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Abstract 

Over the past decades, climate change has been a subject of serious international negotiations. 

Solar photovoltaic (PV) energy has caught the eyes of many governments as one of the front-runner 

technologies for the low carbon energy transition in the global community. Solar PV systems have 

experienced strong market growth over the last decade supported by favorable political reactions in the 

energy transition context. However, despite these favorable conditions, paradoxically, the global PV 

market recently went through a chaotic time encountering the overproduction issue, the industry crisis 

and the long-lasting trade disputes. Furthermore, as the level of PV penetration increases, many 

problematics started to appear with negative systemic impacts on the electricity sector. This thesis 

started from these problematics to understand the PV policy mechanisms and the context change. In 

order to define those issues, a systemic approach is taken to provide an accurate comprehension of the 

overall mechanisms of PV public policies. The concrete systemic vision of PV policy mechanisms is 

constructed based on theoretical and historical analysis by defining key variables and the context (Part 

I). A retrospective analysis using the proposed mapping tools is conducted to understand critical limits 

and challenges of PV development and to identify risks factors in the sector (Part II). This thesis also 

demonstrates how the nature of policy context changes in combined with the dynamic features of the 

PV sector. This helps anticipate possible risks of PV development in the future. The thesis highlights 

the nationwide PV policy dynamics was broken with the arrival of China in the PV sector. Taken the 

defined critical limits and challenges into account, this thesis eventually proposes strategic orientations 

of PV development at the two dimensions from both national and international perspectives (Part III). 

At the national level, this thesis discusses on PV self-consumption as the natural way of PV power use 

in the electricity system. This analysis implies a change in the nature of PV policies in the future; they 

would evolve towards a regulation role to control systemic impacts of PV integration in the electricity 

system. Next, as a response to the current global industry crisis, the thesis proposes opportunities of 

international collaborative actions to create new PV demand in the international context in pursuit of 

global economic and environmental benefits.  

 

 

Keywords: International Cooperation, International Trade, Globalization, Market Dynamics, 

Prospective Analysis, PV Integration, PV Policy Mechanisms, PV Self-consumption, Solar Energies, 

Solar PV Economics, Strategic Trade Theory, Systemic Approach 
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Résumé 

Ces dernières décennies, le changement climatique a été l’objet d’importantes négociations 

internationales. L’énergie solaire photovoltaïque (PV) a attiré l’attention de nombreux gouvernements 

en étant l’une des technologies favorites pour la transition énergétique bas carbone dans la 

communauté mondiale. Le marché des systèmes PV a connu une forte croissance cette dernière 

décennie soutenue par des actions politiques favorables dans un contexte de transition énergétique. 

Pourtant, malgré ces conditions bénéfiques, le marché mondial du PV a paradoxalement traversé une 

période chaotique rencontrant des problèmes de surproduction, une crise industrielle et des différends 

commerciaux durables entre pays. Par ailleurs, alors que le niveau de pénétration du PV dans le mix 

augmente, plusieurs problématiques ayant un impact systémique négatif sur le secteur de l’électricité 

ont commencé à apparaitre. Cette thèse part de ces problématiques et tente de comprendre les 

mécanismes des politiques PV et le changement de contexte. Afin de préciser ces questions, une 

approche systémique est utilisée pour fournir une compréhension correcte des mécanismes généraux 

des politiques publiques PV. Une vue d’ensemble systémique concrète de ces mécanismes est 

construite sur la base d’analyses théoriques et historiques en définissant les variables clés et le 

contexte (Part I). Une analyse rétrospective utilisant des mappings construits pour l’occasion est 

conduite afin de cerner les limites et défis critiques du développement du PV ainsi que les facteurs de 

risque du secteur (Part II). Cette thèse montre également la façon dont la nature du contexte politique 

change en liaison avec la dynamique du secteur PV. Cela permet d’anticiper les possibles risques à 

venir pour le développement du PV. La thèse met en évidence que la dynamique nationale a été brisée 

par l’entrée de la Chine sur le secteur PV. En prenant en compte les limites et défis critiques définis 

auparavant, la thèse propose au final des orientations stratégiques pour le développement du PV selon 

deux dimensions, nationale et internationale (Part III). Au niveau national, la thèse s’intéresse à 

l’autoconsommation PV en tant que manière naturelle d’utiliser l’énergie PV dans le système 

électrique. Cette analyse montre un changement de nature des politiques PV dans le futur : elles 

devraient évoluer vers un rôle de régulation afin de contrôler les impacts systémiques de l’intégration 

du PV dans le système électrique. Pour terminer, afin de résoudre la crise industrielle actuelle, la thèse 

présente des possibilités d’actions internationales en collaboration pour créer une nouvelle demande 

PV dans le contexte international en recherchant des bénéfices économiques et environnementaux au 

niveau mondial.  

 

Mots clés : Coopération Internationale, Commerce International, Mondialisation, Dynamiques de 

Marché, Analyse Prospective, Intégration PV, Mécanismes de Politique PV, Autoconsommation, 

Énergies Solaires, Économie du Solaire PV, Commerce Stratégique, Approche Systémique 
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Introduction  

1 Context 

1.1 A growing interest in solar energy in the international context 

Energy is a fundamental element of socio-economic development. The access to cheap energy 

without any interruption is thus closely associated with the modern society’s development. Stable 

energy supply for societal needs at least costs are the government’s main focus area in energy policy.  

In the 1970s and early 1980s, solar energy gained the international attention in the global 

energy security context. At that time, renewable energies like wind power and solar photovoltaic (PV) 

energy began to be highlighted as alternative energy sources faced with the huge increase in the price 

of oil caused by the OPEC oil embargo (1973) and the Iranian hostage crisis (1979). In this regard, 

several countries have developed solar energy putting great efforts into research activities. However, 

the interest has declined in the 1980s with the expansion of nuclear power and the decline in oil prices.  

The increasing awareness of environmental issues and problems (IPCC, 1990; 2007b; 

Chevalier, et al., 2012) has led to the heightened interest in renewable energies including solar energy. 

Over the past decades, climate change has been a subject of serious international negotiations. The 

international negotiations on climate change have evolved over the last few decades from the 

establishment of the basic framework of governance (the United Nations Framework Convention on 

Climate Change, UNFCCC) (United Nations, 1992) to legally binding agreements on climate change 

like the Kyoto Protocol (1997) and the Paris Agreement (2015). The use of renewable sources was 

recommended as an adaptation strategy of climate change. Solar PV energy is considered as one of the 

key mitigation technologies of decarbonized energy supply (IPCC, 2007c). According to IEA’s hi-

Renewables scenario (hi-Ren), 16% of world’s electricity would be supplied using PV energies by 

2050. This means the installed PV capacity will achieve 4,674 GW in 2050 1 (IEA, 2014; 2014b). 

The Paris Agreement (2015) took further actions to prepare the international efforts to reduce 

risks and the impacts of climate change by limiting global warming to well below 2°C by 2100 relative 

to preindustrial levels (COP21/CMP11, 2015). It acknowledged the need to promote all-inclusive 

access to sustainable energy in developing countries through the enhanced deployment of renewable 

energy. It also recognized the important role of providing incentives for emission reduction activities, 

including tools such as domestic policies and carbon pricing. Furthermore, the transition to low carbon 

energy supply system must not threaten food production (COP21/CMP11 Op. cit. article 2). In this 

context, solar power has caught the eyes of many governments as one of the front-runner technologies 

for the low carbon energy transition in the global community.  

                                                      
1 IEA scenarios look into various technology solutions that can contribute to limit climate change to 2°C: e.g. improvement of 
energy efficiency, increase of the share of renewable energies, expanded nuclear power and CCS technologies.  
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1.2 The development of solar photovoltaic power  

Since the mid-2000s, the PV sector went through a period of rapid change driven by public 

policies to support the PV applications. Over the last decade, the cost of PV modules has been sharply 

reduced from about 4.5$/Wp in 2005 to 0.61 $.Wp in 2015 (IEA PVPS, 2005; 2015; Lazard, 2014). 

Therefore, the most competitive utility-scale solar PV’s LCOE2 has fallen to around 80$/MWh in 2014 

(IRENA, 2015) from about 350$/MWh in 2005. The LCOE of decentralized solar PV systems across 

residential and commercial segments has also been largely reduced. The LCOE of PV system in 

German residential sector has been reduced to under 20$/kWh in 2014 (IRENA, Op. cit.). The socket 

parity for solar PV power was reached in 2013 in many countries like Germany, Italy and the 

Netherlands (IEA, 2015d). 

The global PV supply has demonstrated a rapid market growth with respect to the world’s 

cumulative installed capacity, rising from 1.2 GW in 2000 to 178 GW in 2014 (Solar Power Europe, 

2015)3. In recent years, the world added more solar PV capacity than the last four decades. PV power 

provided about 250 TWh electricity in 2015, this accounted for roughly 1% of the world electricity 

production (Jäger-Waldau, 2015).  

Europe has taken the leading position in the global PV market, with Germany in pole position. 

However, Europe is losing its leading position in the global market over the last several years. There 

was a paradigm change in the global PV market since 2013; new growth was implemented in non-

European countries (China, Japan, US). More than 60 % of new installations in 2013 came from 

China, Japan and the USA.  

From the industry perspective, since the mid-2000s, the increase in demand in line with policy 

supports in Europe has attracted new producers like Chinese players into the PV manufacturing 

market. Chinese production soared in a short time and managed to quickly reduce the PV cost. The 

country now dominates the global PV market. China's rapid market expansion has brought unexpected 

results destabilizing the global PV market. Europe and the U.S. decided to impose anti-dumping duties 

on the Chinese solar panel imports and this caused trade retaliation from China. The long-running 

trade conflicts over solar PV products still continue. 

 

2 Problem statement and objectives 

Solar resources are available everywhere without any geopolitical conflicts over natural 

resources. In addition, PV power has few technological risks with the advantage of being able to 

provide decentralized power. As said, solar photovoltaic market has demonstrated a constant growth 

supported by favorable political aids in the energy transition context. The PV prices have sharply 

reduced benefiting from economies of scale in recent years. However, despite these favorable 

conditions, paradoxically, the global PV market went through a chaotic time encountering the industry 

crisis with bankruptcy of many PV firms and long-lasting trade disputes. Furthermore, as the level of 

                                                      
2 The levelized cost of energy  (LCOE) 
3 Solar Power Europe, formerly known as EPIA (European Photovoltaic Industry Association) 
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PV penetration increases, many problematics started to appear like financial impacts on conventional 

power plants and negative wholesale price of electricity. This thesis started from these problematics. 

What happened in the PV development mechanisms? What led to this situation? 

Most researches in recent years aimed to anticipate or respond to issues related to very specific 

matters like the financing for PV growth or PV impacts on electricity system. These kinds of research 

studies are often associated with technical solutions to the given question. These approaches are very 

essential to prepare for further PV growth. However, policymakers need a more holistic point of view 

to decide strategic orientations for the PV development in the future energy system.  

In this regard, this thesis attempts to analyze the PV public policy mechanisms with a focus on 

the relations between different sectors that constitute the PV system. The objectives of this study are as 

below:  

- To provide policy decision makers or policy evaluators with policy evaluation tools that 

give a macroscopic perspective (a big picture) and a detailed view of the sequence of PV 

system, 

- To analyze the complex and dynamic features of PV policy mechanisms by taking the 

policy context and its historicity into account: this eventually helps understand causes of 

problems and the mechanisms behind them, 

- To propose strategic orientations for PV growth; this aims to improve the overall 

performance of PV policy mechanisms in the energy system with increased satisfaction of 

the main stakeholders as a whole. 

3 The development of solar PV energy in the literature 

This thesis discusses on the public policies for the development of solar PV power and its 

impacts on technology systems and market dynamics. The thesis aims to contribute to bring a new 

scientific approach based on the systemic analysis of public policies for the development of PV power.  

The relevant literature on policies in support of solar PV power development is very large 

because the subject concerns many fields (e.g. technology, public policies, innovation policy, 

economics, environment policy, and electricity market). In this part, it does not attempt to cover all the 

existing literature, but it aims to provide an overview of key selected literature of the relevant subjects 

in the PV sector by highlighting the different research areas of interest.  

3.1 Theoretical justification of government intervention to develop renewable energies 

The overview of literature on public policies in favor of PV power should trace back to the 

theoretical literature on the justification of the government’s intervention to develop renewable 

energies in pursuit of low-carbon energy transition (United Nations, 1992). The concept of 

environment has changed over time from an external element of production model to an important 

factor in the socio-economic growth model. However, the paradigm shift is quite limited without any 

political favor. Many studies thus advocated government intervention via public policies of innovation 

to enhance innovation capabilities to shift towards a more sustainable paradigm (IPCC, 2011b). 



27 

 

From an economic theoretical perspective, the government intervention can be justified when 

it aims to resolve market failure to obtain a more efficient outcome and to redistribute income at the 

socially optimum level than the result from free market system. Such market failure is related to 

innovation and R&D activities to develop renewable energies. The output of R&D investment can 

partially be considered as public goods: non-excludable and non-rivalry in consumption (Arrow, 1962; 

Mamuneas T.P., 1996). In some circumstances, private firms invest below the socially optimal level 

with the aspiration of benefiting from other firms through knowledge spillovers (Griliches, 1992); this 

would reduce social benefits (Jaffe, 1986). Therefore, government intervention can be justified to 

increase innovation. This also closely related to the national industry competitiveness.  

Government intervention is also necessary to internalize externalities of environmental costs 

(Pigou, 1920). Even though a firm that generates pollution to produce its products harms social 

benefits, the private sector has little incentives to reduce negative externalities. Such negative 

externalities are not correctly reflected in market prices (Baumol & Oates, 1988). Government can 

intervene to correct negative externalities related to the environment through various methods like 

carbon taxes, emission trading schemes or regulations (Solangi, et al., 2011). Otherwise, the self-

interest seeking firms would not concern global warming or pollution issues unless the external cost is 

internalized (IPCC(b)). 

3.2 Review of relevant literature of PV policies and PV development  

Literature review with a specific angle on PV policies and PV development can follow diverse 

orientations because it embraces many research subjects. Table I summarizes the major domains of 

researches concerning PV power development in the energy system.  

Some studies have provided well-defined summaries of PV technologies and usages and their 

historical evolution (IEA-ETSAP and IRENA, 2013). Since this thesis is mainly focused on PV public 

policy issues, the advanced analyses on PV technologies are not considered.  

In the past, PV policies mainly aimed to increase the performance of basic science technology; 

PV innovation was thus mainly driven by the government policy like patent protection, R&D tax credit 

or R&D funding. Researchers studied the necessity of policy support to advance the innovation of PV 

technologies (technology-push) (Schuster, 1981). The private sector has difficulties to invest in new 

energy technologies at its early stage of development. Some literature explained the difficulty to 

integrate renewable energies in the existing energy system: the carbon-intensive energy technologies 

have organizational advantages benefiting from economies of scale (carbon lock-in) (Unruh, 2000) and 

there are barriers related to the contextual reason like increased lobbying against new renewable 

technologies (Hughes, 1986). Therefore, public policies have the significant role in removing such 

barriers to the PV developments. However, despite the public support to R&D activities, the PV 

technologies still remained expensive compared with other energy technologies. PV power was first 

seen as technical solutions for the electrification in remote areas or consumer electronic use (the World 

Bank, 1996; Hoffman, 2006).  
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 Focus areas  Selected literature 

Supply-side 

 

 

Technology : e.g. R&D activities 

related to the PV development 

 

(El Chaar & El Zein, 2011), (Green, 2005), 

(IEA-ETSAP and IRENA, 2013), (IEA, 2014), (IPCC, 

2011c) 

Innovation  Innovation studies : e.g. innovation 

trajectories  

(Watanabe, et al., 2000), (Nemet, 2009; 2012), (Neij, 

1997), (Van Benthem, et al., 2008), (Finon, 2008) 

Demand-side 

  

PV usages: e.g. history and evolution 

of PV usages   

(Hoffman, 2006), (IPCC, 2011c) 

(Haas, 1995) 

PV integration: e.g. issues around PV 

integration in the energy system 

(Haas, et al., 2013), (OECD/NEA, 2012), (Pudjianto, et 

al., 2013), (Ueckerdt, et al., 2013) 

Coupling with other sectors (Kempton, 2015), (Ajanovic & Haas, 2015), (Popiolek, 

2015b) 

Public 

policies 

Role of public policies: e.g. general 

explanations about public policies in 

support to PV power 

(Byrne & Kurdgelashvili, 2011), (Timilsina, et al., 2012), 

(IRENA, 2012b), (IPCC, 2011a), (IEA, 2014) 

Country studies: e.g. PV policy review 

of selected countries 

Germany: (Lauber & Mez, 2004) 

Japan: (Kimura & Suzuki, 2006)  

China : (Zhang & He, 2013) 

Comparative analsysis : (Avril, et al., 2012; Shum & 

Watanabe, 2007; Grau, et al., 2012; Solangi, et al., 2011)  

Evaluation of policy instruments  

 

(Wüstenhagen & Bilharz, 2006), (Menanteau, et al., 

2003), (Lipp, 2007), (Jacobsson & Lauber, 2006) 

Multi- 

disciplinary 

Institutional changes: e.g. green growth  (Edquist, 1999), (Rotmans, et al., 2001), (Jouvet & de 

Perthuis, 2012), (Lee, 2010) 

Table I: Major domains of researches concerning PV power development 

From the 1980s, many governments started to take effect innovation policy putting the focus 

on commercialization. In the 1990s, the contribution of the PV energy in the society began to be 

focused under the energy transition context. Accordingly, researches on PV development began to 

include market perspective. For example, the simultaneous employment of both R&D policy and 

deployment policy can bring the best results of innovation (Mowery & Rosenberg, 1979). Neij used 

the learning curve theory, which describes the relation between the reduction of production costs and 

accumulated experiences along with the production volume growth, to demonstrate the important 

potential reduction of PV production costs (Neij, 1997).  Haas analyzed PV usage highlighting the 

importance of the increased consumer’s participation through the deployment of decentralized PV 

systems (Haas, 1995). He advocated the government’s promotion strategy (e.g. the roof-top program 

in Germany and Austria) for the widespread use of many small PV systems to seek for sustainable 

energy conservation effects due to a change in consumer awareness (Haas, 1994; 1995; 2003).  

Studies also began to analyze the relation between technology innovation and demand creation 

or to compare them with the objective to increase PV competitiveness. Grubb asserted that the proper 



29 

 

liaison between technology energy solution and market opportunities helps promote technology 

innovation (Grubb, 2004). In addition, synergies or positive feedbacks between R&D and deployment 

policies were suggested by many researchers. For example, Watanabe’s ‘virtuous circle’ provided a 

theoretical support to the country’s policy initiative to create technology innovation process. He 

asserted the creation of ‘virtuous cycle’ between R&D, market growth and price reduction for PV 

development based on an empirical analysis of Japan’s PV development (Watanabe, et al., 2000). 

Nemet examined the most important factors in reducing the cost of PV modules in the past based on 

empirical data (Nemet, 2006). He also compared between demand-pull and technology-push policies 

in terms of PV technology change (Nemet, 2009). 

In the 2000s, several governments decided to stimulate the PV demand. Researches mainly 

focused on the effectiveness of demand-side policies. The serious PV demand-side policy support was 

started with the feed-in tariff (FIT) system in the early 2000s. Germany became the largest installer in 

the world supported by this policy method since 2004. Studies began to focus on analyzing the initial 

results of this policy instrument. Wüstenhagen indicated the successful result in increasing the share of 

renewable electricity in Germany was thanks to the effective public policy, in particularly the FIT 

system (Wüstenhagen & Bilharz, 2006). Studies also aimed to assess different policy instruments; for 

instance, price-oriented policies versus quantity-based instruments (Menanteau, et al., 2003) and a 

comparative analysis of FIT vs. RPS (Lipp, 2007). In addition some studies provided a close up on a 

policy evaluation of certain countries (Jacobsson & Lauber, 2006; Agnolucci, 2006; Kimura & Suzuki, 

2006) or conducted a comparative analysis of several countries (Avril, et al., 2012; Shum & Watanabe, 

2007; Grau, et al., 2012; Solangi, et al., 2011). In addition, some studies aimed to give an overview of 

PV policies and the prospect for solar energies in the future (Byrne & Kurdgelashvili, 2011; Timilsina, 

et al., 2012) or to provide guidelines on renewable energy policy evalution (IRENA, 2012b). 

Reserches recently started to raise a question on policy costs of German PV policy (Hoppmann, et al., 

2014).  

Since the mid-2000s, Chinese arrival in the PV sector has surprised everyone. Researches tried 

to understand the impacts of this new player. In 2011, Grau studied public policies in support of PV 

energy development in Germany and China. He asserted the increased focus of public policy with 

regard to photovoltaics was placed on the national industrial policy objectives like local employment 

and GDP growth (Grau, et al., 2012). The issues of knowledge transfer between Germany and China 

were discussed by Grau and de la tour (du Fayet de la Tour, 2012).  

There was an attempt to broaden the policy analysis angle towards multidisciplinary approach. 

According to Charles Edquist (1999), the innovation policy should assemble relevant areas like R&D, 

technology, infrastructure and education. In addition, it must be integrated into industrial policy. He 

asserted the necessity of the public intervention (e.g. regulation) for the sectors that have no market 

mechanism; they concerns law, educations, research, social security, environment, infrastructures, etc. 

(Edquist, 1999). Rotmans also showed the complexities of transition by public policy (Rotmans, et al., 

2001). He indicated that the transition can be seen as a set of connected changes that occur in different 

sectors like technology, economy, institutions, behavior, culture etc. with multiple causality and co-
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evolution in several different areas. In addition, the green growth model can also be seen as a new 

approach with a broader vision embracing other sectors like sociology, industry and development 

(Jouvet & de Perthuis, 2012; Lee, 2010). The theory expanded the political context of PV development 

towards an economic development aspect on top of the energy transition. 

The important focuses of recent researches are placed on the PV intermittency and its impacts 

on the network and electricity market (Haas, et al., 2013; OECD/NEA, 2012; Ueckerdt, et al., 2013; 

Pudjianto, et al., 2013). The former researches on PV integration mainly studied the technical solutions 

for the grid stability, however, the new approach started to include the overall impacts of PV 

integration in the electricity system including externalities. Furthermore, as promising solutions of 

intermittent PV power, some studies began to look for opportunities of coupling with other sectors like 

electric car (Popiolek, 2015b) or H2 (Ajanovic & Haas, 2015).  

Like this, PV policies concern the extensive areas and they are influenced by diverse factors. 

Any kind of system-wide change affects the policy mechanisms and outcomes. Therefore, gone 

through this literature review, we decided to provide a systemic approach with the objective to give 

complementary insights on the subject. The systemic approach includes a broader perspective to 

analyze PV policy system and its dynamics compared with existing approaches that provide a specific 

focus on certain subjects of PV policies. We also intend to study the PV policy system in liaison with 

globalization to define the dynamics of the PV policy system at the international level (Yu, et al., 

2016). Therefore, our research would be distinguished from the existing work based on the following 

reasons: 

- It attempts to provide a systemic vision to analyze the complex PV policy system by 

embracing multidisciplinary domains,  

- It aims to propose analytic methods to prepare and evaluate PV public policies by taking 

the context and dynamics into account, 

- It intends to contribute to enlarge the scope of dynamics of PV public policies mechanisms 

at the international level in connection with globalization, 

- This systemic approach would be useful to anticipate policy risks.  

4 Methodologies: a systemic approach  

This dissertation aims to answer the following research questions.  

1) What are the key variables and context associated with PV development and PV policies? 

2) What are the critical limits and challenges related to the PV policies and what mechanisms 

are behind them? 

Once the PV development mechanisms with critical limits and challenges are identified, the 

thesis aims to answer the third question: 

3) Taken the current critical limits and challenges into account, what strategic orientations 

can help improve the PV policy mechanisms?  
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In order to answer those questions, it is not possible to provide an accurate comprehension of 

the overall mechanisms of PV public policies without a systemic approach under dynamic context. 

How to manage known or un-known risks related to PV development is closely associated with 

success of PV policies in the energy mix. Worldwide policymakers aspire to well anticipate all kinds 

of policy risks to avoid negative consequences. It might seem like guess work, however strategic 

approach exists to manage such risks. It can be done based on a combination of two techniques: 

- Model the PV system by taken as many influencing factors as possible into account to 

provide an accurate insight into complex and diverse policy systems (systemic approach), 

- Build solid knowledge tools to anticipate disruptive changes in the market and new 

business models; they can be constructed based on experiences that share the similarity 

(retrospective analysis based on systemic view). 

In this regard, we decided to approach the problematics based on the systemic vision. The 

purpose of this approach is to establish the concrete PV policy mechanisms taken its complexity and 

dynamic features into account. Systemic analysis needs to broaden the scope of study to understand 

each segment of a system and to highlight links between sectors that are often studied separately. We 

try to handle most of the relevant domains that influence the PV policy mechanisms from a systemic 

perspective. This requires the employment of various analysis tools that fit with each sector. Therefore, 

this thesis combines different analysis tools to provide a systemic point of view regarding the PV 

development.  

By keeping this global and systemic vision on PV policy mechanisms, this study is conducted 

in three steps: 1) theoretical analysis to define the context of PV public policies, 2) retrospective 

analysis to understand critical risk factors in the PV policy mechanisms, and 3) proposition of strategic 

orientations of PV public policies.  

 

4.1 Theoretical analysis to define the context of public policies in support of PV energy 
development 

 

The aim of this step is to address the first research question to define the key variables and 

context associated with PV development and PV policies. This helps construct key segments for 

systemic vision of PV policy mechanisms.  

We first give theoretical analysis to specify the PV development system based on three axes 

defined in the thesis subject; PV technologies and its costs (supply-side), PV usage including the 

integration in the electricity system (demand) and PV policies (driving force). The rationale for public 

policies in support of PV power development based on theoretical analysis is presented. The systemic 

approach then helps us to conduct the risk analysis and stakeholder analysis to define potential policy 

risks and challenges. 
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Public policies in support of solar PV power development: The rationale for public policies in support 

of PV power growth in the energy system from a theoretical and a historical angle is discussed. A 

recall on the public policy and the role of government in the history of economic thought is presented. 

In addition, the theory of environmental economics is discussed. This approach narrowed down to the 

field of energy where the intervention of the state is a significant issue. As the concept of environment 

has evolved in the human society, many countries consider photovoltaic energy as one of the 

promising solutions to deal with challenges related to the fields of energy, environment and economic 

development. However, PV energy was insufficiently competitive in the market and its growth was 

largely dependent on the policy strategy. The government’s policy choice is affected by the policy 

context and the historicity. The policy decision of PV integration requires the integration efforts (e.g. 

organizational change or designing new markets) that influence the existing energy system. Therefore, 

innovation theory (e.g. learning curve and the systemic innovation) was studied to provide the 

theatrical background of the PV development. Finally, an overview of the policy evaluation methods is 

made to define our choice on methodologies to give a systemic vision for our policy analysis.   

 

PV technologies: The state of the art analysis of PV technologies with their costs in the electricity 

system is conducted. We mainly focus on silicon technology that dominates the current market. Our 

analysis covers the whole value chain of PV systems from PV cell technology to the complete PV 

system with battery. A particular zoom on the storage of electricity with a special attention to Lithium-

Ion (Li-ion) battery is also given. It can be directly associated with decentralized PV systems and gives 

opportunities for a large deployment of PV systems thank to the potential cost reduction by economies 

of scale in the near future. 

 

PV usages including the PV integration: An analysis on the usage of PV technologies is conducted 

using the method of SWOT (Strengthens, Weakness, Opportunities and Threats) analysis. This 

approach helps identify strong and weak points of internal resources and external environmental 

factors like opportunities and threats that can be faced in the marketplace. The accurate analysis on 

each usage is useful to propose strategic directions of the utilization of each PV usages in the 

electricity mix and the industry development. Our analysis is extended to include integration impacts 

of the intermittent PV power production on the electricity system. An in-depth discussion on critical 

issues related to systemic costs of PV power is provided. 

 

Stakeholder analysis and risk analysis related to the PV development: Based on the definition of 

the overall context of PV policies, we eventually present the risks and the most important challenges 

which need to be taken into account for the development of PV (risks analysis). Furthermore, our 

analysis also includes the risks related to stakeholders (stakeholder analysis). With the implementation 

of the new mode of PV power use, stakeholders experience changes in their interests in the current 

energy market model. It is thus important to understand stakeholders’ viewpoints with potential 
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opportunities or threats. In doing so, strategies can be better prepared to take into account negotiations 

with opposing groups (if any) or to mitigate possible policy risks from stakeholders. 

 

4.2 Retrospective analysis to understand critical limits and challenges in the PV policy 
mechanisms  

Secondly, a retrospective analysis of PV policies in major countries is conducted. At this stage, 

we address the second research questions to identify critical limits and challenges related to the PV 

policies mechanisms and understand the mechanisms behind them.  

The retrospective analysis does not give a panacea for policymaking because the replicability 

of policy is seldom possible with differences in policy context, historicity, and dynamics. However, it 

is still useful to identify known risk factors for the future policy decisions to avoid negative effects. It 

allows us to predict unexpected but possible risks based on data array. In addition, the cross-country 

analysis of PV policies based on a systemic approach allows us to understand the complexity of PV 

policy mechanisms and its dynamics that evolve with time. This helps provide a concrete insight into 

the dynamic PV policy mechanisms. 

In this context, the retrospective study is conducted to examine major countries’ policies and 

results. Germany, Japan, and China are principally focused because of their important occupancy in 

the global supply and demand system. France, the USA, and South Korea are also studied due to their 

specific features in the PV market and PV policies.  

 

Proposed mapping methodology for the systemic analysis: As policy evaluation tools, we propose 

two types of mapping methodologies that help conduct the retrospective analysis; a schematic map of 

PV policy mechanisms that give a macroscopic vision to policymakers and the criteria of policy 

evaluation (detailed mappings) to find the problematic points for policymakers. The identified 

variables in the first step were re-organized, using the proposed methods.  

It is difficult to capture the policy system in a single diagram because of its complexity. 

However, we aim to concisely visualize the PV policy mechanisms based on a systemic approach. 

Logic models are used to propose the schematic map of PV policy mechanisms. It aims to visualize 

how policy inputs and resources driven by policy objectives turn to specific outputs with long-term 

impacts on society. The model also includes key contextual factors that have an important influence on 

the PV policy mechanisms. A comparative country analysis using the proposed analysis tool makes the 

complexity of the policy system stand out; each country has different strategic policy trajectories and 

consequences based on different policy context and historicity. Accordingly, the importance of each 

variable varies among countries. The accumulated experiences and knowledges allow us to point out 

key variables related to PV policy mechanisms.  

In the continuity of retrospective analysis, we develop the detailed mappings that explain what 

makes the change in the PV policy mechanisms directly or indirectly (causal relations among 

variables). This approach is also useful to imagine possible futures. We thus construct the detailed 

mappings according to a technological prospective methodology (méthode de prospective 



34 

 

technologique) proposed by N. Popiolek (Popiolek, 2015) to help our analysis. Three mappings are 

constructed around each core variables of a problematic issue to conduct a systemic and 

complementary analysis; PV installation growth, the competitiveness of PV power (the real cost of PV 

electricity in the electricity mix), and economic gains through PV development.  

 

The analysis of dynamic features and their influences: PV sector has dynamic features with rapid 

changes. The PV policy mechanisms are very complex and thus difficult to control because of 

constantly changing market dynamics. The reflection on the historical evolution of PV public policies 

based on the proposed mapping methodologies raises questions about the fast-changing market 

dynamics of PV sector by highlighting changes in the overriding factors in the PV policy mechanisms 

over time. The systemic analysis drives us to study the policy dynamics. We thus provide an in-depth 

investigation on three critical issues to highlight the dynamic features of PV policy mechanisms. First, 

the problematics related to FIT adjustment are analyzed. The rapid change in module prices in an open 

economy influenced the PV policy mechanisms. Secondly, PV systemic costs are discussed as hidden 

risks and challenges. Lastly, our analysis examines the impact of PV globalization on the national PV 

policy mechanisms. Our study attempts to extend the scope of systemic approach to the international 

level because the dynamics becomes greater combined with the globalization.   

 

4.3 Proposition of strategic orientations of PV policies for PV growth  

The aim of this step is to address the third question to propose strategic orientations to help 

improve the PV policy mechanisms. The attempt has two dimensions from both national and 

international perspectives. The three issues discussed in the previous step are taken into account to 

recommend strategic orientations of PV development with the objective to integrate the complexity 

and dynamic features of PV policy mechanisms.   

 

PV integration in the energy system (PV self-consumption): At the national level, we need a new 

policy approach which is less costly but more suitable to the PV specificities and market dynamics. It 

should also bring a sustainable growth of PV installations. Taken identified limits and challenges into 

account, we discuss a new mode of PV usage with self-consumption model. As PV power becomes 

more competitive, more consumers would be willing to install the PV system for their own use to 

lower energy bills. In order to prepare this transition, we need strategic orientations to integrate this 

usage in the energy system with the least costs. In this regard, our study aims to propose strategic 

orientations of PV self-consumption use. 

In the short-term, we study the benefits of prioritizing sectors with the best corresponding 

profile between PV system output and onsite demand based on French supermarket surfaces. In the 

longer-term, when electricity prices continue to rise while PV system prices go down, the economics 

of PV self-consumption model will greatly improve, making the model profitable for other sectors 

whose correspondence ratios are poorer, e.g. residential. The impacts would be greater when it is 
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combined with improved storage systems. We thus estimate the future cost reduction of PV system 

combined with battery in the residential sector based on IEA’s different scenarios. In our study, we 

quantify opportunities, costs, and impacts of PV self-consumption on stakeholders in the electricity 

market. Our study considers two time horizons- 2020 (short-term, supermarkets) and 2030 (longer-

term, residential). We also investigate benefits of PV self-consumption model related to PV systemic 

costs in contrast with utility-scale PV systems. 

 

Ways out of the global PV industry crisis (international cooperation): Our study provides a 

broader perspective on the PV policy mechanisms taken the international context (globalization) into 

account. We highlight the importance of external factors in the national PV policy mechanisms in an 

open economy. The study intends to provide a precise insight into globalization effects on the PV 

policy mechanisms based on the coupling case studies of Germany and China. We aim to model the 

complicated strategic interactions and accompanying consequences using the strategic trade theory 

(Krugman, 1986; 1987). The change in the market equilibrium influenced by the external factors is 

explained using the international trade theory. We intend to analyze the relations between Chinese 

strategic movement and the current PV industry crisis and long-lasting trade disputes.  

Once we present the theoretical analysis of the interactions of different policy strategies in the 

global PV market, we attempt to propose ways out of the global industry crisis based on the 

international cooperation to increase the global demand. We first study opportunities of solar PV 

electrification program in the less-developed and developing countries with the objective to give new 

outlets for the global overproduction of PV products and a solution to the global energy poverty 

problem based on sustainable socio-economic development model (green growth). In addition, we 

explain how this enlarged market contributes to the global PV competitiveness using the innovation 

theory (e.g. learning curve). Next, we also examine other cooperative political actions to enhance the 

PV system competitiveness in non-module sector based on the learning curve effect.  

5 Structure of the thesis 

 

The dissertation is consisted of three Parts. Each step of our approach leads to each Part, 

respectively.  

 

Part I:  Theoretical analysis to define the context of public policies in support of PV energy.  

In Part I, we discuss the public policies (chapter 1), PV technologies and PV usages with its 

integration (chapter 2). Once the context of photovoltaic is precisely defined, we understand that the 

development of PV is limited without a policy framework. Chapter 3 thus presents the role of policy in 

the development of PV with a focus on IEA scenarios. IEA’s suggested political efforts and movement 

in the development of PV power are presented. And then, a risk analysis is conducted to identify major 

potential risks and challenges in support of PV energy in the current and future energy system. Part I is 

used as a theoretical framework for applied studies in Part II and Part III. 
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Part II: Retrospective analysis to understand critical risks and challenges in the PV policy 

mechanisms  

In Part II, a retrospective analysis of PV public policies is conducted using two mapping 

methodologies to understand critical limits and challenges of PV policy mechanisms. In chapter 1, we 

overview the global PV market trends and the general context of PV sector. The goal of this chapter is 

to define major players in the PV sector by considering both the supply and demand sides to select 

sample groups of our retrospective analysis. In chapter 2, we conduct a retrospective analysis of PV 

public policies using a schematic map of PV policy mechanisms. Next, in chapter 3, we provide an in-

depth insight into relations among key variables for three important pillars of PV policies; PV 

electricity production growth, economic benefits through PV industry development and the reduction 

of PV costs. The systemic analysis using the mapping methodology leads to a study with a zoom on 

policy dynamics. Therefore, we finally discuss critical limits and risks of PV policy mechanisms that 

have emerged in the major countries in liaison with dynamic features of PV policy system.  

 

Part III: Proposition of strategic orientation of PV policies for further PV growth  

In Part III, we propose strategic orientations for PV growth. In chapter 1, we discuss a new 

mode of PV usage with self-consumption model. We first introduce the basic notion of self-

consumption and characteristics. A stakeholder analysis is presented to understand the stakeholders of 

PV integration in the electricity mix before developing our case study. And then, a micro-economic 

case study to evaluate opportunities of PV self-consumption in French supermarkets is conducted. This 

case study aims to analyze the effect of PV self-consumption model to what extent the identified issues 

are solved with this new mode of PV power use. We then extend our case study to the longer-term 

perspective based on residential PV systems combined with Li-ion batteries. In chapter 2, we attempt 

to provide a precise insight into globalization effects on the PV policy mechanisms. Our study intends 

to explain how Chinese government’s strategic trade policy influences the investment choices and 

payoffs of the market players. We explain the characteristics of the global PV market because it is 

important to understand the context of Chinese strategic movements and consequences. We also 

suggest a new game setting to think over the possibility of increased market players’ profits in the 

future. In chapter 3, we propose strategic directions to solve the oversupply issue based on 

international cooperation. We first quantify opportunities of electrification in the developing countries 

for future PV growth and the contribution to the global PV sector. And then, we also propose the 

cooperative political actions to enhance the PV system competitiveness in non-module sector.  
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Part I. The necessity of public policies in support of photovoltaic 
(PV) development 

Introduction 

In Part I, we aim to provide a theoretical framework to define the key variables and context 

associated with PV development and PV policies. This is a necessary step to construct a systemic 

vision of PV policy mechanisms. We thus develop the thesis subject by specifying the context 

according to three keywords: public policies, PV technologies and PV usage with their integration into 

the energy system. All the findings regarding the context of PV development in Part I provide us a 

broad understanding of the complicated system related to PV development. This Part consists of three 

chapters.  

The first chapter discusses the notion of public policy from a theoretical and a historical angle. 

The approach gradually focuses on policies in support of renewable energies and photovoltaic energy. 

The second chapter analyses the rest two issues of the subject: PV technologies and their 

usages. This chapter presents the state of the art analysis of PV technology systems with a focus on the 

silicon PV technology that dominates the current market. Then, a reflection on the usage of PV 

technologies is conducted using a SWOT analysis to help the policymaker’s decision. In addition, the 

integration of PV in the energy system is studied based on a systemic approach; this enables us to take 

issues related to the intermittency of PV production into account. The elaborate comprehension of 

impact of PV power use in the energy mix is useful to prepare future strategies of PV usage.  

Once the field of photovoltaic energy is precisely studied, we understand that the development 

of PV energy is limited without a policy framework. Chapter 3 thus presents the role of policy in the 

development of PV with a focus on IEA scenarios. IEA’s suggested political efforts and movement for 

the development of PV are presented. And then, a risk analysis is conducted to identify major potential 

risks and challenges in support of PV energy development in the current and future energy system. 

Part I will be used as a theoretical framework for applied studies in Part II and Part III. 
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Chapter 1. Public policy, innovation policy and policy evaluation  

This chapter presents a profound comprehension of public policy based on a theoretical and a 

historical perspective. To begin with, a recall on the public policy and the role of government in the 

history of economic thought are presented. This general analysis is then narrowed down to the field of 

energy where the intervention of the state is a significant issue. Faced with new challenges related to 

the fields of energy, environment and economic development, photovoltaic energy provides a solution 

but it is insufficiently competitive compared to conventional energies. The state intervention is thus 

required to develop PV energy in the energy mix. It is useful to take an interest in innovation policies 

to support PV development since the integration of PV energy in the energy system requires 

integration efforts (e.g. changes of organizations and practices or creating new market etc.), which 

affect the existing system. In this regard, economic theories of innovation as well as public policies 

that promote it are presented in section 3. This approach is applied for renewable energies where the 

innovation is required in the field of energy. Finally, an overview of the policy evaluation methods is 

made to find methodologies for our retrospective study, which will be conducted in Part II. 

1 Public policy  

1.1 Definition of public policy  

The concept of policy has a long history probably since the beginning of civilization if it only 

concerns public advices. In the modern society, public policy is the government’s actions to address a 

particular public issue, or to realize the political and administrative purposes in the future. Local, state, 

or federal government as well as international governmental organizations can design and take such 

actions to protect or increase benefits of their populations.  

Various scholars have attempted to define public policies using different analytical 

frameworks (Akindele & Olaopa, 2004). Thomas Dye suggested a simple definition of public policy; 

public policy is anything a government chooses to do or not to do (Dye, 1972). According to David 

Easton, public policy is the authoritative allocation of values for a society (Easton, 1953); the values 

concern not only tangible matters, but also intangible things (Huang, 2002; Miller, 1971). Anderson 

considered public policy as a purposive course of action followed by government in dealing with some 

problem or matter of public concern (Anderson, 1975; Obo, et al., 2014). According to Dror, public 

policy-making is a very complex, dynamic process whose various components make different 

contributions to it. It decides major guidelines for action directed at the future, mainly by 

governmental organs. These guidelines (policies) formally aim at achieving what is in the public 

interest by the best possible means (Roos, 1973). 

The public policy as a separated field in social sciences emerged in the sixties, embarrassing 

many disciplines from economics, sociology, philosophy, and political science. This modern approach 

to the public policy started with H. Lasswell taken into account the normative approach4 on top of 

                                                      
4 At that time, behaviorism was the dominant scientific approach to explain political situations; it aimed objectivity in 
gathering data and its interpretation based on quantitative methods. However, this fact-based study methodology excludes the 
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empirical method for objective quantification (Hildreth, et al., 2006). In his work, the policy 

orientation (Lasswell, 1951), H. Lasswell highlighted the policy of democracy to realize the human 

dignity. 

According to H. Lasswell, the policy sciences have three important features. First, they aim to 

identify goals, trends, conditions, projections and alternatives related to real world problems in the 

society (problem-oriented). In addition, that process should be interpreted in the larger context of 

events concerned with spatial and temporal perspectives (contextuality). The policy sciences cut across 

other specializations to add knowledge in the process of policymaking and execution 

(interdisciplinary) (Lasswell, 1971). Lasswell’s perspectives on policy sciences came to public 

attention when post-behaviorism5 appeared in the US in the 1960s in an effort to suggest theoretical 

solutions to social problems in those days (the Black riot, the Vietnam War).  

D. Easton also asserted a new approach in policy sciences so called ‘post-behavioral 

revolution’ (Easton, 1969). He criticized the existing behaviorism’s research method because of its 

absence of relevance. At that time, the dominant research method based on value-free empirical 

method approach could not suggest practical answers to social problems even though it made rapid 

progress in science. Thus, he put an emphasis on the addition of creative approach based on values and 

normative presupposition. D. Easton also developed a theory of the Political Systems (Easton, 1957), 

which was considered the most imposing theoretical structure from behavioral movement in political 

science (Miller, Op. cit.). The political system proposed a comprehensive view of the nature of 

political science and political theory. D. Easton asserted that the study of politics should aim to 

understand how authoritative decisions are made and executed for a society and those works will be 

reviewed in a political life. He focused on nature and consequences of political practices through the 

examination of operation of political parties, interest groups, government and voting, eventually to 

draw rough picture of aspect of actions of those units and their interactions. The political system is 

used in a context of a system of interrelated activities with systemic ties when authoritative decisions 

are taken and executed for a society (Easton, 1957). 

1.2 The role of government in the history of economic thought 

There is a variety of political positions towards government’s role on its public policy. The 

government’s policy choice has largely influenced by the adopted economic thoughts of the time. The 

economist’s view on the government’s role has changed according to the times. Discussion on the 

government’s size is determined by scope of government’s intervention and role of the government 

when handling economic and social activities.   

In the 18th and 19th centuries, the minimized government role was highlighted; the state should 

minimize its intervention in the market and focus on defense, foreign affairs and public security (night-

watchman state). Classical economists like Adam Smith and Ricardo supported this approach. 

                                                                                                                                                                      
value problems closely connected to the public policy. The Lasswell’s work proposed a new method in the science of policy. 
5 Post-behaviorism appeared against the dominance of behaviorist methods in the study of politics; post-behaviorism was 
against value-neutral method.  
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Adam Smith introduced benefits of market mechanism of resources allocation in his major 

work ‘an inquiry into the nature and causes of the wealth of nations (1776)’. According to Smith, 

when participants in the market seek their own self-interest, the good of society is promoted, led by the 

invisible hand. He criticized the protective trade, claiming to minimize the government’s roles in the 

market economy.  

However, there is a criticism of Smith’s theory. When Smith’s invisible hand fails to deliver 

beneficial social outcomes, resources are distributed inefficiently regardless of the real values and 

benefits (market failure). This inefficient allocation is often discovered related to the public good, 

imperfect competition, asymmetric information and externalities. 

The government active intervention shall be justified with regard to the principle of the 

correction of the situation of market failure. For example, the government’s roles to enforce contracts 

and to protect property rights are important to maintain the market mechanism (Stiglitz, 2006). The 

expanded role of government was particularly emphasized when the global economy encountered the 

Great Depression since 1929. Most countries experienced significant depression during the 1930s, 

suffering from harsh unemployment, reduction in production and deflation (Romer, 1993). John M. 

Keynes (Keynes, 1936) clarified the cause of the great depression from inadequate aggregate demand 

for goods and service in his work, ‘the General Theory of Employment, Interest, and Money’. He 

advocated that government has expanded roles in fiscal and monetary policies to overcome the 

economic slumps. The expanded government’s expenditure increases the aggregate demand and helps 

stimulate the private consumption and investment. His theory supported the US’s New Deal policies 

(1933-1938) during F. Roosevelt’s presidency, which included the government’s augmented spending 

in public work to create jobs and to revive the depressed economy. 

However, faced with the oil crisis in the 1970s, a stagflation, which accompanies inflation 

with economic recession, has occurred. The Keynesian theory that claims the government’s 

intervention in the market was criticized by the neo-classical economics because his approach could 

not suggest the solution of stagflation (government failure). The excessive intervention of government 

in the market mechanisms causes problems such as lack of understanding market, inefficiencies of 

bureaucracy, and collusive links between politicians and businesspersons. The government’s active 

monetary and fiscal policies were thus discouraged to avoid unintended negative effects and the 

laissez-faire approach was again highlighted (Friedman, 1962); governments should aim to keep a 

neutral position in monetary policy towards long-term economic growth. To correct the government’s 

failure, market mechanism started to be enhanced via privatization and deregulation. 

Monopoly power results in high prices and creates a deadweight welfare loss. The government 

action and regulation to reduce market power is justified to correct such market efficiency. However, 

until 1980s, research into regulation was relatively sparse, mostly dealing with how the government 

can intervene and control pricing in the two extremes of monopoly and perfect competition (The Royal 

Swedish Academy of Sciences, 2014). A new scientific methods based on game theory and contract 
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theory contributed to analyze the real policy practice; optimal regulation should be  industry-specific 

(The Royal Swedish Academy of Sciences, 2014b; Laffont & Tirole, 2001).  

 

2 Public policy for energy  

Energy is a basic component of human life, economic activity and civil progress (UN, 2014) 

and thus directly associated with national security and socio-economic development. Therefore, 

government puts emphasis on national energy policy and the national focuses on energy vary 

according to the ruling ideology.   

Energy policy generally concerns all activities in terms of the energy development from 

energy production, distribution and consumption. It aims to address present and future energy 

problems as well as to prepare plans and actions of energy advance path. The preparation of 

institutional framework is also part of energy policy.   

Energy policies vary according to periodic and geographical circumstance reflecting energy-

related features such as energy supply condition, economic situation, and historical backgrounds. 

Different stakeholders like individual, interest groups or private and public organizations influence the 

formation of energy public policies and the government makes the final decision (Rudnick, 2009).   

Energy policies have evolved over time. As seen, the balance between market mechanism and 

government’s role has important impacts on public policies. The decision to find the right balance 

between market model with free competition and regulatory model with government’s intervention is a 

question of long standing. These two approaches should not be considered as opposite ways but as 

complementing methods. The principal is applicable for energy policies.  

In order to find optimum approach of energy policies, both perspectives can complement each 

other even though the balance differs from time to time and place to place (Stiglitz, 2006). The public 

policies in energy can be divided into three main streams after the World War II (1939-1945) until 

now (Rudnick, Op. cit.) (See Table II). 

 

Period Driven by Key focus areas 

1940s-1970s 

(before oil crisis) 

Strong government’s intervention Government-led investment  

1980s-1990s Market-based mechanism, economic 

liberalization in energy sector 

Energy supply, technology choice 

2000s-now A hybrid system between market 

mechanism and the governmental 

regulative intervention 

Energy security, climate change, 

sustainable  supply 

Table II: Public policies in energy sector 

As said, the Keynes’s revised capitalism (1936) was the backbone of public policy to deal with 

the post war era. The development of energy system was no exception; it was supported by the 

government’s strategic role based on money supply and spending. The government strong intervention 
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appeared in energy sector including infrastructure investments in many countries until the late 1970s. 

Furthermore, the stable energy supply was vital to support the national socio-economic development. 

In this sense, the technological progress of nuclear energy proposed a good solution. In the 1960s, 

nuclear power achieved the technological credibility and became commercially viable. The progress 

led to many orders for nuclear plants in electric power utilities on a routine basis by the mid-1960s and 

prepared the expanding use in the 1970s (Char & Csik, 1987). 

However, faced with oil shocks in the 1970s, there was a critical price increase in energy and 

raw materials, which led to the overall inflation with the economic recession (U.S. Department of 

State, 2014). The government’s heavy expenditures in public sector and its inefficiency became a 

social problem. In the 1980s and 1990s, the energy sector followed the neo-classical economic theory, 

putting focus on free market mechanism; the liberalization reforms and privatization in energy sector 

have been implemented in many countries.  The government’s role in energy sector was limited during 

this period.  

In the 1990’s, the globe seriously started to concern on the environmental issues and 

sustainable energy supply and the Kyoto Protocol came into effect in 1997. The government’s role 

became bigger again based on a hybrid system of market-based mechanism and regulatory system. 

The policy focus has a different feature according to country strategic position towards the energy 

system.   

These days, there are a few important pillars of energy policy.  As Figure 1 illustrates, energy 

security, energy equity and environmental sustainability can be highlighted among them. Each 

government has a different policy balance among three pillars based on its political strategic position. 

For example, while the developed countries focus on environmental concerns and climate change 

issues, the developing countries concentrate more on energy supply to satisfy the energy needs of 

much of their population. In this regard, it is sometimes difficult to define common regional or 

international policy since the country is reluctant to lose the national interests to achieve it.  

 

 

  
Figure 1: Energy trilemma of WEC (World Energy Council, 2014; IEA, n.d.) 
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 Energy security 

Energy security is one of the most important agendas in energy policies in many countries.  

Going through economic growth through industrialization and urbanization, rapid growth in 

population and social development, the primary energy use of fossil fuel has rapidly increased over the 

last centuries. However, fossil fuel is mainly supplied by Middle Eastern nations and the national 

economy would therefore be threatened by oil price risk, any supply disruption, or by any regional 

social and political unrest. Stable energy supply for societal needs at least costs became more 

important. The access to cheap energy without any interruption is thus important motive in the modern 

society’s development. The following directives are often discussed to address energy security issues. 

- Secure balance of energy supply and present and future energy demand  

- Increase reliability of energy infrastructure 

- Increase energy independency by improving energy self-sufficiency 

- Diversify energy sources to reduce energy supply risks 

 Energy equity 

Over 1.3 billion people in the world are still without access to electricity (IEA website, n.d.). 

The energy poverty issue is another pillar to address with energy policy. Government energy policy 

aims to allow all citizens to afford energy service regardless of income level so as to secure the stable 

development and social integration. In many countries, government controls energy-pricing structure 

to eliminate energy poverty. In many developing countries, energy access is the primary driver of 

energy policies.  

 Environmental sustainability  

The transformation in energy system via de-carbonization is an important target area of energy 

policy. The development of modern society was mainly supported by unsustainable system 

accompanying concerns on natural resources and the environment issues. However, many efforts to 

put in place a sustainable energy system have been demonstrated supported by international 

governance.  The following agendas are focused to increase sustainability in energy system. 

- Tackle climate change (e.g. greenhouse gas (GHG) emissions reduction) 

- Increase energy supply from renewable energy sources (or low carbon sources) 

- Increase energy efficiency  

 

3 Public policy for innovation  

3.1 Innovation in the history of economic thought 

The global economy has steadily been growing in world economic history. Per capita national 

income has visibly increased after the Industrial Revolution in the 18th century (Maddison, 2003). The 

classical Malthusian approach, which asserts that marginal product of labor, becomes smaller as labor 

inputs increase (law of diminishing returns) on condition of unchanged land, capital, and technology, 

is applicable to pre-Industrial Revolution era. The Industrial Revolution led to a paradigm shift in the 
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world economy. Under the new economic system, the world economy continues to grow in all ways. 

The technological progress and improved productivity enabled the world economy to support 

population explosion in sympathy with increase of living standard.  

Innovation is one of the main drivers for the economic development with technological change 

and productivity gains. However, the conceptualization of innovation is a quite a recent event. Many 

economists began to take a profound interest in the relation between innovation and economic growth 

since a few centuries ago and tried to theorize them. Before Schumpeter, several literatures supported 

the contribution of technological progress to increase the national economy (Smith, 1776; Marshall, 

1890)6. However, these approaches did not focus on innovation itself. 

The serious discussion of innovation started since the 19th century with evolutionary 

economists; Veblen and Schumpeter. Neo-Schumpeterian economists (Nelson and Winter) further 

developed innovation theories in the context of evolutionary economic theory. 

Veblen (1857-1929) highlighted the important role of the institution in innovation (Veblen, 

1898; Lorenzi & Villemeur, 2009). He defines two types of institution. Dynamic technological 

institutions, which concern production methods, technology, or invention, give dynamic forces to 

advance the society. Ceremonial institutions include supporting systems to help develop technology 

such as socio-economic system, property rights, or practices. Both interact continuously to make a 

social culture change for innovation. Technology is the main factor for innovation but it alone cannot 

innovate; the institutions can obstacle the innovation dynamics. Accordingly, the institutions such as 

culture and habits need to improve or change to speed up the economic growth through innovation. 

 Schumpeter (1883-1950) added value in economic theories to explain innovation as a critical 

driver of economic growth. According to him, creative destruction is the essential ingredient of 

capitalist economic development (Schumpeter, 1943). It refers to ceaseless innovation mechanism by 

which new production units (or things) replace old ones (e.g. outdated ideas, technologies, inventories, 

skills or equipment). Entrepreneurs are at the center of such restructuring process and they are 

rewarded with profits from innovation. The technological innovation often creates monopoly rents 

before competitors or imitators reduce them. An entrepreneur is motivated to take inherent risks of 

implementing new ideas by such temporary monopolistic rents.  

Nelson and Winter (Nelson & Winter, 1982) introduced the new concept of routine to explain 

organizational change. Routines mean all regular and predictable behavioral patterns of firm. 

According to them, routines are alike with gene in the social realm and it is the key element to explain 

the economic change (Becker, 2003; Truijen, et al., n.d.; Nelson & Nelson, 2002).  Firms that have 

better routine via innovation are more competitive. As other firms imitate the best practices and the 

innovation, diffusion becomes possible via collective interaction. Like this, they suggested a broad 

concept of innovation on top of an individual or a firm. Innovation in organizational routines can be 

achieved by new combination of existing routines.  

                                                      
6 According to Smith, the division of labor leads to the productivity increase that contributed to the national economic 
development. Smith advocated that the productivity gains are driven by the technological progress when human capital and 
equipment are matched in an organization.  
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Unlike innovation economists, neo-classical economic theories focused on the accumulation of 

production input factors to explain long-term economic growth. In the 1950’s to 1970’s, the 

technological progress was seen as an exogenous factor. For example, Robert Solow explained 

economic growth in the context of the importance of capital in the production. He asserted that 

increased accumulation of production inputs or technical progress stimulate economic growth. 

Technical change refers to ‘any kind of shift’ in the production function (Solow, 1957). However, he 

assumed that such technical change is an exogenous factor, which is decided outside the model 

(exogenous growth). Solow also applied diminishing returns for capital, thus concluded the endless 

economic growth is not achievable; after all, the accumulation of capital also faces zero marginal 

production at a steady state. However, this situation is different from Malthusian trap because the 

Solow economy has much higher living standards from the Malthusian with minimum surviving 

requirements. The exogenous growth model is limited to explain economic growth in a realistic way.  

In the 1980’s, technological change was considered as an endogenous factor for economic 

growth. It can be realized through innovation, R&D and investment in human capitals; positive 

externalities and spillover effects of knowledge will contribute to economic growth. Patents give 

incentive for technological progress creating temporary monopoly rents. Arrow, Uzawa, Conlisk tried 

to conceptualize such technological progress. Since then, the endogenous growth model seriously 

began by Romer (1989), Grossman and Helpman (1990), and Aghion and Howitt (1992), highlighting 

the role of endogenous technological progress for economic growth; learning and knowledge are 

positive externalities which allow to increase the productivity. Accordingly, economists concentrated 

on analyzing factors that influence technological progress to figure out the sustainable economic 

growth; Romer’s learning (1986), Lucas’s human capital (1988), Romer, Aghion, Howitt: R&D 

investments and Barro’s public substructure. Human capital is important element to innovate (or to 

capture) or adapt new technologies (Nelson & Phelps, 1966). 

In the 1990s, the conceptualization of innovation continued in the context of national 

innovation system (NIS). According to innovation system theory, innovation and technology 

development are resulted from a complex set of relationships among actors in the system; they include 

enterprises, universities, and government research institutions. The effective flow of technology and 

information among them are keys to success of innovation process on a national level. 

In 2000s, innovation is seen far beyond R&D. Innovation includes commercialization, which 

distinguishes it from invention (Braunerhjelm & Svensson, 2007). It suggests a broad concept of 

innovation from changes in product to organizational methods. Innovation is defined as 

implementation of (Oslo manual for measuring innovation (OECD, 2005; OECD, n.d.) ;  

- new or significantly improved good or service (product innovation), 

- new or significantly improved production or delivery method  (process innovation), 

- new marketing methods involving significant changes in product design or packing, 

product placement, product promotion or pricing (commercialization innovation ), 



51  

 

- new organization methods in business practices, workplace organization or external 

relations (organizational innovation). 

Like this, the conceptualization of innovation has been developed from a long line of 

economists over the last decades. Referring the development process, for one thing, innovation 

should be reviewed based on systemic perspective (Popiolek, 2015) rather than narrow vision in 

order to give a holistic interpretation of innovation.  

3.2 Experience curve theory 

The diffusion and adoption of technologies depend on how further costs are reduced through 

innovation and experience accumulation (Arrow, 1962b). The experience curve (Yelle, 1979), also 

referred to as learning curve, describes the correlation between reduction of production cost and the 

level of experience (van den Wall Bake, et al., 2009).   

Wright proposed the first mathematical representation of the experience curve in 1936 (Byrne 

& Kurdgelashvili, 2011). Boston Consulting Group then used this concept to explain how the unit cost 

declines with cumulative production (Boston Consulting Group, 1972; Abell & Hammond, 1979; 

Sharp & Price, 1990). This concept is useful to prepare the diffusion of new technologies in the market, 

or pricing strategies (Sharp Op. cit.).  

The general rules of experience curve is that cost goes down by a constant percentage with 

each doubling of the total number of units produced. The experience curve is usually used for long-

term strategic analysis rather than short-term tactic review; experience curves give a tool of projecting 

future cost trend based on past cost reduction (Byrne Op. cit.). The mathematical model is described in 

equations (1) and (2). 

 

 C୲ = C଴ × ቀX౪Xబቁ−ୠ
  (1) 

 LR = ͳ − ʹ−ୠ (2) 

With: C୲: Costs of unit production at time t (€/W), X୲: Cumulative production at time t (W) 

Initial condition: C଴ : Reference cost (the cost of the first unit produced), X଴ : Reference cumulative production b:  Experience index: this is used to calculative the relative cost reduction (1-2b) for each doubling of the cumulative 

production  LR : The learning rate: the fractional reduction in price expected as the cumulative production doubles 

 

The value (2b) is called the progress ratio (PR) and used to express the progress of cost 

reductions for different technologies. For example, a PR of 80% means that the cost is reduced by 20% 

each time the cumulative production is doubled (Neij, 1997). In this study, experience curves are used 

to analyze possibilities and limits of cost reductions of the diffusion of PV energy technology.  
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3.3 Policies in favor of innovation 

3.3.1  Technology-push and demand-pull 

Since the 1960s, theorists have frequently debated whether successful innovation with 

technological change is induced by technological-push or by market-demand (Chidamber & Kon, 

1994; Nemet, 2009). The first approach tends to lead to radical innovations and the latter is more 

adapted for incremental innovation (Sherer, 1982).  

The technology proponents suggested that change in technology is the main driver of 

innovation. As seen, the origin of theory traces back to Joseph Schumpeter (Errabi, 2009). Since then, 

the technology-push model has been dominant model used to explain technological innovation for 

decades. It describes a situation where an emerging technologies or new combinations of existing 

technologies give the impetus for an innovation (Herstatt & Lettl, 2004). This means that the supply of 

new technologies is more important for innovation rather than adjustment the existing system of 

demand; only production innovation creates new industries (Coombs, et al., 1987). This approach is 

later known as the ‘liner innovation model’, which explains the progressive steps of innovation from 

basic science to applied research to production development to commercial products.  

However, there is a criticism against the technology-push theory because it ignores prices and 

other changes in economic conditions that affect the profitability of innovations (Nemet Op. cit.). In 

addition, the approach mainly refers to innovation process in a single direction, thus is not sufficient to 

explain the following works that include feedbacks loops and various interactions between innovation 

and diffusion (Freeman, 1994).  

In the 1960s, the theorists’ approach on innovation started looking at technological innovation 

from a demand-side rather than a supply perspective (Godin & Lane, 2013). The market demand 

school of thought asserted that organizations innovate driven by market needs.  

A market-pull (or demand-pull) implies a case in which the market demands an innovation in 

products or service type; producers deliver the products in response to an identified but unsatisfied 

customer needs in the market place. Jacob Schmookler is generally referred to as the exponent of 

demand-pull theory of innovation. According to him, needs determine the dynamics of the invention 

(Errabi Op. cit.). Schmookler did not argue that demand is the only force for innovative activities. He 

considered invention and demand as two interacting forces of innovation (Coombs Op. cit.). The 

important role of scientific discoveries remains and demands influence the level of investment in R&D. 

However, he did not justify the arguments via empirical studies (Errabi Op. cit.).  

The demand-pull approach is criticized by its broad concept of demand; it has inconsistent 

definition in various empirical studies (Mowery & Rosenberg, 1979) (Nemet, Scherer, Op. cit.). In 

addition, it is extremely difficult to measure how effectively firms identify unsatisfied needs in the 

market place (Nemet Op. cit.).  

Like this, technology-push argument is limited to reflect the market condition in terms of 

innovation process while as demand-pull approach underestimates technological capabilities. Taken 

the limits of both methods, a hybrid technique is necessary in order to better explain the nature of 

innovation.  



53  

 

Therefore, the interaction of technology and market mechanisms should not be ignored; a 

good internal coupling opportunity between technology-side and demand-side is important for 

successful innovation (Freeman Op. cit.). 

 

 

 

3.3.2  Innovation policies 

Innovation policy was referred as various terms such as science policy, R&D policy, or 

technology policy. However, innovation policy should distinguish from technology policy. 

Technology policy is a narrow concept; it aims at affecting the actions of agents in a system, in terms 

of their choices of technology and the creation of new technological products, processes or services 

(Cowan & van de Paal, 2000). In the past, innovation was mainly driven by the government policy 

aiming to develop basic science technology.   

However, in the 1980s, many governments started to take effect innovation policy putting the 

focus on commercialization with the objective of improving the national economy. Like this, 

innovation policy gives an equal importance on organizational change through political actions. The 

European Commission (EC) defines innovation policy as a set of policy actions to raise the quantity 

and efficiency of innovative activities, whereby ‘innovative activities’ refers to the creation, adaptation 

and adoption of new or improved products, processes, or services (Cowan Op. cit.). The 

commercialization or adaptation of market needs is necessary for such innovation process.  

However, P. Dasgupta (1987) asserted that surprisingly, theoretical economists working in the 

field of technological change have not shown much passion for issues in public policy. The push-pull 

debate can be extending up to policy perspective; however, studies agree both technology-push and 

demand-pull policy instrument are necessary for successful innovation of new energy technologies 

(Grübler, et al., 1999; Peters, et al., 2012). 

Technology-push public policies mainly aim to reduce per unit cost of production via 

innovation. To give an example, they include support in R&D, tax credits for companies, enhanced 

education or training as well as demonstration funding. On the other hand, demand-pull public policies 

attempt to raise returns of innovation implementation in the market place. The policy instruments 

include tax rebates or credits for consumers, government procurement (Edler & Georghiou, 2007), 

technology mandates, and regulatory standards. The types of policy instrument are discussed in the 

following section.  
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3.4 The necessity of innovation policies for the development of renewable energies 

3.4.1  New approach towards the environment 

In order to give more exquisite approach on the government intervention to promote 

renewable energies, it is important how the concept of environment in our socio-economic 

development model has evolved.  

 To do that, a quick review of standard concepts on economic growth and the natural capital 

should be preceded to distinguish differences from a new approach towards the environment. Neo-

classical economic growth theory defines a production function based on both labor and capital (or, 

according to more recent studies, as a function of human capital and productive capital). On the other 

hand, Solow (1956) specified a growth model that explains per capita growth as a consequence of the 

technical progress. This progress is seen as an external growth factor A of the production.  

 

Y = A f (L, K) (Y: production, A: external growth factor, L: labor, K: capital) 

 

Figure 2: Standard production model 

 

The technical progress is an exogenous factor; hence it does not directly link to productivities 

of labor or the capital, and another technical progress. The technical progress is rather induced by 

policy or investments.  

New growth theories have tried to include the technical progress in the production function as 

an endogenous factor. However, above approaches consider environmental as an external element; the 

notion of environmental use was hided and the environment is seen as an exogenous variable 

used for production (see Figure 2). 

The classical growth model has no actions to protect environment; the more the production 

rises, the more natural resources are needed. Assuming there are decreases of exhaustible resources 

and more pollutions, total output will be reduced as those situations can degrade growth factors in the 

long run. In this regard, based on the classical growth concept of the environment, the long-term 

economic growth is quite limited.  

Accordingly, another expanded approach, which aims at internalizing externalities including 

the environment in the model (e.g. carbon tax), can be introduced by trying to isolate effects of 

environment in the production function. Public policies have an important role for this. In fact, the 

perspective on environment has a significant change going through a series of environmental events 

based on the international governance; it has varied from a set of fossil fuels to renewable energies 

sources, as well as from pollution to global warming.  
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The first attempt to take the environment into account was to study issues of the non-

renewable resources to respond the famous report of the Club of Rome ‘the Limits to the Growth’. 

Many studies in the mid 1970’s have stated that technical progress or the substitution between the 

production factors could always give a solution to the scarcity of natural resources (Jouvet & de 

Perthuis, 2012). This optimistic vision of the growth was debated when the world became aware of the 

danger induced by the destruction of environment. Instead of exhaustible resources, the pollution was 

taken as a new factor. Now, several different models exist depending on the central theme of the 

study: GHG emissions, renewable energies, or environmental quality. 

 

 
Figure 3: Model with natural capital 

 

The classical economic model has a cycle that human and physical capitals are used for the 

production, and the benefits of the production are redistributed to maintain and grow those factors. By 

extension of this concept, the economic models integrates the environment in the production circle, 

and in the same context, the benefit of production generated as a result of using the environment will 

be re-distributed to improve the degraded environment in the production process. In this case, the 

environment is seen as natural capital, which can be used and has to be preserved. The devaluated 

natural capitals, by the use of production or by pollution, can be restored naturally or with human 

helps to sustain the production circle.  

 

 

Figure 4: Model with environmental protection 

 

Based on the production method which uses environment without consideration on its 

protection and restoration, the degraded environment gives negative impacts on input factors K and L, 
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and they would become more serious to the extent that all systems are inefficient in the long run. The 

simplest way to prevent those expected damages is to use a part of the benefits of the production on 

purpose to clean or to prevent those pollutions. 

However, the problem of this model is raised around the price to protect the environment. It 

adds another heavy load on the economy and degrades its competitiveness in the short term, in 

particular towards the global market, when some countries have no protection actions through public 

policies against pollution. This problem would not disappear as long as the production mechanism that 

harms the environment stays. Based on this perspective, the modification of production mechanism 

can be thought; a shift towards a more eco-friendly production and consumption patterns is an 

efficient way to decrease negative environmental consequences. That is the basic principle of the 

green growth.  

 

 

Figure 5: Green growth model 

 

Green growth model is based on this concept of establishment of green socio-economic 

mechanism to provide each individual member of the community with better quality of life. The 

political strategy aiming to shift to a new mode of green growth model is important for the successful 

implementation. It aims for sustainable growth on a green basis of those production and consumption 

mechanisms; hence it wants to build solid 3 policy pillars which are economic growth, social 

advancement (equity) and pro-environment (preservation of resources, anti-pollution) (NRCS 

(National Research Council for Economics Humanities and Social Sciences), 2010).  In this context, 

public policies aiming to stimulate renewable energies in their energy system can be further studied.  

 

3.4.2 Government’s intervention to develop renewable energies  

 According as the concept of the environment has changed, the human society began to 

include the environment in their socio-economic growth model. However, such movement is limited 

without political favors; government intervenes via public policies of innovation to enhance 

innovation capabilities to shift towards a more sustainable paradigm.  

Neo-classical economists considered this movement to address market failures and 

institutional economist saw it to respond institutional failures. The choice of public policy can be 

justified when the aim is to increase social benefits.  
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According to the IPCC’s special report on Renewable Energy Sources and Climate Change 

Mitigation (IPCC, 2007; IPCC, 2011b), the rationale of policies of energy transformation towards 

renewable energies ultimately wishes to improve quality of life (e.g. health, life expectancy and 

comfort) and productivity in a society (Hall et al., 2004, IPCC Op. cit.). The benefits of energy 

transition toward renewable energies can be defined as below (IPCC Op. cit.).  

- Reduce CO2 emissions  

- Deliver an eco- friendly system which improve health benefits 

- Increase the energy access, particular in rural areas 

- Enhance the energy security via diversification of energy technologies and resources  

- Bring a social and economic development  

However, there is a distinct difference in decision making of investment in renewable energies 

between the private sector and the government; the former is motivated to invest in renewable energies 

mainly for profit seeking, but the latter aims to improve social welfare. Therefore, finding the optimal 

balance between market mechanism and government’s intervention is important in support of 

renewable energies.  

As seen, the government can intervene to resolve market failure and realize internalization 

of externalities. In some circumstances, the private sector invests below the socially optimal level and 

the government’s role is significant in terms of correcting such market distortions.  

The first situation concerns market failures related to innovation to develop renewable 

energies. The outputs of R&D investment can partially be considered as public goods: non-excludable 

and non-rivalry in consumption (Arrow, 1962; Mamuneas & Nadiri, 1996). The knowledge from R&D 

activities is spilled over to other industries, firms and countries and this contributes to the productivity 

gains (positive externalities). These effects of knowledge spillovers reduce incentives of private firm’s 

R&D activities with the aspiration of benefiting from other firms (technology learning), and this would 

create negative effects to social benefits (Jaffe, 1986). The government’s intervention can be justified 

to correct this kind of market failures in developing technologies in renewable energies.  

The second situation is related to externalities of environmental costs. A firm that generates 

pollution to produce its products harms social benefits and the society will pay the cost to reduce the 

damage (negative externalities). However, the private sector has little incentives to reduce negative 

externalities when there are no economic incentives. The government attempts to correct negative 

externalities related to the environment through various methods such as regulations, subsidies, or 

market-based policies (Mankiw 2010). Otherwise, the self-interest seeking firm would not consider 

global warming or pollution issues unless the external cost is internalized (IPCC, 2011b; Pigou, 1920).  

In this context, PV policies in support for renewable energy sources aim to address externalities in 

terms of environmental quality, human health, economic development, or institutional objectives such 

as emission growth management (Solangi, et al., 2011). 
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3.4.3 Policy instruments to support renewable energies  

In the early 1990s, only few countries had rolled out policies to promote renewable energies. 

The production of electricity using renewable energies got greater attention due to the increase in fossil 

fuel prices and concerns over greenhouse gases and global climate change issues (Bhandari 2009 

(Chevalier, et al., 2012). Faced with increasing interests and concerns towards a sustainable 

development and environment, since the early and mid-2000s, policy started to focus on renewable 

energies as one of the promising energy solutions for the energy transition and deployment policies for 

them have emerged in many countries at the municipal, state, provincial, national and international 

level (IPCC, 2011a).  

Policies in support of renewable energies mainly aim to have more sustainable and secure 

energy systems by improving the cost-competitiveness in renewable technologies and sustainability in 

domestic energy production and concern its market share growth and job creation (IRENA, 2012b). 

The government has a crucial role to advance technologies and deployment of renewable energy 

technologies. 

However, as seen in the previous section, policies to stimulate innovation should not be 

confining to R&D stage only; they should also include efforts in commercialization and market 

development from demonstration and pre-commercialization to the large-scale stage (IPCC Op. cit.).  

There is no globally agreed list of renewable policy options; they can be defined in a variety of 

ways (IPCC Op. cit.). According to IPCC special report, the government support policies can be 

categorized into three groups; fiscal incentives, public financing, and regulations (IPCC, 2011b). 

- Fiscal incentives : reduction of actor’s contribution to the public treasury through tax 

deductions (such as income tax or other taxes), rebates, grants 

- Public financing: public supports such as loans, equity, or finical reliability such as 

guarantee 

- Regulations: rules to guide or control 

The possible PV policies instruments are captured through a literature review and re-organized 

in Figure 6. As mentioned above, they are divided by fiscal incentives, public financing and 

regulations. In addition, policies in support for electricity generation using renewable energies sources 

are divided into supply-side and demand-side (Alloisio, 2011; Finon, 2008). Both policies influence 

the development of manufacturing industry; the former directly aims to develop manufacturing 

industry (technology-push) and the latter indirectly stimulates to expand it (demand-pull) (Alloisio Op. 

cit.). 

- Technology-push (supply-side) policies to support R&D via technology and industry 

policies (e.g. subsidies to R&D, subsidies to investment for demonstration) 

- Market-pull (demand-side) policies to give incentives for diffusion of solar PV 

energy such as subsidies to electricity production and the demand (e.g. the feed in tariffs (FIT) 

system at technology deployment phase to crease the demand) 
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Figure 6: Policy instruments in support for renewable energy development (see annex) 

 

4 Policy evaluation  

4.1 Definition of policy evaluation  

It is important to first outline the concept of ‘policy evaluation’ in order to develop the 

methodological technique of this study. In the modern society, the scope of government’s intervention 

is indeed widespread and the development process is complex. In addition, the potential consequences 

usually have great impacts on the national operation. Therefore, there is an increased need for the 

social and scientific research that oversees the national operation and demonstrates the impacts in the 

policy cycle. In this context, policy evaluation implies the careful assessment of public intervention 

based on the meaning of thinking backwards for a better future.  

Policy evaluation is conducted to examine the policy content, policy implementation and 

policy impacts with the objective of improving the planning and implementation process in the public 

policy cycle. The policy evaluation can be conducted during the policy making process to draw the 

best results of policy formulation. However, policy evaluation is often used after the policy is 

implemented; it concerns an assessment and a feedback process to figure out to what extent the desired 

policy objectives are met and their effects (Patton & Sawicki, 1993). 

In addition, policy evaluation also examines resources employed and identifies the factors 

related to successful or unsuccessful outcomes. A series of such tasks are called a retrospective 

assessment (Vedung, 1997). Evaluation enables to distinguish advantages, unities and values of public 

policies (Scriven, 1991). The government needs value criteria to make the division between pluses and 

minuses of the government interventions.  

Policy evaluation helps accumulate knowledge from experiences of success and failure. The 

scope of evaluation varies according to the evaluator’s focus; it can restrict to narrow assessment of 

direct results of policy and effects, or apply a more comprehensive focus in an attempt to analyze 

context and environment of policymaking or implementation and impacts to the society. Going 
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through this process, the evaluation helps decision makers take wise choices for future actions (Weiss, 

1973).  

4.2 Development process of policy evaluation 

The developmental pathway of policy evaluation showed a different aspect according to the 

country (Descy & Tessaring, 2005). The policy evaluation development demonstrated a practical 

evolution to reflect the needs of the times. The practical start of program evaluation is around the turn 

of the century (Rossi, et al., 2003). After the World War II (1939-1945), the policy evaluation was 

developed mainly in Anglo-Saxon and Northern European countries. The adaption of systematic and 

scientific methods in policy evaluation is a recent event. The development history of policy evaluation 

can be divided into roughly three phases; the first wave of evaluation during the 1960s and 1970s; the 

second wave beginning in the mid-1970s; and a third one setting in since the 1990s (Wollmann, 2005).  

The serious first phase of evaluation development started with the appearance of the welfare 

state during the 1960s and 1970s. The government encountered the necessity to foster its ability for 

proactive policy-making process that uses modernized political and administrative systems when 

assessing various social programs. The evaluation had its importance to justify the policy decision 

making and to gather information for the future policy design. In the 1960s, the interest in program 

evaluation has grown as the US government expanded the social policies to fight the poverty under the 

Great Society programs. The federal spending was dramatically increased to support the Great Society 

program under Johnson administration; the rational budget allocation choice became crucial for the 

government. Those interventionist policy approach attracted people’s attentions and they tried to know 

how it operated and what effects were given to them. In this context, the government became aware of 

the necessity of systematic analysis and evaluation method.  

Apart from the US, from the early 1960s, many other countries including Europe started to 

adopt the concept of evaluation from the US (Ove Karlsson, 2003). In Europe, Sweden, Germany and 

the U.K. became the front-runners of evaluation development (Wollmann, 1986). In the UK, policy 

evaluation followed the similar pathway of the US. In the 1960s, Germany started to use the 

institutionalized program evaluation as a tool for the national management of governmental activities. 

Since then, the policy evaluation was used only for some specific areas. However, evaluation became 

popular after the reunification (1990), particularly related to assessment of East German institutions 

(Descy Op. cit.). In Sweden, in the mid-1960s, a systematic evaluation was seriously developed.  

The second phase of evaluation development should be interpreted in the socio-economic 

context of the time. In the 1970s, the mentioned interventionist policies with various welfare programs 

were putting a strain on the government finances. Moreover, the oil crisis (1973, 1979) worsened the 

economic situation provoking the global economic recession and fiscal crisis. The retrenchment in the 

national budget and the cost saving were prioritized in policymaking as well as policy evaluation. In 
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this context, the second wave of evaluation focused on cost-effectiveness. In the 1970s, this evaluation 

methodology was largely diffused in other countries as well7 (Wollmann Op. cit.).   

The third phase in evaluation arose in the 1990s based on the New Public Management 

(NPM). The NPM stemmed from market-oriented reforms in the 1980s mainly led by Anglo-Saxon 

countries like the Reagan administration and the Thatcher government. It aimed to have a small but 

efficient government in response to the government's failure to overcome economic recession and tax 

revolts problems (Gruening, 2001). During this period, many OECD countries adapted the NPM 

(Hood, 1995). The NPM was efficiency-focused and influenced by new institutional economics and 

managerialism, which aimed to install the private sector’s management mechanisms in public sector 

(Hood, 1991). In the 1990's, the idea of NPM has formed evaluation as a tool mostly for the 

administrative management and control.  

Like this, it is interesting to remark the increased demands in knowledge on the public 

decision stimulated the policy evaluation techniques. As seen, at its early stage, the evaluation was 

mainly based on the quantitative research methodology. However, the quantitative is not always the 

best solution to analyze obtained information. Evaluation is over time complemented by more 

qualitative research methodologies. Nowadays, several approaches are commonly in use in policy 

evaluation; a mix of qualitative and quantitative methods (Matt, et al., 2013). 

4.3 Methods of policy evaluation   

Policy evaluation aims to analyze the system that policy inputs (resources) transform into 

policy outputs (Vedung, 1997). There are various ways of categorizing policy evaluation methods.  

First, policy evaluation can be divided into two types according to the time of application; ex-

ante and ex-post (Wolpin, 2007). Ex-ante policy evaluation is the assessment of policy instrument 

before policy decision and formulation. This allows policymakers to predict possible consequences 

prior to policy implementation. On the other hand, ex-post policy evaluation occurs as the sequent 

process after policy implementation or before policy reformation (or termination). This approach is 

explained as a summative evaluation; evaluation is conducted to determine whether intended policy 

effects are achieved or not (Nachimas, Schuman). In addition, when some problems arise during 

policy implementation, formative evaluation can be conducted to find out better implementation 

strategies and methods to address the encountered issues. The procedure of policy evaluation varies 

depending on the purpose of use and policy method employed.  

It is important to collect reliable data to increase the accuracy of policy evaluation; however, it 

is not always an easy task. The following shows two types of data collection methods. 

 Quantitative method is an objective and empirical approach aiming at quantifying the 

problems using numeric data. This method has a structured and systematic way to collect data 

using statistic, mathematical or computational technique (Given, 2008). The method includes 

                                                      
7 For example, in the Netherlands, the institutionalization of evaluation started in the mid-1970s with an attempt to link 
cutback management and budgetary review procedures.  
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experimental technique, standardized interview using empirical data, or modelling. It allows to 

easily comparing statistical data. 

 Qualitative method is a subjective interpretation based on epistemological perspective (Guest, 

et al., 2013).  This consists of words and observation, not figures. It requires in-depth 

understanding and interpretation to analysis the data. The representative examples are 

questionnaire survey, focus group interview, case studies, in-depth interviews, expert speeches, 

testimonials, observation and any published written materials like documents, reports and 

articles.  

The qualitative provides a profound understanding about collected data, but the interpretation 

varies from researchers or the way of questions (Pawson and Tylley, 2001, p 109, Bernard Perret). The 

quantitative method is outstanding scientific approach widely used in engineering and sciences but has 

shortcomings because of the difficulties to determine the human activities, decision or politics that 

change over time (Quade, 1970). In this regard, the mix of both approaches can bring a complex 

research making up the weakness of both methods. Using this hybrid approach, researchers have 

broader access to data. The quality of data analysis depends on researchers’ capabilities; harvesting 

survey data, data presentation, statistical analysis, causal relation investigation, and judgment 

technique.    

The investigation of causal relationship methods is the heart of the evaluation but it is 

difficult to use. The policy system is complex and continuously interacts with many variables. 

Therefore, it is useful to use a simplified modeling of sub-system for a rigorous analysis of certain 

phenomenon. The simplest way is to compare results with and without such policies, ceteris paribus.  

In addition, a logic map can be used to conduct the appraisal process for new interventions based on a 

broader perspective; it helps visualize a systematic way of presenting the key steps required in order to 

turn a set of resources or inputs into activities that are designed to lead to a specific set of changes or 

outcomes (Hills, 2010) (See Part II chapter 2). 

There are other techniques to judge the effectiveness and efficiency of policy; cost 

effectiveness analysis and cost-benefits analysis are commonly used.  

Cost-effectiveness analysis is an assessment to find the most effective policy option among 

many alternatives to achieve the same objective. This technique is used for projects that have 

difficulties to monetarize the outcomes from the monetized inputs (e.g. one euro of costs). The multi-

criteria analysis can be used to quantify the outcomes (Comunities and Local Government, 2009; Beria, 

et al., 2010; Popiolek, 2006).  

However, the cost-benefits analysis is appraisal technique to find the best policy option by 

comparing the total expected cost of each option against the total expected benefits (Comunities and 

Local Government, 2009). Unlike the cost-effectiveness analysis, this method requires to monetarize 

the benefits and costs based on the time value of money. Its main barriers are difficulties related to 

monetary valuation of impacts of all alternatives. Benefit/Cost ratio is commonly used techniques.  
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The modeling is an alternative method of sample experimental technique. In economy, the 

econometrics linear model is often used to study macro-economic data. The goal is to find the 

coefficient for each input data that explains results. The modelling gives a good result only when the 

model is well designed with strong theoretical arguments.  

4.4 Evaluation of renewable energy policies 

This section concerns the evaluation of renewable energy policies. The success of public 

policies is determined by how well they satisfy the targeted objectives (cf. 3.4.2). Renewable energy 

policies often aim to increase the installed capacity of renewable energy technologies as well as the 

power generation from them. It is also important to define the policy target to conduct evaluation 

process because the policy target is the reference for the whole process of evaluation. 

Policies should be evaluated on a regular basis, in particularly when the financial support is 

involved. Literatures use various criteria to evaluate renewable energies policies ( (IPCC, 2011b; 

IRENA, 2012b; European Commission, 2010; Bohm & Russel, 1985). The common criteria that most 

literatures take to evaluate renewable energy policies are captured as below.  

 Effectiveness: To what extent, were the intended objectives met? This attempts to assess the 

outcomes from renewable energy policies. For example, the actual increase in installed 

capacity (MW) or electricity output (MWh) within the specified time period can be measured; 

both absolute and percentage (e.g. growth rate) terms can be used (IRENA, 2014b). The 

appraisal of technological or geographical diversity is important indicator for long-term 

sustained growth of renewable energy technologies (IPCC, 2011a). 

 Efficiency: The ratio of outcomes to inputs (IRENA Op. cit.); how economically were targets 

of renewable energies achieved against the economic resources spent (cost-effectiveness). The 

financial terms or social costs/ impacts can be used; e.g. expenditure for each unit of installed 

capacity ($/MW) or electricity outputs ($/MWh).  

 Equity: IPCC report defines equity is the incidence and distributional consequences of a 

policy, including dimensions such as fairness, justice and respect for the rights of indigenous 

people (IPCC Op. cit.). This can be appraised by observing the distribution of costs and 

benefits of a policy; e.g. changes in family spending in terms of electricity fares with increased 

renewable energies. The fairness of policy is important concept; the policy costs should be 

fairly allocated among stakeholders concerned. The polluters pay principle is usually 

considered to be fair (IPCC Op. cit.).  

 Institutional feasibility: To what extent, does a policy instrument is likely to be viewed as 

legitimate, gain acceptance, and be adopted and implemented (IPCC Op. cit.). This assesses 

how well policy elements fit with the social institutions or their institutional capacities. The 

criterion explains the difference between theoretical policy design and policy realities. For the 

successful policy implementation, the wide acceptance of stakeholders is required. This also 

explains the reason behind the good and bad policy practices. Case studies can be conducted to 

identify success or failure factors.   
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Other criteria are also studies in literatures (OECD, IRENA). For example, IRENA uses 

replicability to examine how well a successful policy can be reproduced by another country 

(IRENA, 2012b). This gives opportunities to define critical factor that leads to successful policy 

implementation by comparing different policy results under different policy context or conditions. 

In addition, consistency appraise if other external (related) policies do not contradict to concerned 

policies (van Reisen, 2007). Coherence (or relevance) assesses the appropriateness of a policy if 

it really addresses the matter concerned (OECD, 2012). 

Among them, effectiveness and efficiency are the most commonly used standards to 

determine the success of policy instruments (IPCC Op. cit.). In this study, these two criteria are 

mainly considered. 

 

5 Conclusions 

This chapter showed the necessity of public policy in support of PV energy. Energy is a vital 

need for human life and economic activity, and thus directly associated with national security and 

socio-economic development. Government’s intervention in the energy sector has always been playing 

an important role in setting market rules and the national focuses on energy policy vary according to 

the ruling ideology.  

In the context of energy transition renewable energies are highlighted as a solution but they are 

insufficiently attractive to private investors. In addition, each government has a different policy focus 

among three pillars (energy security, energy equity and environmental sustainability) according to the 

national strategies. The policy decision of each government also varies according to the policy context 

and its historicity.  Public policies in favor of solar PV energy should be explained in this context. 

Therefore, it is important to take the policy context that evolves with time (dynamics features) into 

account for the PV policy analysis. 

An innovation policy is thus needed to improve the position of PV technologies in the energy 

system because it requires integration efforts that accompany organizational, institutional and practical 

changes. The innovation policy includes supply-side policy (R & D, innovation in industry) and 

demand-side policy. Therefore, in this context, different policy instruments of both the supply and 

demand side were presented. In addition, the experience curve was presented; this is a simple and 

useful tool to discuss the progress of PV technologies and forecast it. This method will be used in Part 

III to give a brief idea of PV costs in the future. 

After recalling the context of public policy in support of renewables including PV, a historical 

evolution of public policy evaluation and various methodologies were presented. We concluded that a 

‘logic model’ is a useful tool to visualize a systematic way of presenting the key steps required in 

order to turn a set of resources or inputs into activities that are designed to lead to a specific set of 

changes or outcomes. Our research will be based on this approach to construct a schematic map of PV 

policy mechanisms, a tool for a retrospective study in Part II. In addition, we will attempt to define the 

causal relationship among variables of the PV policy mechanisms. Furthermore, the thesis will take the 
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most used criteria to evaluate public policies in support of renewable energies; efficiency (ratio of 

inputs to outcomes) and effectiveness (ratio of outcomes to objectives) of public policies. 
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Chapter 2. PV technologies, PV usages and PV integration in energy system 

In this chapter, we discuss on PV technologies, PV usages and PV integration.  

First, section 1 presents the state of the art analysis of PV technologies with their costs in the 

electricity system. A general perception of the PV value chain is first presented from PV cells to the 

complete system. It also summarizes different PV technologies with their development stage. In this 

section, we mainly focus on silicon technology that dominates the current market and locks the 

emergence of other technologies. It is then followed by further discussion on the complete PV system, 

in which other issues were raised such as soft costs. To complete the analysis of the PV system, a 

particular zoom on the storage of electricity is done; this is important to address the issue related to 

intermittency of PV electricity production. We take a special attention to the lithium Ion (Li-ion) 

battery. It is the most developed technology with the potential cost reduction by economies of scale in 

the short-term period. It can be directly associated with the decentralized PV systems. Therefore, it 

gives potential opportunities for large deployment of PV systems in the future.  

Once PV technology is defined, section 2 analyses PV usages (off-grid and grid-connected: 

centralized and distributed), using the SWOT analysis method. The methodology of SWOT 

(Strengthens, Weakness, Opportunities and Threats) analysis is commonly used in business to define 

the most effective strategies for business decision makers. It helps identify strong and weak points of 

internal resources and external environmental factors like opportunities and threats that can be faced in 

the marketplace. The same objective exists in terms of public policy because the policymaker seeks to 

adopt the most effective strategy to maximize the benefits from public investments. In this regard, the 

SWOT method is used to define the best development strategies for each PV application for 

policymakers. The study concludes with a reflection on the possible future PV usages (coupling) in the 

energy sector. 

Section 3 addresses the impact of large scale PV integration in electric power system. There 

are many critical issues related to the intermittency of PV electricity production. To understand these 

issues well, section 3 presents the specificities of the electricity market and electricity supply-demand 

management. This study then brings to the question related to the systemic costs of PV. It attempts to 

define the main impacts that should be taken into account by policymakers. 

 

1 The state of the art analysis of PV technology systems 

This chapter aims to give a brief review on solar PV technologies. The current market is 

dominated by silicon technology. Accordingly, this chapter gives a close look at the value chain of this 

technology; this is useful process to understand the PV industry. Then, all existing technologies are 

also presented with the specification, the level of maturity and the constraints and opportunities for 

development.  
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1.1 Solar PV value chain  

The PV panel is an assembly of modules. For the most common wafer-based crystalline 

silicon PV system (c-Si), the cell is the basic photovoltaic unit and the module is a connected assembly 

of cells. PV system employs solar panels to produce electricity. The installed PV system is connected 

to utility grid or has a stand-alone power system type (off-the-grid system). A PV system (Figure 7) is 

composed of solar panels (arrays) and all the hardware that makes the system functional.  

 
Figure 7: PV cell, module and rooftop system 

 

The manufacturing process of wafer-based silicon PV modules is comprised of four steps 

(IEA-ETSAP and IRENA, 2013);  

- Production of the PV grade semiconducting material: high-skilled technology  

- Production of ingots/wafers  

- Production of PV cells: somewhat sophisticated manufacturing 

- Assembling of PV modules: labor-intensive process  

 
Figure 8: C-Si PV value chain (IEA-ETSAP and IRENA, 2013)  

 

The silicon is a very common material on earth. However, the silicon needs to be very pure to 

become ‘solar-grade silicon’, and the process to obtain it is quite cumbersome and requires the high 

skill (IEA-ETSAP and IRENA Op. cit.). A crystal (mono-crystal or poly-crystal) of silicon is created 

with the high purity silicon feedstock. The silicon is melted in ingot to get the shape of the cell and the 

ingot is cut in thin layer to obtain wafers. The solar cell is created based on this wafer.  

As Figure 8 shows, PV upstream market is more capital-intensive while the downstream is 

more labor-intensive. In addition, the PV industry gives highest profits for upstream sector (e.g. silicon 

making) because it has a very high entrance level compared with downstream areas. 
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1.2 Solar PV cell technology (crystalline, thin film, and other technologies) 

Solar photovoltaic (PV) cells convert sunlight into electricity using the photovoltaic effect. 

There is the wide variety of materials capable of producing the photovoltaic effect (Gangopadhyay, et 

al., 2013). Over the last decades, PV technology has been constantly improving performance and 

reducing costs (IEA-ETSAP and IRENA Op. cit.). They can be clarified into three groups depending 

on materials used and maturity of commercialization.  

 Crystalline silicon technologies : mono-crystalline (mono-Si), multi-crystalline (multi- Si) 

 Thin film PV technologies: amorphous (a-Si), micro morph silicon (a-Si/a-Si/μc-Si), Cadmium-

Telluride (CdTe), Copper-Indium-Selenide (CIS) and Copper-Indium-Gallium-Diselenide 

(CIGS) 

 Other technologies: concentration PV (CPV), organic PV, dye sensitized PV, and perovskite, 

etc. 

The most mature technology is silicon-based technologies. Historically, the PV technology 

used silicon wafer, which is a thin slice of silicon crystal (semiconductor material). The solar cell is 

built based on this unit and then assembled in a module. It is the wafer-based crystalline technology 

(c-Si).  

Another way to build a PV cell is to deposit a thin layer of photosensitive material on a neutral 

materials or a substrate instead of a solid silicon bloc. It is the thin-film technology. It was developed 

first on silicon material (amorphous silicon a-Si). Just after, efficient but non-silicon materials 

emerged; e.g. cadmium-telluride CdTe, copper-indium-selenide CIS, and copper-indium-gallium-

diselenide CIGS.  

Other technologies exist; the most mature technology among them is the concentrated 

photovoltaic (CPV) system. It uses an assembly of high efficient multi-junction solar cells with lens 

that concentrate the sunlight. The concentration of the sunlight allows a higher efficiency of the cell. 

There are other pre-commercialized technologies; e.g. Dye-sensitized solar cells (DSSC), Organic PV 

cells (OPV) and emerging solar cells like perovskite cells.  

 

 

 
Figure 9: PV cell technologies (IRENA, 29-30 May 2014) 
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Like this, different semiconducting materials are responsive to different energy levels and 

wavelengths of light, with different level of efficiency and with more or less complex fabrication 

process. In this regard, it is worth reviewing the characteristics of each technology to define 

opportunities and threat factors of each technology.  

The following Figure 10 shows solar cell R&D efficiency gain of main technologies over the 

last decades (Fraunhofer ISE, 2014). A more complete graphic for all the existing technologies is 

provided by NREL on its website (NREL website); there is a significant progress of efficiency of 

emerging technologies. 

 

 
Figure 10: Overview of solar PV technology efficiency gain (R&D) 

The economic criteria are important drivers for technology choice. Table III summarizes 

important features of different commercialized technologies.         
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Crystalline silicon8 Thin film8 
mc-si 
(mono) 

pc-si 
(multi) 

a-Si / μc -Si CdTe CIGS 

History Since 1960s Since 1970s Since 1980s Recently 
commercialized 

Market share (IEA 2014)910 90% 10% 
3% 6% 1% 

Efficiency  

Best R&D cell11  25% 20.4% 13.4% 21% 21.7% 
Best R&D module  22.9% 18.5% 10.9% 16.1% 15.7% 
Commercial module12 14-20% 13-15% 6-9% 9-11% 10-12% 

Best costs of module production 13 
(€/Wp)  

0.6-0.7 0.5  0.4-0.5 0.6-0.7  

Installed PV system costs ($/Wp)  2.74 2.71 2.27 2.93 
Life time13  25 (30) 25 (30) 25 25 25 
Area needed per kw ( for modules)14 ~ 6 m2 ~ 7 m2 ~15 m2 ~10 m2 ~9 m2 

Power temperatures coefficient (%/k) -0.40 -0.45 -0.25 -0.25 -0.31 

Weak point Cost Low efficiency Environmental 
concerns (Cd 
toxicity) 

Most complex 
production process 
(high production costs) 

Opportunities Efficiency Low production costs 
Easy integration into the 
façade  
Lower temp coefficient 

Simple and quick 
manufacturing 
Cheapest PV 
technology 

 

Table III: Features of different commercialized cells technologies 

 

Table IV presents important features of different emerging technologies: 

 

CPV Emerging PV15 
LCPV HCPV16 Dye-sensitive Perovskite Organic 

Market share (IEA 2014)17 Less than 1%  

Efficiency  
Best R&D cell18   44.7% 11.9 % 20.1% 11.1% 
Best R&D module   36.7% - - 6-8%19 
Commercial module  ~30% - - 4-5% 

Installed system costs ($/Wp)  3.1 - - - 

Life time  2520 >10 years > 1 year21 - 
Area needed per kW ( for modules)22  ~3.5 m2 ~ 10 m2   
Power temperatures coefficient (%/k)  -0.0423    

Weak point Cost 
Tracking system is needed 

R&D stage (stability issue) 

Opportunities Land usage 
Adapted to high insolation 
area (sunbelt)24 

Cost 
Flexible 

Efficiency 
Cost 

Cost  
Flexible 

Table IV: Features of different emerging technologies 

 

                                                      
8 (Fraunhofer ISE, 2014; Shahan, 2013) 
9 Market share 2013  (IEA, 2014) 
10 Thin film technology market share (2013) (NPD Solarbuzz, 2013, p. 10) 
11 (NREL website)  
12 (IEA, 2014) 
13 (IEA-ETSAP and IRENA, 2013, p. 24) 
14 Author’s calculation based on 1000 kWh insolation. 
15 (Shahan, 2013; NREL, 2012) 
16 (Fraunhofer ISE, 2014)  
17 (IEA, 2014) 
18 (NREL website)   
19 (IRENA, 2012) 
20 (Fraunhofer, 2014b)  
21 (Meza, 2015) 
22 (IEA-ETSAP and IRENA, 2013) 
23 (Antonini, et al., 2014) 
24 (IEA, 2014)   
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1.3 Market lock-in situation by c-Si technology  

As seen there are various technology choice in term of PV power, however, the current PV 

market is locked in by c-Si technology (IEA 2014, Taillant 2002, Finon 2008, 2011).  

Historically, along with the technological advancement of silicon translators, crystalline 

silicon technology was favored with the possibility for PV manufacturing firms to purchase unwanted 

silicon from the semiconductor industry and became the dominant technology in the PV market. 

However, the increasing demand on high-purified silicon from the flat screen sector, the silicon supply 

is not any more abundant raw materials and there were silicon shortage problems in the mid-2000s.  

Over the last years, the rapid increase of c-Si cell and module production based on economies 

of scale, largely reduced the world’s PV modules prices and further increased the economic 

advantages of PV systems based on c-Si technology; it now accounts for around 90% of the market 

values (technological lock-in, Finon 2008).  

 
Figure 11: Learning curve (or experience curve)25 for c-Si technologies and thin film technologies (Bloomberg New Energy 
Finance, 2014b) 

 
Figure 12: PV technology breakthrough 

                                                      
25 See chapter 1 section 3.2 
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On the other hands, in spite of a lower efficiency, thin film PV technologies have advantages 

compared to crystalline silicon technologies; for example, low manufacturing costs (CdTe), low 

production cost and better yield (a-Si), more appropriate usages of building integration (transparent 

thin films..). These advantages give new ideas of diverse opportunities for PV growth. Furthermore, 

the hybrid option of PV technology can enhance the advantages of PV technologies.   

However, the established market has fewer incentives to make a long-term investment in those 

technologies because of the higher risks and economic competitiveness even though they are more 

suitable in certain areas. Those new technologies have a commercialization barrier competing with 

mature technologies despite its advantages. In this regard, there is a need for public policy to explore 

new growth opportunities. 

1.4 Solar PV system (focus on non-module sector) 

1.4.1  Breakdown of non-module parts of PV system  

The PV system is ready-to-use. Therefore, the costs of PV system include PV modules, 

auxiliary parts (non-module hardware) and soft costs. The costs for non-module hardware and soft 

costs are called ‘balance of Systems (BOS) costs’.  

The non-module hardware includes the supporting parts to mount modules (e.g. racking), the 

inverter to converts the direct current (DC) power from the cells to alternating current (AC) power to 

be compatible with the electrical network, and other electrical devices (e.g. power control system, 

switchgear, fuses, cabling). In addition, the PV system can couple with energy storage system (e.g. 

battery). The usage of a battery is necessary for off-grid PV systems.26  

Soft costs cover any other services needed to design, install, and connect the PV systems to the 

network. The following indicates detailed items of soft costs.  

- The costumer acquisition cost 

- The engineering cost 

- The installation cost 

- The permitting, inspection and interconnection costs (PII) 

- The profit and overhead of all the companies involved in the process 

For a residential system, the soft costs represent around 50% of the total investment in 2014. 

Persistent efforts are ongoing to make non-module hardware devices more reliable, to reduce their cost 

and extend the lifetime to keep pace with that of the module (IPCC). 

- Module : ~40% of PV system price 

- Non-module hardware: ~10% of PV system price (e.g. inverters, cables, batteries, fixed 

supports) 

- Soft costs: ~50% of PV system price (e.g. engineering, customer acquisition, installation, profit 

and overhead costs, and permission, inspection and interconnection (PII)) 

 

                                                      
26 (IEA-ETSAP and IRENA, 2013) 
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Figure 13: Components of the residential PV system costs (Seel, et al., 2014; ADEME, 2012) 

 

1.4.2 Solar PV price trend: increasing importance of non-module sector  

The PV system price is a key variable of the initial investment when calculating PV electricity 

costs. Until recently, the reduced module prices were the most focused driver to enhance the economic 

competitiveness of PV electricity. Research and industry have striven to decrease module production 

unit costs through cell efficiency improvement and economies of scale. Over the last decade, the PV 

system price drop was mainly correlated with the module price reduction. However, it seems difficult to 

expect the future PV system price to reduce by means of module price drops alone, as we have seen 

with historical data. Other factors became more important such as soft costs. 

 

 
Figure 14 (left): Change over time in PV module prices27 
Figure 15 (right): Change over time in residential rooftop system prices 27 

 

As Figure 14 shows, the average selling prices of PV modules are currently almost the same in 

many countries; the global module price is now less than $1/Wp. However, there are differences in PV 

system prices depending on the country (see Figure 15). The current economic competitiveness of PV 

                                                      
27 (IEA PVPS, 2002 to 2014; IEA PVPS France, 2002, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014; IEA PVPS 
Germany, 2002 to 2014; IEA PVPS Japan, 2002 to 2012; IEA PVPS Italy, 2002, 2003, 2006, 2007, 2008, 2009, 2011, 2012, 
2013) 
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systems needs to be discussed in a comprehensive manner by taking into account other accompanying 

costs involved in producing PV electricity.  

The current differences in PV system prices are mainly due to non-module prices. Therefore, 

the improvement of PV system competitiveness can be delivered by improving them. A well-designed 

policy can be a trigger to boost such price reductions.  

 

 
Figure 16: Change over time of the non-module price (system price – module price)27 

 

1.4.3 Non module costs and country market sizes 

The global PV module market now takes advantage of the cumulative knowledge stock and 

experience, thereby sharing a similar price. The positive correlation between the module price drop and 

the size of cumulative installations has been demonstrated in many studies, reflecting the PV module’s 

learning rate of around 20%, which means that each time the cumulative installed capacity doubled, the 

price went down by 20% (Kersten, et al., 2011).  

It is now worth reviewing a possible correlation between the cumulative installed capacity of 

PV systems and the reduction of non-module costs.  

We aim to review the variation in non-module prices within the PV system price using the 

learning-curve concept. The mathematical model is described in equations (1) and (2). 

 C୲ = C଴ × ቀX౪Xబቁ−ୠ
  (1) 

 LR = ͳ − ʹ−ୠ (2) 

With: ��: Cost at time t, ��: Cumulative installed capacity at time t �଴ : Reference cost, �଴ : Reference cumulative installed capacity ܾ:  Coefficient to find, ܴܮ : The learning rate 

 

The graph compares empirical data of non-module prices with cumulative installations in 

several countries, in order to provide insight into a possible correlation between them.  
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Data on the annual installation growth and non-module prices were taken from 1993 to 2013 

whenever available. Six countries were considered; they accounted for 61% of the global cumulative 

installations in 2013 having a continuous installation policy over several years (IEA PVPS, 2014).  

The curve focuses on residential rooftop PV systems for which the non-module costs account 

for highest fraction.  

 
Figure 17: Learning curve for non-module costs of PV rooftop systems in different countries28. 

 

Fig. 4 shows that each country has its own learning curve; they can be split into two groups; 

1. Italy, Germany, Korea and Japan share a similar slope 

2. France and the US have a different slope. 

Even though there are some country-based differences in terms of the learning rate, it seems 

proven that there is a positive correlation between the cumulative installations and the non-module price 

drops.  

Germany has a learning rate of 17.6% and its learning curve equation is described in (3)29: 

 C୲ = ͹.͸ × ቀ X౪6.6ቁ−଴.ଶ8
 (3) 

The learning rate is almost the same for all countries in the first group. The difference between 

them is low and stays constant. This could be due to irreducible costs like different consumer prices or 

taxes. 

It would be worth analyzing countries’ different costs to understand difference factors, and thus 

to amend strategies to increase the economic competitiveness of PV systems.  

                                                      
28  (Bundesministeriums für Umwelt, Natur-schutz und Reaktorsicherheit, 2011; Bundesministeriums für Wirtschaft und 
Energie, 2014; Gestore Servizi Energetici, 2014; Barbose, et al., 2013; IEA PVPS Japan, 2012; James, et al., 2013; IEA 
PVPS Korea, 2012; ADEME, 2012; Lesourd & Park, 2005) 
29 Author’s calculation, 1993 data were used for  �଴ and �଴. 
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1.5 Electrical energy storage  

1.5.1 Importance of energy storage for intermittent PV power 

The PV energy is an intermittent renewable energy source. Large-scale integration of PV 

power in the electric system poses challenges like electricity supply and demand balancing. Energy 

storage systems store energy for a certain period of time before releasing it to supply energy when 

needed (IEA, Mar. 19, 2014). They allow storing the electrical energy when PV output is high and the 

demand (or price) low. The stored power is generated when PV output is low and the demand (or price) 

high. By using this solution, the curtailment of PV energy is reduced and PV system operates more 

efficiently with increased flexibility. In addition, it also reduces transmission congestion and increase 

the reliability of the electric system (CEA, Oct. 18, 2012). Moreover, the storage system is compulsory 

for PV off-grid system to increase its efficiency. 

The choice of storage depends upon the situation of its electric system (e.g. generation mix, 

demand profile, or connectivity to other electric power systems) (Tuohy & O’Malley, 2011). The 

electricity storage systems compete with other alternatives such as interconnection with other electric 

power systems, flexible generation or demand-side actions. The economic aspects of storage systems 

will influence such choice. Many energy storage systems exist; some technologies (e.g. pumped hydro 

storage) are mature but most are still in the early stages of development and not yet economically 

viable. The high capital costs of storage system and its inefficiency in operation hinder their large-

scale deployment. Additional efforts are needed to further develop energy storage system. It will help 

to integrate a high level of PV power in the electric systems.  

In this regard, in the next section, it attempts to study the main energy storage technologies 

with a focus on the battery systems that can be easily coupled with the PV system. When their costs 

decline, it would be much easier to use PV systems in the current and future electric systems.   

1.5.2 Electricity storage technologies 

The electricity storage is an extensive field with numerous solutions. However, only few 

technologies are commercialized. The most mature technology is the Pumped Storage Hydropower 

(PSH). It is a hydroelectric energy storage system useful for load balancing. It operates on the same 

principle of conventional hydroelectric power plants; this technology pumps water from a lower 

reservoir up to an upper reservoir to store the energy and the stored water is released through turbines 

to produce electricity. Since the le 1920’s, PSH has been playing a key role for large-scale electrical 

energy storage solution (IPCC ch8). PSH represents 99% of installed energy storage capacity with 

about 140 GW in electricity grids in the world (IEA, Mar. 19, 2014). However, it has geographical 

constraints which require an upper reservoir; accordingly, it is more feasible in mountainous regions. 

The remaining 1% is a mix of various technologies, which are under development; e.g. 

compressed air energy storage (CAES), sodium-sulphur (NaS) batteries, lithium-ion batteries, lead-

acid batteries, nickel-cadmium, flywheel, hydrogen storage and redox-flow (IEA). 

Table V summarizes energy storage technologies; there are three groups of electricity storage 

systems according to the provided services:  short- and long-term storage and distributed battery 
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storage. In general, apart from PSH, CAES, and some battery technologies, most technologies are 

currently at much earlier stages of development. 

 

Electricity storage systems Technologies 

examples 

Benefits Limits 

Short-term (seconds-

minutes) storage applications 

Supercapacitors and 
SMES30 technologies 
Flywheels 

Address short bursts of 
electricity into the energy 
system 
 

High costs  

Long-term (hours-seasons) 

storage applications 

Pumped-storage 
hydropower (PSH), 
Compressed air 
energy storage 
(CAES) 
Hydrogen storage 

Global solution for bulk (large-
scale) storage 
Opportunity to increase storage 
capabilities  

High upfront investment costs 
Geographic requirements 
High capital costs 

Distributed battery storage Lithium-ion batteries, 

Sodium-sulphur (NaS) 

batteries,  

Lead-acid batteries, 

Use for both short- and long-

term applications  

Small-scale storage but highly 

scalable and efficient  

Energy density, power 

performance, lifetime, 

charging capabilities, and costs 

Table V: Electricity storage technologies (IEA, Mar. 19, 2014; CEA, Oct. 18, 2012)  

The electricity storage concerns the entire electric system. The electricity storage systems can 

be deployed in different locations of electric power system across electricity supply, transmission and 

distribution (T&D), and electricity demand (end-users). Table VI demonstrates diverse storage 

technologies applied in each sector across the electric power system with varying capacity. Batteries 

and hydrogen storage can be used in both supply and demand aspects. While batteries are applied for 

distributed and off-grid storage systems or short-term storage, hydrogen can be used for long-term 

storage. 

 Capacity  Technologies  

Supply Greater than 100MW PSH, CAES, Batteries, and Chemical- hydrogen storage 

T&D From 10kW to 100MW Flywheels, Supercapacitors, and Superconducting magnetic energy storage (SMES) 

Demand Less than 10kW Batteries, Chemical- hydrogen storage 

Table VI: Storage technologies applied in each sector across the electric power system 

 

As seen, the high costs of electricity storage technology are the main barrier for the large 

deployment of systems. The enhanced economic feasibility of storage system is essential for a large-

scale commercialization. Active research is ongoing to improve the system efficiency, to extend the 

lifetime, and to reduce the costs.  

Table VII gives the economic features of different storage solutions (enea consulting, 2012; 

CEA, Oct. 18, 2012; U.S. Department of Energy, 2013) . We can see that most technologies still have 

rooms to improve their economic aspects to be deployed on a commercial scale.   

 

 
 

                                                      
30 Superconducting Magnetic Energy Storage 
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Technology Maturity Yield (%) Lifetime (years) Investment ($/kW) 
STEP Deployed 0.65-0.80 50.00 1000 

CAES in cave R&D 0.5 35.00 550 

CAES with tank Deployed 0.5 35.00 600 

Synthetic Natural gas R&D - - - 

Flywheel Demonstration 0.85-0.95 20.00 1500 

Hydrogen R&D 0.25-0.35 10.00 6000 

Pb battery Deployed 0.7 11.00 300 

Li-ion battery Deployed 0.7-0.75 12.50 1000 

Battery NaS Demonstration 0.7-0.75 12.50 1250 

Redox-flow battery Demonstration 0.65-0.75 17.50 2000 

SMES Demonstration 0.75-0.80 25.00 250 

Super capacitor Demonstration 0.9-0.95 12.50 250 

Table VII: Economic features of different storage solutions 

In conclusion, electricity storage systems are the important element to decarbonize the future 

electric power system. The optimal choice of energy storage will depends on the current condition of 

energy system and future development aspects. However, as seen, the high costs of storage are an 

obstacle to solve; persistent R&D activities under targeted supports are needed to achieve a cost 

reduction. In doing so, it would increase energy access using PV system (off-grid or distributed PV 

system coupled with batteries). Furthermore, the storage system can be integrated in grid-connected 

PV system for smoothing demand peaks and backup power for PV systems. Moreover, combined with 

the transport sector, the enhanced batteries help diversify the transportation fuel resources.  

1.5.3 Price perspectives of Lithium ion (Li-ion) battery 

Lithium ion (Li-ion) battery is the most developed technologies with potential cost reduction 

by economies of scale in the short-term period. It can be directly associated with PV systems, in 

particular with distributed PV systems. Therefore, even though many other promising technologies 

exist, the analysis with Li-Ion technologies gives a basic scenario. It allows us to define the potential 

opportunities for the large deployment of PV systems coupled with battery in the future. Therefore, in 

our study, the price perspective of Li-ion battery is studied. 

Along with the development of the mobile devices (e.g. smartphone, notebook, etc.), Li-ion 

battery demonstrated a remarkable evolution over the past 25 years, reducing its volume and price. 

The battery development is still driven by increasing demand in mobile devices but also by the 

emerging markets like Electrical Vehicles (EV).  

The required capacity of battery for residential usage and electric vehicle is quite similar. The 

residential PV system with battery thus benefits from the development of electrical vehicles. For 

example, Tesla, the electric carmaker, proposed a battery system for residential usage in 2015; the 

price of Tesla’s Powerwall is $ 3500 for a 10 kWh and $ 3000 for 7 kWh (Tesla motor). If the 

installation cost is included, the Deutsche Bank estimated the cost of the battery at 500 $/kWh 

(TECSOL, 2015). According to the Deutsche Bank’s report, Telsa’s price will be reduced by 57% to 

$ 150/kWh in 2017 and by 71% to $ 100/kWh in 2024 (Deutsche Bank, 2015). 

The Japan EV roadmap aims to reduce the battery price to 270$/kWh in 2020 and 130$/kWh 

in 2030 (The committee on climate change, 2012). Furthermore, Mc Kinsey & Company expected the 
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price of Li-ion battery packs achieve at 197$/kWh in 2020 and 163$/kWh in 2025 (Hensley, et al., 

2012). Figure 18 displays different projections of the Li-ion battery prices. 

 

 
Figure 18: Li-ion battery price projections 

In conclusion, the estimated battery price would drop below 200$/kWh between 2020 and 

2025. In addition, the price would be further fallen between 100$/kWh and 150$/kWh in 2030 with 

a stabilized price. These reduced prices of battery would bring synergies related to the residential or 

commercial usage of the PV systems. 

 

 

2 Analysis of PV usages with SWOT analysis 

2.1 Introduction  

In this part, the territorial application of PV system is studied with SWOT analysis. Figure 19 

summarizes the evolution of PV usage over time. Along with the development of PV technology and 

PV cost reduction, the PV usages have been diversified and the level of centralization has increased. 

 

Figure 19: Change over time in PV usage  
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2.2 SWOT analysis 

The characteristic of each segment is analyzed using the method of SWOT analysis. A SWOT 

analysis is a commonly used method in business to define strong and weak points of internal resources 

of a firm and external environmental factors like opportunities and threats that can be faced in the 

marketplace. The aim is to define the most effective strategies for business decision makers. This 

methodology can be also used for policymakers. Strong and weak points of each usage of PV power 

are defined. In addition, potential opportunities and threats are considered when applicable since it is 

helpful to prepare future strategies for further PV growth. Therefore, in terms of each market segment, 

strengths, weaknesses, opportunities and threats are organized using the 2x2 matrix. The analysis 

ultimate aims to help policymakers prepare strategies to attain desired goals by using internal 

resources and external conditions in the best way. Figure 21 indicates four possible strategies.  

 Positive factors Negative Factors 

Internal Strengths Weaknesses 

External Opportunities Threats 

Figure 20: SWOT 2x2 matrix 

 Strengths Weaknesses 

Opportunities O-S strategies O-W strategies 

Threats T-S strategies T-W strategies 

Figure 21: SWOT strategies 

 OS strategies: use strengths to take advantage of opportunities 

 OW strategies: overcome weakness by taking advantage of opportunities 

 TS strategies: use strengths to avoid threats 

 TW strategies: minimize weakness and avoid threats 

2.3 Historical off-grid systems and nomad usages 

The first solar cell was created in 1954 at Bell Laboratory. The first targeted use of PV power 

was the nomad usage to provide electricity to isolated or autonomous equipment. PV technology was 

suitable for providing power to isolated devices, in particularly, with technical constraints that include 

low energy consumption, long life cycle, and low maintenance (e.g. traffic signal system, rescue 

terminals or scientific instruments). The usage for space satellite well fits to overcome the technical 

constraints associated with the weight of the satellite (this excludes many other technologies). A small 

PV cell (less than 1W) was used for the Vanguard I space satellite to power the radio ( U.S. 

Department of Energy). 

In 1963, Japan installed a 242W PV solar panel coupled with a battery to power a lighthouse 

on Ogami Island; it is the first off-grid application for a building ( U.S. Department of Energy).  In the 

1970s, the cost of the solar cells dramatically dropped and it began to be used more widely for isolated 

devices (navigation warning lights, lighthouses, oil platform signal, foghorn, calculator, etc.) (NREL, 

2011).  

In the early 1990s, the PV system was still driven by off-grid applications (e.g. remote 

electrification). Off-grid systems gave a proper solution to power isolated areas where the cost of the 

grid extension was too expensive. To provide stable enough electricity, the off-grid PV systems are 

coupled with a battery system to store the electricity and provide it when the need exists.  

However, the grid-connected PV market became more popular and the off-grid application 

now has a very small part in the global installations; less than 1% of the cumulative installed capacity 
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of IEA PVPS countries in 2013 (IEA PVPS, 2014). Nowadays, the off-grid PV power is mainly used 

in the professional (INES, 2007) remote areas or for the electrification in rural areas or in developing 

countries (Hoffman, 2006). 

Table VIII describes key characteristics of internal and external factors of off-grid application. 

Strengths Weak points 
Power supply in remote areas (industrial & residential) 
Good application solution for the electrification in developing 
countries or rural areas 

Intermittency  
Costs for storage devices   

Opportunities Threats 
Energy poverty in the world: 18% of global population lack access 
to electricity  (IEA website) 
Hybrid system coupling with diesel or other renewable sources 
(e.g. wind, hydro) 

Oil price drop 

Table VIII: SWOT analysis of off-grid application  

Therefore, the off-grid PV system has great potential to supply power for the following 

cases. 

- Rural or remote areas that are not connected to the grid: the development of electric line 

systems often require high construction costs, and PV systems can replace diesel 

generators for power supply 

- Areas which are connected to the grid, but with low reliability of power supply and 

frequent power failure due to grid problem  

In conclusion, off-grid systems give a solution to solve the global energy poverty problem (OS 

strategy). Significant parts of world’s population mostly in sub-Saharan Africa or rural areas in 

developing Asia still have difficulties to access to electricity, electric light, water pumping for 

irrigation, or clean cooking facilities (IEA). The electricity supply problem can be also found in other 

regions like South America, Central Asia and Central America. Many of these areas have a better 

weather condition to produce solar PV power than many locations in developed countries where solar 

PV demonstrated a rapid growth over the last decades. 

2.4 Grid-connected systems  

2.4.1 Introduction 

Off-grid systems have limitation when the PV electricity production does not match up with 

the electricity consumption. The generated electricity, which is not consumed or stored, will be lost. 

The electricity consumption cannot exceed the power capacity of PV system. The grid connection 

addresses these issues. Furthermore, on-grid PV systems also supply electricity to the buildings 

connected to the electricity network.  

However, grid-connected system has its limits in terms of grid stability (e.g. overloading, 

congestion issues by excess power export, or power quality degradation). These problems are location-

specific; some local areas, which have weak grid infrastructures or excess grid congestion, will 

encounter more problems than other regions that have solid grid systems with little grid congestion. 

Technological progress sometimes provides better performance levels to maintain the grid quality; e.g. 

advanced inverters support better network stability. The PV self-consumed model can be a good 

solution in congested areas within the grid.  
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On-grid systems can be largely classified into distributed systems and centralized systems 

according to the system size and purpose. The size of distributed PV systems is usually less than 100 

kWp. However, the centralized PV systems exceed 1 MWp. The PV systems generally have three 

different installation types; ground-mounted, roof-mounted or integrated in the building (BIPV)31.  

The below Table IX demonstrates possible market segments of grid-connected PV systems. 

              Type of grid- connection 
 
 
Type of  
installation  

Grid-connected PV systems 

Distributed  Centralized 

residential commercial industrial utility-scale 

<10kWp >10-100kWp >100kWp-1 MWp >1MWp 

Ground -mounted   O O 

Rooftop-mounted  O O O  

Integrated to façade or roof (BIPV) O O   

Table IX: Market segments of grid-connected PV systems 

2.4.2 Distributed PV systems 

Distributed PV systems aim to provide electricity to grid-connected customers or to the 

network. In 1973, the University of Delaware built a residence ‘Solar One’ using a roof-integrated PV 

system; this was the first PV system connected to the grid with a meter and the grid was used as a 

backup solution ( U.S. Department of Energy). Distributed PV systems have developed with the 

implementation of remuneration scheme for PV electricity supply in the early 2000’s.  

 Grid-connected distributed PV systems can be segmented into three parts according to the size 

of system. First, the typical size for residential systems is normally from 1 kW to 10 kW. Secondly, 

PV systems above 10 kW and not exceeding 100 kW are included in the commercial systems. Both 

residential and commercial systems have two possible installation methods; rooftop-mounted system 

or building-integration. In addition, the PV system which exceeds 100kW and less than 1 MW are 

usually used for the industrial purpose.  

Table X identifies strong and weak points of grid connected distributed PV systems.  

Strengths Weaknesses 
Stable power supply thanks to the grid 
Reduced distribution losses when PV system is installed at the 
point of use 
No need for extra land use 
Substitute of building materials (e.g. BIPV) 

Costs (incl. systemic costs) 
Risks related to grid interconnection (e.g. overvoltage, 
unintended islanding for low/ middle voltage 
network)  

Opportunities  Threats 

Low carbon policies  
Low consumption or positive energy buildings for energy 
transition 
Desire for energy independence 
Smoothing via geographical spread on a large area  

Stability of the grid at high penetration level 
Inadequacy with the consumption profile 
 
 

Table X: SWOT analysis of grid-connected distributed PV systems 32 

The building sector, residential or non-residential, consumes an important share of the energy; 

for example, it accounted for 40% of total final energy consumption & around 55% of electricity 

consumption in the EU-28 in 2012 (Intelligent Energy Europe Programme of European Union, 2015). 

Therefore, the reduction of its share in energy consumption is a main target of the energy public 

                                                      
31 The ground-mounted systems concern that the support of the module is on the ground. The rooftop systems are mounted on 
top of an existing roof or PV systems can be fully integrated to the roof replacing the tiles (IEA, 2010).  
32 IPCC 2011, (IEA PVPS, 2008b; ECOFYS, 2007) 
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policies (e.g. energy saving, positive energy buildings). Moreover, some electricity users have a desire 

of energy independence (for example, the collaboration between Solar Edge and Tesla capitalizes on 

this desire (Solaredge, 2015). The decentralized PV systems provide a solution to these issues with an 

OS strategy.  

However, the installation of PV system on a roof is more complex than a ground-mounted 

system inducing extra costs. The reduction of the costs is still possible mainly in terms of soft-costs 

and an OW strategy is possible to address this issue, supported by energy saving public policies.  

The impact of the penetration of the PV electricity in the grid is an important issue. The 

decentralized PV is usually installed on already grid-connected buildings and small-decentralized PV 

systems spread on a large area can smooth the intermittency. Therefore, a TS strategy, like self-

consumption, seems possible to reduce the impact on the grid.  

The last threat is the inadequacy between the PV production and the local consumption. Two 

TW strategies can be studied to overcome this threat by developing storage system, or, more easier, 

by choosing buildings where the consumption profile best matches the PV production, like 

commercial, small industry or office buildings.  

2.4.3 Centralized PV systems 

Centralized PV systems supply electricity as centralized power stations. These systems are 

ground-mounted and not associated with a particular electricity customer. The solution is based on the 

scale effect to reduce the installation costs. Since they aim to give bulk power, the typical size of 

centralized PV systems exceeds 1MW. Since the middle of the 2010’s, promoted by attractive 

remuneration schemes of PV electricity, many megawatt scale PV projects have been developed (see 

Figure 22). For example, on June 19 2015, the Solar Star power plant was installed (579 MW33) in 

Antelope Valley in California and the generated power was fully sent back to the network.  

 
Figure 22: Megawatt scale PV power plant (INES, 2007, p. 10) 

Strong and weak points of grid connected distributed PV systems are presented in the 

following Table XI. 

Strengths  Weaknesses 
 Cost reduction via scale effects in terms of 

installations, operation costs, and the BOS costs 
  

 Costs compared with other technologies in the electricity market, 
Intermittency and not dispatchable, 

 Land usage 

Opportunities  Threats 
 Energy transition  Fuel prices, grid management 

Table XI: SWOT analysis of centralized grid-connected PV system 

 

                                                      
33 1.7 million of crystalline silicon cells were used on the surface of about 13 km2, (Wesoff, 2015). 
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There are many advantages to promote centralized grid-connected PV systems with an OS 

strategy utilizing the opportunity of energy transition and public policies.  

However, large PV power plants are rarely competitive compared with other classic power 

plants in the electricity market. Therefore, the weakness and the threats should be fixed in priority. 

Different TW strategies are possible to promote centralized grid-connected PV systems. It can target 

the areas where the PV production has the lowest LCOE or the electricity consumption best matches 

with the PV production (e.g.  sunbelt regions). In addition, in order to reduce land usage, a good 

strategy is to avoid the usage of fertile lands; it should focus on ‘bad lands’ like deserts. Another way 

is to promote the use of high efficient PV systems like CPV; the use of high efficient PV systems 

reduces the land usage to produce the same level of PV output. Moreover, the PV electricity is not 

dispatchable; a storage system can give a solution for the large-scale penetration of PV systems.   

2.4.4 Grid connection options 

PV systems can be connected to the grid according to different options. Some countries allow 

PV systems to feed 100% of the electricity produced into the grid (in front of the meter grid 

connection), while others only allow the transfer of excessive PV output after onsite-consumption 

(behind the meter grid connection) in the grid. The first mechanism is related to the FIT scheme 

policies, whereas the latter is mostly associated with policies like net metering (IEA-RETD, 2014; 

EPIA, 2013).  

 

Figure 23: FIT scheme 

  

Figure 24: Net metering scheme 

 FIT scheme: PV installers are allowed to transfer all electricity produced to the grid and consume 

electricity from the grid. The injected electricity will be compensated on the basis of pre-defined 

tariffs during a fixed period, and they will pay for the electricity consumed according to the 

applicable electricity rates (IEA PVPS, 2014). 

 Net metering system: End-users who produce electricity from PV systems are allowed to inject 

excessive electricity into the grid (the difference of PV output to onsite consumption). Billing will 

be calculated on the basis of the net electricity from/to the grid during the applicable period (IEA, 

2014b; EPIA, 2014). 

 PV system +storage: PV systems can be self-consumed without connecting to the grid. In this case, 

a storage system is needed. This can be considered as an option to provide power to isolated areas, 

which mostly relies on fossil fuel generation (IEA-RETD, Op. cit.). 

FIT and net-metering policies differ from one country or state to the next, e.g., different rates 

are applicable in terms of the compensation amount or level, and often different strategies are in place 

with respect to the instantaneous consumption of onsite production. The self-consumption system 
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combined with the net metering system has developed in several countries like the US, Japan, Canada 

and some European countries, based on different legal frameworks (REN21, 2014). 

2.5 PV future usages 

PV systems are still expensive and compete with other solutions. The main objective of PV 

policies is to make PV power more competitive in the electricity mix. The coupling of PV system with 

other sectors can be a smart solution to reduce the cost of PV systems because different sectors can 

share common components or processes. The possible coupling for PV systems concerns two areas;   

- PV system materials: PV system can share components with other systems 

- New market creation for PV electricity  

The coupling with PV system with the construction sector is a good example for the first case; 

PV system materials can replace the tiles on the roof and this reduces PV system costs (INES Op. cit.). 

The concept of solar road that can replace an asphalt road also gives a good example. The coupling of 

PV power with the use of electric vehicle’s batteries is another new usage to optimize the consumption 

of the PV electricity and to share the cost of the battery. Moreover, this coupling can be useful for the 

network balancing (Kempton, et al., 2015). 

In terms of new market creation, there are some emerging possibilities to optimize the use of 

PV electricity. For example, the creation of gas (H2, biogas) gives a good solution to store the 

electricity when it is not profitable; the created gas can be used as a transport fuel or traded in the gas 

market (Ajanovic & Haas, 2015). It can also generate electricity when the electricity becomes 

profitable. The advantage of this solution is to enlarge the PV power’s potential market towards the 

whole energy market. In addition, it allows policymakers to have broader base to reduce CO2 

emissions.  

In this regard, in the distant future, the development of the storage solution coupled with the 

intermittent renewable electricity production will solve the intermittency problem of renewable 

energies. The PV system with its storage system based on appropriate economic feasibility will give a 

solution to grid balancing and network reliability.  

3 PV integration in energy system 

In this section, the study examines the impact of the integration of photovoltaic energy in the 

electricity system. From our analysis of PV usages using SWOT analysis method, we have found that 

the intermittency of PV power is a big threat. Therefore, the integration of intermittent production of 

PV electricity into the energy system presents diverse constraints and challenges in terms of the 

system and market operation. They will become more obvious with the large-scale penetration of PV 

power into future electrical supply systems. To understand the issues well, this study first gives a brief 

understanding on the ground principles of electrical power systems to explain how they are planed and 

operated and to define their major constraints. Based on this explanation, impacts of the PV integration 

in electrical power systems are studied. The study raises questions about the systemic costs of PV 
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electricity; the last part of this section identifies the important impacts that need to be considered by 

policymakers.  

3.1 Overview of the electricity market  

An electric power system is electrical equipment’s network that is used to supply, dispatch and 

use electric power. It is generally divided into four processes (Saguan, 2007): electricity generation, 

transmission, local distribution and consumption (Figure 25).  

 
Figure 25: Four processes of the electric power system 

The power generation and the electricity transport must respect some physical laws:  

- In terms of power production, the time to respond to power request and the scope of power 

variation are different depending on the type of power plant.  

- A limited amount of power can go across the line.34  

- Alternative electricity (AC) is used on the network and the different power plants must be 

synchronized in terms of frequency and phase. 

The monopoly through vertical integration from the production, power supply to end-users 

was the most common model before the electricity market liberalization in the 90’s in the majority of 

the industrialized countries (Tehrani, et al., 2013). Different kinds of competitions exist in the 

electricity market; e.g. competitions between generators with different purchasing agencies or in the 

wholesale market, and retail competition.  

However, the grid management is seen as a natural monopoly; a single company manages the 

whole network of electric power transmission or power distribution. These processes are regulated for 

a fair usage of the grid (Esnault, 2013).  

Some regions have organized electricity market where electricity is traded according to 

consumer needs. In Europe, the electricity market model promotes competition among power 

producers in a wholesale market and sellers in a retail market. The wholesale market is composed of 

an over-the-counter (OTC) market, where bilateral agreements are concluded, and power exchange 

market (pools) (Stoft, 2002). The market is operated before the electricity is needed. However, in order 

to maintain the security of electric power system, a market for the short-term (some minutes) 

balancing exists, which aims to adjust the production to the demand when deviations are observed 

between the forecast and actual demand (balancing or ancillary services market). The market design in 

Europe is presented on Figure 26. The electricity market design generally aims to support long-term 

investment of generation capacity and network to secure energy supply to meet demand at least cost.  

                                                      
34 The transport of electricity is subject to the Kirchhoff’s current laws that define the performance of electrical circuits . 
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Figure 26: Electricity market design in Europe (Ministère de l'écologie, du développement durable et de l'énergie of France, 
2015) 

3.1.1 The electricity production mix  

The power plants produce on demand of instant electricity consumption. In order to meet 

electricity demand and its variations, an electricity mix is largely composed of 1) base-load power 

plants that produce the maximum output almost all the time, and 2) peaking power plants that can 

follow the fastest variations of demand. Between these two categories, the term of mid-merit power 

plants is sometime used to describe power plants that have enough flexibility to follow the slowest 

variations of demand of the day.  

The choice of power generation plants that compose the electricity production mix depends on 

economical and technical specifications. The economical specifications of a power plant are decided 

depending on two main criteria, which are 1) the investment cost, and 2) the variable cost including 

fuel costs and the operation and maintenance (O&M) costs. The costs of the electricity output depend 

on the on the amount of electricity produced in a year. The electricity production depends on the load 

factor, which is the ratio of its actual output over a period of time to its potential maximal output over 

the same period of time, and the lifespan of the plant. The electricity pricing can give an economic 

assessment using the method of Levelized Cost of Electricity (LCOE). 

 
 

ܧܱ�ܮ =  ∑ �� + �ܯ + ሺͳ�ܨ + ∑ሻ�௡�=ଵݎ ሺͳ�ܧ + ሻ�௡�=ଵݎ  

With ݊ the lifespan of the system in years �� the investment cost during the period t ܯ� the operating and maintenance costs during the period t ܨ� the fuel costs during the period t ܧ� the electricity production during the period t ݎ the discount rate 

Equation 1 : LCOE formula35 

                                                      
35 The weighted average cost of capital (WACC) is referred to as the discount rate. r (cost of capital). 
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Base-load power plants with low variability are generally characterized by high investment 

costs but low variable operating costs, while peaking power plants with high variability are generally 

characterized by low investment costs but high variable operating costs. Table XII gives the costs of 

traditional power plants. 

Technology Investment cost (€/kW) Variable costs (€/MWh)  

Nuclear 2688 - 4909 37.4 – 60.4 
Base 

Coal 497 - 2786 38.5 – 92.3 
Natural gas  423 - 1288 34.6 – 92.3 

Peak 
Hydropower 718 – 3125 2.5 – 24.6 

Table XII: Fixed and variable costs of traditional dispatchable power plants (Cruciani, 2014) 

The technical specifications depend on the technology employed and the fuel used. For 

example, fossil fuel power plants cannot be started immediately because the temperature of the boiler 

must rise progressively to avoid thermal shock. In terms of nuclear power plants, the power variations 

produce elements that reduce the efficiency of nuclear reaction. All these limitations should be 

considered for the effective planning of production capacity usage.   

Technology Startup time (min) 
Maximum power variation 
(%/min) 

 

Nuclear 2 h to 2 days 1-5%/min Base 
Coal 1-10 h 1-5 %/min 

Natural gas CCGT 30-60 min 5-10 %/min  

Natural gas OCGT 10-20 min 20 %/min Peak 
Pumped Storage Hydroelectricity (PSH) Very short 40%/min 

Table XIII: Startup time and maximum power variation of traditional power plants (Cruciani, 2014) 

3.1.2 Electricity price formation mechanisms  

The optimal management of electric power system is to rank the capacities according to the 

ascending order of short-term marginal costs of production (merit order). The ranking is organized 

based on the day-ahead declaration of available capacities. The base-load capacities have low variable 

costs and they are ranked first (e.g. run-of-the-river hydroelectricity, nuclear). The peaking capacities 

have high variable costs and they are ranked last (e.g. oil, gas).  

Under the uniform pricing model, the electricity price is adjusted according to the marginal 

cost of the last power plant utilized and all other producers receive this price for their electricity36. 

With this system, base-load power plants receive the surplus revenues, called infra-marginal rents. 

The base-load capacities have high investment costs compared to the peaking units and the merit order 

allows producers to recover their investment costs. In an energy only market, the generators who do 

not produce receive nothing. 

                                                      
36 Another way is the ‘pay as bid’ where producers receive the price they asked for.   
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Figure 27: Merit order and electricity price formation (Haas, et al., 2013; Commissariat Général à la Stratégie et la 
Prospective (CGSP), 2014) 

However, an issue exists regarding the extreme peaking capacities that cannot cover their 

fixed cost (Hogan, 2005) (the missing money). This phenomenon discourages investors to install this 

type of capacity, even though it is crucial for the balancing of the system. A scarcity rent may exist if 

the extreme peak marginal capacities are allowed to ask a higher price than their variable costs (Finon, 

2013). Other solutions exist like a capacity market that finances the extreme peak capacities or a load 

management that remunerates some consumers that accepts to reduce their electricity consumption 

during peak (Percebois, Nov. 19th 2012). 

3.1.3 Optimal electricity production mix 

Since each type of power plant has different investment costs and variable cost, their operation 

time in a year varies to design optimal electricity production mix. The optimal operation mix is 

obtained based on the production cost; Figure 28 gives an example. There are four types of capacity: 

two gas power plants with low fixed costs and high & medium variable costs, a coal power plant with 

medium investment costs and medium variable costs, and a nuclear power plant with high investment 

costs and low variable costs. 

 
Figure 28: Example of mix optimization with gas, coal and nuclear capacities (OECD/NEA, 2012, pp. 133, Ch. 4, Box 4.4) 

The abscissa gives the number of hours in a year (8760 hours). The cheapest technology is 

used during a given operating time of a year to obtain an optimal mix. For example, the OCGT is 

installed when the usage requires less than 1300 hours of operating time, the CCGT between 1300 
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hours and 4300 hours, the coal power plant between 4300 hours and 7000 hours, and the nuclear 

power plant more than 7000 hours. 

To identify installation capacity of each power plant, the optimal mix must be correlated with 

the consumption profile. Figure 29 gives an example with France case; the required power capacity 

for each unit of time (quarter of hour-to-hour, see the graph on the left) is ranked in decreasing order 

(see the graph on the right). The obtained curve is called the load duration curve. 

 

 
Figure 29: Hourly consumption profile in France in 2014 and load duration curve37 

 

Then, the optimal usage of the mix is projected on the load duration curve and the optimal 

installed capacity of each power plant is deduced (Figure 30). Based on this example with the French 

load duration curve with four different types of power plants38, it can be drawn that the optimal mix 

gives about 40 GW of nuclear capacity to install, 10 GW of coal power plants, and 15 GW for CCGT 

and OCGT each.  

                                                      
37 Created by author with RTE – eco2mix data (RTE).  
38 This is a simplified model, in reality, more types of power plants can be used.  
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Figure 30: Example of optimal mix based on load duration curve (OECD/NEA, 2012) 

 

3.2 Electricity supply-demand management  

The specificity of the electricity market is normally associated with uneconomical 

characteristic of large-scale electricity storage 39 . Therefore, the power plants must generate the 

requested electricity to meet electricity demand at any moment.  

Electricity demand is characterized by 1) significant variations, 2) the difficult forecasting 

with precision, and 3) the very low price elasticity. Electricity demand varies according to climatic 

considerations, economic profiles, and consumption habits. In addition, it has a different aspect 

depending on period of time; night/day alternation, weekly change (weekdays vs. weekend/holidays) 

or seasonal changes (summer vs. winter). A change in the demand can be rapid and significant.  

Each country has different features of electricity demand. To give an example of this variation, 

Figure 31 displays the French and German electricity consumption profile40. In France, the winter 

electricity consumption is about two times that of summer, mainly because of the use of electric 

heaters. The peak demand for electricity consumption in France is in the evening of winter; for 

example, during winter 2011-2012, an historical record was set at 101.7 GW (at 7 pm on February 8th 

2012) (Le Monde.fr, 2012; Haessig, 2012).  

 

 

 

                                                      
39 Except when the geography allows water-pumping storage 
40 Even though these two countries neighbor with the similar level of economic development, their consumption profiles are 
different. 
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Daily average electricity power consumed in 2014 (France) Daily average electricity power consumed in 2014 (Germany) 

  

Figure 31: Consumption profiles in France and Germany41  

 

Power generation should be planned to match the demand variations at any time, all year 

around (Saguan, 2007, pp. 23-24). A stable infrastructure of network to supply that power is 

compulsory for the successful balancing of power supply and demand. The mission of the electricity 

network manager is to ensure the balancing between power production centers and the consumer 

demand at any time.  

The frequency is a good indicator for the equilibrium management of electrical system. It is 

thus important to maintain the frequency as stable as possible to its reference value (e.g., 50 Hertz (Hz) 

in Europe and 60 Hz in Northern America) for the security of the system. A difference in the nominal 

value can cause damages on electric devices.  

As seen, the power plant operation program depends on economic (e.g. operating costs) and 

technical features (e.g. turn on/off time). The method of balancing of power supply and demand differs 

according to the time-period basis. 

In terms of long-time period (e.g. 30 minutes to 6 to 24 hours), unit commitment method is 

used to plan an optimal electricity mix to meet electricity demand throughout the day; 1-2 day ahead 

planning is deployed to prepare an hourly or half-hourly program of power generation to address 

forecast demand at least cost. The merit order is applied; base-load units generate power at their 

maximum capacity all day, peaking units run during the times of peak demand, mid-merit units 

operate to correct the flaw between two units (e.g. turning on in the morning and off at night). 

However, the shorter-term balancing (e.g. minute-to minute basis) is automatically done by generation 

control center. The load following is used to meet moment-to-moment electricity demand. 

Dispatchable power units are able to control their output between a minimum and maximum level, 

however, intermittent power units (e.g. wind, solar) have difficulties to control of generation (IPCC 

2011). Furthermore, in order to ensure the stable supply of power to meet the demand, the balancing 

planning should be extended to longer time horizon (e.g. next few decades) because the construction 

of power plants and network require a long time with large investment of capital.  

                                                      
41 Created by author based on RTE data (RTE) 



93  

 

In this context, to ensure the equilibrium of power supply and demand, the network manager 

plans ahead the production capacity based on demand forecast & historical data of power consumption 

and weather forecast (see Figure 32). If the difference in the frequency appears during the day, the 

network manager instructs to reduce or increase production capacities. Each operation to re-adjust the 

equilibrium is expensive. Therefore, the better the demand is forecasted, the cheaper the grid costs will 

be.  

 

 
Figure 32: Day-ahead forecast and consumption for October 17 2014 in France (RTE). 

 

In addition, the electrical system must consider power losses in transmission. If the distance 

between power generation centers and consumption sites is short, there will be less transmission loss. 

Furthermore, the balancing should also consider the cases of plant failure, local network faultiness, or 

maintenance to ensure the stable electricity supply at any time. The system maintenance or upgrading 

schedules should be calculated in advance to prevent unexpected breakdown or power failure that can 

affect the national energy supply security. Otherwise, a risk of network failure can be caused; e.g. a 

blackout in August 2003 in USA 42 and in November 2006 in Europe (European Regulators’ Group for 

Electricity and Gas (ERGEG), 2007). 

In this regard, the electrical system is very constrained and it must be organized according to 

the consumption profile, the available electricity mix, and the quality of the network. In summary, the 

balancing of power supply and demand must guarantee the following;  

1) The Short-term balancing  

2) The Long-term back up  

Furthermore, the longer-term investment decisions in generation capacities and 

transmission infrastructures should not be ignored for the secure balancing of electrical power 

system.   

 

 

                                                      
42 Due to little unbalancing of few 100MW followed by a 100MW variation. (New York Independent System Operator, 2004) 
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3.3 Integration of PV power in electricity system 

3.3.1 Introduction  

Electricity generation using renewable energies gives a new approach of contribution in the 

electricity mix compared with traditional energies. In order to increase the share of renewable energies 

in the present and future energy mix, integration efforts are needed. They normally require investment 

to promote new organizations (innovation costs43). The accurate understanding of PV energy and its 

availability will be a basic step in terms of integration efforts. Furthermore, other changes in various 

sectors are also needed: e.g. institutional frameworks, innovative approach, improved social aspects, 

market planning, etc.  

The specificity of the PV energy is related to its intermittency (Hirth, et al., 2015). The 

following points represent PV production characteristics. 

- PV production is variable depending on daily time period, seasonal variations and the weather 

conditions 

- PV production depends on the geographic location 

- PV production has some unreliability directly linked to uncertainty of weather forecast 

The variability of PV energy requires high integration efforts with objective of keeping the 

stable energy supply system.  In this regard, an illumination on systemic effects of PV electricity is 

useful to find strategies for systemic innovation to integrate PV energy in electricity mix with least 

innovation costs. 

3.3.2 Systemic costs of PV energy  

As shown with the SWOT analysis in chapter 2.2, the use of PV connected to the network 

includes many threats related to PV integration in the electricity system; they are mainly associated 

with network management issues because of the intermittency. 

Power generation plants coexist with other parts of energy mix. They influence each other and 

interact with customers through power grid, affected by a set of conditions (technological, natural 

resources, socio-economic environments, etc.). Therefore, the cost of each plant should be calculated 

under this context. For example, intermittency, network congestion or impacts on energy security 

should be included while calculation the real costs of individual power plant (this will change the 

economic calculation for investors). However, existing studies on PV economics are mainly based on 

LCOE and grid parity. It is important to keep in mind that all power plants cause system effects 

(OECD/NEA, 2012).  

In this regard, a review on system effects has its importance to give a comprehensive & 

accurate perspective of solar PV costs in the energy mix. The total system costs have three levels; 

plant-level costs, grid-level costs and other systemic effects (OECD/NEA, Op. cit.). 

 

                                                      
43 Quoted from N. Popiolek 
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Figure 33: Total system cost of PV (OECD/NEA, 2012) 

Most considers plant-level costs as costs of PV electricity. The plant-level cost is directly 

related to the levelized cost of PV electricity (PV LCOE). This cost is used as a reference cost in the 

international studies (Fraunhofer, IEA PVPS, IRENA, EPIA, etc) to follow the progress of the PV 

technologies. However, this indicator is limited to fix the real cost of the PV installation in the energy 

mix (Hirth, et al., 2015; Joskow, 2011; Ueckerdt, et al., 2013). The electricity system is very 

constrained and the increase of the penetration of non-dispatchable energies, like wind and solar PV, 

influences the balance of the whole electricity system.  

Taken the characteristics of intermittent PV power into account, the grid-level costs with large 

penetration of PV power became significantly important. Therefore, the grid-level costs are studied in 

the following section.  

 

3.3.3 Grid-level costs 

As said, PV power plant interacts with other power generation plants, and customers through 

the power grid. PV power plant has two way of using power grid. First, the generated PV power can be 

directly used onsite where it produced (off-grid systems or self-consumption); this reduces the use of 

grid. Secondly, PV production can feed the generated power back to the traditional power grid; PV 

power follows the traditional way of using power grid from power plants to customers. 

Without an appropriate solution of storage of PV electricity, the PV system needs to be 

connected to the grid. Intermittent PV electricity is not able to meet the electricity demand at all 

seasons of the year. The concept of ‘grid-parity’, which compares PV LCOE with the electricity retail 

price, is not enough to identify the competitiveness of PV electricity in the electricity mix. In addition, 

electricity retail price often include grid management costs; e.g. about 1/3 of the retail electricity price 

in France is used to finance the grid and its management. In this regard, the grid-related costs should 

be integrated to give the real cost of PV electricity.  

Even though intermittent PV energy has a low load factor compared to conventional energy 

sources, the network should support the maximum capacity of PV electricity that can be generated 

during PV production peaks or meet demand that can be requested when PV power plants are not 

available. Compared to other centralized and dispatchable technologies such as nuclear, the grid-level 

costs for PV energy may be much higher (OECD/NEA, 2012).  
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The grid-level costs rise with the increase of variable energies in the electricity mix. In 

addition, the grid-level costs are country-specific, strongly depending on penetration level.  

OECD largely divided the grid cost into two parts: 1) additional investments to extend and 

upgrade the existing grid, and 2) the costs for increased short-term balancing and for maintaining the 

long-term adequacy of electricity supply to integrate variable energies (OECD/NEA, Op. cit.) (Hirth, 

2014).  

 

1) Grid extension and upgrading 

PV system integration requires additional costs to strengthen the grid of transportation and 

distribution. The grid upgrading costs include the costs related to grid reinforcement and extension.  

• Grid reinforcement: the current grid upgrading to adjust voltage or load-carrying capability 

• Grid extension: the existing grid extension to connect plants to the current grid  

Those costs are mainly related to the local production compared with the local demand. 

Additional costs in term of grid upgrading are inevitable when PV system is installed in areas with a 

structural production surplus. In addition, the network quality and power trade amounts also influence 

the grid-level costs.  

For residential or commercial PV systems, the grid connection costs are already integrated in 

soft-costs of PV system costs since the buildings are already grid-connected. For utility-scale PV plant, 

the grid extension is needed and its costs are high because PV power has low load factor. In this case, 

the power line must be sized on the maximum PV output even though PV systems produce at its 

maximum level only during a short time of a year.  

2) Grid balancing 

Photovoltaic energy produces during daytime and is not dispatchable. The integration of PV in 

the existing grid requires additional costs to deal with the intermittency of PV power. Therefore, 

additional costs should be considered in terms of balancing the grid and preparing back-up 

capacities especially during the evening consumption peaks.  

• Short-term balancing: second-by-second matching of electricity supply and demand (e.g.  

real-time adjustment, the day-before forecast)   Demand(t) = Supply(t) 

• Long-term back up: provision of dispatchable back-up capacity to satisfy electricity demand 

at any moment (peak)  Installed capacity of plants = Peak demand load + Reserve margin 

capacity  

The short-term balancing concerns the second-by-second balancing of electricity supply and 

demand; it is closely related to the accuracy of weather forecast and the predictability of supply and 

demand because the improved forecast and prediction would decrease the uncertainty in supply and 

demand. In addition, more importantly, the level of flexible capacity in the electricity mix and the size 

of interconnected electricity system influence the balancing task in term of instantaneous adjustment to 

match changes in demand. Therefore, countries that have a large share of flexible technology 

capacities (e.g. hydropower) in their energy mix need less balancing costs.  
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Intermittent PV system requires the long-term dispatchable back up capacity to meet 

electricity demand at all times. Non-dispatchable energies like PV do not contribute much to 

generation system adequacy; every electricity system has reserve margin capacity on top of the peak 

demand load to ensure the system’s reliability. The long-term backup costs include investment and 

operating costs to give additional adequacy capacity; this cost is necessary to maintain a certain level 

of system reliability when variable energies are integrated in electricity mix. The backup costs account 

for the large part of grid-level costs. In addition, there are other solutions that can compete with this; 

e.g. energy storage and demand-side management.  

3.3.4 Other systemic costs (externalities)  

The broader level of systemic cost should concern externalities of PV electricity in the 

electrical system. Externalities refer to positive or negative effects, which have not yet to be 

internalized into the PV system price. They influence the national energy system, economy and social 

welfare with respect to PV penetration into the energy system. There are various aspects to be 

considered: environmental, electricity market, technology, economic and energy position (OECD/NEA, 

Op. cit.).  

However, it is extremely difficult to quantify externalities in a single unit; a qualitative 

approach can be employed to evaluate externalities of PV power in the energy mix. Table XIV 

indicates examples of important externalities of PV electricity.  

 

 
Table XIV: Externalities of PV electricity 

 

As said, the monetization of externalities is hardly possible dues to its broadness and 

complexity of the impacts. In addition, it is very challenging to distinguish externalities of PV power 

in the complex and dynamic system; a number of variables can simultaneously influence them.  

Therefore, the attempts to calculate such externalities are often limited to environmental 

externalities, which can be considered with the reduction of the emissions of greenhouse gases or a 
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fixed price for CO2 emission. Furthermore, accident or waste issues should be considered as 

environmental externalities. Unlike conventional energies (e.g. coal, nuclear), PV energy does not 

require large spaces for waste disposal (IEA-RETD, 2014). Positive environmental externality is an 

important aspect when assessing PV integration in the electricity system. However, the increased use 

of gas to balance the system should not be forgotten.   

The innovation of technology is another externality. With regard to PV development, many 

countries have been putting efforts in basic research to advance the PV technology for a large 

deployment. The technological capabilities give a positive impact to increase the national 

competitiveness and economic development (Álvarez & Marin, 2013).  

In the development of PV sector, the economic benefit is one of the most important 

externalities that policymakers give priority, in particular, to recover the economic crisis. PV power 

creates jobs (Blyth, et al., 2014) in manufacturing, installation, service industries, and associated 

industries for the national economy (IEA, 2014c). A strategic choice targets the potential to increase 

national income through sales or exports, to improve the industrial competitiveness, or to create jobs 

(IRENA, 2014b). However, we should also consider job losses or job shift in other sector induced by 

PV development.    

PV penetration perturbs the electricity market and it gives a negative impact on the national 

energy supply security (blackout cf. 3.2). First, the integration of non-dispatchable renewable 

technologies like PV affects the profitability of the producers who own the conventional electricity 

plants by reducing the wholesale price of electricity as well as their load factors. In addition, it would 

hinder the new investment of conventional power plants that operate as dispatchable back up 

capacities; this threats the national energy security in the long-term. Since this externality is directly 

related to energy security, more explanation is presented in the next section.  

3.3.5 Impact on the electricity mix & energy security 

The large integration of PV power in the energy mix gives important impacts on the existing 

electricity mix. It reduces the profitability of existing power plants, provoking the following issues;  

1) Changes in the market price formation  

2) De-optimization of the electricity mix 

As explained in chapter 3.1.2, the capacities in the electricity market are ranked based on the 

ascending order of short-term marginal costs of production (merit order). PV production has zero 

marginal cost; the PV production has its priority on the electricity market. Accordingly, PV is ranked 

first in the merit order before base-load capacities. The merit order with conventional capacities is 

shifted to the right. The electricity demand is inelastic; the price variability does not change much the 

consumption. Therefore, with the same demand curve, the electricity price is reduced. 

This is shown on Figure 27. Before PV integration, the capacity D was the marginal capacity 

during high demand period (Dt2), and the capacity B was the marginal capacity during low demand 

period (Dt1). However, with PV integration with no variable cost, the PV production shifts the merit 
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order on the right (see Figure 34) (Commissariat Général à la Stratégie et la Prospective (CGSP), 

2014). 

Compared to Figure 27, on Figure 34, the average electricity price is reduced to Pt1* from 

Pt1 with the demand Dt1, and to Pt2* from Pt2 with the demand Dt2. In terms of temporarily reduced 

demand, it is sometime technically too difficult to shut down a capacity. In extreme cases, the market 

price can be negative. Consequently, the capacity D is not in use even though it exits in the market. In 

addition, revenues of other dispatchable capacities are reduced because of change in market 

mechanisms with PV integration. 

In the long-term perspective, the profitability of existing plants is reduced and some producers 

have difficulties to recoup the investment. Moreover, investors are reluctant to build conventional 

plants because of the uncertainty of redeem of capital invested; this creates threats on energy supply 

security.  

 

 

 
Figure 34: Merit order shifts with the integration of intermittent power (e.g. PV) 

The penetration of renewable energies sources like wind and PV induces a sub-optimization of 

the current electricity mix; it reduces conventional power plant’s operation hours and their load factors. 

At a high penetration of PV power, the load duration curve would be significantly shifted down; this 

leads to change in the electricity mix. This would increase a problem in terms of future investment 

choice; investors would less prefer the investment, which requires high fixed costs. Solutions (e.g. 

capacity payments) should be prepared to address this issue to maintain the energy supply security.  

 

 

 



100  

 

4 Conclusions 

This chapter presented the state of the art analysis of PV technology. The silicon technology 

dominates the current market accounting for around 90% of the global PV market. However, other 

technologies exist; some technologies such as thin film are already mature and more suitable in certain 

areas with advantages, e.g. low manufacturing costs (CdTe), low production cost and better yield (a-

Si), and more appropriate usages of building integration (transparent thin films). Other technologies 

become more mature (e.g. concentration PV (CPV), organic PV, dye sensitized PV, etc.). However, 

these technologies have not been able to compete with silicon technology whose prices have fallen 

sharply over the last decade due to economies of scale. Indeed, the silicon technology has benefited 

from the global experience curve effect (the costs decrease as the cumulative production increases) and 

this led to a lock-in phenomenon in the PV market. There are fewer incentives to make a long-term 

investment to establish the market for other technologies 

This chapter has also shown that the decline in PV system prices is no longer solely associated 

with the decline in PV module prices. We found that significant margins exist for further reduction in 

decentralized PV system costs; it can be through non-module sectors called ‘BOS (balance of system)’.  

In this chapter, it was highlighted the intermittency of PV generation raises many questions 

about the large-scale integration of PV power into electricity system. It was then necessary to integrate 

the concept of systemic costs, which notably include additional costs to integrate PV energy into the 

network (grid-level costs) and to ensure its stability in the energy mix (balancing and back up costs). 

These additional costs could be solved with the large-scale electricity storage solutions, but these are 

not accessible in the short or medium term in most regions. However, our study highlighted the fact 

that the rapid decline in the cost of Li-ion batteries opens up new prospects in terms of PV integration 

in the medium term. They can be easily combined with PV systems, particularly with decentralized PV 

systems.  

Based on all the information, we conducted an analysis using a SWOT methodology to study 

PV usages (off-grid, grid-connected distributed and grid-connected centralized). The ultimate goal of 

this analysis is to help policymakers to draw the best PV development strategy for each usage. We 

found the following points; 

1) Off-grid PV systems have great potential to supply electricity for sunny rural areas or remote 

regions without network. It can also be used for areas with the grid connection, but with low 

reliability of power supply due to grid problem. Many developing countries with energy 

poverty problem represent an important potential market (over 1.3 billion people in the world 

are still without access to electricity). In this case, the intermittency of PV power is the big 

obstacle to solve and the use of battery is necessary. The development of this usage is very 

sensitive to the fossil fuel prices (substitute). 

2) Grid-connected distributed PV systems have more stable power supply thanks to the grid. 

Opportunities exist related to positive energy buildings under low carbon policies or desire of 

energy independence. However, they are penalized by their costs and their impacts on the 
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network. The best strategies for this usage can be proposed by addressing those issues. The 

further cost reduction can be possible by targeting the part of ‘BOS’. Technical possibilities 

exist to limit the impacts on the network (e.g. matching PV system output and demand profile, 

demand response, local storage, smoothing via geographic spread and so on.). In this regard, 

our study introduced the notion of self-consumption. This will be further discussed in Part III. 

3) Grid-connected centralized PV systems are penalized by the intermittent PV production (non- 

dispatchable) with an important impact on the network. They cause PV systemic costs in the 

electricity system and reduce the PV competitiveness in the energy mix. In order to minimize 

the impacts, we recommended the optimal use by targeting sunny regions where the 

electricity consumption best matches with the PV system output. In addition, they are also 

sensitive to the reduction of fossil energy costs because they compete with conventional 

technologies in the electricity market. In addition, the costs of land usage and land availability 

should be considered to develop these systems.  

As described, impacts on the network are central issues for grid-connected systems. In this 

chapter, we have shown PV integration’s impacts on the network management and electricity market, 

in particularly related to the large-scale integration of PV power. It reduces the time of use for certain 

plants that are needed to balance the network and lowers the wholesale prices of electricity. This 

affects the profitability of conventional power plants. In this regard, the detailed breakdown of 

possible systemic costs (additional integration costs) was presented based on the concept of grid 

extension and upgrading, short-term balancing and long-term back-up. In addition, both positive and 

negative externalities, which have not been internalized in the PV system costs, were also discussed in 

this study. Therefore, the impacts on conventional power generators and grid operators are necessary 

to review prior to the political decision of PV integration in the energy system. This will be further 

discussed in Part III. 
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Chapter 3. Role of public policies for the development of PV energy 

The role of policy in the development of PV is discussed in the chapter 3. This chapter first 

discusses the major international environmental objectives which largely motivate the developments of 

renewable energy. As shown in the previous chapters, the development of the PV is limited without 

political framework. PV technology still lacks competitiveness and the intermittency of PV large scale 

production can greatly affect the national electrical power system. In this context, the chapter leads to 

the scenarios proposed by the IEA, which give basic guidance to the domain, as well as associated 

general policy recommendations.  

As seen, in the previous chapters, a complete assessment of the PV field is presented 

containing PV technologies, economic and systemic analysis, and an overview of its likely future 

evolution. All these elements allow us to conclude the chapter with a risk analysis of the development 

of photovoltaic energy in the energy system. Accordingly, we present the risks and the most important 

challenges which need to be taken into account for the development of PV. All of these elements will 

be used as a theoretical framework for the study in the following Parts. 

1 Policy objectives and related policies  

The environmental benefits and a shift towards a sustainable energy system are important 

driving forces to deploy solar PV power in the current or future energy system. In this section, the 

political efforts and movement in the development of PV are studied, with a focus on IEA scenario. 

1.1 Objectives of international policy and European policy (2020, 2030, 2050) 

Over the past decades, climate change has been a subject of serious international negotiations, 

along with the growing concerns on the environment (IPCC, 1990). The international community has 

been working together to reduce the greenhouse gas (GHG) emissions that cause climate change. The 

Intergovernmental Panel on Climate Change (IPCC) was set up in 1988 to provide scientific 

assessment on climate change. Scientific evidences suggested that the GHG emissions need to be 

deeply reduced to limit the global warming below 2°C by 2100 compared to the temperature in pre-

industrial times in order to prevent severe climate change problems; the de-carbonization of energy 

system with the utilization of renewable energies is highlighted as one of the feasible tools to reduce 

the GHG emissions (UNFCCC). 

The United Nations Framework Convention on Climate Change (UNFCCC, 1988) is the 

leading intergovernmental treaty that addresses the climate change problem. The 1992 UN Conference 

on Environment and Development (UNCED, the Rio Earth Summit) is the first multilateral 

international environmental agreement to fight climate change based on the precautionary principal44. 

It focused on collective interests requesting present acts to prevent tomorrow’s risks. The economist’s 

intertemporal analysis between today’s costs and future benefits are often used to discuss about the 

                                                      
44 Principal 15: ‘where there are threats of serious or irreversible damage, lack of full scientific certainty shall not be used as a 
reason for postponing cost-effective measures to prevent environmental degradation’; the PP is also taken by European 
Community in article 174 of the EC treaty (IPCC). 
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precautionary principle (Arrow, et al., 2012; Immordino, 2003). The UNFCCC entered into force on 

March 1994 and it has been ratified by 195 countries. The UNFCCC suggest common but 

differentiated responsibilities among member countries. However, it did not give specific quantitative 

objectives. 

The Kyoto Protocol45suggested a legally binding obligation to member countries to reduce 

GHGs. The Kyoto Protocol obliges Annex I countries to cut their emissions of GHG by at least about 

5% for the period 2008-2012 compared with 1990 levels (United Nations, 1998); the second 

commitment period started from on 1 January 2013 and will end in 2020. The Kyoto mechanisms also 

presented three economic instruments; Emissions Trading, the Clean Development Mechanism (CDM) 

and Joint Implementation (JI).  

The 21st Conference of the Parties to the 1992 UNFCCC (COP 21, 2015 Paris Climate 

Conference) and the 11th session of the Meeting of the Parties to the 1997 Kyoto Protocol (CMP11) 

have been held in Paris in November and December to decide on a post-2020 regime. The 2015 Paris 

Climate Conference achieved international agreement on climate change with the objective of limiting 

global warming below 2°C compared to pre-industrial levels by 2100 (UNFCCC). This will take effect 

from 2020 as a replacement of the Kyoto Protocol (European Commission, 2016). It also includes 

$ 100 billion per year in climate finance to support the developing countries by 2020 and this 

commitment will be further increased in the future. 

Prior to the conference, many countries presented the GHG emission reduction targets. The 

US and China jointly agreed to limit GHG emissions in November 2014. The US set a goal of 

reducing its emissions by 26%-28% from 2005 levels by 2025. China intends to achieve the peaking of 

CO2 emissions around 2030. In addition, China will increase the share of non-fossil fuels to 20% in the 

national energy mix by 2030 (The White House, 2014; Climate action tracker, 2015). Japan has 

confirmed a plan to reduce the GHG emissions by 26% by 2030 from 2013 level (Nikkey Asian 

Review, 2015).  

The European Union (EU) demonstrated the leading position towards combating climate 

change. The European climate and energy package proposed targets for 2020 to realize a highly 

energy-efficient and low carbon economy46 . Three key objectives for 2020 (the 20-20-20 targets 

(European Commission, 2016b)) are presented as below. 

- a 20% reduction in EU GHG emissions from 1990 level  

- an increase of the share of EU energy consumption produced from renewable energy resources 

to 20% (at least 10% of the transport fuels should come from renewable sources by 2020) 

- a  20% improvement in the EU’s energy efficiency 

Those targets are decided as EU directives, which means they must achieved in every member 

states. National authorities have to adapt their laws to achieve those objectives; however, they are free 

to decide how to meet such goals. In the national action plans, each member country explains how 

they intend to deliver them.  

                                                      
45 Kyoto Protocol was first agreed in December 1997 and it was entered into force in Februry 2005. 
46 The targets were set by EU leaders in March 2007 and were enacted in 2009. 
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The European strong political intention was expanded for the period up to 2030 and 2050. In 

2014, EU leaders agreed to reduce the GHG emissions by at least 40% lower than 1990 level by 2030, 

to increase the share of renewable energy to at least 27% and to improve the energy efficiency by at 

least 27% by 2030 (European Commission, 2016c). The European Council, however, endorsed an 

indicative target of 27% to be reviewed in 2020 having in mind a 30% target. In addition, the 

European Union suggested bigger climate efforts aiming the reduction of GHG emissions to 80% 

below 1990 level by 2050 (European Commission, 2016d).  

 

 
Figure 35 : European Union’s energy policy objectives below 1990 level (roadmap for 2020-2030-2050) (ENTSOE, 2015, 

May 19-22) 

 

The 2050 EU’s roadmap suggests a movement to a low-carbon economy. The GHG emission 

reduction efforts should divided cost-effectively between the main emitting sectors, power generation, 

industry, transport, building, agriculture and construction. For example, Power sector has the biggest 

potential for cutting emissions; EU’s roadmap suggest a total elimination of CO2 emission from this 

sector by 2050. It can be possible from electricity generation using renewable sources like wind, solar 

and biomass, or low carbon energies like nuclear power plants, or fossil fuel power stations equipped 

with carbon capture and storage technology. The share of these low carbon technologies in power 

sector will be increase to around 60% in 2030 and to almost 100% in 2050 from 45% today (Roadmap 

2050). In addition, the GHG emissions in transport sector are still growing. According to EU’s 2050 

roadmap, it can be reduced to more than 60% less than 1990 level by 2050. The shift to plug-in hybrid 

cars and electric cars after 2025 will allow sharply reducing the emission of GHG in this sector. 

Furthermore, the emissions from the building sector will be nearly removed by 2050; the energy use 

in this sector will be largely powered from renewable energies and the investment can be covered 

through reduced energy bills.  

1.2 Perspectives of international organizations and proposed policy actions  

Various international organizations published the roadmaps to increase renewable energies in 

order to address the global climate change issues. Among those reports, solar PV energy is mostly 

highlighted to deliver such objective. For example, according to IRENA’s Remap 2030, the installed 

capacity of PV power will reach 1250 GW by 2030 (IRENA, 2014c). EPIA’s scenarios projected solar 

power will contribute to between 10% (low scenario) and 15% (high scenario) of Europe’s electricity 

demand by 2030 (EPIA, 2014). In addition, according to IEA’s reports, 16% of the global electricity 

will be supplied by solar PV power by 2050. This study attempts to take a close look at the IEA 

scenario, which suggests an elaborated vision with specific political action plans. 
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 IEA vision: 2014 Energy Technology Perspectives 

1) Objectives of utilization of PV energy in the energy mix 

The IEA’s perspective suggested that GHG emissions reduction target can be delivered 

through increased share of renewable energies in energy mix, in particular using the photovoltaic (PV) 

energy. In the IEA’s Energy Technology Perspectives (ETP) report, the 2°C Scenario by 2100 (2DS) 

proposed a radical energy system transformation to achieve the goal of limiting the global mean 

temperature increase to 2°C. The 2DS is largely consistent with the IEA’s World Energy Outlook 

(WEO) 450 Scenario (IEA(b)). 

 

 

 
Figure 36 : IEA's global electricity mix in 2050 (IEA, 2014)47 

 

IEA’s 6DS scenario assumes that the current trends continue (see Figure 36). However, 

renewable energies dominate the global electricity supply in the 2DS (65%) and the hi-Renewables 

scenario (hi-Ren) (79%) by 2050. Variable renewables provide 29% in the 2 DS and 38% in the hi-

Ren. The increase of flexibility of electricity mix using variable renewable energies is important to 

secure the stable supply of electricity in these scenarios. Gas plants that run with relatively low full-

load hours are mainly considered to balance generation from variable renewable sources; e.g. only 7% 

of electricity is produced in fossil power plants without CCS in the 2 DS (IEA, 2015, pp. 38-39). In 

addition, dispatchable low-carbon technologies (solar thermal, electricity (STE), biomass or 

geothermal plants) are also considered for that. 

The IEA’s ETP 2014 (IEA, 2014b) report predicts, based on hi-Renewables scenario (hi-Ren) 

model, 4816% of world’s electricity will be supplied using PV energies by 2050, which means the 

                                                      
47 6DS is a base-case scenario on the condition that the current trends continue. It projects that energy demand would increase 
by more than two-thirds between 2011 and 2050. Associated CO2 emissions would rise even more rapidly, pushing the global 
mean temperature up by 6°C. The 6DS is broadly consistent with the World Energy Outlook Current Policy Scenario through 
2035. 
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installed PV capacity will achieve 4,674 GW in 2050. This scenario is a variant of the 2DS model, 

assuming a slower deployment of nuclear and delayed introduction of carbon capture and storage 

(CCS) technologies, and more rapid deployment of renewables (79%), notably solar and wind energies. 

In this case, solar PV will generate 6 300 TWh of electricity in 2050 and the annual emissions 

of carbon dioxide (CO2) up to 4 gigatonnes (Gt) will be avoided. Table XV illustrates the IEA’s solar 

PV goals for 2030 and 2050.  

 

hi-Ren scenario  2013 2030 2050 
Installed PV capacity 135 GW 1721 GW 4674 GW 
PV electricity generation 160 TWh 2370 TWh 6300 TWh 
Table XV: IEA's solar PV goals for 2030 and 2050 

IEA estimates that China will take the lead in developing the PV growth by 2050, accounting 

for around 35% of the world PV electricity production. In contrast, Europe’s share is expected to 

decrease to less than 4% by 2050.  

 

Year US 

Other 
OECD 

Americas EU 
Other 
OECD China India Africa 

Middle 
east 

Other 
developing 

Asia 

Easter 
Europe 

and 
former 
Soviet 
Union 

Non-
OECD 

Americas World 
2013 12.5 1.3 78 18 18 2.3 0.3 0.1 1.4 3 0.2 135 
2030 246 29 192 157 634 142 85 94 93 12 38 1721 
2050 599 62 229 292 1738 575 169 268 526 67 149 4674 
Table XVI: IEA's estimation of PV capacities by region under the hi-Ren scenario (unit: GW) 

In the hi-Ren scenarios, the share of PV contribution in the national electricity mix varies 

according to solar resources and electricity load; 18% in the US, 21% in China, 8% in EU, 22% in 

India, 11% in Africa, and 18% in the Middle East regions. The future PV use is mainly based on grid-

connected system (98%) and the rest is off-grid systems (2%).  The market segment is indicated in 

Figure 37. 

 
Figure 37: Market segment of PV in the hi-Ren scenario 

 

                                                                                                                                                                      
48 IEA scenarios look into various technology solutions that can contribute to limit climate change to 2°C: e.g. improvement 
of energy efficiency, increase of the share of renewable energies, expanded nuclear power and CCS technologies.  
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The IEA’s ETP model asserts that the improvement of technology performance and the 

reduction of PV costs are necessary to increase the competitiveness of solar PV energy for the rapid 

penetration of solar PV energy in the future energy mix. The module costs are expected to fall to 

US$ 0.3/Wp to US$ 0.4/Wp by 2035. As the technology improves, the PV system prices for both 

utility-scale and rooftop PV systems will converge towards the lowest levels; average costs for utility 

scale plants will reach a level of US$700/kWp by 2050 and the average rooftop PV system costs will 

be around US$1000/kWp by 2050. However, the soft costs would remain high. The IEA’s ETP report 

also assumes that the average LCOE will continue to reduce by narrowing the country gap. Table 

XVII indicates the average LCOE for utility scale PV plants and rooftop PV systems. 

 

hi-Ren scenario  2013 2030 2050 

Average LCOE for utility-scale PV plant (US$/MWh)  177 81 56 

Average LCOE for rooftop PV systems (US$/MWh)  201 102 78 

Table XVII : IEA's estimation of the PV LCOE in hi-Ren scenario 

As the most global market would share a similar PV system prices in the future, the costs of 

capital will have a greater role for calculating LCOE of PV power in the future. For example, it defines 

that when the weighted average capital cost (WACC) exceeds 9%, more than half the LCOE comes 

from the financing.  

The de-carbonization of the entire energy system by 2050 in the 2DS will require about 

US$ 44 trillion of additional spending. This investment is more than offset by over US$ 115 trillion in 

fuel savings, resulting in net savings of US$ 71 trillion. Even with a 10% discount rate, the net savings 

are more than US$ 5 trillion (IEA, 2014b). 

Furthermore, apart from the use of back up energies, IEA report also suggests other various 

methods to increase flexibility of electricity mix that contains a high share of variable renewable 

energies like solar.  

- Electricity storage 

- Larger balancing area using transmission lines or  interconnection  

- Other parts of the system as flexibility assets 

- Demand response measures (e.g. smart charging of EVs) 

- Linking the electricity system with the heat system 

- Linking the electricity system with fuel production (such as electrolysis of hydrogen) 

In the following, we discuss IEA’s policy recommendations with the objective to realize the 

PV presented objectives. 
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2) IEA’s  recommended policy actions to achieve those objectives 

Deploying PV power according to the vision of this roadmap requires consistent and balanced 

policy support. In order to achieve the proposed targets of PV power generation, IEA recommends 

various policy actions in four main areas;  

a) Establish medium & long-term targets for PV deployment in line with the national energy 

strategy and the country’s mitigation efforts to combat climate change. 

b) Prepare stable and long-term predictable financial support mechanisms to stimulate PV 

system deployment: stable legal frameworks are needed in line with support to minimize investors’ 

risks and reduce capital costs. 

- Possible financial support mechanisms for utility-scale plants: FITs, auctions for long-term 

PPAs 

- Facilitate distributed PV generation either using FITs49 or net metering 

c) Reduce PV costs through technology improvement mainly driven by industry or via reducing 

‘soft-costs’. 

d) Anticipate the deployment of variable PV generation through evolution of transmission and 

distribution grids and the rest of the electricity systems to ensure the security of supply. 

 

 
Table XVIII: IEA's recommendations to achieve the targets of PV power generation 

IEA’s roadmap also highlights the importance of addressing existing and potential barriers that 

hinder the development of PV energy. The removal of non-economic barriers enables to reduce 

administrative and transaction costs (Coase, 1937). For example, the following actions are 

recommended to increase the competitiveness of PV power.  

- Streamline the PII (permitting, interconnection, and inspection) process to reduce bureaucratic 

administrative process, unnecessary costs, and waiting time. 

- Prepare training and certificate systems for PV installers. 

- Prepare internationally recognized standards for PV modules and systems in various climatic 

conditions.  

                                                      
49 This roadmap recommends that FITs have degressive rates and quantitative limitations. 
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In addition, it is important to increase the flexibility of the existing power system to facilitate 

the large penetration of PV system in electricity mix. The following actions will help increase the 

flexibility.  

- Reduce the costs of decentralized electricity storage.  

- Prepare demand-side response and effective storage options. 

- PV system can be installed directly on consumption sites.  

The international collaborations will bring various advantages in terms of PV deployment. It 

allows the national PV energy actors to look for synergies (knowledge, experiences, and 

infrastructures) in terms of PV development activities. The long-term harmonization of PV energy 

research can be thought. Furthermore, the standardization in terms of grid integration can be 

implemented for the better integration of PV power. It can also help provide with best practices in 

developing countries for the large deployment of PV electricity in the future energy mix.  

Along with the increase of self-consumption in the future, there will be raising concerns 

regarding the fair recovery of fixed costs of grids. A continuous effort to monitor the impacts of large 

penetration of PV systems in the existing distribution network is needed. 

 

2 Risk analysis of PV development  

Despite such progress, photovoltaic energy has a various risks and challenges to become a 

major electric energy source in the globe. The observed rapid growth was mainly led by policy support 

and there is still room for improvement of PV’s natural outgrowth without those political favors. It is 

thus important to identify barriers, which hinder the development and utilization of solar PV energy to 

enhance PV’s competitiveness in the electricity mix. An accurate picture of PV risks and challenges 

facilitates to map out a future for PV development and utilization (Hämäläinen & Karjalainen, 1992).  

This section attempts to define key barriers associated with PV growth according to multi-

angles (Abu-Taha & Daim, 2013): technological, market, institutional (political change), financial 

risks (uncertainty to meet the target costs), supply risks and context risks (Popiolek, 2015, p. Ch. 4.IV; 

European Commission, 2010)  

The analysis to identify a range of risks and barriers for PV electricity growth is based on 

existing literatures (Painuly, 2001), expert opinions, and personal judgments. In order to give a precise 

outlook of risks, the nature of risks, cause or sources of risks and potential consequences of risk 

occurrence are defined for each range of risks (European Union, Op. cit.).  

2.1 Internal risks: direct risks (or rupture) related to PV evolution 

The internal risks are the risks inherent to the photovoltaic sector. They include the risks 

associated with the technologies of the PV system (e.g. solar PV cells and storage system) and PV 

market needs (PV usage), and the risks related to the organizational aspect (e.g., institution or 

financing). 
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2.1.1 Technological risks (supply-side) 

PV technological risks are all those that arise associated with technical issues (e.g. module, 

non-modules devices, installation or engineering works, and system integration) or possible technical 

breakthroughs. PV energy has experienced an impressive technological shift. PV is now a mature and 

proven technology (UK's Department of Energy & Climate Change, 2013). PV systems generally 

produce small amounts of electricity (few kW to few MW) and need no fuel. PV electricity thus 

presents few technological risks compared with other energy technologies. Different technological 

risks and challenges are captured in Table XIX according to PV value chain. The risks related to raw 

material supply are defined in the next part. 

 

Risk Cause / source  Potential consequences 
Solar PV cell/module 
performance (IEA, 2014) 

R&D for PV cell efficiency 50 
Manufacturing & experience 
Material amount used to make PV modules 

PV Market lock-in by c-Si technologies 
Change in PV module prices 
Technological breakthroughs (c-Si non c-Si 
technologies) 

BOS performance 
(Timilsina, et al., 2012) 
(mainly compared to 
module performance) 

Lifespan of BOS components 
Efficiency of non-module PV equipment 
(e.g. inverter) 

Increase PV O&M costs 
Change in PV system prices 
 

Batteries performance 
 

R&D in batteries (lifespan, recycling..) 
Breakthrough of batteries technologies  
Market development  (cost reduction) 

Influence PV system costs 
Synergies for PV growth (acceleration of PV 
usage development) 
Reduce risks associated with the intermittency 
of PV power 

PV integration in electric 
power system 
(Intermittency of PV 
production) 
 

Grid connection  
Grid quality variation  
Characteristics of electricity mix (flexible 
capacity) 
Lack of storage system solution  

Influence the grid management  
Negative prices 
Affect the energy security (e.g. blackout) 
 

Table XIX: PV technological risks 

Among identified risks, a few points should be focused. 

 

1) Possible technological breakthroughs that induce a drop in PV system price 

These give significant impacts on PV development. They can be realized led by dynamic R&D 

activities, innovations or further development of non c-Si technologies like thin film; the technology 

lock-in problem by c-Si should be solved to bring technological breakthroughs to advance non c-si 

technologies.  

Furthermore, breakthroughs related to BOS also reduce the PV system prices. In fact, the costs 

of BOS are not always declining proportional to the decline in module price in the current PV system 

(World Bank 2012). The improved BOS performance or innovative approach to reduce BOS costs are 

feasible in the short-run through R&D efforts and process improvement.  

2) Possible breakthroughs of storage solutions (e.g. batteries) to solve the PV intermittency 

A low-cost energy storage solution would give a good solution for the large deployment of the 

intermittency PV electricity. When the combined PV and battery system is provided at a reasonably 

cheap price, the large penetration of PV electricity would be more feasible; it would expand the realm 
                                                      

50 C-Si: cell efficiency and effectiveness of resources consumption through materials reduction, improved cell concepts, and 
automation of manufacturing (IEA, 2014) 
Thin film: cell efficiency, experiences in manufacturing and market, and long-term reliability 
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of PV self-consumption. Moreover, the large storage system would reduce the grid-level costs of PV 

electricity.   

3) Risks related to PV integration  

When the PV power accounts for a large share in the electricity mix, risks concerning PV 

integration became significant. Sometimes, the integration of PV in the energy system stimulates some 

problematics like negative prices. The management of the variability of PV production is very 

essential to reduce PV integration risks. Therefore, a well-adjusted technologies or practices to 

integrate PV electricity are needed to reduce such risks. In addition, smart strategies of PV deployment 

to minimize the systemic effects on the electricity system can be also considered. 

 

2.1.2 Market risks (demand-side) 

Market risks are related to market disappearance or appearance; the acceptability of consumers 

(uptake of new or changed products or services related PV systems) is the key element to make or 

break the market. Market risks occur when the market cannot justify the investments. The market 

acceptance can be improved through effective communication or public campaigns. 

Unexpected market development based on an innovative concept of PV usage gives a quantum 

leap of PV. In addition, PV-related market development gives a positive impact on PV development; 

e.g., the residential PV system can get a benefit from the development of Li-ion battery.  

 

Risk Cause / source  Potential consequences 

Market acceptance for  PV  Preference on solar PV energy or vice versa 
Complexity of usage (PV system) 
Price of PV system 

Expand or decline PV installations  
 

Unexpected market/PV usage Innovation in PV usage 
e.g. coupling with other sector (EV) 

Expand the scope of PV application & 
increase PV installations 

Market development 
associated with PV (e.g. 
batteries) 

Innovation in PV- related sectors 
(e.g. batteries) 

Synergies of PV development  
(e.g. combined PV system with batteries) 

Table XX: PV market risks 

 

 

2.1.3 Institutional risks 

PV institutional risks are all those risks of failing or under-delivering due to the characteristics 

of organizational institutions. The successful development of PV energy requires effective institutional 

devices. For example, appropriate laws should be prepared to encourage a wider utilization of solar PV 

energy as well as to prepare supporting infrastructures. The major institutional PV risks are presented 

in Table XXI. 
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Risk Cause / source  Potential consequences 

Institutional risks 
 

Lack of appropriate legal/regulatory framework Discourage the PV use 
Reduce investment in PV  
Increase costs/ time to install PV system 

Lack of professional institutions (limited 
understanding among key national and local 
institutions to develop PV)  
Lacks of public education or training systems  

Complicated and time consuming procedural 
problem 

PV political risks 
 

Policy inconsistency  
A stop-go political cycle  

Interruption of PV development  

Conflict of interests among 
stakeholders 
 

Lobbying against PV growth from conventional 
energy industry or grid operators 
Lack of dialogue among stakeholders 

Interruption of PV development 

Social feasibility risks Land usage 
Esthetic aspect  

Interruption of PV development  
(or develop niche market)  

Table XXI: PV institutional risks 

The institutional role is very important for PV growth since the political strategic direction has 

played a crucial role for it. Most institutional risks are directly related to the present PV policy designs. 

Three points should be focused: 

1) Organizational (institutional) barriers that increase PV costs 

Some organizational barriers cause unnecessary costs and a time lag. For example, an 

inefficient administrative process or untrained workers delay PV project implementation requiring 

additional costs. In addition, a change in electricity market mechanisms can influence the PV 

development when the PV is integrated in the electricity market. Targeted policies can reduce those 

risks. 

2) The consistency in the PV policy 

Another important risk is related to the lack of continuity of PV policy in the medium-to-

long-term. Frequent shifts in PV policy or policy incoherence confuse investors who need a long-term 

perspective to secure their investments (Negro, et al., 2010). A clear and credible long-term policy 

signal is important for the development of PV (IEA, 2014).  

3) Conflict of interests among stakeholders 

There are some hidden risks concerning the conflict of interest among stakeholders in the 

national energy market. The lobbying against PV can discourage ambitious PV policy (Energy and 

Policy Institute, 2014). Therefore, such risks caused by traditional energy firms or grid operators 

cannot be ignored. It is important to have a communication or preparatory meetings among such 

stakeholders to reach an agreement. For example, a fair system to recover fixed costs of grids with PV 

integration or a solution to missing money issue can be handled under this context.  

4) Social feasibility  

It is important to increase social feasibility of PV power in the electricity system. The land 

usage is important issue related to PV development. As seen in chapter 2, this can be a threat for 

utility-scale PV plants:  the opportunities cost of lad usage should be considered. However, PV has a 

good social feasibility compared with other energy source like wind power (Senat, 17th February 

2015). 
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2.1.4 Financial risks 

The financial risks represent uncertainty to meet target costs or the ability to secure the funds 

needed. PV energy has economic advantages due to its lower fuel and operating costs. However, there 

are several financial barriers in terms of high initial investment, lack of easy financing, high system 

costs, especially, related to integration of electric power system. 

The investment choice is evaluated based on experiences of PV development, economies of 

scale and other factors such as energy prices. However, reflecting its shorter history compared to other 

conventional energy sources, PV is assessed in the high-risk group of projects with high transaction 

costs by financial institutions at higher interest rate. Furthermore, PV has a high system price 

compared to conventional energy sources. The major financial risks are summarized as below; 

 

Risk Cause / source  Potential consequences 

Lack of access to capital / credit Poverty (high in developing countries) 
Lack of confidence of funders 

Impossibility to buy PV systems 

High discount rate / High cost of 
capital 

Lack of confidence in PV technology and policy Increase PV LCOE 
Discourage investment in PV  

Forecasting error in PV prices Rapid & diverse change in the PV sector 51 
& incomplete information 

Financial burden, market collapse 

Table XXII: PV financial risks 

The following points represent the major financial barriers. 

1) Lack of capital to install PV system 

This barrier is related to funders’ confidence in PV projects. This occurs more often in 

developing countries.  

2) Cost of capital 

PV development is capital-intensive and a low capital cost is a plus for PV deployment 

growth52. The investment in PV projects is very sensitive to the policy; a strong and consistent policy 

signal is need to attract more capital in the PV sector (Ardani et al. 2013). The interest paid on both 

debt and equity has a significant impact on the total cost of a large-scale photovoltaic project. The cost 

of capital is and will remain a major driver for the cost of PV power (Fraunhofer ISE, 2015b). 

3) Forecasting error in PV prices 

The difficulties of forecast of PV prices bring another barrier for PV devolvement. 

Forecasting error is an important issue for the policy planner. In the current PV market, the national 

PV system price is much influenced by the global market situation. The incomplete information is a 

challenge for the PV policy design. Such forecast errors can lead to financial burdens or a market 

collapse. This risk is highly correlated with breakthroughs of other sectors like technology or market.  

 

                                                      
51 Example with FIT in Spain, France, Germany, and Japan. 
52 Almost all expenditure are made up-front (IEA, 2014) 
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2.2 External risks: indirect risks (or rupture) on PV growth 

The external risks are the risks induced by the relationship of the PV sector with other sectors 

of the economy. It includes the risks associated with the raw material supply and those related to the 

external environmental factors for PV growth. 

2.2.1 Supply risks  

Raw material supply risks give constrains of PV growth. Some PV technologies like c-Si, 

CdTe, and CIGS have supply risks of raw materials.  

The supply of PV-grade silicon for c-Si technologies was interrupted in the mid-2000s giving 

negative impacts on PV market growth. In addition, the supply of Cadmium and Tellurium is related 

with the certain thin film technologies. Their availability depends on the industry evolution of zinc 

mining and copper processing respectively. Material intensity needs to be reduced for large-scale PV 

deployment.  

 

Risk Cause / source  Potential consequences 

Raw material supply risks 
(scarcity) (Kavlak, et al., 
2015) 
: stable supply & availability 
of raw materials 
 

PV-grade silicon for c-Si technologies Increase the module price  
Disruption of PV growth 
Industry crisis by excessive supply 
 

Indium for CIGS  
Stable supply & availability of Cadmium and 
Tellurium for CdTe 53 

Health Cadmium (CdTe) Reduce the use of CdTe 
Table XXIII: PV supply risks (raw materials supply) 

The most important risk is the scarcity of some raw materials like indium (CIGS). The supply 

risk threatens some PV industry technologies (thin film), but not the whole PV sector; different 

materials are used for other PV technologies. Conversely, the supply risks can also include the 

oversupply of raw materials issues which eventually leads to the industry crisis (e.g. oversupply of 

polysilicon). 

2.2.2 Context risks 

Context risks arise in case of a lack of stability in the policy environment. They are induced by 

external factors that the government cannot fully control. The major environmental risks of PV are 

captured in the Table XXIV.  

Risk Cause / source  Potential consequences 

Substitutes risks   
e.g. (fossil fuel prices) 

Unexpected change in competing energy 
technologies or price (e.g., coal, oil, shale gas, shale 
oil) 

Reduce PV competitiveness  

Economic situation  Rapid economic growth  
Economic crisis  

Increase or reduce energy demand  
Influence the development of 
renewable energies (incl. PV) 

Globalization (international 
trade) 

Free trade zone 
Trade barriers 

Influence PV system prices & PV 
industry 
 

Table XXIV: PV context risks 

                                                      
53 By-products from respectively the zinc mining and copper processing and their availability depends on the evolution of 
these industries 
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The following market risks are important to realize the large deployment of PV electricity. 

1) Substitute risk (e.g. fossil fuel prices) 

The substitute risk is important for PV growth. When the competing technology cost largely 

reduces, the development of PV would slow down. For example, a decreased fossil fuel prices can 

disturb the development of PV power; the exploitation of shale gas or shale oil gives an alternative 

solution of cheap energies for the future energy mix (Stevens, 2012). In this case, the PV electricity 

becomes less competitive compared to fossil fuel solutions.54 

2) Economic situation  

Economic situation is an important element in terms of PV devolvement. Energy demand is 

influenced by the economic condition. For example, rapid economic development increases energy 

consumption while an economic slowdown reduces the energy demand. Therefore, the national or 

global economy situation affects the PV development indirectly.   

3) Globalization  

The globalization influences the PV development because the current PV market operates 

under the open economy. As seen, the global market shares the similar PV module price and some 

countries implement trade barriers to protect their domestic market. This largely influences the PV 

industry.  

 

3 Conclusions 

This chapter has shown that international goals for combating climate change are ambitious 

along with the increasing awareness of environmental issues. IEA’s hi-Renewables scenario suggests a 

very important pathway of photovoltaic energy development; installed PV capacity will reach 4,674 

GW by 2050 (this means that solar PV will generate 6 300 TWh of electricity in 2050). To achieve 

those objectives, IEA presents different inquiry themes to remove blockages of PV development with 

policy recommendations. Those subjects intersect with author’s analysis. However, author’s analysis 

provides a deeper insight into the PV system mechanisms and its dynamic features.  

Referring to all defined information concerning the PV energy sector, this chapter concluded 

with a discussion on risks of PV development according to author’s analysis. They have been 

classified according to six areas: technological, market, institutional, financial, supply, and contextual 

risks. There are few technological risks; however, a ‘breakthrough’ of PV technologies or batteries 

possibly modifies the outlook for PV market in the future. It is the same with market risks. In addition, 

synergies between PV technology and market could accelerate the spread of PV energy. 

The conducted risk analysis also defines the major institutional risks; they are related to the 

lack of institutional framework and the continuity of the PV policy. In addition, the conflict of interests 

among stakeholders should not be ignored; this issue will be further discussed in Part III. Financial 

risks concerning the development of PV also exist related to the investment cost and the cost of capital; 

these factors can limit the diffusion of PV in developing countries. The PV market is sometimes 
                                                      

54 If no carbon price is implemented. 
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largely subsidized. Therefore, risks exist related to forecast for PV price evolution; the forecast errors 

can block the national market growth or create market bubbles. This will be further discussed in Part II. 

We have also defined supply risks related to raw material supply for certain technologies. 

Concerning contextual risks, economy situations and globalization of PV market are important 

elements to consider. Globalization impacts are discussed in Part II and Part III. 

Like this, the analysis of overall risks of PV development is important to conduct in order to 

avoid any medium or high potential negative consequences of PV policies. These risks can be removed 

by benchmarking best practices.   
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Conclusions of Part I 

In this Part I, we have developed the thesis subject methodically by specifying the context 

according to three axes defined in the subject title: public policies, PV technologies and PV usages 

with their integration in the energy system. This Part allows us to define the full context of the field 

of PV containing the different types of PV technology, PV usages, its obstacles, and public policies 

that lead to its development. 

Based on the history of economic thought, the first chapter has specified the important role of 

public policies to support energy transition. The development of PV energy is beneficial to the society 

by reducing CO2 emissions, providing a new engine for economic development through a sustainable 

energy system model (green growth) and improving energy security via diversification of energy 

sources. However, the motive of the private sector does not necessarily coincide with these objectives 

because PV energy are not yet competitive enough in the energy system compared with conventional 

energies and they include various risks and challenges. The state intervention is thus needed to realize 

such objectives; it relies on either production support through research or innovation in companies or 

indirectly through supporting demand.  

The state of the art analysis of PV technologies is useful to understand the possible options of 

PV technology solutions and the market situations. PV has various solutions in terms of technology 

perspective. However, the current PV market is largely dominated by silicon technology. The 

established market has fewer incentives to make a long-term investment to develop other technologies 

than silicon technology (lock-in). Even though such technologies are more suitable in certain areas 

with advantages, the economic competitiveness is relatively weak compared to silicon technology that 

has largely reduced the cost due to the scale effects over the last decade. The commercialization 

barriers hinder to develop other technologies.  

This chapter also presents the complexity of managing the electric power system that makes 

difficult to integrate intermittent PV energy in the electricity system as the massive electricity storage 

solutions for some hours or a season do not exist for the moment. It is therefore important to introduce 

the concept of systemic costs of PV that incorporates additional costs related to the network 

management, balancing and externalities. 

Various PV usages have been implemented from PV technologies: off-grid and grid-connected 

(distributed and centralized). The SWOT analysis of PV usage enabled us to highlight opportunity and 

threats of each PV usage. Different strategy for each usage should be employed to find the optimal 

mode of PV power use in the electricity system. It should be discussed in terms of the political context 

and local situations since each country has different political context and conditions for PV 

development. The differences exist among regions in a country. Our SWOT analysis is useful to define 

the customized strategy of PV deployment by taking strong and weak points of each usage into 

account.  

For example, if the aim is to reduce or minimize the systemic costs, we can deploy PV 

systems in areas with problems of grid-connection. In addition, we should avoid areas with 
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overproduction of electricity. In addition, increasing the matching ratio between the PV power output 

and consumption is also important. Furthermore, if land usage and land availably matter, we can think 

about the strategy that can use the existing surfaces of buildings.  

Finally, we reviewed the PV development opportunities in the context of energy transition 

from European objectives and the global scenarios of IEA (16% of global electricity from PV by 2050, 

this means that installed PV capacity will achieve 4,674 GW in 2050). We also gave a brief review on 

IEA’s policy recommendations to achieve those objectives. Our study on PV policies somehow 

intersects with the IEA’s perspective. However, our study also analyses the mechanisms behind and 

the dynamics of PV policy system based on a systemic perspective. 

All these elements helped us finish this Part with a risk analysis related to PV development. 

The results allow us to prepare strategies for solar PV development in the energy system by reducing 

any potential threats and challenges or exploring further growth opportunities. In this analysis, we 

defined key barriers related to PV development based on multi-perspective to present a comprehensive 

approach; they contain internal risks (technological, market, institutional, and financial risks) and 

external risks (supply risks and context risks). All defined elements will be used as a theoretical 

framework for the study in Part II and Part III. 
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Part II. Retrospective analysis of PV public policies and 
application of mappings for selected countries based on empirical 
data 

Introduction 

In Part II, a retrospective analysis of PV public policies is conducted to define critical limits 

and challenges related to the PV policies mechanisms and to understand the mechanisms behind them. 

The methodological framework of this study is based on ‘structured mapping’, which helps 

conceptualize the PV policy mechanisms. In addition, our analysis gives a focus on different policy 

context and the historicity. The dynamics of policy mechanisms is analyzed. In this Part, we propose 

two types of mapping methodologies that help conduct the retrospective analysis; a schematic map of 

PV policy mechanisms (chapter 2) and the criteria of policy evaluation (detailed mappings) (chapter 3). 

Part II has four chapters.  

The first chapter presents the global PV market trends. The goal of this chapter is to define 

major players in the PV sector by considering both the supply and demand sides. Germany, Japan and 

China are taken as sample groups of our analysis because they have played the most significant role in 

the global PV development over the last few decades. We also decided to study three other countries, 

the U.S., France and South Korea. They have less significance in the global PV market but interesting 

profiles.  

In the second chapter, we conduct a retrospective analysis of PV public policies using the 

proposed analysis tool. We propose a schematic map to give a macro perspective for our cross-country 

comparative studies. The schematic map gives policymakers a global overview of PV policy 

mechanisms. Since countries usually have different PV policy features with different context, the use 

of a common method facilitates our cross-country analysis in a more systematic and organized way. 

The schematic map of PV policy mechanisms is constructed inspired by the concept of logic models 

presented in Part I. The application of the schematic map is followed with selected counties’ empirical 

data over the last few decades. This parallel analysis over several time periods allows us to review the 

dynamics of PV policy mechanisms. In our analysis, we define three key PV policy targets: PV power 

growth, economic growth through PV industry development and reduction of PV costs. 

In chapter 3, we develop the criteria of policy evaluation (detailed mappings) to take a deeper 

insight into the PV policy system. The detailed mapping is constructed inspired by a technological 

prospective method (méthode de prospective technologique) proposed by N. Popiolek. The detailed 

mappings explain the causal relationships between key variables and help evaluate policy efficiency. 

Three detailed mappings are developed with regard to important policy targets identified in chapter 2. 

A cross-country empirical analysis is then conducted using this method. Based on the findings, we 

finally discuss critical limits and risks that have emerged in the major countries. We define three 

critical issues in the PV policy system; financial risks associated with the FIT system in the context of 
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subsidized policy system, systemic effects of PV integration on electricity system and the PV market 

crisis with globalization. An in-depth insight into each issue is given. The main purpose of this 

approach is to analyze the dynamics of PV policy mechanisms. It would help prepare strategic 

orientations for PV policies in the future taken critical limits and risks into account. Ideas of strategic 

movements for the PV development will be discussed in Part III. 
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Chapter 1. Overview of global PV market and main players (selecting the 
sample) 

In this chapter, we aim to identify key players in the global PV sector, including both the 

supply and demand sides. To do so, the overall context of PV historic evolution taking both the supply 

(industry) and demand (installations) sides into account are briefly reviewed. The defined players will 

be taken as sample groups for the retrospective analysis in the following chapter. 

1 Historical change with regard to PV global installations (demand) 

1.1 Regional contribution  

The global PV supply has demonstrated a rapid market growth with respect to the world’s 

cumulative installed capacity, rising from 1.2 GW in 2000 to 140 GW in 2013 (EPIA, 2014).  

In the early 2000’s, Japan was the PV market leader accounting for over 50% of world’s 

cumulative installations in 2002 and more than 40% of global annual growth came from Japanese 

market. However, since the mid-2000’s, Europe took the leading position in the global PV market, 

with Germany in pole position; it accounted for around 70% of the world’s newly installed capacity in 

2005. In addition, there were installation peaks in Spain (2008) and Italy (2010). In 2013, Europe 

represented almost 60% of the global cumulative PV capacity with 81 GW.  

However, Europe is losing its share in the global market; the shrinking demand in Europe is 

largely counterbalanced by the rapid rise of PV market in other regions. The paradigm change has 

started since 2013; new growth was implemented in non-European countries (China, Japan, US). More 

than 60 % of new installation in 2013 came from China, Japan and the USA.  

Asian countries, with China and Japan as the central figure, currently develop the PV market 

faster than the European market. China and Japan rapidly increased their contributions to the global 

PV sector, surpassing German growth in 2013 (EPIA, Op. cit.). China became the largest PV installer 

in the world’s PV market in 2013 with 12 GW of annual installation, while Japan installed 7 GW in 

2013. The total sum of European contribution in terms of annual PV installation in 2013 is 10.9 GW; 

this is less than the Chinese installation. However, Germany stills remains as the largest installer in 

Europe with 3.3 GW in 2013.  

The USA installed 4.8 GW and their cumulative capacity represents almost 10% of the global 

cumulative installations with 13.7 GW in 2013. In addition, other regions like Africa, the Middle East, 

South East Asia and Latin America started the PV market development. In particular, PV has great 

potential in South America and Africa, where a significant electricity demand is expected in the 

coming years (EPIA, Op. cit.). 

Figure 38 shows leading countries in terms of cumulative installed PV capacity. 
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Figure 38: Demand-side: cumulative installed PV capacity in the world 

1.2 Demand change in PV system type 

Apart from the paradigm change of regional growth, there is a visible demand change in terms 

of PV system type. Off-grid systems accounted for around 10% of PV system installations in the early 

2000’s but the share came down to less than 1% in the current global PV market (IEA PVPS, 2014). 

Off-grid systems are developed in many developing countries (e.g. India, South East Asia) and 

isolated islands because they provide a mobile power supply solution to area where there is no 

traditional grid’s coverage. However, these days, some countries like Australia, China and Japan put 

more effort to develop off-grid PV systems than in the past, supported by targeted policies; they are 

mainly used for rural electrification or industrial purpose. In the European countries, off-grid systems 

still serve for remote sites or communication devices with negligible visibilities.  

The development of grid-connected systems can be seen with regard to the balance between 

centralized and decentralized PV systems. In the early of 2000’s, most grid-connected PV systems 

were decentralized. However, grid-connected centralized systems became more important for the 

current PV systems, accounting for more than 60 % of grid-connected system installations in 2013 

(IEA PVPS, Op. cit.). This change is mainly driven by China and the USA; the grid-connected 

centralized PV systems represent around 60% of the on-grid systems in Asian Pacific and American 

regions in 2013, while EU only has 30% for that. 

2 Historical change with regard to PV global production (supply) 

As seen, the PV industry mainly concerns the production of PV materials (feedstock, ingots 

and wafers), PV cells and modules and BOS components.   

2.1 Polysilicon, ingots and wafers 

As seen, wafer-based crystalline silicon is dominant technology in the global PV market. The 

manufacturing capacity of solar cells and modules are sensitive to price change in polysilicon. For 

example, the spot price of the polysilicon was around 70-80 $/kg at the beginning of 2011; this led to a 

decline in global production of modules (IEA PVPS, 2013; Osborne, 2013). 
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Major Polysilicon producing countries are China, Germany, Korea, the USA, and Japan. In 

addition, Canada, Norway and Malaysia also developed their business activities in this sector. In 2013, 

230,000 tonnes of polysilicon were globally produced; four top producers, which are Wacker Chemie 

(Germany), GCL-Poly Energy 55  (China), OCI (Korea) and Hemlock Semiconductor (USA), 

represented more than 50% of the global polysilicon supply (IEA PVPS).  

 
Figure 39: Polysilicon production in 2013 (IEA PVPS) 

Figure 39 indicates the country participation in 2013 production of polysilicon. China is the 

world’s largest producer and consumer of polysilicon in the current PV market. The country had 

160 000t/year of production capacity and 36% of the world’s polysilicon was produced in China in 

2013 (82,000t). However, at the same time, China is a major importing country of polysilicon to meet 

the increased domestic demand; almost 50% of Chinese consumed polysilicon was imported in 2013. 

Germany produced 46,130 t/year of polysilicon in 2013 with Wacket Chemie’s leading position. Both 

South Korea56 and the USA57  had the production capacity of 70,000 t/ year each in 2013 and produced 

around 40,000 t/ year each. In Japan58, about 4 500 tonnes of polysilicon were produced in 2013.  

The same manufacturers generally produce ingot and wafers together. In addition, major 

manufacturers59  make silicon ingots and wafers for their own use. Accordingly, it is difficult to 

monitor the entire production of ingots and wafers. The leading countries in polysilicon production 

also take the lead in producing wafers; they are China, South Korea, Japan, Germany, Malaysia, and 

Taiwan. 

In the recent years, China became the world’s largest producer of wafers for solar cells with 40 

GW/ year of wafer production capacity in 2013(IEA PVPS). Chinese solar wafer production reached 

around 30 GW in 2013, imported 7GW included. China-based GCL-poly Energy is the world’s largest 

wafer maker with 10 GW/year of production capacity in 2013. In addition, Chinese makers and 

Japanese producers started to expand their production lines in Malaysia.  

                                                      
55 GCL-Poly Energy produced 65000 t/year in 2013. Daqo New Energy, TBEA and ReneSolar Silicon are major producers of 
polysilicon in China. 
56 OCI, the largest Korean producer had 42 000 t/year of production capacity. Hanwha Chemical constructed a polysilicon 
plant with an annual production scale of 10 000 t/year and started production in 2013. 
57 Hemlock Semiconductor Corporation, REC Silicon and SunEdison and major manufactures. 
58 Tokuyama started production in its new polysilicon plant located in Malaysia with a production capacity of 6 200 t/year 
(this will be expanded upto 20 000t/year). 
59 For example, Yingli Green Energy (China), ReneSola (China), Trina Solar (China), SolarWorld (Germany), Panasonic 
(Japan), Kyocera (Japan), etc. 
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However, wafer-making has the lowest profit margin in the entire production value chain of 

crystalline silicon PV modules; the price was around 0.8 $/ piece in 2013 (IEA PVPS, 2014). In this 

sense, the large-scale producers are price competitive and the market is restructured around them. 

 

 
Figure 40: Wafer production in 2013 (IEA PVPS) 

2.2 PV cells and modules  

Since the early of 2000’s, Japan and Germany have played an important role in PV 

manufacturing. However the involvement of the US has decreased. China entered in the PV market 

quite late since the mid of 2000’s. The Chinese share has rapidly increased, occupying almost 60% of 

the world’s total production in 2012 (IEA PVPS, 2002 to 2013). China became the world’s largest PV 

cells and modules manufacturing country; it had the largest solar cell producers in 2013 like Yingli 

Green Energy (2,3 GW), Trina Solar (2,1 GW), JA Solar (2 GW) and Jinko Solar (1,7 GW) (IEA 

PVPS). Other major producing countries are Japan, Germany, South Korea, the USA, Taiwan, and 

Malaysia.  

In recent years, Germany and the USA have reduced the solar cell production, while China, 

Japan, Taiwan and Malaysia have increased their production (IEA PVPS). The base for solar cell 

manufacturing has shifted to Asian countries with China as the center. The productions of solar cell 

and module generally have a similar aspect in terms of production volume and major producing 

countries. 

The global market of solar cell and module is mainly led by wafer-based silicon production. 

The production of thin film module only accounts for a small portion of global solar cell markets since 

thin-film PV is less cost competitive compared to crystalline silicon PV products.  

Around 4 GW of thin film modules (CdTe, CIGS) were produced in 2013 (IEA PVPS). 

Malaysia, Japan, China, Germany, Italy, and the USA, are the major producing countries of thin film 

technologies. The world’s largest thin film PV maker is First Solar, which is based in the US. It 

produced around 1.6 GW of CdTe PV modules in 2013 via its production lines in the USA and 

Malaysia. In Japan, around 1 GW of thin-film PV modules were produced in 2013 led by Sharp, 

Kaneka and Solar Frontier. 



136 

 
 

The current solar cell and module industry is suffering by the overproduction issues and low 

modules prices. The enhanced price competitiveness is necessary to be survived in the fierce price 

competition; the restructuring in the global PV market is proceeding.   

 
Figure 41: Supply-side: PV cells production in the world (IEA PVPS, 2002 to 2014) 

2.3 Balance of system manufacturing 

Balance of system (BOS) is also important in the PV system value chain because it raises the 

PV system costs. PV inverters are produced in many countries: China, Japan, Germany, the USA, 

South Korea, Australia, Canada, Austria, Italy, and Spain, etc. Local manufacturers usually dominate 

PV inverter production since inverter making and its installation should refer to the domestic grid 

codes and regulations. In addition, other components like tracking systems, connectors, DC-AC 

switchgear and monitoring systems suggest important business segment for several large electric 

equipment makers.  

In Europe, inverters with battery storage began to be commercialized in support of PV self-

consumption system. In Japan, residential PV systems are sold with battery storage supported by the 

national subsidy (IEA PVPS). The US-based Tesla also suggested residential battery (Tesla 

Powerwall).  

3 Definition of key players in global PV supply-demand mechanisms 

In the previous sections, we have seen the major countries in terms of PV supply and demand. 

Taken historic change in the global PV market into account, three countries are noticed; Japan, 

Germany and China. Japan and Germany have been driving the PV market growth focusing on both 

supply-side and demand-side policies over the last few decades. In addition, China is rising as a 

leading country in the global PV market.   

These three countries occupy a considerable portion of the global photovoltaic market. Around 

60% of the annual growth has resulted from these countries, excepting the installation peak periods in 

Spain (2008) and Italy (2010). In addition, German and Japan represent the majority of the global 

installations; 60% of the annual contribution in 2007 resulted from these two countries (IEA PVPS, 
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2002 to 2013). Chinese installations have begun to expand, supported by a national strategy to increase 

the PV power supply in China.  

As Figure 42 indicates, Germany, Japan, and China have been playing an important role in the 

global supply-side; they occupy around 70% of the global production (2012). China started to enter the 

market relatively late but its share has rapidly increased, occupying almost 60% of the world’s total 

production in 2012 (IEA PVPS, Op. cit).  

 

  
Figure 42 : Occupancy of Germany, Japan, and China in the global production (IEA PVPS, 2002 to 2013; IEA PVPS, 
2013b) (%) (Left) 
Figure 43 : Occupancy of Germany, Japan, and China in the global installations (IEA PVPS, 2002 to 2013) (%) (Right) 
 

4 Conclusions  

A quick overview of the global PV market evolution allowed us to define the major key 

players in the sector. Germany, Japan and China are taken as major sample groups for our 

retrospective analysis. We also decided to study three other countries that have less significance in the 

global PV market but have interesting profiles; U.S., France and South Korea.  
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Chapter 2. Schematic mapping of PV policy mechanisms (systemic vision) 
and applications for selected countries based on empirical data 

In this chapter, we conduct a retrospective analysis of PV policy mechanisms. For that, in 

section 1, we propose a macroscopic schematic mapping of PV policy mechanisms based on the 

concept of logic models (see Part I) to provide a systemic view of PV policy systems in a single 

diagram. This schematic map suggests a general overview of the PV policy mechanisms from policy 

objective, policy inputs to results (outputs and outcomes) and impacts. It visualizes how policy inputs 

and resources driven by policy objectives turn to specific outputs with long-term impacts on society. 

Key contextual factors are also considered because they have an important influence on the PV policy 

system. It can help anticipate possible risks. In addition, some key measurable variables are extracted 

from the model in order to compare different countries’ PV policy systems. 

Then, a retrospective analysis is conducted to examine major countries’ policies and results 

(outputs and outcomes) under different policy context using the developed schematic map of PV 

policy mechanisms. As defined in the previous chapter, Germany, Japan, and China are principally 

focused because of their important occupancy in the global supply and demand system. In section 2, 

section 3, and section 4, historic changes in the PV policies and results (outputs and outcomes) of 

Germany, Japan, and China are shown respectively. Important events and the context in both the 

supply-side and demand-side are also presented. In addition, in section 5, section 6, and section 7, 

France, the USA, and South Korea were studied respectively. They are studied due to their specific 

features in the PV market & PV policies. According to the order of schematic map, policy objectives 

and context are first presented to provide a general overview of PV policy choice. Next, policy inputs 

and results (outputs and outcomes) are discussed using identified variables in the previous section. At 

the end, we conclude the each case study with brief closing remarks based on a holistic perspective.  

Different aspects and changes related to the PV industry and market demand over the last few 

decades are observed in all those countries. Each country’s solar PV development is described based 

on the schematic map to highlight the different policy strategies and consequences. The parallel 

analysis over several time periods allows us to review the dynamics of PV policy mechanisms. 

Therefore, through this chapter, it is interesting to see how differently each country has developed the 

PV sector under different policy strategy and context. 

1 Policy evaluation schematic mapping of PV policy mechanisms  

1.1 The concept of logic model 

Logic models60 provide a visualized depiction of a program to explain key components of that 

very program; they are useful for demonstrating logical relations between such important elements and 

results within a specific context (Conrad, et al., 1999) (see Part I chapter 1). Logic models (also called 

the theory of change) provide a useful way to organize implicit information in mind and to display 
                                                      

60 According to logic models, a program can be depicted as a logical flow chart to indicate an intended transformation of 
specific inputs (resources) into center activities (process) to generate desired outcomes (results) within a specific context. 
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how an individual or group believes how their ideas should work. Such models employ a visual 

description of the sequence of planned actions and their expected results and changes in a single 

diagram (Knowlton & Phillips, 2013). They also provide a useful way to check if intended goals are 

met using a mutually agreed communication. The method is practical for describing logical relations 

of a program among resource inputs, activities, outputs and outcomes in association with certain 

situations (McLaughlin & Jordan, 1999; McCawley, 2001). 

Logic models offer an illustrative description of elements belonging to a specific program or 

organization’s change initiative (the theory of change) that outlines the relationship between the 

elements and desired outcomes (Conrad, et al., 1999; Frechtling, 2007). Graphical depictions are 

useful for demonstrating a systematic logical flow of intended transformations of resources, activities, 

outputs, and outcomes under certain situations (Wholey, et al., 2010; McCawley, 2001).  

The basic components of logic models are:  

1) Resources (human and financial resources, also referred to as inputs),  

2) Activities (process, program, tools, events and actions) to bring about the desired results 

and changes,  

3) Outputs (directed products, goods and services provided),  

4) Outcomes (specific changes in behavior, skills, knowledge, and status or benefits from 

programs),  

5) Impacts (fundamental, intended or unintended changes in organizations, communities, or 

systems) (Vedung, 2008; The W.K. Kellogg Foundation, 2004).  

In addition, the model includes key contextual factors that have an important influence on the 

program; however, they are not under control.  

Logic models have been used to assess policy programs over the past few decades to provide a 

strategic tool for critical thinking. Various refinements and changes of logic models have been made to 

the basic concept and many organizations now use these modified methods to address their needs 

(Wholey, et al., 2010). Logic models provide an efficient manner to illustrate the performance history 

or effectiveness of a specific program or organization’s change initiative over time.  

 

1.2 Schematic mapping of solar PV policy mechanisms (holistic mapping for policymakers) 

The concept of logic models is suitable for developing the schematic map to help visualize any 

key variables of PV policy systems in a single diagram. It also helps visualize how policy inputs and 

resources turn to specific outputs with long-term impacts. By doing so, it allows stakeholders to share 

a common basis to communicate PV policies and the consequences.  

A simplified schematic map of solar PV policy mechanisms was developed in this study to 

understand the policy mechanisms at a glance based on the concept of logic models and the theory of 

change while variables are identified based on a literature review (Ribeiro, et al., 2013).  
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The objective is to: 

- Develop common understanding among stakeholders 

- Identify important variables to measure the performance of PV policies  

- Facilitate the cross-country comparison of solar PV policy based on a macro-perspective 

The suggested schematic map has been developed taking into account existing practices of 

logic models and the theory of change, such as:  

- Theoretical background of a national R&D program evaluation  

- Evaluating EU activities: a practical guide for the Commission services (European 

Commission, 2004)   

- DG MARKT Guide to Evaluating Legislation (European Commission, 2008)  

- Historical Case Studies of Energy Technology Innovation (Wilson, 2012).  

The basic elements have been modified to adjust to the PV policy mechanisms. 

The simplified logic mapping for PV policy mechanisms, which considers multi-perspectives, 

is shown in Figure 44. This model explains the logical flows of PV policies and the consequences 

based on a global point of view. As shown in the diagram, solar PV policy inputs are taken according 

to governmental policy decisions (policy objectives). Resources will be allocated as decided by the 

government. The direct results will be determined as outputs; these will be calculated using 

measurable variables such as patents, changes in manufacturing production capacities, and increases in 

installation capacities. Moreover, this logic framework presents outcomes (impacts) which can be 

sorted into direct/indirect and short term/long term. A feedback loop is important to define the 

mechanism dynamics. Those elements are discussed in further detail below. 

 

 
Figure 44: Schematic map of solar PV policy mechanisms (author’s proposal) 
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1) Policy objectives 

The policy objectives in PV policy mechanisms differ from one region to another according to 

the national development and energy policy, the regional or national contexts, and the historicity of 

public policies. The decision maker’s political opinion of the PV energy source also has significant 

weight when setting those policy objectives. How the PV energy system is supported depends on how 

a country perceives renewable energy sources in the energy mix. As seen in the previous chapter, the 

general goal of policy in support of renewable energy sources is to achieve a sustainable energy 

system, which provides environmental, social and economic benefits to the society. This not only 

involves improving the cost-competitiveness of renewable technologies and sustainability in domestic 

energy production, but also the economic benefits such as its market share growth and job creation 

(IRENA, 2012b). Governments set policies to support renewable energies in order to address various 

objectives. To recall it, the general objectives are to (Macintosh & Wilkinson, 2011; IPCC, 2011b; 

Byrne & Kurdgelashvili, 2011) (see Part I chapter 3.4); 

- Enhance energy security via the diversification of energy supply technologies  

- Mitigate global climate by the energy transition: reduction of greenhouse gas (GHG) 

emissions  

- Improve access to energy, particularly in rural areas (energy equity) 

- Seek social development and economic benefits, e.g. job creation and economic growth. 

Differences in policy focus exist among countries; while energy security and environmental 

concerns are the main drivers in developed countries, socio-economic development and energy access 

tend to be the most important aspects in developing countries (IPCC, 2007; IPCC, 2011b). In the early 

1990s, only a few countries had rolled out policies to promote renewable energies. Since the early and 

mid-2000s, policy targets in renewable energies based on various policies have emerged in many 

countries (IPCC, 2011a) to address concerns of sustainable energy systems and the environment, e.g. 

the EU’s climate and energy objectives of 3x20 for 2020, which reflect its strong will to ensure its 

commitment to a low-carbon and energy-efficient society.  

By rolling out policy support with top-down policy objectives, the government plays a crucial 

role in advancing renewable energy technologies and in deploying them. In the schematic model 

application, the policy objectives of each country are defined in the schematic model application so as 

to provide the ‘big picture’ of the PV development pathway. 

2) Policy inputs  

According to the policy objectives, policy inputs are decided together with the allocation of 

resources. Solar PV policy inputs can be classified into supply-side (support to R&D and production) 

and demand-side (incentives for diffusion of solar PV energy such as subsidies to electricity 

production or installations) aspects (Finon, 2008).  
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As seen, the government support policies can be categorized into three groups; fiscal 

incentives, public financing, and regulations61 (see Part I chapter 1) (IPCC, 2011b, p. 197) (IRENA 

Op. cit.).  

The schematic map in Figure 44 shows that the policy instruments supporting electricity 

generation via photovoltaic are reorganized into supply-side (R&D, industry development) and 

demand-side (installations) (Alloisio, 2011; Finon, 2008). Both policies influence the development of 

the PV manufacturing industry; the former directly aims at developing the PV manufacturing industry 

(technology-push) while the latter indirectly stimulates it to expand (demand-pull) (Alloisio Op. cit.).  

Through the mix of policy instruments, government programs aim at achieving above-policy 

objectives. The clarification of policy input is useful for reviewing the focus area of country PV policy 

strategies. In the following sections, using the schematic map, policy strategies and inputs are 

reviewed according to R&D, industry and installations aspects with generated results. 

3) Outputs 

Outputs are generated results such as products or services in terms of technology development, 

economic results (industry), energy transition (installations) and other important results 

(administrations, social acceptance, usages and investor choices). The direct results are determined as 

outputs using measurable variables. Some detailed examples are given below: 

 Supply-side  

- R&D sector (Watanabe, et al., 2000): Publications, patents (Popp, et al., 2011; Wilson, 

2012), price reductions and module efficiency (Avril, et al., 2012) 

- Industry: Numbers of firms, production capacity, reduction of modules or system prices 

(IEA, 2010) 

 Demand-side  

- PV installations: installation capacity, installation price reductions (Gabriel, 2014; EPIA, 

2013) 

- Social acceptance (Lauber & Mez, 2004), training capacity (Malbranche, 2011), investors, 

administration process (European Commission, 2013)  

4) Outcomes   

Outcomes concern direct or indirect results and impacts in the short-term and long-term 

perspective; technological, economic and energy aspects. To give an example, reduced GHGs can be 

used to measure the environment benefits, while job creation and trade balance can be considered to 

review economic benefits. In addition, the energy transition’s impact is determined by comparing 

changes within the PV electricity generation in the electricity mix (Macintosh & Wilkinson, 2011). 

Energy equity is a longer-term impact indicator related to energy access or electricity prices. It is also 

important to include network improvements to address the issues of intermittency. The 

                                                      
61 Fiscal incentives: reduction of players’ contribution to the public treasury through tax deductions (such as income tax or 
other taxes), rebates, grants, Public financing: public supports such as loans, equity or financial reliability such as guarantee, 
and Regulations: rules to guide or control. 
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competitiveness of the industry can be determined by reviewing changes in the global market share. In 

this study, the following measurable variables are considered in order to review PV policy results.  

- Energy transition: PV electricity generated and percentage in the energy mix 

- Environment benefits: GHG emissions avoided 

- Economic benefits: jobs, trade balance, sales, and market share 

Outcomes combined with outputs will be presented as results in the country analysis. 

5) Overall impact 

These defined outcomes ultimately aim at improving the overall effects on society relative to 

the quality of life, energy security, sustainable development (IPCC, 2007; IPCC, 2011b) and 

economic growth (Solangi, et al., 2011) through the development of solar PV energy systems. In the 

comparative analysis, the overall impact associated with the country’s policy objectives is reviewed to 

clarify differences in the social benefits generated in each country. 

6) Key contextual factors 

Key contextual factors are important in the mechanisms. This includes various contexts, 

environments, natural and human resources, and external factors that influence the PV policy 

mechanisms. They are not, however, under control. The influencing factors hold different aspects in 

regional, national and energy contexts. There are various factors affecting the mechanisms, e.g. energy 

price changes, human resources such as the price of labor (Grau, et al., 2012) or education, electricity 

network quality (IEA PVPS), electricity mix, scarcity of domestic energy supply (Alloisio, 2011), 

manufacturing capabilities of fossil fuels (Alloisio, Op. cit.), the social opinion on energy sources 

(Lauber & Mez, 2004), financial situation, etc. The key contextual factors change over time and are 

influenced by various aspects.  

7) Evaluations 

It is important to define the desired results in comparison with policy objectives for the entire 

evaluation process. As seen in the previous chapter, there are some criteria to assess energy policies 

that can be found in most literature; they are effectiveness, efficiency, equity, institutional feasibility 

(IPCC, 2011a), replicability (IRENA, 2012b), consistency and coherence (IPCC, 2011b; Bohm & 

Russel, 1985). Among them, effectiveness and efficiency are the most commonly used standards to 

determine the success of policy instruments (IPCC, 2011a); effectiveness: to what extent is the 

intended objective met? (policy objectives vs. outcomes), efficiency: what is the ratio of outcomes to 

inputs? (policy inputs vs. outcomes). This study attempts to review the effectiveness of PV policies so 

as to assess which desired results are obtained compared with the policy objectives (see Part I chapter 

1.4). 

This schematic map attempts to provide an overview of a country’s PV policy roadmap from 

policy choice under certain policy contexts to the desired results and overall impact at the specific end. 

Accordingly, the map is used to explain the different pathways of PV development strategies and 

results in each country, rather than focusing on clarifying one-to-one linear relations among elements 

(this will be discussed in chapter 3).  
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The retrospective analysis using the common systematic tool facilitates comparative analysis 

by highlighting differences in policy strategies and consequences relative to the different PV 

development pathways. This approach clarifies the success and failure factors, and in doing so, 

comparative case studies can improve future policy actions to reduce risks or to respond to unexpected 

results. More importantly, it helps policymakers to conduct regular policy assessments or to prepare 

new strategies and actions when facing unexpected results or context changes. In the following 

sections, a retrospective analysis of public policies in favor of solar PV development to date is 

conducted using the schematic mechanisms model. 

 

2 Historic changes in PV policies of Germany  

2.1 PV policy history: policy objectives and context 

Germany has played a significant role in the development of the global solar PV market, being 

one of the pioneering countries over the past few decades.  

Germany began to promote the use of renewable energies as early as the 1970s when faced 

with oil crisis (Jacobsson & Lauber, 2006). Solar PV energy was one of the sustainable substitutes that 

could increase the national energy security. Later, the Chernobyl nuclear accident provoked social 

pressure to shift towards more sustainable energy sources. This has been later enhanced with the 

government’s decision on nuclear phase-out by 2022. In addition, the EU’s GHG emission reduction 

targets drove Germany to engage in more sustainable energy systems. German Energiewende (energy 

transition) aims to produce 80% of the electricity from renewable power such as PV and wind by 

205062.  

Accordingly, the German PV policy objectives aimed at developing a sustainable substitute of 

conventional energy sources and at mitigating the global climate change (Lauber & Mez, 2004).  

The Renewable Energy Sources Act (EEG), which was published in 2000, supports these 

national energy transition goals (Fischer, 2011). Under the EEG, the German government decided to 

stimulate the increase in demand by including PV energy systems. Germany also intends to boost the 

PV industry to generate more economic benefits (e.g. economic growth, job creation) (Alloisio, 2011). 

Like this, the country has a well-balanced development path focusing on both supply (R&D, industry) 

and the use of solar PV systems (installations).  

2.2 Policy inputs and results: supply and demand 

2.2.1 R&D: policy inputs and results (outputs and outcomes) 

In the solar PV development process, Germany almost followed the classic linear model of 

innovation from focusing on early R&D investment and then expanding to demonstration and 

commercialization (Lauber & Mez, 2004; Mints, 2012). Since the early 1980s, German R&D on solar 

PV and its demonstration were developed through the combined involvement of research centers, 

universities, and PV industry. This has created a close network in the PV sector.  
                                                      

62 Renewable targets in Germany: 40-45% by 2025, 55-60% by 2035, and 80% by 2050. 
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Since Germany’s disengagement from nuclear power in the early 2000s, part of the nuclear 

R&D budget was transferred to the renewable energy sectors (Lauber, Op. cit.). With the inflow of 

cheap Chinese products since the late 2000s, German R&D started to focus on further reducing the 

production costs of silicon-based technologies to support the German industry. At the same time, the 

country strengthened its skills in PV components and equipment (Grau, et al., 2012).  

The continuous R&D expenditures in PV demonstrated the German government’s supportive 

position towards PV technology development.   

US$M 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Germany 22.2 33.6 3.3 51.9 82.5 61 87.4 73.5 84 77.8 66 250 

Table XXV: Public budgets of PV R&D in Germany (IEA PVPS, 2002 to 2014) 

The German steady effort has resulted in an increased cell performance and reduced 

production costs per unit (this will be further discussed in the following part of PV industry). The 

silicon module efficiency improved to over 20% in 2012 thanks to continuous R&D (Siemer & Knoll, 

2013). The domestic R&D results can be reviewed with changes in patents. Germany was responsible 

for a significant proportion of the global patents. However, its contribution in silicon refining became 

less important in recent years because of the increased market influence of new entrants (e.g. China, 

South Korea). The new entrants induced overproduction and caused a drop in prices (IEA PVPS, 

2013; 2014). Moreover, Germany might have been suffered from a disadvantageous exchange rate for 

Euro (EUR) to US dollar (USD). In addition, German firms faced the increased electricity tariffs and 

this penalized the competitiveness of German power-intensive industry like silicon production. The 

German firms started to focus on overseas production (Wacker). 

Patents 

cell & modules 
1995 2000 2004 2007 2010 2013 

Patents 

silicon refining 
1995 2000 2004 2007 2010 2013 

Germany (%) 6.4 7.3 7.7 7.8 7.7 6.3 Germany (%) 17.0 13.9 13.4 11.2 8.4 7.0 

Table XXVI: Patents for cells & modules and patents for silicon refining (Unit: cumulative % of the global patents) 
(Espacenet) 

 1980s 1990s 2000-2004 2005-2009 2010-2011 
Germany (%) 6% 20.6% 15% 13.7% 11.1% 

Table XXVII:  German patents application filed under the PCT (OECD.Stat) 

2.2.2 PV industry: policy inputs and results (outputs and outcomes) 

Germany began to invest in the PV industry not only to meet its environmental goal (GHG 

emission reduction) but also to obtain economic benefits (employment and profits) (Alloisio, 2011). A 

great deal of funding was provided, mainly from the German federal government, EU, and the German 

federate states (Länder) in order to support the government’s incentive (IEA PVPS Germany, 2002 to 

2014; Grau, et al., 2012). There were also various industry support instruments; grants or cash 

incentives for direct investment, reduced-interest loans by the German development bank (national), 

and state development banks and public guarantee to secure bank loans (Grau, et al, Op. cit.). The 

German PV market developed thanks to synergies resulting from the success of technology-push and 

market-pull policies (Alloisio, Op. cit.).  
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In this section, the results of the PV industry are reviewed with respect to changes in the 

manufacturing capacity and the module production cost. Economic benefits are seen via jobs, sales 

and trade. In addition, the competitiveness of the PV industry is considered together with the market 

share.  

German PV system costs have decreased rapidly since the 1980s, ever since the commercial 

applications stage started (Bhandari & Stadler, 2009). Focusing on both R&D and industry sectors, 

Germany continues to put its efforts on reducing the production costs of solar cells and PV modules; 

the module price reduced from $6.8/Wp 1992 to $2.9/Wp in 2008, which further reduced to $0.69/Wp 

in 2012 with the emergence of Chinese products boosted by large-scale production. Figure 45 shows 

the German industry’s continuous evolution in the global solar cell production from 2000 to 2013. 

The German cell manufacturing capacity increased 51 times from 57 MW in 2000 to a peak of 2,919 

MW in 2011, before it was halved in 2012 due to the PV crisis. The system price also decreased from 

$8/Wp in 2000 to less than $3/Wp in 2012 for rooftop systems under 10 kW (IEA PVPS, 2002 to 

2014). 

Furthermore, the German PV industry created economic benefits; 128 thousand  direct jobs63 

in 2011 with sales valued at US$ 21 billion and exports to US$ 7.3 billion in 2011 (IEA PVPS, Op. 

cit.) (UNCOMTRADE).  

There is one thing that needs to be mentioned; even though Germany successfully 

accomplished the industrialization of PV over the last decades, the domestic production capacity did 

not fulfill the country’s domestic demand for installations, and Germany imported PV products to 

some extent (BMU 2009).  

However, the German industry has higher production costs than its international competitors, 

which explains why it was penalized and finally collapsed in 2012 and 2013 (IEA PVPS, 2011; 2013; 

European Monitoring Center on Change (EMCC), 2014). Its production reduced sharply from 2012 

because of the downsizing of its PV industry (IEA PVPS, 2013); it was impacted by fierce competition 

from Chinese producers since 2008 and by the global economic crisis. Germany’s industry market 

share64 in PV cell production reduced in the global PV market from 22% in 2007 to 2% in 2013.  

In addition, faced with the European PV crisis and fierce global competition, the German PV 

industry fell hard; 68,000 jobs were lost between 2011 and 2013 and export decreased by 53%  (IEA 

PVPS, Op. cit.) (UNCOMTRADE). In addition, many German PV firms went to the bankruptcy 

(industry crisis), and this phenomenon started to threaten the German economy. 

Furthermore, faced with the price competition with Chinese manufactures, the German PV 

sector underwent a transformation; the German industry strategically decided to focus more on highly 

skilled sectors such as refining silicon and equipment production (Grau, Op. cit.) to offset the market 

share drop of solar modules in the global market. 

                                                      
63 Incl. jobs related to PV manufacturing and PV installations. 
64 Author’s calculation based on IEA PVPS data. 
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Figure 45: Annual installations vs. cell production in Germany 

 

 Silicon (t) Ingot/Wafers (MW) Cells (MW) Modules (MW) 

2004 2800 120 198 198 
2007 8000 415 842 875 
2010 30100 1990 2700 2460 
2013 46130 800 1230 1412.5 

Table XXVIII: PV production in Germany 

2003 2007 2008 2010 2011 2012 2013 
10,000 42,300 48,000 133,000 128,000 100,000 60,000 

Table XXIX: Solar PV jobs in Germany (2003 (IEA PVPS Germany, 2003); 2008-2013 (IEA PVPS, 2002 to 2014)) 

 2004 2007 2010 2013 

Domestic sales (US$M)  7816 28936 7932 
Exportations (US$M) 946 3522 8098 3490 

Importations (US$M) 1879 4865 16026 3546 
Table XXX: Economic results from PV industry in Germany (UNCOMTRADE) 

2.2.3 Installations: policy inputs and results (outputs and outcomes) 

A policy that supports demand helps to promote national PV installations by inciting 

commitments from more stakeholders. German has a long history in PV installation; the first German 

PV targeted subsidy program started with the ‘1000 Solar Roofs Initiative’ (1991-1995) (Grau, et al., 

2012; Byrne & Kurdgelashvili, 2011). The ‘100,000 Solar Roofs Initiative’ (1999-2003) was then 

rolled out, which caused a rapid increase in the installation of PV systems in the early 2000s (Lauber 

& Mez, 2004). The Renewable Energy Sources Act (EEG) was set up in 2000 to provide legal support 

for the government’s energy transition towards a power supply using more renewable sources.  

The main driver of German PV development was the ‘Feed-in Tariffs’ (FIT) scheme, which 

was launched in 2000 under the EEG and then amended in both 2004 and in 2009. This scheme was 

behind the German solar PV boom from 2004 (Grau et al., Op. cit.) (Yang, 2010). The 

commercialization of solar PV and its industry grew in Germany with the enhancement of the FIT in 

2004 that aimed to counterbalance the end of 100,000 Solar Roofs’ program (European Commission, 

2012).  
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In order to respond to the market change with price drops, the German government then 

adjusted the FIT scheme. In 2009, the price of PV systems reduced much faster than expected; the 

German government introduced a corridor system to adjust the FIT in 2009 with the objective of 

reducing the uncontrolled increase of installations and any windfall effects (de La Tour, et al., 2011).  

The Table XXXI shows the constant commitment from the German government and the 

expanded installations since 2000. Germany invested €53 billion (cumulated for the 20-year contract) 

in direct support for PV deployment through the FIT system until 2010 (Lütkenhorst et al. 2014). The 

FIT system became a financial burden, which raised a number of issues as to the efficiency of the 

policy. This issue will be further discussed in the following chapter (see Part II chapter 4.1). 

Germany 2000 2004 2007 2010 
FIT (annual) (M€)    1,447 4,472 
FIT (accumulative over 20 years) (M€) 559 4,374 26,534 53,271 
Cumulative PV installations (MWp) 76 1,105 4,170 17,320 
Table XXXI: FIT investments on an annual basis and accumulated over 20 years, as well as cumulative installations in 
Germany (Lütkenhorst & Pegels, 2014; IEA PVPS, 2002 to 2013) 

In this study, policy results are reviewed through direct changes in the installed capacity and 

the impact on the energy transition (electricity generated using PV, PV ratio in the electricity mix).  

Thanks to the government’s constant affirmation through support policies, Germany achieved 

a successful energy transition by turning renewable energies from a niche into a visible energy source 

(Gabriel, 2014). Germany has been the global market leader in PV system installations since 2005 

with a cumulative installation of 35.7 GW in 2013 (IEA PVPS, 2002 to 2014), representing 26% of the 

global installation (IEA PVPS, 2013b). In addition, the country became the world’s largest PV market 

(EPIA, 2014), increasing the PV contribution to the national electricity production using PV 

technology from 0.2 TWh (0.04% of annual electricity production) in 2002 to 33.4 TWh (5.6%) in 

2013 (Eurobserv’er, 2013; Index Mundi; Fraunhofer ISE, 2012; IEA PVPS, 2014). The business 

value of the German PV installation market was valued at $17,520 million in 2012.  

2.3 Conclusions of Germany case study 

German PV development started with a focus placed on its energy transition towards a 

sustainable energy supply system; however, technology development through continuous R&D 

activities and industry growth are also important objectives. The well-balanced policy mix around 

supply and demand helps the country take the leading position giving visible results with respect to the 

energy transition and economic benefits until recently.  

However, the situation changed as the competition started with the emergence of Chinese 

large-scale production capacity in the late 2000s. The German PV industry was influenced by the 

inflow of cheap Chinese products, thus provoking economic damage (job loss, trade deficits). The 

current German PV sector is experiencing a slowdown and the PV growth engine is shifting to other 

regions. Furthermore, systemic impacts of PV power in the electricity mix began to be observed; e.g. 

PV electricity overproduction raised the issue of a negative electricity gross price for the European 

electricity market (RTE, 2013). 
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3 Historic changes in PV policies of Japan  

3.1 PV policy history: policy objectives and context 

The enhancement of the national energy security is the top energy policy issue in Japan. Due 

to the lack of domestic natural resources, the Japanese economy depends heavily on imported primary 

energy sources (Japan’s energy imports from 87% in 1980 to 94% in 2013 (The World Bank, 2014)). 

The oil crises in the seventies gave a huge impact on the national economy that was heavily dependent 

on overseas oil. The country attempted various ways from diversifying energy supply sources, 

increasing energy efficiency to developing new energy sources like solar. Furthermore, in the 1980s, 

the interest in global warming and climate change issues required Japanese government to work more 

on the development of new clean and sustainable energy sources.  

In this context, Japan decided to develop solar PV energy in order to increase the national 

energy security and to mitigate climate change. The country considered the solar PV energy as a good 

alternative renewable energy sources to conventional fossil fuels. The government’s investment in the 

PV sector has increased after having experienced the two oil crises in the 1970s. Japan seriously 

started using solar PV energy in the energy supply system from the 1980s. However, renewable energy 

had still accounted for a small part in Japan’s total energy supply (~ 2%) (Hahn, 2014). After the 

Fukushima accident, Japan decided to expand the fraction of renewable energies in the energy mix 

(European Commission, 2012). 

Similar to the German case, a mix of technology-push policies (Sunshine program) and 

demand-side policies (Investment subsidies) enabled Japan to develop the solar PV market over the 

last decades (Kimura & Suzuki, 2006). Japan gave a well-balanced focus on PV development from 

R&D, industry and PV installation diffusion.  

3.2 Policy inputs and results: supply and demand 

3.2.1 R&D: policy inputs and results (outputs and outcomes) 

Japan first began solar PV R&D in the 1950s and solar cells were used for spacecraft and 

telecommunications in the 1960s and 1970s before they seriously started using them in the energy 

supply system from the 1980s. Japan soberly began to invest more in PV R&D in search of alternative 

renewable energy sources to conventional fossil fuels in the seventies.  

The governmental Sunshine program was rolled out in 1974 to advance R&D on renewable 

energy technologies; solar energy was one of the major sectors in the program, supported with stable 

R&D budgets. Thanks to this program, in the 1980s, Japan was able to progress on a technological 

level; the knowledge stocks in the PV sector had increased while improving PV efficiency and 

reducing costs. In addition, Japan conducted many demonstrations as part of this program to reach 

commercialization of solar power generation, assuring the reliable supply of grid-connected PV 

systems. However, the market was insignificant at that time (Kimura, Op. cit.). Japan’s consistent 

efforts to advance PV technologies stimulated the private sector’s participation in the PV sector. 
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Japan demonstrates steady investments in PV R&D (see Table XXXII). The R&D effort can 

be seen with patent contribution change in the world; Japan has a visible contribution in both PV 

cell/module and silicon refining technologies.  

US$M 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Japan 59.1 84.5 60.5 37.2 27.2 38.9 35.8 44.5 68.1 102 130 89.8 

Table XXXII: Public budgets of PV R&D in Japan (IEA PVPS) 

Patents 

cells & modules 
1995 2000 2004 2007 2010 2013 

Patents 

silicon refining 
1995 2000 2004 2007 2010 2013 

Japan (%) 5 7.4 8.7 9.6 10 10 Japan (%) 1.6 3.9 6.5 13.1 13.8 12.5 

Table XXXIII: Patents for cells & modules and patents for silicon refining (Unit: cumulative % of the global patents) 
(Espacenet) 

 1980s 1990s 2000-2004 2005-2009 2010-2011 
Japan (%) 16.9 10.2 26 24.3 35.4 
Table XXXIV:  Japan patents application filed under the PCT (OECD.Stat) 

3.2.2 PV industry: policy inputs and results (outputs and outcomes) 

The government’s strong message for consistent commitments to PV development through the 

Sunshine program stimulated the investment of private firms in PV R&D in the 1980s and established 

the foundation of the PV industry in Japan. 

Through the constant effort to reduce production costs, Japan has reduced the price of solar 

cells and PV modules from US$ 8.3/Wp in 1992 to US$ 3.7/Wp in 2002, keeping almost the price 

level until 2012 (US$ 3.6/Wp) (IEA PVPS, 2002 to 2013). Moreover, Japan maintained a vertically 

integrated industry across the whole value chain from silicon purification to integrated PV systems, 

even though Japan recently started to reduce its silicon production (IEA PVPS Japan, 2012) due to the 

high cost of electricity (Barua, et al., 2012) and the global over-production (IEA PVPS, 2013). 

Furthermore, many PV jobs were created; 47,000 jobs in 2012 for solar energy sector in Japan (IEA 

PVPS, Op. cit.) and 101, 300 jobs in 2013 (IEA PVPS, 2014) (Table XXXV).  

2003 2008 2010 2011 2012 2013 

11,300 18,100 41,300 45,000 47,000 101,300 

Table XXXV: Solar PV jobs in Japan (2003 (IEA PVPS Japan, 2003); 2008-2013 (IEA PVPS, 2002 to 2014)) 

The main difference between Japan and Germany is that the Japanese market is more closed 

due to complicated institutional barriers. Up until 2012, the Japanese market was relatively closed 

to foreign competitors due to its standards (e.g. minimum performance and certification requirements). 

It is mandatory to fulfill these requirements issued by Japan Electrical Safety & Environment 

Technology Laboratories (JET) in order to receive the subsidy for residential PV systems (IEA PVPS 

Japan, 2009 to 2012); this created technical and institutional barriers for entering the Japanese market. 

This policy has had, however, an adverse effect; Japanese module and system prices are more 

expensive than those in Germany and China (US$ 3.6/Wp in Japan in 2012 compared with less than 

US$ 1.1/Wp in Germany and US$ 0.71/Wp in China (IEA PVPS, 2002 to 2013)).  
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Japan was an exporting nation of PV products until 2012; Japanese production had always 

exceeded their domestic need since 2002 and their production surplus was exported. Between 2000 

and 2007, Japanese exports for the German market amounted for 3 billion US$ (UNCOMTRADE). 

However, since 2012, Japan became an importing country. The Japanese PV industry rapidly raised its 

production (3.6 GW of module production in 2013) but it was nonetheless insufficient to meet the rise 

in demand, thus the importation of foreign PV products accelerated (IEA PVPS, 2013b; Japan 

Photovoltaic Energy Association (JPEA)). Japan imported a noticeable fraction to feed the rapidly 

increasing demand in installation for the first time in its PV development history in 2012-2013 (see 

Figure 46).  

 
 Silicon (t) Ingot/Wafers (MW) Cells (MW) Modules (MW) 

2004 1000 327 604 590 
2007 1391 670 923 422 
2010 6302 669 2311 2315 
2013 >1000 1200 2992 3609 

Table XXXVI: PV production in Japan (IEA PVPS, 2002 to 2014)) 

 
 2004 2007 2010 2013 
Domestic sales (US$M) 1849 1274 6574 13123 
Exportations (US$M) 4629 5472 6446 4725 

Importations (US$M) 1002 1131 2189 7007 
Table XXXVII: Economic results from PV industry in Japan (UNCOMTRADE) 

3.2.3 Installations: policy inputs and results (outputs and outcomes) 

Japan has a long history of supporting the installation of PV systems. In the late 1990s, the 

Japanese government started market deployment policies for mass installations to create the market. 

Various policy instruments were prepared to promote grid-connected PV systems; a simplified 

administration process, technical standards, net-metering system, and investment subsidies for 

residential PV systems (Kimura & Suzuki, 2006).  These policy actions were introduced not only in 

association with the global movement to combat climate change, but also in line with pressure to 

produce visible results from the long-term investment of the Sunshine program (Kimura & Suzuki, Op. 

cit.). In addition, the PV industry lobbying influenced this political support.  

Japan 2000 2004 2007 2010 2011 

Residential PV support (MUS$) 134 48 41 628 463 

Cumulative installations (MWp) 330 1,132 1,919 3,618 4,914 

Table XXXVIII: Subsidy amounts and installations in Japan (Unit: million US$ and MWp) (Kimura & Suzuki, 2006; IEA 
PVPS Japan, 2002 to 2012) 

Japanese installations were developed on the basis of a subsidy program for residential PV 

systems, with the ‘700 Roofs’ program rolled out to provide 50% support for PV system installation 

investment in 1994 (Kimura & Suzuki, Op. cit.). Since the end-1990s, PV system installations in the 

residential sector have rapidly increased with support of the residential PV subsidy program, which 



152 

 
 

was the main driver behind the growth of Japanese installations (see Table XXXVIII).65 As shown in 

Figure 46, this program stimulated a small but constant growth of annual installations. The residential 

subsidy program reduced its support to 3% in 2005 before closing down the program with the intention 

to incite producers to reduce costs, leaving the same financial costs for consumers. Nonetheless, the 

subsidy program was restarted in 2009 to overcome the sluggish installation dynamics under the new 

regime (IEA PVPS Japan, 2009). 

 

 
Figure 46: Annual installations vs. cell production in Japan (IEA PVPS, 2002 to 2013) 

From an early stage, environment-conscious high-income groups led the Japanese PV system 

diffusion pathway as a niche market creation. As was the case with the FIT system, which was the 

main driver for the rapid increase in German PV installations, Japanese users were willing to pay more 

even though they were not economically profitable because they wanted to participate in the global 

move for combating climate change (Kimura & Suzuki, Op. cit.). The initial success of the Japanese 

PV system can be seen as a result of a harmonious combination of various stakeholder commitments 

embracing the government’s consistent long-term policies, the somewhat risk-taking participation of 

private firms and a strong level of social acceptance. 

After the Fukushima accident, Japan decided to expand the fraction of renewable energies in 

the energy mix (European Commission, 2012). The Japanese government launched a new policy at the 

beginning of 2012 to increase installations in search for growth engines outside the residential sector 

(IEA PVPS, 2013b) based on the FIT scheme for installations over 10kW. Due to the higher cost of 

the Japanese systems, the FIT was set at a high level (42 JPY/kWh66) (IEA PVPS Japan, 2012). The 

effect of the policy was already visible in 2013. Unlike the German case, Japan’s installation soared 

after the global crisis, representing about 18% of the world’s installation growth with 7 GW in 2013. It 

became the major installer in the global PV market (see Figure 46). Japan’s PV development 

increased the fraction of PV in the national energy mix up to 1.4% in 2013, producing 14.3 TWh (IEA 

PVPS, 2014).  

                                                      
65 The subsidy program for residential PV systems was managed by the Ministry of Economy, Trade and Industry (METI). 
66 About US$ 0.52/kWh. 
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3.3 Conclusions of Japan case study 

The solar PV energy has been highlighted as a prospective option of alternative energies in 

Japan. Japan’s PV development has conducted with an equal focus placed on three dimensions; R&D, 

industry growth and PV market diffusion. The well-balanced policy mix around supply and demand 

with the long-term support from the government allowed Japan to secure a constant growth of PV 

energy. Japan demonstrated continuous efforts to advance the PV technologies and to increase its 

domestic installations. Furthermore, Japan performed well in PV production and gained exportations 

until recently.  

However, the actual participation in energy supply using the solar PV still has room to grow. 

However, Japan has recently started to open its market more to foreign products to feed the increase 

demand in PV products. In addition, the FIT started to place much financial burdens. In this regards, 

the German case can provide Japan with a valuable lesson for future policy strategies.  

 

4 Historic changes in PV policies of China  

4.1 PV policy history: policy objectives and context 

China’s energy policy mainly aims at securing a stable energy supply to balance its growing 

energy needs. The Chinese PV market development followed different strategies from a balanced 

pathway between supply-side and demand-side in Germany and Japan. China’s PV development 

started with the supply of electricity to off-grid rural areas. 

China entered relatively late into the global photovoltaic market. It was not until the mid-

1980s that the industrialization of PV materials started. 

Under the 10th (2001-2005) and 11th (2006-2010) 5-year plans in China, the government 

strove to control air pollution by SO2 and CO2 (by-products resulting from the excessive use of 

conventional energy sources, mainly coal).  

In 2006, under the 11th 5-year plan, PV was selected as a technology to improve national 

knowledge on energy technologies. However, the municipal government first aimed at developing the 

PV industry to promote high-tech manufacturing in pursuit of economic benefits (Deutch et al. 2013) 

under the regional industrial policy to boost economic benefits.  

Under the 12th 5-year plan (2011-2015), the solar PV industry was included in the list of 

national initiatives to further expand the new energy industry by developing clean energy technologies 

and related industries (British Chamber of Commerce in China, 2011). The government also aimed at 

developing the domestic market through the expansion of large-scale power plants (Lewis, 2011). 

Like this, China’s political priority in terms of PV development was industry-focused rather 

than energy transition or mitigation of climate change.  
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4.2 Policy inputs and results: supply and demand 

4.2.1 R&D: policy inputs and results (outputs and outcomes) 

China took up research work to develop solar PV in the late 1950s and entered the application 

stage in the 1970s. However, the Chinese government efforts in PV R&D were negligible until 

recently. China somewhat took advantage from the knowledge spillover from technologically 

advanced countries (e.g. Germany). This allowed China to jump straight in PV industry; it mainly 

aimed at increasing the production of cells and modules with focus on easy-to-follow technologies 

rather than conducting serious R&D for technology development (de La Tour, et al., 2011).  

Table XXXIX indicates China’s resource-allocation decisions for R&D expenditures in PV.  

R&D (US$M) 2001-2005 2006-2010 2012 
China US$ 5.2-6.2 M US$ 25.6 M US$ 79 M 

Table XXXIX: Public budgets of PV R&D in China (Campillo & Foster, 2008; IEA PVPS, 2013) 

China’s R&D expenditures are barely remarkable until the mid- 2000. China sharply increased 

its budgets of PV R&D in the recent years to support PV industry. China recently started to focus 

more on R&D to advance PV-related technologies such as silicon production to catch up with the 

major producing countries (de la Tour et al. 2010; IEA PVPS). Therefore, China has only recently 

gained visibility in terms of producing international patents.  

Under its 12th plan, China included the PV sector in the list of government-driven R&D 

initiatives; e.g. Si-cell efficiency of 20% and thin film cell efficiency above 10% and reducing 

production costs (IEA PVPS). 

Patents:  
cell & modules 

1995 2000 2004 2007 2010 2013 
Patents:  
silicon refining 

1995 2000 2004 2007 2010 2013 

China (%) 0.3 0.4 0.9 2.0 4.1 2.7 China (%) 0.8 0.6 0.4 2.5 7.1 5.4 
Table XL: Patents for cells & modules and patents for silicon refining (Unit: cumulative % of the global patents) (Espacenet) 

 1980s 1990s 2000-2004 2005-2009 2010-2011 
China (%) 0 0 0.4 1.9 4.2 
Table XLI:  Chinese patents application filed under the PCT (OECD.Stat) 

4.2.2 PV industry: policy inputs and results (outputs and outcomes) 

In contrast with Germany and Japan, China adopted a different industry policy strategy. The 

nation’s industrial policies were export-oriented. China first focused on easy-to-follow technologies 

establishing production lines of labor-intensive manufacturing (modules and cells) because of 

accessibility to technology and low energy prices.  

China’s PV industry has experienced an explosive increase since the mid-2000s, supported by 

government aids for innovative industry 67, particularly in crystalline silicon solar cell production 

(Zhang & He, 2013). The Chinese government supported PV manufacturing investment through 

innovation funds for small technology-based firms, regional investment support policies 68 (2009) 

issued by some Chinese city governments, as well as loans and easy credit provided by government or 

                                                      
67 The industry support is mainly given by local governments and the data are not available. This issue will be discussed in 
Part III during the analysis of the interactions between China and Germany. 
68 E.g. Refunds of loan interest, of electricity consumption fees, land transfer fee, corporate income tax, and of value added 
tax payment.  
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state banks for manufacturers. In addition, China’s low labor cost and low energy price facilitated the 

industry’s expansion by reducing production costs (Grau, et al., 2012). This is further discussed in Part 

III chapter 2. 

China is somewhat dependent on imported refined silicon and equipment for its massive 

production due to the technological barriers (de La Tour, et al., 2011). To give an idea, in 2013, 

despite its leading position in the PV manufacturing, about the half of its needs were met by imported 

silicon; 82,000 metric tons were produced and 80,000 metric tons were imported (IEA PVPS, 2013b).  

In this regard, from 2006, China started to focus more on PV material production and its 

capital-intensive upstream industry (silicon purifying) through R&D to advance related-technologies 

which had been lagging since 2009 (IEA PVPS China, 2011; 2012; de La Tour, et al., 2011).  

 
Figure 47: Annual installations vs. cell production in China (IEA PVPS, 2002 to 2013; 2013b) 

China’s action has yielded remarkable results, obtaining the leading position in the solar PV 

manufacturing industry in a very short time (Xie, et al., 2012). China increased its production of cells 

by a factor of 23 from 2007 to 2013. China became the largest manufacturer in the solar PV market in 

2007, representing 29% of the global production of solar PV cells (IEA PVPS, 2013; 2013b). Their 

module prices have reduced in a very short time with mass production; from US$ 4.73/Wp in 2007 to 

US$ 0.67/Wp in 2013 (IEA PVPS, 2013b; The World Bank). Its market share has also grown from 

16% in 2006 to more than 60% in 2013 (IEA PVPS, 2002 to 2014). 

Through the industry development, China created hundreds of thousands of jobs (see Table 

XLIII) in the PV sector and export amounted to US$ 17.5 billion of PV materials in 2012 

(UNCOMTRADE). In addition, major PV manufacturers were now headquartered in China. The PV 

industry accounted for a substantial fraction of the Chinese economy, representing US$ 48 billion in 

2011 (0.6% of GDP) (IEA PVPS China, 2011). However, China’s PV industry is heavily dependent 

on the overseas market.  

Moreover, faced with strong global competition after 2009, China’s easy access to credit and 

permissive standards gave another advantage for local manufacturers to gain scale effects for building 

gigawatt (GW)-scale plants (Goodrich, et al., 2011). Since mid-2000, China has exported the majority 
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of its module production. China’s expansion of production capacity was export-oriented without 

establishing a domestic market; China exported 97.5% of its modules produced in 2006 and 96% in 

2009 (IEA PVPS, 2010b). 

As the PV industry slowed down faced with the European crisis, the continuous mass 

production from Chinese PV manufacturers created overcapacity issues (IEA-ETSAP and IRENA, 

2013). Chinese PV manufacturers also encountered the difficult period due to lack of outlets for its 

production and the PV industry went through a restructuring process. The largest Chinese solar 

company, Suntech, filed for bankruptcy in March 2013 even though they received billions in direct 

loans from the Chinese Government (Bloomberg new energy finance, 2014).  

Furthermore, China recently faced obstacles for imports of PV products going through trade 

disputes with the US and EU. It was thus observed that China started to delocalize the production lines 

to Taiwan (IEA PVPS, 2013) to avoid antidumping duties for Chinese solar products in the USA. The 

solar cell production in Taiwan has sharply increased to 8 GW in 2013 (IEA PVPS, 2014 applications). 

China needs to explore new avenues for market growth.  

 Silicon (t) Ingot/Wafers (MW) Cells (MW) Modules (MW) 

2004  57  146 
2007 1093  2600 2600 
2010 45000 11000 10800 10800 
2013 84600 29500 25100 25500 

Table XLII: PV production in China (IEA PVPS China, 2011; 2012; 2013; IEA PVPS, 2013b) 

2008 2009 2010 2011 2012 

200,000 300,000 300,000 500,000 260,000 

Table XLIII: Solar PV jobs in China (IEA PVPS, 2002 to 2014) 

 2004 2007 2010 2013 

Domestic sales (US$M)    23220 
Exportations (US$M) 644 5252 25179 15759 
Importations (US$M) 2063 3813 7264 8994 

Table XLIV: Economic results from PV industry in China (UNCOMTRADE) 

4.2.3 Installations: policy inputs and results (outputs and outcomes) 

China’s Solar PV power generation started in the 1960s but its dramatic progress is a recent 

event in the last 10 years (Zhao, et al., 2013). China’s PV development started with the supply of 

electricity to off-grid rural areas. 

The first political support to promote solar PV deployment was implemented through off-grid 

rural electrification programs; the Brightness Program (1996) and the Township Electrification 

Program (2000). The Chinese PV installation was driven by off-grid deployment to feed electricity in 

rural areas until the late 2000s, but the accumulated amount was relatively small; 140 MWp in 2008 

(IEA PVPS, 2013b). 

The serious rollout of policy instruments for PV deployment promotion started from the mid-

2000s with the renewable energy law (REL) in 2006 (Xie, et al., 2012). Faced with a sharp rise in 

demand for energy consumption caused by the rapid economic development, China’s energy policy 
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mainly aims at securing a stable energy supply to balance its growing energy needs. China thus began 

to include sustainable development in its energy plan.  

In 2007, China proclaimed the ‘medium- and long-term program of renewable energy 

development’ which aimed to increase its energy supply target using renewable energy sources up to 

10% by 2010 and 15% by 2020 (Zhang & He, 2013). Chinese national PV installations reached a 

serious level in 2009 thanks to the national strategy of developing a domestic market (Grau, et al., 

2012). 

Since the late 2000s, China’s on-grid solar PV installations have rapidly increased based on 

the strength of the incentive programs to grid-connected rooftop and BIPV systems; e.g. central 

government subsidy programs such as the ‘Roof top Subsidy Program’ (2009), the ‘Golden Sun 

Demonstration Program’ (2009), and the ‘Solar PV Concession Program’ (2009) (Zhang, et al., 2013b; 

IEA PVPS China, 2011). In addition, faced with the diminishing demand from the European market, 

China needed to find a new market to absorb the excessive production. In 2011, the national FIT 

scheme started to support domestic PV market growth. 

China contributed significantly to the global PV installed capacity; it became the largest 

installer representing more than 30% of the new installation capacity in 2013 (IEA PVPS, 2002 to 

2014). China reached 18.3 GW of PV cumulative installed capacities in 2013, which accounted for 

around 14% of the global total output (IEA PVPS, 2014; EPIA, 2014). This nonetheless represents a 

small contribution to the electricity generation, amounting to 0.6% in 2013 and producing 25.6 TWh 

(Eurobserv’er, 2013b; IEA PVPS, 2014). Accordingly, its impact on reducing CO2 emissions is poor; 

rather it increases steadily every year from 4.1 in 2004 to 6.2 metric tons per capita in 2010 (The 

World Bank(b)). The business value of the Chinese PV installation market was estimated at US$ 

23,220 million in 2013. 

4.3 Conclusions of China case study 

The Chinese policy started concentrating more on its industry development through export-

driven strategies to increase its international competitiveness, rather than ensuring the energy 

transition. The PV sector obtained visible economic results, producing more than 60% of the PV cells 

for global needs in 2013, though with very tenuous outcomes in terms of the energy transition and 

climate change.  

Furthermore, China still has a weakness when it comes to raw materials and equipment for the 

PV industry as it greatly depends on overseas production. Unlike the German pathway, China’s new 

energy plan aims at stimulating domestic demand through sustainable energy supply systems, which 

seems to be a timely solution to respond the PV industry slowdown. 

Unlike Germany and Japan, Chinese PV development encouraged the industry first before it 

was decided to expand domestic installations to overcome the industry slowdown. China rapidly 

expanded its installations, thereby exceeding the market leader’s contribution. It is now expected that 

China will be one of the largest installers in the world in the next decades (EPIA, 2014).  
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5 Historic changes in PV policies of the U.S. 

5.1 PV policy history: policy objectives and context 

The U.S. has a long history of PV energy development mainly focusing on both supply-side 

and demand side. As seen, the U.S. is the pioneering country of PV technology. In the 1970s, the U.S. 

started to develop alternative energies to decrease the fossil fuel dependency. In response of the energy 

crisis in the 70’s, the National Energy Act (NEA, 1978) was established to increase the country’s 

energy security; NEA included the Public Utility Regulatory Policies Act  (PURPA), which provided a 

legislative support for energy conservation as well as power generation from renewable energies. In 

this context, solar PV deployment in the U.S. was promoted (Go solar California; Martinot, et al., 

2005)69. 

However, in the 1980s, the development of solar PV energy market slowed down facing with 

the oil price drop and the restructuration of the U.S. electricity market; the investment in the private 

sector was delayed due to the uncertainty of PV market (Martinot, et al., Op. cit.). In the 1990s, along 

with the increasing awareness of environment, some states seriously started to promote the use of PV 

energies. PV development was gained momentum through recently enacted the American Recovery 

and Reinvestment Act (ARRA, 2009) (U.S. Department of Energy (DOE))(Martinot, et al., Op. cit.); it 

is a policy package based on Keynesian macroeconomic approach for economic revival; it included 

job creation, infrastructures, and investment in renewable energies programs. This helps PV 

development focusing on both economic aspects (e.g. industry) and PV installations. However, the US 

energy policy is generally regulated at a state level; there is no specific target for PV at federal level 

(Burns & Kang, 2012). The country has a goal of 33% of retail electricity sales from renewable energy 

sources by 2020 (IEA, 2015c). 

5.2 Policy inputs and results: supply and demand 

5.2.1 R&D: policy inputs and results (outputs and outcomes) 

The U.S. was the leading country in developing PV technologies in a long time. The federal 

support to the R&D for PV began with the space conquest during the 60’s; PV cells were developed to 

give power to satellites (Dooley, 2008). As seen, the R&D support largely increased when the 

government looked for solution to reduce its energy dependency after the oil crisis of the 70’s (Ruegg 

& Thomas, 2011). The US Department of Energy (DOE) manages the federal research on energy 

sector; it is the main source of funding for PV R&D. The budget for PV rose from about US$ 60 

million in 1976 to almost US$ 350 million in 1980.  

The National Renewable Energy laboratory (NREL) and the Solar Energy Research Institute 

(SERI) began their activities in 1977 (Ruegg & Thomas, Op. cit.). Their R&D programs focused on 

the price reduction by improving the silicon production process and PV technologies. The U.S. 

R&D contributed powerfully to reduce c-Si solar PV module price in the 1980s; in the periods 1976-

1986, PV module price were reduced by 58$/Wp mainly driven by silicon price drop and R&D efforts 
                                                      

69 Another important legislation for the promotion of renewable energies in the U.S. is the Energy Policy Act (EPACT, 1992), 
which aimed to increase clean energy use and improve overall energy efficiency. 
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(Gambhir, et al., 2014). In addition, fundamental R&D demonstrated a steady progress to develop non-

silicon-based PV and breakthrough technologies. 

However, the new government (1981) changed the policy priorities on energy towards other 

programs like the nuclear breeder reactors or synthetic fuel; the interest in PV thus declined. At the 

same time, the federal expenditures on energy R&D were cut by more than 50%.   

In the 1990s, along with the PV cost drop, the increasing concerns on climate change and acid 

rains drew the national interest into PV sector. Since then, R&D programs mainly attempted to lower 

the costs, to improve the efficiency and to increase social acceptance of the PV technology; they 

mainly focused on PV manufacturing and thin film technologies (Ruegg & Thomas, 2011; IEA PVPS 

USA, 2002; 2003; 2004). 

In 2006, the Solar America Initiative (SAI) was launched. The target was to decrease the costs 

of PV to make solar electricity more competitive compared with other conventional energies by 2015 

(U.S. Department of Energy, 2008). The program aimed to implement the energy transition in 

southwest region of the country, in populated state with high solar resources (U.S. Department of 

Energy, 2008b). The R&D focus concerned PV technology70 , the concentration solar power, the 

system integration and the market transformation (IEA PVPS USA, 2009). In addition, establishing a 

partnership among public research center, universities and firms was also highlighted. The federal 

budget for PV R&D has steadily grown since then (see Table XLV).  

In 2011, the SunShot Initiative replaced the project.  By funding solar PV R&D to reduce the 

PV power cost (being competitive without the political support), the country attempted to increase the 

share of PV power in the country energy mix to 15%-18% by 2030 (IEA PVPS USA, 2011). Since 

2009, the DOE gave a priority to support in defensing the national PV industry from the cheap Chinese 

products.  

In conclusion, continuous R&D efforts allowed USA to keep its leading position in the solar 

PV R&D. Table XLV illustrates the consistent R&D investment; US$ 268 million was allocated in 

PV R&D in 2013. In addition, as Table XLVI displays, the US has consistently an important share in 

the global patents of PV technologies since the 1980s (see Table XLVII).   

US$M 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

USA 35 65.7 86 75.8 121.8 138.3 122.5 145 172.4 222.9 262  268.7 

Table XLV: Federal R&D budget in the US (IEA PVPS, 2002 to 2014)  

Patents:  
cell & modules 

1995 2000 2004 2007 2010 2013 
Patents:  
silicon refining 

1995 2000 2004 2007 2010 2013 

USA (%) 11.4 10.1 10.8 11.3 14.4 13.5 USA (%) 10.1 8.1 6.5 5.4 7.5 7.4 
Table XLVI: Patents for cells & modules and patents for silicon refining in the US (Unit: cumulative % of the global patents) 
(Espacenet) 

% 1980s 1990s 2000-2004 2005-2009 2010-2011 
USA 60% 37% 32% 32% 22% 

Table XLVII:  US Patents application filed under the PCT (OECD.Stat) 

                                                      
70 Incl. basic research in thin films and future technologies 
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5.2.2 PV industry: policy inputs and results (outputs and outcomes) 

The US PV industry has grown in line with the development of PV technology. The country 

was the global market leader until the 1990s (Martinot, et al., 2005), it accounted for 44% of market 

share in 1996. However, its market share was taken by Japan and Germany from the end of the 1990s. 

The PV industry in Japan and Germany has largely advanced supported by a domestic growth of PV 

installations (Greenpeace, 2001).  

In 2002, the US was the second PV cell producer in the world after Japan with 22% of the 

global cell production (121MWp). In 2005, the country was placed in fourth in global cell production 

after Japan, Germany and China; it had less than 9% of the share in the global market with 156 MWp 

of production.  

In 2006, the Solar America Initiative (SAI) started aiming at increasing PV installations and 

boosting PV industry. Accordingly, the production of PV products has rapidly increased to supply the 

national demand. PV module production has almost doubled from 139 MWp in 2004 to 266 MWp in 

2007. However, the national production was never able to fulfill the domestic demand. The country 

had to import PV products to some degree, thus the PV exportation stayed lower than the PV 

importations (Table L).  

At the end of the 2010’s, Chinese products beat the US PV industry (e.g. cell and module 

production). However, the US still has much competitiveness over solar-grade silicon making based 

on high standards of knowledge and long-standing expertise. USA has the largest producer (Hemlock) 

of solar-grade silicon. In addition, the US also benefited from its strong electronic industry; in 2004, 

about 10% of the silicon used in the PV industry was residual silicon from the electronic industry (IEA 

PVPS, 2004). Along with the rapidly increasing global demand of PV products, the US silicon 

industry has increased. Furthermore, as seen, China had a limited capacity in producing solar-grade 

silicon; Chinese PV firms imported large amounts of silicon from the US. In 2013, the USA remained 

one of the world leaders in this sector by producing about 40000 t. 

Trade balance (US$M) 2004 2007 2010 2013 
USA 415 1565 2459 1144 
China -4 -1116 -2489 -1487 

Table XLVIII: Comparison of trade balance of USA and China for solar- grade silicon (UNCOMTRADE(b)) 

According to the US’ energy policy, PV industry is considered as future business for the 

country; it brings a growth engine in the US economy and creates jobs. In 2009, the American 

Recovery and Reinvestment Act (ARRA) proposed a loan guarantee of US$ 16.1 B, under the DOE 

loan guarantee program, to promote renewable energies. It targeted large-scale installations of new 

technologies (e.g. 37% for CSP) and PV projects (38%), and PV manufacturing (8%) (Bloomberg 

New Energy Finance, 2013). Furthermore, there was 30% investments tax credit for PV firms.  

However, in spite of such political support, the US industry turned to a low growth phase after 

China began to increase the investment in PV R&D and expand its production capacity (IEA PVPS, 

2002 to 2014). The US had a peak production of module with 1.3 GW in 2010; however, it declined 
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to 988 MW in 2013. Despite of a slowdown of PV manufacturing industry, the number of PV jobs 

rose quickly mainly supported by the high growth of  PV installations from 2008 (Table L). 

 
 Silicon (t) Ingot/Wafers (MW) Cells (MW) Modules (MW) 

2004 5100 181 138 139 
2007 5100 142 266 266 
2010 42561 624 1133 1277 
2013 39988 103 478 988 

Table XLIX: PV production in the US 

 2004 2007 2010 2013  2004 2007 2010 2013 
PV jobs (x1000) 10.9 8.19 102 143 Domestic sales 

(US$M) 
 1367 4977 1370

0 
Importation 
(US$M) 

 2156 4412 5791 Exportation 
(US$M) 

 1914 3250 2243 

Table L: Economic results from PV industry in the US 

It is worth reviewing that some US firms commercialized thin film technologies. From 2007, 

the commercialization of thin film PV modules became visible thanks to accumulated skills developed 

by various R&D programs. They represented an important share of the country’s module production 

(IEA PVPS, 2002 to 2014). The US became the biggest producer of thin film modules; First solar is 

the virtual monopoly of the CdTe technology. However, thin film technologies also suffered from the 

global PV overproduction and the rapid drop in c-Si module price. The production started to slow 

down from 2010 (Table LI) and US thin film firms delocalized their production lines, mainly in 

Malaysia. 

Thin film production (MW) 2004 2007 2010 2013 
The US 20 189 484 372 
Table LI: Thin film module production in the US 

In addition, the US government recently implemented trade barriers to protect its PV industry. 

The federal government decided to penalize foreign manufacturers for anti-competitive behavior. It 

mainly concerns Chinese manufactures; in 2012, the US International Trade Commission ruled that 

Chinese competitors (anti-dumping) harmed the domestic industry of PV cell manufacturing. It was 

decided to impose countervailing duties on Chinese-manufactured cells (Bloomberg New Energy 

Finance, 2013). 

5.2.3 Installations: policy inputs and results (outputs and outcomes) 

The US energy policy aimed to increase renewable energies such as PV to diversify its energy 

sources and to protect the environment. However, the US market is fragmented with different PV 

installation environments. PV policies depend on the political choice of states government; each state 

has a different policy and legal conditions, which engender different PV system prices (Seel, et al., 

2014; Steward, et al., 2014). Many state governments enacted policies to stimulate PV installations. 

Since the mid-2000s, the US installation has been rapidly increased mainly supported by subsidized 

programs paid by states government.  

California has been playing a leading role in such PV installation growth in the US; for 

example, 70% of all PV installations in the US came from this state in 2007 (IEA PVPS USA, 2007). 
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California also showed the high load in reducing GHG emission71. It is the largest distributed PV 

market in the US. For example, California Solar Initiative (CSI) program72 was implemented in 2007 

to provide incentives for PV system installations; it has a budget of $2.167 billion over 10 years, and 

the goal is to reach 1,940 MW of installed solar capacity by the end of 2016 (Go Solar California(b)). 

In 2012, the CSI represent 80 % of all California residential installed capacity, and 32 % of all U.S. 

residential installed capacity (IEA PVPS USA, 2012). The successful increase in PV installations in 

California came from a mix of good weather condition, high electricity prices (U.S. Energy 

Information Administration (EIA), 2016) and supportive governmental incentive program.  

Table LII displays major demand-side policies in the US. The tax credit (30%) at the national 

level and RPSs at the state level are key drivers for PV growth in the US (IEA PVPS USA, 2014). In 

addition, 21 states rolled out PV requirements in RPS (a portion of RPS should be met by PV power 

supplies) 

Supporting measures Notes 
FIT for grid-connected applications  Conducted by 6 states  
Capital subsidies73 for equipment or total cost  Federal: 30 % investment tax credit  

State: at least 22 states have it 
Renewable portfolio standards (RPS) 74 29 states  
PV requirement in RPS  21 states  
Income tax credits  Federal: 30 % for residential, commercial, and utility systems 

19 states for solar projects 
Prosumers’ incentives  Self-consumption, net-metering, net-billing (44 states) 
Table LII: Major demand-side policies in the US 

California RPS was established in 2002 and went through a number of amendments; it now 

aims to supply 50% of the electricity using renewable energies in 2030 (DSIRE, 2015). State RPS 

encourages more growth of PV system installations as the requirements for renewable energy 

additions increase each year. 

In 2004, the US had only 149 MW installed capacity mainly driven by grid-connected 

distributed systems. However, the cumulative installed PV capacity in the U.S. was 12 GW in 2013. 

In addition, grid-connected centralized (utility-scale) system showed steady growth over the last 

decade and now gained the visibilities in the US market; in 2014, more than 50% of the PV installed 

capacity is grid-connected utility-scale systems.  

In 2014, the PV electricity production in the US accounted for 0.61% of the total electricity 

consumption, producing 23 TWh (IEA PVPS USA, 2014). The business value in the U.S. was US$ 

16.4 billion in 2004. 

US 2000 2004 2007 2010 2013 

Cumulative PV installations (MWp) - 131 427 2022 12022 

Table LIII: Cumulative PV installations in USA 

                                                      
71 California began enforcing a cap and trade program in 2013, which aims to cut GHG emissions by 16 % by 2020. 
72 It has fully depleted or is in the tail-end of many of programs. 
73 Direct financial subsidies aimed at reducing the up-front cost barrier, either for specific equipment or total installed PV 
system cost.  
74 (Wang, 2014; Lawrence Berkeley National Laboratory, 2013)  
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5.3 Conclusions of the U.S. case study 

The US’s PV development has conducted with a well-balanced focus placed on R&D, industry 

growth and PV market diffusion. The US has frontier technologies in the PV sector for a long time. It 

gives a technological helps to develop the PV industry combined with policy supports. However, the 

country’s energy policy is drive by state governments. PV deployment pattern and outlook differ from 

one state to another state. However, the policy direction by the present federal government aims for 

increasing renewable energies in the future electric power mix and solar PV development has a 

promising future in the country. Furthermore, the PV policy focus on economic growth is obvious; the 

country wants to create more jobs in this sector to bring economic growth. However, the actual 

participation in energy supply using the solar PV still has room to grow.  

In addition, US market has a challenge to deploying PV systems; PV system installations have 

different permission practice and regulatory requirements across the country under different 

jurisdiction. The lack of standardization can be a barrier for a large-scale deployment of PV systems 

(IEA PVPS USA, 2014). 

 

6 Historic changes in PV policies of France 

6.1 PV policy history: policy objectives and context 

France is a pioneering country of PV technology development since French physicist, 

Alexandre Edmond Becquerel, first observed the photovoltaic effect in 1839 (Ricaud, 2013). Like 

many other countries, facing the oil crisis in the 1970s, France started to worry about the energy 

security and seriously developed alternative energies to reduce the dependency of fossil fuels. French 

energy policy to increase the energy security was mainly focused on nuclear power and renewable 

energies (Méritet, 2011). After the second oil crisis, nuclear power became the main source of 

electricity in France and research on renewable energies was reduced, as they are more costly and less 

profitable (Planete energies, 2015). 

France emits the least GHGs compared with its neighbors due to an important share of nuclear 

power in the electricity generation. Therefore, combating GHG emission was not prime reason to 

increase solar PV power in France; PV systems were used for rural electrification. And then, the 

initiative of combating climate change became a significant issue in French energy policy based on the 

engagement with the Kyoto Protocol and EU energy directives. The country proposed a quite 

ambitious target of reducing CO2 emissions; a 75% reduction in CO2 emissions by 2050 (IEA, 2009).  

There are several legal aids to develop Renewable energies including PV power; e.g. the 

Energy law (2005), creation of a new energy and environment ministry (MEEDDM, 200775), the 

                                                      
75 Ministère de l'Écologie, de l'Énergie, du Développement durable et de la Mer (MEEDDM), it is now called the « Ministère 
de l'Écologie, du Développement durable et de l'Énergie » 
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Grenelle law (2009)76, and the Energy Transition Law (2015). The Energy Transition Law77 aimed to 

increase electricity generation using renewable energies to 40% in 2030 and reduce GHG emissions by 

40% in 2030 compared to 1990 level (Enerdata, 2015; Renewables, 2015). PV had a negligible 

visibility in the country’s electricity mix until the mid-2000s before the government launched an 

attractive financial support (FIT) for grid-connected PV systems. 

French PV development was first focused on technology development, and then the 

deployment of PV systems earnestly started based on the governmental institutional (permission of 

grid-connection) and financial (FIT) support. Such policy supports are mainly driven by the political 

strategies towards a sustainable growth. However, the policy focus on PV industry was behind other 

initiatives until a recent date.  

6.2 Policy inputs and results: supply and demand 

6.2.1 R&D: policy inputs and results (outputs and outcomes) 

France has a leading role in developing the PV technology. Like in the US, the development of 

the research on PV in France began early in the 1960s with the space exploration78. In 1970, France 

started to focus on renewable energy research as part of its policy to increase energy independency. In 

1974, France was the first country to implement a R&D public policy across all the solar PV 

technologies (including PV systems, silicon-based technologies, thin film, concentration and other new 

concepts). In the late 1970s, CNRS 79  made great strides in solar power, solar furnace chemical 

reactions and PV (Planete energies, 2015). However, the technology had to improve their efficiency 

for commercialization. At the end of the 70’s, France was a leading country of PV technologies in 

Europe.  

In the 1980s, the research on renewable sector slowed down as the sector was less profitable 

than other energy technologies; e.g. the national resources were more concentrated on nuclear power. 

In 1981, the new government gathered the research on new energies in a single agency (AFME 80) and 

the PV research lost its visibility (Ricaud, 2013). During this time, PV technology was highlighted as a 

solution to power isolated areas.  

Since the late 1990s and early 2000s, ADEME, CNRS and CEA81, began to conduct further 

PV researches to reduce the costs and increase the performance (IEA PVPS France, 2002). In 2005, 

the national research agency (ANR) and the state-owned company OSEO82 were created to promote 

public-private partnerships; this helps connect PV R&D to PV industry. In collaboration with 

ADEME, ANR annually put out a call for proposals in several sectors of the PV value chain.  

                                                      
76 The Grenelle law set a foothold for developing technologies of clean energy with objective for reducing emissions in the 
building and transports (CO2 reduction to the level of 1990 in 2020), for developing renewable energies (23% in 2020) and 
for giving more funds in energy R&D. (Ministère de l'Ecologie, du Développement Durable et de l'Energie)  
77 Loi relative à la transition énergétique pour la croissance verte. 
78 During the 60’s, the French space agency CNES (Centre National d’Etudes Spatiales) worked on the development of the 
PV technology.  
79 Centre national de la recherche scientifique. 
80 It was AFME (Agence Francaise pour la Maîtrise de l'Énergie) and it is now called ADEME (Agence De l’Environnement 
et de la Maîtrise de l’Energie). 
81 Commissariat à l’Energie Atomique 
82 It aims to promote innovation and to support SMEs to bring economic growth engines and to create jobs. 
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In 2006, the national solar energy institute (INES83) was created to conduct research on PV to 

improve all sectors across the PV value chain (IEA PVPS France, 2006; INES); it also aims to build a 

close link between pure research and applied research. Since the mid-2000s, INES84 and IRDEP (EDF) 

mainly lead the R&D on PV in France (Direction Générale de l’Energie et du Climat). In 2013, IPVF 

(Institut Photovoltaique d’Ile de France) (IPVF) was created to improve performance and 

competitiveness of PV cells and modules through synergies based on an industrial-academic 

partnership (IEA PVPS, 2013). 

The budget on R&D in France stayed quite constant since the early 2000’s (see Table LIV). 

In spite of tight budget, France managed to study various sectors such as all the PV technologies, PV 

applications, and the entire value chain to support PV industry (IEA PVPS, 2010). According to 

OECD data on patent applications filed under PCT85 (OECD.Stat), France kept a constant contribution 

to the world patent; it accounts for more than 3% of the world patents from the early 90’s up to date 

(Table LVI). However, the decrease of French contribution to the patent of silicon refining is also 

visible (Table LV). 

US$ M 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

France 9.237 5.763 9.4 15.4 32.8 12.3 17.6  57.2 128 

Table LIV: R&D budget in France (IEA PVPS, 2002 to 2014) 

Patents:  
cell & modules 

1995 2000 2004 2007 2010 2013 
Patents:  
silicon refining 

1995 2000 2004 2007 2010 2013 

France (%) 2 1.5 1.5 1.6 1.6 1.7 France (%) 4.5 3.6 2.9 2.2 1.7 1.4 
Table LV: Patents for cells & modules and patents for silicon refining in France (Unit: cumulative % of the global patents) 
(Espacenet) 

 1980s 1990s 2000-2004 2005-2009 2010-2011 
France (%) 1.9% 3.6% 3.5% 3.2% 3.1% 

Table LVI:  French patents application filed under the PCT (OECD.Stat) 

6.2.2 PV industry: policy inputs and results (outputs and outcomes) 

The French PV industry began early mainly driven by two leading PV firms; France-Photon 

and Photowatt86. Photowatt started manufacturing crystalline silicon PV cell and modules since 1978 

(ADEME, 2002). After a good start, the two companies suffered from the oil price drop in the 80’s and 

French government’s choice to focus on nuclear power (Ricaud, 2013).  

Since then, French PV industry has developed somewhat supported by the government’s 

political aids. For example, there was a tax exemption (1995) for PV industry and subsidies to SMEs87. 

A number of French firms manufactured PV products across the whole value chain. In the 1990s and 

2000s, Photowatt88, a vertical integrated manufacturer of crystalline silicon materials, has taken the 

lead in developing PV manufacturing in France. In 2002, the company had a production cell capacity 

                                                      
83 Supported by CEA and Savoie University 
84 France’s center of reference in the field of solar energy, it was set up with the backing of Savoie Départemental Council 
and Rhône-Alpes Regional Council, and includes research and development teams from the CEA, CNRS, University of 
Savoie and CSTB. 
85 The Patent Cooperation Treaty 
86 A subsidiary of big electronic companies, Philips and CGE (L'Usine Nouvelle, 2012) 
87 FIDEME special fund for subsidies granted to the SMEs was implemented in 2002 
88 It was taken over by a Canadian company in 1997 
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of 25MW (3% of the global capacity, 11% of the European capacity). It focused on high quality PV 

modules offering a 25-year warranty on its module. It is also interesting to notice that French firm also 

developed and commercialized PV products to adapt the building integration (e.g. roof tiles 

integration, façade integration)  (ADEME, Op. cit.). 

However, in the 2000s, French PV industry failed to benefit from the global PV market 

growth; its expansion of production capacity was unsuccessful (see Table LVII). In fact, many 

industrial projects for PV production were at demonstration level and investments on new factories 

were largely dependent on the governmental support (IEA PVPS, 2006; 2007; 2008; 2009). French PV 

industry quickly lost its market share in the fierce competitive global market.  

It is worth remarking that French PV industry has declined while the PV installations in 

France sharply rose due to FIT support in the 2000s. For example, the annual installations reached a 

peak with 1760 MW in 2011. However, at the same year, the French PV industry was on a downturn 

and Photowatt89 went bankrupt (IEA PVPS, 2011). The lack of policy continuity is one failure factor; 

for example, the French moratorium on FIT gave a negative signal to investors causing a decrease of 

investments in PV sector (Le monde, 2011). Even though French PV firms have a wide range of PV 

business areas across the value chain, French PV industry is quite fragile due to the weak 

competitiveness and lack of policy support and financing.  

PV sector created 9044 jobs in 2014; 544 jobs related to public R&D and 8500 jobs from PV 

industry across the value chain (IEA PVPS, 2014). French PV industry had a 600 MWp production 

capacity of PV modules in 2013 with the global market share of around 1%. In addition, domestic 

PV sales were US$ 925 million in 2013 and PV export amounted to US$ 408 million in 2013. 

 Silicon (t) Ingot/Wafers (MW) Cells (MW) Modules (MW) 

2004 285 33 30 36.5 
2007 570 40 40 50 
2010 680 70 71 (capacity) 525 (capacity) 
2013 300 80 135 (capacity) 600 (capacity) 

Table LVII: PV production and PV production capacity in France 

 2007 2010 2013 

Jobs (x1000)  24.3 12.13 

Domestic sales (US$M)   925 

Exports (US$M) 268 636 408 

Table LVIII: Economic results from PV industry in France 

6.2.3 Installations: policy inputs and results (outputs and outcomes) 

France’s demand-side policies to stimulate PV installations in France can be divided into 2 

stages: promoting rural electrification via off-grid systems since the 1980s (IEA PVPS France, 2002) 

and then supporting grid-connected PV systems since 2002. 

The first main stream of PV usage was off-grid PV system. Since the 1980s, off-grid PV 

systems was used by EDF (ADEME, 2002) for rural electrification; they were used for the isolated 

areas in continental France, Corsica and French overseas departments, where grid extension is more 

                                                      
89 Photowatt/EDF ENR PWT, is now owned by EDF ENR since March 2012 (IEA PVPS, 2014). 
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expensive than the PV solution. The collaborative agreement signed between ADEME and EDF in 

1993 supported financially this solution through FACÉ public fund (ADEME, Op. cit.). There were 

other financial supports to simulate off-grid systems; e.g. subsidies from ADEME, EDF and Regional 

Councils90. The government set income tax exemption contracts aiming to reactivate economy in the 

overseas department. In 2002, the total cumulative installed capacity of PV was 17.2 MW and 89% 

was off-grid systems in France (61%) and its oversea department (28%). 

The second stage of PV demand-side polices was focused on grid-connected systems. In 2002, 

a FIT was first implemented. However, its effects were negligible due to unprofitability of the tariffs. 

In the mid-2000s, grid-connected PV systems became visible in French PV installations along with 

permission of grid access, establishment of metering system and financial incentives (e.g. tax credit, 

FIT); it accounted for more than 50% of the total cumulative installed capacity of PV in 2006 (IEA 

PVPS France, 2006). The demand-side policies to stimulate PV system deployment included tax 

credit, financial contribution from regional and departmental councils, and FIT funded through the 

CSPE tax. The market demand has increased as the financial support more strengthened.  

In addition, the new FIT implemented in 2007 attracted new investment in PV installations; 

grid-connected PV system accounted for 70% of the total cumulative installed capacity of PV in 

France by the end of 2007. In particularly, the French governmental support aimed to boost BIPV 

providing higher FIT in this sector; the strategy is to bring innovation in architectural integration (PV 

became the construction material in the long-run) (IEA PVPS France, Op. cit.). However, French FIT 

went modified several times confusing investors; in December 2010, the government announced a 3-

month moratorium on FIT 91  allocation because of the financial burden (FIT impacts on CSPE) 

(CIRED, 2012).  

The new energy transition law demonstrated an obvious political will to increase renewable 

energies and solar PV is one of the promising technologies to realize the national objectives. 

Accordingly, France raised its PV target to 8 GW (SeeNews Renewable, 2015) by 2020 from 5.4 GW 

proposed by the Grenelle law in 2009 (L'echo du solaire, 2015).  

Important political supports on PV deployments are illustrated in Table LIX (IEA PVPS 

France, 2014). It is interesting to notice that France’s regional and departmental authorities also 

conduct PV promotion policies. The French installation growth was mainly driven by FIT and calls for 

tenders (IEA PVPS France, 2014). 

 Supporting measures 
National policy FIT for grid-connected applications (FIT < 100kW, call for tenders > 100kW) 

Off-grid systems: public FACE fund for rural electrification  
Regional authority (call for 
proposal) 

Capital subsidies for equipment or total cost 
Prosumer’ incentives (self-consumption) 

Table LIX: Political supports to PV deployments in France 

                                                      
90 They were allocated to PV systems in rural area not falling under the FACÉ fund, and tax exemption contracts for PV 
systems in the overseas department. 
91 In December 2010, the French Government decided to suspend the purchase obligation, which applies to photovoltaic 
installations above 3 kWp. The moratorium ended in March 2011 with the publication of a new FiT decree, which applies to 
all PV systems up to 12 MWp. (Keep On Track, 2013). 
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French FIT is financed by the Contribution to Electricity Public Services (CSPE); in 2014, the 

charge of CSPE was 16, 50 €/MWh and 92the total sum to support PV sector amounted to around € 

1,990 million for the year 2014 (IEA PVPS, 2015). 

€M 2007 2008 2009 2010 2011 2012 2013 
Support for PV (CSPE) 1.1 7.8 54.3 208.9 794.9 1 683.2 1 919.9 
Table LX: Annual support to PV through CSPE (Cour des comptes, 2012; CRE, 2011 to 2013)  

The country’s cumulative installed PV capacity was 5.6 GW (IEA PVPS France, 2014) at the 

end of 2014; grid-connected distributed systems accounted for 70% of it. In 2014, PV systems in 

mainland produced 5.9 TWh of electricity; it accounted for 1.3% of the national power demand (share 

of the national power supply) (SeeNews Renewable, 2015).  However, the effect on CO2 emission 

reduction is not significant because the country already has a low-carbon electricity mix with nuclear 

power.  

France 2000 2004 2007 2010 2013 

Cumulative PV  installations (MWp) - 26 81.5 1194 4733 

Table LXI: Cumulative installations in France 

6.3 Conclusions of France case study 

French PV development started with a focus on technology development. PV industry has 

successfully started in the country based on its technology competitiveness gaining an important share 

in the global market. However, French PV industry lost its visibility in the global PV market over the 

last decade. Since nuclear power is the major source of electricity, the country had little demand in 

developing solar PV to increase energy independency or combat climate change. This explains why 

France used PV systems to power economically some rural or isolate areas.  

The current energy policy that focuses on energy transition and reducing GHG reduction 

provided a favorable condition for PV development in the country. Over the last several years, PV 

installations have rapidly increased based on attractive FIT and permission to the grid. It is also 

notable that the country has put efforts to develop BIPV system.  

French PV policy has a more focus on R&D efforts and PV installations rather than PV 

industry aspect. However, PV industry development enables to boost the national economy (e.g. job 

creation or exports). The European PV industry suffered from the fierce price competition driven by 

Chinese producers. French PV industry can target niche market that the country has a high competence 

to develop PV industry in the future; e.g. building integration and coupling PV systems with electric 

cars. 

 

 

                                                      
92 The total sum for ENR support amounted to around 2, 200 MEUR for the year 2014. 
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7 Historic changes in PV policies of South Korea 

7.1 PV policy history: policy objectives and context 

South Korea’s energy consumption has sharply increased since the mid-1970s to support its 

rapid industrialization, however, the country’s economy heavily depends on overseas fossil fuels; the 

country imports 97% of its energy supply mainly from Middle Eastern nations. After the two oil crises 

of 1973 and 1979, the pursuit of energy security was the pivotal initiative of energy policy in South 

Korea. Since then, the New and Renewable Energies (hereafter NRE) began to receive attention as 

alternative energy sources to fossil fuels. The solar PV was chosen as one of the national major 

initiatives of development of alternative energies starting in the 1970s. 

The country snapped into renewable energy policies at the national level by enacting the 

Promotion Act on Alternative Energy Development in December 1987. In 2008, the government got 

down to the national energy transition by announcing the 3rd Basic Plan for New & Renewable 

Energy Technology Development & Dissemination (2009~2030); NRE will meet South Korea’s 

primary energy up to 11%, and 20% by 2030, and 2050 respectively. In addition, the plan also aims to 

reduce greenhouse gases with sustainable growth (20 % GHG reduction by 2020). More importantly, 

the concept of green growth has a crucial role in this plan; it aims to bring new growth opportunities 

through green technology development. PV technology is an important initiative to stimulate the 

country’s economic growth focusing on technology development, expanded domestic production as 

well as promotion of export. Under this plan, South Korea’s policy strategy gave a well-balanced 

focus on PV development on R&D, industry and PV installation diffusion.  

7.2 Policy inputs and results: supply and demand 

7.2.1 R&D: policy inputs and results (outputs and outcomes) 

South Korea has initiated R&D in solar PV technology focusing on basic research in the 

1970s. They were mainly conducted in the laboratories of universities (Ministry of Trade, Industry and 

Energy of South Korea, 2013). In 1988, a full-scale R&D activity started, supported by the Promotion 

Act on Alternative Energy Development, which was enacted in 1987 for the technology development 

of NRE; solar PV was considered as a key technology (with wind power and fuel cell), thanks to its 

greater spread effect to other industries. Since then, continuous efforts have been made to advance the 

national competitiveness in the PV technology and commercialization93.  

The country’s R&D investments in PV follow three stages with the series of three Basic Plans 

for NRE development since 1988. The first stage (1988-2002) opened the beginning period of the 

large scale R&D with a focus on the technological catch-up to improve the performance of the solar 

cells for a practical use and to find solutions for mass production. The second stage (2003-2007) aimed 

at the technological progress for the commercialization through the development of low-cost and high 

                                                      
93 From 1988 to 2011, South Korea has invested US$ 2.5 billion in various R&D projects of 11 technologies of new & 
renewable energies (solar, wind, fuel cell, IGCC, hydrogen…) and the government investment accounts for 59% of the total 
investment. During this period, the government allocated 33% of total investment into Solar PV with US$ 377 million; the 
total investment in solar PV was US$ 568 million (66% of government’s support, 34% of private investment) (source: New & 
Renewable Energy White Paper (2005, 2009, 2010, 2011), Ministry of Trade, Industry and Energy, South Korea). 
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efficiency cells. The third stage (2008-2011) concentrated on increasing the international 

competitiveness and on R&D in non-crystalline silicon technologies. The country’s PV policy aims to 

stimulate R&D in both the public and the private sector to create the domestic market. The investment 

in PV R&D has risen in each plan with a total cumulated public investment of US$ 377 million in 

2011 (Ministry of Trade, Industry and Energy of South Korea, 2005, 2009, 2010, 2011). Furthermore, 

the private sector’s efforts became more significant in PV R&D.   

South Korea’s research efforts concern various technologies of PV with a balance in both 

present and future technologies (Hyundai Economy Research Institute and MKE, 2013). Private 

companies invest more in silicon-based solar cell technologies while research in non-silicon-based or 

non-mature technologies for commercialization is mainly driven by public organizations.  

In conclusion, South Korea demonstrated consistent efforts to develop PV technologies; the 

steady increase of R&D investments supports the country’s R&D strategies. In 2012, US$ 118 

million was allocated for PV R&D. The results can be measured with patents in PV technologies. The 

country’s contribution to the global patents has shown a constant growth since the 1990’s; it became 

one of the major countries with advanced PV technologies of both cell/modules and silicon refining.  

US$ M 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

S. Korea 3.2 4 6.9 5.9 19.7 18.4 52.8 55.4 72.6 93.9 118 - 

Table LXII: R&D Budget in Korea (IEA PVPS, 2002 to 2014) 

Patents: 
cell & modules 

1995 2000 2004 2007 2010 2013 
Patents:  
silicon refining 

1995 2000 2004 2007 2010 2013 

S. Korea (%) 0.4 0.5 0.7 1.5 4.5 8.4 S. Korea (%) 0 0 0.2 0.2 0.8 2.2 
Table LXIII: Patents for cells & modules and patents for silicon refining in South Korea (Unit: cumulative % of the global 
patents) (Espacenet) 

 1980s 1990s 2000-2004 2005-2009 2010-2011 
S. Korea (%) 0% 0.7% 1.1% 6.1% 9.3% 

Table LXIV:  South Korean patents application filed under the PCT (OECD.Stat) 

7.2.2 PV industry: policy inputs and results (outputs and outcomes) 

The government has prioritized PV sector and made continuous investments into the 

technological development since 1988 to make it more economically viable. This is a strategic 

decision to seek for synergies among industries. South Korea has a strong manufacturing capacity, in 

particular, in the field of manufacturing of LCD, memory chips and smart phones in the global market. 

Since PV industry uses similar technologies as the semiconductor and LCD industries, the country 

took the strategic position in quest of synergies effects coupled with existing industry knowledge and 

infrastructures represented by conglomerate Samsung, LG, and Hyundai. 94  

The country’s PV policy strategy aims to create the domestic market first and then increase 

overseas export. During the green growth plan, PV was highlighted as export-led industry due to its 

industrial capacity and market maturity. 

The supports to the PV production are taken in forms of loans and tax incentives. The 

government provides long-term and low-interest loans to the manufacturers of solar PV equipment and 

                                                      
94 MKE’s reports, Seoul, South Korea, 2010  
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module manufacturers to promote the commercialization of large-scale facilities; it reduces the burden 

of initial investment cost95. Those supports started from the early 1980s, but the amount was negligible 

until the mid-2000s. It started to play an important role in inciting the PV industry as the solar PV 

market evolved.  

The accumulated loans for PV production until 2011 are US$ 310 million. Loans are primarily 

intended to support to the SMEs providing up to 90% of the total cost (up to 50% for large sized 

firms), and the interest rates are variable quarterly. Furthermore, there are tax incentives with 20% of 

income taxes and corporate taxes deductions for the manufacturers who produce PV equipment and 

materials (KOPIA). 

The evolution of the production was quite slow until 2007 but South Korea had a solid 

manufacturing capacity in silicon with its competency in electronics. Since 2008 with the green 

growth plan, a significant increase in the production of solar PV has been observed. South Korea’s PV 

production capacity has experienced an important expansion covering the whole value chain. The 

increased demands in domestic installations were mostly met by the domestic production, not by the 

importations. Until 2007, the created domestic market was the outlet of PV products and then the 

country became more capable to export those products from 2008. 

The PV growth gives a positive impact on South Korea’s economy; the number of 

companies has doubled every three years since 2004 and the employment achieved a twenty-fold 

increase (KEMCO). The sales in PV have also risen since 2004; in 2010, the domestic sales were 

US$ 8 billion and exports amounted to US$ 4.5 billion.  

 
 Silicon (t) Ingot/Wafers (MW) Cells (MW) Modules (MW) 

2004   2.4  
2007 6523 150 25 53 
2010 20000 800 770 925 
2013 40000 1800  1000 1700 

Table LXV: PV production/ PV production capacity in South Korea  

 2004 2007 2010 US$ M 2004 2007 2010 

Jobs (x1000) 0.7 3.7 13.7 Domestic sales 143 1249 8078 

Numbers of PV 
firms 

49 101 212 Exports 64 625 4535 

Table LXVI: Economic results from PV industry in France in South Korea  

7.2.3 Installations: policy inputs and results (outputs and outcomes) 

South Korea’s deployment of solar PV has a relatively short history in comparison to the PV 

installation evolution of other leading countries. Until 1996, South Korea had a negligible accumulated 

installed capacity of PV with 2 MW (IEA PVPS Korea, 2002 to 2011) due to high cost of the PV 

installation as well as a lack of market preparation and publicity.  

 In 2003, the government suggested a specific solar PV diffusion plan through the 2nd Basic 

Plan for New & Renewable Energy Technology Development & Dissemination. In this context, the 

                                                      
95 Those loans exclude consumables products, materials and equipment which can be used in other industries (e.g. bearings...), 
as well as land purchase or construction costs.  
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FIT system96 for NRE has been launched in 2002, and the solar PV sector has started receiving FIT 

support from 2004 (Shin, et al., 2008). In addition, various policy instruments were launched to 

stimulate the domestic installations; e.g., one million green home project, the mandatory use in public 

buildings, and national subsidies. However, they targeted a restricted area while the FIT system 

covered all kinds of connected PV systems, from small rooftop system to large centralized power 

plant. The FIT was the major driver of the national installation with a peak in 2008. However, it 

defined a fifteen or twenty year involvement and became a financial burden to the country. South 

Korea’s government has thus ended it and decided to implement a quota system (RPS) to promote 

large-sized PV power plants.  

South Korea has demonstrated a rapid increase in PV installations. The accumulated 

installed capacity exceeded 35MW in 2006 and reached almost 1.5 GW in 2013. South Korea’s 

photovoltaic power generation stayed anecdotal until the 3rd Basic Plan; it only produced 71 GWh/year 

in 2007. With the launch of the plan, the production has increased quickly, reaching 917 GWh/year in 

2011. The PV power reached 13.1% of the NRE power generation in 2010 (Ministry of Trade, 

Industry and Energy of South Korea, 2005, 2009, 2010, 2011). The absolute capacity is still very small 

compared to the total power generation in South Korea with about 0.4% of the domestic production 

(share of the national power supply) in 2013. Thus, the impact on the energy transition is quite 

negligible. Even though South Korea demonstrated a rapid progress in the PV sector with full-scale 

support, the impacts on the energy transition are fairly marginal, taken national absolute values into 

account. 

South Korea 2000 2004 2007 2010 2013 

Cumulative PV installations (MWp) 4 8.5 81.2 650 1467 

Table LXVII: Cumulative installations in South Korea 

7.3 Conclusions of South Korea case study 

South Korea is now exceeding 1.5 GW of PV installations from nearly little installation in the 

mid-2000 with the successful launch of its PV deployment. The rapid growth is mainly due to the 

combined policy mix that covers both the supply and the demand aspect.   

Selected as one of the core sectors in renewable energies linked with the existing technological 

competency aiming at securing synergy effects, South Korea rolled out the successful start in the 

development of solar PV technologies with the support of the government’s full-scale policies. 

Furthermore, the nation’s dynamic economies with a solid financial status helped realize PV initiatives 

throughout extensive investments from public and private sectors. The combined policy set of supply-

side and the demand-side supports helped to increase both the nation’s industry capacities and 

domestic installations, and eventually boost the national economy.  

However, South Korea’s PV development has its barriers and limits. Even though South 

Korea achieved a rapid increase in domestic installations in PV over the last decades, its photovoltaic 

                                                      
96 In 2002, the Act was amended to expand its scopes of the support for mass deployment of renewable energies and a Feed-
in-Tariff (FIT) was included (2002-2011). 
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power generation is still negligible for the high-energy consuming country. In addition, the solar PV 

increase is still mostly dependent on the public support. However, the FIT, the major driving force to 

the PV deployment has finished in 2011 with the replacement by RPS. Thus, the implementation cost 

will pass on to generators, but the PV is not yet economically feasible in South Korea. In this regard, 

South Korea encounters a dilemma in attempting to raise the solar PV production as it has a 

fundamental subject relate to the electricity pricing system. South Korea’s electricity charges 

(industry, residential) are quite below OECD’s averages (IEA, 2012). 

 

 

8 Conclusions  

This chapter conducted a retrospective analysis of PV policy mechanisms using a schematic 

map proposed by author. The macroscopic tool has its own significance because it helps decision 

makers or evaluators to have a big picture of PV policy system based on the macro-perspective 

approach.  

From our retrospective analysis, we have found that the PV sector has a dynamic feature with 

rapid changes. The PV policy mechanism is very complex and thus difficult to control because of a 

constantly changing market dynamics.  

The study found that a good mix of supply-side policies and demand-side policies 

contributed to PV development; it’s proven with case studies of Germany and Japan. For example, 

Germany and Japan have been pioneers in the development of large deployment of PV energy based 

on the well-balanced mix of supply-side policies (R&D and industry) and demand-side policies 

(installations). Based on these policies, the country became the largest installer in the world having 

visible results with respect to the energy transition and economic benefits until recently.  

However, faced with the fierce competition mainly driven by Chinese firms, German industry 

has experienced a setback provoking economic damage (job loss, trade deficits) and its market share 

has sharply dropped. Conversely, Japanese market was protected from the fierce global competition 

due to complicated institutional barriers (standards). However, Japanese PV module price stayed high 

compared with other countries which have open market.  

Other interesting findings related to the supply-side are that economies of scale effects are 

greater than R&D impacts to reduce PV module prices. It was proven that the global module prices 

have been reduced mainly by Chinese export-oriented industry policy rather than other country’s R&D 

policy (e.g. Germany). As seen, Chinese PV policy was focused on building GW large-scale plants to 

gain price competitiveness in the global market without investing a lot in R&D activities. The 

favorable industry policy in China allowed an easy access to capital to develop the PV industry. 

Chinese R&D efforts recently started to support the PV industry by increasing their independency of 

PV technology, in particular for silicon materials.  
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Next, since PV is not yet competitive compared to conventional energies, PV installation 

growth are subsidized through installation-oriented policy instruments like FIT system. The FIT 

system was the main driver to boost PV installations in many countries; this accompanies a rapid 

installation growth. Such demand-side policies are usually accompanied by supply-side policies that 

incite the decrease in PV costs (they are often through research or innovation within industries aiming 

to reduce a gradual decline in costs of demand-side policies); this was the policy objective of German 

FIT tariff system. However, questions were raised about the cost of the policy for FIT system and the 

consequence was found in the increase of electricity tariff.  

However, Chinese PV policy strategy was quite different from that of Germany and Japan. 

China first focused on economic gains based on price competitiveness rather than research on 

technology development or energy transition through PV installations. Most of Chinese PV products 

were exported; they are heavily dependent on the overseas market. The country’s PV strategy was 

recently changed to increase its technical expertise and domestic PV installations to support the 

domestic PV industry.  

Finally, it should be highlighted the importance of the continuity of PV policy. The U.S. and 

France were pioneers of PV technology, but they lost their leading position because they lacked the 

continuity of PV policy (unlike Germany and Japan). South Korea lately started to enter the 

photovoltaic market by taking advantages of its expertise in silicon technologies; the country showed a 

rapid growth in both PV industry and installations. However, the rapid PV growth slowed down due to 

regime change (lack of the continuity of PV policy). 

In conclusion, based on our retrospective analysis, two major objectives of PV policies can be 

defined; the growth of PV power and economic development. In addition, the competitiveness of 

PV (reduction of PV costs) is the third important variable that fundamentally appears in the 

background of PV policy mechanisms. In this regard, we will give a close look at those objectives in 

the following chapter. 
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Chapter 3. Criteria of policy evaluation (detailed mappings) and the 
application 

The retrospective analysis in chapter 2 allowed us to define key variables and context 

associated with PV development and PV policies. We have seen how the PV sector is dynamic and 

constantly changing. Furthermore, we define three key policy targets of PV system from the analysis; 

PV power growth, the competitiveness of PV (the real cost of PV electricity in the electricity mix), 

and economic gains through PV development.  

To better understand the PV policy mechanisms based on a micro point of view, it is now 

necessary to develop detailed mappings that explain what makes the change in the PV policy 

mechanisms directly or indirectly (causal relation among variables). In section 1, we thus construct 

detailed mappings according to a technological prospective method (méthode de prospective 

technologique) proposed by N. Popiolek (refer to her book in terms of the guidelines of the 

construction of detailed mappings). It results in three detailed mappings around each core variable of 

specific policy target with measurable elements that impact directly or indirectly the core variable, by 

identifying levers and constraints. 

In section 2, three different and complementary analyses are conducted based on the proposed 

detailed mappings with empirical data of selected countries. The developed detailed mapping allows 

policymakers to conduct both ex-ante and ex-post policy evaluation if all data are available. This 

method also helps define which variables reduce the effectiveness of PV policy and prepare policy 

actions to improve the policy system. We identify problematic points giving a close look at the causal 

relations between variables. In this regard, we discuss about critical limits and risks of PV policy 

system and analyze the dynamics of each issue (section 3).  

 

1 Criteria of policy evaluation (detailed mappings for specific policy targets)  

The schematic map, which is defined in the previous chapter, gives a global overview of the 

PV policy mechanisms. However, as seen with case studies, the policy focus differs from one country 

to another under different policy context. Therefore, the aim of this chapter is to take a deeper look at 

individual policy objective using detailed mappings. The detailed mappings allow us to conduct an in-

depth comparison of different approaches for analyzing PV policies and consequences in terms of a 

specific and well-defined policy objective.  

As introduced, in the following sections, three detailed mappings are developed with regard to 

important policy targets that were identified from the previous chapter. The detailed mappings help 

define mutual relations between variables leading to a better understanding of specific PV policy 

systems. 

The tool to develop detailed mappings is adapted from N. Popiolek’s methodology (Popiolek, 

2015), which suggests a systemic approach. She proposes a technological prospective method 



176 

 
 

(méthode de prospective technologique) that helps develop prospective scenarios for decision makers. 

The method is referred to the structural analysis; the method aims to represent a system by using key 

variables to identify a specific problem. The structural analysis and the following systemic analysis 

can be used for future studies.  

The method used in this chapter is a graphic tool that gives an overview of direct influences 

among key variables. The retrospective analysis (chapter 2) helps us identify key variables to build the 

detailed PV system. We then develop three detailed mappings around defined important policy 

objective; certain numbers of key variables are selected to present the systemic perspective for each 

objective. The method aims to organize these variables around a policy target in a dependency graph. 

The detailed mappings are set out to demonstrate the dependencies of variables, but exclude 

retroactive impacts among them. Each variable is a measurable element with a unit and it may depend 

on other variables and influence others.  

The first step is to define the representative ‘core variable (variable cœur)’ of a policy target. 

Then, the variables that directly affect the core variable are included in the first group of influencing 

variables. Next, each variable of the first group is associated with all other variables that influence it 

and so on. The farther a variable is from the core variable, the less its influence is direct. However, an 

indirect influence does not necessarily imply a low influence. The out circle variables, or frontier 

variable, are called the driving variables (variable motrice et non dépendante).  

In this section, the core variable is represented in red. Based on retrospective analysis in the 

previous chapter, three core variables related to the PV sector have been selected for three different 

and complementary analyses: 1) the share of PV electricity production; 2) the economic growth 

through PV industry development; and 3) the real costs of PV electricity to integrate in electricity 

system.  

The measurable key variables are indicated in blue or gray color; variables that can be 

influenced by a national policy are in blue (leviers) and variables out of reach of domestic PV policies 

are shown in gray.  

In addition, important constraints in yellow have been added to give a comprehensive broader 

point of view of mapping. Those constraints include 1) limited factors for the system, 2) non-

measurable elements (subjective) that influence the system (e.g. social acceptance), and 3) fixed 

environment variables (e.g. climate or available surface). We have seen that external variables and 

constraints are significantly important in the PV policy mechanisms. Lastly, possible policies have 

been added in pink.  
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1.1 PV demand (increased PV electricity with PV installation growth) 

Based on the retrospective analysis in the previous chapter, we have understood that the policy 

target to realize the energy transition towards a sustainable energy system is an important driving force 

to expand PV power in the electricity mix. However, each country’s policymakers have different 

political focus for this target (e.g. German perspective vs. Chinese perspective97).  

Increasing the share of PV electricity production (%) in the electricity mix is one of the 

ultimate goals of PV demand-side policies. In this section, it is considered as a core variable in the 

energy mix; it can be measured with the ratio of PV power in the national electricity mix.  

The detailed mapping on Figure 48 demonstrates important variables and their direct or 

indirect relations to the core variable. Variables that directly influence the core variable are domestic 

electricity demand (GWh) and domestic PV production (GWh). The government’s energy efficiency 

policy or external factors such as economic growth affect the level of the national electricity demand. 

The domestic energy demand differs according to government’s policy direction concerning energy 

transition or energy efficiency. The PV power production is influenced by installed capacities of PV 

system and PV technological performances (e.g. average PV system efficiency or average PV load 

factor).  

The next group of variables has impacts that are more indirect on the core variable. However, 

they directly affect the upper group of influencing variables. Here, PV installation is influenced by PV 

system demand composing of different sectors (residential, commercial, industrial and utility-scale). 

The profitability on PV system investment (the rate of return, %) has a significant importance to define 

PV system demand. Furthermore, demand-side policies like RPS or positive energy buildings and 

environmental consciousness also affect the PV demand.  

PV profitability principally depends on three elements. They are PV investment (the cost of PV 

power generation is usually represented by an estimated LCOE), the generated revenues, which can be 

priced by given tariffs by government (PV electricity purchase price) when the electricity is sent back 

to the network (e.g. FIT), and the avoided electricity consumption from the grid in case of self-

consumption. The production cost of PV electricity for investors is reduced if the initial investment in 

PV system is subsidized. Taxes on PV usage are possible to internalize negative externalities or to 

include additional grid-level costs (they are shown as PV taxes; see Figure 50 for the detailed 

relations). However, with low PV penetration, this is negligible.  

                                                      
97 Germany attempts to reduce CO2 emissions as well as to phase the nuclear energy out, whereas China aims to reduce 
pollution caused by SOx and NOx and to meet the increasing energy demand with a rapid economy growth. 
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Figure 48: PV demand: the share of PV electricity in electricity mix (author’s proposal) 

 

 

1.2 PV supply (economic growth through PV industry development) 

The economic growth by developing PV power in the present and future energy system is 

another important political initiative. Policymakers aim to achieve the economic growth through PV 

industry development. The term of green growth can be employed to explain policy maker’s aspiration 

to gain not only the energy transition but also the economic growth by developing PV systems.  

Important variables and the causality among them regarding the economic growth through PV 

supply are captured in Figure 49. The core variable is the economic growth (% of GDP or $) induced 

by PV industry development and the energy importation balance (e.g. avoided oil importation or 

increased back-up gas importation) (Difiglio, 2014). In addition, changes in electricity prices by 

developing PV power in the energy mix also give an impact on a country’s economic growth (e.g. 

increased electricity tariffs for industry and household or changes in the wholesale prices of electricity) 

Enhanced PV power in the energy mix provokes economic growth; the first group of 

influencing variables includes generated revenues from PV sector and associated industries. PV job 

creation also helps the economy. In addition, the avoided energy importation reduces energy 

dependency and increase the stability of the economy with regard to global geopolitical events. It also 
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decreases the capital flow to foreign countries. However, the increased back-up gas to balance PV 

volatile output should also be considered. 

PV industry revenues can be generated from domestic or overseas sales. The industry 

competitiveness can be measured with market shares (%). The sales are affected by the domestic 

production costs compared to the global prices (competitors’ prices); customers would choose less 

expensive PV products to maximize their profits when installing PV systems. The price 

competitiveness can be obtained through economies of scale (e.g. China’s case). In addition, there are 

other factors that influence the production costs; e.g., energy price, wage, capital, industrial network, 

or PV technology knowledge, etc.  

Trade barriers can be an obstacle to export PV products in the global market. However, they 

sometimes establish a device to protect home market from cheap foreign products. In addition, there 

are other important external factors that influence PV industry growth. Economic situation largely 

affects the PV demand, which is a key variable to determine the PV sales in both domestic & global 

markets.  

 

 
Figure 49: PV supply: economic growth through PV development (author’s proposal) 
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1.3 PV costs (the real costs of PV power in the electricity system) 

The reduction of PV costs to improve PV power competitiveness has been one of the 

important objectives of PV policies. However, the competitiveness of PV power in the electricity 

system should be evaluated in the systemic perspective. It is also important to avoid (or minimize) any 

negative effects on the existing electric power system. The optimal integration of PV power in 

electricity mix is an important policy target in developing PV systems. In this section, ‘real PV 

electricity costs ($/MWh)’ is considered as a core variable (Figure 50).  

The first group of influencing variables that affect the real costs of PV power includes PV 

power generation costs (LCOE), grid-level costs, and externalities. The second group of variables that 

define three segments of PV electricity is explained in the previous section (see Part I chapter 2.3).  

PV power is commonly priced as levelized costs of electricity ($/kWh). Solar PV system costs 

are one of the important levers when defining the initial investment needed to calculate the levelized 

costs of PV energy (LCOE). LCOE will also depend on other factors like cost of capital, maintenance 

costs, lifetime, discount rate, and all costs included in the investment (e.g., system cost, financial cost, 

land usage cost).  

Then, Grid-level costs refer to all additional costs required for grid integration into the energy 

system. The impact will be significant in the case of the widespread penetration of PV systems. These 

costs include grid reinforcement and extension. The characteristics of intermittent PV electricity also 

add costs related to short-term balancing and long-term adequacy while being integrated into the 

existing energy system (OECD/NEA, 2012; Pudjianto, et al., 2013; Ueckerdt, et al., 2013). The grid-

level costs will differ according to the ratio of PV power penetration and local characteristics of grid 

and power supply. As seen on the detailed mapping, grid-level costs are influenced by electricity mix, 

PV intermittency and electrical network quality.  

Externalities refer positive or negative effects, which have yet to be internalized into the PV 

system price. They influence the national energy system and social welfare with respect to PV 

penetration into the energy system. There are various aspects to be considered: environmental, 

electricity market, technology, economic and energy position. Each country has different values 

according to the national energy system features and political choices. 

Diverse policies can intervene to reduce the PV LCOE. For example, the government 

guarantees a better access to capital through fiscal incentives or public finance. In addition, soft costs 

can be reduced by implementing targeted policies to simplify the process (e.g. standardization) or to 

train people. R&D efforts will improve the PV technology performance leading to reduced PV LCOE. 

Grid-level costs can be minimized by taking optimal strategies in terms of PV integration in 

energy mix by considering local condition of power supply and demand mechanisms or load factor. In 

order to reduce negative externalities that influence the existing electricity market, some policy options 

can be thought like capacity market or PV system with storage solution to reduce PV intermittency 

impacts on the electric power system.  
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Figure 50: PV integration: reduction of real PV electricity costs ($/kW) (author’s proposal) 

 

 

2 Application of criteria of policy evaluation with empirical data  

2.1 Comparison of three countries’ PV policies: PV supply & demand  
The defined detailed mapping can be used to compare the country’s different approach in 

terms of PV supply and demand. The retrospective analysis that was conducted in the previous chapter 

allows us to apply the criteria of policy evaluation. In this part, three major countries (Germany, Japan, 

and China) in the global PV market are studied to give a comparative analysis of their different policy 

approach and consequences.  

 

1) PV demand (PV installations) 

The detailed mapping of PV demand on Figure 48 defines ‘the share of PV electricity in the 

electricity mix’ as a core variable. The following Table LXVIII indicates the ratio of PV power in 

three countries’ electricity mix. Germany has a notable success among three countries; more than 6% 

of energy demand was supplied by using PV power in 2013. It is interesting to analyze what variables 

have driven such difference using the detailed mapping.  

The first group of influencing variable can be compared. Table LXVIII displays a significant 

difference between German ratio of PV power and the share in other two countries. The historical 
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evolution of PV installations has been studied in the previous chapter. However, it is also interesting to 

notice that the absolute value of PV power production in China is approaching the German one despite 

its tenuous portion of PV power in electricity mix; this is mainly resulted from the recent increase of 

Chinese PV installations.  

 

2013 Germany  Japan China 

Ratio of PV power (%)  6.4% 1.4%  0.6 % 

Total energy demand (TWh) 525 TWh 979 TWh 4600 TWh 

PV energy production (TWh) 33.4 TWh 14.3 TWh 25.6 TWh 

Total PV installations  in 2014 35.8 GW 13.6 GW 19.7 GW 

Table LXVIII: Ratio of PV power in Germany, Japan and China (IEA PVPS, 2014) 

Now, the second group of influencing variables that affect the PV domestic production can be 

studied; PV system performance & PV installations. The global market currently shares the similar PV 

technology performance thanks to the technology spillovers (de La Tour, et al., 2011). The capacity 

factor of three countries has small difference. However, Germany gets head in the cumulative capacity 

of PV installation of Japan and China. The detail mapping helps us to trace the influencing variables. 

PV installations are decided by the national demand in PV power and they have some constraints like 

grid infrastructure, electricity mix and available surface. Therefore, PV power production is mainly 

dependent on the installed capacity of PV system in those countries.  

There are three important variables that determine PV demand; demand-side policies, 

environmental consciousness and PV profitability. 

First, there is a difference in terms of environmental consciousness among three countries. As 

seen in the previous chapter, Germany (Morris & Pehn, 2015) and Japan are more willing to pay high 

price for energy transition towards a sustainable energy system while China put little efforts on that 

(the priority of Chinese energy policy was to meet the increasing energy demand caused by a rapid 

economic development). 

In addition, the demand-side policies to promote PV power have been deployed with success 

in Germany and Japan over the past few decades. However, Chinese demand-side policies were much 

less effective until recently. Chinese PV installations have rapidly expanded in recent years driven by 

the strategic direction of PV policy. In conclusion, the government’s willingness to promote PV power 

in the electricity mix has given positive effects to stimulate the rise of PV installations. 

Then, here is a question; what make the difference in PV installations between Germany and 

Japan? Even though Germany and Japan had similar conditions of political strategies and 

environmental consciousness, outputs (PV installations) in both countries were quite different. There is 

another important variable that determines the PV demand; PV profitability. It played a key role to 

promote the PV installations. 
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As seen in the chapter 2, there was a big difference of policy instrument that supported PV 

growth in Germany and Japan; German PV growth was mainly driven by the FIT support, while 

Japanese growth in PV installation was supported by subsidies.  

The profitability of PV can be represented as below; 

The return on investment (ROI)98 is �ࡻ� = ࢚࢔ࢋ࢓࢚࢙ࢋ࢜࢔�࢙࢘ࢇࢋ࢟ ࡺ ࢔࢕ ࢋ࢛࢔ࢋ࢜ࢋ�  = ∑ ࢚�ࡼࡱ ∑+��=ࡺሺ�+࢘ሻ࢚࢚ (ࡱࡼ,��ࡲ)࢞ࢇ࢓× �=ࡺሺ�+࢘ሻ࢚࢚࢚ࡹ&ࡻ  ࢙ࢋ�ࢊ�࢙࢈࢛࢙−

With 

࢚�ࡼࡱ  ∶ PV electricity produced in the year t,  ࢘ : discount rate,  ��: Electricity prices in case of self-consumption � : PV system cost, ࢚ࡹ&ࡻ:  operations and maintenance cost in the year t. 

As in the case of Germany in the 2000’s, if the FIT is the only income, the ROI is as below. 

The PV system is profitable if the ROI is higher than 1.  

�ࡻ�  =  ∑ ࢚�ࡼࡱ ∑+��=ࡺሺ�+࢘ሻ࢚࢚��ࡲ× �=ࡺሺ�+࢘ሻ࢚࢚࢚ࡹ&ࡻ =  ࡱࡻ�ࡸ��ࡲ

Figure 51  shows a positive correlation between the profitability of FIT system and the 

increase of PV installations in Germany. The FIT scheme proposed by Germany made the PV system 

profitable independently from the electricity prices. German FIT supports under the energy transition 

policy attracted investors in the PV sector, and this led to a rapid increase of PV installations in 

Germany.  

 
Figure 51: PV profitability of a rooftop PV system in Germany & annual PV installations99 

However, as studied, historically, Japanese demand-side policy was mainly based on subsidy 

program. This reduced the initial investment of PV system installations leading to improved PV LCOE. 

Japanese subsidies program allowed the country to have slower but more consistent growth in PV 

installations 

                                                      
98 (Baudry & Bonnet, 2015)  
99 Author's calculation based on data of IEA PVPS ( (IEA PVPS, 2002 to 2014) and NREL PVWatt data ( (NREL - PVWatts), 
with a PV lifetime of 20 years. After 2010, the FIT price changed during the year and the FIT is taken on January 1. 
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We can compare German policy to Japanese policy to stimulate PV installations. Japan has 

spent US$ 1.9 billion from 2000 to 2010 for subsidies of PV demand stimulation while Germany’s 

cumulated net present value of the FIT for the same period of time is about US$ 53 billion. Over this 

time period, Japan installed 3.4 GWp (ratio 1.76 GWp/US$ billion) of PV systems and 41,000 jobs 

were created, while Germany installed 17 GWp (ratio 0.32 GWp/US$ billion) creating 133,000 jobs. 

The specificity of the Japanese market should be considered for the accurate comparison: e.g. high 

willingness to pay to protecting environment (Kimura & Suzuki, 2006), other local supports, impacts 

of the self-consumption and so on. However, from those data, we can see the German FIT gave more 

visible results of PV installation growth in a short time contributing to quickly shift to a less CO2 

emissions system but the efficiency of policy is questionable because of the high policy costs. An in-

depth analysis of the FIT system is thus needed (this issue is further discussed in section 3). 

Based on this perspective, it can be concluded that the active political engagement with proper 

economic incentives stimulates the PV installation growth, and this allows expanding PV share in the 

energy mix.  

 

2) PV industry growth (supply) 

The detailed mapping of PV supply helps us to analyze the economic growth through PV 

industry development. Figure 49 shows that ‘economic growth’ as a core value; it is measured with 

the ratio of improved domestic revenue performance (% or $) through PV industry growth in the GDP. 

Revenues are from PV industry sales, PV-related industry sales (e.g. EV, batteries) and energy 

importation balance. The created jobs also give positive impacts on the national economy. 

 Germany Japan China 
 2008 2010 2013 2008 2010 2013 2008 2010 2013 

PV jobs (thousand) 48 133 60 18.1 41.3 101.3 200 300 260100 
PV domestic sales 101 (US$M) - 28936 7932 1473 6574 13123 - - 23220 

PV export102 (US$M $) 6314 8098 3490 6189 6446 4725 11745 25179 15759 
PV sector revenues (US$M) - 37034 11422 7662 13020 17848 - - 38979 
Contribution of PV sector to 

GDP (%) 
- 1.1% 0.3% 0.2% 0.3% 0.4% ~0.3

% 
>0.4
% 

0.4% 

GDP (worldbank) (US$B) 3747 3412 3730 4849 5495 4920 4558 6040 9490 

Table LXIX: PV contribution to the national economy 

From the Table LXIX, we can see three different aspects in terms of PV contribution to the 

national economy. First, German economic gains from both PV domestic sales and PV exports have 

been reduced since 2010. The PV contribution to the national economy has decreased from 1.1 % in 

2010 to 0.3% in 2013 along with the sharp decline in PV jobs. Secondly, PV sector demonstrates a 

steady contribution to Japanese economy. PV domestic sales have largely increased from 2008 while 

its PV export has reduced over the same period. In addition, PV jobs in Japan continued to increase. 

Lastly, Chinese case is opposite to the German case with an outburst of PV export.  

                                                      
100 (IEA PVPS China, 2013) 
101 (IEA PVPS, 2008; 2010; 2013) 
102 (UNCOMTRADE)  
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It can be studied to define what variables have driven those differences by using the detailed 

mapping of PV supply. The industry competitiveness (domestic selling price vs. competitors’ prices103) 

will lead to high PV sales in both domestic and global market. The market share is a good indicator to 

measure it. As Table LXX shows, German market share has sharply decreased over the last years. On 

the other hand, China became the market leader in the global PV industry sector accounting for more 

than 50% of PV market share. However, Japan slightly lost its share.  

 Germany Japan China 
 2008 2010 2013 2008 2010 2013 2008 2010 2013 
PV module market share 
(Share of the global 
production %) 

17% 11% 3% 8% 11% 6% 37% 
 

50% 54% 

PV module prices104($/Wp) 2.9-
6.3 

2.6-
4.7 

0.92 4.30 4.30 2.48 4.31 1.90 0.68 

National economic growth 
(%)105 

1.1% 4.1% 0.1% -1% 4.7% 0.6% 9.6% 10.6% 7.7% 

Table LXX: PV module production market share, PV module prices in the national market and economic growth 

Germany had a strong PV industry. The country has put great efforts to reduce PV production 

costs to increase its PV industry competitiveness; German supply-side policies mainly focused on 

R&D (e.g. reduction of the raw material usage, optimization of the manufacturing processes) and 

industrial economies of scale. However, the market share is also depends on the competitor’s prices. 

For example, Chinese players have beaten the German industry because China successfully reduced its 

modules prices much below the German price in the global market. It was due to lower production 

price base on lower energy price, low wages and an easier access to capital. The governmental support 

(e.g. fiscal incentives) helped lower those costs, which enabled to construct GW-scale plants in a short 

time. Chinese products became more price-competitive in the global market. Under open trading 

system, PV installers in many countries (e.g. Germany) started to use cheap Chinese products to 

increase their profits. As Figure 52 illustrates, the German market selling price has sharply reduced 

since 2008 with the entry of cheap Chinese products.  

From this case, we can conclude that the German strategy to support R&D on c-Si 

technologies seems to be less efficient than the Chinese political direction to gain scale effects through 

easy access to capital; c-Si is a mature technology with little room to cut price driven by R&D. R&D 

efforts on other technologies can induce better performance for that.  

                                                      
103 Difficulties of access to data 
104 For Germany, both the lowest and the highest market prices are indicated (IEA PVPS, 2008; 2010; 2013). Average 
domestic production prices are often not available for Germany because of the relocation of domestic companies. 
105 (The World Bank(c)) 
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Figure 52: Evolution of PV module prices in Japan, Germany106 and China (market prices in three countries) 

The economic situation affects PV demand; the size of market is an important influencing 

factor of PV revenues. As seen in the previous chapter, Chinese local manufacturers suffered from a 

lack of outlets for their excessive production when the global market shrank; this will be further 

discussed in the next section related to PV over production issue. 

In addition, the domestic PV sales can be also influenced by trade-related policies. For 

example, trade barriers can be implemented to protect the domestic market from foreign products. The 

example can be found with Japanese case; Japan protected its PV industry based on a standard policy. 

The disadvantage of this policy keeps the domestic module prices higher than other countries’ prices 

under open market system. This leads to a higher LCOE of PV in Japan. However, Japan industry 

survived from the fierce price competition led by Chinese producers. 

In conclusion, the competitive supply-side policies have an important role in promoting PV 

industry to gain a high share of market in the global PV industry. 

 

2.2 The costs of PV electricity in electricity system 

Figure 50 demonstrates detailed mechanisms to calculate the real costs of PV electricity. We 

have found that the real costs of PV power in the electricity mix comprise of 3 parts; PV production 

costs, grid-levels costs and externalities. In this section, we look at each segment based on empirical 

data of the defined major counties in order to understand the relations between important variables.   

 

1) PV production costs (PV LCOE)  

The PV power has evolved with accumulated experiences and knowledge over time lowering 

the PV LCOE. Table LXXI indicates three countries’ PV LCOE with important variables that define it. 

As seen, solar PV system costs are key variables when defining the initial investment needed to 

calculate the levelized costs of PV energy (LCOE). From our retrospective study, we understood that 

                                                      
106 For German market, the lowest market price was taken; this includes the entry of Chinese products in the German market 
(IEA PVPS, 2002 to 2013).  
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many countries currently share a similar PV system price except a relatively closed market (e.g. Japan) 

due to the globalized PV market. 

 Germany (Berlin) Japan (Tokyo) China (Beijing) 
PV module price $/Wp (2013) 0.92 2.48 0.68 
PV non-module price $/kWh 0.98 0.96 0.92 

PV system price (commercial) $/Wp 1.9 3.44 1.6 
PV LCOE107 $/kWh 0.19 0.27 0.12 

PV system performance (kWh/kWp)108 900 1173 1405 

Cost of capital 5% 5% 7.5%109 
Table LXXI: PV commercial system prices and LCOE in Germany, Japan and China in 2013 

As explained, the non-module prices began to occupy an important share when calculating PV 

electricity costs mainly for residential; they account for more than 50 % in Germany and China. In this 

regard, the cost reduction in soft-costs can improve the PV LCOE.  

In addition, the local solar resources will affect PV LCOE; e.g. the better climate condition in 

China with a high load factor leads to a much less PV LCOE compared with Germany and Japan. 

However, the role of the cost of capital to finance PV power became more and more significant for 

calculating PV LCOE. The cost of capital for PV electricity varies across the globe. Germany has the 

lowest cost of capital in Europe (CleanTechnica, 2016): the standard assumption of 5 percent 

(Fraunhofer ISE, 2015b). Since Germany has a reliable condition to develop PV power supported by 

long-term policy direction, it is much easier to attract long-term debt investments and low-risk 

premiums on equity capital. The impacts of the capital cost to define PV LCOE will be much greater 

in the future (IEA, 2014); the difference in the cost of capital will give a larger impact on PV power 

production cost than the difference in solar resources (Grau, et al., 2012; Fraunhofer ISE, 2015b). This 

explains why Germany has a lower PV LCOE than Greece that has the higher level of irradiation. 

 

2) Non-module costs 

We now give a close a look at non-module costs since non-module sector became more 

important to define the PV system costs, in particular for the residential sector. In this part, the 

exceptional cases of two countries (France, USA) have been compared with the best-practice case 

(Germany) so as to better understand differences in non-module costs. Table LXXII specifically breaks 

down the non-module price in three countries: Germany, France and the US. 

Germany has the lowest price for small residential PV systems compared with those in France 

and the US; the main differences result from non-module segments (the module price in Germany in 

2012 was 1.1 $/Wp and the non-module prices stay almost constant between 2011 and 2012). 

$/Wp Germany 2011 US 2012 France 2012 

PV System 3 5.3 4.8 

Module 1.82 1.04 1.21 

Non-module (total) 1.18 4.23 3.58 

                                                      
107 Author’s calculation based on minimum prices of commercial rooftop PV system (IEA PVPS trends in photovoltaic 
applications) and PV output estimated by PVWATTS (NREL - PVWatts). 
108 (NREL - PVWatts) with a tilt at 30° 
109 (IRENA, 2015) 
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Non-module hardware 0.56 0.88 0.89 
Soft costs 

Engineering 0.01 0.08 0.27 
Installation 0.23 0.48 0.75 
PII110 0.03 0.2 0.44 
Customer acquisition 0.06 0.37 0.53 
Profit & overhead costs 0.29 2.22 0.7111 

Table LXXII: Breakdown of the non-module prices in Germany, France and the US (ADEME, 2012; Seel, et al., 2014) 

The major difference in German and the U.S. prices results from customer acquisition, grid 

connection costs and installations (Seel, et al., 2014). The difference in profit and overhead costs 

between Germany & the US is also significant.  

The US has specific market features compared with Germany and France. The US market is 

fragmented with different PV installation environments; each state has a different policy and legal 

conditions which engender different PV system prices (Seel, et al., 2014; Steward, et al., 2014). 

Therefore, the meaning of the cumulative installation capacity can be interpreted differently to that of 

Germany and France. 

Conversely, the German market is unified with a comparatively dense population. The US has 

higher customer acquisition and installation costs with longer Permission, Inspection and 

Interconnection (PII) process. Germany requires less time for these processes because of its unified 

market and practice, simplified processes and no permission fees (Seel, Op. cit.). 

However, France has a similar market compared with Germany. German has largely deployed 

simplified rooftop building-integrated PV systems (ISB) in the residential sector; while France has 

promoted the installation of PV systems integrated into the building structures (IAB) through a 

preferential FIT scheme (IEA PVPS France, 2012). This argument is sometimes used to justify the 

higher cost of PV installation in France because ISB systems are usually cheaper than IABs. However, 

the price difference between the two systems is only 0.25 $/Wp and is due to PV racking materials 

(ADEME, 2012). 

The cost difference between Germany and France is mainly driven by installation, engineering, 

PII process and customer acquisition. 

The difference in the installation costs is particularly large. Installation costs are directly 

linked to workers’ wages and the duration of the installation process. Considering the fact that wages 

are almost the same in France and in Germany, the longer installation times in France can explain the 

difference, which refers to a lack of standardization and less-qualified labor. In addition, engineering 

costs (mainly for system design) is probably increased because of a lack of standardization. 

Customer acquisition costs refer to all activities before contract signing: e.g. marketing, 

advertising, site visits and negotiation. The high costs in France can be explained by a lack in the 

customer’s preliminary knowledge or difficulties in choosing good installers (photovoltaique.info). In 

                                                      
110 PII: Permission, Inspection and Interconnection  
111 Assumption based on the difference between ADEME data and IEA-PVPS data 
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contrast, potential customers in Germany can easily contact 3 to 5 installers in their zip code areas 

through lead-aggregation websites (Seel, Op. cit.). 

The PII costs include grid connection costs; they amount to at least 1300$ for small residential 

rooftop systems in France (i.e. 0.4$/W for a 3kW residential system, the most installed residential 

system in France). In Germany, the PII price is 0.03$/W, which is mainly linked to the labor cost with 

no permission fees and no inspection process. In addition, they have a simple online declaration 

process for the FIT scheme via a national web-platform (Seel, Op. cit.). 

In addition, the long-term policy signals are fundamentally important for the national PV 

development. It will give expectations about long-term market encouraging industrial investments 

(Nemet, 2012). Germany has a stable long-term PV policy support. However, France lacks long-term 

PV policy vision; the policy support of PV installation was often found in profits of installers, who 

looked for short-term profit margins. Accordingly, it seems that the PV policy support has not fully 

contributed to reducing end user PV system price in France (Observ'er, 2014). In Part III, we further 

discuss on this issue to propose ways to reduce PV costs in non-module sector (see Part III chapter 3). 

 

3) Grid-level costs 

Our perspective should be broadened to include grid-level costs for real economic assessment 

of PV electricity in electricity mix. As seen, non-dispatchable PV power requires additional costs in 

terms of reinforcement of power transport, short-term supply-demand balancing and back-up capacity. 

For the present time, however, there is no country with an enough share of PV electricity to give an 

obvious impact on the grid and the electricity market. Germany has the highest share of PV power 

(~6%) in the electricity mix. The integration costs of PV electricity would become more visible with a 

large penetration. This will happen soon in the future electricity mix. Therefore, it is important to give 

a well-defined understanding of integration costs of PV electricity as well as possible impacts on the 

national energy system & socio-economic features in the future. Therefore, we attempt to apply the 

detailed mapping based on estimated figures. 

 Germany 

 Coal Gas Oil Nuclear Hydro Biomass PV Other NRE 

2002 52% 9% 1% 28% 4% 2% 0% 3% 
2008 46% 14% 1% 24% 3% 5% 0.7% 8% 

2013 46% 12% 2% 16% 3% 7% 5.6% 8.4% 
 

 Japan 

 Coal Gas Oil Nuclear Hydro Biomass PV Other NRE 
2002 26% 25% 10% 28% 8% 2% 0% 1% 
2008 28% 28% 10% 24% 7% 2% 0.2% 0.8% 
2013 31% 43% 12% 0% 8% 3% 1.4% 1.6% 

 

 China 

 Coal Gas Oil Nuclear Hydro Biomass PV Other NRE 
2002 77% 0% 3% 2% 18% 0% 0% 0% 
2008 78% 1% 1% 2% 18% 0% 0% 0% 
2013 74% 2% 0% 2% 18% 1% 0.6% 3.4% 
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Table LXXIII: Electricity mix change for traditional power plants in Germany, Japan and China (IEA(d))112  

However, few studies suggest quantitative values for the total renewable energy grid-level 

costs. Some literatures attempt to estimate such costs with quantified data. In this study, the 

quantitative figures in terms of grid-level costs are quoted based on reliable studies as follows; 

- Nuclear Energy and Renewables: System Effects in Low-carbon Electricity Systems 113 , 

(OECD/NEA 2012) 

- Grid Integration Cost of photovoltaic Power Generation, Direct Costs Analysis related to Grid 

Impacts of Photovoltaics, (Pudjianto, et al., 2013). 

Each segment of grid-level costs is studied. This allows us to review the importance of grid-

level costs as the level of PV penetration increases. The large penetration of renewable energies like 

PV and wind gives an impact on the network. The power network infrastructure should be extended or 

upgraded to embrace the planned deployment of renewable energies like PV power. First, at 10% PV 

penetration level, an OECD report estimates the grid extension and reinforcement costs ($/MWh) as 

Table LXXIV presents (OECD/NEA, 2012). However, the costs given by OECD/NEA seem over-

estimated because they are mainly based on wind power plant studies and PV utility power plant data 

excluding the distributed PV system. With a good deployment strategy of distributed PV systems, the 

grid-level costs can be minimized. We further discuss on this issue in Part III chapter 1. 

Unit: $/MWh Germany  France US S. Korea 
Grid reinforcement & extension 3.7 5.8 2.8 5.3 
Table LXXIV: Estimation of the costs of grid reinforcement and extension at 10% PV penetration level 

To give a close look at German case, Figure 53 is shown. The first graph (left) represents the 

main troubles of the transportation network under Telnet management and the second graph (right) 

displays several planned projects of grid optimization & expansion to support the development of wind 

and PV until 2022 in Germany (therefore, the presented data concern both wind and PV power). 

The transmission equipment has a lifetime of 40 years (Brinckerhoff, 2012) and its investment 

requires approximatively €400 million a year114. If the network is designed to allow German target of 

renewable electricity by 2020, which is 35% of electricity production with 210 TWh 115 

(Energytransition.de), the investment amounts to around 2 €/MWh. 

However, the nation-wide grid reinforcement seems mainly related to the high level of wind 

production because its production site is based in the northern region but demand is located in the 

southern regions (OECD/NEA, 2012). On the contrary, the impacts of PV production in Germany to 

this investment of transmission network seem very low since PV production is mainly based in 

southern regions near the consumption sites.  

                                                      
112 Share of electricity production. Biomass includes waste. Other NRE are wind, geothermal, tide and wave. (The Shift 
Project Data Portal) 
113 OECD/NEA 2012 
114 The total investment amounts to €16 billion. 
115 Electricity production: 614 TWh in 2014 
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Figure 53: Detected problems on the Tennet network and network upgrading plan in Germany (Müller, 2014; TenneT, 2014) 

Secondly, the balancing costs (short-term intermittency costs) of PV are mainly related to: 

- The availability of flexible capacity in electricity mix to balance the variability of PV power 

- The accuracy of weather forecast to plan the PV electricity production in the preparation of 

use of dispatchable capacities (adjustment of a forecast error is costly) 

-  The demand-supply predictability 

- The size of interconnection with neighboring electric systems 

Table LXXV shows the constant increase of the redispatch frequency since 2003 to 2013 

in geographical reign of Tennet in Germany. German PV and wind energies have increased from 3.7% 

in 2003 to 14% in 2013 (see Table LXXIII). Furthermore, the phase-out of nuclear power from 2011 

has raised the frequency significantly. The renewable energies with the variability hinder the grid 

management due to the uncertainty of production forecast. As seen, the action to adjust the planned 

production to the real demand (balancing costs) requires additional costs. 

 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Days 2 14 51 105 185 144 156 161 308 344 356 
Redispatch 
actions 

2 15 51 172 387 228 312 290 998 970 1009 

Table LXXV : Redispatch frequency increase on Tennet network between 2003 and 2013 116 (Tennet, 2014b) 

In order to reduce the short-term balancing costs, the increased flexible capacity in the national 

electrical system is important. Table LXXVI shows the estimated costs ($/MWh) of short-term 

balancing at 10% penetration level (OECD/NEA, 2012).  

Unit: $/MWh Germany  France US S. Korea 
Balancing 3.30 1.90 2.00 7.63 
Table LXXVI: Estimation of the balancing costs at 10% PV penetration level 

The relatively low costs for France & the U.S. can be explained by the availability of flexible 

capacity in electricity mix. Hydropower system accounts for 12.5% of French electricity mix in 2013, 

while only 3.2% of Germany’s electricity was produced by this energy source. However, South Korea 

                                                      
116 Tennet also highlights the impact of the nuclear phase out from 2011. 
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has a high costs for short-term balancing costs. The country has a small isolated electricity market 

without any international interconnection, and low hydraulic power capacities (less than 1%).  

2013 : electricity production Germany France US S. Korea 
Hydro power 3.2% 12.5% 6.3% 0.8% 
Table LXXVII: Share of hydropower in electricity production mix (The World Bank(d)) 

Next, the back-up costs (long-term intermittency costs or adequacy) of PV electricity is an 

important part of the grid-level costs. They are mainly related to the correlation between PV 

production and peak demand. This correlation is measured with the capacity credit, which shows the 

share of the installed capacity that contributes to the peak demand of year. In this regard, the costs vary 

according to the geographical condition & peak demand profile; e.g., the region with a strong 

correlation between PV output and peak demand has low back-up costs. Below Table LXXVIII 

verifies this. 

 

Unit: $/MWh Germany  France US S. Korea 
Back-up OECD/NEA 2012117 19 19 0 9 

Back-up Imperial college 2013118 13 15   
Table LXXVIII: Estimation of the back-up costs at 10% PV penetration level  

In Europe, the peak demand of electricity appears usually in the winter evening. Without 

storage solutions, the peak demand cannot be addressed by PV power production. This requires high 

cost for the long-term adequacy in Europe. In some states of the U.S., the peak demand occurs in the 

summer day when the sun is shining; PV has thus good capacity credit (the correlation between PV 

production and peak demand is very good). This gives the back-up costs nearly null.  

The definition of total grid-level costs differs among studies. However we can estimate the 

range based on existing quantified data. Table LXXIX shows them at 10% penetration level of PV.  

Unit: $/MWh Germany  France US S. Korea 
Maximum (OECD/NEA) 26  27 4.8 22 

Minimum (Imperial College) 17  20 - - 

Table LXXIX: Estimation of the total grid-level costs at 10% PV penetration level 

It is important to notice that the total grid-level costs cannot be ignored in order to largely 

deploy the solar PV system in the energy mix. There are some risks that the reduced LCOE can be 

counterbalanced by increased grid-level costs in the future energy mix. To give an idea, Figure 54 

gives an estimation of the Germany PV costs (LCOE + grid-level costs). In 2030, with 10% of PV 

penetration level, the PV costs of residential system can be 140 $/MWh even though PV LCOE will be 

reduced to 114 $/MWh119 from 192$/MWh. It is because the grid-level costs could be increased up to 

26 $/MWh in 2030.  

                                                      
117 (OECD/NEA, 2012) 
118 (Pudjianto, et al., 2013) 
119 Author’s calculation based on IEA’s 2DS scenario. 
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Figure 54 Estimated residential PV costs in Germany in 2030 with grid-level costs included 

However, the grid level costs are very difficult to estimate without historical data, and they 

vary among the different studies. For example, the Imperial College study expects 17$/MWh at 10 % 

of PV penetration (Pudjianto, et al., 2013). Furthermore, the world energy outlook 2012 of IEA (IEA, 

2012b, pp. 237-238) gives a system costs including the grid level costs ranging from around 6$/MWh 

to 25$/MWh (2$ to 13$/MWh for grid integration, 1$ to 7$/MWh for balancing, and 3$ to 5$/MWh 

for adequacy).  

In this regard, proper policies to limit the grid-levels costs should be included in the future 

actions for promoting PV system in the future energy mix. 

 

4) Externalities 

PV electricity leads to externalities that include complex and diffuse impacts on diverse 

aspects of national energy system and socio-economic development. For example, some positive 

externalities in terms of environmental impacts (e.g. avoided emissions of GHGs) and economic 

development (e.g. jobs, sales, exports, etc.) are studied in the previous chapter with case studies of 

Germany, Japan and China. As Table LXXX shows, some studies show that the PV technology is 

most efficient technology to create short-term jobs (jobs per year/ MWp installed). In addition, PV is 

considered as one of the energy technologies with the lowest footprints of electricity generation: 

around 30-60 g/kWh. Even though the production of PV silicon is very energy intensive, the PV emits 

CO2 much less than fossil fuels.  In addition, further reduction in silicon use (e.g. thin film) will lower 

the carbon footprint (Parliamentary Office of Science and Technology).  

Technology Average short-term employment factor 
(Job-years/installed MWp) 
Gas 1.0 

Lignite 1.5 
Coal 4.3 
Wind 4.5 

Hydro 5.7 
Biomass 6.4 

Geothermal 6.8 
Solar CSP 10.2 
Landfill Gas 12.5 

CCS 20.5 
Solar PV 21.6 
Table LXXX: Average short-term employment factor by power plant (Blyth, et al., 2014) 
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There are also negative externalities; impacts on energy security or energy mix (see Part I 

chapter 2.3). However, the task to quantify all externalities of PV integration in a single unit of 

monetarization is seldom possible due to its complexity and diversity of impact mechanisms.  

In this regard, we mainly focused on the direct externalities on the electricity system. When 

PV power occupies the important share of electricity mix, those impacts will challenge the national 

energy security. Proper policy design to minimize such impacts is necessary to ensure the security of 

the national energy system in relation with other power generation units. This will be further discussed 

in the next section. 

 

3 Analysis of dynamics of PV systems with a focus on critical limits and risks  

In section 2, we have seen negative effects and risks associated with PV policy system. In this 

section, we intend to conduct an in-depth analysis of the critical limits and risks of PV development in 

the energy mix. We decide to further investigate the following issues to understand critical 

problematics and dynamic mechanisms of PV system. 

- Financial risks related to FIT system  

- PV systemic impacts caused by the PV integration 

- PV globalization impacts  

The problematics can be interpreted at the national and international level. At the national 

level, we discuss the risks related to the sensitivity of the FIT. FIT has been the primary tool to incite 

the PV growth in many countries but it raised many problems. Also, this section returns to the question 

of systemic effects of PV integration into the electrical power system because it possesses important 

potential risks for PV growth as well as the national energy system. We focus on German case since it 

has the highest level of PV penetration in the national electricity mix. At the international level, our 

study focuses on the impact of PV globalization and the complexity of interactions between different 

national PV policies.  

3.1 Limits and risks related to FIT system 

3.1.1 Observed problematics related to FIT adjustment  

The FIT system was implemented in many countries and it has played an important role in 

raising PV installations. The success of the FIT support is due to the profitability of investment. We 

have concluded that the return on investment of PV system (%, PV profitability) is a crucial variable 

that influences the level of PV demand (MWp). The detailed mapping of PV installations gives an 

elaborated explanation for that.   

These days, PV LCOE is generally higher than other competing power solutions. Over the past 

few decades, PV supply-side policies attempt to reduce PV LCOE by curtailing the PV system cost 

through improved R&D and economies of scale. At the same time, PV demand-side policies aim to 

stimulate the demand of PV power by providing financial support to alleviate initial PV investment or 
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guarantee the profit margins of PV generation. The former type of support is given through subsidies 

to reduce PV LCOE and the latter offers higher prices than PV LCOE (e.g. FIT).  

As seen, the choice of demand-side policies depends on each country’s perspective. The FIT 

scheme played a critical role in stimulating PV installations since early 2000’s mainly in European 

countries. The FIT system guarantees the generator of renewable electricity a certain price per kilowatt 

hour (kWh) at which electricity is bought. The tariff is set over a long period, commonly 20 years. 

This policy multiplied the volume of global installations. As seen, in contrast, Japan took PV subsidy 

program to reduce the initial investment of PV system and newly launched the FIT scheme. 

Figure 55 displays changes in annual installations of PV in several countries since 2002 to 

2014. The number of installed PV system grew very quickly in those countries that took the FIT 

mechanism. At the same time, PV installation peaks were observed in all of those countries.  

 
Figure 55: Annual installation peaks under the FIT system (IEA PVPS, 2002 to 2014; Campoccia, et al., 2014) 

However, it is interesting to notice that Japan showed a regular growth based on subsidy 

program and the installation peak is a recent event after the country implemented the FIT scheme. In 

Japan, it was much easier for policymakers to control the profitability of PV investment with the 

subsidy program because the module price evolution was more predictable under its relatively closed 

market. 

The subsidy program based on the share of PV system price enables policymakers to control 

the PV system price evolution. In contrast, the FIT system is production-based mechanism; 

policymakers only access to the data of production without having detailed information on the price of 

PV system purchased. Therefore, it is much more difficult to control the PV profitability. In 

conclusion, referring to Figure 55, we can see that the FIT shows the typical trends; irregular annual 

installations and significant installation peaks. 

3.1.2 Windfall effects and increased policy costs  

1) Windfall effects  

The FIT scheme allows the grid access to inject generated PV power in the gird. The fixed 

purchase price of generated PV power based on long-term contract lowers the investment risk 

(removal of price risks and better estimation of actual project costs) and reduces the cost of investment. 
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Therefore, the PV LCOE and the sales revenue of PV electricity determine the PV profitability under 

the FIT mechanism. Choosing the right tariff rate is very closely connected with the success of the FIT 

policy; it must be set at a level that guarantees profitability for investors. If the rate is too low, there 

will be no or little investment. However, it should not be too high because PV power producers gain 

windfall profits.  

As seen, the massive entry of Chinese products largely reduced the PV global module prices. 

This helped decline the PV LCOE in many European countries; the reduced module prices lowered PV 

LCOE (see Figure 56). Along with reduced PV module prices, the FIT mechanisms provoked 

windfall profits of PV power producers. The FIT possesses some risks: 

- Overcompensation (or undercompensating) when the tariff is fixed at a higher level (or at 

a lower level) compared with the PV LCOE, 

- Difficult adaptation of the technology cost or response lag to market changes,  

- Creation of market bubbles with windfall profits and unsustainable market growth. 

The characteristics are observed in many countries. There are many instances of windfall 

profits in the past. Figure 56 shows yearly changes in FIT 120 , module price variations and PV 

installations in four countries (Spain, Italy, France and Germany) from 2004 to 2013.  

 
Figure 56: Comparison between the module price change and the FIT evolution compared to the previous year 

The first country influenced by PV module price drop was Spain in 2008. Until 2007, the FIT 

tariffs were correctly set at an appropriate level, stimulating the increase of PV installations. However, 

in 2008, the FIT tariffs stayed at the same level even though PV module prices have fallen by about 

20%. Investors have benefited from reduced PV system prices induced by the drop in PV module 

                                                      
120 Residential FIT is used to show the variation of support. The support for other installation types has the similar trend. 
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prices. This provoked a rapid increase of PV installations (PV bubbles) (del Río & Mir-Artigues, 2014) 

leading to windfall profits of PV power producers. In 2009, Spain largely reduced its FIT scheme and 

the PV market began to be sluggish. Similar phenomena were shown in 2011 in Italy and, to a lower 

extent, in France. In addition, Germany went through the same process in 2009 but maintained its 

support policy until 2012121.  

Figure 57 gives a closer look at German case from 2009 to 2013. The graph shows that 

investors aimed to maximize their profits by installing PV systems just before the implementation of 

reduced tariffs. As PV LCOE continues to decrease, this is the moment when the PV system is the 

most profitable (Grau, 2014). They aim to have maximum gaps (profitability) between PV LCOE and 

fixed tariffs (purchase price). 

 
Figure 57: PV installation peaks under the FIT system in Germany for PV systems of 10 kWp – 30 kWp. 

This historical analysis raises an issue in terms of the use of FIT to promote PV electricity. 

The FIT scheme is PV power production-based policy support. At the same time, the FIT is a very 

price- sensitive instrument. The difference of the rate of FIT and PV LCOE affects the profitability of 

investors. When the rate is too high, windfall profits follow and when it is too low, the PV market is 

sluggish. Based on German empirical data, we have found that the serious windfall effects were 

mainly caused by large-scale PV systems (Figure 58). We can estimate the installation peaks from 

utility-scale PV systems would further increase the PV development costs related to land usages and 

systemic costs rather than the increase from distributed PV systems.  

                                                      
121 In 2012, Germany changed the FIT mechanism by taking a monthly update instead of a 6 month update. Moreover, 
Germany gave up the FIT support for PV installations above 10MW. (IEA PVPS, 2014). 
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Figure 58: PV installation peaks in Germany according to the size of PV systems 

In addition, the global industry movement has a greater influence on the reduction in PV 

module prices. Therefore, the right choice of the tariff, which reflects the dynamics of the PV industry 

and cost reduction of PV LCOE, is essential. Furthermore, if nationwide unique tariffs are 

implemented, it is possible to fail to give economic incentive to develop PV projects where they are 

need most (NREL, 2010).  

Based on this analysis, we can conclude that FIT policy is an interesting tool to stimulate PV 

power generation. Well-managed FIT system is an effective policy instrument to stimulate PV 

deployment; it gives fair remuneration to investors. However, we have seen the difficulty of tariff 

adjustment. The FIT scheme is very tariff-sensitive policy instrument containing a risk factor. It is 

easy to control the price mechanism in a closed market. The price control system is more complicated 

in an open market because of the uncertainty of the PV module prices influenced by fast-changing 

industry condition. Therefore, the FIT scheme does not guarantee a sustainable PV growth.   

The volatility of PV installation growth comes bigger when large-scale PV plants are included 

in the FIT mechanism with a nationwide tariff system (see Figure 58). An effective way to fix the 

issue related to the windfall effects of large-scale PV plants is to use calls for tenders under the FIT 

mechanism (the company, which proposes the lowest FIT, gains the contract). The large-scale PV 

plants will be integrated in the electricity market when they become fully competitive compared with 

other technologies. Therefore, a more market-oriented support mechanism (e.g. Feed-in-Premium) 

can be preferable than the FIT (Finon & Roques, 2013).  

 

2) Policy costs of FIT and impacts on electricity prices 

There is another issue regarding the FIT scheme. The FIT system placed much financial 

burdens and it was subsidized by taxpayers through household energy bills. Taxpayers (electricity 

end-users) mainly pay the overcompensation of renewable power production through the FIT. 
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Accordingly, household electricity prices have increased to finance the PV development and this 

provoked the energy poverty problem. End-users electricity tariffs can be influenced by excessive 

remuneration (or rapid growth of PV deployment). 

Figure 59 shows German accumulated costs of FIT system (left), changes in electricity prices 

and in EEG (right). The FIT costs in Germany demonstrated a drastic increase over the last decade. In 

2010, it grew to over € 50 billion. At the same time, Germany’s household electricity rates have risen 

by 53% from 19.49 c€/kWh in 2007 to 29.81 c€/kWh in 2014. This is mainly due to the increased 

EEG (renewable energy sources act) to finance the national energy transition. German residential 

electricity prices are some of the highest in Europe and around 800,000 German households have 

difficulties to afford their energy bills (Institute for Energy Research (IER), 2013). 

 
Figure 59: German accumulated costs of FIT (over 20 years) and changes in electricity prices and in EEG (Lütkenhorst & 
Pegels, 2014; BDEW, 2014) 

We can conclude here that the FIT system does not give incentives to produce PV electricity 

itself as policymakers design (IEA 2014) because it is very tariff-sensitive. FIT is an effective 

instrument to promote PV installations in a short time period when it offers a profitable rate. However, 

when the rate became unprofitable, PV installations suddenly decrease, thus the instrument is not a 

sustainable system.  

In addition, Feed-in-Premium (FIP) is considered as a policy instrument which better responds 

market price change. FIP is more market-oriented; PV power is sold based on the electricity spot 

market price and the generators receive a premium on top of the market price. Since the government 

pays only premiums, the costs will be less than FIT system. However, since it has high risks without a 

purchase guarantee and there is no hedge against electricity price volatility. Thus, FIP increases risks 

for investors compared with FIT (NREL, 2010). The PV costs under FIP system will be greater for 

society than under the FIT: a higher average payment per kWh with higher capital costs for the same 

level of PV installations.  

In this regard, there is a necessity to find stable but cost-effective policy instruments for 

further PV growth.  
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 Household                                                                                Industry < 2000MWh 

Year Electricity price ( c€/kWh) EEG (c€/kWh) Year Electricity price ( c€/kWh) EEG (c€/kWh) 
2000 15.26 0.2 2000 7.98 0.2 

2007 19.49 1.02 2007 12.72 1.02 

2014 29.81 6.24 2014 20.71 6.24 
 

Table LXXXI: Electricity tariffs in Germany for household and industry (BDEW, 2014; Eurostat, 2016; 2016b; 2016c; 2016d) 

 

 

3.2 Limits and risks related to systemic impacts of PV penetration in electricity system 

Another important issue related to PV policies in the national context occurs in terms of PV 

integration in the electricity mix. In this section, it attempts to identify potential threats or limits of PV 

integration in the future energy mix. Possible problematics should be studied to prepare the future 

electricity mix. It is interesting to study German market, where the PV penetration is quite visible in 

the national electricity system with more than 6 % of PV power. The integration of low marginal 

variable energies into the energy mix in Germany brought out some impacts on the existing electrical 

power system. As seen, such impacts actually increase the real cost of PV electricity in the electricity 

mix.  

3.2.1 Observed problematics related to PV integration in electricity system 

1) Impacts on load duration curve 

The first impact concerns the change of load duration curve with increase share of PV power. In 

this study, we are based on data of PV and wind production at about 16 % (solar: 5.6% + wind: 9.2%) 

penetration of Germany electricity mix.122 Figure 60 shows the yearly load duration curve (blue) and 

the residual load curve (red) of German electricity mix in 2014.  

 
Figure 60: German load duration curve in 2014 and residual load123 

The Figure 60 shows a significant reduction of the residual load that is supplied by the traditional 

power plants. The capacity of base-load power plants that operate almost all the time during the year 

has been halved to 20 GW. However, the peak demand stays constant at near 80 GW; about 10 GW of 

peaking units are used for less than a hundred hours.  

                                                      
122 No separate hourly data available for PV & wind production.  
123 Created by author with data of ENTSO-E and EEX (European Energy Exchange) (ENTSO-E; eex) 
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In this regard, we can conclude the integration of PV power changes the electricity mix. This 

implies problems in terms of long-term investment of base-load power plants and missing money 

for peaking units. 

 

2) Over-production of PV power 

Another problem is related to the over-production of electricity. Figure 61 explains the PV over-

production in Bavaria (one of landers with a high PV penetration). On April 15 in 2015, solar PV 

production exceeds the electricity demand, leading to over-production issue. This problem 

destabilizes the electricity market equilibrium. In case of PV overproduction, transmission system 

operators should market the renewable energies at power exchange even for negative prices (Fröhlich, 

2014). 

 
Figure 61: PV production and residual load in Bavaria (from April 7th 2013 to April 23th 2013) (TenneT, 2014) 

3) Negative wholesale price of electricity  

The large penetration of PV power sometimes provokes the negative wholesale price of 

electricity. Renewable energies have the priority with its low marginal cost in the electricity market; 

this shifts the merit order curve to the right leading to the reduction in the wholesale market price of 

electricity. Figure 62 shows the constant decrease of the wholesale price of electricity (black), which 

is correlated with the rise of PV and wind productions (red). There are several occurrences of negative 

prices; for example, it was less than -200 €/MWh on December in 2012. In addition, an additional 1 

GW feed-in of PV power led to an average spot price decrease of 82 c€/MWh in 2011 (Fraunhofer ISE, 

2015). 
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Figure 62: The decrease in average electricity price with the rise of the PV and wind productions (Tennet, Op. cit.) 

4) Impacts on neighboring country’s market price of electricity  

With the interconnection in West Europe, the German overproduction issue has an impact on the 

neighbor country’s market price. The situation worsens when they have an important share of 

electricity production using renewable energies. Figure 63 demonstrates the wholesale price of four 

countries (Germany, France, Belgium and the Netherlands); there is a similar price trend among those 

countries. Therefore, it is important to keep in mind that a fast growth of intermittent PV power also 

influences the neighboring countries’ electricity market. The PV deployment policy design should 

include this aspect.  

 
Figure 63: Decrease of the electricity market price in Germany and the neighboring countries (Tennet, 2014b) 

5) Financial impacts on conventional electricity producers 

As seen, the reduction of the wholesale price of electricity gives negative impacts on the 

financial situation of conventional electricity producers reducing their profit margins. A 

significant reserve power supplied by conventional plants should be prepared to maintain the system 

balance for the integration of intermittent of PV power.  

PV integration changes the marginal power plant in price-setting system. As seen, in Germany, as 

the share of renewable electricity rises, the margins especially of gas-fired power plants are below zero 

since they are hardly in operation (Schiffer, 2015; World Energy Council, 2015) Furthermore, the mid-

merit power plants will become less and less profitable, which will result in decommissioning more 
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power plants (Commissariat Général à la Stratégie et la Prospective (CGSP), 2014). This threatens the 

security of electricity supply. 

However, the separation of PV integration impact is very difficult to conduct because of the 

complexity of electricity mix situation. In Germany, several important events occurred simultaneously. 

- The nuclear power phase out by 2022: this induced significant changes in electricity mix. 

- The volatility of the fuel price (oil, gas and coal) in recent years: this modified the 

investment choices and cheaper power plant between gas and coal were preferred. 

- PV integration impacts on electricity mix has been compounded by the increasing 

penetration of other renewable sources like wind power. 

- Economic situation (economic crisis reduces energy demand): this accelerates the situation 

that integration of renewable energies reduces the residual load that has to be served by 

thermal plants (CGSP,Op. cit.). 

Figure 64 shows the evolution of the financial situation of the 10 largest utility producers in 

Europe. The left graph indicates their return on capital employed (ROCE) and weighted average cost 

of capital (WACC) and the right graph shows their net debt. It can be seen that their profitability has 

been decreased since 2007, while their net debt has increased (Roques, 2013).  

 
Figure 64: Financial data on the 10 largest European utilities: Return On Capital Employed (ROCE) and Weighted Average 

Cost of Capital (WACC) (2007-2012) (left), net debt evolution (right) 

3.2.2 Systemic impacts of PV integration  

1) Potential risks of PV integration in electricity mix 

At low levels of PV penetration, the grid costs and the externalities are negligible. However, a 

number of challenges would occur with the high level of penetration of intermittent PV power in the 

future electricity system. 

The PV integration efforts require additional costs (integration costs) to prepare proper 

infrastructures and institutions. Therefore, it is worth reviewing the potential risks in terms of PV 

integration since those issues will concern all country’s PV policies. The German began to have a 

visible share of renewable energies including solar PV power in their electricity mix. However, it 

gives hidden risks concerning the grid system to integrate a large share of PV power; e.g. preparation 

of enough back-up capacity, network quality, and grid extension. In addition, with a visible share of 

renewable power integration, the power market started to be reshaped from a situation of electricity 
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supply by a couple of conventional utility firms to a situation of power generation by many scattered 

suppliers.  

In Germany, the reduced wholesale prices of electricity caused by expanded integration of 

renewable energies like solar PV and wind damaged the profitability of conventional utility firms (e.g.  

E.ON, RWE). For example, RWE decided to shut down a number of power plants (1000 megawatts by 

2017) because they were no longer profitable. The company declared a net loss of €2.8 billion in 

financial results for 2013 (The Financial Times, 2014).  The shutdown of gas and coal-fired stations 

could weaken the security of energy. In response to this situation, conventional firms started to take 

different strategic thinking to prepare the future business. E.ON decided to modify its operation based 

on fossil fuel and nuclear to concentrate on clean energy areas such as renewable power generation 

(solar and wind), power grid, energy efficiency services and smart energy metering (The Guardian, 

2014; The Financial Times, 2015; www.elecreview.co.kr, 2015). However, the country needs to 

prepare a solid solution for long-term capacity adequacy in electricity markets. 

Furthermore, German integration of intermittent energies can destabilize the electric grids 

possessing various technical risks (e.g. causing potential blackouts, weakening voltage or damaging 

industrial equipment (Institute for Energy Research (IER), 2013)) unless they have a well-designed 

system plan. The long-distance of transmission also provokes additional costs of grid management. As 

said, Germany has an important generation of renewable power (principally wind) in the northern part 

of the country, while the energy demand is mainly located in the southern part of the country 

(OECD/NEA, 2012). Furthermore, many power plants in the central and southern part of the country 

were closed and the power generation in the northern region became critical sources for the national 

energy supply. Addressing the congestion in the North-South electricity transmission network became 

an important issue while integrating renewable energies in Germany.  

Similar problematics can be found in other countries. For example, China’s PV installations 

grew rapidly in the recent years mainly driven by the PV policies. However, there are some challenges 

related to PV grid integration. Chinese PV installation plan does not include grid planning. Under the 

Renewable Energy Law, Chinese power network companies are required to supply grid connections 

for on-grid PV systems and to purchase all power produced (Huo & Zhang, 2012). However, the PV 

integration in the existing power system causes some technical problems like voltage fluctuation; this 

challenges the security of power grid system. Grid firms construct additional transmission lines and 

infrastructures for dispatch but other stakeholders do not support the costs. PV systems were installed 

in the western part of the country but the demand is relatively small, and the surplus electric power is 

transported to eastern region where there is high-energy demand (www.energydaily.co.kr, 2015). 

However, the country lacks transmission infrastructures that connect those regions; this leads to local 

imbalance in electricity supply and demand. Furthermore, China has insufficient technical and 

administration standards (codes and rules) for grid connection of solar PV systems, particularly for 

distributed solar PV systems. 
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The well-designed grid planning for PV integration in the electricity system is directly related 

to a reliable electricity supply. Therefore, the planning of transmission extension or dispatch 

infrastructure construction should be prepared under the systematic perspective with proper 

institutions. The costs for additional construction and operation should be shared with other 

stakeholders (including government). In addition, it is necessary to establish state-level solid technical 

and administration standards in terms of the grid-connection of solar PV systems. Otherwise, PV 

installations in the future electricity mix would reach the limit.  

Both cases give a brief idea about potential risks of grid-level costs with visible integration of 

intermittent power. One obvious thing is that the large penetration of PV power will require 

integration efforts with additional costs to deal with the grid management or balancing issues. In 

this context, the preparation of smart solutions to address those issues is mandatory for the successful 

integration of PV power in the energy mix. Related institutions and system upgrading is also necessary 

based on open dialogues with all stakeholders. 

 

2) Possible ways to reduce systemic costs of PV integration  

Energy systems evolve with the aim of supplying energy to end-users at the lowest 

integration costs. Energy policy should aim to minimize PV electricity costs, while minimizing grid 

integration costs and negative externalities as PV penetration progresses. The PV system’s 

integration in the current or future energy system can be justified when such efforts are based on the 

way of improving social welfare. Therefore, maintaining a systemic point of view is extremely 

important with respect to PV political choices and implementation issues. An illumination on systemic 

effects of PV electricity is useful to find strategies for systemic innovation with least innovation costs. 

 
Figure 65: Integration efforts with innovation costs 

Each country has different PV system economics according to the national energy system 

features and political choices. We have seen the additional costs of PV integration in the previous 

section (see section 2.2). We now discuss how to reduce them. The PV electricity costs in a society 

can be reduced by implementing a political mix from the following strategies:  

 Minimize PV electricity costs  

 Minimize grid integration costs and risks  

 Maximize net benefits of externalities affecting social welfare as PV penetration progresses.  

To give an example of grid-level costs, some strategical directions can be considered in order 

to minimize them.  

Costs related to grid reinforcement and extension can be reduced by minimizing the distance 

between production sites and consumers; expansion of small decentralized systems for local 
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consumption is a good option. For that, it is necessary to review the current structure of production and 

consumption to find suitable locations to install PV systems. Based on a study on local electricity 

supply and demand profile, a guideline for adding new capacity of PV system can be prepared by 

regional policy (local governments know well local specific features). It would better to target areas 

with local electricity production shortage or with problems related to interconnection and transport 

network; however, it should avoid regions that already have local over-production. This can be done in 

collaboration with grid operators.  

Short-term balancing costs can be reduced by improving weather forecast accuracy or by 

smoothing PV production fluctuations (e.g. increasing geographical spread or preparing daily 

storage system). In addition, demand-side management (e.g. demand response, time-based pricing) 

leads to better load management. Smart-grids will be the key enabler in integrating of PV in the future 

system.  

Next, in order to reduce costs of back-up (adequacy), the storage system should be improved. 

The combined PV system with energy storage system (ESS) gives further opportunities to smooth the 

power variation in a day; however, this requires additional costs of batteries. Policy support for R&D 

on this subject would help accelerate the large deployment of this system. It can be feasible by linking 

with other sectors like power-to-fuels storage (e.g. H2) or vehicle-to-grid. However, when PV 

electricity is consumed where the peak demand is correlated with the sun availability (good 

capacity credit), the back up costs can be minimized (e.g. California (NREL, 2001)). 

 

3.3 Limits and risks of national PV policies with globalization  

3.3.1 Observed problematics related to PV globalization  

In this section, critical issues in terms of PV industry market at the international level are 

studied. Figure 49 identifies the causality of key variables for economic growth through PV industry 

development; this mapping implies the importance of key contextual factors in the PV policy 

mechanisms. For example, the combined effect of the global competition with change in economic 

situation gives a significant influence on a country’s domestic PV industry growth. Therefore, the 

globalization and economic condition as influencing external factors are reviewed to explain the 

disequilibrium of PV market (oversupply of PV products & PV industry crisis).   

As seen in chapter 2, China sharply increased its production capacity over the last years and it 

alone accounted for around 60% of the global production capacity in 2012 (IEA PVPS, 2002 to 2013). 

China’s entry into the PV sector was led by its export-oriented strategy with the political aids; 97.5% 

of the Chinese production was exported in 2006 (IEA PVPS, 2010b).  

However, the PV market turned to new phase with change in economic situation. Since 2008, 

the global economic recession has forced many European countries to downsize their policy support 

(IRENA 2013). The PV market, which is not yet economically viable, was easily undermined by such 

political environment change. The reduced financial incentives in the European market caused by the 

global economic crisis reduced the global demand growth and the market slowed down; the PV market 
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collapsed in Spain in 2009 (IEA PVPS, 2009). However, Chinese manufacturers scaled up production 

volumes based on GW-scale production capacity; their module production more than doubled between 

2009 (4 GW) and 2010 (9 GW) (IEA PVPS, 2010).  

China became the leading manufacturer producing around 10 GW of cells in 2010 (IEA PVPS, 

2010). The increasing Chinese mass production combined with the decreasing demand led by the 

European markets resulted in a problem: the oversupply of PV materials and equipment in a global 

market. This destabilized the PV market. As shown in Figure 66, the market began to come up 

against excessive production as of 2009, leading to the inventory increase and the continuous price 

reduction in solar cells and modules.  

 

Figure 66 : Global PV supply (production) & demand (installations): overproduction 

The oversupply issue provoked economic damage on both the German and Chinese side. This 

phenomenon hit the global PV industry sector and many firms went into the bankruptcy across the PV 

value chain. From 2009 to July 2012, around 40 EU producers declared insolvency and around six 

European producers stopped their production (e.g. Q-Cells, Schott Solar and Bosch in Germany). 

Furthermore, around four EU producers were taken over by Chinese investors during the period 

(European Commission, 2013b). At the same time, the shrinking market also caused a problem for 

China since its PV production was heavily dependent on overseas markets. Local manufacturers 

suffered from a lack of outlets for their excessive production. Chinese firms also closed down (e.g. a 

subsidiary of Suntech in 2012) (IEA PVPS, 2013). Through the restructuring plans after the global PV 

crisis, the number of companies in PV manufacturing (silicon refining through to module assembly) 

fell to 150 in 2013 from around 750 in 2010 (Sheppard 2013).  

In conclusion, China’s continuous massive production without suitable outlets for their 

production destabilized the global supply-demand PV system. The issue of excessive production 

remains to be resolved; the global PV market lost its equilibrium point. It now needs to find a new 

approach to arrange the unbalanced mechanisms.  
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3.3.2 Increased dynamics of PV policy system with globalization  

The observation of the current PV market crisis allowed us to perceive the importance of 

external factors in a country’s PV policy mechanisms. The external factor in this case is globalization. 

The PV policy mechanisms can be described as a dynamic system that evolves over time. A country’s 

PV policy to promote economic growth through PV industry development cannot be designed and 

implemented in a national context. The external factors became more and more important in this era of 

globalization. The interaction of German PV policy with Chinese PV policy presents proofs for this.  

The German FIT scheme was designed on the assumption that there was little global 

competition and any domestic increase in demand would be largely supplied by the German 

production supported by PV policies. But this was before the Chinese appeared. The German policy 

was set by extrapolating the drop in module prices according to observed R&D effects.  

On the other hand, the Chinese PV policy mainly aimed for economic benefits without 

developing its local market. This influenced the implementation of the German policy to some extent 

because it generated new conditions that contradicted the assumptions on which the German policy 

was based.  

When the Chinese producers sharply reduced their module prices based on economies of scale 

with large-scale production lines from 2008, the German module prices had to fall into line with those 

of the Chinese products due to PV globalization (see Table LXXXII). In 2009, the German PV system 

prices fell much faster than expected under the policy design, provoking uncontrolled PV installations 

and additional policy costs.  

$/Wp 1992 1997 2002 2004 2006 2007 2008 2009 2010 2011 2012 

Germany124 6.8 4.7 2.9 3.7 5.0 4.1 2.9 2.1 2.6 0.8 0.7 

China       4.7 4.3 2.8 1.9 1.4 0.7 

Table LXXXII: Modules price changes in Germany & China (IEA PVPS) 

The global market price affects the domestic sales. German installers began to use price-

competitive Chinese products to increase their own profit margins, which led Germany to curtail the 

FIT scheme several times to adjust to such market changes. However, the adjustment was not enough 

to respond the market change. This leads to the German industry crisis. Germany recorded a €3.5 

billion trade deficit in solar components with China during 2010 to 2012 (European Commission 

2014). In addition, in Germany, only around 40 PV firms with about 11,000 employees were operation 

at end of 2013 compared to 2008’s situation with 62 companies with more than 32 000 employees 

(IEA PVPS application report 2014). 

This experience gives German policymakers opportunities to consider the importance of 

external influencing factors and the increased dynamics of PV sector in terms of PV policy design and 

implementation. In addition, China needs a well-balanced policy mix to achieve long-term benefits; 

otherwise, their industry-focused policy strategy, which heavily depends on the overseas market, is too 

risky to pursue.  This issue will be further discussed in Part III. 
                                                      

124 For German market, the lowest market price was taken; this includes the entry of Chinese products in the German market 
(IEA PVPS, 2002 to 2013). 
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4 Conclusions  

The proposed detailed mappings allow us and policymakers to identify what mechanisms 

change the core variables, what major constraints are, and where politics can intervene to improve the 

system. Each variable of detailed mappings is measurable. It is thus possible to evaluate the efficiency 

of the policy (the ratio of inputs to outcomes) and to determine at which stage the problem occurs 

when the policy is inefficient. This tool also helps conduct a cross-country analysis to investigate the 

dynamics of PV policy system. In this regard, based on the proposed detailed mappings, we have 

compared different mechanisms and consequences of PV policies.  

From the supply-side perspective, some questions can be raised around different approaches of 

PV industry policy. In our analysis, we have highlighted different policy choices to reduce production 

costs between Germany and China. German policy gave a focus on R&D to reduce production costs 

through the technology progress. Chinese policy aimed to gain industry competitiveness through 

economies of scale. Therefore, German PV industry policy was primarily based on the anticipated 

increase in PV installations and price reduction through R&D efforts. Chinese policy intended to give 

favorable production conditions such as easy access to capital and low energy price. This raised issues 

on the effectiveness of German industry policy because the country’s PV industry suffered from the 

fierce global competition. German domestic needs were indiscriminately supplied from the national or 

international products (mainly Chinses products) under open market. German industry policy could 

have thought this variable to take the dynamics of PV policy system into account.  

From the demand-side perspective, we have compared German FIT to Japanese subsidies to 

stimulate PV installations. From 2000 to 2010, Germany installed a total capacity of 17 GWp with 

installations peaks, while Japan installed 3.4 GWp of PV systems maintaining consistent growth. 

However, taken the allocated policy cost over this time period into account, it is difficult to say which 

policy is more effective (German policy’s ratio 0.32 GWp/US$ billion vs. Japanese policy’s ratio 0.32 

GWp/US$ billion). We have seen that FIT system is a very upstream system in the PV installations 

mapping. The effectiveness of this policy is largely dependent on PV LCOE. But it itself is very 

complex to predict (see Figure 50). We have seen that FIT system has a limit to adapt the market 

dynamics. In this context, a question around the stability of the FIT system is raised. Even though it 

largely helped install a great amount of PV systems in many countries, it was turned out as an 

expensive policy instrument.  

In addition, potential risks and challenges related to systemic impacts have been discussed. 

The impacts would be greater as the level of PV penetration in electricity system increases. The 

systemic dynamics should be taken into account to secure the balanced growth of PV in electricity 

system. 

By broadening our horizons to the international market, we have highlighted the difficulties of 

controlling the national PV policies under the globalized market. The policy towards an international 

competition is different among countries. Japanese PV policy of standards helped protect the Japanese 

market from the international competition, but failed to increase the PV competitiveness because of 
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high module prices. The complex interactions of different country’s policy strategies combined with 

dynamic change of context provoked unexpected policy results and destabilized the global PV market. 

In this regard, in this study, we concluded that the PV policies could no longer be thought without 

taking the PV globalization into account.  

Unfortunately, the evaluation proposed in this thesis is limited because of the lack of public 

data, notably concerning the amount of policy inputs. In addition, it is difficult to differentiate the 

results (outputs and outcomes) of PV policy from the influence of policy context change, for example 

nuclear exit in Germany and the drop in the price of fossil fuels. This methodology may, nevertheless, 

be useful for those who have more access to such data for policy evaluation. This method is also useful 

for policymakers to determine their indicators of assessment of policy effectiveness. 
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Conclusions of Part II 

In this Part II, we proposed two types of mapping tools which help the implementation and 

monitoring of public policies. They can be employed as a common basis to communicate PV policies 

and consequences. A schematic map of PV policy mechanisms is a useful tool providing a 

macroscopic overview of PV policy mechanisms at a glance from policy objective and context to 

results and impacts. It also helped us to identify important variables to measure the performance of PV 

policies. This mapping has enabled us to conduct a comparative retrospective analysis of six countries 

(Germany, Japan, China, the US, France and South Korea); it highlighted the variety of public policies 

and the dynamic feature of the PV policy. In addition, the continuity of the PV policy over the last few 

decades is one of the most important factors that made Germany and Japan leading countries in the PV 

sector, unlike the U.S. and France. In Germany and Japan, the growth of the PV sector has led to a 

sharp increase in PV installations and the creation of numerous jobs until the late 2000's.  

However, the global PV policy context has changed with the globalization and economic 

downturn since a decade ago. The European PV policy has put a focus on the energy transition and 

economic growth based on a balanced mix of demand-side policy and supply-side policy. In contrast, 

Asian countries have mainly focused on production. Economies of scale have become an important 

criterion to lower PV prices. The entry of China supported by the supply-side policy into the global PV 

market has destabilized the PV sector. Countries with FIT system faced PV installation peaks and high 

policy costs (mainly paid by end-users) and China experienced supply excess when the European 

market slowed down. The global PV market needs new outlets of the oversupply. 

The retrospective analysis of six countries based on the macroscopic schematic map allowed 

us to select three core variables: PV power growth, economic growth through the PV development and 

the competitiveness of PV electricity. Around each variable, a detailed mapping was created. These 

detailed mappings allow us to decompose the PV mechanisms with measurable variables. These 

proposed mappings are very useful tools to understand the impact of PV public policies; we can also 

measure their efficiency and identify where the problem occurs. Based on those mappings, policies can 

be proposed or modified to fix the problems by referring to the causal relations between variables.  

With this mapping, three critical issues related to PV policy mechanisms were raised to 

investigate the dynamics of PV system; 1) the effectiveness of the FIT system to stimulate demand, 2) 

the systemic impacts of PV integration in electricity system and 3) the influence of the PV 

globalization. In our study, we have identified the mechanisms behind each issue.  

However, the research could have been better if we had more data on policy inputs (e.g. costs 

of each policy which was implemented in each country), and results (e.g. breakdown of jobs which 

were created in the PV sector and production costs of firms in each country). Also, there are few 

studies on PV systemic costs. The lack of data gave limits to this study. However, with more data, the 

analysis would be more solid and accurate using the proposed methodology. Therefore, our research 

decided to provide an in-depth insight on defined critical issues with the objective to give a zoom on 
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the dynamics of PV system. By doing so, we can infer impacts and effectiveness of PV policy 

implemented.  

First, the high sensitivity of the FIT in the PV policy system mechanism caused unexpected 

problems faced with the fast-changing market dynamics. The policy instrument of FIT system 

provoked uncontrolled PV installation peaks in many countries and induced high policy costs. The 

electricity sector is currently undergoing significant changes.  

Our study also highlighted the systemic impacts of solar PV power in the energy system. The 

real costs of PV power should be calculated in the energy system context. Even if there are complex 

circumstances in the energy system (e.g. decline in the prices of raw materials and nuclear exist), the 

impact of intermittent renewable energy like solar PV began to appear. We have presented some 

problematics based on the German case where the solar PV power has the highest penetration level. 

By taking lessons from this case, it is thus necessary to implement strategies to reduce the systemic 

costs of PV in the electricity system. In Part III, we propose opportunities of deploying PV systems to 

minimize the systemic effects based on PV self-consumption model.  

Finally, we have highlighted the necessity to include the international context for the national 

policy design mechanisms. The PV policy system became more complex in combined with PV 

globalization. The complex interactions of different country’s PV policies caused unexpected policy 

results and broke the global PV market balance. This should be further reviewed to find new 

equilibriums. In Part III, we will thus further model the interaction of different policies by identifying 

the occurrence factor with the objective to provide solutions to the unbalanced global PV market.  

In conclusion, in Part II, we have shown the complexity of PV energy supply-demand 

mechanisms and its dynamic change. The PV policy mechanisms should be interpreted in global 

points of view by taking the context change, energy system and other external factor like the economic 

situation or globalization into account to provide an accurate insight. In Part III, we will discuss ways 

to improve the PV sector based on two dimensions of national and international. 
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Part III. Strategic orientations of PV public policies for PV 
development 

Introduction 

In Part III, we aim to propose strategic orientations to help improve PV policy mechanisms. 

The attempt has two dimensions from both national and international perspectives. In Part II, we have 

seen the complexity of PV development mechanisms. PV financing and PV systemic impacts have 

been defined as major problems of PV mechanisms at the national level.  

Taken the defined limits and challenges into account, in chapter 1, our study aims to propose 

strategic orientations for PV development with PV self-consumption model. PV self-consumption can 

be more stable and natural way of using PV power as PV electricity prices decrease. When the PV 

power becomes more competitive compared to other energies, more consumers would be willing to 

install PV systems for their own use to their energy bills. It profits the strong point of PV systems of 

being able to provide decentralized power. 

We also intend to demonstrate to what extent the defined risks and limits can be addressed 

with PV self-consumption model. Our study thus aims to demonstrate how the use of PV power with 

self-consumption model can limit windfall effects and reduce policy costs compared to FIT scheme. 

At the same time, we also intend to analyze how PV self-consumption with targeted strategies can 

limit systemic costs in contrast with on-grid utility-scale PV systems. We have demonstrated that the 

utility-scale PV sector gave the greatest influence on windfall effects with glaring installation peaks 

(see Part II). Our study aims to give the rationales for prioritizing sectors (e.g. supermarkets) with the 

best corresponding profile between PV power output and onsite demand in the short-term period. In 

addition, we also analyze the economics of PV systems combined with batteries in the residential 

sector. The study intends to give the prospective costs of PV systems in the residential sector to help 

policymakers prepare future policy actions. In our study, we quantify opportunities, costs, and impacts 

of PV self-consumption on key stakeholders according to two time horizons (2020 and 2030).  

In chapter 2, we aim to give a broader perspective on the PV policy mechanisms taken the 

international context (globalization) into account. We study the enhanced complexity of PV supply-

demand mechanisms at the international level. The study intends to provide a precise insight into 

globalization effects on the national PV policy mechanisms based on the coupling case studies of 

Germany and China. This approach helps us to highlight the importance of external factors in the 

national PV policy mechanisms in an open economy. Market equilibrium change influenced by 

external factors is explained using the international trade theory. We also analyze the relations between 

Chinese strategic policy and the current PV industry crisis and long-lasting trade disputes. We aim to 

model the complicated strategic interactions and accompanying consequences using the strategic trade 

theory.  

In chapter 3, we attempt to propose ways out of the global industry crisis based on the 

international cooperation to increase the global demand. We first study opportunities of solar PV 
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electrification program in less-developed and developing countries with the objective to provide new 

outlets for the global overproduction of PV products and a solution to the global energy poverty 

problem based on sustainable socio-economic development model (green growth). In addition, we 

explain how this enlarged market contributes to the global PV competitiveness using the innovation 

theory (e.g. the learning curve). Next, we also examine other cooperative political actions to enhance 

the PV system competitiveness in non-module sector based on the learning curve effect.  
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Chapter 1. PV development with self-consumption model  

In Part II, we have seen the complexity of the national PV development mechanisms. We 

concluded that FIT system has limits to guarantee a sustainable PV growth because of the difficulty of 

price adjustment in an open and dynamic market condition. Furthermore, another problem related to 

energy equity was arisen as taxpayers (electricity end-users) mainly pay the overcompensation of PV 

power through FIT system. The global PV market thus needs a new policy approach which is less 

costly and brings a sustainable growth of PV installations. At the same time, the large penetration of 

PV power in the electricity mix accompanies additional costs in terms of grid upgrading, balancing 

and backup. PV integration in the existing electric power system can affect the security of national 

energy system when it gives negative impacts on the profitability of conventional power plants. 

Strategies to address these issues at least costs are thus necessary. In this context, we aim to explore 

opportunities of PV development under PV self-consumption model. Our analysis aims to demonstrate 

how the self-consumption model will bring further PV growth with less cost than FIT and to what 

extend it limits the grid-level costs. 

However, PV integration through a self-consumption model raises new issues related to 

changes in interests of stakeholders in the energy market. As explained in risk analysis in Part I, all the 

stakeholders should be involved in the decision-making to increase the social acceptance. Therefore, it 

is also important to review the point of view of stakeholders to better understand each stakeholder’s 

position and possible threats from them.  

This chapter has five sections. In section 1, we introduce the basic notion of self-consumption 

and characteristics before developing our case study. In section 2, a stakeholder analysis is conducted 

to understand stakeholders of PV integration in the electricity mix. A 2x2 Interest-Influence matrix is 

used to define the most influential stakeholder group towards PV integration in the electricity system. 

This is the important step of PV development in order to understand concerned stakeholders so as to 

prepare actions to any potential risks which can be created by them or strategies to draw involvement 

from them. Next, we conduct case studies of PV self-consumption model to look for opportunities of 

PV growth in the future energy system. Our approach aims to start from a sector that provides the best 

economic feasibility. In this regard, in section 3, we conduct a micro-economic case study to evaluate 

opportunities, risks, and advantages of PV self-consumption model. Supermarket surfaces in France 

are selected for the case study because the supermarkets have the best matching profile between the 

PV power output and the electricity demand. This case study also aims to analyze the effect of PV 

self-consumption model to what extent the identified issues are solved with this new mode of PV 

power use. In section 4, we extend our case study to the longer-term perspective based on residential 

PV systems combined with batteries. It aims to understand future attractiveness of PV systems with 

batteries in the residential sector. Then, we conclude this chapter with general policy recommendations 

(section 5).  
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1 Introduction of PV self-consumption model  

In this section, we provide basic and theoretical understanding about the PV self-consumption 

model prior to presenting our case study of future opportunities of PV self-consumption. We explain 

the economic incentives of PV self-consumption as well as applicable areas, benefits and challenges.  

1.1 Economic incentives of PV self-consumption model 

PV self-consumption is a new way of using distributed PV installations in the energy system. 

By definition, the self-consumption of PV power refers to the use of PV electricity directly at the same 

site where it is produced, with a smaller amount of electricity feed into the grid (IEA, 2014). The self-

consumption model reduces the distance between electricity generation and consumption through 

onsite consumption of power.  

End-users have economic incentives to adapt the mode of self-consumption of PV electricity 

when it helps them to reduce their electricity bills or provide them with some financial incentives 

compared with the conventional way of purchasing electricity from the grid. In addition, when the FIT 

rate for residential producers is less than retail electricity prices, the self-consumption model becomes 

an interesting option for PV system owners. Therefore, the self-consumption of PV power is 

interesting for countries which have high electricity tariffs with less attractive feed-in-tariffs for PV 

(Matallanas, et al., 2011).  

 
Figure 67: Transition to the ‘self-consumption age’ (Weniger, et al., 2014) 

Combined with high retail rates of electricity, the reduced PV LCOE will motive end-users to 

install PV systems.  

There are several factors to define the economics of PV self-consumption model. First, PV 

system costs are one of the most important variables. In addition, the ratio of self-consumption, which 

defines the rate between onsite consumption and the total production of the system installed on the site, 

is a very important factor in terms of deciding the economics of the self-consumed model of PV power. 

Therefore, it is necessary to choose PV installation sites where it is possible to best correlate the pattern 

of onsite energy use with PV system output to have an optimal adaptation of the load profile for the 

self-consumed model (IEA-RETD, 2014). However, the correlation can be improved coupled with the 

storage system, but it increases PV system costs. 
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1.2 Applicable areas 

The self-consumed model can be applicable in various sectors with different ratios of self-

consumption to the output of the PV system. Possible applications for each sector are described below 

(Ministère de l’écologie, du développement durable et de l’énergie, 2014): 

1. Industrial/commercial: good correlation between onsite consumption & production profile 

with most consumption during the day  

2. Separate residential: weak correlation between onsite consumption & production profile 

with impacts on the network with injected electricity. In the longer-term, residential systems 

can be combined with storage solution (e.g. batteries). 

3. Collective buildings: better correlation between onsite consumption & production with 

broader geographical spread with interconnected collective buildings in a zone 

4. Non interconnected zone (with storage): ideal to provide power in isolated areas to replace 

fossil fuels or to resolve interconnection problems.  

The residential sector has a peak demand in the morning and in the evening. Therefore, it has a 

weak correlation between PV power output and onsite consumption and only a small share of generated 

PV power is self-consumed without a storage system (between 30% and 40% (EPIA, 2013)).  However, 

supermarket and office areas have a mid-day peak which means they are more suitable for the self-

consumption model without any storage system because of the correlation of the mid-day PV 

production and consumption pattern. The application in supermarkets shaves the peak demand during 

summer at midday thanks to the possibility in case of the full self-consumption. If the installed PV 

system cannot capture the full value of PV energy output, the return on investment will be significantly 

reduced. However, the correlation between PV power output and onsite consumption in the residential 

sector will be increased coupled with battery systems.  

 

 

  

Figure 68: PV self-consumption without storage (residential PV system) (IEA, 2014; IEA, 2014b) (left) 
Figure 69: Daily electricity demand and PV system outputs (IEA, 2014) (right) 

 

1.3 Benefits of PV self-consumption model 

The benefits of PV self-consumption are not limited to economic drivers of end-users. The PV 

self-consuming electricity model is a smart way of utilizing the nature of PV systems i.e. they are 
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easily decentralized. With the widespread penetration of PV systems into the existing energy system, 

grid-related costs can be added in terms of grid reinforcement and extension (OECD/NEA, 2012; 

Ueckerdt, et al., 2013; Pudjianto, et al., 2013) (see Part I chapter 2.3).  

The PV self-consumed system can reduce network stress. When PV power output is self-

consumed during peak times, the level of avoidance is much greater by reducing power feed-in at the 

point of interconnection, thereby decreasing the occurrence of voltage problems (IEA PVPS, 2014b, p. 

11). Under a properly designed policy framework, the self-consumption model can provide some 

specific benefits by minimizing distance between production and consumption to almost zero. Some 

benefits are captured as below (IEA-RETD, 2014); 

 Reduce power losses during transmission and distribution (T&D)  

 Avoid system congestion  

 Curtail investments for grid extension when using the existing surfaces of buildings connected 

to the grid 

 Avoid further investment for grid upgrading when the PV system helps reduce electricity 

demand peaks  

 Increase energy independence eventually by coupling with storage systems 

 Land use. 

In addition, one important benefit of solar PV installations is related to land use. PV can 

optimize the existing infrastructures to avoid significant impact on land use; it can be easily integrated 

into existing buildings or parking lots.  

1.4 Limits and challenges of PV self-consumption model 

Limits and challenges to develop the PV self-consumed model are related to general weak 

points of PV system. A large penetration of distributed PV systems in the current grid infrastructures 

can change energy market mechanisms. Possible challenges are explained below (IEA, 2014; IEA-

RETD, 2014; IEA, 2014b; EPIA, 2012):  

 Financial impact on other stakeholders (e.g., grid operators, other utilities, end-users of 

electricity, government). There are concerns around the cost recovery of fixed grid costs and 

reduced tax revenues. 

 Difficulties for long-term planning and forecasting of the national electricity supply.  However, 

a well-designed cluster of small-decentralized PV systems can help smooth PV intermittency, 

this would enable to limit the balancing costs that can be induced by large centralized PV 

plants. 

In addition, new technology development (e.g. smart grids, etc.) is very important in terms of 

integrating distributed PV systems into the electricity mix. The decline in storage solution price also 

affects the development of PV self-consumption.  

It is important to understand stakeholder concerns associated with the integration of PV self-

consumption model in energy system and its impact on their interests and benefits on a national level. 

Therefore, we conduct a stakeholder analysis in the next section.  
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2 Stakeholder analysis in terms of PV integration in electricity system  

The introduction of the PV self-consumed model in the energy system brings about changes in 

stakeholder interests. As impacts can be positive or negative according to the party concerned, 

stakeholders will take different strategies regarding the new usage mode of PV power. Political 

strategies on the PV self-consumption model have a great influence on stakeholder movements. When 

the policy decision conflicts with their interests, they sometimes generate political pressure to affect 

the political decision and thereby create obstacles that hinder the use of the PV self-consumed model 

(IEA-RETD, Op. cit.). In this context, a deep understanding of stakeholder positions is necessary as a 

precedent exercise to help prepare proper steps forward to develop the PV self-consumed model. This 

chapter conducts a stakeholder analysis to identify the key stakeholders and their interests. The 

stakeholder analysis is used as the basic analytic frame when we quantify impacts from PV integration 

on stakeholders in section 3. Based on the defined situation of each stakeholder, possible strategies to 

address potential policy risks related to stakeholders can be prepared.   

2.1 Identification of key stakeholders 

The current energy system is comprised of several groups of stakeholders. Any group or entity 

whose interests may be affected or feel they have concerns with the new policy action and 

organizational change, can be considered in the stakeholder analysis. The stakeholder analysis used 

herein is frequently used in business science, but is often applied in other fields like political or 

environmental sciences and game theory (The World Bank(e)). 

The stakeholder analysis should be conducted in a systemic way under the energy market 

mechanisms. Below Figure 70 captures the key stakeholders in a simplified value chain for the energy 

market with the PV integration. End-users who install a PV system for their own use (self-

consumption) are described as PV system owners (prosumers) interacting with other stakeholders 

under policy and regulations. Therefore, the new mode of PV integration is associated with 

stakeholder interests in the value chain for the energy market.   

 

                   

 

Figure 70: Stakeholders in the value chain for the energy market (NREL, 2008; European Commission, Environment Policy 
and Governance, 2014) (Author’s production based on reference articles) 
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2.2 Understanding stakeholders interests and assessing the importance of influences 

With the implementation of the new mode of PV power usage, stakeholders experience 

changes in their interests in the current energy market model. It is important to understand stakeholder 

viewpoints with potential opportunities or threats that they can create. In doing so, strategies can be 

better prepared to take into account negotiations with opposing groups (if any) or to mitigate possible 

policy risks from stakeholders. 

Table LXXXIII gives a general explanation of the objective of stakeholders and the impacts on 

stakeholders’ interests with the PV integration in the electricity mix. End-users who wish to install a 

PV system for their own use have economic drivers to adapt the new mode of power usage; they aim 

to either reduce their electricity bill or gain profits from the PV system installation. However, this 

movement will influence other stakeholder interests by changing the existing energy market 

mechanisms.  

First, existing power generation companies and grid operators will generate less revenue; PV 

self-consumers buy less electricity from the grid. However, grid operators will have more activities 

because of an increased number of grid operations for balancing. End-users probably pay increased 

electricity bills because fewer consumers pay for the electricity from the grid and for the increased grid-

level costs with PV integration. The government collects less tax faced with reduced electricity 

ratepayers and reduced sales of FIT electricity.  

Furthermore, the PV integration will also affect the national energy system because the new 

mode of power usage provokes some issues related to grid management and balancing of power system. 

Compared to other centralized and dispatchable technologies such as nuclear, the grid-level costs for 

PV energy may be much higher (Pudjianto, et al., 2013). Even though intermittent PV energy has a 

low load factor compared to conventional energy sources, the network should support the maximum 

capacity of PV electricity that can be generated during PV production peaks or meet demand that can 

be requested when PV power plants are not available (OECD/NEA, 2012). 

In addition, as indicated in Part I, the penetration of renewable energies sources like PV 

induces a sub-optimization of the current electricity mix; it reduces conventional power plant’s 

operation hours and their load factors. At a high penetration of PV power, the load duration curve 

would be significantly shifted down (see Part II chapter 3). This would increase a problem in terms of 

future investment choice; investors would less prefer the investment, which requires high fixed costs. 

Solutions (e.g. capacity payments) should be prepared to address this issue to maintain the energy 

supply security. Also, a fair cost-sharing mechanism to finance grid management should be considered.  

However, even though the large penetration of the PV self-consumed model gives rise to 

conflicting interests for some stakeholders, increased PV self-consumption in the energy system brings 

environmental (e.g. GHG emission reduction) and economic (e.g. investments in associated industry 

and job creation) benefits (EPIA, 2013b). Therefore, policymakers should conduct in-depth analysis to 

compare policy costs and expected benefits so as to find a balance among stakeholders with the 

objective of increasing social benefits prior to making policy choices for the national energy strategy. 
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Stakeholders Objectives Impact on stakeholder interests  

PV self-
consumers125 

Pay less for electricity 
Profit-seeking 
Energy independence 
Preference of green 
electricity  

Returns (positive/negative) on investment 
Self-consumption of PV power 

Power 
generation 
companies126 

Maximize profits 
Amortize existing 
investment 
 

Reduced profits due to decreased sales of electricity  
- Reduced revenues from spot-market sales 
- Less investment in terms of long-term decisions 

Grid operators 
127 128 

Stable supply of electricity 
 

Grid management (e.g. balancing) with large penetration  of 
intermittent PV power 
Reduced revenues due to decreased electricity consumption 
from the grid 

End-users 
(electricity 
consumers)128 

Pay less for electricity 
 

Electricity rates increase with fewer ratepayers (under 
recovery of fixed costs) 
- Cost-shifting for surcharges to ratepayers  
- Cost-sharing of energy transition and grid upgrading  

Government Tax revenue 
Energy security,  
Energy equity, 
Energy transition,  
Green economic growth 

Tax revenue loss from reduced retail sales 
Reduced income taxes on FIT revenues 
Increase energy diversification  
Increase economic and environmental benefits 

Investors  Maximize profits Returns (positive/negative) on investment 

Associated 
industries 
 

Maximize profits Induced investments and job creation: e.g. storage, demand 
response, heat pumps, electric cars, companies of 
components of PV value chain, and smart grid 

Table LXXXIII: Stakeholder analysis with penetration of PV self-consumed model 

 

2.3 Policy risks from stakeholders 

As seen, the large deployment of the PV self-consumed model conflicts with some stakeholder 

interests. This can be threat factors when the government decides to develop the PV self-consumed 

model in the energy system according as the PV system prices go down. Therefore, possible strategies 

to avoid expected hindrance actions from stakeholders should be considered. Targeted strategies can 

be used when dealing with different stakeholders. The defined stakeholders are reorganized into a 2x2 

Interest-Influence matrix129. This is based on the World Bank’s approach for stakeholder mapping in 

terms of policy design or reform (The World Bank(e); Bryson, 2004). 

 

                                                      
125 (IEA-RETD, 2014) 
126 (Haas, et al., 2013) 
127 (IEA, 2014c) 
128 (IEA, 2014) 
129Author’s analysis based on World Bank’s  definition 
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Figure 71: Interest-Influence matrix: stakeholders with the PV self-consumed model (author’s analysis) 

Figure 71 presents our analysis to classify stakeholders of the PV integration into 4 groups.  

 Promoter: Stakeholders who have significant interests in the policy and help to make it 

successful (e.g. government, policy makers) 

 Defenders: Stakeholders who have relative interests in the policy and make an effort to 

promote it in the community with the aid of media or opinion groups with little actual power 

(e.g. PV prosumers, PV industry, associated industries) 

 Latents: Stakeholders who have no particular interest in the policy but have power to 

influence it when the policy impacts their interests (e.g. power generation companies, grid 

operators, end-users) 

 Apathetics: Stakeholders who have little interest and little power; they are perhaps unaware of 

the policy (e.g. electricity end-users who are not very price-sensitive).  

 

Policymakers should take into account expected change in stakeholders’ interests with the new 

mode of energy usage. Understanding the possible influence of stakeholders on the policy decision is 

very important to reach the expected results (Esnault, 2014).  

The position of promoter group is directly related to the success of the PV self-consumed 

model since promoter groups have great influence to develop it. Let us assume a government as 

promoter who is willing to develop the PV self-consumed model. The government prepares 

appropriate policy support and the institutional framework to provide favorable conditions for the PV 

self-consumed model’s development in a national energy system. On the contrary, when the 

government decides against being a promoter of the new mode, the PV self-consumed model faces a 

great obstacle. Prior to the policy decision, the government can compare expected costs and benefits 

on a national level to decide on their policy vision.  

Defenders are the public who want to develop the new model to gain expected interests (e.g. 

PV self-consumers, PV or associated industries).  

The latent group should be closely examined because they represent a large potential threat. 

When the policy results are expected to conflict with their interests, they will strongly oppose the 

policy making and disturb the development of the PV self-consumed model. In this regard, targeted 

strategies for defined stakeholders from the latent group are needed to address any opposing 
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movements; e.g. power generation firms, grid operators, and end-users. Therefore, in our case study in 

section 3, we provide quantified evidence of the loss of the latent group with PV integration based on 

the self-consumption model.  

3 Micro-economic case study of PV self-consumption model for French supermarkets (2020) 

3.1 Introduction  

A micro-economic case study has been conducted to review opportunities for the PV self-

consumed model by using the existing surface area of supermarkets in France. We have seen that the 

supermarket sector theoretically shows the best correspondence between onsite consumption and PV 

power output, while providing large unoccupied surface areas to install PV systems. This section 

describes a simulated model to give a quick yet precise idea of the opportunities of PV self-

consumption. Possible challenges and risks related to externalities on stakeholders in the electricity 

system are also considered so as to help prepare future strategies for policymakers. The modelling 

methodology includes the following steps. 

Firstly, the key drivers of the PV self-consumed model were studied to define the key input 

data; these data are related to the economics of the self-consumed system. Secondly, the production 

and consumption curves in supermarkets were modeled according to the input data defined in the 

above step. Thirdly, the collective outcomes were calculated; expected installed capacity, PV electric 

power output, impacts on the grid (e.g. avoided system congestion, contribution to lowering the 

electricity peak) and the increased energy independence. Lastly, based on the results, we aim to review 

costs/benefits for key stakeholders with a focus on the latent group (utility power plants, grid operators, 

and the government). They represent a potential threat if the PV self-consumed model conflicts with 

their interests. The key findings can be useful for policymakers to design PV polices related to the PV 

self-consumed model.  

3.2 Key input data & assumptions  

We have identified key economic drivers, which define the economics of the PV self-

consumption system. Key data and assumptions are presented here below.  

3.2.1 Electricity tariffs  

Higher retail electricity prices lead to economic incentives for using a PV self-consumed 

system or vice-versa. In most countries, retail rates of electricity include electricity generation costs, 

T&D costs, profit margins and additional surcharges or taxes (IEA-RETD, 2014). Here below, we give 

the breakdown of French electricity tariffs because we will quantify the loss of each stakeholder 

caused by the PV self-consumption based on the segment of electricity tariffs.  

Table LXXXIV indicates France’s electricity tariff changes in residential and small industrial 

areas over time. France has relatively low electricity rates compared with other neighboring or 

European countries. However, tax represents a large fraction in the electricity tariff in France, having 

increasing from 25% in 2008 to 33% in 2014. Since 2009, there is a rising trend in electricity prices in 

both residential and industrial sectors in France.  
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Household                                                                                 Industry < 2000MWh  

Year Electricity price 
( c€/kWh) 

CSPE (c€/kWh) Year Electricity price 
( c€/kWh) 

CSPE (c€/kWh) 

2000 11.79 0 2000 6.59 0 

2007 12.11 0.45 2007 7.01 0.45 

2014 15.85 1.65 2014 11.57 1.65 
 

Table LXXXIV: Electricity tariffs in France (Eurostat, 2016; 2016b; 2016c; 2016d; CRE, 2014) 

In the French electricity system, customers pay a fixed charge for grid connection which is set 

by the government (subscription fees) (Direction Générale du Trésor de la République Française, 

2013)) depending on the subscribed power. In France, a time-of-use tariff option is currently applied 

for peak shaving; this is focused on smoothing the seasonal peak rather than the hourly variation 

(higher tariffs applicable from November to March). There are no taxes on self-consumed electricity in 

France (IEA-RETD, 2014). The government has an important role in setting electricity rates. Most 

supermarkets have been offered yellow tariffs130 by EDF.  

These electricity tariffs include energy costs (electricity) and the grid cost for electricity 

delivery (user fee for the electrical public network known as TURPE131). TURPE represents 90% of 

ERDF's revenue (ERDF). TURPE is calculated taking into account both fixed and variable costs which 

depend on the subscription type, the options taken, and the consumption profile. On average, yellow-

tariff consumers pay a similar amount of TURPE as they do energy costs. There are other segments in 

the retail electricity rates; different taxes and fees are added to these tariffs (EDF(b); Enerdata, 2013; 

CRE, 2014; CRE, 2014b): 

 Contribution to Electricity Public Services (CSPE132) used to offset the charges related to 

public services such as renewable energy generation, social tariffs and nationwide equalization 

electricity tariffs. The CSPE for 2015 is set at 0.195€/kWh. In 2013, solar support represented 

41% of the CSPE (Roques & Lexecon, 2014).  

 Tax on Final Electricity Consumption (TCFE133) is a local tax varying on the local policy. 

The average tax is 2.1% of the total electricity price. 

 Transmission Tariff Contribution (CTA134) goes towards the national electricity and gas 

industries fund (CNIEG) for retirement. The CTA represent 21% of the transmission part of 

any fixed electricity subscription. The average CTA represents 3.1% of the electricity price. 

 Value Added Tax (VAT) is set at 20% of the electricity price. In general, yellow-tariff users 

are free from VAT. This tax is not considered in the study. 

The diagrams in Figure 72 show different price breakdowns of the average residential, 

commercial and industrial electricity rates in France in 2014.  

                                                      
130 France has regulated electricity tariffs; blue tariffs for residential & professional segments (less than 36 kWh of electricity 
use), yellow tariffs for SMEs consumers (36-240 kWh (EDF)) and green tariff (more than 240 kWh) for large industrial 
consumers. However, yellow and green tariffs will be abolished at the end of 2015 and blue tariffs will remain until 2025 
(Lévêque, 2011). 
131 French abbreviation for Tarif d’Utilisation des Réseaux Publics d'Electricité 
132 French abbreviation for Contribution au Service Public de l’Electricité 
133 French abbreviation for Taxe sur la Consommation Finale d'Electricité 
134 French abbreviation for Contribution Tarifaire d'Acheminement 



236 

 

In the simulation, we assumed that yellow tariffs were applicable for all the supermarkets and 

hypermarkets in question. In the supermarket segment, the electricity consumption per square meter 

(m2) stays relatively constant regardless of the supermarket size.  

A study gives a mean consumption of around 650 kWh/m
2
/year for large supermarkets (> 

1000m2) and hypermarkets (> 5000m2) (ADEME, 2008). We assumed that the consumption profile 

was proportional to the surface area.  

 

        Residential       Commercial           Industrial  

 

 

Figure 72: Price breakdowns of the average residential, commercial and industrial electricity rates in France (2014) (CRE, 
2014b) 

There are four different prices in the yellow tariff category: winter (November to March), 

summer (April to October), off-peak hours (lower price) and peak hours (higher price) for each season. 

Off-peak hours and peak hours vary depending on the local government policy but peak hours are 

usually during the day while off-peak hours are during the night (the local differences in terms of peak 

periods are neglected in this study). The day tariff is applicable from 6 am to 10 pm and supermarkets 

mainly use the day tariff. The day price during the winter is 0.09522 €/kWh and 0.04990 €/kWh in the 

summer (Direction de l’information légale et administrative de la République Française, 

2014).Therefore, the electricity prices paid by yellow-tariff consumers are shown in Table LXXXV 

(tariffs used for our simulation). 

 

€/kWh November to March April to October 

Electricity Tariff 0.0952 0.0499 

Electricity production 0.0476 0.02495 
TURPE (Network) 0.0476 0.02495 
CSPE 0.0195 0.0195 
CTA 0.0038 0.0023 
TCFE 0.0025 0.0015 
Total 0.1210 0.0732 
Table LXXXV: Electricity tariffs paid by yellow-tariff consumers 

The use of the PV self-consumption model will bring about some changes in electricity 

tariffs because fewer customers buy electricity from the grid with the PV self-consumption. The 

changed tariff of each segment is related to stakeholder interests. The Table LXXXVI explains the 

possible impacts on stakeholders (losses). The possible impacts will be quantified in the next section.   
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Electricity 
production 

Impact on the electricity market and revenues of the electricity producers 

TURPE (Network) Reduced revenues of grid operators (transportation and distribution)  
CSPE With less consumed electricity from the grid, the CSPE paid by end-users will increase to 

maintain the same level. Moreover, the support of PV installation can increase the CSPE 
(in applicable). 

CTA Electricity industry employees, government 
TCFE  Reduced tax revenues of local government 

VAT Reduced tax revenues of government  
Table LXXXVI: Possible impacts on stakeholders through changes in electricity tariffs 

3.2.2 PV electricity production costs  

In order to calculate the LCOE135 of the PV self-consumed model in France, we referred to the following 

data and assumptions. 

 PV system price: 1.9 €/Wp in 2013 using c-Si PV technology136 for large commercial roofs 

with simplified integration (ISB137), which is > 100kWp (IEA PVPS France, 2013). 

 Insolation: Average global standards from 3.12 kWh/m2/day to 4.27kWh/m2/day (IEA-RETD, 

2014). Insolation is higher in the southern regions of France. Insolation in Paris (3.32 

kWh/m2/day (INES)) was used for modeling in this study, while the location difference was 

ignored to simplify the simulation. If we had conducted the same study using data from the 

southern regions, e.g. Nice, the results would have been quite different. 

 O&M: 1% of PV system price (IEA, 2010). 

 A discount rate of 5% is used to consider the weighted average costs of capital (WACC) for 

the respective investment (Fraunhofer ISE, 2013; European Commission, 2013c).  

 Module efficiency: We assumed 16% of module efficiency using the monocrystalline 

technology (IEA, 2014). 

 77% of PV system efficiency using electrical conversion hardware (NREL(b)) 

 20 years of lifetime. 

3.2.3 Available surface areas  

The data on French supermarket surface areas was taken from the website, 

www.distripedie.com. The total sum of nation-wide supermarkets & hypermarkets were used; as of 

2009, France had a total of about 16 million m
2 of supermarket (Table LXXXVII). We assumed that 

every supermarket was a 1-floor independent building with a flat roof usable for PV installation138. 

 

                                                      
135LCOE = ∑ I౤౬e౩౪ౣe౤౪౪+O&M౪+ూ౫eౢ౪ሺభ+౨ሻ౪౤౪=భ∑ ుౢec౪౨ici౪y ge౤e౨a౪i౥౤౪ሺభ+౨ሻ౪౤౪=భ  

136 PV technology: In this study, we considered c-si technology. We assumed that PV modules were installed using 
horizontal placement and covered the entire surface available. This is an approximation because space between modules is 
needed in terms of installation and maintenance. In addition, other installations can exist on roofs. Technological constraints 
(weights, temperature sensitiveness) were neglected. If weight matters, c-Si modules can be replaced by a thin-film solution 
with less efficiency (8%-10% efficiency) but cheaper selling price. This solution can be supported by a national innovation 
policy. The module orientation can be optimized according to the local or seasonal conditions. 
137 Simplified Building Integrated Photovoltaic Systems (Intégration Simplifiée au Bati, French standard) do not carry out the 
function of a construction component and may be mounted on roofs (Schuetze, 2013) 
138 The surface of supermarkets in multi-floor buildings is not considered, but the additional surface is possibly available 
because one-floor buildings that include supermarkets sometimes provide a larger surface than supermarket’s area (e.g. 
buildings with shopping malls). 
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Total surface area of French hypermarkets  
(nation-wide) 

Total surface area of French supermarkets  
(nation-wide) 

Hypermarket 
(2009) 

Number  Average 
area (m2) 

Total area 
(m2) 

E. Leclerc 467 5100 2381700 
Carrefour 231 9100 2102100 
Auchan 134 10500 1407000 
Géant-Casino 120 7400 888000 
Hyper-U 61 4900 298900 
Cora 59 9600 566400 
TOTAL   7644100 

 

Big supermarket 
(2009) 

Number  Average 
area (m2) 

Total area 
(m2) 

Intermarché 1494 1900 2838600 
Champion-
Carrefour market 

987 1830 
1806210 

U 718 2100 1507800 
Atac – Simply 414 1500 621000 
Casino 380 1470 558600 
Monoprix 276 1800 496800 
Match 149 1550 230950 
E. Leclerc 115 1800 207000 
TOTAL   8266960 

 

Table LXXXVII: Data on French supermarket surface areas (Distripedie, 2011; 2011b) 

3.2.4 Ratio of matching between onsite consumption and PV power output 

Studies explain that the ratio of correspondence between onsite consumption and PV power 

output is an important variable in defining the economics of the self-consumption model (IEA, 2014; 

2014b; IEA-RETD, 2014).  

Here below, we have attempted to justify the correspondence ratio between electricity 

consumption and PV power output in supermarkets using 2010 data (Swiss Confederation, 

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK, Bundesamt 

für Energie BFE, 2010). The simulation attempts to give an approximation of opportunities for PV 

self-consumption. Figure 73 demonstrates the supermarket model containing the consumption profile 

(winter, summer) and the maximum production curve of PV electricity.  

 
Figure 73: Consumption profile and maximum production curve of PV electricity 

1) Supermarket consumption profile (winter, summer and closing day): demand 

The supermarket consumption profile is based on a study, which shows an analysis of the real 

consumption profile (every 15 minutes) of a medium-sized supermarket (Swiss Confederation, Op. 

cit.). Data on real consumption profiles in winter and in summer were taken to develop the demand 

curve. The main sources of energy use in the supermarket sector can be divided as follows: 

 Cold storage (negative cold for frozen goods and positive cold for perishable goods), 

 Lighting (indoor for a large majority), 

 Heating in the winter and air-conditioning in the summer. 

In winter, the power demand has a linear growth from 5 am to the opening hour (9 am), it 

stays constant during the opening hours (~160 W/m2) and comes back to the night demand at closure 
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(7 pm). In summer, the power demand has a linear growth from 1 am to midday. The peak demand 

period is constant between midday and 5 pm139. Then, the demand reduces steadily until the closing 

hour and comes back to the level of night demand after closure. During days-off and nights, the 

constant power demand is about 40 W/m2. It is used for negative and positive cold storage (ADEME, 

2008) which must operate all day constantly without interruption. The day-off level stays constant in 

both winter and summer. 

2) Theoretical maximum PV power production: supply 

The theoretical maximum PV production was determined for comparison with the above 

supermarket consumption (demand) curves (see Figure 73). The PV power production curve was 

developed using the European Commission’s Photovoltaic Geographical Information System (PVGIS 

(JRC European Commission)), based on the assumption of average solar irradiation in June under a 

clear sky in Paris, weighted by the module’s efficiency (16%) and the system’s efficiency (77% 

(NREL(b))). We assumed that PV modules were installed using horizontal placement and covered the 

entire surface area available. 

From the PV self-consumption model developed, we have found that:  

 All the PV production can be self-consumed during the opening days, 

 The PV production peak never exceeds the demand peak and there is no need for grid 

reinforcement. 

Therefore, in this study we assumed 100% of the PV production can be self-consumed in 

supermarket sectors without further investment in grid reinforcement.  

3.3 Results  

Opportunities for the PV self-consumed model using supermarket surface areas will be 

defined in this part. We attempt to calculate the expected installed capacity, PV electric power output, 

impacts on the grid (avoided system congestion, contribution to lowering electricity demand peak), 

and the increased energy independence. In addition, the reduced GHG emissions and economic 

benefits (job creation, sales, and avoided fossil fuel imports) can be included to define benefits of the 

PV self-consumed model. However, these results are not quantified in this study even though there are 

obvious consequences. The profitability of the self-consumed model is compared under scenarios 

without any support and with the current FIT scheme to define policy support needed to make the 

model profitable. Possible quantified impacts on stakeholders are then presented with the objective of 

preparing strategies to mitigate policy risks from stakeholders in search of PV self-consumption 

growth.  

3.3.1 PV growth opportunities 

The real maximum PV productions in summer and winter, which reflect the real production 

condition, are modeled as below. We drew the real maximum PV energy output curve, which produces 

less electricity than the theoretical curve. When PV power is self-consumed onsite, supermarkets use 

                                                      
139 The solar midday in summer is at about 2 pm GMT in Paris 
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less electricity from the grid which moves the electricity demand curve down. A new shaped demand 

curve is expected (see Figure 74). 

Summer Winter 

  

Figure 74: Demand from the grid with and without self-consumption 

 

1) Impacts on grid 

- PV production reduces the electricity consumption from the grid, thereby reducing the 

electricity demand peak purchased from the grid: this puts less pressure on the grid and 

reduces the electricity transport losses. 

- The midday electricity demand peak in supermarkets is shifted to the end of the day (~ 6 pm). 

The impact is greater during the summer than in winter and depends on the local configuration; 

the demand peak is reduced by around 55 W/m
2 

in Paris during the summer. The peak 

shaving result will produce larger positive results in regions or countries with a midday peak 

in summer (e.g. the US)140.  

- Good correspondence between onsite consumption and PV power production (almost all 

power generated can be self-consumed141); therefore, grid reinforcement is not needed. 

 

We can use these characteristics to look for PV deployment strategies that aim to minimize 

grid-level costs. 100% PV self-consumption model enables to avoid additional grid-level costs caused 

by PV integration without this strategic thinking. The cost related to grid reinforcement and extension 

of PV is estimated at 5.8 $/MWh at 10% PV penetration in France (see Part II chapter 3). Therefore, 

the proposed 100% self-consumption model can reduce systemic costs by up to around 22% at 10% 

PV penetration compared other deployment models (e.g. utility–scale PV systems). Furthermore, if we 

suppose these PV self-consumption systems provides a broader geographical spread in a zone, this will 

give better local correlation and thus reduce the balancing costs by smoothing the average PV 

production in the zone. This means the grid-level costs related to balancing (1.9 $/MWh at 10% PV 

penetration) can be also reduced.  

 

 

                                                      
140 This effect is difficult to quantify because of the lack of data on the grid management costs. 
141 Assumption: when the entire available surface area is used to produce electricity 
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2) PV installations 

We have also found that possible nationwide PV installations in France could represent 2.56 

GWp142 on the condition that all the existing supermarkets in question install the PV systems on their 

roofs. This accounts for 47% of the total French PV installation of 2015 (Observ’er, 2015). In addition, 

these PV growth opportunities enable to achieve the French solar PV installation target (8 GW by 

2020) (Legifrance.gouv.fr, 2015); French cumulative installed PV capacity was 5.6 GW at the end of 

2014 (IEA PVPS France, 2014). 

 

3) PV power output & increased energy independence 

The PV production per square meter (m2) in Paris is given in Table LXXXVIII. 

Paris Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Monthly 
irradiation 
kWh/m2 

27.3 45.1 96.7 137.4 160.9 173.4 176.7 149.1 110.1 65.7 32.4 24.1 
 

PV production 
kWh/m2 3.4 5.6 11.9 16.9 19.8 21.4 21.8 18.4 13.6 8.1 4.0 3.0 148 

Table LXXXVIII: PV production in Paris (JRC European Commission) 

The total annual PV production in Paris is 148 kWh/m2, which is around 23% of supermarket 

consumption (~650 kWh/m2/year). This means the model contributed to increase the energy 

independence of supermarkets to 23%. If we assume that production in Paris is representative of the 

French average production, the total possible production could reach 2.36 TWh143 (0.5% of the total 

French electricity consumption, 447 TWh (Eurostat)). 

From this simulation, we were therefore able to conclude that the supermarket sector fits well 

with 100% PV self-consumption mode. Furthermore, it gives opportunities to utilize the existing large 

surface areas to install PV modules on the roof (no additional costs or constraints related to land 

usages). 

 

3.3.2 Profitability from the viewpoint of PV system users (prosumers) 

We now want to define if the proposed PV self-consumption model is currently profitable in 

France. Therefore, here below, we calculate the rate of return on the investment from prosumer’s 

perspective. 

The profitability of the PV self-consumed model is country-specific depending on various 

factors such as the economics of PV power, electricity tariffs and political decisions. If it is not 

economically competitive on its own, policy support can lead PV installation growth using the defined 

self-consume model or vice versa. If the PV LCOE is much higher than the electricity price paid by 

the commercial consumers, there are insufficient economic incentives to install PV self-consumed 

systems in supermarkets unless they generate other financial returns on the initial investment through 

policy support or other revenue creation.  

                                                      
14216 million m2 x 160 Wp/m2 = 2.56 GWp (47% of the current installations) 
14316 million m2 x 148 kWh/m2/year = 2.36 TWh/year (0.5% of the total electricity consumption of 447 TWh (Eurostat)) 
The solar irradiation in Paris has been used to represent the average solar irradiation conditions in France. 
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It is therefore important to define the break-even point of the proposed model. In order to 

define profitability, it is necessary to know the costs required (hereafter investment) and the expected 

revenue stream under the PV self-consumed model.  

 

1) Costs to install PV systems with operation and maintenance (O&M) 

Costs refer to the total costs in terms of PV system installation with operation and 

maintenance (O&M) during the lifetime of the PV system. Based on the standard test conditions to 

define watt peak144 (IRENA, 2012) of 1 kW/m2 of solar irradiance, we concluded that 160Wp was 

produced by m2 145; this means that 6.25 m2 is needed to produce 1 kWp.  

Therefore, the initial investment per square meter (m2) is  

IPV= 1.9 €/Wp x 160 Wp/m2 = 304 €/m2.  

The O&M costs, which are usually set at 1% of the investment, should be included.  

 

The total cost is discounted during the lifetime of PV system (20 years). The discounted cost 

of the PV system, CPV is; �௉� = �௉� + ∑ ���×ை&ெ ሺଵ+�ሻ�ே=ଵ �௢ ଶ଴  = 342 €/m2 , with r=5%, O&M=1% 

For example, for a medium-sized supermarket with 2000 m2, the total investment amounts to 

€684,000.  

 

2) Expected revenue streams 

Revenues concern avoided electricity bills in the case of self-consumption, sales of PV 

electricity surplus, sales of green certificates (if applicable), and potentially, government support 

(when the PV LCOE is not yet profitable). 

 

a) PV electricity production for self-consumption without any policy support 

Here we assume that there is no policy support for the PV self-consumed model; e.g. no 

installation subsidies, no FIT, no permission for feed-in electricity to the grid. When the entire PV 

production is self-consumed without such supports, the expected revenue is equal to the retail 

electricity price avoided based on PV electricity produced (EPV). The discounted revenues depend on 

the retail electricity price (PE) changes with time. Here below, we calculate for three cases assuming 

change in retail electricity tariffs with different increase rate of a: a=0%, a=2%, and a=5%. 

The electricity price is related to profitability. Assuming the constant EPV every year, the 

expected revenue (=EPV x PE) is given in the Table LXXXIX. The degradation of module efficiency 

with time is neglected. 

 

                                                      
144Watt peak (Wp) refers to the peak power of a PV module or system under standard test conditions (light intensity: 
1000 W/m2, temperature: 25 ºC, and air mass: 1.5) 
145 The PV initial investment was estimated at 1.9 €/Wp in 2013 using monocrystalline PV modules with an efficiency of 
16%. 
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 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

EPV  
(kWh/m2) 

3.4 5.6 11.9 16.9 19.8 21.4 21.8 18.4 13.6 8.1 4.0 3.0 148 

PE 
(€/kWh) 0.1210 0.1210 0.1210 0.0732 0.0732 0.0732 0.0732 0.0732 0.0732 0.0732 0.1210 0.1210 - 

Revenue 
(€/m2) 

0.407 0.672 1.442 1.239 1.451 1.564 1.594 1.345 0.993 0.593 0.483 0.359 12.1 

Table LXXXIX: Expected revenue with self-consumption in Paris (detailed calculation is presented in annex) 

For example, a 2000 m2 supermarket can save 24,200€ of annual electricity fees by avoiding 

power purchase from the grid. 

With a discount rate of 5% (European Commission, 2013c), the discounted revenue (RSC) over 

20 years was calculated according to the annual increase in the retail electricity price (a); ܴௌ� = ∑ �௉ܧ × ாܲ ���௔�� × ሺͳ + ܽሻேሺͳ + ሻேே=ଵ �௢ ଶ଴ݎ  

By comparing the investment required (�௉�ሻ and the expected revenue (RSC), we come to the 

conclusion that the PV self-consumed model in French supermarkets is not yet economically attractive 

without policy support (see Table XC). 

PV self-consumption Investment  
(€/m2) 

Revenue 
(expected) 
(€/m2) 

Payback 
period 

Investment gains/ losses over 20 
years (€/m2) 

Electricity price increase 
(a=0%) 

342  151 > 30 years 
-191 

Electricity price increase 
(a=2%) 

342  177 > 30 years 
-165 

Electricity price increase 
(a=5%) 

342  230 > 30 years 
-112 

Table XC: Comparison between the investment required and the expected revenue from self-consumption (a: annual increase 
in retail electricity prices) 

 

b) PV electricity production under the current FIT scheme 

We now calculate the revenue of PV system installers under the FIT system. In this case, 100% 

of PV electricity produced is fed into the grid with a financial compensation based on the current FIT 

system. The fixed tariff was set at the beginning of the 20-year long-term contract. The annual 

constant EPV (=148 kWh/m2) was also considered to calculate the expected revenue (RFIT).  

The FIT was 0.1727 €/kWh 146  during the first quarter of 2013 (Observ’er, 2013) for 

commercial-sized systems above 36 kWp 147 . The discounted revenue (RFIT) over 20 years was 

calculated with a discount rate of 5% (European Commission, 2013c). ܴி�் = ∑ �௉ܧ × ሺͳܶ�ܨ + ሻேே=ଵ �௢ ଶ଴ݎ  

RFIT = 319 €/m2 

The discounted revenue (RFIT) over 20 years proves to be smaller than the required investment 

(CPVሻ of €342 per m2. In this calculation, we use the mean PV system price with uncertainties on the 

discount rate (r) and the differences in solar irradiance according to the location (see Table XCI). The 

calculation can be considered concise and the results will be different depending on the assumptions 

                                                      
146 A 20 year contract 
147 The support is limited to the installation lower than 100kWc. In this study, we ignore this limitation and apply the given 
tariff of 0.1727€/kWh for all the sizes. 
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and data used. The tariff is not attractive in Paris but is sufficient in the sunniest regions located in the 

south of France. To make the PV system profitable, the discounted revenue (RFIT) should be at least 

equal to the discounted investment required (�௉�ሻ. The general equation is: 

 �௉� = ܴி�் �௉� + ∑ �௉� × ሺͳ ܯ&ܱ + ሻேே=ଵ �௢ ଶ଴ݎ =  ∑ �௉ܧ × ሺͳܶ�ܨ + ሻேே=ଵ �௢ ଶ଴ݎ  

 

To make the PV system profitable in Paris, the FIT should be at least equal to the PV LCOE. 

The investment (�௉�ሻ of €342 per m2 with a 5% discount rate needs a minimum support of 0.186 

€/kWh148.  

 

Segment Investment  
(€/m2) 

Revenue (expected) 
(€/m2) 

Payback 
period 

Investment gains/losses 
during 20 year (€/m2) 

Paris with FIT 342  319 23 years -23 
Nice with FIT 342  428 15 years +86 
Table XCI: Impact of the location in France on the profitability of the FIT  

 

3.3.3 PV policy costs and benefits from the viewpoint of policymakers 

1) Policy costs: 100% PV self-consumption vs. FIT scheme 

Policy support (ܵ) is needed to make the proposed model profitable. Here below, we attempt 

to formularize the financial support to give economic incentives to end-users to install PV systems on 

their roof for the purpose of 100% self-consumption. This support is decided by the country and can be 

conducted via different policy instruments, e.g. direct installation subsidies or a long-term contract. In 

our calculation, we assume that PV LCOE is equal to the FIT (0.1727 €/kWh).  

 ܵ = �௉� + ∑ �௉� × ሺͳܯ&ܱ + ሻேே=ଵ �௢ ଶ଴ݎ − ∑ �௉ܧ × ாܲ ���௔��ሺͳ + ሻேே=ଵ �௢ ଶ଴ݎ  

Equation 2: Necessary financial support for PV self-consumption 

 

 Policy costs under 100% self-
consumption 

Policy costs under FIT scheme 

Annual policy costs of the support € 215 million 2.36 TWh x 0.1727 €/kWh = €408 
million  

Discounted policy costs of the support 
over 20 years 

16 million m2 x 165 €/ m2 = €2.6 billion 
(a=2%) 

16 million m2 x 319 €/m2 = €5.1 
billion 

Table XCII: Financial support to apply the PV self-consumed model and the FIT model 

Table XCII shows the minimum policy support needed based on two different policy systems: 

100% PV self-consumption vs. FIT scheme. We have found that PV electricity production using the 

100% self-consumption model is less expensive for policymakers compared with the FIT system.  

 

 
                                                      

148 Author’s calculation 
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2) Benefits of PV installations: 100% PV self-consumption vs. FIT scheme 

PV power can be an interesting option to increase the part of renewable energies in the final 

gross energy consumption. Table XCIII explains general benefits from PV installations in terms of 

energy transition. Those benefits are the same regardless of the type of policy support.  

Energy transition  
(See 3.3.1.) 

Possible installations: 16 million m2 x 160 Wp/m2 = 2.56 GWp (47% of the current installations) 
Electricity production: 16 million m2 x 148 kWh/m2/year = 2.36 TWh/year (0.5% of the total 
electricity consumption of 447 TWh (Eurostat)) 

CO2 emission 
avoided 

GHG emission reduction: little impact with the large part of nuclear power in France (Cruciani, 
2014) 

Table XCIII: Expected benefits of the PV self-consumed model and policy support  

However, the proposed 100% self-consumption model give more benefits in terms of grid 

impacts and land usage compared to other PV system usages under FIT (e.g. utility-scale PV systems) 

(see Table XCIV). 

Land usage 16 million m2 available without new land use 
 

Local grid pressure 
reduction 

No grid reinforcement needed and electric power transmission and distribution (T&D) losses 
avoided  
the summer peak is reduced by about 880 MW (16 million m2 x 55 W)  
In the future, at 10% PV penetration, systemic costs related to grid management can be reduced by 
up to around 30% (22% saved for grid reinforcement and 8% saved for balancing with a larger 
geographical spread). 
  

Table XCIV: Additional benefits from the proposed 100% self-consumption model compared to other PV usages (e.g. utility-
scale PV systems) 

 

3.4 Impacts on key stakeholders 

The proposed PV self-consumption model reduces the purchased electricity from the grid, 

influencing the profits of energy market players such as utility generators and grid operators. In 

addition, as more people install PV systems for self-consumption to lower electricity bills, other end-

users who continue to use electricity from the grid will pay increased electricity rates to cover the same 

amount of CSPE or the fixed costs of grid investment (IEA, 2014; 2014b; IEA-RETD, 2014). In this 

regard, we expect revenues losses of stakeholders as the share of PV power based on self-consumption 

model increases in the electricity system.  

Therefore, we now intend to investigate the proposed model’s impacts on stakeholders. Taken 

the significance of influence into account, we focus on latent group to calculate those losses. Our 

analysis also gives a comparison between the proposed 100% PV self-consumption to the current 

policy scheme, FIT. This aims to demonstrate the real costs of PV power in the electricity system 

under two different policy configurations.  

This analysis can help policymakers to prepare the strategy towards PV self-consumption 

model in the electricity system. Policymakers should examine expected impacts on other stakeholders’ 

interests to mitigate policy risks or threats. Below, the possible impacts are quantified to anticipate 

policy risks.  
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3.4.1 Impacts on stakeholders’ interests under 100% PV self-consumption model 

In case of self-consumption, the impact on stakeholder interests can be roughly calculated by 

reviewing changes in electricity bills with the penetration of the self-consumption model in the 

electricity system. The losses can be calculated by multiplying the electricity tariff for each segment 

by the electricity avoided from the grid (see annex):  

EPV (kWh/m2) x the part of electricity tariff (P stakeholder) (€/kWh) = Revenue losses stakeholder 

(€/m2) 

Due to reduced purchasing from the grid, end-users who own PV systems use less electricity 

from the grid. The existing power plants and grid operators will earn less revenue. In addition, end-

users will pay more for the same amount of CSPE. The government will have less tax revenues. In this 

study, the government’s reduced tax revenues from VAT are excluded because French supermarkets 

do not pay VAT. However, this impact is notable in the residential sector with 20% of VAT. 

In addition, since the proposed self-consumption model in French supermarket sector is not 

yet profitable, further financial support is needed to realize it. Additional policy costs would thus be 

generated, if the government decides to promote the proposed 100% PV self-consumption model. The 

type of support will depend on the policy decision. Therefore, the stakeholder concerned in terms of 

policy support would be different according to the decision. Furthermore, as indicated, the relatively 

positive impacts on grid management caused by 100% self-consumption model should be considered. 

The Table XCV captures the expected impacts on each stakeholder. 

 

Stakeholders’ revenue losses caused by the increase of 100% PV self-consumption in electricity system 
 
Electricity tariff segment Stakeholder concerned Amounts by m2 of installation 

(annual) 
Nation-wide amount 
(annual) 

Conventional electricity 
production decrease 

Utility generators 4.31 €/m2 €69 million  

TURPE (network) Distribution 4.31 €/m2 €69 million  
CSPE  End-users of electricity 2.88 €/m2 €46 million  
CTA Retired electricity employees 

/ Government 
0.38 €/m2 €6.0 million  

TCFE Local government 0.25 €/m2 €4.1 million  
Total   12.14 €/m2 €194 million  
    

Impacts on grid 
management  

Grid operators Positive impacts on grid-level costs 
(systemic costs can be reduced)  
 

 

    

Policy support to 100% 
self-consumption model 
 

Depending on policy choice  13.4 €/m2 €214 million  

Table XCV: Impacts on stakeholder interests of 100% self-consumption model (see annex) 

 

3.4.2 Impacts on stakeholders’ interests under FIT scheme 

By using the FIT scheme, PV producers continue to pay all taxes and fees. However, with the 

penetration of PV electricity production, the existing power generators will sell less electricity in the 

market, thus leading to reduced sales revenue for other power generators. Moreover, the financing of 
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the FIT is supported by the CSPE from the electricity rates. Possible impacts on stakeholder interests 

are calculated in Table XCVI. 

 

Stakeholders’ revenue losses under FIT 
 
 Stakeholder concerned  Amounts by m2 of installation 

(annual) 
Nation-wide amount 
(annual) 

Conventional electricity 
production decrease 

Utility generators149 4.31 €/m2 €69 million  

    
Policy support to FIT 
Financing via CSPE 
 

End-users of 
electricity  

€25.56/m2 150 €408 million 151 

Table XCVI: Impacts on stakeholder interests of the FIT scheme 

 

3.4.3 Comparison of PV integration under FIT vs. 100% PV self-consumption model 

Based on the above calculations, we have found that the same level of cost exists under the 

FIT system and 100% PV self-consumption model to make the PV system profitable. However, there 

are important differences. Below Figure 75 shows the real costs of PV power in the electricity system 

based on the concept of systemic costs (see Part I chapter 2). 

 
Figure 75: The real costs of PV power in the electricity system (France) 

First, under FIT system, PV electricity is supported by fixed tariffs based on long-term 

contracts and this is directly financed by CSPE, placing the burden mainly on end-users. We have seen 

the rapid increase in electricity retail tariffs in France and Germany mostly due to the contribution of 

CSPE and EEG respectively. As seen, the financial support to the energy transition has increased retail 

prices and there are now issues about energy poverty and industrial competitiveness (see Part II). 

However, PV self-consumption model with its good correspondence ratio requires less direct 

financial support and electricity bill savings make up the profitability of the model.  

                                                      
149 See Table CXIII & annex in terms of the calculation of reduced sales revenue for producers 
150 148 kWh/m2 x 0.1727 €/kWh = €25.56/m2 
151 2.36 TWh/m2 x 0.1727 €/kWh = €408 million 
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Secondly, the use of PV electricity under FIT scheme has the bigger cost of PV power in the 

electricity system than under 100% PV self-consumption model. The total sum of PV integration in the 

electricity system under FIT scheme adds the policy supports for purchased PV electricity, additional 

grid-level costs, and potential revenue losses of exiting utility generators (externalities). However, 

under the PV self-consumption model, the loss of existing power plants (externalities) becomes more 

visible. If the government decides to use a political instrument like PV taxes when PV becomes very 

competitive in the future, the externality related to the losses can be internalized.  

In addition, under FIT system, PV system installers do not have economic incentives that 

match their real consumption profile; instead, there can be a windfall effect for profit-seeking (see Part 

II chapter 3). Uncontrolled installations require further policy support, leading to an increase in the 

CSPE. However, PV self-consumption under a well-designed policy framework can incite people to 

maximize the ratio of onsite self-consumption, thus avoiding such windfall effects. This will 

lessen the policy costs.  

However, PV self-consumption model gives stakeholders negative externalities of revenue 

losses (they correspond to avoided electricity consumption from the grid). According to our analysis, 

revenue losses are widespread among stakeholders under PV self-consumption model. Therefore, 

under this model, we gain a clearer overview of the impact of PV integration on each stakeholder 

than under FIT. This clear overview allows the government to design policy actions in a shrewd 

manner to address potential policy risks.   

Furthermore, the proposed 100% self-consumption model can contribute to minimize 

additional grid-level costs. It also cuts the peak demand level during summer at midday thanks to the 

possibility of the full self-consumption. This would be useful to reduce backup costs in countries with 

peak demand in the summer. However, it is extremely important to prepare a fair scheme to finance 

the grid to maintain the security of the national electricity system.  

 

4 PV self-consumption in French residential sector (2030) 

4.1 Introduction  

In the previous section, we studied opportunities of PV self-consumption when it is entirely 

consumed onsite. In this section, we extend our case study in the longer-term perspective (2030). We 

aim to explain how the technological progress affects the usage of PV systems in the future. In this 

context, our study focuses on the impact of PV self-consumption combined with batteries in the 

residential sector. As said, the residential sector has a poorer correlation between PV power output of 

PV systems and electricity consumption profile without storage system. However, the correlation in 

the residential sector can be improved by combining with the storage system in the future. The 

continuous price decline in the battery solution can induce the transition to PV self-consumption in the 

residential sector. 

As residential PV systems coupled with batteries become more competitive, end-users will be 

more willing to switch to the self-consumption of PV electricity instead of purchasing power from the 
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network. However, as seen in section 2, the transition to PV self-consumption gives impacts on all 

stakeholders in electricity market. Governments must prepare the transition towards PV self-

consumption to maintain the security of the national energy system. It is thus necessary for 

policymakers to understand the timing of this transition. 

In this context, this study attempts to evaluate the economic attractiveness of French 

residential PV systems coupled with batteries using the learning curve approach in the near future. It 

includes three steps; the first step defines the optimum battery size to achieve a significant level of PV 

self-consumption in the residential sector (4.3). The second step predicts the price variation in the 

French residential PV systems in 2030. We calculate the PV LCOE in 2030 based on the International 

Energy Agency (IEA) scenarios using the estimated costs of Li-ion batteries. We then compare them 

to the estimated price of electricity152 in 2030 (4.4). Finally, we quantify PV installation opportunities 

and the loss of network funding caused by the transition to PV self-consumption (4.5).  

 

4.2 The ratio of self-consumption in the residential sector 

The good correlation between PV power output and consumption profile is important to define 

economics of PV self-consumption model. We have seen that the entire consumption of PV power 

output is only possible for some sectors like supermarkets (section 3). The weak correlation (~ 30-40% 

without storage) in the separate residential sector can be increased via some methods.  

The first method is to modify the demand profile to better match the PV power output to the 

electricity consumption (demand response). It is possible with some equipment such as electric hot 

water heaters or some electric home appliances. This method is limited because home appliances (e.g. 

oven, hotplate, television, etc.) operate at about the same time every day and it requires the use of 

advanced IT technologies.  

The other method is to store electricity not consumed to release it when there is demand. This 

method requires the use of batteries and increases PV system prices. The system is rarely profitable for 

the moment; the high costs of battery technology are the main barriers for the large deployment of PV 

systems coupled with batteries (see Part I chapter 2). We have seen that the cost of batteries is 

expected to decline in the future. This gives the potential of large-scale deployment of PV systems. 

 

4.3 The optimal size of PV systems coupled with batteries in the residential sector 

We now want to define the optimum battery size to achieve a significant level of PV self-

consumption in the residential sector. 

A smaller production system of PV electricity compared with the electricity demand is more 

likely to be completely self-consumed without storage solution, but the final gains with respect to the 

total electricity consumption (the avoided power consumption from the grid) will be small. However, a 

large PV system will require a large storage system, and thus leading to a high additional cost. An 

optimization to define battery size to combine with PV systems for self-consumption is necessary. 

                                                      
152 There are a number of challenges because France has quite low electricity tariffs and insolation. 



250 

 

In order to define the optimal level of battery size combined with PV systems, our study is 

based on a few studies in Germany (Weniger, et al., 2014; Huld, et al., 2014; Partlin, et al., 2015).  

T. Huld examines 144 residential PV systems with batteries in Ulm, Germany. It shows the 

average links between the level of PV self-consumption and the capacity of installed PV systems 

without batteries in case of electricity consumption of 3000 kWh/year (Table XCVII): 

PV power production level compared with electricity consumption PV self-consumption ratio 

PV power production = electricity consumption  20% ~30% 

PV power production = 1/2 electricity consumption 40% ~ 50% 

PV power production = 1/3 electricity consumption 80% ~ 90% 

Table XCVII: Ratio of self-consumption according to different residential PV system sizes  

The study also indicates that the level of PV self-consumption does not increase much even 

though several housing with PV systems are grouped together to make a larger residential area for self-

consumption of PV electricity. It is because each residence shares a similar electricity consumption 

profile. The use of batteries is therefore necessary to increase the level of PV self-consumption. The 

study provides the ratio of self-consumption with different sizes of Li-ion batteries for residential 

applications (see Table XCVIII). When the size of batteries changes from 3 kWh to 6 kWh, the level 

of PV self-consumption ratio will increase only by around 10%.  

 Without battery 3 kWh battery 6 kWh battery 
PV self-consumption level 35% ~60% 70% ~85% 80% ~ 90% 
Table XCVIII : PV self-consumption ratio according to different battery sizes coupled with 1 kWp residential PV systems  

The study by S. Partlin defines the optimal combination of PV systems with batteries in 

Germany. The experimental study was conducted in Germany for 12 months based on 120 residential 

PV systems with high performance Li-ion batteries (the most common systems in Germany). It 

indicates that 80% of households consume less than 4000 kWh/year of electricity. It shows that the use 

of 3 kWp PV systems with 2 kWh Li-ion batteries for residential applications is optimal for 80% of the 

households achieving up to 90% of PV self-consumption. 

The study of T. Weiniger defines the mean ratio of PV self-consumption according to the size 

of PV system and the capacity of batteries, which are normalized to the annual electricity demand in 

MWh. The study indicates that the use of 3 kWp PV systems coupled with 4 kWh Li-ion batteries 

achieves around 80% of self-consumption for average households. 

In our study, we assume that the use of 3 kWp PV systems coupled with 4 kWh Li-ion 

batteries for residential applications are optimum reaching 80% to 90% of PV self-consumption. 

4.4 The trend of PV system prices coupled with batteries  

In this part, we aim to demonstrate the evolution of residential PV system prices coupled with 

Li-ion batteries in 2030. In Part I, we have presented different IEA’s scenario. According to IEA’s hi-

Renewables scenario (hi-Ren), the installed PV capacity will achieve 1721 GW in 2030, generating 

2370 TWh of electricity in 2030. We also gave Li-ion battery prices based on some projections (see 

Part I chapter 2). Our study calculates the projected PV LCOE in 2030 based on the learning curve 

approach. IEA’s PV deployment scenarios were used to estimate the PV market size in 2030. Our 
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study assumes a current battery price of $500/kWh including installation costs 153  and a cost of 

$150/kWh for 2030. We calculate the PV LCOE in 2030 using the estimated costs of Li-ion battery 

and compare it to the assumed price of electricity in 2030.  

In order to calculate the PV LCOE in 2030, we need to estimate PV system costs in 2030. In 

order to calculate it, we use an average current cost of $ 3.1/Wp for the PV residential systems154 (IEA 

PV Roadmap 2014). We then calculate the PV system costs in 2030 using the learning curve with a 

learning rate of 18% (IEA, 2014, p. 18). Our calculation is based on IEA’s three scenarios which give 

the prospect with regard to world PV installations in 2030 (see Part I chapter 4). 

- 6DS scenario  

- 2DS scenario 

- IEA’s hi-Ren scenario (IEA, 2014) 

We estimate the residential PV system costs in 2030 from 1.5 $/Wp (hi-Ren scenario) to 2.19 

$/Wp (6DS scenario). 

 2013 
 

IEA’s scenarios for 2030 
6DS 2DS HiRen  

World PV cumulated installations (GWp) 135 451 842 1721 
Residential PV system cost ($/Wp) 3.1 2.19 1.84 1.5 
Table XCIX: Estimated PV system costs in 2030 (based on IEA's scenarios) 

We then add the cost of 3 kWp PV systems to the cost of 4kWh batteries: 

Material costs 2015 (2013 for PV) IEA’s scenarios for 2030 
6DS 2DS HiRen  

4 kWh batteries 2000 US$ 600 US$ 600 US$ 600 US$ 
3kWp PV systems 9300 US$ 6570 US$ 5520 US$ 4500 US$ 
Table C: Estimated costs of 3kW PV systems coupled with 4kWh batteries in 2030 (based on IEA's scenarios) 

The lifetime of PV systems is 20 years and the lifetime of batteries is 10 years (we consider 

the same cost for changing the battery). We use a discount rate of 5%. The PV LCOE varies according 

to the irradiation. We obtain the results for PV LCOE as below (c$/kWh): 

Irradiation 
(kWh/kWp/year) 

2013 
IEA’s scenarios for 2030 

6DS 2DS HiRen  

1000 36.7 22.6 19.0 16.2 

1500 25.5 15.1 12.7 10.8 
Table CI: Estimated PV LCOEs in 2030 based on IEA's scenarios 

The radiation in France and in Germany is around 1000 kWh/kWp/year: Berlin is about 900 

kWh/kWp/year and Paris is 960 kWh /kWp/year.  

The electricity tariffs for households in 2014 are: 20.2 cUS$/kWh in France and 38.0 

cUS$/kWh in Germany (1 US$=0.784€). In our calculation, we assume that the electricity tariffs 

increase by 2% per year until 2030. 

 

 

 
                                                      

153 Tesla sold 7 kWh batteries at 3000$ and 10 kWh batteries at 3500$. The Deutsche Bank estimated the prices at 500 $/kWh 
including installation costs (TECSOL, 2015). 
154 The average PV system costs of IEA-PVPS countries. 
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Electricity tariff (c$/kWh) 2014 2030 with a 2% increase by year 
France 20.2 27.7 
Germany 38 52.2 
Table CII: Electricity tariffs in France and Germany in 2030 with a 2% increase by year 

We then calculate the PV LCOE and the profitability of PV systems with batteries which vary 

depending on the level of PV self-consumption. The estimated PV LCOE in 2030 and the profitability 

of PV systems with batteries (the electricity price divided by the PV LCOE) are shown as below: 

1000 kWh/kWp/year 2013 
2030 

6DS 2DS HiRen 2030 

80% of PV self-
consumption  

PV LCOE155 45.9 28.4 23.6 20.3 

Profitability Germany 0.8 1.8 2.2 2.6 

Profitability France 0.4 1.0 1.2 1.4 

90% PV self-
consumption  

PV LCOE 40.8 25.2 21.0 18.0 

Profitability Germany 0.9 2.1 2.5 2.9 
Profitability France 0.5 1.1 1.3 1.5 

Table CIII: Profitability of PV systems with batteries in 2030  

It should be noted that even by adding the cost of batteries, PV systems are currently close to 

profitability in Germany and they would become almost competitive in France by 2030 under all IEA 

scenarios with a self-consumption rate of above 80%. However, if the global number of PV 

installations grows faster than the IEA scenarios assumptions or if targeted policies to reduce soft-

costs are implemented, residential PV systems with batteries can become profitable in France before 

2030, especially in the southern part of France with a higher insolation. 

In addition, battery prices are expected to continue to decline. Our analysis shows that battery 

prices will represent a small fraction of the cost of residential PV systems combined with batteries. 

Based on the business as usual scenario (6D), it will only account for 11% of the total installed cost of 

PV systems amounting to only 2.5 c$/kWh in 2030. With a self-consumption rate of above 80%, the 

surplus electricity is small. If PV policies aim to promote self-consumption, it is conceivable to 

establish a mechanism for reselling the surplus to the network in order to enhance its economics (e.g. 

net-metering).  

                                                      
155 The PV LCOE is weighted by the self-consumption level (PV LCOE with 80% of self-consumption = PV LCOE/80%) 
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Figure 76 : Economic feasibility of residential PV self-consumption model combined with batteries in 2030 

 

4.5 PV growth opportunities and network funding losses 

A simple calculation based on PV systems coupled with Li-ion batteries gives an upper limit 

of PV development opportunities in French residential sector. France has 33.4 million of residential 

buildings in 2012, including 18.8 million individual houses (ADEME, 2013, p. 36) and the residential 

and tertiary sectors account for 44% of the national electricity consumption.  

We assume that an average capacity of 3 kWp PV systems coupled with 4 kWh Li-ion 

batteries were installed on 18.8 million individual houses in France. This represents potential 

installations of approximately 56 GWp producing PV electricity of about 56 TWh per year (56 GWp x 

1000 kWh/kWp/year). This accounts for more than 12% of French electricity production (447 TWh in 

2014).  

In addition, with the important level of self-consumption, PV self-consumption model in the 

residential sector can limit additional grid-level costs related to grid reinforcement. Furthermore, PV 

power fluctuation smoothing via a wider geographical spread can reduce balancing costs compared 

with utility-scale PV systems. In Part II, we have seen that the estimated addition grid-level cost with 

10% PV penetration in France is 27$/ MWh (incl. 6 $/MWh for grid upgrading and 2$/MWh for short-

term balancing). The calculated opportunities of PV self-consumption in the residential sector 

represent almost the same level of PV penetration. Based on this smart approach, the proposed 

applications of residential PV systems with batteries can reduce the grid-level costs by a maximum of 

30% compared with the PV power use with no strategy. However, we have seen that the backup costs 

in France are significant with an important level of PV penetration because the peak demand of 
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electricity appears usually in the winter evening; 19 $/MWh at 10% PV penetration. The backup costs 

remain the same for other PV usages (i.e. FIT). Therefore, in order to produce electricity of 56 

TWh/year, an additional cost of $ 1.1 billion can be expected.  

However, as seen, it must not be forgotten that PV self-consumption induces the loss related to 

network funding (the loss of grid operator revenues). In the previous section, we discovered that one 

third of electricity tariffs in France are used for grid funding. This amounts to around 6.1 c$/ kWh156. 

If the annual PV power output of 3000 kWh (3kWp x 1000 kWh / kWp/year) is entirely self-consumed, 

the loss of grid funding will amount to 183 $/year (6.1 c $ / kWh x 3000 kWh). In this regard, if all 

individual households in France were equipped with PV systems with batteries, a loss of grid funding 

amounting to $ 3.4 billion / year (18.8 million x 183 $/year) can be expected. If the loss of network 

funding is distributed to end-users of electricity from the grid, the cost will be 0.8 c$ / kWh ($ 3.4 

billion / (447 TWh – 56 TWh)). Taken such impacts into account, the fair mechanisms should be 

considered to finance the grid.  

 
Energy transition  Possible installations: 18.8 million houses x 3 kWp = 56 GWp  

Electricity production: 56 GWp x 1000 kWh/kWp/year = 56 TWh/year (12% of the total 

electricity consumption of 447 TWh (Eurostat)) 

CO2 emission avoided GHG emission reduction: little impact with the large part of nuclear power in France 

Table CIV: Expected benefits of the PV self-consumed model in residential sector  

 
Land usage 392 million m2 available without new land use (7m2/kWp, cf. Part I chapter 2) 

Impacts on grid-level 

costs 

No grid reinforcement needed  

Addition grid-level costs can be reduced by up to 30%  

Table CV: Additional benefits from the proposed self-consumption model in residential sector compared with other PV 
usages (e.g. utility-scale PV systems) 

 
PV self-consumption  
costs (losses of grid funding and taxes) 

Direct policy cost for FIT 

Under hi-Ren scenario Under 6DS scenario 

$ 3.4 billion for the grid + $ 3.8 billion for taxes157 = 
$ 7.2 billion 

$ 7.6 billion by year $ 11.3 billion by year 

Table CVI: Losses of grid funding and taxes under PV self-consumed model vs. FIT costs to support the same level of PV 
installations  

 

The costs to promote PV installations via PV self-consumption are less than the FIT 

remuneration158. In order to install PV capacity of 56 GWp without batteries, FIT support would be 

$ 7.6 billion by year159 (13.7 c$/kWh x 56 TWh) under the optimistic HiRen scenario and $ 11.3 

billion by year160 (20.1 c$/kWh x 56 TWh) under the BAU scenario (6DS).   

                                                      
156 1$ = 0.784€ 
157 Taxes represent 6.8 c$/kWh in residential electricity tariffs (34% of the electricity tariffs). The annual cost: 6.8 c$/kWh x 
3000 kWh x 18.8 million 
158 Especially if a tax reform is done to refund tax losses induced by PV self-consumption 
159 Equivalent to 1.7 c$ / kWh distributed to all electricity consumers from the grid 
160 Equivalent to 2.5 c$ / kWh distributed to all electricity consumers from the grid 
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5 Policy recommendations  

As PV system prices with the battery decline, there will definitely be a political pressure from 

the electricity consumers to encourage PV self-consumption. The state must prepare solutions to 

control impacts on the system (e.g. network management). In this regard, it is important to define 

policy strategies towards PV self-consumed model. Those strategies should be prepared based on the 

participation of key stakeholders. Here, we have attempted to define possible strategies for PV self-

consumption model development. 

 

1. Giving priority to PV installations with the best corresponding profile between onsite demand 

and PV system output  

We have seen that PV self-consumption model can maximize benefits with the best 

correspondence between onsite demand and PV system output, encouraging better returns on 

investment than in poorly corresponding areas. First, policy should promote targeted areas with the 

best correlation between onsite consumption and PV power output like supermarkets. In addition, local 

PV production can be consumed locally to increase the self-consumption ratio at the local level. The 

PV self-consumed model may provide a good solution for congested regions or areas with grid 

problems. In addition, the development of such sectors based on 100% self-consumption has much 

value because it gives policymakers a large-scale experience of PV self-consumption to anticipate 

risks and impacts on the whole electricity system. 

2. Increasing the correspondence profile between onsite demand patterns and PV production 

Sectors with poorer correlation can be promoted in line with the demand-side response to 

obtain optimal correspondence between PV power production and PV self-consumption (IEA, Op. cit.). 

The results will smooth the PV injection peak during the PV generation peak, thereby reducing the 

impact on the power grid system. Smart grids may provide a dynamic policy instrument to improve 

correspondence between demand profiles and the production pattern, based on a more responsive grid 

system. They are designed to better control load managements by improving the transparency of the 

electricity market. As seen, improving the storage solution is a good way to improving the 

correspondence.  

 

3. Preparing strategies to minimize the economic losses of key stakeholders (the latent group) 

We have analyzed impacts on stakeholders’ interests caused by the penetration with the PV 

self-consumption model. Policymakers should prepare policy actions to address those issues. 

 

Utility generators 

With the penetration of intermittent energies with low marginal production costs, the recovery 

of fixed investment costs for power generators becomes a concern. In order to maintain a certain level 

of dispatchable generation capacity in the energy mix, it is important to make conventional power 

plants, which are essential for the grid balancing, economically viable though policy supports (e.g. 



256 

 

capacity payment) (IEA, 2014b). However, when the policy presents a long-term vision, utility 

generators can explore new business opportunities by diversifying their business areas. In addition, it 

is important to have a regular and progressive policy in terms of the transition to PV self-consumption 

in the future with the objective to 1) give enough time for traditional electricity producers to adapt to 

the new market situation, 2) reduce the negative impacts on the electricity mix by adapting to the age 

of production capacity in use. 

 

Grid operators 

The impact on the network cannot be ignored. The planning of PV deployment had better be 

done based on the expertise of the grid operator. Under the self-consumed model, preparing a fair 

scheme for grid cost recovery is necessary to justify the development of this model (IEA, 2014; 2014b; 

IEA-RETD, 2014). The fixed cost recovery of grid investment should be addressed via a fair 

allocation scheme among users. The increased fixed tariff or redesigned electricity tariffs (e.g. 

demand-based charges, time-based pricing) can be considered (IEA, 2014; 2014b). Further costs can 

arise in terms of grid extension and upgrading. However, as said, the 100% self-consumption by 

targeting areas with the best correspondence (e.g. supermarkets) will reduce pressure on the grid 

without additional investment for grid extension or upgrading. 

 

 

End-users 

Government policy decisions concerning the energy transition are mainly supported by end-

users via CSPE or EEG. However, as seen in section 3, the PV self-consumption model contributes to 

visualize the energy transition costs with a widespread distribution among stakeholders. In this case, it 

would be easier to control the increase in electricity rates. Otherwise, additional revenue creation can 

be considered to finance the PV self-consumed model: e.g. renewable energy certificates (RECs) or 

carbon tax.  

 

4. Allowing connection to the grid with a proper compensation scheme  

The permission to connect to the electricity network is currently needed to secure the 

reliability of PV systems. The rules and regulations regarding grid connection will play a key variable 

in the economics of the model affecting prosumer decisions for usage (IEA-RETD, 2014). In the long 

term, the PV self-consumed model can be developed by disconnecting from the grid when the storage 

system becomes economically viable for users. However, before this happens, the PV self-consumed 

model needs policy support which allows for grid connection with proper economic compensation. 

The compensation level, type and amount will vary according to the country’s policy decisions. When 

policy strategy decides to promote self-consumption of PV power putting stress on benefits, PV 

policies can focus on improving the economics of self-consumption model, e.g. reduction in non-

module costs, no VAT on self-consumed electricity. 
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5. Establishing long-term policy vision  

The national policy strategy - whether to encourage or prevent the use of such a model - will 

determine the level of promotion of the PV self-consumed model in the energy mix. This policy 

strategy should present a long-term vision to give all stakeholders time to prepare to the change with 

PV self-consumption in the electricity system. The organizational changes should be taken place under 

the new regulatory system to introduce new business practices and grid models. The future PV policy 

should be decided based on systemic perspective taken the costs for the whole energy sector into 

account (coût d'une decision) (Riveline, 2005).  

 

6 Conclusions 

PV self-consumption model based on a proper mechanism can provide a sustainable way of 

using PV power by benefiting PV system’s advantage of being able to provide decentralized power. 

This also gives opportunities to share the cost of energy transition among stakeholders compared with 

FIT system. In addition, the grid-level costs related to the intermittency of PV energy can be 

minimized when the PV energy based on the self-consumption model is strategically used.  

From a strategic perspective, in the short-term, the PV self-consumed model should be applied 

in sectors with the best mating ratio between the load profile of electric consumption and PV power 

production, so as to gain the best results. In the future, as electricity prices continue to rise while PV 

system prices go down, the PV self-consumed model will benefit from better conditions for its 

application. The economics of the PV self-consumed model will greatly improve, making the model 

profitable for other sectors whose correspondence ratios are poorer, e.g. residential. The impacts would 

be greater when it is combined with improved storage systems. Before achieving the level, current 

policy should aim to prepare targeted strategies for each sector, e.g. residential, commercial and 

industry, so as to achieve the best results.  

We provided an in-depth analysis of PV self-consumption use in the electricity system. From 

the short-term time period (2020), our analysis proposed to develop PV self-consumption model by 

using the existing surfaces of supermarkets because of possibilities of 100% self-consumption. When 

it is entirely consumed onsite, the grid reinforcement is not needed and electric power transmission 

and distribution losses can be avoided. This leads to less systemic costs compared with other PV 

development model (e.g. utility-scale PV systems based on FIT system). In addition, it does not 

require additional cost of land use. We also demonstrated that 100% PV self-consumption requires less 

direct financial support than FIT system. PV self-consumption model under a well-designed policy 

framework can incite people to maximize the ratio of onsite self-consumption. This helps avoid 

windfall effects. However, PV self-consumption model gives stakeholders negative externalities of 

revenue losses. Those revenue losses are widespread among stakeholders. It indicates that the energy 

transition cost can be distributed among stakeholders under PV self-consumption model unlike FIT 

system. Our analysis gave a detailed overview of impacts of PV integration on each stakeholder. This 
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approach would be helpful for policymakers to estimate potential risks and to prepare policy actions to 

address them. Furthermore, the development of this sector gives a large-scale experience of PV self-

consumption to anticipate impacts on the whole electricity system.  

In the longer-term, the study has shown that residential PV systems with batteries could 

become profitable in France by 2030. The demand in the residential sector would thus be natural in the 

next 15 years in France. It is also possible to advance the timing by improving the PV economic 

competitiveness through targeted policies (e.g. non-module sector). 

In this regard, the demand in PV self-consumption would be naturally created in the future. 

Policymakers will have to prepare this change. It is very important to prepare a regular and progressive 

policy for the transition to PV self-consumption. It should enable concerned stakeholders to have 

enough time to adapt to the new market situation. In addition, the policy would put more focus on 

limiting systemic impacts of PV power in future. How policymakers prepare this change with a proper 

institutional framework supported by long-term vision will affect the success of the PV integration.  
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Chapter 2. Dynamics of PV policy mechanisms in the international context  

In this chapter, the complexity and dynamics of PV policy system in the international context 

is studied. It is difficult to manage the PV policy mechanisms because of its complexity and dynamic 

features. The difficulties get bigger in the international political context. The national PV policy 

mechanisms interact with other country’s systems. The PV policy system is in a state of flux. The 

ignorance of leverage of external factors (context) of PV policy system can bring unexpected policy 

results in an open economy system. Therefore, a quick response to a dynamic market change is closely 

associated to success of PV policies.  

In this context, in this chapter, we attempt to provide a precise insight on the globalization 

effects on the PV policy mechanisms. We aim to model the complicated strategic interactions and 

accompanying consequences based on the coupling case studies of Germany and China using the 

strategic trade theory. The change in market equilibrium influenced by the external factors is explained 

using the international trade theory. We intend to analyze the relations between Chinese strategic 

movement and the current PV industry crisis and long-lasting trade disputes.  

First, we provide theoretical background of our methodology (section 1). Our approach is 

based on strategic trade theory to explain how a government’s intervention to protect the domestic 

industry influences the global market mechanisms. In order to compare the situation of German market 

balance before and after the Chinese inputs, we use the international trade theory (section 2). In section 

3, we analyze characteristics of the global PV market as the policy context. And then, a detailed 

analysis of Chinese strategic trade movement based on the strategic trade policy theory is presented. 

Our analysis explains how Chinese government’s strategic trade policy influences the investment 

choices and payoffs of the market players. At the end, we give a new game setting to think over the 

possibility of increased market players’ profits in the future. 

1 Theoretical background 

1.1 Game theory  

Game theory concerns multi-party decision-making; it analyses strategic interactions among 

rational and independent multi-agents. The game theory explains individuals’ strategic choices to 

maximize their profits. The utilization of game theoretical approach allows depicting complex 

strategic situations in a very simplified setting.  

The concepts of game theory provide a language to formulate, structure, analyze, and 

understand strategic scenarios (Turocy & von Stengel, 2001). Game theory has been used in many 

different fields like economics, political science, military strategy, intentional relations, psychology, 

and biology and so on. For example, non-cooperative game theory has become an important tool for 

analyzing strategic interaction between players when decision makers act independently without being 

able to contract each other’s actual behavior. This has found many applications in the field of 

industrial organization (Tirole, 1988). 
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Game theory exists as a unique field of science since the mid-1940s with the contribution of 

John von Neumann and Oskar Morgenstern. The history of game theory throws back to the publication 

of Theory of Games and Economic Behavior by John von Neumann and Oskar Morgenstern in 1944 

(von Neumann & Morgenstern, 1944; Hillas, et al., 2014; Kim, 2014). This book provided much of the 

basic terminology and problem setup that are still in use today (Turocy & von Stengel, 2001); the 

method for finding mutually consistent solution for 2-person zero-sum games was presented (Kim, 

2014).  

In the early 1950s John Nash proposed a definition of equilibrium (Nash equilibrium) (Nash, 

1950; 1950b; 1951; 1953)161 and this concept built a theoretical ground of non-cooperative game 

theory. Nash equilibrium defines a set of strategies such that no player has an incentive to deviate from 

his or her action chosen after considering an opponent’s choice. Merrill M. Flood and Melvin Dresher 

(1950) have discussed the prisoner’s dilemma. In the 1950s, the concept of the core, the extensive 

form game, fictitious play, repeated games, matching games and the Shapley value were developed 

(Kim, 2014).   

Reinhard Selten has introduced the subgame perfect equilibria in 1965; this was the refinement 

of the Nash equilibrium. Then John Harsanyi developed the concept of complete information and 

Bayesian games. This prepared the theoretical basis of information economics.  

In the 1970s, game theory has been applied extensively in other sectors like sociology and 

psychology, and established links with evolution and biology. In 1972, John Maynard Smith 

developed evolutionary game model and introduced the concept of an Evolutionary Stable Strategy 

(ESS). In 1973, Michael Spence presented a signal game model with an analysis of job market 

signaling (Spencer, 1973) and David M. Kreps further developed this concept to screening game. In 

1974, Robert Aumann (1995) introduced a correlated equilibrium, a more general solution form than 

Nash equilibrium.    

In 1982, David M. Kreps and Robert Wilson developed further the concept of a subgame 

perfect equilibrium to subgame in the extensive form with imperfect information (sequential 

equilibrium). In 1982, Rubinstein studied a non-cooperative bargaining game. He shows that the 

subgame perfect equilibrium is unique when each player’s cost of time is given by some discount 

factor. In 1988, John C. Harsanyi and Reinhard Selten produced the first general theory of selecting 

between equilibria providing criteria for selecting one particular equilibrium point for any non-

cooperative game (Harsanyi 1988). Jean Tirole contributed to apply game theoretic thinking to analyze 

the dynamics of industrial organizations (e.g. decisions in setting prices price setting, investment 

decision) (Tirole, 1988). 

 

                                                      
161 Finite games have an equilibrium point at which all players choose actions which are best for them given their opponents’ 
choices. 
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1.2 International trade theory  

Economists have thought over the gain from trade. Adam Smith (absolute advantage) (Smith, 

1776) and David Ricardo (comparative advantage) (Ricardo, 1817) defended free trade’s benefits in 

opposition to European mercantilism. According to David Ricardo, both countries gain from free trade 

based on comparative advantage; he was against the Corn Laws asserting that free trade flourishes the 

economy. The thoughts of Adam Smith and David Ricardo suggested the basis of free trade theory and 

the rise of neo-classical economics has further developed the theory; the fundamental thoughts on free 

trade are maintained but the scope of application was extended sometimes based on the refinement (e.g. 

Heckscher-Ohlin model (Heckscher & Ohlin, 1991)). Free-trade theory became an important assertion 

(Bhagwati; Bhagwati, 2002; 2004) in terms of guidelines of international trade.  

On the contrary to this, the argument of advocates of protective trade is that economic policy 

should support or protect domestic industries from international competition. There are other 

approaches to explain the occurrence of international trade; e.g. product cycle theory (Vernon & Wells, 

1966; Vernon, 1979) and product differentiation theory (Krugman, 1980; 1981; 2008). 

Free trade is enacted through various forms of multilateral trade agreements; e.g. the General 

Agreement on Tariffs and Trade (GATT (World Trade Organization, 1994)), The World Trade 

Organization (WTO), the North America Free Trade Agreement (NAFTA), and the European Union 

(EU). However, in reality, it is very difficult to remove trade barriers because a country’s trade policy 

gives the priority to the national interest or benefit. Trade barriers include tariffs to imports, import 

quotas, taxes, or subsidies to exports and non-tariff barriers (e.g. regulatory legislation).  

The classical theory of international trade claims that the trade occurs because of the different 

characteristics of each country’s trade conditions; e.g. difference in labor productivity (Ricardian 

comparative advantage) and in resource endowments (Heckscher-Ohlin model). However, this 

approach has limitation to explain the current pattern of trade; e.g. intra-industry trade with 

differentiated products between countries that have a similar level of development (Kurgman, 2008). 

In the 1970s, new trade theory appeared with an amplified explanation of the current trade 

features (Krugman, 1979; Helpman & Krugman, 1985; Grossman & Helpman, 1993). The new trade 

theory, which combines international trade theory with industrial organization theory, explains that the 

international trade patterns are determined by the industrial characteristics.  

The classical economic analysis was mainly based on the assumption of perfect competition; 

however, this is limited to explain the real market situation (e.g. oligopolistic competition). New trade 

theory is based on internal economies of scale (increasing return) and monopolistic competition 

(Chamberlain, 1933; Dixit & Stiglitz, 1977). The international trade allows the market expanding 

effect; the variety of products as well as the scale effect. Unlike the classical trade thought, new trade 

theory recognizes government’s strategic actions to pursue excess profits under imperfect competition 

(e.g., oligopolistic market) because international trade is seen as an extension of the domestic market. 

The international competition occurs to gain excess profits based on economies of scale or R&D 

externalities.  
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1.3 Strategic trade policy 

Strategic trade policy is based on new trade theory; it is a form of governmental industrial 

policy that aims at improving a country’s economic performance by promoting specific exports or 

discouraging certain imports. The aim of such policy is to improve the domestic welfare by shifting 

profits from foreign markets to domestic firms. The policy includes various measures such as export 

subsidies, taxes, and import tariffs, industrial standards, grants, or low interest loans, etc. 

Government’s interventions discourage foreign firms to enter in the profitable market; Spencer & 

Brander studied roles of export subsidies in the international competition (Spencer & Brander, 1983; 

Brander & Spencer, 1985). Such government’s strategic actions change the rules of game enabling the 

influx of excessive profits into the domestic market.  

Strategic trade policy was started in the US to protect the domestic market against Japanese 

firms that encroached automotive and electronic industries in the 1980s. Strategic trade policy is often 

applies in high-tech industries that require a large capital investment (e.g. aircraft) to create the first 

mover’s advantage.  

The government’s strategic intervention establishes barriers to entry into markets to protect the 

domestic industry. There are many cases observed in the history; Europe’s Airbus vs. the US Boeing 

(Krugman, 1987) and Asian (South Korea, Japan) semiconductor industry. However, strategic 

interventions by more than one government can lead to a Prisoner’s Dilemma; trade agreements that 

restrict such interventions can be a solution to avoid such situation.  

Our study is based on strategic trade theory (Paul R. Krugman, 1987). It demonstrates how the 

government’s strategic trade policy led to an economic damage to actors in the complex global PV 

market.  

2 PV globalization effects on the national PV policy mechanisms  

In this section, we analyze how PV globalization (external factors) gives impacts on a 

country’s complex and dynamic PV policy mechanisms. We have identified issues related to the 

interaction of different countries’ policies as critical problematics in the complex PV policy 

mechanisms in Part II. We now take a closer look at change in German policy mechanisms with 

Chinese entry in the global PV market. Chinese inputs in the global PV market have enhanced the 

globalization of PV market. We compare the change in German policy mechanisms and interactional 

trade effects before and after the massive entry of Chinese products in the German market.  

 

2.1 PV supply-demand policy mechanisms in Germany  

It is important to understand how the German PV policy mechanisms worked before; it helps 

better differentiate benefits or damages from the external factor’ intervention in the German national 

PV policy mechanisms. Prior to China’s dominance in the PV market, Germany had been playing an 

important role in the global PV market for both supply and demand side. As seen, however, its share 

was absorbed by the Chinese with the globalization of the PV market. Here below, the German supply-
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demand mechanisms with policy supports are presented before the Chinese entry; this gives a basis to 

review globalization and trade effects. 

It was defined that FIT system was one of the major drivers used to develop the PV market in 

Germany as early as 2000. The German PV policies aimed for combined effects of the demand-pull 

strategies (e.g. FIT system) and technology-push with R&D and financial incentives for production 

(e.g. low-interest loans).  

Figure 77 demonstrates the German policy support mechanisms assuming linear demand and 

supply curves to simplify our explanation of the policy change pathway. Q refers to installed (sold) 

quantity on X-axis, and P refers to the PV system price on the Y-axis.  

The German FIT system was planned based on a long-term vision (a 20-year contract). It is a 

foreseeable mechanism, which makes it possible to adjust the tariffs according to PV market 

development, applying a progressive reduction in the tariffs (Federal ministry for the Environment, 

Nature Conservation and Nuclear Safety (BMU), 2007). In 2000, under the EEG, Germany decided to 

create a market by stimulating the increase in installation demand with the FIT support; as shown 

below, the demand curve shifts upward (D to D0). The new demand curve and the supply curve met at 

E0, attracting new investments in the PV market. The shift range can differ from one year to another 

year according to the policy decision; for example, under the amended EEG, new rates of the FIT 

support were rolled out in 2004 and in 2009 (Deutsche Bank Group, DB Climate Change Advisors, 

2011).  

 
Figure 77: German policy support mechanisms 

Next, the main phenomenon of the demand curve shift from D0 to D1 began from 2004. 

Under the amended EEG, the government set the decreased FIT rates. The reduction degree changed 

several times; e.g. a fixed reduction from 5% to 6.5% was applied every year between 2004 and 2008. 

A corridor digression system was implemented in 2009 with a reduction range from 5.5% to 7.5%, 

which was once again revised for the further reduction in 2011 (Deutsche Bank Group, Op. cit.). 

The price reduction was planned based on condition that the PV industry gains the 

competitiveness by reducing production costs through technology progress driven by R&D activities 



264 

 

and the accumulation of experience (IEA PVPS, 2005b). This means that The FIT price mechanism 

assumes that PV price reduces each year. This stimulated the supply curve shift from S0 to S1. The 

government policy designed to reach a new equilibrium at E1 actually set out to obtain results in terms 

of production cost reductions and installation growth.  

As Figure 77 illustrates, the German policy strategy aimed for incremental improvements in 

production cost cutting and installation growth, with focus placed on the commercialization of silicon 

wafer-based solar cell (IEA PVPS, Op. cit.).  

 

2.2 International trade effects before the mass entry of Chinese products 

It is useful to review the German market equilibrium before the mass entry of Chinese 

products into the European market; it is because the German PV policy support mechanisms were 

designed based on this condition.  

The global PV industry competition was weak until 2007 and largely dominated by two 

players, Germany and Japan, which gave them similar economic benefits. Both countries developed 

the PV industry covering the whole value chain based on its own national strategy plan (IEA PVPS 

Germany, 2002 to 2011; IEA PVPS Japan, 2002 to 2012). The situation changed, however, with fierce 

competition from the Chinese after the mass entry of their products from 2008, thereby provoking 

unexpected results.  

Until China started its mass production from 2008, international trade was beneficial to the 

global PV market, supplying a larger quantity of solar cells and modules at a lower price compared 

with no-trade. To facilitate our explanation, we restrict the export-import mechanisms with Germany 

and Japan; these two countries were in the forefront of the global PV market prior to China’s entry.  

As seen, the German demand was never covered by domestic production; it imported solar 

cells and modules to some extent. Conversely, Japanese production had always exceeded their 

domestic need since 2002 and their production surplus was exported (see Part II chapter 2). Between 

2000 and 2007, Japanese exports for the German market amounted for 3 billion US$ 

(UNCOMTRADE). Before the Chinese entry into the German market, imports were mainly from 

Japan (the top three importing partners in 2005: Japan 32%, China 16%, USA 9.6% 

(UNCOMTRADE)). Through this system, both importing (Germany) and exporting countries (Japan) 

gained economic benefits.  

Figure 78 explains the benefits of the importing country with open trade. Under a no-trade 

configuration, the German market has equilibrium, E1, where the domestic supply and demand curves 

intersect with the market price, P1 with domestic outputs at Q1.  



265 

 

 
Figure 78 : Importation effects in the German market (before China) 

With free trade, however, the supply increases, lowering the domestic market price to the level 

of the world price (P1 to P2). The German market has a new equilibrium E2 with market price, P2 and 

a supply quantity at Q2. The German production share is reduced to QG2 compared with Q1 under the 

self-supply system. However, the domestic supply for installations increased to Q2 with the import 

quantity being equivalent to the distance of Q2 to QG2 with the social surplus gain.  

Moreover, the increase in the number of installations resulted in job creation (IRENA, 2011). 

The German policy design was based on these mechanisms, which have a relatively weak effect when 

faced with international fierce price competition; they allow economic benefits for both exporting and 

importing countries compared with the Chinese entry afterward. The German market gained benefits 

from open trade while pacing with the growing domestic installations. Before the start of fierce 

competition with China in 2008, the above-described mechanisms were applicable.  

 

2.3  International trade effects after the mass entry of Chinese products 

 
Figure 79: Changed German national PV policy mechanisms 

As seen, the German PV policy mechanisms predicted an incremental price drop in module 

prices according to historical data and its expected technological evolution. However, the mechanism 

began to be threatened by the mass entry of Chinese products. Since 2006, China began to enter the 
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PV market with the government support. The globalized market with Chinese inputs added 

unexpected external factor in the German PV policy mechanisms. 

China’s dominance of the market was beneficial in terms of economies of scale through the 

increase in the market size with the mass production of solar cells and modules, which again lowered 

the global price of cells and modules from P2 to P3 (see Figure 80). This price level is much lower 

than the German government expected for the policy design, arising in some unexpected 

consequences with the open trade system.  

Firstly, the German production quantity was reduced from QG2 to QG3, beaten by the 

competitive price offered by Chinese manufacturers (market share loss). China’s decision to develop 

the solar PV sector as an economic growth engine through exportation onto the global market did 

reduce Germany’s market shares. China immediately absorbed a considerable portion of the German 

market share faced with this fierce price competition. These phenomena are unexpected results for the 

German PV policy design. Germany recorded a €3.5 billion trade deficit in solar components with 

China during 2010 to 2012 (European Commission, 2014b). 

 
Figure 80 : Importation effects after China - consequences of the Chinese emergence in the German market 

 

Secondly, with the mass inflow of cheap products into the German market, German 

installations rose much faster up to Q3 compared with the expected quantity at Q2 (uncontrolled PV 

installation peak). It was somewhat helped increase local installations based on cheap products at the 

very beginning. However, Germany installations rapidly increased to gain windfall profits and this 

became a financial burden for Germany, therefore inducing unpredicted FIT costs (financial burden). 

Local installers started to use cheaper components and this distorted the local FIT mechanism at the 

end (speculation), accordingly, some local key players closed down (PV industry crisis). 

Furthermore, as we have seen in the previous part, the increased costs of FIT system were financed by 

taxpayers through the energy bill; this largely increased household electricity prices in Germany, 

provoking energy equity issue. 
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The German policy decision on the expanded reduction of FIT (2009) (Deutsche Bank Group, 

DB Climate Change Advisors, 2011) did not bring the expected results which aimed at limiting 

uncontrolled installations in the German market. Rather, it led to fiercer competition in the global PV 

market, provoking Chinese producers to further reduce their production costs, pacing with the policy 

change in Germany, based on the expansion of large-scale production lines despite the global 

economic crisis. As a consequence, the German industry suffered from the reaction of the Chinese 

players and the global PV market encountered oversupply issues.  

As China began to gain market dominance in Europe, China also encountered problems. It 

depends heavily on the overseas market to absorb its mass production. China is also dependent on 

imported silicon for its mass production due to technical barriers and policy strategies. In this context, 

the observed chain-reaction bankruptcies can be understood when the European market shrank due to 

its economic downturn. In addition, the Chinese government’s decision to expand the domestic market 

can be seen as a natural result to resolve the national economic problem (Golden Sun program in 2009, 

a FIT scheme in 2011 (Zhang & He, 2013)). China needs to explore new avenues for market growth. 

This analysis indicates the importance of globalization based on trade effects with respect 

to PV policies. The German market is more open to foreign products compared with the Japanese 

market, due to the general application of European policy and fewer institutional barriers (e.g. 

certification requirements and technical specifications in Japan). In this regard, the German market 

was more exposed to the global market, such as the world price reduction and foreign competitors’ 

movements. This observed phenomenon provides a lesson for other countries in relation to their policy 

design and implementation to support PV development. Therefore, it is important to understand how a 

nation’s PV policy mechanisms are influenced by external factor. 

 

3 Strategic trade policy and the international competition 

3.1 The global PV market characteristics 

In order for us to explain how Chinese strategic trade movement changed the global PV 

market mechanisms, it is necessary to define the characteristics of the global PV market. The accurate 

comprehension of PV market characteristics is an essential step to analyze the influence of the external 

factors in the PV policy mechanisms. Therefore, here below, we demonstrate the global PV market 

features using the production capacity expansion game. And then, we explain how the situation of the 

global PV market changed.  

 

3.1.1 PV production capacity expansion game 

Before analyzing each player’s strategy, it is important to define the characteristic of the 

global PV market. We consider the condition with production capacity expansion in order to include 

new player’s entry in the existing PV market. The simplified game model of PV production capacity 
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expansion is presented using the form of non-cooperative game (two competing firms independently 

determine business strategy to win market share )162. The basic elements of game are as below; 

 Player: a decision maker, we assume that there are two groups of firms in the global PV 

market 

- Enterprise 1 (E1) : Market leaders  

- Enterprise 2 (E2): Market followers 

 Action: each player aims to maximize profits. They sell the homogenous product and compete 

with each other aiming to gain larger market shares in the global PV market.  

- Both have two choices: invest or not invest 

 Payoffs:  the final returns to the players at the conclusion of the game. 

- There are four possible cases ((a,b), (c, 0), (0,d), (0,0)) in terms of expected profits of 

Enterprise 1 and 2, respectively. The enterprise, which decides not to invest, will have 

zero profits regardless of the other firm’s decision. 

 Equilibriums occur when all players in the market have no incentive to alter their behavior. 

 

                            E1 
E2 

Invest  Not invest  

Invest a, b c, 0 
Not invest 0, d 0, 0 
Table CVII: Competing game (non-cooperative) through expansion of production capacity 

 

There are three possible cases, which define different market characteristics. The assumptions 

are made based on expected payoffs.  

(1) Assumption: a, b, c, d > 0  

In this case, the market is big enough to accommodate all players with new capacity of 

production. The market continues to grow or is unsaturated.   

Equilibrium:  In this case, Nash equilibrium is achieved when both E1 and E2 decide to 

invest with the payoff (a, b). The decision to invest is dominant strategy163 for both players. If 

E1 and E2 invest in building new production capacity and both produce, then the market will 

give positive profits to both players.  

(2) Assumption: a, c, d > 0 and b < 0 

This case refers to the market situation when there is the first-mover advantage or when the 

following firms are subordinate to the leading firms in terms of production capacity expansion.  

Equilibrium:  In this case, when the leading firm decides to invest, the follower will give up. 

If both E1 and E2 invest in expanding new capacity and both operate, then E2 will have the 

losses.  

 

 
                                                      

162 Non-cooperative game: two competing firms independently determine a pricing or business strategy to win market shares. 
163 Dominant strategy: regardless of what any other players do, the strategy gives a larger payoff than any other strategies. 
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(3) Assumption: a, b < 0 and c, d > 0  

In this case, the market is not big enough to absorb both firms. The market is almost saturated 

and it demonstrates a slow market growth. In this case, if both firms operate, then they will 

gain the losses because of excess supply.  

Equilibrium: This market allows only one firm’s profits. If E1 and E2 invest and both operate 

in the market, then E1 and E2 will have the negative profits. However, when one firm operates, 

the other firm had better not invest. There are two Nash equilibriums; when E1 invests, E2 

gives up in expanding the production capacity and vice versa, the expected payoffs are (c,0) or 

(0,d). 

3.1.2 The global PV market situation based on production capacity expansion game 

Case of (1) 

The PV market demonstrated a consistent market growth before the PV industry crisis since 2008. 

The European policy to simulate PV installations supported this market growth. Therefore, the PV 

market had balanced supply-demand mechanisms allowing expansion of new capacity of 

production. This case fits with the historical movements of PV market growth. Chinese policy 

decision was made based on the condition that this trend of global PV market continues.  

Case of (2) 

The first mover’s advantage does not count a lot in the dominant crystalline silicon-based PV 

production, especially in terms of labor-intensive PV cell and module manufacturing (Mehta, 

2011). The downstream manufacturing of crystalline silicon-based technologies has low barriers to 

entry because the process is simple and cost-effective. It is subject to substantial economies of 

scale. Furthermore, technology transfer and knowledge spillovers through multinational firms’ 

activities are common practices (de La Tour, et al., 2011). The PV market has gained knowledge 

spillovers from other technologies, regions, firms (Nemet, 2012). The first-mover advantage is 

feasible when a firm has a unique technological leadership for specific technologies. This situation 

can be possible with PV technological breakthroughs. In this regard, the second case of market 

feature does not fit with the current global market situation, which is dominated by crystalline 

silicon-based PV production.  

Case of (3) 

The PV market mechanisms have changed with the economic downturn in 2008, which sharply 

reduced European PV demand. The market’s limited demand became a barrier for new expansion 

of production capacity; the stagnant market could not absorb the increase of production capacity. 

Besides, to make things worse, during 2008 and 2009, the expansion of production capacity 

rapidly increased with Chinese inputs in the global PV market, leading to the excessive production. 

The fierce cost reduction competition was intensified with the global oversupply situation. From 

here, we can conclude that the shrinking market growth faced with the global recession, the solar 

PV market situation turned to the third case, which only allows a few firms’ profits. If both invest, 

they will have negative profits (see Part II chapter 3). 
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3.2 Chinese strategic trade movements  

In this section, the feature of external factors is explained to understand the dynamics of PV 

policy mechanisms. A game theoretic approach was used to investigate Chinese policy decision with 

strategic movements and the influence on investment choices and payoffs. Chinese strategic 

movements are explained using strategic trade policy. Why Chinese PV firms largely expanded their 

production capacity despite the shrinking demand growth? The ulterior motive is identified based on 

the analysis.  

3.2.1 Chinese investment choice and payoffs without government’s policy support  

The situation is illustrated in a duopoly setting. Both are considering an investment in adding 

new production capacities to reduce production cost per unit. As seen, the PV market benefits from the 

substantial economies of scale. Some firms with mass production capacity will gain better economic 

competitive having decreased production cost per unit. The PV industry requires a high cost for initial 

investment.  Each firm will be affected by its competitor’s decision. 

 Player: We assumed that there are two payers: German producers and Chinese producers. 

 Action (strategy): Each player aims to maximize profits. They sell the homogenous product 

and compete with each other aiming to gain larger market shares in the global PV market. 

 Payoffs:  The final returns to the players at the conclusion of the game. 

 Equilibriums occur when all players in the market have no incentive to alter their behavior. 

                      Chinese producers 
German producers 

Produce Not produce 

Produce a, b c, 0 

Not produce 0, d 0, 0 
Table CVIII: Payoff matrix without policy support 

1) Assumption: a, b< 0, and c, d >0 (cf. 3.1.) 

The market is not big enough to accommodate two players with new capacity of production. 

Equilibrium: When German players invest, Chinese players give up in expanding the 

production capacity and vice versa, the expected payoffs are (c,0) or (0,d). 

The possible outcomes of the game are presented by the payoff matrix in Table CVIII. Both 

German and Chinese firms are considering expanding their production capacity to gain the economic 

competitiveness of production to take the leading position in the global PV market. As seen, however, 

the market is not profitable enough to embrace two companies (see Part II chapter 3). Both firms have 

a binary choice; produce or not produce. If German and Chinese firms decide to produce, both will 

make a negative profit of a and b respectively. When German firms produce and Chinese firms do not, 

German firms will earn c, Chinese firms will earn zero and vice versa. What strategy should each firm 

choose under this payoff mechanism? 

If German first starts the production with the market leading position, the upper right hand 

corner of payoff matrix is the outcomes of the game. Germany had the market power in the global PV 

market since early 2000s; it accounted for 22% of the world market share in 2007. Chinese will not 

produce to avoid negative profits and German firms will gain the profit of c.  
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3.2.2 Chinese investment choice and payoffs with government’s policy support (strategic 
trade policy) 

We now consider a different scenario; Chinese government decided to commit to the PV 

industry growth by giving industry policy support of s. Can this change the outcomes of this game? 

This case can be interpreted with the application of the strategic trade policy theory. Different payoff 

matrix with policy support is developed based on Krugman’s strategic trade model (Krugman, 1986; 

Krugman, 1987).This new setting gives new equilibrium and different investment choices from Table 

CIX. It is important to justify the additional gain of s for Chinese firms because they changed Chinese 

investment choices.  

                      Chinese producers 
German producers 

Produce Not produce 

Produce a, (b+s) c, 0 

Not produce 0, (d+s) 0, 0 

Table CIX: Payoff matrix with policy support (based on strategic trade theory) 

Chinese government strategic policy support (justification of s) 

In this part, we demonstrate Chinese government’s intervention aiming to give policy support 

of s. Chinese governmental industrial PV policy aimed to improve the PV industry’s competitiveness 

to gain the global market share. There are many evidences that Chinese PV industry was supported by 

the governmental various forms of subsides. The Chinese government, at both central and local levels, 

supported PV manufacturing investment through various forms of subsidies; innovation funds, 

regional investment support policies (2009) issued by some Chinese city governments, as well as free 

or low-cost loans, tax rebates, research grants, cheap land, energy subsidies and easy credit, and 

technological, infrastructure and personnel support  (Gang, 2015). China’s low labor cost and low 

energy price facilitated the industry’s expansion by reducing production costs (Grau, et al., 2012).  

Chinese subsidized credit supported PV producers for capacity expansion regardless of their 

productivity levels, even if some of these loans may face high risk of default. To give an example, 

between 2005 and 2012, Wuxi Suntech Power Co. Ltd, once China's largest PV manufacturer, was 

able to receive a loan up to US$ 3.7 billion; it was mainly due to a municipal government mandate on 

local state-owned banks for providing low-interest loans to Suntech (CHEN GANG 2015). 

Furthermore, from 2006 to 2011, Wuxi Suntech also received tax rebates and other forms of refund 

amounting to 8.65 billion yuan (about US$ 1.42 billion) from the government with the aim of 

promoting exports. 

Moreover, faced with strong global competition after 2009, despite the world over production 

situation, China government did not stop providing subsidies in PV solar industry to protect local GDP 

and employment. China’s continuous easy access to credit and permissive standards gave advantage 

for local manufacturers to gain scale effects for building gigawatt (GW)-scale plants (Goodrich, et al., 

2011).  
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Given this condition of Chinese government supports to PV industry, how differently will the 

Chinese PV industry respond? The new outcomes of the game are presented in Table CIX. The 

Chinese firms will have additional gains from subsidies of s. 

 

New equilibrium and investment choice with policy supports of s: Chinese supply-side policy 

objective 

1) Assumption: a< 0, (b+s)>0  

Supported by government policy support of s, Chinese firms will gain positive outcomes 

regardless of the German firm’s strategy. This assumption was the basis of Chinese export-

oriented policy strategy. The aim was to give industry support to gain the global market shares 

based on the price competitiveness.  

 Equilibrium: Chinese players will invest in all cases and this will drive the German players to 

move out of the market. The expected payoffs are (0, d+s). 

Chinese firms will move differently with a new payoff mechanism. Chinese firms will make 

positive profits regardless of what German firms do because policy support covers the expected 

negative profits of Chinese firms when both produce. On the other hand, German firms know that 

Chinese firms will produce in either case.  

As seen, the current PV market does not allow absorbing both firms because of the decrease of 

the global demand growth. When German firms produce, they will gain negative profit of a. However, 

they will gain zero profit when they do not produce. Not produce than produce does less harm to 

German firms; the equilibrium of this game can be found in the lower left-hand side corner.  

In fact, as seen, supported by governmental aids, many Chinese PV firms have invested in 

expanding new production capacities to gain the economies of scale; there was a massive entry of new 

players into the PV market during the late 2000s. As seen, strategic trade policy demonstrates how the 

profit transfers from one country to another. Trade surplus in solar components and equipment was 

somehow shifted from Germany to China. Consequently, Chinese firms took a share of the market 

away from their competitors based on an export-oriented strategy and finally surpassed their German 

and Japanese competitors since 2007, occupying a dominant market share (58% in 2012 for cell 

production (IEA PVPS, 2002 to 2013)164) in the global PV market.  

 

Excessive production in the global PV market and negative payoffs: dynamic results 

However, the strategic policy theory has limits to explain the dynamic feature of market 

structure and potential response (Dixit & Kyle, 1985). There are several issues to be discussed to better 

explain the actual payoffs.  

                                                      
164 Authors’ calculation based on IEA PV PS data. 
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 Market risks: Chinese strategic movements were heavily dependent on the overseas market 

which is difficult to control. Moreover, the PV market is highly subsidized, thus very volatile 

according to policy decision.  

 Dynamic changes of market structure: the decreased demand growth in Europe faced with 

the global economic recession. 

 Retaliation between countries: trade disputes were rolled out. 

Chinese firms’ investment decisions to enter the PV market are based on the combination of 

the government policy support to promote the PV industry (e.g. access to capital) and the strong 

market signal in Europe under the political willingness to stimulate PV installations. However, 

Chinese export-oriented policy strategy contained high market risks. China’s expansion of production 

capacity was heavily export-oriented without establishing a domestic market. For example, China 

exported 97.5% of its modules produced in 2006 and 96% in 2009 (IEA PVPS, 2010b). Therefore, 

Chinese strategic trade movements without domestic market development included high market risks. 

In addition, the PV market is very dynamic. The prompt response to the rapidly changing 

market situation is essential to avoid economic damages in the international market. The strong market 

signal of PV growth in Europe suddenly changed because of the reduced demand growth faced with 

reduced policy support caused by the global economic recession. This provoked a change in the 

context of PV policy system. Chinese supply-side policy was designed based on the observed trend of 

market growth. However, even though the characteristics of PV market were modified with the context 

change, the country maintained the decision that was made in different policy context. Therefore, the 

industrial competition in the global market continued due to the inertia of policy implementation and 

time lag in market response.  

 Both continued to support its production since PV industry is a strategic industrial position in 

both countries (see Part II). In particular, despite the stagnated global market, Chinese firms continued 

to expand their production capacities to gain economies of scale; this decision led to overproduction 

issue in the global market. As seen, before the mass entry of Chinese products, the global supply and 

demand almost matched. However, Chinese production capacity alone represented almost 2 times of 

European demand in 2012.   

Furthermore, the strategic trade policy can provoke retaliation (trade dispute or trade war) 

between countries. China faced obstacles for imports of PV products going through trade disputes with 

the U.S. and EU. In 2012, the U.S. decided to impose duties of as much as 250% on Chinese PV 

modules to protect the U.S. manufacturers. The EC (European Commission) also decided to impose 

provisional anti-dumping duties (average 47.6%) on imports of solar panels and key components (e.g. 

cells and wafers) from China (European Commission MEMO, June 2013). As a consequence, Chinese 

firms started to delocalize the production lines to Taiwan and Malaysia. In addition, this decision 

caused trade retaliation; China also imposed anti-dumping duties on US polysilicon as much as 57% 

on solar-grade polysilicon from the U.S. (PV magazine, 2013). 

The results of Chinese strategic trade policy were observed in process of time. The fierce 
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global competition provoked negative payoffs to both countries. In the previous section, we have seen 

Germany’s negative payoffs influenced by Chinese strategic movement (section 2). However, China 

also encountered negative payoffs with a time lag. Proofs were observed in various aspects: 

bankruptcy of PV firms and job losses in China (see Part II). Many Chinese PV firms experienced 

financial losses. 

 
Figure 81: Debt & net cash balance of Chinese and U.S. companies, Q4 2010 (Haley & Schuler, 2011) 

China somehow failed to meet the intended policy objectives; this raises a question about the 

efficiency of Chinese industry policy support in the long-term. In addition, it should be examined how 

China allotted money for subsidies.  

In conclusion, in this game setting, both German and Chinese firms gained negative payoffs at 

the end. The complexity and dynamic features of the global PV system largely influenced them. 

Furthermore, Chinese strategic trade policy provokes trade disputes with trading partners. It is 

important to notice that this situation would again change the policy context of Chinese supply-side 

policy by further reducing the size of potential market. Taken all these situations into account, the 

losses of Chinese firms can be increased in the future.  

 

3.3 New game setting: market expansion game 

We have seen how the non-cooperative game driven by Chinese strategic trade movement 

caused negative payoffs for both players. The global PV market is suffering from the oversupply issue, 

PV industry crisis and long-lasting trade disputes. 

We consider new game setting here below to change the market characteristics. Both countries 

now want to exit the current market situation through new market development. We suppose that both 

countries’ strategic decisions are to increase demand rather than staying with a limited market size. 

The aim is to grow the size of pie in the global PV sector; the shift of market characteristics from case 

3 to case 1 (see section 3.1).  
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There are two choices: not expand (stay with the current business patterns) or expand (invest 

in new market or business). The development of new market (expand) gives the growth opportunities 

to both players with increased profits. If they decide to continue the PV business as the way they do 

until now (stay), they gain zero profits from the new market.  

 

                                     E1 
          E2 

Expand Not expand 

Expand a, b c, 0 

Not expand 0, d 0, 0 

 

(1) Assumption: a, b, c, d > 0  

In this case, the market is big enough to accommodate all players. All players receive positives 

payoffs to their investment.  

Equilibrium:  Nash equilibrium with the payoff (a, b).  

(2) Assumption: a, c, d > 0 and b < 0 

This case concerns a special market with first-mover advantage and high entry barriers like 

exclusive technology expertise.  

Equilibrium:  When the leading firm decides to invest, the follower will give up.  

(3) Assumption: a, b < 0 and c, d > 0  

This market is not big to guarantee for all players. In this case, if both firms operate, then they 

will gain the losses because of excess supply.  

Equilibrium: Two Nash equilibriums; (c, 0) or (0, d). 

 

There are three possible cases in terms of payoffs of the market expansion game.  

 

Case of (1) 

PV market can be developed in regions without PV business (e.g. electrification of the developing 

countries). Under this case, the development of new markets gives growth engines to both 

countries’ PV industry. However, to make assumed positive payoffs feasible, a risk analysis 

should be conducted to mitigate any potential risks that can be occurred (see Part I chapter 4). The 

payoff matrix can be changed faced with market dynamics. 

 

Case of (2)  

This can be feasible with technological breakthroughs or innovations in usages; e.g. non-

crystalline or hybrid technologies, coupling with other sector like green buildings, electric vehicles 

or H2. The first-movers who successfully gain such competitiveness will earn big profits.  
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Case of (3) 

This market is closely linked with the fierce international competition supported by strategic trade 

policy. When new markets or new business opportunities are created, the global competition can 

be again increased based on strategic trade policy to gain the market share. The same mechanisms 

can be rolled out in the global PV market. To justify this, we can refer to the current oversupply 

issue in the global polysilicon market. Once Chinese PV industry successfully expanded their 

production capacity in modules, China’s strategic movement was extended in polysilicon market. 

With Chinese inputs in the global polysilicon market, the global market encountered the 

overproduction problem. The current selling price is around 12-15$/kg (PVinsights, 2016), which 

is estimated less than the manufacturing costs (~15$/kg) (Insight Semicon, 2016). Similar 

mechanisms were rolled out in the global polysilicon market followed by overproduction of solar 

PV module market. In conclusion, new market expansion can probably give positive payoffs in the 

short-term; however, it is hardly guarantee the long-term positive payoffs. 

 

How those countries can be better off in the global PV market? 

When the game is played repeatedly, both players can behave differently to maximize the 

profit. They can change strategy over time in response to the competitor’s behavior, market change 

and lessons from the past.  

As seen, as a consequence of strategic trade policy, the established production capacity largely 

exceeds the global demand increase. However, the long-lasting trade disputes reduced the scope of 

business market of the relevant industry players. The global PV industry needs to find a new strategy. 

Both countries want to exit from the current industry crisis with positive payoffs from the market 

expansion decision. However, PV firms, in particular Chinese firms, might be reluctant to make new 

investment because of the current situation with financial losses unless the investment is subsidized. If 

both decide to stay with the current business, the presented negative payoffs will remain the same. In 

addition, it is possible to consider entering the market once a market is formed by the other player. 

However, this time, trade barriers can be designed from the beginning of the market development to 

protect the new market from the competitors. Therefore, both have interested in reacting differently to 

avoid the reproduction of the same mechanism of PV industry crisis.  

There are three possible cases in terms of investment decisions. 

Cases Costs Returns 

Business-as-usual (BAU) 

baseline case 

Sunk costs Negative profits  

(Excessive production , trade disputes) 

Expand  

(new markets) 

alone High investment costs  Full profits/losses from new markets 

(New outlets for the overproduction) 

together Reduced investment costs Shared profits/losses from new markets 

(New outlets for the overproduction ) 

Table CX: Possible cases in terms of new market development 
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Cooperative actions can be an option if they lead to better outcomes for each player than the 

business-as-usual (BAU) baseline case or alternative option (e.g. sole investment). As seen, both have 

negative profits under the BAU case with long-lasting trade disputes and excessive production. Firm’s 

previous investment is referred to sunk costs (they have already been made and cannot be recovered). 

In economics, sunk costs should not be considered to make rational investment decisions. Furthermore, 

the demand-side policies in Europe are more cautious gone through the expensive experience with FIT 

system and the demand growth in Europe slowed down. The new demand creation is needed. However, 

as seen, the financial situation is not the same as before the PV industry crisis. Given the current 

circumstance with financial difficulties, the sole investment with high risks seems difficult to make for 

both players even though it is more attractive option with higher returns. If they develop new markets 

together, the total costs can be shared with less business risks. The second best plan (invest together) 

seems more realistic option for both with less investment risks.  

However, they act to maximize their own profits. There is no guarantee that both will 

cooperate. With the dynamic features of market, the cooperation without enforceable binging 

agreements is rarely reliable. They can break the promise of cooperation anytime to increase their 

payoffs. Both need a reliable commitment to make sure the other party will be cooperative for the 

future game. If any player has incentives to break the cooperation, it is not stable solution.  

How can we transform this situation to a stable solution? One good solution is that players can 

consider joint investment strategy (e.g. strategic alliance, joint venture) to create new markets. Public 

policies have an important role in supporting this movement by removing institutional risks or context 

risks. Cooperative actions can be possible on the condition that Chinese strategic trade policy is 

stopped. In addition, international governance also has a key role in negotiations. The targeted areas 

should be where neither firm would have enough knowledge to succeed on its own to attain the perfect 

cooperation game. In order to divide profits from their joint investment, the good strategy for both 

firms is to find complementary mix. 

 

 

4 Conclusions  

This chapter presented a sharp insight into complexity of PV policy system in the international 

context. We provided an in-depth analysis to explain the dynamic features of PV policy mechanisms 

combined with globalization. The global market balance was broken as a result of interactions of 

different policy strategies under the globalization.  

We demonstrated how German policy was influenced by Chinese strategic trade policy under 

the non-cooperative game setting. Chinese strategic trade movement changed the German policy 

mechanisms producing unexpected results in terms of domestic installations, PV industry, jobs, PV 

policy costs as well as international trade. Those complex interactions of Chinese supply-side policy 

and German demand-side policy are analyzed using strategic trade theory and international trade 

theory. It was demonstrated how the non-cooperative game setting ended with losses for both players. 
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The global PV market suffers from the oversupply issue, PV industry crisis and long-lasting trade 

disputes. The long-lasting trade disputes reduced the market size for the relevant industry players. 

In this regard, we also considered a new game setting to provide the possibility of demand 

creation. Since the global PV business is not one time game, both parties can behave differently to 

maximize the profit. They can change strategy over time in response to the competitor’s behavior, 

market change and lessons from the past. In order to avoid the current negative payoffs with 

overproduction and long-lasting trade disputes, both players have interests to look for new business 

opportunities. The development of new market can bring new outlets for the oversupply of PV 

products and business opportunities to both players. Taken the financial difficulties of PV firms into 

account, the cost-sharing through cooperative actions seems a realistic option to develop new market. 

However, in order to make this a stable solution, public policies have an important role in preparing an 

appropriate policy framework and creating business climate for the new market development in the 

international context. 
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Chapter 3. PV development opportunities with international cooperation  

In this chapter, we intend to propose strategic directions to solve the oversupply issue based on 

international cooperation. The goal is to suggest further growth opportunities of PV power in the 

international context. First, we propose to develop new PV markets in less-developed and developing 

countries with little access to electricity. We quantify those growth opportunities and the contribution 

to the global PV sector. And then, we also propose other possibilities of cooperative political actions to 

enhance the PV system competitiveness.  

This study is conducted in three steps.  First, we present possible solutions to escape the 

current industrial crisis with overproduction. We then propose a solar PV electrification program in the 

developing countries (section 2). This aims to give new outlets for the oversupplied PV market. Apart 

from this objective, our study attempts to demonstrate other benefits of this option; e.g. a solution for 

the world energy poverty problem, reduction of global CO2 emissions, and contribution to enhance PV 

competitiveness. In addition, using the learning curve theory, we propose a smart strategy (we name it 

‘PV domino diffusion strategy model’) to maximize the cost reduction effects benefiting from the 

market expansion. Next, we also suggest other cooperative political actions to enhance the PV system 

competitiveness in non-module sector (section 3). 

1 International cooperation for future PV growth 

1.1 New market equilibriums  

In order to prepare new international PV global setting for the future PV growth, the 

unbalanced PV market mechanism should be first solved with new equilibriums. Those approaches 

had better conduct in the international context because the PV market is now largely globalized.  

The global market oversupply problem can be solved through a supply decrease by 

restructuring of the global manufacturing system or expansion of the market in search of new market 

equilibriums. The decrease of supply-side seems a limited solution since heavy investment has already 

been made to build many large-scale GW plants in the global PV market. In addition, an innovative 

approach can intervene to propose new usages (e.g. coupling with other technologies such as mobility, 

storage and building). Innovation in sectors related to PV policy mechanisms is also important to 

further enhance the PV competitiveness. Thus, opportunities can be examined to explore new outlets 

of solar PV growth:  

o Supply-side responses: restructure the supply system (e.g. mergers and acquisitions, new 

government-driven strategies) 

o Demand-side responses: explore new markets such as less-developed countries with less 

access to electricity  

o Innovation approach: add value through new usages by coupling with other sectors 

(mobility, buildings, smart grids, and storage) or bring innovation for technological 

breakthrough or cost reduction.  
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On this last point, the development of other PV technologies (e.g. thin film, hybrid, 

concentration PV, organic PV, etc.) is an important issue to find new markets. Some specific policies 

could be applied (e.g. niche market development or specific support) to counterbalance strong 

crystalline silicon competition due to scale effects that lock the PV market to other interesting but less 

commercially mature technologies (technological lock-in (Finon, 2008) ). 

1.2 International cooperation for a sustainable growth  

It is worth considering benefits related to solar PV expansion in other regions such as the 

developing countries or less-developed countries. This implementation of solar PV (on both supply- 

and demand-sides) in those regions can be interesting for existing players as well as new entrants.  

It can provide an opportunity to create new outlets for the excessive production capacity or 

business for existing players. At the same time, new regions can obtain an optimal system with 

economic development in addition to the new energy solution to address the energy equity problem. 

This can be explained based on the green growth theory (Jouvet & de Perthuis, 2012; Lee, 2010; 2011) 

(see Part I).  

The PV system can be used to solve the electricity problem in the world because it can be 

easily decentralized and the economics of PV system has been largely improved in recent years. At the 

same time, through the establishment of a new paradigm with sustainable energy supply through PV 

system and power consumption, the new region can have another development route with a more 

sustainable Environment Kuznets Curve (EKC) (Kang & Lee, 2009, p. 47; Stern, 2004). 

 
Figure 82: Possible international cooperation - an economic model of green growth 

This concept can raise concerns since it broadens economic gaps between developed countries 

and developing economies when they do not have proper infrastructures and technologies to 

implement green initiatives. For this matter, however, coupling the international partnership of supply 

and demand can be recommended when looking for synergies. The accumulated experiences and 

knowledge in PV production and installation in the past can be passed down to new regions. It can also 

provide economic growth engines in this region. Therefore, it eventually allows those countries to 

attain economic goals through green mechanisms and the world environmental curve will fall with the 

expansion of sustainable energy systems across the world.  
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1.3 Possibilities of strategic cooperation  

The current market is suffering from the fierce price competition leading to oversupply 

problem, this phenomenon was extended to the polysilicon market. In addition, the long-lasting trade 

disputes narrowed the scope of market for China, EU and the U.S. Therefore, those countries have 

common interest in developing new market to solve such problems. In the previous chapter, we have 

seen that cooperative actions open up possibilities to reduce investment risks through cost-sharing. We 

now present possible approaches in terms of cooperative actions.  

Strategic alliances 

The strategic alliances occur when two or more organizations work together to pursue mutual 

benefits under the shared objectives. Each party contributes in one or more strategic areas of the 

alliance (specific resources or skills) to achieve common goals. We can consider a complementary 

strategic mix between China and Germany to develop new markets in less-developed and developing 

countries. Complementary strategic alliances are established to take advantage of market opportunities 

and to create new value by combining partners’ assets in a complementary way (Harrison, et al., 

2001). For example, we can consider a vertical complementary strategic alliance to use their assets in 

different stages of the value chain. 

Both have a complementary mix to create added value around the PV value chain (see Figure 

83). Germany can contribute in terms of its competency area like silicon refining, equipment, 

machines for plants and engineering. China can supply cheap modules to new markets based on 

already established production capacity.  

 
Figure 83: Complementarity of Germany and China in the PV value chain 

Table CXI shows a summary of contribution, benefits and common interests from the strategic 

mix. It is interesting to focus on benefits of the global community. This can reduce CO2 emissions by 

replacing the potential alternative (diesel generators) and solve the world electricity problem. 

Furthermore, it gives a sustainable development model in those areas. In addition, the advanced 

standards of technologies or PV installations can be transferred in those regions. This also includes 

standards of PV installations, related norms and technical specifications. The enlarged global market 

size will contribute to improve the competitiveness of PV power through experience curve effects. 

Quantified opportunities and effects are presented in the next section. 
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 Germany  China New regions 

Contributions  - PV-grade silicon  supply 
- Engineering 
- Equipment 
- Expertise of PV 

installations and system 
management  

- Cheap supply of solar cell/ 
modules  

- Expertise of PV 
manufacturing  

 

 

- Favorable climate 
condition  

- Provide new business 
opportunities  
 

 Benefits - New outlets for oversupply  
- Stable market for 

polysilicon & associated 
industry  

- Economic benefits  

- New outlets for oversupply  
- Stable supply of silicon  
- Economic benefits  

- Sustainable energy 
supply system  

- Economic development 
- Increase the access to 

energy 
Common 

interests 

- Reduction of CO2 emissions (international objectives) 
- Solution for the global energy poverty problem (increase electrification rate) 
- Shift to a greener model for the socio-economic development of the globe  
- PV cost reduction through expanded market size and experiences 

Table CXI: Contributions and benefits from strategic cooperation 

 

Risk analysis 

However, as we have seen in Part I, the PV development contains various risks. Table CXII 

shows our risk analysis to develop such markets. Even though each risk will be different according to 

each country concerned, this analysis gives us a quick understanding of principal risks. The financial 

risks pose one of the great obstacles to develop PV markets in those areas. In addition, we can 

encounter institutional risks like lack of standards or lack of infrastructures. The substitute risks are 

important to consider in this region, they are closely related to the fossil fuel price change. Also, 

customers possibly prefer to use diesel generator rather than PV system because of the low cost of 

initial investment (customer risks). We need to prepare mitigation strategies to eliminate those risks 

prior to developing PV markets in those regions.  

 Risks  Likelihood * Notes Strategies to reduce risks  
Internal risks Technology  1 Costs (e.g. PV system, 

battery) 
Economies of scale 

Market  2 Preference to substitute (low 
investment costs) 

Financial support 
Public education  

Institutional 3 Lacks of institutional 
framework, public training 

Increase weak institutional area 
and trainings 
Adaption strategy  

Financial 3 Costs of capital, lack of 
access to capital 

International climate fund 
Develop customized financing 
model 

External risks Supply 1 Overproduction of 
polysilicon 

 

Context  2 Fossil fuel price change 
Economic situation 

Carbon taxes 
 

*Likelihood: 1 (low), 2 (medium), 3 (high) 

Table CXII: Risk analysis in terms of PV market development in less-developed and developing countries 
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2 A case study on international demand creation for PV electricity 

As suggested, a solution to solve oversupply in the global PV market can be sought in pursuit 

of new demand. This section aims to present opportunities of international demand creation based on a 

case study on the PV electrification in less-developed and developing countries. We have selected 49 

countries, which have little access to electricity but abundant solar energy resources (see annex). Our 

analysis quantifies the size of potential market and the economics of PV power in these regions. It also 

accelerates the regional development by increasing access to electricity through low carbon economic 

development trajectories. Therefore, we also examine impacts on CO2 emissions reduction.  

 

2.1 Characteristics of selected countries 

2.1.1 Electrification rate and potential solar energy output 

Approximately 1.3 billion people lack access to electricity around the world. According to the 

World Bank, the energy access problems are concentrated in Africa and the Southeast Asia; however 

there are also significant solar energy resources in these regions (see Figure 84 and Figure 85). It is 

thus possible to meet the electricity demand in these areas using the abundant solar energy resources. 

  

Figure 84: Access to electricity in the world (World Bank) Figure 85: Global Horizontal Irradiation (GHI) in the 
world (SolarGis) 

Our study is based on data concerning 49 countries in energy poverty regions with good solar 

resources, including the least developed countries in Africa, Southeast Asia, India and Bangladesh. 

They represent 1.06 billion people (World Bank database). Figure 86 shows the population 

percentage with access to electricity (in blue) and the potential output of PV power per year (in red, 

kWh/kWp/year) in these countries. The average potential PV power output is 1548 kWh/kWp/year; 

this is about 50% higher than the average PV resources in Europe. 
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Figure 86: Electrification rate (The World Bank(f)) and PV resources by country (PVgis)165 

We found that the following countries have the largest population without electricity among 

the selected countries, but they still have a good solar energy resource potential. 

Country Inhabitants without electricity 
(million) 

Electrification rate (%) PV power output 
kWh/kWp/year 

India 275 78.7 1550 
Nigeria 78 55.6 1450 
Ethiopia 71 26.6 1640 
Bangladesh 64 59.6 1400 
Congo 62 16.4 1350 
Table CXIII: Countries with the largest population without electricity 

2.1.2 Grid condition & risks 

PV development in these regions is not without risk. Even though the risks differ according to 

each country, the financial risk is one of the great obstacles to developing PV markets in these areas. 

In addition, institutional risks can also exist, e.g. a lack of standards or infrastructures. Therefore, it is 

hardly possible to supply electricity to all residents based on the grid-connection since it is a very 

expensive solution. Furthermore, many countries among the selected countries have large territories to 

cover, which lead to high grid extension costs.166 In this regard, as PV systems have the advantage of 

being able to provide decentralized power, the utilization of off-grid PV systems seems to be an 

appropriate solution in these regions. Diesel generators are the classical way of supplying power in 

these regions (substitute risks). Customers also tend to prefer to employ an energy option that 

generates the lowest initial investment cost (customer risks). 

2.2 Potential PV market size 

In our study, we assumed that PV systems were deployed in the selected countries to increase 

the power supply for residents with no electricity access via the available energy resources. We 

describe the opportunities available for the world’s energy transition by using solar PV systems in the 

                                                      
165 The list of selected countries is given in annex 
166 A medium voltage line extension is the cheapest solution for power supply only up to a 15 km distance of the village from 
the grid. The expansion of a medium-voltage line costs around 45000 $/km and 40000$ for transformers 
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selected countries. The maximum market size for electrification in the selected countries is defined. 

The expanded deployment of PV systems in the selected regions would increase their energy 

independence by improving their energy self-sufficiency. A quick calculation gives the potential 

market size of PV power in the 49 countries selected. 

 

1) Demand 

We have considered that those with no access to electricity would need the same amount of 

electricity as the average power consumed by the population with electricity. To define a realistic 

power consumption pattern, we need to determine the average power consumption per capita with 

electricity access in these countries. We divided the power consumption per capita by the 

electrification rate based on the country data available from the World Bank. The calculated average is 

922 kWh/year per capita in these countries.  

 

2) Supply 

As indicated, the average potential PV power output in these countries is 1548 

kWh/kWp/year. We can conclude that a solar panel of 0.6 kWp/capita allows us to meet this 

electricity demand (922 kWh / year per capita /1548 kWh / kWp / year = 0.6 kWp/capita).  

 

3) Potential market size  

In conclusion, we defined the total market size for the full electrification in these regions is 

about 640 GWp (0.6 kWp x 1.06 billion people). This results in an electricity consumption of around 

980 TWh/year (922 kWh/year x 1.06 billion people).  

 

2.3 Competitiveness of PV power with enlarged global market size 

The enlarged PV market size would bring the learning curve effect in terms of PV price 

decline. We now quantify this effect based on the projected market growth. 

2.3.1 Reduced PV system prices  

The positive correlation between the module price drop and the size of cumulative installations 

has been demonstrated in many studies (see Part I). We thus assumed the enlargement of the PV 

market size would help reduce the price of PV systems (the learning effect). The effect can now be 

quantified on the basis of the projected market growth (~ 640 GWp). As the PV market grows by 

embracing such regions, the PV system price can be reduced since it benefits from the larger market 

size. We considered a learning rate of 18% for the PV system costs in our calculation. The result 

indicates that PV system prices will be almost halved from the actual of $ 2.13/Wp167 (IEA PVPS, 

2015) to about $1.3/Wp.  

                                                      
167 The cost of the least expensive residential PV system in Germany   
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Figure 87: Estimated PV system cost (with a learning rate of 18%) 

2.3.2 Reduced PV LCOE  

1) Reduced PV LCOE thanks to the enlarged market size 

The projected decline in solar PV systems would lead to a reduced PV LCOE. We now 

calculate PV LCOE in these countries. In our calculation of PV LCOE, we use the cost of the least 

expensive residential PV system in Germany, 2.13$/Wp in 2015 (IEA PVPS, 2015). Discount rates of 

8% and 12% were taken into account because projects in developing countries are more risky than 

those in developed countries. Table CXIV and Table CXV list the current and future PV LCOEs 

respectively for certain countries according to their different solar energy resources.  

Solar energy resource 
(kWh/kWp/year) 

Current PV LCOE with discount 
rate of 8% 

Current PV LCOE with discount 
rate of 12% 

1800-1850  
(South Africa, Yemen, Namibia) 

12.5 c$/kWh 15.5 c$/kWh 

1500-1550 
(India, Myanmar, Uganda) 

15 c$/kWh 18.5 c$/kWh 

1200 
(Nepal, Philippines) 

19.5 c$/kWh 24 c$/kWh 

Table CXIV: Current PV LCOE in the developing countries (PV system cost: 2.13 $/Wp) 

 

Solar energy resource 
(kWh/kWp/year) 

Reduced PV LCOE with discount 
rate of 8% 

Reduced PV LCOE with discount 
rate of 12% 

1800-1850  
(South Africa, Yemen, Namibia) 

7.5 c$/kWh 9.5 c$/kWh 

1500-1550 
(India, Myanmar, Uganda) 

9 c$/kWh 11 c$/kWh 

1200 
(Nepal, Philippines) 

12 c$/kWh 14.5 c$/kWh 

Table CXV: Reduced PV LCOE with the enlarged market size (PV system cost: 1.3 $/Wp) 

 

1) PV LCOE with batteries thanks to the enlarged market size 

We then extended our calculation to PV systems combined with Li-ion batteries for residential 

applications. We assume the use of 0.6 kWp PV system coupled with a 2kWh168 batteries because 

2kWh batteries can store almost 80% of the average daily consumption.  

The LCOE of PV systems coupled with batteries is calculated below: 

                                                      
168 The daily consumption of ~2.5 kWh/ day is necessary (~2.5 =922 kWh / 365) 
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Solar energy resource 
(kWh/kWp/year) 

Discount rate of 8% Discount rate of 12% 

LCOE battery 
PV LCOE 
with battery 

LCOE battery 
PV LCOE 
with battery 

1800-1850  
(South Africa, Yemen, Namibia) 

12 c$/kWh 24.5 c$/kWh 13.5 c$/kWh 29 c$/kWh 

1500-1550 
(India, Myanmar, Uganda) 

14.5 c$/kWh 29.5 c$/kWh 16 c$/kWh 32.5 c$/kWh 

1200 
(Nepal, Philippines) 

18 c$/kWh 37.5 c$/kWh 20 c$/kWh 44 c$/kWh 

Table CXVI: Current PV LCOE coupled with 2 kWh batteries (PV system cost: 2.13 $/Wp, battery price: 500$/kWh) 

Our calculation is based on the battery price of 500$/kWh (see chapter 1.4). The maximum 

LCOE of batteries is 20 c$/kWh. The range of the battery LCOE169 varies from 12 c$/kWh at 1850 

kWh/kWp/year with a discount rate of 8% to 20 c$/kWh at 1200 kWh/kWp/year with a discount rate 

of 12%. Furthermore, battery prices are expected to decrease in the next years based on economies of 

scale (see Part I). Therefore, the LCOE of batteries will probably fall below 6 c$/kWh in 2030 based 

on the estimated battery cost of 150 $/kWh.  

Solar energy resource 
(kWh/kWp/year) 

Discount rate of 8% Discount rate of 12% 

LCOE battery 
PV LCOE 
with battery 

LCOE battery 
PV LCOE with 
battery 

1800-1850  
(South Africa, Yemen, Namibia) 

3 c$/kWh 10.5 c$/kWh 4 c$/kWh 13.5 c$/kWh 

1500-1550 
(India, Myanmar, Uganda) 

4 c$/kWh 13 c$/kWh 5 c$/kWh 16 c$/kWh 

1200 
(Nepal, Philippines) 

4.5 c$/kWh 16.5 c$/kWh 6 c$/kWh 20.5 c$/kWh 

Table CXVII: Reduced PV LCOE coupled with 2 kWh batteries (PV system cost: 1.3 $/Wp, estimated battery price: 
150$/kWh) 

2.3.3 Comparison of PV LCOE vs. LCOE of diesel generators 

This section examines to what extent solar PV power is a more affordable energy option 

compared with diesel generators. The diesel power generators (Szabo, et al., 2011) are the competing 

technologies of off-grid PV systems in these countries. We will compare PV LCOE to LCOE of diesel 

generators. The LCOE of a diesel generator is 29.7 c$ / kWh to 33.2 c$ / kWh (Lazard 2014 170). The 

fuel price is an important variable when defining the LCOE of diesel generators. We assumed that the 

                                                      

169 The lifetime of the battery is 10 years: the LCOE of the battery is 

�್ೌ�����భ+� +�್ೌ�����ሺభ+�ሻభబ∑ ����ሺభ+�ሻ���=భ  

170 With a diesel price at 1.057 $/L 
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diesel price would stay constant in the future so we could carry out a quick comparison. However, this 

assumption is limited because it disregards many influencing factors. Based on the previous 

calculation, we now know that PV LCOE in these regions can vary according to potential solar PV 

power output and the discount rate. The PV LCOE will increase if we include 2 kWh batteries. Based 

on our calculation, it can be seen that electrification with the PV technology is less expensive than 

the power supply by diesel generators. In addition, even the combined PV systems with batteries are 

more economically feasible without jeopardizing the competitiveness of PV systems when the 

solar resource is over about 1550 kWh (24 of the 49 countries selected). Furthermore, if we include 

negative externalities in the energy system with respect to the generation of large quantities of CO2 

emissions, the real costs of diesel generators will increase.  

It is interesting to understand why people use diesel generators for their energy supply. The 

main differences between the two systems are related to financing; diesel generators require a low 

initial investment, but significant operating costs because of diesel consumption, while PV systems 

have a large initial investment cost but negligible operating costs. Therefore, we can infer that 

residents use diesel generators because of their low initial investment costs despite their high fuel costs 

and negative impact on the environment. 

 

  

Figure 88: PV LCOE with 0.6 kWp PV system + 2kWh batteries based on discount rates of 8% and 12%: current PV LCOE 
(left) and reduced PV LCOE (right) 

 

2.3.4 PV domino diffusion strategy model  

How can we roll out PV diffusion in the selected countries at the lowest possible cost? We 

will now attempt to propose a smart strategy which maximizes the reduction of PV policy costs based 

on the projected enlarged market size. We assumed that PV systems were installed in consecutive 

order from the country with the highest solar energy resources to the country with the lowest solar 

energy resources (see annex). This PV diffusion strategy allows these regions to take advantage of the 

gradational decline in PV system costs based on feedback from the market development (the larger the 

market scale, the lower the PV system cost). The last installer will benefit from the lowest PV system 

costs. We have named this the ‘PV domino diffusion strategy model’. 
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Figure 89: Optimal PV diffusion – ‘PV domino diffusion strategy model’ for electrification of regions with no access to 
electricity (author’s proposal) 

The current PV LCOE is shown in Figure 90 (in blue). The red bar graphs represent the 

reduced PV LCOE in all 49 countries thanks to the gradational diffusion strategy of PV installations. 

As the PV market grows, the PV LOCE will be reduced based on the learning effect. We can see this 

strategy results in a similar PV LCOE of around 13 c$/kWh across the defined countries.  

 

Figure 90: Reduced PV LCOE with the PV domino diffusion strategy model (in red) vs. current PV LCOE with a PV system 
price of 2.13$/Wp (in blue) (author’s proposal with 12% discount rate) 

 

2.4 Costs and benefits 

2.4.1 Costs  

We assumed that international policies were now aiming to install PV systems to supply 

power to 1.06 billion people without any access to electricity. The total requirements for electrification 

in the 49 countries according to two different scenarios can now be calculated. Without any strategic 
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diffusion efforts, the total costs of full electrification in these regions represent around US$ 1,363 

billion based on the current PV system price (640 GWp x $2.13 /Wp, the total energy consumption 

demand x PV system price). Yet if we apply the proposed PV domino diffusion strategy model (PV 

installations in the order of solar energy resource from the highest to the lowest), the required costs can 

drop to US$ 980 billion.171The proposed PV domino diffusion strategy model helps to reduce policy 

costs. 

 Electrification costs with current PV 
system costs (2.13$/Wp) 

Electrification costs with PV domino diffusion 
strategy 

Total policy costs 
of the support 

US$ 1,363 billion US$ 980 billion 

Table CXVIII: Electrification costs for all inhabitants without electricity 

2.4.2 Benefits 

We summarize the expected benefits from the targeted deployment of PV systems using key 

variables of the proposed schematic map. 

Energy transition  Possible PV installations: 1.03 billion x 0.6 kWp = 640 GWp  

Electricity production: around 980 TWh/year (922 kWh/year x 1.06 billion people) 
Economic benefits New outlets for oversupplied PV industry 

Sustainable socio-economic development in the developing countries based on green 
growth model 

Land usage 640 GWp x 7 GWp/m2 = 4,480 million m2 available without new land use (with 
7m2/kWp, cf. Part I chapter 2) 

Grid-level costs Off-grid usage thus no impacts 

Environmental 
benefits  

1499 MtCO2/year (1528 MtCO2/year-49 MtCO2/year) can be avoided compared to the use 
of diesel generators. 

Competitiveness 
of PV system   

The reduced PV system prices from around $ 2.13/Wp (IEA PVPS, 2015) to $1.3/Wp 

Reduced PV LCOE  
Table CXIX: Expected benefits of the PV market development in developing countries 

 
1) Economic benefits (solutions for the oversupply & new market growth) 

As presented, the global PV industry reacted to the oversupply situation with even fiercer 

international competition. The PV industry crisis increased difficulties for countries aspiring to 

implement green growth policies with the combined policy objectives of energy transition and 

economic growth through PV growth. In addition, long-lasting trade disputes between countries (e.g. 

China vs. US, and China vs. EU) narrowed the scope of the PV market for the relevant countries. 

However, the national PV policy framework is limited to solve these issues; the increase in the 

domestic demand may in fact be insufficient to support the globalized PV industry with GW-scale 

production capacity.  

In this regard, the proposed opportunities to include new frontiers for the global PV market 

growth would provide the PV industry with new outlets for the current oversupply of PV products. 

This approach expands the scope of the global PV market within the international context so as to 

solve the current PV industry’s anxiety. Furthermore, new regions could also benefit from the 

sustainable energy supply system for their socio-economic development. In particular, this solution 
                                                      

171 The full coverage of PV installations in 49 countries reduces the PV system price, and this reduced PV system price was 
used to calculate the cost of PV installations in the next country. The calculation was performed until all the countries were 
equipped with PV systems: Co�t =  ∑ ሺP��c�ୡ × Ma�k�t ����ୡሻୡ୭୳୬୲୰ieୱ ୡ  
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provides an interesting option to address the problem of world energy poverty. It would increase the 

world’s electrification rate and eventually have a positive impact on the global economic growth.  

2) Environmental benefits (reduced CO2 emissions) 

We aim to examine to what extent solar PV power is a more environmentally friendly energy 

option compared with diesel generators. As defined, a total of 980 TWh/year is needed for the full 

electrification in the 49 selected countries with the average consumption of 922 kWh/per capita/year. 

The CO2 emissions will differ according to the energy technology employed. If we supply electricity 

with diesel generators, it will produce more than 1500 Mt CO2 per year. This amount accounts for 

almost 5% of the current global emissions, i.e. 32.2 Gt CO2/ year (IEA, 2015b). Therefore, we can 

conclude that PV systems provide a solution for electrification in a more eco-friendly way. About 

1500 MtCO2/year (1548 MtCO2/year-49 MtCO2/year) can be avoided compared with the use of 

diesel generators. 

Technology Life Cycle Assessment  
gCO2/kWh 

Total emission MtCO2/year 

PV 172 50 49 
Diesel generator173 (small < 60 kW) 1580 1548 
Table CXX: CO2 emissions per kWh for PV and diesel generators 

2.5 International financing 

Our proposed solar PV electrification program for 1.06 billion people with no access to 

electricity falls in line with international objectives to combat climate change and to provide a global 

sustainable development model. In addition to improving the world’s energy sustainability with 

environmental, social, and economic benefits, it also provides strategic orientations for PV growth by 

broadening its market frontiers on a global level. As the nation-wide PV policy system became more 

complex with the globalization of the PV market, breakthroughs in the current PV market should be 

considered in line with the global dynamics and as part of an internationally collaborative approach.  

However, the main barriers are financial risks as PV installations require high initial 

investments. Considering the fact that the defined opportunities address several global problems like 

energy poverty and climate change, it seems fair to consider international funding to implement the 

program as part of actions to increase the global energy sustainability. Funding should come from a 

wide variety of governments, civil society and private sectors to support the switch from fossil fuels to 

greener sources of energy in pursuit of global environmental and economic benefits. 

At the Paris climate change conference (COP21) in December 2015, it was decided that the 

developed countries are involved in jointly making the international climate finance to support 

developing countries: international climate finance of US$ 100 billion a year in climate finance for 

developing countries by 2020, with a commitment to further finance in the future (COP21/CMP11, 

2015).  

                                                      
172 (NREL, 2012b) 
173 (Moss & Gleave, 2014) 
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The funding will come from a wide variety of public and private, bilateral and multilateral, 

and alternative sources of finance to support the switch from fossil fuels to greener sources of energy 

and the adaptation effects of climate change.  

Therefore, our proposed solar PV electrification program in new regions fits with the COP 21 

objectives to address climate change issues and provide a sustainable development model in these 

regions. The program has several favorable conditions to receive such climate finance.  

- Land usages: It is important to note that the agreements of COP 21 to address climate 

change and reduced CO2 emissions in a manner that does not threaten food production 

(article 2 (UNFCCC, 2015)). This gives a favorable condition to PV projects because PV 

installations can use the existing surfaces.  

- Reduction of CO2 emissions: We conclude that the electrification with PV systems 

produces produce fewer CO2 emissions compared with diesel generators (the classical way 

of supplying power in these regions). 

- Global economic benefits: The defined new market can be outlets for PV oversupply. In 

addition, this can provide a sustainable economic growth model in these regions.  

- Good solar energy resources: The investment costs will be inferior to other regions, 

because the studied countries have better solar energy resources.  

The COP 21 decision on the international climate finance will give a political signal for the 

private sector investment choice. Major PV material producing countries can invest to support PV 

installations in these regions to create new demand. Furthermore, finance models can adapt the 

revenue patterns in the regions by taking income characteristics which are small and irregular into 

account (e.g. microfinance). 

2.6 Global virtuous circle in the PV sector 

We have demonstrated that the proposed opportunities address climate change issues and 

provide a sustainable growth model in these regions. However, the selected regions are most likely to 

be reluctant to invest in PV installations due to their difficult financial situations. This explains why 

these countries may prefer to continue supplying diesel-based power to residents despite the high 

costs. In this regard, international efforts will be necessary if we intend to roll out this electrification 

program. Such actions should involve not only governmental levels, but also the private sector and 

civil contributions. It is expected that this program will eventually benefit the global economy and the 

future energy systems of participating countries. New market development is necessary to generate 

new outlets for the global overproduction of PV products. By broadening the scope of the potential PV 

market to cover the entire international arena within an open economy, the investment to increase the 

foreign demand of PV installations will be partially returned to the domestic industry growth of 

participating countries. It will drive the growth of the global PV industry since the existing PV market 

growth is limited compared with the supply capacity. In addition, PV costs would be reduced thanks to 

the enlarged market size and experience. It is important to note that the enhanced competitiveness of 

PV power would eventually contribute to future national-based installations in all relevant countries 
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with reduced PV costs. Based on our model, the energy transition can be implemented within an 

international context. Therefore, all stakeholders would benefit from this approach that encompasses 

new regions with improved energy access regardless of the political objective (industry or energy 

transition). As a result, a ‘virtuous circle’ in the PV sector can be produced on an international scale. 

 
Figure 91: Global ‘virtuous circle’ in the PV sector (author’s proposal) 

 

3 Improvement of PV system competitiveness in non-module sector  

We now propose another opportunity for cross-country cooperation. The aim is to enhance the 

competitiveness of PV systems by improving non-module sector (we are now aware of room for 

improvements in this sector). This allows advancing time of PV self-consumption in the residential 

sector. The international cooperation gives opportunities to transfer the advanced standards. In this 

regard, we attempt to show how the share of common standards among countries can increase the PV 

competitiveness with a focus on non-module sectors. In addition, we quantify the effect assuming a 

common market between three European countries. If we include broader geographic regions, the 

effect would be greater. At the end, we conclude with some suggestions of policy actions.  

3.1 Introduction  

The further reduction in the production costs of PV electricity encourages the widespread use 

of PV power as a major electricity source. We demonstrated the key components of PV system prices 

in order to penetrate the current energy systems. Module prices are not as important as before and 

other non-module factors have gained equal importance when it comes to improving economic 

competitiveness. In this regard, policy focus also integrates these factors to gain further 

competitiveness. Our study attempts to review opportunities with harmonized policy instruments on a 

regional level so as to reduce non-module costs of PV systems. We quantify the opportunities 

restricting in Europe by learning from German practices and benefiting from the size of the European 

market. However, this approach can be applicable to other regions.  
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3.2 Opportunities of reducing non-module costs for the European market  

We have demonstrated the size of the market is related to the non-module price drop (see Part 

I). Our study aims to explain some opportunities for the European market on the condition that they 

share unified standards based on the German practice with a simple calculation process. If the west 

European region uses the same learning curve as Germany (17.6%, see Part I chapter 2), it would 

require less investment to deploy PV systems. Figure 92 shows the non-module price in 2020 on the 

condition that the German learning curve is shared along with properly designed policies.  

The case is simplified by taking into account the residential installation conditions in three 

countries while country system differences are ignored. The installation total for 2020 has been 

calculated based on the sum of three countries, assuming the same annual growth rate up to today174 

until 2020 for France and Italy, and EPIA estimations were taken for Germany with the same residential 

PV system share (EPIA, 2014). They will roughly reach 0.98$/Wp for the non-module price. 

However, better results are obtained in terms of the prospective non-module prices if more countries are 

included since a larger market size is taken into consideration.  

 

 
Figure 92: Common learning curve for Germany, France and Italy under German standards 

Therefore, the long-term durable market growth is important. The European market could learn 

from this experience to develop its PV systems to meet its objective to increase renewable energies in 

the energy mix. By adopting the German practice, countries like France will be able to install the higher 

number of PV systems on the same budget thanks to the lower non-module price. 

Figure 93 explains the benefits of reduced non-module costs with France case. The reduced 

non-module cost allows the country to reduce policy costs to support PV installations or to obtain 

targeted LCOE earlier. 

 

                                                      
174 Assumption is the cumulative installation of PV rooftop systems in France, Germany and Italy. The total cumulative 
installation will be about 11600 MWp based on prospective growth. 
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Figure 93: Benefits of reduced non-module costs: France175 

This begs the question as to what conditions can generate such opportunities. Each country 

currently has a different policy focus, with different installation environments and market development 

stages; these factors lead to different costs for PV installation. To reduce non-module costs in PV 

systems, countries can share markets and policies with a clear growth trajectory plan. Targeted policy 

support helps this process. Harmonized policy instruments on a regional level can reduce non-module 

costs in Europe by learning from the German practice (e.g. low non-module prices) and taking 

advantage of the size of the European market. 

3.3 Policy recommendations 

Which policy instruments can help obtain the estimated benefits? Targeted policies can further 

reduce non-module costs to improve the economic competitiveness of PV electricity. The increased 

market size is an important factor to reduce such costs. 

Economies of scale in installations can be obtained by promoting the standardization of PV 

installation. Standardization improves the economic competitiveness of almost all segments in non-

modules; hardware price, engineering, PII process, customer acquisition and installations. Once 

standardized products and processes are rolled out, the market will automatically adapt without 

spending costs to continue tasks in these sectors (e.g. system design, adapting different installation 

specifications, etc.). In addition, a simplified process from project design to grid connection is needed. 

Transparent online permission processes with clear guidelines is one way of simplifying the whole 

process. The online tool can be also used line up customers with certified local installers. The 

European system for certifying PV firms based on European standards could be implemented. 

Furthermore, training is also important; well-trained installers and customers will remove additional 

time in terms of system design and installation work.  

In addition, the long-term stability of the market size can be driven by regional solar 

mandates in the building sector (new, renovation of existing buildings) or favorable policy support that 

gives investors a clear long-term vision like installation subsidies, well-designed financial support or 

                                                      
175 PV LCOE of 0.15$/kWh: author’s calculation based on estimated PV system cost of 1.7 $/Wp (in 2020: 0.96 $/Wp + 0.7-
0.8$/Wp) (IEA, 2014). French estimated residential installation in 2020: 3.7 GWp. 
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tax relief. A standardized European market is one way of gaining economic competitiveness to provide 

PV electricity at a low price. Therefore, a commonly shared practice for PV deployment could help 

improve European economic competiveness and thus largely reduce the PV system price.  

However, this does not directly mean cheap electricity will be obtained using PV energy. As 

explained, with broad penetration of PV system, other costs or externalities issues can be more visibly 

important for the future system. Reduced production costs can be counterbalanced by factors such as 

grid costs (e.g. grid extension, intermittency costs) unless proper policies are applied to improve 

alignment with non-module sector improvement. The cooperative strategy should also consider the 

systemic view. 

 

4 Conclusions  

We have proposed opportunities of further PV growth based on cooperative actions among 

countries. First, we proposed an expansion of electrification in less-developed and developing 

countries. The defined markets cover major energy poverty regions with good solar resources, 

representing 1.06 billion people without electricity. PV off-grid systems give an interesting option to 

solve the energy problem in these countries by addressing institutional risks (lack of infrastructures). 

They can replace diesel generators (substitute) and generate less CO2 emissions. We defined the total 

market size for the full electrification in these regions is about 640 GWp. In addition positive 

feedback can exist from the market development with respect to the PV system price (learning curve 

effect). In this case, PV system prices will be almost halved to about $1.3/Wp. By benefiting from 

gradational decline in PV system costs in 49 countries (PV domino diffusion strategy model), PV 

LCOE in these countries will be around 13 c$/kWh. This requires a total of US$ 980 billion 

investment to realize this program. PV cost reductions and international policy approaches will help 

solar energy make inroads into new markets, particularly where the access to electricity is very low. 

The enhanced PV competitiveness benefiting from enlarged market size and experience will give 

positive feedbacks on the future nation-wide installations in developed countries. In addition, the 

investment would give engine for growth in global PV industry. 

Secondly, we proposed another idea of cross-country cooperative actions. It aimed to reduce 

PV system costs with a focus on non-module sector (the current cost driver). Countries can consider 

commonly designed policies in order to create a common market based on standardization; this will 

help reduce non-module costs, in particular for the residential system. The enhanced economics of PV 

system will allow more people to access to the PV electricity in the future. This would advance time of 

PV self-consumption in residential sector.  
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Conclusions of Part III 

PV power has largely gained economic competitiveness over the last decade. It reaches a 

turning point when it attains grid parity. However, it is also possible for consumers to consider 

installing their own PV systems to reduce their energy bill since their decision is based on electricity 

tariffs that they pay. The increased competitiveness of PV systems would increase the individual 

energy independency. However, it also raises new issues in terms of the national energy mix since 

policymakers need to consider an optimal mix of PV power that balances with other energy 

technologies and grid financing. However, the increased competitiveness of PV definitely gives 

opportunities to further develop the use of PV power in the current and future energy mix.  

In this regard, we suggested smart strategies of using PV systems. The aim was to provide the 

necessary elements that help policymakers prepare more effective PV public policies in the future. In 

order to deploy the self-consumption model at the lowest cost, our study has shown the interest of 

prioritizing sectors that guarantee 100% onsite consumption like supermarkets. We quantified 

opportunities of PV installations by assuming all surfaces of the existing supermarkets in France are 

used for PV self-consumption. Our study has demonstrated that 100% PV self-consumption based on 

the distributed PV systems would provoke less systemic costs than other types of PV systems (e.g. 

utility-scale PV plants). The suggested supermarket model can allow France to reduce the systemic 

costs by up to 30% at 10% PV penetration. In addition, compared to FIT system (the current demand-

side policies), we concluded that 100% PV self-consumption is less costly in the electricity system 

with less direct policy costs. It can also help avoid windfall effects that appeared under FIT system. 

In the future, this approach can be extended to other sectors with poorer matching profile (e.g. 

residential) when PV systems are combined with batteries. We concluded that residential systems 

coupled with batteries are now profitable in Germany and can be profitable before 2030 in France 

based on the IEA’s scenarios. If PV systems were deployed on all French individual houses for the 

purpose of PV self-consumption, this would give around 56 GW of PV systems installed in France 

(~12% of French electricity consumption). However, our study did not ignore losses of stakeholders 

caused by PV integration with self-consumption model. In particular, losses related to the grid 

management are critical with regard to the security of the national electricity system. In the current 

electricity system, the grid management costs are integrated in electricity tariffs. However, fewer 

consumers would participate in paying this even though PV systems should be connected to the grid to 

secure the stable supply of electricity (our study quantified the losses). In the future, more people will 

naturally consider shifting to this mode of PV power use as PV systems enhance its economic 

competitiveness. The government should prepare for this important transition before the national 

electricity system encounters social pressures that cause significant changes.  

The proposed strategic orientations for PV growth extended its market scope to include the 

international arena as the PV sector is now globalized. We proposed opportunities of further PV 

growth based on international cooperation. The aim was to find new market equilibriums to solve the 

current turmoil of PV market with oversupply and long-lasting trade disputes. We presented specific 
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opportunities with quantified data. Our study concerned the expansion of electrification for 1.06 

billion people in less-developed and developing countries. Our calculation gave the potential market 

size of 640 GW. In order to realize these opportunities, we need around a total of US$ 1 trillion 

investment. We highlighted benefits from the market development in these regions as below: 

- New outlet for overproduction of PV products 

- Solution to address the world energy poverty problem 

- Develop a sustainable energy system in the regions: almost 1500 Mt CO2 can be avoided 

compared to the substitute (e.g. diesel generators) 

- A decline in the PV system price to $ 1.3/Wp benefiting from enlarged size of PV market and 

experience (learning curve effect). 

We also highlighted positive feedbacks of market development on the global PV installations. 

The enhanced competitiveness of PV power will eventually contribute to future nation-wide 

installations of all relevant countries based on reduced PV costs. The energy transition can be 

implemented in the international context.  

We have also proposed other opportunities for cross-county cooperation to gain more 

competitiveness of PV systems. We provided recommendations on how to further reduce PV system 

costs by focusing on non-module sector. The targeted policy with standardization in European region 

based on the German best practice can reduce the non-module price below 1 € / Wp. If this idea brings 

good results, more countries can adapt this approach to make the larger common market. This 

approach would also help advance time towards PV self-consumption. The international cooperation 

can be further developed related to other sectors like green buildings, green infrastructures, and 

systemic impacts.  
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Conclusions  

1 Summary 

The study included the parallel analysis over several time periods to highlight the dynamics of 

the national policy mechanisms. The principle of ‘virtuous circle’ of Watanabe (Watanabe, et al., 

2000) was applicable at national level until the mid-2000s, as long as the policy is sufficiently 

ambitious and stable with the long-term vision. However, we demonstrated this nationwide dynamics 

was broken with the arrival of China in the PV sector based on our cross-country analysis. The 

study allowed us to define the interactions among different policy strategies and consequences in the 

global PV sector. 

Under the globalized PV market, the PV system prices have been largely reduced over the last 

decade in many countries. With the sharp decline in PV system prices, the PV self-consumption 

becomes attractive in some areas. The thesis demonstrated that this model is more economical solution 

than financing by the FIT scheme and helps minimize the systemic effect in contrast with on-grid 

utility-scale PV systems. Furthermore, this mode of PV power use would bring organizational changes 

and new business models. Therefore, it is also mandatory to think about the secondary impacts on 

stakeholders, in particular on the network management. The transition to this usage reduces the 

electricity consumption from the grid; it is thus possible to identify losses of traditional stakeholders 

based on electricity tariffs to prepare mitigation policy actions towards any policy risks created from 

the most influencing group of stakeholders (grid operators, conventional energy producers, and 

consumers). 

Concerning the development of PV self-consumption model with the use of decentralized PV 

systems, the thesis focused on opportunities offered by the existing French supermarket surfaces in the 

short-term. The development of this niche sector has much value because it gives policymakers a 

large-scale experience of PV self-consumption to anticipate risks and impacts on the whole electricity 

system. In the longer-term, the study has shown that PV self-consumption with battery could become 

profitable in France before 2030. The demand in the residential sector would thus be natural in the 

next 15 years in France; it represents a significant share of national power consumption. If 

policymakers aim to promote this model, our thesis also proposed ways to reach the breakeven point 

sooner by improving the PV economic competitiveness in non-module sector. We demonstrated the 

collaborative policy actions on a regional level can reduce non-module prices of residential PV 

systems in Europe by benefiting from the experience of the German practice (e.g. low non-module 

prices) and the size of the European market.  

Policymakers will have to embrace the change. In order to prepare the natural demand in PV 

self-consumption, we recommend that it is very important to have a regular and progressive policy in 

terms of the transition to PV self-consumption in the future. It should aim to 1) give enough time for 

traditional electricity producers to adapt to the new market situation, 2) provide PV firms and investors 
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with a stable and long-term policy signals and 3) reduce the negative impacts on the electricity mix by 

adapting to the age of production capacity in use. 

In this regard, this thesis expects the gradual shift in PV policy from a policy in favor of PV 

growth to a regulatory policy to limit systemic impacts of PV integration in the electricity system. 

It should aim to avoid rapid and chaotic diffusions of PV self-consumption model in the future. The 

future PV policy should be decided based on systemic perspective taken the costs for the whole energy 

sector into account.  

Finally, the thesis proposed a pathway to escape from the current PV industry crisis. Our 

thesis has shown difficulties and challenges of PV policy implementation interacting with the 

complexity and dynamics of policy system. Based on our analysis, we understand the importance of a 

regular increase in demand with stable and long-term policy signals in order to seek employment 

stability in the PV installation sector. However, this national strategy would reach the limit; the 

increase in the domestic demand may be insufficient to support the globalized PV industry with GW-

scale production capacity and induce additional costs related to systemic impacts without strategic 

orientations. The national policy for PV installation growth should be prepared in the context of 

electricity mix evolution with long-term strategic perspective. In this regard, in order to solve the 

global PV industry crisis, we can consider extending the scope of the political strategy to stimulate the 

demand to the international context. 

In this regards, in return for a stop of Chinese subsidies to the PV industry, it was proposed to 

define international policies of global collaborative actions to provide new outlets for PV 

overproductions. The expansion of electrification, using off-grid PV systems, in developing countries 

with no access to electricity was studied. This problem concerns around 1.3 billion people and this 

policy would provide a sustainable socio-economic development model in the world’s poor regions. 

Therefore, the proposed opportunities can solve several global sources of anxiety. It contributes to 

reduce the global emissions of CO2 compared to a business as usual (BAU) scenario, to give an engine 

for growth to the global PV industry, and finally to bring a sustainable development model in the 

developing countries by increasing access to electricity. The proposed PV domino diffusion strategy 

model enhances benefits by further reducing the PV system prices and policy costs. The enhanced 

competitiveness of PV power benefiting from the enlarged market size and experiences would 

eventually contribute to future national installations with reduced PV costs. All stakeholders would 

derive benefits from this approach, regardless of their political objective (industry or energy 

transition). As a result, we reproduce a ‘virtuous circle’ in the PV sector, but this time on a global 

scale.  
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2 Contributions 

Our systemic approach provided a concrete overview of PV policy mechanisms including all 

relevant variables, dynamic features and stakeholders. The systemic approach and methodologies that 

were proposed in this thesis would be beneficial for all stakeholders involved in the PV policy 

mechanisms. The main contributions are presented as below. 

 

A systemic vision on PV policy mechanisms 

This thesis provided a systemic perspective of the evolution of the PV sector embracing the 

relevant areas in supply and demand side, policy context and dynamical change. The systemic analysis 

that was conducted in this thesis included a wide variety of research topics to understand each segment 

of a system and to highlight links between sectors. It also intended to keep an objective point of view 

to the PV sector to analyze the impacts of PV integration in energy system. Therefore, compared to 

existing studies on the subject, this thesis gave a complete systemic vision of PV sector including the 

dynamic features of the system. In addition, several countries’ data of both supply (R&D, industry) 

and demand (installations and systemic impacts) side were compiled over several years in a consistent 

way using a common methodology. The approach can be reused for the analysis of future evolution of 

PV sector. 

 

Methodological contributions for a systemic analysis 

The thesis proposed structured mapping methodologies according to a systemic approach 

to understand the complex mechanisms related to the PV development. The first mapping gives a 

general macroscopic vision to policymakers with a clear summary of PV policy system linking 

from political context and objectives to results and impacts. This can be used for policy reporting and 

evaluation process.  

The proposed three detailed mappings provided useful tools to define the causal relations 

between key variables that influence the core variables (PV power growth, economic benefits through 

PV industry development and the real costs of PV power in the electricity system). Since all variables 

can be quantified, this tool can be used to measure policy efficiency. These mappings give a concise 

but precise insight to 1) understand the PV sector mechanisms on how public policies influence 

the defined core variables 2) identify the problematic points between key variables that can be 

influenced by policy actions and the core variable, and 3) eventually measure policy efficiency. This 

methodology can be interesting for policymakers to make policy decision in the PV sector or for the 

future studies on policy assessment.  
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An insight into a change in PV policy dynamics  

Our thesis implies the possibilities of change in the nature of PV public policies in the future. 

Until now, the main objectives of PV public policies concentrate on stimulating PV demand to help 

reduce PV costs. However, as the socket parity for solar PV power is reached in many countries, the 

increased demand in PV self-consumption in the future would change the nature of PV public policies. 

The preparation for this transition would be one of the most important roles of PV public policies. 

They would have regulatory roles with the objective to limit systemic impacts of PV integrations in 

the electricity system.   

This thesis also provided another insight into a change in PV policy mechanisms from 

nationwide to global dynamics. From the supply-side perspective, even though the PV sector has 

shown the constant growth over the last few decades, the global PV industry encountered the industry 

crisis with a very tough international competition. This PV industry crisis gave more difficulties to 

those countries that aspire to implement green growth policies with the combined policy objectives of 

energy transition and economic growth through the PV growth. We highlighted the complexity of the 

national PV policy mechanisms was enhanced with globalization. This finally created more policy 

challenges to the relevant countries. In this regard, we also proposed to extend the scope of strategy to 

solve this industry problem to the international context.  

 

3 Limits of the thesis 

The work presented in this thesis has several limitations related to limited access to data, vast 

issues of electricity market, analysis tools or simply due to time constraints. 

 

Access to data 

First, the thesis focused on crystalline silicon technology. Given the fact that this technology 

represents around 90% of the market, this choice is understandable. In addition, this PV system prices 

have been largely reduced in recent years and there are still room for further reduction. A lock-in 

effect by this technology probably exists. To define this problem, a more precise study on economic 

prospects of other technologies could have been done. However, this work was difficult to conduct due 

to the lack of technological expertise and data on detailed costs. 

Furthermore, barriers to accessing data gave limits to our analysis. Unfortunately, the 

measurement of policy efficiency has been insufficiently done due to the lack of data (e.g. industry 

policy support, production costs). In addition, even though the reduction of CO2 emissions is one of 

the important advantages of renewable energy use, the assessment of PV impacts on CO2 emission 

reduction is rarely conducted. Data on CO2 emissions are available, but the analysis of PV’s 

contribution should be done prudently based on systemic perspective. For example, when Germany 

and Japan increased PV power in their electricity mix, they have also experienced significant changes 

related to policy context (e.g. decline in the share of nuclear power, economic downturn). Under this 

context change, it was no longer possible to clarify to what extent CO2 emissions were reduced by PV 
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penetrations. We thus decided not to include those data in our study. Furthermore, we could have done 

better demonstrated the complex interactions between Germany and China if we had precise data on 

Chinese policy input in PV industry and economic damages for each player.  

 

PV integration in electricity market  

This is an important point related to the development of PV power. While we defined a 

problem concerning this issue, the thesis did not propose solutions to address negative externalities 

that exist in the electricity market. We considered that it is out of the scope of this thesis since our 

study focused on PV policies. This issue can be another thesis subject itself. However, it is important 

to follow the evolution of the electricity market because it gives a significant impact on the PV sector.  

Similarly, the thesis gave a limited perspective in terms of storage solution of electricity. We 

decided to take Li-ion battery technology to study the opportunities of PV self-consumption in 

residential sector. Many other promising technologies exist, but the analysis based on the well-

documented Li-ion technology gives a basic scenario.  

The seasonal storage solution has not been discussed in the thesis. Even though it is not 

expected to be available in the short to medium term, it can largely solve the problem related to the 

intermittency of PV. The study on the seasonal storage solution should be conducted associated with 

the whole electricity market because it concerns diverse aspects like the network management, the 

intermittent low-carbon energy sources, and dispatchable technologies with low flexibility. 

 

Analysis Tools  

Finally, the thesis used the learning curve theory. It is a tool that has proven itself and is 

widely used in the scientific research to predict changes in technology costs. However, we can still 

raise a question on the utilization of learning curve because it remains essentially an empirical tool. In 

this regard, in our study, the utilization of the learning curve is limited mostly for 15 year time period 

in order to reduce the level of uncertainty.  

 

4 Future researches  

This study intended to keep a global vision that leads to the construction of systemic tools of 

PV policy mechanisms. We also tried to conclude the thesis without prejudice to specific policy 

objectives. Once the systemic vision on the PV policy mechanisms is built, it would be interesting to 

apply the methodology and recommendations proposed in the thesis to specific cases. An in-depth 

country study is possible using the proposed methodologies. In order to provide concrete analysis, it 

is necessary to find numeric values of each variable. Once the maximum level of data is collected, it 

would be possible to measure the efficiency of current policies.  

To give the most comprehensive analysis, it is very important to accomplish an advanced 

study on externalities to quantify them. In particular, it would be interesting to take the age structure 
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of existing power capacities into account. In addition, all anticipated closing costs of power production 

capacity as a result of the increased penetration of PV in the electricity mix should be considered. The 

study also concerns job balance including externalities such as job shifts from conventional power 

sector to PV industry. The use of backup and balancing sources should not be ignored when 

calculating CO2 emission balance. 

The study also proposed possibilities of international collaborative actions to increase 

electricity access in developing countries to exit the global PV industry crisis. This would bring a set 

of benefits to stakeholders involved with positive feedbacks in the PV sector. In accordance with the 

Paris Agreement, the future study can further investigate mechanisms of financial solutions to realize 

this idea.  

In addition, as PV systems have the advantage of being able to provide decentralized power, 

this technology is thus often cited for the coupling with other sectors. Therefore, it is possible to 

extend the use of the proposed tools and our study in liaison with other sectors like 

transportation and energy. The advantage of this solution is to enlarge the PV power’s potential 

market towards the whole energy market. In addition, it allows policymakers to have a broader base to 

reduce CO2 emissions.  

Another interesting area of research concerns the study on the development of technological 

breakthroughs in associated with the industry policy. When a country aspires to develop PV 

industry with technology breakthroughs, the research should include both the supply and demand side. 

From the supply-perspective, the country’s competency should be evaluated with an analysis to 

identify the level of each PV technology skill and define the distance to the technology frontier. The 

strengths and weaknesses of each technology compared to crystalline PV should be also examined 

since the market is heavily dominated by this technology. The future total costs for each technology 

can be estimated by decomposing the actual costs of laboratory technologies and referring to 

experience of crystalline PV technology. In terms of the demand-side perspective, the market can be 

defined associated with new usages that can be designed by available technology. High value-added 

markets can be thought for the new business creations like global green building market. The 

mappings can help prepare strategies for the international competition and define the size of local and 

global market. It is also important to think over how to stimulate the private investment to realize the 

defined business opportunities. 
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Annex of Part I 

1 Government’s policies to promote renewable energies   

 Stage  Method Policy instruments  

Supply-side 
 

R&D  
 
 

Fiscal 
incentives 

Academic R&D funding: investment to academic research  
Grant: funding for R&D and demonstration with no payment requirement  
Incubation support: assistance to entrepreneurs including business 
development and raising financing 
National/ international public research center: research facilities funded by 
local, national, international government bodies  
Public –private partnership: collaboration, techno, services, infra... 
Prize: award which allows the winner to finance private R&D  
Tax credit: full or partial deduction of tax obligation (e.g. income) 

Voucher scheme: to companies to access to R&D center  

Demonstration  
 

Fiscal 
incentives  

Grant: funding for R&D and demonstration with no payment requirement 

Public 
financing  
 

Venture capital: from research to new products/services 
Soft/convertible loan: financing at pre-commercial stage to promote renewable 
energies  

Pre-
commercial 
 

Public 
financing  
 

Venture capital: from research to new products/services 
Soft/convertible loan: financing at pre-commercial stage to promote renewable 
energies  

Demand-
side 

Large-scale 
deployment  
 
 
 
 

Fiscal 
incentives  
 
 

Grant: monetary assistance which helps reduce investment costs in terms of 
preparation, buying and construction of renewable energy equipment and infra 
Energy production payment: direct payment to produce per unit of renewable 
energies 

Rebate: one-time direct payment from the government to a private party related 
to % of investment costs of RE system or service 

Tax credit: an annual income tax credit based on the amount of money invested 
in that facility or the amount of energy that it generates 

Tax reduction/exemption: reduction in tax—including but not limited to sales, 
value-added, energy or carbon tax—applicable to the purchase (or production) of 
RE or RE technologies 

Variable or accelerated depreciation: allow for reduction in tax burden in the 
1st year of operation of RE equipment (commercial entities) 

Public 
financing  
 

Investment: Financing provided in return for an equity ownership interest in a 
RE company or project 
Guarantee: risk-sharing mechanism aimed at mobilizing domestic lending from 
commercial banks for RE companies and projects that have high perceived credit 
(i.e., repayment) risk 
Loan: financing provided to a RE company or project in return for a debt 
(repayment) obligation. Provided by government, development bank or 
investment authority usually on concessional terms (e.g., lower interest rates or 
with lower security requirements) 
Public procurement: public entities preferentially purchase RE services (such 
as electricity) and/or RE equipment. 

Regulation  
 
 

Quantity-driven Renewable Portfolio Standard (RPS)/ Quota 

obligation or mandate: Obligates designated parties 
(generators, suppliers, consumers) to meet minimum 
(often gradually increasing) RE targets, generally 
expressed as percentages of total supplies or as an 
amount of RE capacity, with costs borne by consumers 
Tendering/Bidding: Public authorities organize 
tenders for given quota of RE supplies or supply 
capacities, and remunerate winning bids at prices 
mostly above standard market levels 

Price-driven Fixed payment feed-in-tariff (FIT): guarantees RE 
supplies with priority access and dispatch, and sets a 
fixed price varying by technology per unit delivered 
during a specified number of years 
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Premium payment FIT: guarantees RE supplies an 
additional payment on top of their energy market price 
or end-use value. 

Quality-driven Green energy purchasing: regulates the supply of 
voluntary RE purchases by consumers, beyond 
existing RE obligations 
Green labeling: guarantees that energy products meet 
certain sustainability criteria to facilitate voluntary 
green energy purchasing 

Access Net metering: allows a two-way flow of electricity 
between the electricity distribution grid and customers 
with their own generation. 
Priority or guaranteed access to network: provides 
RE supplies with unhindered access to established 
energy networks. 
Priority dispatch: mandates that RE supplies are 
integrated into energy systems before supplies from 
other sources 

*Definition of policies in support of renewable energy development was adapted from IPCC special report (2011) and IRENA 

report (2012) 
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Annexes of Part II 

1 PV demand: PV power production growth 

Variable Unit Comment 

Share of PV electricity % Core variable: share of the PV electricity production in the domestic electricity 
consumption. 

Domestic demand TWh Domestic demand of electricity. 
PV domestic production TWh Electricity generated by PV. 

National average PV 
system Performance 

kWh/kW Average performance of the PV system. It depends on climate, geography, and the average 
efficiency of the PV system installed. The efficiency can be improved by technology-push 
policies. 

PV installations  MWp PV installed capacity; it can be constrained by network infrastructures, the flexibility of the 
electricity mix and the available surface to install the PV systems. 

PV system demand MWp Demand in installing PV systems (incl. off-grid, residential, commercial, industrial, and 
utilities). It is Influenced by environmental consciousness (willingness to pay), access to 
finance, or demand-side policies (like RPS or positive energy buildings). 

PV’s rate of return 
(profitability) 

 % Revenue vs. PV investment. 

PV LCOE $/MWh PV Levelized Cost of Electricity (LCOE): PV power generation costs excluding grid-level costs 
and internalization of externalities. Government can internalize them through taxes on PV. The 
PV LCOE is largely influenced by demand-side policies (e.g. subsidies on PV investment).  

PV electricity purchase 
price 

$/MWh Purchase price of the electricity generated by PV (e.g. FIT).  

Retail electricity tariffs $/MWh This is regulated by policy maker, and related to energy equity. 

Gross electricity price $/MWh It is related to industry competitiveness. 

LCOE of competing 
energies 

$/MWh Other competing technologies’ LCOE; it is influenced by energy policies (e.g. CO2 pricing). 

Fuel price $/toe Fuel costs (e.g. oil, coal, gas). 
Economic growth % The economic growth increases the energy demand.  

 

 

2 PV supply: economic growth through PV industry development  

Variable Unit Comment 

Economic growth  % or US$ Core variable: PV sector’s contribution to the national economic growth.  
It can be affected by the cost of the PV policies (e.g. tax increase). 

Electricity prices $/MWh The electricity prices influence the national economy. High electricity prices can reduce 
the industry competitiveness. The electricity prices can be changed to finance PV 
policies (e.g. EEG, CSPE). 

Avoided energy importation US$ Avoided energy importation induced by PV electricity production.  
Additional energy importation US$ Additional energy importation induced by PV electricity production (e.g. backup gas). 
PV electricity production GWh The total production of PV electricity in the electricity system. 

PV sector jobs Number of 
jobs 

PV jobs across the PV value chain (PV manufacturing and installations). 

PV sector revenues US$ Generated revenues by PV sector. 
Related- industry revenues US$ Generated revenues by related- industries (e.g. battery, building). 
Domestic sales of PV industry MWp or t PV domestic production for the domestic demand.  
Overseas sales of PV industry MWp or t Exportation of PV products. 
PV system demand MWp Demand in installing PV systems (off-grid, residential, commercial, industrial, and 

utilities). It can be influenced by demand-side policies (like RPS or positive energy 
buildings) and the economic situation. 

Domestic production costs $/Wp PV production costs by domestic firms: they can be influenced by technology skills and 
networks between industries, universities and research laboratories. 

O&M $/Wp Operating and maintenance cost. 
Wage $/Wp Salaries of employees. 
Capital $/Wp Investment costs for construction of production capacity, they are influenced by the 

access to finance. 
Global market price $/Wp Global selling prices of PV products. 
Global PV production  GWp Production volume of PV materials in the global market. 
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Energy price $/toe Energy prices used by the factories. 
Currency exchange rate 1 The exchange rate of the domestic currency against foreign currencies. It influences the 

competitiveness of the domestic industry. 
Global PV demand MWp Global demand in PV products. This can be influenced by economic situation. 
 
 
 
 

3 PV integration: real costs of PV electricity in electricity mix 

Variable Unit Comment 

Real PV electricity cost $/MWh Core variable: the real cost of PV power in the electricity system (PV generation 
costs + grid-level costs + externalities) 

Grid-level costs $/MWh Costs to strengthen the grid of transportation and distribution to integrate PV power 
in the electricity system. The grid upgrading costs include the costs related to grid 
reinforcement and extension.  

Backup (long-term adequacy) $/MWh Additional costs to integrate PV: provision of dispatchable back-up capacity to satisfy 
electricity demand at any moment. 

Balancing (short-term balancing) $/MWh Additional costs to integrate PV: second-by-second matching of electricity supply 
and demand. 

Grid upgrading $/MWh Additional costs to integrate PV: grid reinforcement and extension. 
Externalities $/MWh Externalities refer to positive or negative effects, which have not yet been internalized 

in the PV price. 
Environment $/MWh Externalities on the environment (e.g. CO2 emission reduction). 
Electricity market $/MWh Externalities on the existing electricity mix (e.g. changes in the market price 

formation, de-optimization of the electricity mix). 
Economic $/MWh Impacts on the economy. 
PV LCOE $/MWh PV Levelized Cost of Electricity (LCOE). 
Cost of capital $/MWh Financing costs to build or purchase assets. It includes the inflation and the interest 

rate for the use of money borrowed. It is considered as the WACC or the discount 
rate. 

Land usage $/MWh Land use costs to install PV systems: this is constrained by available surfaces, 
urbanism rules and social acceptance. 

O&M $/MWh Operating and maintenance cost. 
PV system lifetime Year Lifetime of the PV system. 
PV system performance kWh/kW PV electricity production vs. PV system capacity. 
PV load factor % The ratio of its actual output over a period of time to its potential maximal output 

over the same period of time, and the lifespan of the plant. It is influenced by the 
geographic location. 

PV system yield % Efficiency of the PV system (modules and all other components). 
R&D production Number of 

patents 
R&D results to improve the PV sector (PV system yield, lifetime, and material 
usage). 

PV system costs $/Wp Costs of each Wp installed.  
Non-module hardware costs $/Wp This includes the supporting parts to mount modules (e.g. racking), the inverter to 

converts the DC power from the cells to AC power to be compatible with the 
electrical network, batteries, and other electrical devices (e.g. power control system, 
switchgear, fuses, cabling). 

PV module costs $/Wp PV module costs. 
Global production GWp Global accumulated production of PV modules. The accumulated experience reduces 

the price (learning curve effect). 
Raw material quantity g/Wp Quantity of raw materials needed to produce PV cell/module. 
Raw material prices $/Wp Cost of the raw materials needed to produce PV cell/module. 
Soft costs $/Wp Soft costs cover any other services needed to design, install, and connect the PV 

systems to the network. 
Installation $/Wp PV system installation cost. 
Engineering $/Wp Engineering costs (e.g. PV system design). 
Marketing $/Wp Costumer acquisition cost. 
PII $/Wp Permitting, inspection and interconnection costs. 
Seller profit $/Wp Profit and overhead of all the companies involved in the process. 
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Annexes of Part III 

1 Calculations for the case study of PV self-consumption in French supermarkets 

 PV electricity production by month 

Unit:kWh/m2 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

PV production 3.4 5.6 11.9 16.9 19.8 21.4 21.8 18.4 13.6 8.1 4.0 3.0 147.7 

 

 Electricity tariff decomposition by month 

Unit: €/kWh Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Electricity Tariff 0.09520 0.09520 0.09520 0.04990 0.04990 0.04990 0.04990 0.04990 0.04990 0.04990 0.09520 0.09520 

Electricity 
production 

0.04760 0.04760 0.04760 0.02495 0.02495 0.02495 0.02495 0.02495 0.02495 0.02495 0.04760 0.04760 

 TURPE 0.04760 0.04760 0.04760 0.02495 0.02495 0.02495 0.02495 0.02495 0.02495 0.02495 0.04760 0.04760 

CSPE 0.01950 0.01950 0.01950 0.01950 0.01950 0.01950 0.01950 0.01950 0.01950 0.01950 0.01950 0.01950 

CTA 0.00375 0.00375 0.00375 0.00227 0.00227 0.00227 0.00227 0.00227 0.00227 0.00227 0.00375 0.00375 

TCFE 0.00254 0.00254 0.00254 0.00154 0.00154 0.00154 0.00154 0.00154 0.00154 0.00154 0.00254 0.00254 

TVA 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Total 0.12101 0.12101 0.12101 0.07321 0.07321 0.07321 0.07321 0.07321 0.07321 0.07321 0.12101 0.12101 

 

The electricity consumption from the grid is reduced with the self-consumption of PV electricity. 

It induces stakeholders’ losses as shown on the table below (PV production multiplied by the share of 

electricity tariff for each stakeholder concerned). 

 Loss of each stakeholder because of reduced electricity purchase from the grid  

Unit: €/m2 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

losses Producer 0.15998 0.26436 0.56720 0.42235 0.49455 0.53300 0.54315 0.45834 0.33843 0.20201 0.19000 0.14107 4.31445 

losses TURPE 0.15998 0.26436 0.56720 0.42235 0.49455 0.53300 0.54315 0.45834 0.33843 0.20201 0.19000 0.14107 4.31445 

losses CSPE 0.06554 0.10830 0.23236 0.33009 0.38652 0.41658 0.42450 0.35822 0.26450 0.15789 0.07784 0.05779 2.88013 

losses CTA 0.01261 0.02083 0.04470 0.03842 0.04498 0.04848 0.04940 0.04169 0.03078 0.01837 0.01497 0.01112 0.37637 

losses CTFE 0.00854 0.01411 0.03028 0.02602 0.03047 0.03284 0.03347 0.02824 0.02085 0.01245 0.01014 0.00753 0.25496 

losses TVA 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Total of losses 0.40671 0.67209 1.44198 1.23922 1.45108 1.56391 1.59367 1.34483 0.99300 0.59273 0.48304 0.35865 12.1409 

2 Data of countries with low electrification rates 

The data have been compiled from the following sources: 

- Inhabitants, electrification rates, inhabitants without electricity, and consumption per 

inhabitant: the World Bank176. 

- Solar PV resource: 

o PVgis177 (free online software): for Africa countries based on default location of 

country and automatic optimal positioning of the PV panel. 

o NREL – PVWatts:178 for non-African countries. 

                                                      
176 http://donnees.banquemondiale.org/ 
177 http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php?map=africa&lang=fr 
178 http://pvwatts.nrel.gov/pvwatts.php 

http://donnees.banquemondiale.org/
http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php?map=africa&lang=fr
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Solar PV resources 
(kWh/kWp/year) 

Inhabitants 
Electrification 
rates (%) 

Inhabitants 
without 
electricity 

Electricity 
consumptions 
(kWh/inhab.) 

Afghanistan  AFG 1590 31627506 43 18027678 
 

Angola  ANG 1630 24227524 37 15263340 220 

Bangladesh  BAN 1400 159077513 59.6 64267315 279 

Burkina Faso BUR 1600 17589198 13.1 15285013 
 

Burundi BUR 1440 10816860 6.5 10113764 
 

Cambodia CAM 1460 15328136 31.1 10561086 207 

Cameroon CAM 1500 22773014 53.7 10543905 262 

Central 
African 
Republic 

CAF 1530 4804316 10.8 4285450 
 

Chad CHA 1670 13587053 6.4 12717482 
 

Côte d'Ivoire IVO 1420 22157107 55.8 9793441 240 

Democratic 
Republic of 
the Congo 

DRC 1350 74877030 16.4 62597197 105 

Eritrea ERI 1530 5110444 36.1 3265574 62 

Ethiopia ETH 1640 96958732 26.6 71167709 57 

Ghana  GHA 1510 26786598 64.1 9616389 346 

Guinea  GUI 1570 12275527 26.2 9059339 
 

Haïti HAI 1538 10572029 37.9 6565230 50 

India IND 1550 1295291543 78.7 275897099 744 

Kenya  KEN 1650 44863583 23 34544959 160 

Laos  LAO 1270 6689300 70 2006790 
 

Lesotho  LES 1750 2109197 20.6 1674702 
 

Liberia  LIB 1400 4396554 9.8 3965692 
 

Madagascar  MAD 1710 23571713 15.4 19941669 
 

Malawi  MAL 1720 16695253 9.8 15059118 
 

Mali  MAL 1600 17086022 25.6 12712000 
 

Mauritania MAU 1610 3969625 21.8 3104247 
 

Mozambique MOZ 1510 27216276 20.2 21718588 444 

Myanmar  MYA 1530 53437159 52.4 25436088 153 

Namibia NAM 1810 2402858 47.3 1266306 1591 

Nepal NEP 1190 28174724 76.3 6677410 119 

Nicaragua  NIC 1389 6013913 77.9 1329075 580 

Niger  NGR 1640 19113728 14.4 16361351 
 

Nigeria  NIG 1450 177475986 55.6 78799338 156 

Papua-New-
Guinea  

PAP 1402 7463577 18.1 6112670 
 

Philippines PHI 1188 99138690 87.5 12392336 672 

Rwanda  RWA 1410 11341544 18 9300066 
 

Senegal SEN 1610 14672557 56.5 6382562 210 

Sierra Leone SIL 1410 6315627 14.2 5418808 
 

Somalia  SOM 1670 10517569 32.7 7078324 
 

South Africa  SAF 1850 54001953 85.4 7884285 4405 

South Sudan SSU 1490 11911184 5.1 11303714 
 

Sri Lanka  SRL 1470 20639000 88.7 2332207 527 

Sudan SUD 1660 39350274 32.6 26522085 157 

Swaziland  SWA 1500 1269112 42 736085 
 

Tanzania  TAN 1710 51822621 15.3 43893760 99 

Togo  TOG 1490 7115163 31.5 4873887 145 

http://donnees.banquemondiale.org/pays/afghanistan?display=default
http://donnees.banquemondiale.org/pays/angola?display=default
http://donnees.banquemondiale.org/pays/bangladesh?display=default
http://donnees.banquemondiale.org/pays/burkina-faso?display=default
http://donnees.banquemondiale.org/pays/burundi?display=default
http://donnees.banquemondiale.org/pays/cambodge?display=default
http://donnees.banquemondiale.org/pays/cameroun?display=default
http://donnees.banquemondiale.org/pays/republique-centrafricaine?display=default
http://donnees.banquemondiale.org/pays/republique-centrafricaine?display=default
http://donnees.banquemondiale.org/pays/republique-centrafricaine?display=default
http://donnees.banquemondiale.org/pays/tchad?display=default
http://donnees.banquemondiale.org/pays/cote-d%27ivoire?display=default
http://donnees.banquemondiale.org/pays/CD?display=default
http://donnees.banquemondiale.org/pays/CD?display=default
http://donnees.banquemondiale.org/pays/CD?display=default
http://donnees.banquemondiale.org/pays/erythree?display=default
http://donnees.banquemondiale.org/pays/ethiopie?display=default
http://donnees.banquemondiale.org/pays/ghana?display=default
http://donnees.banquemondiale.org/pays/guinee?display=default
http://donnees.banquemondiale.org/pays/haiti?display=default
http://donnees.banquemondiale.org/pays/inde?display=default
http://donnees.banquemondiale.org/pays/kenya?display=default
http://donnees.banquemondiale.org/pays/republique-democratique-populaire-lao?display=default
http://donnees.banquemondiale.org/pays/lesotho?display=default
http://donnees.banquemondiale.org/pays/liberia?display=default
http://donnees.banquemondiale.org/pays/madagascar?display=default
http://donnees.banquemondiale.org/pays/malawi?display=default
http://donnees.banquemondiale.org/pays/mali?display=default
http://donnees.banquemondiale.org/pays/mauritanie?display=default
http://donnees.banquemondiale.org/pays/mozambique?display=default
http://donnees.banquemondiale.org/pays/myanmar?display=default
http://donnees.banquemondiale.org/pays/namibie?display=default
http://donnees.banquemondiale.org/pays/nepal?display=default
http://donnees.banquemondiale.org/pays/nicaragua?display=default
http://donnees.banquemondiale.org/pays/niger?display=default
http://donnees.banquemondiale.org/pays/nigeria?display=default
http://donnees.banquemondiale.org/pays/papouasie-nouvelle-guinee?display=default
http://donnees.banquemondiale.org/pays/papouasie-nouvelle-guinee?display=default
http://donnees.banquemondiale.org/pays/philippines?display=default
http://donnees.banquemondiale.org/pays/rwanda?display=default
http://donnees.banquemondiale.org/pays/senegal?display=default
http://donnees.banquemondiale.org/pays/sierra-leone?display=default
http://donnees.banquemondiale.org/pays/somalie?display=default
http://donnees.banquemondiale.org/pays/afrique-du-sud?display=default
http://donnees.banquemondiale.org/pays/SS?display=default
http://donnees.banquemondiale.org/pays/sri-lanka?display=default
http://donnees.banquemondiale.org/pays/soudan?display=default
http://donnees.banquemondiale.org/pays/swaziland?display=default
http://donnees.banquemondiale.org/pays/tanzanie?display=default
http://donnees.banquemondiale.org/pays/togo?display=default
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Uganda UGA 1550 37782971 18.2 30906470 
 

Yemen  YEM 1850 26183676 48.4 13510777 170 

Zambia  ZAM 1680 15721343 22.1 12246926 571 

Zimbabwe  ZIM 1730 15245855 40.5 9071284 562 

 

http://donnees.banquemondiale.org/pays/ouganda?display=default
http://donnees.banquemondiale.org/pays/YE?display=default
http://donnees.banquemondiale.org/pays/zambie?display=default
http://donnees.banquemondiale.org/pays/zimbabwe?display=default
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Les politiques de développement du solaire photovoltaïque et leurs impacts 
sur les dynamiques des technologies et des marchés 

Hyun Jin Julie YU 

 

Résumé étendu  

 

1 Contexte  

La prise de conscience croissante des questions environnementales a accru l’intérêt porté aux 

énergies renouvelables dont l’énergie solaire. Ces dernières décennies, le changement climatique a été 

l’objet d’importantes négociations internationales. L’accord de Paris (2015) a pris des mesures 

supplémentaires pour encadrer les efforts internationaux visant à réduire les causes et les impacts du 

changement climatique. L’énergie solaire photovoltaïque (PV) a attiré l’attention de nombreux 

gouvernements en étant l’une des technologies favorites pour la transition énergétique bas carbone 

dans la communauté mondiale. 

Les ressources solaires sont disponibles partout sans risque de conflit géopolitique sur les 

ressources naturelles. En outre, l’énergie PV induit peu de risques technologiques et offre la possibilité 

d’être décentralisée. Sur la base de ces avantages, le marché des systèmes PV a connu une forte 

croissance cette dernière décennie soutenue par des actions politiques favorables dans un contexte de 

transition énergétique. Le coût des modules PV a été fortement réduit passant d’environ 4.5 $/Wp en 

2005 à 0.61 $/Wp en 2015. Ainsi, le LCOE de la plus compétitive des grandes centrales solaires a 

chuté de plus de 350$/MWh en 2005 à environ 80$/MWh en 2014. Les installations cumulées 

mondiales sont passées de 1.2 GWp en 2000 à 178 GWp en 2014. Pourtant, malgré ces conditions 

bénéfiques, le marché mondial du PV a paradoxalement traversé une période chaotique rencontrant des 

problèmes de surproduction, une crise industrielle avec la faillite de nombreuses entreprises et des 

différends commerciaux durables entre pays. Par ailleurs, alors que le niveau de pénétration du PV 

dans le mix augmente, plusieurs problématiques ayant un impact négatif sur le secteur de l’électricité 

ont commencé à apparaitre. Ce constat commence à être visible en Allemagne qui a le plus haut niveau 

de pénétration du PV dans le mix électrique. Cette thèse part de ces problématiques.  

La majorité des recherches existantes sur le secteur PV utilise un angle d’étude adapté à une 

question spécifique et ces recherches peuvent suivre des orientations très diverses vus les nombreux 

sujets d’intérêt liés au secteur.  Cependant, les décideurs politiques ont également besoin d’un point de 

vue plus holistique pour décider des orientations stratégiques pour le développement du PV dans le 

futur système énergétique. En complément des recherches qui se focalisent sur des questions précises, 

la thèse propose donc une approche plus systémique offrant un point de vue plus large sur le sujet 

permettant d’analyser le système des politiques PV et sa dynamique dans son ensemble. L’étude du 
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système des politiques PV s’effectue en intégrant la mondialisation du secteur afin de mettre en 

évidence la dynamique du système au niveau international.  

 

2 Méthodologie : une approche systémique 

La thèse tente de répondre aux questions de recherche suivantes : 

1) Quels sont le contexte et les variables clés associés au développement du PV et aux politiques 

qui l’accompagnent ? 

2) Quels sont les défis et les limites critiques liés aux politiques PV et quels mécanismes existent 

derrière eux ? 

Une fois les mécanismes du développement du PV identifiés avec les limites et défis critiques, la 

thèse tente de répondre à une troisième question : 

3) En prenant en compte les limites et défis critiques actuels, quelles orientations stratégiques 

peuvent améliorer les mécanismes des politiques PV ? 

 

Il n’est possible de répondre à ces questions qu’en adoptant une approche systémique sous un 

contexte dynamique permettant d’avoir une compréhension juste et complète des mécanismes des 

politiques publiques PV.  La façon de gérer les risques connus ou inconnus liés au développement du 

PV dans le mix énergétique est essentielle au succès des politiques PV. Les décideurs politiques du 

monde entier aspirent à anticiper correctement toute menace politique afin d’éviter les conséquences 

négatives. Cela peut ressembler à un jeu de hasard, mais une approche stratégique est possible pour 

gérer ce genre de situation. Cela peut être fait en combinant deux techniques : 

o Modéliser le système du PV en prenant en compte autant de facteurs d’influence que possible 

afin de donner une vision d’ensemble précise du système (approche systémique). 

o Construire des outils de connaissance robustes pour anticiper les changements en rupture sur 

le marché du PV et l’apparition de nouveaux modèles de business; ces outils peuvent être 

construits sur la base d’expériences partageant des similarités (analyse rétrospective). 

A cet égard, nous avons décidé d’analyser les problématiques sur la base de ces techniques. Le 

but de cette approche est d’exposer les mécanismes concrets en œuvre sous les politiques PV en 

prenant en compte leur complexité et leur caractéristique dynamique. L’analyse systémique nécessite 

d’élargir le champ d’étude pour comprendre chaque segment du système et pour mettre en évidence 

les liens entre ces segments généralement étudiés séparément. L’étude tente d’intégrer la plupart des 

domaines d’intérêt qui influencent les mécanismes des politiques PV. Cela implique l’utilisation 

d’outils d’analyse appropriés à chaque secteur étudié. L’étude est ainsi conduite en trois temps : 

1) Faire une analyse théorique permettant de définir le contexte des politiques publiques PV. 

2) Faire une analyse rétrospective permettant de comprendre les facteurs de risque critiques 

dans les mécanismes des politiques PV. 

3) Proposer des orientations stratégiques pour les politiques publiques PV. 
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La structure de cette thèse suit cet ordre logique et se repose sur trois parties.  

 

1) Partie I : Analyse théorique définissant le contexte des politiques publiques en soutien à 

l’énergie PV 

La partie I s’intéresse aux politiques publiques (chapitre 1) et aux technologies PV avec leur coût 

et leurs usages en incluant l’intégration dans le mix électrique (chapitre 2). Une fois le contexte 

correctement défini, nous comprenons que le développement du PV est limité sans cadre politique. Le 

chapitre 3 présente donc le rôle des politiques publiques pour le développement de l’énergie PV avec 

un focus sur les scénarios de l’IEA et ses suggestions politiques pour les suivre.  Ensuite, une analyse 

de risque est conduite pour identifier les risques et défis les plus importants sur le développement de 

l’énergie PV dans les systèmes énergétiques actuels et futurs. La Partie I offre la base théorique pour 

les parties II et III plus appliquées. 

 

2) Partie II : Analyse rétrospective pour comprendre les défis et risques critiques des politiques 

PV 

Dans la partie II, une analyse rétrospective des politiques PV dans les principaux pays du secteur 

est conduite. Le chapitre 1 propose une vue générale des tendances du marché du PV ainsi que du 

contexte. L’objectif du chapitre est de définir les principaux acteurs du secteur PV, à la fois pour 

l’offre et pour la demande, afin de sélectionner les pays qui seront étudiés en détail dans l’analyse 

rétrospective. Dans le chapitre 2, l’analyse rétrospective est conduite en utilisant un graphe 

schématique des mécanismes des politiques PV. L’Allemagne, le Japon et la Chine sont 

principalement ciblés du fait de leur position historique importante sur l’offre et la demande mondiale. 

La France, les Etats-Unis et la Corée sont également étudiés du fait de leur position visible sur le 

marché du PV et de leurs politiques PV particulières. Dans le chapitre 3, nous proposons des visions 

détaillées sous forme de mapping de variables sur trois piliers importants des politiques PV : la 

croissance de la production d’énergie PV, les bénéfices économiques résultant du développement de 

l’industrie PV et la réduction des coûts de l’électricité PV. L’analyse systémique sur la base de ces 

mappings conduit à s’intéresser à la dynamique des politiques PV. Ainsi, la partie se conclut en 

présentant les défis et risques critiques des politiques PV qui ont émergé dans les principaux pays du 

secteur du fait de l’aspect dynamique du système.   

 

3) Partie III : Propositions d’orientations stratégiques pour les politiques PV pour d’avantage 

de croissance 

Dans la partie III, des orientations stratégiques pour le développement du PV sont proposées. 

Nous discutons tout d’abord du nouveau mode d’utilisation du PV avec l’autoconsommation. Les 

notions de base liées à l’autoconsommation sont d’abord introduites puis une analyse des acteurs est 

présentée afin d’identifier les parties prenantes de l’intégration du PV dans le mix électrique. Ensuite, 

une étude micro-économique est menée pour évaluer l’opportunité offerte par l’autoconsommation PV 

dans les supermarchés en France. Cette étude de cas a pour objectif d’analyser les effets du modèle 
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d’autoconsommation de l’énergie PV et d’exposer en quoi ce modèle répond à certaines questions 

levées précédemment. Cette étude est ensuite étendue à plus long terme en s’intéressant au secteur 

résidentiel avec l’utilisation de systèmes PV associés à des batteries Lithium-Ion. Dans le chapitre 2, 

nous tentons de donner une vision précise des effets de la mondialisation sur les mécanismes des 

politiques PV en nous basant sur l’étude parallèle de l’Allemagne et de la Chine. Notre étude cherche à 

expliquer en quoi la politique de commerce stratégique du gouvernement chinois a influencé les choix 

d’investissement et les revenus des acteurs du marché. Nous nous appuyons pour cela sur les 

caractéristiques du marché mondial du PV qui sont essentielles pour comprendre le contexte des 

mouvements stratégiques de la Chine et ses conséquences. Nous suggérons également une nouvelle 

configuration du jeu pour trouver des possibilités d’accroissement des bénéfices pour les acteurs du 

marché dans le futur. Dans le chapitre 3, nous proposons ainsi des solutions pour sortir de la crise 

mondiale du secteur sur la base d’une coopération internationale. L’opportunité offerte par 

l’électrification dans les pays en voie de développement est quantifiée ainsi que l’impact que cela 

pourrait avoir sur le secteur PV au niveau mondial. Pour terminer, nous proposons des actions 

politiques en coopération permettant d’accroitre la compétitivité des systèmes PV en diminuant les 

coûts hors-module.  

3 Résultats 

Cette thèse a défini les variables clés associées au développement du PV et mis en évidence son 

contexte dynamique. Elle a analysé les limites et défis critiques liés aux politiques PV et aux 

mécanismes sous-jacents. La thèse fournit une vue d’ensemble des mécanismes des politiques PV 

incluant toutes les variables pertinentes et les acteurs et intégrant leurs propriétés dynamiques. Ensuite, 

cette thèse a proposé des orientations stratégiques pour améliorer le développement du secteur PV 

dans le futur selon deux dimensions, l’une nationale avec un mode approprié d’utilisation de l’énergie 

PV et l’autre international avec des opportunités pour sortir de la crise industrielle mondiale. 

L’approche systémique et les méthodologies proposées dans la thèse pourraient être utiles pour tous 

les acteurs engagés dans les politiques PV. Les principales conclusions et contributions sont présentées 

ci-dessous selon l’ordre des parties de la thèse.  

 

3.1 Partie I: Une vision systémique des mécanismes des politiques PV 

Comparée à la plupart des études existantes sur le sujet, cette thèse présente une vision 

systémique de l’évolution du secteur PV englobant les secteurs pertinents côté offre et coté demande, 

le contexte politique et la dynamique de changement.  

La partie 1 a présenté les objectifs politiques qui motivent la mise en place de politiques PV dont 

notamment la transition énergétique et le développement économique durable (croissance verte).  

L’état de l’art des technologies PV montre que la technologie au silicium cristallin domine largement 

le marché, créant probablement un verrouillage du marché qui bloque l’émergence des autres 

technologies pouvant présenter de l’intérêt sur d’autres usages. 
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Figure 1: Coût total du système PV (OECD/NEA) 

 

En parallèle des bénéfices du développement de l’énergie PV pour la société, la partie insiste 

également sur la complexité de la gestion du système électrique. Le développement de la production 

d’électricité PV induit des impacts systémiques à la fois sur la gestion du réseau et sur les acteurs 

conventionnels du secteur. Enfin, une analyse SWOT des différents usages du PV fait ressortir 

différentes options pour utiliser de manière optimale l’énergie PV. Ces options dépendent du contexte 

régional et elles sont différentes dans chaque pays ou chaque région. 

 

3.2 Partie II: Analyse rétrospective, mappings et problématiques critiques 

La partie II propose deux types de mapping aidant à la mise en place et au contrôle des politiques 

publiques PV. Le premier mapping offre une vision générale macroscopique avec une synthèse claire 

du système politique reliant les objectifs politiques aux résultats.  

 
Figure 2: graphe schématique des mécanismes des politiques publiques PV (proposé par l’auteur) 

Ce mapping a permis de conduire l’analyse rétrospective comparative de 6 pays (Allemagne, 

Japon, Chine, USA, France et Corée du Sud) sur la base d’une méthodologie commune. Cette analyse 

a mis en évidence la diversité des politiques publiques PV ainsi que leur caractéristique dynamique. La 



326 

continuité des politiques PV lors de ces dernières décennies a été un facteur important qui a conduit 

l’Allemagne et le Japon à devenir des pays leaders, contrairement à la France et aux USA pourtant 

pionniers du secteur. Ces politiques ont conduit à une forte augmentation des installations dans ces 

pays et ont créé de nombreux emplois jusqu’à la fin des années 2000. 

 

 
Figure 3: Installations cumulées de capacités PV dans le monde  

Cependant, le contexte a changé ces dernières années avec la mondialisation et la crise 

économique. L’Europe s’est surtout concentrée sur la transition énergétique mais a essayé de mettre en 

place un mix équilibré entre politique de l’offre et politique de la demande. En revanche, plusieurs 

pays asiatiques se sont principalement concentrés sur la production. Les effets d’échelle sont devenus 

un critère important de la baisse des prix du PV et l’entrée de la Chine sur le marché mondial avec sa 

politique de l’offre a déstabilisé le secteur.  

 
Figure 4: Production annuelle de cellules PV dans le monde 

 

Les pays ayant choisi les Feed-in-Tariff (FIT) pour soutenir la demande PV ont connu des pics 

d’installations entrainant de fortes augmentations des coûts de leur politique (principalement payés par 

les consommateurs d’électricité) et la Chine a connu au final une crise de surproduction lorsque le 

marché européen a ralenti.  
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L’analyse rétrospective basée sur le mapping macroscopique nous a permis d’isoler trois variables 

cœur : la croissance de la production d’énergie PV, la croissance économique au travers du 

développement du secteur PV et la compétitivité de l’électricité PV. Autour de chaque variable cœur, 

un mapping détaillé a été construit à partir de variables mesurables. Ces mappings nous donnent la 

possibilité de décomposer les mécanismes des politiques PV et nous permettent de comprendre les 

impacts des politiques publiques pour le PV, de mesurer leur efficacité et d’identifier les endroits où 

les problèmes apparaissent. 

 

 
Figure 5: Exemple de mapping détaillé: L’intégration du PV dans le mix et le coût réel de l’électricité PV ($/kW) 

Sur la base de ces mappings, trois problématiques critiques relatives aux mécanismes des 

politiques PV et liées à la dynamique du système ont été levées : l’efficacité du FIT pour stimuler la 

demande, l’impact de l’intégration du PV sur le système électrique et l’influence de la mondialisation 

du secteur PV. La thèse montre que le FIT est un système très sensible et a eu des conséquences 

inattendus du fait des changements rapides du marché du PV. Ce mécanisme a provoqué des pics 

incontrôlés d’installations dans la plupart des pays étudiés augmentant le cout des politiques et 

impactant récemment le marché de l’électricité.  

L’étude met également en évidence l’impact systémique du solaire PV sur le système électrique, 

même si cet impact est difficilement mesurable du fait du contexte compliqué dans lequel se trouve le 

secteur de l’électricité avec la sortie du nucléaire dans certains pays et la chute des prix des matières 

premières. Des stratégies doivent être mises en place pour limiter ces impacts. 
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Pour terminer, nous avons insisté sur la nécessité d’intégrer la dynamique du contexte 

international lors de la conception de politiques nationales. Le système des politiques PV est devenu 

plus complexe avec la mondialisation du secteur. Les interactions entre les politiques publiques PV de 

différents pays ont eu des effets négatifs en brisant l’équilibre mondial du marché PV.  

3.3 Partie III : Autoconsommation, politique de relance internationale 

Avec la mondialisation du marché, l’énergie PV a beaucoup gagné en compétitivité ces dernières 

années. Cette baisse rapide du prix des systèmes PV commence à rendre l’autoconsommation PV 

attractive pour les consommateurs d’électricité. Cependant, cette amélioration de la compétitivité du 

système PV lève de nouvelles questions pour le décideur politique concernant le mix électrique 

optimal et le financement du réseau qui permettent d’assurer l’équilibre offre-demande d’électricité. 

L’objectif de la thèse a alors été de fournir au décideur politique les éléments nécessaires pour préparer 

une politique publique PV plus efficace pour le futur. Afin de développer le modèle 

d’autoconsommation PV, notre étude a montré l’intérêt de donner la priorité aux secteurs garantissant 

une consommation à 100% sur site comme les supermarchés. La surface disponible sur les 

supermarchés en France représente un potentiel d’installations d’environ 2.6 GWp. L’étude indique 

que l’autoconsommation à 100%, se basant sur des systèmes PV distribués et évitant les injections sur 

le réseau, permettrait de réduire les surcoûts sur le réseau. La réduction est de l’ordre de 30% à 10% de 

pénétration PV en France par rapport aux grandes centrales PV au sol. Comparé au FIT, 

l’autoconsommation à 100% s’avère également plus économique et permettrait d’éviter les effets 

d’aubaine. Avec la baisse des prix des systèmes PV et des batteries, cette approche peut être étendue 

dans le futur aux secteurs présentant des profils de consommation d’électricité moins adaptés à la 

production PV comme le résidentiel. Sur la base des scénarios IEA, l’étude indique que les systèmes 

avec batterie deviendraient rentables avant 2030 en France.  

 
Figure 6 : Attrait économique de l’autoconsommation PV avec batterie dans le résidentiel en 2030 
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Cela représente 56 GWp d’installations potentielles produisant environ 12% de la consommation 

d’électricité nationale si toutes les maisons individuelles passaient à l’autoconsommation 100%. Si les 

décideurs politiques choisissent de promouvoir ce modèle et souhaitent atteindre la rentabilité plus tôt, 

la thèse montre que des gains significatifs sont possibles sur les coûts hors modules en France. Ce 

mode de consommation devrait induire des changements organisationnels et faire apparaitre de 

nouveaux modèles de business. Pour autant, l’étude présente également les coûts indirects d’une telle 

politique notamment les pertes pour l’opérateur réseau, critiques quant à la sécurité du système 

électrique. Ces pertes pour les acteurs traditionnels sont liées à la baisse de consommation depuis le 

réseau et peuvent être mesurées en se basant sur les tarifs de l’électricité. Les gouvernements doivent 

dès à présent se préparer en définissant des politiques d’atténuation des risques en ciblant le groupe 

d’acteurs le plus influent (opérateurs réseau, producteurs conventionnels et consommateurs). Dans 

l’objectif de se préparer à l’arrivée de la demande naturelle pour l’autoconsommation PV, nous 

recommandons de préparer une politique de transition régulière et progressive. Elle doit donner 

suffisamment de temps aux producteurs traditionnels pour s’adapter à la nouvelle situation de marché, 

fournir aux entreprises et investisseurs du secteur PV un signal politique stable et long terme et 

permettre de limiter les impacts négatifs sur le mix électrique en s’adaptant par exemple à l’âge des 

capacités de production en cours d’utilisation. En ce sens, la thèse prévoit un passage progressif des 

politiques en faveur de la croissance du PV vers des politiques de régulation permettant de contrôler 

l’impact systémique de l’intégration du PV dans le système électrique. Cela devrait éviter une 

diffusion chaotique de l’autoconsommation dans le futur.  

Pour terminer, la thèse propose une voie pour échapper à la situation de crise actuelle de 

l’industrie PV. Il a été montré les difficultés pour implémenter une politique PV du fait de la 

complexité et de la dynamique du système. Nous avons montré l’importance d’une croissance 

régulière de la demande avec un signal politique stable et de long terme permettant entre autre de 

stabiliser l’emploi sur le secteur. Cependant, les politiques nationales ont leurs limites et la croissance 

de la demande nationale pourrait être insuffisante pour soutenir une industrie mondialisée qui a investi 

dans des usines de taille GW. A cet égard, afin de résoudre la crise industrielle, il est possible 

d’étendre la portée des stratégies politiques en stimulant la demande au niveau international. 

En échange d’un arrêt des subventions de la Chine à son industrie, il est proposé de définir une 

politique internationale préparant des actions collaboratives pour offrir de nouveaux débouchés à la 

surproduction PV. Sur ce principe, l’amélioration de l’accès à l’électricité dans les pays en 

développement en utilisant des systèmes PV hors-réseau a été étudiée dans la thèse. Ce problème 

concerne environ 1.3 milliard de personnes et cette politique pourrait fournir un modèle socio-

économique de développement dans les régions pauvres du monde. Cette opportunité permettrait de 

répondre à plusieurs sources mondiales d’inquiétude. Elle réduirait les émissions mondiales de CO2 

comparées à un développement sans action, elle fournirait un moteur pour la croissance de l’industrie 

du secteur PV et permettrait le développement durable des pays en développement en augmentant leur 

accès à l’électricité. La stratégie domino de diffusion du PV proposée dans la thèse permettrait 

d’améliorer l’efficacité de la politique en réduisant son coût. Cette stratégie donne la priorité aux pays 
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les plus ensoleillés qui ont le coût le plus bas du PV avant de passer aux autres pays avec moins de 

ressources solaires. Elle tire ainsi profit de la dynamique baissière des coûts du PV liée à l’effet 

d’apprentissage. Le PV améliorerait au final sa compétitivité en bénéficiant de l’accroissement 

important du marché ce qui permettrait d’accroitre les installations PV des pays développés à un coût 

plus faible. L’ensemble des acteurs serait gagnant sur le long terme au regard de leurs objectifs 

politiques (industrie ou transition énergétique). Au final, un cercle vertueux sur le secteur PV, comme 

observé au début des années 2000 au niveau national, est reproduit mais cette fois à une échelle 

mondiale. 

 
Figure 7: « Cercle vertueux » mondial sur le secteur PV (proposition de l’auteur) 

 

4 Conclusion  

La thèse comporte des analyses du secteur PV sur plusieurs périodes de temps pour mettre en 

évidence la dynamique des mécanismes des politiques publiques nationales. Le principe de 

« cercle vertueux » décrit par Watanabe en 2000 était applicable au niveau national jusqu’au 

milieu des années 2000, pour peu que la politique soit suffisamment ambitieuse et stable sur le 

long terme. Cependant, nous avons montré que la dynamique nationale a été brisée par l’entrée de 

la Chine sur le marché PV sur la base d’une analyse croisée de différents pays mettant en évidence 

les interactions entre les différentes stratégies politiques.  

Avec un marché PV mondialisé, le prix des systèmes PV a été largement réduit ces dernières 

années. La diminution rapide des prix des systèmes PV rend l’autoconsommation PV de plus en 

plus attirante selon les régions. La thèse a démontré que l’autoconsommation PV à 100% est une 

solution plus économique que le financement par les FIT et minimise les effets systémiques par 

rapport à de grands systèmes PV centralisés connectés au réseau. Cependant, il devient également 

nécessaire de penser aux impacts indirects sur les acteurs, en particulier le gestionnaire de réseau. 

A cet égard, la thèse prévoit un passage progressif d’une politique de soutien à la croissance 

du PV vers une politique de régulation pour limiter les impacts systémiques de l’intégration 

du PV dans le système électrique. Les politiques PV futures devraient donc se concevoir sur la 



331 

base de la vision systémique proposée dans la thèse intégrant le secteur électrique dans son 

ensemble, tout en permettant à l’industrie PV de se développer dans la perspective de sa 

participation au marché mondial. 

En outre, la thèse propose une solution de développement du marché mondial aux travers 

d’actions internationales collaboratives afin d’offrir de nouveaux débouchés pour la production 

mondiale excédentaire. Cela contribuerait à réduire les émissions mondiales de CO2 par rapport à 

un développement sans action correctrice, à apporter un nouveau moteur de croissance à 

l’industrie PV mondiale et finalement, à mettre en place un modèle de développement durable 

dans les pays en développement en augmentant l’accès à l’électricité. L’ensemble des acteurs 

devrait bénéficier au final de ce développement quel que soit leur objectif politique (industrie ou 

transition énergétique). En résumé, cela produirait un « cercle vertueux » dans le secteur PV 

mais, cette fois, à l’échelle mondiale. 
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