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Titre : Identification du comportement mécanique et des propriétés en fatigue d’un soufflet à l’aide de 
l’identification intégrée à la corrélation d’images et de la thermographie infra-rouge. 

Mots clés : Acier inoxydable, Expérience multiaxiale, Photomécanique, Elasto-plasticité 

Résumé: Afin de participer à l’émergence de 
technologies innovantes et contribuer aux 
objectifs de développement durable, un 
consortium composé de 13 partenaires (3 
laboratoires académiques et 10 entreprises 
industrielles) a été formé. Le projet Thermofluide-
RT consiste à développer un système de 
refroidissement à boucle de fluide diphasique à 
pompage  mécanique. Le LMT-Cachan contribue 
à la conception de l'élément essentiel de la pompe, 
à savoir, le soufflet. Celui-ci est obtenu en soudant 
des feuilles d’acier inoxydable à durcissement 
structural très mince (70 µm) et doit fonctionner 
sans défaillance pendant 20 ans. Un 
dimensionnement fiabiliste du soufflet basé sur la 
théorie du maillon le plus faible est réalisé.  
Une méthode d'optimisation basée sur la 
technique d’identification intégrée à la corrélation 
d'images numériques aboutit à une géométrie 
d’éprouvette qui minimise l'incertitude des 
paramètres recherchés. 
 

La géométrie optimisée est testée sur Mini-Astrée, 
la nouvelle machine biaxiale du LMT. Plusieurs 
lois de comportements sont identifiées et testées sur 
le matériau étudié. Toutes les données brutes sont 
combinées à leur juste valeur grâce à une 
formulation bayésienne  basée sur l’hypothèse de 
bruits blanc gaussiens.  
De très fines feuilles du même acier sont également 
testées à l’aide d’essais uniaxiaux et multiaxiaux. 
Une loi de plasticité anisotrope est identifiée.  
Une analyse microscopique est conduite au travers 
d’un micro-essai de traction sur 2 grains et 
l’identification de paramètres d’une loi de plasticité 
cristalline est menée.  
Enfin, le dimensionnement probabiliste du soufflet 
est validé à partir de plusieurs mesures 
expérimentales infra-rouges sur un nouveau banc 
d’essai. Un modèle probabiliste à deux échelles 
permet la caractérisation des phénomènes observés 
sur le matériau d’étude et le composant lui-même. 
 

 

Title: Mechanical and fatigue properties of bellows determined with Integrated DIC and IR Thermography 
Keywords: Stainless steel, Multi-axial experiment, Photomechanics, Elasto-plasticity 

Abstract: In the context of leveraging and 
accelerating innovative technological solutions 
that contribute to meeting sustainable goals, a 
consortium composed of 13 partners (3 academic 
laboratories and 10 industrial companies) has been 
formed. The Thermofluide-RT project consists in 
developing a two-phase fluid loop driven by a 
mechanical pump. LMT-Cachan contributes to the 
design of the critical component of the pump, i.e., 
bellows. This component, which is obtained by 
welding very thin (70 µm) pre-deformed sheets 
made of precipitation-hardened stainless steel, is 
expected to operate without failure for 20 years. 
First, a probabilistic design methodology, which is 
based on the weakest link theory, allows for the 
fatigue design of the component.  
Second, an optimization methodology based on 
full-field measurements and Integrated Digital 
Image Correlation (IDIC) allows the sample 
geometry to be designed with the least uncertainty 
of the sought parameters.  

Third, the optimized cruciform geometry has 
been tested in a new compact biaxial machine, 
mini-Astrée, that allows for a fast, yet robust 
identification. Several elasto-plastic models with 
increasing complexity are investigated to probe 
the material behavior. All data account for the 
latter thanks to a Bayesian foundation that 
equitably weights all measurements. Ultra-thin 
sheets are also tested in uniaxial and biaxial 
experiments thanks to an anti-wrinkling setup. 
An anisotropic plasticity model is calibrated.  
Fourth, a microscopic analysis is performed via 
quasi-3D IDIC and a uniaxial micro-specimen 
allow a crystal plasticity law to be characterized. 
Last, the probabilistic fatigue design of the 
bellows based upon a two-scale probabilistic 
model is validated with infrared measurements 
in the high cycle fatigue regime. 
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Main notations

γ f standard deviation of gray levels
γF standard resolution of the load measurement
χ f digital image correlation residual
χU finite element method updating objective function based on dis-

placement fields (FEMU-U)
χF finite element method updating objective function based on force

measurements (FEMU-F)
χUF finite element method updating objective function based on dis-

placement fields and force measurement (FEMU-UF)
χI Integrated Digital Image Correlation objective function (IDIC)
χR Regularization objective function
Ω region of interest
u(x) displacement field vector
[M ] global correlation matrix
[SU ] displacement sensitivity matrix
[SF ] force sensitivity matrix
[CU ] covariance matrix of measured nodal displacements
[CF ] covariance matrix of measured load
[C•p] covariance matrix of identified material parameters using a method

labeled by •
[HU ] kinematic Hessian
[HF ] static Hessian
[HUF ] combined Hessian
[MIDIC] Hessian matrix of the displacement IDIC approach
[HF ] Hessian matrix of the FEMU-F approach
[HIFDIC] Hessian matrix of the global IDIC approach
f (x),g(x) pictures in the reference and deformed configurations, respectively
eα unit vector along direction α = 1,2
x 2D or 3D coordinates in normal space
ψ(x) vectorial shape functions
ξ 2D or 3D coordinates in reference space
{p} vector gathering constitutive parameters
uc computed displacement field
um measured displacement field
δi j Kronecker operator
〈•〉 mean value of •
G f = 〈∇2 f 〉1/2 root mean square gray level gradient





Chapter 1
Introduction

1.1 Motivation

For about half a century, the world has experienced an extraordinary period of
growth and prosperity. However, these changes have led to hazardous consequences and
the need to address them in the short term has become urgent and vital. First initiated in
1992 at Rio de Janeiro [1] and pursued in 2015 in Paris [2], governments have set goals
and rules for the forthcoming decades and beyond that account for all society aspects.
The sole and unique objective is to spur and sustain our well-being [3]. To that end,
countries have initiated strategies that are both environmentally sustainable and socially
inclusive. They embody numerous aspects as civil society, economic stability, education,
transportation and their implementations are garnering greater public attention and debate.
Only regarding the technological and scientific contributions, countries have decided to
actively manage them as steered by Article 10 of the Paris Agreement [2]: “accelerating,
encouraging and enabling innovation is critical for an effective, long-term global response
to climate change and promoting economic growth and sustainable development. Such
effort shall be, as appropriate, supported [...] for collaborative approaches to research
and development, and facilitating access to technology, in particular for early stages of
the technology cycle".

This imperious will generates new challenges for industry where sustainability maters
and gains more and more importance [4]. Various external forces are acting to that end,
namely, government legislation, consumers or employees concerns, environmental pol-
lution, social pressure, and climate change. To ensure that companies follow a more
sustainable path, governments are providing conditions to help technological advances to
be developed and concrete applications to be effective in the short-term in all industrial
domains [3, 2]. It has been shown that the companies that are acting are the ones that are
winning and all parties benefit from such behaviors [5].

The contribution on the climate change of the transportation sector is under increas-
ing scrutiny and must reach in the forthcoming decades ambitious objectives for reducing
noise and pollutant emissions [6]. The first European Aviation Environmental Report [7]
issued in 2016 and some compagnies [8, 9] have pointed out the importance to uphold
a strong commitment to the development of new technologies to enhance competitive-

1



2 1 Introduction

ness and reach sustainability standards. Aircraft engines emit various pollutants of which
carbon dioxide (CO2) is the most significant greenhouse gas (GHG) influencing climate
change. In the context of international efforts to limit climate changes, the transportation
sector is expected to reduce its GHG emissions by 20% in 2030 compared to 2008 levels,
and by 70% in 2050 [10].

To meet these ambitious standards automotive [11] and aircraft [8] manufacturers lead
the way to embrace electrical technology that drastically lessens the NOx emission levels.
However, adding more electrical components dramatically raises the amount of dissipated
heat that cannot be coped with existing embedded cooling technologies. This observation
requires a new paradigm regarding this vital function and one solution arises from the liq-
uid enthalpy of vaporization. This endothermic process leverages the fluid heat-transfer
capacity. Four technologies exist but only a mechanically pumped two-phase fluid loop
solution is able to cope with accelerated environments as encountered in aircraft or auto-
motive applications.

A consortium composed of 13 partners (3 academic laboratories and 10 industrial
companies) has been formed. Funded by public agencies and industry, the THERMOFLUID-
RT project [12] consists in developing a two-phase fluid loop driven by a mechanical
pump. The industrial partners seek to meet their goals in terms of thermal control regard-
ing their applications whereas the laboratories focus on more fundamental aspects. Two
laboratories aim to model and optimize the two-phase fluid loop whereas LMT-Cachan
contributes to the design of the critical component of the pump, i.e., bellows. This com-
ponent obtained by welding very thin (70 µm) pre-deformed sheets made of precipitation
hardened stainless steel (17-7 PH grade) is expected to operate without failure for 20
years. The project will contribute to sustain the leadership of the European Air and Space
industry and will serve the Île-de-France region by socially contributing to the economic
situation with 35 engineers and researchers employed for four years.

The pump is the critical component of the two-phase fluid loop and a non-removable
and non-repairable system. Therefore, the present work aims to contribute to the success
of the mechanically pumped two-phase fluid loop by providing an understanding and pre-
diction of the welded bellows mechanical and fatigue properties. The study proposes and
discusses several scientific aspects that are needed to address the investigated problem.
New tools are designed and exploited to give insights into the mechanical properties of
very thin sheets and aim to enhance the technological transfer capability from academic
findings to industrial applications.

1.2 Goal

The goal of the study is to investigate and predict the mechanical and fatigue behav-
ior of welded bellows, and to optimize their lifetime. To reveal the mechanisms that are
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of the basis of the sought behaviors a two-step investigation is set forth. The strategy
originates from the fact that the High Cycle Fatigue (HCF) mechanical properties can be
evaluated based on the evaluation of the dissipated energy [13, 14, 15]. This phenomenon
is the macroscopic thermal response of micro-plastic activity that can be modeled by an
elastoplastic law with kinematic hardening [16, 17]. Therefore, the first part of the thesis
investigates the elastoplastic behavior at the macroscopic and the microscopic scales. Sec-
ond and in the light of the evaluated mechanical behaviors, self heating experiments and
numerical analyses both on the material and the component are carried out and lead to the
determination of their fatigue properties. To meet these goals, a set of novel experimental
and numerical tools are developed and validated.

1.3 Strategy

1.3.1 Part A: Material Parameter Identification

In the first part of the thesis, the elasto-plastic behavior is investigated following two
separate scales (macroscopic and microscopic) at which mechanical tests are performed
(see Figure 1.1) and several constitutive laws are probed.

d)

(a) (b)(a)
d)

(a) (b)(b)

Figure 1.1: (a) Multiaxial testing machine, mini-ASTREE and an ultra-thin biaxial spec-
imen, and (b) the microscopic tensile apparatus and the triangular prism micro-specimen

To ensure the most relevant identification of the mechanical properties, it is crucial to
optimize the specimen geometry based on an accurate definition of the sought objectives
(i.e., material parameters and constitutive laws). Furthermore, all raw data, even if their
nature differ, must contribute to enhance identification robustness and accuracy. Experi-
mental investigations on ultra-thin sheet will be performed with the new multiaxial testing
machine, mini-ASTREE (Chapter 3) to address their elasto-plastic anisotropic properties.
The microscopic investigation aims to assess the kinematic hardening properties of a crys-
tal plasticity law [18] with Integrated DIC. The experiment relies on a triangular prism
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micro-specimen machined via focused ion beam (FIB) and gathers height profile images
with a confocal microscope. It will be shown that the boundary conditions are crucial to
assess the sought micromechanical properties and all experimental data (reaction forces
and displacement fields) need to be combined (Chapter 6). Figure 1.1 shows two experi-
mental setups and the experimental results used to characterize the elastoplastic behavior
at (a) the macroscopic scale and (b) the microscopic scale.

1.3.2 Part B: Fatigue Characterization

In the second part of the thesis, the fatigue properties of the studied material and the
bellows are investigated. The approach relies on the self-heating concept [15, 17] and
assumes a probabilistic multi-scale model to the dissipated energy [19, 20]. First, exper-
iments on ultra-thin and uniaxial specimens are performed on a servohydraulic tension/-
compression testing machine. Second, the HCF response of the bellows is monitored with
a newly designed testing machine (see Figure 1.2). The experimental results are combined
with their numerical counterparts to assess the sought fatigue properties.
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Figure 1.2: Experimental device for the fatigue investigation of welded bellows
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1.4 Scope of the thesis
Chapter 2 introduces the investigated component and its material, and gives an initial
probabilistic fatigue design based on the weakest link theory [21]. In Part A, the tools,
methodologies, and results about the mechanical behavior characterization of the studied
material are discussed in Chapters 3, 4, 5, and 6. In Part B, the results of the fatigue
investigation both on the material and the bellows are reported in Chapter 7. The thesis
ends with a reflection about the results and the proposed methodology that evaluates and
validates an optimal fatigue design of the welded bellows. Further recommandations and
challenges are mentioned in Chapter 8.





Chapter 2
An initial probabilistic fatigue design of

welded bellows

Abstract

The study aims to optimize the fatigue life of a mechanical deformable component
made of stainless steel without experimental data about its material fatigue behavior. First,
a representative Finite Element model is designed with optical microscopy photography
and Computed Axial Tomography scan. Second, a crack initiation index based on the
weakest link theory that assumes a Weibull probability density function is proposed [22].
The results lead to an optimal use of the bellows. It is shown that the solution of the
probabilistic model varies as a function of the material properties.

2.1 Introduction

An engineering company wants to design welded bellows for aerospace applications.
The component is used as a mechanical actuator of a mechanically pumped two-phase
fluid loop that delivers a constant fluid volume per cycle. The latter is an assembly of
numerous diaphragms made of stainless steel that are welded. Its geometry is given by
the existing stamping tools and the process aims to create a very strong, yet flexible me-
chanical conduit compatible with liquids and gases. Regarding its use, the stroke is equal
to δz =8mm and the liquid is in contact with the outer face with a standard differential
pressure equal to ∆p =1 bar. The manufacturer wants to identify the minimum number of
diaphragms and the location of the mid-stroke that maximizes its life. No investigation on
the fatigue properties of the material has been performed and only the material parameters
for an isotropic linear elastic model are available [23]. To address the second issue with-
out any fatigue results, a numerical model of the bellow is designed and a probabilistic
approach is carried out to minimize its fatigue failure probability.

The chapter is organized as follows. Section 2.2 analyzes the mechanical component
with tomographic scans and optical microscopy photographs. Section 2.3 shows the Finite
Element model. Section 2.4 introduces the probabilistic model and the so-called Weibull
crack initiation index and gives the results of the optimization procedure.

7



8 2 Probabilistic Fatigue Design of Bellows

2.2 Component
The bellows is a component manufactured by assembling several stamped metal diaphragms
from a 70-µm thick sheet of precipitate hardened stainless steel (17-7 PH grade [23]). The
plate originates from a 300-µm thick sheet that has been cold rolled. The diaphragms are
them stamped and welded without additional elements on their inner and outer radii. The
assembly is then heat treated to obtain the TH 1050 mechanical properties [23]. The bel-
lows operates with a 1-bar differential pressure on its outer side and an 8mm stroke. Table
2.1 gathers the material characteristics of the studied precipitate hardened stainless steel
(17-7 PH grade in TH1050 condition [23, 24]).

Table 2.1: Material parameters relative to the isotropic linear elastic model and the yield
stress from litterature data [23]

Name E (GPa) ν (—) σy (MPa)
Value 200 0.30 1300

Two experimental investigations have determined the major geometrical features of
the mechanical component. Figure 2.1(a) shows a Computerized Axial Tomography scan
(CAT-scan) with a voxel size of 30 µm with, i) the geometry of the diaphragms and ii) the
inner and outer welds. However, this observation at this magnification has not revealed
defects and more investigations are carried out on the welded regions. One bellows is
vertically cut and analyzed with an optical microscope. Figure 2.1(b) shows an optical
micrograph of an inner weld region and indicates that the Electron Beam Welding (EBW)
process generates welds with a circular shape. Furthermore, the two diaphragms are sep-
arated by about 10 µm, which is unexpected since the two diaphragms are maintained in
contact during the welding process.

Figure 2.2 shows an EBSD pole figure that reveals the material microstructure with the
measured individual crystal orientations for the material in TH1050 condition. The grains
are small with an average size below 1 µm that helps to enhanced fatigue properties [25].

For the sake of simplicity two key assumptions are made, i) the mechanical behavior
is assumed homogeneous over the entire volume (welds included) and ii) the geometrical
discontinuities in the welds are not modeled because of their complexity. No residual
stresses are accounted for.
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Figure 2.1: (a) Computerized Axial Tomography scan (CAT-scan) of one bellows and (b)
optical micrograph of a welded area on the outer radius (note the circular shape and the
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Figure 2.2: EBSD pole figure of the material in TH1050 condition
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2.3 Numerical model
The last investigation has provided key features to design the Finite Element model. The
latter is defined by its geometry and its boundary conditions. First, Figure 2.3 shows the
FE model at an inner weld (see the corresponding geometry as experimentally observed
in Figure 2.1(b)). The model is axisymmetric (note that the abscissa refers to the cen-
ter axis coordinates) and composed of 37,000 four-noded QUAD elements with bilinear
displacement interpolation (Q4). The mesh size is adapted to the specific regions to im-
prove the quality of the computation and only 6 diaphragms are modeled to minimize the
computation time.

Dimension (mm)
6.55 6.6 6.65 6.7 6.75

D
im

en
si
on
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Figure 2.3: Finite Element model of an inner weld region where the mesh size is adapted
to improve the quality of the numerical computations

Second, the boundary conditions are divided into two parts, namely, the nature of the
contacts between the bellows and interface pieces, and the prescribed loading history. The
lower interface is assumed to be clamped whereas the upper one undergoes the prescribed
displacement. Furthermore, the tangential displacement on the upper interface is free.
Figure 2.4 shows the kinematic response of the bellows for various levels of prescribed
displacement δz.

An initial numerical analysis shows that for 6 diaphragms the minimum displacement
amplitude where the Von Mises stress is lower than the yield stress is equal to 2.7 mm.
Therefore, 18 is the minimum number of diaphragms that ensures that the macroscopic
mechanical behavior remains linear elastic for an 8 mm stroke. Because of the observa-
tions of severe geometrical discontinuities, the decision is made to increase the final de-
sign to 24 diaphragms. In the following the prescribed amplitude on the model (i.e., made
of 6 diaphragms) is adapted to the real number of diaphragms (24) and equal to 2 mm
(ratio of 4 between the numerical model and the real bellows).

Last, to correspond to the real application, the numerical model relies on several load-
ing phases: i) gradually apply the pressure on the outer surface, ii) reach the mid-stroke,
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(a) (b) (c)

Figure 2.4: Deformed geometries for three prescribed displacements and a 1-bar differ-
ential pressure; (a) δz = 0 mm, (b) δz =−4 mm, and (c) δz = 4 mm

and iii) prescribe three cycles of an equivalent 8-mm stroke. Figure 2.5 shows the steps
for numerous mid-strokes.
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Figure 2.5: Prescribed loading history with its three steps, namely, pressure, reaching the
mid-stroke, and applying a cyclic loading
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2.4 Probabilistic design

This section aims to design a bellows for fatigue purposes before any experimental re-
sults. This preliminary design will be experimentally validated in Section 7.4. A de-
terministic design of the fatigue limit of the component would minimize the maximum
principal stress on the location where its value is the highest. This criterion assumes that
a fatigue crack will always initiate at the latter location. But experimental investigations
have shown for identical specimen geometry stressed with identical loading history that
fatigue cracks do not initiate in such deterministic way [26]. To account for this scatter a
probabilistic approach based on the weakest link theory [21] is applied. This theory has
been initially employed to predict the failure of this type of materials for numerous ex-
periments [27]. The results revealed 5 key concepts about the failure mechanisms: i) the
failure probability denoted Pf associated with a failure stress denoted σ f , ii) the correla-
tion between this failure stress and the initial size of the initiating defect, iii) the influence
of the volume size, iv) the influence of the stress heterogeneity quantified with a quantity
coined stress heterogeneity factor, and v) the influence of the defect distribution.

The failure probability as defined for quasi-brittle materials has no physical mean-
ing when applied to ductile material except if they behave elastically (e.g., high cycle
fatigue). Physically, the initiation occurs locally in regions where initial defects or het-
erogeneities lead to intense microplastic activities. Therefore, the material is assumed
to be macroscopically homogeneous (and elastic) but microscopically heterogeneous. A
Weibull probability function is chosen to provide an explicit mathematical formulation
of the random distribution of activation sites. The crack initiation probability that is the
equivalent of the failure probability in quasi-brittle materials is introduced (Pf ) to account
for the non deterministic initiation of cracks in HCF for metallic materials [26].

Let D be the damage variable that models the state of the material in a elementary
volume. For a damage equal to zero, the crack initiation stress σ f is equal to a defect-free
material stress σ f0 . Conversely, if the crack initiation stress is equal to zero the volume is
fully damaged and D = 1,

σ f

σ f0
= 1−D

�� ��2.1

where σ f is the crack initiation stress for a damage D ∈ [0;1]. Let Pf0 be the crack
initiation probability such that σ > σ f in a volume V0 with σ the applied stress. A crack
initiates when the initial damage D0 > 1−σ/σ f0 . The threshold damage for a stress σ that
leads to the initiation of the first crack in an elementary volume is D0c = 1−σ/σ f0 . To
account for the damage variability within the volume its distribution follows a probability
density function f0,∫ 1

0
f0(δt)dδt = 1 such that f0(δt)> 0 ∀ δt ∈ [0;1],

�� ��2.2
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which defines the elementary crack initiation probability in the elementary volume,

Pf0 =
∫

D0>D0c

f0(δt)dδt⇒ Pf0 =
∫ 1

D0c

f0(δt)dδt
�� ��2.3

Assuming that all n elementary volumes that compose the structure are independent the
survival probability of the structure (Ps = 1−Pf ) becomes

1−Pf =
n

∏
i=1

(
1−Pfi

) �� ��2.4

and applying to the last expression the natural logarithm yields,

lim
n→+∞

1
n

n

∑
i=1

ln
(
1−Pfi

)
=

1
V

∫
Ω

ln
(
1−Pf0)

)
dV

�� ��2.5

the crack initiation probability Pfi reads,

Pfi = 1− exp
[

1
V

∫
Ω

ln
(
1−Pf0)

)
dV
] �� ��2.6

To extend this expression for a multiaxial stress state, a first crack initiation equivalent
stress σeq defined by the maximum value of the positive principal stresses is chosen. The
latter has to be positive as prescribed by the definition of the crack initiation stress,

σ = σ f 0︸︷︷︸
>0

(1−D0)︸ ︷︷ ︸
>0

�� ��2.7

therefore,

σ = σeq = max(〈σ1〉+,〈σ2〉+,〈σ3〉+)
�� ��2.8

where 〈•〉 denotes the positive part of •. A power law probability density is chosen,

f (D0) = mk0 (1−D0)
m−1 �� ��2.9

where m is the exponent and k0 a scaling parameter of the distribution. The modulus is a
dimensionless parameter used to describe the variability of the strength of materials [27,
28]. The elementary crack initiation probability becomes,

Pf0 =
∫ 1

D0c

mk0 (1−δt)m−1 dδt
�� ��2.10



14 2 Probabilistic Fatigue Design of Bellows

Using Equation
�� ��2.1 and using the new notation σm

0 = σm
f0/k0, the crack initiation proba-

bility of an elementary volume reads,

Pf0 =

(
σeq

σ0

)m �� ��2.11

Using Equation
�� ��2.6 and assuming that Pf0 � 1 leads to the Weibull law that describes the

crack initiation probability in HCF

Pfi = 1− exp
[
− 1

V0

∫
Ω

(
σeq

σ0

)m

dV
] �� ��2.12

where the Weibull law parameters are m and V0(σ0)
m. This expression assumes that the

more heterogeneous the stress field the higher the crack initiation stress for a given crack
initiation probability. This effect originates from the stress heterogeneity in the material
and it is described by the stress heterogeneity factor [22],

Hm =
1
V

∫
Ω

(
σeq

σ f

)m

dV
�� ��2.13

that leads to a new expression of the crack initiation probability,

Pfi = 1− exp
[
−V Hm

V0

(
σF

σ0

)m] �� ��2.14

where σF = maxΩ σ f where σF is the maximum value of the crack initiation stress. The
concept of stress heterogeneity factor is related to the volume of the studied structure and
their product is called the effective volume (Ve f f ),

Ve f f =V ×Hm
�� ��2.15

So far, no experimental investigations have been performed to assess the Weibull param-
eters. Therefore, the Weibull crack initiation index (Ii) is introduced to deal with this lack
of data. It enables the probabilistic design of a structure to be investigated without the
Weibull parameters (particularly V0σm

0 ) being known. This index is defined as,

Ii =Ve f f (σF)
m =V0σm

0
[
− ln(1−Pf )

] �� ��2.16

The next part aims to evaluate this index and to minimize this value as it is directly related
to the crack initiation probability (Pfi).

The following analysis aims to maximize the bellows life by optimizing the location
of its mid-stroke. The numerical analysis shown Figure 2.5 is carried out. Various mid-
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strokes are investigated and an external differential pressure of 1 bar is prescribed. The
probabilistic methodology is applied to the numerical results to evaluate the stress hetero-
geneity factor (Hm) and the Weibull crack initiation indice (Ii). However, the prescribed
displacement being cyclic, the maximum amplitude of the equivalent stress Σeq is the
quantity of interest

Σeq(x) = max〈Σ1,Σ2,Σ3〉+ such that Σ(x) = σ(tT.D.C.,x) − σ(tB.D.C.,x)
�� ��2.17

where x is the local coordinates, (Σ1,Σ2, and Σ3) the eigenvalues of the strain tensor
Σ, and tT.D.C. and tB.D.C. the top dead center (T.D.C.) and bottom dead center (B.D.C.)
strokes. The maximum amplitude of the crack initiation stress ΣF is equivalent to the
maximum equivalent stress amplitude over the volume for the entire loading history,

ΣF = max
x

(
Σeq(x)

) �� ��2.18

Figure 2.6 shows the maximum principal stress field for a positive prescribed displace-
ment. Two regions exhibit important levels of the principal stress, namely, the inner side
of the weld and the two faces of the diaphragm elbow.
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Figure 2.6: Maximum principal stress field (in MPa) evaluated for a positive displace-
ment

The new expression of the stress heterogeneity factor Hm (i.e., associated with the
equivalent stress amplitude) reads,

Hm =
1
V

∫
Ω

(
Σeq(x)

ΣF

)m

dx
�� ��2.19

Figure 2.7 shows the stress heterogeneity factors (Hm) for a Weibull modulus m ∈ [1;15]
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in a semi-log plot for all the studied mid-strokes. First, the larger the Weibull modulus the
smaller the stress heterogeneity factor. The larger the Weibull modulus the more homoge-
neous the material and less scattered damage initiations. Second, the minimum value of
Hm varies as the Weibull modulus increases. Last, a significant variation is encountered
for a mid-stroke equal to -4 mm that originates from contact between two neighboring
diaphragms.
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Figure 2.7: Stress heterogeneity factor (Hm) for a Weibull modulus m ∈ [1;15] evaluated
on all the structures for different mid-strokes (zc ∈ [−8,4] mm)

The Weibull crack initiation index considers the cyclic aspect of the problem with the
maximum amplitude value of the first crack initiation stress ΣF ,

Ii =Ve f f (ΣF)
m �� ��2.20

Figure 2.8 shows the crack initiation Weibull index Ii for different mid-strokes and a
Weibull modulus equal to 12 in a semi-log plot. For other Weibull moduli the trend is
similar but the value changes. A global minimum is found.

Figure 2.9 shows the optimal mid-stroke obtained for the minimum value of the
Weibull crack initiation index (Ii) as a function of the modulus m. The optimal value
varies with the Weibull modulus. When m→ ∞ the initiation will always occur at the
location of the maximum principal stress as a deterministic approach would predict.

A standard value of Weibull modulus for a stainless steel is m= 12 [19]. Based on this
value, the optimal mid-stroke is equal to zc =−1.6 mm and corresponds to a displacement
variation δz ∈ [−5.6;2.4] mm.
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Figure 2.8: Weibull crack initiation index for a Weibull modulus m = 12 evaluated on the
whole bellows for different mid-strokes (zc ∈ [−8,4] mm)
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Figure 2.9: Optimized mid-stroke for a Weibull modulus m ∈ [1;60] evaluated on the
whole bellows for different mid-stroke (zc ∈ [−8,4] mm)

2.4.1 Conclusion

An initial probabilistic design has led to the optimization of the mid-stroke (zc) of welded
bellows. First, experimental investigations have assessed the key geometrical features
leading to a representative numerical model. Second, the weakest link theory has been
applied to the concept of crack initiation in high cycle fatigue. That path has led to the in-
troduction of the Weibull crack initiation index. Based on numerical results, the index has
been evaluated for numerous mid-stroke configurations. The results have shown a unique
minimum value for each mid-stroke. However, this analysis has been achieved without
experimental data of the material fatigue behavior. Therefore, the optimal mid-stroke
value has been evaluated for numerous Weibull moduli. A standard value for stainless
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steel has been chosen [19] to give an initial answer. This answer is crucial for the design
of the pump because it enables for a more compact design that minimizes the mass of the
total component. Experimental investigations on fatigue in particular must be undertaken
to assess the key properties and validate this initial probabilistic fatigue design.

Two pieces of information are needed. First, the mechanical behavior of the material
needs to be assessed and second, its fatigue properties and those of the component need
to be determined. Therefore, Chapter 3 aims to design an optimized cruciform geometry
to reveal and assess the mechanical properties. The designed procedure fully exploits the
wealth of information provided by full-field measurement.
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Material Parameter Identification
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Chapter 3
Optimization of a cruciform geometry for

the identification of constitutive parameters

Reproduced from: Morgan Bertin, François Hild and Stéphane Roux, Optimization of a
cruciform specimen geometry for the identification of constitutive parameters based upon
full-field measurements, Strain, 2016, doi: 10.1111/str.12178

Abstract
A methodology is proposed to optimize a specimen shape in a biaxial testing ma-

chine for the identification of constitutive laws based on full-field measurements. Within
the framework of Finite Element Model Updating (FEMU) and Integrated Digital Im-
age Correlation (IDIC), the covariance matrix of the identified material parameters due to
acquisition noise is computed and its minimization is the basis of the proposed shape op-
timization. Two models are investigated; first, a linear elastic law, and second, an elasto-
plastic law with linear kinematic hardening. Two optimal fillet radii sets are assessed for
the two investigated laws based on the minimization of the identification uncertainty.

3.1 Introduction
One of the main issues of mechanical engineering is to understand, describe and

predict how materials behave and fail. For many industrial applications, the optimization
with respect to mass for instance pushes toward accurate and hence complex constitutive
laws. Just to mention a very early example, elastoplastic flow in sheet metal forming
prompted Hill [29] to emphasize on the need for properly describing anisotropy to ac-
count for the influence of the orientation of the sheet with respect to the rolling direction.
Together with the complexity of constitutive laws comes a rapid increase in the number
of material parameters to be identified in order that the model matches the load / displace-
ment relationship as observed in either one or several mechanical test(s). This inflation of
parameters implies an increased difficulty to measure them in well-suited experiments. In
particular, plastic anisotropy calls for multiaxial testing.

Due to the complexity of designing multiaxial testing devices, one compromise was
to consider flat cruciform specimens [30]. The authors showed the benefit provided by

21
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such samples for biaxial fatigue studies with numerical simulations. However, only the-
oretical and modeling approaches were performed [31]. Kelly [32] carried out “virtual
experiments” to characterize materials with multiaxial loadings. Finally, the first in-plane
biaxial loading system has been proposed by Makinde et al. [33, 34, 35]. The authors
proposed an original experimental device to prescribe biaxial tension in the plane of a
cruciform specimen to study plasticity. Afterward, ad hoc systems were proposed to per-
form biaxial tension [36, 37, 38] using uniaxial testing machines [39].

Other authors [34, 40, 41, 42, 39] studied plasticity under biaxial loading and applica-
tions to constitutive modeling [43]. Eftis et al. [44] studied crack propagation under biax-
ial loadings. Kuwabara [36] prescribed different loading paths with both cruciform speci-
mens and bending tests. It appears that the most flexible and versatile experimental system
is related to in-plane biaxial tests of cruciform specimens [35, 42, 45] among different sys-
tems [46, 40, 45]. Some of them involve complex loading conditions [47, 48, 49, 50, 51].

Two main issues raised by the above-cited authors were i) How to reveal specific ma-
terial behaviors? and ii) How to quantify and identify material parameters? The first issue
deals with the design of experimental systems. The second one is related to measurement
and identification procedures. These two aspects (i.e., measurement and identification)
are linked. For example, in the case of the identification of constitutive parameters, the
main guide to the design of cruciform specimens, namely homogeneity, was motivated by
the measurement methods (e.g., strain gauges or extensometers).

Even if innovative sensors were proposed [52], the total number of sensors remained
fairly small. This constraint has led to specific optimization criteria [53]. They accounted
for three aspects, namely, the homogeneity of the zone over which the phenomena oc-
cur and the level of strains and stresses in order to have good measurements with strain
gauges [40, 36, 54, 42]. The homogeneity requirement led for instance to specific features
such as slits to cancel out Poisson’s effect occurring on specimen arms and yielding larger
homogeneous zones [53, 55, 56], a thinner central zone to concentrate the strains [47, 17]
and a minimum number of discontinuities [41, 57] were also considered.

However, the stress and strain uniformity is not necessarily required when identifica-
tion techniques accounting for heterogeneous fields are considered. First introduced by
Kavanagh and Clouth [58] the so-called “Finite Element Model Updating” (FEMU) tech-
nique aims to identify the constitutive parameters while updating the numerical model to
the experimental data. Lecompte et al. [41] proposed a mixed numerical-experimental
technique to identify orthotropic parameters of metals based on full-field measurements.
With a biaxial tensile test the FEMU technique was used to compare measured and com-
puted strain fields (i.e., FEMU-ε). This method is one out of several procedures based on
full-field measurements [59, 60]. Similarly, Schmaltz et al. [61] made use of stereo-DIC
measurements and FEMU-U (i.e., comparison between measured and computed displace-
ment fields) to identify plastic laws for four different cross-shaped geometries. The key
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point here was the introduction of full-field measurements, that is, a considerable increase
in the density of measurement points. This abrupt transition from sparse to dense mea-
surements is a major change of perspective.

FEMU can be extended to Integrated Digital Image Correlation (IDIC [62, 63]) to
couple measurement and identification procedures. Unlike other identification techniques
such as FEMU, IDIC relies directly on the images to determine material parameters. It
allows standard finite element codes to be used in a non-intrusive way [64]. Further, when
properly weighted it can be shown that for small noise levels weighted FEMU and IDIC
lead to similar covariance matrices of the sought parameters [64].

The fact that full-field measurements are performed will lead to new approaches to
mechanical test design. The geometry and load history will be chosen to optimize the sen-
sitivity of the test with respect to the sought constitutive parameters. The present chapter
aims to pave the way to a systematic optimization of test design tailored for an anticipated
constitutive law. Here only the specimen geometry is optimized for the sake of simplicity
and the loading path is considered as fixed. The target is formulated in terms of the quality
of the measurement of constitutive parameters (i.e., the least uncertainty is sought). After
presenting the theoretical background, a single parameter optimization will be performed,
based on the radius of a cruciform specimen fillet. An artificial (i.e., numerical) case will
be studied where the uncertainty is computed from an experimentally representative noise
level in the entire data acquisition and treatment chain. Linear elasticity and elastoplas-
ticity (with linear kinematic hardening) will be discussed to highlight the key role played
by the formulation of the sought objective, and henceforth the constitutive law parame-
terization. The formalism proposed herein is transparent to more complex constitutive
(e.g., including various hardening postulates). To illustrate this test case, constitutive
parameters are chosen as representative of 17− 7 PH (Precipitation-Hardened) stainless
steel [23], which is known for its very good fatigue properties [24, 65]. Let us stress how-
ever that the present optimization is based on noise uncertainty and omits possible bias
due to model error, which can hardly be addressed a priori (or very artificially).

3.2 Optimization strategy

To optimize the geometry of cross-shaped samples, Schmaltz et al. [61] propose to use
so-called stress-stress and major-minor strain graphs. The first ones are determined via
numerical simulations, whereas the second ones can be assessed experimentally via full-
field measurement techniques. The present optimization is based on the covariance ma-
trix of the identified material parameters, which indicates the identification uncertainty
associated with a chosen constitutive law. The identifiability of constitutive parame-
ters is estimated using the quantification of their influences on experimentally observ-
able (i.e., measured) quantities (e.g., displacement or temperature fields, resultant forces).
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Their influences are expressed with quantities called sensitivity fields [66, 41], i.e., gradi-
ents of the observables with respect to the to-be-identified parameters. Considering one
parameter variation and identical boundary conditions, there exists one sensitivity field
for each material parameter. The latter ones are collected in a vector {p} whose com-
ponents are conveniently designed to be dimensionless. This can always be performed
through a normalization with the expectation values of the parameters (i.e., nominal val-
ues). For convenience, it is possible to define as constitutive parameters logarithms of
moduli scaled by nominal values.

The sensitivity fields are to be computed numerically based on the current determina-
tion of the constitutive parameters as well as with boundary conditions that are obtained
from DIC analyses. In the present study, the identification is based on full-field measure-
ments and two related techniques, namely, FEMU and integrated DIC [64]. Within those
approaches, it is possible to track down the uncertainty from the measurement step down
to the identification step. This uncertainty is collected into a global covariance matrix
[Cp]

[Cp] = 〈{δp}⊗{δp}〉
�� ��3.1

where the angular brackets 〈...〉 denote the mathematical expectation of the enclosed ar-
gument. [Cp] deals with all facets of the problem, namely, the geometry of the studied
structure, the chosen constitutive law, the set of parameters, the boundary conditions, the
measurement uncertainties and the identification method. This is important since it pro-
vides an estimate of the quality of the identified parameters through an uncertainty, and
also because it gives a handle on how to optimize a mechanical test (in the present case
through the shape of the specimen). The lower the value of this covariance, the more
reliable the identification. The objective is to minimize the covariance matrix compo-
nents with respect to the optimization parameters (here chosen to be associated with the
specimen shape). However, because this covariance is a second order tensor, some more
discussion is required on what is really meant by minimization, and this issue and some
of its consequences will be discussed and illustrated below.

3.2.1 Test and observables

Specimen geometry

The testing machine is biaxial, which has the ability to prescribe an arbitrary tensile strain
in two orthogonal directions, e1 and e2, with opposite actuators that behave in a symmet-
ric fashion so that the specimen center is motionless. The specimen shape is thus naturally
cruciform (Figure 3.1). In the following, the four fillets are first assumed to have the same
radius. The fillet radius will be the argument of the optimization problem. The region of
interest is a square of area 30× 30 mm2. Figure 3.1 shows the triangular mesh used for
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the numerical simulation and the specimen geometry for a fillet radius equal to r = 2 mm.
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Figure 3.1: Mesh and geometry of the analyzed specimen with a fillet radius r = 2 mm

This type of geometry will be used to perform biaxial experiments on 17-7 PH stain-
less steel. It has been chosen regarding the manufacturing process and the machine capa-
bilities, namely, i) Electrical Discharge Machining (EDM), ii) flat and thin biaxial speci-
mens, iii) the largest arm width available to ensure the largest observable surface, and iv)
a sufficiently simple geometry with a small number of parameters to optimize. However,
other optimization parameters could be investigated such as adding a hole to the speci-
men. It is worth noting that other geometries have been proposed, e.g., by Schmaltz et
al. [61].

Loading history

As shown in Figure 3.2, a “nonproportional” loading path is prescribed. First a displace-
ment along direction e1 is applied up to a maximum value d1 = d∗ while the transverse
displacement is kept equal to 0 (OA). Then, at fixed displacement d1, the displacement d2

is raised to reach an equibiaxial strain state, d1 = d2 = d∗ (point B) and finally both dis-
placement amplitudes are reduced to zero at the same rate (BO) so that in the displacement
plane (d1,d2) the loading path is a triangle.
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Figure 3.2: (a) Triangular loading history prescribed in the simulation. The squares
depict the computed steps. (b) Boundary conditions prescribed on the sample in terms of
longitudinal displacements. With the chosen loading history the center of the specimen is

motionless

The tested specimens are 0.3 mm thick (Chapter 4). Thus, forces in both directions
are chosen greater than or equal to zero to avoid buckling. The measured quantities are of
two types. First, reaction forces in each arm are measured using load sensors. Second, at
prescribed stages, images of the specimen surface are captured. They will be processed
to measure displacement fields using DIC techniques discussed in detail below. The sim-
ulated digital camera is able to acquire 16-bit gray scale images. The physical size of one
pixel is a = 13.5 µm.

Each measurement is performed with a specific uncertainty. γ2
F denotes the variance

of the force measurement, where all load cells are independent of each other. Similarly,
images are subjected to a noise that will be considered to be Gaussian and white (i.e., un-
correlated). One key feature of the used DIC methodology is the fact that the effect of
image noise on displacement uncertainty can be explicitly characterized. This is an ex-
tremely important feature as it allows for the design of the appropriate norm to be used
in the FEMU identification procedure, and thereby to follow the impact of noise coming
from either images or force sensors onto the uncertainty of the identified parameters [64].
It is because of this complete chain that the optimization of the specimen shape can be
addressed even when the specimen has not been tested yet.

3.2.2 Covariance matrices

The aim of this subsection is to introduce the general framework to estimate the covari-
ance matrix [Cp], which is the basis of the optimization procedure proposed herein. Two
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different routes will be followed.

Global DIC

In the following, global DIC is considered. It relies on the registration of an image f (x) in
the reference configuration and a series of pictures g(x, t) in the deformed configurations
indexed by time t. The gray level conservation is assumed

f (x) = g(x+u(x, t), t)
�� ��3.2

where u(x, t) is the sought displacement field. The problem consists of minimizing the
norm of the gray level differences over the whole Region of Interest (ROI)

χ2
o f = ‖g(x+u(x, t), t)− f (x)‖2

Cn

�� ��3.3

≡ ∑
Ω

∑
Ω
(g(x+u(x, t), t)− f (x))[Cn(x,ξ)]

−1(g(ξ+u(ξ, t), t)− f (ξ))

where [Cn(x,ξ)] denotes the covariance matrix of gray level noise for pixels x and ξ.
In this expression Ω denotes the ROI. Although seldom used, it can be shown that this
norm is the best suited one. At convergence the residual (g(x+u(x, t), t)− f (x)) should
be a statistically representative sampling of the noise for which the covariance has been
computed.

Assuming that acquisition noise is Gaussian and white induces that the covariance ma-
trix [Cn(x,ξ)] is equal to γ2

f [δ(x,ξ)], where [δ(x,ξ)] is the Kronecker delta matrix, and
γ f the standard deviation (expressed in gray levels) of noise. Equation

�� ��3.4 then reduces
to the sum of squared differences between the deformed image corrected by the measured
displacement u(x, t) and the reference image (written for each time t independently)

χ2
f (t) =

1
2γ2

f NΩ
∑
Ω
((g(x+u(x, t), t)− f (x))2 �� ��3.4

that is minimized with respect to the sought displacement fields u(x, t). NΩ denotes the
area in terms of the number of pixels the ROI contains. Noise is assumed to affect each
image independently (including the reference one, which is responsible for the factor of
1/2 coming as a multiplicative term in this functional).

In the following, the noise amplitude γ f will be considered as constant in space and
time, and independent of gray level so that it could have been dropped from the expression
of the functional χ2

f (t) without consequences. However, it is introduced here [67, 64] so
that at optimal registration, acquisition noise will be responsible for an expectation value
of this functional equal to unity. A similar strategy will be followed in the sequel. Let us
note that although time (indexing an image series) is an important aspect of identification
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because it is crucial to access the different stages of loading that will be sensitive to dif-
ferent features of the constitutive law, this section presents tools that are relative to image
pairs. Treating a complete image series will simply consist of summing the different con-
tributions of image pairs. Thus, the time parameter t is dropped for the remainder of this
section to simplify the notations.

The displacement field is decomposed onto a basis of functions ψn(x) that is selected
at will

u(x) = ∑
n

unψn(x)
�� ��3.5

whereψx are shape functions in the present case, and un the unknown degrees of freedom.
Ideally, the number of these fields should be kept as small as possible (to reduce uncer-
tainty on their amplitude) yet large enough to capture the anticipated variety or hetero-
geneity of the actual experimental field. The minimization of χ2

f is achieved by successive
linearizations and corrections, using Gauss-Newton scheme

[M ]{δu}= {b(i)} �� ��3.6

where [M ] is the DIC matrix, {δu} the vector gathering all increments of measured
displacement amplitudes, and {b(i)} the residual column vector at iteration i. The DIC
matrix reads

Mi j = ∑
Ω
(∇ f (x) ·ψi(x))

(
∇ f (x) ·ψ j(x)

) �� ��3.7

and the right hand side term

bi = ∑
Ω
(∇ f (x) ·ψi(x))( f (x)−g(x+ ũ(x)))

�� ��3.8

where ũ(x) is the current estimate of the displacement field.

The DIC matrix is of importance when evaluating the covariance matrix of the mea-
sured degrees of freedom due to image noise, [CU ] = 〈{δu}⊗{δu}〉 [68, 67]

[CU ] = 2γ2
f [M ]−1 �� ��3.9

When a specific random pattern is known then the above equations are to be used. In
the present case, the design is to be done without a specific speckle pattern in hand. For
this reason, it is useful to resort to a “mean-field” assumption for the estimation of the DIC
matrix [M ], and derived quantities such as the covariance matrix of the kinematic degrees
of freedom [CU ]. This approximation is based on a scale separation of shape functions
ψ(x) and random pattern f (x) and their statistical independence. If the expectation value
of the gray level gradient in the reference image, G2

f = 〈(∇ f )2〉, is introduced the mean-
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field approximation of [M ] reads

Mi j ≈
G2

f

2 ∑
Ω
ψi(x) ·ψ j(x)

�� ��3.10

Many choices of basis fields ψn are possible within the above framework of global
DIC. Two specific choices will be considered hereafter. First, a finite element repre-
sentation of the displacement [68]. For instance, a triangular mesh with finite elements
that are three-node triangles with linear displacement interpolation (T3) is the simplest
and offers both flexibility for meshing and robustness for DIC. Second, FEMU, which is
detailed in the next subsection, can be transported into the global DIC framework with
basis functions that are computed numerically from parameter sensitivity fields [64]. This
procedure, which is called integrated DIC (or IDIC), is detailed after the FEMU method.

The output of this first processing of images is i) a series of displacement fields (one
for each acquired image past the reference one) as amplitudes {u(t)} of the chosen kine-
matic basis and ii) the complete covariance matrix [CU ] due to noise. (Note that the latter
is independent of time.) It will be the input of the following identification procedure.

Weighted FEMU

FEMU is a classical identification strategy that is based on the minimization of the differ-
ences between measured quantities (i.e., forces and displacements where the latter ones
are obtained from DIC analyses) on the one hand, and the corresponding quantities that
are computed from a numerical simulation exploiting a constitutive model and boundary
conditions of Dirichlet type extracted from the DIC analysis. One key feature needed to
obtain the most reliable estimate is to weigh the used information according to its value.
This weight is coming from the covariance matrix of the measurement.

Weighted displacement-based Finite Element Model Updating (FEMU-U) consists of
computing the set of (dimensionless) constitutive parameters, {p}, that minimizes χ2

U
[69, 64]

χ2
U =

1
NU
{um−uc}t [CU ]−1{um−uc}

�� ��3.11

where χ2
U is the weighted squared differences between measured, {um}, and computed,

{uc}, nodal displacements and NU the total number of kinematic degrees of freedom.
Once again, the prefactor has been chosen so that, at convergence, noise in the measured
displacement should, by itself, endow χ2

U with a unitary value. Because the displacement
field has generically a nonlinear behavior with respect to the constitutive parameters, an
iterative scheme is implemented for the minimization of χ2

U with respect to {p}

{δp}(i+1) =
(
([SU ]

(i))t [CU ]−1[SU ](i)
)−1

[SU ]
(i)[CU ]−1{um−u(i)

c }
�� ��3.12
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where [SU ]
(i) is defined as the displacement sensitivity matrix with respect to material

parameters {p}

[SU ]
(i) =

∂{u(i)
c }

∂{p}
�� ��3.13

that is expressed in pixels as the parameters {p} have been chosen dimensionless.

At convergence, the displacement sensitivity matrix does not depend any longer on
the iteration number and hence, in the following, the index (i) will be omitted when-
ever one does not refer to the practical numerical implementation where sensitivities have
to be updated through iterations as the constitutive parameters are evolving. In partic-
ular, assuming that the noise level is small, the linearized relationship is used between
the increments in {p} and the remaining discrepancy {um−uc} at convergence to inter-
pret the displacement difference as the fluctuation in measured displacement induced by
noise {δu}. The resulting {δp} will be nothing but the fluctuating part of the identified
parameters due to noise. The expectation value of [CU

p ] = 〈δp⊗ δp〉 is the correspond-
ing covariance matrix that contains the full characterization of the statistical variability
(within the present framework of Gaussian noise and small perturbations).

Using the expression of the covariance of the displacement field from global DIC,
Equation

�� ��3.12 at convergence becomes

{δp}= 1/(2γ2
f )[HU ]

−1[SU ][M ]{δu} �� ��3.14

where the Hessian [HU ] is introduced

[HU ] = [SU ]
t [CU ]−1[SU ] = 1/(2γ2

f )[SU ]
t [M ][SU ]

�� ��3.15

The covariance in the constitutive parameters due to the image noise is expressed as [64]

[CU
p ] = [HU ]

−1 �� ��3.16

The reaction forces may also be measured and compared with the computed resultants,
which themselves incorporate i) a constitutive law whose parameters will at convergence
be adjusted to those of the material to be identified, and ii) displacement boundary condi-
tions that are provided by DIC measurements on the boundary. Thus, the same approach
is followed with the reaction forces for which χ2

F is minimized

χ2
F =

1
NF
{Fm−Fc}t [CF ]

−1{Fm−Fc}
�� ��3.17

where NF is the number of load cells, {Fm} the measured forces, {Fc} the computed reac-
tion forces with respect to the chosen material parameter set, [CF ] the covariance matrix
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of the measured loads (in the present case it is assumed that the load measurements are
uncorrelated so that [CF ] = γ2

F [I]. However, it is assumed that the load uncertainty is
proportional to the magnitude of the load, γ2

F = ρ2
1|F |2. Moreover, it is easy at this stage

to incorporate a minimum measurement uncertainty for the load cells by including an
additional noise term whose variance ρ2

0 is independent of the load level. This practi-
cally disqualifies all measurements of forces below Fmin = ρ0/ρ1. Thus, it is assumed
that (Chapter 4)

γ2
F=ρ2

1|F |2 +ρ2
0

�� ��3.18

The minimization of χ2
F leads to the variation of the identified set of material param-

eters
{δp}(i+1) =

(
([SF ]

(i))t [SF ]
(i)
)−1

[SF ]
(i){Fm−F (i)

c }
�� ��3.19

where

[SF ]
(i) =

∂{F (i)
c }

∂{p}
�� ��3.20

are the reaction force sensitivities.

Using the same analogy between the algorithmic solution to the problem and the small
perturbation computation of the effect of noise, the covariance matrix of the identified
parameters with respect to the reaction forces reads

[CF
p ] = [HF ]

−1 �� ��3.21

where [HF ] = [SF ]
t [CF ]

−1[SF ] = γ−2
F [SF ]

t [SF ] is the reaction force Hessian.

The identification based on the combined displacement fields and reaction forces is
achieved by minimizing the global functional χ2

UF [64]

χ2
UF =

NU

NU +NF
χ2

U +
NF

NU +NF
χ2

F
�� ��3.22

where the displacement and reaction force functionals have been introduced in Equa-
tions

�� ��3.11 and
�� ��3.17 respectively. The reason for the specific weight of the two functionals

originates from a Bayesian foundation for using a weighted quadratic difference includ-
ing noise covariance. The underlying hypothesis is that the noise is Gaussian and remains
so at all stages of its manifestation. The quadratic form is in fact the argument of the
exponential in this Gaussian probability distribution. The additivity of the functionals is
the counterpart of the statistical independence of the two measurements (i.e., load and
images), which implies that probabilities are to be multiplied. The chosen normalization
by the noise amplitude in all functionals χ considered up to now guarantees that no addi-
tional prefactors are to be considered herein. Consistently, if only noise is present (i.e., no
model error), the expectation value of χ2

UF amounts to unity.
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The minimization leads to the iterative computation of the parameter increment {δp}(i)

{δp}(i+1) = [HUF ]
−1

(
1

2γ2
f
[SU ][M ]({um}−{uc}(i))+

1
γ2

F
[SF ]({Fm}−{Fc}(i))

)
�� ��3.23

where the global (i.e., kinematic and static) Hessian is considered [HUF ] = ([HU ] +

[HF ]). The covariance matrix of the identified parameters becomes

[CUF
p ] = 〈{δp}⊗{δp}〉= [HUF ]

−1 �� ��3.24

The above sections have underlined the similarity of principles at play for extract-
ing information with the least uncertainty from noisy data, both for DIC moving from
images to displacement fields, and FEMU going from displacement fields (and load mea-
surements) to material parameters. In this two-step process, one may note that displace-
ment data are only an intermediate quantity, whose computation may imply constraints
(e.g., coarse mesh for DIC to be well-conditioned) that are not ideally suited to FEMU. It
is thus desirable to merge these two processes into one. This is known as Integrated-DIC,
or IDIC, and is now presented.

Integrated DIC (IDIC)

Integrated digital image correlation (IDIC) is a global DIC technique that relies on a me-
chanical choice for the measured displacement field. It allows the user to perform the
measurement and identification of the sought parameters in only one step. The displace-
ment field is approximated as

u(x, t,{p}) = u(x, t,{p}(i))+
[

∂u
∂{p}(i) (x, t,{p}

(i))

]
{δp} �� ��3.25

at iteration i, and the reaction forces

{Fc}(t,{p}) = {Fc}(t,{p}(i))+
[

∂{Fc}
∂{p}(i) (t,{p}

(i))

]
{δp} �� ��3.26

where the corrections {δp} to the sought parameters become the unknowns.
In theory, if the same mesh is used in DIC and for the computation of the sensitivity

fields, there should be no difference between a two-step determination and an integrated
procedure [64]. However, this is valid only for small amplitudes of noise and identical
meshes. There are many cases where one can resort to a very fine mesh for the mechanical
computation that would not be acceptable for DIC. This very fine mesh is not a problem
with respect to IDIC as only a few search directions are chosen, and hence the modeling
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error due to a coarse mesh can be avoided.
If the same mesh is used and the DIC matrix has been computed as [M ], and residuals

{b}, IDIC simply consists of projecting the nodal displacement field onto the sensitivity
fields. The Hessian becomes

[M ]IDIC = [S]t [M ][S]
�� ��3.27

and hence the amplitudes that can still be read as the increments in the constitutive pa-
rameters assume the following expression

{δp}(i) = [M ]−1
IDIC[S]

t{b} �� ��3.28

In the following, artificial (i.e., computed) cases will be dealt with and hence one may
question the added value of using IDIC. In fact it will mostly allow us to check that inter-
mediate ill-conditioning does not interfere with the effect of noise to prevent convergence
on the one hand, and it will lead to a realistic treatment of noise irrespective of its value.
The level of noise indicated in Table 3.1 has been chosen as representative of actual ex-
perimental conditions.

Table 3.1: Displacement and load resolutions, and other characteristic features (Chap-
ter 4)

Quantity ρ0 ρ1 γ f G f = 〈(∇ f )2〉1/2 a
Value 2.5 N 4×10−4 233 gray levels 3800 gray levels/pixel 13.5 µm

3.3 Elastic law with different parameterizations

For the identification involving multiple parameters, it is somewhat subjective to choose a
given criterion to express the quality of identification by a single number to be optimized.
It is desirable that all parameters be determined accurately. However when increasing
the quality of one determination degrades that of another one, expressing a preference
is difficult. Because of this freedom, one cannot pretend to provide a universal answer.
The choice made herein is to focus on the “worst” determination, namely, the one that
has the largest uncertainty due to noise, and the optimization is designed to reduce this
uncertainty to its minimum. However, it is to be noted that even such a choice is fragile.
A nonlinear transformation of parameters may lead to a different optimization criterion
and hence a different answer.
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It is important to note that changing parameters is simple and the above formalism
may show that this change can be done before or after the identification, and get the very
same result. The difficulty rather lies in the formulation of a relevant criterion. In many
cases, an easy way out of this debate is to focus on a specific application (e.g., a part with a
given shape subjected to prescribed loads and for which one is interested in a deflection at
a particular location) and for which one could reformulate an uncertainty criterion suited
to the targeted application, which has no chance of coinciding with any other a priori
choice.

The chosen objective is from now on to get the smallest level of the largest eigenvalue
of the parameter covariance matrix. Equivalently, the largest level of the smallest eigen-
value of the Hessian is sought. Let us introduce the notation of {λU} for the eigenvalues
of the Hessian [HU ], and similarly {λF}, {λUF} for [HF ] and [HUF ] respectively.

The choice of the constitutive law parameterization is important [66]. Two parame-
terizations will be considered in isotropic elasticity. One writing is based on the shear, µ,
and bulk, K, moduli. The stress-strain relationship reads

σ = 2µ(ε− 1
3

tr(ε)I)+K tr(ε)I
�� ��3.29

where σ and ε are the stress and strain tensors, respectively, and I the identity tensor.
Lamé coefficients are related to Young’s modulus E and Poisson’s ratio ν by

E =
9Kµ

3K +µ
and ν =

3K−2µ
2(3K +µ)

�� ��3.30

The values of the parameters in the example discussed in the following section are given
in Table 3.2.

Table 3.2: Elastic parameters representative of 17-7 PH steel

State E (GPa) ν (—) K (GPa) µ (GPa)
Reference (p0) 200 0.3 166.7 76.9
Sensitivity analysis (p) 204 0.306 175.3 78.5

Two optimizations will be studied. Because of the requirement to use a dimensionless
set of parameters, the first chosen parameterization is based on {log(E/E0), log(ν/ν0)}
collectively denoted {p}, and the second on {log(K/K0), log(µ/µ0)} denoted {q}. Here
E0, ν0, K0 and µ0 are nominal values of the chosen parameters. The choice of using a log
scale for the moduli is to favor relative uncertainties. Within this configuration the local
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tangent map between the two bases reads{
dK
K
dµ
µ

}
=

[
1 2ν

(1−2ν)
1 −ν

(1+ν)

]{dE
E
dν
ν

}
≡ [A]

{dE
E
dν
ν

} �� ��3.31

where [A] is the change of basis matrix. About a current point, the increments {dq} and
{dp} are linearly related by the above [A] linear transformation. Figure 3.3 shows the
incremental vectors {dq} in the {dp} plane. It is to be emphasized that these vectors are
rotated and scaled differently so that the {p} → {q} mapping is not unitary (i.e., norm
of vectors will not be preserved). The consequences of this simple observation are now
studied regarding the covariance matrices.

dE/E
-1 -0.5 0 0.5 1

d
ν
/ν

-1

-0.5

0

0.5

1

dµ/µ

dK/K

Figure 3.3: Local map of the {log(K), log(µ)} parameterization in the {log(E), log(ν)}
basis

The covariance matrix in the first set of coordinates {p} may be diagonalized as

[Cp] = 〈{δp}⊗{δp}〉= [V ]t [D][V ]
�� ��3.32

where [V ] is the matrix gathering the eigenvectors and [D] the diagonal matrix of eigen-
values. In the second basis, the covariance matrix [Cq] reads

[Cq] = 〈{δq}⊗{δq}〉= [A]t [V ]t [D][V ][A]
�� ��3.33

A singular value decomposition of [A] leads to the relationship [A] = [U1][S][U2] where
[U1], [U2] are unitary, and [S] symmetric and positive-definite. Thus the covariance ma-
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trix becomes

[Cq] = [U2]
t [S][U1]

t [V ]t [D][V ][U1][S][U2]
�� ��3.34

= [U2]
t [S][W1]

t [D][W1][S][U2]
�� ��3.35

where [W1] is also unitary. In the present case, the matrix [A] is equal to

[A] =

[
1 1.5
1 −0.23

] �� ��3.36

and its singular decomposition leads to the three matrices

[U1] =

[−0.96 −0.27
−0.27 0.96

]
[S] =

[
1.85 0

0 0.93

]
[U2] =

[−0.66 0.75
−0.75 −0.66

] �� ��3.37

The criterion was chosen earlier as being the largest eigenvalue of the covariance
matrix. It is to be stressed that a change of basis will not preserve such a criterion (it
would if [A] were unitary). The largest eigenvalue of [Cq] is less than or equal to the
largest eigenvalue of [Cp] times the square of the largest eigenvalue of [S] (i.e., this is
only a bound). If a criterion based on the uncertainty “volume” det([Cp]) were chosen,
then a deterministic relationship could have been derived

det([Cq]) = det([Cp])det([S])2 �� ��3.38

suggesting a more favorable look to represent the results in the basis corresponding to the
{p} parameterization rather than the {q} one, since det([S])2 ≈ 3.

This example shows that although one can freely move from one representation to
another one without loss of information, the choice of a specific form criterion and a
fortiori of its quantitative value may convey different appreciations of the quality of the
identification. It is not suggested here to use a specific form of criterion, but simply to
underline its consequences. In other terms, if the user desires to focus on one or several
parameters, a suitable parameterization should be chosen. Therefore the corresponding
experimental and identification procedures will result from the above considerations.

3.4 Geometry optimization

The following section now reports on the shape optimization of the cruciform sample
whose geometry is shown in Figure 3.1 and designed for biaxial experiments. Further-
more, the triangular loading path presented in Figure 3.2 is applied. The constitutive law
of the specimen is assumed to be elastic.
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3.4.1 Analysis of an elastic case

The IDIC procedure is discussed assuming a linear isotropic elastic constitutive law based
on the {p} set of parameters, namely, p1 = log(E/E0) and p2 = log(ν/ν0) where E0 and
ν0 are chosen as representative of 17-7 PH stainless steel [23] and listed in Table 3.2. The
sensitivity fields are first discussed. They are obtained in all the sequel from a numerical
finite difference based on a 2 % variation of the parameters (Table 3.2).

First, let us note that the Young’s modulus sensitivity field [SU ]E is equal to zero in that
case. This is in accordance with the fact that Dirichlet boundary conditions are prescribed
and no load information is used. A change in Young’s modulus would only affect the load
but not the displacement field for such a linear behavior. In contrast, the sensitivity fields
related to the Poisson’s ratio [SU ]ν whose horizontal component is shown in Figure 3.4
is nontrivial. This sensitivity field is computed for a geometry such that r = 2 mm and
at the maximum amplitude loading with equi-biaxial tension (point B of the loading path
of Figure 3.2). Due to the fact that the thickness is uniform over the whole sample, the
sensitivity is low close to the center of the sample, but interestingly it varies more strongly
across the vertical arm of the specimen (i.e., close to uniaxial tension).
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Figure 3.4: Sensitivity field [SU ]ν ·e1 expressed in mm in the parameterization {p} re-
lated to Poisson’s ratio

Using the second parameterization {q}= {log(K/K0), log(µ/µ0)}, Figure 3.5 shows
the horizontal component of the sensitivity fields [SU ]K and [SU ]µ at point B. These fields
are both non zero, as changing K at fixed µ or µ at fixed K does alter the Poisson’s ratio.
However, as only one degree of freedom matters, it is expected that [SU ]K , [SU ]µ and
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[SU ]ν are all collinear

[SU ]K = a[SU ]ν

[SU ]µ = b[SU ]ν

�� ��3.39

where a and b can be evaluated from the expression of matrix [A] (see Equation
�� ��3.31 ) as

a = (A−1)21 ≈ 0.58 and b = (A−1)22 ≈−0.58.
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Figure 3.5: (a) Horizontal component of the sensitivity field [SU ]K relative to the bulk
modulus and (b) of the sensitivity field [SU ]µ relative to the shear modulus at loading

point B. The displacements are expressed in mm

Figure 3.6 shows the change of the only nonzero eigenvalue of the instantaneous Hes-
sian along the loading path. Furthermore, this graph contains parabolas, of which two
originate from O (OA and OB). This means that these two radial parts bring the same
qualitative information, with an eigen value of the Hessian that scales as the square of the
displacement amplitude (hence the parabolas). Along the AB path, the sensitivity fields
do not preserve a fixed orientation through time, there is no simple relationship between
instantaneous values and those of the radial parts of the load path, even though a single
degree of freedom is sensitive.

Let us stress that this section illustrates the notion of sensitivity field through instan-
taneous loading stages. However, when performing an actual identification, the Hessian
to be considered is the summation over time of the instantaneous Hessians, i.e., over the
entire loading path. Similarly right hand side members are to be summed over time.

Figures 3.6 and 3.7 show the level of the (nonzero) eigenvalues of instantaneous Hes-
sians. It would be an exact property if the noise variance were constant, which is not true
for the load uncertainty, but the deviation is almost negligible. The kinematic Hessian
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Figure 3.6: eigenvalue λU,1 of the Hessian [HU ] with the {log(E/E0), log(ν/ν0)} pa-
rameterization. Point B corresponds to the right-top corner of the curve

[HU ] is evaluated at each step of the loading path. Figure 3.6 shows only the nonzero
eigenvalue λU,1 of [HU ]. The maximum level of λU,1 is reached for point B, but the be-
havior is different for the loading and unloading parts. The load dissymmetry reduces

the value of λU,1. For an equivalent amplitude
√

U2
1 +U2

2 the eigenvalue is lower for the
asymmetric history.

Figure 3.7(a) shows the largest eigenvalue λF,1 related to [HF ]. The maximum level
of λF,1 is again reached for point B. However, a different behavior is observed for the
second eigenvalue, λF,2 (Figure 3.7(b)). While the maximum level of the largest eigen-
value is reached for the maximum amplitude, the maximum level for λF,2 is reached for
point A, i.e., for the most asymmetric boundary condition. When the loads are equal in all
branches of the sample, the second eigenvalue vanishes. Therefore, the equibiaxial load-
ing history (in terms of loads F) only provides information for the dominant eigenvalue
(whose eigenvector is essentially aligned with log(E)). Furthermore, the different be-
haviors of the two eigenvalues originate from the two distinct material parameters. Last,
let us stress that the ratio between the two eigenvalues related to [HF ] is in the range
of a few hundreds. This important contrast leads to severe noise sensitivity issues when
performing the inversion based on the static data only.

3.4.2 Geometry optimization in elasticity

Geometry optimization is now considered. Let us recall that the least uncertainty is
sought, or with the criterion discussed in Section 3.3, the smallest eigenvalue of the Hes-
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Figure 3.7: Largest eigenvalue λF,1 (a) and smallest one λF,2 (b) of the Hessian [HF ]
with the {log(E/E0), log(ν/ν0)} parameterization

sian should be maximized. In order to be consistent it is important to ensure that the
yield stress is not exceeded along the loading path. However, the highest stress depends
critically on the geometry, namely, the smaller the fillet radius r the higher the stress con-
centration. Hence it is decided to adjust the maximum displacement d∗ of the sample
arms so that the maximum von Mises equivalent stress matches a lower bound on the
yield stress, chosen to be σy = 1300 MPa, which is representative of 17-7 PH stainless
steel in TH 1050 condition [23].

The eigenvalues of the kinematic, [HU ], and static, [HF ], Hessians, which are inte-
grated over the whole loading history, for each studied geometry are displayed in Fig-
ure 3.8. As earlier noted in the purely kinematic case the Young’s modulus cannot be de-
termined, and hence λU,2 = 0 (since [HU ]EE = [HU ]Eν = [HU ]νE = 0). The other eigen-
value, λU,1, has a rather smooth variation with an optimal value at about r = ropt ≈ 1.7 mm
for which the uncertainty on the Poisson’s ratio is minimal.

Considering the reaction forces, Figure 3.8(b) shows the eigenvalues of the Hessian
[HF ] with the fillet radius r. Both eigenvalues λF,1 and λF,2 display a similar behavior as
that of λU,1 with a smooth maximum in the considered range. However, the maximum
value of each eigenvalue is reached for a different radius, ropt

1 = 1.7 mm for λF,1 and
ropt

2 = 1.4 mm for λF,2. If only reaction forces were considered in the identification, the
criterion based on the largest value of the smallest eigenvalue would lead to a fillet radius
ropt

2 .
It is worth noting that the largest eigenvalue takes a comparable value for the displacement-

based and the load-based identification, stating that no obvious hierarchy is expected when
using kinematic or static information. Rather they should complement each other. More-
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Figure 3.8: Eigenvalue λU,1 of the Hessian [HU ] and λF,1 and λF,2 of the Hessian [HF ]
in linear and isotropic elasticity for different fillet radii with the {log(E/E0), log(ν/ν0)}

parameterization

over, the influence of the loading history is not studied herein. However, it is worth noting
that the latter would affect the eigenvalues, and thus, the value of the optimized fillet
radius.

For a different parameterization {log(K/K0), log(µ/µ0)}, Figure 3.9 shows the eigen-
values of the two Hessians [HU ] and [HF ]. As discussed above the second eigenvalue
of [HU ] is null. Since a single eigenvalue remains, the optimal value of the fillet ra-
dius has to be identical to that observed with the {p} parametrization when dealing with
[HU ]. Considering the reaction forces, the behavior of the two eigenvalues is very close
to that observed in Figure 3.8(b). Some slight changes of at most a factor of 4 could be
anticipated due to the singular value decomposition of matrix [A].

Figure 3.10(a) shows the eigenvalues of the global Hessian [HUF ] using the {log(E/E0),
log(ν/ν0)} parameterization. The largest eigenvalue remains in the same range as pre-
viously observed with [HU ] and [HF ], λ1 ≈ 106. However, the most noticeable change
lies in the second eigenvalue. From 0 with [HU ], and 103 with [HF ] it now reaches
about 3× 105 when both static and kinematic data are combined at their best. This rise
shows that these two sources of information are very complementary, and, schematically,
if the load allows one to evaluate the Young’s modulus, the DIC analysis captures the
Poisson’s ratio influence. The optimal fillet radius is again observed to be of the order
ropt = 1.7±0.4 mm.

Last, the influence of the parameterization can again be considered. Figure 3.10(b)
is the equivalent for the {p} parameters of Figure 3.10(a) for {q}. The comparison of
both sub-figures shows that the {log(E/E0), log(ν/ν0)} parameterization is more favor-
able since the lowest eigenvalue is higher compared with that obtained with {log(K/K0),



42 3 Optimization of a cruciform geometry

0.5 1 1.5 2 2.5 3
5.6

5.65

5.7

5.75

5.8

5.85

5.9

Radius (mm)

lo
g
1
0
(λ

U
)

 

 

λU,1

(a)

0.5 1 1.5 2 2.5 3
2

3

4

5

6

Radius (mm)

lo
g
1
0
(λ

F
)

 

 

λF ,2 λF ,1

(b)

Figure 3.9: Eigenvalue λU,1 of the Hessian [HU ] and λF,1 and λF,2 of the Hessian [HF ]
in linear and isotropic elasticity for different fillet radii with the {log(K/K0), log(µ/µ0)}

parameterization. The second eigenvalue λU,2 is equal to zero

log(µ/µ0)} as could have been expected from the singular value decomposition of [A].
This change is however marginal and simply shows the care with which the optimization
criterion should be formulated. Fortunately, this change in the values of λ does not affect
much the optimal radius r, which remains of the order of ropt = 1.7±0.4 mm.
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Figure 3.10: Eigenvalues λUF of Hessian [HUF ] with two different parameterizations

The above geometry optimization investigated a rather simple class with only one
degree of freedom (i.e., one fillet radius). The same principles can be applied to a larger
class of variants. Practical restrictions may come from the computational cost of the study.
The following subsection aims to illustrate an optimization procedure that allows a wider
range of geometry variations to be considered at a modest additional cost.
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3.4.3 Geometry optimization in elasticity with different fillets

The present section aims to investigate the influence of the four fillet radii and to propose
a strategy to optimize their sizes. First, with all the fillet radii being equal an optimal
value is obtained as shown previously. Second, the investigation is performed by only
modifying three fillet radii with the same value and seeking the new optimal value while
keeping one fillet radius equal to the previous optimal value. Then, the second fillet radius
is also fixed with the new optimum value. This process is repeated until all the optimum
fillet radii are found. The fillet radii are optimized in the trigonometric order from the top
left corner. The same loading history is considered (Figure 3.2).

Figure 3.11 shows the eigenvalues λUF of Hessian [HUF ] for the four optimization
steps and for the {log(E/E0), log(ν/ν0)} parameterization. The second optimization step
does not strongly change the results and because less fillet radii are modified, the changes
of the eigenvalues are less significant. Consequently, four identical fillet radii equal to r =
1.7±0.4 mm correspond to the optimal shape for the identification of elastic parameters.

3.4.4 Geometry optimization in elastoplasticity

Geometry optimization has been addressed up to now within the framework of linear elas-
ticity. It has been emphasized that the entire optimization procedure as presented herein
is transparent to the complexity of the parameters used in the modeling (although the cost
of computing the sensitivity fields will be directly dependent on the sophistication of the
chosen constitutive law). This statement also emphasizes that the “optimality” of a spec-
imen geometry will never be universally optimal but only within a given framework. In
this section, the initial geometry optimization (above shown to lead to an at least local
optimum for a larger class of geometries) with a single degree of freedom (i.e., four iden-
tical fillet radii) is reconsidered for an elastoplastic material. The chosen law is a standard
one with linear kinematic hardening [70]

Ẋ =
2
3

Cε̇pl
�� ��3.40

where C is a material parameter, ε̇pl the plastic strain rate tensor, and X the back-stress.
The yield surface J2(σ−X) = σ0 is defined such that J2 is von Mises’ equivalent stress
and σ0 the yield stress. The maximum amplitude prescribed displacement d∗ is defined
such that the maximum equivalent plastic strain is equal to 10 %. The prescribed loading
history is shown in Figure 3.2. The parameterization is identical to that chosen for the
elastic case, namely, {q} = {log(E/E0), log(ν/ν0), log(σ/σ0), log(C/C0)}. Table 3.3
gathers the reference values of the material parameters.

Figure 3.12 shows the eigenvalues of [HUF ] when the four fillet radii are equal. The
two smallest eigenvalues have similar trends and values as the linear elastic case. The
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(b) three fillet radii variation
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Figure 3.11: Eigenvalues λUF of Hessian [HUF ] for the four optimization steps

Table 3.3: Value of the material parameters

Parameter E ν σ0 C
Value 200 GPa 0.3 1300 MPa 10 GPa

maximum level of the smallest eigenvalue λUF,4 is reached when r = 1.5±0.3 mm. This
value is slightly less than that observed in elasticity. Although in the present case the op-
timal geometries for elasticity and elastoplasticity are quite close, it is worth emphasizing
that different constitutive laws do not necessarily lead to the same optimal configuration.

Further, the fact that four material parameters are now investigated does not signif-
icantly alter the values of the smallest eigenvalues of the Hessian, even if the latter is
slightly smaller than the linear elastic case at the initial step of the optimization. At the
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end of the process their values are almost equal (log10(λelas
min )≈ log10(λ

plas
min )≈ 5.8). This

result indicates that the elastic parameters are likely to be more difficult to identify than
the hardening parameters. Consequently, an optimization only based on elastic param-
eters is already giving a good indication for the optimization. Its additional advantage
lies in the fact that the simulations are much faster than for more complex constitutive
equations.

Conversely, several orders of magnitude are observed between the four eigenvalues,
which are significantly higher than in the elastic analysis (Figure 3.10). This observation
shows that the hardening parameters are not as sensitive to noise as the elastic ones, which
is to be expected since the strain levels (as displacement fluctuations) are more important
in plasticity than in elasticity.
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Figure 3.12: Eigenvalues λUF of Hessian [HUF ] for an elastoplastic law with linear
kinematic hardening when all the fillet radii are varying

3.4.5 Geometry optimization in elastoplasticity with different fillets

Figure 3.13(a) shows the eigenvalues of [HUF ] when one fillet radius is kept constant
and equal to r = 1.5 mm (i.e., the optimal case for four equal sizes). The other three
fillet radii have the same value. The lowest eigenvalue becomes greater than what was
achieved in the previous case. The optimal value is r ≈ 2.6 mm for which λUF,3 and
λUF,4 are identical. Last, it is noteworthy that several local minima are encountered. This
originates from the elastoplastic kinematic behavior that influences the sensitivities that
are no longer trivial and linear.

Last, Figure 3.13(b) shows the eigenvalues of [HUF ] when three fillet radii are kept
constant. The maximum level of λUF,4 is achieved for a fillet radius equal to r = 2.6 mm
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(at the intersection of λUF,4 and λUF,3). Furthermore, another maximum is reached for
r = 0.8 mm. Contrary to elasticity, the present analysis shows that having various fillet
radii is more favorable than having equal ones.
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Figure 3.13: Eigenvalues λUF of Hessian [HUF ] for the optimization steps 2 and 3

This result can be understood by analyzing the sensitivity fields. Figure 3.14 shows
the sensitivity fields [SU ]p ·e1 for the four material parameters at loading point B. The
sensitivity fields [SU ]σ0 and [SU ]C are not vanishing in the center of the specimen. This
would occur in a fully symmetric geometry. In terms of levels, the two sensitivity fields
are several orders of magnitude higher in plasticity in comparison with elasticity as was
already observed when analyzing the eigenvalues of [HUF ] with four identical fillet radii
(Figure 3.12).
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(a) (b)

(c) (d)

Figure 3.14: Sensitivity fields [SU ]E ·e1(a), [SU ]ν ·e1(b), [SU ]σ0 ·e1(c), and
[SU ]C ·e1(d) at point B. The displacements are expressed in mm

3.5 Conclusion

A complete identification procedure has been described, which starts from the acquisition
of experimental data (i.e., load levels and images) to the extraction of material parameters
whereby uncertainties could be tracked all the way down to the identification step. It treats
FEMU and DIC on the same footing and embraces both steps into a single one via IDIC.
With this procedure in hand, the cruciform specimen geometry of a biaxial test could be
optimized in such a way that the final uncertainty on the identified constitutive parameters
is minimized.

The proposed procedure fully exploits the wealth of information provided by full-field
measurements, and weighs this information according to its value, namely, its inverse un-
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certainty. As emphasized in the introduction, the advent of full-field measurements allows
to aim for the optimization directly to the final goal, and not to intermediate conditions
(such as homogeneity) that were necessary for the exploitation of the test, as needed when
strain gauges were to be used.

The optimization is based on the minimization of the worst uncertainty although dif-
ferent criteria may have been chosen. The present approach considers the entire metro-
logical chain (i.e., from the random pattern of DIC to finite element simulations for the
computation of sensitivity fields) to account for the measurement resolution. As a result,
the optimization is dedicated to a specific specimen and even more to its expected behav-
ior. Different results are found for the two investigated laws. The optimization in linear
elasticity leads to four identical fillet radii whereas the elastoplastic optimization leads
to various fillet radii. However, the maximum level of the minimum eigenvalue is not
significantly different between elastic and elastoplastic optimizations. The advantage of
the former is that the computation time is significantly lower and provides a good first es-
timate (i.e., 3 hours in comparison with 10-hour computation time on a PC with an 8-core
Intel Xeon E5 processor). The result would presumably be different if the study would
focus on a specific material parameter.

In the treated example, it is to be observed that sensitive regions are favored with
respect to those where the strain field is the most uniform when the four fillet radii are
identical. Such a marked difference implies that the here-derived optimized shape is sig-
nificantly different from those obtained without resorting to full-field measurements. In
particular the arms of the cruciform sample and the areas surrounding the fillet exhibit a
greater sensitivity to the constitutive parameters than the center and hence are to be ex-
ploited. Conversely, when the radii are not identical, the central part of the sample is also
contributing to the elastoplastic parameter sensitivity, which globally increases, thereby
decreasing the overall sensitivity to noise.

Chapter 4 will exploit the optimized specimen geometry to assess the material me-
chanical properties in condition A (without heat treatment) of 17-7 PH. To that end, a
new biaxial testing machine, mini-ASTREE, associated with an enhanced experimental
environment is used.



Chapter 4
Integrated Digital Image Correlation

applied to elasto-plastic identification in a
biaxial experiment

Reproduced from: Morgan Bertin, François Hild, Stéphane Roux, Florent Mathieu, Hugo
Leclerc and Patrick Aimedieu, Integrated Digital Image Correlation applied to elasto-plastic
identification in a biaxial experiment, The Journal of Strain Analysis for Engineering Design,
February 2016, (51) 118-131, doi: 10.1177/0309324715614759

Abstract
The identification of the parameters of several constitutive laws is performed with

the Integrated Digital Image Correlation (IDIC) technique in a biaxial experiment for a
cruciform specimen made of stainless steel. The sought material parameters are assessed
with the contribution of both reaction forces (from load sensors) and displacement fields
(measured via digital image correlation). For each constitutive law a global residual quan-
tifying the model error is assessed.

4.1 Introduction
The identification and validation of constitutive models are crucial issues for me-

chanical design. Challenges such as optimizing structures with respect to mass or using
innovative materials, e.g., high performance steels or composite materials push toward
complex and multiaxial constitutive models. However, standard tests [71] related to the
identification of material parameters require sample geometries for which the mechan-
ical response must be homogeneous and uniaxial. Such limitations lead to numerous
elementary tests even though more complex (i.e., multiaxial) tests individually provide
much more data. To characterize the latter ones, inverse identification methods based on
full field measurements [59, 60] are developed. Since Hill [29] proposed to account for
anisotropic plasticity, several identification strategies have been proposed. After briefly
reviewing some of them, the paper seeks to solve the problematic of the identification of
elastoplastic laws with Integrated Digital Image Correlation (IDIC).

49
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First the simplest identification is performed by tuning the constitutive parameters
with uniaxial strain-stress curves and least-squares fit [71]. However, this strategy does
not provide internal checks of the accuracy of the resultant material parameters. Further-
more, it is assumed that the sample geometry behaves under statically determinate stress
states [72]. This hypothesis is in opposition with the observed mechanical behaviors when
complex and multiaxial experiments are performed.

Second approximately fifteen years after the appearance of the Finite Element Method,
Kavanagh and Clough [58] proposed the Finite Element Model Updating (FEMU) tech-
nique. They focused their work on the characterization of nonlinear elastic materials.
FEMU consists of minimizing the sum of squared residuals, a residual being the differ-
ence between the numerical and experimental displacement fields (i.e., FEMU-U), strain
data (i.e., FEMU-ε), load levels (i.e., FEMU-F), or combinations of the previous quanti-
ties (e.g., FEMU-UF) [60]. This technique also provided new routes to tackle two main
issues, namely, i) the internal validation of the identified parameters, and ii) the use of
statically undeterminate stress conditions.

Some authors proposed strategies aiming to assess elastoplastic properties of alu-
minium alloys [73] and metals [74] while combining experimental load measurements
and FE simulations. However, full-field measurement techniques were not used and only
reaction forces were considered to solve the identification problem.

The advent of DIC as an experimental tool [75] has allowed elastic properties to be de-
termined [76, 77, 41]. New strategies have been designed to tackle the increasing number
of experimental data. Avril et al. [59] summarize several techniques based on full-field
measurements to identify isotropic linear elastic properties. Some of these identifica-
tion strategies have been extended to elastoplasticity and nonlinear mechanical behaviors.
Lecompte et al. [78] identified Hill’s parameters [29] with the FEMU technique under
biaxial experiments. Conversely, Grédiac and Pierron [79] have used the virtual fields
method. The constitutive error gap was also extended to plasticity [80]. Haddadi and Bel-
habib [81] have investigated the characterization of a hardening law on a heterogenous
tensile test using the weighted-FEMU technique with both reaction force and strain field.
Réthoré et al. [82] considered quasi-3D measurements with stereo-DIC to perform the
identification of elasto-plastic constitutive parameters using the integrated digital image
correlation technique. Schmaltz et al. [61] made use of stereo-DIC measurements and
FEMU-U to identify a plastic law for four different biaxial cross-shaped geometries.

All the previous methods use as input the measured displacement fields or derived
strain fields. However, these kinematic fields may be seen as parameterized by the sought
material properties. Such observation enables the mechanical identification to be inte-
grated within the digital image correlation procedure. This method is called Integrated-
DIC [77, 62, 64]. The latter is a global DIC technique that relies on a mechanically driven
choice for the kinematic basis. The measurement and identification of the sought param-
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eters is thus performed in a single step. Since the identification is formulated at the pixel
level, the process becomes mesh independent, provided the latter allows for a faithful
description of the displacement fields as obtained from the mechanical modelling [83].

The same type of integrated strategy will be followed herein. In the sequel, a com-
mercial FE package will be used in a non-intrusive way to estimate the displacement and
load sensitivities to the sought material parameters. Consequently, any built-in or user-
defined material model can be probed. This type of implementation makes the present
work very generic. Consequently different constitutive postulates will be assessed here-
after (e.g., linear and nonlinear kinematic hardening) to discuss model errors. The analysis
will deal with a cruciform specimen in a biaxial experiment under load-controlled mode.
The testing machine is a compact (2000 cm3) biaxial device. The selected material is a
precipitation-hardened stainless steel (i.e., 17-7 PH grade [23]). It is used thanks to its
excellent mechanical properties with respect to corrosion and fatigue [24, 65]. One key
aspect of the present study is related to the small (i.e., sub-millimetric) thickness of the
tested sheet since it will be used to make bellows (Chapter 2) .

The chapter is divided into three main sections. In Section 4.2, the experimental
tools and the theoretical background are presented. Integrated Digital Image Correlation
(IDIC) and the chosen constitutive laws are also introduced. Section 4.3 deals with the
experimental procedures. The sample geometry, the prescribed loads and the sources of
uncertainties are assessed. Section 4.4 shows the identification results and a discussion
based upon the identification residuals is proposed.

4.2 Experimental protocol

The experimental procedure utilizes an electromechanical testing machine, mini-ASTREE
(Figure 4.1), and one digital camera with a telecentric lens. The machine prescribes ar-
bitrary displacement and forces in two orthogonal directions, e1 and e2, with opposite
actuators that can be controlled in a symmetric fashion so that the specimen center is
motionless [84]. F1 will denote the load amplitude applied by the two coupled actuators
along direction e1, and F2 for the other two coupled actuators. Biaxial compressive and
tensile tests can be run with a load range F1,2 ∈ [−2000;2000] N. Furthermore the stroke
rate varies from 30 µm/min to 5 mm/min. 16-bit gray scale images are captured with a
pco.edge camera. The effective magnification is 13.5 µm per pixel or 74 pixel/mm.

The specimen is machined via Electrical Discharge Machining (EDM). Figure 4.2(a)
shows the sample geometry. The holes in the four arms allow for the positioning of
the sample in the grips. This geometry is different from those analyzed by Schmaltz et
al. [61]. The machining process induces very small residual stresses in the specimen
since no physical contact between the wire and the specimen is required. The sample
is machined from a 300− µm thick sheet made of precipitation hardened stainless steel
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(a) (b)

Figure 4.1: (a) Mini-ASTREE and its environment and (b) the cross-shaped sample (cen-
ter of picture) has been positioned after being patterned for DIC purposes

(i.e., 17-7 PH grade), itself cut from a hot rolled 3-mm thick sheet. The chemical compo-
sition of the alloy is shown in Table 4.1. To avoid deflection during machining the sheet is
maintained between two 3-mm thick aluminum sheets. The mechanical properties given
by the manufacturer are the 0.2% yield stress (σ0.2%

0 = 300 MPa) and Poisson’s ratio
(ν = 0.3). The Young’s modulus is not mentioned and its value is assumed to be equal to
E = 200 GPa, which is the value of the untreated steel.

Table 4.1: Chemical composition of 17-7 PH grade [23]

Composition C Mg P S Si Cr Ni Al
(wt %) 0.09 1.00 0.040 0.030 1.00 16.00 - 18.00 6.50 - 7.75 0.75 - 1.50

The loading history may influence the identification results. A so-called triangular
loading path is prescribed. Since the assessment of elastoplastic laws with kinematic
hardening postulates is one of the present objectives, a cyclic loading history is prescribed.
Figure 4.2(b) shows the F2 versus F1 cycles when the load amplitude is increased by 200
N between each of them. Furthermore, the load speed is constant and equal to Ḟ1 = Ḟ2 =

3000 N/min when different from 0.
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Figure 4.2: (a) Specimen geometry (expressed in mm). (b) Prescribed loading history F2
vs. F1 consisting of successive triangles of increasing amplitudes, and where each triangle
consists of a first increase of F1 at F2 = 0, followed by an equal increase of F2 at fixed F1,

and finally and equibiaxial unloading down to F1 = F2 = 0

Figure 4.3(a) shows the Region Of Interest (ROI) that contains the specimen arms
and the three-noded triangular mesh with linear interpolation (T3) used for DIC and IDIC
purposes. Since FE-based DIC analyses are carried out, the mesh is constructed from the
reference image. Consequently, it follows very faithfully the boundaries of the sample.
Further, a small element size was selected (i.e., 25 pixels) to capture the strain gradients as
best as possible for regular T3-DIC. For the integrated approach, it could have been further
refined [62, 83], but this option was not considered herein since both approaches are to
be compared with the same underlying mesh. In the following the geometric coordinates
shown in Figure 4.3(b) will be identical for any shown field.

4.3 Identification strategy
The numerical tools and the identification strategy are summarized hereafter. First, global
DIC and Integrated-DIC are formulated. Second, the constitutive laws and their respective
material parameters are introduced. Last, the numerical implementation of the identifica-
tion scheme is briefly recalled.

4.3.1 Digital Image Correlation (DIC)

Global DIC will be used for comparison purposes with Integrated-DIC. Among various
kinematic bases, finite element shape functions have initially been introduced to deal with
regular meshes made of four-noded quadrilaterals [68]. It was subsequently generalized to
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(a)

e1

e2

(b)

Figure 4.3: (a) Reference image f with the Region Of Interest (ROI) in dark and (b) mesh
used for DIC and IDIC analyses (the characteristic element size is 25 pixel wide)

deal with unstructured meshes made of three-noded triangle (T3) elements [62]. DIC re-
lies on the registration of an image f in the reference configuration and a series of pictures
g in the deformed configurations. The problem consists of minimizing the global correla-
tion residuals χ2

f = 1/Nt ∑Nt
t=1 χ2

f (t), which is the sum of squared differences between the
deformed image corrected by the measured displacement u(x, t) and the reference image
(written for each time t independently) over the Region Of Interest

χ2
f (t) =

1
2γ2

f NΩ
∑
Ω
((g(x+u(x, t), t)− f (x))2 �� ��4.1

with respect to the sought displacement fields u(x, t), where x is any considered pixel.
In this expression Ω denotes the Region of Interest (ROI), NΩ its area expressed in terms
of the number of pixels it contains, Nt the number of time steps, and γ f the standard
deviation (expressed in gray levels) of the white noise assumed to affect each image inde-
pendently (including the reference one, which is responsible for the factor of 1/2 coming
as a multiplicative term in this functional).

The displacement field is decomposed onto a basis of fields ψn(x) that is selected at
will

u(x) = ∑
n

unψn(x)
�� ��4.2

where ψn are (vector) T3 shape functions in the present case ((i.e., three noded triangles
with a linear interpolation of displacements), and un the unknown degrees of freedom.
Ideally, the number of these fields should be kept as small as possible (i.e., to reduce
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the uncertainty1 on their amplitude) yet large enough to capture the anticipated variety
or heterogeneity of the actual experimental field. The minimization of χ2

f is achieved by
successive linearizations and corrections using Gauss-Newton scheme

[M ]{δu}= {b} �� ��4.3

where [M ] is the DIC matrix, {δu} the vector gathering all increments of measured
displacement amplitudes, and {b} the residual column vector. In the present case, the
minimization is performed independently for each considered time, i.e., on χ2

f (t).

4.3.2 Integrated DIC

The integration of the mechanical identification at the measurement step consists of choos-
ing as the generalized degrees of freedom the sought parameters associated with a chosen
constitutive law. Consequently, the kinematic basis is chosen as the set of sensitivity fields
gathered in a matrix [SU ] [66] (see Chapter 3)

[SU ] =
∂{u}
∂{p}

�� ��4.4

where {u} is the computed nodal displacement vector, {p} the vector gathering the
sought parameters in the computation via forward finite differences in the present case.
One of the interests offered by an integrated approach is that the mesh size does not
prevent the convergence of computations since the sought material parameters are signifi-
cantly fewer in comparison with the degrees of freedom associated with the underlying FE
discretization [62, 83]. Consequently, errors coming from a coarse mesh can be avoided
(see Chapter 5).

If the same mesh is used, and the DIC matrix has been computed as [M ] as well as the
residual vector {b}, the IDIC procedure simply consists of projecting the nodal displace-
ment field onto the sensitivity fields [64]. One main difference with the previous T3-DIC
procedure is that only one global minimization is performed in a single spatiotemporal
analysis [86]. The identification of the sought parameters is achieved by solving itera-
tively until convergence linear systems

{δp}= 1
2γ2

f
[MIDIC]

−1[SU ]
t{b} �� ��4.5

1‘The uncertainty [...] is a parameter, associated with the result of a measurement, that characterizes the
dispersion of the values [...] [85].’ In the present study, because the sole considered origin of uncertainty
is that resulting from a Gaussian white noise, the uncertainty is quantified by the standard deviation of the
concerned quantity.
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where [MIDIC] = 1/(2γ2
f )[SU ]

t [M ][SU ] is the weighted kinematic Hessian. If this unique
quantity χ2

f is minimized, it can be shown that it is equivalent to a weighted FEMU-U
procedure provided the noise level is small [64].

The applied load is also of importance for the identification because it provides an
additional measured quantity, different in nature from the kinematics, and hence it con-
tributes significantly to the identification and reduces the uncertainty of the determined
material parameters. The reaction forces can also be computed. Thus, the same approach
is followed with the reaction forces for which χ2

F is minimized

χ2
F =

1
NFNt

{Fm−Fc}t [CF ]
−1{Fm−Fc}

�� ��4.6

where {Fm} are the measured reaction forces and {Fc} are the computed levels with
respect to the chosen material parameter set, [CF ] the covariance matrix of the measured
loads (in the present case it is assumed that the load measurements are uncorrelated so
that [CF ] = γ2

F [I], and NF the number of load data.

It is assumed that the load uncertainty is proportional to the magnitude of the load,
namely, γ2

F = ρ2
1|F |2. Moreover, it is easy at this stage to incorporate a minimum mea-

surement uncertainty for the load cells by including an additional noise term whose vari-
ance ρ2

0 is independent of the load level. This practically disqualifies all measurements of
forces below Fmin = ρ0/ρ1. Thus, in the following it is assumed that

γ2
F = ρ2

1|F |2 +ρ2
0

�� ��4.7

In the proposed procedure, the measured forces will be compared to the computed
ones based on a numerical simulation that itself incorporates i) a constitutive law whose
parameters will at convergence be adjusted to those of the material to be identified, and ii)
Dirichlet (displacement) boundary conditions that are provided by the DIC measurements.
The DIC measurement itself has an uncertainty that will induce an additional contribution,
which is independent of the load magnitude as the DIC uncertainty is not dependent on the
displacement amplitude, affecting computed forces rather than measured ones. However,
as one will be interested in their differences, it is equivalent to transfer this additional force
uncertainty on the measurement. The result is a term that cannot be distinguished from ρ0.
In practice, load cells are designed to have a dynamic range adapted to the geometry and
mechanical properties of the specimen, and hence, the minimum and maximum values of
these sensors are not limiting. In contrast, the identification of elastic properties requires
sufficiently small strains to ensure the relevance of linear elasticity. In this case, the
contribution of DIC uncertainty to the boundary conditions, and hence to the load level,
is generally expected to provide a level for ρ0 that may be limiting.

The minimization of χ2
F leads to the variation of the identified set of material param-
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eters
{δp}= 1

γ2
F
[HF ]

−1[SF ]
t{Fm−Fc}

�� ��4.8

where [HF ] = γ−2
F [SF ]

t [SF ] is the static Hessian, and [SF ] = ∂{Fc}/∂{p} the reaction
force sensitivities defined in the same way as the displacement field sensitivities (see
Equation

�� ��4.4 ). If χ2
F is minimized alone, it corresponds to a load-based FEMU procedure,

which is referred to as FEMU-F.
The identification based upon both observables, i.e., displacement field and reaction

force, is achieved by minimizing the global functional χ2
I

χ2
I =

NΩ
NΩ +NF

χ2
f +

NF

NΩ +NF
χ2

F
�� ��4.9

where the correlation and reaction force residuals have been introduced in Equations
�� ��4.1

and
�� ��4.6 respectively. The choice for the specific weight stems from a Bayesian foundation

in the weighted quadratic difference including noise covariance. The minimization of the
global residual

�� ��4.9 requires an iterative computation of the parameter increments {δp}

{δp} = [HIDIC]
−1

(
1

2γ2
f
[SU ]

t{b}+ 1
γ2

F
[SF ]

t{Fm−Fc}
) �� ��4.10

where the global (i.e., kinematic and static) Hessian [HIDIC] is the sum of kinematic
[MIDIC] and static [HF ] Hessians. The fact that images and load data are considered
enables for the identification of the elastic parameters (i.e., the Young’s modulus in par-
ticular) contrary to what was performed by Schmaltz et al. [61].

The covariance matrix of the identified parameters reads

[CI
p] = 〈{δp}⊗{δp}〉= [HIDIC]

−1 �� ��4.11

where 〈•〉 is the mean value of •. Another useful indicator is the correlation matrix (no
index summation used)

(Corp)i j =
(Cp)i j√

(Cp)ii(Cp) j j

�� ��4.12

The diagonal terms of the correlation matrix are equal to 1 since one parameter is perfectly
correlated with itself and off-diagonal terms vary between -1 and 1.

4.3.3 Constitutive laws

The objective of the present work is to assess several parameters for three constitutive
laws (A) linear and isotropic elasticity, and (B, C) two elastoplastic laws. The latter ones
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correspond first to linear kinematic hardening with von Mises flow rule (B), and second
to an exponential kinematic hardening (C) with von Mises flow rule. The total strain rate
ε̇ is written in terms of elastic and plastic strain rates ε̇= ε̇el + ε̇pl where ε̇el is the elastic
strain rate tensor and ε̇pl the plastic strain rate tensor. The yield surface J2(σ−X) = σ0

is defined such that J2 is von Mises’ stress,X the back-stress, and σ0 the yield stress. As
a first approximation, a linear kinematic hardening model is chosen for the back-stress
change [70]

Ẋ =
2
3

Cε̇pl
�� ��4.13

where C is the hardening modulus. Under the assumption of exponential kinematic hard-
ening, the back-stress becomes

Ẋ =
2
3

Cε̇pl− cX ṗ
�� ��4.14

where C and c are material parameters, p the cumulative plastic strain [87, 88].

4.3.4 Numerical implementation

The numerical procedure has been implemented in a C++framework, which computes the
sensitivity fields from the finite element computations performed with the commercial
code Abaqus [64]. The IDIC code provides to the latter the required input, namely, the
finite element mesh, the current values of the material parameters, the chosen constitutive
law and boundary conditions obtained from a DIC measurement. The parameterization
is based on a log scale with a ratio between the current value of the parameter and its
initial guess [69] (see also Chapter 3). It is defined such that the sought parameters in
the new setting {q} are expressed from the initial basis as {q}= log{p/p0}, where {p}
is the vector gathering the values of the parameters and {p0} their initial values. The
procedure is considered to have converged when the change in the parameters reaches a
chosen threshold

‖{δq}‖∞ ≤ 10−4 �� ��4.15

where ‖{•}‖∞ denotes the infinite norm of the vector {•}. Finally, the numerical pro-
cedure uses a Levenberg-Marquardt regularization [89, 90], which is shown to be more
robust than a pure Newton-based scheme [91, 73, 69] when seeking material parame-
ters [90].

As proposed by Gras et al. [69], a regularization functional, namely χR, is associated
with the identification functional (χI) to enable for the change of the sought parameters
only if their corresponding sensitivities are higher than a specific bound. This regular-
ization prevents meaningless identification when the influences of material parameters on
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the observables are weak. χR is a convex function reaching its minimum equal to zero and
reads

χ2
R = {q}[CR

q ]
−1{q} �� ��4.16

where [CR
q ] is the covariance matrix of the material parameters. Because χI , and χR are

both dimensionless and normalized to one their summation is valid and the regularized
functional becomes χ2 = χ2

I +χ2
R. Finally, the regularization of the linear system reads

([HIDIC]+λ∗[I]) {δq}= {bIDIC}−λ∗{q} �� ��4.17

where λ∗ is the regularization parameter whose choice is performed to cancel out the
influence of noise on the change of material parameters [69].

Most of the computational cost of such integrated procedures is associated with the
computation of the various sensitivities, which each time requires an additional interro-
gation of the FE code. For the same number of iterations IDIC and FEMU procedures
lead to very similar computation times [64]. In the present case, an analysis consisting
of 365 pictures required 6 hours on a PC with an 8-core Intel Xeon E5 processor for the
elastoplastic nonlinear kinematic hardening law (i.e., five unknown parameters).

4.4 Identification results
This section presents the identification results and indicators of model errors. First, a
resolution2 analysis is carried out with an initial set of the sought parameters and the
initial DIC solution. Second, the assessment of the material parameters is performed.
Last, a discussion is conducted on the kinematic, static and global residuals.

4.4.1 Resolution analysis

This part aims to estimate a priori the procedure ability to perform an identification. The
DIC measurement is used to prescribe in the FEM analysis the experimentally measured
displacement (Dirichlet) boundary conditions and get the sensitivity fields. Table 4.2
gathers the initial values of the sought material parameters. For the computation of Hes-
sians, the parameters are ranked in the same order except for the eigenvalues ranked from
smallest to largest.

Load uncertainties are assessed for each iterations as discussed in Section 4.3.1 and
the displacement uncertainty is evaluated since 10 images are acquired in the reference

2 ‘Resolution: smallest change in a quantity being measured that causes a perceptible change in the
corresponding indication. [...] The resolution can depend on, for example, noise (internal or external) or
friction.’ [85]
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Table 4.2: Initial value of the material parameters

Parameter E ν σ0 C c
Value 200 GPa 0.3 300 MPa 10 GPa 10

configuration before loading the sample. Once the pictures have been registered, the
variance γ2

f is estimated as the root mean square of gray level differences at convergence
(Table 4.3).

Table 4.3: Standard gray level and load uncertainties

Quantity ρ0 ρ1 γ f
Value 2.8 N 4×10−4 302 gray levels

The displacement uncertainty on the constrained boundaries is evaluated by measur-
ing the displacement fields with DIC. The covariance matrix of the unknown degrees of
freedom, namely [Cu] taken at the four boundaries provides this information. Further-
more, only the component in the displacement direction is kept. Therefore, the standard
displacement uncertainty reads

σ2
BC =

1
NBC∆t ∑

t
{V }t [CU ]{V } �� ��4.18

where {V } is the vector that cancels out the values of the covariance matrix when they
are not related to a constrained node in the prescribed displacement direction. NBC is the
number of degrees of freedom corresponding to the boundaries. The standard uncertainty
is evaluated as σBC = 1.3×10−4 pixel. In these experimental conditions with a Young’s
modulus equal to E = 200 GPa, the related uncertainty provides a standard load uncer-
tainty equal to ρDIC

0 = 2.4 N. Finally, the second parameter is evaluated while measuring
the load with displacement control at several load levels F ∈ [0;2000] N. The displace-
ment is kept constant during 300 s. Figure 4.4 shows the experimental and interpolated
standard load uncertainty. The latter depends on the applied load level and its maximum
is reached for a load of 2 kN with γF = 3.1 N.

The evaluation of the covariance matrix (see Equation
�� ��4.11 ) is the key quantity to

study (see Chapter 3). The Hessians are evaluated with the linear elastic law over the first
load cycle, which is assumed to be essentially in that regime

[HF ] =

[
10 1.4
1.4 0.4

]
×103 [MIDIC] =

[
0 0
0 8.2

]
×105 [HIDIC] =

[
0.1 0.01

0.01 8.2

]
×105 �� ��4.19
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Figure 4.4: Measurement of the load variance under static conditions as a function of
the load level. A quadratic interpolation is used [92]. The value of ρ0 is obtained when
adding the uncertainty from the load cells evaluated as ρLC

0 = 0.1 N and that obtained
from DIC ρDIC

0 = 2.4 N

The diagonal terms of the static Hessian [HF ] are non-zero but separated by more than one
order of magnitude. Since the Young’s modulus does not influence the kinematic fields
the corresponding diagonal term (M11) in [MIDIC] is equal to zero. The combination of
both observables (see Equation

�� ��4.10 ) leads to [HIDIC], which has nonzero diagonal terms.
This last result shows that the Young’s modulus is significantly easier to determine than
the Poisson’s ratio even when static and kinematic data are coupled.

The correlation matrix and eigenvalues are evaluated for the coupled data by resorting
to [HIDIC]

Cor([HIDIC]) =

[
1.00 0.02
0.02 1.00

]
; log10(λI) =

{
4.0
5.9

} �� ��4.20

The off-diagonal terms denote a weak correlation between the two material parameters.

This first evaluation does not prove that the elastoplastic parameters can be assessed.
The same approach is extended to the elastoplastic law with exponential kinematic hard-
ening. The initial set of parameters is shown in Table 4.2. [HIDIC] is evaluated for the
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first loading cycle

[HIDIC] =


4.5 0.56 −4.2 −0.07 4×10−4

0.56 0.87 −0.52 −0.01 6×10−5

−4.2 −0.52 3.9 0.06 −4×10−4

−0.07 −0.01 0.06 0.003 −3×10−5

4×10−4 6×10−5 −4×10−4 −3×10−5 3×10−7

×105 �� ��4.21

and the corresponding eigen values read

log10(λI) =



−1.75
3.23
4.59
5.90
6.93


�� ��4.22

Since a plastic strain occurs a variation of the Young’s modulus modifies the level of
the plastic behavior (i.e., for a smaller E the elastic domain is greater since more strain
is needed to reach the yield stress). Therefore both [HF ] and [MIDIC] contribute for
the identification of Young’s modulus since both observables are influenced by the latter.
Last the levels of the terms relative to C and c are very low denoting weak influences on
the observables. The evolution of the corresponding material parameters will be avoided
thanks to the regularized formulation. The corresponding correlation matrix reads

Cor([HIDIC]) =


1.00 0.28 −0.99 −0.58 0.34
0.28 1.00 −0.28 −0.18 0.12
−0.99 −0.28 1.00 0.61 −0.36
−0.58 −0.18 0.61 1.00 −0.93
0.34 0.12 −0.36 −0.93 1.00


�� ��4.23

In the early stages of plasticity the differentiation between the elastic and plastic regimes
is not an easy task. Therefore when the boundary between elastic and plastic regimes is
unclear the value of the yield stress depends on the Young’s modulus. As a consequence,
the two parameters are anticorrelated (i.e., Cor([HIDIC])(E,σ0) ≈ −0.99). The resolu-
tion analysis over the first cycle shows that some parameters can be identified, especially
elastic parameters. However, a small incursion in the plastic regime is not sufficient to
identify c and C independently.

The same analysis is now applied for the evaluation of [HIDIC] over the entire loading
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history (Figure 4.2(a))

[HIDIC] =


89 4.8 −118 28 −20
4.8 4.0 4.4 −9.3 2.6
−118 4.4 275 −154 72

28 −9.3 −154 125 −51
−20 2.7 72 −51 28

×105 ; log10(λI) =



4.63
6.42
6.76
7.90
8.64


�� ��4.24

The levels of the diagonal terms show that the influences of all material parameters have
increased (elasto-plastic parameters included). The five eigenvalues have all their levels
greater than the uncertainty and therefore can lead to the identification of all the parame-
ters. Last the correlation matrix is evaluated from [HIDIC]

Cor([HIDIC]) =


1.00 0.26 −0.75 0.26 −0.40
0.26 1.00 0.13 −0.41 0.25
−0.75 0.13 1.00 −0.83 0.82
0.26 −0.41 −0.83 1.00 −0.87
−0.40 0.25 0.82 −0.87 1.00


�� ��4.25

still showing an important anti-correlation between the parameters C and c. The correla-
tion between E and σ0 has also been cut down.

Based on this resolution analysis two issues have been highlighted:

• Before performing the identification, it is known whether the test is discriminating
to the sought parameters. In particular, it is shown that the five loading cycles are
useful for the identification of the kinematic hardening parameters.

• The assessment of each parameter, its value and its uncertainty are related to the
studied loading history.

In the following the results of the identifications over the first cycle and the entire loading
history are analyzed for the three constitutive laws.

4.4.2 Parameter identification for the first loading step

The material parameters are assessed for the first cycle starting from the reference set of
Table 4.2 and with the IDIC formulation (see Equation

�� ��4.9 ). For comparison purposes, a
global DIC analysis is also run. In the latter no hypothesis is made on the underlying ma-
terial behavior. Table 4.4 gathers the corresponding values and the residuals for each law
at convergence. The standard uncertainties γp are obtained from the covariance matrices
[HIDIC].

The residuals χ f are close to the initial DIC residual (χ f = 2.06), themselves very
close to the lower limit (i.e., 1) had the residuals only contained noise contributions. Fig-
ure 4.5 shows the change of IDIC residuals (color) and DIC residuals χ f (black) with time.
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Table 4.4: Identified parameters and identification residuals for the three laws for the first
cycle (γp is expressed in % of p)

law χI χ f χF E γE ν γν σ0 γσ0 C γC c γc
GPa MPa GPa

A 2.10 2.10 15 174 0.4 0.31 0.09 — — — — — —
B 2.09 2.09 8.9 195 0.21 0.297 0.1 306 0.25 10 — — —
C 2.09 2.09 8.9 195 0.25 0.297 0.1 306 0.3 10 — 10 —

After the first ten pictures captured before starting the experiment the residual levels in-
crease. The level of DIC residuals can be explained by the mesh size equal to 25 pixels,
which is a compromise between displacement resolution and spatial resolution [67]. The
residual induced by the linear elastic law becomes slightly higher than the DIC residual
for t ≥ 21 s, and may point out the onset of plasticity. This is confirmed by analyzing the
load residuals, which are 15 times higher than the levels expected from noise alone.
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Figure 4.5: DIC and IDIC residuals for the three constitutive laws

Residuals induced by laws B and C are equivalent and marginally lower than those
of law A. Consequently the exponential kinematic hardening does not improve the iden-
tification with respect to the experimental data. It is noteworthy that due to yielding the
Young’s modulus estimate is already 10 % lower than the levels observed for laws B and
C. A small rise in Poisson’s ratio is also observed. The level of yield stress is found to be
in accordance with known values [23].

Figure 4.6 shows the change of the parameters with the iterations. The convergence
is reached after few iterations, namely, 5, 7 and 7 for laws A, B and C respectively. As
observed in the resolution analysis, the kinematic hardening parameters keep their initial
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values thanks to the Levenberg-Marquardt regularization. The corresponding standard
uncertainty is significantly higher for the hardening parameters than those for the elastic
parameters and the yield stress (Table 4.4)
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Figure 4.6: Change of material parameters with the iteration number for the three inves-
tigated laws. Each parameter is normalized by its initial value

Figure 4.7 shows the displacement field u1 and residual component, which is the dif-
ference between IDIC and DIC measurements at the last time step of the first load cycle
(t = 61 s) for the different constitutive postulates. Non vanishing displacements exist,
which indicate the presence of plastic strains (Figure 4.7(a)). This observation validates
the results shown in Table 4.4. Figure 4.7(b) shows that law A induces very high differ-
ences in particular close to one of the connecting radii. This is an indication of plastic
activity in the vicinity of stress concentration areas. When compared with Figures 4.7(c-
d) there are significant differences, again validating the identification with elastoplastic
postulates that lead to equivalent differences with raw DIC. The fact that there remain
displacement residuals shows that the plastic behavior has been only partially captured.

4.4.3 Parameter identification for the whole history

The same analysis is now carried out over the entire loading history (Table 4.5). Even if
the IDIC residual of law C (χI = 6.3) is 2.5 times higher than the DIC residual (χ f = 2.5)
it is the best of the three chosen postulates. The fact that the load residuals are still high is
an indication that there remains a model error. This is particularly true for the elastic law
that induces very high residual errors. The Young’s modulus is found to be very small,
and the Poisson’s ratio tends to 0.5 (i.e., incompressibility as expected from dominant
isochoric plasticity).

All these trends clearly disqualify elasticity as a model able to describe the reported
experiment. The latter was not the case for the first cycle because the mechanical behavior
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Figure 4.7: Displacement field map u1 measured by DIC and displacement differences
between DIC and IDIC for the three investigated laws

Table 4.5: Identified parameters and identification residuals for the three laws for the
whole loading history

law χI χ f χF E γE ν γν σ0 γσ0 C γC c γc
GPa MPa GPa

A 15 14.9 1820 8.8 0.25 0.499 0.002 — — — — — —
B 7.1 7.1 113 157 0.15 0.31 0.04 480 0.15 6.7 0.15 — —
C 6.3 6.3 100 148 0.16 0.30 0.04 423 0.16 8.6 0.16 10.8 0.03

was mainly elastically driven. This is confirmed by Figure 4.8 that shows the change of
IDIC and DIC residuals over time. Unlike the previous results (Figure 4.5), gaps between
IDIC and DIC residuals are much more pronounced, especially when the level of plastic
strain increases. Furthermore, the gain offered by each law with respect to raw DIC results
is also clarified.

For law C, all material parameters have been assessed with a low level of uncertainty.
Regarding laws B and C all the parameters converge in few steps (see Figure 4.9). Unlike
Figure 4.6 all the parameters are modified and no regularization is needed in the present
case. It is worth noting that the more freedom the identification code has (i.e., the number
of unknowns is increased), fewer iterations are needed. Further, the converged solutions
are rather far from the initial guesses, which shows the robustness of the procedure.

Figure 4.10 shows the displacement maps u1 and u2 at the last time step of the analysis.
The permanent strains are important and the maximum measured eigen strain is equal to
εI = 18.7%. The normal strain map ε11 is shown at the same time in Figure 4.10(c). The
strain levels are the highest in the concentration zones induced by the fillets.
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Figure 4.8: DIC and IDIC residual history for the three constitutive laws. Please note
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Figure 4.9: Change of the material parameters for the three investigated laws during the
identification iterations. Each parameter is normalized by its initial value

4.4.4 Comparison with FEMU-F results

Table 4.6 shows the parameters assessed only by considering the reaction forces (Equa-
tion

�� ��4.6 ). It corresponds to a FEMU-F procedure [64]. To compare both approaches, the
gray level and global residuals are also computed. As expected, the static residuals are
lowered for all laws since the residuals only depend on reaction forces. Conversely, the
overall quality degrades in addition to that associated with gray level residuals. More im-
portantly, the standard uncertainties of the identified parameters are significantly higher,
which is caused by the limited number of data used per analyzed time.
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Figure 4.10: (a-b) Measured displacement fields with DIC at the last experimental time
step. (c) Corresponding strain field (normal component along direction 1)

Table 4.6: Identified parameters and identification residuals via FEMU-F for the three
laws over the entire loading history cycle (no regularization prescribed)

law χI χ f χF E γE ν γν σ0 γσ0 C γC c γc
GPa MPa GPa

A 19.1 19 1732 10 0.4 0.19 4 — — — — — —
B 8.1 8.0 11.9 188 0.7 0.23 4 330 0.4 3.7 1.2 — —
C 7.5 7.5 9.6 191 0.7 0.25 4 300 0.5 8.5 3.7 29 11

Figure 4.11 shows the displacement field difference for component u1 for the three
constitutive laws with IDIC or FEMU-F approaches compared with DIC measurements
at the end of the experiment. The choice of an elastoplastic law instead of an elastic law
decreases the displacement difference, thereby decreasing the model error. The residual
level is lower when the identification is performed with IDIC rather than FEMU-F. An
overall residual remains because i) the model does not correctly predict the plastic strains,
ii) localization phenomena occur.
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Figure 4.11: Displacement differences u1 between DIC and IDIC (first row) or FEMU-F
(second raw on the Figure) for the three investigated laws. The color bars correspond to

the largest and lowest values of the corresponding residual map

4.5 Conclusion

Three constitutive laws have been investigated with Integrated Digital Image Correlation
to analyze a biaxial test with a cruciform specimen of a thin sheet of precipitation hard-
ened stainless steel. The Bayesian-based formulation presented in Chapter 3 has been
implemented and employed to assess the sought material parameters.

An initial sensitivity analysis enables the impact of the loading history and the acqui-
sition noise on the identification to be understood. It shows that the first loading cycle is
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not sufficient to identify plastic laws but it is sufficient to detect its onset with the initial
set of the material parameters. The corresponding identification leads to an IDIC residual
with similar level as raw DIC. The identification is also performed over the entire load-
ing history accounting for 5 loading/unloading cycles. Any of the chosen model does
not match the available data with the same accuracy as observed for the first cycle. The
three laws lead to three different residuals and the exponential kinematic hardening law
provides the best results.

In the present study four different error indicators have been considered:

• When DIC and IDIC analyses are performed, the gap with respect to gray level
conservation is computed. It estimates the registration quality when the pictures in
the deformed configurations are corrected by the measured displacement field and
subsequently compared with the picture of the reference configuration.

• DIC and IDIC can also be compared by computing the displacement differences
measured by both approaches. When the mesh is identical, as in the present case,
the comparison is straight forward.

• Load residuals are yet another way of characterizing the identification quality. In
the present analyses, FEMU-F and IDIC could be compared since both included
load residuals in their respective formulation.

• Last IDIC as developed herein has an overall quality indicator χ2
I that compares all

sensor information (be it gray levels for each pixel or load level for each load cell)
in the same footing when normalized by the variance of corresponding noise.

This wealth of indicators allows the user to assess not only globally but also with each
of the estimators the identification quality and the underlying model error (i.e., choice of
constitutive law, finite element discretization).

Now that the material in condition A has been modeled and the methodology has been
introduced and validated Chapter 5 will investigate the material mechanical behavior in
its final condition, namely TH1050. To that end a uniaxial experiment is performed on
an ultra-thin (70 µm) 17-7 PH steel sheet and Integrated-DIC is again chosen. To prevent
the specimen from buckling, a dedicated device is designed and enables the material to
be successfully characterized.



Chapter 5
Identification of an anisotropic plasticity

model with uniaxial and biaxial
experiments via IDIC

Reproduced from: Morgan Bertin and François Hild, Identification of an anisotropic
plasticity model of 17-7 PH thin sheets with uniaxial and biaxial experiments via IDIC,
submitted 2016

Abstract
Uniaxial and biaxial experiments are performed on ultra-thin specimens made of

stainless steel. An anti-wrinkling setup allows for the characterization of the mechanical
behavior with Integrated Digital Image Correlation (IDIC). The result shows that a sim-
ple uniaxial experiment investigated via IDIC possesses enough data (and even more) to
characterize a complete anisotropic elastoplastic model. These results from uniaxial test
are validated via biaxial experiments.

5.1 Introduction
For engineering design, Tresca [93] or von Mises [94] isotropic yield criteria are com-
monly used and give satisfactory results. However, a perfect isotropic plasticity assump-
tion of industrially-manufactured materials is not common and anisotropy is the rule
rather than the exception. It results that sheet metal anisotropy is a key issue to im-
prove manufacturing processes and mechanical designs [95]. Therefore, authors have
actively studied sheet anisotropy characterization. Experimental [96, 97, 98] and theo-
retical [29, 99] works have led to the first models of anisotropic plastic flow. They have
been extended to describe more complex and challenging behaviors [100, 101]. Rolled
sheet metal anisotropy originates in particular from a preferred orientation of polycrys-
talline grains. Two types of model corresponding to two separated scales address this
phenomenon, i) macroscopic formulations and ii) microscopic analyses. Texture-induced
anisotropy can be assessed by measuring the plastic anisotropy parameters from macro-
scopic analyses of the mechanical behavior, or can be predicted from texture measure-

71
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ments [102, 103]. However, the more complex a constitutive law the more difficult and
time-consuming the identification of its material parameters.

At the macroscopic scale, experiments have addressed two main issues, i) compare the
theoretical results obtained from constitutive laws to their experimental counterparts, and
ii) characterize and gather properties for numerous materials and engineering purposes.
First, uniaxial tests [104, 105, 106] determined the so-called Lankford ratio. With the
advent of strain gauges, the identification of Hill’s anisotropic coefficient was achieved
with numerous uniaxial specimens with the same geometry but with changing loading
directions with respect to the rolling direction. Second, multiaxial tests were performed to
challenge constitutive laws and complement the results of uniaxial tests. For instance, the
bulge test allows for numerous anisotropic materials to be characterized [107, 108, 109].
Other materials such as pure aluminum, zinc and titanium have anisotropic behaviors not
well predicted by these models [109, 108]. Lately, in-plane biaxial tensile setups allow
for the anisotropic properties to be investigated via flat cruciform specimens [50].

Based on the use of standard experimental techniques [71], different approaches to
optimize specimen geometry or experimental procedure were proposed [53, 54, 55, 56,
57]. The sought objective was to get the most homogeneous mechanical fields in a cho-
sen region even though the to-be-characterized mechanical behaviors were plastically
anisotropic. To analyze and extract parameters from large amounts of data, identifica-
tion strategies based on inverse identification methods [110, 111, 112, 113, 73, 74] have
enhanced the characterization capabilities.

With the advent of full-field measurement techniques and Digital Image Correlation
in particular [75, 68], authors have investigated steel sheet anisotropy with heterogeneous
mechanical fields. The wealth of data provided by such measurements has allowed for
new insights but has also induced challenges [59] for identification and validation as-
pects. It also motivated a new approach of experimental design (see Chapter 3) that al-
lows for the direct uncertainty minimization of the sought parameters. Remarkably, many
works dedicated to characterize metal sheet anisotropy via full field measurement were
performed with biaxial experiments and flat cruciform specimens [40, 39, 61, 52]. As a
consequence, uniaxial specimens were almost entirely put aside abandoned in full-field
characterized tests although they can still provide valuable information [114].

The present study aims for identification and validation of anisotropic plasticity model
investigating Hill’s quadratic yield function [29] via Integrated-DIC [77, 62, 63]. Two
experiments on ultra-thin uniaxial and biaxial specimens are performed and four consti-
tutive laws with increasing complexity are considered to challenge the sought behavior.
The identification relies on Integrated-DIC that allows for measurement and identifica-
tion of the sought properties in only one step. To enhance the relevance of the model,
all data (displacement fields and reaction forces) are equitably weighted via a Bayesian
foundation that assumes a white Gaussian noise (assessed prior to the experiment). Last,



5.2 Theoretical and methodological framework 73

the identified Hill’s anisotropic parameters for the uniaxial experiment will initialize the
identification routine for the biaxial investigation.

The paper is divided into three main sections. Section 5.2 introduces the chosen con-
stitutive models and recalls the integrated-DIC identification methodology (see Chapters 3
and 4). Section 5.3 discusses the identification results for the uniaxial specimen and Sec-
tion 5.4 addresses the biaxial experiment in a two-step strategy. Both sections address the
issue of ultra-thin specimen and use an anti-wrinkling device.

5.2 Theoretical and methodological framework

5.2.1 Investigated constitutive laws

Four constitutive laws are investigated, namely, (A) linear and isotropic elasticity (with
Young’s modulus E and Poisson’s ratio ν), (B) linear kinematic hardening with von Mises
flow rule, (C) exponential kinematic hardening with von Mises flow rule, and (D) linear
kinematic hardening with quadratic Hill [29] yield criterion. The total strain rate ε̇ is
written in terms of elastic and plastic strain rates ε̇ = ε̇el + ε̇pl where ε̇el is the elastic
strain rate tensor and ε̇pl the plastic strain rate tensor. The yield surface J2(σ−X) = σ0

is defined such that J2 is the second invariant of the stress deviator tensor, X the back-
stress, and σ0 the yield stress. As a first approximation, a linear kinematic hardening
model is chosen for the back-stress rate [70]

Ẋ =
2
3

Cε̇pl
�� ��5.1

where C is the hardening modulus. Under the assumption of exponential kinematic hard-
ening, the back-stress becomes

Ẋ =
2
3

Cε̇pl− cX ṗ
�� ��5.2

where C and c are material parameters, p the cumulative plastic strain [87, 88]. Last,
the quadratic Hill [29] anisotropic yield criterion is associated with the linear kinematic
hardening law (B). The latter criterion is an extension of the von Mises criterion, and can
be expressed in terms of rectangular Cartesian stress components as

f (σ) =
√

H1(σ22−σ33)2 +H2(σ33−σ11)2 +H3(σ11−σ22)2 +2H4σ2
23 +2H5σ2

31 +2H6σ2
12�� ��5.3

where Hi are constants expressed with the normal yield stress ratio (R11 = σ0/ ¯σ11, R22 =

σ0/ ¯σ22, R33 = σ0/ ¯σ33) and those in shear (R12, R23, R31) both with respect to the axes of
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The computation being two dimensional, R31 and R23 are insensitive and set to 1 hereafter
(and hence H4 = H5 = 3/2). One of the three parameters H1, H2, and H3 must be chosen
to decorrelate its value from the yield stress and hence H1 = 1 is chosen. Therefore, only
three additional material parameters, i.e., H2, H3, and H6, remain to be determined.

5.2.2 Integrated-DIC

In the following, the identification of the material parameters relies on Integrated Digi-
tal Image Correlation where the unknowns are no longer the displacement at each nodes
but the sought parameters. It is based on the global DIC technique [68] that relies on
the registration of an image f in the reference configuration and a series of pictures g in
the deformed configurations. Assuming gray level conservation, the registration problem
consists of minimizing the sum of squared differences between the deformed image cor-
rected by the measured displacement u(x, t) and the reference image (written for each
time t independently)

χ2
f =

1
2γ2

f NΩNt
∑
t

∑
Ω
((g(x+u(x, t), t)− f (x))2 �� ��5.4

with respect to the sought displacement fields u(x, t), where x is any considered pixel.
In this expression Ω denotes the Region of Interest (ROI), NΩ its area in terms of the
number of pixels it contains, and γ f = 323 gray levels is the standard deviation (i.e., 2%
of the dynamic range of f ) of the white noise assumed to affect each image indepen-
dently (including the reference one, which is responsible for the factor of 1/2 coming as
a multiplicative term in this functional). The load is also of importance for the identifi-
cation because it increases the number of the measured quantities and as a consequence
diminishes the relative uncertainty by enhancing the material parameters sensitivities (see
Chapter 4). Thus, a second objective function, χ2

F , is introduced

χ2
F =

1
NFNtγ2

F
{Fm−Fc}t{Fm−Fc}

�� ��5.5
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where {Fm} are the measured reaction forces and {Fc} are the computed levels with
respect to the chosen material parameter set, NF the number of load cells for each actuator,
Nt the number of steps and γ2

F the load variance. The identification based upon both
observables, i.e., gray levels and reaction force, is achieved by minimizing the global
functional χ2

I

χ2
I =

NΩ
NΩ +NF

χ2
f +

NF

NΩ +NF
χ2

F
�� ��5.6

where the DIC and reaction force functionals have been introduced in Equations (6.1) and
(6.19) respectively. The choice for the specific weight is issued from a Bayesian approach
whereby the noise characteristics imposes the appropriate weights to be given to quadratic
differences (see Chapter 3). In particular, quadratic differences are to be evaluated with a
metric equal to the inverse noise covariance.

In the following analyses, DIC measurements are based upon a global approach in
which finite element discretizations are used to measure the displacement fields [68]. In
the present case, meshes made of 3-noded triangles are considered. The displacement
interpolation is linear within each element [62].

When using an integrated DIC approach, the kinematic basis is parameterized with
the sought material parameters [77, 62, 63] that become the generalized degrees of free-
dom. When nonlinear behaviors are investigated, the dependence of the displacement
fields with the material parameters are nonlinear as well. Consequently, sensitivity fields
(i.e., displacement and reaction force derivatives with respect to the sought parameters)
are computed via finite element simulations (see Chapter 4). In the present case the com-
mercial (implicit) finite element code used is Abaqus standard. It is driven by the mea-
sured displacements on the boundary of the considered region of interest to compute the
displacement fields and reaction forces. A Gauss-Newton procedure is implemented to
minimize to global functional by iteratively updating the material parameters. The in-
terested reader will find additional details on the implementation of such procedures in
Chapter 4.

5.3 Parameter identification with uniaxial test

The present study investigates the mechanical behavior of a 70-µm thick sheet of precipi-
tation hardened stainless steel (17-7 PH grade) in TH1050 condition [23]. The specimen
is loaded by a servo-hydraulic tension/compression testing machine (see Figure 5.1(a)).
The experiment consists of three loading/unloading cycles in a displacement controlled
mode with increased displacement amplitudes for each new cycle. The unloading phases
are stopped when the measured load reaches 10 N to avoid compression. 14-bit gray scale
images are captured with a digital camera (pco.pixelfly) and a telecentric lens. The effec-
tive magnification is 70 µm per pixel or 14 pixel/mm. Last, the load measurements and
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Figure 5.2: (a,b) DIC and (c,d) IDIC (law D) displacement fields UX (a,c) and UY (b,d)
at the last experimental time step. (c) also shows the area that will be used to assess the

Lankford coefficient. The displacements are expressed in pixels

the parameters converge to a stabilized value while the residuals c for each laws are mini-
mized. First, all IDIC residuals are greater than the DIC residual. This is an indication that
model errors occur. Second, the lowest residual (law D) corresponds to 7 times the noise
level, which indicates that the model does not fully capture all the experimental behavior.
For law A, the Poisson’s ratio increases because of the plasticity which is incompressible.
For law B and C the Poisson’s ratio and the Young’s modulus are too small and only law
D achieves a relevant identification [26, 25]. This result shows that a model accounting
for an anisotropic behavior is necessary to achieve the identification of all the material
parameters (in particular the elastic parameters).

Figure 5.4(a) shows the global Hessian (HIFDIC) of the IDIC procedure. The material
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Figure 5.1: Uniaxial specimen with dedicated anti-buckling device

wrinkles are generated during this process near the boundaries. To maintain the surface
flat in the center region (crucial to perform 2D-DIC analyses) an anti-buckling device
is designed (see Figure 5.1). It consists of holding the specimen between two plexiglas
sheets maintained with four screws. To perform DIC analyses a random pattern is applied
on the monitored surface.

The study aims to assess the mechanical properties, and validates, the investigated
constitutive laws. Section 5.2 introduces the chosen constitutive models and recalls the
integrated-DIC identification methodology. Section 5.3 shows the identification results.

5.2 Numerical tools

5.2.1 Constitutive laws

Four constitutive laws are investigated, namely, (A) linear and isotropic elasticity, (B)

linear kinematic hardening with von Mises flow rule, (C) exponential kinematic hardening
with von Mises flow rule, and (D) linear kinematic hardening with quadratic Hill [31]
yield criterion. The total strain rate ✏̇ is written in terms of elastic and plastic strain
rates ✏̇ = ✏̇el + ✏̇pl where ✏̇el is the elastic strain rate tensor and ✏̇pl the plastic strain rate
tensor. The yield surface J2(��X) = s0 is defined such that J2 is von Mises’ stress,
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rates ✏̇ = ✏̇el + ✏̇pl where ✏̇el is the elastic strain rate tensor and ✏̇pl the plastic strain rate
tensor. The yield surface J2(��X) = s0 is defined such that J2 is von Mises’ stress,
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the parameters converge to a stabilized value while the residuals c for each laws are mini-
mized. First, all IDIC residuals are greater than the DIC residual. This is an indication that
model errors occur. Second, the lowest residual (law D) corresponds to 7 times the noise
level, which indicates that the model does not fully capture all the experimental behavior.
For law A, the Poisson’s ratio increases because of the plasticity which is incompressible.
For law B and C the Poisson’s ratio and the Young’s modulus are too small and only law
D achieves a relevant identification [26, 25]. This result shows that a model accounting
for an anisotropic behavior is necessary to achieve the identification of all the material
parameters (in particular the elastic parameters).

Figure 5.4(a) shows the global Hessian (HIFDIC) of the IDIC procedure. The material
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Figure 5.1: Uniaxial specimen with dedicated anti-buckling device

wrinkles are generated during this process near the boundaries. To maintain the surface
flat in the center region (crucial to perform 2D-DIC analyses) an anti-buckling device
is designed (see Figure 5.1). It consists of holding the specimen between two plexiglas
sheets maintained with four screws. To perform DIC analyses a random pattern is applied
on the monitored surface.

The study aims to assess the mechanical properties, and validates, the investigated
constitutive laws. Section 5.2 introduces the chosen constitutive models and recalls the
integrated-DIC identification methodology. Section 5.3 shows the identification results.

5.2 Numerical tools
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Four constitutive laws are investigated, namely, (A) linear and isotropic elasticity, (B)
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D achieves a relevant identification [26, 25]. This result shows that a model accounting
for an anisotropic behavior is necessary to achieve the identification of all the material
parameters (in particular the elastic parameters).

Figure 5.4(a) shows the global Hessian (HIFDIC) of the IDIC procedure. The material

Figure 5.1: (a) Uniaxial specimen with dedicated anti-buckling device. (b) DIC and (c)
IDIC displacement fields u1 at the last experimental time step with two mesh sizes. (c)
also shows the area that will be used to assess the Lankford coefficient. The displacements

are expressed in pixels (1 pixel↔ 40 µm)

the image acquisitions are synchronized.
The main experimental challenge concerns the specimen thickness that prevents rough

grips to be used. The solution relies on bonding the specimen ends to flat-surface alu-
minum alloy tabs with a 3M Scotch-Weld Structural Adhesive Film AF 126 [115]. Resid-
ual wrinkles are generated during this process near the edges. To maintain the surface
flat in the center region (crucial to perform 2D-DIC analyses) an anti-wrinkling device
is designed (see Figure 5.1). It consists in holding the specimen between two plexiglas
sheets soldered with four screws. To perform DIC analyses a random speckle pattern is
applied on the monitored surface and no paint loss was observed during the tests. Fig-
ure 5.1 shows the experimentally measured (b) and identified (c) (law D) displacement
fields associated with the three-noded triangular mesh with linear interpolation (T3) at
the last experimental time step.

Figure 5.2 shows the global residuals at each time step for the DIC (i.e., χ f ) and IDIC
(i.e., χI) solutions. Prior to starting the experiment, 10 images and load measurements
are acquired to assess the uncertainties. Then, the experiment starts and the residual in-
creases to roughly four times the noise level. Whereas the DIC residual remains relatively
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Figure 5.2: Global residual history for DIC and for the four constitutive models investi-
gated with IDIC

constant over the experiment, the IDIC residuals increase. Let us stress that DIC is based
on a number of degrees of freedom equal to 600 per image, or 114,600 for the entire
experiment, whereas the IDIC approach has as many degrees of freedom as constitutive
parameters to be identified ranging from 2 to 7 for laws A to C. This very drastic reduc-
tion incorporates many constraints due to a priori assumption on the material behavior.
The difference in residuals from DIC to IDIC is a measurement of the model error that
is due to the specific chosen constitutive law. Once the elastic regime ends (t ≥ 20), the
IDIC residuals increase and exceed the DIC residuals. At the end of the experiment, law
A leads to the highest residual. It highlights that the mechanical behavior is mainly driven
by plasticity. Second, law D is at the end of the experiment the best model to describe the
observed mechanical behavior. However, law D is less suited to describe the mechanical
behavior than laws B and C up to the middle of the second cycle. This result shows that
the assumption of a constant anisotropic behavior, i.e., constant anisotropic coefficients
as a function of the plastic strain, is inaccurate.

Table 5.1 gathers the assessed material parameters for the four constitutive laws. Their
initial values (p0) are chosen according to literature data [23, 24]. The initial and last
values of the residuals are also shown (1st — last ) for all the investigated laws plus one
identification with a coarser mesh D∗. All the parameters converge to a stabilized level
while the residuals χI for each laws are minimized. First, all IDIC residuals are greater
than the DIC residual but lower than the IDIC residual obtained when a coarse mesh
(corresponding to DIC mesh) is used (D∗). This is an indication that model errors occur.
It proves that refining the mesh (Figure 5.1) can enhance the identification quality by
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decreasing the gray level residuals that are one of the basis of the present methodology. It
also explains why the DIC residual is larger than the IDIC residuals during the first time
steps (t ∈ [10;20]). The load residuals increase except for law D thanks to the quadratic
Hill yield criterion. This proves that an anisotropic behavior enables more freedom for
the identification and helps to reconcile load and displacement data.

Table 5.1: Identified parameters and identification residuals via I-DIC for the four laws
over the entire loading history cycle (D∗ corresponds to the coarse DIC mesh and “1st —

last” corresponds to the first and last value of the residuals)

law χI χ f χF E ν σ0 C c H2 H3 H6
1st — last 1st — last 1st — last GPa MPa GPa

p0 5.0 200 0.3 1300 10 10 1 1 1
A 16.1 — 15 16.1 — 15 223 — 229 200 0.42 — — — — — —
B 11.3 — 7.0 11.3 — 7.0 15.6 — 33.8 157 0.18 1950 8.2 — — — —
C 10.3 — 7.6 10.3 — 7.6 13.6 — 26.1 142 0.17 1670 10.3 10.3 — — —
D 11.3 — 7.0 11.3 — 7.0 15.5 — 9.30 202 0.30 1420 9.1 — 0.85 0.88 1.06
D∗ 11.1 — 7.8 11.1 — 7.8 15.5 — 10.8 202 0.3 1390 9.2 — 0.89 0.9 1.04

Second, the lowest residual (for law D) corresponds to 7 times the noise level, which
indicates that the model does not fully capture all the experimental behavior. For law A,
the Poisson’s ratio increases because of plastic incompressibility and isotropy. For law B
and C the Poisson’s ratio and the Young’s modulus are too small and only law D achieves
constitutive parameter values that are compatible with the literature [24, 23]. This result
shows that a model accounting for an anisotropic behavior is necessary to achieve the
identification of all the material parameters (in particular the elastic parameters).

Figure 5.3(a) shows the global Hessian (HIFDIC) of the IDIC procedure for law D.
The material parameters having the largest influence are H1, H2, and H3 and account
for the anisotropic plasticity behavior (H1 is analyzed to show its correlations with other
parameters but for identification purposes its value is kept equal to one). This result proves
that a uniaxial experiment can lead to the characterization of an anisotropic behavior but
also that this behavior must be accounted for. Figure 5.3(b) shows that the Poisson’s
ratio is correlated to H1, H2, and H3, and explains why it is necessary to have a model
that separates both contributions from the Poisson’s ratio and the anisotropic coefficients
(see corresponding values in Table 5.1). Figure 5.3(c,d) shows the static Hessian and that
the reaction forces have a minor impact for the identification. The parameters ν and H6

have almost no influences and it is clear that H1 is correlated to all plastic parameters
and explains why its value has been fixed. Furthermore, Figure 5.3 shows that many
parameters are strongly correlated, which proves that the reaction forces cannot be the
only data for identification purposes. Last, the global Hessian being the summation of
the static and the kinematic Hessians, the latter is almost equal to the kinematic Hessian
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(MIDIC ≈ HIFDIC).
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Figure 5.3: (a,b) Global Hessian (≈ kinematic Hessian) and its corresponding correlation
coefficient Matrix and (c,d) Static Hessian and its corresponding correlation matrix for

law D. The absolute value of the Hessian is used

Figure 5.4 shows the displacement field residual for the u1 component (difference
between the IDIC and DIC displacement fields). The residuals corresponding to laws B
and C are equivalent whereas the residual corresponding to law D is twice as small thanks
to the anisotropic plasticity model.

Figure 5.5 shows the shape of the sensitivity fields for all material parameters. The
sensitivity fields corresponding to ν, H2, and H3 have an equivalent shape at the end of the
test. This explains the Poisson’s ratio identification issue if the constitutive model does
not account for an anisotropic plasticity behavior. It is worth noting that the residuals
of law B and C, and the sensitivity fields obtained for the anisotropic parameters have a
similar shape (see Figure 5.3). Therefore, it indicates that anisotropy can be captured,
which will subsequently be proven. Last, even with the anisotropic plasticity model, a
residual greater than the DIC residual remains.
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Figure 5.3

The Lankford coefficient [96] is an indicator used to describe the anisotropic plasticity
behavior of sheet metals. The reported Lankford coefficient is equal to r = εp

33/εp
11 where

εp
11 is the transverse plastic strain, εp

33 the out-of-plane plastic strain, which are computed
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by assuming plastic incompressibility, and εp
22 the longitudinal plastic strain. This analysis

is performed in the center area (see Figure 5.1(c)) of the specimen and the reported strains
are the corresponding mean values. For elasto-plastic models B and C, the r-ratio is equal
to 1. Only the anisotropic plasticity model (and the raw DIC results) allow for a ratio
differing from 1.

Figure 5.6 shows the Lankford coefficients both for DIC and IDIC results (only for law
D). The coefficient converges for both cases to a constant value as the level of plastic strain
increases. The converged value of the Lankford coefficient is consistent with literature
data of cold-rolled stainless steel [116]. Second, the model does not fully capture the
experimentally observed anisotropy in the early stages of plasticity. This result shows that
even if the identification of the anisotropic coefficients has been achieved, the assumption
of a constant anisotropic behavior (Law D) is an approximation. This observation is
consistent with the fact that the IDIC residuals are rather high at the end of cycle 1 and
the beginning of cycle 2 compared to isotropic laws (see Figure 5.2).
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Figure 5.6: Lankford ratio evaluated from DIC and from the identified anisotropic elasto-
plastic anisotropic (law D)

This section has shown that it is possible to determine all material parameters for an
in-plane anisotropic plastic model in a single uniaxial experiment. This result has been
achieved by combining kinematic and static measurements. The next section aims to
validate the present results with a biaxial test.
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5.4 Analysis of a biaxial experiment
This section investigates the mechanical behavior of a biaxial specimen, which is loaded
with an electromechanical testing machine, mini-ASTREE (see Chapter 4). The sample
thickness is 50 µm (i.e., an additional pass was performed prior to final heat treatment
in comparison with the previous case). 16-bit gray scale images are acquired with a
digital camera (pco.edge) associated with a telecentric lens. The effective magnification
is 12.5 µm per pixel or 80 pixels/mm. The gray level uncertainty is γ f = 233 gray levels.
The thickness of the specimen requires the surface to be maintained flat in the Region Of
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Figure 5.7: (a) Specimen and anti-wrinkling device (note the four screws on the four
corners). (b) Prescribed loading history F2 vs. F1 consisting of successive triangles of
increasing amplitudes. Displacement field components u1 (c) and u2 (d) at the maximum
prescribed load amplitude corresponding to point A of the loading path of Figure 5.7(b).

The displacements are expressed in pixels (1 pixel↔ 12.5 µm)

Interest (which is crucial for 2D-DIC). An equivalent anti-wrinkling device as designed
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for the uniaxial experiment is employed (Figure 5.7(a)). A triangular loading/unloading
history is prescribed (Figure 5.7(b)) with load controlled mode. In the following analyses,
the initialization of the sought parameters is based on the results obtained for the uniaxial
specimen.

5.4.1 First identification: large ROI

Figure 5.7(c,d) shows the displacement field components u1 and u2 measured with 2D-
DIC associated with the three-noded triangular mesh with linear interpolation (T3) at the
maximum loading amplitude (point A, see Figure 5.7(b)). The same mesh is used for DIC
and IDIC analyses. The maximum measured displacement is equal to 6.7 pixels corre-
sponding to 83 µm. Figure 5.8 shows the strain field components ε11 and ε22 derived from
the measured displacement field with DIC at point A of the loading path (Figure 5.7(b)).
As expected the strains are concentrated near the four fillet radii and their amplitudes re-
main small with a largest value of 1.2 % in accordance with the sought objective, namely
less than 1.5 %. However, numerous fluctuations are seen in the vicinity of the four arms
edges. An investigation of the DIC residual map reveals that this trend does not originate
from the DIC routine (Figure 5.8(c)). The second hypothesis is that the anti-wrinkling
system is not perfect.
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Figure 5.8: Strain fields ε11 (a) and ε22 (b), and residual map in gray level at point A of
the loading path of Figure 5.7(b) (the dynamic range of the pictures is 16 bits)

The identification is achieved by minimizing the global functional χ2
I . A sensitivity

analysis is performed for law D as it possesses the largest number of material parame-
ters and the maximum strain level is lower than in the uniaxial case (i.e., 8.8 %). Their
initial values are gathered in Table 5.2 and correspond to the results obtained for the uni-
axial specimen. The analysis consists of the evaluation of the kinematic ([M ]IDIC), static
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([H]F ), and global ([H]IFDIC) Hessians with an initial numerical analysis associated with
the same mesh and the measured boundary conditions with DIC.
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Figure 5.9: (a,b,c) Global ([H]IFDIC), kinematic ([M ]IDIC), and static ([H]F ) Hessians
and (d,e,f) their corresponding cross-correlation matrices

Figure 5.9(a,b,c) shows the Hessians with a log10 scale and Figure 5.9(d,e,f) shows
their corresponding cross-correlation matrices. First, the kinematic Hessian ([M ]IDIC)
has more influence on the identification than the static Hessian ([H]F ) because their
largest eigenvalues are separated by more than 3 orders of magnitude and [H]IFDIC ≈
[M ]IDIC. Second, the hardening modulus C is insensitive for both kinematic and static
Hessians. Conversely, the Poisson’s ratio (ν) has the highest sensitivity followed by
H1, H2, and H3 that account for the anisotropic plastic behavior. Regarding the cross-
correlation matrices (Figure 5.9(d,e,f)), the Poisson’s ratio has no correlation for the kine-
matic Hessian. Furthermore, the material parameters are more correlated to each other
when looking at the static Hessian. In that case, the images are crucial for two reasons,
namely, a greater sensitivity and less cross-correlations of the material parameters. To
conclude on the sensitivity analysis, the behavior is mainly driven by an elastic behavior
but small plastic strains occur near the four fillet radii. It worth noting that the material
parameters E and σ0 are correlated only based on the kinematic data. The two parame-
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ters affect the initiation of the plastic strain by two means, i) the higher the level of the
Young’s modulus the sooner the plastic regime sets in, ii) the lower the yield stress the
sooner the plastic regime occurs as well.

Figure 5.10 shows the sensitivity maps for all material parameters associated with
law D at point A. First, the sensitivity map corresponding to the Poisson’s ratio ν has
the largest sensitive area. Second, the material parameters associated with the plastic
behavior are only sensitive in the vicinity of the four fillet radii. These results are in
agreement with the previous conclusion and show that the present approach is a powerful
tool to summarize a large quantity of data.
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Figure 5.10: Sensitivity fields for all the material parameters of the law D for the compo-
nent u1 (in µm) for a 2% variation of the parameters

The identification is performed with the four investigated laws and Figure 5.11 shows
the registration residual history (χ f ) for DIC and IDIC. The DIC residuals are smaller
than the IDIC residuals, which are almost identical for the four investigated laws. The
fact that the residuals decrease during unloading phases originates from the quasi-elastic
behavior. After unloading, the material recovers almost everywhere its original shape.

Table 5.2 gathers the assessed material parameters for the four constitutive laws. The
same Poisson’s ratio value is obtained independently of the chosen constitutive model.
The Young’s modulus is affected when the model is elastoplastic. For the other material
parameters, their values remain equivalent between the three elastoplastic models and
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Figure 5.11: Global gray level residual history for DIC and for the four constitutive
models investigated with IDIC

the assessed anisotropic coefficients reveal an anisotropic plastic behavior. Regarding
the residuals, the indicators χI and χ f are equal and the load residual χF decreases as
the constitutive model becomes more complex. Using an elastoplastic model improves
by 25 % the load residual. However, it remains large in comparison to the noise level
(i.e., 10 times higher). The change of global residual is small and there still is a model
error. Last, the material parameters are different from the uniaxial identification, i) 10 %
lower for the Young’s modulus and ii) 10 % higher for the yield stress. Regarding the
anisotropic parameters H2 and H6 are equivalent but H3 has significantly changed.

Table 5.2: Identified parameters and identification residuals via IDIC for the four laws
over the entire loading history cycle of the biaxial test

law χI χ f χF E ν σ0 C c H2 H3 H6
1st — last 1st — last 1st — last GPa MPa GPa

p0 3.61 202 0.3 1420 9.1 10.3 0.88 0.86 1.06
A 3.73—3.72 3.73—3.72 13.2—13.7 202 0.33 — — — — — —
B 3.75—3.71 3.75—3.71 11.9—10.6 181 0.33 1570 9.1 — — — —
C 3.75—3.71 3.75—3.71 11.8—10.6 181 0.33 1570 9.1 10.3 — — —
D 3.76—3.71 3.76—3.71 11.4—10.3 177 0.33 1600 9.1 — 0.81 1 1.04

Figure 5.12 shows the measured and identified load histories for the four laws and
for the two components F1 and F2. First, the loads do not return to zero as prescribed by
the testing machine. Even if the assessed behaviors lead to an accurate description of the
loading phases, the model is unable to capture the unloading phases. This error explains
why the load residuals are large with respect to the noise level. The latter may originate
from the anti-wrinkling system that prevents the material to return to a perfect unloaded
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stage due to friction. However, qualitatively speaking, the biaxial trend is well captured
by the elastoplastic models.
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Figure 5.12: Measured and computed load histories of (a) F1 and (b) F2

Figure 5.13 shows the two components u1 and u2 of the displacement field residual
(difference between the IDIC and DIC displacement fields) at point A (Figure 5.7(b)). The
highest differences are observed near the arm edges and the latter is stable and symmetri-
cally distributed. It shows that the measured mechanical behavior does not correspond to
the numerical solution. One possible explanation can be found in “line-tension theory,”
which is developed to account for the easy wrinkling of thin elastic membranes [117]. A
theorem, which was initially formulated for masonry structures by Del Piero [118], can be
extended to such a framework [119] showing that the convex envelope of connected com-
ponents of traction-free boundaries are stress-free. Hence such regions, which coincide
precisely with the support of the most salient displacement residuals, are not expected to
be well described by the bulk constitutive law and the anti-wrinkling device cannot totally
prevent such phenomena. However, after a redefinition of the effective free boundaries,
the elastoplastic description should hold as long as no compressive stresses are generated.
To test this hypothesis, a second analysis is performed [117, 118, 119].

5.4.2 Second identification: smaller ROI

A smaller ROI is investigated without the regions that are impacted by wrinkling. Figure
5.14 shows the component u2 of the displacement field at point A (Figure 5.7(b)) for (a)
DIC, (b) IDIC with law D, and (c) the displacement field residual between the two. The
IDIC analysis uses a refined mesh to capture more precisely the elastoplastic behavior in
the vicinity of the four fillet radii. The results show that the maximum value of the residual
is smaller by more than 1 order of magnitude than the solution given by the larger ROI.
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Figure 5.13: Components u1 and u2 of the displacement residuals (IDIC-DIC) for law D
(displacement differences are expressed in pixel)

This fact proves that the newly chosen region is less affected by wrinkles, which may
prevent the identification of the material parameters.
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Figure 5.14: Displacement field component u2 from (a) DIC, (b) IDIC with law D, and
(c) the corresponding displacement residual at point A of the loading path of Figure 5.7.

The displacements are expressed in pixels (1 pixel↔ 12.5 µm)

Figure 5.15 shows the global Hessian ([H]IFDIC) and its cross-correlation matrix. The
Poisson’s ratio has no longer the largest level of sensitivity (see the results shown in Figure
5.9) but its influence is similar to the material parameters E, σy, and H2. The smaller ROI
corresponds to a smaller area that reduces the identifiability of the Poisson’s ratio.
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Figure 5.15: (a) Global Hessian ([H]IFDIC) and (b) its cross-correlation matrix

Table 5.3 gathers the assessed material parameters for the four constitutive laws. Dif-
ferent Poisson’s ratio values are obtained for the four constitutive models. Integrated DIC
analyses are performed for law D with i) a refined mesh with an average element size
20 % smaller than the standard IDIC mesh size (D∗) and ii) a coarser mesh equal to the
one used for DIC (D∗∗). For the elastic model, (law A), the Poisson’s ratio increases be-
cause a “compromise” is made between the truly elastic behavior and plasticity where
the deformation is essentially isochoric (see Chapter 4). The Young’s modulus is also in
good agreement with literature data [23, 24]. The residuals slightly decrease as the law
complexity increases and are smaller by 30 % than those with the larger ROI.

Table 5.3: Identified parameters and identification residuals via IDIC for the four laws
over the entire loading history cycle and the smaller ROI. D∗ corresponds to the compu-

tation with a finer mesh and D∗∗ to the DIC mesh

law χI χ f χF E ν σ0 C c H2 H3 H6
1st — last 1st — last 1st — last GPa MPa GPa

p0 2.56 202 0.3 1420 9.1 10.3 0.88 0.86 1.06
A 2.71—2.70 2.71—2.70 11.8—13.0 202 0.35 — — — — — —
B 2.69—2.68 2.69—2.68 10.9—12.1 212 0.33 1350 9.1 — — — —
C 2.69—2.68 2.69—2.68 10.9—12.1 212 0.33 1350 9.1 10.3 — — —
D 2.69—2.68 2.69—2.68 10.7—11.3 212 0.32 1350 9.1 — 0.86 0.84 0.96
D∗ 2.69—2.68 2.69—2.68 10.7—11.2 212 0.32 1350 9.1 — 0.86 0.84 0.96
D∗∗ 2.69—2.68 2.69—2.68 10.7—11.3 210 0.33 1370 9.1 — 0.88 0.84 1

Regarding the load residual (χF ), the same improvement is reached with an elasto-
plastic law, but the newly chosen ROI does not improve their levels (i.e., 10 times the
noise level). In comparison with Section 5.3, the results obtained for the refined ROI are
closer than those obtained from the larger ROI. Figure 5.16 shows the sensitivity fields
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for law D. Their main contribution is close to the fillet radii. Thus, the mesh size is of
importance for identification purposes but a strong refinement (D∗) does not improve the
identification quality, even as compared to the coarse mesh (D∗∗), as shown in Table 5.3.
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Figure 5.16: Sensitivity fields for all the material parameters of the law D and the com-
ponent u2 (µm)

The anisotropic parameters are in good agreement with their uniaxial counterparts ex-
cept for H6 that differs by 10 %. The differences may originate from i) the plate itself
that is thinner than its uniaxial counterpart by about 20 µm, ii) the biaxial test that re-
veals more of the mechanical behavior, and iii) the maximum strain which is significantly
lower (8.8 % versus 1.2 %). To address this last point, the identification with the uniaxial
experiment is carried out but for a lower longitudinal strain range (i.e., 0-2 %), which
corresponds to the first loading cycle. Table 5.4 shows the results of this new step, which
is less stable in particular in terms of Young’s modulus and yield stress, as they are more
strongly correlated. Further, the set of parameters is not as close to the biaxial results as
with the whole data set of the uniaxial experiment. It is believed that the main reason is
due to the geometry of the uniaxial specimen where a more extended strain amplitude is
needed to achieve a reliable identification. This final remark supports proposition ii).
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Table 5.4: Identified parameters and identification residuals via I-DIC for the four laws
over the first loading history cycle accounting for a 2 % maximum total strain value (D∗

corresponds to the coarse DIC mesh and “1st — last” corresponds to the first and last
value of the residuals)

law χI χ f χF E ν σ0 C c H2 H3 H6
1st — last 1st — last 1st — last GPa MPa GPa

p0 3.6 200 0.3 1300 10 10 1 1 1
A 4.86 — 4.84 4.86 — 4.84 37.3 — 37.5 200 0.32 — — — — — —
B 5.48 — 3.88 5.48 — 3.88 9.65 — 11.7 130 0.26 124 15 — — — —
C 5.55 — 3.88 5.55 — 3.88 9.6 — 12.6 130 0.27 130 14 9.8 — — —
D 5.5 — 3.9 5.5 — 3.9 9.0 — 20 170 0.27 1450 10.5 — 1.2 1.01 1.0
D∗ 5.8 — 4.0 5.8 — 4.0 9.1 — 21 166 0.27 1460 10.5 — 1.2 1.04 1.0

5.5 Conclusion

Four constitutive laws have been investigated with Integrated Digital Image Correlation
to analyze a uniaxial test of an ultra-thin sheet of precipitation hardened stainless steel.
A dedicated anti-wrinkling system is designed and employed to prevent non uniform out-
of-plane displacements while loading and unloading the specimen. The identification
is performed over the entire loading history accounting for 3 loading/unloading cycles.
The four laws lead to different residuals and the anisotropic plastic law provides the best
results and appears to be necessary to assess the material parameters. Thanks to full-field
measurements, all the plain strain parameters could be calibrated with a unique uniaxial
test.

The methodology is extended to a biaxial experiment with the objectives to assess the
early plastic behavior of the material in TH1050 condition and to validate the “uniaxial”
identification. The analysis of the experiment revealed that the specimen undergoes wrin-
kling on the connecting arms. The identification suffers from this effect as shown in the
kinematic residual fields.

To address this issue a smaller region of interest that focuses on the specimen center
but considers the four fillet radii where plasticity occurs is chosen. The results show
that this choice allows for a better identification since the elastoplastic behavior is less
corrupted by experimental errors. Plastic anisotropy provides the best result but does not
appear as necessary to predict the mechanical response of the investigated material as
for the uniaxial experiment because the strain range was significantly lower (i.e., 1.2 %
instead of 8.8 %). This study shows that experiments on ultra-thin specimens may easily
be affected by wrinkling. Special care has to be exercised to avoid or minimize such
effects.

Last, some small differences between the two sets of material parameters identified
exist. Authors have already reported such differences between uniaxial and biaxial ex-
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periments with respect to anisotropic behaviors [109, 107, 108]. Let us emphasize that
possible causes for such a discrepancy may be the explored strain range but more impor-
tantly by the fact that the geometry of uniaxial test samples is less sensitive to material
parameters (e.g., associated with anisotropic plasticity).

Chapter 6 aims to assess the material parameters of a crystal plasticity law [18] with
a micro experiment. Because 17-7 PH stainless steel has very fine grains (see Figure 2.2
in Chapter 2) an IF-steel, which has a similar microstructure but larger grains, is used.



Chapter 6
Crystal plasticity parameter identification

with 3D measurements and IDIC

Reproduced from: Morgan Bertin, Chaowei Du, Johan P.M. Hoefnagels, and François
Hild, Crystal plasticity parameter identification with 3D measurements and Integrated
Digital Image Correlation, Acta Materialia, September 2016, (116) 321-331, doi:
http://dx.doi.org/10.1016/j.actamat.2016.06.039

Abstract
The present study unravels details of the micromechanical behavior of a micro-

specimen made of IF-steel. A triangular prism is machined via focused ion beam (FIB)
and contains two ferritic grains. Four experimental tools are integrated to identify the ma-
terial’s crystal parameters: i) an optical confocal microscope captures height profile im-
ages, ii) an in-situ tensile stage prescribes the loading history to the macrospecimen, iii) a
global Digital Image Correlation (DIC) algorithm measures the 3D surface displacement
fields, and iv) an extension of Integrated-DIC for 3D displacement fields is implemented
to assess the micromechanical behavior. It is demonstrated that with this methodology the
identification of the boundary conditions and crystal plasticity parameters is successfully
achieved.

6.1 Introduction
The mechanical properties of materials often originate from physical and multi-scale phe-
nomena that are due to complex and heterogenous microstructures. One of the first
method to consider heterogeneous media for computing macromechanical responses is
based on homogenization [120]. In order to solve this problem micromechanical frame-
works have been developed for elastic materials [121] and in elastoplasticity [100]. Due
to complex behaviors and the difficulty to observe and measure at the microscale the main
challenge remains the identification of the constitutive parameters.

The lattice structure (e.g., FCC, BCC) is considered to derive the constitutive equa-
tions for single crystals [122, 123, 124]. The present study aims at coupling experimental
and numerical results and provides a compromise between a reasonable computation time

93
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and a sufficiently small scale to achieve the observation of the micromechanical behavior
in a material with real engineering applications. Under the same assumptions, Raabe et
al. [125] characterized the micromechanical behavior in polycrystalline aluminum with
the measurement of the displacement on the observed surface. The authors demonstrated
by 2-dimensional Finite Element analyses that the micromechanical response obtained
from the crystal plasticity law was closer to the experimental observation and was able to
predict the stress and strain heterogeneities. However, the underlying microstructure is a
key feature and 3D orientation mapping has been performed by Musienko et al. [126] to
compare experimental and numerical strains also on polycrystalline aluminum. Using a
3D analysis, Martins et al. [127] focused on the residual strain measured in a weld zone
of 316L stainless steel.

Digital Image Correlation enables full displacement and strain fields to be measured
and provides insight into the micromechanics of solids. Imaging systems capable of
higher magnifications allow the heterogeneity of the micromechanical response to be eval-
uated. A first approach [128] using full field measurements obtained from SEM acquisi-
tions has led to the identification of a single crystal plasticity law. Dmitrieva et al. [129]
studied shear bands in a single copper crystal and Tasan et al. [130] characterized mi-
cromechanical banding effects. Other techniques may be used, e.g., Raabe et al. [131]
acquired pictures with a confocal microscope.

The combination of both experimental and numerical aspects has been investigated
by Héripré et al. [132] while applying the Finite Element Model Updating technique
(FEMU [58]). Tasan et al. [133] proposed an integrated experimental-numerical approach
to investigate stress-strain partitioning in multiphase alloys, although, the mechanical
properties of the material have been obtained with a separate technique, i.e., nano inden-
tation tests. Guery et al. [134] have identified constitutive parameters of the law proposed
by Méric and Cailletaud [18] using full field measurement, SEM acquisitions and FEMU-
UF. The results provide an internal check of the constitutive model with respect to the
experiment with the identified parameters. However, several difficulties remain (e.g., un-
known underlying microstructure) and the specimen design is still one of the biggest
challenges because it is hard to build and to test mechanically.

The objective of this chapter is to perform an investigation at the microscale and to
identify the material parameters of a crystal plasticity model with Integrated Digital Image
Correlation (IDIC [135, 86]). Figure 6.1 shows the designed identification procedure.

Initially, the crystallographic features, i.e., phase, grain (size, number and orientation)
and the geometry of the studied volume are assessed and lead to the design of a repre-
sentative 3D numerical model. Secondly, the out-of-plane displacement holds essential
information regarding the active slip systems. Therefore an experimental method is in-
troduced that utilizes confocal microscopy combined with a 3D surface global DIC for-
mulation to quantify full three-dimensional displacement fields of the specimen surface
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Figure 6.1: Schematic view of the methods used herein to extract boundary conditions
and crystal plasticity parameters. The different steps of this methodology are explained

in Section 2

and use these 3D data to extract boundary conditions and identify crystal plasticity pa-
rameters. Because of the relatively high noise level computations are run with stabilized
boundary conditions. Finally, the sought parameters are identified with integrated-DIC
that combines all experimental data, i.e., the surface height profiles, constitutive model,
and crystallographic features.

The chapter is organized as follows. Section 6.2 introduces the experimental and
numerical tools utilized herein. Section 6.3 shows the experimental results prior to the
identification discussed in Section 6.4.
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6.2 Coupled experimental/numerical procedure

The objectives are i) to observe a crystal-specific micromechanical behavior under confo-
cal microscopy, ii) to quantitatively measure the 3D surface displacement field at the grain
scale with DIC, iii) to simulate the mechanical response with a representative model of the
microstructure and the chosen crystal plasticity law, and iv) to couple experimental and
numerical results in a single numerical framework to identify (as much as possible) the
material and kinematic unknowns. The experimental methodology relies on the measure-
ment of surface height profiles of a microspecimen (µ-specimen) within a macroscopic
sample that is mechanically loaded in tension.

6.2.1 Specimen

To demonstrate the potential of the proposed technique a relevant engineering material is
chosen for this study, namely, 1-mm thick as-received IF-steel sheet. The latter possesses
a very low carbon content and Table 6.1 gathers its chemical composition. IF steel is
widely used, e.g., in the automotive industry, for its deep drawability properties [136].

Table 6.1: Chemical composition of the studied IF-steel

Composition C Mn Al Ti Nb Si S P N(ppm) Fe
(wt %) 0.0022 0.09 0.015 0.033 0.008 0.003 0.007 0.012 28 bal.

The desired mechanical properties of IF-steels are, a) low yield stress, b) high harden-
ing modulus resulting in stress levels after the material has been plastically deformed, c)
high Lankford coefficients to improve deep-drawability capabilities and d) high fracture
strain. The ferritic microstructure is body-centered cubic (BCC). The average grain size
is of the order of 10 µm.

The preparation of the specimen requires four steps:

i. From the 1-mm thick sheet, a large specimen is cut (50 mm × 10 mm) and ground
down to 0.3 mm thickness and polished on both sides, to yield a very flat specimen
with the two surfaces parallel to each other.

ii. A large surface area of the large specimen is investigated using Orientation Imaging
Microscopy (OIM, see Figure 6.2(a,b)). The location of the µ-specimen is chosen
to contain two grains that are larger than 15 µm having a clean grain boundary and a
misorientation angle less than 1◦ within the grain so that both crystal and structure
are relatively clean (Figure 6.2(c)).
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iii. The µ-specimen is milled using Focused Ion Beam technique (Figure 6.2(d)). The
obtained µ-specimen is 12 µm long and 4 µm wide with an equilateral triangular
basis. Its length and depth are a compromise between a size consistent with the
resolution of confocal microscopy and the milling speed of the FIB process.

iv. The last step is platinum deposition to create a random pattern for DIC purposes.
The latter is obtained by depositing 20-nm high and 0.8 µm in diameter semi-
spherical dots at specific locations. Their size has been adapted with respect to
the confocal microscope features.

Figure 6.2 shows secondary electron images related to steps (iii) and (iv). Fig-
ure 6.2(d) shows the underlying microstructure and the grain boundary by observation
from the side. Furthermore, it validates the assumption that the apex line of the µ-
specimen is entirely free. Figure 6.2(e) shows the pattern obtained after platinum de-
position. The latter has also been deposited on the border of the µ-specimen to perform
DIC on a larger area.

Table 6.2 gathers the lattice orientations of the two grains identified from the OIM
analysis.

Table 6.2: Euler angles of the two grains measured via OIM and maximum misorientation
angle (δ) within each grain

Euler angle (deg) misorientation (deg)
Denomination ψ θ φ δ
Grain 1 (red) 281 8 47 0.70
Grain 2 (blue) 211 45 150 0.76

6.2.2 Experimental protocol

Figure 6.3 shows the experimental apparatus within the confocal microscope, i.e., the
large specimen clamped in the tensile stage. Before starting the experiment, the µ-specimen
is successively, i) positioned and aligned inside the tensile stage, ii) aligned with the trans-
lation and rotation stage, and iii) positioned in the center of the field of view of the sensor.
During the experiment the large specimen is subjected to a velocity equal to 0.5 µm.s−1

and at approximatively every 5 µm stopped while the image acquisition procedure is per-
formed. Because the early stage of plastic strain and its corresponding kinematic hard-
ening behavior are being sought, three cycles corresponding to 1 %, 2 % and 3 % global
strain are applied without compression.
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Figure 6.2: Image Quality (IQ) map (a) and Inverse Pole Figure (IPF) maps (a,b), re-
sulting from the OIM measurement of the studied IF-steel. The longitudinal direction of
the sample is the horizontal direction in all the figures. (b) Chosen location for the µ-
specimen and (c) µ-specimen after the FIB process. (d) µ-specimen observed with a tilt of
52◦. The underlying microstructure and the grain boundary are observed. (e) µ-specimen

after platinum deposition. The arrows depict the location of the grain boundary

Since the µ-specimen can never be perfectly centered on the microscale it moves in
the field of view when strained. Therefore, an in-house routine was written to maintain
the µ-sample inside the field of view by correcting the rigid body motions using DIC and
controlling the motorized (x,y)-sample accordingly.

The first image of the experiment corresponds to the reference, then for each load step,
a first image is captured to evaluate the rigid body motions. The latter ones are applied as
a correction by moving the motorized (x,y)-stage and finally a second image is captured.
In the z-direction, the contraction of the large specimen will move the µ-sample out of the
depth of field. An auto-frontal procedure is used to address this issue.

Height profile images are captured in confocal profilometry mode by a Sensofar Plµ2300
Optical Confocal Microscope using a CCD camera (definition: 557× 557 pixels) with a



6.2 Coupled experimental/numerical procedure 99

Figure 6.3: Experimental apparatus with the tensile stage on motorized (x,y)-sample
positioning stage within a Sensofar optical profiler (150× magnification lens)

Nikon EPI 150× objective lens, resulting in a square field of view of 61×61 µm2. This
technique allows for a very small resolution in height (estimated to be 9 nm for this partic-
ular specimen configuration) whereas the in-plane resolution is limited by the diffraction
limit of the blue light wavelength. However, a careful inspection of the height profiles
revealed some artifacts caused by, i) lens defects and dust particles, and ii) the CCD pixel
positions. Both errors were identified to be systematic because they remain at the same
location on the images as long as the imaging parameters are fixed and the same lens is
used.

Figure 6.4(a) shows an image with the systematic errors previously listed. The cor-
rection method consists of an acquisition under the identical parameters of 400 images
at 400 random locations on a flat reference surface. All images are averaged, i.e., added
and normalized by the total number of images, and a plane is fitted and subtracted to this
average profile to obtain a mean height level of zero mean with the corresponding root
mean square error in the height level as small as possible. This process allows only the
systematic error to be kept (Figure 6.4(b)) and by subtraction from all the experimental
images the biases are almost completely removed without corrupting the experimental
data. This procedure helps the DIC computation that needs reliable height levels over
time. The loads are also measured and the standard resolution is evaluated as γF = 1 N.

6.2.3 3D Digital Image Correlation

Global DIC [68] relies on the registration of an image f in the reference configuration
and a series of pictures g in the deformed configurations. The specific approach followed
herein adds to the conventional 2D approach the out-of-plane displacement as an offset to
the height conservation [137, 138, 139]. The registration problem consists of minimizing
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(a) (b) (c)

Figure 6.4: (a) Systematic errors on a profile image generated by the confocal micro-
scope. Fringes and dust particles are present that are detrimental for the DIC compu-
tations. (b) Image correction obtained from the random acquisition of 400 images of a

reference surface, and (c) profile image corrected from the systematic bias

the sum of squared differences between the deformed image corrected by the measured 3D
displacementsu(x, t) = u(x, t)ex+v(x, t)ey+w(x, t)ez and the reference image (written
for each time t independently) over the Region of Interest

χ2
f (t) =

1
2γ2

f NΩ
∑
Ω
(g(x+u(x, t)ex + v(x, t)ey, t)− f (x, t)−w(x, t)ez)

2 �� ��6.1

with respect to the parameterization of the sought displacement fields u(x, t), where
x = xex + yey is any considered pixel. Ten images have been acquired initially and the
standard deviation is evaluated to be γ f = 9 nm. The minimization of χ2

f is achieved by
successive linearizations and corrections, using a modified Gauss-Newton scheme

[M ]{δu}= {b(i)} �� ��6.2

where [M ] is the DIC matrix, {δu} the vector gathering all increments of measured
displacement amplitudes, and {b(i)} the residual column vector at iteration i. The DIC
matrix reads

Mi j = ∑
Ω
(∇ f (x) ·ψi(x))

(
∇ f (x) ·ψ j(x)

) �� ��6.3
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and the right hand side term

bi = ∑
Ω
(∇ f (x) ·ψi(x))( f (x)−g(x+ ũ(x)))

�� ��6.4

where ũ(x) is the current estimate of the displacement field and the image gradient is
enriched with the variations of height levels, namely, ∇ f = ∂ f

∂xex +
∂ f
∂yey− ez. A con-

sequence of the addition of the out-of-plane displacement in the functional is that the
problem has more degrees of freedom that might affect the minimization.

The integration of mechanical and kinematic constraints into the 3D-DIC problem,
namely Integrated-DIC (IDIC), is performed by choosing as unknowns the sought param-
eters associated with a constitutive law or boundary conditions (Chapter 4). The sensitiv-
ity fields SU(x) [41] are chosen as a basis of functions for the displacement field

[SU ] =
∂{u}
∂{p}

�� ��6.5

where {u} is the computed nodal displacement vector, {p} is the vector gathering the un-
known parameters, i.e., sought material parameters or boundary conditions. Furthermore,
specific features of the loading history may or may not be sensitive. Treating an image
series is equivalent to summing over the corresponding contributions at each time step:
χ2

f = 1/Nt ∑Nt
t=1 χ2

f (t) to probe the sensitivities over the whole time domain. The solution
at convergence gives an evaluation of the model error compared to the noise level. This
indicator is useful because it allows the user to validate or not the investigated constitutive
law(s) (see Chapters 4 and 5).

Last, if the same mesh is used, and the DIC matrix has been computed IDIC simply
consists of projecting the nodal displacement field onto the sensitivity fields [62]. Thus,
the sought parameters are identified by iteratively solving the linear system until conver-
gence

{δp} = 1
2γ2

f
[M ]−1

IDIC[SU ]
t{b} �� ��6.6

where [M ]IDIC = 1/(2γ2
f )[SU ]

t [M ][SU ] is the kinematic Hessian. The covariance matrix
of the identified parameters is written as (Chapter 3)

[CI
p] = [M ]−1

IDIC
�� ��6.7

where 〈•〉 is the mean value of •. Another useful indicator is the correlation matrix (no
index summation used), where i refers to the row number and j the column number of the
sought parameter
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(Corp)i j =
(Cp)i j√

(Cp)ii(Cp) j j

�� ��6.8

Crystal plasticity model

To demonstrate the potential of the proposed technique to identify parameters of a crys-
tal plasticity model, the Méric and Cailletaud [18] model is chosen. It is based on the
decomposition of the total strain into an elastic and plastic strain. The elastic behavior
assumes cubic symmetry in agreement with the BCC lattice. Using the Kelvin-Voigt nota-
tions, Hooke’s fourth-order tensor [C] depends on three elastic constants of the material,
namely C11, C12 and C44. The plastic deformation initiates from crystallographic slip in
the crystal lattice and satisfies incompressibility. A slip system (θ) is defined by a slip
plane nθ

0 and a slip direction on the plane sθ
0 in the initial configuration of the lattice (•0).

In the case of a BCC crystallographic lattice, 24 slip systems are considered, namely 12
principal slip systems from 〈110〉 and 12 secondary systems from 〈112〉. The gradient
tensor F θ =∇t

0⊗x, where ⊗ is the dyadic product, corresponds to the lattice strain

F θ = I+ γθsθ
0⊗nθ

0
�� ��6.9

where γθ is the applied shear on the θth slip system, I is the second order identity
tensor. The linear elasticity law relates the second Piola-Kirchhoff stress tensor S =

JeF
−1
e σ (F t

e)
−1 where σ is the stress tensor and the Green-Lagrange strain tensor Ee =

1/2(F t
eFe− I); S = C : Ee, where • : • is the double inner product. Since an elasto-

viscoplastic framework is assumed, the plastic strain rate is driven by the resolved shear
stress on each slip system θ. The gradient rate tensor reads

Lθ = Ḟ θF θ−1 = γ̇θsθ
0⊗nθ

0
�� ��6.10

where γ̇θ the resolved shear stress rate on the θth slip system. The orientation of the lattice
is important with respect to the loading direction. Thus, for Θ slip systems the velocity
gradient tensor reads

L=
Θ

∑
θ=1

γ̇θsθ
0⊗nθ

0 =
Θ

∑
θ=1

γ̇θP θ
0

�� ��6.11

where P θ
0 = sθ

0⊗nθ
0 is the so-called non-symmetric Schmid tensor. The decomposition

of the deformation gradient rate tensor becomes

L=Le +FeLpF
−1
e

�� ��6.12
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where Le and Lp are the elastic and plastic gradient rate tensors. To complete the consti-
tutive description of the crystalline material, the plastic slip rates

�� ��6.10 rely on the resolved
shear stress. The relationship between the resolved shear stress τθ and the shear rate γ̇θ

reads

γ̇θ =

〈 |τθ− cxθ|− τ0

K

〉n

ηθ �� ��6.13

where τ0 is the critical resolved shear stress, c is the hardening coefficient, (K,n) are ma-
terial constants related to Norton law, ηθ = sign(τθ−cxθ) and 〈•〉 are Macauley brackets.
Furthermore, the isotropic hardening behavior is not investigated, i.e., only the kinematic
hardening behavior is considered while assuming an exponential behavior

ẋθ = γ̇θ−d|γ̇θ|xθ �� ��6.14

where d is a material parameter. Several slip systems may lead to the same plastic strain
rate, thus the growth of the resolved shear stresses τθ is governed by a phenomenological
hardening law. From Equations

�� ��6.13 , and
�� ��6.14 , and by applying the consistency condition,

it becomes

ẋθ =
1
c ∑

κ
Hθκ|γ̇κ| �� ��6.15

where [Hθκ] is the interaction matrix, δθκ is the Kronecker operator and Hθκ = c(ηκ−
dxκ)δθκ the hardening moduli of the interaction matrix. Table 6.3 gathers all model pa-
rameters and their initial values chosen based on IF literature [140, 141].

Table 6.3: Parameters of the Méric and Cailletaud crystal plasticity model [140, 141]
Mechanism Elasticity Viscosity Plasticity
Model parameter C11 C12 C44 K n τ0 c d
Unit GPa GPa GPa MPa (-) MPa GPa (-)
Initial value 233.5 135.5 118 12 10 40 40 1500

C++ implementation

One of the main challenges is the coupling between experimental and numerical data in a
single framework. An in-house C++ code dealing with all the facets of the problem from
the acquired height profile images to the identification of parameters while computing
the mechanical responses has been designed. Regarding the FE computations (performed
in Code_Aster [142]), a C++ routine has been written to automatically generate the in-
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Figure 6.5: (a) 3D mesh of the µ-specimen with the two grains visible (two different
colors). (b) 2D mesh on the top surface used for IDIC, shown together with the sides

where the boundary conditions are interpolated from the initial DIC computation

put files with all the necessary data, i.e., the microstructure, the boundary conditions, the
mesh, and the constitutive parameters. Simulations are automatically started and the re-
sults are sent back to the main code to iteratively solve the identification problem. This
main code deals, with i) the surface profile images in height levels, ii) the 2D mesh (in
pixels) related to the global DIC formulation, iii) the 3D mesh (in mm) used to solve the
finite element problem, and iv) the 2D mesh (in pixels) where the sensitivity fields are
projected on the DIC matrix to solve the Integrated DIC problem. As proposed in Chap-
ter 3, the parameterization is based on a log scale of the ratio between the current value
of the parameter and its initial guess. It is defined such that the sought parameters in the
new setting {q} are expressed from the initial basis as {q} = log{p/p0}, where {p} is
the vector gathering the values of the parameters and {p0} their initial values.

As a key feature, the measurement, the computation, and the identification steps rely
on a 3D surface formulation where the out-of-plane displacements are also used to identify
the micromechanical behavior of crystals. The simulations are performed on the measured
3D microstructures with their lattice orientation. Figure 6.5(a) shows the finite element
model of the microstructure.

Furthermore, the applied boundary conditions are obtained from the displacements
measured via DIC. The numerical simulations being 3D, the displacements of the trian-
gular boundaries are obtained assuming a linear interpolation between the edge L+ and
L− (i.e., intersection between the measured surface (S+ and S−) and the triangular bound-
ary surface) and the apex (P+ and P−) where its displacement is equal to the mean value
of the corresponding edge (respectively L+ and L−).

To conclude, a regularization method [69] is implemented to prevent meaningless
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identification when the influences of material parameters on the observables are weak.
Therefore, a functional (χR) is associated with the identification functional (χ f ) to en-
able for the changes of the sought parameters only if their corresponding sensitivities are
higher than a specific bound. χ2

R is a convex function reaching its minimum equal to zero
and reads

χ2
R = {p}[CR

p ]
−1{p} �� ��6.16

where [CR
p ] is the covariance matrix of the material parameters. The regularized func-

tional is written as χ2
I = χ2

f +χ2
R because both functionals are dimensionless and normal-

ized to one. Finally, the regularization of the linear system reads

([M ]IDIC +λ∗[I]) {δp}= {b}+λ∗({p0}−{p})
�� ��6.17

where λ∗ is the regularization parameter whose choice is performed to cancel out the
influence of noise [69].

6.3 Experimental results

320 profile images are acquired and 8-bit encoded such that the total range is used over the
entire images set. The ratio between nm and pixels is equal to 110 nm/pixel, and the ratio
between nm and height levels is constant and equal to 6.5 nm/(digital level). Figure 6.6

(a) (b)
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Figure 6.6: (a) Reference image and (b) image at the last time step of the experiment
after application of the systematic error correction

shows the reference image and the last image of the experiment after the application of
the bias correction.



106 6 Crystal plasticity parameter identification with quasi-3D IDIC

Figure 6.7 shows a Backscattered Electron (BSE) image of the µ-specimen and its
surrounding area where slip bands are revealed due to Electron Channelling Contrast.
Furthermore plasticity has occurred during the experiment, as expected.

Figure 6.7: Backscattered electron (BSE) image of a larger view at the end of the exper-
iment. The slip bands are observable around the µ-specimen inside the grains

6.3.1 3D-DIC measurements

Figure 6.8(a) shows the uY component of the displacement field obtained with the 3D-DIC
algorithm at the last time step. The corresponding mesh is also shown. Because the dis-
placements are very small and the specimen area contains only a limited amount of pixels
(120×40 pixels), the accuracy of the measured displacements over time is limited. There-
fore, a coarse mesh is used to increase the robustness of the DIC procedure. Figure 6.8(b)
shows the displacement amplitude (u+Y (t)−u−Y (t)) between the upper constrained surface
(S+) and the lower one (S−) where γu = 26 nm is the standard displacement uncertainty.
The signal possesses a notable amount of noise, which is challenging for further inves-
tigations. Figure 6.8(b) also shows the prescribed displacement on the boundary of the
macroscopic specimen. The ratio between the two displacements (of the order of 5,000)
is constant, as expected. The distance between the two grips is 32 mm and the µ-specimen
length 12 µm, is equal to 3.8×10−4. However, the ratio experimentally observed is equal
to 2×10−4 and corresponds to a strain of the µ-specimen of 1.6%. It is observed that that
the microscopic strain is not equal to the global macroscopic strain. It originates from
microscopic heterogeneities or small discontinuities of the macroscopic geometry.

Figure 6.9 shows the digital level residual fields reconstructed at the last time step
of the experiment and the last iteration of the DIC procedure. The latter is obtained by
computing the difference between each pixel of the reference image and the corrected
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Figure 6.8: (a) Component uY of the displacement field at the last time step of the exper-
iment evaluated via DIC. (b) Displacement amplitude (u+Y (t)−u−Y (t)) in the longitudinal
direction and prescribed displacement with an adapted scale (see left size of the graph)

deformed image [62] and decreases by about 16 %. The gain originates from the vertical
displacement determination that affects the entire ROI.
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Figure 6.9: (a) Residual field at the last time step of the experiment for the first iteration
and (b) at convergence. The fields are expressed in digital levels (i.e., 1 digital level = 6.5

nm)

The main issue (see Figure 6.9) is that the signal to noise ratio is very small. To
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overcome this challenge a new strategy is proposed, i) piecewise-linear time steps are
assumed for each loading phase and for each considered surfaces (S+ and S−) for the
components uY and uZ (see Figure 6.10 in red), ii) the displacements of the apex (lines
L+ and L−) of both boundary surfaces are identified with integrated 3D-DIC, and iii) the
measured macroscopic loads are adapted to fit the section of the microscopic specimen
and some material parameters are identified based on the minimization of the combination
of the loads and image residuals. The uX component is not considered because of its larger
noise level.
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Figure 6.10: Displacement amplitude (u+Y (t)−u−Y (t)) in the longitudinal direction from
DIC (the mean of the two extreme nodes) results and the corresponding piecewise-linear

steps. The arrows denote the considered degrees of freedom

With this pre-processing strategy, two objectives have already been fulfilled, namely,
i) the displacement fields have been measured over time and ii) the micromechanical plas-
tic behavior and its evolution have been observed. The remaining objectives to achieve
are i) the coupling between experimental and numerical solutions (with the selected crys-
tal plasticity law), ii) the identification of the displacement of the apex of the boundary
triangles and iii) the identification of the constitutive parameters.
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6.4 Boundary conditions and material parameter identi-
fication

The identification is investigated with the 3D model and the measured microstructure.
First, the in-depth displacements at the constrained boundaries are assessed. Four un-
knowns, namely λ+

Y , and λ+
Z , λ−Y , and λ−Z are applied as an amplitude correction to u+Y and

u+Z at point P+ (apex of S+), and to u−Y and u−Z at point P− (apex of S−, see Figure 6.11).

Z
Y X

u(L-)

S-

S+

u(L+)

𝜆+
Y.uY(P+)

𝜆+
Z.uZ(P+)

𝜆-
Y.uY(P-)

𝜆-
Z.uZ(P-)

Figure 6.11: Kinematic unknowns corresponding to the boundary conditions on the bot-
tom part of the specimen

6.4.1 Sensitivity analysis

A sensitivity analysis is carried out and the uncertainty is evaluated with the covariance
matrix [C p]IDIC of the unknowns (Chapter 4). A 2% perturbation on each parameter is
applied to compute the sensitivity fields. The vector of kinematic and material parameters
reads {p}= {λ+

Y ,λ
+
Z ,λ

−
Y ,λ

−
Z ,τ0,c,d}. Figure 6.12(a) shows the kinematic Hessian for the

entire loading history. The most influential parameters are λ+
Y and λ−Y whereas the material

parameters exhibit the smallest influences. This result shows that accurate identification of
the boundary conditions is of paramount importance prior to any analysis of the material
parameters. Figure 6.12(b) shows the corresponding correlation matrix. The high level of
anti-correlation between the parameters (c,d) will impact their identifications.
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Figure 6.12: (a) Kinematic Hessian [M ]IDIC and (b) correlation matrix of the kinematic
Hessian [M ]IDIC, both for the entire loading history

6.4.2 Identification

The underlying boundary conditions are now determined with Integrated-DIC by iter-
atively solving Equation

�� ��6.17 . Figure 6.13(a) shows the change of the four kinematic
parameters and Figure 6.13(b) shows that of the functional χI . The converged solution is
reached in 10 iterations. Furthermore, three kinematic parameters, namely λ−Y , λ+

Z , and
λ−Z converged to a close solution with respect to their initial values. However, λ+

Y varies
by about 20 %, which means that a significant shear strain occurs on the subsurface of the
µ-specimen during the experiment.

Table 6.4 gathers the measured values and compares the dimensionless residuals be-
tween the initial 3D-DIC solution, with more kinematic freedom and the integrated DIC
solution, with only few degrees of freedom associated with boundary conditions. There-
fore, the small residual increase is regarded as a validation of the integrated approach.

Table 6.4: Identified values of the kinematic parameters

Name χ f λ+
Y λ+

Z λ−Y λ−Z
DIC 3.7 – – – –
IDIC 4.5 0.81 1.02 0.98 1.02

The monitored macroscopic loads are scaled to the specimen section and a combined
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Figure 6.13: (a) Parameter changes during the iterations of IDIC and (b) evolution of the
dimensionless residual

image and load identification scheme is used, namely IF-DIC. The global cost function
reads

χ2
I =

NΩ
1+NΩ

χ2
f +

1
1+NΩ

χ2
F

�� ��6.18

where the weight of the two functionals originates from a Bayesian foundation (Chapter 3)
to account in a fair manner for both sources of information. χ2

F is the load residual

χ2
F =

1
γ2

FNt
{Fm−Fc}t{Fm−Fc}

�� ��6.19

where Nt is the number of time step, {Fm} and {Fc} the vectors gathering the measured
and computed loads, respectively, and γF = 5.97× 10−6 N is the standard load uncer-
tainty [139]. The same choice of regularization methodology is made.As a first step, only
the material parameters are sought, while the boundary conditions are the previously as-
sessed ones. Figures 6.14(a) and 6.14(b) show the changes of the material parameters and
residuals. The global residual (χI) decreases by about 1 % and stabilizes after 4 iterations.
Furthermore, while the load residual (χF ) is significantly minimized the kinematic resid-
ual remains approximately constant. Figure 6.14(c) shows the experimental, initial, and
final computed load histories.

Table 6.5 gathers the constitutive parameters at convergence. Up to 50 % changes are
observed with respect to the initial guess. The load residual has been decreased by 25 %,
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Figure 6.14: (a) Material parameters and (b) residuals as functions of iteration number.
(c) Reaction forces on the µ-specimen boundaries

Table 6.5: Identified parameters of the crystal plasticity model

Name χI χ f χF τ0 (MPa) c (GPa) d (-)
Initial value 4.64 4.46 78 40 40 1600
IF-DIC 4.52 4.47 58 21 44 1140

which proves that it is sensitive to the sought parameters. However, its final value is still
large, which is an indication of a model error associated with the constitutive law. Last, no
changes in the kinematic parameters are obtained when a new identification is performed
with the assessed material parameters. Reflecting on the influence of the unknown bound-
ary conditions on the crystal plasticity parameter identification, one may consider a direct
tensile test of a micro-specimen, e.g., by employing the nano-force tensile stage proposed
by Bergers et al. [139] to provide relevant data to perform a precise identification with ac-
curate measurements of the load history at the scale of the µ-specimen. Such a change of
the methodology would, however, come at the expense of a more complex experimental
procedure.

6.5 Conclusion
The investigation and the characterization of the micromechanical behavior of a mi-
crobeam made of two grains have been achieved. On the experimental side, two new pro-
cedures have been proposed, i) the design of a triangular prismatic shape micro-specimen
with a known microstructure embedded in a macro-specimen and ii) the use of a global
DIC algorithm to measure the 3D surface displacement field. On the identification side,
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a novel strategy has been designed to overcome the encountered high noise level on the
height profile images. The latter has prevented direct approaches such as Finite Element
Method Updating to succeed because the initial 3D global DIC measurement is too noisy.
The choice was made to use an integrated approach to work directly on the images but the
scatter on the boundary conditions prevented a direct evaluation of the sensitivity fields.

Based on this limitation, a two-step identification strategy was adapted, i) estima-
tion of the boundary conditions and ii) determination of the constitutive parameters. The
boundary conditions were assumed to be piece-wise linear with time. First, the identi-
fication via integrated-DIC was performed only with the height profile images to assess
the underlying boundary conditions. Subsequently, the macroscopic loads were adapted
to the specimen section and both sources of information were combined to assess the
sought constitutive parameters, which describe the kinematic hardening relationship in
the crystal plasticity material model.

The investigated precipitate hardened 17-7PH grade stainless steel in TH1050 condi-
tion has now macroscopic and microscopic (assumed to be similar of an IF-steel) parame-
ters. All necessary information has now been gathered to proceed to the determination of
the fatigue properties of the studied material and the component. Chapter 7 investigates
the latter based on self-heating experiment [15] and a probabilistic multi-scale model [19].
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Chapter 7
Probabilistic fatigue design and validation

of welded bellows with IR thermography
measurements

Abstract

The study aims to predict and optimize the endurance limit of welded bellows made
of stainless steel and relies on the analysis and the modeling of the dissipated energy that
occurs in the high cycle fatigue regime. Experimental investigations are carried out on
ultra-thin (70 µm) uniaxial specimens and welded bellows and lead to the identification of
their fatigue properties. However, the thinness of the uniaxial specimens and the bellows
structural complexity generated by their manufacturing process induce uncommon behav-
iors. Last a modified Goodman diagram is constructed based on the evaluated material
and bellows fatigue properties and validates the bellows design.

7.1 Introduction

Stromeyer [13] and Moore et al. [14] were the first scientists to propose that the
change of dissipated power under cyclic loading as a function of the applied stress could
lead to the fatigue limit determination of metals. Their idea assumed that the microstruc-
ture changes such as dislocations, persistent slip bands, and microstructural evolutions
generate heat that can be macroscopically captured. Eight decades later, Luong et al. [15]
and La Rosa et al. [143] proposed to monitor this phenomenon while applying numerous
sets of repeated cycles with increasing amplitudes. One set corresponds to a number of
cycles prescribed at a defined frequency and amplitude. They successfully confronted this
methodology to standard fatigue investigations [144].

In order to model this phenomenon, a preliminary thermomechanical framework that
assumes uniformly distributed heat sources in the material is proposed [16]. Then, to
account for the material inhomogeneity, a multi-scale framework based on three sepa-
rate scales is introduced [145]. The latter has been experimentally validated on met-
als [146, 147, 148] and the methodology has also been applied on one industrial com-
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ponent [149] and composite materials [150]. Low Cycle Fatigue (LCF) regime has also
been investigated by looking at the energy dissipation near a crack tip [151]. However,
this framework does not address the scattered aspect of fatigue data and a uniaxial ther-
momechanical framework associated with a two-scale probabilistic model has been intro-
duced [152, 17] and extended to multiaxial High Cycle Fatigue (HCF) regime [19, 20].
The results show that a probabilistic scenario based on the activation of microplasticity
gives an accurate description of the observed fatigue behavior under proportional and
non-proportional loadings.

Regarding the fatigue properties of the studied component, U-shape bellows with an
elastoplastic behavior and linear kinematic hardening have been investigated and opti-
mized [153]. An extended model that addresses stress and strain concentrations has been
successfully designed [154]. Other bellows geometries have been investigated to predict
their fatigue life [155, 156].

In the light of these investigations both on material and structure, the present goal is to
investigate and optimize the fatigue life of bellows. First, the material is investigated with
ultra-thin (70 µm) uniaxial specimens and their properties are assessed based on a prob-
abilistic two-scale model [152] and the Weibull distribution that describes the variability
of the strength of materials [27, 28] to assess the material fatigue properties. Second,
the welded bellows are experimentally investigated with an ad hoc setup that prescribes
cyclic loading and an infra-red camera to monitor the temperature fields.

The chapter is organized as follows. Section 7.2 introduces the theoretical background
of the probabilistic two-scale model followed by experimental investigations on uniaxial
specimen in Section 7.3 and bellows in Section 7.4.

7.2 Thermomechanical background

The material is assumed to be composed of numerous Representative Volume Elements
(RVE). An RVE is composed of one spherical inclusion having a mesoscopic mechanical
behavior (•µ) embedded in an elastic matrix having a macroscopic mechanical behavior
(•). For one RVE without stress and material heterogeneities, the Helmotz state potential
Ψ is divided into two contributions accounting for the two domains of the RVE [157, 88],

Ψ =
1
V

∫
RV E

Ψ(M)dV = (1− fv)Ψm + fvΨi
�� ��7.1

where fv =V0/VRV E is the inclusion volume fraction, and Ψi and Ψm are respectively the
state potentials of the inclusion and the matrix. Assuming an elastoplastic behavior with
a linear isotropic elasticity and a linear kinematic hardening the local expression of the
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mesoscopic dissipation power reads

∆p = fv

[
(σ− ∂Ψi

∂εp
) : ε̇p− ∂Ψi

∂p
ṗ
]
= fv

[
σ− 2

3
Cµ : εp

]
: ε̇p �� ��7.2

where σ is the mesoscopic stress tensor, εp the mesoscopic plastic strain, Cµ the meso-
scopic kinematic hardening modulus, and p the cumulative mesoscopic plastic strain.
Equivalently, the thermoelastic dissipation generated in the matrix and the inclusions be-
comes

∆e = (1− fv)
∂2Ψm

∂E∂T
: Ė+ fv

∂2Ψi

∂εe∂T
: ε̇e =−T0αtr(Σ̇)

�� ��7.3

where E is the macroscopic strain tensor, Σ the macroscopic stress tensor, εe the meso-
scopic elastic strain, T0 the initial material temperature and α the coefficient of thermal
expansion. The dissipation per cycle reads

Dinc = fv

∫
cycle

∆p dt =
4

hρc
fvΣµ

y〈Σ0−Σµ
y〉+

�� ��7.4

where Σ0 = 1/2(Σmax−Σmin) is the stress amplitude in the inclusion and Σµ
y the meso-

scopic yield stress. The heat equation of the studied problem is [158, 159, 160]

θ̇+
θ

τeq
=

frD
ρc

�� ��7.5

where c is the specific heat, ρ the material mass density, τeq a time constant depending on
the structure and the experimental conditions [159], and fr the applied loading frequency.
A solution to the differential equation gives the temperature history [152]

θ(t) =
4 frτeq

hρc
fvΣµ

y〈Σ0−Σµ
y〉+
[

1− exp (− t
τeq

)

] �� ��7.6

where h =Cµ +3µ(1−β), with β = 2(4−5ν)/15(1−ν), µ the shear modulus [120] (see
Table 7.1 that gathers the material parameters). The value of the steady-state temperature
reads

∆T = η fvΣµ
y〈Σ0−Σµ

y〉+
�� ��7.7

where η = (4 frτeq)/(hρc) is a parameter that depends on both the material and the exper-
imental conditions.

Microplasticity can also be described as a continuous process that exists even below
the mesoscopic yield stress [17, 162]. A Poisson distribution is introduced to account for
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Table 7.1: Physical properties of the studied precipitate hardened stainless steel (17-7PH
grade) [23, 161]

Name ρ µ α c
Dimension kgm−3 GPa C−1 Jkg−1C−1

Value 7650 79 11.2×10−6 460

the mean number of active (i.e., yielding) inclusions in a domain Ω of volume V subjected
to an activation stress Σ0. The probability of finding k active sites in a volume V assuming
this Poisson process reads

Pk(Ω) =
N(Ω)k

k!
exp(−N(Ω)) where λ =

1
V0

(
Σ0

S0

)m �� ��7.8

where N(Ω) = λ×V is the mean number of active sites, with λ the process intensity that
relies on a power law and depends on the activation stress Σ0, m is the Weibull modulus,
and V0Sm

0 is a material parameter. The global dissipation D is obtained with a point Point
process that describes the mean number of activated sites in a domain Ω for an equivalent
stress amplitude ranging from Σ and (Σ+dΣ)

D =
∫ Σ0

0
Dinc(Σ)

dλ
dΣ

dΣ
�� ��7.9

where dλ/dΣ is the increase of the process intensity with respect to the applied stress
level. The integration of Equation

�� ��7.9 yields the total dissipation D

D =
4mV0

hρc(m+1)(m+2)
Σm+2

0
V0Sm

0
,

�� ��7.10

and the corresponding steady-state mean temperature is determined by integrating the
heat conduction equation

�� ��7.5

∆T =
ηV0m

(m+1)(m+2)
Σm+2

0
V0Sm

0

�� ��7.11

The fact that the study focuses on ultra-thin steel sheet prevents negative loads to be
prescribed. It results that the mean stress will vary as the stress amplitude increases. To
account for the influence of the mean stress, the intensity of the Poisson process is adapted
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with the scale parameter V0Sm
0 that depends on the mean stress

λ =
1

V0

(
Σ0

S0(Σm)

)m �� ��7.12

where S0(Σm) is a linear function [152]

S0(Σm) = S0 +αΣm
�� ��7.13

and α a material parameter accounting for the dependence of the dissipation with re-
spect to the loading level, and Σeq the equivalent activation stress. The fatigue tests
are performed for a given stress ratio between the maximum and the minimum stresses
(R = Σmin/Σmax). It gives a relationship between the mean stress and the equivalent acti-
vation stress

Σm =
1+R
1−R

Σeq
�� ��7.14

The mean steady-state temperature reads

∆T =
ηmV0

(m+1)(m+2)
Σm+2

eq

V0
[
S0 +α1+R

1−RΣeq
]m �� ��7.15

Based on this framework and the weakest link theory [28], the failure probability PF

of a domain Ω, of volume V is the probability of having at least one active site

PF = Pk≥1(Ω) = 1− exp
[
−Ve f f

V0

(
ΣF

S0

)] �� ��7.16

where Ve f f =V ×Hm is the effective volume [163], and Hm the stress Heterogeneity fac-
tor [164]. The endurance behavior of the material is characterized by its mean endurance
limit Σ̄∞

Σ̄∞ = S0

(
V0

Ve f f

)1/m

Γ
(

1+
1
m

) �� ��7.17

and its standard deviation ¯̄Σ∞ [17]

¯̄Σ2
∞ = S0

(
V0

Ve f f

)1/m
√

Γ
(

1+
2
m

)
−Γ2

(
1+

1
m

)
.

�� ��7.18

where Γ(x) =
∫ ∞

0 tx−1 exp(−t)dt is the Euler (gamma) function. These equations show
that the fatigue scatter ( ¯̄Σ∞/Σ̄∞) only depends on m. The larger the value of m the less
scattered the fatigue limits. Wöhler’s curve [144] can be determined based on these prob-



122 7 Self-heating experiments and bellows design optimization

abilistic results and the assumption of a constant dissipated energy [19]

N =
A

〈Σ0−Σ∞(PF)〉Σ∞(PF)

�� ��7.19

where N is the number of cycles to rupture, A a material parameter, and Σ∞(PF) the
endurance limit relative to a given failure probability PF ∈ [0;1]. Table 7.2 gathers the
assessed material parameters relative to the mechanical behavior evaluated in Chapters 5
and 6.

Table 7.2: Material parameters for the macroscopic and mesoscopic mechanical behav-
ior. Both assume an elastoplastic behavior with a linear isotropic elasticity and linear

kinematic hardening of 17-7 PH grade (Chapters 5, 6, and [24])

Parameter E (GPa) ν (—) σy (MPa) C (GPa) σµ
y (MPa) Cµ (GPa)

Value 212 0.33 1370 9.1 550 44

7.3 Uniaxial ultra-thin specimens

7.3.1 Experimental results

An experimental investigation that aims to evaluate the dissipated energy on the speci-
men surface is carried out on four uniaxial specimens for various stress amplitudes. The
procedure follows the so-called self-heating methodology [15, 143, 17]. Then, the four
specimens are cyclically loaded at their highest amplitudes without monitoring the tem-
perature. Three more samples are investigated only for the determination of their fatigue
limit. The specimens are manufactured in a 70-µm thick sheet of precipitate hardened
stainless steel (17-7 PH grade in TH1050 condition [23]). They are cyclically loaded
( fr = 10 Hz) on a servo-hydraulic tension/compression testing machine. Figure 7.1 shows
the specimen geometry and the experimental setup with the black painted specimen and
the infra-red camera. Two cooling systems are also associated (water and air) and two
black painted boxes protect the specimen against external radiations.

Figure 7.2(a) shows one measured temperature difference (i.e., the difference between
the initial temperature field and another one acquired at instant t). The increase of tem-
perature is relatively modest with a maximum difference equal to 1◦C. Furthermore, the
temperature field is not uniformly distributed over the specimen surface. A higher tem-
perature is monitored on the boundaries of the median specimen region. This result orig-
inates from the heterogeneous stress field (stress concentration Kt = 1.12) and additional
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Figure 7.1: (a) Specimen geometry (size in mm) and (b) experimental setup

conclusions will be drawn once the material parameters relative to the deterministic and
probabilistic models will be assessed. The temperature field is also composed of nu-
merous ripples generated by the out-of-plane motions (wrinkling) of the specimen. One
technological solution would have been to use an anti-wrinkling device composed of an
infra-red transparent material, which was not considered. We will thus concentrate on
areas where these phenomena do not occur.

The identification of the characteristic time relative to the heat equation gives τeq = 4 s.
The steady-state temperature ∆T (i.e., difference between the initial and the maximum
steady-state temperature) is also determined. Figure 7.2(b) shows the assessed steady-
state temperature gathered from the regions where the temperature increase is maximum.
The thinness of the specimen leads to a greater interaction with the environnement that
has increased the scatter of the results, although they are repeatable for the four tested
samples.

Figure 7.3 shows three post-mortem micrographies obtained via Scanning Electron
Microscopy (SEM) and enable for the observation of the fractographic features [165].
This analysis reveals that the fatigue crack initiates on one side, but not on the boundary
itself, and traverses the sample in a straight path. In the crack initiation region, the surface
fracture reveals numerous striations that are representative of brittle failures (consistent
with a high cycle fatigue regime failure). Then, the surface features dimpled areas due
to microvoid growth and coalescence and correspond to ductile tearing. Last, the speci-
men breaks by generating one important shear lip representative of a macroscopic ductile
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Figure 7.2: (a) Temperature field and (b) steady-state temperatures for the four studied
specimens and various stress amplitudes

fracture. The last two regimes induce a large amount of dissipated energy that is captured
during the last cycles of the experiment (see Figure 7.4).

direction of rupture

Fatigue initiation Ductile fracture Last cycle

Figure 7.3: Failure history of the uniaxial specimen with (a) striations representative of
a microscopic brittle fracture in HCF, (b) microscopic ductile fracture due to microvoid

growth, and (c) macroscopic ductile tearing
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Figure 7.4: Temperature fields at (a) the initiation of the microscopic ductile fracture
regime, (b) the ultimate monitored cycle before rupture, and (c) after rupture. For (b) and

(c) the temperature calibration range is exceeded

7.3.2 Parameter identification

The objective is to assess the material parameters relative to the deterministic and the two-
scale probabilistic models. Based on the experimental results and the numerical model
the identification procedure consists of four steps:

1. the parameters η fv and Σµ
y relative to the deterministic model

∆T = η fvΣµ
y〈Σ0−Σµ

y〉+
�� ��7.20

2. the set m, α, and S0 associated with the two-scale probabilistic model [152] where
Σm = Σeq =

1
2(Σmax−Σmin)×Kt

∆T =
ηm

(m+1)(m+2)
(Σm)

m+2

[S0 +αΣm]
m

�� ��7.21

3. the fatigue limit Σ∞ and A with the experimental Wöhler’s curve (see Figure 7.6)

N =
A

〈Σ0−Σ∞(PF)〉Σ∞(PF)

�� ��7.22

4. the parameter V0 where the stress heterogeneity factor Hm and Ve f f the effective
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volume are assessed with the numerical model

V0 =

[
1

S0 +αΣm

Σ̄∞ (V Hm)
1/m

Γ
(
1+ 1

m

) ]m �� ��7.23

Figure 7.5 shows in a log-log plot the experimental steady-state temperatures with the two
calibrated models. The RMS identification residuals are almost equal (7.97×10−2◦C and
7.82× 10−2◦C ) but the two models lead to two distinct trends when Σm → 0. The de-
terministic model appears to be valid only for an equivalent stress above the mesoscopic
yield stress whereas the two-scale probabilistic model is valid for any equivalent stress
below the macroscopic yield stress in the investigated range. It is therefore of importance
to represent these results in a log-log plot because a linear plot does not reveal this dif-
ference. The Weibull modulus m, V0, and α are assessed based on the experimentally
measured steady-state temperatures (Figure 7.5) and a least squares minimization.
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Figure 7.5: Experimentally measured steady-state temperature variations and the two
evaluated models drawn in a log-log plot

Table 7.3 gathers the material parameters relative to the deterministic model. The in-
clusion volume fraction fv =V0/Vre f is representative of this class of material and similar
results corroborate this value [17].

Figure 7.6 shows the experimentally determined Wöhler’s curve. The number of cy-
cles to failure and the corresponding failure stress are depicted. The model is shown for
three failure probabilities (PF = 95 %, PF = 50 %, and PF = 5 %) based on the assessed
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Table 7.3: Material parameters for the deterministic model

Name RMS (◦C) η fv Σµ
y (MPa)

Value 8.0×10−2 2.6×10−5 290
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Figure 7.6: Wöhler’s curve of ultra-thin sheets (70 µm) made of precipitate hardened
stainless (17-7 PH grade) in TH1050 condition [23]

material parameters of the probabilistic two-scale model. The median ultimate tensile
stress is evaluated as Σ50

∞ = 400 MPa. This result is in contradiction with the evaluated
fatigue limit based on the deterministic model and the self-heating experiment method-
ology. The gap is of the order of 100 MPa in the advantage of the standard (Wöhler)
approach. First, specimen preparation, loading, handling and alignment in the testing set-
up may cause modest variations in the experimental results. Second, the ultra-thin section
of the specimen (70 µm) decreases the stresses in the specimen edges [166] as observed
with a DIC analysis, which is not shown herein. This behavior prevents a crack from
initiating on the specimen boundaries and enhances the fatigue strength of the material.
This result is different from the one obtained with self-heating measurements.

Figure 7.7 shows the dissipation fields per cycle (D) for (a) the deterministic model
and (b) the two-scale probabilistic model for an applied equivalent stress amplitude equal
to Σeq = 350 MPa. While the deterministic model leads to a localized dissipation in the
regions where the stresses are greater than the mesoscopic yield stress, the probabilistic
model generates heat in a larger area as the assumption of a continuous microplastic
activity suggests. This result is in good agreement with the measured temperature fields.
It also validates the location of fatigue crack initiation but does not account for the real
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shape of the specimen (wrinkles) that affects the stress distribution through its section.
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Figure 7.7: Deterministic (a) and probabilistic (two-scale model) dissipation maps for a
maximum equivalent stress amplitude Σeq = 350 MPa

Last the parameter V0 is assessed and Table 7.4 gathers the material parameters relative
to the probabilistic two-scale model.

Table 7.4: Material parameters for the probabilistic model

Name RMS (◦C) m S0 (MPa) α V0 (mm3) Hm Ve f f (mm3)
Value 7.8×10−2 26 51 0.9 8.83 2.94×10−2 11.5

7.4 Fatigue analysis of bellows

7.4.1 Experiment

The experimental setup is composed of one infra-red camera, the specially designed fa-
tigue testing machine (see Appendix B), a digital camera, and two cooling systems (see
Figure 7.8). The water cooling system is composed of two parts (at the same tempera-
ture) positioned above and below the bellows. It allows for a temperature gradient close
to zero in the bellows region as obtained for the uniaxial experiment with the two cold
grips of the servohydraulic tension/compression testing machine. The air fan prevents the
air to stagnate close to the bellows. A black matt painted box isolates the bellows from
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environmental radiations. The bellows upper interface is bound to a load sensor (fixed on
the machine) while its bottom counterpart is bound to the piston rod. The rotation speed
of the electrical motor is synchronized to the acquisition rate of the infra-red camera to
capture the bellows in the same configuration. The alternating displacement amplitude is
applied at a 10 Hz frequency whereas the infra-red camera captures one image per sec-
ond. The mid-stroke, that is the parameter to optimize (Chapter 2), is adapted by two
means: a) a nut with two different threads at its ends is rotated while keeping fixed the
two threaded shafts (the threads being different, the distance between the two changes as
the nut is turned) and b) steel washers are added or removed on the three stainless steel
columns that surround the bellows.
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Figure 7.8: Experimental setup used to investigate and assess the fatigue properties of
welded bellows

The experimental procedure for one bellows relies on 4 steps: i) the bellows is black
matt painted, placed in the machine where the reference is defined such that the measured
load is equal to zero, ii) the cyclic displacement and the measurement start when the
temperature at rest is stable, iii) the loading ends when the temperature reaches a steady-
state value (i.e., the camera continues to monitor the temperature), iv) the acquisition
stops when the temperature reaches a steady-state value.

Two sets of bellows respectively composed of 11 and 13 folds allow various stress
amplitudes to be investigated. It is of importance to note that two identical bellows are
necessary to investigate positive and negative mid-strokes. The macroscopic and micro-
scopic plastic strains that occur for the first investigated direction (tension or compression)
prevent a direct plastic-strain free material investigation for its opposite counterpart. Fig-
ure 7.9(a) shows a measured temperature field at time t = 100 s for an 11-fold bellows and
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a mid-stroke positioned at zc = 0 mm. Figure 7.9(b) shows the temperature history ∆T (t)
processed from the thermal images. Solving the heat equation

�� ��7.5 gives the steady-state
temperature and the constant τeq (roughly equal to 70 s). The same procedure is applied
to each investigated mid-strokes and bellows.
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Figure 7.9: (a) Field of temperature difference at t = 100 s and (b) temperature difference
history processed from the thermal images

Two types of result are obtained, namely, the steady-state temperature and the num-
ber of cycles to failure. First, the steady-state temperatures as functions of the chosen
mid-stroke are gathered for the four investigated bellows accounting for the two configu-
rations (see Figure 7.10). A unique minimum of steady-state temperature is found in both
configurations, but 13-fold bellows dissipate less energy than the 11-fold bellows.

Second, three bellows have failed but only when the mid-stroke was positioned be-
yond zc = 5 mm. For all cases, the failure occurs at an inner weld. This result is in
good agreement with the numerical analysis that revealed that the highest stress level is
expected to be in inner welds. However, in this configuration (11 folds and mid-stroke
positioned at zc = 5 mm) the bellows is plastically deformed both microscopically and
macroscopically but continues to operate without failure for more than one million cy-
cles. This counter-intuitive result originates from its geometry that restrains the crack to
propagate from a component side to another by stress inversion. Figure 7.11 shows the
principal stresses near an inner weld and reveals that two principal stresses (ΣII and ΣIII)
have opposite signs and may prevent cracks to propagate.

Last, fractographic observations are carried out to determine the fracture mechanisms
for the entire failure history [165]. Figure 7.12 shows post-mortem fractographies SEM of
the welded bellows that failed after 3×106 cycles. First, the crack initiates in the region
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Figure 7.10: Experimental results for the variation of the steady-state temperature as a
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has been measured)
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Figure 7.11: Principal stress fields near an inner weld. The stresses have opposite signs
between the inner and the outer sides of the weld

denoted (a) where numerous striations are seen and are representative of a microscale
brittle fracture type. These fractographic features are typical of the fatigue failure initia-
tion for metals. Second, the failure mechanism changes at points (b) to a surface fracture
characterized by dimpled zones due to microscale void growth. These features are repre-
sentative of a microscale ductile fracture regime (see region (c) in Figure 7.12). Last, the
bellows fails under a macroscale ductile fracture regime revealed by the important size of
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the five shear lips on the fracture surface (see region (d) in Figure 7.12). It is worth noting
that the same failure history as encountered for the uniaxial specimen is found.

Figure 7.12: Secondary electron micrographies showing the complete failure history of
one bellows. Three regimes are seen, in the order of appearance: (a) microscopic brit-
tle fracture, (c) microscopic ductile fracture, and (d) macroscopic ductile fracture. (b)

indicates the change of regime from (a) to (c)

7.4.2 Identification

The probabilistic two-scale model is now extended to describe high-cycle fatigue proper-
ties of multiaxial and proportional loadings [19]. This extension consists in the choice of
an equivalent activation stress (Σa) that is related to the first and second invariants of the
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stress amplitude

Σa = Σeq
0

(
1−α′

(
Pmean−

1
3

)) �� ��7.24

where α′ is a material-dependent parameter, Σeq
0 = J2(Σ0) is the equivalent stress ampli-

tude, and J2 is the second stress invariant. The amplitude of the stress history reads

Σ0 = 1/2(Σ(tT.D.C.)−Σ(tB.D.C.))
�� ��7.25

where tT.D.C. and tB.D.C. are the top dead center (T.D.C.) and bottom dead center (B.D.C.)
strokes, Pmean = 〈1/3tr(Σ)〉 is the mean hydrostatic stress.
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Figure 7.13: Histories of the principal stresses and the von Mises equivalent stress (Σeq)
for two mid-strokes positioned at (a) zc =−8 mm and (b) zc = 3 mm

The parameter identification is performed on the element that undergoes the highest
alternating stress amplitude level. Figure 7.13 shows the principal stresses (ΣI,ΣII , and
ΣIII) and the equivalent Von Mises stress (Σeq) for this position and for (a) zc = −8 mm
and (b) zc = 3 mm. The result is that the mechanical response appears the most severe
for a mid-stroke positioned at zc = 3 mm that generates a triaxial tensile stress state.
Considering this new equivalent activation stress, the steady-state temperature reads

∆T =
ηm

(m+1)(m+2)
(Σeq

0 )m+2

(S0)m

(
1−α′

(
Pmean−

1
3

))m �� ��7.26

where S0 is the scale parameter assessed from the uniaxial experiment. Looking at the
components of the trace of the stress tensor, the hydrostatic stress depends on the mid-
stroke value (see Figure 7.14). The result is that, for a mid-stroke positioned at zc =

−8 mm, the amplitude and the maximum hydrostatic stress values are smaller than the
one obtained for zc = 3 mm. A compressive configuration appears to be less damaging
than its tensile counterpart.
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Figure 7.14: Components of the trace of the stress tensor and the hydrostatic stress (P0 =
1/3 tr(Σ)) as function of the loading history for (a) zc =−8 mm and (b) zc = 3 mm

The numerical results (the von Mises equivalent stress amplitude (Σeq
0 ) and the mean

value of the hydrostatic stress (Pmean) per cycle) are confronted to the experimentally
determined steady-state temperatures. The identification consists of minimizing the tem-
perature difference by finding the best set of the sought material parameters (m and α′).
Figure 7.15 shows the identified steady-state temperature map based on Equation

�� ��7.26

for the 11-fold bellows (i.e., the most severe configuration). The higher the stress-state
the higher the steady-state temperature. Yet, a model error remains for low stress lev-
els where the model cannot cope with steady-state temperatures greater than zero. This
error originates from the inadequacy between the numerical model and the bellows (see
the heterogeneities generated by the manufacturing process in Section 2.4). The bound-
ary between a steady-state temperature remaining null and its fast increase, however, is
in agreement with the uniaxial experiment result, i.e., Σeq

0 ≈ 400MPa. The evaluated
Weibull modulus (m) is significantly different (this result was expected since the compo-
nent has experienced numerous manufacturing processes that increased its heterogeneity).

Table 7.5 gathers the assessed parameters, the stress heterogeneity factor and the
effective volume obtained with the evaluated Weibull modulus and for the optimized mid-
stroke (zc = −4 mm). However, the volume V0 has not been assessed because there was
not enough bellows available.

Table 7.5: Assessed parameters for the probabilistic model

Name RMS (◦C) m S0 (MPa) α′

Value 2.1×10−1 3.5 51 0.51
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Figure 7.15: Steady-state temperature map assessed for the probabilistic multiaxial
model. Note the log-scale used on the steady-state temperature

The next section is devoted to analyzing the fatigue data based on Goodman represen-
tation [167] and to constructing a dedicated diagram for the fatigue design of the welded
bellows based on the coupling of the numerical and experimental results.

7.4.3 Goodman diagram

A Goodman diagram is an engineering tool that helps the HCF design of materials and
mechanical components [167]. The representation is also useful to study the influence
of the mean hydrostatic stress on the fatigue properties [168, 169, 170] or that of the
maximum hydrostatic stress [171, 172, 173]. When applied to a uniaxial case it shows
the mean stress (Σm) plotted in abscissa and the stress amplitude (Σ) on the ordinate. A
straight “lifeline" is drawn from the equivalent failure stress amplitude Σeq related to the
mean failure stress Σ f of Σm. Then for any given mean hydrostatic stress, the endurance
limit can be read directly as the ordinate of the lifeline at that value of Σm. Figure 7.16
shows the schematic construction of a Goodman diagram.

In the case of multiaxial stresses, the mean value of the hydrostatic stress (Pmean =

〈1/3tr(Σ)〉) is plotted in abscissa and the von Mises equivalent stress amplitude (Σeq
0 ) on

the ordinate. Its simplicity makes it a powerful tool for fatigue design. The Goodman
diagram, however, has two down sides [174]: i) uncommon damages generated by an
extreme loading or an inappropriate material quality are not addressed properly and ii) an
important part of the diagram is determined by extrapolation of experimental data. The
experimental results will be confronted to the Sines [168] and Crossland [171] fatigue
criteria. The difference is that, the former uses the mean hydrostatic stress whereas the
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Figure 7.16: Construction of Goodman diagram [167]

latter considers its maximum value

Sines: Σeq
0 ≤ ΣS

0 (1−3 bS Pmean)
�� ��7.27

Crosseland: Σeq
0 ≤ ΣC

0
1−3 bC Pmax

1−bC ΣC
0

�� ��7.28

where Pmean = 〈1/3tr(Σ)〉 is the mean value of the hydrostatic stress during a cycle and
Pmax =max(1/3tr(Σ)) its maximum value. The relationship between the equivalent stress
amplitude and the mean hydrostatic stress or its maximum value is obtained by fitting an
equation of a plane (λ1 + λ2Σeq

0 + λ3P = ∆T ) on the Goodman diagram (P = Pmean or
Pmax). Then, the Sines and Crosseland parameters are deduced from the parameter set
[λ1,λ2,λ3].

Figure 7.17 shows the Goodman diagram for the studied bellows. The larger the
mid-stroke the higher the risk of failure. The influence of the mean hydrostatic stress,
however, is close to zero, which in contradiction with several studies [174, 168, 169,
170]. Furthermore, when confronted to the Sines criterion, the results show that the failed
bellows have a more important mean hydrostatic stress value but a lower equivalent stress
amplitude than the result obtained for zc = 3 mm. Therefore, this representation is not
adequate for the investigated problem.

Figure 7.18 shows the Goodman diagram relative to the maximum hydrostatic stress.
The temperature variation is even lower and both Σeq

0 and Pmax influence the fatigue be-
havior. The positions of the failed bellows are in agreement with the Crosseland criterion,
i.e., located on the 106 cycles fatigue limit. Table 7.6 gathers the assessed parameters of
the Sines and Crosseland criteria.
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Figure 7.17: Goodman diagram assessed with the mean steady-state temperatures, the
Sines criterion, and the three failed bellows (triangles)
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Figure 7.18: Modified Goodman diagram assessed with the mean steady-state tempera-
tures, the Crosseland criterion, and the three failed bellows (triangles)

Table 7.6: Sines and Crosseland steady-state temperature residuals and corresponding
parameters

Name RMSSines bS ΣS
0 RMSCrosseland bC ΣC

0
dimension ◦C – MPa ◦C – MPa
Value 1.4×10−1 5.2×10−5 594 1.2×10−1 1.6×10−4 969
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7.4.4 Validation of the 12-fold bellows design

This section aims to validate the fatigue design of the 12-fold welded bellows based on
the Goodman plot of Section 7.4.3 and the initial probabilistic fatigue design introduced
in Chapter 2. For a 12-fold bellows subjected to an external pressure and for a Weibull
modulus evaluated to be m = 3.5 the optimal mid-stroke is equal to zc = 1.2 mm. This
result is different from the optimal value experimentally assessed for the two investigated
configurations but without external pressure (zc ≈ −4 mm). This difference originates
from the applied pressure and the assumptions (isotropic material, undamaged welds and
model geometry) that alter the numerical results.
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Figure 7.19: Modified Goodman diagram of bellows made 17-7 PH grade. The Crosse-
land criterion is applied to 12-fold bellows where an external pressure equal to ∆P = 1 bar

is prescribed

Figure 7.19 shows the maximum stress-states for two mid-strokes (zc =−1.2 mm and
zc = −3.6 mm) of the 12-fold bellows with the external pressure on the modified Good-
man diagram. The locations of the two optimal mid-strokes are far from the Crossland
lifeline. The probabilistic design with a Weibull modulus equal to m = 3.5 leads to an
optimal mid-stroke different from the deterministic one. Even though their location is
identical in the Crossland domain, both predictions are significantly lower than the ‘life-
line.’ Consequently, the design of the bellows is deemed validated.

7.5 Conclusion

The material and the bellows fatigue behaviors have been investigated and the bellows
fatigue life has been optimized. Several tools and procedures have been utilized to that
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end and the results give several insights into the fatigue properties of the studied material
and structure.

First, deterministic and probabilistic models were introduced to describe the fatigue
behavior of thin (70 µm) pre-deformed sheets made of precipitation hardened stainless
steel. The material is found to be particularly homogeneous as exhibited by a Weibull
modulus of m= 26. However, a difference between the ultimate fatigue strengths obtained
with the Wöhler approach and the self-heating experiment is observed. This difference
originates from the very thin sheet that decreases the stresses in the specimen boundaries
and presumably increases its fatigue strength.

Second, a hybrid experimental/numerical analysis of the bellows fatigue behavior was
performed. An optimal mid-stroke (zc ≈ −4 mm) is obtained thanks to an in-house de-
signed testing machine associated with an infra-red camera. Three bellows have been
broken in cyclic fatigue but only for a very large equivalent stress amplitude. Under these
severe configurations (zc ≥ 4 mm) and for the 11-fold bellows, the lifespan exceeds 106

cycles even if the component is plastically deformed. This result needs to be confirmed
with additional experiments. The identification of the probabilistic two-scale model re-
veals a heterogeneous response (m = 3.5) that originates from the two subsequent man-
ufacturing processes (stamping and welding). Unfortunately, too few components were
available that prevented the complete validation of the bellows probabilistic model.

Based on the results obtained in Chapter 2 the optimal mid-stroke for a 12-fold bel-
lows subjected to an external 1 bar pressure is equal to zc = 1.2 mm (i.e., different from
the deterministic design where zc = −3.6 mm). The modified Goodman diagram vali-
dates the fatigue design for a lifespan greater than 106 cycles. Last, it is important to note
that the component in its final use will experience a changing environment (various al-
ternating stresses and pressures) and will interact with the coolant. These aspects are not
addressed by the Goodman diagram and will negatively affect its fatigue strength [174].
Therefore, the optimized mid-stroke is formulated in terms of an optimized range equal
to zc ∈ [−4;1.2] mm and for a lifespan of 106 cycles in standard operating conditions.





Chapter 8
General conclusions and

recommendations

8.1 Conclusions

Many results of this work originate from scientific and engineering collaborations and
aim to contribute to meet sustainability standards as introduced in Chapter 1. Chapter 2
gives an initial probabilistic fatigue design based on the weakest link theory that assumes a
standard Weibull modulus for stainless steel. Yet, this result is by nature incomplete and a
rigorous identification of the mechanical and HCF fatigue properties were the designated
objectives. Therefore, the overall thesis relies on a strategy that starts with the identifi-
cation of the material macroscopic and microscopic mechanical properties and ends with
the optimization and the validation of the component probabilistic fatigue design.

Part A addresses the first issue and assesses the material macroscopic and microscopic
mechanical behaviors. To that end, Chapter 3 introduces a complete identification pro-
cedure from the acquisition of the experimental data to the identification of the sought
parameters. The technique embraces all data and their corresponding uncertainties into
one single frame via Integrated DIC. To combine these data a weighting that originates
from a Bayesian foundation was followed. Consequently each pixel and load cell play
the same role, when there respective noise level is accounted for. Using this new proce-
dure, a novel optimization strategy that minimizes the highest uncertainty of the sought
parameters is applied to the design of two cruciform geometries for two constitutive laws,
i.e., linear elasticity and linear elasticity with linear kinematic hardening.

Chapters 4 and 5 investigate the macroscopic material mechanical behavior. Two ex-
perimental devices are used, a servohydraulic tension/compression testing machine and
the biaxial testing machine (mini-ASTREE) and four constitutive laws with increasing
complexity are investigated. Some of the barriers that have initially prevented the in-
vestigation of ultra-thin sheets (50 µm) with IDIC had be solved with a dedicated anti-
wrinkling device. A two-step identification strategy is followed, first an initial sensitivity
analysis reveals the adequacy of the raw data with respect to the sought parameters and
second the identification problem is addressed with a regularization functional that pre-
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vents meaningless parameters to be determined when their influences on the observables
are too weak. The study also assesses the limits of the investigated models with four in-
dicators: i) gray level residual map, ii) displacement residual map, iii) load residual, and
iv) an overall quality indicator χ2 (see Section 4.5). The latter is based on the IDIC for-
mulation that compares all sensor information inside the Bayesian foundation and gives
a quantifiable result of the quality that can provide a constitutive model. These indicators
have proven that the investigated material behaves plastically and anisotropically but the
result obtained for the elastoplastic model with a linear kinematic hardening was satisfac-
tory enough for low strain amplitudes.

Chapters 6 investigates the micromechanical behavior of a micro-specimen made of
IF-steel. Manufacturing and experimental processes based on a triangular prism machined
via focused ion beam (FIB) have been designed to perform the identification of the sought
hardening parameters. The latter is carried out with integrated-DIC coupled with 3 di-
mensional finite element simulations where the microstructure has been fully determined
with EBSD. Not only are the material parameters being investigated but also the in-depth
boundary conditions. Finally, the identification of the sought hardening parameters is
achieved with the inclusion of measured reaction forces to the minimization functional.

Part B addresses the second issue via self-heating experiment methodology and a
probabilistic multi-scale model. The material and component fatigue properties are eval-
uated. To that end, a primary analysis of the fatigue behavior of ultra-thin sheets is per-
formed. The result is that the mean endurance limit assessed with deterministic model
is equal to 300 MPa. However, this result is lower than the mean endurance limit as-
sessed with the Wölher approach by about 100 MPa. This result originates from the
sheet thinness that decreases the stresses in the specimen edges and enhances its mean
endurance limit. Then, thanks to the fatigue testing machine designed in collaboration
with the engineering company AER the dissipated energy generated in HCF regime by
the bellows is estimated. This experimental result has first led to an experimental optimal
mid-stroke and second to the determination of the bellows fatigue properties thanks to a
dual experimental/numerical analysis. The identification of the probabilistic multi-scale
model parameters have revealed a heterogenous component (i.e., the Weibull modulus is
equal to m = 3.5) far appart from the highly homogeneous raw material (m = 26). This
result originates from the bellows manufacturing process that increases the variability in
the component especially in the welds. The construction of a modified Goodman diagram
based on the equivalent stress amplitude and the maximum value of the hydrostatic stress
has allowed for the validation of the bellows design.
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8.2 Recommendations

This research project has met numerous objectives but also many questions have been
raised. The recommandations and perspectives presented hereafter are formulated in
terms of ideas and concepts that propose new paths to tackle the investigated topics. First,
the material parameter identification and its potential future applications are addressed.
Second, several perspectives about the characterization of the fatigue properties of ultra-
thin steel sheets and components are discussed.

The concept of the most appropriate experiment based on full field measurement and
Integrated DIC has been investigated. A non-intrusive methodology that proposes a stan-
dard and general optimization formulation in solid mechanics has been shown. One result
is that the most heterogeneous geometry is not necessarily the most appropriate for a spe-
cific constitutive law (see the elastic and elastoplastic optimizations performed in Chap-
ter 3). Its application has led to the determination of four fillet radii for two different laws
but a more elaborate optimization procedure of the geometry or even more of the loading
path could be performed within the same goal of reducing the identification uncertainty.

The identification methodology relies on a very general formulation that provides a
powerful tool to treat raw data and investigate any constitutive models. The IDIC tech-
nique can address multidimensional space and time problems, and can be applied to any
mechanical experiment aiming to characterize a constitutive law describing a mechani-
cal behavior. Therefore, any problems dealing for example with stereo-correlation [175],
infra-red camera [176], scanning electron microscope [134, 133], X-ray diffraction in-
strument [177], or X-ray tomography [178, 179] can be addressed differently.

So far in this project, raw data are treated post experiment, yet a real time identification
of the material properties can be envisioned. Barriers such as computational cost and the
direct coupling of numerical and experimental results have started to be confronted [180].
Last, not only the material parameters are the quantities of interest but the boundary con-
ditions can (and should) also be part of the identification problem [181] and even drive
the experiment [182].

Regarding the experimental advances dedicated to the characterization of the quasi-
static material behavior, mini-ASTREE leads the way to smaller and less expensive ex-
periments, yet still rich enough in raw data. Its efficiency may serve research and in-
dustrial objectives by drastically lessening time and specimen costs. However, smaller is
usually thinner and a direct investigation of an ultra-thin specimen is unlikely to give re-
sults. Therefore, an anti-wrinkling device to prevent out-of-plane displacement has been
designed but the interaction between the plexiglas sheets and the specimen needs to be
properly characterized. An experiment that measures the displacement fields on both
sides (one corresponding to the specimen and one to the plexiglass sheet) would separate
both behaviors. Apart from macroscopic characterization, the microscopic experiment
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has suffered from two problems, i) the lack of load data at the microscopic scale and ii)
the low image definition. The use of a nano-tensile stage [139] would address the first
issue but doing 3 dimensional EBSD pole figures would provide a wealth of information
able to cope with the entire microscopic mechanical behavior.

The validation of the constitutive laws remains a key issue and the present study aims
to pave the way to design experiments not only to identify but to (in-)validate them. To
that end, dedicated indicators help diagnose model errors. The ultimate experiment would
start with a set of constitutive laws (so far all candidates) that are ranked in real time from
the worst to the most accurate model while the experiment is carried out. The results are
the material parameters for each constitutive laws and their corresponding model errors
(with respect to the noise level).

Two more issues that have not been addressed herein can enhance the future of IDIC.
First, the combination of a robust identification framework associated with a general op-
timization procedure and an enhanced experimental environment providing a fast, yet
precise and faithful characterization and validation device able to reach a wider scientific
audience [183] and industry. The start-up EikoSim [184, 185] created by two former Ph.D
students and the DICCIT (Digital Image Correlation Comparison Identification Tools)
project [186] aim to create a framework for industrial applications that move toward more
challenging and interesting geometries. Second, the visualisation of the results is a crucial
aspect that would make the analysis of the results easier. The optimal goal would show in
real time all results as residual maps and sought parameters.

The characterization of the fatigue properties have been carried out with temperature
measurements and a probabilisitic multiaxial model. First, an experiment using infra-red
transparent material to prevent the out-of-plane displacement could be envisioned to treat
ultra-thin specimens. Second, the key success was gained once the HCF thermal response
of the component was acquired. However, the model error originates from differences be-
tween the real component and its numerical counterparts. To quantify these errors whose
origin is due to the manufacturing process, recommendations are twofold. First perform
an experiment with a welded uniaxial specimen, and second assess an exact model of the
component with CT-scans. However the large amount of data generated could affect the
analysis by leading to new computational challenges.
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Appendix A
Operation manual of mini-Astrée and its

environnement

Co-authored by: Morgan Bertin, Xavier Pinelli, Remy Legroux, and François Hild Design
of an enhanced experimental environment for Mini-ASTREE, LMT-Cachan, 2015

Abstract

This manual introduces the rules, methods and tools related to the mini-ASTREE environ-
ment, the new biaxial machine available at LMT Cachan. It shows the methods related to
in-situ experimentation with the dedicated digital camera PCO-edge. It also gives instal-
lation and starting instructions both related to the experimental system and the software.
To ensure the safety both of the machine and the user these instructions must be followed.
If a problem is encountered contact the chief engineer. For other uses, i.e., in-situ exper-
iment with the Scanning Electron Microscope (SEM), in-situ experiment with the X-ray
diffraction set-up, and the load cell installation procedure, please refer to the dedicated
manual inside the moving storage cabinet.

A.1 Installation instructions

• Read this user-manual entirely and open the workbook.
• Check if all the tools and systems are inside the moving storage cabinet.
• Check if no cables are connected outside the moving storage cabinet.

List 1: First use instructions

All instructions as shown above must be followed. All the other issues, i.e., i) change
of the load cells, ii) perform a test in SEM, and iii) perform a test in the X-ray diffraction
device, are available in the aluminum Deben folder inside the moving storage cabinet.
Please collect back the latter inside the folder when you have finished.

163



164 A Operation manual of mini-Astrée and its environnement

A.1.1 Experimental tools

mini-ASTREE is a compact biaxial experimental device with a dedicated environment
composed of two parts. First, a moving storage cabinet dedicated to carry and drive the
system. The usual locations are at LMT Cachan, i) the microscopic investigation room
(level −1), and ii) the X-ray diffraction device in the experimental platform (level 0), and
at the d’Alembert Institute (IDA), iii) the Scanning Electron Microscopy (SEM) room.
Second, an experimental platform and dedicated tools have been designed. All the cam-
eras, sensors, and other materials are stored inside the moving storage cabinet. Figure A.1
shows the moving storage cabinet in its carrying configuration.
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3

6

11

14

Figure A.1: The mini-ASTREE moving storage cabinet with its parts

When finished, collect all the equipment inside the moving storage cabinet



A.1 Installation instructions 165

You can access the connections on the sides and behind the moving storage cabinet.
The inflated wheels allow to move the moving storage cabinet easily. However, secure the
wheels with the incorporated brakes before performing an experiment. All the devices are
controlled from one computer thanks to the USB 3.0 PCO-edge camera. The equipment,
cables and their positions inside the moving storage cabinet are gathered in List 2.

1. The displacement stage with the door dedicated to the SEM.
2. The command computer for both mini-ASTREE and the digital camera.
3. The electrical and electronic controller.
4. The control bay for all electrical engines.
5. The control bay for the SEM door displacement stage.
6. The electronic MTS output unit.
7. The power unit.
8. The mini-ASTREE folder with other guides.
9. The optics.

10. The camera PCO-edge folder.
11. The connection outlets.
12. The USB 3.0 connectors.
13. The emergency button.
14. The stage controller.

List 2: Systems and their corresponding locations

Figure A.2 shows the experimental platform. The latter is composed of one digital
camera (PCO-edge), two LED pattern projectors, a support frame that carries the optical
mounting system. Two pins on the platform can be seen in Figure A.2. They allow for
a reliable positioning of the machine over time and to set the platform reference. The
connections, one male and one female, are visible and must be secured with the screws
available on the connectors. The optical mounting system is an in-house designed device
to set quickly, precisely, and faithfully the position of the camera. Several electrical outlets
are available under the platform to power any electrical systems that one may use on it.

Connect the platform power cable to a mural electrical outlet.

Figure A.3(a) shows the connections between the moving storage cabinet and the
experimental platform. The cables are stored outside the moving storage cabinet and the
electronic outlets are located on the left side of the moving storage cabinet (when you are
in front of the latter).
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Figure A.2: Optical mounting system and the PCO-edge camera

Do not access or modify the connections inside the moving storage cabinet.

From the moving storage cabinet, connect the cable to the corresponding connector
“trigger in” under the platform. From the connector “trigger out” connect the cable to the
digital camera at connector “1”. Figure A.3 shows the connections on the digital camera:
1. the power outlet, 2. the trigger, and 3. the USB 3.0 connection.

Before turning on the digital camera, connect all the cables.

A.1.2 Material setting instructions

The machine is small, fragile, and expensive. Therefore, you must strictly follow the
written instructions and comply at any time with the two following rules.

1. Complete all the instructions before starting a test.

2. Do not remove the protective cover unless necessary.
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3

Figure A.3: Connections on the digital camera

The installation instructions are described and must be followed in the same order as
presented in List 3.

1. Place mini-ASTREE with its protective cover on the platform.

2. Connect mini-ASTREE.

3. Place the camera and the optical mounting system.

4. Connect the camera.

5. Turn on all the elements as follows:

(a) The moving storage cabinet power unit.
(b) The platform power unit.
(c) The command computer.
(d) The camera and LEDs.

List 3: mini-ASTREE installation instructions on the experimental platform

When all the elements have been switched on, a small blinking red light appears on the
panel of the electrical engine command bay. The following instruction aims to initialize
the connection between the command computer, the electrical and electronic control MTS
bay and the machine.
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1. Launch the Station Manager (Figure A.4).

2. Open project 1.

3. Choose the reference calibration file in Mini_Astree/calibration/.

List 4: Preliminary software instructions

The experimental machine and the command computer are now connected to each
other and synchronized. If a load cell appears to be outside of its operating range, a red
light will appear on the electrical engine control bay panel. Before going further, the
incriminated load cell has to be moved back inside its operating range. Figure A.5 shows
the MTS command window.

Figure A.4: Station Manager icon

Manual command

reset tab

Profile editor

New specimen

New procedure Output signal

Start procedure

Lock procedure

Write procedure

Reset interlock

Drive enable

Figure A.5: MTS window and specific features highlighted
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Figure A.6 shows the manual command window with four different tabs: i) A1 Ten-
sion, ii) A1 Translation, iii) A2 Tension, and iv) A2 Translation. First, A1 corresponds
to the loading direction of the load cells 1 and 3. Each number is visible on the machine
itself. Similarly A2 corresponds to the loading direction of the load cells 2 and 4. Sec-
ondly,“Tension” corresponds to the prescribed displacement (“Ext”) or load (“Force”).
The second tab option shows the functions A1 and A2 “translation”. It prescribes the
symmetry condition for each directions. For example, when the command “A1 transla-
tion” and “A2 translation” are equal to zero and the control mode is set to “Ext”, the
displacements are symmetric and centered about the machine reference. To move the in-
criminate load cell, apply a negative or a positive load with Ai “tension” in load control
“Force” and wait that the load cell reaches its operating range. Furthermore, apply the
symmetry condition by defining A1 and A2 “translation”+“Ext” equal to zero. To unlock
the system and to enable the motion of the load cells follow the instruction enumerated in
List 5.

(a) (b)

Figure A.6: (a) “Ext” or (b) “Force” control mode in the window “Manual command”

1. Click on reset interlock.

2. Click on drive enable (the blinking red light stops).

3. Click on manual command.

4. Enable manual command on the window.

5. Set A1 translation and A2 translation in Control Mode “Ext”.

6. Indicate in Manual Cmd the value 0.0 mm.

7. Set A1 tension and A2 tension in Control Mode “Ext”.

8. Indication in Manual Cmd the value 1.0 mm.

List 5: Enable the motion of the load cells

In that case and when the displacement of 1 mm is prescribed, the displacement be-
tween the two grips is increased by 1mm. However, each grip moved by about 0.5mm
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symmetrically because of the prescribed symmetry condition. Figure A.7 shows the panel
of the electrical engine control bay. The green lights are activated and indicate that the
engines are fully operational. When an engine is activated, an orange light in front of
“DRIVE” switches on to indicate which engine(s) is(are) activated. Finally, to set all the
measured loads equal to zero click on the “reset” tab and reset all the load measurements
(Figure A.8).

Figure A.7: View of the panel of the electrical engine control bay. The buttons enabled
and disabled are on the left, the green lights indicate the engines available, the orange
lights indicate which engines are activated and the red lights indicate which engines are

outside of their operating range

Figure A.8: Reset tab window and load measurement

You have now finished the initial settings. The next section presents the camera set-
ting. A specific section shows the load cell calibration procedure that has to be performed
with an LMT staff. Finally, the instructions regarding the specimen alignment and the
experiment itself will be presented. Before going further, please comply with the simple
rule:

Do not remove the mini-ASTREE protective cover unless it is necessary.
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Figure A.9: Configuration of the CamWare software to trigger the camera by the MTS
software

A.2 Digital camera instructions

The digital camera is controlled with the “CamWare” software. The camera can be used
alone or can be triggered using the MTS control software. In the latter configuration all
the connections must be set and the biaxial machine must be turned on. Before turning on
the software the camera must be turned on and plugged in using the USB 3.0 port. To set
the camera software ready to be triggered by MTS, refer to the instructions of List 6.

1. Click on the tab with the sketch of a camera.

2. On timing tab, select External Exp Start and the correct exposure.

3. On Recording tab, select Ring buffer and Auto.

4. On I/O signals, only enable exposure trigger.

5. On file, choose direct record to file, select single .tiff file.

List 6: CamWare and MTS synchronization software instructions

Figure A.9 shows several windows of the CamWare software to fill in before running
MTS. In MTS panel select the output signal tab (Figure A.5) and when CamWare is
ready, click on the green tab to create an impulse that triggers the camera. The procedure
to automatically trigger the digital camera during a test is introduced in Section A.4.3.



172 A Operation manual of mini-Astrée and its environnement

A.3 Load cell calibration procedure

A.3.1 Introduction

The load cells have been designed for the biaxial machine, and their measurements vary
with respect to the specimen thickness. Therefore, the load cells have to be calibrated
and Section A.3.2 shows the calibration procedure. However, if the thickness has already
been investigated, the calibration file already exists and is available at “Desktop\mini-
ASTREE\Calibration\”.

A.3.2 Calibration procedure

To create a new calibration, firstly, create a new file by copying and pasting on the folder
“Computer/OS(C)/MTS793/Calibration Files” the reference file 2KN.cfg. Close the soft-
ware at this point and open it again and chose the new calibration file.

Second, the new four calibration files for the corresponding configuration file have to
be created. On the folder “Computer/OS(C)/MTS793/Controllers/MTS FlexTest 60/Con-
fig” copy and past the four load cell files denoted CHi 2kN, i being the load cell number.
Then name the new file with the corresponding thickness.

On the main command page of MTS, click on the calibration tab, the password is
empty and then click on the station setup tab.
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Finally, open the tab Station Setup. On the left part all names of the input and output
signals are listed. In order to choose another load cell calibration, click on the Auxiliary
Inputs tab and choose the corresponding load cell. The latter is denoted on the software as
“MotorSpeedDrivei Force”, i being the number of the load cell. Then on the tab Sensor,
you can chose the new calibration file that you previously created. Once the calibration
file has been selected, modify the gain with your value and click on the tab “Assign” to
end the procedure. Repeat the latter for all load cells. The calibration procedure is now
ended.

A.4 Experimental instructions

A.4.1 Design of the specimen

The machine specifications are available in the appendices. Figure A.10 shows the ge-
ometrical features that can be used. Four holes with a diameter greater than 3 mm are
necessary to let pass the four pins through the specimen. The maximum specimen thick-
ness is 3 mm. However, prefer a thickness less than 1mm. Other indications are available
in the MICROTEST manual.

A.4.2 Specimen alignment procedure

First, the specimen has to be validated or adapted to fit the positioning pins inside the
machine. A reamer dedicated to adapt the size of the four holes is available (the process
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This drawing is our property; it can't be reproduced or communicated without our written agreement.
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Figure A.10: Exemple of a specimen geometry

of enlarging the hole is called reaming, https://en.wikipedia.org/wiki/Reamer).
Validate the hole dimensions and if necessary ream them until the valid dimension is
reached.

1. Ream the specimen with the dedicated reamer.

2. Remove the mini-ASTREE protective cover.

3. Unclench the clamps and put them down aside.

4. Check the hole sizes with the positioning pins.

List 7: Instructions to validate the size of the positioning holes

Figure A.11 shows the unclench instruction. Remove all the screws with the dedicated
Allen wrench. After the specimen positioning and when you start to tight the clamps, tight
successively and alternatively all the screws until the Allen wrench starts to band.

Figure A.12 shows the four clamps of the machine without the specimen and with the
specimen put on top of the four positioning pins. The instructions in List 7 indicate how
to fit the specimen within the machine. The routine called “auto-centre” seeks to align

https://en.wikipedia.org/wiki/Reamer
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(a) (b)

Figure A.11: To tighten and to release, stop when the Allen wrench starts to band

the specimen as much as possible, to set the displacements to zero and to keep the loads
equal to zero.

1. Select the tab “Manual Commands”.

2. Select “A1 Translation - Ext” and “A2 translation - Ext” equal to zero.

3. Select “A1 tension - Ext” and “A2 tension - Ext”.

4. Move successively with small steps the load cells until the specimen fits.

5. Select “A1 tension - Force” and “A2 tension - Force” equal to zero.

6. Tighten the clamps and check the symmetry of all grips.

7. Open the procedure “Mini_Astree\procedures\auto_centre” and “lock”.

8. Start the procedure and wait for 2 minutes.

List 8: Fitting and alignement specimen instructions

A.4.3 Running an experiment

The specimen is now positioned and the loading history can be designed and imple-
mented. The first step is to create a new project and a new specimen (Figure A.5). Then,
two different files must be created, a profile and a procedure. The profile corresponds
to the loading history and a procedure is the code that will run all the test. Some tem-
plates are already available and greatly facilitate the design of the latter. To find them
go to “desktop\Mini_Astree\procedure\”. Figure A.13 shows a procedure that has been
created. It shows all the information used during the test, i.e., the data collection, the
triggering of the digital camera and the prescribed loading history (the profile). The latter
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(a) (b)

Figure A.12: View of the machine without the upper clamps, (a) without and (b) with the
specimen before the alignement instructions

Figure A.13: How to create an MTS procedure?

is saved under the tab Profile Command 1. To create one profile select application and
profile editor. As before, some examples are available. Once the profile is created and
saved, on the procedure click on the tab in blue (Figure A.13) next to Profile Command
1 and select the file. Then, map all the channels with their counterparts in the profile file
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(Figure A.13).
To save the data two instructions have to be followed. First, the computer is not

dedicated to store all the acquired images. A specific feature is here to help you to save
easily all your images on one hard-drive. Connect the latter to the specific connection on
the top of the moving storage cabinet below the computer screens. Second, to save the
experimental data create a folder as “\desktop\Mini_ Astree\aaaammjj_ n_ last_name_
first_name\...”.

At this point, everything is ready to start the test, lock the procedure and click on the
white arrow to start. At the end write all the important data of your test in the monitoring
workbook stored inside the moving storage cabinet.

A.5 Digital Image Correlation
DIC is available at LMT Cachan with several tools. Lately, you can perform the compu-
tation on any computer with Matlab and Correli 3.0. In a computer of the computation
center, type in the terminal:

yourname@computer : ~ cd / u / d i c
yourname@computer : / u / d i c scp −r C o r r e l i / / u l / yourname / .
yourname@computer : ~ cd / u l / yourname / C o r r e l i
yourname@computer : ~ . / mat lab−p r e l o a d &

From this point you can learn to perform a Digital Image Correlation analysis with
the tutorials. Have fun!
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Appendix B
Draft of a testing machine for bellows and

temperature measurement in HCF

Co-designed by: Morgan Bertin and AER-Atmostat, 2015

Design objectives
The design of the fatigue testing machine originates from a partnership between LMT-
Cachan and AER-Atmostat. Four objectives were sought, i) prescribe a fixed alternating
displacement amplitude, ii) reach a 20-Hz loading frequency, iii) capture thermal images
with an infra-red camera, and iv) adapt the bellows mid-stroke. To that end the fatigue
machine relies on a crankshaft mechanism linked to the electrical engine using an elastic
coupling. The rotation speed of the electrical engine is controlled to correspond to the
infra-red camera acquisition rate. Two sensors (load and gauge length) are positioned to
monitor the experiment. In order to position the mid-stroke a mechanism based on an
unequal threaded stud and two nuts is associated with the piston rod. Last, the machine
frame is designed to be put on the mini-ASTREE experimental platform in order to avoid
external vibrations and to stabilize the latter.
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