected profit can be

written as: E(π(Q∗)) = (v0−v1)µ0+(v1−v2)µ1+· · ·+(vi−1−vi)(µi−1)+
∫ Q∗+µ0−µi

0 (vi−
vi+1)(x + µi − µ0)f(x)dx. We have

∫ Q∗+µ0−µi
0 (vi − vi+1)(x + µi − µ0)f(x)dx = (vi −

w)µi − σ0
4 (vi − vi+1)(1− (2 vi−w

vi−vi+1
− 1)2). Then, E(π(Q∗)) = Ev + Eσ, with

Eσ = −σ0

4
(vi − vi+1)(1− (2

vi − w
vi − vi+1

− 1)2) = O(σ0)

Ev = (v0 − v1)µ0 + (v1 − v2)µ1 + · · ·+ (vi−1 − vi)(µi−1) + (vi − w)µi (2.8)
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Lemma 2. For an additive price dependent demand with uniform distribution(U [µ0 −
σ0, µ0 + σ0]), the optimal expected profit E(π(Q∗)) is the sum of Ev, Eσ and an error

ε; Eσ = O(σ0), a function of the uncertainty σ0; if ∀i, σ0 ≤ µi−µi−1

2 , ε = 0.

Similarly, for any demand distribution function who has an upper bound and a

lower bound, the optimal expected profit can be developed to the sum of Ev, Eσ

and ε. The most used distributions, like normal distribution, Poisson distribution,

can be approximated by bounded distributions. For example, we can use triangular

distribution to approximate normal distribution. Here we give the expressions of Eσ

for normal distribution and uniform distribution and the conditions that makes ε = 0:

For uniform distribution, if ∀j, σ0 ≤ µj−µj−1

2 , ε = 0,

Eσ = −σ0

4
(vi − vi+1)(1− (2

vi − w
vi − vi+1

− 1)2) (2.9)

For normal distribution, if ∀j, σ0 ≤ µj−µj−1

4 , ε = 0,

Eσ ≈ −σ2
0(vi − vi+1)f(F−1(

vi − w
vi − vi+1

)) (2.10)

The ” ≈ ” comes from the fact that it’s not a finite distribution.

A numerical example can well verify these results(c.f. Appendix 5). It’s practically

feasible for the manger to approximate the expected profit by Eσ+Ev, and numerically

it’s faster. Taking the classical NVP with uniform distribution for example: Ev =

(v0 − v1)µ0 + (v0 − w)µ0 = (v0 − w)µ0; Eσ = −σ0
4 (v0 − s)(1 − (2v0−wv0−s − 1)2); if

∀i, σ0 ≤ u1−u0
2 , ε = 0, in fact this condition can be satisfied for all σ0 because u1 =∞.

Developing equation 2.6, we get the same equation as Ev + Eσ.

For a NV with additive demand, xi = µi + ε, and µi = a − bvi. a and b are both

positive constants, and ε is a random variable with a probability density function and

cumulative distribution function with a mean of zero. When discounts are linearly

decreasing, vi = v0 − (v0 − s)i/n. In conditions that make ε = 0, the optimal expect

profit is developed to:

E(π(Q∗)) = Eσ+(− b
2
− b

2n
)v2

0 +av0+
b(w + s)

2n
v0+

b

2
w2−aw− bws

2n
+
b

2
(w−vi)(vi+1−w)

(2.11)

Subtract E(π(Q∗)) by Eσ and the last term, it turns to be a parabola of v0 and

hyperbola of n.
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E(π(Q∗)) = Eσ+
b

2
(v0−s)2+(v0−w)(a−bv0)− b

2n
(v0−w)(v0−s)+

b

2
(w−vi)(vi+1−w)

(2.12)

Then

E(π(Q∗)) = Eσ+(− b
2
− b

2n
)v2

0 +av0+
b(w + s)

2n
v0+

b

2
w2−aw− bws

2n
+
b

2
(w−vi)(vi+1−w)

(2.13)

In conditions that make ε = 0, the expected profit function is the sum of Eσ with order

1
n2 , the last term with order 1

n2 (we have 0 ≤ b
2(w − vi)(vi+1 − w) ≤ b

2
(v0−s)2

4n2 ) and a

function of v0 and n.

This function is a parabola of v0 and hyperbola of n. This explains the numerical

results that the expected profit increases with n but has an upper limit.

We define vp the optimal condition of the parabola, vp = 2na+b(w+s)
2b(n+1) . Obviously,

the vp increases with n.

2.5 Optimal pricing and ordering decisions for multiplica-

tive price-dependent demand

In the case of multiplicative price-dependent demand, [37] assume that: X0 = µ(v0)ε,

ε is independent of price. The demanded quantity till the i-th discount period can

be expressed as: Xi = µ(vi)ε. After the demand in the regular period is realized,

we assume that ε becomes known and takes the value ε0. Then x0 = µ(v0)ε0 and

xi = µ(vi)ε0. So we have:

xi = x0
µi
µ0

(2.14)

Let us provide some argument in support of the assumption of multiplicative price-

dependent demand. The actual sale of the product during the season depends on

whether or not customers like that particular product. In terms of modeling, this is

represented through the random term that affects sales. The higher the random terms

(compared to the average value of one), the larger the actual sales. And conversely, the

lower the random terms (compared to the average value of one), the lower the actual

sales. If we assume that customers coming during the sales season will statistically have

the same behavior as those coming during the regular season, it is therefore consistent

to use the same random term to reflect whether the product under consideration is
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successful. Let us illustrate this further. Consider a sweater with two colors. Color 1

has been very successful during the regular season and the actual sales were 40% higher

than the expected value. On the other hand customers did not like very much Color 2

and the actual sales were 30% lower than expected. It is reasonable to assume that the

sales of Color 1 sweater during the sales season will be 40% higher than expected while

the sales of Color 2 sweater during the sales season will be 30% lower than expected.

2.5.1 Optimal expected profit and optimal order quantity

Replace xi in the profit function π(Q) by x0 (equation 2.0). The expected profit function

is derived in the Appendix 3.

Lemma 3. The expected profit function E(π(Q)) is concave.

Proof. The proof is provided in the Appendix(c.f. Appendix 4).

The condition of optimal order quantity is given by:

n−1∑
i=0

(vi − vi+1)F [Q∗
µ0

µi
]− v0 + w = 0 (2.15)

When n=1, we get the optimality condition for the classical NVP:

F (Q∗) =
v0 − w
v0 − s

Similar to the additive demand case, the optimal expected profit is:

E(π(Q∗)) =
n−1∑
i=0

∫ Q∗
µ0
µi

0
(vi − vi+1)

µi
µ0
xf(x)dx (2.16)

Let’s note that when n=1, we get the profit for the classical NVP:

E(π(Q∗)) =

∫ Q∗

0
(v0 − s)xf(x)dx

2.5.2 Approximation of the expected profit function

The approximation method in the additive case inspires us to do the same thing in

this multiplicative case in the same way. For this reason we propose the approximation

method first and then after we will give the numerical examples for both section 5.1
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and 5.2. In this way we can make comparisons between results in these two sections.

The equation of the expected profit can therefore be decomposed in 3 components too:

E(π(Q∗)) = Eσ + Ev + ε (2.17)

Eσ is a part of expected profit depending on σ only, Ev is a part of expected profit

depending on the prices the NV use only and ε is an error. Equation 2.17 allows us to

get the optimality condition of v0. In order to be clearer, principle results are presented

in Table 2.5.

Distribution U [µ0 − σ0, µ0 + σ0] N(µ0, σ0)

Condition that ε = 0 ∀j, σ0 ≤ µj−µj−1

2 ∀j, σ0 ≤ µj−µj−1

4

E(π(Q∗)) Eσ + Ev Eσ + Ev

Exponential case equation 2.21 equation 2.21

Ev equation 2.18 equation 2.18

Eσ equation 2.19 equation 2.20

Table 2.5: Expected profit function for uniform and normal distributions

Ev = (v0 − v1)µ0 + (v1 − v2)µ1

+ · · ·+ (vi−1 − vi)(µi−1) + (vi − w)µi (2.18)

Lemma 4. For a uniform distribution(U [µ0−σ0, µ0 +σ0]), the optimal expected profit

is the sum of Ev, Eσ and ε; Eσ = O(σ0); if ∀i, σ0 ≤ µi−µi−1

2 , ε = 0 .

Similarly, for any demand distribution function who has an upper bound and a

lower bound, the optimal expected profit can be developed to the sum of Ev, Eσ and

ε. Here we give the expressions of Eσ for normal distribution and uniform distribution

and the conditions that makes ε = 0.

For uniform distribution, if ∀j, σ0 ≤ µj−µj−1

2 , ε = 0, Eσ =

− σ0

4

µi
µ0

(vi − vi+1)(1− (2
vi − w
vi − vi+1

− 1)2) (2.19)

For normal distribution, if ∀j, σ0 ≤ µj−µj−1

4 , ε = 0, Eσ ≈

− σ2
0

µi
µ0

(vi − vi+1)f(F−1(
vi − w
vi − vi+1

)) (2.20)
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For multiplicative demand, xi = µiε, where µi = av−bi . In this case, a and b are also

both positive constants with the additional restriction that b > 1, and ε is a random

variable with a probability density function and cumulative distribution function with

a mean of 1. A special case is when the discounting prices are exponentially declining,

we can simplify equation 2.18. tn = s/v0 and t is the ratio. We have always an i that

vi+1 < w ≤ vi.

E(π(Q∗) =
1− t+ v−1

0 t−bi(vi+1(1− t−b) + w(t1−b − 1))

1− t1−b
av1−b

0 + Eσ (2.21)

Fix v0, when n increases, E(π(Q∗) tends to the limit given in equation 2.22

lim
n→∞

E(π(Q∗) = av1−b
0

1− (w/v0)1−b

1− b
(2.22)

Fix n, for w = vi or w = vi+1, E(π(Q∗) =

av1−b
0

1− ( sv0 )1/n

1− ( sv0 )(1−b)/n (1− (
w

v0
)1−b) (2.23)

No direct expression for optimal initial price is obtained. But equation 2.23 can help a

manager to get an approximate value of it. Numerical examples will show more insights

on it.

2.5.3 Numerical analysis

We use normal distributed demand N(µ0, σ0) in our examples. Let’s note that other

distributions will also work well. Give s = 2, w = 3, a = 4000, b = 4. The optimal

expected profit is obtained by equation 2.16.

2.5.3.1 First case: discount prices are exponentially declining

We work on the multiplicative price-dependent demand in an exponential declining

discount case. According to lemma 4, E(π(Q∗)) − Eσ − Ev = ε, and ε = 0 in the

conditions obtained. According to equation 2.22, the expected profit should have a

limit close to av1−b
0

1−(w/v0)1−b

1−b = 38.7. Set v0 = 5, σ0 = 0(deterministic demand),

0.1µ0, 0.2µ0, 0.3µ0, and n increases from 2. The expected profit E(π(Q∗)) is calculated

by equation 2.16; Figure 2.5 shows the values of E(π(Q∗))− Eσ and Ev.

The graph shows that E(π(Q∗))−Eσ and Ev increase with the number of discounts;

the increase speed is decreasing and tends to be 0 when n → ∞. These results are
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Figure 2.5: Expected profit as function of discount number n

similar to the additive demand case. When n < 7, ε = 0 for these values of σ0; then

ε will increase with n, but even at n=20, ε < 3.6%Ev. Repeat computations with

different combinations of s, w, a, b, v0, we get similar results. So it is practically feasible

to calculate the expected profit by the sum of Ev and Eσ. And numerically it’s much

quicker.

2.5.3.2 Second case: the prices are not exponentially declining

We take in our analysis n = 6, σ0 = 0.1µ0, and v0 changes from 3 to 12. The discount

prices were produced as: α1v0, α2v0, α3v0, α4v0, α5v0, s. αi = ( sv0 )i/n(1 + coe(n −
i)i)(i = 1, ..., n). We change coe to control the perturbation of the exponential discount

scheme. When coe = 0, it is the exponentially declining case. We show here 7 series of

discounts (coe=-0.03, -0.02, -0.01, 0, 0.01, 0.02, 0.03), and compute the expected profit

by equation2.16 (Figure 2.7). Figure 2.7 shows also the approximate expected profit

value for the exponential discount scheme (equation 2.23).

As Figure 2.7 shows, the approximate curve is concave, it has the optimal expected

profit(29.7) at the initial price v0 = 6.3, while the equation 2.16 gives two poles (scheme

0). The first maximum (30.2, which is also the global maximum) occurs at v0 = 6.1. The

difference between these two initial prices is 3.3%, and 2% between the optimal expected

profits. We find that the two curves coincide at v0 = 6.7: in this case, v4 = w = 3, this

is a special case when equation 2.23 equals to equation 2.21. When v0 < 5, these two

curves share the same values. But error of the approximate equation 2.23 turns bigger

when initial price is bigger. This error comes from our assumption: vi = w, while in

fact, vi ≤ w < vi−1. This assumption gives an error between [0, vi−1− vi). In this case,
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Figure 2.6: Discount percentages at v0 = 6 for different schemes

Figure 2.7: Expected profit as function of initial price

vi−1 − vi = (( sv0 )(i−1)/n − ( sv0 )i/n)v0, it increases with v0.

The expected profit can have several poles (e.g.scheme 6). Comparing the expo-

nentially declining scheme to others, we get similar results to the additive case. The

discount scheme 3 with coe = 0.01 gives the maximum value (31.0) of optimal expected

profit, and it’s close to the exponentially declining case(30.2).

To conclude, the best discount scheme happens when the selling price is cut down

a little slower than the exponential case at the beginning of the selling season; the

exponentially declining discount scheme brings an optimal expected profit which is

very close to the best discount scheme; when the manager choose the exponentially

declining discount scheme, an approximate function can be used to get the optimal

initial price.
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2.6 Conclusion

In this chapter, we extend the classical NVP to the case where demand is price depen-

dent and multiple discounts are used to sell excess inventory, which is disposed of at

the end of the selling season. We determine the optimal order quantity, initial selling

price and discount scheme.

We develop a general profit formulation for a NVP having multiple discounts. We

prove the concavity of the expected profit for both additive and multiplicative price-

dependent demand cases under general demand distributions with no limit on the

discount scheme (in other words, it works for any discount scheme with decreasing

percentages). We then develop the optimality conditions of the order quantity for both

cases. Furthermore, we provide a simple expression of the expected profit corresponding

the optimal order quantity.

Numerical examples show that the expected profit increases with the discount num-

ber, but it has an upper bound. It is not profitable to use too many discounts, because

the increasing speed of the expected profit decreases and tends to zero.

For additive and multiplicative demand, a common result is that it is not good to

cut down prices at a high speed in the beginning of the season. The optimal scheme in

our examples cuts the price in a slow manner at the beginning of the season and faster

at the end.

An approximation method is also developed. We write the profit function as the sum

of a function of price, a function of uncertainty and an error term. We derive conditions

where this error is zero and the optimality conditions of the initial selling price. These

expected profit equations show a much clearer insight into the impact of initial price

and discount number on the expected profit and confirm our numerical results. In

additional case with linear discount scheme, the optimal initial price increases with

discount number.

Similar to [27] and [78], our work is limited to the assumption that the additional

demand related to each discount has a fixed value or is proportional to the demand

realized during the regular selling period. Practically it can be different and the sup-

plementary demand related to each discount is a random variable. An ambitious future

research would be to investigate the multi-discount NVP by supposing that the sup-

plementary demands related to each discount is a random variable.
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Another point is related to the fact that our numerical examples show that the

expected profit corresponding to the optimal order quantity is concave in function of

the initial selling price. It would be interesting to prove it analytically. If this property

is proved, the program for solving the optimal initial price can then be simplified by a

Golden Section method.

Future research can address several extensions of our model. An extension consid-

ering the discounting cost will make it possible to obtain the optimal discount number.

Such a cost is observed in practice (advertising cost, marking cost,etc.). The complexity

of the problem will increase, so heuristic procedures may have to be used. The optimal

discount scheme is not completely solved in this chapter, it will also be an interesting

point for future research. Other extensions can deal with the objective of maximizing

the probability for achieving a target profit or assume a second purchasing opportunity

during the selling season.
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3

Assortment and Demand

Substitution in a Multi-Product

NVP

Retail stores are confronted to make ordering decisions for a large category of products

offered to end consumers. In this chapter, we consider a multi-product NVP with

demand transfer (the demands of products not included in the assortment proposed in

the store are partly transferred to products retained in the assortment) and demand

substitution between products that are included in the assortment. We focus on the

joint determination of optimal product assortment decision and optimal order quantities

for products that are included in the assortment to optimize the expected total profit.

Computational algorithms are presented to solve the problem. We compare five policies

that can be used in practice by developing a thorough numerical study which reveals

some interesting managerial implications.

3.1 Introduction

Product variety is a key element of competitive strategy. Demand for variety comes

both from the taste of diversity for an individual consumer and diversity in tastes for

different consumers. For instance, Coca-Cola has a product portfolio of 3,500 beverages

spanning from sodas to energy drinks to soy-based drinks [83]. Many retailers become

successful by offering a wide range of product assortment. Supermarkets such as Wal-
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Mart and Carrefour are good examples from grocery retailing offering a range of 100,000

products in stores. However, despite the advantages of product variety, the full range of

variety cannot be supplied generally, owning to the increase in inventory, shipping, and

merchandise presentation (i.e. product display cost), etc. In a Carrefour supermarket,

for example, only a part of coca-cola beverages among the whole product category

is displayed. Within this context, the optimization of product assortment (i.e. the

products that will be offered for purchase within the store), and the order quantity for

each product, is a relevant decision that retailers face.

By considering multiple products, two important factors should be considered to

optimize the assortment and the optimal order quantities. First, product variety brings

possible substitution when underage happens: the different variants of the same product

(variants are products of different colors for instance), may act as substitutes when the

consumer finds that a product is out of stock. A survey reports that only 12-18% of

shoppers said that they would not buy an item on a shopping trip if their favorite brand-

size was not available; the rest indicated that they would be willing to buy another size

of the same brand, or switch brands [84]. Second, besides the purchasing cost which

increases with the order quantity, there is a fixed cost associated with each variant

of product included in the assortment, e.g. the material handling and merchandise

presentation cost stemming mainly from the space and labor cost required to display

products in the store, etc. In these situations, the fixed cost will clearly push to reduce

the assortment size (the number of products included in the assortment) and then affect

the optimal order quantities.

This chapter considers a Multi-Product NVP with Demand Substitution where we

aim at determining the optimal product assortment and product order quantities con-

sidering two factors that are substitution and demand transfer. We develop a model

that captures the demand transfer effect when some products are unlisted (not included

in the assortment). We use the Monte Carlo method to solve the multi-product NVP

under substitution. The analysis of illustrative examples shows that assortment opti-

mization and substitution may have significant effects on the expected optimal profit.

The rest of this chapter is organized as follows. Section 3.2 presents the literature

related to the model we present in this chapter. In Section 3.3, we present the multi-

product NVP under demand substitution and transferring. In Section 3.4, we present

five decision policies to solve the joint optimization of assortment and optimal order
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quantities and give computational algorithms. In Section 3.5, numerical examples are

provided. Section 3.6 contains some concluding remarks.

3.2 Literature review

The bulk of the literature has focused on supply chains that deal with a single product

type. However, supply chains often supply many products that are variants of a com-

mon product, and that may act as substitute products. Hence, the assortment is an

important decision to be defined. Therefore in this section, first we review the earlier

achievements on product substitution and then we consider papers that deal with both

product assortment and product substitution. All these achievements are in the area

of the NVP.

The topic of substitution in inventory management first appears in [48]. Papers on

this topic can be divided into 3 categories according to the substitution type: papers

of the first category deal with one-direction substitution or firm-driven substitution,

where only a higher grade (e.f. quality, size, etc.) product can substitute a lower grade

product, when the supplier makes decisions for consumers on choosing substitutes (see,

e.g., [49, 50, 51, 52, 53]). For example, the retailer provides a high quality product

as a substitute for a consumer who prefers a product with lower quality but is out

of stock. The second category consists of papers where arriving consumers’ number

follows a stochastic function and consumers make purchasing decisions under proba-

bilistic substitution when their preferred product is out of stock (see, e.g., [54] and

[55]). Here consumers come one by one and choose their substitutes within the remain-

ing products by themselves. The third category consists of papers considering that

each product can substitute for other products and the fraction that one out-of-stock

product is substituted by another product is deterministic. Moreover, this category

can be divided into subcategories as either the two-product (see [48, 56, 57, 58, 59])

or multi-product case (see [60, 61, 62, 63]) and centralized or competitive case. In the

centralized case, only one NV manages all products, thus is interested with a global

profit optimization, while in the competitive case, each NV takes care of his/her own

profit considering the competition with other NVs. [61] obtain optimality conditions for

both competitive and centralized versions of the single period multi-product inventory

problem with substitution. [64] study a multi-product competitive NVP with shortage
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penalty cost and product substitution. They characterize the unique Nash equilibrium

of the competitive model. An iterative algorithm is developed based on approximating

the effective demand by a service-rate approximation approach.

Joint assortment planning and inventory management problems with substitution

have been extensively studied. We refer the reader to [65] for a comprehensive review

of the recent literature. Two major types of demand modelling are used in earlier

achievements: utility maximization (see [55, 66, 67]) and exogenous demand models

(see [54, 68]). [66] consider a static substitution model with multinomial logit (MNL)

demand distributions assuming that consumers are rational utility maximizers. They

show that in this model the optimal solution consists of the most popular product.

[55] study a joint assortment and inventory planning problem with stochastic demands

under dynamic substitution (assuming that a consumer’s choice is made from stock on

hand) and general preferences where each product type has per-unit revenue and cost,

and the goal is to maximize the expected profit. Assuming that consumer sequences

can be sampled, they propose a sample path gradient-based algorithm, and show that

under fairly general conditions it converges to a local maximum. [67] consider a single-

period joint assortment and inventory planning problem under dynamic substitution

with stochastic demands, and provide complexity and algorithmic results as well as

insightful structural characterizations of near-optimal solutions for important variants

of the problem. [54] consider a dynamic substitution model specified by first choice

probabilities and a substitution matrix. They assume that the order quantities are set

to achieve a fixed service level and give two bounds of the product demand. However,

the final results are based on the approximation of the demand and the numerical

examples are mainly in the case of items with uniform market share (the initial market

share is the same for each product). The sensitivity analysis of the profit function to

the use of the bounds is not done for other market share types, while practically the

market share is non-identical. [68] consider also the demand cannibalization of the

standard product demand owning to retailing its customized extensions.

Our work differs from earlier research in many ways. Unlike [54] who model demand

by a negative binomial process and [68] who model demand as a Poisson process, our

model formulation is under a stochastic distribution and is valid for general demand

distributions. We consider two phenomena in a multi-product NVP: the transfer of

demand owning to the unlistment of some products, then the substitution between
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products included in the assortment and give the formulation of the expected total

profit. The problem is solved with the objective to find the optimal assortment as well

as the order quantity for each product in order to optimize the expected total profit.

The first order optimality condition is derived. Furthermore, we develop heuristic so-

lutions to solve the problem. Numerical results with different market share types are

presented for the different policies considered: policy 1 considering neither substitution

nor assortment, policy 2 considering only assortment, policy 3 considering only sub-

stitution, policy 4 considering sequentially assortment and substitution and policy 5

considering simultaneously assortment and substitution.

3.3 Problem modeling

We consider a set of similar products. This set is defined as a product category. Each

product is associated with a market share percentage pi, which represents its market

occupancy defined in terms of units of product. Each product has a unit selling price,

unit purchasing cost and in case of over-stock, the product is disposed of with a sal-

vage value. When a product is out of stock, consumers may choose other products to

substitute the product in shortage. A fixed display cost Ki is payed for each product

variant included in the assortment during the season. Considering a product category

N that consists of n substitutable products in the market, the NV has to determine

the product assortment M which consists of m product variants over the n product

variants because of a trade-off: on one hand, the higher is m, the higher will be the

NV sales and therefore the profit. On the other hand, the fixed cost Ki is considered

for each product variant included in the category, this parameter pushes to decrease

m. The other variants remaining in the set R = N \M will not be offered for sale in

the store.

Before the selling season, the NV decides both the products to sell in the selling

season, the order quantity for each product and present the selected products in the

catalog. At the beginning of the selling season, the ordered products are received and

consumers get information of the product variants offered by the store. Consumers

preferring other products (products in set R) either not enter the store (first kind

of lost sale, with a proportion L′) or enter the store to choose products offered (in

set M): the demand pertaining to products not included in the assortment is partly
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transferred to products displayed in the store. During the season, if the product variant

a consumer intends to purchase is out of stock, he makes substitutions or leaves the

store without purchasing any product (second kind of lost sale, with proportion L
′′
).

The objective of the NV is to maximize the expected profit considering both assortment

and substitution. Figure 3.1 shows the considered model.

Figure 3.1: Considered model

Define the following notations used in Chapter 3:
x a random variable representing the total demand for the entire product

category. x has a continuous probability density function f(x) with
mean µ and standard deviation σ, and a cumulative distribution function
F (x),

xi initial demand for product i, with a probability density function fi(xi)
and cumulative distribution function Fi(xi),

pi the market share of demand for product i,

L
′
i the portion of consumers who prefer product i which is not displayed in

the store and do not want to purchase another product,

L
′′
i the portion of consumers who prefer product i which is displayed but in

shortage and do not want to purchase another product,
Ki fixed cost related to include product i in the assortment,
vi unit selling price for product i,
wi unit purchasing price cost product i,
si unit salvage price for product i.

Decision variables:
M the set of products to be included in the assortment,
qi the order quantity for product i, i ∈M ,
Q the vector of order quantities, Q = [qi], i ∈M .

The assumptions can be stated formally as follows:
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ASSUMPTION 1: The total demand distribution for the entire product category, i.e.

the initial set N , is known before the selling season begins.

ASSUMPTION 2: Given the total demand x, the demand xi is assumed to be equal to

pix, i ∈ N .

ASSUMPTION 3: If consumers choose to substitute but the substitute product is out

of stock, the sale is lost, i.e. there is no second substitute attempt.

Assumptions 1, 3 is common to [54], except that we use continuous demand distri-

butions while [54] consider binomial distribution.

3.4 Model formulation

The NV decides both which products to display within the store (the assortment)

and the order quantity for each product displayed. The objective of the NV is to

optimize the expected profit. We use two approaches to solve the problem: sequential

optimization and global optimization. The first approach (i.e. policy 4 in Sect. 3.4.2)

determines the optimal product assortment considering only the transfer of demand.

Then with the obtained assortment, considering the substitutions between products

displayed, we determine the optimal order quantities. In other words, the optimal

assortment and order quantities are solved separately. The second approach (i.e. policy

5 in Sect. 3.4.2) is a global optimization policy considering simultaneously the transfer

of demand and substitution to determine the optimal assortment and order quantities.

Besides, three other policies may be used in practice: policy 1 considers neither

assortment nor substitution, policy 2 considers only assortment and policy 3 considers

only substitution. Our goal in examining these policies is: 1. to understand qualita-

tively any distortions that might be introduced in inventory decisions if one ignores

substitution effects (comparison between policy 2 and 4), 2. to gauge the impact of

assortment on the expected profit (comparison between policy 1 and 2 and between

policy 3 and 5), and 3. to understand any distortions that might be introduced if one

considers the assortment and substitution effects independently (comparison between

policy 4 and 5).

3.4.1 Modeling the transfer of demand

Additional notations:
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Figure 3.2: Policies analysed

x
′
i modified demand for product i considering demand transfer ef-

fect, with a probability density function f
′
i (x

′
i) with mean µ

′
i

and standard deviation σ
′
i, and cumulative distribution func-

tion F
′
i (x

′
i), i ∈M ,

xsi effective demand for product i considering both demand trans-
fer and substitution effect, i ∈M ,

p
′
i the new market share proportion of demand for product i after

the transfer of demand, i ∈M ,
αij the fraction of consumers that purchase product j as a substi-

tute when product i is out of stock, i, j ∈M .

When a product variant j of the set R is unlisted, a percentage Lj of its demand is

lost. The rest of the demand pertaining to product j is distributed among products of

the set M . The additional demand transferred to each product i (i ∈M) is:

pi∑
i pi

∑
j∈R

[(1− L′j)xj ] (3.1)

After the transfer of demand, the modified demand (the sum of initial demand and

additional demand) x
′
i for each product i (i ∈M) is obtained as:

pix+
pi∑
i∈M pi

∑
j∈R

[(1− L′j)xj ] = pix(1 +

∑
j∈R [pj(1− L

′
j)]∑

i∈M pi
) (3.2)
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After demand transfer, the new market share p
′
i of product i is therefore:

p
′
i = pi(1 +

∑
j∈R [pj(1− L

′
j)]∑

i∈M pi
) (3.3)

Property 1: The probability density function for the modified demand x
′
i for

product i denoted as f
′
i (x

′
i) follows:

f
′
i (x

′
i) =

f( x
p
′
i

)

p
′
i

(3.4)

Proof: The proof is provided in the Appendix 1

Other properties can then be derived from Property 1.

Property 2: The cumulative distribution function for the modified demand x
′
i for

product i denoted as F
′
i (x

′
i) follows:

F
′
i (x

′
i) = F (

x

p
′
i

) (3.5)

Property 3: The standard deviation of x
′
i is :

σ
′
i = p

′
iσ (3.6)

Property 4: The mean value of x
′
i is:

µ
′
i = p

′
iµ (3.7)

3.4.2 Modeling the various policies

The different policies of interest are presented in this section.

Policy 1: NV with n products: neither demand transfer nor substitution.

In this model there is neither demand transfer nor product substitution. In fact, it can

be solved as n independent classic NVP by adding a fixed cost Ki to each product i.

The expected profit for product i is given by:

π(qi) =

{
vixi − wiqi + si(qi − xi)−Ki if xi < qi

viqi − wiqi −Ki otherwise
(3.8)
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The expected total profit is the sum of the profit for each product and is given by:

(3.9)
E(π(Q)) =

n∑
i=1

[

∫ qi

0
(xi(vi − wi)− (qi − xi)(wi − si))fi(xi)dxi

+

∫ ∞
qi

qi(vi − wi)fi(xi)dxi −Ki]

The second derivative of the expected total profit proves that it is concave with qi,

∀i ∈ N . The optimal order quantity for product i is:

Fi(q
∗
i ) =

vi − wi
vi − si

(3.10)

Then the optimal expected profit is derived as:

E(π(Q∗)) =
n∑
i=1

[

∫ q∗i

0
xi(vi − si)fi(xi)dxi −Ki] (3.11)

Policy 2: NV with assortment: the NV considers only the transfer of

demand. For a given product set M , the demand follows a continuous probability

function f
′
i , i ∈ M (c.f. Sect. 3.4.1). The total profit can be developed in the same

way as equation 3.9 by replacing fi by f
′
i and n by m. The second derivative of the

expected profit function proves that it is concave with qi, ∀i ∈ M . The optimal order

quantity qi for product i respects the following equation:

F
′
i (q
∗
i ) =

vi − wi
vi − si

(3.12)

The corresponding expected profit is:

E(π(Q∗)) =
∑
i∈M

[

∫ q∗i

0
xi(vi − si)f

′
i (xi)dxi −Ki] (3.13)

We find the same order quantity conditions as policy 1 because we consider no substitu-

tion effects in this policy. Enumeration of all possible M gives M∗ that maximizes the

optimal expected profit without considering the substitution effect. For some demand

distributions, the expected profit equation can be simplified to a linear equation (c.f.

Appendix 2).

Policy 3: NV with substitution: the NV considers only the substitution

effect between n products.
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3.4 Model formulation

The assortment is not considered. All products in N are included, i.e. the NV pays

Ki for each product in N . The problem is a multi-product substitution problem similar

to the one considered by [61]. During the selling season, for each product i ∈ 1, · · · , n, a

stock-out could happen and a part of unsatisfied demand will be lost with the proportion

Li. The remaining demand will be shared among the other products proportionally to

their new market shares p
′
j . With a similar logic to equation 3.3, the substitution

fractions αij are developed as:

αij =
p
′
j(1− L

′′
i )∑

k 6=i,k∈N p
′
k

=
pj(1− L

′′
i )∑

k 6=i,k∈N pk
(3.14)

The effective demand (the real functional demand after demand transfer and substitu-

tion) xsi for product i, which is the sum of the modified demand x
′
i and the additional

demand for product i received from other out-of-stock products caused by substitution.

We have:

xsi = x
′
i +

∑
j 6=i,j∈N

αji(xj − qj)+ (3.15)

Here x+ = max(0, x). The expected profit function is:

(3.16)E(π(Q)) = E

n∑
i=1

[(vi − wi)xsi − (vi − wi)(xsi − qi)+ − (wi − si)(qi − xsi )+ −Ki]

Then the first-order necessary optimality conditions are derived from equation 3.16 as

follows:

(3.17)P (xi < q∗i )− P (xi < q∗i < xsi ) +
∑
j 6=i

vj − sj
vi − si

αijP (xi > q∗i , x
s
j < q∗j ) =

vi − wi
vi − si

q∗i denotes the optimal order quantity for product i in set N . P is the probability

function. Let us note that equation 3.17 is the same as the one of [61] and the fixed

display cost Ki does not appear in equation 3.17. Thus the fixed cost does not change

the optimal inventory decision for the NV.

Policy 4: Sequential optimization: the NV considers sequentially the

transfer of demand and the substitution. We use the value of M∗ obtained in

policy 2 then consider the substitution effect to get the optimal order quantities and

the expected total profit.
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First step: the Assortment Decision: We obtain the optimal set M∗ by con-

sidering only the transfer of demand. Order quantity conditions (equation 3.12) and

the optimal expected profit are given by equations 3.12 and 3.13. Enumeration of all

possible M gives M∗ that maximizes the optimal expected profit without considering

the substitution effect.

Second step: Consideration of the substitution: Once the NV determines

M∗, the demand follows a continuous probability functions f
′
i , i ∈ M∗. The sub-

stitution fractions, the effective demand and the total profit can be developed in the

same way as equations 3.14, 3.15, 3.16 and 3.17 by replacing fi by f
′
i and n by m∗ (the

assortment size of M∗).

The substitution fractions αij are developed as:

αij =
p
′
j(1− L

′′
i )∑

k 6=i,k∈M∗ p
′
k

=
pj(1− L

′′
i )∑

k 6=i,k∈M∗ pk
(3.18)

The effective demand:

xsi = xi +
∑

j 6=i,j∈M∗
αji(xj − qj)+ (3.19)

The expected profit function is:

(3.20)E(π(Q)) = E
m∗∑
i=1

[(vi − wi)xsi − (vi − wi)(xsi − qi)+ − (wi − si)(qi − xsi )+ −Ki]

The first-order necessary optimality conditions are derived from equation 3.20 as fol-

lows:

(3.21)P (xi < q∗i )−P (xi < q∗i < xsi )+
∑

j 6=i,j∈M∗

vj − sj
vi − si

αijP (xi > q∗i , x
s
j < q∗j ) =

vi − wi
vi − si

q∗i denotes the optimal order quantity for product i in set M∗. Let us note that the

second and third term on the left-hand side of equation 3.21 equal to zero for the spe-

cial case where no substitution is considered, then equation 3.21 becomes the order

quantity optimality condition for the classical NVP (equation 3.12).

Policy 5: Global optimization: the NVP considers simultaneously the

demand transfer and substitution effects.
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3.4 Model formulation

To obtain the optimal set M∗ determined by the sequential optimization policy

(policy 4), we need to consider simultaneously the demand transfer and substitution

effects.

Given a product set M∗, the modified demand x
′

and the effective demand xsi are

derived in equations 3.4 and 3.19. The expected profit and the optimal order quantities

are given by equations 3.20 and 3.21. The difference is that the set M∗ is no longer given

by a previous assortment decision, but has to be optimized. There are 2n possibilities

for M , we enumerate all of them and we can find M∗ that maximizes the expected

total profit.

3.4.3 Algorithm for policy 3, 4 and 5

Caused by the complexity of equation 3.17, one cannot obtain directly the optimal

order quantities within feasible run time. Thus we use a Random-walk Monte Carlo

method to find the solution. The procedure is as follows:

Step 1: Initialize Q with the values obtained by the optimal order quantity condition

of M independent classic NVP; initialize the walk length λ and its limit: ε.

Step 2: generate n random points around Q with a distance λ to Q. And get the

best point Q
′

among these n points;

Step 3: if Q
′

is better than Q, assign the value of Q
′

to Q, go to step 2. If not,

halve the value of λ, if λ > ε, go to step 2, otherwise, go to step 4;

Step 4: if Q
′

satisfies the optimality condition, stop, otherwise go to step 1.

In order to determine in step 3 that Q
′

is better than Q or not, we define an

objective function as the difference, denoted a, between the left side and right side of

equation 3.17. If the order quantities are optimal, equation 3.17 should be satisfied,

thus the objective equation should be equal to zero. But in fact, zero can not be strictly

realized in computation. We consider that Q
′

is better than Q if h(Q
′
) < h(Q) and the

optimality condition is satisfied when h(Q
′
) < 0.1 (see Figure 3.3);

Step 4 is required because when we are generating N points around Q, it is possible

that they are concentrated, thus the optimality condition can not be satisfied at the end

of only one random walk. The fourth step ensure the optimality condition is satisfied

and ends the loop.
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Figure 3.3: Flow chart of the algorithm for calculating the optimal order quantities

For this reason, another method is not recommended: regarding Q
′

is better than

Q if Q
′

brings a better expected profit than Q, with the value of expected profit is

obtained from equation 3.16. This method can fall into local maximums.

3.5 Numerical analysis

3.5.1 Numerical examples

In this section, we use a normally distributed demand, other demand distributions

will also work. We consider a category of n = 6 initial products with total mean

demand µ = 100 and varying σ values. The selling price, purchasing cost, salvage

value, fixed cost and lost sale portion are assumed to be the same for all products:

v = 11, w = 8, s = 3,Ki = K, and L
′
i = L

′′
i = L. Three market share types are
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considered: the linear type with pi=(0.09, 0.12, 0.15, 0.18, 0.21, 0.25), the exponential

type with pi=(0.03, 0.06, 0.09, 0.15, 0.25, 0.42) and the uniform type with pi=(0.17,

0.17, 0.17, 0.17, 0.17, 0.17). These simplifications facilitate the comparison between

different policies and makes it easier to analyze how different performances vary with

market shares. For policy 3-5, we use the Monte Carlo method to compute the optimal

order quantities and expected profits. In this example, we use the default random

generator in Matlab generating 10000 samples to represent the demand with normal

distribution (at about a confidence level of 98% with a sampling relative error 2.3%).

By setting K = 10, L = 0.3 and exponential market shares, the expected total

profit comparison for the five policies as a function of σ is given in Figure 3.4. Results

show that the optimal expected profit decreases with σ and the global optimization

policy outperforms the other policies and the sequential optimization does very well

particularly, achieving 100%, 100%, 98.9%, 97.6% of the profit generated by the global

optimization policy, respectively, for σ = 10, 20, 30 and 40.

Another result is that the substituted NV (policy 3) performs poorer than the

assorted NV (policy 2) when σ = 10, but performs better as σ increases. This is

because when demand uncertainty is bigger, the risk of inventory shortage or overage

is more important. In this case, the substitution has a more important effect.

Optimal order quantities for each of the 6 products obtained by different policies

(with σ = 30 and exponential market shares) are shown in Figure 3.5. We find that

the order quantity increases with the market share value for each policy and when the

assortment is considered, only high demand products are included in the assortment.

As a result, the number of enumeration is largely reduced: from 26 to 6. Therefore,

the combination possibility for a product category with n product variants is only n,

which reduces significantly the computing time. Similar results are found with other

values of σ.

As shown in Table 3.1, the assortment size is intensively reduced compared with

Policy 1 when using the sequential optimization or global optimization policy, which

indicate that the performance of the classical NV model without assortment nor sub-

stitution can be quite limited in practice.

Comparing policy 1 with policy 2 and 3: For a fixed value of σ, the optimal

order quantity for each product obtained by policy 1 do not change with K or L because

policy 1 ignores both the effect of demand transfer and substitution.
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Figure 3.4: Expected optimal profit for different policies with σ=10, 20, 25, 30, 40 and

K=10, L=0.3

Figure 3.5: Optimal order quantities for σ=30, K=10, L=0.3
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σ = 10 σ = 20 σ = 30 σ = 40

Policy 1 6 6 6 6

Policy 2 3 3 2 2

Policy 3 6 6 6 6

Policy 4 3 3 2 2

Policy 5 3 3 3 3

Table 3.1: Optimal assortment size for different policies with σ = 10, 20, 30, 40

Considering the assortment or substitution, both increase the profit. As the as-

sortment size decreases from n to M∗, the total fixed cost decreases, thus the profit

could increase. Considering the assortment, some products are unlisted in some cases

and the unlistment begins with the product having the smallest market share: firstly,

the display cost Ki leads to unlist the low demand products because the revenue of

these products are relatively smaller. Secondly, popular products make more sales thus

bring higher profit. They have larger mean demand, thus more demand will be lost

if they are unlisted, while unlisting less popular products will lose less demand. The

substitution improves the profit in two aspects: on one hand, the underage cost for a

product is lower because the unsatisfied demand for one product may be substituted

by another product; on the other hand, the overage cost for a product is lower too,

because it receives some additional substitute demand from other products.

Comparing policy 5 with policy 2 and 3: The global optimization policy leads

to a higher profit compared with these two policies. The combination of assortment and

substitution significantly improves the profit because the fixed cost related to includ-

ing all products in the assortment can be high and the substitution brings additional

demands.

Comparing policy 5 with policy 4: In our examples, policy 5 needs a computa-

tion about 10 times longer than policy 4. It obtains the same results as the sequential

optimization policy when σ=10 and 20. But as demand uncertainty becomes bigger,

i.e. σ = 30 and 40, the assortment size is bigger than the one obtained by policy

4, the order quantities for the products are also different, and the profit is up to 5%

bigger than the one of policy 4 (see Appendix 3 to find combinations of (K,L, σ) that

maximize the difference between policy 4 and 5). We try different combinations of
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parameters (K,L, σ) and get the same results: the assortment size and the expected

total profit are not smaller than the ones obtained by sequential optimization policy.

The substitution makes it possible to enlarge the assortment size, because while

one product is not profitable in policy 2, the substitution can make it receive some

additional substitute demand from other products, thus this product can be profitable

and is not unlisted.

3.5.2 Sensitivity to demand uncertainty

Figure 3.6: Optimal expected profit for policy 5 with the exponential market share type

as a function of K (with L=0.3) or L (with K=10), with σ=10, 20, 30, 40.

A common result found in our numerical examples is that the expected profit de-

creases with σ, as shown in Figure 3.6. We get the same result for all values of K, L

and for all three types of market shares.

For the global optimization (policy 5), the assortment size, as shown in Figure 3.7,

does not respect a simple and obvious rule as σ changes.

When we fix K and change L values, for K = 10, the assortment size decreases

with σ, except of the case L=0. Intuitions to this result are the following: when L and

σ are both small, e.g. L = 0, σ = 10, the demand substitution benefit is less than

the fixed display cost K of an additional product. For the special case where L = 0,

σ=10, the assortment size is 1, this means there is no alternative product to buy when
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Figure 3.7: Optimal assortment size for policy 5 with the exponential market share type

as a function of K (with L=0.3) or L (with K=10), with σ=10, 20, 30, 40.

the product is in shortage, thus there is no substitution. For other values of L greater

than 0, the assortment size is bigger than one. As explained in Section 3, there are two

kinds of lost demand: when a product variant is not included in the assortment and

when a product variant is in shortage during the season. For a fixed L, on one hand,

a larger assortment size means more product variants are included, thus less demand

is lost, i.e. the first kind of lost demand is reduced (this increases the profit), however,

there will be more display cost (this reduces the profit); on the other hand, the second

kind of lost sale does not change with the assortment size because the proportion of the

second kind lost demand is fixed: L. So it is a trade-off to determine the assortment

size between reducing the first kind of lost sale and increasing the display cost. When σ

is small, the profit coming from reducing the lost sale is bigger, so the trade-off pushes

to bigger assortment size.

Then we fix L and change K values. For L = 0.3, the assortment size decreases with

σ when K < 20 in our examples, and increases with σ when K is bigger. Special case is

that when K > 20, the assortment size tends to be 1, thus there is no substitutions. In

this situation, the fixed cost is bigger than the demand substitution benefit. For other

cases, we have the same results and same interpretations as in the previous paragraph.
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3.5.3 Sensitivity to L

Let K=10, σ = 20. Considering three market share types, i.e. linear, exponential

and uniform market share, the profit and assortment size are calculated for the five

policies. It is intuitive that the expected profit for policy 1 does not change with L

and is always not bigger than the other policies. For other policies (policy 2,3,4,5), the

profit decreases as L increases. This is because the lost sale related to demand transfer

and underage substitution both increase with L. We get the following insights (See

Figure 3.8):

1. As L approaches 1, the expected profit (policy 3, 4, 5) becomes identical to the

one of policy 1. When L = 1, the substitution effect becomes zero, and demand transfer

effect becomes zero too, thus equals the one of policy 1.

2. The assortment size (policy 2, 4, 5) increases with L. When L is bigger, there is

more lost sale, and as explained before, the lost sale can be reduced by increasing the

assortment size.

3. The expected profit of policy 2 is bigger than policy 3 when L has a small value,

but becomes smaller when L increases. The reason for this is that when L is small, the

assortment size for policy 2 is small, thus the NV reduces a large part of the cost by

reducing the assortment size. When L is bigger, the assortment size gets bigger, the

total display cost increases and the cost of policy 2 increases. As a result, the effect of

considering the assortment decreases.

We have also done some numerical analysis where the two lost sale proportions are

different: L
′ 6= L

′′
. Similar properties are obtained. A special case where L

′
= 0, thus

no demand transfer, is shown in Figure 3.9.

3.5.4 Sensitivity to K

Let L=0.3, σ = 20. Considering three market share types, the profit and assortment

size are calculated for the five policies. It is obvious that the expected profit for policy

1 decreases linearly with K and is always not bigger than the other policies. For other

policies (policy 2, 3, 4, 5), the expected profit decreases with the fixed cost. We get

the following insights (See Figure 3.10):

1. As K approaches 0, the expected profit (policy 4,5) is identical to the one of

policy 3. When K=0, it is always optimal to include all items in the assortment (policy
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Figure 3.8: Optimal assortment size and expected profit as functions of L, for σ = 20,

exponential market sharing

Figure 3.9: The optimal expected profit as a function of σ, with K=10, L” = 0.3 for

exponential market sharing

4,5), the assortment size is 6, thus the expected profit is the same of policy 3.

2. The assortment size (policy 2, 4, 5) decreases with K. The effect of fixed cost is

more important when K is bigger. Thus for a bigger K, the assortment size is reduced.

3. The expected profit of policy 3 is bigger than the one of policy 2 when K has
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a small value, but becomes smaller when K increases. The reason is when K is small,

the assortment size for policy 2 is 6, thus the NV reduces a limited part of the cost by

using policy 3. When K is bigger, the assortment is smaller, the NV can reduce a large

part of the cost by including more products in the assortment. As a result, the effect

of considering the assortment increases.

Figure 3.10: Optimal assortment size and expected profit as functions of K, for σ = 20,

exponential market sharing

3.5.5 Impact of the market share type

Figure 3.11: Optimal expected profit as a function of L, with σ = 20, for exponential

market sharing, linear market sharing and uniform market sharing
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Figure 3.12: Optimal assortment size as a function of L, with σ = 20, for exponential

market sharing, linear market sharing and uniform market sharing

Figure 3.13: The expected profit as a function of K, with σ = 20, for exponential market

sharing, linear market sharing and uniform market sharing

Figure 3.14: The assortment size as a function of K, with σ = 20, for exponential market

sharing, linear market sharing and uniform market sharing

As shown in Figure 3.11, 3.12, 3.13 and 3.14, the type of market share has an

important effect on the assortment size and the expected profit.

From the exponential market share to the uniform one, the assortment size increases
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faster with L. The reason is that when the market share becomes more balanced,

the substitution effect is even more important. In the exponential case, the optimal

assortment size cannot even reach the value of 6, even though all demand for product

1 will be lost when L = 1, because the profit of the first product is less than the fixed

cost K.

As shown in Figure 3.14, the first product is unlisted faster with an exponential

market share. It is because the first product is less profitable in this case, and will be

quickly unlisted because the display cost will be larger than its profit.

Another insight is on the value of K and L for which policy 2 and policy 3 have

the same expected profit. We can see that this value of L decreases when the market

share becomes more balanced and the value of K increases. The balance of market

share reinforce the effect of substitution and reduces the impact of fixed display cost.

3.6 Conclusion

This chapter extends the classical NVP to solve the joint optimization of product as-

sortment and order quantities by considering demand transfer and substitution effects.

We formulate the transfer and substitution fractions. A random-walk Monte Carlo

method provides an efficient computational approach to get the value of the expected

optimal profit and optimal order quantities for a product assortment.

Our numerical examples show new insights regarding the performances of the NVP.

In particular, demand transfer and substitution have significant effects on the assort-

ment size, expected profit, and optimal order quantities. Additionally, the sequential

optimization policy and global optimization policy both bring better profit performance

than considering only one effect. Sequential optimization policy shows close results to

global optimization policy and the computing time is reduced up to about 10%. But in

some cases the expected profit of sequential optimization policy is up to 5% less than

the one of global optimization policy, thus it is necessary to use the global optimization

policy to obtain the best profit. The difference between policy 1 and policy 5 increases

with the value of fixed cost and decreases with the value of lost sale proportion.

With the global optimization policy, several insights can be derived from numerical

results: The expected profit decreases with the fixed cost value, the fraction of lost

sale and demand uncertainty. Assortment size increases with the fraction of lost sale
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but decrease with the fixed cost value. The total order quantity does not respect strict

behaviors but it shows that the order quantity reaches its maximum when lost sale

fraction is zero or 100%, and tends to decrease with fixed cost value.

The model can easily be adapted to problems with other kinds of substitution such

as one-item substitution, which can be treated in the same way as our model by only

changing the demand transfer and substitution equations. This could be interesting

because different kinds of substitution happens for different kinds of products: in the

textile industry for example, consumers could substitute to a shirt with a bigger size

but probably not in the contrary way. In this case, it is a one-direction substitution.

An interesting direction, related to this model, lies in investigating the difference

between two demand lose portions. As we explained in our modeling assumptions, the

lost portion related to a product not displayed is expected to be larger than the one of

a displayed but under-stocked product. Numerical analysis can show the impacts by

examining the change of both the optimal assortment and order quantities when the

NV increases the not-displayed portion.

Our work is limited by supposing that the demands of product variants are all

related to the total demand, while practice, it may be not the case. Future research

can be developed to a case where the demand for each product variant is independent of

others’ and individual demands are given. In this case, the demand transfer formulation

will be different: it will be difficult to derive the distribution functions of demands for

the products after demand transfer (the only case there we have found a solution is

when demands are all normally distributed). However, using the Monte Carlo method,

the complexity of programming for numerical results will not be increased compared

with our model.

In our numerical examples, the expected profit appears to be unimodal in the

order quantity of each product variant. But analytically we have not succeeded to

prove it. We have actually demonstrated the non-concavity of the expected profit on

each demand, but the non-unimodality is to be proven analytically. Demonstrating

analytically the unimodality would enable us to cut down the programming time for

numerical examples.
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4

The NVP with Drop-shipping

Option and Resalable Returns

As e-commerce expands, more and more products are offered online to attract internet

consumers’ interest. These products are often provided at consumers’ home by a drop-

shipper. Indeed, in recent years, drop-shipping seems to be a good option to sell

products in addition to physical stores. In addition, both types of products, either sold

in store or on Internet can be returned by consumers, with often a higher return ratio

for those purchased on Internet. To model these two sales channel and interactions

between them, we consider a NV managing both a physical store inventory and a sale

channel on internet that is fulfilled by a drop-shipping option. In addition to these

two supply options, we consider the possibility of reselling products that are returned

by consumers during the selling season. The concavity of the expected profit is proven

and the optimality condition is obtained. Various results are obtained from a numerical

analysis. In particular, the expected can be 14.4% less than the optimal expected profit

if the return effect is ignored. Using drop-shipping option can reduce the optimal store

inventory by 31.2% and if the NV has no drop-shipping option, the expected profit can

be 9.0% less.

4.1 Introduction

E-commerce is constantly growing in various industrial sectors. According to Remar-

kety [85], in 2015, 57.4% of the US population and 80% of the population of Japan shop
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online. Hence, more and more suppliers and retailers have presence on the internet to

offer products which are also sold in physical stores, in order to provide end consumers

a larger choice regarding the channel along which they can buy products without in-

creasing operation costs. In apparel industry, Zara for example, uses a distribution

center to provide products for physical stores as well as internet sales at the same time

[86].

E-commerce thus brings a new opportunity for retailers to supply products to con-

sumers through electric markets. Indeed, drop shipping is a recent order fulfilment

approach where the retailer does not keep goods to be sold in store but instead, dis-

plays products on his/her company website, collects and transfers consumer orders to

the wholesaler or the supplier, who is then in charge of shipping goods directly to end

consumers.

Drop shipping can be attractive for the retailer since it does not require him/her to

bear the cost of holding inventory in the store. As a result, products can be offered to

the consumer at a lower unit selling price on Internet, in comparison to the unit selling

price that the consumer would have to pay if the product is bought in the physical

store. Drop-shipping can also be attractive for the the wholesaler/supplier by enabling

him/her to sale products on the retailers’ websites.

Drop shipping can be especially interesting for seasonal products. Such products

have generally a short selling season and a long replenishment lead time where the order

is generally placed to a distant supplier before the selling season. The NV Problem is

a classical model used for such products, it aims at finding the optimal order quantity

which maximizes the expected profit under probabilistic demand [8, 9]. The demand

for the product is unknown before the selling season, thus the order quantity for the

product should be optimized from the trade-off between two situations: if the order

quantity is too large, overstock happens; if the order quantity is not enough, underage

happens and lost sale causes lost profit. If the order is smaller than the realized demand,

it is not possible to place another order during the season to the distant supplier. In

such a case, drop shipping (i.e. ordering products from a wholesaler/supplier which is

geographically closer to the retailer) can be used to fulfill demand.

One of the major issues related to e-commerce operations concerns product returns

since products sold through e-commerce tend to have a higher return rate than those

sold within stores [70]. This return rate can be as high as 75% for Internet sales
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[87]. Hence, in many businesses such as textile or electronics, consumers have the

legal right to return a product purchased online within a certain time frame if it is in

good condition. Such products return to the retailer store during the selling season

and can be reused as new products after some treatment by the retailer, e.g. quality

examination, product repairing, re-labelling/packaging, etc. Thus it is important to

consider this potential return flow when making inventory decisions.

This chapter considers a NV managing both a physical store and sales on internet

fulfilled by a drop-shipping option. We also assume that returns are resalable during the

selling season after a certain treatment. The objective is to optimize the order quantity

(thus the store inventory that will be available at the beginning of the season) for the

order placed before the selling season. As the classical NV problem, store demand (the

demand of consumers shopping physically in the store) is satisfied by store inventory.

The NV can also use the store inventory to satisfy internet demand and has in addition

a drop shipping option for excess internet demand (i.e. a mixed fulfillment strategy

is used). In case that store demand is not totally satisfied, a part of the unsatisfied

store demand is substituted to Internet demand. When products are delivered, some

consumers are unsatisfied and a portion of products is returned to the store. The return

rates are assumed different depending on where products are supplied from (store or

drop shipper) and whom products are sold to (store consumer or Internet consumer).

Under these assumptions, we express the expected profit formulation and demonstrate

the concavity of the function. Optimality condition is also given. The optimal expected

profit equation is then derived. We present two model variants depending on whether

Internet returns can be used for store demand. Some special cases are discussed. A

numerical analysis is conducted leading to interesting results. We illustrate the impact

of return, drop-shipping and different parameters e.g. the substitution fraction.

The rest of this chapter is organized as follows. Section 4.2 presents the related

literature. In Section 4.3, we present the NV Problem with a mixed supply strategy

considering product returns. In Section 4.4, we formulate the optimal drop-shipping

order quantity in each case for two variants of model. The expected profit is formu-

lated and the optimal order quantity for store inventory is developed. In Section 4.5,

numerical examples are provided. Section 4.6 contains some concluding remarks.
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4.2 Literature review

As e-commerce is expanding, research on drop-shipping and product returns has been

increasing. Thus we review earlier achievements regarding two streams of NV Problem

which are associated to our work: (1) the NV Problem with drop-shipping option and

(2) the NV Problem with product returns.

[18] first solved a NVP with an emergency supply option in case of shortage. Unsat-

isfied demand can be satisfied by an emergency supply option. which will be analogous

to the drop shipping option. [19] explicitly incorporated the drop-shipping as an emer-

gency option into the single-period model framework and showed that it can lead to

a significant increase in expected profit. [88] analyzed drop shipping for a multi-actor

problem. The analysis was conducted under different power structures and included

marketing and operational costs. The retailer carries out the marketing and advertising

activities and the wholesalers handles the fulfillment process. [20] assessed three dif-

ferent organizational forms that can be used when a store-based sales network coexists

with a web site order network. The three organizational forms are store-picking, ded-

icated warehouse-picking and drop shipping. Authors used a NV type order policy to

compare the efficiency of three different models and to analyze the impact of transport

costs, Internet market size and demand hazards on the profits of the stakeholders on

inventory policies in the supply chain. [89] proposed that growth in product popularity

leads to an increased reliance on store inventory. As [90] reported, the drop-shipping

mode results in cost savings but reduces the unit profit margin, whereas the traditional

mode (purchasing from the supplier with a lower unit purchasing cost and selling to

consumers in the store with a higher price) provides a higher profit from each unit. [21]

proposed a mixed mode that utilizes both traditional and drop-shipping modes for sea-

sonal fashion and textiles chains, in order to take full advantage of demand fluctuation

and improve the profit-making ability.

In the literature, consumer returns are typically assumed to be a proportion of

products sold (e.g.[69, 70, 71, 72, 73]), which obviously implies that if more items are

sold, more products will be returned from consumers. [74] empirically showed that

the amount of returned products has a strong linear relationship with the amount of

products sold. Based on the assumption that a fixed percentage of sold products will

be returned and that products can be resold at most once in a single period, [70]
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investigated optimization of order quantities for a NV-style problem in which the retail

price is exogenous. [75] considered a manufacturer and a retailer supply chain in which

the retailer faces consumer returns. [76] also assumed that a portion of sold products

would be returned and discussed the coordination issue of a one manufacturer and one

retailer’s supply chain. [73] examined the pricing strategy in a competitive environment

with product returns. [77] considered consumer return for retailer who is confronted

with two kinds of demand: one needs immediate delivery after placing an order and the

other accept delayed shipment. A NV model with resalable returns and an additional

order is developed. However, the model was under assumption that the total demand

distribution is given and each kind of demand presents a proportion of the total demand,

in addition, the concavity is not proved.

To the best of our knowledge, no research has treated the product returns issue

within a mixed fulfillment strategy using both drop-shipping and store inventory. In this

chapter, we model a retailer who faces product returns (such returns are not considered

by [19]) from both store and Internet consumers. Earlier works ([69, 70, 71, 72, 73]),

consider only the store sale channel and not both channels. Compared to the latest work

that considers a comparable problem to us [77], who provided a numerical analysis based

on a necessary condition without proving the concavity, we demonstrate the concavity of

the expected profit function and derive the optimal order quantity condition considering

independent demands for store and internet sales (i.e. two random variables instead

of a unique one in [77]), different return rates instead of an identical return rate in

[77], different selling prices instead of an identical selling price in [77]. In addition, we

consider the effect of demand substitution in case of under-stock in store.

4.3 Problem modeling

We consider a NV which uses a combination of store inventory and drop-shipped prod-

ucts for fulfilling two types of demand: demand that occurs in the store and demand

related to internet sales. More precisely, before the season begins, the NV orders a

quantity of products Q1, at a unit product purchase cost w1, from the traditional (dis-

tant) supplier. During the season, those products, stored in the store, can be used to

satisfy both store demand x1 and Internet demand x2. x1 and x2 are assumed to be two

independent random variables. In case x2 is not satisfied by Q1, there is an alternative
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drop shipping option that enables the NV to benefit from a replenishment quantity Q2

from a (closer) drop shipper, at a unit product purchase cost w2. Such drop-shipped

products are assumed to be provided directly to consumers’ home (without transiting

by store). Hence, while x1 has to be entirely served by Q1, x2 can be both served by

Q1 and Q2, as shown in Figure 4.1.

From the end consumer perspective, products can therefore be bought from the

store at a unit product selling price v1 or from Internet at a unit product selling price

v2. When products are bought on Internet, the replenishment source is either the store

(when Q1 is high enough) or the drop shipper.

Both store demand and Internet demand are subject to product returns. Indeed, a

portion of products bought is assumed to be systematically returned. The return rates

are assumed deterministic. Furthermore, return rates are considered to be different

for different types of flows: β1 is the return rated associated with products sold in

store (products that are replenished from the distant supplier); β2 is the return rate

associated with products sold on Internet and replenished from the drop shipper; β3 is

the return rate associated with products sold on Internet and replenished from store.

Practically β1 is smaller than others because e-commerce tends to have a higher return

rate than traditional commerce. β2 ≥ β3 since when Internet demand is satisfied by

store inventory (rather than the drop-shipper), we expect that the NV would offer a

higher quality than the drop shipper in packaging, labeling delivery, and other consumer

services to ensure a good consumer satisfaction which is a key element for the NV, which

would reduce the return rate.

Returned products are considered to be resalable in the selling period (as new

products) after a certain treatment process performed in store at a unit cost wr that

includes the delivery cost between consumer and store, product examination and control

cost, an eventual repair cost, product repackaging and relabeling cost, etc. We assume

that the time between the initial sale and a resale in case the product is returned is

small relative to the selling season. Hence, returned products are considered as part of

store inventory immediately after treatment.

Store demand x1 is served by store inventory ordered before the season Q1 and by

product returns occurring during the season. Internet demand x2 is served by store

inventory, drop shipping option Q2 and returns occurring during the season. In other

words, the quantity Q2 can not be used for serving store demand directly.
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The unit selling price v2 is lower than v1 and the unit purchasing cost w2 for drop

shipping is higher than w1, because the retailer usually needs to pay the drop-shipper

a higher product unit purchase cost than to the distant supplier and in addition, the

unit selling price paid by the internet consumer is expected to be lower than the price

applied in the physical store. Therefore, when there is not enough inventory to satisfy

both x1 and x2, the NV allocates store inventory to satisfy x1 (with priority 1) and

then use the remaining inventory for x2 (with priority 2).

If a unit of product remains at store at the end of the selling season, it is assumed

to be salvaged at unit price s.

In case of shortage in the store, it is assumed that a portion t of consumers switch

to the drop shipping option, i.e. they become Internet consumers. For the rest of store

consumers, a lost sale penalty p per unit of product is applied.

Hereafter are the additional modeling assumptions:

• Store demand and internet demand are two independent random variables. The

probability distribution function of each demand is assumed to be known when

ordering Q1.

• The supply capacity of drop-shipping option is unlimited, i.e. there is no restric-

tion on values that Q2 can take.

• We also make the following assumption that is standard for NV Problem: v1 >

w1 > s, v2 > w2 > s.

Hence, by formulating the expected profit function for the NV, Q2 is deduced from

the realizations of x1 and x2, while the optimal store order quantity Q1 is determined

by optimizing the expected profit.

If we eliminate the assumption on product returns, the model is equivalent to the

one of [19].

Define the following notations used in Chapter 4:
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x1 the random variable representing demand at store. It is assumed to have a
continuous probability function f1(x1) and cumulative function F1(x1), with
mean µ1 and standard deviation σ1,

x2 the random variable representing demand on Internet. It is assumed to have a
continuous probability function f2(x2) and cumulative function F2(x2), with
mean µ2 and standard deviation σ2,

β1 return rate associated with products sold in store,
β2 return rate associated with products replenished from drop shipper and sold

on Internet,
β3 return rate associated with products replenished from store and sold on Inter-

net,
t proportion of consumers who accept switching from store to drop-shipping

option in case of shortage in the store,
wr unit return handling cost in the store,
v1 unit selling price for a product bought in store,
v2 unit selling price for a product bought on Internet,
w1 unit purchasing price cost from the distant supplier,
w2 unit purchasing price cost for the drop-shipping option,
p unit penalty cost of shortage when store demand is unsatisfied,
s unit discount price for store inventory when overstock happens,
Q1 order quantity before the season, the decision variable of the model,
Q2 drop-shipping order quantity.

Figure 4.1: Problem modeling
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4.4 Problem formulation

The mathematical formulation of the model is obtained by considering different situa-

tions that may arise regarding the inventory that is available in store (i.e. the sum of

Q1 and product returns that are used to satisfy demand after being treated in store)

and the quantity Q2 ordered from the drop-shipper (as well as the associated product

returns) on one hand, and the realizations of demands x1 and x2 on the other hand.

More specifically, we identify several cases.

The first case, i.e. Case 1 here below, corresponds to the situation where the sum

of Q1 and product returns associated with store and Internet demands is sufficient to

satisfy both the realizations of x1 and x2.

In the second case, i.e. Case 2, the quantity Q1 and product returns associated

with store are sufficient to satisfy x1. x2 is then satisfied with the remaining store

inventory and the quantity Q2 ordered from the drop shipper as well as the related

product returns.

The third case, i.e. Case 3, corresponds to the situation where the sum of Q1

and product returns associated with store demand are not sufficient to satisfy x1.

Depending on the assumption considered, we identify two variants of models. In Model

1, we assume that product returns associated with Internet sales cannot be used to

satisfy x1. Thus, only product returns associated with store can be used to satisfy

x1 (this assumption can be seen in [77]). In Model 2, we relax this assumption by

considering that both types of product returns (store and Internet) can be used to

satisfy x1.

Note that in the variants of models, store demand x1 is assumed to be satisfied in

priority compared to Internet demand x2.

To sum up, two variants of model, i.e. Model 1 and Model 2, can be formulated

depending on whether returns associated with Internet sales can be used for satisfying

x1. In the following, we give the formulations of both variants. Firstly, we formulate

the elementary profits associated with Case 1 and 2 that are common to Model 1 and 2.

Then section 4.4.1 gives the formulation of the complete expected profit pertaining to

Model 1. Section 4.4.2 gives the formulation of the complete expected profit pertaining

to Model 2.
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Case 1: the store inventory at the beginning of the selling season i.e. Q1, together

with product returns is enough to satisfy both x1 and x2. In this situation, the NV

needs no drop-shipping. We denote the realized demand at store as X1, then the

associated return is X1β1, thus the net sale related to X1 is X1(1−β1). With the same

logic, the net sale related to the realized internet demand X2 is X2(1 − β3) and the

related return is X2β3. Obviously, Q1 should not be smaller than the total net sale,

thus the condition for case 1 is:

Q1 > x1(1− β1) + x2(1− β3)

Case 2: the realized demands X1 and X2 can not be entirely satisfied by Q1.

Store inventory is first used to satisfy store demand X1, thus the net store sale is

X1(1− β1) and the related return is X1β1. The NV uses the rest of store inventory i.e.

Q1 −X1(1− β1) as well the drop-shipped quantity Q2 to satisfy X2. We have

X2 =
Q1 −X1(1− β1)

1− β3
+ (Q2 +

Q2β2

1− β3
)

which gives

Q2 =
X2(1− β3) +X1(1− β1)−Q1

1− β3 + β2

The net sale on Internet is thus (Q1 −X1(1 − β1)) + Q2 and the related return is
Q2β2
1−β3 + (Q1−x1(1−β1))β3

1−β3 .

Q1 should be larger than the net sale related to X1, and Q2 should be positive.

Thus the condition for case 2 is:

x1(1− β1) + x2(1− β3) > Q1 > x1(1− β1)

4.4.1 Model 1

In this model, the return associated with x2 can not be used to satisfy x1. In case

3, the sum of Q1 and product returns associated with store sales are not sufficient to

satisfy x1. Figure 4.2 displays the areas associated with Case 1, 2 and 3 as a function

of x1 and x2.

Case 3, demand x1 is larger than the store inventory Q1 and the associated product

returns: Q1 < x1(1 − β1). Thus the store sale equals to Q1 and the related return

is Q1β1
1−β1 . A portion of store consumers switch to drop-shipping option when there is

no more inventory in store, i.e. the unsatisfied store demand X1 − Q1

1−β1 is partly
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Figure 4.2: 3 cases for model 1 as the realized values X1 and X2 change

transferred to Internet demand. This new Internet demand transferred from store

demand is denoted as X
′
2: X

′
2 = t(X1 − Q1

1−β1 ). The rest is lost with a penalty cost:

(1− t)p(X1 − Q1

1−β1 ).

Q2 is ordered to the drop-shipper and Q2β2 products are returned:

Q2β2 = (X2 +X
′
2 −Q2)(1− β3) (4.1)

Thus

Q2 =
(X2 +X ′2)(1− β3)

1− β3 + β2

The net Internet sale equals to Q2 and the related return is Q2β2
1−β3 .

case sales realized in store return related to X1 sale realized on Internet return related to X2

1 X1(1− β1) X1β1 X2(1− β3) X2β3

2 X1(1− β1) X1β1 Q2 +Q1 −X1(1− β1) Q2β2

1−β3
+ (Q1−C1(1−β1))β3

1−β3

3 Q1
Q1β1

1−β1
Q2

Q2β2

1−β3

Table 4.1: Total sale and return for 3 cases in model 1

Total sale and return for different cases are shown in Table 4.1. One condition needs

to be validated: the revenue related to x2 is larger than the return cost, otherwise it is
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not profitable to reuse the returned products.

(Q2 +Q1 − x1(1− β1))(v2 − w2) >
Q2β2

1− β3
wr +

(Q1 − x1(1− β1))β3

1− β3
wr

As a result,

Q2(v2 − w2) >
Q2β2

1− β3
wr ⇒ v2 − w2 >

β2

1− β3
wr

The profit function is derived as in equation 4.2.

π =


v1x1(1− β1) + v2x2(1− β3)− w1Q1 + s(Q1 − x1(1− β1)− x2(1− β3))− (x1β1 + x2β3)wr case 1

v1x1(1− β1) + v2(Q1 − x1(1− β1) +Q2)− w1Q1 − w2Q2 − (x1β1 +
Q2β2
1−β3

+ (Q1−x1(1−β1))β3
1−β3

)wr case 2

v1Q1 + v2Q2 − w1Q1 − w2Q2 − (1− t)p(x1 − Q1
1−β1

)− ( Q1
1−β1

β1 +
Q2

1−β3
β2)wr case 3

(4.2)

Proposition 1. The expected profit is concave when β2 ≥ β3 − w2−s
v2+wr−s .

Proof. Proof is provided in Appendix 1.

Practically β2 ≥ β3, meanwhile, it is a key element for the NV to ensure a good

consumer satisfaction and as he is in direct communication with consumers, he makes

more efforts than the drop shipper in packaging, labeling delivery, and other consumer

services. Thus β2 ≥ β3 − w2−s
v2+wr−s and thus the concavity is validated.

The optimal condition is derived by setting the equation bellow (equation 6.27 of

Appendix 1) equal to 0:

λ2F1(
Q1

1− β1
)+λ3(1−F1(

Q1

1− β1
))+

∫ Q1
1−β1

−∞
(λ1−λ2)F2(

Q1

1− β3
− 1− β1

1− β3
x1)f1(x1)dx1 = 0

(4.3)

See λ1, λ2 and λ3 in Appendix 1.

Proposition 2. The optimal expected profit function is derived as:

(4.4)

E(π(Q∗1)) = α3

∫ ∞
Q∗1

1−β1

x1f(x1)dx1 + α2

∫ Q∗1
1−β1

−∞
x1f(x1)dx1 + b2µ2

+ (b1− b2)

∫ Q∗1
1−β1

−∞

∫ Q∗1
1−β3

− 1−β1
1−β3

x1

−∞
(
1− β1

1− β3
x1 +x2)f2(x2)dx2f1(x1)dx1

See α1, α2, b1 and b2 in Appendix 1.

Proof. Proof is provided in Appendix 2.
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The above results are the formulations for general situations, but in practice, some

special cases can happen:

4.4.1.1 Special case: β1 = β2 = β3 = 0

When we do not consider the return effect, β1 = β2 = β3 = 0, equation 6.27 is derived

as:

v1−w1+p−(v2−w2+p)t−(v1−w2+p−(v2−w2+p)t)F1(Q∗1)−(w2−s)F1+2(Q∗1) (4.5)

Equation 4.5 can be adapted to general demand distributions. We will find same results

as in [19], which developed a NV problem with drop-shipping option but no product

returns.

4.4.1.2 Special case: β1 = β2 = β3 = β

This special case assumes that all return rates are identical. In this situation, our model

is greatly simplified. The expected profit is concave and the optimal order quantity is

developed as:

(w2−w1)F1(
Q1

1− β1
)+(v1−w1−v2t+w2t+

βwr
1− β

(t−1)+
1− t
1− β

p)(1−F1(
Q1

1− β1
))+(w2−s)F1+2(

Q1

1− β
) = 0

(4.6)

The optimal expected profit is:

E(π(Q∗1)) = ((1− β)(v2 − w2)t− βwrt− (1− t)p)
∫ ∞
Q∗1
1−β

x1f(x1)dx1

+ ((v1−w2)(1− β)−wrβ)

∫ Q∗1
1−β

−∞
x1f(x1)dx1 + ((v2−w2)(1− β)−wrβ)µ2

+ (w2 − s)(1− β)

∫ Q∗1
1−β

−∞

∫ Q∗1
1−β−

1−β
1−β x1

−∞
(x1 + x2)f2(x2)dx2f1(x1)dx1

(4.7)

4.4.1.3 Special case: x1 = 0

This is the case where the NV is a pure e-retailer without a store. Companies like

Amazon put the entire consumer experience - from browsing products to placing orders

to paying for purchases - on the Internet. The NV has also two options of supplying: to

pass an order to the supplier before the selling season and drop-shipping option during
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the season. Considering the return effect, the problem can be treated as a special case of

our model with zero store demand. The optimal order quantity condition is developed

as:

(4.8)λ2 + (λ1 − λ2)F2(
Q∗1

1− β3
) = 0

thus

F2(
Q∗1

1− β3
) =

(β2 − β3)(v2 + wr) + w2 − w1(1 + β2 − β3)

(β2 − β3)(v2 + wr) + w2 − s(1 + β2 − β3)
(4.9)

When β2 ≥ β3 − w2−s
v2+wr−s , the expected profit is concave; if not, the optimal order

quantity Q∗1 = 0.

And the optimal expected profit is developed as:

(4.10)

E(π(Q∗1)) = b2µ2 + (b1 − b2)

∫ Q∗1
1−β3

−∞
x2f2(x2)dx2

= (v2 − w2 −
β2wr

1− β3
)

1− β3

1− β3 + β2
µ2

+
1− β3

1− β3 + β2
(w2 − s+

β2wr
1− β3

− β3wr
1− β3

)

∫ Q∗1
1−β3

−∞
x2f2(x2)dx2

When β2 = β3, the optimal order quantity and expected profit is derived as:

F2(
Q∗1

1− β3
) =

w2 − w1

w2 − s
(4.11)

E(π(Q∗1)) = (v2−w2−
β3wr

1− β3
)(1−β3)µ2 + (1−β3)(w2− s)

∫ Q∗1
1−β3

−∞
x2f2(x2)dx2 (4.12)

Let us note that equation 4.9 is analogue to the optimality condition for a NV

with an emergency option derived by [18], if we consider drop-shipping as a special

emergency option. Since 1 − β3 < 1, Q∗1 = (1 − β3)F−1
2 (w2−w1

w2−s ) < F−1
2 (w2−w1

w2−s ). In

other words, the optimal order quantity in presence of product returns is smaller than

the one of the NV problem with an emergency option but no product returns. Such a

result is intuitive because in the presence of product returns, some demand does not

result in a real sale because the product is returned and the price is payed back to the

consumer, thus less inventory is required. If β2 = β3 = 0, equation 4.9 is identical to

the one in [18]. When w2 = w2, equation 4.9 gives Q∗1 = 0. This is the special situation

that the two supply options have same purchasing cost and same return rate, there will

be no longer any interest to stock an initial store inventory.
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4.4.1.4 Special case: no drop-shipping option

This special case assume that no drop-shipping option is available for the NV. This

is a NVP with two independent demands and product returns. In this situation, as

the demands realize, we have same 3 cases as in model 1 but with Q2 = 0, the profit

function is derived as in equation 4.13:

π =


v1x1(1− β1) + v2x2(1− β3)− w1Q1 + s(Q1 − x1(1− β1)− x2(1− β3))− (x1β1 + x2β3)wr case 1

v1x1(1− β1) + v2(Q1 − x1(1− β1))− w1Q1 − (x1β1 + (Q1−x1(1−β1))β3

1−β3
)wr case 2

v1Q1 − w1Q1 − p(x1 − Q1

1−β1
)− Q1

1−β1
β1wr case 3

(4.13)

The first derivative can be derived as:

dE(π(Q1))

dQ1
= v1 − w1 +

p

1− β1
− β1

1− β1
wr

+ (v2 −
β3wr

1− β3
+

β1wr
1− β1

− v1 −
p

1− β1
)F1(

Q1

1− β1
)

+ (s− v2 +
β3wr

1− β3
)

∫ Q1
1−β1

−∞
F2(

Q1

1− β3
− 1− β1

1− β3
x1)f1(x1)dx1

(4.14)

Proposition 3. The expected profit is concave.

It is easy to prove that the second derivative is negative, thus the expected profit

is concave. The optimal condition is derived by setting equation 4.14 equals 0.

4.4.2 Model 2

In this model, case 3 has two subcases: case 3a and 3b, see Figure 4.3. In case 3a,

the sum of quantity Q1 and product returns associated with store are not sufficient

to satisfy x1, but the sum of quantity Q1 and product returns associated with store

and from Internet are sufficient to satisfy x1. In case 3b, the sum of quantity Q1 and

product returns associated with store and from Internet are not sufficient to satisfy x1.

Case 3a: the demand X1 is larger than the store inventory Q1 and the associated

product returns: Q1 < X1(1− β1). Thus the NV uses returned products from internet

sales for unsatisfied part of X1. Q2 is ordered to the drop-shipper and Q2β2 products

are returned, which is partially used to serve X1: X1(1− β1)−Q1. Then the net store
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Figure 4.3: 3 cases for model 2 as the realized values X1 and X2 change

sale is X1(1−β1) and the related return is x1β1. The other part Q2β2−(X1(1−β1)−Q1)

is used for X2 −Q2:

Q2β2 − (X1(1− β1)−Q1)

1− β3
= X2 −Q2 (4.15)

Thus the net sale on Internet is Q2 − X1(1 − β1) + Q1 and the related return is
Q2β2
1−β3 + (Q1−X1(1−β1))β3

1−β3 .

Q2 =
X2(1− β3) +X1(1− β1)−Q1

1− β3 + β2

Q1 < X1 and Q2β2 − (X1(1− β1)−Q1) > 0. Thus the condition for case 3a is:

x1(1− β1) > Q1 > x1(1− β1)− x2β2

Case 3b: the demand X1 is larger than the store inventory Q1 and the associated

product returns, the NV uses all returned products from internet sale for the rest part

of X1. In this situation, the NV passes an maximal internet order to the drop shipper:

Q2 = X2, then the returned product is Q2β2 which is all used for store demand X1.

Then the net sale in store is Q1 +Q2β2 and the related return is Q1+Q2β2
1−β1 β1. The net

sale related to X2 is Q2 −Q2β2 and the related return is Q2β2.

As we know, X1 is not totally satisfied, we have Q1+Q2β2
1−β1 < X1. Then the condition

for case 3b is:

x1(1− β1)− x2β2 > Q1
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4.4 Problem formulation

Considering that store consumers may switch to drop-shipping option when there is

no inventory in store, the unsatisfied store demand X1 − Q1+Q2β2
1−β1 is partly transferred

to internet demand. This Internet demand transferred from store demand is denoted

as X
′
2: X

′
2 = t(X1 − Q1+Q2β2

1−β1 ). The rest demand is lost with a unit penalty cost:

(1− t)p(X1 − Q1+Q2β2
1−β1 ).

An order of Q
′
2 is passed by the NV to drop shipper for satisfying x

′
2: X

′
2 =

Q
′
2 +

Q
′
2β2

1−β3 . We have the net sale related to X
′
2 is Q

′
2 and the related return equals to

β2Q
′
2

1−β3 .

Q
′
2 = t(X1 −

Q1 +Q2β2

1− β1
)

1− β3

1− β3 + β2

case sale in store return related

to X1

sale related to

X2

return related

to X2

sale related to

X
′
2

return related

to X
′
2

1 X1(1− β1) X1β1 X2(1− β3) X2β3 0 0

2 X1(1− β1) X1β1 Q2 + Q1 −
X1(1− β1)

Q2β2
1−β3

+
(Q1−X1(1−β1))β3

1−β3

0 0

3a X1(1− β1) X1β1 Q2 + Q1 −
X1(1− β1)

Q2β2
1−β3

+
(Q1−X1(1−β1))β3

1−β3

0 0

3b Q1 +Q2β2
Q1+Q2β2

1−β1
β1 Q2 −Q2β2 Q2β2 Q

′
2

β2Q
′
2

1−β3

Table 4.2: Total sale and return for 4 cases in model 2

Total sale and return for different cases are shown in Table 4.2. One condition needs

to be validated: the revenue related to x2 is larger than the return cost, otherwise it is

not profitable to reuse the returned products.

(Q2 +Q1 − x1(1− β1))(v2 − w2) >
Q2β2

1− β3
wr +

(Q1 − x1(1− β1))β3

1− β3
wr

This should be satisfied for both Case 2 and 3. As a result,

Q2(v2 − w2) >
Q2β2

1− β3
wr ⇒ v2 − w2 >

β2

1− β3
wr

The profit function is derived as in equation 4.16.

Proposition 4. The expected profit is concave when β2 ≥ β3 − w2−s
v2+wr−s .

Proof. Proof is provided in Appendix 3.
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π =



v1x1(1− β1) + v2x2(1− β3)− w1Q1 + s(Q1 − x1(1− β1)− x2(1− β3))− (x1β1 + x2β3)wr case 1

v1x1(1− β1) + v2(Q1 − x1(1− β1) +Q2)− w1Q1 − w2Q2 − (x1β1 +
Q2β2
1−β3

+ (Q1−x1(1−β1))β3
1−β3

)wr case 2

v1x1(1− β1) + v2(Q1 − x1(1− β1) +Q2)− w1Q1 − w2Q2 − (x1β1 +
Q2β2
1−β3

+ (Q1−x1(1−β1))β3
1−β3

)wr case 3a

v1(Q1 +Q2β2) + v2Q2(1− β2)− w1Q1 − w2Q2 + (v2 − w2)Q
′
2

−(x1 − Q1+Q2β2
1−β1

)(1− t)p− ( Q1
1−β1

β1 +
Q2

1−β1
β2 +

Q
′
2

1−β3
β2)wr case 3b

(4.16)

Practically β2 ≥ β3, meanwhile, it is a key element for the NV to ensure a good

consumer satisfaction and as he is in direct communication with consumers, he makes

more efforts than the drop shipper in packaging, labeling delivery, and other consumer

services. Thus β2 ≥ β3 − w2−s
v2+wr−s and thus the concavity is validated.

The optimal condition is derived as :

(4.17)

λ3 +

∫ ∞
Q∗1

1−β1

(λ4 − λ3)F2(
x1(1− β1)−Q∗1

β2
)f1(x1)dx1

+

∫ Q∗1
1−β1

−∞
(λ1 − λ2)F2(

Q∗1
1− β3

− 1− β1

1− β3
x1)f1(x1)dx1 = 0

See λ1, λ2, λ3 and λ4 in Appendix 3.

Proposition 5. The optimal expected profit function (c.f. Appendix 4) is:

E(π(Q∗1)) = α2µ1 + b2µ2 + (b1 − b2)

∫ Q∗1
1−β1

−∞

∫ Q∗1
1−β3

− 1−β1
1−β3

x1

−∞
(
1− β1

1− β3
x1

+ x2)f2(x2)dx2f1(x1)dx1

+ (b4 − b3)

∫ ∞
Q∗1

1−β1

∫ x1(1−β1)−Q
∗
1

β2

−∞
(−1− β1

β2
x1 + x2)f2(x2)dx2f1(x1)dx1

(4.18)

See α2, b1, b2, b3 and b4 in Appendix 3.

Some special cases happen in practice:

4.4.2.1 Special case: β1 = β2 = β3 = 0

When we do not consider the return effect, β1 = β2 = β3 = 0, equation 4.17 is derived

as:

v1−w1+p−(v2−w2+p)t−(v1−w2+p−(v2−w2+p)t)F1(Q∗1)−(w2−s)F1+2(Q∗1) (4.19)
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4.4 Problem formulation

As in Model 1, Equation 4.19 can be adapted to general demand distributions. We find

same results as in [19].

4.4.2.2 Special case: β1 = β2 = β3 = β

This special case assume that all return rates are identical. In this situation, the

expected profit is concave and the optimal order quantity is developed as:

F1+2(
Q∗1

1− β
)− w2 − w1

w2 − s

−
v1 − w2 − wrβ

1−β −
1

1−β ((1− β)(v2 − w2)t− βwrt− (1− t)p)
w2 − s

∫ ∞
Q∗1
1−β

F2(
x1(1− β)−Q∗1

β
)f1(x1)dx1

= 0

(4.20)

The optimal expected profit is:

(4.21)

E(π(Q∗1)) = α2µ1 + b2µ2 +(b1− b2)

∫ Q∗1
1−β

−∞

∫ Q∗1
1−β−x1

−∞
(x1 +x2)f2(x2)dx2f1(x1)dx1

+ (b4 − b3)

∫ ∞
Q∗1
1−β

∫ x1(1−β)−Q
∗
1

β

−∞
(−1− β

β
x1 + x2)f2(x2)dx2f1(x1)dx1

4.4.2.3 Special case: µ1 = 0, σ1 = 0

This is the case where the NV is a pure e-retailer without a physical store. We have

same results as in model 1 since when x1 = 0, the assumption that return products

from Internet sale can be used for store demand does not make sense.

4.4.2.4 Special case: no drop-shipping option

We have same results as in model 1 since when Q2 = 0, the assumption that return

products from Internet sale satisfied by drop-shipping can be used for store demand

does not make sense.

The contrary to the above situations is that the NV does not offer a higher quality

than the drop-shipper satisfying Internet demand. Thus the proportion of return is

larger than drop-shipping option (β3 > β2). We consider it as a extreme case and will

show some insights on it by numerical examples in Appendix 5. The concavity of the

expected profit is no longer guaranteed and equation 4.3 becomes the necessary optimal

condition.
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4.5 Numerical examples

Since Model 1 and 2 give similar results, we concentrate on Model 2 in this section.

We use normally distributed demand in our examples. Other demand distributions will

also work. Consider an example of a NV selling an item with the following parameter

values shown in Table 4.3 (the first 6 parameters are the same as [19]). The aim of this

section is threefold: 1) to evaluate the impact of the parameters on the optimal order

quantity Q∗1 and the optimal expected profit E(π(Q∗1)); 2) to identify the impact of

ignoring the product returns when the NV makes decisions; 3) to identify the benefit

of the drop-shipping option. Q∗1 and E(π(Q∗1)) are derived by equations 4.17 and 4.18.

parameter value/unit

v1, unit selling price for an store demand 50

v2, unit selling price for an drop-shipping demand 45

w1, unit purchasing cost for the store order 20

w2, unit purchasing price cost for the drop-shipping option 21

s, unit discount selling price for store inventory 10

p, unit shortage penalty cost 5

t, substitution fraction 30%

wr, unit return cost 10

β1, return rate associated with products sold in store 0.1

β2, return rate associated with products replenished from drop

shipper and sold on Internet

0.3

β3, return rate associated with products replenished from store

and sold on Internet

0.2

Table 4.3: Data for the numerical examples

4.5.1 Impact of w1, w2, wr, s, β1, β2, β3

In this part, we take an example with µ1 = 100, µ2 = 10 and cv = 0.1, 0.2.0.3. The

impact of parameters w1, w2, wr, s, β1, β2, β3 are similar for other demand settings. In

section 4.5.2, we will show the impact of other parameters that are not the same for

different demand settings.
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The impact of increasing values of w1, w2 and s on Q∗1 and E(π(Q∗1)) are as expected

intuitively. In particular, Figure 4.4 shows that Q∗1 and E(π(Q∗1)) decrease with w1.

Second, on Figure 4.5, we observe that when w2 increases, the NV tends to increase

Q∗1 in order to reduce the order of drop-shipping. E(π(Q∗1)) decreases also with w2.

Finally, when the unit salvage value s increases, as expected, Q∗1 and E(π(Q∗1)) both

increase (cf. Figure 4.6).

The impact of parameters wr, β1, β2 and β3 that are relative to product returns

are represented on Figures 4.7, 4.8, 4.9 and 4.10. Q∗1 increases with wr. The reason is

that when wr is bigger, the NV wants to reduce product returns. Since the return rate

related to drop-shipping is bigger than the one related to store inventory (β3 < β2), to

reduce the return cost, the NV uses more store inventory. E(π(Q∗1)) decreases with wr

due to the fact that the return cost rises, cf. Figure 4.7.

Q∗1 decreases with β1, because the net store demand (the difference between the ”ini-

tial” consumers’ demand and product returns) decreases with β1. E(π(Q∗1)) decreases

too, because net demand decreases and return cost increases, cf. Figure 4.8.

Q∗1 increases with β2. The reason is that when β2 increases, the NV reduces Q2, thus

the NV uses more store inventory for satisfying Internet demand. E(π(Q∗1)) decreases

with β2 for the same reason of β1, cf. Figure 4.9.

Q∗1 decreases with β3. This is because when β3 is bigger, there will be more possible

return products when the NV satisfies internet demand using store inventory (including

the returned products that can be reused). As a result, the NV reduces Q∗1 and orders

more from drop-shipper. The expected profit decreases with β3 for the same reason of

β1, cf. Figure 4.10.

E(π(Q∗1)) decreases slower with β2 than others. The reason is that when β2 in-

creases, the net Internet demand decreases, thus the NV tends to increase Q∗1 to satisfy

more Internet demand by store inventory, as a result, the quantity of drop-shipping is

reduced and the influence of β2 is weaken. E(π(Q∗1)) decreases faster with β1 than the

others, because when β1 increases, the NV can not use drop-shipping to satisfy store

demand in order to reduce returns related to store sale.

4.5.2 impact of v1, v2, p, t

Q∗1 and E(π(Q∗1)) both increase with µ2, see Figure 4.11. This is because when Internet

demand is bigger, on one hand, the NV increases the order quantity because there is
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(a) Optimal order quantity as a function of unit

store selling price

(b) Optimal expected profit as a function of

unit store inventory purchasing cost

Figure 4.4: impact of w1

(a) Optimal order quantity as a function of unit

drop-shipping purchasing cost

(b) Optimal expected profit as a function of

unit drop-shipping purchasing cost

Figure 4.5: impact of w2

(a) Optimal order quantity as a function of unit

salvage value

(b) Optimal expected profit as a function of

unit salvage value

Figure 4.6: impact of s
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(a) Optimal order quantity as a function of unit

return cost

(b) Optimal expected profit as a function of

unit return cost

Figure 4.7: impact of wr

(a) Optimal order quantity as a function of

store sale return rate

(b) Optimal expected profit as a function of

store sale return rate

Figure 4.8: impact of β1

(a) Optimal order quantity as a function of re-

turn rate related to Internet sale satisfied by

store inventory

(b) Optimal expected profit as a function of

return rate related to Internet sale satisfied by

store inventory

Figure 4.9: impact of β2
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(a) Optimal order quantity as a function of re-

turn rate related to Internet sale satisfied by

store inventory

(b) Optimal expected profit as a function of

return rate related to Internet sale satisfied by

store inventory

Figure 4.10: impact of β3

(a) Optimal order quantity as a function of unit

store selling price

(b) Optimal expected profit as a function of

unit store selling price

Figure 4.11: impact of µ2

more demand, on the other hand, when Q1 is bigger, the risk of under-stock decreases

and the risk of overstock of x1 is reduced because Q1 can be used for satisfying x2. Thus

it is obvious that if µ2 is big enough, Q∗1 can probably satisfy all store demand. For this

reason, some results are different for different demand settings (impact of v1, v2, p, t):

when µ2 is bigger or close to µ1, the results can be different from those for a small

µ2 compared with µ1. Therefore, we give numerical analysis in two parts: one with

a big µ2 compared with µ1 (µ1 = 100, µ2 = 100) and the other one with a small µ2

(µ1 = 100, µ2 = 10).
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(a) Optimal order quantity as a function of unit

store selling price

(b) Optimal expected profit as a function of

unit store selling price

Figure 4.12: impact of v1

4.5.2.1 µ1 = 100, µ2 = 100, cv = 0.1, 0.2, 0.3

With this setting of demands, when the NV orders Q∗1, store demand can probably be

all satisfied in the selling season and no under-stock happens.

The unit store selling price has no impact on Q∗1 and E(π(Q∗1)) increases with it,

see Figure 4.12. When v1 increases, obviously the NV wants more store sales. However,

since all store demand are already satisfied by store inventory, increasing Q∗1 does not

increase store sale. E(π(Q∗1)) increases because the revenue related to each store sale

increases with the unit selling price.

Q∗1 and E(π(Q∗1)) both increase with the unit Internet selling price, see Figure

4.13. When unit Internet selling price is higher, the NV wants more Internet sale. The

increase of optimal order quantity brings more Internet sale: when the order quantity is

bigger, less Internet demand is lost because the return rate related to Internet demand

satisfied by store inventory is smaller than by drop-shipping.

Numerical examples show that t and p have no impact on Q∗1 or E(π(Q∗1)). As we

explained, with this setting of demands, under-stock for store demand rarely happens,

thus penalty and substitution are both negligible.

4.5.2.2 µ1 = 100, µ2 = 10, cv = 0.1, 0.2, 0.3

With this setting of demands, Q∗1 is much less than that with µ2 = 100, see Figures

4.14, 4.15. As a result, under-stock for store demand probably happens during the

selling season.
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(a) Optimal order quantity as a function of unit

Internet selling price

(b) Optimal expected profit as a function of

unit Internet selling price

Figure 4.13: impact of v2

Q∗1 and E(π(Q∗1)) increase with the unit store selling price, see Figure 4.14. The

reason is that when v1 increases, the NV wants more store sale. Since under-stock

happens during the season, the NV can increase store sale by increasing Q∗1. E(π(Q∗1))

increases because the unit selling price increases.

Q∗1 decreases with the v2 and E(π(Q∗1)) increases, see Figure 4.15. When unit v2 is

higher, the NV reduce Q∗1 because unsatisfied store demand can be partly transferred

to Internet demand payed by a higher unit selling price v2. E(π(Q∗1)) increases because

the unit Internet selling price is higher.

Q∗1 decreases with the substitution fraction t and E(π(Q∗1)) increases, see Figure

4.16. Q∗1 decreases because when t is bigger, more unsatisfied store demand is substi-

tuted towards x2, thus the NV can reduce Q∗1. E(π(Q∗1)) increases with t because more

unsatisfied store demands are transferred to x2 and satisfied by Q2.

Q∗1 and E(π(Q∗1)) both increase with the unit penalty cost, see Figure 4.17. The

reason is that when p is bigger, unsatisfied store demand results higher penalty cost.

4.5.3 impact of ignoring product returns

If the NV ignores product returns when deciding the order quantity, he would not

consider the part of the demand that is lost due to returns. When product returns are

ignored, the optimal order quantity denoted as Q0
1 is obtained by equation 4.19, the

related expected profit is obtained by equation 6.42.

As expected, numerical examples show that Q0
1 > Q∗1 and E(π(Q0

1)) < E(π(Q∗1)).
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(a) Optimal order quantity as a function of unit

store selling price

(b) Optimal expected profit as a function of

unit store selling price

Figure 4.14: impact of v1

(a) Optimal order quantity as a function of unit

Internet selling price

(b) Optimal expected profit as a function of

unit Internet store selling price

Figure 4.15: impact of v2

(a) Optimal order quantity as a function of sub-

stitution fraction

(b) Optimal expected profit as a function of

substitution fraction

Figure 4.16: impact of t
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(a) Optimal order quantity as a function of unit

penalty cost

(b) Optimal expected profit as a function of

unit penalty cost

Figure 4.17: impact of p

(a) Optimal order quantity as a function of

store sale return rate

(b) Optimal expected profit as a function of

store sale return rate

Figure 4.18: impact of return with µ1 = 100, µ2 = 100, β2 = β3 = 0.3

The difference between Q0
1 and Q∗1, so as to the difference between E(π(Q0

1)) and

E(π(Q∗1)), increases with β1 (see Figure 4.18), β3 (see Figure 4.19), and decreases with

β2 (see Figure 4.20).

The worst case is when β1 and β3 are great, β2 is small. For instance, in our

numerical example, if we take β1 = β2 = β3 = 0.3, ignoring product returns leads to

an expected profit which is 14.4% less than the optimal expected profit.

4.5.4 impact of drop-shipping

If the NV does not use drop-shipping, the optimal order quantity denoted as Qd1 is ob-

tained by equation 4.14 by letting the first derivative equals zero. The related expected

profit is obtained by doing the expect operation from equation 4.13.
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(a) Optimal order quantity as a function of

store sale return rate

(b) Optimal expected profit as a function of

store sale return rate

Figure 4.19: impact of return with µ1 = 100, µ2 = 100, β1 = β3 = 0.3

(a) Optimal order quantity as a function of

store sale return rate

(b) Optimal expected profit as a function of

store sale return rate

Figure 4.20: impact of return with µ1 = 100, µ2 = 100, β1 = 0.2, β2 = 0.4
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(a) Optimal order quantity as a function of

store sale return rate

(b) Optimal expected profit as a function of

store sale return rate

Figure 4.21: impact of drop-shipping with µ1 = 100, µ2 = 100, β1 = 0.1, β3 = 0.2

As expected, numerical examples show that Qd1 > Q∗1 E(π(Qd1)) < E(π(Q∗1)). The

reason is that NV can use drop-shipping for satisfying Internet demand. The difference

between Qd1 and Q∗1, thus the difference between E(π(Qd1)) and E(π(Q∗1)), decrease

with β2 (see Figure 4.21), because Q∗1 increases with β2 and Qd1 is constant. The

difference increases with β3 (see Figure 4.22) because when β3 is bigger, the NV uses

more drop-shipping for satisfying Internet demand for reducing Internet sale returns.

The difference increases with µ2 (see Figure 4.23) because when there is more Internet

demand, there is more interest in using drop-shipping option. The difference does not

have obvious change when β1 increases, because the product returns related to store

sale has no relation with drop-shipping option.

Without drop-shipping option, NV orders an inventory bigger than the optimal and

the related expected profit will be less than the optimal. The worst case is when β3 is

big, β2 is small, and µ2 is big. In our example, if we take β1 = 0.1, β2 = β3 = 0.2,µ2 =

100, cv = 0.3, using drop-shipping let the NV order a quantity 31.2% less and brings

an expected profit 9.0% larger.

4.6 Conclusion

Using drop-shipping to satisfy demand is an interesting option for e-commerce retailers

in order to reduce inventory related costs. However, the high product-return rate related

to e-commerce business can challenge the use of drop-shipping as the only option for
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4.6 Conclusion

(a) Optimal order quantity as a function of

store sale return rate

(b) Optimal expected profit as a function of

store sale return rate

Figure 4.22: impact of drop-shipping with µ1 = 100, µ2 = 100, β1 = 0.1, β2 = 0.3

(a) Optimal order quantity as a function of In-

ternet mean demand

(b) Optimal expected profit as a function of

Internet mean demand

Figure 4.23: impact of drop-shipping with µ1 = 100, β1 = 0.1, β2 = 0.2, β3 = 0.2

97



4. THE NVP WITH DROP-SHIPPING OPTION AND RESALABLE
RETURNS

satisfying demand. Many retailers prefer therefore to use a mixed drop-shipping and

store inventory replenishment strategy to satisfy demand.

In this chapter we formulate a NV model for identifying the optimal mix of drop-

shipping quantity and store inventory by considering different return rates for different

types of flows (store inventory to store demand, drop-shipping to Internet demand and

store inventory to Internet demand). We provide the optimal condition under general

demand distributions as well as the optimal expected profit equation.

For two variants of Model, we demonstrate the concavity of the expected profit

function and give the optimal expected profit equation. Some special cases are also

considered: the case with no product returns, the case with identical product-return

rates, the case with no store demand and the case with no drop-shipping option. Nu-

merical analysis is provided to illustrate the impact of model parameters.

Our work presents also some limits. We have assumed that all returned products

are resalable, while in practice this may not be the case. To solve this problem, a

parameter of resalable products portion can be introduced. Such a parameter already

exists in the NV model with returns but no drop-shipping option [87].

Another possible research can be to take the timing of returns into consideration:

the single period can be extended to a multi-period problem where returned products

arriving after the end of the first selling season can be resold at the next selling periods.

It will also be interesting to consider a problem where the suppliers (both drop-

shipper and the distant supplier) offer quantity discounts in addition to the assumptions

of our model. The mixed supplying strategy will be different according to the quantity

discounts policies.
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Conclusion and perspectives

Interest in the NVP has increased over the past 50 years. This interest can be attributed

in part to the increased globalization. Also, the reduction in product life cycles brought

about by technological advances makes the NVP more relevant. In this chapter, we

give general concluding remarks and present directions for future research. For further

details, we refer the reader to the concluding sections of the previous chapters.

In this thesis, we focused on three different extensions of the NVP: multiple dis-

counts, product variety and free product returns policy. Our analysis leads to both

qualitative and quantitative results.

In particular, we have investigated the impact of multiple discounts on inventory

management. Using multiple discounts is a common way for retailers to deal with

overstock in order to reduce the overage cost. This policy, in return, influences the

optimal order quantity decision since the overage cost is reduced by using multiple

discounts. We developed the model that provide the optimal ordering quantity for a

NV using multiple discounts and showed insights on discount schemes. For instance,

numerical results show that increasing discount numbers increases the expected profit:

in our example, the expected profit is increased up to 100% with 5 progressive discounts

compared with only one final discount. However, there is an upper limit of the expected

profit when the NV increases the discount number.

Next, we analyzed the impact of product variety in inventory management. We

developed a model considering the substitution effect and compared it with several

models that can be used in practice. Considering the substitution and assortment

effect significantly increases the expected profit up to 32% in our examples.
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Then, we proposed a model for a NV that has a mixed supplying strategy (using

both drop shipping and store inventory) and resalable returns related to store sale and

Internet sale. We assumed that drop-shipping can be only used for Internet demand

and store inventory can be used for both store demand and Internet demand. We inves-

tigated then the impact of the parameters with different demand settings, illustrated

the impact of ignoring product returns and the benefit of drop-shipping. If the NV ig-

nores the product returns, the expected profit is reduced by up to 14% compared with

the optimal. The drop-shipping option, meanwhile, can bring an increase of expected

profit up to 9%.

In the following, we provide some interesting research perspectives that can be

developed as new extensions of the NVP.

One may extend our work by incorporating the effects of advertising in the NVP.

Indeed, demand can be influenced not only by pricing but also by advertising. Many

researchers assumed that the demand is a function of price, but few of them have

taken into account the impact of advertising on demand. Advertising is a lever that

is frequently used by companies to target consumers so that they buy more products.

A joint determination of optimal order quantity and the advertising policy (e.g. the

advertising spending) can be an interesting research area. Such kind of work is emerging

recently in some papers, e.g. [91], but there are still lots of work that can be done

considering the advertising effect in different situations, for instance, a NV often uses

both pricing and advertising to influence the demand.

A second interesting research perspective is a multi-echelon NV structure, since in

practice a NV can have a distribution center and some physical stores. For instance,

when one develops a drop-shipping model used by the NV, internet demand can be

satisfied by both the distribution center and the drop-shipper, while store demands

only served by the stock in each store. Thus, the order quantity for distribution center

inventory and the order quantity of drop-shipping need to be simultaneously considered.

Another possible area for future research lies on the consideration of a different

objective for the NV. Earlier research is mainly based on the profit maximizing opti-

mization objective, while sustainable supply chains is becoming a global need. Reducing

overall carbon footprint, reducing energy and resource consumption can be considered

while the NV optimizes the operations to achieve greater cost savings and profitabil-
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ity (e.g. [92]). The overage of stock, which brings wastes of energy and resource, for

example, can be an interesting research area for sustainable NVP.
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6. APPENDICES

6.1 Appendix of chapter 2

Appendix 1: Expected profit for additive price-dependent demand:

E(π(Q)) =

∫ inf

Q
[v0Q− wQ]f(x)dx+

∫ Q

µ0−µ1+Q
[v0x+ (Q− x)v1 − wQ]f(x)dx+

+

∫ µ0−µ1+Q

µ0−µ2+Q
[v0x+ (µ1 − µ0)v1 − (µ1 − µ0 + x)v2 + (v2 − w)Q]f(x)dx+ · · ·

+

∫ µ0−µi−1+Q

µ0−µi+Q
[v0x+ (µ1 − µ0)v1 + · · ·+ (µi−1 − µi−2)vi−1 − (µi−1 − µ0 +

+ x)vi + (vi − w)Q]f(x)dx+ · · ·+
∫ µ0−µn−1+Q

0
[v0x+ (µ1 − µ0)v1 + · · ·+

+ (µn−1 − µn−2)vn−1 − (µn−1 − µ0 + x)vn−1 + (vn − w)Q]f(x)dx (6.1)

E(π(Q)) = Q[
∫ inf
Q (v0 − w)f(x)dx+

∫ µ0−µi−1+Q
0 (vn − w) + f(x)dx+

∫ µ0−µi−1+Q
µ0−µi+Q

(vi − w)f(x)dx] +
∫ µ0−µ1+Q
µ0−µ2+Q [v0x+ (µ1 − µ0)v1 − (µ1 − µ0 + x)v2]f(x)dx+ · · ·+

∫ µ0−µi−1+Q
µ0−µi+Q [v0x+ (µ1 − µ0)v1 + · · ·+ (µi−1 − µi−2)vi−1 − (µi−1 − µ0 + x)vi]f(x)dx

+ · · ·+
∫ µ0−µn−1+Q

0 [v0x+ (µ1 − µ0)v1 + · · ·+ (µn−1 − µn−2)vn−1 − (µn−1 − µ0 + x)vn−1]f(x)dx

= Q[−w + v0 +
∑n−1

i=0 (vi+1 − vi)F (Q+ µ0 − µi)] +
∑n−1

i=1

∑i−1
j=0

∫ µ0−µi−1+Q
µ0−µi+Q (vj−

vj+1)(x− µj + µ0)f(x)dx+
∑n−1

j=0

∫ µ0−µn−1+Q
0 (vj − vj+1)(x− µj + µ0)f(x)dx

= Q[−w + v0 +
∑n−1

i=0 (vi+1 − vi)F (Q+ µ0 − µi)] +
∑n−1

i=0

∫ Q+u0−ui
0 (vi − vi+1)(x+ ui − u0)f(x)dx

Appendix 2: Proof of lemma 1:

Use Leibniz’s rule, we get the derivative of E(Q):

dE(π(Q))

dQ
= −

n−1∑
i=0

(vi − vi+1)F (Q+ µ0 − µi) + v0 − w (6.2)

The second derivative of E(π(Q)) is:

d2E(π(Q))

d2Q
= −

n−1∑
i=0

(vi − vi+1)f(Q+ µ0 − µi) (6.3)

f(x) > 0, vi − vi+1 > 0, so d2E(π(Q))
d2Q

< 0, then E(π(Q)) is concave.

104



6.1 Appendix of chapter 2

Appendix 3: Expected profit of multiplicative price-dependent demand:

E(π(Q)) =

∫ inf

Q
(v0Q− wQ)f(x)dx+

∫ Q

µ0
µ1
Q

(v0x+ (Q− x)v1 − wQ)f(x)dx+

∫ µ0
µ1
Q

µ0
µ2
Q

(v0x+
x

µ0
((µ1 − µ0)v1 − µ1v2) + (v2 − w)Q)f(x)dx+ · · ·

+

∫ µ0
µi−1

Q

µ0
µi
Q

(v0x+
x

µ0
((µ1 − µ0)v1 + · · ·+

+ (µi−1 − µi−2)vi−1)− x0vi
µ0

(µi−1) + (vi − w)Q)f(x)dx+ · · ·

+

∫ µ0
µn−1

Q

0
(v0x+

x

µ0
(µ1 − µ0)v1 + · · ·+ (µn−1 − µn−2)vn−1)− xvn

µ0
(µn−1) +

+ (vn − w)Q)f(x)dx (6.4)

Use Leibniz’s rule, we get the derivative of E(π(Q)):

dE(π(Q))

dQ
= −

n−1∑
i=0

(vi − vi+1)F (Q
µ0

µi
) + v0 − w (6.5)

Appendix 4: Proof of lemma 3:

The second derivative of E(π(Q)) is:

d2E(π(Q))

d2Q
= −

n−1∑
i=0

(vi − vi+1)f(Q
µ0

µi
)
µ0

µi
(6.6)

f(x) > 0, vi − vi+1 > 0, so d2E(π(Q))
d2Q

< 0, then E(π(Q)) is concave.

Appendix 5: Numerical example for chapter 4.3

Consider the practical example: w = 3, The amount of demand(x) has a normal

distribution N(µ0, σ0) or U[µ0−σ0, µ0+σ0], µ0 = a−bv, a = 80, b = 8, s = 2. According

to lemma 2, E(π(Q∗))−Eσ−Ev = ε, and ε = 0 in some conditions. In the linear discount

case, according to equation2.11, the expected profit should be close to a hyperbola

of n. And the maximum is:180. By setting v0 = 8, we have µ0 = 16. Consider

σ0 = 0(deterministic demand),2,4,6,8, and n increases from 2. The expected profit

E(π(Q∗)) is calculated by equation 2.5; Figure 6.1, 6.2 show the values of E(π(Q∗))−Eσ
and Ev.

It is obvious that ε increases with n, the reason is that when n is larger the condition

of σ0 tends to be not satisfied. In the uniform distribution case, the graph shows that
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Figure 6.1: The value of (E(π(Q∗))−Eσ), as a function of discount number, with normal

distribution

Figure 6.2: The value of (E(π(Q∗))−Eσ), as a function of discount number, with uniform

distribution

ε = 0 for n < 11; in the normal distribution demand case, it is exact for n < 7. In

practice, this n = 7 is rather big for a multi-discount selling season. Even at n = 21,

ε < 1.7%Ev. These results works for all σ0 ≤ µ/2. Repeat the computation with

different combinations w, s, a, b,v0, similar results were got. Therefore, the error in

equation ε is rather small or even zero.
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6.2 Appendix of chapter 3

Appendix 1

x
′
i = p

′
ix, thus the probability that x ∈ (a, b) equals to the probability that x

′
i ∈

(p
′
ia, p

′
ib), regardless the value of a and b:

(6.7)

∫ bp
′
i

ap
′
i

f
′
i (x

′
i)dx

′
i =

∫ b

a
f(x)dx

=

∫ bp
′
i

ap
′
i

f(x)

p
′
i

d(p
′
ix)

=

∫ bp
′
i

ap
′
i

f(
x
′
i

p
′
i

)

p
′
i

dx
′
i

This equation should be available for any value of a and b, thus we have equation 3.4.

Appendix 2

For policy 2, we have Fi(q
∗
i ) = vi−wi

vi−si and

E(π(Q∗)) =
∑
i∈M

[

∫ q∗i

0
(vi − si)xif

′
i (xi)dxi −Ki] (6.8)

For normal distribution,

(6.9)

∫ q∗i

0
(vi − si)xif

′
i (xi)dxi = (vi − wi)µ

′
i − (vi − si)σ

′
iσ
′
if
′
i (F

′−1
i (

vi − wi
vi − si

))

When the products have same selling price, purchase cost and salvage value, σ
′
if
′
i (F

′−1
i (v−wv−s )) =

f0(F−1
0 (v−wv−s )) is a constant value, thus

E(π(Q∗)) =
∑
i∈M

(µiA+ σiB) =
∑
i∈M

p
′
i(µA+ σB) (6.10)

With A = v − w,B = −(v − s)f0(F−1
0 (v−wv−s )), f0 is the standard normal probability

density function and F0 is the standard normal cumulative distribution function.

For uniform distribution [µ− σ, µ+ σ],

(6.11)

∫ q∗i

0
(vi − si)xif

′
i (xi)dxi = (vi − wi)µ

′
i − (vi − si)σ

′
i

1− (2vi−wivi−s − 1)2

4
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When the products have same selling price, purchase cost and salvage value,

E(π(Q∗)) =
∑
i∈M

(µiA+ σiB) =
∑
i∈M

p
′
i(µA+ σB) (6.12)

With A = v − w,B = −1−(2 v−w
v−s −1)2

4 .

For exponential distribution with parameter λi,we haveµi = 1/λi, σi = 1/λi. We

have

(6.13)

∫ q∗i

0
(vi − si)xif

′
i (xi)dxi = (vi − si)(−q∗i e−λiq

∗
i − e−λiq

∗
i − 1

λi
)

=
vi − wi
λi

−
(wi − si) ln vi−si

wi−si
λi

= (vi − wi)µi − (wi − si)σi ln
vi − si
wi − si

When the products have same selling price, purchase cost and salvage value,

E(π(Q∗)) =
∑
i∈M

(µiA+ σiB) =
∑
i∈M

p
′
i(µA+ σB) (6.14)

With A = (v − w), B = −(w − s) ln v−s
w−s .

Appendix 3: combinations of (K,L, σ) that maximize the difference be-

tween policy 4 and 5

In this part, we are interested in values of σ, K and L that maximize the difference

between policy 4 and 5. As shown in Figure 3.10 and 3.8, policy 4 get the same results

as policy 5, except for a few cases. The analysis of these cases shows that there are some

points maximizing the difference between policy 4 and 5. At these points, policy 2 shows

an interesting character: the expected profit calculated by policy 2 Em corresponding

to the optimal assortment M including m product variants is very close to the expected

profit Em+1 related to the assortment with an additional product j, i.e. Em ≈ Em+1.

Em =
∑

i∈M (µiA+σiB) =
∑

i∈M p
′
i(µA+σB). With normally distributed demand, for

example, A = v − w,B = −(v − s)f0(F0(v−wv−s )), f0 is the standard normal distribution

density function. A necessary condition for maximizing the difference between policy

4 and 5 is derived:

p
′
j(µA+ σB) =

K

L
(6.15)

Take Figure 3.10 for example, L = 0.3, σ = 20 thus µA+σB = 240. The difference

between policy 4 and 5 gets maximum when the optimal assortment size m equals 1.
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Thus the additional product j is the product with the second largest market share:

pj = 0.25. According the equation 6.15, the fixed display cost K that maximize the

difference is: K = p
′
j(µA+σB)L = 18. Which is close to the result seen in Figure 3.10:

K = 20. It is not exactly the same value to the one derived by equation 6.15 because

the case K = 18 is not shown in the figure.

109



6. APPENDICES

6.3 Appendix of chapter 4

Appendix 1: Proposition 1

Proof. Let

α1 = v1(1− β1)− wrβ1 − s(1− β1) (6.16)

b1 = v2(1− β3)− wrβ3 − s(1− β3) (6.17)

λ1 = −w1 + s (6.18)

(6.19)α2 = v1(1− β1)− v2(1− β1) +
1− β1

1− β3
β3wr − β1wr−(w2 + β2wr

1−β3 − v2) 1−β1
1−β3+β2

b2 = (v2 − w2 −
β2wr

1− β3
)

1− β3

1− β3 + β2
(6.20)

λ2 = v2 − w1 −
β3wr

1− β3
+ (w2 +

β2wr
1− β3

− v2)
1

1− β3 + β2
(6.21)

α3 =
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
− (1− t)p (6.22)

b3 = (v2 − w2 −
β2wr

1− β3
)

1− β3

1− β3 + β2
(6.23)

λ3 = v1 − w1 −
β1wr

1− β1
− 1

1− β1
(
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
) +

(1− t)p
1− β1

(6.24)

Substituting them in equation 4.2 gives

π =


α1x1 + b1x2 + λ1Q1 case 1

α2x1 + b2x2 + λ2Q1 case 2

α3x1 + b3x2 + λ3Q1 case 3

(6.25)

Now we search the optimal order quantity which maximizes the expected profit,

E(π).

(6.26)

E(π) =

∫ Q1
1−β1

−∞
[

∫ Q1
1−β3

− 1−β1
1−β3

x1

−∞
(α1x1 + b1x2 + λ1Q1)f2(x2)dx2

+

∫ ∞
Q1

1−β3
− 1−β1

1−β3
x1

(α2x1 + b2x2 + λ2Q1)f2(x2)dx2]f1(x1)dx1

+

∫ ∞
Q1

1−β1

[

∫ ∞
−∞

(α3x1 + b3x2 + λ3Q1)f2(x2)dx2]f1(x1)dx1
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The first derivative is derived as:

(6.27)

dE(π)

dQ1
= λ2F1(

Q1

1− β1
) + λ3(1− F1(

Q1

1− β1
))

+

∫ Q1
1−β1

−∞
(λ1 − λ2)F2(

Q1

1− β3
− 1− β1

1− β3
x1)f1(x1)dx1

(6.28)

d2E(π)

dQ2
1

= −(λ3 − λ2)f1(
Q1

1− β1
)

− (λ2 − λ1)

∫ Q1
1−β1

−∞
f2(

Q1

1− β3
− 1− β1

1− β3
x1)f1(x1)dx1/(1− β3)

We have λ3−λ2 = v1−v2 + wrβ3
1−β3 −

wrβ1
1−β1 −

w2+
β2wr
1−β3

−v2
1−β3+β2

− 1
1−β1 ( (1−β3)(v2−w2)t

1−β3+β2
− β2wrt

1−β3+β2
−

(1− t)p), it is easy to find that

wrβ3

1− β3
− wrβ1

1− β1
> 0

And

v1 − v2 −
w2 + β2wr

1−β3 − v2

1− β3 + β2
− 1

1− β1
(
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
− (1− t)p)

=
v1 + v1(β2 − β3)− w2 − β2wr

1−β3 + v2(β3 − β2)

1− β3 + β2
− 1

1− β1
(
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
−(1−t)p)

=
v1 + (v1 − v2)(β2 − β3)− w2 − β2wr

1−β3
1− β3 + β2

− 1

1− β1
(
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
−(1−t)p)

≥
v1 − (v1 − v2)− w2 − β2wr

1−β3
1− β3 + β2

− 1

1− β1
(
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
− (1− t)p)

=
v2 − w2 − β2wr

1−β3
1− β3 + β2

− 1

1− β1
(
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
− (1− t)p)

=
(1− t)p
1− β1

+
v2 − w2 − β2wr

1−β3
1− β3 + β2

(1− β1)− t(1− β3)

1− β1
> 0

Thus

λ3 − λ2 > 0

When β2 ≥ β3 − w2−s
v2+wr−s , we have

λ2 − λ1 =
w2 + (v2 + wr)(β2 − β3)

1− β3 + β2
− s > 0

The probability functions are non-negative, thus d2E(π)
dQ2

1
< 0.
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Appendix 2: The optimal expected profit

The proof is similar as in Appendix 4.

Appendix 3: Proposition 3

Proof. Let

α1 = v1(1− β1)− wrβ1 − s(1− β1) (6.29)

b1 = v2(1− β3)− wrβ3 − s(1− β3) (6.30)

λ1 = −w1 + s (6.31)

(6.32)α2 = v1(1− β1)− v2(1− β1) +
1− β1

1− β3
β3wr − β1wr−(w2 + β2wr

1−β3 − v2) 1−β1
1−β3+β2

b2 = (v2 − w2 −
β2wr

1− β3
)

1− β3

1− β3 + β2
(6.33)

λ2 = v2 − w1 −
β3wr

1− β3
+ (w2 +

β2wr
1− β3

− v2)
1

1− β3 + β2
(6.34)

α3 = v1(1− β1)− v2(1− β1) +
1− β1

1− β3
β3wr − β1wr − (w2 +

β2wr
1− β3

− v2)
1− β1

1− β3 + β2

(6.35)

b3 = (v2 − w2 −
β2wr

1− β3
)

1− β3

1− β3 + β2
(6.36)

λ3 = v2 − w1 −
β3wr

1− β3
+ (w2 +

β2wr
1− β3

− v2)
1

1− β3 + β2
(6.37)

α4 =
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
− (1− t)p (6.38)

b4 = v2(1−β2)−(w2+
β2wr

1− β1
−v1β2)− β2

1− β1
(
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
−(1−t)p)

(6.39)

λ4 = −w1−
β1wr

1− β1
+ v1−

1

1− β1
(
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
− (1− t)p) (6.40)

Substituting them in equation 4.16 gives

π =



α1x1 + b1x2 + λ1Q1 case 1

α2x1 + b2x2 + λ2Q1 case 2

α3x1 + b3x2 + λ3Q1 case 3

α4x1 + b4x2 + λ4Q1 case 4

(6.41)
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Now we search the optimal order quantity which maximizes the expected profit,

E(π).

(6.42)

E(π) =

∫ Q1
1−β1

−∞
[

∫ Q1
1−β3

− 1−β1
1−β3

x1

−∞
(α1x1 + b1x2 + λ1Q1)f2(x2)dx2

+

∫ ∞
Q1

1−β3
− 1−β1

1−β3
x1

(α2x1 + b2x2 + λ2Q1)f2(x2)dx2]f1(x1)dx1

+

∫ ∞
Q1

1−β1

[

∫ ∞
x1(1−β1)−Q1

β2

(α3x1 + b3x2 + λ3Q1)f2(x2)dx2

+

∫ x1(1−β1)−Q1
β2

−∞
(α4x1 + b4x2 + λ4Q1)f2(x2)dx2]f1(x1)dx1

The first derivative is derived as (c.f. Appendix 1):

(6.43)
dE(π)

dQ1
= λ3 +

∫ ∞
Q1

1−β1

(λ4 − λ3)F2(
x1(1− β1)−Q1

β2
)f1(x1)dx1

+

∫ Q1
1−β1

−∞
(λ1 − λ2)F2(

Q1

1− β3
− 1− β1

1− β3
x1)f1(x1)dx1
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Use Leibnizs rule, the first derivative of equation 6.42 is:

dE(π)

dQ1
=

{∫ Q1
1−β1

−∞

{∫ ∞
Q1

1−β3
− 1−β1

1−β3
x1

(λ2f2(x2)dx2

− 1

1− β3
(α2x1 + b2(

Q1

1− β3
− 1− β1

1− β3
x1) + λ2Q1)f2(

Q1

1− β3
− 1− β1

1− β3
x1))

+

∫ Q1
1−β3

− 1−β1
1−β3

x1

−∞
(λ1f2(x2)dx2 +

1

1− β3
(α1x1 + b1(

Q1

1− β3
− 1− β1

1− β3
x1)

+ λ1Q1)f2(
Q1

1− β3
− 1− β1

1− β3
x1)

}
f1(x1)dx1

+
1

1− β1

∫ ∞
0

(α2
Q1

1− β1
+ b2x2 + λ2Q1)f1(

Q1

1− β1
)

}

+

{∫ ∞
Q1

1−β1

{∫ ∞
x1(1−β1)−Q1

β2

λ3f2(x2)dx2

+
1

β2
(α3x1 + b3

x1(1− β1)−Q1

β2
+ λ3Q1)f2(

x1(1− β1)−Q1

β2
)

+

∫ x1(1−β1)−Q1
β2

−∞
(λ4f2(x2)dx2

− 1

β2
(α4x1 + b4

x1(1− beta1)−Q1

β2
+ λ4Q1)f2(

x1(1− β1)−Q1

β2
)

}
f1(x1)dx1

− 1

1− β1

∫ ∞
0

(α3
Q1

1− β1
+ b3x2 + λ3Q1)f1(

Q1

1− β1
)

}
(6.44)

Because α3 = α2, b3 = b2, λ3 = λ2,

(6.45)
− 1

1− β1

∫ ∞
0

(α3
Q1

1− β1
+ b3x2 + λ3Q1)f1(

Q1

1− β1
)

+
1

1− β1

∫ ∞
0

(α2
Q1

1− β1
+ b2x2 + λ2Q1)f1(

Q1

1− β1
) = 0

1

β2
(α3x1 + b3

x1(1− β1)−Q1

β2
+ λ3Q1)f2(

x1(1− β1)−Q1

β2
)

− 1

β2
(α4x1 + b4

x1(1− β1)−Q1

β2
+ λ4Q1)f2(

x1(1− β1)−Q1

β2
) =

1

β2
((α3 − α4)x1

+ (b3 − b4)
x1(1− β1)−Q1

β2
+ (λ3 − λ4)Q1)f2(

x1(1− β1)−Q1

β2
)

(6.46)
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Because α3−α4 = −(1− β1)(λ3− λ4) = −1−β1
β2

(b3− b4), equation 6.46 equals to 0.

We can prove in the same way that

− 1

1− β3
(α2x1 + b2(

Q1

1− β3
− 1− β1

1− β3
x1) + λ2Q1)f2(

Q1

1− β1
− x1)+

1

1− β3
(α1x1 + b1(

Q1

1− β3
− 1− β1

1− β3
x1) + λ1Q1)f2(

Q1

1− β1
− x1) = 0

(6.47)

The first derivative can then be derived

(6.48)

dE(π)

dQ1
=

∫ Q1
1−β1

−∞

{∫ ∞
Q1

1−β3
− 1−β1

1−β3
x1

(λ2f2(x2)dx2 +

∫ Q1
1−β3

− 1−β1
1−β3

x1

−∞
(λ1f2(x2)dx2

}

+

∫ ∞
Q1

1−β1

{∫ ∞
x1(1−β1)−Q1

β2

λ3f2(x2)dx2 +

∫ x1(1−β1)−Q1
β2

−∞
(λ4f2(x2)dx2

}

=

∫ Q1
1−β1

−∞

{
λ2(1− F2(

Q1

1− β3
− 1− β1

1− β3
x1))

+ λ1F2(
Q1

1− β3
− 1− β1

1− β3
x1)

}
+

∫ ∞
Q1

1−β1

{
λ3(1− F2(

x1(1− β1)−Q1

β2
))

+ λ4F2(
x1(1− β1)−Q1

β2
)

}
= λ3 +

∫ ∞
Q1

1−β1

(λ4 − λ3)F2(
x1(1− β1)−Q1

β2
)f1(x1)dx1

+

∫ Q1
1−β1

−∞
(λ1 − λ2)F2(

Q1

1− β3
− 1− β1

1− β3
x1)f1(x1)dx1

(6.49)

d2E(π)

dQ2
1

= −(λ4 − λ3)

∫ ∞
Q1

1−β1

f2(
x1(1− β1)−Q1

β2
)f1(x1)dx1/β2

− (λ2 − λ1)

∫ Q1
1−β1

−∞
f2(

Q1

1− β3
− 1− β1

1− β3
x1)f1(x1)dx1/(1− β3)

We have λ4−λ3 = v1−v2 + wrβ3
1−β3 −

wrβ1
1−β1 −

w2+
β2wr
1−β3

−v2
1−β3+β2

− 1
1−β1 ( (1−β3)(v2−w2)t

1−β3+β2
− β2wrt

1−β3+β2
−

(1− t)p). It is easy to find that

wrβ3

1− β3
− wrβ1

1− β1
> 0

And

v1 − v2 −
w2 + β2wr

1−β3 − v2

1− β3 + β2
− 1

1− β1
(
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
− (1− t)p)
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=
v1 + v1(β2 − β3)− w2 − β2wr

1−β3 + v2(β3 − β2)

1− β3 + β2
− 1

1− β1
(
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
−(1−t)p)

=
v1 + (v1 − v2)(β2 − β3)− w2 − β2wr

1−β3
1− β3 + β2

− 1

1− β1
(
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
−(1−t)p)

≥
v1 − (v1 − v2)− w2 − β2wr

1−β3
1− β3 + β2

− 1

1− β1
(
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
− (1− t)p)

=
v2 − w2 − β2wr

1−β3
1− β3 + β2

− 1

1− β1
(
(1− β3)(v2 − w2)t

1− β3 + β2
− β2wrt

1− β3 + β2
− (1− t)p)

=
(1− t)p
1− β1

+
v2 − w2 − β2wr

1−β3
1− β3 + β2

(1− β1)− t(1− β3)

1− β1
> 0

Thus

λ4 − λ3 > 0

When β2 ≥ β3 − w2−s
v2+wr−s , we have

λ2 − λ1 =
w2 + (v2 + wr)(β2 − β3)

1− β3 + β2
− s > 0

The probability functions are non-negative, thus d2E(π)
dQ2

1
< 0.

Appendix 4: The optimal expected profit

We develop equation 6.42 as the sum of three parts: x1, x2 and Q1:
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E(π) =

{∫ Q1
1−β1

−∞
[α1x1F2(

Q1

1− β3
− 1− β1

1− β3
x1)

+ α2x1(1− F2(
Q1

1− β3
− 1− β1

1− β3
x1))]f1(x1)dx1

+

∫ ∞
Q1

1−β1

[α3x1(1−F2(
x1(1− β1)−Q1

β2
))+α4x1F2(

x1(1− β1)−Q1

β2
)]f1(x1)dx1

}

+

{∫ Q1
1−β1

−∞
[

∫ Q1
1−β3

− 1−β1
1−β3

x1

−∞
(b1 − b2)x2f2(x2)dx2 + b2µ2]f1(x1)dx1

+

∫ ∞
Q1

1−β1

[

∫ x1(1−β1)−Q1
β2

−∞
(b4 − b3)x2f2(x2)dx2 + b3µ2]f1(x1)dx1

}

+Q1

{∫ Q1
1−β1

−∞
[λ1F2(

Q1

1− β3
− 1− β1

1− β3
x1) + λ2(1− F2(

Q1

1− β3
− 1− β1

1− β3
x1))]

+

∫ ∞
Q1

1−β1

[λ3(1− F2(
x1(1− β1)−Q1

β2
)) + λ4F2(

x1(1− β1)−Q1

β2
)]

}

=

{
α2µ1 + (α1 − α2)

∫ Q1
1−β1

−∞
x1f1(x1)F2(

Q1

1− β3
− 1− β1

1− β3
x1)dx1

+ (α4 − α3)

∫ ∞
Q1

1−β1

x1f1(x1)F2(
x1(1− β1)−Q1

β2
)dx1

}

+

{
(b1 − b2)

∫ Q1
1−β1

−∞

∫ Q1
1−β3

− 1−β1
1−β3

x1

−∞
x2f2(x2)dx2f1(x1)dx1

+ (b4 − b3)

∫ ∞
Q1

1−β1

∫ x1(1−β1)−Q1
β2

−∞
x2f2(x2)dx2f1(x1)dx1

+ b3µ2

}
Q1

{
λ3 +

∫ ∞
Q1

1−β1

(λ4 − λ3)F2(
x1(1− β1)−Q1

β2
)f1(x1)dx1

+

∫ Q1
1−β1

−∞
(λ1 − λ2)F2(

Q1

1− β3
− 1− β1

1− β3
x1)f1(x1)dx1

}
(6.50)

For Q1 = Q∗1, the last term is zero. Thus we can derive the optimal expected profit
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function:

E(π(Q∗1)) = α2µ1 + b2µ2 + (b1 − b2)

∫ Q∗1
1−β1

−∞

∫ Q∗1
1−β3

− 1−β1
1−β3

x1

−∞
(
1− β1

1− β3
x1

+ x2)f2(x2)dx2f1(x1)dx1

+ (b4 − b3)

∫ ∞
Q∗1

1−β1

∫ x1(1−β1)−Q
∗
1

β2

−∞
(−1− β1

β2
x1 + x2)f2(x2)dx2f1(x1)dx1

(6.51)

Appendix 5: Numerical examples for particular cases

First we consider a special situation: the return probabilities for internet demand by

store inventory or drop-shipping option are identical, e.g. β1 = 0.1, β2 = β3 = 0.2, the

expected profit is concave and thus only one solution can be computed using equation

4.17 which is the optimal order quantity: Q∗ = 308. The first derivative function of

the expected profit (equation 6.27) is shown in Figure 6.3.

Figure 6.3: First derivative of the expected profit function for identical return probabili-

ties

In the stable stage of the curve, the second term in the right-hand side approximates

−(λ4−λ3), the third is approximately zero and fourth equals to zero, thus equation 6.27

has a value of λ3 = w2 − w1 = 1 > 0, and this positivety is always guaranteed because

w2 > w1 in our model. Thus the optimal order quantity situates after the stable stage

as shown in the graph. In the optimal condition, the second term approximates 1, the

fourth term equals to zero, we have an approximate equation for the optimal order
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quantity, which gives the same result Q∗ = 308:

∫ Q∗1
1−β1

−∞
F2(

Q∗1
1− β3

− 1− β1

1− β3
x1)f1(x1)dx1 ≈

λ3

λ2 − λ1
=
w2 − w1

w2 − s
(6.52)

In this case, the optimal order quantity is a function of purchasing cost, discount

price and return proportions. The return cost doesn’t change the value of optimal order

quantity.

In normal situations we have similar graph as 6.3 with β1 < β2, β1 < β3 and

β3 6 β2.

Abnormal situation is when β3 > β2. Three subcases are possible: First case:

β2 > β3 −
w2 − w1

v2 + wr − w1

In this first case, λ3 > 0, the stable stage is positive, and the expected profit function

is concave. The graph is thus similar to the normal situation.

Second case:

β3 −
w2 − s

v2 + wr − s
6 β2 6 β3 −

w2 − w1

v2 + wr − w1

In this second case, the expected profit function is concave. Thus their is only one

possible solution for equation 4.17. λ3 6 0, the stable stage is not positive, therefore

he optimal order quantity happens before the stable stage. The third term of equation

4.17 approximates zero (Figure 6.4). Thus the optimality condition is:

F1−2̃(
Q1

1− β1
) =

λ4

λ4 − λ3

Third case:

β2 < β3 −
w2 − s

v2 + wr − s
In this third case, the expected profit function is not concave. λ3 < 0, the stable stage

is negative (Figure 6.4). After the stable stage, the coefficient of the third term in

equation 4.17 is positive and thus the first order derivative of expected profit becomes

increasing with order quantity. But the first derivative is always negative after the

stable stage:

λ4 − (λ4 − λ3)F1−2̃(
Q1

1− β1
)− (λ2 − λ1)F1+2̌(

Q1

1− β1
)�
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Figure 6.4: First derivative of the expected profit function for identical return probabili-

ties, with s = 5, β1 = 0.1, β2 = 0.24 and β3 = 0.6

λ4 − (λ4 − λ3) ∗ 1− (λ2 − λ1) ∗ 1 = λ3 − λ2 + λ1 = λ1 < 0

As a result, their is also only one possible solution to equation 4.17. The optimality

condition is:

F1−2̃(
Q1

1− β1
) =

λ4

λ4 − λ3

Figure 6.5: First derivative of the expected profit function for identical return probabili-

ties, with s = 5, β1 = 0.1, β2 = 0.15 and β3 = 0.6

To conclude from the numerical analysis, for any given value of the variables, only

one positive solution for equation 4.17 can exist for normal distributed demand. Thus

we can derive the optimal order quantity from equation 4.17 for any cases.
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In both the second and third case, the NV has an lower reliance on store inventory.

The only necessary condition for it is:

β2 6 β3 −
w2 − w1

v2 + wr − w1

The situation for this condition in practice can be that the NV is not good at managing

internet sales (e.g. bad packaging), while the drop-shipper is more professional and thus

the return proportion of internet business is smaller with drop-shipping option.

Let β1 = 0.1, β2 = 0.2, β3 = 0.35, the optimal order quantity Q∗ decreases with wr

(Figure 6.6). This is because β3 > β2 and therefore there will be more returns to sell

the same amount of products to satisfy internet demand from store inventory than to

rely on drop-shipping. When the unit return cost increases, the difference between their

return cost is more important, thus the NV stocks less store inventory. The optimal

order quantity value falls down at wr = 3.75, this is because β2 = β3 − w2−w1
v2+wr−w1

at

wr = 11
3 and after this point, the NV relies more on drop-shipping option.

Figure 6.6: Optimal order quantity as a function of unit return cost
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Figure 6.7: Optimal expected profit as a function of unit return cost
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