
HAL Id: tel-01370553
https://theses.hal.science/tel-01370553v1

Submitted on 22 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of linear algebra operations in polyhedral
programs

Guillaume Iooss

To cite this version:
Guillaume Iooss. Detection of linear algebra operations in polyhedral programs. Other [cs.OH].
Université de Lyon; Colorado state university, 2016. English. �NNT : 2016LYSEN019�. �tel-01370553�

https://theses.hal.science/tel-01370553v1
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2016LYSEN019

THESE de DOCTORAT DE L’UNIVERSITE DE LYON

opérée par
l’Ecole Normale Supérieure de Lyon

Ecole Doctorale N°512

Ecole Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Présentée et soutenue publiquement le 01/07/2016, par :
Guillaume IOOSS

Detection of linear algebra operations

in polyhedral programs

Reconnaissance d'opérations d'algèbre linéaire dans un

programme polyédrique

Devant le jury composé de :

Clauss, Philippe Professeur Université de Strasbourg Rapporteur

Sankaranarayanan, Sriram Chercheur University of Colorado Boulder Rapporteur

Thomassé, Stephan Professeur LIP/ENS Lyon Examinateur

Mueller, Jennifer Professeur Colorado State University Examinateur

Chitsaz, Hamid Professeur Colorado State University Examinateur

Sanjay, Rajopadhye Professeur Colorado State University Directeur de thèse

Alias, Christophe Chargé de recherche LIP/ENS Lyon Co-encadrant

Darte, Alain Directeur de recherche LIP/ENS Lyon Directeur de thèse

DISSERTATION

DETECTION OF LINEAR ALGEBRA OPERATIONS IN POLYHEDRAL

PROGRAMS

Submitted by

Guillaume IOOSS

Department of Computer Science, Colorado State University

Laboratoire de l’Informatique du Parallélisme, École Normale Supérieure de Lyon

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2016

Doctoral Committee:

Advisors: Sanjay Rajopadhye, Christophe Alias, Alain Darte

Philippe Clauss

Sriram Sankaranarayanan

Stephan Thomassé

Jennifer Mueller

Hamid Chitsaz

i

ABSTRACT

DETECTION OF LINEAR ALGEBRA OPERATIONS

IN POLYHEDRAL PROGRAMS

Writing a code which uses an architecture at its full capability has become an increasingly

difficult problem over the last years. For some key operations, a dedicated accelerator

or a finely tuned implementation exists and delivers the best performance. Thus, when

compiling a code, identifying these operations and issuing calls to their high-performance

implementation is attractive. In this dissertation, we focus on the problem of detection of

these operations. We propose a framework which detects linear algebra subcomputations

within a polyhedral program. The main idea of this framework is to partition the

computation in order to isolate different subcomputations in a regular manner, then we

consider each portion of the computation and try to recognize it as a combination of

linear algebra operations.

We perform the partitioning of the computation by using a program transformation

called monoparametric tiling. This transformation partitions the computation into

blocks, whose shape is some homothetic scaling of a fixed-size partitioning. We show that

the tiled program remains polyhedral while allowing a limited amount of parametriza-

tion: a single size parameter. This is an improvement compared to the previous work

on tiling, that forced us to choose between these two properties.

Then, in order to recognize computations, we introduce a template recognition algo-

rithm. This template recognition algorithm is built on a state-of-the-art program equiv-

alence algorithm. We also propose several extensions in order to manage some semantic

properties.

Finally, we combine these two previous contributions into a framework which detects

linear algebra subcomputations. A part of this framework is a library of template, based

on the BLAS specification. We demonstrate our framework on several applications.

ii

RÉSUMÉ

RECONNAISSANCE D’OPÉRATIONS D’ALGÈBRE LINÉAIRE

DANS UN PROGRAMME POLYÉDRIQUE

Durant ces dernières années, Il est de plus en plus compliqué d’écrire du code qui utilise

une architecture au mieux de ses capacités. Certaines opérations clefs ont soit un

accélérateur dédié, ou admettent une implémentation finement optimisée qui délivre

les meilleures performances. Ainsi, il est intéressant d’identifier ces opérations pendant

la compilation d’un programme, et de faire appel à une implémentation optimisée.

Nous nous intéressons dans cette thèse au problème de détection de ces opérations.

Nous proposons un procédé qui détecte des sous-calculs correspondant à des opérations

d’algèbre linéaire à l’intérieur de programmes polyédriques. L’idée principale de ce

procédé est de découper le programme en sous-calculs isolés, et essayer de reconnâıtre

chaque sous-calculs comme une combinaison d’opérateurs d’algèbre linéaire.

Le découpage du calcul est effectué en utilisant une transformation de programme ap-

pelée tuilage monoparamétrique. Cette transformation partitionne le calcul en tuiles

dont la forme est un agrandissement paramétrique d’une tuile de taille constante. Nous

montrons que le programme tuilé reste polyédrique tout en permettant une paramétrisation

limitée des tailles de tuile. Les travaux précédents sur le tuilage nous forçaient à choisir

l’une de ces deux propriétés.

Ensuite, afin d’identifier les opérateurs, nous introduisons un algorithme de reconnais-

sance de template, qui est une extension d’un algorithme d’équivalence de programme.

Nous proposons plusieurs extensions afin de tenir compte des propriétés sémantiques

communément rencontrées en algèbre linéaire.

Enfin, nous combinons les deux contributions précédentes en un procédé qui détecte les

sous-calculs correspondant à des opérateurs d’algèbre linéaire. Une de ses composantes

est une librairie de template, inspirée de la spécification BLAS. Nous démontrons l’efficacité

de notre procédé sur plusieurs applications.

ACKNOWLEDGEMENTS

First of all, I would like to thanks the members of my committee, Philippe Clauss,

Sriram Sankaranarayanan, Hamid Chitsaz, Stéphan Thomassé and Jennifer Mueller, for

accepting to review my work and providing helpful feedback during the proposal defense

exam and the writing of the dissertation. I was particularly impressed by the depth of

comprehension their questions shown, even on topics outside of their usual domain. New

ideas and trails to investigate were almost literally bouncing from everywhere during the

defense. On a side note, I will also try to avoid any more typos on page 12 in the future.

I would also like to thank my two PhD advisors, Sanjay Rajopadhye and Christophe

Alias. Both of them complement each other nicely both scientifically and their work

methodologies. Also, managing a PhD, in cotutelle, with long distances involved is

very technical to manage, for example when trying to explain a complicated notion by

videoconference when only a notepad and a camera are available, or when trying to

appease the requirements of both administrations involved. I firmly believe that I could

have not done this work without the involvement of both of them, and that they both

did a wonderful job.

My PhD years were split between two locations: ENS Lyon in France and the Computer

Science department in the Colorado State University. I would like to thanks the members

of the team Compsys in Lyon: Alexandre, fellow coworker who is always eager to discuss

and try out new crazy ideas, Laure, Paul, Alain and Fabrice. I would also like to

thanks the members of the team Mélange in Fort Collins: Tomofumi, Yun, Waruna,

Nirmal, Revathy, Swetha, Daniel, Louis, Yohann, and many others for all the time spent

discussing ideas and sharing problems over our numerous meetings and coffee breaks.

A huge thanks to the members of both administrations for their infinite patience. It

was sometimes complicated to complete some administrative procedures from across the

ocean, or when some documents were due on one side before being available, because

of deadlines on the other side. Évelyne, our team administrative assistant at Lyon,

and the third cycle office at the ENS are living proof that the administration can be

nice, understanding and competent. I would like to thanks Daniel Hirschkoff and David

Coeurjolly for letting me supervise their lab session of their class, during my years in

Lyon, and provide me some valuable teaching experience.

I would like to thanks all the people who supported me personally and morally, Agathe,

Damien, Margeaux, Arthur, Jonathan, Elie, Alice, Etienne, Robin, Thomas, Nimé, Ape-

iron, Solenn, Elvire, Imryss, Elro, Camille, Rev, Xavier, maki, Etienne, Sto, Jonas,

Ophélia, Mikael, Mickael, Laetitia, Benjamin, Alexandre, Alexandre, Benoit, Elodie,

and many many others. A large thanks to the people who though about the concept of

iii

iv

the foyer, where you could get some fresh air and cold fruit juice during the summer,

whereas our office was facing south without air conditioning.

I would like to thanks my family for always being supportive, wherever I was. I un-

derstand that it is hard for a non-scientist to have an idea of what I am doing, but I

still hope to find a way to explain what I am doing in more details than just a vague

“mathematics applied on computers to make them work better”.

Finally, on the Colorado side, this work was partially supported by NSF grants CCF-

0917319 and CNS-1240991, AFOSR grant FA9550-13-1-0064, and DoE grant DE-SC0014495.

TABLE OF CONTENTS

Abstract i

Résumé ii

Acknowledgements iii

1 Introduction 1

1.1 Architecture evolution and high-performance libraries 1

1.2 Using high-performance libraries automatically 2

1.3 Contributions . 3

1.4 Outline of the dissertation . 4

2 Background 7

2.1 The polyhedral model . 7

2.2 Program representation . 10

2.3 Program transformation . 16

2.4 Program equivalence and template recognition 19

3 Monoparametric Partitioning 24

3.1 Hyperrectangular Monoparametric partitioning 26

3.1.1 Monoparametric partitioning of polyhedra 26

3.1.2 Monoparametric partitioning of affine functions 33

3.2 Hyperrectangular monoparametric partitioning program transformation . 39

3.2.1 Monoparametric partitioning program transformation 40

3.2.2 Derivation of the partitioning . 41

3.2.3 Experimental validation . 46

3.3 General monoparametric partitioning . 50

3.3.1 General monoparametric partitioning of polyhedra 51

3.3.2 General monoparametric partitioning of affine functions 54

3.3.3 General monoparametric partitioning program transformation . . . 57

3.4 Discussion . 58

4 From Partitioning to Tiling 63

v

Table of contents vi

4.1 Hierarchical programs . 64

4.2 Monoparametric tiling without reduction 67

4.2.1 Example - Smith Waterman . 67

4.2.2 Preprocessing - Preparing for the outlining 70

4.2.3 Tile group . 73

4.2.4 Monoparametric Tiling with outlining without reduction 76

4.3 Monoparametric tiling with reduction . 80

4.3.1 Monoparametric partitioning with reductions 80

4.3.2 Tile groups and reduction . 83

4.3.3 Monoparametric Tiling with reductions 89

4.4 Experimental Validation . 93

5 Template Recognition 99

5.1 Barthou’s equivalence algorithm . 99

5.2 Adapting the equivalence algorithm into a template algorithm 100

5.3 Examples . 104

5.4 Managing semantic properties . 113

5.5 Experimental validation . 117

5.6 Discussion . 119

6 Recognizing subcomputations 122

6.1 Template library . 122

6.2 Linear algebra operation recognition framework 129

6.3 Applications . 133

6.3.1 Dense Linear algebra applications 133

6.3.2 Applications outside of dense linear algebra 137

6.4 Discussion . 143

7 Related Work 145

7.1 Tiling transformation and code generation 145

7.2 Program equivalence and template recognition 148

7.2.1 Program equivalence . 148

7.2.2 Template recognition . 149

7.3 Dense linear algebra algorithm derivation 151

8 Conclusion 154

8.1 Conclusion . 154

8.2 Future directions . 155

8.2.1 Monoparametric tiling transformation 155

8.2.2 Template recognition algorithm . 157

Table of contents vii

8.2.3 Template recognition framework 158

A Résumé du travail de thèse 159

Chapter 1

Introduction

Writing a code which uses an architecture at its full capability has become an increas-

ingly difficult problem over the last years. For some key operations, a dedicated accel-

erator or a finely tuned implementation exists and delivers the best performance. Thus,

when compiling a program, identifying these operations and issuing calls to their high-

performance implementation is attractive. In this dissertation, we focus on the problem

of detecting these operations. We propose a framework which recognizes dense linear

algebra operations as the subcomputations of a program.

1.1 Architecture evolution and high-performance libraries

Moore’s law [55, 72] predicted that the number of transistors on chip has been doubling

every 18 months. At the same time, because of Dennard scaling [20], the dynamic

power consumed by a Central Processing Unit had remained constant, thereby directly

translating the density increase into a performance gain. Thus, the processing power of

a chip was doubling every year and a half, without having to change the architecture.

However, about ten years ago, Dennard scaling ended, because the leakage power became

a significant portion of the consumed power and could no longer be ignored. Thus, power

has become a critical issue in the design of an architecture and manufacturers reacted by

increasing the complexity of their circuits, such as introducing multicore architectures.

Architectures have become more and more hierarchical, especially their memories. For

example, the number of levels of cache have increased in CPU, due to the memory wall:

having small private memory which can prefetch data, thus can be accessed quickly and

efficiently in term of energy, and can communicate with higher level of memories which

are shared, is attractive. Also, because of the size of the main memory, several layers of

1

Chapter I. Introduction 2

memories, with increasing capacity is interesting. Another example of hierarchy is the

number of logical level present when implementing on a GPU (grid, thread block, warp

and thread).

Architectures have also become more and more heterogeneous. Accelerators tend to

migrate on chip, such as the Floating Point Unit in the past, because of the number of

transistors available on a CPU increases. We can probably expect the same to happen for

Graphics Process Unit (which is a Single Instruction Multiple Data (SIMD) architecture

and can manage efficiently coalesced memory accesses and vectorized code), and for

other accelerators. Because we will end up in the near future with more transistors

that can be powered at once (because of thermal issues) [21, 74], we will probably have

some parts of a chip which implements specific operations and can be powered-on when

needed [17, 51, 59].

Therefore, architectures have become and will become much more complex, making

their exploitation at their full capabilities extremely challenging. For several core com-

putations, their most efficient implementations are hand-written and can be found in

high-performance libraries (such as BLAS [46] or LAPACK [6] for the dense linear alge-

bra domain). These implementations were carefully tuned, either by hand, or through

dedicated generator, such that a functional equivalent code generated through a general-

purpose compiler does not reach the same level of performance [88].

Hence, we have a set of highly efficient operations which are hard-coded inside a dedi-

cated accelerator or admit an highly efficient implementation, and whose performance

is not reachable by a generated code. Now, let us see if we can improve automatically

the performance of a given code by using these implementation.

1.2 Using high-performance libraries automatically

In many applications, we can find portions of their code which correspond to an operation

from a high-performance library. In this case, this portion of code can be substituted

by a call to the highly-tuned implementation, instead of relying on a compiler. Several

experiments [3, 52] show that this substitution is beneficial for the performance of a

code. However, such opportunity might be missed, either because the operation was not

identified (for example, because it was not exposed in the computation), or the existence

of a corresponding tuned implementation was unknown.

The next step would be to make the compiler generate the library call automatically,

but we first need to detect the occurrences of such operation in a program. We focus on

this problem in this dissertation, in the context of polyhedral program, and for dense

Chapter I. Introduction 3

linear algebra operations. We emphasis the fact that even if the program is not a linear

algebra computation, it can still contain several linear algebra subcomputations.

To the best of our knowledge, this problem was only partially solved. For example,

Menon and Pingali [52] focus on detecting instances of matrix multiplication and matrix

vector multiplication in a Matlab code. Alias [3] can detect a larger class of operations,

but these operations are forced to have at most one occurrence of an input in its com-

putation (which preclude computations such as TRSM [46], i.e., C = L−1.B where L is

a lower triangular matrix). We overcome these limitations in our work.

In order to solve this problem, we have to face several underlying challenges. First, if

we want to replace parts of a computation by a function call, we should avoid overlaps

between recognized subcomputations. The alternative implies introducing some extra

work. Then, because we detect linear algebra operations, we have to manage the common

semantic properties found in linear algebra. In particular, many linear algebra operations

involve a summation over a parametric number of terms (e.g., Ci,j =
∑

k Ai,k ×Bk,j for

matrix multiplication). Hence the associativity and commutativity property of the sum

operation has to be considered during the recognition process. Finally, if the number of

linear algebra operations we aim to recognize is important, we have to be careful about

the scalability of our recognition process. This dissertation addresses all of these issues.

1.3 Contributions

Our strategy toward the recognition of dense linear algebra computation is the following.

In order to avoid overlappings between the recognized subcomputation, we partition the

computation into blocks beforehand, and we consider each block independently. We

focus on linear algebra operations which manipulate matrices and vectors, thus the data

used by such operations should be contained in rectangle regions of data (corresponding

to its input matrices or vectors). Thereby, if we partition the data of a program into

rectangular blocks and isolate the computation according to which block of data is used,

we should be able to recognize some of them as a composition of different linear algebra

operations. Our main contributions are the following.

Monoparametric tiling transformation In order to split the computation accord-

ing to the block of data touched, we use a tiling transformation. Usually, this tiling trans-

formation is a fixed-size tiling (the size of a tile is a constant, but cannot be changed

after compilation), or a parametric tiling (the size of a tile is a program parameter,

but the transformed program is not polyhedral, which means that we cannot apply

Chapter I. Introduction 4

any polyhedral analysis after this transformation). We introduce a novel kind of tiling

called monoparametric tiling, in which the tile sizes are multiples of a single parameter.

We prove that the monoparametric tiling transformation is polyhedral, while allowing

limited parametrization. This is an improvement compared to the previous works on

tiling, which forced us to choose between these two properties. We also present how

to obtain a structured program through this transformation, in which we have a fi-

nite non-parametric number of subprograms, and each subprogram correspond to the

computation of a tile.

Template recognition algorithm We extend a program equivalence algorithm in-

troduced by Barthou [8] into a template recognition algorithm. This means that instead

of comparing two programs in order to prove that the computations they perform are

identical, we compare a program with a template (i.e., a pattern of computation) in

order to prove that the program fits the pattern. We also show how to manage some

semantic properties commonly found in linear algebra computations.

Framework to recognize linear algebra subcomputations We use the two pre-

vious contributions to build a framework which detects linear algebra subcomputations.

More precisely, we first apply the monoparametric tiling transformation to obtain a list

of subprograms. Then, we consider each subprogram independently and try to recognize

it as a combination of linear algebra template (i.e., program pattern). These template

come from a template library, inspired by the BLAS specification.

1.4 Outline of the dissertation

This dissertation describes the different elements needed by our strategy, in order to

recognize dense linear algebra subcomputations. The details of our core contributions

are found from Chapter 3 to Chapter 6, and can be divided into two parts. The first part

consists of Chapter 3 and 4, describes the monoparametric tiling transformation, and

should be read in that order. The second part consists of Chapter 5 and 6, describes the

template recognition algorithm and its application to find linear algebra subcomputation,

and can be read independently. These two parts are fairly independent, thus can be read

independently.

Chapter 2 This chapter describes the preliminary notion we will need in the rest of the

document. We start by introducing the polyhedral model, then we describe the program

representation and some program transformations which will be used in the rest of this

Chapter I. Introduction 5

document. Then, we summarize a state-of-the-art program equivalence algorithm, which

will be adapted in Chapter 5.

The next two chapters describe how we divide the computation according to the data

touched. This is done through a new transformation called monoparametric tiling. This

transformation is introduced in two parts: the first part of this transformation (called

monoparametric partitioning and covered in Chapter 3) is just a reindexing transforma-

tion, which replaces the original indices of a program into those used for tiling. The

second part of this transformation (covered in Chapter 4) distributes the computation

into different subprograms.

Chapter 3 This chapter focuses on the first part of the monoparametric tiling trans-

formation. The first half of this chapter discusses about the case where the tile shape

is a multidimensional rectangle (i.e., hyperrectangular). We first show how to trans-

form polyhedra and affine functions, before showing how to transform a full polyhedral

program. In particular, we present an algorithm which derives the missing tile shapes

(called ratio for the hyperrectangular case) while still obtaining a polyhedral program.

Then, we generalize this work to any polyhedral tile shape.

Chapter 4 This chapter presents the monoparametric tiling transformation, which is

built on top of the monoparametric partitioning transformation. The monoparametric

tiling split the computation of a program into a finite number of separated subprograms

(called subsystems) which communicate through a main system. The main intuition is

that each subsystem might correspond to a combination of linear algebra operations. We

describe this transformation when the original program does not contain any reduction,

then we consider the general case.

The next two chapters focus on the problem of template recognition, i.e., recognizing

specific pattern of computation in a program.

Chapter 5 This chapter describes our template recognition algorithm, as an extension

of the program equivalence algorithm described in Chapter 2. We adapt it in order to

manage semantic properties commonly found in linear algebra.

Chapter 6 This chapter presents our framework to detect linear algebra subcom-

putations. We first describe the library of templates, based on BLAS [46], and the

various optimizations performed to this library. Then, we combine the previously in-

troduced pieces into a single framework: we consider each subsystem generated by the

Chapter I. Introduction 6

monoparametric tiling transformation independently, and apply recursively our template

recognition algorithm, using our template library. We evaluate our framework (in term

of compile time and efficiency) on linear algebra and bioinformatic applications.

Chapters 7 and 8 This dissertation ends with a review of the related work about

how the tiling transformation is managed in a compiler, program equivalence, template

recognition and the existing frameworks linked to dense linear algebra derivation, before

concluding our work.

Chapter 2

Background

2.1 The polyhedral model

Program analysis is the automatic study of programs in order to extract properties about

its behavior. Such properties might be used in various ways, such as gaining a better

understanding of the program (by checking its correctness, or its robustness, or some

other safety properties). They can also be used to modify a program, for example to

improve its performance, to reduce the resources spent during the execution or to adapt

its computation to another model of execution.

Two kinds of program analysis exist: static and dynamic. Static analysis study the

program during the compilation phase, thus before its execution. At this point, the

execution trace of a program (i.e., the list of states a program goes through during

its execution) cannot be determined precisely, because it might depend on the input

provided to the program right before executing it. However, because we are at compile

time, the benefit of an analysis can counterbalance its possibly large amount of time

taken to perform such analysis.

In the case of dynamic program analysis, the program is analyzed during its execution.

The analysis has an immediate access to the trace of execution, which provides them

with more information than at static time and allows them to react to certain events.

However, because the program is running at the same time, such analysis is limited in

term of resources (typically the additional time and memory taken), which limits its

complexity and might prevent certain aggressive modification of the program (such that

changing non-locally the order of execution of the instructions of a program). In the

rest of this document, we will consider static analysis.

7

Chapter II. Background 8

Another issue is that some problems of obtaining certain properties (such as deciding the

termination of a program, branch prediction or checking the equivalence between two of

them) are unfortunately undecidable. Thus, we have a choice between the precision of the

analysis (relying on approximation instead of exact informations) and the expressiveness

of the class of program considered. The former choice is made in polyhedral compilation,

for which the class of program is restricted to affine computation.

Affine computation An affine expression of a set of indices i1, i2, . . . is a expression

of the form (a1.i1 +a2.i2 + · · ·+ b), where the ai and b are scalar. An affine computation

is a sequence of operations which can be described by a combination of:

• Loop nests (for (i) ...) whose boundaries are affine expressions of the sur-

rounding loop indices

• Assignment statements (S: A[u(~i)] = f(B1[v1(~i)], ..., Bk[vk(~i)])), whose ar-

ray accesses functions (u(~i), v1(~i), . . . vk(~i)) are affine expressions of the surround-

ing loop indices.

• Sequence of statements (S1; S2)

• Branching conditions on the indices (if (u(~i ≤ v(~i)) then S1; else S2;), whose

condition is an affine constraints on the surrounding loop indices

In addition to the surrounding loop indices, the affine expressions can also use program

parameters, i.e. symbolic variables which are constant during the program execution,

and whose value is passed by the user. Typically, a program parameter can be the size

of an array.

For example, the following program corresponds to an affine computation (which is a

matrix multiplication between two square matrices), where N is a parameter:

for (int i=0; i<N; i++)

for (int j=0; j<N; j++)

for (int k=0; k<N; k++)

S(i,j,k): C[i,j] = C[i,j] + A[i,k] * B[k,j];

Indirect array accesses (such as A[B[i]]) or non-affine conditions (such as for (int

i=0; i<N; i++) { for (int j=0; j<sqrt(i); j++) S; }), are not allowed inside

affine computations.

Chapter II. Background 9

Polyhedral model In order to represent such computation, we rely on a mathemat-

ical model called the polyhedral model. Two mathematical objects are used to represent

aspects of such a computation: polyhedra (a set of integer points satisfying affine con-

straints) and affine functions. As an example of utilization of such objects, we use a

polyhedron (called the iteration domain) to represent the set of instances of a state-

ment inside a loop nest (a point of this set corresponds to one execution of the loop

body). An affine function (called dependence function) can be used to represent the

producer-consumer relationship between two statement instances.

This model allows us to summarize precisely the trace of execution of a program, whose

size is parametric and generally huge, through a finite non-parametric number of math-

ematical objects. It allows many analyses (called polyhedral analysis) to derive many

useful informations about the program (such as loops which can be parallelized, or a

better order of execution of the statements of a loop).

Polyhedra and affine function have several stability properties, which ensures that we

keep having union of polyhedra and affine functions while we manipulate them. Union

of polyhedra are stable by intersection, union, difference and preimage by an affine

function. The image of an union of polyhedra is still an union of polyhedra if the affine

function is unimodular (i.e., its determinant is 1 or −1). In general, taking the image

of a polyhedron (such as {i|0 ≤ i < N}) by a non-unimodular affine function (such as

(i 7→ 2i)) might not give an union of polyhedra (2Z ∩ {i|0 ≤ i < 2N}, because of the

holes introduced). Other mathematical objects (such as Presburger sets) can be used to

represent such results.

For example, if we consider the matrix multiplication program presented above, the

iteration domain of this loop is the polyhedron {i, j, k | 0 ≤ i < N ∧ 0 ≤ j < N ∧ 0 ≤
k < N}. We can represent the dependences between the different instances of S by the

following affine function: (i, j, k 7→ i, j, k− 1) (which means that the statement instance

S(i,j,k) depends on the statement instance S(i,j,k-1)). Notice that this dependence

exists only of the instances of S(i, j, k) for which k > 0.

Matricial representation Later in the document (cf Chapter 3), we will use the

matricial representation of affine functions and polyhedra. Mathematically, an affine

function can be represented by a matrix A and a vector ~c: f : (~i 7→ A~i + ~c). If the

program has parameters, we differentiate them from the indices, and use an additional

matrix: f : (~i 7→ A~i+B~p+ ~c).

Likewise, a polyhedron can be represented by two matrices (Q,R) and a vector (~q):

P = {~i | Q~i+R~p+~q ≥ ~0}. This representation is enough to express equalities and strict

Chapter II. Background 10

inequalities: equalities Qk~i+Rk~p+ qk = 0 can be represented as the conjunction of the

two inequalities Qk~i + Rk~p + qk ≥ 0 and Qk~i + Rk~p + qk ≤ 0, and strict inequalities

Qk~i+Rk~p+ qk > 0 can be replaced by Qk~i+Rk~p+ (qk − 1) ≥ 0

For example, given a triangle T = {i, j | i ≥ 0 ∧ j ≥ 0 ∧ N − i− j ≥ 0} where N is a

parameter, its matricial representation is:

T =

i, j |

1 0

0 1

−1 −1

 .

(
i

j

)
+

0

0

1

 .(N) +

0

0

0

2.2 Program representation

Several ways of representing an affine computation have been introduced in the literature.

In this subsection, we will present two of them (Affine Control Loop and System of

Affine Recurrence Equations). Then, we will present another program representation as

a middle ground, which will be used in the rest of this document. Finally, we will enrich

our program representation by introducing reductions.

Affine Control Loop One of the most commonly used polyhedral program represen-

tation is called Affine Control Loop (ACL). An informal definition was introduced in the

previous section, when introducing the notion of affine computation. A formal definition

is the following:

Definition 2.1. An ACL is a program P (~p, ()) of the form:

P (~p,~i) = for (k = lb(~p,~i); k < ub(~p,~i); k++){P (~p, (~i, k));}
|| P1(~p,~i); P2(~p,~i)

|| if (Cond(~p,~i)) then P1(~p,~i); else P2(~p,~i);

|| A[u(~p,~i)] := f(. . . , Bk[vk(~p,~i)], . . .)

where:

• ~p are the program parameters

• lb(~p,~i) and ub(~p,~i) are affine expressions of the program parameter and the sur-

rounding loop indices

• Cond(~p,~i) is an affine constraint on the program parameter and the surrounding

loop indices

• u(~p,~i) and the vk(~p,~i) are affine expressions

Chapter II. Background 11

• f is an arbitrary function

• A and the Bk are arrays

An example of ACL has been given in the previous subsection, corresponding to a matrix

multiplication C = A * B.

We notice that, in addition to describing a computation, a ACL provides an order

of execution of the statements (called schedule, and given by the for loops) and a

memory allocation (in this example, all the elements computed by S(i,j,k) are stored

in the same location C[i,j], independent of k and erasing the previous value when

computed). The original schedule and memory allocation of an ACL might interfere

with and complicate some polyhedral analysis. For example, when we list the set of

dependences of a program, we need to deal with dataflow dependences (the result of a

statement is used by another statement), output dependences (the result of a statement

is stored at the same location of the result of another statement) and anti-dependences

(the result of a statement must be used before it is overwritten). The last two types of

dependences are related to the memory allocation and the schedule which are provided,

and are not inherent to the computation itself.

System of Affine Recurrence Equations Another commonly used polyhedral pro-

gram representation is called System of Affine Recurrence Equation (SARE) [37, 63, 64].

The idea is to represent the computation itself by a list of affine equations, without any

information about the schedule or the memory allocation. Therefore, only the dataflow

dependences remain. The formal definition is the following:

Definition 2.2. A SARE is a list of equations of the form

Var[~i] =

. . .

~i ∈ Dk : Exprk

. . .

where the Dk are disjoint, and where:

• Var is a variable, is defined over a polyhedral domain D and is either an input, an

output or a local variable

• Expr is an expression, and can be either:

– A variable Var[f(~i)] where f is an affine function

– A constant Const,

Chapter II. Background 12

– An affine function of the indices f(~i)

– An operation Op(Expr1, ..., Exprk) of arity k (i.e., the operation has k

arguments)

Moreover, we assume that Expr depends strictly on all of its arguments (i.e., the value

of each of the argument impacts the value of Expr).

For example, the SARE corresponding to a matrix multiplication computation is the

following:

C[i,j] = Temp[i,j,N-1];

Temp[i,j,k] =

{
Temp[i,j,k-1] + A[i,k] * B[k,j]; if k>0

A[i,0] * B[0,j]; if k=0

where C is an output variable defined over {i, j | 0 ≤ i, j < N}, Temp is a local variable

defined over {i, j, k | 0 ≤ i, j, k < N} and A and B are input variables defined over

{i, j | 0 ≤ i, j < N}.

The Alpha language [27] is an extension of this representation which allows more kinds

of expression on the right-hand side of an equation.

Compared to an ACL, the SARE program representation does not have implicit schedule

or memory allocation. An ACL can be transformed into a SARE, using in particular

an analysis called Array Dataflow Analysis [22, 24]. The opposite is true only if the

SARE is computable [37, 70] (i.e. the SARE admits a schedule), and code generation

algorithms [5, 10, 61, 62, 84] can be used to do the translation.

Polyhedral Reduced Dependence Graph One of the first steps performed by a

polyhedral compiler (such as Pluto [15]) consists on building the Polyhedral Reduced

Dependence Graph (PRDG). Its definition is the following.

Definition 2.3. A PRDG is a graph such that:

• Each node correspond to a statement (resp. variable) of the program, and is

labeled by its iteration domain (resp. domain of the variable).

• Each edge between two nodes correspond to a dependence between two statements

S1 and S2 (resp. variables). The source of the edge S1 depends on the destination

of the edge S2. 1 It is labeled by a dependence polyhedron {~i1, ~i2| . . . } which

specifies which instances ~i1 of S1 depends on which instances ~i2 of S2.

1In the literature, we also find this definition where the edges are of the opposite direction. In that
case, the dependences are said to be dataflow. However, in the rest of this document, we will not consider
the dataflow direction, but the true dependence direction

Chapter II. Background 13

C

Temp

A B

{i, j|0 ≤ (i, j) < N}

{i, j, k|0 ≤ (i, j, k) < N}

{i, j|0 ≤ (i, j) < N} {i, j|0 ≤ (i, j) < N}

(i, j 7→ i, j,N − 1) for {i, j|0 ≤ (i, j) < N}

(i, j, k 7→ i, k) for {i, j, k|0 ≤ (i, j, k) < N} (i, j, k 7→ k, j) for {i, j, k|0 ≤ (i, j, k) < N}

(i, j, k 7→ i, j, k − 1) for

{i, j, k|0 ≤ (i, j) < N ∧ 0 < k < N}

Figure 2.1: Polyhedral Reduced Dependence Graph of a matrix multiplication

It is possible to replace the dependence polyhedron of each edges by the dependence

function (~i1 7→ ~i2) and a polyhedron specifying which instances of ~i1 is concerned.

This graph subsumes all the information about the dependences of a program, thus is

a useful intermediate representation before searching at a new schedule function [25]

or legal tiling hyperplanes [15]. For example, the PRDG of our matrix multiplication

example is described in Figure 2.1.

If we start from a ACL, we have to use the Array Dataflow Analysis [24] to figure out

which statements depend on which other statements, and the set of instances which

are involved in this dependence. This information is not exposed in a ACL if we have

multiple statements writing on the same memory location. In the case of a SARE, these

informations are already exposed.

Chosen Representation As a middle-ground between the previously introduced, the

program representation we will use in the rest of this document will be close to the notion

of PRDG:

Definition 2.4 (Program Representation). A polyhedral program can be abstracted as

a set of operations, each of which is described as follows:

~i ∈ D : S[~i] = Expr(S1[u1(~i)], . . . , Sd[ud(~i)])

where ~i is the iteration vector for the statement S, ~D is a subset of the domain for

statement S, the expression Expr depends strictly on its d arguments and each argument

is a result of a statement, and for k = 0 . . . d, uk is a dependence function. For every

variable S, the associated domain D must be disjoint.

The expression Expr can be either:

Chapter II. Background 14

C

Temp

A B

••

Figure 2.2: Graphical representation of our program representation for the matrix
multiplication. We have in total 3 hyperedges, corresponding to the 3 equations needed
to describe the computation

• A variable: S[u(~i)]

• An operation: op(Expr1, . . . , Exprk) where k is the arity of the operation. When

the arity is 0, this expression is a constant.

• An affine expression of the indices f(~i)

This representation can be seen as a PRDG in which the dependence edges originating

from the same operation are regrouped into hyperedges. Moreover, these hyperedges

are labeled by the operation performed Expr. The program inputs are represented as

special “dummy statements” which are sink nodes in the PRDG. A similar program

representation was used by Saouter [70].

For example, the matrix multiplication computation can be expressed as:

(∀i, j, 0 ≤ i, j < N) C[i,j] = Temp[i,j,N-1];

(∀i, j, k, 0 ≤ i, j, k < N) Temp[i,j,k] = Temp[i,j,k-1] + A[i,k] * B[k,j];

(∀i, j, k, 0 = k ≤ i, j < N) Temp[i,j,k] = A[i,0] * B[0,j];

The corresponding graphical representation is shown in Figure 2.2.

As an abuse of notation and to save space, we will often write (∀0 ≤ i, j < N) instead

of (∀i, j such that 0 ≤ i < N ∧ 0 ≤ j < N) in the rest of this document.

Reductions Reductions and scans (also called prefix computation) are very powerful

programming and computational abstractions. They can be specified as the application

of associative (and often commutative) operators to (collections of) values, producing

(collections of) values. Redon and Feautrier showed [65, 66, 71, 90] that for ACLs, after

obtaining flow dependences as piece-wise affine functions, reductions and scans also also

be detected. We extend our program representation to include reductions [47].

Chapter II. Background 15

Formally, a reduction is the successive application of an associative and commutative

binary operator over a set of expressions. Intuitively, a reduction is a (potentially para-

metric) accumulation, where the operator allows us to perform this accumulation in

any order we want. In many other formalisms, only the associativity property of the

reduction operator is required, however, in our case, we ask for both associativity and

commutativity. This last property is needed in order to reorder the way the accumula-

tion is performed. It is also needed in the case of accumulation over multi-dimensional

expressions, for which the accumulation order is not automatically defined (contrary to

the unidimensional case).

For example, a matrix multiplication can be written by using a reduction, instead of

accumulating the values of A[i, k] ∗B[k, j] in a predefined order:

C[i, j] =
k<N∑
k=0

A[i, k] ∗B[k, j];

In general, the value of a reduction at the point ~i is
(∑
π(~k)=~i

SExpr[~k]
)

, where SExpr

is an expression, and π is typically a many-to-one affine function, called the projection

function. In the example above, we sum over the index k, thus π : (i, j, k 7→ i, j), and the

result of the reduction is a two-dimensional variable whose indices (i, j) ∈ Image(π).

All the reduction considered in this document will have a projection function which

admits an integer right-inverse [48] (i.e., there exists a function π′ such that π ◦π′ = Id).

For example, if we consider (i, k 7→ i), a possible integer right-inverse is (i 7→ i, 0). This

property is needed so that some analyses stay within the polyhedral model. In our

previous example, the image of any polyhedron through the affine function (i, k 7→ i) is

still a polyhedron. However, if we have a projection function (i, j 7→ 2i), this function

does not admit an integer right-inverse, and the domain on which the reduction is defined

is {i|i is even }, which is not a polyhedron.

In the context of our program representation, we represent reduction as a special equa-

tion:

~i ∈ Dr : S[~i] =
⊕
~j ∈ D
~i = π(~j)

Expr(S1[f1(~j)], . . . , Sd[fd(~j)])

where ⊕ is an associative and communicative binary operator, π is a projection function,

Dr is the domain of the reduction statement and D is the domain of the reduction body.

Chapter II. Background 16

Moreover, we allow, as a convenience, equations of the following form, which uses re-

ductions are subexpressions:

~i ∈ D : S[~i] = Expr

. . . Sk[uk(~i)], . . . ,
⊕
~j ∈ D
~i = π(~j)

ExprRed
(
. . . , S′k[fk(~j)], . . .

)
, . . .

We can force reductions to be the top node of the right side of an equation by introducing

a temporary variable for every internal reductions. Thus, allowing such equation do not

modify the expressiveness of our program representation.

2.3 Program transformation

In this section, we introduce two program transformations: the Change of Basis trans-

formation and the tiling transformation. Both transformation restructure the domains

of the variables of the program, while preserving its semantics.

Change of Basis transformation The Change of Basis (CoB) transformation changes

the domain of a variable using a unimodular function (i.e., an affine function whose de-

terminant is 1 or −1). This function is a one-to-one mapping from the old iteration

space to the new one (the unimodularity of this function being here to ensure that the

new iteration space is still a polyhedron). The transformation adjusts the dependence

functions of the rest of the program to ensure that exactly the same data are used: the

operations remain strictly the same, but the indexing of one domain is changed.

For example, let us consider the following equation, which is a part of a bigger program:

(∀(i, t), 0 < i < N∧1 ≤ t < T) temp[i, t] = temp[i−1, t−1]+temp[i, t−1]+temp[i+1, t−1];

We want to apply a change of basis transformation on the variable temp, using the

function (i, t 7→ i, t+ i), which is unimodular. Figure 2.3 shows the effect of this trans-

formation on the domain of temp and its dependences. The equation becomes, after

transformation:

(∀(i′, t′), t′ < i′ < N + t′ ∧ 1 ≤ t′ < T)

temp[i′, t′] = temp[i′ − 2, t′ − 1] + temp[i′ − 1, t′ − 1] + temp[i′, t′ − 1];

Chapter II. Background 17

i

t

•
• • •

i′ = i+ t

t′ = t

•
• • •

Figure 2.3: Change of Basis transformation, using the unimodular function (i, t 7→
t+ i, t) applied on a variable with a Jacobi-like pattern of dependences

(∀i = j = 0) A[i, j] = 1

(∀j = 0 < i) A[i, j] = A[i− 1, j]

(∀i = 0 < j) A[i, j] = A[i, j − 1]

(∀0 < i, j) A[i, j] = A[i− 1, j] +A[i, j − 1]

i

j

Figure 2.4: Example of tiling transformation, with square 3× 3 tiles

The transformation used in this example is an instance of time skewing [85, 86] transfor-

mation, which is a CoB in which the time dimension (t) of a stencil computation (regular

computation with only uniform dependences) is added to other space dimensions (i). It

is often used to make all the dependences of a program go into the same directions (in

the example toward the bottom and the left), which is a crucial property required by

the tiling transformation.

Tiling transformation Tiling [35, 87] is an important program transformation which

groups the instances of a loop into sets (called tiles), such that each tile is atomic.

Figure 2.4 shows an example of tiling for a stencil computation, with 3× 3 square tiles.

Because each tile is executed atomically, we cannot have cyclic dependences between

two tiles (i.e., some operations from a tile depending on data produced by another tile,

and vice versa). In our example in Figure 2.4, because all dependences between tiles

are going toward the left or the bottom, there is no cyclic dependences between tiles.

Therefore, this tiling transformation is legal. A CoB transformation can be used as a

preprocessing step, in order to respect the legality condition of a tiling transformation.

We can see the tiling transformation as a two-part transformation: a first part is a

reindexation of the domain tiled by introducing new dimensions. The second part is a

Chapter II. Background 18

modification of the schedule by using these newly introduced dimensions to ensure the

atomicity of the tiles. We call the first part partitioning. It introduces new dimensions

to identify a tile and a point inside a tile, doubling the number of dimensions if our tiles

partition along all dimensions. This part of the transformation is always legal, and does

not change the schedule (i.e., the same operations are executed at the same moment,

except that the indices are not the same, like a change of basis).

The tiles of a tiling can have different shapes, and can be either of constant size (for

example, a rectangle tile of sizes 16×32), or of parametric size (for example, a rectangular

tile of sizes b1 × b2). The wildest used tile shape is a hyper-parallelepiped, defined

through their hyperplanes. However other shapes have been studied, such as trapezoid

(with redundant computation [45]) or hexagonal [28, 67]. This transformation is useful

to improve the locality of a program and to create coarse-grain parallelism opportunities.

If we have constant tile sizes, this transformation stays in the polyhedral model [35]. For

example, in the hyper-rectangular case, we can substitute each of the original indices i

by affine expressions of the form t1.ib + il, where:

• t1 is a constant and is a tile size

• ib is a blocked index, and corresponds to the tile number along the dimension of i

• il is a local index, and corresponds to local position inside the tile. Also, because

of the shape of the tile, we have 0 ≤ il < t1

Therefore, all domains and functions remain affine after the tiling transformation. In

the example described in Figure 2.4, we have i = 3.ib+ il and j = 3.jb+ jl, where (ib, jb)

is the tile number and (il, jl) is the local position inside the tile.

In the case of parametric tile size, this transformation is no longer polyhedral. Indeed,

if we consider the hyper-rectangular case with tiles of size b1, . . . , bd, we have to substitute

the original indices by a quadratic expression of the form bk.ib + il where bk is a

parameter of the program. Thus, the resulting domains and functions are quadratic in

general, and no longer polyhedral.

A variant of the tiling transformation, called data tiling, was introduced by Kodukula et

al. [42]. Where the classical tiling transformation tiles the iteration space of a program,

the data tiling transformation tiles the data space, and distribute the operations among

data shackle, according to which block of data is touched.

Chapter II. Background 19

2.4 Program equivalence and template recognition

Notion of equivalence There exist several notions of program equivalence. One

of them is called Herbrand equivalence [3]. Assuming that we have a correspondence

between the inputs and outputs of two programs, they are equivalent if and only if

the computations performed by both programs are identical. This equivalence is purely

structural: the same intermediate values are computed in both programs and will be

used by the same operations to compute the same output, even if these operations might

be organized differently. The problem of deciding the Herbrand equivalence between two

SAREs is undecidable [8].

However, Herbrand equivalence does not consider any semantic properties. For example,

if we compare two programs, one computing (a + b) + c and the other one a + (b + c),

they will not be Herbrand-equivalent, because the operations performed are different.

Likewise, a program computing (a+b) will not be equivalent to a program computing (b+

a). We will consider the Herbrand equivalence modulo associativity and commutativity

properties later in this document.

Barthou’s equivalence semi-algorithm Barthou et al [8] introduced an equivalence

semi-algorithm for SARE, checking Herbrand equivalence. Because we will use their

algorithm as a foundation of one of our algorithm in Chapter 5, we explain it in the

following.

Let us consider two systems of affine recurrence equations without reductions. We

want to decide equivalence without considering any semantic property (i.e., Herbrand

equivalence). A semi-algorithm was proposed by Barthou et al. [8] and is based on the

notion of equivalence automaton. First of all, let us introduce the notion of Memory

State Automaton (MSA, also called Presburger automaton).

Definition 2.5. A Memory State Automaton (MSA) is a finite automaton where:

• Every state p is associated with an integer vector ~vp of some dimension np,

• p0 is the initial state,

• Every transition from p to q is associated with a firing relation Fp,q ∈ Znp × Znq ,

• A transition from (p, ~vp) to (q, ~vq) ((p, ~vp)→ (q, ~vq)) can only happen if (~vp, ~vq) ∈
Fp,q

We say that a state p is accessible iff it exists a finite path from the initial state p0 to p

for some initial vector. The accessibility relation of a state p is the set of pairs (~v0, ~vp),

Chapter II. Background 20

such that it exists a finite path which starts from p0 with the value of its vector being

~v0, and which ends up on the state p while the value of the associated vector is ~vp.

Mathematically, we can express this relation by using a transitive closure:

Rp = {(~v0, ~vp) | (p0, ~v0)→∗ (p, ~vp)}

Equivalence automaton Barthou’s algorithm is based on the notion of equivalence

automaton. Let us consider an equivalence problem, i.e. two SAREs and a mapping

between their inputs which indicate their corresponding inputs. We use the convention

that expressions, operators and indices of the second SARE are “primed” (e.g., X ′, E′1).

The equivalence automaton is an MSA defined (and built) as follows:

• States: A state is labeled by an equality e(~i) = e′(~i′) and is associated with the

vector (~i, ~i′), where e and e′ are expressions.

• Initial state: The initial state of the automaton is O[~i0] = O′[~i′0], where O and

O′ are the outputs currently compared.

• Final state: There are two kinds of final states: the success states and the failure

states. The failure states are:

– f(. . .) = f ′(. . .) where f and f ′ are different operators,

– Ik[~i] = f ′(. . .) or f(. . .) = I ′k[
~i′] where f and f ′ are operators,

– Ik[~i] = I ′k′ [
~i′] where Ik and I ′k′ are non-corresponding inputs.

On the other side, the accept states are:

– f() = f ′() (i.e., two identical constants)

– Ik = I ′k′ where Ik and I ′k′ are corresponding inputs.

• Transitions: We have 3 types of transitions (rules) in the equivalence MSA:

Decompose, Compute and Generalize, as described in Fig 2.5. The Decompose

rule deals with operators and simply says that two expressions using the same

operator are Herbrand-equivalent iff their arguments are Herbrand-equivalent. The

Compute rule allows us to “unroll” a definition and creates a state per equations

defining the unrolled variable. Note that given a value (~i, ~i′) associated with the

source state, because the branch conditions are disjoint, there is only one path

which can be taken afterward.

These two rules allow us to unroll both computations while comparing the occur-

ring operations, starting from the outputs of both programs. However, because

of recursions, simply unrolling both programs leads to a trace of parametric size,

Chapter II. Background 21

f(E1[~i], . . . , En[~i]) = f(E′1[
~i′], . . . , E′n[~i′])

E1[~i] = E′1[
~i′] En[~i] = E′n[~i′]. . .

Decompose rule

X[~i] = . . .

Expr1[~i] = . . . Exprk[~i] = . . .

~i ∈ ∆1
~i ∈ ∆k

. . .

where

∀~i ∈ ∆1, X[~i] = Expr1[~i]
. . . : . . .

∀~i ∈ ∆k, X[~i] = Exprk[~i]

Compute rule

. . . X[u(~i)] · · · = . . .

. . . X[~j] · · · = . . .

~j = u(~i)

where ~j is a fresh variable.

Generalize rule

Figure 2.5: Construction rules for the equivalence automaton. The Decompose rule
allows us to simplify an equality if the same operator is present on both side. The
Compute rule unrolls a definition and create a state per case. The Generalization rule
remove dependence functions and allow us to create cycles in the automaton.

which is not manageable in practice. Therefore, the Generalize rule is used to deal

with such parametric recursions. It replaces an affine expression by a fresh index.

By doing so, we might end up on a state which is already built previously in the

automaton. In that case, instead of creating a new state, we just add an edge

going back to the previously constructed state, creating a loop in the equivalence

automaton.

Deciding equivalence using the equivalence automaton Intuitively, if a state

Expr(~i) = Expr(~i′) can be reached for a given (~i, ~i′), then these two expressions must be

equivalent in order for the two SAREs to be equivalent. Thus, the equivalence problem

between the two considered SAREs can be decided by studying the accessibility sets of

the success and failure states.

Theorem 2.6 (from [8]). Two SAREs are equivalent iff, in their equivalence MSA:

• No failure state is accessible from the initial state. Indeed, a failure state corre-

sponds to the comparison of two expressions which are obviously not equivalent.

• The accessibility relation of each success state is included in the identity relation.

This means that, if we compare the same element of the outputs (i.e., if the vector

associated with the initial state is of the form (~i0, ~i0)), then when we end up on a

reachable success state, the compared elements must be the same (i.e., if I[~i] = I[~i′]

is the success state, then we must have ~i = ~i′).

Chapter II. Background 22

O = O′

A[N] = A′[N]

A[i] = A′[i′]

I[0] = A′[i′] f(I[i], A[i− 1]) = A′[i′]

I[0] = I ′[0]

I[0] = f(I ′[i′], A′[i′ − 1])

f(I[i], A[i− 1]) = I ′[0]

f(I[i], A[i− 1]) = f(I ′[i′], A′[i′ − 1])

I[i] = I ′[i′] A[i− 1] = A′[i′ − 1]

(Comp)

(Gen) i = N , i′ = N

(Comp)i = 0 i > 0

(Comp)i′ = 0 i′ > 0 (Comp)i′ = 0 i′ > 0

(Dec)
(Gen)

i = i− 1
i′ = i′ − 1

Figure 2.6: Equivalence automaton of Example 2.1. Success states are in blue and
failure states in red. The initial state is the one inside the double-boxed rectangle

This algorithm only checks Herbrand equivalence, semantic properties like associativ-

ity/commutativity of operators are not taken into account. For instance, if we try to

compare the SAREs O = I1 + I2 and O′ = I ′2 + I ′1, the equivalent automaton will have

a decompose rule which will generate two failure states with respective labels (I1 = I ′2)

and (I2 = I ′1).

This algorithm is a reduction of the problem of program equivalence toward the problem

of reachability set computation in a Presburger automaton. Both problems are unde-

cidable in general. Hence, this equivalence algorithm is a semi-algorithm, i.e., in some

situations, we cannot conclude if two programs are equivalent or not. This happens

when the reachability sets are overapproximated.

Example 2.1. As an example, let us compare the following program with itself:

O = A[N]

(∀i = 0) A[i] = I[0]

(∀0 < i ≤ N) A[i] = f(I[i], A[i− 1])

where O is the output of the program, I the input and f is an arbitrary operation. The

equivalence automaton is given in Fig 2.6.

Chapter II. Background 23

We can notice that the automaton has a cycle: it corresponds to the comparison between

the recursions of both programs. We can notice that, for every state of the automaton,

we have i = i′ (indeed, for each transition we are modifying i, we are also modifying i′

in the same way). Thus, because the reachability set of the failure states are respectively

{i, i′ | i = 0∧ i′ > 0} and {i, i′ | i > 0∧ i′ = 0}, then they are both empty. Moreover, the

equalities that need to be satisfied when reaching a success state are respectively 0 = 0

(trivially satisfied) and i = i′ (satisfied). Thus, according to Thm 2.6 these two programs

are equivalent.

Template Intuitively, a template is a program with unknown parts, which can be

operations or inputs of a program. We usually try to match this template to another

program or template using a template matching algorithm. Such algorithm will answer

if the program and the template match, and give possible values to the unknown part

of the template.

Several variants of the definition of a template exist. For example, in [3], the considered

template must be linear, i.e. its inputs must only occur once in its expression, and the

unknown part can be operations or inputs of the template.

In our case, we will assume that the unknown parts of a template correspond only to its

inputs (which might correspond to a bigger computation on the side of the program).

Also, we will not assume that our templates are linear, thus an input might appear

several times in the template.

For example, the following template correspond to a L−1.B operation (where L is a lower

triangular matrix, this operation is called TRSM in the BLAS library [46]), where L and

B are inputs to the template and might correspond to a more complicated computation

in a program:

(∀0 = i ≤ j < N) Out[i, j] = A[0, j]/L[0, 0]

(∀0 < i < N ∧ 0 ≤ j < N) Out[i, j] =
(
A[i, j]−

∑
k<i

L[i, k] ∗Out[k, j]
)
/L[i, i]

where L and A are the inputs of the template and might correspond to more compli-

cated expression in another program/template. Because the template input L occurs at

multiple places, this template is not linear.

Chapter 3

Monoparametric Partitioning

In the next two chapters, we present how to divide a polyhedral computation into smaller

blocks of computation, before considering each block separately and trying to recognize

them as a combination of linear algebra operations (cf Chapter 5). We use a tiling

transformation to distribute of the computation, which is composed of two parts: the

first part is a reindexing of the domains of the program (called partitioning), which

allows us to identify which operation belongs to which tiles. The second part gathers

all the operations affiliate to a tile, and regroup them at the same place. This chapter

focuses on the first part of the transformation, and Chapter 4 will focus on the later

part.

Monoparametric tiling and partitioning The tiling transformation admits several

variants, as presented in Section 2.3. When the tile sizes are constants (e.g., 16 × 16

for rectangular tiles), this transformation is called fixed-size tiling. When the tile sizes

are parameters of the program (e.g., b1× b2 for rectangular tiles), this transformation is

called parametric tiling. If we transform a polyhedral program using a fixed-size tiling

transformation, we obtain another polyhedral program. However, if we use instead a

parametric tiling transformation, the resulting program is no longer polyhedral.

In our context, because we want to recognize linear algebra operations inside the pro-

duced block of operations, and because the algorithm we will use require a polyhedral

program as an input, we cannot use parametric tiling to distribute the operations. It is

possible to use fixed-size tiling to produce such code, but we lose in flexibility: indeed,

because the tile sizes are fixed, if we want to change them, we have to reapply the tiling

transformation once more.

In the next two chapters, we show that we can do better than fixed-size tiling, by using

a monoparametric tiling transformation. A monoparametric tiling is a parametric tiling,

24

Chapter III. Monoparametric Partitioning 25

in which the tile sizes are multiples of the same parameter (e.g., b× 2b for rectangular

tiles). Under such a condition, this transformation produces a polyhedral program,

thereby allowing a small amount of parametrization.

In this chapter, we focus on the first part of the monoparametric tiling transformation,

called monoparametric partitioning. This part of the transformation is just a reindexing

transformation, which replaces the original indices of a program into those used for

tiling. The semantics of the program remains unchanged and no block of computation

becomes atomic, thus legality conditions are not relevant.

Plan of the chapter In the first two sections of this chapter, we restrict ourselves to

the case where the tile shapes are multi-dimensional rectangles (i.e., hyperrectangles).

In Section 3.1, we prove the basic closure properties of the monoparametric partition-

ing transformation on polyhedra and affine functions. In the case of affine functions,

depending on the tile shape chosen for the input and output spaces of the function,

we obtain either a piecewise quasi-affine function, or a piecewise function with integer

division and modulo conditions. Since the former class is preferable, we isolate the nec-

essary and sufficient condition such that the obtained function is a piecewise quasi-affine

function.

These two closure properties are the main building blocks in order to apply the monopara-

metric partitioning transformation to a polyhedral program, as presented in Section 3.2.

Because of the condition about the monoparametric partitioning of affine functions, we

have to be careful about the dependence functions of a program and the tile shape (a.k.a.,

in the rectangular case, the ratio of the tile) used for variables. In order to alleviate the

need to specify a ratio for each variable of a program, we present an algorithm which

derives automatically the missing ratio of a program by finding the minimal values of a

ratio for each variable, while avoiding modulo conditions in the resulting program.

In Section 3.3, we consider general tile shapes. First, we show that we can still define the

monoparametric partitioning transformation for a general polyhedral shape, and prove

that the closure properties on polyhedra and affine functions are still valid. The applica-

tion of these closure properties to a polyhedral program is similar to their application for

the hyperrectangular case. We extend our ratio derivation algorithm so that it manages

any arbitrary tile shape, while not introducing modulo conditions.

Finally, we conclude this chapter in Section 3.4 with some additional remarks about the

monoparametric partitioning transformation.

Chapter III. Monoparametric Partitioning 26

3.1 Hyperrectangular Monoparametric partitioning

In this section, we focus on the two main mathematical objects in our program repre-

sentation: polyhedra and affine functions. We show that applying a monoparametric

partitioning transformation to these objects gives us, respectively, a union of polyhedra,

and a piecewise quasi-affine function. These operations will be applied to tile a complete

program in Section 3.2. In Section 3.3 we extend these two properties to any general

shape and to complete programs.

3.1.1 Monoparametric partitioning of polyhedra

Monoparametric partitioning Let us first define what is the monoparametric par-

titioning transformation in the hyperrectangular case.

Given a n-dimensional space Zn, let us introduce a block size parameter b (also called tile

size parameter) and a diagonal matrix D of size n called ratio of a tile, whose coefficients

are strictly positive and used to specify the “shape” of the tile. These informations define

a hyperrectangular tiling of the space, the tile size being b.D.~1, where ~1 is a n-dimensional

vector with only 1 elements.

The monoparametric partitioning transformation Tb,D maps an index point ~i ∈ Zn in

the original space to a point (~ib,~il) ∈ Z2n in the tiled space, such that ~ib is the number

of the tile in which~i belongs, and ~il is the local coordinate of~i inside its tile. ~ib is called

the block indices and~il the local indices (c.f. Figure 3.1). This transformation is similar

to a “strip mining” transformation [50].

Formally, we define the monoparametric partitioning transformation as the following:

Definition 3.1. Given the block size parameter b and a diagonal matrix D of ratio of

a tile, the hyperrectangular monoparametric partitioning transformation associated to

this tiling is:

Tb,D =

 Zn 7→ Z2n

~i 7→ (~ib,~il) = (
⌊

~i
b.D.~1

⌋
,~i mod (b.D.~1))

where we have extended the division, modulo and floor operation elementwise to vectors.

The inverse of a monoparametric partitioning, T −1~b,D is:

T −1b,D(~ib, ~il) = b.D.~ib + ~il

where the product and sum are elementwise.

Chapter III. Monoparametric Partitioning 27

i

j

il

jl
(ib, jb)

2.b

b

Figure 3.1: A 2 dimensional monoparametric partitioning. The tiles are rectangles
of ratio 2× 1, and the domain is D = {i, j | 0 ≤ i, j ∧ i+ j < N}. Each tile is uniquely
identify by the block indices (ib, jb). A point inside a tile is identify by the local indices
(il, jl). When partitioning D, we observe 3 kinds of tiles: the full ones (in green), the
triangle ones (in gray) and the trapezoid ones (in purple). The shape of each kind of
tiles and their placement can both be expressed as polyhedral sets.

Monoparametric partitioning applied to a polyhedron Let us consider a poly-

hedron D =
{
~i | . . .

}
⊂ Zn and a monoparametric partitioning transformation Tb,D. We

want to compute the image of D by this monoparametric partitioning transformation

(∆ = Tb,D(D)). In order to do that, we have to translate the constraints of D, which

works on the original indices ~i, into constraints of ∆, working on the block and local

indices (~ib, ~il). We also assume that all parameters ~p can be decomposed into the block

parameters ~pb and the local parameters ~pl, where ~p = b.~pb + ~pl.

Starting from the constraints of D, by eliminating the old indices ~i and parameters ~p,

it is possible to obtain a disjunction of integral affine constraints on the block and local

indices and parameters, expressing ∆ as a finite union of polyhedra.

For example, if we tile a triangle D = {i, j | 0 ≤ i, j ∧ i + j < N} with square tiles

(assuming that the block size parameter divides N), we have two tile shapes: the tiles

along the diagonal are triangles, all internal tiles are full squares. Therefore, ∆ is the

union of two polyhedra: a one-dimensional collection of triangles corresponding to the

diagonal tiles, and a two dimensional, triangular collection of squares corresponding to

the interior tiles.

More interestingly, if the same triangle D = {i, j | 0 ≤ i, j ∧ i + j < N} is tiled

with 2b × b rectangles as in Fig. 3.1, we get three sets of shapes (if b divides N). In

the “tall-skinny” triangular region • {ib, jb | 0 ≤ ib, jb ∧ 2ib + jb + 3 ≤ Nb}, where

Nb = N/b, we have full rectangles, specified by {il, jl | 0 ≤ il < 2b ∧ 0 ≤ jl < b}.
Along the line segment • {ib, jb | 2ib + jb + 2 = Nb}, we have trapezoidal tiles whose

Chapter III. Monoparametric Partitioning 28

shape is {il, jl | 0 ≤ il, jl ∧ il + jl < 2b ∧ jl < b}. And finally, along the line segment •
{ib, jb | 2ib + jb + 1 = Nb}, we have triangular tiles {il, jl | 0 ≤ il, jl ∧ il + jl < b}.

Notice how each collection itself is a disjoint polyhedron, and its constraints involve only

the block indices. Also notice how the constraints defining each shape involve only the

local indices, and the size parameter, b. This is not a coincidence, and the following

theorem shows that ∆ is separable in this sense.

Mathematically, the corresponding theorem is the following:

Theorem 3.2. The image of a polyhedron D = {~i | Q.~i+Q(p).~p+~q ≥ ~0} by a monopara-

metric partitioning transformation is:

∆ =
m⋂
c=1

[⊎
kmin
c <kc≤kmax

c

~ib, ~il
∣∣∣ Qc.D.~ib +Q

(p)
c .~pb + kc = 0

b.kc ≤ Qc.~il +Q
(p)
c .~pl + qc

~0 ≤ ~il < b.D.~1

]

{
~ib, ~il

∣∣∣ Qc.D.~ib +Q
(p)
c .~pb + kminc ≥ 0

~0 ≤ ~il < b.D.~1

}]

where ~k enumerates the possible values of
⌊
Q.~il+Q

(p).~pl+~q
b

⌋
∈ [|~kmin;~kmax|].

where [|~a,~b|] is the set of integral points in the rectangle whose corners are ~a and ~b.

Proof. Let us derive the constraints of ∆ from the constraints of D:

Q.~i+Q(p).~p+ ~q ≥ ~0 (3.1)

D is the intersection of m half planes, each one of them defined by a single constraint

Qc.~i + Q
(p)
c .~p + qc ≥ 0, for 1 ≤ c ≤ m, and we consider each constraint independently.

Let us use the definitions of ~ib, ~il, ~pb and ~pl to eliminate ~i and ~p.

b.Qc.D.~ib +Qc.~il + b.Q(p)
c .~pb +Q(p)

c .~pl + qc ≥ 0 (3.2)

Notice that these constraints are no longer linear, because of the b.~ib and b.~pb terms. To

eliminate them, we divide each constraint by b > 0 to obtain:

Qc.D.~ib +Q(p)
c .~pb +

Qc.~il +Q
(p)
c .~pl + qc
b

≥ 0

In general, this fraction is a rational vector. Thus, to define integer points, we take the

floor of each constraint (which is valid because a ≥ 0⇔ bac ≥ 0 and bn+ ac = n+ bac

Chapter III. Monoparametric Partitioning 29

for n ∈ Z):

Qc.D.~ib +Q(p)
c .~pb +

⌊
Qc.~il +Q

(p)
c .~pl + qc
b

⌋
≥ 0 (3.3)

Let use define kc(~il) =

⌊
Qc.~il+Q

(p)
c .~pl+qc
b

⌋
. Now kc(~il) can only take a constant non

parametric number of values. Indeed, ~il belongs to a rectangle: 0 ≤ ~il < D.b.~1. Thus

the maximum will be reached on a vertex of the rectangle, i.e., when all the coordinates

of ~il are either 0 or d.(b − 1) (depending on the sign of its coefficient). Let us define

QD+
c the vector of non-negative coefficients of Qc.D, Q

(p)+
c the vector of non-negative

coefficients of Q(p), and note that ||.||1 denotes the L1-norm. We have:

kmax
c = max

~il

⌊
Qc.~il +Q

(p)
c .~pl + qc
b

⌋

Also: Qc.~il =
∑

j Qc,j .
~il(j). According to the remark above, the sum is maximized for

~il(j) = dj .(b − 1) if Qc,j .dj(b − 1) > 0 and ~il(j) = 0 otherwise. Hence: max~il Qc.
~il =∑

j{Qc,j .dj(b− 1) | Qc,j .dj > 0}, which is exactly (b− 1)||QD+
c ||1. Therefore:

kmax
c =

⌊
||QD+

c ||1.(b−1)+Q
(p)
c .~pl+qc

b

⌋
= ||QD+

c ||1 +

⌊
Q

(p)
c .~pl−||QD+

c ||1+qc
b

⌋
≤ ||QD+

c ||1 +

⌊
||Q(p)+

c ||1.(b−1)−||QD+
c ||1+qc

b

⌋
≤ ||QD+

c ||1 + ||Q(p)+
c ||1 +

⌊
qc−||Q(p)+

c ||1−||QD+
c ||1

b

⌋

Thus, we have a constant upper-bound on all kc(~il). Likewise, we can show that we have

a constant lower-bound on kc(~il), therefore, kc(~il) can only take a constant number of

values. Thus, we create one polyhedron per value of kc(~il).

Let us build the polyhedron obtained for a value of kc(~il) in [|kmin
c ; kmax

c |]. Eqn (3.3)

becomes:

Qc.D.~ib +Q(p)
c .~pb + kc(~il) ≥ 0 (3.4)

kc(~il) is the quotient of the integer division in (3.3). Then there exists rc such that

0 ≤ rc < b and Qc.~il +Q
(p)
c .~pl + qc = b.kc(~il) + rc. Hence:

b.kc(~il) ≤ Qc.~il +Q(p)
c .~pl + qc < b.(kc(~il) + 1) (3.5)

Chapter III. Monoparametric Partitioning 30

Also, the constraints (3.4) and (3.5) are affine, since kc(~il) is a constant, and all we need

to do is to ensure that ~il belongs to the tile, by adding the constraint ~0 ≤ ~il < b.D.~1,

and we get the desired polyhedron.

To summarize, the cth constraint of (3.1) has the same set of integer solutions as the

union of polyhedra obtained for each value of kc(~il):

⊎
kc

~ib, ~il
∣∣∣ Qc.D.~ib +Q

(p)
c .~pb + kc ≥ 0

b.kc ≤ Qc.~il +Q
(p)
c .~pl + qc < b.(kc + 1)

~0 ≤ ~il < b.D.~1

where kc enumerates all possible values of

⌊
Qc.~il+Q

(p)
c .~pl+qc
b

⌋
in the interval [|kmin

c ; kmax
c |].

Now, all we need to do is to intersect these unions for each constraint c ∈ [|1;m|] to

obtain the partitioning. Actually, it is possible to improve the result, as described below.

First, let us study the pattern of the constraints of the polyhedra of the union. Let us

call (Blockkc) the constraint on the block indices and (Localkc) the constraints on the

local indices. We notice some properties among these constraints (Figure 3.2):

• Each kc covers a different stripe of a tile (whose equations is given by (Localkc)).

The union of all these stripes, for kmin
c ≤ kc ≤ kmax

c forms a partition of the whole

tile (by definition of kmin
c and kmax

c).

• If a tile ~ib satisfies the constraint (Blockkc) for a given kc, then the same tile also

satisfies (Blockk′c) for every k′c > kc (because a ≥ 0⇒ a+ 1 ≥ 0). In other words,

if the kcth stripe in a tile is non-empty, the tile will have all the k′c stripes, for

every k′c > kc.

Thus, if a block ~ib satisfies (Blockkmin
c

), then it satisfy all the (Blockkc) for kc ≥ kmin
c

and the whole rectangular tile is covered by the union of polyhedra ∆

Also, if a block ~ib satisfies exactly (Blockkc) (i.e., if Qc.D.~ib + Q
(p)
c .~pb + kc = 0), then

it does not satisfy the (Blockk′c) for k′c < kc and we do not have the stripes below kc.

Therefore, only the local indices il which satisfy (b.kc ≤ Qc.~il +Q
(p)
c .~pl + qc) are covered

by the union of polyhedra ∆.

Using these observations, we separate the tiles into two categories: those which satisfy

(Blockkmin
c

) (corresponding to a full tile), and those which satisfy exactly a (Blockkc)

where kmin
c < kc (corresponding to a portion of the tile).

Mathematically, by splitting all of the polyhedra of the union according to the constraints

Qc.D~ib+Q
(p)
c .~pb+kc = 0, kminc < kc ≤ kmaxc , then pasting them together, we obtain the

Chapter III. Monoparametric Partitioning 31

kmax
c

. . .

kmin
c + 1

kmin
c

implies

Figure 3.2: Stripe coverage of a tile. Given a constraint, we have obtain a disjoint
union of polyhedra , each polyhedra covering a stripe of a given tile. These polyhedra
are shown in different shades of green, and ranging from kmin

c to kmax
c). By examining

the constraints on the block indices, we deduce that given a tile, if the stripe kc occurs
in this tile, then all the stripesk′c > kc also occurs in this tile. Thus, we merge all of
these stripes to obtain a single polyhedra per tile.

following improved expression:

⊎
kmin
c <kc≤kmax

c

~ib, ~il
∣∣∣ Qc.D.~ib +Q

(p)
c .~pb + kc = 0

b.kc ≤ Qc.~il +Q
(p)
c .~pl + qc

~0 ≤ ~il < b.D.~1

]

{
~ib, ~il

∣∣∣ Qc.D.~ib +Q
(p)
c .~pb + kminc ≥ 0

~0 ≤ ~il < b.D.~1

}

Thus, by intersecting all of these unions for each constraint, we obtain the expression

of ∆. By distributing the intersection of the union of polyhedra, we obtain a union

of disjoint polyhedra. After eliminating the empty polyhedra, the number of obtained

disjoint polyhedra is the number of different tile shapes of the partitioned version of

D.

Example 3.1. Let us consider the following parameterized triangle:

D = {i, j | N − 1− i− j ≥ 0 ∧ i ≥ 0 ∧ j ≥ 0}

We consider monoparametric tiles of size b× b. Let us introduce

(
i

j

)
= b.

(
ib

jb

)
+

(
il

jl

)
and, to simplify the presentation, let us assume that the parameter N is a multiple of

the size parameter b: N = Nb.b. Then, the first inequality becomes:

N − 1− i− j ≥ 0 ⇔ Nb.b− 1− b.ib − il − b.jb − jl ≥ 0

⇔ Nb − ib − jb +
⌊
−il−jl−1

b

⌋
≥ 0

Chapter III. Monoparametric Partitioning 32

i

j

∆
=

First tiled polyhedron
(k1 = −1)∪

Second tiled polyhedron
(k1 = −2)

Figure 3.3: Obtained union of tiled polyhedra ∆ for Example 3.1. The original
polyhedron is a triangle, and we have assume that the tile sizes divide its sizes. We
have two polyhedra in ∆: one corresponding to the full tiles, and another for the
diagonal lower-triangular tiles

Let us study the values of k1(il, jl) =
⌊
−il−jl−1

b

⌋
. Because of the sign of the numerator

coefficients, the maximum is −1 (il = jl = 0) and the minimum is −2 (il = jl = b− 1).

After analyzing the two other inequalities, we obtain:

∆ =

ib, jb, il, jl |

Nb − ib − jb − 1 = 0

ib, jb ≥ 0

0 ≤ il, jl < b

−b ≤ −il − jl − 1

⊎ib, jb, il, jl |

Nb − ib − jb − 2 ≥ 0

ib, jb ≥ 0

0 ≤ il, jl < b

This union of polyhedra is shown in Figure 3.3.

Example 3.2. Let us consider the following polyhedron: D = {i, j | i+j ≤ N−1 ∧ j ≤
M ∧ 0 ≤ i, j} with tiles of size b× b. Let us define N = Nb.b+Nl and M = Mb.b+Ml

the block and local parameters, where 0 ≤Ml < b and 0 ≤ Nl < b. By going through the

same steps as in the proof, we obtain:
N − 1− i− j ≥ 0

M − j ≥ 0

i ≥ 0

j ≥ 0

Nb − ib − jb + k1 ≥ 0

Mb − jb + k2 ≥ 0

ib + k3 ≥ 0

jb + k4 ≥ 0

where

k1 =
⌊
Nl−il−jl−1

b

⌋
= −2,−1 or 0

k2 =
⌊
Ml−jl
b

⌋
= −1 or 0

k3 =
⌊
il
b

⌋
= 0

k4 =
⌊
jl
b

⌋
= 0

Chapter III. Monoparametric Partitioning 33

i

j

0 N − 1

M

Nb − ib − jb = 0 |Mb − jb = 0

Nb − ib − jb = 0 |Mb − jb ≥ 1

Nb − ib − jb = 1 |Mb − jb = 0

Nb − ib − jb = 1 |Mb − jb ≥ 1

Nb − ib − jb ≥ 2 |Mb − jb = 0

Nb − ib − jb ≥ 2 |Mb − jb ≥ 1

Figure 3.4: Obtained union of polyhedra for Example 3.2, for square tile sizes of size
b × b. We have in total 6 polyhedra contributing to the union. Among those 6, two
of them have the same shape in the figure, but, if increasing the value of M , their
shapes become different. ib and jb are the block indices along the i and j dimensions
respectively. Nb and Mb are the integer division of the parameters N and M by the
block size b

We obtain a union of 6 polyhedra, one for each possible value of (k1, k2, k3, k4) which

are shown in Figure 3.4. We notice that two of these polyhedra (yellow and green) have

the same shapes: this is because, in the situation illustrated by the figure, Ml ≤ Nl, but,

in general, these two polyhedra do not have the same shape. Moreover, when Ml ≥ Nl,

the blue and gray polyhedra will have the same shape.

3.1.2 Monoparametric partitioning of affine functions

Monoparametric partitioning applied to an affine function Let us consider

an affine function f : (~i 7→ Q.~i + Q(p).~p + ~q). Let us consider two monoparametric

partitioning transformation Tb,D and T ′b,D′ , sharing the same block size parameter b,

such that the first one corresponds to a partitioning of the input space of f , and the

second one corresponds to a partitioning of the output space of f .

Given a element~i of the input space, we have a first set of block and local indices for the

input space ((~ib, ~il) = Tb,D(~i)). Likewise, given a element ~i′ of the output space, we have

another set of block and local indices for the output space ((~i′b,
~i′l) = Tb,D′(~i′)). We also

introduce the block and local parameters in the same manner than for the polyhedron

case: ~p = b.~pb + ~pl where ~0 ≤ ~pl < b.~1.

Chapter III. Monoparametric Partitioning 34

We want to replace the original input and output indices of f by their block and local

counterparts. Mathematically, this means that we want to compute φ = T ′b,D′ ◦ f ◦
T −∞b,D. If f was a n to n′ dimensional function, then φ is a 2n to 2n′ dimensional

function.

Like in the previous subsection, by starting with the definition of f , we derive the value

of φ:

Theorem 3.3. Given two monoparametric partitioning transformation (Tb,D and T ′b,D′)
and any affine function (f(~i) = Q.~i+Q(p).~p+ ~q), the composition φ = T ′b,D′ ◦ f ◦ T −1b,D

is a piecewise quasi-affine function, whose branches are:

φ(~ib, ~il) =

(
D′−1.Q.D.~ib +D′−1.Q(p).~pb + ~k

Q.~il +Q(p).~pl + ~q − b.D′.~k

)
if b.~k ≤ D′−1.Q.~il +D′−1.Q(p).~pl +D′−1.~q < b.(~k +~1)

for each ~k ∈ [|~kmin;~kmax|], and assuming that (D′−1.Q.D) and (D′−1.Q(p)) are integer

matrices.

We will show later that the condition on (D′−1.Q.D) and (D′−1.Q(p)) is a necessary and

sufficient condition to have only affine conditions in the piecewise quasi-affine function

φ. If these hypothesis are not respected, then we might end up with modulo conditions

in the branches of φ.

Proof. Let us start from the definition of f : ~i′ = Q.~i+Q(p).~p+~q. With similar arguments

as at the beginning of the proof of Theorem 3.2, we get rid of ~il
′

to obtain:

~ib
′
=

⌊
D′−1.Q.D.~ib +D′−1.Q(p).~pb +

D′−1.(Q.~il +Q(p).~pl + ~q)

b

⌋

In general, if we do not have the additional hypothesis, we have no guarantee that

(D′−1.Q.D.~ib) and (D′−1.Q(p).~pb) are integral vectors. In order to draw these terms

outside the floor operator, we have assumed that (D′−1.Q.D) and (D′−1.Q(p)) are integer

matrices. Using this hypothesis, we obtain:

~ib
′
= D′−1.Q.D.~ib +D′−1.Q(p).~pb +

⌊
D′−1.(Q.~il +Q(p).~pl + ~q)

b

⌋

By defining ~k(~il) =
⌊
D′−1.(Q.~il+Q

(p).~pl+~q)
b

⌋
and by conducting the same kind of analysis

as previously, we manage to bound ~k(~il) between ~kmin and ~kmax. Finally, we obtain a

Chapter III. Monoparametric Partitioning 35

φ(ib, jb, il, jl) =

(4ib,M − 2jb − 1, ib + jb, 2il, b− jl − 1, il + jl)
if 0 ≤ il < b ∧ 0 ≤ jl < b ∧ 0 ≤ il + jl < 2b

(4ib + 1,M − 2jb − 1, ib + jb, 2il − b, b− jl − 1, il + jl)
if b ≤ il < 2b ∧ 0 ≤ jl < b ∧ 0 ≤ il + jl < 2b

(4ib,M − 2jb − 2, ib + jb, 2il, 2b− jl − 1, il + jl)
if 0 ≤ il < b ∧ b ≤ jl < 2b ∧ 0 ≤ il + jl < 2b

(4ib,M − 2jb − 2, ib + jb + 1, 2il, 2b− jl − 1, il + jl − 2b)
if 0 ≤ il < b ∧ b ≤ jl < 2b ∧ 2b ≤ il + jl < 4b

(4ib + 1,M − 2jb − 1, ib + jb + 1, 2il − b, b− jl − 1, il + jl − 2b)
if b ≤ il < 2b ∧ 0 ≤ jl < b ∧ 2b ≤ il + jl < 4b

(4ib + 1,M − 2jb − 2, ib + jb + 1, 2il − b, 2b− jl − 1, il + jl − 2b)
if b ≤ il < 2b ∧ b ≤ jl < 2b ∧ 2b ≤ il + jl < 4b

Figure 3.5: Example 3.3 - obtained piecewise quasi-affine function after applying the
partitioning transformation to (i, j 7→ 2i,N−j−1, i+j), for a 2b×2b rectangular tiling
on the inputs and a b × b rectangular tiling on the outputs. Each branch corresponds
to a different value of the function, thus cannot be merged

piecewise expression of ~ib
′
, in which each branch corresponds to one value of ~k(il):

~ib
′
= D′−1.Q.D.~ib +D′−1.Q(p).~pb + ~k

if b.~k ≤ D′−1.Q.~il +D′−1.Q(p).~pl +D′−1.~q < b.(~k +~1)

for each ~k ∈ [|~kmin;~kmax|].

We easily compute ~il
′

for each obtained branch by using the definition of ~ib
′
, to obtain

the expression of φ as a piecewise quasi-affine function. Indeed, for a given branch:

~il
′

=~i′ − b.D′.~ib
′
= Q.~i+Q(p).~p+ ~q − b.D′.(D′−1.Q.D.~ib +D′−1.Q(p).~pb + ~k)

= Q.(b.D.~ib + ~il) +Q(p).(b.~pb + ~pl) + ~q − b.Q.D.~ib − b.Q(p).~pb − b.D′.~k
= Q.~il +Q(p).~pl + ~q − b.D′.~k

Compared to the decomposition we obtained for polyhedra, we do not merge the branches

according to their conditions to have a single branch per tile. Indeed, the value of the

piecewise quasi-affine function is different for each branch, thus we cannot merge them.

Example 3.3. Let us consider the affine function f : (i, j 7→ 2i,N − j − 1, i+ j).

Let us introduce

(
i

j

)
= b.

(
2 0

0 2

)
.

(
ib

jb

)
+

(
il

jl

)
where 0 ≤ il, jl < 2b and

(
i′

j′

)
=

b.

(
i′b

j′b

)
+

(
i′l

j′l

)
where 0 ≤ i′l, j

′
l < b. We assume that the parameter N is divisible by

b, and we introduce N = Nb.b. We check that (D′−1.Q.D) and (D′−1.Q(p)) are both

integral, thus we will have purely affine constraints.

Chapter III. Monoparametric Partitioning 36

After performing the operations described previously, we obtain an expression of ~i′b:
i′b

j′b

k′b

 =

4 0

0 −2

1 1

[
ib

jb

]
+

0

1

0

 .
[
M
]

+

k1

k2

k3

where k1 =

⌊
2il
b

⌋
, k2 =

⌊
−jl−1
b

⌋
and k3 =

⌊
il+jl
2b

⌋
. Thus, 0 ≤ k1 ≤ 1, −2 ≤ k2 ≤ −1 and

0 ≤ k3 ≤ 1.

Two out of the resulting eight branches have unsatisfiable conditions. Therefore, after

pruning them out, we obtain the expression of φ described in Figure 3.5.

Example 3.4. Let us consider the affine function f : (i, j 7→ 2N + 2i+ 4j − 1), with a

block size of b × b for the input indices, and 2b for the output indices. The conditions

are verified, and we obtain after derivation:

i′b = Nb + ib + 2jb + k1 where k1 =

⌊
2.Nl + 2.il + 4.jl − 1

2b

⌋

The final result is:

(i′b, i
′
l) =

(Nb + ib + 2.jb − 1, Nl + il + 2.jl + b) if 2.Nl + 2.il + 4.jl − 1 < 0

(Nb + ib + 2.jb, Nl + il + 2.jl) if 0 ≤ 2.Nl + 2.il + 4.jl − 1 < 2b

(Nb + ib + 2.jb + 1, Nl + il + 2.jl − b) if 2b ≤ 2.Nl + 2.il + 4.jl − 1 < 4b

(Nb + ib + 2.jb + 2, Nl + il + 2.jl − 2b) if 4b ≤ 2.Nl + 2.il + 4.jl − 1 < 6b

(Nb + ib + 2.jb + 3, Nl + il + 2.jl − 3b) if 6b ≤ 2.Nl + 2.il + 4.jl − 1

In Theorem 3.3, we have introduced a condition on two products of matrices to have

only affine conditions in φ. Let us see what happens when this condition is not satisfied.

Example 3.5. Let us consider the identity function (i 7→ i) where D = (2) and D′ = (6).

Because Q = (1) and Q(p) = (0), D′−1.Q.D =

(
1

3

)
and D′−1.Q(p) = (0), the conditions

are not satisfied. In particular, given a point (ib, il) in the input domain of this function,

we need to know the result of the integer division of ib by 3 to know in which block we

end up, i.e., you need to know the value of ib mod 3 to compute the new local index (as

shown in Figure 3.6).

Necessary and sufficient condition to avoid modulo constraints Now, let us

show that the condition in Theorem 3.3 is a necessary and sufficient condition to have

only affine conditions in φ, and when it is not respected, conditions containing modulo

appear in φ.

Chapter III. Monoparametric Partitioning 37

ib, il

ib + 1, il

ib + 2, il

⌊
ib
3

⌋
, il

⌊
ib
3

⌋
, il + 2b

⌊
ib
3

⌋
, il + 4b

Figure 3.6: Example 3.5: graphical representation of the tiles on both sides of a
partitionned identity function, for a 2b tiling on the inputs and a 6b tiling on the
outputs. Notice that, in order to retrieve the number of the tile on the output space
from (ib, il), we need to perform an integer division.

Theorem 3.4. Given two monoparametric partitioning transformations (Tb and T ′b)
and any affine function (f(~i) = Q.~i + Q(p).~p + ~q). Assuming that the ratio associated

with Tb is D and the ratio associated with T ′b is D′, the composition T ′b ◦ f ◦ T −1b has

only purely affine constraints iff (D′−1.Q.D) and (D′−1.Q(p)) are integral matrices.

Proof. In the proof of Theorem 3.3, we had obtained the following equality:

~ib
′
=

⌊
D′−1.Q.D.~ib +D′−1.Q(p).~pb +

D′−1.(Q.~il +Q(p).~pl + ~q)

b

⌋

Let us consider the c-th dimension, 0 ≤ c < |~i′b|:

i′bl,c =

⌊
Qc.D.~ib
D′c,c

+
Q

(p)
c .~pb
D′c,c

+
Qc.~il +Q

(p)
c .~pl + qc

D′c,c.b

⌋

If the fraction Qc.D
D′c,c

is non-integral, it can affect the value of kc (which was previously

only a function of the local indices and parameters). This means that, depending the

value of ~ib and its modulo with respect to D′c,c, the value of kc is shifted and the cuts

are different. Thus, we need to distinguish the different values of ib modulo D′c,c, and

this is a non-affine constraint. Likewise, if the fraction Q
(p)
c . ~pb
D′c,c

is non-integer, ~pb affects

the value of kc and we have non-affine constraints on ~pb.

Therefore, we just have shown that if the condition is not satisfied, then we have modulo

constraints. Theorem 3.3 has already shown that if the condition is satisfied, we do

not have modulo constraints. Therefore, this condition is a necessary and sufficient

condition.

Example 3.5 shows what happens in practice when the condition is not satisfied.

Chapter III. Monoparametric Partitioning 38

Derivation when the condition is not satisfied If the necessary and sufficient

condition is not satisfied, we can still finish the computation of φ and obtain a piecewise

quasi-affine function with modulo conditions, as shown by the following theorem:

Theorem 3.5. Given two monoparametric partitioning transformation (Tb,D and T ′b,D′)
and any affine function (f(~i) = Q.~i+Q(p).~p+~q), if (D′−1.Q.D) or (D′−1.Q(p)) is not an

integer matrix, the composition φ = T ′b,D′ ◦ f ◦ T −1b,D is a piecewise quasi-affine function

with modulo conditions in its branches.

Proof. We consider the integer divisions of ~ib by the diagonal elements of D′: ~ib =

~ib
(div),l

.D′l,l +
~ib
(mod),l

where ~ib
(div),l

is the quotient and ~ib
(mod),l

is the rest of the integer

division (thus, ~0 ≤ ~ib
(mod),l

< D′l,l.
~1). Likewise, we consider the integer divisions of ~pb

by the diagonal elements of D′: ~pb = ~pb
(div),l.D′l,l + ~pb

(mod),l where ~0 ≤ ~pb
(mod),l < D′l,l.

~1.

In the beginning of the derivation of Theorem 3.3, before using the conditions on the

matrices (D′−1.Q.D) and (D′−1.Q(p)), we have obtained the following equality:

~ib
′
=

⌊
D′−1.Q.D.~ib +D′−1.Q(p).~pb +

D′−1.(Q.~il +Q(p).~pl + ~q)

b

⌋

By using the quotient and rest of the integer divisions we have introduced at the begin-

ning of this proof, we obtain the following equality in our derivation:

~ib
′
l = Ql.D.~ib

(div),l
+Q

(p)
l .~pb

(div),l+

⌊
Ql.D.~ib

(mod),l
+Q

(p)
l .~pb

(mod),l

D′l,l.b
+
Ql.~il +Q

(p)
l .~pl + ql

D′l,l.b

⌋

Let us define kl(~ib
(mod),l

, ~pb
(mod),l) =

⌊
Ql.D.~ib

(mod),l
+Q

(p)
l . ~pb

(mod),l

D′l,l.b
+

Ql.~il+Q
(p)
l .~pl+ql

D′l,l.b

⌋
. Be-

cause ~ib
(mod),l

and ~pb
(mod),l can only take a finite number of values, we do one analysis

of kl for each of their values.

The number of branches resulting from the analysis of the l-th dimension correspond

to the number of values the triplet (~ib
(mod),l

, ~pb
(mod),l, kl) can take. The total number of

branches of the piecewise quasi-affine function is the product of the number of branches

for each dimension. Thus, the number of branches might be large, but an expression for

φ can be computed.

Even if we manage to get an expression of φ when the condition is not satisfied, the

number of branches is considerable, and it means going introducing modulo conditions.

Chapter III. Monoparametric Partitioning 39

Example 3.6. Let us consider f : (i, j 7→ i, j) where the input indices are tiled as(
i

j

)
=

(
ib

jb

)
.b+

(
il

jl

)
and the output indices are tiled as

(
i′

j′

)
=

(
2i′b

3j′b

)
.b+

(
i′l

j′l

)
. Let

us consider the first output dimension:

i′ = i ⇔ 2.i′b.b+ i′l = ib.b+ il

⇒ i′b =
⌊
ib
2 + il

2b

⌋
= i

(1)
bb +

⌊
i
(1)
bl
2 + il

2b

⌋

where ib = 2.i
(1)
bb + i

(1)
bl and 0 ≤ i(1)bl ≤ 1. Likewise, we have:

j′b = j
(2)
bb +

⌊
j
(2)
bl

3
+
jl
3b

⌋

where jb = 3.j
(2)
bb +j

(2)
bl and 0 ≤ j(2)bl ≤ 2. Finally, we build the pieces of φ by enumerating

all the possible values of i
(1)
bl and j

(2)
bl . For example, for i

(1)
bl = j

(2)
bl = 0:

~k(il, jl) =
(⌊

il
2b

⌋ ⌊
jl
3b

⌋)T
We only have one possible value for k1(il, jl) and k2(il, jl) (which is 0 in both cases),

thus we will only have one branch in φ corresponding to these values. The full expression

of φ is:

φ :

ib

jb

il

jl

 7→

(ib/2, jb/3, il, jl)
T if ib ≡ 0 mod 2 ∧ jb ≡ 0 mod 3

(ib/2, (jb − 1)/3, il, jl + b)T if ib ≡ 0 mod 2 ∧ jb ≡ 1 mod 3

(ib/2, (jb − 2)/3, il, jl + 2b)T if ib ≡ 0 mod 2 ∧ jb ≡ 2 mod 3

((ib − 1)/2, jb/3, il + b, jl)
T if ib ≡ 1 mod 2 ∧ jb ≡ 0 mod 3

((ib − 1)/2, (jb − 1)/3, il + b, jl + b)T if ib ≡ 1 mod 2 ∧ jb ≡ 1 mod 3

((ib − 1)/2, (jb − 2)/3, il + b, jl + 2b)T if ib ≡ 1 mod 2 ∧ jb ≡ 2 mod 3

3.2 Hyperrectangular monoparametric partitioning program

transformation

In the previous section, we showed how to apply the monoparametric partitioning trans-

formation to a polyhedron and an affine function, the two main mathematical objects

in any polyhedral program representation. In this section, we show how to apply this

transformation to a complete polyhedral program. Then, we show how to choose a ra-

tio for the local variables which do not already have a ratio assigned, which does not

introduce modulo conditions in our transformed program.

Chapter III. Monoparametric Partitioning 40

3.2.1 Monoparametric partitioning program transformation

Let us consider an equation coming from a polyhedral program. This equation has one

of the following two forms:

(∀~i ∈ D) : S[~i] = Expr(S1[u1(~i)], . . . , Sd[ud(~i)])

(∀~i ∈ Dr) : S[~i] =
⊕
~j ∈ D
~i = π(~j)

Expr(S1[f1(~j)], . . . , Sd[fd(~j)])

To apply the monoparametric partitioning transformation to this program, we have to

replace all the polyhedra and affine functions of this program by their monoparametric

partitioned alter-egos. The number of dimensions of all domains is doubled, and, because

the polyhedra and affine functions remain the same (but are expressed in a different

basis) the operations performed by the program are not changed.

However, this substitution introduces piecewise quasi-affine functions in the middle of

the program, which is not allowed. Thus, a post-processing step (called normalization)

is required. Given an equation, the normalization step gathers the conditions of the

branches of the piecewise quasi-affine functions from this program and compute their

intersections. At this point, we obtain a list of equations, in which each element corre-

spond to a specific combination of the branches of the piecewise quasi-affine functions

of this equation. We finish by eliminating the combinations which are not satisfiable.

Thus, the normalization step flattens all the branches of the piecewise quasi-affine func-

tions, and prune the empty branches. If we try to distinguish these two steps, the

normalization does not scale. For example, in our Jacobi1D example, if we consider

the last equation, we have a summation between 3 variables. After flattening them and

before pruning the empty branches, we have a total of 4 × 2 × 4 = 32 branches before

pruning. This number explodes when considering stencils of higher-orders. For example,

if we consider a Jacobi2D example, we have a summation between 9 variables, corre-

sponding to a total of 48 ∗ 2 = 217 different combination, thus different branches before

pruning. Therefore, the pruning must occur during the gathering of the branches.

Example 3.7. Let us consider the following program, corresponding to a Jacobi1D com-

putation:

Chapter III. Monoparametric Partitioning 41

(∀0 ≤ i < N) : Out[i] = Temp[T − 1, i]

(∀0 ≤ i < N ∧ t = 0) : Temp[t, i] = I[i]

(∀i = 0 ∧ 0 < t < T) : Temp[t, i] = Temp[t− 1, i]

(∀i = N − 1 ∧ 0 < t < T) : Temp[t, i] = Temp[t− 1, i]

(∀0 < i < N − 1 ∧ 0 < t < T) : Temp[t, i] = (Temp[t− 1, i− 1]+

Temp[t− 1, i] + Temp[t− 1, i+ 1])/3

where Out is an output variable and I an input, both defined over {i|0 ≤ i < N}.
For simplicity, we assume that the parameters N and T are multiples of the tile size

parameter b (N = Nb.b and T = Tb.b).

We want to apply a monoparametric partitioning transformation such that the variable

Temp is tiled with square tiles of size b×b, and the variables Out and I are tiles with tiles

of size b. In order to do this, we consider each domain and dependence functions of this

program and apply the monoparametric partitioning transformation on them. Finally,

we substitute them with their monoparametric partitioned alter ego and to obtain the

program described in Figure 3.7, before applying the normalization post-processing step.

3.2.2 Derivation of the partitioning

While applying the monoparametric partitioning transformation, we might have differ-

ent partitionings (a.k.a., ratio, in the case of rectangular tiles) interacting within an

expression. For example, if we choose a ratio of 1×2 for a variable T , what ratio should

we pick for a variable whose equation uses T , say S[i, j, k] = g(. . . T [i, k + j] . . .), and

how to adapt this expression to make the (potentially different) tiling compatible?

If we assume that the ratio of all variables were chosen beforehand, we just have to check

for their compatibility, i.e., we have to check that partitioning the dependence functions

do not introduce non-polyhedral modulo constraints (cf Theorem 3.4). This means that

we have to check, for any dependence function (~i 7→ Q.~i + Q(p).~p + ~q) and ratio D and

D′, that (D′−1.Q.D) and (D′−1.Q(p)) are integral.

In a more general situation, we assume that the ratio of some variables were chosen

beforehand (either by the user or by the compiler), but not all ratios were decided. In

order to apply the monoparametric partitioning transformation, we need to find ratio

for all the remaining variables, such that no modulo constraints are introduced in their

equations.

We assume that for any cycle in the PRDG of our program, at least one variable was given

a ratio. For example, if a variable S depends on itself then its ratio must be specified.

Chapter III. Monoparametric Partitioning 42

∀
{

0 ≤ ib < Nb

0 ≤ il < b
: Out[ib, il] = Temp[Tb, ib, b− 1, il]

∀

0 ≤ ib < Nb

0 ≤ il < b
tb = tl = 0

: Temp[tb, ib, tl, il] = I[ib, il]

∀

ib = il = 0 0 < tb ∧ 0 ≤ tl < b

∨
tb = 0 ∧ 0 < tl < b

 : Temp[tb, ib, tl, il] = Temp

[
tl = 0 : (tb − 1, ib, b− 1, il)
0 < tl : (tb, ib, tl − 1, il)

]

∀

ib = Nb − 1 ∧ il = b− 1 0 < tb ∧ 0 ≤ tl < b

∨
tb = 0 ∧ 0 < tl < b

 : Temp[tb, ib, tl, il] = Temp

[
tl = 0 : (tb − 1, ib, b− 1, il)
0 < tl : (tb, ib, tl − 1, il)

]

∀

ib = 0 ∧ 0 < il < b

∨
ib = Nb − 1 ∧ 0 ≤ il < b− 1

∨
0 < ib < Nb − 1 ∧ 0 < il < b

 0 < tb ∧ 0 ≤ tl < b

∨
tb = 0 ∧ 0 < tl < b

: Temp[tb, ib, tl, il] = 1/3×

(

Temp

 tl = 0 ∧ il = 0 : (tb − 1, ib − 1, b− 1, b− 1)
tl = 0 ∧ il > 0 : (tb − 1, ib, b− 1, il − 1)
0 < tl ∧ il = 0 : (tb, ib − 1, tl − 1, b− 1)
0 < tl ∧ il > 0 : (tb, ib, tl − 1, il − 1)

+ Temp
[
tl = 0 : (tb − 1, ib, b− 1, il)
0 < tl : (tb, ib, tl − 1, il)

]

+Temp

 tl = 0 ∧ il = b− 1 : (tb − 1, ib + 1, b− 1, 0)
tl = 0 ∧ il < b− 1 : (tb − 1, ib, b− 1, il + 1)
0 < tl ∧ il = b− 1 : (tb, ib + 1, tl − 1, 0)
0 < tl ∧ il < b− 1 : (tb, ib, tl − 1, il + 1)

)

Figure 3.7: Jacobi1D computation, after substituting every polyhedron and affine
function by its monoparametric partitioned equivalent, and before the normalization
step. In order to save space, we allow union of polyhedra in the domain of the equations
(instead of having one equation per polyhedron).

Or if a variable S depends on T , which depends on S, at least one of these variables must

have their ratio specified. This condition avoids recursive divisibility equation when we

derive the missing ratio of the program. About the order of derivation of the missing

ratio of the program, under this condition, it is always possible to find a variable for

which all the variables it uses have already been given a ratio. Therefore, by considering

successively such variables, we derive a ratio for all the variables of the program.

We always pick the smallest ratios possible for an expression: indeed, let us assume

that we have derived DTk for a variable Tk and let us consider an equation S[~i] =

g(. . . Tk[fk(~i)] . . .) in which the ratio of S is determined. According to the conditions of

Theorem 3.4, we have to make sure that (D−1Tk .Q.DS) is integral. By taking the lowest

ratio possible for Tk (i.e., the lowest values for DTk), we minimize the risk that this

Chapter III. Monoparametric Partitioning 43

condition is not satisfied, thus the risk that the algorithm does not manage to avoid

modulo constraints.

Ratio derivation algorithm Let us consider an equation in which all the used vari-

ables have a ratio. Two situations might arise, depending on the nature of the equation:

• If the equation is not a reduction: S[~i] = g(T1[f1(~i)], . . . , Td[fd(~i)]). Assuming

that each dependence function fk are of the form fk : (~i 7→ Qk.~i+Q
(p)
k .~p+ ~q), the

constraints that must be satisfied by the ratio of S are:{
(∀1 ≤ k ≤ d) D−1Tk .Qk.DS is integer

(∀1 ≤ k ≤ d) D−1Tk .Q
(p)
k is integer

This means: {
(∀1 ≤ k ≤ d) (∀i, j) (DTk)i divides (Qk)i,j .(DS)j

(∀1 ≤ k ≤ d) (∀i, j) (DTk)i divides (Q
(p)
k)i,j

The last condition (concerning the parameters) does not impact the ratios of S.

Moreover, if this condition is not satisfied, then we must have modulo constraints

on the parameters when partitioning this dependence expression. Let us now study

the first condition to find the smallest ratio of S possible. We factorize (DTk)i as

a product of prime numbers. Because of the first condition, these prime numbers

must be present either inside (Qk)i,j or (DS)j (which is the unknown). If some

of them are already inside (Qk)i,j , they do not need to be in (DS)j . Thus, let

us introduce (δk)i,j , the product of prime factors of (DTk)i which are not inside

(Qk)i,j :

(δk)i,j = (DTk)i/gcd((DTk)i, (Qk)i,j)

The conditions become (∀k)(∀i j), (δk)i,j divides (DS)j . Thus, the smallest ratio

we can take for S are:

(DS)j = lcmk,i((δk)i,j)

• If the equation is a reduction:

S[~i] =
⊕

~i = π(~j)

~j ∈ D

g(T0[f0(~j)], . . . , Td[fd(~j)]).

We consider two ratios for this equation: one corresponding to the subexpression

of the reduction body, and one corresponding to the reduction itself. In order to

determine the minimal ratios for the reduction body DSExpr, we simply use the

Chapter III. Monoparametric Partitioning 44

method described in the case of a normal equation. Then, all that remains is to

partition the projection function π : (~j 7→ Q.~j + Q(p).~p + ~q). The conditions to

avoid modulo constraints when partitioning π are:{
(∀i, j) (DS)i divides Qi,j .(DSExpr)j

(∀i, j) (DS)i divides Q
(p)
i,j

We notice that the divisibility constraints are in the opposite direction than what

we had in the previous case: instead of having to find a value of (DS)i which is

divisible by another value, we have to find a value of (DS)i which divides another

value. Thus, we could just take (DS)i = 1, which is the smallest ratio possible.

However, after simplification, we might obtain a projection function which does not

admit an integer right inverse [48]. For example, if we consider a ratio DSExpr =(
2 0

0 1

)
and a projection function π : (i, j 7→ i), then we obtain a piecewise quasi-

affine function with two branches:

(ib, jb, il, jl) 7→

{
(2.ib, il) when 0 ≤ il < b

(2.ib + 1, il − b) when b ≤ il < 2b

Because a projection function must be a non-piecewise quasi-affine function, we

need to split the reduction into two separate reductions, whose projection function

correspond to a single branch of the piecewise quasi-affine function. However, the

projection functions of the reductions produces by each branch do not admit an

integer right inverse (it admits a rational right inverse, with a division by 2), thus

each obtained reduction is defined over non-polyhedral domains (with the modulo

conditions being respectively “i′b even” and “i′b odd”).

To avoid this situation, we apply a preprocessing step to the program to make

the projection canonic, i.e., of the form (~x, ~y 7→ ~x). Then, we just keep the

ratio of SExpr for the dimensions which are not projected. Under these circum-

stances, the partitioned projection function will have only one branch, of the form

(~xb, ~yb, ~xl, ~yl 7→ ~xb, ~xl).

We call valid ratios of variables a set of ratios which do not introduce modulo conditions

when we use them for a monoparametric partitioning transformation. A set of ratios

which are always valid is (1 × 1 × · · · × 1) for every variable, corresponding to square

shapes. Thus, for any program, there always exist valid ratios of their variable.

Chapter III. Monoparametric Partitioning 45

A

B

C

Figure 3.8: Example 3.8 - Chosen ratios for a matrix multiplication computation.
The chosen ratio are: 2× 2 for A, 2× 1 for B and 1× 2 for C.

Example 3.8. Let us consider a matrix multiplication computation, where the ratios of

A are 2× 2, the ratios of B are 2× 1 and the ratios of C are 2× 1:

(∀0 ≤ i, j < N) C[i, j] =
∑

0≤k<N
A[i, k] ∗B[k, j]

After examining the subexpression of the reduction, we find 2×1×2 as the minimal ratio.

The reduction projects the k dimension, thus the smallest ratio of the right side of the

equation of C is 2× 1. This ratio is exactly the same as C, thus the algorithm succeeds.

A graphical representation of the result of this derivation is shown in Figure 3.8.

Example 3.9. Let us consider the following program, in which A has a ratio of 2, B

has a ratio of 3 and Out a ratio of 1:

(∀0 ≤ i < N) Temp[i] = A[i+ 1] +B[3i]

(∀0 ≤ i < N) Out[i] = Temp[i]

Because the ratio of Temp is not decided yet, we cannot consider first the equation of

Out, and have to start with the equation of Temp. The contribution of A in this equation

(A[i+ 1]) forces the ratio of Temp to be a multiple of 2. The contribution of B in this

equation (B[3i]) forces this ratio to be a multiple of 3/3 = 1. Therefore, the minimal

ratio of Temp is 2.

Then, we consider the equation of Out. The ratio of Temp is 2 and the ratio of Out is

1. Because 1/2 is not an integer, we are forced to introduce a modulo constraint if we

partition this program, and the algorithm fails. If we had picked a multiple of 2 as a the

ratio for Out, the algorithm would have succeed.

Set of possible ratios Let us show that if our algorithm does not manage to find

valid ratios, then such ratios do not exist.

Chapter III. Monoparametric Partitioning 46

Theorem 3.6. The set of valid ratios for a variable are the multiples of a single minimal

ratio, which is the one found by our algorithm.

Therefore, given a set of pre-specified ratios, if our algorithm fails to complete this spec-

ification, then no valid ratios exist.

Proof. At every step of our algorithm, the ratio we pick for each variable is always

the smallest ratio which avoids modulo constraints. The key observation is that all the

constraints on the ratios we consider are divisibility constraints. Thus, if we consider the

prime number decomposition of the ratio we find, our algorithm discards the divisors

which can be eliminated (because of the dependence functions) and only keeps the

divisors which cannot be removed. Therefore, all the ratios that our algorithm find are

the product of the divisors which cannot be eliminated, and hence, are the smallest valid

ratios.

If our algorithm fails, then there exists an equation such that the ratio of the right

side does not divide the ratio of the variable of the equation. This means that there

is at least a divisor of the ratio of the right side which does not divide the ratio of the

variable of the equation. Because our algorithm only keeps all the divisors which cannot

be eliminated, this means that there is not valid ratio.

We notice that a valid ratio for any variable must be a multiple of the minimal ratio we

find. If our compiler framework can manage modulo constraints inside our program, we

are not forced to find a valid ratio of the program. However, as shown in Theorem 3.5,

because the number of branches are usually much larger when modulos are introduced,

we might still want to avoid modulo conditions whenever possible.

3.2.3 Experimental validation

In this subsection, we present our implementation of the rectangular monoparametric

partitioning, and report our experiment with this transformation.

Implementation The rectangular monoparametric partitioning transformation has

been implemented in Java, using the AlphaZ compiler framework [89]. A C++ stan-

dalone version of this transformation for polyhedra and affine functions (manipulated

through their matrix representation) is available online1. We use the fact that the block

and local indices are separated the constraints to manipulate them separately (i.e., we

manipulate cross-product of polyhedra, the first one being on the block indices and the

1http://compsys-tools.ens-lyon.fr/cart/index.html

http://compsys-tools.ens-lyon.fr/cart/index.html

Chapter III. Monoparametric Partitioning 47

second one on the local indices), in order to reduce the cost of the polyhedral operations

performed on them.

We have implemented several options to the monoparametric partitioning transforma-

tion, in order to reduce the size of the transformed program:

• We can specify if the parameters of the program must be multiple of the block

size parameter (i.e., if N is a parameter, we can force that N = Nb.b and the local

parameter is Nl = 0). This option allows us to remove a lot of corner cases. For

example, if we have a two-dimensional square polyhedra {i, j | 0 ≤ (i, j) < N}, if

we do not assume that N is divisible by the block size parameter b, we obtain a

union of 4 polyhedra: one for the full tiles, one for the last column of tiles, one

for the last row of tiles and one for the top-right tile. If the block size parameter

divides N , we only obtain a union of a single polyhedra (corresponding to the full

tile).

• We can specify a minimal value for the block size parameter b. This is especially

useful for uniform dependence functions. For example, if we have an equation

of the form A[i] = B[i − 2], if the ratio of A and B are both 1, the dependence

function (i 7→ i−2) access the previous tile of the variable B for b ≥ 2. However, if

b = 1, this dependence jumps a tile. Hence, when we partition this affine function,

we need a special branch of the resulting piecewise quasi-affine function to treat

this special case. Imposing that b ≥ 2 remove such branch.

• We can specify a minimal value for the block parameters (such as Nb, where N is a

parameter). For example, if we consider a Jacobi1D computation (cf Example 3.7

Page 40), we have a rectangular domain with a special computation at the bottom

row (t = 0) and at the two extremal columns (i = 0 and i = N − 1). Assuming

that the block size parameter b divides the program parameter N = Nb.b, when

Nb = 1 we have a single tile spawning over the length of the domain. To avoid

such extreme case, we can force Nb ≥ 2.

Experiment on the scalability of the monoparametric partitioning transfor-

mation We want to study the scalability of our implementation of the rectangular

monoparametric partitioning transformation. This means that we want to check that

the time performed by our transformation in a compiler is reasonable. In addition, we

want to study the scalability of an arbitrary polyhedral analysis on the transformed

program (which is larger than the original program).

Chapter III. Monoparametric Partitioning 48

As our set of benchmark, we use Polybench/Alpha2 benchmarks, an hand-written Alpha

implementation of the Polybench 4.0 benchmark suite. We run our experiment on a

machine with an Intel Xeon E5-1650 CPU with 12 cores running at 1.6 GHz (max speed

at 3.8GHz), and 31GB of memory.

We run the following experiment for each kernel:

• After parsing the program, we apply the rectangular monoparametric partitioning

transformation. Because the partitioning transformation is the reindexing part

of a tiling, we do not have any legality condition to respect. Thus, we select by

default a rectangular tiling of ratio 1d where d is the number of dimensions of a

variable. We assume that the program parameters (Nb) are multiple of the block

size parameter (b) and we impose a minimal value for both of them.

• We apply a polyhedral analysis after the monoparametric partitioning transforma-

tion, which computes the context domain of each node of the AST of our program.

The context domain of an expression is the set of indices on which the expression

value is needed to compute the output of a program. This analysis performs a tree

traversal of the AST of the program, and regularly performs polyhedral operations

(such as image and preimage) at certain nodes of the AST. Thus, our choice of

using this analysis in order to investigate the scalability of polyhedral analysis

after the partitioning transformation.

Figure 3.9 reports the time taken by each phase for all the kernel of Polybench/Alpha,

and the number of node of the AST of the program after the partitioning transformation.

The time taken by the transformation itself remains reasonable (no more than about 2

seconds for heat-3d). However, the time taken by the following polyhedral analysis (i.e.,

the context domain calculation) is not for the stencils kernels (the kernels from adi to

heat-3d, the later taking up to about 37 minutes).

Indeed, these stencil computations have equations with several uniform dependences

(of the form (~i 7→ ~i + ~c) where ~c is a vector of constants). When we partition these

dependences independently, each dependence becomes a piecewise quasi-affine function

before the normalization post-processing step, each branch of this piecewise function

corresponding to a different tile accessed. After the normalization step, we still have a

lot of branches which cannot be eliminated (because of an empty domain) or merged

(because each computation is unique).

2http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.

polybench/polybench-alpha-4.0/

http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/
http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/

Chapter III. Monoparametric Partitioning 49

Time taken (ms)

co
rr

el
a
ti

o
n

co
va

ri
a
n

ce

g
em

m

g
em

v
er

g
es

u
m

m
v

sy
m

m

sy
r2

k

sy
rk

tr
m

m

2
m

m

3
m

m

Parsing 121 69 62 83 50 118 83 54 43 93 112

Partitioning 300 157 151 178 93 282 439 119 82 308 482

Context Domain 1147 504 163 230 162 1257 685 153 207 319 451

Num AST Nodes 110 66 21 47 29 136 36 21 25 34 39

Num Equations 10 6 2 5 3 14 3 2 3 4 6

Time taken (ms)

at
ax

b
ic

g

d
oi

tg
en

m
v
t

ch
ol

es
k
y

d
u

rb
in

gr
am

sc
h

m
id

t

lu

lu
d

cm
p

tr
is

ol
v

d
er

ic
h

e

Parsing 51 51 54 55 389 121 147 106 179 74 468

Partitioning 112 113 187 159 369 266 398 284 472 139 1213

Context Domain 153 153 185 201 1197 2182 1867 1208 2672 203 2843

Num AST Nodes 25 25 13 29 113 315 123 138 216 39 659

Num Equations 4 4 2 4 15 34 20 20 30 5 40

Time taken (ms)

fl
oy

d
-w

ar
sh

al
l

n
u

ss
in

ov

ad
i

fd
td

-2
d

ja
co

b
i-

1d

ja
co

b
i-

2d

se
id

el
-2

d

h
ea

t-
3d

Parsing 220 122 546 331 139 134 183 278

Partitioning 390 380 2393 1048 678 628 550 3275

Context Domain 335 6845 2m 32s 1m 52s 2913 58s 1m 28s 37m 13s

Num AST Nodes 27 537 11931 4194 334 2836 4684 50170

Num Equations 4 57 570 495 38 194 210 1242

Figure 3.9: Time taken by the hyperrectangular monoparametric partitioning trans-
formation inside the compiler, number of nodes of the AST of the program after the
partitioning transformation and number of equations of the partitioned program. All
the considered stencil computations (adi to heat-3d) have an order of 1.

Chapter III. Monoparametric Partitioning 50

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000

T
im

e
 t

a
ke

n
 (

m
s)

Number of AST Nodes

Figure 3.10: Time taken by the context domain polyhedral analysis against the num-
ber of AST Nodes of the program after the monoparametric partitioning transforma-
tion, plotted in a log-log scale. This plot shows that the size of the program after the
transformation is linked to the time taken by the following polyhedral analysis.

In order to figure out why the context domain calculation takes so much time for some

kernels, we have plotted in Figure 3.10 the time taken by the context domain analysis,

against the number of nodes the AST of the program has after the monoparametric

partitioning transformation. This plot shows a correlation between the time taken and

the size of the AST, thus the main reason the following polyhedral analysis takes so

much time is because of the size of the program afterward.

Hence, building explicitly the entire program after the partitioning transformation is

expensive for the potential polyhedral operations afterward. Notice that if we used a

fixed-size partitioning instead of a monoparametric partitioning, the same issue happens.

However, in our situation, we need to keep all of this information for later, in order

to recognize instances of linear algebra operations. In Chapter 4, we will see how to

distribute these computation into submodules of computation (called subsystems), which

are much smaller than the whole program and can be considered independently.

3.3 General monoparametric partitioning

In Section 3.1 and Section 3.2, we have only considered hyperrectangular monoparametric

partitioning, i.e., hyperrectangular shapes for the partitions. We now show that this

theory can be extended to any polyhedral tile shape (hexagonal [28], diamond [7], etc).

Chapter III. Monoparametric Partitioning 51

First of all, let us describe what a general monoparametric partitioning is. Let us start

from a general fixed size partitioning. We need 3 objects to describe it:

• A non-parametric bounded convex polyhedron P

• A non-parametric integer lattice L of the tile origins (which admits a basis L) and,

• A function T which decomposes any point ~i in the following way:

T (~i) = (~ib, ~il)⇔~i = L.~ib + ~il where (L.~ib) ∈ L and ~il ∈ P

Notice that if the decomposition is not unique, then we have overlapping tiles. If the

decomposition is unique, this partitioning defines a partition of the space. Some parti-

tionings do not have an integral lattice of tile origins (such as diamond partitioning with

non-unimodular hyperplanes). We do not consider partitioning with overlapped tiles or

with non-integral tile origins in this document.

A homothetic transformation a × D, where a is a constant and D is a set, is the set

a×D = {~z | (~z/a) ∈ D}.

Definition 3.7. A general monoparametric partitioning is a partitioning whose tile

shape is the homothetic scaling of a fixed size partitioning, by a factor of b: Pb = b×P.

The new lattice of tile origins is Lb = b×L and we obtain the new partitioning function

Tb from T .

3.3.1 General monoparametric partitioning of polyhedra

Let us consider a n-dimensional polyhedron D = {~i | Q.~i+Q(p).~p+ ~q ≥ ~0} where ~p are

the program parameters. As in Section 3.1, we want to replace ~i by the block indices ~ib

and the local indices ~il, such that ~i = Tb(~ib, ~il) (cf Figure 3.11). We still assume that all

parameters ~p can be decomposed into block and local parameters. Let us show that the

derivation of Theorem 3.2, for a hyperrectangular monoparametric partitioning, can be

adapted to a general monoparametric partitioning.

Let us consider the c-th constraint of D: Qc.~i + Q
(p)
c .~p + qc ≥ 0. We substitute ~i by

b.L.~ib + ~il where ~il ∈ Pb. By doing exactly the same operations as in the proof of

Theorem 3.2, we obtain the following expression:

Qc.L.~ib +Q(p)
c .~pb +

⌊
Qc.~il +Q

(p)
c .~pl + qc
b

⌋
≥ ~0

Chapter III. Monoparametric Partitioning 52

i

j

il

jl

(ib, jb)

4b

2b

Figure 3.11: Example of hexagonal monoparametric blocking for a 2D space. (ib, jb)
are the block indices, which identify a tile, (il, jl) are the local indices, which identify
the position of a point inside a tile. The tile shape is an hexagon with 45◦ slopes and
of size 4b × 2b, and can be viewed as the homothetic scaling of a 4 × 2 hexagon. The
red arrows correspond to a basis of the lattice of tile origins.

We define kc(~il) =

⌊
Qc.~il+Q

(p)
c .~pl+qc
b

⌋
. Because ~il ∈ Pb and Pb = b × P where P is

bounded, kc(~il) only takes a finite number of values. Because the shape of the tile is

more complex than a rectangle, we cannot simply look at the sign of the coefficient to

find the extremal values of kc(~il). Because kc is an affine function and because ~il belongs

to Pb, we use linear programming solvers (such as PIP [23]) to find the extremal values

of kc(~il). The rest of the proof caries on exactly in the same way as for Theorem 3.2.

Therefore, we obtain a union of polyhedron having the same properties as the rectangular

case, for a general form of tiles:

Theorem 3.8. The image of a polyhedron D = {~i | Q.~i + Q(p).~p + ~q ≥ ~0} by a general

monoparametric partitioning transformation is:

∆ =
m⋂
c=1

[⊎
kmin
c <kc≤kmax

c

~ib, ~il
∣∣∣ Qc.L.~ib +Q

(p)
c .~pb + kc = 0

b.kc ≤ Qc.~il +Q
(p)
c .~pl + qc

~il ∈ Pb

]

{
~ib, ~il

∣∣∣ Qc.L.~ib +Q
(p)
c .~pb + kminc ≥ 0

~il ∈ Pb

}]

where ~k enumerates the possible values of
⌊
Q.~il+Q

(p).~pl+~q
b

⌋
.

After distributing the intersection across the unions and eliminating the empty polyhe-

dral, we obtain as many polyhedra as the number of different tile shapes of the parti-

tioned version of D (which is, at most, the number of different values of ~k).

Example 3.10. Let us consider the following polyhedron: {i, j | j − i ≤ N ∧ i + j ≤
N ∧ 0 < j} and the following partitioning:

Chapter III. Monoparametric Partitioning 53

i

j

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

Figure 3.12: Polyhedron and tiling of Example 3.10. The dots correspond to the tile
origins of the tiles contributing to the polyhedron. The blue arrows show the basis of
the lattice of tile origins.

• Pb = {i, j | − b < j ≤ b ∧ − 2b < i+ j ≤ 2b ∧ − 2b < j − i ≤ 2b}

• Lb = L.b.Z2 where L =

[
3 3

1 −1

]

For simplicity, we assume that N = 6.b.Nb + 2b, where Nb is a positive integer. A

graphical representation of the polyhedron and of the tiling is shown in Figure 3.12.

Let us start with the first constraint of the polyhedron.

j − i ≤ N ⇔ 0 ≤ 6.b.Nb + 2.b+ b.(3.ib + 3.jb) + il − b.(ib − jb)− jl
⇔ 0 ≤ 6.Nb + 2 + 2.ib + 4.jb +

⌊
il−jl
b

⌋
where −2b ≤ il − jl < 2b. Therefore, k1 =

⌊
il−jl
b

⌋
∈ [| − 2, 1|]. For k1 = −1 and 1, the

equality constraint 6.Nb + 2.ib + 4.jb + 2 + k1 = 0 is not satisfied (because of the parity

of its terms), thus the corresponding polyhedra are empty.

Let us examine the second constraint of the polyhedron.

i+ j ≤ N ⇔ 0 ≤ 6.b.Nb + 2.b− b.(3.ib + 3.jb)− il − L.b.(ib − jb)− jl
⇔ 0 ≤ 6.Nb + 2− 4.ib − 4.jb +

⌊
−il−jl
b

⌋
where −2b ≤ −il − jl < 2b. Therefore k2 =

⌊
−il−jl
b

⌋
∈ [| − 2, 1|]. For the same reason

as the previous constraint, k2 = −1 and 1 lead to empty polyhedra.

Let us examine the third constraint of the polyhedron.

0 ≤ j − 1 ⇔ 0 ≤ b.(ib − jb) + jl − 1

⇔ 0 ≤ ib − jb +
⌊
jl−1
b

⌋

Chapter III. Monoparametric Partitioning 54

where −b ≤ jl − 1 < b. Therefore k3 =
⌊
jl−1
b

⌋
∈ [| − 1, 0|]

Therefore, we obtain a union of 2 × 2 × 2 = 8 polyhedra, which are the result of the

following intersections:[
{ib, jb, il, jl|0 ≤ 6.Nb + 2.ib + 4.jb ∧ (il, jl) ∈ Tb}
]{ib, jb, il, jl|0 = 6.Nb + 2.ib + 4.jb + 2 ∧ (il, jl) ∈ Tb ∧ 0 ≤ il − jl}

]

∩

[
{ib, jb, il, jl|0 ≤ 6.Nb − 4.ib − 4.jb ∧ (il, jl) ∈ Tb}
]{ib, jb, il, jl|0 = 6.Nb − 4.ib − 4.jb + 2 ∧ (il, jl) ∈ Tb ∧ 0 ≤ −il − jl}

]

∩

[
{ib, jb, il, jl|0 ≤ ib − jb − 1 ∧ (il, jl) ∈ Tb}
]{ib, jb, il, jl|0 = ib − jb ∧ (il, jl) ∈ Tb ∧ 0 ≤ jl − 1}

]

3.3.2 General monoparametric partitioning of affine functions

Let us consider an affine function f : (~i 7→ Q.~i+Q(p).~p+ ~q) and two partitionings: one

for the input indices and one for the output indices (denoted with primes). Note that

the “tile shapes” in the input and output dimensions, Pb and P ′b might be different. Let

us show how to adapt the derivation of Theorem 3.3 to these general partitionings.

Theorem 3.9. Given two general monoparametric partitioning transformations (Tb and

T ′b) and any affine function (f(~i) = Q.~i+Q(p).~p+ ~q), the composition (T ′b ◦ f ◦ T −1b)

is a piecewise quasi-affine function, whose branches are of the form:

φ(~ib, ~il) =

(
L′−1.Q.D.~ib + L′−1.Q(p).~pb + ~k − ~k′

Q.~il +Q(p).~pl + ~q + b.L′(~k′ − ~k)

)

if

b.~k ≤ L′−1.Q.~il + L′−1.Q(p).~pl + L′−1.~q < b.(~k +~1)

Q.~il +Q(p).~pl + ~q + b.L′(~k′ − ~k) ∈ P ′b
~il ∈ Pb

for each ~k ∈ [|~kmin;~kmax|], for each ~k′ ∈ [|~k′
min

; ~k′
max
|], where L,L′ are bases of the

lattices of tile origins of respectively T and T ′, and assuming that (L′−1.Q.L) and

(L′−1.Q(p)) are integer matrices.

Proof. Starting from the definition of f , we perform the same manipulation as in the

proof of Theorem 3.3 to obtain:

~ib
′
+

⌊
L′−1.~il

′

b

⌋
=

⌊
L′−1.Q.L.~ib + L′−1.Q(p).~pb +

L′−1.(Q.~il +Q(p).~pl + ~q)

b

⌋

Chapter III. Monoparametric Partitioning 55

However, in the case of a non-rectangular partitioning, ~k′(~il
′
) =

⌊
L′−1.~il

′

b

⌋
is not always

equal to 0, so we cannot eliminate it, as in the rectangular case 3. Because ~il
′ ∈ P ′b,

~k′(~il
′
) only takes a finite number of values, whose extremal values can be determined

through a linear programming solver.

For each value ~k′ of ~k′(~il
′
), we perform the same analysis as in Theorem 3.3. The

new necessary and sufficient condition to avoid modulo conditions is that the matrices

L′−1.Q.L and L′−1.Q(p) are integral. After defining ~k(~il) =
⌊
L′−1.(Q.~il+Q

(p).~pl+~q)
b

⌋
, we

obtain a piecewise quasi-affine function in which each branch corresponds to a different

value of ~k(~il).

Finally, we gather the constraints for each branch. From the definition of ~k, we obtain

the following constraint:

b.~k ≤ L′−1.Q.~il + L′−1.Q(p).~pl + L′−1.~q < b.(~k +~1)

From the definition of ~k′ and after substituting ~il
′

by its value, we obtain the following

constraint

b.~k′ ≤ L′−1.(Q.~il +Q(p).~pl + ~q − b.L′.~k) < b.(~k′ +~1)

However, after simplification, we obtain exactly (and surprisingly) the same constraint

as we got from the definition of ~k. The two remaining constraints are ~il ∈ Pb and ~i′l ∈ P
′
b

(in which ~i′l can be substituted by its value).

Finally, we regroup all the branches derived for every ~k′ to form the partitioned piecewise

quasi-affine function corresponding to f .

Note that the condition to avoid modulo constraints is that L′−1.Q.L and L′−1.Q(p) are

integral. This condition depends only on the lattice of the tile origins and the coefficient

matrix of the polyhedron, but is independent of the shape of a tile considered.

Example 3.11. Let us consider the identity affine function (i, j 7→ i, j), and let us

consider the two following partitionings:

• For the input space, we choose an hexagonal tiling:

– Tb = {i, j | − b < j ≤ b ∧ − 2b < i+ j ≤ 2b ∧ − 2b < j − i ≤ 2b}

– Lb = L.b.Z2 where L =

[
3 3

1 −1

]
3Intuitively, ~k′ = ~0 means that ~il

′
belongs to the parallelepiped {L′.~z|~0 ≤ ~z < ~1}. For a hyperrectan-

gular tile, this is always the case, but for the hexagonal tile shown in Figure 3.12, it only corresponds
to the portion of the hexagon between the two red arrows

Chapter III. Monoparametric Partitioning 56

i

j

Figure 3.13: Overlapping of the rectangular (in green) and the hexagonal tiles intro-
duced in Example 3.11

• For the output space, we choose a rectangular tiling, with the same lattice:

– T ′b = {i, j | 0 ≤ i < 3b ∧ 0 ≤ j < 2b}

– L′b = L′.b.Z2 where L′ =

[
3 3

1 −1

]

An overlapping of these two tilings is shown in Figure 3.13.

The derivation goes as follow:[
i′

j′

]
=

[
i

j

]

⇔ L′.b.

[
i′b

j′b

]
+

[
i′l

j′l

]
= L.b.

[
ib

jb

]
+

[
il

jl

]

⇔

[
i′b

j′b

]
+ L′−1.1b .

[
i′l

j′l

]
=

[
ib

jb

]
+ L′−1.1b .

[
il

jl

]

Because L′−1 = 1
6 .

[
1 3

1 −3

]
, then the constraints become:

{
i′b +

i′l+3.j′l
6b = ib + il+3.jl

6b

j′b +
i′l−3.j

′
l

6b = jb + il−3.jl
6b

After taking the floor of these constraints: i′b +
⌊
i′l+3.j′l

6b

⌋
= ib +

⌊
il+3.jl

6b

⌋
j′b +

⌊
i′l−3.j

′
l

6b

⌋
= jb +

⌊
il−3.jl

6b

⌋

We define k′1 =
⌊
i′l+3.j′l

6b

⌋
, k1 =

⌊
il+3.jl

6b

⌋
, k′2 =

⌊
i′l−3.j

′
l

6b

⌋
and k2 =

⌊
il−3.jl

6b

⌋
. After

analysis of the extremal values of these quantities, we obtain:

Chapter III. Monoparametric Partitioning 57

• k1 ∈ [| − 1; 0|] and k2 ∈ [| − 1; 0|]

• k′1 ∈ [|0; 1|] and k′2 ∈ [| − 1; 0|]

Therefore, we obtain a piecewise quasi-affine function with 16 branches (one for each

value of (k1, k
′
1, k2, k

′
2)). Each branch has the following form:(

ib + k1 − k′1, jb + k2 − k′2, il + 3b(k′1 + k′2 − k1 − k2), jl + b(k′1 + k2 − k1 − k′2)
)

when 0 ≤ il + 3b(k′1 + k′2 − k1 − k2) < 3b ∧ 0 ≤ jl + b(k′1 + k2 − k1 − k′2) < 2b

k1.b ≤ il + 3jl < (k1 + 1).b ∧ k2.b ≤ il − 3jl < (k2 + 1).b

−b < jl ≤ b ∧ − 2b < il + jl ≤ 2b ∧ − 2b < jl − il ≤ 2b

3.3.3 General monoparametric partitioning program transformation

In the previous subsections, we have extended the closure properties for the polyhedron

and affine function, we can apply in a similar way the general monoparametric parti-

tioning transformation to a complete polyhedral program. In this subsection, we show

how to extend the compatibility algorithm to manage general tiles.

In Section 3.2, we manipulated rectangular tile sizes D.b, which correspond to a special

case of the lattice of tile origins, were the basis is canonic. In the general case, we

manipulate lattice bases, whose vectors are the columns of an invertible matrix L. The

constraints to avoid modulo conditions are of the form “the matrix L′−1.Q.L is integral”,

which is the same as saying that the input lattice Q.L.Zn is a subset of the output lattice

L′.Zm. For similar reasons as in the hyperrectangular case, we want to select the lattice

of minimal basis, i.e., to minimize the size of the considered tiles.

The same derivation algorithm can be adapted to affine lattices:

• For a normal edge in the PRDG, corresponding to 〈S,~i〉 = g(〈T1, f1(. . . , 〈Tk, fk(~i) . . . 〉),
and assuming fk is of the form fk : (~i 7→ Qk.~i+Q

(p)
k .~p+ ~qk), the constraints that

must be satisfied by the lattice of tile origins of S are:{
(∀1 ≤ k ≤ d) L−1Tk .Qk.LS is integer

(∀1 ≤ k ≤ d) L−1Tk .Q
(p)
k is integer

Once again, we drop the second constraint. The first constraint means that all

the lattices L−1TkQk.LS .Z
n are subsets of the lattice Zm. Therefore, the lattices

Qk.LS .Zn are subsets of the lattices LTk .Zm, for 1 ≤ k ≤ d. Let us define the

affine functions uk : (~z 7→ Qk.~z). The lattices uk(LS .Zn) are subsets of the lattices

LTk .Zm, 1 ≤ k ≤ d. Because [u(A) ⊂ B ⇒ A ⊂ u−1(B)], this constraints means

Chapter III. Monoparametric Partitioning 58

that the lattice LS .Zn is a subset of all the preimages of the lattice LTk .Zm by the

affine function uk. Therefore, we have:

LS .Zn ⊂
⋂

1≤k≤d
u−1k (LTk .Z

m)

We compute the right affine lattice, then take any of its bases as the value of LS .

There is no constraint on the tile shape for S, thus we select any one we want.

• If the statement is a reduction:

〈S,~i〉 =
⊕

~i = π(~j)

~j ∈ D

g(〈T0, f0(~j)〉, . . . , 〈Td, fd(~j)〉).

For similar reasons as stated in Section 3.2, we assume that the projection function

is canonic. When we tile the projection function, if the result is a piecewise quasi-

affine function, the affine function inside a branch might not admit an integer

right inverse. One method, to be sure that the resulting projection function will

be correct, is to force the tile shape of the subexpression of the reduction to be

hyperrectangular. Indeed, for such a form, projecting along a canonic dimension

is trivial, but this forces the tile shape of statement S to be a rectangle. A more

general way is to force the shape of the subexpression to be an orthogonal prism,

whose base is the tile shape of S and which spans across the projected dimensions.

3.4 Discussion

Adaptation to fixed-size partitioning It is possible to obtain a fixed-size parti-

tioned code from a monoparametric partitioned code. For example, if we want to apply

a rectangular partitioning with constant tile sizes t1 × t2 × · · · × tn, we take as a block

size parameter b = gcd(t1, t2, . . . , tn) and we use the ratio D = Diag(t1b ,
t2
b , . . . ,

tn
b).

Adaptation between different partitioning Let us consider an identity function

(~i 7→~i), with different tilings on both sides of the function. By computing the monopara-

metric partioned version of this function, we obtain a piecewise quasi-affine function

which can be used to adapt the indices of two statements with two different partition-

ings. For example, we can theoretically mix an hexagonal and a rectangular partitioning

in a program.

Chapter III. Monoparametric Partitioning 59

Partitioning a subset of the indices When we apply the monoparametric parti-

tioning transformation to a polyhedron or an affine function, we are forced to decompose

all the original indices ~i into their block and local counterpart (~ib and ~il). We can relax

slightly this condition, by asking that an index which is inside the same constraint or

affine expression than another partitioned index must be also partitioned. For example,

we have a constraint i ≤ j and if we try to partition only i, we obtain a constraint of

the form ib.d.b + il ≤ j (where d is the ratio for the ith dimension) which cannot be

transformed into an affine constraint. Hence, we also have to partition j.

Therefore, if a set of indices does not interact with the partitioned indices, we can avoid

decomposing them. For example, if we consider a matrix multiplication computation

((∀0 ≤ i < N, ∀0 ≤ j < M) C[i, j] =
∑

0≤k<K A[i, k] × B[k, j]), if we partition the

indices i and j, we are not forced to partition the index k, because it does not interact

with i and j.

Partitioning all the indices does not mean we need to tile all the dimensions

We emphasize the fact that partitioning all the dimensions does not necessarily implies

that we must eventually tile all the dimensions. Indeed, the monoparametric partitioning

transformation is just a reindexing transformation which replace the original indices into

new block and local indices. This transformation does not change the schedule of the

program. The newly introduced indices are needed to be able to express the new tiling

schedule, but we are not forced to use all of them.

For example, if we consider a variable with a 3-dimensional domain (over i, j, k) and

assuming that we already have a schedule, which iterates over this domain through a

lexicographic order. After partitioning, the schedule becomes (ib, il︸︷︷︸
i

, jb, jl︸︷︷︸
j

, kb, kl︸ ︷︷ ︸
k

), which

iterates over all the points exactly at the same order as the original schedule.

If we want to tile only the dimensions j and k, we can use the schedule (jb, kb, ib, il︸︷︷︸
i

, jl, kl),

in which each tile (jb, kb) is a strip of computation along the i dimension. If we want

to use the original index i later, inside the generated code, we can recover it though the

non-linear equality i = ib.d.b+ il.

Flexibility of polyhedral code generator and monoparametric tiling Because

the general parametric tiling transformation is not a polyhedral transformation, the

current polyhedral compilers hard-code this transformation in their code generator. This

means that if we want to change the analysis or transformations performed after the

parametric tiling transformation, we have to modify the code generator. A typical

Chapter III. Monoparametric Partitioning 60

example can be found in [44] where two code generators where implemented in order to

exploit wavefront parallelism or canonic parallelism. Thus, we lose in flexibility in our

compiler framework.

The monoparametric partitioning transformation is a polyhedral transformation, which

means that the transformed program is still polyhedral. Thus, we are still able to

apply any polyhedral analysis or transformation after partitioning. For example, we can

introduce a new level of partitioning almost for free, just by applying the partitioning

transformation on the newly introduced local indices (which do not interact with the

block indices, thus which can be partitioned independently), and without having to

implement a new code generator for this strategy.

Intra-tile dependence analysis and legality condition of tiling It is possible to

recover the informations about dependence between tiles from a partitioned program.

Indeed, the information about which tiles depend on which tiles is explicitly given by

the blocked dimensions of the partitioned dependence functions. Notice that we do not

need to apply the monoparametric partitioning transformation to the whole program to

recover these informations.

The intra-tile dependences are useful to determine if a tiling is legal, i.e. if there is no

cyclic dependences between tiles. The method used by current polyhedral compilers is

to check that all the dependences cross the tiling hyperplanes in the same direction.

Instead of using this sufficient condition, we can project the domains and dependences

of the program on their blocked dimensions, to build a graph whose nodes are the

tiles and whose edges are the dependences between two different tiles. Checking the

legality condition of tiling is equivalent to checking that there is no cyclic dependences

in this graph. We can consider this graph as a reduced dependence graph and check

if the corresponding program admits a schedule (using a scheduling algorithm such as

in [15, 25]). This way of checking the legality of a tiling is more expensive than the

commonly-used sufficient condition, but is necessary and sufficient.

An example of program on which the tiling is legal, but the hyperplane condition fails

is the following:

(∀ −N ≤ i ≤ N, 0 ≤ j < N)A[i, j] = A[−b− 1− 2i, j];

where b is the size of a tile. Note that this example also works for a constant tile size.

Because of the dependence (i, j 7→ −b − 1 − 2i, j), the dependences cross any tiling

hyperplane in both directions. Let us show that the tiling is still legal, and that we can

conclude so through our method.

Chapter III. Monoparametric Partitioning 61

When we apply the monoparametric partitioning transformation to the dependence func-

tion, we obtain the following piecewise function:

(ib, jb, il, jl) 7→

{
(−2ib − 2, jb, b− 1− 2il, jl) if − b ≤ −1− 2il < 0

(−2ib − 3, jb, 2b− 1− 2il, jl) if − 2b ≤ −1− 2il < −b

When extracting the blocked part of this piecewise dependence, we build the graph of

dependences between tiles, where there is only two edges: (ib, jb 7→ −2ib − 2, jb) and

(ib, jb 7→ −2ib − 3, jb). By enumerating all possibilities, we can prove that there is no

cycle in this graph. Thus, there is no cycle between tiles and the rectangular tiling is

legal.

Extension to (fully) parametric partitioning In the next few paragraph, we will

study if is it possible to adapt the monoparametric partitioning to have a fully parametric

partitioning, and what makes such adaptation not possible in some situations.

In certain situations, we can use the monoparametric partitioning transformation to

obtain a full-parametric partitioning. Indeed, we can partition groups of indices of a

program using different tile size parameters b1, b2, . . . if these groups of indices do not

interact with each other. For example, if we consider a matrix multiplication compu-

tation between rectangular matrices, each index does not interact with the others, thus

we can obtain a fully parametrized tiled code through the monoparametric partitioning

transformation while obtaining an affine program.

However, as soon as two indices with different tile size parameter interact with each

other, when we try to follow the same derivation than the monoparametric partitioning

transformation, we obtain a term of the form
⌊
b1
b2

⌋
, which is not affine.

To get an intuition of why it cannot work, let us consider a polyhedron containing only

the constraint i + j ≤ 0, and let us see what happens when we try to tile it with a

parametric tile size b1 × b2. As shown by Figure 3.14, there are two reasons why the

result cannot be expressed in the polyhedral model:

• Let us estimate the number of different tile shapes on the diagonal. The constraints

i ≤ j goes through the integer point (0, 0), and we can show that the next integer

point it is going through is (lcm(b1, b2), lcm(b1, b2)) where lcm(x, y) is the least

common multiple of x and y. Thus, we have O(lcm(b1, b2)/b1) ≈ O(b1 + b2)

different type of tiles.

• If we consider the shape of the diagonal tile (ib, jb) = (0,−1), this shape happens

for every tile (ib, jb) such that b1.ib+b2(jb+1) = 0, which is not an affine constraint.

Chapter III. Monoparametric Partitioning 62

b1

b2

lcm(b1, b2)

lcm(b1, b2)

(0,-1)

Figure 3.14: Parametric tiling with b1 × b2 rectangular tile sizes on the polyhedron
i + j ≤ 0. If we study the shape of the tiles on the diagonal between (0, 0) and
(lcm(b1, b2), lcm(b1, b2)), we already have a parametric number of different tile shapes

Also note that the constraints of the shapes themselves are polyhedral (ex: il + jl ≤ b2

for the diagonal tile (ib, jb) = (0,−1)). Therefore, it is not possible to express this union

as a polyhedral union, even if it might be possible to exploit the fact that each shape is

polyhedral.

Chapter 4

From Partitioning to Tiling

In the previous chapter, we have presented the monoparametric partitioning transforma-

tion, which is a reindexing transformation. It introduces a new set of indices, identifying

which block contains a given point, and what are its local coordinate inside such block.

In this chapter, we use this transformation to express a tiling. The main addition of the

monoparametric tiling transformation compared to the partitioning equivalent is that

the tiles are atomic. We have seen in Section 3.4 that we can force this atomicity by

changing the schedule of the program, if it admits one.

We start this chapter by presenting an extension of our program representation in Sec-

tion 4.1. We allow hierarchical programs where it is possible to “call” other subprograms

(called subsystems [19]). In addition, we impose that the subsystems are atomic. This

allows us to express a tiling without having to consider the schedule of a program. It

also allows us to isolate explicitly the computation of each tile, so that we can consider

them independently later in Chapter 6.

In Section 4.2, we will show how to apply the monoparametric tiling transformation on

a program which does not contain reductions. We first introduce the notion of tile group

which identify set of variables which will share the same tile space. Then, we describe

how we build the different subsystems corresponding to the tiles. The key part of this

transformation is the classification of the tiles according to their computation, i.e., into

kind of tiles. We show that there is a finite non-parametric number of them, thus we

can generate one subsystem per kind of tile. Then, we have to identify the inputs and

outputs of each subsystem. Finally, we need to create a main system which will call the

other subsystems and communicate the correct values between each of them.

In Section 4.3, we will consider program which contains reductions. In particular, be-

cause the projected dimensions of the reductions are also tiled, we have to create a new

63

Chapter IV. From Partitioning to Tiling 64

variable for each reduction. Such a variable requires a special management in order to

keep the legality of the tiling. Finally, we present the extension of the monoparametric

tiling transformation to program with reductions. We evaluate the scalability of our

transformation in Section 4.4.

4.1 Hierarchical programs

This section presents an extension of our program representation which allows us to

call other programs, i.e., structuration. We introduce a new type of equations, called

use equations. A use equation corresponds to a call another program (called a subsys-

tem [19]), provides the inputs to this program, and retrieves its outputs. Contrary to

the formalism introduced in [19], we assume in this document that the subsystems are

atomic. This means that all of their inputs must be ready before calling a subsystem,

and all of their outputs can be retrived at once.

The syntax of a use equation is the following:

use Dext name[parameters] (list of input expressions) returns (list of output

variables);

where the extension domain Dext is optional. The role of each object and the semantic

of this use equation will be introduced incrementaly in the rest of this section. We first

consider the case where a use equation does not have an extension domain, then the

case where it does.

Use equation without extension domain Let us first consider the case where there

is no Dext (which is called the extension domain). The meaning of this equation is the

following. First, the main system computes the input expressions, before calling the

subsystem (called ”name”) on these inputs, with a list of affine expressions of the pa-

rameters (corresponding to the parameters of the new system). The subsystem performs

its computation atomically, i.e., independently for the rest of the computation. Finally,

the outputs of the subsystem are retrieved and stored inside some variables of the main

system.

Example 4.1. Let us consider the following example, in which the main program com-

putes the mean value of a vector of size N , and calls a subsystem which computes the

Chapter IV. From Partitioning to Tiling 65

Mean

Temp

A

•

Res

Vect

sum

Figure 4.1: PRDG of the program described in Example 4.1. The use equation is
represented by an hyperedge, with one source per output and one destination per input.

sum of the values of a vector:

Program “sum” : input: V ect (defined on {i|0 ≤ i < N})

output: Res (scalar)

parameter: N

Res =
∑

0≤k<N
V ect[k];

Program “mean” : input: A (defined on {i|0 ≤ i < N})

output: Mean (scalar)

local: temp (scalar)

parameter: N

use sum [N] (A) returns (temp);

Mean = temp/N ;

If we consider the PRDG view of our program representation, a use equation corresponds

to a special kind of hyperedge, labelled by a program name, connected to multiple inputs

and outputs nodes. For example, the PRDG of the program described in Example 4.1

is shown in Figure 4.1

Use equation with extension domain Let us consider a program which performs

a scalar product and let us assume that we want to use it as a subsystem to perform a

matrix multiplication. In the matrix multiplication program, we need to instantiate the

Chapter IV. From Partitioning to Tiling 66

scalar product subsystem a parametric number of times. It can be done by using the

extension domain Dext. Each integer point iext ∈ Dext corresponds to one subsystem

instance. This iext can be used as parameters in the rest of the use equation. More

precisely:

• The indices can be used to specify the parameters of the subsystem.

• The first dimensions of the input expressions correspond to the dimensions of the

extension domain (like in a functional “map”)

• The first dimensions of the output variables correspond to the dimensions of the

extension domain. All the results from every subsystem call are gathered in the

same common variables (like in a “map”)

Example 4.2. Let us assume that we want to implement a matrix-vector product, where

the matrix is lower-triangular, by using a subsystem which implements a scalar product:

Program “scalProd” : inputs: V ect1, V ect2 (both defined on {i|0 ≤ i < M})

output: Res (scalar)

parameter: M

Res =
∑

0≤k<M
V ect1[k] ∗ V ect2[k];

Program “triMatVectProd” : inputs: V ect (defined on {i|0 ≤ i < N})

L (defined on {i, j|0 ≤ i ≤ j < N})

output: vectRes (defined on {i|0 ≤ i < N})

parameter: N

use{k|0 ≤ k < N} scalProd [k]

((k, i→ i)@V ect, L)

returns (vectRes);

where (k, i→ i)@V ect is a 2-dimensional expression whose value at (k, i) is V ect[i].

In this example, we have N different subsystems call. The k-th call computes the product

of two vectors of size k. The first one is the first k elements of V ect, the second one is

the kth row of L. The value produced by the k-th instance of the subsystem is the k-th

element of vectRes.

Chapter IV. From Partitioning to Tiling 67

4.2 Monoparametric tiling without reduction

We present how to apply the monoparametric tiling transformation such that the compu-

tation of each tile is separated into a different subsystem. In this section, we will consider

programs without reductions, before removing this restriction in the following section.

The monoparametric tiling transformation is a combination of the monoparametric par-

titioning transformation with an outlining transformation. An outlining transformation

is a transformation which encapsulates a portion of the computation of a system inside

a new subsystem. Its reverse is called the inlining transformation.

In Subsection 4.2.1, we present the kind of code we want to obtain after the monopara-

metric tiling transformation through an example. Then, in Subsection 4.2.2, we talk

about an adaptation to the monoparametric partitioning transformation which exposes

the blocked and local indices. In order to allow tile spaces shared by several variables

(which might be required by the legality conditions), we introduce the notion of tile

group in Subsection 4.2.3. Finally, we present our transformation in Subsection 4.2.4.

4.2.1 Example - Smith Waterman

In this subsection, we present an example of application of the monoparametric tiling

transformation. We consider the following program which corresponds to a Smith-

Waterman computation, with no diagonal dependence:

Out = A[N − 1, N − 1]

(∀i = j = 0) A[i, j] = w[0, 0];

(∀i = 0 < j < N) A[i, j] = A[i, j − 1] + w[i, j − 1];

(∀j = 0 < i < N) A[i, j] = A[i− 1, j] + w[i− 1, j];

(∀0 < (i, j) < N) A[i, j] = min(A[i− 1, j] + w[i− 1, j], A[i, j − 1] + w[i, j − 1]);

where w is an input of the program, and N a program parameter. A graphical repre-

sentation of this program is shown in Figure 4.2.

First of all, let us remark that the rectangular tiling is legal, and let us consider a

monoparametric tiling transformation with square tiles (1 × 1 ratio). We also assume

for simplicity that the tile size parameter b divides N . We also tile the variables A and

Out separately. This tiling is also shown in Figure 4.2.

Kind of tiles In the tiled code we want to generate, the computation of each tile is

enclosed inside a subsystem. If two tiles have a different computation, we have to use

two different subsystems. If two tiles have the same computation (but are called using

Chapter IV. From Partitioning to Tiling 68

i = (ib, il)

j = (jb, jl)

in

in

out
Kind of tiles:

: ib = 0, jb = 0
: ib = 0, jb > 0
: ib > 0, jb = 0
: ib > 0, jb > 0

: Separation between the branches
of the original system

Figure 4.2: Example of Subsection 4.2.1: Monoparametric tiling of a Smith-Waterman
computation

different input values), then we can reuse the same subsystem for both tiles. This means

that we have to classify the tiles according to their computation, in order to generate

one subsystem for each different computation. This classification is called kind of tiles.

In this example, we have 4 different kinds of tiles, as shown in Figure 4.2, because of

the special computation performed in the first row and column (i = 0 and j = 0). The

first kind of tile (occurs at ib = jb = 0, in green in the figure) has a special computation

on its first row and column (il = 0 and jl = 0). The second kind of tile (occurs for all

the ib = 0 and jb > 0, in yellow in the figure) has a special computation only on its

first row (il = 0). The third kind of tile (occurs for all the ib > 0 and jb = 0, in blue

in the figure) has a special computation only on its first column (jl = 0). The fourth

kind of tile (occurs for all the ib > 0 and jb > 0, in orange in the figure) has no special

computation. Thus, we will have 4 different subsystems generated.

Building the subsystems Let us consider a kind of tile. In order to build the cor-

responding subsystem, we need to know its computation, and its inputs/outputs. Its

computation can be determined by applying the monoparametric partitioning transfor-

mation to the program, then classify the equations according to the constraints on the

block indices. For example, for the kind of tile • (ib > 0, jb > 0), the corresponding

Chapter IV. From Partitioning to Tiling 69

equations in the partitioned system are the following:

(∀0 < ib, jb) (∀0 = il = jl) Â[ib, jb, il, jl] = min(Â[ib − 1, jb, b− 1, jl]

+ŵ[ib − 1, jb, b− 1, jl], Â[ib, jb − 1, il, b− 1] + ŵ[ib, jb − 1, il, b− 1]);

(∀0 < ib, jb) (∀0 = il < jl) Â[ib, jb, il, jl] = min(Â[ib − 1, jb, b− 1, jl]

+ŵ[ib − 1, jb, b− 1, jl], Â[ib, jb, il, jl − 1] + ŵ[ib, jb, il, jl − 1]);

(∀0 < ib, jb) (∀0 = jl < il) Â[ib, jb, il, jl] = min(Â[ib, jb, il − 1, jl]

+ŵ[ib, jb, il − 1, jl], Â[ib, jb − 1, il, b− 1] + ŵ[ib, jb − 1, il, b− 1]);

(∀0 < ib, jb) (∀0 < il, jl) Â[ib, jb, il, jl] = min(Â[ib, jb, il − 1, jl]

+ŵ[ib, jb, il − 1, jl], Â[ib, jb, il, jl − 1] + ŵ[ib, jb, il, jl − 1]);

Once we have identify the computation of each kind of tile, we need to find what are

the inputs and outputs of each kind of tile. The inputs can be determined by examining

the dependences of the computation of the subsystem. Because the block indices are

explicit, we can immediately identify when a value is produced outside of the current

tile. In our case, we obtain the following subsystem:

Parameters: Nl(= 0), b

Input variables:

Ain1, defined over {il, jl|il = b− 1} and corresponding to the block A[ib − 1, jb]

Ain2, defined over {il, jl|jl = b− 1} and corresponding to the block A[ib, jb − 1]

win0, defined over {il, jl|0 ≤ il, jl < b} and corresponding to the block w[ib, jb]

win1, defined over {il, jl|il = b− 1} and corresponding to the block w[ib − 1, jb]

win2, defined over {il, jl|jl = b− 1} and corresponding to the block w[ib, jb − 1]

Local variable:

Aloc, defined over {il, jl|0 ≤ il, jl < b} and corresponding to the block A[ib, jb]

Output variable: Not built yet...

Equations:

(∀il = jl = 0) Aloc[il, jl] = min(Ain1[b− 1, jl] + win1[b− 1, jl],

Ain2[il, b− 1] + win2[il, b− 1]);

(∀il = 0, jl > 0) Aloc[il, jl] = min(Ain1[b− 1, jl] + win1[b− 1, jl],

Aloc[il, jl − 1] + win0[il, jl − 1]);

(∀il > 0, jl = 0) Aloc[il, jl] = min(Aloc[il − 1, jl] + win0[il − 1, jl],

Ain2[il, b− 1] + win2[il, b− 1]);

(∀il, jl > 0) Aloc[il, jl] = min(Aloc[il − 1, jl] + win0[il − 1, jl],

Aloc[il, jl − 1] + win0[il, jl − 1]);

Finally, we just need to determine the outputs of this subsystem. After building all

the subsystems without their outputs, we know which values of a variable are needed

Chapter IV. From Partitioning to Tiling 70

outside of its tile. In our case, we know that the last row and last column of a block of

A can be asked by its neighbor tiles ((ib, jb + 1) and (ib + 1, jb), if these tiles exist). We

create two outputs variables corresponding to the data which might be asked by these

tiles, and the corresponding copy equations from Aloc.

Thus, we just need to add the following output variables and equations to the subsystem

we have previously presented:

Output variables:

Aout1, defined over {il, jl|il = b− 1} which might be asked by the block A[ib + 1, jb]

Aout2, defined over {il, jl|jl = b− 1} which might be asked by the block A[ib, jb + 1]

Equations:

Aout1[il, jl] = Aloc[il, jl];

Aout2[il, jl] = Aloc[il, jl];

Building the main system The main system of the tiled program contains the use

equations, and do not contains any actual information. For our example, the main

system is described in Figure 4.3. Because we have 4 kinds of tile, we have 4 use

equations, calling the 4 different subsystems. We have one local variable per output of

the use equations (the AoutXY , where X = 1 . . . 4 and Y = 1, 2)

About the inputs of the use equations, because the values passed might come from a tile

which belongs to a different kind of tile, we need to have a local variable to gather the

values of all the outputs of the same type (Aout1 and Aout2 for the last row and last

column respectively). These variables are used inside the input expressions of the use

equations.

In the rest of this section, we will describe formally the concepts and algorithms we used

on this example to obtain the tiled program.

4.2.2 Preprocessing - Preparing for the outlining

First of all, we need to separate physically each computation, according to the block to

which they belong. In the previous chapter, we applied the monoparametric partitioning

transformation syntactically, before normalizing the result. After the normalization step,

each variable V ar of a system has a list of equations of the following form:

(∀~i ∈ D1) V ar[~i] = SExpr1[~i];

(∀~i ∈ D2) V ar[~i] = SExpr2[~i];

. . .

Chapter IV. From Partitioning to Tiling 71

Parameters: Nb, Nl(= 0), b
Input variable:

w, defined over {ib, jb, il, jl|0 ≤ ib, jb < Nb, 0 ≤ il, jl < b}
Output variable:Out, scalar
Local variables:

Aout1, defined over {ib, jb, il, jl|0 ≤ ib, jb < Nb, il = b− 1, 0 ≤ jl < b}
Aout2, defined over {ib, jb, il, jl|0 ≤ ib, jb < Nb, 0 ≤ il < b, jl = b− 1}

Aout11, defined over {ib, jb, il, jl|ib = jb = 0, il = b− 1, 0 ≤ jl < b}
Aout21, defined over {ib, jb, il, jl|0 = ib < jb, il = b− 1, 0 ≤ jl < b}
Aout31, defined over {ib, jb, il, jl|0 = jb < ib, il = b− 1, 0 ≤ jl < b}
Aout41, defined over {ib, jb, il, jl|0 < ib, jb, il = b− 1, 0 ≤ jl < b}
Aout12, defined over {ib, jb, il, jl|ib = jb = 0, 0 ≤ il < b, jl = b− 1}
Aout22, defined over {ib, jb, il, jl|0 = ib < jb, 0 ≤ il < b, jl = b− 1}
Aout32, defined over {ib, jb, il, jl|0 = jb < ib, 0 ≤ il < b, jl = b− 1}
Aout42, defined over {ib, jb, il, jl|0 < ib, jb, 0 ≤ il < b, jl = b− 1}

Equations:
(∀ib = jb = 0) (∀0 ≤ jl ≤ b− 1 = il) Aout1 = Aout11[ib, jb, il, jl];
(∀0 = ib < jb) (∀0 ≤ jl ≤ b− 1 = il) Aout1 = Aout21[ib, jb, il, jl];
(∀0 = jb < ib) (∀0 ≤ jl ≤ b− 1 = il) Aout1 = Aout31[ib, jb, il, jl];
(∀0 < ib, jb) (∀0 ≤ jl ≤ b− 1 = il) Aout1 = Aout41[ib, jb, il, jl];
(∀ib = jb = 0) (∀0 ≤ il ≤ b− 1 = jl) Aout2 = Aout12[ib, jb, il, jl];
(∀0 = ib < jb) (∀0 ≤ il ≤ b− 1 = jl) Aout2 = Aout22[ib, jb, il, jl];
(∀0 = jb < ib) (∀0 ≤ il ≤ b− 1 = jl) Aout2 = Aout32[ib, jb, il, jl];
(∀0 < ib, jb) (∀0 ≤ il ≤ b− 1 = jl) Aout2 = Aout42[ib, jb, il, jl];

use {ib, jb|ib = jb = 0} subsyst1[Nl, b] (w) return(Aout11, Aout12);
use {ib, jb|0 = ib < jb} subsyst2[Nl, b] (Aout2[ib, jb − 1, •, •], w, w[ib, jb − 1, •, •])

return(Aout21, Aout22);
use {ib, jb|0 = jb < ib} subsyst3[Nl, b] (Aout1[ib − 1, jb, •, •], w, w[ib − 1, jb, •, •]

return(Aout31, Aout32);
use {ib, jb|0 < ib, jb} subsyst4[Nl, b] (Aout1[ib − 1, jb, •, •], Aout2[ib, jb − 1, •, •], w

w[ib − 1, jb, •, •], w[ib, jb − 1, •, •]) return(Aout41, Aout42);
Out = A[Nb − 1, Nb − 1, b− 1, b− 1];

Figure 4.3: Main system after applying the monoparametric tiling transformation to
the example of Subsection 4.2.1. A[f(ib), g(jb), •, •] is a variable whose value at (il, jl)
is A[f(ib), g(jb), il, jl].

Chapter IV. From Partitioning to Tiling 72

where the SExprk are expressions and the Dk are disjoint.

As shown in Theorems 3.2 and 3.3, there is a clear separation between the constraints

on the block indices and the local indices. Thus, it is possible to keep this separation

inside a program, to obtain the following form of (slightly modified) equation:

(∀~ib ∈ Dbl,1)(∀~il ∈ Dloc,1,1) V ar[~ib, ~il] = SExpr1,1[~ib, ~il];

(∀~ib ∈ Dbl,1)(∀~il ∈ Dloc,1,2) V ar[~ib, ~il] = SExpr1,2[~ib, ~il];

.

(∀~ib ∈ Dbl,2)(∀~il ∈ Dloc,2,1) V ar[~ib, ~il] = SExpr2,1[~ib, ~il];

(∀~ib ∈ Dbl,2)(∀~il ∈ Dloc,2,2) V ar[~ib, ~il] = SExpr2,2[~ib, ~il];

.

where the polyhedra Dbl,k only contain constraints on the block indices, and the poly-

hedra Dloc,k,l only contain constraints on the local indices.

For a given Dbl,k, we can see the list of equations whose block indices belong to Dbl,k as

the computation performed in a tile. This computation is the same for all the tiles whose

block indices satisfy the constraints of Dbl,k. In order to classify the tiles according to

their computation, we introduce the notion of kind of tile.

Definition 4.1. A kind of tile is a collection of tiles which share the same computation,

i.e., whose computations are Herbrand-equivalent

Theorem 4.2. For a given partitioned program, there is a finite non-parametric number

of kind of tile.

Proof. Note that each polyhedron and affine function we partition leads to either a union

of a finite non-parametric polyhedron, or a piecewise quasi-affine function with a finite

non-parametric number of branches. Therefore, we will also have a finite non-parametric

number of Dbl,k after normalization. Thus, we will have a finite non-parametric number

of kind of tile.

This property is crucial for the construction of the monoparametric tiled code: indeed, we

cannot have a parametric number of subsystems in our tiled code. It is also especially

useful for our template recognition framework. Indeed, instead of having to consider

the computation of a parametric number of tiles, we will be able to just consider the

computation of a finite non-parametric number of kinds of tile.

For each kind of tile, the local computation of this tile is described by the corresponding

equations. Intuitively, the outlining transformation consists of putting this computation

Chapter IV. From Partitioning to Tiling 73

inside a separated subsystem (with one subsystem per kind of tile) and managing the

input/outputs of this tile.

Example 4.3. Let us consider a computation with a Smith-Waterman pattern of de-

pendences:

Out = A[N,N]

(∀i = j = 0) A[i, j] = w[0, 0];

(∀i = 0 < j) A[i, j] = A[i, j − 1] + w[i, j − 1];

(∀j = 0 < i) A[i, j] = A[i− 1, j] + w[i− 1, j];

(∀0 < i, j < N) A[i, j] = min(A[i− 1, j] + w[i− 1, j], A[i, j − 1] + w[i, j − 1]);

where N is a parameter of the program. We consider square tiles b× b.

If we assume that the program parameter N is divisible by the tile size b, the first row

and first column of A have a different computation than the rest of the domain of A.

Therefore, the first row and column of tile will have a different computation (respectively

on their first row and on their first column) compared to the rest of the tiles. The tile

ib = jb = 0 is even more special and has a different computation for both its first row and

column. Therefore, we have 4 kinds of tiles: (ib = jb = 0), (0 = ib < jb), (0 = jb < ib)

and (0 < ib, jb).

If we assume that N is not divisible by the block size, we have boundary tiles which are

not full tiles. Thus, in addition to the 4 kind of tiles discovered previously for the full

tiles, we have 5 additional kind of tiles (for a total of 9 kinds of tiles), as shown in

Figure 4.4:

• A small square tile •, corresponding to ib = jb = Nb.

• The left rectangle •, corresponding to ib = Nb and 0 < jb.

• The left rectangle which is the first of its column •, corresponding to ib = Nb and

jb = 0.

• The bottom rectangle •, corresponding to jb = Nb and 0 < ib.

• The bottom rectangle which is the first of its row •, corresponding to jb = Nb and

ib = 0.

4.2.3 Tile group

We have seen in Chapter 3 that the monoparametric partitioning transformation is just

a reindexing transformation, which replaces all the indices of the original program into

Chapter IV. From Partitioning to Tiling 74

i = (ib, il)

j = (jb, jl)

: Separation between the branches
of the original system

Figure 4.4: Example 4.3: different kind of tiles when the tile size parameter b does
not divide the program parameter N .

their corresponding block and local indices. This transformation does not ask for the

atomicity of its tiles. Now that we consider the monoparametric tiling transformation,

the tiles are atomic. In particular, we have to care about the legality condition of tiling,

i.e., we need to ensure that there is no cyclic dependences between tiles.

In order to make a tiling legal, a possibility is to adjust the domain and dependences

of the variables by using a Change of Basis transformation beforehand, as explained

in Section 2.3. Another possibility is to tile several variables together, such that the

same set of tiles compute all of them, instead of having a set of tile per variable. This

information allows us to manage cyclic dependences between variables, and avoid that

such cyclic dependences occurs between tiles.

In order to specify which variables share their tiles, we introduce the concept of tile

group:

Definition 4.3. A tile group is a set of variables which will be tiled together, and will

share the same tiling spaces.

A variable can belong to at most one tile group. All the variables of the same tile group

share the same kinds of tile, thus will share the same subsystems.

In some situation, we might want to have a tile group which contains variables whose

domains do not have the same number of dimensions. In order to be able to share tiles,

we need to arrange the domain of these variables so that their domains have the same

number of dimensions. This process is called alignment, and can be performed through

Chapter IV. From Partitioning to Tiling 75

some Change of Basis transformations. After these transformations, all the variables of

the same tile group must have the same number of dimensions.

Example 4.4. Let us consider the following modified version of Jacobi1D. In this ver-

sion, we use an additional local variable temp2 and perform some extra copy between

the two local variables at every time step t:

Program “Jacobi1Dcopy” : input: A (defined on {i|0 ≤ i < N})

output: B (defined on {i|0 ≤ i < N})

local: temp1 (defined on {i, t|0 ≤ i < N ∧ 0 < t < T})

temp2 (defined on {i, t|0 ≤ i < N ∧ 0 ≤ t < T})

parameters: T,N

(∀0 ≤ i < N) B[i] = temp1[i, T − 1]

(∀t = 0 ∧ 0 ≤ i < N) temp2[i, t] = A[i]

(∀0 < t < T ∧ i = 0) temp2[i, t] = temp1[i, t− 1]

(∀0 < t < T ∧ i = N − 1) temp2[i, t] = temp1[i, t− 1]

(∀0 < t < T ∧ 0 < i < N − 1) temp2[i, t] = (temp1[i− 1, t− 1]+

temp1[i, t− 1] + temp1[i+ 1, t− 1])/3;

(∀0 ≤ t < T ∧ 0 ≤ i < N) temp1[i, t] = temp2[i, t];

If we try to tile temp1 and temp2 separately, the tiling cannot be legal. Indeed, we

will obtain a cyclic dependence between the tiles of temp1 and temp2, as soon as we

try to tile across the time dimension t. Thus, we need to have a single tile group for

both variables and have a single set of tile which computes the values of both variables.

Moreover, in order to make the rectangular tiling legal, we need to apply the loop skewing

transformation [85] beforehand. Therefore, a possible way to preprocess the program in

order to make the rectangular tiling legal is the following:

• First group of tiles:

– temp1, preprocess with a Cob using the affine function: (i, t 7→ i+ t, t)

– temp2, preprocess with a Cob using the affine function: (i, t 7→ i+ t, t)

• Second group of tiles: B with no preprocessing

Another possibility is to put all three variables into the same group of tiles. In that case,

we need to adapt the domain of B (which is 1-dimensional) to make it compatible with

the other 2-dimensional domains. It is possible by applying a Cob using, for example,

the following affine function: (i 7→ i + T − 1, T − 1). Figure 4.5 shows a graphical

representation of both examples.

Chapter IV. From Partitioning to Tiling 76

i

t
B

temp1/temp2

First alignment info

B and temp1/2 live in different tiles

i

t B

temp1/temp2

Second alignment info

B and temp1/2 live in the same tiles

Figure 4.5: Two valid preprocessings and tile groups for the modified Jacobi1D com-
putation introduced in Example 4.4.

In the rest of this document, we will assume that the legality issues were already taken

care of. This means that we assume that the preprocessing has already been performed,

and that the tile groups are specified, such taht the rectangular tiling is legal. We can

double-check for the legality of the tiling specified by these information through the

method explained in Section 3.4. In the rest of this section, we will focus on how to

perform the monoparametric tiling transformation, using these informations.

4.2.4 Monoparametric Tiling with outlining without reduction

In the context of this document, we assume that we tile all variables across all dimensions.

The transformation can be potentially extended to tile only a subset of the dimensions,

but we still need to partition all dimensions, thus we still need to introduce the block

and local indices for all dimensions.

The main intuition of this transformation is to create one subsystem per kind of tile.

Then, the main program will call the corresponding subsystems using use equations

and manage their inputs and outputs. The structures of the subsystems and the main

program are summarized in Figure 4.6.

Assuming that the preprocessing described in Subsection 4.2.2 was already applied, the

algorithm builds the main system and the subsystems in the following order:

1. Computing the kind of tiles of the program

2. Building the subsystems

(a) Computing the domains of the local variables of the subsystems

(b) Obtaining the equations of the subsystems and tracking down their inputs

Chapter IV. From Partitioning to Tiling 77

Main system:

• Variables: monoparametric tiled ver-
sion of the original system variable

• Local variables for the output of use
equations: V arOut k

• Copy equations:
(∀~i ∈ DV ark) V ar = V arOut k

• UseEquations:
use DV ark subsyst k (. . .)

returns (V arOut k)

Subsystem for the kth kind of tile:

• Inputs: data computed by other tiles,
needed by this tile

• Locals: data computed by this tile

• Outputs: copy of local variable,
needed by other tiles

• Equations corresponding to the com-
putation of this kind of tile

Figure 4.6: Form of the main system and the subsystem after applying the CART
with outlining transformation. In the main system DV ar

k is the domain of the kth kind
of tiles.

(c) Adding the outputs of the subsystems

3. Building the main system

Step 1 - Computing the kind of tiles After applying the monoparametric parti-

tioning transformation while preparing for outlining, the obtained program has a specific

form, in which the constraints on the blocked and local indices are separated:

(∀~ib ∈ Dbl,1)(∀~il ∈ Dloc,1,1) V ar[~ib, ~il] = SExpr1,1[~ib, ~il];

(∀~ib ∈ Dbl,1)(∀~il ∈ Dloc,1,2) V ar[~ib, ~il] = SExpr1,2[~ib, ~il];

.

(∀~ib ∈ Dbl,2)(∀~il ∈ Dloc,2,1) V ar[~ib, ~il] = SExpr2,1[~ib, ~il];

(∀~ib ∈ Dbl,2)(∀~il ∈ Dloc,2,2) V ar[~ib, ~il] = SExpr2,2[~ib, ~il];

.

In this step, we want to distinguish the different tiles of a tile group according to their

computation, i.e., according to which equations contributes to this tile. In order to do

this, for each variable, we retrieve the constraints Dbl,k on the blocked indices of the

domain of their equations. These domains form a partition of the tiles in which the

variable V ar contributes, and there is, by construction, only a finite non-parametric

number of them.

Then, we consider each tile group separately. If we have a single variable inside the

considered tile group, we have as many kinds of tile than domains on the block indices

Chapter IV. From Partitioning to Tiling 78

Dbl,k. Moreover, the corresponding equations of the k-th kind of tile are the set of

equations whose constraints on the blocked indices are Dbl,k.

If we have multiple variables in the considered tile group, we consider each family of

block constraints (DV arbl,k)k coming from each variable V ar of the tile group. The list of

non-empty intersections of these families corresponds to the different kind of tiles. The

corresponding equation of each one of these kind of tiles are the ones which contributes

to the intersection.

Step 2 - Building the subsystems For each kind of tile, we have to build the corre-

sponding subsystem which perform its computation. The equations of such subsystem

can be obtained by removing the blocked dimensions of every variable and dependence

functions. This means that if we have the following equation:

(∀~ib ∈ Dbl)(∀~il ∈ Dloc) V ar[~ib, ~il] = f(Var1[ub,1(~ib), ul,1(~il)], . . . ,Vark[ub,k(~ib), ul,k(~il)]);

we remove the blocked dimensions ~ib to obtain:

(∀~il ∈ Dloc) V ar′[~ib, ~il] = f(Var’1[~il], . . . ,Var’k[~il]);

Note that this is possible only because the block and local indices are cleanly separated

in a partitioned affine function, as shown by Theorem 3.3.

In the previous equation, V ar′ is a local variable of the subsystem, corresponding to the

block of V ar computed by the current tile. Var’1, . . . ,Var’k can be either local variable

(if the data accessed is computed in the same subsystem) or an input of the subsystem

(if the data accessed is computed outside of the subsystem). Thus, while obtaining the

equations of the subsystem, we examine these variables to determine the inputs of the

subsystem. We create exactly one input variable of the subsystem per block accessed,

whose domain corresponds to the data accessed from this block.

About the parameters of a subsystem, we need at least the local parameters ~pl and the

block size parameter b, which are still present in the equations of the subsystem. About

the block parameters ~pb, because we have removed all the block indices of the equations,

there is no longer any constraints involving the block indices or the block parameters in

the subsystem. Thus, we can omit them in the parameters of the subsystem.

The inputs can be determined by examining the dependences of the computation of the

subsystem. Because the block indices are explicit, we can immediately identify when

a value is produced outside of the current tile. For example, if we have originally a

dependence V ar[ib − 1, jb − 1, b − 1, b − 1], we can immediately deduce that we need a

Chapter IV. From Partitioning to Tiling 79

data from the block (ib − 1, jb − 1) of the tile group of the variable V ar. We create one

input variable in the subsystem, per external block accessed in the computation of the

subsystem.

About the outputs of a subsystem, a simple solution would be to transfer back all the

data computed in a tile to the main system. However, this causes a lot of unnecessary

communications between the subsystem and the main system, because most of these

values will never be used. A better solution consists on determining which data from a

tile is needed by other tiles. We classify this data according to the tile accessing it and

create one output variable for each external tile. For example, if the data of a tile is

used by the tile (ib+1, jb) and (ib, ib), we create two outputs, the first one corresponding

to the data of the tile accessed by the tile (ib + 1, jb), the second one corresponding to

the data of the tile accessed by the tile (ib, ib).

Given a tile, depending on the kind of the neighboring tiles, this set of data accessed

might change. In the example of Subsection 4.2.1, each tiles admits 2 outputs (corre-

sponding to the last row and the last column of the tile). However, at least one of the

outputs of the tiles of the last column or the last row are not used. To simplify the

problem, we do not consider the nature of the neighboring tiles and take the union of

all the set of data which might be asked by other tiles. This is an overapproximation

compared to the exact set of output needed.

Step 3 - Building the main system Finally, we need to form the main system. In

particular, we need to gather the outputs of the subsystems to send them as input of

others. The form of the main system is given in Figure 4.6.

We first create one use equation per subsystem generated, whose extension domain

correspond to the kind of tile. We also create one new local variable per outputs of

the use equation, in order to retrieve the results of the subsystem. We also create local

variables to gather the values of all the outputs of the same type and the same variable.

These variables are used inside the input expressions of the use equations.

Example 4.5. Let us consider a Skewed Jacobi1D computation:

(∀0 < i < N) Out[i] = temp[T − 1, i+ T − 1];

(∀t = 0, 0 < i < N) temp[t, i] = A[i];

(∀t = i > 0) temp[t, i] = temp[t− 1, i− 1];

(∀t > 0, i = N − 1 + t) temp[t, i] = temp[t− 1, i− 1];

(∀t > 0, t < i < N − 1 + t) temp[t, i] = (temp[t− 1, i− 2]+

temp[t− 1, i− 1] + temp[t− 1, i])/3;

Chapter IV. From Partitioning to Tiling 80

i = (ib, il)

j = (jb, jl)

0 N

T
Out

in

in

out

Cuts:
: ib = 0, jb = 0
: ib = jb > 0
: ib = jb +Nb
: jb = 0, 0 < ib < Nb
: ib = jb +Nb − 1
: 0 < jb < ib < jb +Nb − 1

Figure 4.7: Example 4.5: Kinds of tile for a Jacobi1D skewed program

We assume that we want to apply the monoparametric partitioning transformation with

an aspect ratio of 1 × 1, and that the parameters N and T are divisible by the size

parameter b. The resulting system contains about 20 different equations. We choose to

put the variables temp and Out into two separate tile groups, and no preprocessing is

needed to make the tiling legal.

First of all, we compute the kinds of tile of the program. Because of the boundary

conditions, we have 7 kinds of tiles: 6 for the temp variable (listed in the figure 4.7),

and one for the Out variable. Once we have determined the equations and the inputs

of each subsystem, we determine that the output of a tile are the 2 last columns on the

right and the last row (needed for the right, above and the diagonal above-right tiles).

For example, the subsystem corresponding to the kind of tile • (ib = jb+Nb−1) is shown

in Figure 4.8.

4.3 Monoparametric tiling with reduction

In this section, we show how to adapt the transformation described in the previous

section to manage reductions.

4.3.1 Monoparametric partitioning with reductions

A reduction introduces extra dimensions which are projected by the projection function.

These dimensions are partitioned by the monoparametric partitioning transformation

and also need to be considered in the tiling. We recall that all reductions of a program

are preprocessed to make their projection function canonic (i.e., of the form (~i1, ~i2 7→ ~i1),

see Subsection 3.2.2).

Chapter IV. From Partitioning to Tiling 81

Parameters: Nl(= 0), b
Input variables:

tempin1, defined over {il, jl|b− 2 ≤ il < b} (↔ temp[ib − 1, jb])
tempin2, defined over {il, jl|jl = b− 1} (↔ A[ib, jb − 1])
tempin3, defined over {il, jl|b− 2 ≤ il < b, jl = b− 1} (↔ A[ib − 1, jb − 1])

Local variable:
temploc, defined over {il, jl|0 ≤ il, jl < b} (↔ temp[ib, jb])

Output variables:
tempOut1, defined over {il, jl|jl = b− 1} (↔ temp[ib, jb + 1])
tempOut2, defined over {il, jl|b− 2 ≤ il < b, jl < b− 1} (↔ temp[ib + 1, jb])
tempOut3, defined over {il, jl|b− 2 ≤ il < b, jl = b− 1} (↔ temp[ib + 1, jb + 1])

Equations:
(∀il = jl = 0) temploc[il, jl] = (tempin3[b− 1, b− 2] + tempin3[b− 1, b− 1]

+tempin2[b− 1, 0])/3;
(∀il = 1, jl = 0) temploc[il, jl] = (tempin3[b− 1, b− 1] + tempin2[b− 1, 0]

+tempin2[b− 1, 1])/3;
(∀1 < il < b− 1, jl = 0) temploc[il, jl] = (tempin2[b− 1, il − 2] + tempin2[b− 1, il − 1]

+tempin2[b− 1, il])/3;
(∀il = b− 1, jl = 0) temploc[il, jl] = tempin2[b− 1, b− 2];
(∀il = 0, jl > 0) temploc[il, jl] = (tempin1[jl − 1, b− 2] + tempin1[jl − 1, b− 1]

+temploc[jl − 1, il])/3;
(∀il = 1, jl > 0) temploc[il, jl] = (tempin1[jl − 1, b− 1] + temploc[jl − 1, il − 1]

+temploc[jl − 1, il])/3;
(∀il > 1, jl > 0) temploc[il, jl] = (temploc[jl − 1, il − 2] + temploc[jl − 1, il − 1]

+temploc[jl − 1, il])/3;

(∀0 ≤ il < b, jl = b− 1) tempOut1[il, jl] = temploc[il, jl];
(∀b− 2 ≤ il < b, jl < b− 1) tempOut2[il, jl] = temploc[il, jl];
(∀b− 2 ≤ il < b, jl = b− 1) tempOut3[il, jl] = temploc[il, jl];

Figure 4.8: Subsystem of the kind of tile (ib = jb +Nb − 1) in Example 4.5.

Motivating Example We first consider an example to provide an intuition of how

reductions can be managed during the monoparametric tiling transformation. Let us

consider a matrix multiplication program with reduction:

(∀0 ≤ i, j < N) C[i, j] =

N−1∑
k=0

A[i, k] ∗B[k, j]

If we simply apply the partitioning transformation and assuming that N is divisible by

the block size b, we obtain the following program:

(∀0 ≤ ib, jb < Nb)(∀0 ≤ il, jl < b) C[ib, jb, il, jl] =
∑
kb,kl

A[ib, kb, il, kl] ∗B[kb, jb, kl, jl];

Chapter IV. From Partitioning to Tiling 82

A

B

C

Σ

•

•

•

TempRed

Figure 4.9: Representation of the partitioned matrix multiplication program. In order
to compute a tile of C, we have a summation over the tiles of A from the same row, and
the tiles of B from the same column. We introduce a new temporary variable called
TempRed which corresponds to the partial results of this summation. Then we sums
all the values of TempRed to obtain the value of the tile of C.

Note that the reduction sums over several tiles (the A[ib, •] and B[•, jb]). In order to

differentiate the computation according to the tiles accessed, we can split the reduction

into the following two reductions:

C[ib, jb, il, jl] =
∑
kb

TempRed[ib, jb, kb, il, jl];

TempRed[ib, jb, kb, il, jl] =
∑
kl

A[ib, kb, il, kl] ∗B[kb, jb, kl, jl];

in which TempRed[ib, jb, kb, il, jl] corresponds to the intermediate result of the accumu-

lation over the kbth tile.

As shown in Figure 4.9, all values of TempRed are summed together (in the equation

defining C) in order to obtain the value of the full reduction. Note that we are using the

associativity property of the reduction operator to group the summation of the terms

inside a tile, thus this transformation uses the semantic properties of a reduction. The

equation of TempRed only uses one block of A and one block of B instead of the whole

row/column.

General Case In general, let us consider a reduction of the form:

V ar[~i1] =
∑

π(~i1,~i2)=~i1

Expr[~i1,~i2]

Chapter IV. From Partitioning to Tiling 83

, where π : (~i1, ~i2 7→ ~i1). After partitioning, this reduction becomes:

V ar[~ib,1,~il,1] =
∑
~ib,2

∑
~il,2

Expr[~ib,1,~ib,2,~il,1,~il,2]

We are able to separate the two summations because of the associativity and commuta-

tivity property of the reduction operator.

We introduce a new variable TempRed[~ib,1, ~ib,2, ~il,1] to represent the intermediate result

of the summation on one block of the reduction (corresponding to the result of the

second summation in the previous equation). The original reduction equation becomes:

V ar[~i] =
∑
~ib,2

TempRed[~ib,1,~ib,2,~il,1]

The equation of TempRed is:

TempRed[~ib,1,~ib,2,~il,1] =
∑
~il,2

ˆExpr[~ib,1,~ib,2,~il,1,~il,2];

where ˆExpr is the partitioned version of Expr. Both equations can be put under the

form introduced in Subsection 4.2.2, in which the blocked and local constraints and

dependences are separated.

Note that we use the associativity property of the reduction operator, when we separate

the reduction over (~ib,2,~il,2) into two reductions (one over ~ib,2, and one over ~il,2)).

4.3.2 Tile groups and reduction

In the previous subsection, we showed that reductions can be supported by introducing a

new variable TempRed for each reduction. Because the tile groups were specified before

the monoparametric partitioning transformation, it does not contain any informations

about how to tile TempRed. In the rest of this subsection, we show how to infer

automatically in which tile group we should include TempRed.

The main intuition is the following: because the tile space of TempRed has more di-

mensions of the tile group it originates, we choose to create a new tile group for them.

However, we might have some cyclic dependences between the tiles of TempRed and a

tile from the original tile group. We show how to identify these tiles and split them from

the rest of the tiles of TempRed.

Chapter IV. From Partitioning to Tiling 84

V arExt1 V arExt2 V arExt3

TempRed[~ib, •]

V ar[~ib] V ar[~ib
′
] V ar2[~ib

′′
]

f1 f2

Tile group

Tile group Tile group

If ib = i′b then cycle
Else, no cycle

Figure 4.10: Dependences across tiles involving the tile TempRed[~ib, ~kb]. A rectangle
represents a tile and an arrow from a tile X to a tile Y means that the tile X depends

on the tile Y. ~ib, ~ib
′

and ~ib
′′

are instances of tiles for the tile group of V ar. V arExt1,
V arExt2 and V arExt3 are variables from other tile groups. f1 and f2 are block
components of the dependence functions.

Let us consider an equation containing a reduction: V ar[~ib, ~il] =
∑
kb

TempRed[~ib, ~kb, ~il]

where TempRed is the variable introduced by the partitioning of the reduction. In

which tile group should we add TempRed, such that the tiling is still legal (i.e., no cycle

between tiles is introduced)?

Let us consider a tile (~ib, ~kb) of TempRed, and let us study the dependences involving this

tile. Figure 4.10 presents the possible dependences involving a tile TempRed[~ib, ~kb, ~il].

By construction, a variable TempRed is introduced every times we have a reduction, and

occurs only on the right-hand side of the equation of V ar. Thus, the only dependence

whose destination is a tile TempRed[~ib, ~kb] comes from V ar[~ib]. The dependences coming

from TempRed are the ones from the reduction body. They can either go to another

variable not in the same tile group of V ar (called V arExti in Figure 4.10). Because

the tiling was already valid before introducing TempRed, there is no cycle possible

involving the tile V ar[~ib] and a tile from another tile group. Thus, the dependences

leaving TempRed to V arExti cannot be part of a cycle between tiles.

Now, let us consider the dependences from the tiles TempRed[~ib, ~kb] to some tiles of

variables of the same tile group that V ar. Because of the legality of the tiling before

introducing TempRed, there is no cycle between the tile computing V ar[~ib] and any other

tile (computing V ar[~ib
′
], where ~ib

′ 6= ~ib). Thus, if a dependence is going to V ar1[~ib
′
]

where ~ib
′ 6= ~ib, then this dependence cannot be part of a cycle between tiles.

Last case: if we have a dependence from TempRed[~ib, ~kb] to a tile ~ib of a variable of the

same tile group of V ar, then we have to compute TempRed[~ib, ~kb] in the same tile as

V ar[~ib] to avoid cycles across tiles. A naive solution is to compute all the TempRed[~ib, •]
in the same tile which computes V ar[~ib]. This will always give us a legal tiling. However,

Chapter IV. From Partitioning to Tiling 85

. . . V ar[~ib] . . . V ar[~i′b]
. . .

. . . TempRed SG[~ib, ~kb,1] . . . TempRed[~ib, ~kb,2] . . .

f(~ib, ~kb,1) = ~ib f(~ib, ~kb,2) = ~i′b

Needs to be in
the same tile as V ar[~ib]

Can be in
a separate tile

Figure 4.11: Split of TempRed according to the tiles which can be put in a separate
tile group and those which must stay in the same tile group

this implies that we do not tile the dimensions ~kb (even if they are blocked). In many

cases, this might be overkill since it would preclude a potential legal tiling. Thus, we

must do this analysis in an instance-wise manner.

In the general case, we have to include at least the blocks TempRed[~ib, ~kb], which loop

back to V ar[~ib], in the same tile as V ar[~ib]. This means that the set of blocks to be

included in the same tile as V ar[~ib] must contain at least the following set of tiles of

TempRed:

{~ib, ~kb | f1(~ib, ~kb) = ~ib ∨ f2(~ib, ~kb) = ~ib ∨ . . . }

where f1, f2, . . . are the blocked components of the dependence functions from TempRed[~ib, ~kb]

to a variable of the same tile group of V ar.

We use this set to split the variable TempRed into two variables, as shown in Figure 4.11:

TempRed SG (Same Group), corresponding to the tiles which must be put into the same

tile group as V ar because of the legality condition, and TempRed, corresponding to the

tiles which can be tiled separately. A similar analysis was proposed by Wonnacott [18]

in “almost-tilable” loops, but is limited for fixed-size tiling.

Example 4.6 (Forward substitution). Let us consider a program which solves the linear

system L.~x = ~b where L is a lower-triangular matrix:

(∀0 ≤ i < N) x[i] = (b[i]−
∑
k<i

L[i, k]× x[k])/L[i, i];

We assume that x and temp belong to the same tile group. The partitioning step intro-

duces a new variable TempRed and transform the program into the following equations,

Chapter IV. From Partitioning to Tiling 86

kb
TempRed[ib, •]

. . .

x[ib]

x[ib − 1]

Figure 4.12: Dependences between the tiles of TempRed and the tiles of x/temp

assuming that the parameters are divisible:

(∀0 ≤ ib < Nb) (∀0 ≤ il < b) x[ib, il] = (b[ib, il]−
∑
kb≤ib

TempRed[ib, kb, il])/L[ib, ib, il, il];

(∀0 ≤ ib = kb < Nb) (∀0 ≤ il < b) TempRed[ib, kb, il] =
∑

0≤kl<il
L[ib, kb, il, kl]× x[kb, kl];

(∀0 ≤ kb < ib < Nb) (∀0 ≤ il < b) TempRed[ib, kb, il] =
∑

0≤kl<b
L[ib, kb, il, kl]× x[kb, kl];

Let us analyze the dependences involving TempRed to decide in which tile group we

should insert it. The only dependence which might introduce a cycle is the one corre-

sponding to x[kb, kl] in the equations of TempRed (as shown in Figure 4.12). A cycle is

introduced when kb = ib, thus we need to split this tile of TempRed from the other tiles.

Therefore, we obtain the following program after normalization:

(∀0 ≤ ib < Nb) (∀0 ≤ il < b) x[ib, il] = (b[ib, il]−
∑
kb<ib

TempRed[ib, kb, il]

−
∑
kb=ib

TempRed SG[ib, kb, il])/L[ib, ib, il, il];

(∀0 ≤ ib = kb < Nb) (∀0 ≤ il < b) TempRed SG[ib, kb, il] =
∑

0≤kl<il
L[ib, kb, il, kl]× x[kb, kl];

(∀0 ≤ kb < ib < Nb) (∀0 ≤ il < b) TempRed[ib, kb, il] =
∑

0≤kl<b
L[ib, kb, il, kl]× x[kb, kl];

We have two tile groups: one containing the variables (x and TempRed SG), and an-

other containing the variable TempRed. As a side note, we can notice that each tile

of the first tile group correspond to a small forward substitution computation, and that

each tile of the second tile group correspond to a small matrix multiplication.

Example 4.7 (Nussinov/Optimal String Parenthization [18]). Let us consider the fol-

lowing program:

(∀0 ≤ i < j < N) N [i, j] = maxi≤k<j(N [i, k] +N [k + 1, j]);

Chapter IV. From Partitioning to Tiling 87

j

i

•N [i, j]

k

k

•

•

Figure 4.13: Partitioned Optimal String Parenthization. The two black lines corre-
spond to the data needed to compute a single point N [i, j]. The green line links the two
data needed to compute one instance of TempRed[i, j, k] and the black arrows shows
how these data accessed move according to k.
The two stripes of tiles correspond to the data needed to compute a single tile
N [ib, jb]. The tiles in red (two diagonal and middle one) corresponds to the tiles of
TempRed[ib, jb, kb] which have a cycle with the tile N [ib, jb], thus which must be sepa-
rated from the rest of the computation of TempRed[ib, jb, kb].

After the partitioning and normalization step, we obtain the following program, a graph-

ical representation being shown in Figure 4.13:

(∀0 ≤ ib ≤ jb < Nb) (∀0 ≤ il < jl < b) N [ib, jb, il, jl] = maxib≤kb≤jbTempRed[ib, jb, kb, il, jl];

(∀0 ≤ ib = kb = jb) (∀0 ≤ il < jl < b) TempRed[ib, jb, kb, il, jl] = maxil≤kl<jl

N [ib, kb, il, kl] + temp[kb, jb, kl, jl];

(∀0 ≤ ib = kb < jb) (∀0 ≤ il < jl < b) TempRed[ib, jb, kb, il, jl] = maxil≤kl<b

N [ib, kb, il, kl] + temp[kb, jb, kl, jl];

(∀0 ≤ ib < kb = jb) (∀0 ≤ il < jl < b) TempRed[ib, jb, kb, il, jl] = max0≤kl<jl

N [ib, kb, il, kl] + temp[kb, jb, kl, jl];

(∀0 ≤ ib < kb < jb) (∀0 ≤ il < jl < b) TempRed[ib, jb, kb, il, jl] = max0≤kl<b

N [ib, kb, il, kl] + temp[kb, jb, kl, jl];

(∀0 ≤ ib ≤ kb ≤ jb) (∀0 ≤ il < b, 0 ≤ jl < b− 1) temp[kb, jb, kl, jl] = N [kb, jb, kl + 1, jl];

(∀0 ≤ ib ≤ kb < jb) (∀0 ≤ il < jl = b− 1) temp[kb, jb, kl, jl] = N [kb + 1, jb, 0, jl];

Let us analyze the dependences involving TempRed/temp to decide in which tile group

we should insert it. By examining the equations of TempRed and temp, we identify in

total 3 dependences which might introduce a loop involving N [ib, jb]:

• N [ib, kb] in the equation of TempRed[ib, jb, kb]

• N [kb, jb] in the equation of temp[ib, jb, kb]

Chapter IV. From Partitioning to Tiling 88

• N [kb + 1, jb] in the equation of temp[ib, jb, kb]

Let us examine each of these dependences separately:

• The first dependence introduces a loop between tiles iff (ib, kb) = (ib, jb), i.e., when

kb = jb. Physically, this situation corresponds to the case where the data needed

by N [i, k] belongs to the tile N [ib, jb] which is currently computed.

• The second dependence introduces a loop between tiles iff (kb, jb) = (ib, jb), i.e.,

when kb = ib. Physically, this situation corresponds to the case where the data

needed by N [k + 1, j] belongs to the tile N [ib, jb] which is currently computed.

• The third dependence introduces a loop between tiles iff (kb + 1, jb) = (ib, jb), i.e.,

when kb + 1 = ib. Because of the constraints of the equations in which this depen-

dence happens (ib ≤ kb), this situation never occurs.

Therefore, the only tiles of TempRed/temp which we have to include into the same tile

group as N are kb = ib and kb = jb. After splitting, we obtain the following program:

(∀0 ≤ ib ≤ jb < Nb) (∀0 ≤ il < jl < b) N [ib, jb, il, jl] = max(TempRed SG[ib, jb, ib, il, jl],

T empRed SG[ib, jb, jb, il, jl],maxib<kb<jbTempRed[ib, jb, kb, il, jl];

(∀0 ≤ ib < kb < jb) (∀0 ≤ il < jl < b) TempRed[ib, jb, kb, il, jl] = max0≤kl<b

N [ib, kb, il, kl] + temp[kb, jb, kl, jl];

(∀0 ≤ ib ≤ kb ≤ jb) (∀0 ≤ il < b, 0 ≤ jl < b− 1) temp[kb, jb, kl, jl] = N [kb, jb, kl + 1, jl];

(∀0 ≤ ib ≤ kb < jb) (∀0 ≤ il < jl = b− 1) temp[kb, jb, kl, jl] = N [kb + 1, jb, 0, jl];

(∀0 ≤ ib = kb ≤ jb) (∀0 ≤ il < jl < b) TempRed SG[ib, jb, kb, il, jl] = max0≤kl<b

N [ib, kb, il, kl] + temp SG[kb, jb, kl, jl];

(∀0 ≤ ib ≤ kb = jb) (∀0 ≤ il < jl < b) TempRed SG[ib, jb, kb, il, jl] = max0≤kl<b

N [ib, kb, il, kl] + temp SG[kb, jb, kl, jl];

(∀0 ≤ ib ≤ kb = jb) (∀0 ≤ il < b, 0 ≤ jl < b− 1) temp SG[kb, jb, kl, jl] = N [kb, jb, kl + 1, jl];

(∀0 ≤ ib = kb ≤ jb) (∀0 ≤ il < b, 0 ≤ jl < b− 1) temp SG[kb, jb, kl, jl] = N [kb, jb, kl + 1, jl];

(∀0 ≤ ib = kb < jb) (∀0 ≤ il < jl = b− 1) temp SG[kb, jb, kl, jl] = N [kb + 1, jb, 0, jl];

We have two tile groups: one which contains the variables (N,TempRed SG, temp SG)

and another which contains the variables (TempRed, temp).

Example 4.8 (Recursive reduction). Let us consider the following program:

(∀0 < i < N) A[i] =
∑

0≤k<i
A[i− 1] ∗A[k];

(∀i = 0) A[i] = 1;

Chapter IV. From Partitioning to Tiling 89

After partitioning, we obtain the following program:

(∀0 < ib < Nb) (∀0 ≤ il < b) A[ib, il] =
∑

0≤kb≤ib
TempRed[ib, kb, il];

(∀ib = 0) (∀0 < il < b) A[ib, il] =
∑

0≤kb≤ib
TempRed[ib, kb, il];

(∀ib = 0) (∀il = 0) A[ib, il] = 1;

(∀0 ≤ kb = ib < Nb) (∀0 ≤ il < b) TempRed[ib, kb, il] =
∑

0≤kl<il
temp[ib, kb, il, kl] ∗A[kb, kl];

(∀0 ≤ kb < ib < Nb) (∀0 ≤ il < b) TempRed[ib, kb, il] =
∑

0≤kl<b
temp[ib, kb, il, kl] ∗A[kb, kl];

(∀0 ≤ kb ≤ ib < Nb) (∀0 = il ≤ kl < b) temp[ib, kb, il, kl] = A[ib − 1, b− 1];

(∀0 ≤ kb ≤ ib < Nb) (∀0 < il ≤ kl < b) temp[ib, kb, il, kl] = A[ib, il − 1];

After analyzing the equations of TempRed/temp, we identify 3 dependences which might

introduce a loop:

• A[kb] in the equation of TempRed[ib, kb]

• A[ib − 1] in the equation of temp[ib, kb]

• A[ib] in the equation of temp[ib, kb]

Let us examine each dependences separately:

• The first dependence introduces a cycle between tiles iff kb = ib.

• The second dependence introduces a cycle between tiles iff ib− 1 = ib, which is not

feasible

• The third dependence introduces a cycle between tiles iff ib = ib, i.e., always.

This means that every block of TempRed[ib, kb] requires some data coming from

the block A[ib], thus that we have a cycle between the tile A[ib] and every tiles

TempRed[ib, •].

Therefore, we have to keep a single tile group. Each tile of this tile group will compute

the blocks A[ib] and the whole stripes TempRed[ib, •] and temp[ib, •]. Physically, this

means that it is not possible to tile the dimension of the reduction.

4.3.3 Monoparametric Tiling with reductions

Now, let us show how to adapt the algorithm presented in Subsection 4.2.4 to manage

reductions. We recall that the three steps of this algorithm were the following:

Chapter IV. From Partitioning to Tiling 90

1. Computing the kind of tiles of the program

2. Building the subsystems

(a) Computing the domain of the local variables of the subsystems

(b) Obtaining the equations of the subsystems and tracking down their inputs

(c) Adding the outputs of the subsystems

3. Building the main system

The main difference with the previous algorithm is that we might not remove all the

block indices of a variable inside a tile group, which happens only for the variables

TempRed SG. For example, if we consider the variables inside Example 4.6, the variable

TempRed SG[ib, kb, il] is inside the same tile group as the variable x[ib, il]. Thus, the

subsystem computing the tile x[ib, •] will also compute TempRed SG[kb, •] for kb = ib

and the dimension corresponding to kb will stay in the equations of the subsystem.

The fact that block indices are not fully removed can means that an entire slice of

TempRed SG is computed inside a tile.

Because some blocked indices remain in the subsystem and because these indices might

interact with the other blocked indices (through constraints, like “kb ≤ ib” in Exam-

ple 4.8), thus we need to keep all the previously removed blocked indices as parameters.

The main modification of the algorithm comes in step 2, when we form the equations

of the subsystem while tracking down the inputs and outputs. Indeed, variables whose

block indices are not fully removed must be handled slightly differently. We have 4 kinds

of dependences:

• Dependences going from a normal variable to a normal variable (this was always

the case in the previous algorithm)

• Dependences going from a normal variable to a TempRed SG variable

• Dependences going from a TempRed SG variable to a normal variable

• Dependences going from a TempRed SG variable to a TempRed SG variable

By construction of the TempRed variable, all dependences toward a TempRed SG vari-

able are identity dependences and remain inside the same tile group (thus do not create

inputs or outputs), thus do not cause any issue. Let us consider the dependences from a

TempRed SG variable to a normal variable: because not all block indices are removed,

such block indices might impact the tiles accessed, meaning that we might require a

Chapter IV. From Partitioning to Tiling 91

collection of block as an input, instead of a single one. For example, if we consider the

dependence from TempRed to A in Example 4.8, we need all the A[kb] where kb ≤ ib

as an input of a tile to be able to compute a tile of TempRed. We need to differentiate

the tiles accessed by such dependences when the data required is coming from the tile

itself. For example, if kb = ib, the data asked by the dependence A[kb, kl] is computed

internally, thus has to be separated from the data coming from other tiles (kb < ib,

constituting the inputs).

The rest of the algorithm is similar to the outlining algorithm without reduction.

Example 4.9 (Cholesky). Let us consider the Cholesky computation, in which A is the

input (N ×N matrix) and L is the output (lower triangular matrix), where A = L.LT

is a symmetric semi-definite positive matrix:

(∀i = j = 0) L[i, j] =
√
A[i, i];

(∀i = j > 0) L[i, j] =
√
A[i, i]−

∑
k<j

L[i, k] ∗ L[i, k];

(∀i > j = 0) L[i, j] = A[i, j]/L[j, j];

(∀i > j > 0) L′[i′, j′] =

(
A[i, j]−

∑
k<j

L[i, k] ∗ L[j, k]

)
/L[j, j];

Let us assume that the aspect ratio of L and A are both 1 × 1. After partitioning, we

obtain the system described in Figure 4.14. We have only one variable originally, thus

a single tile group at the start.

After analyzing all the dependences involving TempRed1 and TempRed2, we find that

the tiles TempRed1[ib, jb, jb] and TempRed2[ib, jb, jb] are the only tiles which admit a

cyclic dependence with the tile L[ib, jb] (physically, they correspond to the portions of

TempRed1/2 which needs values from the tile L[ib, jb] to be computed). Therefore,

we split these tiles of TempRed1 and TempRed2 from the rest of the computation,

forming in total 3 tiles groups (L, TempRed1 SG, TempRed2 SG), (TempRed1) and

(TempRed2).

Because the first tile group admit 4 kinds of tiles, we will obtain 6 subsystems in total:

1. One computing L[0, 0], TempRed1 SG[0, 0, 0] and TempRed2 SG[0, 0, 0].

2. One computing L[ib, 0]and TempRed2 SG[ib, 0, 0] for ib > 0.

3. One computing L[ib, ib], TempRed1 SG[ib, ib, ib] and TempRed2 SG[ib, ib, ib] for

ib > 0.

4. One computing L[ib, jb] and TempRed2 SG[ib, jb, jb] for ib > jb > 0

Chapter IV. From Partitioning to Tiling 92

(∀ib = jb = 0) (∀il = jl = 0) L[ib, jb, il, jl] =
√
A[ib, ib, il, il];

(∀ib = jb = 0) (∀il = jl > 0) L[ib, jb, il, jl] =
√
A[ib, ib, il, il]−

∑
kb≤ib

TempRed1[ib, jb, kb, il, jl];

(∀ib = jb = 0) (∀il > jl = 0) L[ib, jb, il, jl] = A[ib, jb, il, jl]/L[jb, jb, jl, jl];

(∀ib = jb = 0) (∀il > jl > 0) L[ib, jb, il, jl] =

(
A[ib, jb, il, jl]−

∑
kb≤ib

TempRed2[ib, jb, kb, il, jl]

)
/L[jb, jb, jl, jl];

(∀Nb > ib > jb = 0) (∀0 = jl ≤ il < b) L[ib, jb, il, jl] = A[ib, jb, il, jl]/L[ib, ib, il, il];

(∀Nb > ib > jb = 0) (∀0 ≤ il < b, jl > 0) L[ib, jb, il, jl] =

(
A[ib, jb, il, jl]−

∑
kb≤ib

TempRed2[ib, jb, kb, il, jl]

)
/L[jb, jb, jl, jl];

(∀Nb > ib = jb > 0) (∀0 ≤ il = jl < b) L[ib, jb, il, jl] =
√
A[ib, ib, il, il]−

∑
kb≤ib

TempRed1[ib, jb, kb, il, jl];

(∀Nb > ib = jb > 0) (∀0 ≤ jl < il < b) L[ib, jb, il, jl] =

(
A[ib, jb, il, jl]−

∑
kb≤ib

TempRed2[ib, jb, kb, il, jl]

)
/L[jb, jb, jl, jl];

(∀Nb > ib > jb > 0) (∀0 ≤ il, jl < b) L[ib, jb, il, jl] =

(
A[ib, jb, il, jl]−

∑
kb≤ib

TempRed2[ib, jb, kb, il, jl]

)
/L[jb, jb, jl, jl];

(∀0 ≤ kb = jb = ib < Nb) (∀0 ≤ jl ≤ il < b) TempRed1[ib, jb, kb, il, jl] =∑
0≤kl<jl

L[ib, kb, il, kl] ∗ L[ib, kb, il, kl]

(∀0 ≤ kb < jb = ib < Nb) (∀0 ≤ jl ≤ il < b) TempRed1[ib, jb, kb, il, jl] =∑
0≤kl<b

L[ib, kb, il, kl] ∗ L[ib, kb, il, kl]

(∀0 ≤ kb = jb ≤ ib < Nb) (∀0 ≤ jl ≤ il < b) TempRed2[ib, jb, kb, il, jl] =∑
0≤kl<jl

L[ib, kb, il, kl] ∗ L[jb, kb, jl, kl]

(∀0 ≤ kb < jb ≤ ib < Nb) (∀0 ≤ jl ≤ il < b) TempRed2[ib, jb, kb, il, jl] =∑
0≤kl<b

L[ib, kb, il, kl] ∗ L[jb, kb, jl, kl]

Figure 4.14: Cholesky computation after the partitioning transformation and the
introduction of the temporary variables TempRed

5. One computing TempRed1[ib, jb, kb] for kb < jb (corresponding to the accumulation

needed to compute L[ib, jb])

6. One computing TempRed2[ib, jb, kb] for kb < jb (corresponding to the accumulation

needed to compute L[ib, jb])

As showed by Figure 4.15, we can recognize the computation performed inside these

subsystem as matrix operations: subsystems 1 and 3 corresponding to a mini-Cholesky

computation, 2 and 4 corresponding to the operation ”(L−1.X)T” (which is an instance of

the xTRSM operation in BLAS), 5 and 6 corresponding to a transposed matrix product.

Chapter IV. From Partitioning to Tiling 93

i = 〈ib, il〉

j = 〈jb, jl〉

b

b

L̂[0, 0]

L̂[1, 1]

L̂[2, 2]

L̂[1, 0]

L̂[2, 0] L̂[2, 1]

L[i, j] =

i = j = 0 :
√
A[i, i]

i = j > 0 :
√
A[i, i]−

∑
k<i

L[i, k]× L[i, k]

i > j = 0 : A[i, j]/L[j, j]

i > j > 0 :

(
A[i, j]−

∑
k<j

L[i, k]× L[j, k]
)
/L[j, j]

Operations:

Cholesky on Â[ib, ib]

Cholesky on Â[ib, ib]−
∑

kb<jb

L̂[ib, kb]× L̂[ib, kb]T

(L−1.X)T on L = L̂[jb, jb] and X = Â[ib, 0]

(L−1.X)T on L = L̂[jb, jb]

and X = Â[ib, jb]−
∑

kb<jb

L̂[ib, kb]× L̂[jb, kb]T

Figure 4.15: Cholesky - blocked computation with a tile size b × b. We start from
the system of equations in the top-right part of the figure. The left diagram represent
the domain of L. After tiling the computation, we can regroup the tiles according to
their computation (as shown by the color coding). Finally, we can recognize each kind
of tiles as a combination of matrix operations.

In Chapter 5, we will present a method to recognize these operations from the subsystem

we obtained in this section.

4.4 Experimental Validation

In this section, we present our implementation of the monoparametric tiling transfor-

mation and evaluate its scalability.

Implementation The rectangular monoparametric tiling transformation has been im-

plemented in Java, using the AlphaZ compiler framework [89], on top of our monopara-

metric partitioning transformation presented in Subsection 3.2.3.

We have implemented several options to the monoparametric tiling transformation, in

addition to the options to the monoparametric partitioning transformation:

• We can remove the classification per tile of the outputs of the subsystem. For the

Smith-Watterman example of SubSection 4.2.1, this means that instead of having

2 outputs (corresponding to the values sent to the tile on the right and on the

top), we will have a single output, which domain is the set of data needed outside

of the tile (i.e., the corner formed by the last column and the last row).

Chapter IV. From Partitioning to Tiling 94

• We can homogenize the domains of the outputs of the subsystems across the differ-

ent kind of tiles. For the Jacobi1D example (Example 4.5 Page 79), if we consider

the set of values sent to the tile diagonally above-right in Figure 4.7, we either

send 0, 1 or 2 values, depending on the kind of tile of the current tile. By default,

when we regroup the values of all these outputs in the main system in a single

variable, the domain of this variable will be a union of at least 3 polyhedra. The

union of this domain can be much larger for other programs and slow down the

following analyses.

We solve this issue by padding the smallest domains. For the Jacobi1D example,

this means that we will systematically send 2 values, by adding 0 values for the

missing parts. Thus, the domain of the local variable of the main system which

regroups all of the corresponding outputs will be a single polyhedron, at the price

of a slight increase in the communication.

By default, each variable is placed in a different tile group, with no change of basis

preprocessing step.

Experiment on the scalability of the monoparametric tiling transformation

We want to study the scalability of our implementation of the monoparametric tiling

transformation. This means that we want to check that the time performed by our

transformation in a compiler is reasonable.

As our set of benchmark, we use Polybench/Alpha1 benchmarks, an hand-written Alpha

implementation of the Polybench 4.0 benchmark suite. We run our experiment on a

machine with an Intel Xeon E5-1650 CPU with 12 cores running at 1.6 GHz (max speed

at 3.8GHz), and 31GB of memory.

Because we are considering a tiling, we have to consider the legality condition. We

found that the default rectangular tiling (all variables are tiled separately) is legal for

all benchmarks, except:

• Some of the linear algebra solvers (durbin, gramschmidt, lu, ludcmp)

• All of the stencils (adi, fdtd-2d, jacobi-1d, jacobi-2d, seidel-2d, heat-3d).

For durbin and lu, because of mutual dependences, we need to have a single tile group

for all the variables of these programs. ludcmp is the same than a lu, plus two forward

substitution computations (~x = L−1.~b) which can be tiled in separate tile groups.

1http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.

polybench/polybench-alpha-4.0/

http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/
http://www.cs.colostate.edu/AlphaZsvn/Development/trunk/mde/edu.csu.melange.alphaz.polybench/polybench-alpha-4.0/

Chapter IV. From Partitioning to Tiling 95

For gramschmidt, this program does not admit a legal two-dimensional tiling. Because

our current implementation of the monoparametric tiling transformation forces us to tile

all dimensions, we cannot apply it legally.

For the stencils kernels, it is possible to obtain a legal tiling by skewing the iteration

space beforehand, and, in the case of adi and fdtd-2d, tiling the mutual dependent

local variables together.

For each kernel, we apply the monoparametric tiling transformation and report the

following informations:

• The time taken by the monoparametric partitioning transformation.

• The time taken by the preprocessing step, after the monoparametric partitioning

transformation and before the monoparametric tiling part. In particular, this pre-

processing step includes the management of reductions, the normalization of the

program, if the newly introduced variables TempRed are split. We also compute

the context domain of the subexpressions of the form V ar[ub(~ib), ul(~il)], because

this information is needed in order to determine the inputs and outputs of a sub-

system.

• The time taken by the three steps of the monoparametric tiling transformation

(computing the kinds of tile, building the subsystems and building the main sys-

tem).

• The total time spent in the transformation.

• The time taken by the computation of the context domains of all the subexpressions

of the program (in order to compare this time with the ones from the monopara-

metric partitioning)

• The number of subsystems generated.

• The average number of nodes in the AST of a subsystem, in order to give an idea

of the size of a subsystem.

• The number of equations inside the main program, in order to give an idea of the

size of the main system.

The result of our experiments are presented in Figure 4.16 and 4.17.

Most of the time is spent during the preprocessing step and the construction of the sub-

systems. The preprocessing step contains a traversal of the monoparametric partitioned

program, in order to compute the context domain of the subexpressions of the form

Chapter IV. From Partitioning to Tiling 96

Time taken (ms)

co
rr

el
at

io
n

co
va

ri
an

ce

ge
m

m

ge
m

v
er

g
es

u
m

m
v

sy
m

m

sy
r2

k

sy
rk

tr
m

m

2m
m

3m
m

Partitioning 166 102 109 91 53 190 110 69 66 233 433

Preprocessing 432 322 276 160 137 905 244 126 296 259 382

Step 1
Kind of tiles

4 3 2 2 1 6 2 1 2 4 7

Step 2
Subsystems

382 277 282 75 55 660 176 112 87 646 1479

Step 3
Main System

34 18 12 18 7 19 13 9 8 25 44

Total Time 1206 817 754 457 309 1928 658 383 516 1297 2471

Context Domain 1030 651 390 363 237 2617 456 274 277 632 837

Num SubSystem 10 6 2 5 3 12 3 2 3 4 6

Average num of
nodes in subsystem

14 14 12 11 11 15 13 12 9 10 8

Num Equations Main 24 14 5 15 7 25 7 5 7 9 13

Time taken (ms)

at
ax

b
ic

g

d
oi

tg
en

m
v
t

ch
ol

es
k
y

d
u

rb
in

gr
am

sc
h

m
id

t

lu

lu
d

cm
p

tr
is

ol
v

d
er

ic
h

e

Partitioning 71 217 152 62 165 177 − 313 450 52 329

Preprocessing 144 175 178 143 1139 1130 − 1522 1946 193 546

Step 1
Kind of tiles

1 7 3 1 4 4 − 6 7 1 4

Step 2
Subsystems

148 236 406 68 224 230 − 304 426 52 227

Step 3
Main System

12 13 18 9 25 49 − 33 53 7 69

Total Time 436 706 828 346 1806 1772 − 2350 3188 363 1928

Context Domain 871 273 300 265 1057 2143 − 1555 2444 358 1719

Num SubSystem 4 4 2 4 7 8 − 10 16 3 24

Average num of
nodes in subsystem

7 7 8 8 36 70 − 33 30 23 30

Num Equations Main 9 10 5 10 31 63 − 44 67 9 59

Figure 4.16: Time taken by the hyperrectangular monoparametric tiling transforma-
tion inside the compiler - Part 1. We also report the number of subsystems produced,
the average number of nodes of a AST of a subsystem, and the number of equations
(use and normal) in the main system.

Chapter IV. From Partitioning to Tiling 97

Time taken (ms)

fl
oy

d
-w

a
rs

h
a
ll

n
u

ss
in

ov

a
d

i

fd
td

-2
d

ja
co

b
i-

1d

ja
co

b
i-

2d

se
id

el
-2

d

h
ea

t-
3d

Partitioning 72 248 1907 1301 119 529 538 6088

Preprocessing 78 3605 18535 19138 867 19037 28497 8m2s

Step 1
Kind of tiles

2 8 72 122 4 28 28 297

Step 2
Subsystems

19 592 1874 2740 107 1764 2823 88267

Step 3
Main System

28 51 427 940 28 242 215 2905

Total Time 302 4689 23719 24871 1251 21859 32474 9m40s

Context Domain 629 4968 53348 98721 1252 28482 34515 21m44s

Num SubSystem 3 25 48 53 9 33 33 129

Average num of
nodes in subsystem

16 45 319 234 54 184 259 1029

Num Equations Main 15 118 676 1067 45 293 333 1985

Figure 4.17: Time taken by the hyperrectangular monoparametric tiling transforma-
tion inside the compiler - Part 2. We also report the number of subsystems produced,
the average number of nodes of a AST of a subsystem, and the number of equations
(use and normal) in the main system. All the considered stencil have an order of 1.

V ar[ub(~ib), ul(~il)]. Notice that this step is faster compared to the full context domain

computation we considered in Subsection 3.2.3, because we do not need to compute the

context domain for all the subexpressions of the program. The construction of the sub-

systems also contains a traversal of the monoparametric partitioned program, in order

to build the equations of the subsystems. Thus, the time taken by this transformation is

mostly caused by the size of the program after applying the monoparametric partitioning

transformation.

We also notice that the time taken by a context domain computation following the

monoparametric tiling transformation is reduced compared to the time taken by the same

polyhedral analysis after the monoparametric partitioning transformation (cf Figure 3.9

Page 49). Thus, distributing the computation across subsystem helps reducing the time

taken by the polyhedral analysis on the transformed program.

We cannot reduce the size of the tiled program while keeping the full representation

of the tiled program. Indeed, each subsystem contains a different computation (by

definition of the kind of tiles), thus need to be generated. We also remark that the

size of the program after tiling is independent from the monoparametric nature of the

Chapter IV. From Partitioning to Tiling 98

transformation, and is caused by our choice of keeping the full representation of the tiled

program.

Chapter 5

Template Recognition

In Chapters 3 and 4, we introduced monoparametric tiling. This transformation allows

us to partition the computation of a program into tiles, and isolate the computation of

each tile into a separate subsystem. These subsystems are studied separately by our

template recognition framework described in Chapter 6.

In this chapter, we present our template recognition algorithm, which is used by our

framework to detect linear algebra operations. This template recognition algorithm is

an adaptation of the equivalence algorithm from Barthou et al. [8], whose main concepts

are briefly reviewed in Section 5.1. We present the algorithm itself in Section 5.2 and

present some examples of its application in Section 5.3.

In Section 5.4, we present several adaptations of our algorithm in order to manage the

semantic properties commonly encountered in linear algebra computations, such as the

associativity and commutativity of binary operators. Finally, we evaluate our algorithm

in Section 5.5 before concluding this chapter with some additional remarks in Section 5.6.

5.1 Barthou’s equivalence algorithm

Barthou’s equivalence algorithm [8] (see Section 2.4) consists of two steps: the first

step builds an equivalence automaton and the second step checks some reachability

properties in this automaton. The equivalence automaton captures the equivalence

problem between two programs. Each state of the equivalence automaton corresponds

to a comparison between two computations. Progressing in this automaton corresponds

to unrolling both programs, and progressively eliminating the matching computation

encountered. The final states of the automaton corresponds to comparison where nothing

can be eliminate or further unrolled. There are two kinds of final states: failure states

99

Chapter V. Template Recognition 100

(which denotes comparisons between two expressions which are obviously not equivalent)

and accept states (which denotes comparisons between two expressions which might be

equivalent, depending on the indices of the expressions).

After building the equivalence automaton, we examine the reachability set of the suc-

cess and failure states. The two compared programs are equivalent iff any path in the

automaton which starts from the initial states with equal indices for the output of both

programs (i) does not reach any failure state (ii) reaches an accept state only when the

indices of both inputs of the accept state are equal. If these properties are satisfied,

the two programs are performing exactly the same sequence of operations, i.e. they are

Herbrand-equivalent.

5.2 Adapting the equivalence algorithm into a template

algorithm

The main difference between an equivalence algorithm and a template recognition al-

gorithm is that the inputs of a template are unknown and might correspond to an

arbitrarily elaborate computation. Thus, one of the main challenges of template recog-

nition is to deduce these inputs. In particular, if an input appears in several places in a

template, we should check that the corresponding computation is coherent across all of

these places.

Step 1 - Construction of the equivalence automaton In this step, we reuse the

equivalence automaton construction process of Barthou [8], while modifying the notion

of success and failure state of a equivalence automaton to account for the inputs of a

template.

Definition 5.1 (Template final state). Considering an equivalence automaton between

a program P and a template P ′:

• A template-accept state is a state which is labeled by an equation of the form

Expr = I ′, where I ′ is an input of the template. This is more relaxed compared

to the notion of accept state, which imposes that exactly the same computation

occurs in both side of the equation.

• A template-failure state is a state which is labeled by an equation of either:

– f(. . .) = f ′(. . .) where f and f ′ are different operators

– I = f ′(. . .) where f ′ is an operator and I is an input of the program

Chapter V. Template Recognition 101

Intuitively, a template-failure state corresponds to a comparison between a sub-expression

of a program and of a template, which trivially cannot match, whatever values of the

input of the template. The notion of template-accept state is more relaxed than the

notion of accept state and the notion of template-failure state is more restricted than

the notion of failure state. The rest of the definitions of the equivalence automaton and

its constructions rules stay unchanged.

Because we assume that the output of the template matches the output of the program,

it might impose some constraints on the parameters of the template (typically, both

output arrays must be of the same size). We extract these constraints and keep them.

Step 2 - Extracting the constraints on the inputs of the template Now that

the automaton is built, we need to check that the template-failure states are not ac-

cessible, and we need to check that there exist some valid input of the template which

simultaneously satisfies all the accessible template-accept states.

As for the template-failure states, we compute their accessibility set and, because they

are not supposed to be reachable, we check that these sets are empty. If a template-

failure state is accessible for any values of the template parameters, then we can conclude

that the template does not match. If a template-failure state is never accessible, for any

values of the template parameters, we can safely ignore it for the rest of the algorithm. If

a template-failure state is accessible only for certain values of the template parameters,

we can extract the constraints on the template parameters which makes the correspond-

ing accessibility set empty and consider them as constraints on the parameters of the

template.

For example, if we compare a program O = I1 + I2 and we try to match it to a template

O′ = I ′ + I ′, we obtain two template-accept states: I1 = I ′ and I2 = I ′. The first

template-accept state can be satisfied by taking I ′ = I1 as the input of the template.

The second template-accept state can be satisfied by taking I ′ = I2 as the input of the

template. However, it is not possible to satised both template-accept state at the same

time, when both of them are accessible. Therefore, the template does not match with

the program.

We examine the automaton and extract the constraints on the inputs of the template

by examining the template-accept state. Because a template-accept state is always of

the form Expr = I ′, for each input of the template I ′, we can list the Expr that are

matched to this input, and compute the corresponding accessibility set. Formally, we

Chapter V. Template Recognition 102

obtain the following list, for every template input I ′:
. . .

(∀(~i, ~i′) ∈ SI′,k) I ′[~i′] = Exprk[~i]

. . .

where SI′,k is the accessibility set of the template-accept state Exprk[~i] = I ′[~i′].

Step 3 - Determining the inputs of the template We independently consider

each input I ′ of the template and its associated constraints, and try to determine a valid

value of such input. For each ~i′, we examine how many pairs (k,~i) there exist such that

I ′[~i′] = Exprk[~i], (~i, ~i′ ∈ SI′,k), i.e., how many expressions Exprk[~i] are matched to the

same ~i′.

In practice, it is not possible to iterate over all ~i′, because there is a parametric number

of them. Instead, we can compute separately the projections of the SI′,k on ~i′, then

consider the non-empty intersections pieces between a subset of these projected sets.

There is only a finite non parametric number of these intersections, and, in any of these

intersections, all the ~i′ will have the same expressions Exprk[~i] mapped to them. Thus,

by iterating over these intersections, we can cover all the cases encountered by the ~i′.

If there is only one expression Exprk[~i] for a given template input ((∀(~i, ~i′) ∈ SI′) I ′[~i′] =

Expr[~i]) and if, for every ~i′, there is only one single expression Expr[~i], then we can

trivially set as the value of our template:

I[~i′] = Expr[u(~i′)] where ~i = u(~i′)

If there are several expressions Exprk[~i] associated to a given template input, but, for

each ~i′, there exist only one pair (k,~i), then we can set the value of our template input

as a disjunction of values, defined over disjoint domains:

(∀~i′ ∈ π(SI′,k)) I[~i′] = Exprk[uk(~i′)] where ~i = uk(~i′)

where π(~i, ~i′) = ~i′ is a projection function.

In general, we might have several expressions Exprk[~i] which are mapped to the same

I ′[~i′]. In that situation, we have to ensure that the pairs are equivalent before selecting

one of them as the value of our template input. If this is not the case, this means that

two non-equivalent expressions are mapped to the same portion of the same input of the

template, thus that the program does not match the template. If all the pairs mapped

to the same I ′[~i′] are equivalent, we can select any of them. Another possibility is that

Chapter V. Template Recognition 103

the pairs are equivalent only for some values of the parameters: in that case, we extract

the constraints on the parameters.

Final step If a value is found for every input of the template, and if the constraints

on the parameters are satisfiable, then the template matches the program. In some

situations, several values of the template parameters are valid: in that case, we choose

to select the biggest values of the parameters, such that we match as much operations

as possible from the program with the template.

The whole algorithm is summarized in Algorithm 1.

Algorithm 1 Template Recognition Algorithm adapted from Barthou’s equivalence
algorithm

Require: Program P , Template T
Ensure: Does the template match the program? If yes, valid inputs of the template

1: Build the template-equivalence automaton . Building the automaton
2: Extract the constraints on the template parameters from the outputs

3: for each template-failure state do . Template-failure states
4: Compute the accessibility set of this state
5: Compute the set of template parameters for which this set is accessible
6: Add their negation to the constraints on the template parameters
7: If the constraints on the template parameters are not satisfiable, return “DO

NOT MATCH”
8: end for

9: for each template-access state “Expr[~i] = I ′[~i′]” do . Template-accept states
10: Compute the accessibility set
11: Add it to the list of constraint on the template input I ′

12: end for

13: for each template input I ′ do . Solving the constraints
14: for all ~i′ such that I ′[~i′] is matched to several expressions do
15: Use an equivalence algorithm to check if these expressions are equivalent on

the domain they intersect.
16: If they are equivalent only for some conditions on the template parameters,

add them to the constraints on the template parameters
17: If they are not equivalent or if the constraints on the template parameters

are not satisfiable, return “DO NOT MATCH”
18: end for
19: Select one expression which is matched to I ′[~i′] as the value of the input of the

template on this domain.
20: end for

21: Return “MATCH”, and the list of inputs found for the template.

It is possible to speed up the recognition algorithm (resp. the equivalence algorithm)

by detecting when a (template) failure state is trivially accessible. While building the

Chapter V. Template Recognition 104

automaton, we can compute a subset of the accessibility set on-the-fly, corresponding to

the set (~i, ~i′) on which we might end up on a given state, without taking any loops. If this

subset is not empty for a failure state, we can immediately interrupt the construction

of the automaton, and conclude that the template does not match the program (resp.

both programs are not equivalent).

The effectiveness of this optimization overlaps with the scalar operation classification of

our template library: if the first operator encountered by our template and the library

are different, then we can trivially conclude that the template does not match.

As with Barthou’s equivalence algorithm, this template recognition algorithm relies on

a transitive closure, which might not be exact. If we have an overapproximation of the

transitive closure instead, then the template recognition algorithm is still sound:

• If the reachability set of a template failure-state is overapproximated, because we

consider its negation to extract constraints on the parameters, these constraints

might be more restrictive than needed, but are sound.

• If the reachability set of a template accept-state is overapproximated, then we

have a constraint on an input of a template which spans over a larger domain

than needed. It might create an intersection with another constraint (and trigger

a check of equivalence between the two conflicting constraints) and might fail the

algorithm. Nevertheless, the algorithm stays also sound on that part.

5.3 Examples

Example 5.1. Let us consider the following (simple) program

(∀0 ≤ i < N) O[i] = A[i] + (B[i]× C[i]);

where A, B and C are inputs of the program. Let us try to match this program with the

following template (corresponding to the addition of two vectors of size N ′):

(∀0 ≤ i′ < N ′) O′[i′] = I ′1[i
′] + I ′2[i

′];

where I ′1 and I ′2 are inputs of the template.

First of all, we build the equivalence automaton:

Chapter V. Template Recognition 105

O[i] = O′[i′]

A[i] + (B[i]× C[i]) = I ′1[i
′] + I ′2[i

′]

A[i] = I ′1[i
′] B[i]× C[i] = I ′2[i

′]

(Comp × 2)

(Dec)

We have one constraints on the parameters coming from the outputs: the size of O′ must

be the same than the size of O. Therefore, N = N ′. We also have two template-accept

state: A[i] = I ′1[i
′] and B[i]× C[i] = I ′2[i

′]. The accessibility set of both template-accept

state are both {i, i′ | 0 ≤ i = i′ < N = N ′}.

Let us consider the first input of the template I ′1: for every 0 ≤ i′ < N ′, there is only

one expression which is mapped to I ′1[i
′] in the automaton, which is A[i], where i = i′.

Therefore, I ′1[i
′] = A[i′] is a valid input of the template.

Let us consider the second input of the template I ′2: for every 0 ≤ i′ < N ′, there is only

one expression which is mapped to I ′2[i
′] in the automaton, which is B[i] × C[i], where

i = i′. Therefore, I ′2[i
′] = B[i′]× C[i′] is a valid input of the template.

The constraints on the parameters of the template are satisfiable (N ′ = N) and we found

valid inputs of the template, thus we conclude that the template matches.

Example 5.2. Let us consider the following program:

(∀0 ≤ i < N) O[i] = A[i] + (B[i]× C[i]);

where A, B and C are inputs of the program. Let us try to match this program with

the following template (corresponding to the addition between a vector of size N ′ and its

reverse):

(∀0 ≤ i′ < N ′) O′[i′] = I ′[i′] + I ′[N ′ − i′];

where I ′ is the input of the template.

First of all, we build the equivalence automaton:

Chapter V. Template Recognition 106

O[i] = O′[i′]

A[i] + (B[i]× C[i]) = I ′[i′] + I ′[N ′ − i′]

A[i] = I ′[i′] B[i]× C[i] = I ′[N ′ − 1 + i′]

B[i]× C[i] = I ′[i′]

(Comp × 2)

(Dec)

i′ = N ′ − 1 + i′

We have one constraints on the parameters coming from the outputs, which imposes

N = N ′. We have two template-accept state: A[i] = I ′[i′] and B[i] × C[i] = I ′[i′]. The

accessibility set are both {i, i′ | 0 ≤ i = i′ < N = N ′}.

Let us consider the unique input of the template I ′. We have two expressions mapped

to I ′[i′] for every 0 ≤ i′ < N ′, which are A[i] (where i = i′) and B[i] × C[i] (where

i = N ′− i′). However, these expressions are not equivalent. Therefore, we conclude that

the template does not match (because there is no value for the input I ′ which satisfies

both template-accept states at the same time).

Example 5.3. Let us consider the following program:

(∀0 ≤ i < N) O[i] = (A[i] +B[i])× (temp[i] +B[i]);

(∀0 ≤ i < N) temp[i] = A[i];

where A and B are inputs of the program. Let us try to match this program with the

following template (corresponding to the multiplication between a vector of size N ′ with

itself):

(∀0 ≤ i′ < N ′) O′[i′] = I ′[i′]× I ′[i′];

where I ′ is the input of the template.

First of all, we build the equivalence automaton:

O[i] = O′[i′]

(A[i] +B[i])× (temp[i] +B[i]) = I ′[i′]× I ′[i′]

A[i] +B[i] = I ′[i′] temp[i] +B[i] = I ′[i′]

(Comp × 2)

(Dec)

Chapter V. Template Recognition 107

We have one constraints on the parameters coming from the outputs, which imposes N =

N ′. We have two template-accept state: A[i] + B[i] = I ′[i′] and temp[i] + B[i] = I ′[i′].

The accessibility set are both {i, i′ | 0 ≤ i = i′ < N = N ′}.

Let us consider the unique input of the template I ′. We have two expressions mapped to

I ′[i′] for every 0 ≤ i′ < N ′, which are A[i]+B[i] (where i = i′) and temp[i]+B[i] (where

i = i′). We need to check if both expressions are equivalent on the domain 0 ≤ i < N .

The corresponding equivalence automaton is:

A[x] +B[x] = temp[x′] +B[x′]

A[x] = temp′[x′] B[x] = B[x′]

A[x] = A[x′]

(Dec)

(Comp)

Both accept states are accessible, and compare the same array cells. Thus, both expres-

sions are equivalent. Stepping back, this means that both A[i′]+B[i′] and temp[i′]+B[i′]

are valid values for the input of the template I ′[i′], for 0 ≤ i′ < N ′. Thus, we conclude

that the template matches, and the input of the template will be I[i′] = A[i′] + B[i′] (or

I[i′] = temp[i′] +B[i′], if we pick the other expression).

Example 5.4. Let us consider the following program, corresponding to a serialized

reduction over two arrays of size N (I2 and I1, I2 being summed in the reverse order),

and an element I0[0]:

O = Temp[2N − 1]

(∀N ≤ i < 2N) Temp[i] = Temp[i− 1] + I2[2N − 1− i]
(∀0 < i < N) Temp[i] = Temp[i− 1] + I1[i]

(∀i = 0) Temp[i] = I0[0]

where I0, I1 and I2 are inputs of the program. Let us try to match this program with the

following template (corresponding to a serialized reduction along an array of size N ′):

O′ = Temp′[N ′ − 1]

(∀0 < i′ < N ′) Temp′[i′] = Temp′[i′ − 1] + I ′[i′]

(∀i′ = 0) Temp′[i′] = I ′[0]

First of all, we build the equivalence automaton:

Chapter V. Template Recognition 108

O = O′

Temp[2N − 1] = Temp′[N ′ − 1]

Temp[i] = Temp′[i′]

I0[0] = Temp′[i′]

Temp[i− 1] + I1[i] = Temp′[i′]

Temp[i− 1] + I2[2N − 1− i] = Temp′[i′]

I0[0] = I ′[0]

I0[0] = Temp′[i′ − 1] + I ′[i′]

Temp[i− 1] + I1[i] = I ′[0]

Temp[i− 1] + I1[i] = Temp′[i′ − 1] + I ′[i′]

Temp[i− 1] = Temp′[i′ − 1] I1[i] = I ′[i′]

Temp[i− 1] + I2[2N − 1− i] = I ′[0]

Temp[i− 1] + I2[2N − 1− i] = Temp′[i′ − 1] + I ′[i′]

Temp[i− 1] = Temp′[i′ − 1]I2[2N − 1− i] = I ′[i′]

?

(Comp × 2)

i = 2N − 1, i′ = N ′ − 1

i = 0

0 < i < N

N ≤ i < 2N

i′ = 0 0 < i′

i′ = 0 0 < i′

i = i− 1

i′ = i′ − 1

i′ = 0
0 < i′

i = i− 1

i′ = i′ − 1

The outputs of the template and the program are both scalar, thus we do not have any

constraint on the parameters of the template coming from them. While computing the

accessibility set and applying a transitive closure, we find that the accessibility set of the

state “ Temp[i] = Temp[i′]” (the state besides the star ?) is {i, i′|(∃k)i = 2N−1−k ∧ i′ =
N ′ − 1− k} = {i, i′|i = 2N −N ′ + i′}.

We have one template-failure state I0[0] = Temp′[i′−1]+I ′[i′], whose accessibility set is

{i, i′|i′ = N ′−2N + i ∧ i = 0 ∧ 0 < i′} = {i, i′|2N < N ′ ∧ i = 0 ∧ 0 < i′}. Therefore,

so that this set is no longer accessible, we have the constraint N ′ ≤ 2N . Physically,

this means that the reduction we try to detect with our template must not be too long:

N ′ = 2N corresponds to detecting the whole program as a reduction (with a piece-wise

input) and N ′ < 2N corresponds to detecting only part of the program as a reduction.

Let us examine the template-success state. We have 5 of them, all of them on the

template input I ′, the corresponding constraints being:

• (i, i′) ∈ {i, i′|i = i′ = 0 ∧ i = 2N −N ′ + i′} I0[0] = I ′[0]

Chapter V. Template Recognition 109

• (i, i′) ∈ {i, i′|0 < i < N ∧ i′ = 0 ∧ i = 2N −N ′ + i′} Temp[i− 1] + I1[i] = I ′[0]

• (i, i′) ∈ {i, i′|0 < i < N ∧ 0 < i′ ∧ i = 2N −N ′ + i′} I1[i] = I ′[i′]

• (i, i′) ∈ {i, i′|N ≤ i < 2N ∧ i′ = 0 ∧ i = 2N−N ′+i′} Temp[i−1]+I2[2N−i−1] =

I ′[0]

• (i, i′) ∈ {i, i′|N ≤ i < 2N ∧ 0 < i′ ∧ i = 2N −N ′ + i′} I2[2N − i− 1] = I ′[i′]

Let us determine the value of the template input I ′. For i′ = 0, we have 3 constraints

which maps 3 different expressions to I ′[0] (I0[0], Temp[i− 1] + I1[i] and Temp[i− 1] +

I2[2N − i− 1]). The first constraint imposes that the template parameter N ′ is equal to

2N . The second constraint imposes that 0 < 2N −N ′ < N , i.e., N < N ′ < 2N and the

third one that N ≤ 2N −N ′ < 2N , i.e. 0 < N ′ ≤ N . Therefore, these 3 constraints are

disjoints, and we have:

I ′[0] =

N ′ = 2N : I0[0]

N < N ′ < 2N : Temp[2N −N ′ − 1] + I1[2N −N ′]
0 < N ′ ≤ N : Temp[2N −N ′ − 1] + I2[N

′ − 1]

For 0 < i′, we have 2 constraints which maps 2 different expressions to I ′[i′] (I1[i] and

I2[2N − i − 1]). The first constraint imposes 0 < 2N − N ′ + i′ < N , i.e., N ′ − 2N <

i′ < N ′ −N . Because we have already determined that N ′ ≤ 2N , 0 ≤ i′ < N ′ −N . The

second constraint imposes N ≤ 2N −N ′ + i′ < 2N , i.e., N ′ −N ≤ i′ < N ′. Thus, both

of them are disjoints and we have:

I ′[i′] =

{
0 < i′ < N ′ −N : I1[2N −N ′ + i′]

N ′ −N ≤ i′ < N ′ : I2[N
′ − 1− i′]

Therefore, the template matches for any N ′ ≤ 2N . To maximize the part of the program

covered by the template, we pick N ′ = 2N , which gives us, as the input of the template:

(∀i′ = 0) I ′[i′] = I0[0]

(∀0 < i′ < N) I ′[i′] = I1[i
′]

(∀N ≤ i′ < 2N) I ′[i′] = I2[2N − 1− i′]

Therefore, we conclude that the template matches.

Example 5.5. Let us consider a Cholesky computation and let us apply the transfor-

mation we have presented in the previous chapter, for square tile sizes (b × b). This

example was already discussed in Example 4.9 and Figure 4.15 subsumes the different

Chapter V. Template Recognition 110

blocks we obtain. Let us consider the equations obtained for the dark green tiles (tiles

whose blocked indices satisfy 0 < jb and ib = jb):

(∀0 = jl = il < b) Lloc[il, jl] =
√
Ain[jl, jl]−

∑
kb<ib

TR0in[kb, il, jl];

(∀0 < jl = il < b) Lloc[il, jl] =
√
Ain[jl, jl]−

∑
kb<ib

TR0in[kb, il, jl]− TR0 SG[ib, il, jl];

(∀0 = jl < il < b) Lloc[il, jl] =

(
Ain[il, jl]−

∑
kb<ib

TR1in[kb, il, jl]

)
/Lloc[jl, jl];

(∀0 < jl < il < b) Lloc[il, jl] =

(
Ain[il, jl]−

∑
kb<ib

TR1in[kb, il, jl]− TR1 SG[ib, il, jl]

)
;

/Lloc[jl, jl];

(∀kb = ib, 0 < jl = il < b) TR0 SG[kb, il, jl] =
∑
kl<jl

Lloc[jl, kl]× Lloc[jl, kl];

(∀kb = ib, 0 < jl < il < b) TR1 SG[kb, il, jl] =
∑
kl<jl

Lloc[il, kl]× Lloc[jl, kl];

where b, ib, jb are parameters of the program. Ain[il, jl], TR0in[kb, il, jl] and TR1in[kb, il, jl]

are inputs of the program. Ain corresponds to the block A[ib, jb] of the program, TR0in[kb, il, jl]

corresponds to the partial accumulation of the
∑
k

L[j, k]×L[j, k] over the block (ib, jb, kb)

and TR1in[kb, il, jl] corresponds to the partial accumulation of the
∑
k

L[i, k]×L[j, k] over

the block (ib, jb, kb).

Let us compare this program with the following template, corresponding to a scalar

Cholesky computation:

(∀i′ = j′ = 0) L′[i′, j′] =
√
A′[i′, i′];

(∀0 < j′ = i′ < N ′) L′[i′, j′] =
√
A′[i′, i′]−

∑
k′<j′

L′[i′, k′]× L′[i′, k′];

(∀0 = j′ < i′ < N ′) L′[i′, j′] = A[i′, j′]/L′[j′, j′];

(∀0 < j′ < i′ < N ′) L′[i′, j′] =

(
A′[i′, j′]−

∑
k′<j′

L′[i′, k′]× L′[j′, k′]

)
/L′[j′, j′];

where A′ is the input of the template and N ′ a parameter of the template.

Some of the operators considered are associative and commutative. The template recogni-

tion algorithm can manage these semantic properties, as it will be shown in Section 5.4,

by considering the possible permutations of their elements. However, in the context of

this example, we will not consider these semantic properties.

In particular, this means that we consider a reduction as an operator, admitting a para-

metric number of elements. Thus, two reductions are considered equivalent iff every

Chapter V. Template Recognition 111

Lloc[il, jl] = L′[i′, j′]

Lloc[il, jl] =
√
A′[i′, i′]

√
ℵ =

√
A′[i′, i′]

ℵ = A′[i′, i′]

√
ℵ − TR0 SG[ib, il, jl] =

√
A′[i′, i′]

ℵ − TR0 SG[ib, il, jl] = A′[i′, i′]

. . . / · · · =
√
A′[i′, i′]

. . . / · · · =
√
A′[i′, i′]

Lloc[il, jl] =
√
A′[i′, i′]−

∑
k′<j′

L′[i′, k′]× L′[i′, k′]

√
ℵ =

√
A′[i′, i′]−

∑
k′<j′

L′[i′, k′]× L′[i′, k′]

Ain[jl, jl] = A′[i′, i′]

TR0in[kb, il, jl] = L′[i′, k′]× L′[i′, k′]

√
ℵ − TR0 SG[ib, il, jl] =

√
A′[i′, i′]−

∑
k′<j′

L′[i′, k′]× L′[i′, k′]

ℵ = A′[i′, i′]
TR0in[kb, il, jl] =

∑
k′<j′

L′[i′, k′]× L′[i′, k′]

∑
kl<jl

Lloc[jl, kl]× Lloc[jl, kl] =
∑

k′<j′
L′[i′, k′]× L′[i′, k′] Lloc[jl, kl] = L′[i′, k′]

. . . / · · · = √. / · · · = √. . .

i′ = j′ = 0

il = jl = 0 0 < il = jl

0 = jl < il

0 < jl < il

0 < j′ = i′

il = jl = 0 0 < il = jl

j′ = k′

il = jl

jl = kl

0 = jl < il 0 < jl < il

Part 2 (Figure 5.2)

0 = j′ < i′ 0 < j′ < i′

Figure 5.1: Equivalence automaton of Example 5.5 (Part 1), where a diagonal
parametrized tile of a Cholesky computation is checked for a recursive Cholesky call.
To reduce the space taken by the drawing of this automaton, we use the following
shortcuts: ℵ = Ain[jl, jl]−

∑
kb<ib

TR0in[kb, il, jl]

subexpression at the same position in both sides are equivalent (i.e., the third subex-

pression of the left reduction must be equivalent to the third subexpression of the right

reduction, and no reordering of the subexpressions under both reductions is allowed).

Also, because the considered reduction operator admit a parametric number of elements,

this number must be the same, giving us an additional constraint on the template pa-

rameters.

The equivalence automaton is shown in two parts, in Figure 5.1 and Figure 5.2.

We have one constraints on the parameters coming from the outputs: b = N ′. While

computing the accessibility sets and applying a transitive closure, we find that the acces-

sibility set of the state Lloc[il, jl] = L′[i′, j′] is {il, jl, i′, j′ | jl = j′ ≤ il = i′}. Because of

Chapter V. Template Recognition 112

Lloc[il, jl] = L′[i′, j′]

Lloc[il, jl] = A′[i′, j′]/L′[j′, j′]

i/Lloc[jl, jl] = A′[i′, j′]/L′[j′, j′]

i = A′[i′, j′]

Lloc[jl, jl] = L′[j′, j′]

(i− TR1 SG[ib, il, jl])/Lloc[jl, jl] = A′[i′, j′]/L′[j′, j′]

i− TR1 SG[ib, il, jl] = A′[i′, j′]

√
. . . = . . . / . . .

√
. . . = . . . / . . .

Lloc[il, jl] = (A′[i′, j′]−
∑

k′<j′
L′[i′, k′]× L′[j′, k′])/L′[j′, j′]

i/Lloc[jl, jl] = (A′[i′, j′]−
∑

k′<j′
L′[i′, k′]× L′[j′, k′])/L′[j′, j′]

Ain[il, jl] = A′[i′, j′]

TR1in[kb, il, jl] = L′[i′, k′]× L′[j′, k′]

(i− TR1 SG[ib, il, jl])/Lloc[jl, jl] = (A′[i′, j′]−
∑

k′<j′
L′[i′, k′]× L′[j′, k′])/L′[j′, j′]

i = A′[i′, j′]
TR1 SG[ib, il, jl] =

∑
k′<j′

L′[i′, k′]× L′[j′, k′]

∑
kl<jl

Lloc[il, kl]× Lloc[jl, kl] =
∑

k′<j′
L′[i′, k′]× L′[j′, k′] Lloc[il, kl] = L′[i′, k′]

Lloc[jl, kl] = L′[j′, k′]

√
. . . = . . . / . . .

√
. . . = . . . / . . .

0 = j′ < i′

0 = jl < il

il = jl

i′ = j′

0 < jl < il

0 = jl = il

0 < jl = il

0 < j′ < i′

0 = jl < il

0 < jl < il

jl = kl, j
′ = k′

jl = kl, j
′ = k′

il = jl, i
′ = j′

0 = jl = il 0 < jl = il

Part 1 (Figure 5.1)

0 = j′ = i′ 0 < j′ = i′

Figure 5.2: Equivalence automaton of Example 5.5 (Part 2), where a diagonal
parametrized tile of a Cholesky computation is checked for a recursive Cholesky call.
To reduce the space taken by the drawing of this automaton, we use the following
shortcuts: i = Ain[il, jl]−

∑
kb<ib

TR1in[kb, il, jl]

Chapter V. Template Recognition 113

this, none of the template-failure states are accessible in the automaton, thus we do not

have any additional constraints on the parameters of the template.

Let us examine the template-accept states. Only 4 of them are accessible, and their

constraints are the following:

• (∀il = jl = 0 = i′ = j′ = 0) ℵ = A′[i′, i′] (top-left element of A′)

• (∀0 < il = jl = i′ = j′) ℵ = A′[i′, i′] (other diagonal elements of A′)

• (∀0 = jl = j′ < il = i′) i = A′[i′, j′] (first column of non-diagonal elements of A′)

• (∀0 < jl = j′ < il = i′) i = A′[i′, j′] (other non-diagonal elements of A′)

where ℵ = Ain[jl, jl]−
∑
kb<ib

TR0in[kb, il, jl] and i = Ain[il, jl]−
∑
kb<ib

TR1in[kb, il, jl].

Let us determine the value of the template input A′: there is 4 associated constraints,

but each one of them are concerning disjoints portions of A′. Therefore, we can simply

take as the template input:

(∀j′ = i′ = 0) A′[i′, j′] = Ain[0, 0]−
∑
kb<ib

TR0in[kb, il, jl]

(∀0 < j′ = i′) A′[i′, j′] = Ain[j′, j′]−
∑
kb<ib

TR0in[kb, il, jl]

(∀0 = j′ < i) A′[i′, j′] = Ain[i′, 0]−
∑
kb<ib

TR1in[kb, il, jl]

(∀0 < j′ < i) A′[i′, j′] = Ain[i′, j′]−
∑
kb<ib

TR1in[kb, il, jl]

Therefore, we conclude that the template matches the program, and we just have recognize

a recursive call to a smaller Cholesky at the level of the diagonal blocks of a Cholesky

computation.

5.4 Managing semantic properties

In Section 5.2, we described a template matching algorithm, based on Barthou’s equiva-

lence algorithm (cf Sections 2.4 and 5.1). Both algorithms do not consider any semantic

properties. In this section, we show how to extend the template matching algorithm to

deal with the common semantic properties usually encountered in a linear algebra com-

putation.

The computation considered in our template library are linear algebraic operations,

whose data belongs to a ring (R,+,×). Because of the algebraic properties of this

Chapter V. Template Recognition 114

ring, given a program, there exist several variations which computes the same re-

sult. For example, in Example 5.5, we compare

(
Ain[jl, jl]−

∑
kb<ib

TR0in[kb, il, jl]

)
−

TR0 SG[ib, il, jl] with

(
Ain[jl, jl]−

∑
kb<ib

TR1in[kb, il, jl]

)
−TR1 SG[ib, il, jl], but these

three terms might be reordered differently (using the associativity and commutativity

properties of the addition). If we do not take account of these algebraic property, the

slightest variation of the computation will make the template recognition algorithm fails.

In this section, we show how to deal with some of the semantic properties encountered for

the linear algebra operations, in order to improve the capability of our template recog-

nition algorithm. All of these properties, other than associativity, commutativity and

distributivity, are managed through a set of rewriting rules. The implementation of our

templates are already normalized according to these rules, and the compared program

are normalized through these rules. The associativity and commutativity properties are

managed within the template recognition algorithm, instead of being a preprocessing

step.

Managing semantic properties through rewriting rules We deal with most of

the semantic properties by using rewriting rules, to be applied to both the program

and the template before performing the template recognition algorithm. Because our

templates are stored in a library, we can apply this preprocessing step once and for all.

The rewriting rules are the following:

• Neutral element: we remove the useless contribution

– 0 +A→ A, A+ 0→ A

– 1.A→ A, A.1→ A

• Annihilator element: we propagate it

– 0.A→ 0

• Inverse: we explicit the addition/multiplication

– A−B → A+ (−B)

– A/B → A.(1/B)

• Reduction over a single element: we remove the reduction

–
∑

k=f(~i,~p)

Expr[k] → Expr[f(~i, ~p)], where f(~i, ~p) is an affine function of the

surrounding indices ~i and parameters ~p.

Chapter V. Template Recognition 115

These rules allows us to partially normalize the expression of a template or program, to

allow our template recognition algorithm to recognize equivalent pattern, while taking

these algebraic properties into account. Note that all of these rules are local modifica-

tions of the expression syntactic tree, thus can be applied easily.

Distributivity management We cannot deal with the distributivity semantic rule by

using a rewriting rule. Indeed, we have the choice of either distributing (A× (B+C)→
A × B + A × C) or factorizing (A × B + A × C → A × (B + C)) the terms. However,

each case, we might prevent the other template from being recognized.

Indeed, if our program is Out = (A+B)×C and our template Out′ = I ′1×I ′2, distributing

C over (A + B) prevents this template to be matched. Likewise, if our program is

Out = A × C + B × C and our template Out′ = A′ + B′, factorizing C prevents this

template to be matched. Thus, forcing either way through a rewriting rule might hurt

the recognition process.

In our context, we partially solve this problem by creating multiple versions of the

template in which the distributivity property might apply: one in which the terms are

factorized, one in which the terms are distributed.

Associativity and commutativity management We deal with associativity and

commutativity rules by generating several variants of the template equivalence automa-

ton, during the template recognition algorithm. For example, given a state of a template

equivalence automaton A + B = A′ + B′, we can match A with either A′ or B′ (resp.

B with either B′ or A′). Therefore, we generate two versions of the automaton: one in

which the state A + B = A′ + B′ leads to the states A = A′ and B = B′ through a

computation rule, and another one in which this state leads to the states A = B′ and

B = A′ through a computation rule (corresponding to the choice we are taking).

Let us first consider a state, during the construction of the template equivalence au-

tomaton, comparing two summations in which no term is a reduction:

SExpr1 ⊕ · · · ⊕ SExprk = SExpr’1 ⊕ · · · ⊕ SExpr’k′

The main idea is that a term SExpr’i′ on the template (right) side is mapped to one or

many term(s) SExpri on the program (left) side. Therefore, if we have fewer terms on

the program side than on the template side (i.e., if k < k′), we cannot match a term

on the template side with a term on the program side, thus fall back into the default

strategy of considering the operator as non-commutative and non-associative.

Chapter V. Template Recognition 116

If we have at least as many terms on the program side as in the template side, then

we can associate at least one term of the program side to the template side. Therefore,

we generate all possible combinations and create the corresponding automaton for each

combination. If the number of terms in each side is equal, it amounts to considering all

the permutations [80].

The maximum number of terms in a summation does not exceed the maximum number

of terms in a summation inside the input program or template and is, in practice,

reasonably small. Thus, the number of automaton generated stays reasonable in practice.

This method of managing associativity and commutativity is not perfect. For example,

one limitation is that, once we pick a combination, the choice is fixed once for all for

this automaton, even if we encounter exactly the same state later. Indeed, when we try

to add a new state to the template equivalence automaton, we check first if the state

already exists, and, if it does, we reuse this existing state (this is the mechanism which

allows us to have loops inside the template equivalence automaton). Therefore, if we

have a comparison between two summations inside a loop of the template equivalence

automaton, because the states were created the first time they were encountered, the

choice made the first time cannot be changed. However, in the context of recognizing

linear algebra operations, our method is enough.

In the general case, let us consider a state during the construction of the template

equivalence automaton, comparing two summations (for any associative and commuta-

tive binary operator), some terms being potentially reductions:

SExpr1 ⊕ · · · ⊕ SExprk ⊕
⊕

SExprRed1 ⊕ · · · ⊕
⊕

SExprRedl =

SExpr’1 ⊕ · · · ⊕ SExpr’k ⊕
⊕

SExprRed’1 ⊕ · · · ⊕
⊕

SExprRed’l

A reduction can be viewed as the summation over a parametric number of terms, there-

fore, the natural extension of the previous strategy consist on mapping any term of the

template side (including a specific term inside a reduction) to one or many term(s) of

the program side. In particular, this allows potential permutations of the summation

order in the reductions. This idea was applied for an equivalence checking algorithm in

order to manage reduction by Iooss and al. [34].

In our case, in order to simplify the template equivalence algorithm (and to avoid in-

ferring a suitable permutation), we choose not to exploit potential permutations of the

order of summation inside a reduction. It means that a reduction
⊕

SExprRedk is

considered as some kind of unary operator. Also, when comparing two reductions, we

need to check that the number of terms summed is the same. This can introduce some

Chapter V. Template Recognition 117

constraints on the parameters of the template (for example, if we compare a reduction

over N terms in the program side with a reduction over N ′ terms in the template side,

we must have N = N ′).

A reduction term of the template side (SExprRed’i′) must be mapped to a single re-

duction term on the program side (SExprRedi). A non-reduction term of the template

side can be mapped to any combination of terms on the program side. Therefore, to be

able to apply this strategy, we need at least as many reductions on the program side

as in the template side, and the total number of terms on the program side must be

greater than or equal to the number of terms on the template side. We generate all the

possible combinations, then generate one version of the template equivalence automaton

per combination.

5.5 Experimental validation

In this section, we evaluate the scalability of our implementation of the template recog-

nition algorithm described previously in this section. The implementation was done in

Java, using the AlphaZ compiler framework [89]. The Integer Set Library (isl [79]) was

used in order to perform the transitive closure.

Our set of test cases consist in the examples we have developed in the previous sections,

plus the following additional template recognition problems:

• Matmult : compares a matrix multiplication computation (with reduction, i.e.,

(∀i, j) C[i, j] =
∑

k A[i, k]∗B[k, j]) with a matrix multiplication template contain-

ing the same equation. This is a simple test case with a reduction to be managed.

• Cholesky Lbl Tile1 : the program corresponds to one of the subsystems we ob-

tain after applying the monoparametric tiling transformation with outlining on a

Cholesky computation (see the light blue tiles of the left column in Figure 4.15,

Page 93). The compared template corresponds to the linear algebra computation

C ← B.U−1 (xTRSM in BLAS).

• Cholesky Commutation: the computation is the same as the one of Example 5.5.

However, the order of the summations was changed.

We run our experiments on a machine with an Intel Xeon E5-1650 CPU with 12 cores

running at 1.6 GHz (max speed at 3.8GHz), and 31GB of memory. Figure 5.3 reports

the time taken by each step of the algorithm. We also report the number of equivalence

automata built during step 1 (the multiple versions being caused by the associativity and

Chapter V. Template Recognition 118

Template
Matching
Problem

S
te

p
1

-
T

im
e

A
u

to
m

a
to

n
C

on
st

ru
ct

io
n

A
u

to
m

at
a

C
on

si
d

er
ed

/A
u

to
m

a
to

n
B

u
il

t

S
te

p
2

E
x
tr

ac
ti

n
g

C
on

st
ra

in
ts

S
te

p
3

D
et

er
m

in
in

g
In

p
u

ts

N
u

m
b

er
of

S
ta

te
s

of
th

e
A

u
to

m
a
ta

C
on

si
d

er
ed

T
o
ta

l
T

im
e

Example 5.1 Page 104
(Simple)

49 1/2 20 9 5 82

Example 5.2 Page 105
(NMatch)

41 2/2 23 89 12 156

Example 5.3 Page 106
(Unroll)

45 1/2 20 78 5 146

Matmult 58 1/2 35 8 10 104

Example 5.4 Page 107
(Reduction)

317 1/2 260 6 35 585

Example 5.5 Page 109
(Cholesky Tile2)

617 1/4 371 15 80 1008

Cholesky
Lbl Tile1

1806 1/28 628 24 41 2461

Example 5.5 Modified
(Cholesky Comm)

7406 4/9 2460 18 396 9884

Figure 5.3: Experimental validation of our template recognition algorithm. The times
are in milliseconds (ms). Because Step 1 is generating a list of automata (corresponding
to several version of matching, due to the associativity and commutativity properties),
we consider them one by one during Step 2 and 3, until a matching is found (or all of
them are considered). The number of state of the automata considered are the sum of
the number of states of the automata on which we went through step 2 and 3. The
times reported for Step 2 (resp. 3) are the sums of the time spent in each Step 2 (resp.
3) phase, for each automata considered

commutativity properties). We report the number of template equivalence automata we

have considered in Step 2 and 3, until a matching was found, or all the automata were

checked.

The steps 1 (equivalence automata construction) and 2 (constraint extraction) are the

main contributors toward the total time. About the equivalence automata construction

step of the algorithm, this step takes a lot of time when the number of variants is large.

In Chapter 6, we will use this algorithm intensively in order to identify linear algebra

operations inside a computation, and some of the instances of the template equivalence

algorithm reach the hundreds of automata built. In the constraint extraction step, the

most expensive operation is the transitive closure.

Chapter V. Template Recognition 119

5.6 Discussion

Equivalence of reduction We have proposed [34] an extension to Barthou’s equiva-

lence algorithm to manage the associativity and commutativity properties of reductions.

Because of the properties of the reduction operator, the terms accumulated might be

in a different order. Hence, the main challenge in this extension is to find a mapping

between the terms of two compared reductions, so that we can conclude for equivalence

or not.

The extension is performed in the following manner:

• Equivalence automaton construction: we add a new rule to manage reductions,

called Decompose Reduce.

⊕
π(~k)=~i

E[~k] =
⊕

π′(~k′)=~i′
E′[~k′]

E[~k] = E′[~k′]

σ(~k) = ~k′

The idea of this rule is to map every instance of the left reduction E[~k] to an

equivalent instance E′[~k′] on the right reduction, such that these two instances

are equivalent. In other words, if we manage to find a bijection σ between the

instances ~k of the left reduction and the occurrences ~k′ of the right reduction such

that E[~k] is equivalent to E′[~k′], then both reductions are equivalent. During the

equivalence automaton construction step, we leave σ as a symbolic function (it

does not impact the construction of the rest of the automaton). However, we still

need to prove the existence of such σ, and the rest of the algorithm will focus on

inferring it.

Because this rule is based on a bijection which associates exactly one instance from

the left reduction to another from the right reduction, we cannot manage situations

where a left-instance must be mapped to the sum of several right-instances (or vice

versa). In such situations, we will not be able to find a correct σ and we will be

unable to conclude if both reductions are equivalent or not. However, in the

situation of our transformation, this case should not happen.

• Derivation of the mapping σ: Once the equivalence automaton is built, if we did

encounter a reduction, we need to prove the existence of σ, the bijection which

associates equivalent terms from both reductions. We do this constructively, by

inferring it, from the equivalence automaton (which contains all the information

needed). The inference algorithm consists of 3 steps:

Chapter V. Template Recognition 120

– Extracting the constraints on σ: this step is just the computation of accessi-

bility relations.

– Rearranging the constraints in order to obtain partial bijection σ̃i. A partial

bijection is a bijection which is defined only on a subset of a domain. The

constraints extracted on σ have a special form: the only constraints in which

we have indices from both programs are equalities (i.e., the indices of both

programs do not mix in our constraints, except for some equality constraints).

Using this property, we can transform our constraints into partial bijections

σ̃.

– Combining the partial bijections σ̃ into a full bijection σ, which is our map-

ping. This problem is an instance of the bipartite graph perfect matching

problem, over a particular kind of graph: the set of nodes of this graph corre-

sponds to all the points of the antecedent and the image domain, and the edges

corresponds to the partial bijections. Thus, this graph has a parametrized

number of nodes, but has only a finite number of “type” of edges (one type

for each partial bijections). We have proposed [34] several heuristics to find

a perfect matching on such a graph: a greedy algorithm and one inspired of

the augmenting path algorithm, which solves the perfect matching problem

for finite graphs.

More details about this adaptation of the equivalence algorithm can be found in our

paper [34]. This work can probably be extended to a template equivalence algorithm

which manages the associativity and commutativity properties of reductions (like what

we did in Section 5.2 with the original Bathou’s equivalence algorithm). However, we

will have to infer both the expression corresponding to the inputs of the template, and

the bijection σ at the same time.

Moreover, in the context of our work, this level of flexibility for the associativity and

commutativity properties of reduction operators is not needed. Indeed, in practice, we

only need these properties to cut a reduction according to the tiling considered. This

is already done automatically during the monoparametric tiling transformation (see

Section 4.3).

Adjusting the domain of output variables As shown in Algorithm 1 Page 103,

we extract some constraints between the parameters of the program and the template

through the domain of output variables. This is done by comparing the domain of the

output of the program with the domain of the output of the template, and by deducing

the constraints on both sets of parameters to make them match.

Chapter V. Template Recognition 121

During the application of our template detection framework, we might encounter sub-

systems which are parts of a larger linear algebra operation. For example, we can have

a subsystem whose output is the strict lower triangular part of the result of a matrix

multiplication between two square N ×N matrices A and B:

(∀0 ≤ j < i < N) C[i, j] =
∑

0≤k<N
A[i, k]×B[k, j]

If we try to compare this subsystem with the matrix multiplication template, because

the domain of the output of the subsystem has a triangular shape and the domain of

the template a rectangular shape, we will conclude that the subsystem does not match

the template.

A first possible option to fix that issue is to create a new template per output shape (for

example, a matrix multiplication template with a lower triangular output, then another

one with an upper triangular output). However, this option forces us to duplicate many

templates, which will slow down the recognition process.

Another option is to adapt the template recognition algorithm to allow the inclusion of

the domain of the output variable of the subsystem in the domain of the output variable

of the template, instead of an equality. However, such an extension causes the algorithm

to fail when we try to fix the actual value of the template. For example, we would

be able to match a matrix multiplication between two N × N matrices with a matrix

multiplication template between a N ′ × N matrix and a N × N ′ matrix, for N ′ > N .

Thus, taking the maximal value of N ′ does not maximize the amount of computation

matched anymore, but the number of useless computation on such matching.

Finally, the option we chose is to extend the output domain of the subsystem in order to

have a rectangular shape. If the equations of the output variable are valid for the new

part of the domain of the output variable, we reuse them. Else, we add a new equation

which sets the domain of the output variable to 0 in this new part. For example, if

we consider the triangular subset of a matrix multiplication equation we considered

previously, because the expression
∑

0≤k<N A[i, k] × B[k, j] can be defined other the

whole square domain {i, j|0 ≤ i < N, 0 ≤ j < N}, we can extend this equation before

comparing the subsystem with the matrix multiplication template.

Using a similar reasoning, if the output domain of a subsystem contains equalities which

reduce its dimensionality (for example, {i, j | i = j . . . }), we transform it to make it full

dimensional (for the last example, we transform the 2D domain into a 1D domain) and

adapt the corresponding equations.

Chapter 6

Recognizing subcomputations

In this chapter, we present our linear algebra subcomputation recognition framework.

This framework is based on the contributions presented in the previous chapters, i.e.,

the monoparametric tiling transformation from Chapter 3 and 4, and the template

recognition algorithm from Chapter 5. We present the remaining pieces in this chapter.

The main idea is to first partition the computation into tiles, using the monoparametric

tiling transformation, then try to recognize the computation of each tile as a combination

of linear algebra operators. These operators are listed in a library of template, which is

inspired by the BLAS specification [46]. We present this library in Section 6.1.

Then, we present the structure of our framework in Section 6.2, and apply it to various

linear algebra and non-linear algebra applications in Section 6.3. We conclude this

chapter with several additional remarks in Section 6.4.

6.1 Template library

In this section, we present our library of linear algebra templates. Starting from the

BLAS specification, we justify our design choices, which aim at minimizing the time

spent to search for a matching template.

The BLAS specification The operations of the BLAS specification are classified into

3 levels, depending on the data structure returned. The output of a level 1 operator is

a scalar, the output of a level 2 operator is a vector and that of a level 3 a matrix. Each

operations have up to 4 variants, depending on the data type of the structure returned

(single precision, double precision, complex and double precision complex). We will

122

Chapter VI. Recognizing subcomputations 123

focus only on the double precision variant, but our approach can easily be extended to

any other data types.

The list of operations and their names are described in Figure 6.1. Notice that some

of these operations (such as DGEMM) overwrite their inputs, i.e. are inplace, which

is not allowed in our program representation. Thus, we adapt these operations to add

an additional copy and have “single-assignment” templates. A simple post-processing

can be applied to check if this copy is necessary. Some templates (such as DSWAP or

DCOPY) do not make sense in a such single-assignment context, and are removed.

For example, if we consider DTRMM, the operation we will consider instead is C ←
α.LX .B, which corresponds to first copying the matrix B into the matrix C, then the

in-place operation DTRMM of BLAS. If the matrix B is not used afterward, the copy

can be skipped.

Reducing the number of templates In our template recognition algorithm, we

will deal with the associativity and commutativity properties of binary operators. Other

algebraic properties (such that distributivity of an operator over another, absorptive and

neutral elements) are not managed by the template recognition algorithm. Therefore,

in some BLAS operations, we have a special case when α, β = 1, 0 or −1.

For example, for α = 1, DGEMM becomes C ← AX .BX and its computation has one

multiplication less than the same operation when α = 2, for example. Thus, to deal

with the fact that 1 is neutral for the multiplication, we need to separate (at least) the

case where α = 1 and α 6= 1 into two different templates.

To reduce the number of templates, we assume that α = 1 everywhere, and add the

operations C ← α.A (where α 6= 1). This allows us to split the operation into 2

operations (one which contains the main matrix multiplication operation, and the other

which contains the scalar multiplication). A post-processing can be used to merge these

two operations, if they are detected in succession, so that a single BLAS kernel can be

used instead of two.

We also notice that BLAS has many variants of the same operation, depending on

whether or not one of its argument is transposed. For example, for DGEMM, we have

in total 4 variants (C ← A.B, C ← A.BT , C ← AT .B and C ← AT .BT). To reduce

the number of variants, we separate the transpose operation (C ← AT) from the matrix

multiplication (C ← A.B), and we will only have to consider a single variant of the

template. Once again, a post-processing can merge the transpose operation with the

matrix multiplication operation, if these operations are detected in succession.

Chapter VI. Recognizing subcomputations 124

Level 1 BLAS:

• DSWAP : x↔ y

• DSCAL : x← α.x

• DCOPY : y ← x

• DAXPY : y ← α.x+ y

• DDOT : α← ~xT .~y

Level 2 BLAS:

• DGEMV : ~y ← α.A.~x+ β.~y

• DSYMV : ~y ← α.S.~x+ β.~y where S is symmetric

• DTRMV : ~y ← LX .~x where L is lower-triangular
~y ← UX .~x where U is upper-triangular

• DTRSV : ~y ← L−X .~x where L is lower-triangular
~y ← U−X .~x where U is upper-triangular

• DGER : A← α.~x.~yT +A

• DSYR : A← α.~x.~xT +A

• DSYR2 : A← α.(~x.~yT + ~y.~xT) +A

Level 3 BLAS:

• DGEMM : C ← α.AX .BX + β.C

• DSYMM : C ← α.S.B + β.C or C ← α.B.S + β.C where S is symmetric

• DSYRK : C ← α.A.AT + β.C or C ← α.AT .A+ β.C

• DSYR2K : C ← α.(A.BT +B.AT) + β.C

• DTRMM : B ← α.LX .B or B ← α.B.LX where L is lower-triangular
B ← α.UX .B or B ← α.B.UX where U is upper-triangular

• DTRSM : B ← α.L−X .B or B ← α.B.L−X where L is lower-triangular
B ← α.U−X .B or B ← α.B.U−X where U is upper-triangular

Figure 6.1: List of BLAS operations corresponding to linear algebra operations, for
double-precision floating point. A lower case letter (x, y, α, β . . .) denotes a scalar,
a lower case letter with an arrow (~x, ~y) denotes a vector, and an upper case letter
(A,B,C, . . .) denotes a matrix. AX = A or AT , and A−X = A−1 or A−T . We ignore
the different versions caused by the different memory storage

Chapter VI. Recognizing subcomputations 125

The list of template operations we obtain after these simplification is described in Fig-

ure 6.2. In addition to these template, we consider the whole program (before tiling)

as a potential template, in order to recognize some tiles as a recursive call on smaller

instances.

Classification per scalar operations In order to recognize a system as a linear

algebra operation, we consider each operation of the library independently and try to

match it with the system. If none of the templates in the library match, then we conclude

that the current system cannot benefit from any operation in our library. However, if

the template library is big, going over it will take a lot of time.

In order to accelerate this process, we need to reduce the number of templates considered.

One option is to classify the template of the library according to their corresponding

scalar operation, i.e., the operation obtained when we assume that the size of the matrix

and vector is 1. For example, if we consider DGEMM (C ← A.B), for matrix sizes of 1,

we obtain a multiplication between 2 scalars a and b.

In our context, we compare the template to the computation of a tile of parametric size.

When the size of this tile is 1k, the computation performed is a scalar operation. If this

operation is different from the corresponding scalar operation of a template, then there

is no hope that the template matches. Therefore, by using this classification, we can

immediately restrict the set of template which might match with a given tile.

Order of template comparison We notice that some templates are actually gen-

eralization of others templates. For example, DSYMM is a special case of DGEMM

(which means that the template DSYMM can be considered as an instance of the tem-

plate DGEMM for some specific inputs). In order to find the most specialized operation,

the recognition framework considers the most specialized one first, i.e., we try to match

DSYMM before DGEMM.

This leads us to the list of templates described in Figure 6.3, classified by scalar oper-

ations and number of dimensions of the output and ordered from the most specialized

one to the most general.

Note that the transpose operation corresponds to a scalar “no operation”. Therefore,

it might happen anytime we have a matrix. Thus, if no operation is recognized after

a first pass, for any scalar operation, we apply a “transpose” and try to recognize a

new operation following. If no operation is recognized after that, we conclude that the

considered system does not correspond to any linear algebra operation we have in our

library.

Chapter VI. Recognizing subcomputations 126

Extra:

• Transpose: C ← AT

• Scalar multiplication - vector : ~y ← α.~x where α 6∈ {0, 1}
• Scalar multiplication - matrix : C ← α.A where α 6∈ {0, 1}
• Addition - vector : ~y ← ~x1 + ~x2

• Addition - matrix : C ← A+B

• Reduction - vector : ~y ←
∑
k

~xk

• Reduction - matrix : C ←
∑
k

Ak

Level 1:

• DSCAL : y ← α.x

• DDOT : α← ~xT .~y

Level 2:

• DGEMV : ~y ← A.~x

• DSYMV : ~y ← S.~x where S is symmetric

• DTRMV : ~y ← L.~x where L is lower-triangular
~y ← U.~x where U is upper-triangular

• DTRSV : ~y ← L−1.~x where L is lower-triangular
~y ← U−1.~x where U is upper-triangular

• DGER : A← ~x.~yT

• DSYR : A← ~x.~xT

• DSYR2 : A← ~x.~yT + ~y.~xT

Level 3:

• DGEMM : C ← A.B

• DSYMM : C ← S.B or C ← B.S where S is symmetric

• DSYRK : C ← A.AT

• DSYR2K : C ← A.BT +B.AT

• DTRMM : C ← L.B or C ← B.L where L is lower-triangular
C ← U.B or C ← B.U where U is upper-triangular

• DTRSM : C ← L−1.B or C ← B.L−1 where L is lower-triangular
C ← U−1.B or C ← B.U−1 where U is upper-triangular

Figure 6.2: List of templates in our library, after simplification

Chapter VI. Recognizing subcomputations 127

• Scalar output:

– (×) DSCAL : z ← α.x

– (×) DDOT : z ← ~xT .~y

• Vector output:

– (×) DSYMV : ~y ← S.~x where S is symmetric

– (×) DTRMV : ~y ← L.~x where L is lower-triangular
~y ← U.~x where U is upper-triangular

– (×) Scalar multiplication - vector : ~y ← α.~x where α 6∈ {0, 1}
– (×) DGEMV : ~y ← A.~x

– (div) DTRSV : ~y ← L−1.~x where L is lower-triangular
~y ← U−1.~x where U is upper-triangular

– (+) Addition - vector : ~y ← ~x1 + ~x2

– (+) Reduction - vector : ~y ←
∑
k

~xk

• Matrix output:

– (×) DSYRK : C ← A.AT

– (×) DSYMM : C ← S.B or C ← B.S where S is symmetric

– (×) DTRMM : C ← L.B or C ← B.L where L is lower-triangular
C ← U.B or C ← B.U where U is upper-triangular

– (×) DSYR : A← ~x.~xT

– (×) DGER : A← ~x.~yT

– (×) Scalar multiplication - matrix : C ← α.A where α 6∈ {0, 1}
– (×) DGEMM : C ← A.B

– (div) Inverse of a triangular matrix: L−1

– (div) DTRSM : C ← L−1.B or C ← B.L−1 where L is lower-triangular
C ← U−1.B or C ← B.U−1 where U is upper-triangular

– (+) DSYR2K : C ← A.BT +B.AT

– (+) DSYR2 : A← ~x.~yT + ~y.~xT

– (+) Addition - matrix : C ← A+B

– (+) Reduction - matrix : C ←
∑
k

Ak

– (nothing) Transpose: C ← AT

Figure 6.3: Final list of template, classified by scalar operations and number of
dimensions of the output, and ordered

Chapter VI. Recognizing subcomputations 128

Original Program

Monoparametric tiling

Main
System

Subsystems

Template
Library
⊕ ⊗ Id

getScalarOperator

?

Unknown
Computation

No template match

Template
Recognized

Match

Recursive call
on the template

inputs

Figure 6.4: Template recognition procedure: we first apply the monoparametric tiling
transformation, then we consider each produced subsystem independently. The tem-
plate library is classified according to the corresponding scalar operation of each tem-
plate. Each subsystem is analyzed in order to detect its scalar operation. We retrieve
the list of template corresponding to this scalar operation, from the template library.
Then, we compare the subsystem with each template of this list, one by one. Two
situations might occur: either none of the templates match, and the computation is
considered as unknown, or a template matches. Then, we check the inputs of this
template, and recursively call the template matching algorithm on each input of the
template that is not an input of the subsystem.

In addition, we add the following templates to our library. They do not appear in BLAS,

but occur in some applications:

• Point-to-point multiplication (resp. division): the equation of the template is

C[i, j] = A[i, j]×B[i, j] (resp. C[i, j] = A[i, j]/B[i, j]).

• Diagonal matrix multiplication: this template is a specialization of a matrix mul-

tiplication: its output is a vector corresponding to the diagonal of the output

matrix. Its equation is y[i] =
∑

k A[i, k]×B[k, i].

• Sum of triangular reduction: the computation of this template is C[i, j] = A[i, j]+∑
0≤k<j L[i, j, k].

Chapter VI. Recognizing subcomputations 129

6.2 Linear algebra operation recognition framework

In this section, we describe how we combine the monoparametric tiling transformation (cf

Chapter 4) with our template matching algorithm (cf Section 5.2) in order to recognize

instances of templates from our template library (cf Section 6.1). The whole process is

shown in Figure 6.4.

As a preprocessing step, we apply to the original program the rewriting rules we have

presented in Section 5.4, which allows us to manage most of the algebraic properties of

a ring. This is more efficient to do it before the monoparametric tiling transformation,

such that the changes propagate over all the subsystems.

Monoparametric tiling The first step of our algorithm is to apply the monoparamet-

ric tiling transformation. We use square tiles for every variable and place each variable

of the program (i.e. identity ratios), and assign a single variable per tile group when-

ever possible. This transformation produces a main program and a list of subsystems.

The main program does not contain any computation, but each subsystem contain the

computation of a tile. Thus, we consider each subsystem independently in the rest of

the procedure.

In the original monoparametric tiling transformation, we compute the set of values

needed by other tiles, in order to form the outputs of the subsystems. In particular,

we classify the output data depending on which tile requires the information. However,

in the context of template recognition, we want a single output per tiled variable for

each subsystem, instead of spliting it into several output variables. Thus, as discussed

in Section 4.4, we disable this feature in the context of template recognition.

Retrieving the list of templates Given a specific subsystem, we want first to iden-

tify its corresponding scalar operator (i.e., which operator the subsystem corresponds

to, when the tile size parameter is equal to 1), so that we can select the corresponding

category in our template library (cf getScalarOperator in Figure 6.4).

In order to determine the scalar operator, we extract the top-most operator of the

operations leading to the output of the subsystem. Several situations might occurs:

• If a scalar operator is found and is managed by our template library, we return it.

• If no operator is found (for example, the output variable of the subsystem is a

constant, or the copy of an input variable), or an operator which is not considered

Chapter VI. Recognizing subcomputations 130

by the template library is found (e.g., a square root for a Cholesky computation),

then we do not retrieve any template from our library.

• If we encounter a reduction, because the reductions inside a subsystem was created

from a larger reduction of the original program, these reductions are accumulating

over a parametric number of elements. Thus, when the tile size of a subsystem is

set to 1, the reduction accumulates over a single element for a tile size of 1, thus

disappears. Therefore, we just ignore the corresponding reduction operator and

continue the search inside the reduction. If no operator occurs inside the reduction,

we take the operator of the reduction by default. Note that this strategy is not

valid in general (for example, if we have a reduction over 3 elements). However,

in our context, such a situation should not occur.

Moreover, we have to be careful about detected multiplication operators that are actually

divisions (because of the rewriting rule A/B → A.(1/B) we applied to our original

program).

Once we obtain the scalar operator of a subsystem, we combine it with the number of

dimensions of the output to determine the corresponding template category, and to re-

trieve the corresponding list of templates from our library (cf Figure 6.3). If no operation

was found, then this list of templates is empty.

We add at the beginning of our list of templates a special template called recursive

call. The equations of this template are exactly the ones from the original program.

This template allows us to identify the recursive call to our original program, on smaller

instances. A typical example was shown for a Cholesky computation (in Figure 4.15

Page 93) where the top most operation in each diagonal block are smaller instances of

a Cholesky.

If the domain of the output variable is two dimensional, then we have to deal with the

transpose template. Because the transpose operation is idempotent (i.e. (AT)T = A), we

prevent its template to be applied twice consecutively. Moreover, because this template

does not have an associated scalar operators, we add it at the end of our template list.

Output of the procedure and recursion The output of our procedure is a tree

of templates. Each node of this tree corresponds to a template, whose inputs are the

children of this node. The leaves of the template tree are either an input of the program,

a constant, or a non recognized computation.

Given a subsystem and a freshly retrieved list of templates, we start trying to match

the subsystem with each template of the list, using our template recognition algorithm

Chapter VI. Recognizing subcomputations 131

from Section 5.2. If the template does not match, we continue with the next template

in the list. If the end of the list of templates is reached, then we return a tree with a

single node corresponding to a non recognized computation.

If a template is matched to a subsystem, we build a node corresponding to this template.

Then, we examine the expressions of the subsystem that correspond to the inputs of the

template. For each of these expressions, if it is an input variable of the subsystem,

or a constant, or a switch between input variable and contants, then we build the

corresponding leaf and link it to the node of the recognized template. If the expression

is more complicated, we build a new subsystem which corresponds to the reminder of

the computation, and apply our procedure recursively on this new system. Then, we

retrieve the produced tree of template and link it to the node of the recognized template.

Example 6.1. To illustrate our procedure, let us apply it to a matrix multiplication

computation. The original program is the following:

(∀0 ≤ i, j < N) C[i, j] =
∑

0≤k<N
A[i, k]×B[k, j];

where A and B are input variables, both defined over the domain {i, j|0 ≤ i, j < N},
and C is the output variable.

The preprocessing step to manage algebraic properties does not do anything. Then, we

apply a monoparametric tiling transformation, only using the identity ratio. Because of

the reduction, we obtain two subsystems: one corresponding to a small matrix multipli-

cation, an another summing all the outputs of the small matrix multiplication to form

the final result.

The equations of the first subsystem are:

(∀0 ≤ il, jl < b) TempRed[il, jl] =
∑

0≤kl<b
Ain[il, kl]×Bin[kl, jl];

where TempRed is the output and Ain and Bin are the inputs of the subsystem (corre-

sponding to the tiles A[ib, kb] and B[kb, jb] in the original program).

The equations of the second subsystem are:

(∀0 ≤ il, jl < b) C[il, jl] =
∑

0≤kb<Nb

TempRedin[kb, il, jl];

where C is the output (corresponding to the tile C[ib, jb] in the original program) and

TempRed is the input of the subsystem (corresponding to the collection of results of the

partial summation).

Chapter VI. Recognizing subcomputations 132

DGEMM

Ain Bin

A’ B’

∑
k Ak

TempRedin

Ak’

Figure 6.5: Returned template tree for the matrix multiplication computation. The
green nodes correspond to the input of the template

We start our procedure by examining the first subsystem, and try to determine its asso-

ciated scalar operator. The first operator encountered is the one from the summation
∑

,

but, because it comes from a reduction, we ignore it. The next one is a multiplication.

Therefore, we retrieve the list of templates corresponding to a multiplication for matrix

in our template library. We append at the start of this list of templates the recursive

call template (thus, which is a matrix multiplication), and, because the output is two

dimensional, the transpose template at the end.

Then, we try to match the first subsystem with the selected templates. The first one

(recursive call) matches, and the expressions corresponding to the inputs of the template

are: {
A′ ↔ Ain

B′ ↔ Bin

Both of them are inputs of the subsystem, thus we do not have a recursive call. Thus,

the procedure is done for the first subsystem.

We now consider the second subsystem. When considering the associated operation, we

encounter a reduction, but no operation afterward. Thus, we retrieve the list of template

corresponding to an addition for matrix, append at the start the recursive call template,

and at the end the transpose template.

We try to match the first subsystem with the selected templates, and no template match

until we end up on “Reduction - matrix” (summarized as C ←
∑

k Ak in Figure 6.3).

The expressions corresponding to the inputs of the template are:

Ak′ ↔ TempRedin

This is an inputs of the subsystem, thus we do not have a recursive call. No subsystem

remains, thus the procedure ends. The returned template tree are shown in Figure 6.5

In the next section, we will present several examples of application of this procedure.

Chapter VI. Recognizing subcomputations 133

6.3 Applications

In the previous section, we described a framework that applies the monoparametric tiling

transformation to a program, then applies recursively a template recognition algorithm

to each generated subsystems independently. In this section, we present several exper-

iments in order to validate this framework. In particular, we apply this framework to

several programs, in order to check the scalability of our approach, then we study the

amount of computation our framework is able to recognize as a template.

We will apply our framework to two kinds of applications in this chapter: linear algebra

applications (which should be almost completely covered by the templates we recognize),

and non-linear algebra applications (in which only some specific parts of the computation

should be recognized as a template). We will first study the linear algebra applications

(Symmetric Positive semi-Definite Matrix Inversion and Silvester Equations), then the

non-linear algebra applications (Algebraic Path Problem and Mc Caskill).

The experiments presented in this section were run on a machine with an Intel Xeon

E5-1650 CPU with 12 cores running at 1.6 GHz (max speed at 3.8GHz), and 31GB of

memory.

6.3.1 Dense Linear algebra applications

Symmetric Positive semi-Definite Matrix Inversion The first application we

consider is called Symmetric Positive semi-Definite Matrix Inversion (SPDMI). The in-

put is a symmetric semi-definite matrix A, i.e., a square matrix which can be decomposed

as A = L.LT , where L is a lower-triangular matrix. The output is the inverse of this

matrix. This output is computed by using the Cholesky factorization algorithm on A

to retrieve the lower triangular matrix L, then a triangular matrix inversion to compute

L−1, then a transpose matrix product to compute A−1 = L−T .L−1. The equations of

such a program are described in Figure 6.6.

After analyzing the dependences, it is legal to tile separately the three variables L, InvL

and InvA, using a square monoparametric tiling.

After applying the monoparametric tiling transformation, we obtain in total 16 subsys-

tems: 7 coming from the equations of L (including 3 from the two reductions), 4 coming

from the equations of InvL (including 2 from the reduction), and 5 coming from the

equations of InvA (including 4 from the reduction). The time taken by the monopara-

metric tiling transformation, plus some post-processing normalization steps (such as

reducing the number of dimensions of some inputs and outputs) is about 5.7 seconds.

Chapter VI. Recognizing subcomputations 134

Parameters: N
Inputs:

A, defined over {i, j|0 ≤ i, j < N}
Local:

L, defined over {i, j|0 ≤ j ≤ i < N}
InvL, defined over {i, j|0 ≤ j ≤ i < N}

Output:
InvA, defined over {i, j|0 ≤ i, j < N}

(∀i = j = 0) L[i, j] =
√
A[i, i]; // Cholesky:A = L.LT

(∀i = j > 0) L[i, j] =
√
A[i, i]−

∑
k<i

L[i, k] ∗ L[i, k];

(∀i > j = 0) L[i, j] = A[i, j]/L[i, i];

(∀i > j > 0) L[i, j] =

(
A[i, j]−

∑
k<j

L[i, k] ∗ L[j, k]

)
/L[i, i];

(∀i = j ≥ 0) InvL[i, j] = 1/L[i, i]; // InvL = L−1

(∀i > j ≥ 0)

(
−
∑

j≤k<i
L[i, k] ∗ InvL[k, j]

)
/L[i, i];

(∀0 ≤ i, j < N) InvA[i, j] =
∑
k

InvL[k, i] ∗ InvL[k, j]; // InvA = InvLT .InvL

Figure 6.6: Original program for the Symmetric Positive semi-Definite Matrix Inver-
sion. The input is a semi-definite positive square matrix A of size N×N . This program
is the composition of a Cholesky computation (whose result is L), followed by a trian-
gular matrix inversion (whose result is InvL), and a transpose matrix multiplication
(whose result is InvA, which is also the output of the program)

Across all subsystems, we perform 200 comparisons between a program and a template.

We consider in total 429 equivalence automata (we count only the automata for which

we extract some constraints, and not the total number of automata built), containing

in total 9815 states. Also, 52 equivalence subproblems are considered. The total time

taken by the whole process (including the monoparametric tiling transformation) is

439.3 seconds (about 7 minutes 19 seconds). This means that we spend in average

about 2 seconds for each instance of template-match comparison.

In total, we have detected 27 templates in this computation (if we ignore the 3 “trans-

pose” node that precedes a “non-recognized” node). The corresponding template trees

are presented in Figure 6.7.

We managed to recognize completely the computation, except in 5 places:

• For the subsystems L bl T ile0 and L bl T ile2, these tiles correspond to the di-

agonal blocks of a Cholesky computation. Because we do not have a Cholesky

template in our library, no operation is recognized.

Chapter VI. Recognizing subcomputations 135

L bl T ile0

NReco

L bl T ile1

B.U−1

Lbl1/Lbl2 Abl0

L bl T ile2

NReco

L bl T ile3

B.U−1

Lbl2/Lbl3

A+B

AT

NReco

AT

NReco

Linv bl T ile0

L−1

Lbl0/Lbl1

Linv bl T ile1

L−1B∑
k Ak

TR2 0

Lbl1/Lbl2

Ainv bl T ile0∑
k Ak

TR3 0

TR0 Tile0

Diag mat mult

Lbl0 AT

Lbl0

TR1 Tile0

A.B

Lbl0 AT

Lbl1

TR1 Tile1

Adapt triang

DSYRK

Lbl0

TR2 Tile0

DTRMM BL

Linvbl1 alpha.A

Lbl0−1.0

TR2 Tile1

A.B

Linvbl1 α.A

Lbl0−1.0

TR3 Tile0

A.B

Linvbl1AT

Linvbl0

TR3 Tile1

DTRMM UB

Linvbl1AT

Linvbl0

TR3 Tile2

DTRMM BL

Linvbl1AT

Linvbl0

TR3 Tile3

AT

NReco

Figure 6.7: Output of our template recognition framework: trees of recognized tem-
plates for the SPDMI example. The nodes in green correspond to the input of the
template, a constant, or a switch between inputs and constants. The nodes in red
correspond to the non-recognized computation.

Chapter VI. Recognizing subcomputations 136

• For the subsystem L bl T ile3 (corresponding to the dark blue part in Figure 4.15,

Page 93), the two computations which are not recognized are both a switch between

an input variable (for i = 0), and a sum of matrix (C ←
∑
Ak, for i > 0). We do

not have a corresponding template to recognize this kind of pattern.

• For the subsystem TR3 Tile3 (coming from the reduction inside the equation of

Linv, and occurring only for the tile at ib = jb = kb), its computation is:

(∀0 ≤ (i, j) < N) Out[i, j] =
∑

i ≤ k < b

j ≤ k

Linvbl0[k, i]× Linvbl0[k, j]

Because of the bounds of the domain of the summation, none of our template

matches.

Thus, we managed to match almost all the computation with our template library. Also,

because there is only a quadratic number of tiles whose computation is not fully covered

by templates, among a cubic number of tiles, the most frequently used parts of the

computation were recognized.

Sylvester Equation Solver A Sylvester equation is an equation of the form A.X +

X.B = C, where A, B and C are given square matrices, and X is an unknown square

matrix.

We will explain the well-known algorithm to solve this equation, and then apply our

template recognition framework to this. We will first show why there is no loss of gen-

erality if we assume that A and B are upper-triangular. We can simplify this equation

by considering the Schur decomposition of the matrix A, i.e., we have A = QA.UA.Q
−1
A ,

where UA is upper-triangular and QA is a unitary matrix (i.e., Q−1A = QHA , the con-

jugate of the transpose of A). Likewise, we consider the Schur decomposition of the

matrix B: B = QB.UB.Q
−1
B where QB is a unitary matrix and UB an upper-triangular

matrix. By replacing A and B by their decomposition in the main equation, we obtain

UA.(Q
−1
A .X.QB)+(Q−1A .X.QB).UB = Q−1A .C.QB. Thus, by setting X ′ = Q−1A .X.QB and

C ′ = Q−1A .C.QB, we obtain the following equation: UA.X
′ +X ′.UB = C ′.

Chapter VI. Recognizing subcomputations 137

The program which solves a Sylvester equation, when A and B are upper-triangular is

the following:

(∀i = N − 1, j = 0) X[i, j] = C[i, j]/(A[i, i] +B[j, j]);

(∀i = N − 1, 0 < j < N) X[i, j] =

(
C[i, j]−

∑
0≤k<j

X[i, k]×B[k, j]

)
/(A[i, i] +B[j, j]);

(∀0 ≤ i < N − 1, j = 0) X[i, j] =

(
C[i, j]−

∑
i<k<N

A[i, k]×X[k, j]

)
/(A[i, i] +B[j, j]);

(∀0 ≤ i < N − 1, 0 < j < N) X[i, j] =
(
C[i, j]−

∑
0≤k<j

X[i, k]×B[k, j]

−
∑

i<k<N

A[i, k]×X[k, j]
)
/(A[i, i] +B[j, j]);

A square monoparametric tiling is legal: because all the dependences on X are increasing

along the i dimension and decreasing along the j dimension, they satisfy the hyperplane

condition for the legality of tiling.

After applying the monoparametric tiling transformation, we obtain in total 8 subsys-

tems: 4 which compute the value of X, and one for each reductions of the program. The

time taken by the monoparametric tiling transformation is about 6.6 seconds.

During the recognition process, we have an issue with 4 of the 8 subsystems (correspond-

ing to X), for which the computation of a transitive closure takes a significant amount

of time. Thus, we are forced to skip the recognition process for these subsystems and

consider them as “not recognized”.

Across all remaining subsystems, we perform 28 comparisons between a program and a

template. We consider in total 148 equivalence automata (we count only the automata

for which we extract some constraints, and not the total number of automata built),

containing in total 1602 states. Also, 15 equivalence subproblems are considered. The

total time taken by the whole process (including the monoparametric tiling transfor-

mation) is 104.7 seconds (about 1 minute 45 seconds). This means that we spend in

average about 1.5 seconds for each instance of template-match comparison.

In total, we have detected 8 templates in this computation. The corresponding template

trees are presented in Figure 6.8. These templates cover completely the subsystems

created from reductions, which contains the majority of the computation of the program.

6.3.2 Applications outside of dense linear algebra

Algebraic Path Problem The Algebraic Path Problem (APP) is a graph algorithm

which can be viewed as a generalization of the Floyd-Warshall algorithm. Its equations

Chapter VI. Recognizing subcomputations 138

TR0 Tile0

A.B

Xbl1α.A

-1 Abl0

TR1 Tile0

A.B

Bbl1α.A

-1 Xbl0

TR2 Tile0

Diag mat mult

Xbl1α.A

-1 Abl0

TR3 Tile0

Diag mat mult

Xbl1DGER

-1 Abl0

Figure 6.8: Output of our template recognition framework: trees of recognized tem-
plates for the Sylvester equation solver example. The nodes in green correspond to the
input of the template, a constant, or a switch between inputs and constants. The nodes
in red correspond to the non-recognized computation.

are the following:

(∀0 ≤ (i, j) < N) Out[i, j] = F [i, j,N − 1]

(∀0 ≤ (i, j) < N, k = −1) F [i, j, k] = A[i, j]

(∀0 ≤ i = j = k < N) F [i, j, k] = clos(F [k, k, k − 1])

(∀0 ≤ i = k < N, j 6= k) F [i, j, k] = F [k, k, k]× F [k, j, k − 1]

(∀0 ≤ j = k < N, i 6= k) F [i, j, k] = F [i, k, k − 1]× F [k, k, k]

(∀0 ≤ (i, j, k) < N, i 6= k, j 6= k) F [i, j, k] = F [i, j, k − 1] + (F [i, k, k]× F [k, j, k − 1])

where A is an input variable, Out the output variable and clos is a closure operator.

Let us explain the equations of this program. We can consider A as the adjacency matrix

of a weighted directed graph (which has N nodes). The weight of a path is the product

of the weight of the edges of this paths. Then, Out[i, j] corresponds to the summation of

the weight of all the paths starting from the node i and finishing on the node j. F [i, j, k]

represents the summation of the weights of all the paths from node i to node j, such

that all the intermediate nodes of this path are the nodes 0 to k.

The closure operator manages the loops on the graph: indeed, the set of paths from

k to k using all the nodes whose labels are bellow k (F [k, k, k]) can be decomposed as

a succession of loops from k to k, using the nodes whose labels are below k − 1. The

multiplication operator can be viewed as a composition of paths. For example, if i = k,

all the paths from i to j (6= i) using the nodes whose labels are below k (F [k, j, k])

Chapter VI. Recognizing subcomputations 139

can be viewed as the combination of self-loops from i to i (F [k, k, k]), then a path from

k to j, which is not using the node k again (F [k, j, k − 1]). Likewise, the addition

operator corresponds to a disjoint union of paths. We notice that if we take as a closure

operator min(x), and as a semi-ring (min,+), we obtain exactly Floyd’s algorithm,

which computes the shortest path between all pairs of nodes. Likewise, this program

can be used to compute accessibility relation inside a graph.

The equations of the APP do not contain any reductions. However, if we study the

computation, we can recognize a reduction along the k axis. More precisely, if we an-

alyze the computation needed to compute a given Out[i, j], we first have a decreasing

accumulation from F [i, j,N − 1] to F [i, j,max(i, j)], then from F [i, j,max(i, j) − 1] to

F [i, j,min(i, j)], then from F [i, j,min(i, j)− 1] to F [i, j,−1]. We can arrange automat-

ically the program to explicit this reduction.

Also, if we analyze the dependences of the program, each F [i, j, k] are used exactly once,

except the ones on the planes i = k and j = k. Thus, we can replace the local variable

F by the following local variables:

• cross[i, j, k] defined for i = k or j = k, and which corresponds to the special

computations.

• temp1[i, j] corresponding to F [i, j,max(i, j)−1], and which is the top-most element

of the middle reduction (k = max(i, j) to min(i, j)) and defined for i 6= j and

0 ≤ k < N .

• temp2[i, j] corresponding to F [i, j,min(i, j)−1], and which is the top-most element

of the bottom reduction (k = min(i, j)− 1 to 0) and defined for 0 ≤ (i, j, k) < N .

In addition, in order to avoid unions of polyhedra in the domains of these variables,

we split the variable temp1 into temp1Maxi (for i > j) and temp1Maxj (for j > i).

Likewise, we split the variable temp2 into temp2Mini (for i < j) and temp2Minj (for

j ≤ i). The variable cross is split in 5 fragments: crossMiddle (for i = j = k), crossUp

(for i = k < j), crossBottom (for j < i = k), crossLeft (for i < j = k) and crossRight

(for j = k < i). The resulting program is shown in Figure 6.9.

Now, let us find a legal tiling for this program. By studying the self-dependences, we

identify in total 6 tile groups:

1. Out,

2. crossBottom,

3. crossUp,

Chapter VI. Recognizing subcomputations 140

(∀0 ≤ i = j < N) Out[i, j] = crossMiddle[i, i, i]+∑
i<l<N

crossLeft[i, l, l]× temp1Maxi[l, j, l − 1];

(∀0 ≤ i < j < N) Out[i, j] = crossLeft[i, j, j]+∑
j<l<N

crossLeft[i, l, l]× temp1Maxi[l, j, l − 1];

(∀0 ≤ j < i < N) Out[i, j] = crossBottom[i, j, j]+∑
i<l<N

crossLeft[i, l, l]× temp1Maxi[l, j, l − 1];

(∀0 ≤ j < i < N, k = i− 1) temp1Maxi[i, j, k] = crossRight[i, j, j]+∑
j<l<i

crossRight[i, l, l]× temp1Maxi[l, j, l − 1];

(∀0 ≤ i < j < N, k = j − 1) temp1Maxj[i, j, k] = crossUp[i, j, i]+∑
i<l<j

crossLeft[i, l, l]× temp2Mini[l, j, l − 1];

(∀0 ≤ i < j < N, k = i− 1) temp2Mini[i, j, k] = A[i, j]+∑
0≤l<i

crossRight[i, l, l]× temp2Mini[l, j, l − 1];

(∀0 ≤ j ≤ i < N, k = i− 1) temp2Minj[i, j, k] = A[i, j]+∑
0≤l<j

crossRight[i, l, l]× temp2Mini[l, j, l − 1];

(∀0 ≤ i = j = k < N) crossMiddle[i, j, k] = clos(temp2Minj[k, k, k − 1]);
(∀0 ≤ j = k < i < N) crossRight[i, j, k] = temp2Minj[i, k, k − 1]× crossMiddle[k, k, k];
(∀0 ≤ i < j = k < N) crossLeft[i, j, k] = temp1Maxj[i, k, k − 1]× crossMiddle[k, k, k];
(∀0 ≤ i = k < j < N) crossUp[i, j, k] = crossMiddle[k, k, k]× temp2Mini[k, j, k − 1];
(∀0 ≤ j < i = k < N) crossBottom[i, j, k] = crossMiddle[k, k, k]× temp1Maxi[k, j, k − 1];

Figure 6.9: Equations of the APP program, after detecting the reductions and re-
organizing the local variables. For concision, we do not consider the special equations
which manages the case when a reduction sums over no element (for example, when
i = N − 1 in the first equation), and will just consider that the value of the reduction
is 0.

4. temp1Maxi,

5. crossLeft and temp1Maxj,

6. crossMiddle, crossRight, temp2Mini and temp2Minj.

Also, rectangular tiling is legal, thus there is no need to apply a change of basis on any

of these variables beforehand.

After applying the monoparametric tiling transformation, we obtain in total 60 subsys-

tems, 34 of them coming from reductions. The time taken by the monoparametric tiling

transformation is about 20.5 seconds.

Across all remaining subsystems, we perform 660 comparisons between a program and

a template. We consider in total 698 equivalence automata, containing in total 13054

Chapter VI. Recognizing subcomputations 141

states. Also, 93 equivalence subproblems are considered. The total time taken by the

whole process (including the monoparametric tiling transformation) is 1578.4 seconds

(about 26 minutes 18 seconds). This means that we spend in average about 2.26 seconds

for each instance of template-match comparison.

We detect in total 44 templates (without counting the 16 of them which are a “trans-

pose” detected right before a non-recognized computation). The operations detected are

mostly matrix multiplications (A.B, B.U where U is upper-triangular, diagonal matrix

multiplication), but also some matrix and vector additions, point to point multiplica-

tions, reduction on a vector (~y =
∑

k ~xk).

The subsystems which are the most frequently used are the ones coming from reductions

and which does not correspond to border cases. We managed to recognize the totality

of the computation of 5 of these subsystems, over 6.

McCaskill This application is a subset of the computation of a bioinformatics appli-

cation called piRNA (Partition function of Interacting RNAs [16]). Its equations are

shown in Figure 6.10.

About the legality of tiling, we have two tile groups: Q (which is the output of the

program, but never used in the equations), and (Qb,QbTemp,Qm2). We also notice

that all the dependences are always positive along the first dimension, and negative

along the second dimension. Thus, rectangular tiling is legal.

After applying the monoparametric tiling transformation, we obtain in total 113 sub-

systems, 99 of them coming from the reductions of the program. The tile taken by the

monoparametric tiling transformation is about 57 seconds.

During the recognition process, we have an issue with 2 subsystems, for which the

computation of a transitive closure takes a significant amount of time. Across all the

remaining subsystems, we perform 2245 comparisons between a program and a template.

We consider in total 4566 equivalence automata, containing in total 90812 states. In

addition, 26 equivalence subproblems were considered. The total time taken by our

framework is 4196.5 seconds, which is about 1 hour and 10 minutes. In average, we

spend 1.87 seconds per instance of template-match comparison.

We managed to detect 80 templates in total, however, only 8 of them are not a “trans-

pose” preceding a non-recognized computation. This poor result can be explained by

the fact that using a linear algebra library for this computation is not a good fit.

Indeed, the subsystems could not match our linear algebra templates for several reasons.

For example, we have several subsystems whose top computation is a reduction, summing

Chapter VI. Recognizing subcomputations 142

(∀0 ≤ i < j − 4 < N − 4) Q[i, j] = 1 +
∑

i < d ≤ j − 4
d + 4 ≤ e ≤ j

Q[i, d− 1]×Qb[d, e];

(∀0 ≤ i = j − 4 < N − 4) Q[i, j] = 1 +
∑

i+4≤e≤j
Qb[i, e];

(∀0 ≤ j − 4 < i ≤ j < N − 4) Q[i, j] = 1;

(∀0 ≤ i < j − 4 < N − 4) Qm2[i, j] =
∑

i+4≤e≤j
Qb[i, e]× emulti01[j − e]

+
∑

i < d ≤ j − 4
d + 4 ≤ e ≤ j

Qb[d, e]× emulti01[j + d− i− e]

+
∑

i < d ≤ j − 4
d + 4 ≤ e ≤ j

Qm2[i, d− 1]×Qb[d, e]× emulti01[j − e];

(∀0 ≤ i = j − 4 < N − 4) Qm2[i, j] =
∑

i+4≤e≤j
Qb[i, e]× emulti01[j − e];

(∀0 ≤ i ≤ j < i+ 4 ≤ N) Qm2[i, j] = 0;

(∀0 ≤ i ≤ j < N) Qb[i, j] = QbTemp[i, j]× base pair(seq[i], seq[j]);
(∀0 ≤ i < j − 6 < N − 6) QbTemp[i, j] = eh[i, j] +

∑
i+5≤e<j

esbi[i, j, i+ 1, e]×Qb[i+ 1, e]

+
∑

i + 1 < d ≤ j − 5
d + 4 ≤ e < j

Qm2[i+ 1, d− 1]×Qb[d, e]× emulti11[j − e− 1]

+
∑

i + 1 < d ≤ j − 5
d + 4 ≤ e < j

esbi[i, j, d, e]×Qb[d, e];

(∀0 ≤ i = j − 6 < N − 6) QbTemp[i, j] = eh[i, j] +
∑

i+5≤e<j
esbi[i, j, i+ 1, e]×Qb[i+ 1, e];

(∀0 ≤ i < j − 3 < i+ 3 < N) QbTemp[i, j] = eh[i, j];
(∀0 ≤ i ≤ j ≤ i+ 3 < N) QbTemp[i, j] = 0;

Figure 6.10: Equations of the McCaskill program. The output of the program is Q.

over the dimension k, but such that the boundary conditions on k are strange (such as

j ≤ k ≤ i + 4). None of our template manages to match a suitable reduction with

the same number of terms summed for every values of (i, j). Also, several subsystems

contain reductions which project 2 dimensions at once, whose result is two dimensional

(i.e., Out[i, j] =
∑

k,l temp[i, j, k, l]). Even if we ignore the issue on the bounds on k and

l, we do not have any template which accumulates over 2 dimensions at once.

Therefore, a linear algebra library of template is not suitable for this computation.

However, the computation of many subsystems have the same kind of structure. Thus,

we might be able to identify a common operator which can be recognized over many

subsystems. Then, we can create an highly-efficient implementation of this operator,

and add it to our template library.

Chapter VI. Recognizing subcomputations 143

6.4 Discussion

Post-processing: merging the templates After obtaining a tree of template which

corresponds to our program, we can merge some nodes of this tree. This process is

particularly important to manage transposition and scalar multiplication in an efficient

way. Indeed, as presented in Section 6.1, the operations of the BLAS library have several

options. For example, DGEMM has a option to transpose both of its input matrices,

and can multiply the result with a scalar. Thus, if we detect a matrix multiplication

template, followed by a transposition, for example, we can use a single call to BLAS

instead of two function calls.

Another situation where merging templates is advantageous is when we have adaptation

of output domains. Indeed, if we detect an adaptation for a triangular output domain,

followed by a matrix multiplication, having an implementation of a matrix multiplication

which only computes the triangular part of the domain instead of the full domain will

avoid useless operations.

Post-processing: optimizing the algorithm itself We can also use the informa-

tion summarized in the template tree to optimize the algorithm. For example, if we

detect some redundant operations among the templates detected, we can reorganize the

templates to reuse the result of such operations. If we combine such mechanism with

a cost function which estimates the operational complexity, we can explore different

versions of an algorithm and select the best version, before generating the BLAS calls.

For example, if we consider the Cholesky computation (Figure 4.15, Page 93), we notice

that every tile of a column computes the inverse of the same lower triangular matrix

while multiplying it with a square matrix. Thus, we can examine another version of this

algorithm where the inverse of this lower triangular matrix is computed once separately,

and each tile is performing a triangular matrix multiplication. However, after examining

the complexity of each versions, the latter one turns out to be more costly (and also

requires more space).

Towards code generation After obtaining the tree of templates, we still have several

issues to solve before being able to generate some code. In particular, we have to

be careful about the memory management. Indeed, in BLAS, most of the operations

are in-place, i.e., they reuse one of the input matrix as an output (for example, C ←
α.A.B + β.C for DGEMM). Our templates are purely functional, i.e., they assume that

the output and the input matrices are allocated in different places. Thus, we need to

Chapter VI. Recognizing subcomputations 144

determine if and when we need to copy a matrix in order to use the in-place operations

from BLAS.

There are also several options for the storage mapping of the matrices manipulated in

BLAS (row major and column major for square matrices, different storage methods for

triangular matrices). Evaluating and selecting the best option is another piece which is

required before generating some code.

Another feature would be to switch between implementations of a template, depending

on some properties, such as the size of the template (for example, we can imagine

a switch between a BLAS implementation, and a code generated through LGEN [77]

which outperforms BLAS for small problem sizes).

Extending the template library The template library we have presented in Sec-

tion 6.1 corresponds to the operations which can be found in BLAS. It is possible to

extend this library to include more operations, such that the ones from LAPACK [6].

However, we have to be careful about the size of the template library, which impacts di-

rectly the time taken by our framework. Hence, we might need to refine the classification

of our library to reduce the number of template to be considered at each steps.

Another extension is to change the vector space our linear-algebra operations operates.

For example, instead of considering the vector space (R,+,×), we can consider the semi-

ring (R ∪ {−∞},max,+) which is useful for some dynamic programming applications.

Chapter 7

Related Work

In this chapter, we present the links between our contributions and others. We will first

present in Section 7.1 the work about the tiling transformation, and how it relates to

our monoparametric tiling transformation. Then, in Section 7.2 we present the work

related to program equivalence and template recognition, and how our template recog-

nition algorithm contributes. Finally, we list in Section 7.3 the body of work on dense

linear algebra algorithm derivation, and show their relations with our template detection

framework.

7.1 Tiling transformation and code generation

We have presented the tiling transformation [35, 87] in Section 2.3, and its characteristics

(such as tile shape, fixed-size vs parametric, legality condition) were already discussed

there. In this section, we focus on how tiling is managed in the current polyhedral com-

pilers. We will first consider the case of fixed-size tiling, before considering parametric

tiling.

Code generation for fixed-size tiling Fixed-size tiling is a polyhedral transforma-

tion, i.e., the transformed program is still polyhedral. This means that we have two

options when applying the fixed-size tiling transformation: either we compute the inter-

mediate representation of the program after transformation, or we generate directly the

code using a polyhedral code generator (such as Cloog [10]).

The Pluto [15] polyhedral compiler is a fully automatic source-to-source compiler that

generates fixed-size tiled and parallel code. It finds automatically a set of valid tiling

hyperplanes by formulating and solving an integer linear programming problem. Because

145

Chapter VII. Related Work 146

of the problem formulation, the normal vector of hyperplanes are forced to be positive

in the original paper, however this limitation was removed in a recent work [1]. After

deciding on a set of hyperplanes, Pluto tiles specifically identified bands of the scattering

functions (i.e., the scheduling functions) and generates immediately the syntax tree of

the tiled code using Cloog.

In comparison, our monoparametric tiling transformation computes explicitly the in-

termediate representation of the tiled program. Because of the size of the resulting

program, it might cause some scalability issues for the later polyhedral analysis. How-

ever, in our context, we need to keep all the information about the computation of each

tile, thus we do not have a choice. For other purposes (such as code generation), it

might be enough to retain only part of the information about the tiled program. For

example, Kong et al [43] use a similar classification (called signature in their paper)

to our notion of kind of tile for their dynamic dataflow compiler framework. However,

instead of differentiating each tile according to its computation, they differentiate tiles

according to their incoming and outgoing intra-tile dependences.

Code generation for parametric tiling Because parametric tiling is a non-polyhedral

transformation and prevents any polyhedral analysis afterward, current compilers inte-

grate this transformation in the code generation phase. It also prevents any further

polyhedral transformation or analysis, which was not hard-coded in the code generator.

Parametric tiling is trivial when the iteration domain is rectangular, the easiest solution

is to use a rectangular bounding box of the iteration space and tile it. However, if the

iteration domain is, for example, triangular, many of the executed tiles are empty and

such a method becomes inefficient.

Renganarayanan et al [68, 69] presented a parametric tiled code generator for perfectly

nested loops and rectangular tiling, which only iterates over the non-empty tiles. The

main idea of this approach is to compute the set of non-empty tiles (called outset)

and the set of full tiles (called inset) in a simple way, then use these information to

enable efficient code generation. This work was later extended to manage multi-level

tiling [41, 69]. We notice that the outset and inset appears in our monoparametric tiling

transformation: the outset is the union of the domains of all our kind of tiles, and the

inset is the union of all the domains of our kind of tiles which are full-tiles.

Kim [39] proposed another parametric code generator called D-tiling for perfectly nested

loop, following the work from Renganarayann. Its main insight is the idea that code

generation can be done syntactically on each tiled loop incrementally, instead of all at

once. It has been extended in order to manage imperfectly nested [40].

Chapter VII. Related Work 147

Independently, Hartono et al [33] have presented a code generation scheme called PrimeTile

which also manages imperfectly nested loop. The main idea is to cut the computation

into stripes, and to place the first tile origin on this stripe at the position where we

are starting to have full tiles in this stripe. The generated code is sequential and effi-

cient [78]. Because the tile origins of different stripes are not aligned, we cannot find a

wavefront parallelism and this scheme cannot be adapted to generate parallel tiled code.

Later, Hartono et al [32] have presented a code generation scheme called DynTile which

manages to generate parallel tiled code for imperfect nested loop. The idea is to consider

the convex hull of all statements, then to rely on a dynamic inspector to determine the

wavefronts of tiles, which are scheduled in parallel. Finally, Baskaran et al [9] have

presented PTile which allows parametrized parallel tiled code for imperfectly nested

affine loops. This algorithm is identical to the one used in D-tiler, and was independently

developed. A survey [78] compares the effectiveness of the sequential, and the parallel

code generated by Primetile, Dyntile and PTile.

Another approach is to adapt the Fourier-Motzkin elimination procedure to manage

parametric coefficient. This has been done by Amarasinghe [4] who integrated the

possibility of managing linear combination of parametric coefficient in the SUIF tool set

(such as (N+2M).i, where N and M are parameters, and i is a variable), but no details

have been provided and only perfectly nested loops were managed. Lakshminarayanan

et al [69] (Appendix B) extended this to the case where the coefficients of a linear

inequality can be parameters.

More generally, several people have been looking at extending the polyhedral model

to be able to manage parametric tiling naturally. Größlinger et al [29] extended the

polyhedral model to deal with parametrized coefficients, and have showed how to adapt

Fourier-Motzkin and the simplex algorithm. In particular, these coefficients can be ra-

tional fractions of polynomials of parameters (such as
0.3 ∗N2

0.7 ∗N ∗M + 3
). However, they

have to rely on quantifier elimination, thus their method has scaling issues. Achtziger et

al [2] studied how to find a valid quadratic schedules for an affine recurrence equation.

Recently, Feautrier [26] considered polynomial constraints and has presented an exten-

sion of Farkas lemma. This class encompasses the parametric tiling transformation, at

the cost of the complexity of the analysis.

Chapter VII. Related Work 148

7.2 Program equivalence and template recognition

In this section, we present the state-of-the-art on the program equivalence algorithm,

then on the template recognition algorithm, and how it relates to our template recogni-

tion algorithm.

7.2.1 Program equivalence

The equivalence problem between two programs is known to be undecidable [8]. However,

many approaches and semi-algorithms were proposed in the last few years to tackle

partially this problem.

A first approach to the equivalence problem consists on comparing directly the compu-

tations of both programs, by “unrolling” them simultaneously and step by step, while

managing their recursions.

Barthou et al [8] proposed a semi-algorithm for System of Affine Recurrence Equations,

which encodes the equivalence problem into a reachability problem of a Presburger

automaton (i.e., a finite automaton whose states are associated with an integer vector,

and whose transitions can test and modify these values). This reachability problem

is also undecidable, but some efficient heuristics exist. This algorithm only considers

Herbrand equivalence and no semantic properties are considered.

Shashidhar et al [75] proposed another equivalence algorithm based on Array Data De-

pendence Graph (ADDG). This graph is a representation of the operations done by a

program, and the data dependences between them. Their algorithm manages associa-

tivity and commutativity (by transforming locally the ADDG), but only over a finite

number of elements. They manage recurrences by unfolding the loops from both pro-

grams as many times as needed until obtaining a comparison between the same states

again.

Verdoolaege et al [81] proposed an improved formalism based on a dependence graph, that

allows them to manage parametrized programs. They also present an alternative way

to deal with recurrences, based on the widening operation. Commutativity is managed

by testing every permutation of the arguments of operators until we find a good one.

This approach is no longer possible if the number of arguments is parametrized (as it is

in the case of reduction).

If we assume that the size of the programs we compare are fixed at compile time and

small, a pragmatic approach to prove equivalence is to unroll the computation, to nor-

malize it and to check that the same operations are performed in the same data. This

Chapter VII. Related Work 149

approach has been explored by Schordan et al. [73], but, for obvious reasons, does not

scale well, is not adaptable to parametric loops and does not manage semantic properties.

Pnueli et al. [58] introduced a method called translation validation. The idea is to create

an automaton representing the possible states of a program (called a Synchronous Tran-

sition System), then to prove that there exist a bisimulation between the two automata.

Symbolic analysis [31] is another way of proving the equivalence of two programs, by

deriving a symbolic expression for the outputs, as functions of the program inputs.

Then, we just have to prove that both expressions are equivalent, potentially modulo

some semantic properties.

Menon et al. [53] introduced fractal symbolic analysis. It consists of producing a new

equivalence problem with simpler programs, such that if the new programs are equiva-

lent, then the original programs were equivalent. This new problem is an approximation

of the original equivalence problem. By applying the same technique recursively, they

manage to obtain programs which are simple enough to be managed by a classical sym-

bolic analysis.

Karfa et al. [36] proposed an algorithm to decide equivalence based on ADDG, inspired

by symbolic analysis. The idea behind their equivalence checking is to build an arith-

metic expression corresponding to the computation done by the considered program. By

normalizing this expression, they are able to manage the semantic properties of binary

operators. However, because they need to have a finite arithmetic expression, they are

not able to manage recursion and reductions.

Lopes et al. [49] used a similar approach and manages uninterpreted function symbols.

The idea is to replace these uninterpreted function symbols by an affine expression with

parametric coefficients, then to find an arithmetic expression of the outputs as a function

of the inputs. They manage loops by considering it as a recurrence, and by solving it

(i.e., by finding a closed form of the state of the loop after a given number of iterations),

which is not always feasible.

7.2.2 Template recognition

Template recognition algorithm We can classify the current state-of-the-art tem-

plate recognition algorithm into two categories: those based on dependence graphs [57]

and those based on Abstract Syntax Tree [12, 38, 54].

Chapter VII. Related Work 150

Pinter and Pinter’s recognition algorithm [57] is based on the Program Dependence

Graph. After building and normalize it, they try to recognize patterns within it, using

a graph grammar. If a portion of the graph matches, then a computation is detected.

Both Kessler’s PARAMAT [38] and Bhansali’s system [12] are based on the AST of

the program. In the case of PARAMAT, the program is first normalized (by doing

various transformation such as constant propagation, or dead-code elimination) before

matching exactly the AST with the template. In the case of Bhansali’s system, there

is no normalization step before this matching. This last work contains a library of

templates which is similar to our framework: their templates (which are called patterns

and described using a DSL) are organized into categories (which are the application

domain of the templates, for example “linear algebra solver”), in order to prune the

space of template to be matched.

Alias’s template recognition algorithm [3] is the closest to our contribution. The al-

gorithm is composed of two steps. The first step (called slicing) gathers candidate

portions of the code which can potentially match with the template. The second step

(instanciation test) considers the previously extracted slices, and determines which ones

correspond to the template we aim to recognize. This method is based on a unification

tree-automaton, which unrolls the computation of both the template and the slice and

unifies the template with the program.

Compared to our contribution, the template considered can be function of the first order,

which means that an operator in a template might be an unknown part to be matched.

However, they assume that the templates are linear, which means that the inputs of a

template can only occur once. About the recognition algorithm itself, Alias’s algorithm

can recognize a template anywhere in the program whereas, in our case, the output of

the template and the program must match. However, because of this, it is possible for

them to detect several overlapping templates, which forces them to select which template

to keep.

We also notice that none of the recognition algorithm described above consider semantic

properties.

Reduction and scan detection Many work focus on detecting reductions and scans

inside a polyhedral program, which can be viewed as a special case of template recogni-

tion. The earliest work was by Redon and Feautrier [65]. This paper focuses on detecting

recurrences inside a system of recurrence equations, thus can be used to detect reduc-

tions and scans (because they are special cases of recurrences). Their approach is based

on a pattern-matching mechanism which is able to detect multidimensional recurrences,

Chapter VII. Related Work 151

but fails if a reduction or scan spans other multiple equations (mutual dependent vari-

ables) or is higher-order (i.e., the recursion uses multiple elements from the previous

iterations).

Sato and al. [71] detects loops as instance of matrix vector multiplication, which can

be implemented by a reduction operator. Because of this formalism, they are able to

manage high-order recursions: for example, if we consider a Fibonnaci computation

Fi = Fi−1 + Fi−2, the recognized matrix vector multiplication will be:[
Fi

Fi−1

]
=

[
1 1

1 0

]
.

[
Fi−1

Fi−2

]

However, this methods does not manage to recognize multi-dimensional reductions or

scans, or when a scan or a reduction is inside a multi-dimensional loop.

Zou and Rajopadhye [90] have managed to combine the two previous contributions and

overcome their respective limitations.

Menon et al. [52] have presented a system which detect matrix multiplication operations

inside a Matlab program, in order to replace it by a BLAS library call. The reduction

detected are straight-forward, and a set of rewriting rules (called axioms) are used to

normalize the program, in order to identify matrix multiplications.

7.3 Dense linear algebra algorithm derivation

In this section, we present the state-of-the-art on dense linear algebra algorithm deriva-

tion and show how it relates to our template detection framework.

FLAME Van de Geijn’s group have developed FLAME [13, 30], a Formal Linear

Algebra Methodology Environment. The input of this environment is a precondition

and a post-condition of a linear algebra computation, expressed as a high-level equation

on the input and output matrices. For example, in order to derive a Cholesky algorithm,

the input to FLAME would have been a matrix A, the output a matrix L, the property

that L is a lower-triangular matrix, and the equation A = L.LT . Given this information,

they are able to derive a list of in-place algorithms which satisfy this specification.

The derivation of the algorithm is based on an algorithmic skeleton, which consists

mainly in a while loop, in which each iteration builds a larger portion of the output

matrix. Each step of the derivation aims at completing this skeleton to obtain the

full algorithm, starting by deriving the invariant of the while loop, and finishing by

Chapter VII. Related Work 152

the computation performed inside. For every option encountered during these steps,

a different version of the algorithm is generated. The result of this derivation is a

pseudo-code algorithm which manipulates rows and columns of block of matrices. This

pseudo-code algorithm is then used to generate an efficient code.

An iteration of the while loop corresponds to a progression of one row (or one column) in

the in-place computation of the output. As an option to their derivation, they can make

one iteration of the while loop correspond to a progression of b rows (or b columns),

where b is a parameter: at each new iteration, instead of considering only one extra

row/column, they can consider b extra rows/columns at once. In that case, the derived

computations inside the while loop are dealing with sub-matrices and vectors of size b,

which are similar to the template we detect with our framework.

Hydra Duchâteau et al have developed Hydra [56], which is also a system to derive

linear algebra algorithms. They start from an equation (called signature) specifying the

algorithm they aim to derive (such as L.X = B where L is lower-triangular and X is

marked as the unknown matrix and is the output of the algorithm). The main idea of

their derivation consists on using a divide and conquer strategy to recursively cut their

matrices into smaller blocks, and propagate this division inside the matrix equation.

For example, if we consider L.X = B and cut all these matrices into 4 submatrices, we

obtain the following equations:
L0,0.X0,0 = B0,0

L1,0.X0,0 + L1,1.X1,0 = B1,0

L0,0.X0,1 = B0,1

L1,0.X0,1 + L1,1.X1,1 = B1,1

When the matrices are small enough, they stop the recursive divide and conquer strategy

and rely on a library call (instead of stopping at the scalar level). Then, the next step is

to produce a task graph, so that they can figure out in which order they should compute

the sub-blocks of the unknown matrix. Then, using dynamic scheduling algorithms

to avoid load-balancing issues, they generates a parallel code corresponding to their

specification.

LGen Spampinato et al have developed LGen [77], which focuses on deriving linear al-

gebra implementations for very small and fixed problem sizes (e.g., 5×9 matrices), called

BLAC (Basic Linear Algebra Computations). The computation is specified through a

linear algebra equation, in which the left-hand side is the output of the computation

and the right-hand side is an expression of the inputs of the computation. The first

Chapter VII. Related Work 153

step of their derivation is to use a tiling, decide for its tile sizes and propagate it to the

rest of the equations. Then, they makes the access pattern and loop explicits, before

performing various optimizations (such as loop unrolling, scalar replacement) and ob-

taining an efficient vectorized C code. The best version is picked by using auto-tuning.

Their methodology is inspired by SPIRAL [60], which targets Digital Signal Processing

computations.

Autotuning framework and specialized compiler for linear algebra Many

other works [11, 14, 76, 82, 83] aim to find the best implementation possible for lin-

ear algebra computation, through autotuning. Compared to the frameworks described

previously in this section, their starting specifications already describe the computation,

instead of specifying it then deriving it. Some details (such that the value of the tile

size parameters) are determined through exploration, but no new piece of computation

is generated.

Comparison with our framework All these previous works are deriving a dense

linear algebra algorithm from a high-level specification, which consists on an equation

between matrices and vectors. Our framework aims to do the reverse: given a compu-

tation, we want to retrieve the high-level properties of the program through template

recognition, in order to place a library call whenever possible.

Chapter 8

Conclusion

We conclude this document in Section 8.1. Then, we present some interesting unexplored

research directions which are directly in the continuation of our work in Section 8.2.

8.1 Conclusion

Nowadays, architectures are becoming more and more complex, and it is increasingly

difficult to use them at their full capabilities. This has caused a gap in performance

between a code which are automatically generated through a compiler, and a code

from a high-performance library, which was finely tuned. Thus, in order to improve the

performance of a compiler-generated code, we want to be able to place calls to operations

from a high-performance library. In this dissertation, we consider dense linear algebra

operations and focus on the following problem: given a polyhedral computation, how

can we detect subcomputations that corresponds to dense linear algebra operations?

This dissertation makes three contributions: a program transformation called monopara-

metric tiling, a template recognition algorithm and a framework which combines these

two previous contributions to address our problem.

The monoparametric tiling is a tiling transformation in which the tile sizes are multiples

of a common tile size parameter. This transformation is in-between fixed-size tiling and

parametric tiling: indeed, this transformation is still polyhedral (like the fixed-size tiling

transformation), while having parametric tile sizes of fixed shapes. We first consider the

first half of this transformation, called monoparametric partitioning, which is just a

reindexing of the spaces of a program in order to introduce the dimensions used to

express a tiling. We show how to apply this partitioning transformation on polyhedra,

affine functions then program, both for hyperrectangular and general tile shapes. Then,

154

Chapter VIII. Conclusion 155

we present the second half of the transformation, which isolates the computation of each

tiles inside an atomic subprogram.

We introduce a template recognition algorithm, an extension of Barthou’s program

equivalence algorithm [8]. This algorithm is able to deal with semantic properties com-

monly found in dense linear algebra applications, such as associativity and commutativ-

ity of binary operators. To the best of our knowledge, our template recognition algorithm

is the first template recognition algorithm powerful enough to be able to recognize any

operation from BLAS.

Finally, we introduce our template detection framework. This framework first applies the

monoparametric tiling transformation, then considers each subprogram independently,

trying to recognize it as a finite combination of templates. Our templates are coming

from a template library inspired by BLAS [46]. Our framework successfully recognizes

most of the computation of dense linear algebra applications, and recognizes some por-

tions of applications outside of the dense linear algebra domain. Then, the piece of

code recognized as a linear algebra operation can be substituted by a library call, which

will improve the performance of the code, or we can use this newly acquired high-level

information to perform some optimization of the algorithm itself.

8.2 Future directions

In this section, we discuss the future research directions which span from our contri-

butions and were not addressed yet. We consider each one of our contributions in the

order of this dissertation.

8.2.1 Monoparametric tiling transformation

Necessary and sufficient condition for the legality of tiling Currently, we do

not perform any legality check of the provided tiling informations. As mentioned in

Section 3.4, we can check for the legality condition after applying the partitioning trans-

formation to the whole program, by collecting the block contributions of the partitioned

dependence functions. We also showed that this criterion is more precise than the legal-

ity condition based on the tiling hyperplanes. However, partitioning the whole program

is costly if we just want to check the legality of a tiling. It might be possible to avoid

this cost by focusing on the dependences functions, paired with their context domain

(i.e., for which indices a dependence function is used).

Chapter VIII. Conclusion 156

Monoparametric tiled code generation for any tile shape If we combine our

monoparametric tiling transformation with a polyhedral code generator, we obtain a

monoparametric tiled code generator. As shown in Section 4.4, the main issue with

our transformation is the size of the generated tiled code. This is caused by the fact we

build a full program representation of the tiled code. We might be able to avoid building

this program representation by generating immediately the tiled code, like Pluto does.

However, this will also prevent any polyhedral analysis to be applied after the tiling.

Assuming that we have built such tiled code generator, the tile shapes supported are

hyperrectangular tile shapes, or parallelogram tile shapes with some preprocessing. It is

possible to extend such code generator to support any tile shape. In addition, because

of the monoparametric nature of our tiling transformation, the tiles of the generated

code will be monoparametrized.

We claim that, except for the partitioning part of the tiling transformation (whose

generalization was presented in Section 3.3), the rest of the machinery can be completely

abstracted from the tile shape. Indeed, once the partitioning has been applied, at no

point the tile shape plays a role in the construction of the subsystems and main system

of the tiled code, as shown in Chapter 4. Because our legality condition is built on top

of the partitioning and analyze the block contribution, it is also independent of the tile

shape.

Monoparametric tiling and fixed-size tiling We hypothesize that monoparamet-

ric tiling is strictly better than fixed-size tiling. In other words, anything which can

be done with fixed-size tiling can also be done with monoparametric tiling, only better

(because of the limited amount of parametrization of a monoparametric tiled code).

In order to verify this claim, we can consider a fixed-size tiling code generator (e.g.,

Pluto [15]) and create an associated monoparametric tiling code generator, such that if

we substitute the block size parameter by a constant value in the monoparametric tiled

code, we obtain exactly the fixed-size tiled code. Intuitively, because both transforma-

tions are polyhedral, all the information collected in order to generate a fixed-size tiled

code (such as the tiled version of the iteration space, . . .) can also be collected for the

monoparametric case. Thus, in order to obtain such monoparametric tiling code gen-

erator, we can combine these informations exactly in the same way than the fixed-size

code generator.

If this claim is verified, then there is no benefit to use fixed-size tiling over monopara-

metric tiling.

Chapter VIII. Conclusion 157

8.2.2 Template recognition algorithm

We can enhance further the recognition power of our algorithm, by improving the man-

agement of some semantic properties.

Managing the semantic properties of reduction operators Our current tem-

plate recognition algorithm does not consider the associativity and commutativity of

the reduction operators. This means that if we compare two reductions, we have to

compare their subexpressions exactly in the same order of accumulation. In particu-

lar, we cannot consider permutations in the order of accumulation. For example, this

prevents us to recognize a match between
∑N

k=0 I[k] and
∑N ′

k′=0 I
′[N ′ − k′], because the

order of summation is reversed.

In Section 5.6, we discussed an extension of Barthou’s equivalence algorithm we have

proposed in [34], in order to manage the associativity and commutativity of the reduction

operators. The next step would be to adapt this equivalence algorithm to a template

recognition algorithm, like we did in Section 5.2 for the original equivalence algorithm.

The main difficulty of this extension would come from the fact that we have to infer

the mappings between two compared reductions, and we have to find simultaneously the

inputs of a template.

Note that, in the context of our framework, we manage partially the associativity and

commutativity properties of reductions operators. Indeed, as mentioned in Section 4.3,

when the monoparametric tiling transformation tiles a reduction, this transformation

decomposes it into smaller reductions of the size of a tile and introduces the partial

result of a tile as a new variable (called TempRed). The original reduction becomes an

accumulation over TempRed, each element of TempRed being the accumulation over

a tile. Thus, the associativity and commutativity properties were used in order to cut

the reduction along the tiles boundaries. In practice, we showed that this reordering is

enough in order to recognize linear algebraic templates with our framework.

Managing the distributivity property As discussed in Section 5.4, we manage

most of the semantic properties commonly found in a dense linear algebra computation

through a set of rewriting rules. However, this approach is not satisfactory for the

distributivity property. Indeed, we have shown that distributing or factorizing any

term encounter indiscriminately might prevent the recognition of some template. We

proposed a solution based on multiple version of a template: one in which the terms are

distributed and one in which the terms are factorized. This fix is good enough in our

context, but we might want a cleaner solution.

Chapter VIII. Conclusion 158

It might be possible to manage the distributivity property by adapting the template

recognition algorithm. For example, we can adopt a similar approach than the manage-

ment of the associativity and commutativity properties, and generate different versions

of the equivalence automaton, depending on whether we choose to distribute/factorize

a term or not. This requires us to keep track of the surrounding factorized terms when

analyzing a state of the automata.

8.2.3 Template recognition framework

Enriching the template library Currently, our template library is mostly composed

of operations which can be found in the BLAS specification. We could extend this library

to include operations which can be found in LAPACK. For example, we could include a

Cholesky computation, whose corresponding scalar operation is a square root. Another

possible extension is to consider operations from alternate semi-ring, such as (max,+),

which is useful for dynamic programming computations.

Another idea is to build automatically the template library, based on the unrecognized

computations encountered. More precisely, every times a computation is not recognized

by our template library, we can register this computation (or detect a portion of the

computation which might correspond to the top-most operation, then register it). If

a computation is encountered multiple times, we can decide to add it to the template

library and notify the user that it might be interesting to have a corresponding efficient

implementation. We already have a limited form of this idea, through our “recursion”

template (which tries to find smaller instances of our original computation).

Using template recognition to improve performance Our framework detects

subcomputations of a program as matricial operations. These high-level information

can be exploited by using semantic properties of linear algebra operations to change the

computation itself. For example, if we recognize L.L−1, we can replace the corresponding

computation by an identity matrix. If we detect a succession of matrix multiplications

A⊗ (B ⊗ (C ⊗D)), we can rearrange them into (A⊗B)⊗ (C ⊗D), in order to enable

parallelism. These optimizations are much more powerful compared to what could have

been done without the recognition process.

Then, when we decide to generate code, we can place library calls corresponding to these

matricial operations. As discussed in Section 6.4, we need to preprocess the template

tree we obtain, so that we merge them and minimize the number of library calls issued.

We also need to decide for a memory allocation (most of the BLAS computation being

in-place) and the memory storage for each matrix.

Appendix A

Résumé du travail de thèse

Ce chapitre consiste en un résumé étendu du travail de thèse écrit en Français. Son

organisation suit la structure du document, c’est à dire que les sections correspondent

aux chapitres du document. Cependant, même si le discours principal est identique, ce

résumé présente moins de détails (preuves, exemples, commentaires secondaires). Ainsi,

le lecteur est invité à se référer au document complet en Anglais pour des explications

complètes.

A.1 Introduction

De nos jours, du à la complexité croissante des architectures, il est de plus en plus

difficile de les exploiter pleinement afin d’exécuter une application le plus rapidement

possible. En réponse à ce problème, des librairies qui proposent des implémentations

à haute performance pour certaines opérations ont été créées. Ces implémentations

ont été finement calibrées manuellement et leur performance ne sont généralement pas

atteignable par un code généré par un compilateur.

Cependant, les appels à ces implémentations à haute-performance doivent être faites à la

main, ce qui pose plusieurs problèmes. Tout d’abord, cela demande une compréhension

profonde de l’algorithme de la part de l’auteur du programme, afin de pouvoir re-

connâıtre, délimiter et remplacer les bouts correspondant par un appel de fonction.

Ensuite, cette compréhension peut être imparfaite, au sens où certains appels de fonc-

tion intéressants peuvent avoir été manqués. Ainsi, l’idéal serait de permettre aux

compilateurs de placer automatiquement ces appels à des librairies, ce qui n’est, pour le

moment, pas fait.

159

Appendix A. Résumé du travail de thèse 160

Le problème clef est de reconnâıtre un calcul qui correspond à une opération ayant une

implémentation optimisée. Plus précisément, nous cherchons à reconnâıtre des sous-

calculs (par opposition au programme entier) afin de pouvoir les remplacer par des

appels de fonction correspondants. Dans le contexte de notre travail de thèse, nous nous

intéressons à des opérations d’algèbre linéaire, pour lesquels plusieurs librairies existent

(telles que BLAS [46], LAPACK [6]), et qui contiennent des opérations communément

présents dans de nombreux domaines d’application.

Nous considérons donc le problème suivant: comment reconnâıtre des sous-calculs cor-

respondant à des opérations d’algèbre linéaire dans un programme polyédrique? Ce

problème soulève plusieurs défis. Comme on s’intéresse à des sous-calculs, on doit

faire attention aux recouvrements entre opérations détectées. Le fait que l’on cible

des opérations d’algèbre linéaire veut dire que l’on doit gérer les propriétés sémantiques

associées à ce domaine. Enfin, nous devons faire attention à la scalabilité du procédé de

reconnaissance.

Contributions L’idée principale de notre solution est de découper préemptivement le

calcul en blocs avant d’effectuer la reconnaissance d’opérations. Vu que l’on considère

des opérations d’algèbre linéaire qui raisonnent sur des matrices qui sont rectangulaires,

on partitionne l’espace des données en tuiles et utilise ce tuilage pour différencier les

calculs en fonction de la tuile utilisée. Ainsi, le tuilage sur l’espace des données est

propagé à l’espace des calculs. L’hypothèse faite est que ces sous-calculs correspondent

à des combinaisons d’opérations d’algèbre linéaire. L’avantage de cette approche est,

d’une part, d’éviter d’avoir des recouvrements entre opérations reconnues et, d’autre

part, de fournir une liste d’endroits dans le flot de calcul où commencer à chercher à

reconnâıtre un début de sous-calcul.

Ainsi, nous proposons les contributions suivantes:

• Tuilage monoparamétrique: Nous introduisons une nouvelle transformation de

programme appellée le tuilage monoparamétrique. Un tuilage peut utiliser des tu-

iles de taille fixe (les tailles de tuiles sont constantes et ne peuvent pas être changées

après compilation) ou de taille paramétré (les tailles de tuiles sont des paramètres

du programme et donc peuvent être changées juste avant exécution, mais le pro-

gramme après transformation n’est plus polyédrique). Nous montrons que si nous

considérons des tuiles dont les tailles sont des multiples d’un unique paramètre,

le programme après transformation reste polyédrique, tout en permettant une

paramétrisation limitée après compilation. Nous proposons ensuite une variante

de cette transformation qui isole le calcul effectué par une tuile dans un sous-

programme. Cela est possible du fait qu’il y a un nombre fini non-paramétrique

Appendix A. Résumé du travail de thèse 161

de calculs différents effectués par les tuiles du programme, et donc on a besoin

seulement d’un nombre fini non-paramétrique de sous-programmes.

• Algorithme de reconnaissance de template: Nous proposons une extension

d’un algorithme d’équivalence de programme [8] en un algorithme de reconnais-

sance de template. Les templates que nous considérons dans ce document sont des

programmes dont les entrées peuvent correspondre à des expressions inconnues.

Ainsi, par rapport à un algorithme d’équivalence de programme, l’algorithme

de reconnaissance de template doit également tenir compte de ces inconnues et

déterminer leurs valeurs. Nous étendons par la suite cet algorithme de reconnais-

sance de template, de manière à gérer les propriétés sémantiques communément

rencontrées en algèbre linéaire (associativité, commutativité, distributivité, . . .).

• Procédé de reconnaissance de sous-calculs d’algèbre linéaire: Nous com-

binons les deux contributions précédentes de la manière suivante: nous appliquons

d’abord le tuilage monoparamétrique pour séparer les calculs des tuiles en sous-

programmes isolés. Puis, nous considérons chaque sous-programme indépendamment

et nous essayons de les reconnâıtre comme une combinaison d’opérateurs d’algèbre

linéaire. Ces opérateurs sont définis à travers une librairie de templates, inspirée de

BLAS [46]. A chaque fois qu’un opérateur est reconnu, l’algorithme est appliqué

récursivement sur les expressions correspondants aux entrées du template. Le

résultat du procédé est donc un arbre de templates par sous-programmes, chaque

noeud correspondant à un template reconnu.

Plan Le reste du résumé est structuré de la manière suivante: dans la Section A.2, nous

introduisons les définitions et notations nécessaires pour comprendre le reste du travail.

Nous introduisons en deux parties la transformation de tuilage monoparamétrique dans

les Sections A.3 et A.4. La Section A.3 présente la transformation de partitionnement

monoparamétrique, qui effectue une réindexation de tous les indices du programmes.

Nous étudions tout d’abord le cas d’un tuilage rectangulaire, avant d’étendre la trans-

formation à n’importe quelle forme de tuile. Les indices introduits par le partitionnement

monoparamétrique sont ensuite utilisés dans la Section A.4 pour exprimer le tuilage, tout

en isolant les calculs effectués par les tuiles dans des sous-programmes séparés.

La Section A.5 présente un algorithme de reconnaissance de template, basé sur un algo-

rithme d’équivalence de programme proposé par Barthou et al [8]. Plusieurs extensions

sont proposés pour permettre la gestion de propriétés sémantiques usuellement ren-

contrées en algèbre linéaire. La Section A.6 combine les contributions précédentes en un

seul procédé, qui décompose le calcul d’un programme en tuiles, avant d’essayer de re-

connâıtre chaque tuile en tant que combinaison d’opérateurs classique d’algèbre linéaire.

Appendix A. Résumé du travail de thèse 162

Notamment, ce procédé utilise une bibliothèque de templates, inspirés de BLAS [46].

Nous concluons finalement ce travail dans la Section A.7, et proposons quelques pistes

de recherche.

A.2 Définitions et notations

Cette section présente les définitions et notations qui serons utilisées dans la suite de

cette thèse. Nous définissons tout d’abord la représentation de programme choisie, puis

montrons un bref aperçu des transformations de programme considérées par la suite

(c’est à dire, changement de base, et tuilage), puis finissons par présenter les intuitions

principales derrière l’algorithme d’équivalence de programme.

Représentation de programme La représentation de programme que nous choisis-

sons est la suivante:

Definition A.1. Un programme polyédrique est un programme dont le calcul peut être

représenté par une liste d’équations, de la forme suivante:

~i ∈ D : V ar[~i] = Expr(V ar1[u1(~i)], . . . , V ard[ud(~i)])

où D est un polyèdre, c’est à dire un ensemble d’entier satisfaisant des contraintes

affines et les uk sont des fonctions affines, appelées fonctions de dépendances qui lie

chaque lecture à son site de définition V ark[uk(~i)]. V ar est une variable du programme,

qui peut être soit une variable d’entrée, soit une variable de sortie, soit une variable

locale. ~i est appelé vecteur d’itération. Expr est une expression est peut-être des formes

suivantes:

• Une variable S[u[~i]

• Une opération op(Expr1, . . . , Exprk) où l’arité de l’opération est k. Une constante

est un opérateur d’arité 0.

• Un fonction des indices f(~i)

Une variable peut avoir plusieurs équations définissant ses valeurs, sous réserve que ces

définitions concernent des ensembles de vecteur d’itération disjoints. Le domaine d’une

variable est l’union de tous ces ensembles, et correspond à l’ensemble des points pour

lesquels cette variable est définie à travers une des équations du programme.

Appendix A. Résumé du travail de thèse 163

Nous rajoutons à cette définition la notion de réduction. Une réduction est une applica-

tion successive d’un opérateur binaire associatif et commutatif sur un ensemble de valeur.

Un exemple typique de réduction rencontré en algèbre linéaire est une sommation sur

un nombre paramétrique de valeurs:

C[i, j] =
k<N∑
k=0

A[i, k] ∗B[k, j];

Nous intégrons les réductions à notre représentation de programme en tant que nouveau

type d’équation, de la forme suivante:

~i ∈ Dr : V ar[~i] =
⊕
~j ∈ D
~i = π(~j)

Expr(V ar1[f1(~j)], . . . , V ard[fd(~j)])

où π est une fonction affine appelée fonction de projection, qui détermine les directions

selon lesquelles sommer les valeurs de la sous-expression. Afin de faciliter l’écriture de

programmes, nous autorisons l’utilisation de réductions comme arguments d’une expres-

sion.

Transformation de programme Dans le reste du document, nous nous intéresserons

principalement à deux transformations de programme: la transformation de changement

de base et la transformation de tuilage.

Un changement de base est une transformation qui modifie le domaine d’une variable en

utilisant une fonction unimodulaire (c’est à dire, une bijection dont le déterminant vaut

1 ou −1). Le nouveau domaine de la variable est l’image de l’ancien domaine par cette

fonction unimodulaire, et les équations du programme sont adaptées pour tenir compte

de ce changement. Ainsi, cette transformation est juste une fonction de réindexage du

domaine d’une variable et ne modifie en aucun cas le calcul effectué par un programme.

Un tuilage est une transformation qui regroupe les calculs en groupes (appelées tuiles)

qui sont exécutés de manière atomiques. La Figure A.1 montre un exemple de tuilage

pour des tuiles carrées de taille 3 par 3.

Parce que les tuiles sont exécutées de manière atomique, on ne peut pas avoir de cycle de

dépendances entre elles. Par exemple, dans la Figure A.1, chaque tuiles dépendent de la

tuile à leur gauche et en dessous, et il n’y a pas de cycle de dépendence entre différentes

tuiles. Par conséquent, le tuilage est légal. Des changements de base sont fréquemment

utilisés pour arranger les dépendances d’un programme et rendre un tuilage légal.

Appendix A. Résumé du travail de thèse 164

(∀i = j = 0) A[i, j] = 1

(∀j = 0 < i) A[i, j] = A[i− 1, j]

(∀i = 0 < j) A[i, j] = A[i, j − 1]

(∀0 < i, j) A[i, j] = A[i− 1, j] +A[i, j − 1]

i

j

Figure A.1: Exemple de tuilage, avec pour tuiles des carrés de taille 3× 3

Différentes variations du tuilage existent, par exemple en jouant sur la forme de la tuile

considérée (parallélépipède, trapézöıde, hexagone, . . .). Indépendamment, la nature des

tailles de tuiles est un autre critère de variation du tuilage considéré. Si les tailles d’une

tuile sont des constantes (par exemple 16× 32), alors le tuilage est de taille fixe et cette

transformation est polyédrique (c’est à dire, le programme transformé reste polyédrique).

Le désavantage de cette transformation est que les tailles de tuile est fixée pendant la

compilation, et donc on est obligé de recompiler le programme à chaque fois que l’on

veut changer ces tailles, ce qui est gênant si on veut découvrir la taille de tuile qui donne

les meilleures performances.

Si les tailles d’une tuile sont des paramètres (par exemple b1× b2), cette transformation

n’est plus polyédrique (c’est à dire, le programme transformé n’est plus polyédrique, à

cause de contraintes quadratiques introduites). Dans ce dernier cas, parce qu’on sort du

modèle polyédrique, il n’est plus possible de composer des transformations ou analyses

polyédriques à la suite d’un tuilage paramétrique.

Algorithme d’équivalence de programme Dans la Section A.5, nous allons étendre

un algorithme d’équivalence de programme en un algorithme de reconnaissance de

template. La notion d’équivalence utilisée par cet algorithme s’appelle l’équivalence

d’Herbrand : deux programmes sont équivalents s’ils font exactement les mêmes opérations

sur les mêmes données afin d’obtenir leur sorties. Notez que cette notion d’équivalence

ne tient compte d’aucune propriété sémantique. De plus, toute transformation de pro-

gramme qui respecte les dépendences préserve cette équivalence.

L’algorithme d’équivalence de programme qui constitue notre point de départ est celui

proposé par Barthou et al [8]. La description et la formalisation complète de l’algorithme

peuvent se trouver dans la Section 2.4. Nous nous contentons ici de donner les intuitions

Appendix A. Résumé du travail de thèse 165

principales de l’algorithme. La représentation de programme considérée est celle des

Systèmes d’Équations Récurrentes Affines (SERA), qui est similaire à la représentation

de programme que nous avions introduit précédemment. Aussi, le problème de décider

l’équivalence de deux programmes est indécidable, et donc l’algorithme d’équivalence

de programme est en fait un semi-algorithme (il est possible que l’algorithme échoue à

conclure une équivalence ou une non-équivalence)

L’algorithme d’équivalence de programme de Barthou repose sur la notion d’automate

d’équivalence. Cet automate est un automate de Presburger, ce qui veut dire que chaque

état est associé avec un vecteur de valeurs entières et que les transitions peuvent inspecter

et modifier ces valeurs. Dans le cas d’un automate d’équivalence, les états de cet auto-

mates correspondent à une comparaison entre deux sous-calculs de chaque programme

“Expr1 = Expr2” et les vecteurs correspondent aux indices de ces sous-calculs (~i1, ~i2).

L’intuition principale d’un automate d’équivalence est que progresser dans l’automate

revient à dérouler symboliquement les calculs effectuées par chaque programme, en par-

tant des sorties, tout en éliminant les opérateurs identiques qui occurrent de chaque

côté.

Ainsi, conformément à cette intuition, l’état initial d’un automate d’équivalence com-

pare les sorties des deux programmes. L’automate admet deux sortes d’état final: les

états d’échec qui correspondent à une comparaison trivialement fausse (par exemple,

comparer une entrée d’un côté avec un opérateur de l’autre) et les états de réussite

qui correspondent à des comparaisons entre entrées correspondantes. Les transitions

de l’automate sont construites en suivant 3 règles de constructions, qui, intuitivement,

déroulent les calculs et éliminent les opérateurs présents de chaque côté.

Barthou et al ont montré que deux programmes sont équivalents si et seulement si tout

chemin qui part de l’état initial en prenant des indices égaux (~i,~i) (ce qui correspond à

comparer la même sortie):

• N’arrive jamais à accéder un état final d’échec

• Accède un état final de réussite uniquement quand les indices des deux entrées

comparées sont égaux (ce qui veut correspond à comparer la même entrée)

Ainsi, le problème de décider l’équivalence de deux programmes peut se réduire au

problème de calculer l’ensemble d’accessibilité de certains états dans un automate de

Presburger. Ce dernier problème est lui-même indécidable, mais plusieurs heuristiques

existent pour le résoudre.

Cet algorithme d’équivalence sera étendu en un algorithme de reconnaissance de tem-

plates dans la Section A.5. Les templates que nous considérons dans ce document sont

Appendix A. Résumé du travail de thèse 166

des programmes dont les entrées peuvent correspondre à des expressions inconnues. Le

problème de reconnaissance de template prend en argument un programme et un tem-

plate et essaye de trouver des valeurs aux entrées du template qui le rend équivalent

au programme. Il s’agit d’une définition plus faible que celle retenue par Alias [3], qui

considère des templates comportant des fonctions inconnues.

A.3 Partitionnement monoparamétrique

Dans cette section, nous nous intéressons à la première partie de la transformation

de tuilage monoparamétrique, appelée partitionnement monoparamétrique. La seconde

partie de cette transformation est décrite dans la Section A.4. Afin de simplifier le

formalisme, nous nous concentrons, au début de cette section, sur le cas des tuiles

rectangulaires, avant de généraliser nos résultats au cas général.

Commençons par définir la transformation de partitionnement monoparamétrique. On

considère un pavage de l’espace de chaque variable par des tuiles rectangulaires de taille

(d1.b)× · · · × (dk.b), où les di sont des constantes et b est un paramètre du programme.

Ainsi, chaque point de l’espace original~i se retrouve dans une unique tuile rectangulaire

de ce pavage. Il est possible d’introduire de nouveaux indices qui identifient la position de

ce point dans le nouveau pavage. Afin d’identifier une tuile (respectivement la position

d’un point dans une tuile), de nouveaux indices appelés indices tuilés ~ib (respectivement

indices locaux ~il) sont introduits, tels que ~i = D.b.~ib + ~il, ~0 ≤ ~il < D.~1 et D est une

matrice (appelé ratio) dont les coefficients diagonaux sont les di.

La transformation de partitionnement monoparamétrique est simplement une réindexation

de tous les indices du programme, qui remplace les indices originaux ~i par les indices

tuilés et locaux (~ib, ~il). Ainsi, le nombre de dimensions de tous les espaces du programme

transformé sont doublés par rapport au programme original. Dans le reste de cette sec-

tion, nous allons tout d’abord montrer que, bien que ce changement d’indice n’est pas

affine, nous avons tout de même des propriétés de stabilité qui permettent d’obtenir un

programme transformé polyédrique.

Propriété de stabilité dans le cas des tuiles rectangulaires Tout d’abord,

étudions l’application de la transformation de partitionnement monoparamétrique sur

un polyèdre, puis sur une fonction affine. En effet, ces deux objets mathématiques sont

les seuls qui interagissent avec les indices d’un programme. Ainsi, substituer ces ob-

jets par leur version partitionnée est le cœur de la transformation de partitionnement

monoparamétrique.

Appendix A. Résumé du travail de thèse 167

i

j

∆
=

Premier polyèdre

∪
Second polyèdre

Figure A.2: Union de polyèdres ∆ obtenus après partitionnement. Le polyèdre orig-
inal est un triangle, et nous avons supposé, pour simplifier la présentation, que les
tailles de tuile divisent la taille de ce triangle. Après partitionnement, nous obtenons
une union de deux polyèdres dans ∆: un polyèdre qui correspond aux tuiles pleines, et
un autre polyèdre qui correspond aux triangles inférieurs (sur la diagonale)

Considérons un polyèdre D. L’ensemble ∆ obtenu en appliquant la transformation de

partitionnement monoparamétrique sur ce polyèdre est une union finie non paramétrique

de polyèdres admettant les propriétés suivantes:

• Chaque polyèdre de ∆ correspond à une forme de tuile

• Les contraintes de chaque polyèdre peuvent être séparées en deux ensembles: les

contraintes qui concernent les indices tuilés et les contraintes qui concernent les in-

dices locaux. Il n’y a aucune contrainte qui font intervenir les deux types d’indices.

Ainsi, ∆ décrit les différentes formes de tuiles qui arrivent après tuilage et les contraintes

sur les indices tuilés qui spécifient où chaque forme de tuiles se trouvent. Par exemple,

la Figure A.2 montre un exemple de partitionnement d’un triangle bi-dimensionnel, en

utilisant un tuilage de taille b× b

Considérons une fonction affine f . Tout d’abord, notons que cette fonction affine inter-

agit avec deux espaces (correspondant à ses entrées et sorties): on doit donc considérer

deux partitionnements sur ces deux espaces. La fonction φ obtenue en appliquant la

transformation de partitionnement monoparamétrique sur cette fonction affine est une

fonction affine par morceaux. Les branches de cette fonction affine par morceaux ont les

propriétés suivantes:

• La valeur de chaque branche est une fonction affine et est différente des autres

• Les conditions de chaque branche est une conjonction de contraintes affines (càd,

de la forme ~a.~i+b ≥ 0 avec ~a et b des constantes) et de contraintes modulo (càd de

Appendix A. Résumé du travail de thèse 168

la forme g(~ib)%M = C, où 0 ≤ C < M sont des constantes et g est une fonction

affine sur les indices tuilés ib).

• Les branches ne contiennent aucune contrainte modulo si et seulement si une con-

trainte de divisibilité faisant intervenir les ratios des partitions est satisfaite. Plus

précisément, si D est une matrice diagonale dont les coefficients sont les ratios

du partitionnement sur l’espace d’entrée, si D′ est cette même matrice pour le

partitionnement de l’espace de sortie et si Q est la matrice des coefficients de f ,

la condition est que “D′−1.Q.D est une matrice entière”.

Partitionnement dans le cas des tuiles rectangulaires En utilisant ces propriétés

de stabilité, la transformation de partitionnement consiste simplement à substituer tous

les polyèdres et fonctions affines d’un programme par leur versions partitionnées. Les

fonctions de dépendances pouvant devenir des fonctions affines par morceaux, il est

nécessaire de les aplatir, afin de créer une équation par branches de cette fonction.

Il est important d’éliminer progressivement les branches non-satisfiables pendant cet

aplatissement afin d’éviter toute explosion combinatoire.

Afin d’appliquer cette transformation, il est nécessaire d’assigner un partitionnement

à tous les espaces intervenant dans un programme, c’est à dire, à tous les domaines

des variables d’un programme. Cependant, il faut faire attention à ce que ces ratios

n’introduisent pas de conditions de modulo lors du partitionnement des fonctions de

dépendances (au risque de rendre le programme transformé non polyédrique). Par

défaut, prendre des ratios carrés (1 × 1 × · · · × 1) pour toutes les partitionnements

des variables est suffisant pour éviter toute condition modulo.

Parce que cette spécification peut être lourde du point de vue de l’utilisateur, nous

proposons que l’utilisateur ne définisse qu’une partie des ratios, et qu’un algorithme

dérive les ratios manquants qui n’introduisent aucune condition modulo. Cet algorithme

parcourt des équations du programme de bas en haut et trouve le ratio minimum qui

n’introduit pas de modulo pour chaque variables. De plus, si cet algorithme échoue, c’est

qu’il n’existe aucun ratio qui n’introduit aucun modulo, étant donné les spécifications

fournies par l’utilisateur.

Partitionnement pour des formes de tuile quelconque Il est possible d’étendre

les résultats précédents à des partitionnements avec n’importe quelle forme de tuiles.

Tout d’abord, un partitionnement monoparamétrique pour une forme de tuile quelcon-

ques est définit à travers 3 objets:

Appendix A. Résumé du travail de thèse 169

i

j

il

jl

(ib, jb)

4b

2b

Figure A.3: Exemple d’un partitionnement monoparamétrique hexagonal pour un
espace 2D. (ib, jb) sont les indices tuilés, qui identifient une tuile, (il, jl) sont les indices
locaux, qui identifient la position d’un point dans une tuile. La forme de la tuile est un
hexagone dont les pentes sont à 45◦ et qui est de taille 4b× 2b. Cette tuile peut être vu
comme l’agrandissement d’un hexagone de taille 4×2. Les flèches rouges correspondent
à la base du treillis des origines des tuiles.

• La forme de la tuile, qui est un agrandissement d’un polyèdre non paramétré par

un facteur b, b étant le paramètre de taille de tuile

• Un treillis des origines de tuiles,

• Une fonction de décomposition qui, étant donné un point ~i, retourne son indice

tuilé ~ib et local ~il, qui identifie la tuile et les coordonnées locales de où se trouve

ce point.

Cette définition est une généralisation du cas rectangulaire. Dans le cas rectangulaire,

la forme de la tuile est un agrandissement d’un rectangle de taille constante d1×· · ·×dk
par un facteur b, le treillis des origines de tuiles admet pour base les vecteurs (di.~ei)i

où ~ei est le ième vecteur canonique, et la fonction de décomposition consiste en une

division entière. La Figure A.3 montre un autre exemple de partitionnement dans le cas

des tuiles hexagonales.

Les propriétés de stabilité sur les polyèdres et fonctions affines sont toujours valables

dans le cas des formes de tuile quelconques. À propos des fonctions affines, le critère

sur les ratio pour éviter les modulos devient un critère sur la base du treillis des origines

de tuiles. Cela veut notamment dire que la forme d’une tuile n’a aucun impact sur la

présence de modulo dans une fonction partitionnée. L’application de ces propriétés de

stabilité à un programme et l’algorithme de dérivation associé reste identique au cas

rectangulaire.

Appendix A. Résumé du travail de thèse 170

A.4 Du partitionnement au tuilage

Dans cette section, nous présentons la seconde partie de la transformation de tuilage

monoparamétrique. On suppose que la première partie de la transformation (partition-

nement monoparamétrique, décrite dans la section précédente) a été effectuée, et nous

nous servons des nouveaux indices introduits pour exprimer le tuilage.

Nous commençons par décrire une extension de notre représentation de programme.

Cette extension autorise un programme à appeler des sous-programmes, appelés sous-

systèmes, qui sont exécutés de manière atomique. Ensuite, nous décrivons la transfor-

mation de tuilage d’abord dans le cas de programme sans réductions, puis dans le cas de

programme contenant des réductions. Le calcul de chaque tuiles est encapsulé dans un

sous-système, ce qui nous permet d’imposer la propriété d’atomicité des tuiles, et d’isoler

leurs calculs. Ces sous-systèmes seront considérés séparément dans la Section A.6 afin

de tenter de reconnâıtre des combinaisons d’opérateur d’algèbre linéaire.

Sous-systèmes Nous introduisons une extension à notre représentation de programme

qui autorise un programme à utiliser un autre programme (appelé sous-système) durant

son exécution. Cet appel s’effectue via un type d’équations spécial appelé équation

d’utilisation, de la forme suivante:

use Dext nomSousSysteme[paramètres] (liste des entrées)

returns (liste des variables de sortie);

Cette équation d’utilisation appelle le programme “nomSousSysteme” avec les paramètres

et valeur en entrées spécifiées, et récupère ses résultats dans les variables de sortie. Le

polyèdre Dext s’appelle le domaine d’extension et permet de paramétrer les appels de

la manière suivante: chaque point ~iext de ce polyèdre correspond à un appel au pro-

gramme “nomSousSysteme”, et les indices~iext peuvent être utilisés dans la spécification

des paramètres et des entrées de ces appels. Ainsi, il est possible de spécifier un nombre

paramétrique d’appels à travers une seule équation d’utilisation.

Tuilage pour des programmes sans réductions Nous supposons qu’un tuilage

légal est spécifié par l’utilisateur en entrée (c’est à dire, quel changement de base et

quelles variables on doit tuiler ensemble pour éviter toute dépendance cyclique entre

tuiles). L’idée principale de la transformation de tuilage est de distribuer le calcul des

tuiles dans des sous-systèmes, de telle sorte que le programme principal gère les commu-

nications entre tuiles et les appels aux sous-systèmes correspondants, tandis que les sous-

systèmes contiennent le calcul effectué par le programme. Cependant, un programme

Appendix A. Résumé du travail de thèse 171

tuilé possède habituellement un nombre paramétrique de tuiles, tandis qu’il n’est pas

possible d’avoir un nombre paramétrique de sous-systèmes dans un programme.

Ce problème est résolu avec l’introduction de la notion de type de tuile. Il est possible

de classifier les tuiles d’un programme selon le calcul qu’elles effectuent. Un type de

tuile est une de ces classes, et on peut montrer qu’il n’y en a qu’un nombre fini non

paramétrique. Ainsi, il est possible de créer un sous-système par type de tuile et de faire

appel à ce sous-système à chaque fois qu’on veut exécuter une tuile de type associé. On

a donc besoin de créer qu’un nombre fini non paramétrique de sous-système, ce qui rend

la transformation de tuilage possible.

Le programme tuilé possède un système principal et une collection de sous-systèmes.

Les équations d’un sous-système correspondent au calcul associé au type de tuile corre-

spondant. Les entrées d’un sous-système sont les données minimales dont les équations

d’un sous-système ont besoin, qui ne sont pas calculées à l’intérieur du sous-système

en question. Les sorties d’un sous-système sont les données calculées par les équations

du sous-système dont d’autres sous-systèmes ont besoin. De multiples entrées et sorties

sont crées en fonction de la tuile qui produit la donnée fournie au sous-système (pour

les entrées) ou qui nécessite la donnée fournée par le sous-système (pour les sorties).

Le système principal contient une équation d’utilisation par type de tuile, leur domaine

d’extension correspondant au domaine où ce type de tuile est présent. Les sorties des

équations d’utilisations sont stockées dans des variables locales, qui sont ensuite re-

groupées avant d’être réutilisées dans les entrées des équations d’utilisation. Cela nous

permet d’éviter de dissocier selon si une entrée vient d’un type de tuile ou d’un autre.

Tuilage pour des programmes avec réductions Les réductions d’un programme

introduisent des indices supplémentaires qui sont partitionnées et qui introduisent des

indices tuilés supplémentaires. Par exemple, considérons un programme qui effectue une

multiplication de matrices entre deux matrices carrées de taille N :

(∀0 ≤ i, j < N) C[i, j] =

N−1∑
k=0

A[i, k] ∗B[k, j]

Après partitionnement, si on suppose que le paramètre N est divisible par la taille de

tuile b, on obtient le programme suivant:

(∀0 ≤ ib, jb < Nb)(∀0 ≤ il, jl < b) C[ib, jb, il, jl] =
∑
kb,kl

A[ib, kb, il, kl] ∗B[kb, jb, kl, jl];

Appendix A. Résumé du travail de thèse 172

kb
TempRed[ib, •]

. . .

x[ib]

x[ib − 1]
Original program:

(∀0 ≤ i < N) x[i] = (b[i]−
∑
k<i

L[i, k]× x[k])/L[i, i]

Figure A.4: Dependances entre les tuiles de TempRed et les tuiles de x/temp.

Notez à ce point que la réduction somme sur un ensemble de tuile indexées par kb. Ainsi,

afin de séparer les calculs de chacune de ces tuiles, nous décomposons la réduction, en

introduisant une variable temporaire d’accumulation, nommée TempRed:

C[ib, jb, il, jl] =
∑
kb

TempRed[ib, jb, kb, il, jl];

TempRed[ib, jb, kb, il, jl] =
∑
kl

A[ib, kb, il, kl] ∗B[kb, jb, kl, jl];

Ainsi, chaque réduction du programme introduit une nouvelle variable temporaire d’accumulation.

On remarque que, par le simple fait d’introduire cette variable temporaire d’accumulation,

les propriétés d’associativité et de commutativité de l’opérateur de réduction ont été

utilisées. Ainsi, cette transformation ne préserve pas l’équivalence d’Herbrand, et est

donc une transformation sémantique.

Ces nouvelles variables n’apparaissant pas dans le tuilage spécifié en entrée par l’utilisateur,

on doit adapter cette spécification afin d’en tenir compte, tout en prenant garde à re-

specter la légalité du tuilage.

Par exemple, la Figure A.4 montre les tuiles d’un programme qui résout une équation

de la forme L.~x = ~b où ~x est l’inconnue et L une matrice triangulaire inférieure. Notez

que la variable TempRed dépend des valeurs précédentes de x, et donc que la dernière

tuile de TempRed admet une dépendance cyclique avec la tuile calculant les x[ib, •].
Ainsi, le sous-système qui calcule les valeurs x[ib, •] doit aussi calculer les valeurs de

TempRed[ib, ib, •] (kb = ib), et on peut avoir un autre sous-système qui calcule les autre

tuiles de TempRed.

En analysant les dépendances entre tuiles, nous détectons quelles tuiles de TempRed

peuvent être tuilée séparément sans introduire de dépendances cycliques entre tuiles.

Ces tuiles peuvent former leur propres sous-systèmes, tandis que le calcul des autres

tuiles doivent être inclus dans des sous-systèmes existants.

Appendix A. Résumé du travail de thèse 173

A.5 Reconnaissance de templates

Dans cette section, nous introduisons un algorithme de reconnaissance de template,

qui est une adaptation de l’algorithme d’équivalence de programme dont les concepts

principaux ont été rapidement décrit dans la Section A.2.

Algorithme de reconnaissance de template Commençons par décrire l’algorithme

de reconnaissance de template. Cet algorithme prend en entrée un programme et un

template, et détermine si le template matche le programme (c’est à dire, s’il existe

des valeurs des paramètres et des entrées du template qui rend le template équivalent

au programme). De plus, si le template matche, des valeurs du paramètres et des

entrées du template sont inférés automatiquement. La notion d’équivalence utilisée est

l’équivalence de Herbrand, mais va être enrichie plus tard afin de gérer les propriétés

sémantiques présentent en algèbre linéaire.

La première étape de l’algorithme consiste à construire l’automate d’équivalence du

problème de reconnaissance de template. L’automate d’équivalence que l’on considère

dans l’algorithme de reconnaissance de template est légèrement modifié par rapport à

l’algorithme d’équivalence de programme. En l’occurence, on modifie la notion d’état

final de réussite: dans le cas de la reconnaissance de template, un état final de réussite

est tout état final de la forme “ · · · = I ′ ”, avec I ′ une entrée du template. En effet,

intuitivement, une entrée de template peut potentiellement correspondre à n’importe

quelle expression du programme.

Une fois l’automate d’équivalence construit, la seconde étape de l’algorithme de recon-

naissance de template consiste à extraire les contraintes sur les entrées du template.

Cela est fait en calculant les ensembles d’accessibilité de chaque état final de l’automate

de template. L’ensemble d’accessibilité d’un état est l’ensemble des indices (~i, ~i′) tels

que il existe un chemin dans l’automate partant de l’état initial et arrivant sur l’état

considéré avec ces valeurs d’indices.

Pour les états finaux d’échec, les ensemble d’accessibilité correspondants doivent être

vides (c’est à dire, ces états ne doivent pas être accessibles). Pour les états finaux de

réussite, les contraintes sont de la forme:

(∀(~i, ~i′) ∈ S) I ′[~i′] = Exprk[~i]

où I ′ est une entrée de template et S est l’ensemble d’accessibilité de l’état final de

réussite. Notez qu’une clôture transitive peut être nécessaire pour calculer cet ensemble

d’accessibilité et donc que des sur-approximations peuvent intervenir lors de ce calcul.

Appendix A. Résumé du travail de thèse 174

La troisième et dernière étape de l’algorithme de reconnaissance de template consiste

à résoudre les contraintes que l’on vient d’extraire, afin d’en déduire les valeurs des

entrées du template. Pour cela, on classifie les contraintes suivant l’entrée de template

I ′ qu’il fait intervenir et on examine les ensembles d’accessibilité. Pour chaque entrée

de template, deux situations peuvent arriver:

• Pour chaque valeur de la variable d’entrée du template I ′[~i′], il n’y a qu’une

seule expression Exprk[~i] du programme qui lui est associée via une des con-

traintes. Dans ce cas, on peut simplement construire une disjonction de cas entre

les différentes valeurs associées à l’entrée de template I ′.

• De multiples valeurs Exprk[~i] sont associés à la même valeur de la variable d’entrée

du template I ′[~i′]. Dans ce cas, on doit d’abord vérifier que ces valeurs sont

équivalentes, via un appel à un algorithme d’équivalence de programme. En pra-

tique, le coût de cet appel est raisonnable. Si ce n’est pas le cas, cela veut dire

que la variable d’entrée du template doit prendre deux valeurs différentes en même

temps, ce qui est impossible. D’où on conclue que le template ne matche pas. Si

c’est le cas, on choisit une des deux valeurs (le choix n’étant pas important du fait

de l’équivalence) et construit la disjonction comme vu dans le cas précédent.

A propos de l’inférence des paramètres du template, des contraintes sur les paramètres

sont obtenues depuis plusieurs endroits dans l’algorithme: les domaines des variables de

sortie doivent correspondre, ce qui introduit des égalités entre paramètres du template

et du programme. Certains états finaux d’échec peuvent n’être accessibles que pour

certaines valeurs de paramètre de template, donc la négation de ces contraintes doit être

prise. De même, lors des appels à un algorithme d’équivalence, certaines expressions ne

sont équivalentes que pour certaines valeurs de paramètres. Enfin, lorsque l’on compare

deux réductions dans l’automate d’équivalence, on demande que les nombres d’éléments

sommés soit égaux (ce qui peut introduire des contraintes d’égalité entre paramètres).

Si, après avoir regroupé toutes ces contraintes sur les paramètres, elles ne sont pas

satisfiables, on conclut que le template ne matche pas le programme. Il se peut aussi que

la valeur des paramètres du template ne soit pas fixée: dans ce cas, on fait la supposition

que plus les valeurs des paramètres du template sont grandes, plus le template fait de

calculs, et nous sélectionnons la valeur maximale des paramètres du template.

L’Exemple 5.4 Page 107 illustre un grand nombre de mécanismes de cet algorithme.

Gestion des propriétés sémantiques Nous proposons plusieurs extensions à notre

algorithme de reconnaissance de template, afin de gérer des propriétés sémantiques

usuellement rencontrées en algèbre linéaire.

Appendix A. Résumé du travail de thèse 175

Les propriétés d’associativité et de commutativité des opérateurs binaires sont gérées

pendant la construction de l’automate de la manière suivante. Si un état compare deux

expressions “A1 + · · ·+Ak = B1 + · · ·+Bk”, l’algorithme matche Ai avec Bi par défaut.

Cependant, du fait des propriétés d’associativité et de commutativité, n’importe quel Ai

peut être matché à n’importe quel Bj , et on a autant de possibilité de matchage que de

permutations. Ainsi, on génère toutes les versions de l’automate et applique le reste de

l’algorithme à ces versions. Si une version de l’automate d’équivalence arrive à matcher

le template au programme, on arrête le parcours des versions et retourne le résultat que

l’on vient d’obtenir. Si aucune version de l’automate d’équivalence arrive à matcher le

template, l’algorithme conclut que le template ne matche pas.

La propriété de distributivité est gérée en ayant différentes versions du template: une où

les expressions sont factorisées complètement, et une où les expressions sont distribuées

complètement. Le reste des propriétés (élément neutre, absorbant, gestion des soustrac-

tions et divisions, . . .) sont des modifications locales, et sont gérées via des règles de

réécritures appliquées avant d’exécuter le reste de l’algorithme.

A.6 Reconnaissance de sous-calculs

Cette section combine les contributions précédentes en un procédé de reconnaissance

d’opérations d’algèbre linéaire en tant que sous-calcul d’un programme polyédrique.

Nous introduisons d’abord la librairie de templates qui correspond aux opérations que

l’on essaye de reconnâıtre. Cette librairie est une des composantes du procédé, que

l’on introduit par la suite. Enfin, nous présentons quelques résultats expérimentaux et

discutons de ses performances.

Librairie de templates Nous construisons une librairie de template qui correspond

aux opérations décrites dans la spécification BLAS. Lors de la construction de cette

librairie, l’objectif principal est de réduire le plus possible le nombre de templates.

Par exemple, considérons l’opération DGEMM: C ← α.AX .BX+β.C, où A et B sont des

matrices, AX = A ou AT et α, β sont des scalaires. Si on n’effectue aucun traitement

préliminaire sur cet opération, nous devons implémenter de multiples versions de ce

template, pour prendre en compte les valeurs spéciales de α et β, ou de la présence

d’une transposée. À la place, nous décomposons DGEMM comme une combinaison des

opérations fondamentales suivantes: C ← A.B (multiplication de matrices), C ← AT

(transposition de matrice), C ← A+B (addition de matrices) et C ← α.A avec α 6= 0, 1

(multiplication d’une matrice par un scalaire). Ainsi, 4 templates suffisent pour couvrir

toutes les variantes de DGEMM.

Appendix A. Résumé du travail de thèse 176

Afin de limiter le nombre de template à comparer avec un sous-système donné, on classifie

chaque template selon leur opération scalaire correspondante. L’opération scalaire d’un

template est le calcul obtenu quand l’on impose que les tailles des matrices et vecteurs

considérés par le template sont égales à 1. L’opération scalaire d’un sous-système doit

être identique à l’opération scalaire d’un template (vu que la comparaison se fait di-

rectement entre ces opérations, dans le cas particulier où les tailles de leurs matrices et

vecteurs sont 1).

Un cas particulier est l’opération de transposition, qui n’a pas d’opération scalaire as-

sociée et peut être potentiellement appliquée à n’importe quel endroit. Aussi, ce template

présente le risque d’être reconnu indéfiniment (du fait de sa propriété d’idempotence).

Ainsi, le template correspondant à l’opération de transpose est testé uniquement après

tous les autres templates pouvant correspondre au sous-système considéré. De plus, si

le dernier template reconnu est un transposition, on ne cherchera pas à re-reconnâıtre

une transposition immédiatement après.

Un dernier aspect à considérer est l’ordre de comparaison des templates. Ce dernier

est effectué du template le moins général au plus général. Cela permet l’opportunité de

reconnâıtre, par exemple, une multiplication de matrice symétrique C ← S.B avant de

tester une multiplication de matrices générale C ← A.B, et donc avoir des informations

plus riches sur les opérations reconnues.

Procédé de reconnaissance d’opérations d’algèbre linéaire Le procédé de re-

connaissance d’opérations d’algèbre linéaire est décrit dans la Figure A.5. Nous ap-

pliquons d’abord la transformation de tuilage monoparamétrique, puis nous considérons

chaque sous-systèmes produit indépendamment. La librairie de template est triée en

fonction de l’opération scalaire correspondant à chaque template. Chaque sous-système

est analysé afin de détecter son opération scalaire, qui est utilisée pour récupérer la liste

de templates correspondant à cette opération. Ensuite, on compare le sous-système avec

chaque template successivement de cette liste. Deux situations peuvent se produire:

soit aucun template ne correspond, et le calcul n’est pas reconnu, soit un template cor-

respond. Dans le dernier cas, on récupère l’expression correspondant à chaque entrée

du template et on appelle récursivement l’algorithme de reconnaissance de template sur

chacune d’entre elles.

Résultats expérimentaux Nous avons évalué notre procédé de reconnaissance d’opérations

d’algèbre linéaire sur des applications d’algèbre linéaire et hors du domaine de l’algèbre

linéaire.

Appendix A. Résumé du travail de thèse 177

Programme original

Tuilage monoparamétrique

Système
Principal

Sous-systèmes

Library de
Templates
⊕ ⊗ Id

getScalarOperator

?

Calcul
Non reconnu

Aucun template correspond

Template
Reconnu

Correspond

Appel recursif
sur les entrées
du template

Figure A.5: Procédé de reconnaissance de template.

Dans le cas des applications d’algèbre linéaire (inversion de matrices symétriques définies

positives, et résolution d’équation de Silvester), nous sommes parvenu à reconnâıtre la

quasi-totalité des calculs comme une combinaison de templates de notre librairie. Les

calculs non reconnus correspondent soit à un calcul de clôture transitive qui prend trop

de temps, ou à une opération qui n’est pas présente dans la librairie (parce qu’elle est

trop spécifique). Dans les deux cas, les sous-systèmes les plus fréquemment appelés sont

complètement reconnus.

Dans le cas des applications hors du domaine de l’algèbre linéaire (Algebraic Path Prob-

lem (APP), McCaskill qui est une application de bio-informatique), une bonne partie du

programme ne correspond pas à des opérations d’algèbre linéaire. Dans le cas de l’APP,

5 des 6 sous-systèmes les plus fréquemment appelés ont été complètement reconnus.

Dans le cas de McCaskill, notre procédé reconnâıt presque aucun sous-système comme

opération d’algèbre linéaire. Cela est du au fait que la majorité des calculs des sous-

système sont des opérations sur des tenseurs: la librairie de template que l’on a choisit

est donc inadaptée à cette application, mais la décomposition arrive tout de même à

isoler les calculs de l’application de manière pertinente.

Appendix A. Résumé du travail de thèse 178

A.7 Conclusion

Contributions Dans ce travail de thèse, nous avons présenté un mécanisme de re-

connaissance d’opérations d’algèbre linéaire présents dans un programme polyédrique.

Afin de construire ce mécanisme, trois contributions sont faites dans ce travail de thèse:

une transformation de programme appelée tuilage monoparamétrique, un algorithme de

reconnaissance de template et le mécanisme en lui-même.

A propos du tuilage monoparamétrique, cette transformation de programme est un tu-

ilage dont les tailles de tuile sont des multiples d’un paramètre commun de taille de

tuile. Cette transformation est à mi-chemin entre le tuilage à taille fixe et le tuilage

paramétrique: en effet, le tuilage monoparamétrique est une transformation polyédrique,

tout en permettant une forme limitée de paramétrisation des tailles de tuile. Nous avons

étudié cette transformation en deux parties. La première partie de la transformation,

nommée partitionnement monoparamétrique, est juste une réindexation de tous les es-

paces d’un programme, de manière à introduire les indices tuilés et locaux. La seconde

partie de la transformation distribue et isole les calculs de chaque tuile dans des sous-

programmes séparés.

L’algorithme de reconnaissance de template est une autre des composantes principales

du mécanisme. Cet algorithme est une extension d’un algorithme d’équivalence de pro-

gramme proposé précédemment par Barthou et al [8]. Cet algorithme a été étendu afin de

gérer les propriétés sémantiques communément rencontrées dans le domaine de l’algèbre

linéaire. Cet algorithme de reconnaissance de template est le premier algorithme qui est

suffisament puissant pour reconnâıtre n’importe quel opérations de BLAS.

Finallement, nous utilisons ces deux contributions pour construire un mécanisme de re-

connaissance d’opérations d’algèbre linéaire. Un tuilage monoparamétrique est d’abord

utilisé pour séparer le calcul selon leur tuiles, puis le calcul de chaque tuile est considéré

séparément, afin de les reconnâıtre comme une combinaison de template. Les templates

proviennent d’une librairie inspirée par BLAS. Lorsque l’on utilise notre mécanisme sur

des applications d’algèbre linéaire, la majorité des calculs sont reconnus. L’application de

ce mécanisme sur des applications qui ne sont pas du domaine d’algèbre linéaire est moins

efficace, mais arrive tout de même à reconnâıtre des portions de calcul fréquemment

utilisées.

Bibliography

[1] Aravind Acharya and Uday Bondhugula. Pluto+: Near-complete modeling of affine

transformations for parallelism and locality. In ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPoPP), 2015.

[2] Wolfgang Achtziger and Karl-Heinz Zimmermann. Finding quadratic schedules for

affine recurrence equations via nonsmooth optimization. Journal of VLSI Signal

Processing Systems, 25(3):235–260, July 2000.

[3] Christophe Alias. Program Optimization by Template Recognition and Replacement.

PhD thesis, Université de Versailles, December 2005.

[4] Saman Prabhath Amarasinghe. Parallelizing Compiler Techniques Based on Linear

Inequalities. PhD thesis, Stanford University, 1997.

[5] Corinne Ancourt and François Irigoin. Scanning polyhedra with DO loops. SIG-

PLAN Notices, 26(7):39–50, April 1991.

[6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’

Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third

edition, 1999.

[7] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. Tiling stencil com-

putations to maximize parallelism. In Proceedings of the International Conference

on High Performance Computing, Networking, Storage and Analysis, SC ’12, pages

1–11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[8] Denis Barthou, Paul Feautrier, and Xavier Redon. On the equivalence of two

systems of affine recurrence equations. Technical Report RR-4285, INRIA, 2001.

[9] Muthu Manikandan Baskaran, Albert Hartono, Sanket Tavarageri, Thomas Hen-

retty, J. Ramanujam, and P. Sadayappan. Parameterized tiling revisited. In Pro-

ceedings of the 8th Annual IEEE/ACM International Symposium on Code Gen-

eration and Optimization, CGO ’10, pages 200–209, New York, NY, USA, 2010.

ACM.

179

Bibliography 180

[10] Cédric Bastoul. Code generation in the polyhedral model is easier than you think. In

PACT’13 IEEE International Conference on Parallel Architecture and Compilation

Techniques, pages 7–16, Juan-les-Pins, France, September 2004.

[11] Geoffrey Belter, E. R. Jessup, Ian Karlin, and Jeremy G. Siek. Automating the

generation of composed linear algebra kernels. In Proceedings of the Conference

on High Performance Computing Networking, Storage and Analysis, SC ’09, pages

59:1–59:12, New York, NY, USA, 2009. ACM.

[12] S. Bhansali and J. R. Hagemeister. A pattern-matching approach for reusing soft-

ware libraries in parallel systems. In First International Workshop on Knowledge-

based Systems for the ReUse of Program Libraries, 1995.

[13] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort́ı,

and Robert A. van de Geijn. The science of deriving dense linear algebra algorithms.

ACM Transactions on Mathematical Software, 31(1):1–26, March 2005.

[14] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing matrix

multiply using PHiPAC: A portable, high-performance, ANSI C coding methodol-

ogy. In Proceedings of the 11th International Conference on Supercomputing, ICS

’97, pages 340–347, New York, NY, USA, 1997. ACM.

[15] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical

automatic polyhedral program optimization system. In ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI), June 2008.

[16] Hamidreza Chitsaz, Raheleh Salari, S. Cenk Sahinalp, and Rolf Backofen. A

partition function algorithm for interacting nucleic acid strands. Bioinformatics,

25(12):i365–i373, 2009.

[17] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, and Glenn

Reinman. Architecture support for accelerator-rich CMPs. In 49th Design Automa-

tion Conference (DAC), pages 843–849, June 2012.

[18] Wonnacott David, Tian Jin, and Allison Lake. Automatic tiling of ”mostly-tileable”

loop nests. In Proceedings of the 5th International Workshop on Polyhedral Com-

pilation Techniques, Amsterdam, The Netherlands, January 2015.

[19] Florent de Dinechin, Patrice Quinton, and Tanguy Risset. Structuration of the

Alpha language. In Massively Parallel Programming Models, pages 18–24. IEEE,

1995.

[20] R.H. Dennard, V.L. Rideout, E. Bassous, and A.R. LeBlanc. Design of ion-

implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-

State Circuits, 9(5):256–268, Oct 1974.

Bibliography 181

[21] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,

and Doug Burger. Dark silicon and the end of multicore scaling. SIGARCH Com-

puter Architecture News, 39(3):365–376, June 2011.

[22] Paul Feautrier. Array expansion. In Proceedings of the 2nd International Conference

on Supercomputing, ICS’88, pages 429–441, New York, NY, USA, 1988. ACM.

[23] Paul Feautrier. Parametric integer programming. RAIRO Recherche

Opérationnelle, 22(3):243–268, 1988.

[24] Paul Feautrier. Dataflow analysis of array and scalar references. International

Journal of Parallel Programming, 20(1):23–53, 1991.

[25] Paul Feautrier. Some efficient solutions to the affine scheduling problem: I. one-

dimensional time. International Journal of Parallel Programming, 21(5):313–348,

October 1992.

[26] Paul Feautrier. The power of polynomials. In Alexandra Jimborean and Alain

Darte, editors, 5th International Workshop on Polyhedral Compilation Techniques

(IMPACT’15), Amsterdam, Netherlands, January 2015.

[27] Pierrick Gachet, Christophe Mauras, Patrice Quinton, and Yannick Saouter. Alpha

du centaur: A prototype environment for the design of parallel regular alorithms. In

Proceedings of the 3rd International Conference on Supercomputing, ICS’89, pages

235–243, New York, NY, USA, 1989. ACM.

[28] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and Sven Ver-

doolaege. Hybrid hexagonal/classical tiling for GPUs. In 12th Annual IEEE/ACM

International Symposium on Code Generation and Optimization, CGO ’14, page 66,

February 2014.

[29] Armin Grosslinger, Martin Griebl, and Christian Lengauer. Introducing non-linear

parameters to the polyhedron model. In Proceedings of the 11th Workshop on

Compilers for Parallel Computers (CPC 2004), pages 1–12, 2004.

[30] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn.

FLAME: Formal linear algebra methods environment. ACM Transactions on Math-

ematical Software, 27(4):422–455, December 2001.

[31] C.A. Gunter. Semantics of Programming Languages: Structures and Techniques.

Foundations of computing. MIT Press, 1992.

Bibliography 182

[32] A. Hartono, M.M. Baskaran, J. Ramanujam, and P. Sadayappan. Dyntile: Para-

metric tiled loop generation for parallel execution on multicore processors. In In-

ternational Symposium on Parallel Distributed Processing (IPDPS),, pages 1–12,

April 2010.

[33] Albert Hartono, Muthu Manikandan Baskaran, Cédric Bastoul, Albert Cohen, Sri-

ram Krishnamoorthy, Boyana Norris, J. Ramanujam, and P. Sadayappan. Para-

metric multi-level tiling of imperfectly nested loops. In Proceedings of the 23rd

International Conference on Supercomputing, ICS ’09, pages 147–157, New York,

NY, USA, 2009. ACM.

[34] Guillaume Iooss, Christophe Alias, and Sanjay Rajopadhye. On program equiv-

alence with reductions. In Markus Muller-Olm and Helmut Seidl, editors, Static

Analysis Symposium, volume 8723 of Lecture Notes in Computer Science, pages

168–183. Springer International Publishing, 2014.

[35] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the 15th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL’88, pages 319–329, January 1988.

[36] C. Karfa, K. Banerjee, D. Sarkar, and C. Mandal. Verification of loop and arithmetic

transformations of array-intensive behaviors. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 32(11):1787–1800, Nov 2013.

[37] Richard M Karp, Raymond E Miller, and Shmuel Winograd. The organization of

computations for uniform recurrence equations. Journal of the ACM, 14(3):563–590,

1967.

[38] Christoph W. Kessler. Pattern-driven automatic parallelization. Scientific Pro-

gramming, 5(3):251–274, August 1996.

[39] DaeGon Kim and Sanjay Rajopadhye. Efficient tiled loop generation: D-tiling. In

Proceedings of the 22Nd International Conference on Languages and Compilers for

Parallel Computing, LCPC’09, pages 293–307, Berlin, Heidelberg, 2010. Springer-

Verlag.

[40] DaeGon Kim and Sanjay V. Rajopadhye. Parameterized tiling for imperfectly

nested loops. Technical Report CS-09-101, Colorado State University, February

2009.

[41] DaeGon Kim, Lakshminarayanan Renganarayanan, Dave Rostron, Sanjay V. Ra-

jopadhye, and Michelle Mills Strout. Multi-level tiling: M for the price of one. In

Proceedings of the ACM/IEEE Conference on High Performance Networking and

Computing, SC 2007, November 10-16, 2007, Reno, Nevada, USA, page 51, 2007.

Bibliography 183

[42] Induprakas Kodukula, Nawaaz Ahmed, and Keshav Pingali. Data-centric multi-

level blocking. SIGPLAN Notices, 32(5):346–357, May 1997.

[43] Martin Kong, Antoniu Pop, Louis-Noël Pouchet, R. Govindarajan, Albert Cohen,

and P. Sadayappan. Compiler/runtime framework for dynamic dataflow paralleliza-

tion of tiled programs. ACM Transactions on Architecture and Code Optimization,

11(4):61:1–61:30, January 2015.

[44] Athanasios Konstantinidis, Paul H.J. Kelly, J. Ramanujam, and P. Sadayappan.

Parametric gpu code generation for affine loop programs. In Calin Cascaval and

Pablo Montesinos, editors, Languages and Compilers for Parallel Computing, vol-

ume 8664 of Lecture Notes in Computer Science, pages 136–151. Springer Interna-

tional Publishing, 2014.

[45] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ramanujam,

Atanas Rountev, and P. Sadayappan. Effective automatic parallelization of stencil

computations. SIGPLAN conference of Programing Language Design and Imple-

mentation, 42(6):235–244, June 2007.

[46] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra

subprograms for fortran usage. ACM Trans. Math. Softw., 5(3):308–323, September

1979.

[47] H. Le Verge. Reduction operators in alpha. In Daniel Etiemble and Jean-Claude

Syre, editors, PARLE’92 Parallel Architectures and Languages Europe, volume 605

of Lecture Notes in Computer Science, pages 397–411. Springer Berlin Heidelberg,

1992.

[48] Hervé Le Verge. Un environnement de transformations de programmes pour la

synthèse d’architectures régulières. PhD thesis, Université de Rennes 1, October

1992.

[49] Nuno P. Lopes and José Monteiro. Automatic equivalence checking of programs with

uninterpreted functions and integer arithmetic. International Journal on Software

Tools for Technology Transfer, pages 1–16, 2015.

[50] David B. Loveman. Program improvement by source-to-source transformation.

Journal of the ACM, 24(1):121–145, January 1977.

[51] Michael J. Lyons, Mark Hempstead, Gu-Yeon Wei, and David Brooks. The ac-

celerator store: A shared memory framework for accelerator-based systems. ACM

Transactions on Architecture and Code Optimization (TACO), 8(4):1–22, January

2012.

Bibliography 184

[52] Vijay Menon and Keshav Pingali. High-level semantic optimization of numerical

codes. In Proceedings of the 13th International Conference on Supercomputing,

ICS’99, pages 434–443, New York, NY, USA, 1999. ACM.

[53] Vijay Menon, Keshav Pingali, and Nikolay Mateev. Fractal symbolic analysis. ACM

Transaction on Programming Languages and Systems, 25(6):776–813, November

2003.

[54] R. Metzger and Z. Wen. Automatic Algorithm Recognition: A New Approach to

Program Optimization. MIT Press, 2000.

[55] Gordon E. Moore. Progress in digital integrated electronics. In International Elec-

tron Devices Meeting 1975, volume 21, pages 11–13, 1975.

[56] David Padua, Denis Barthou, and Alexandre X. Duchateau. Hydra: Auto-

matic algorithm exploration from linear algebra equations. In Proceedings of the

2013 IEEE/ACM International Symposium on Code Generation and Optimization

(CGO), CGO’13, pages 1–10. IEEE Computer Society, 2013.

[57] Shlomit S. Pinter and Ron Y. Pinter. Program optimization and parallelization

using idioms. In Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL’91, pages 79–92, New York, NY,

USA, 1991. ACM.

[58] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Bernhard Stef-

fen, editor, Tools and Algorithms for the Construction and Analysis of Systems,

volume 1384 of Lecture Notes in Computer Science, pages 151–166. Springer Berlin

Heidelberg, 1998.

[59] Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T. N. Vijaykumar.

Gated-vdd : A circuit technique to reduce leakage in deep-submicron cache memo-

ries. In Proceedings of the 2000 International Symposium on Low Power Electronics

and Design (ISLPED ’00), pages 90–95, 2000.

[60] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso,

Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko,

Kang Chen, Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code generation

for DSP transforms. Proceedings of the IEEE, special issue on “Program Generation,

Optimization, and Adaptation”, 93(2):232– 275, 2005.

[61] Fabien Quilleré, Sanjay Rajopadhye, and Doran Wilde. Generation of efficient

nested loops from polyhedra. International Journal of Parallel Programming,

28(5):469–498, October 2000.

Bibliography 185

[62] Patrice Quinton, Sanjay Rajopadhye, and Doran Wilde. Deriving imperative code

from functional programs. In Proceedings of the Seventh International Confer-

ence on Functional Programming Languages and Computer Architecture, FPCA’95,

pages 36–44, New York, NY, USA, 1995. ACM.

[63] Patrice Quinton and Vincent van Dongen. The mapping of linear recurrence equa-

tions on regular arrays. Journal of VLSI signal processing systems for signal, image

and video technology, 1(2):95–113, 1989.

[64] Sanjay V. Rajopadhye, S. Purushothaman, and Richard M. Fujimoto. On syn-

thesizing systolic arrays from recurrence equations with linear dependencies. In

Kesav V. Nori, editor, Foundations of Software Technology and Theoretical Com-

puter Science, volume 241 of Lecture Notes in Computer Science, pages 488–503.

Springer Berlin Heidelberg, 1986.

[65] Xavier Redon and Paul Feautrier. Detection of recurrences in sequential programs

with loops. In Arndt Bode, Mike Reeve, and Gottfried Wolf, editors, PARLE’93

Parallel Architectures and Languages Europe, volume 694 of Lecture Notes in Com-

puter Science, pages 132–145. Springer Berlin Heidelberg, 1993.

[66] Xavier Redon and Paul Feautrier. Detection of scans in the polytope model. Parallel

Algorithms and Applications, 15(3-4):229–263, 2000.

[67] D. A. Reed, L. M. Adams, and M. L. Partick. Stencils and problem partitionings:

Their influence on the performance of multiple processor systems. IEEE Transac-

tions on Computers, 36(7):845–858, July 1987.

[68] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay V. Rajopadhye, and

Michelle Mills Strout. Parameterized tiled loops for free. In Proceedings of the ACM

SIGPLAN 2007 Conference on Programming Language Design and Implementation,

pages 405–414, June 2007.

[69] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay V. Rajopadhye, and

Michelle Mills Strout. Parameterized loop tiling. ACM Trans. Program. Lang.

Syst., 34(1):3, 2012.

[70] Yannick Saouter and Patrice Quinton. Computability of recurrence equations. The-

oretical Computer Science, 116(2):317–337, August 1993.

[71] Shigeyuki Sato and Hideya Iwasaki. Automatic parallelization via matrix multipli-

cation. SIGPLAN Notice, 46(6):470–479, June 2011.

[72] Robert R. Schaller. Moore’s law: past, present and future. IEEE Spectrum,

34(6):52–59, Jun 1997.

Bibliography 186

[73] Markus Schordan, Pei-Hung Lin, Dan Quinlan, and Louis-Noël Pouchet. Verifi-

cation of polyhedral optimizations with constant loop bounds in finite state space

computations. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Appli-

cations of Formal Methods, Verification and Validation. Specialized Techniques and

Applications, volume 8803 of Lecture Notes in Computer Science, pages 493–508.

Springer Berlin Heidelberg, 2014.

[74] Muhammad Shafique, Siddharth Garg, Tulika Mitra, Sri Parameswaran, and Jörg

Henkel. Dark silicon as a challenge for hardware/software co-design: Invited special

session paper. In Proceedings of the 2014 International Conference on Hardware/-

Software Codesign and System Synthesis, CODES’14, pages 1–10. ACM, 2014.

[75] K.C. Shashidhar, Maurice Bruynooghe, Francky Catthoor, and Gerda Janssens.

Verification of source code transformations by program equivalence checking. In

Rastislav Bodik, editor, Compiler Construction, volume 3443 of Lecture Notes in

Computer Science, pages 221–236. Springer Berlin Heidelberg, 2005.

[76] Jeremy G. Siek, Ian Karlin, and E. R. Jessup. Build to order linear algebra kernels.

In IEEE International Symposium on Parallel and Distributed Processing, 2008.

IPDPS 2008, pages 1–8, April 2008.

[77] Daniele G. Spampinato and Markus Püschel. A basic linear algebra compiler. In

Proceedings of Annual IEEE/ACM International Symposium on Code Generation

and Optimization, CGO ’14, pages 23–32. ACM, 2014.

[78] Sanket Tavarageri, Albert Hartono, Muthu Baskaran, Louis-Noël Pouchet, J. Ra-

manujam, and P. Sadayappan. Parametric tiling of affine loop nests. In Proceedings

of the 15th Workshop on Compilers for Parallel Computers, 2010.

[79] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Komei

Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki Takayama, editors, Lec-

ture Notes in Computer Science, International Congress on Mathematical Software

(ICMS 2010), pages 299–302. Springer, September 2010.

[80] Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. Equivalence checking

of static affine programs using widening to handle recurrences. ACM Transactions

on Programming Languages and Systems (TOPLAS), 34(3):1–35, November 2012.

[81] Sven Verdoolaege, Gerda Janssens, and Maurice Bruynooghe. Equivalence checking

of static affine programs using widening to handle recurrences. ACM Transactions

on Programming Languages and Systems, 34(3):1–35, November 2012.

[82] Richard Vuduc, James W Demmel, and Katherine A Yelick. OSKI: A library of

automatically tuned sparse matrix kernels. In Institute of Physics Publishing, 2005.

Bibliography 187

[83] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software.

In Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, SC ’98,

pages 1–27, Washington, DC, USA, 1998. IEEE Computer Society.

[84] Doran Wilde and Sanjay Rajopadhye. The naive execution of affine recurrence

equations. In Proceedings of the IEEE International Conference on Application

Specific Array Processors, ASAP ’95, pages 1–, Washington, DC, USA, 1995. IEEE

Computer Society.

[85] David Wonnacott. Time skewing for parallel computers. In In Proceedings of the

Twelfth Workshop on Languages and Compilers for Parallel Computing, pages 477–

480. Springer-Verlag, 1999.

[86] David Wonnacott. Achieving scalable locality with time skewing. International

Journal of Parallel Programming, 30(3):181–221, 2002.

[87] Jingling Xue. Loop Tiling for Parallelism. Kluwer Academic Publishers, Norwell,

MA, USA, 2000.

[88] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong, Maria

Garzaran, David Padua, Keshav Pingali, Paul Stodghill, and Peng Wu. A compar-

ison of empirical and model-driven optimization. SIGPLAN Notices, 38(5):63–76,

May 2003.

[89] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and Sanjay V.

Rajopadhye. Alphaz: A system for design space exploration in the polyhedral

model. In Languages and Compilers for Parallel Computing, 25th International

Workshop, LCPC 2012, pages 17–31, September 2012.

[90] Yun Zou and Sanjay Rajopadhye. Scan detection and parallelization in ”inher-

ently sequential” nested loop programs. In Proceedings of the Tenth International

Symposium on Code Generation and Optimization, CGO’12, pages 74–83. ACM,

2012.

	Abstract
	Résumé
	Acknowledgements

