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Titre : Apprentissage de préférences á l’aide de modèles multi-critères
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Résumé :

L’aide multicritère à la décision (AMCD) vise à
faciliter et améliorer la qualité du processus de prise
de décision. Les méthodes d’AMCD permettent de
traiter les problèmes de choix, rangement et
classification. Ces méthodes impliquent
généralement la construction d’un modèle.
Déterminer les valeurs des paramètres de ces
modèles n’est pas aisé. Les méthodes
d’apprentissage indirectes permettent de simplifier
cette tâche en apprenant les paramètres du modèle
de décision à partir de jugements émis par un
décideur tels que “l’alternative a est préférée à
l’alternative b” ou “l’alternative a doit être classifiée
dans la meilleure catégorie”. Les informations
données par le décideur sont généralement
parcimonieuses. Le modèle d’AMCD est appris au
cours d’un processus interactif entre le décideur et
l’analyste. L’analyste aide le décideur à formuler et
revoir ses jugements si nécessaire. Le processus
s’arrête une fois qu’un modèle satisfaisant les
préférences du décideur a été trouvé.
Le “preference learning” (PL) est un sous domaine
du “machine learning” qui s’intéresse à
l’apprentissage des préférences. Les algorithmes de
ce domaine sont capables de traiter de grands jeux
de données et sont validés au moyen de jeux de
données artificiels et réels. Les jeux de données
traités en PL sont généralement collectés de
différentes sources et sont entachés de bruit.

Contrairement à l’AMCD, il existe peu ou pas
d’interaction avec l’utilisateur en PL. Le jeu de
données fourni en entrée à l’algorithme est
considéré comme un échantillon éventuellement
bruité d’une “réalité” ou “vérité de terrain”. Les
algorithmes utilisés dans ce domaine ont des
propriétés statistiques fortes leur permettant de
s’affranchir du bruit dans ces jeux de données.
Dans cette thèse, nous développons des algorithmes
d’apprentissage permettant d’apprendre les
paramètres de modèles d’AMCD. Plus précisément,
nous développons une métaheuristique afin
d’apprendre les paramètres d’un modèle appelé
MR-Sort (“majority rule sorting”). Cette
métaheuristique est testée sur des jeux de données
artificiels et réels utilisés dans le domaine du PL.
Nous utilisons cet algorithme afin de traiter un
problème concret dans le domaine médical. Ensuite
nous modifions la métaheuristique afin d’apprendre
les paramètres d’un modèle plus expressif appelé
NCS (“non-compensatory sorting”). Finalement,
nous développons un nouveau type de règle de veto
pour les modèles MR-Sort et NCS qui permet de
prendre les coalitions de critères en compte. La
dernière partie de la thèse introduit les méthodes
d’optimisation semi-définie positive (SDP) dans le
contexte de l’aide multicritère à la décision.
Précisément, nous utilisons l’optimisation SDP afin
d’apprendre les paramètres d’un modèle de fonction
de valeur additive.

Title: Learning preferences with multiple-criteria models
Keywords: learning, preferences, multiple-criteria decision analysis

Abstract:

Multiple-criteria decision analysis (MCDA) aims at
providing support in order to make a decision.
MCDA methods allow to handle choice, ranking and
sorting problems. These methods usually involve
the elicitation of models. Eliciting the parameters
of these models is not trivial. Indirect elicitation
methods simplify this task by learning the
parameters of the decision model from preference
statements issued by the decision maker (DM) such
as “alternative a is preferred to alternative b” or
“alternative a should be classified in the best
category”. The information provided by the decision
maker are usually parsimonious. The MCDA model
is learned through an interactive process between
the DM and the decision analyst. The analyst helps
the DM to modify and revise his/her statements if
needed. The process ends once a model satisfying
the preferences of the DM is found.
Preference learning (PL) is a subfield of machine
learning which focuses on the elicitation of
preferences. Algorithms in this subfield are able to
deal with large data sets and are validated with
artificial and real data sets. Data sets used in PL
are usually collected from different sources and are

subject to noise. Unlike in MCDA, there is little or
no interaction with the user in PL. The input data
set is considered as a noisy sample of a “ground
truth”. Algorithms used in this field have strong
statistical properties that allow them to filter noise
in the data sets.

In this thesis, we develop learning algorithms to
infer the parameters of MCDA models. Precisely,
we develop a metaheuristic designed for learning the
parameters of a MCDA sorting model called
majority rule sorting (MR-Sort) model. This
metaheuristic is assessed with artificial and real
data sets issued from the PL field. We use the
algorithm to deal with a real application in the
medical domain. Then we modify the metaheuristic
to learn the parameters of a more expressive model
called the non-compensatory sorting (NCS) model.
After that, we develop a new type of veto rule for
MR-Sort and NCS models which allows to take
criteria coalitions into account. The last part of the
thesis introduces semidefinite programming (SDP)
in the context of multiple-criteria decision analysis.
We use SDP to learn the parameters of an additive
value function model.
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Chapter 1

Introduction

In operations research, multiple-criteria decision analysis (MCDA) aims at help-
ing users confronted to decision problems by the use of formal models. In MCDA,
the user is also called decision maker (DM). While MCDA methods do not aim
to substitute the DM and make decision on his/her behalf, they allow to struc-
ture the decision problem and give an insight into the DM’s preferences. Decision
problems considered in MCDA are of different types. For instance, a municipality
has to choose the location of a new sports facility. This problem can be formu-
lated as a choice problem in which the best solution is to be selected. MCDA also
allows to deal with ranking and sorting problems. A ranking problem consists
in ordering a set alternatives from the worst to the best according to the DM’s
preferences. For instance, a jury has to order students based on their academic
results. Sorting problems consist in assigning each alternative to a category se-
lected among a set of predefined and ordered categories. For instance, a surgeon
has to classify patients in categories relative to their health status. In this thesis,
we focus mainly on sorting problems.

In MCDA, the DM is often supported by a decision analyst since his/her
preferences are generally not clearly defined in his/her mind at the beginning of
the decision process. The role of the decision analyst is to interact with the DM
in order to help him/her to reveal his/her preferences. The preferences are then
formalized in a model. MCDA models involve parameters whose values should be
elicited. For a DM it is often difficult to directly elicit these parameters since this
requires a clear understanding of the decision model. Usually the DM is more
likely to provide preference judgments of the type “alternative a is preferred to
b” or “alternative a is classified in the best category” than specifying values for
preference parameters. To support the elicitation of the DM’s preferences, MCDA
techniques have been developed in order to infer the preference parameters from
preference statements. For instance, in the context of sorting, the analyst may

1
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ask the DM to sort a subset of alternatives. Then the analyst uses an algorithm
that learns the parameters of the sorting model in order to best restore the
assignment examples provided by the DM. Once the model has been learned,
the analyst helps the DM to modify or refine his/her statements if needed. The
process continues iteratively until the DM is satisfied with the model and its
outcomes.

More specifically, we illustrate a MCDA decision problem with the following
example. Consider a family who has to choose an accommodation for holidays in
France. They use a web engine in order to get a list of possible accommodations in
the region they plan to visit. They want to rank the list of 1000 accommodations
returned by the search engine from the worst to the best. However the family
doesn’t want to consider each accommodation individually. The family requests
support from an analyst. The first task of the analyst consists of identifying the
criteria that are relevant for the family. In this example, it can be for instance
the size of the accommodation, the distance to the sea, the price per night, etc.
Then the decision analyst requests the family for a ranking of 20 accommodations
selected among the 1000 returned by the search engine. Based on the ranking
provided by the family, the analyst infers the parameters of a decision model
thanks to a learning algorithm. This decision model is then used to rank all the
remaining 980 accommodations. Taking into account the satisfaction of the fam-
ily regarding the model and the resulting ranking, the analyst may ask the family
for more information or to revise the provided statements. The process continues
until the family is satisfied with the ranking provided by the model. Generally
in MCDA, the number of preference statements available for learning the model
is limited. In this example, the family provides a ranking for a small subset of
alternatives. The use of a MCDA model aims at formalizing the preferences of
the family in order to rank a larger set of accommodations. The objective is
to maximize the satisfaction of the family with respect to the obtained ranking.
This goal is achieved by selecting an appropriate objective function when infer-
ring the parameters. For instance, a possible objective function may be to find
a model minimizing the number of inversions in the ranking given as input. In
order to make sure to satisfy the DM, it is important to interact with him/her.

Preference learning (PL) is a subfield of machine learning (ML) dedicated
to problems involving preferences. Problems in PL are usually split in several
categories: label ranking, instance ranking, object ranking, etc. Problems in this
field typically involve large data sets. PL algorithms rely on strong statistical
properties and there is generally no or limited interactions with the user.

As an example of PL problem, consider a database containing 1000 patients
which have been evaluated on multiple attributes for preoperative assessment.
For each patient, a doctor has stated whether or not the patient can be accepted
for surgery based on his/her evaluations on the different attributes. This data set
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is used as input of preference learning algorithms for inferring the parameters of
a model that best matches the database. The model can then be used to predict
whether a patient should be accepted for surgery. Each learning algorithm has
an objective that is clearly defined, e.g. maximizing the classification accuracy
(CA). The model learned by the algorithm is generally used as a blackbox and
its performance is assessed by computing a loss function which has been defined
beforehand, e.g. the CA. Unlike in MCDA, the outcome of the model is usually
used as is since there are no or limited interactions with the user.

MCDA and PL share a common goal: representing the preferences of users.
As shown in the examples, the paths to achieve this goal are different. Algorithms
in PL are designed to work with large data sets and no or limited interactions
with the user while in MCDA it is the opposite. In this thesis, we try to bridge
the gap between MCDA and PL. Precisely, we try to take advantage of the
validation techniques used in PL in order to develop an algorithm for learning a
MCDA sorting model from large data sets. We then use this algorithm to handle
a typical PL problem involving several hundreds of alternatives. In this context,
we show the advantage of the MCDA sorting model that is easily interpretable
with a set of compact and intuitive rules. Then we enrich the expressivity of
the model by taking criteria interactions into account. Later, we create a new
type of veto rule taking criteria interactions into account. Finally we bring new
optimization techniques, namely semidefinite programming (SDP), to MCDA and
PL.

Organization of this manuscript

This manuscript is organized as follows.

Chapter 2 – State of the art

We introduce the basic notions of MCDA and PL. We recall the aim of the
methods in these fields and the type of problems that are treated in both fields.
We detail the MCDA methods designed for sorting alternatives in ordered cat-
egories. We recall the existing MCDA learning algorithms used in the sorting
context. The ones used in this thesis are detailed more in depth. In this chapter,
we also describe some PL algorithms that are dedicated to the inference of sorting
models. Finally, we analyze the main differences and similarities between MCDA
and PL.
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Chapter 3 – Learning a MR-Sort model from large data sets

In the third chapter, we describe a metaheuristic dedicated to learning the pa-
rameters of a MCDA sorting model called majority rule sorting (MR-Sort) model.
The metaheuristic infers the parameters of a MR-Sort model based on a set of
assignment examples given as input. The metaheuristic and its variants are de-
tailed. We study the performance of the metaheuristic in terms of computing
time, tolerance for errors, model retrieval and the capability of the model to
restore the assignments obtained with another sorting procedure (idiosyncrasy).
Finally the chapter closes with experimental results on benchmarks proposed in
the PL literature.

Chapter 4 – Case study: preoperative patient classification

We use the metaheuristic described in the previous chapter to deal with a medical
application. In a first step, the application consists of determining a score relative
to the health of a patient before surgery. In a second step, this score is used
together with other elements to decide whether a patient should be accepted or
refused for surgery. We infer the parameters of MR-Sort models from a data
set composed of 898 patients. We compare the results obtained with MR-Sort
to the ones obtained with other MCDA and PL algorithms. Finally, we discuss
the advantage of using interpretable models such as MR-Sort in such a type of
application.

Chapter 5 – Learning the parameters of a NCS model

The MR-Sort model is able to deal with problems in which criteria do not in-
teract. In this chapter, we use an extension of MR-Sort which takes criteria
interactions into account. This model is called the non-compensatory sorting
(NCS) model. We provide the formulations of a mixed integer program (MIP)
and a metaheuristic that are designed for learning the parameters of such a model
from a set of assignment examples. We test the metaheuristic on real data sets.
Finally we try to evaluate the gain in terms of expressivity that NCS provides as
compared to MR-Sort.

Chapter 6 – New veto rule for outranking models

In this chapter, we enrich the MR-Sort assignment rule with non-veto conditions.
In MR-Sort, categories are separated by profiles ordered by dominance. Each
profile is a vector of evaluation on the set of criteria involved in the decision
problem. An alternative is assigned to a category if its performances are at least
as good as the lower profile on a sufficiently large set of criteria and not at least
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as good as the upper profile. Standard veto enables to increase the expressivity
of the classification rule by adding exceptions when alternatives are too weak on
a specific criterion. We propose a new veto rule based on coalitions of criteria
which extends the flexibility of the veto.

Chapter 7 – UTA-poly and UTA-splines

This chapter is devoted to the study of additive value function (AVF) models. In
such models, a numerical score is computed for each alternative. It is computed
by additively aggregating the scores of the alternative on the different criteria
involved in the decision problem. The score of an alternative on a criterion is
determined by a value function which either increases or decreases monotonically
as a function of the criterion value. Determining explicitly the shape of the value
functions is not an easy task for a DM. That’s why several methods have been
developed in order to infer these functions from a set of preference statements
given by the DM. In this chapter, we propose a new method to infer a set of
additive functions from statements given by the DM. The inferred additive value
functions are polynomials or splines for which the monotonicity is guaranteed.
We discuss the advantage of our method and experiment it on both artificial and
real data sets.





Chapter 2

State of the art

In this chapter we recall the definition of some important notions in multiple-
criteria decision analysis (MCDA). We list the type of problems treated in MCDA
as well as the different families of methodologies and the different approaches to
elicit the parameters of MCDA models.

In the second section of the chapter, we detail in depth the MCDA sorting
algorithms that are used in this thesis.

The third section gives an overview of other well-known MCDA sorting pro-
cedures.

In the fourth section, we recall some algorithms used to learn the parameters
of MCDA sorting models on the basis of assignment examples. We detail in depth
the algorithms that infer the parameters of models that are used in this thesis.

The fifth section of the chapter introduces Preference Learning (preference
learning (PL)), a subfield of machine learning (ML). As for MCDA, we describe
the type of problems treated in PL. After that we describe performance indices
used in ML to evaluate the quality of a sorting.

In the sixth section, we detail some preference learning algorithms dedicated
to sorting problems. We describe more in depth the ones that are used in the
context of monotone data sets.

Finally, the last section of the chapter describes the links and differences
between MCDA and PL.

2.1 Multiple-Criteria Decision Analysis

In this section we recall the main concepts in multiple-criteria decision analysis.
We give the aim of this field of operational research and the type of problem
treated within this field.

7
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2.1.1 Aim of multiple-criteria decision analysis methodologies

MCDA methodologies aim at helping one or several persons confronted to a
decision problem. In MCDA, the person confronted to a decision is called decision
maker (DM). The purpose of MCDA methodologies is to provide models to the
DM(s) in order to help him to get answers to his questions regarding the decision
he/she has to take.

The construction of MCDA models is done by an analyst in conjunction with
the DM through interactions called decision process. As mentioned by Roy and
Bouyssou (1993), the dynamic of the decision process is composed of highlights
which will contribute to the construction of the global decision. Taking part
to a decision process as a MCDA analyst consists in helping the DM to define
the decision problem by identifying variables having an influence on the decision,
helping him to make compromises, etc. There is a strong link between the decision
process and the decision itself. Often, the outcome of a decision analyst is a model
which has been constructed along the decision process. This MCDA model is not
neutral and therefore does not provide an universal truth but only a truth that is
as compatible as possible with DM(s) preferences. The purpose is not to provide
one truth to a decision problem but rather to give to the DM a model reflecting
his preferences in which the influence of his possibly arbitrary judgments are
reduced. Roy (1985, 1996) defines decision aid as follows:

Definition 1. Decision aiding is the activity of the person who, through the use
of explicit but not necessarily completely formalized models, helps obtain elements
of responses to the questions posed by a stakeholder of a decision process. These
elements work towards clarifying the decision and usually towards recommend-
ing, or simply favoring, a behavior that will increase the consistency between the
evolution of the process and this stakeholder’s objectives and value system.

2.1.2 Problem setting

MCDA aims at answering several types of decision problems. Roy (1985, 1996)
identified the following three types of decision problems.

Choice problem In choice problem, the DM has to make a choice between dif-
ferent alternatives evaluated on multiple attributes. MCDA helps the DM
to choose among all the possibilities by extracting the best alternative(s)
among all existing alternatives.

Example 1. For the construction of a new airport, a mayor has to choose
between five locations in his city. Of course, the DM, i.e. the mayor, wants
to build the new airport at the best possible place. In this context, the role
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of the MCDA analyst is to provide a model returning the best locations to
the DM.

Ranking problem In this type of problem, the DM wants to get a ranking
of the alternatives from the best to the worst, with possibly equivalence
between two or more alternatives. The outcome of a MCDA method can
be either a partial or a complete ranking of the set of alternatives.

Example 2. In order to award medals to the best three participants of a
contest, a jury has to elaborate a classification of the participants to de-
termine the contest winners. The ranking is based on the evaluation of
the candidates on multiple attributes. By using a MCDA method, one can
determine a complete ranking of participants such that it is possible to at-
tribute the gold, silver and bronze medals to respectively the first, the second
and the third participant to the contest.

Sorting problem The problem of sorting consists in assigning alternatives to
predefined categories. These categories are ordered from the worst to the
best. The outcome of a MCDA sorting method is an assignment of the
alternatives among the different classes.

Example 3. A jury has to decide whether students have succeeded or failed
their school year based on their evaluations in different courses. In this
context, a MCDA model can help the jury to deliberate in order to have
consistent decisions for all the students. The model can for instance assign
each student to one of the following ordered classes: “accepted” or “refused”.

2.1.3 Notion of alternative and criterion

Criterion and alternative are two important notions in MCDA. We recall here
their definitions.

In MCDA, a decision maker is often confronted to different solutions to a
problem. These solutions are also called alternatives or actions. In the examples
presented above, we already presented some instances of alternatives: possible
locations for an airport, participants to a contest or students. Roy (1985, 1996)
defines an action as follows:

Definition 2. An action “a” is the representation of a possible contribution to
the comprehensive decision that can be considered autonomously with respect to
the decision process development state and that can serve as an application point
for the decision aid. The application point is, then, sufficient to characterize “a”.
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Sometimes, we also speak about fictive alternative to designate an alternative
which does not actually exist but is used for reasoning purposes in the decision
process. This type of alternative is useful in some MCDA methods.

In MCDA, the alternatives are evaluated on multiple attributes, called cri-
teria. A criterion is a function that assigns an evaluation to each alternative
involved in the decision problem. The coding of a criterion is often made such
that the preference either increases or decreases as a function of the criterion
value. The preference scale associated with a criterion should be monotone and
each criterion should have a preference direction: the value of the criterion should
be either minimized or maximized. For instance, in the context of choosing a car,
disregarding all other criteria, a DM usually prefers a cheap car to an expensive
one. It is the task of the MCDA analyst to elicit these criteria in order to use
them in a model. Roy (1985) defines the notion of criterion as follows.

Definition 3. A criterion is a function gj assigning a value to each alternative
of a decision problem such that it becomes possible for a DM to perform pairwise
comparisons and express a preference in favor of one alternative based on this
value.

In this manuscript, we adopt the following notations. The Cartesian product
of criteria scales is denoted by X =

∏n
j=1 Xj in which Xj represents all the

possible values of a criterion j. We denote by

gj : A → Xj

the function assigning a value to each alternative of the set A. We denote by A
a finite set of alternatives for which a ranking or a sorting has to be determined.
We denote by a ∈ A an alternative a contained in the set A. We denote by
aj = gj(a) the performance of an alternative a on criterion j. The performance
vector associated to each alternative a is denoted by a = (a1, . . . , an);

2.1.4 Preference relation

There exist different types of preference relation between two alternatives. Roy
and Bouyssou (1993) list four types of preferences:

1. Indifference: the two alternatives are considered equivalent;

2. Strict preference: one alternative is considered as strictly preferred to an-
other one;

3. Weak preference: the set of arguments in favor of one alternative against
another is not strong enough to say that the first alternative is preferred to
the second;



2.1. Multiple-Criteria Decision Analysis 11

4. Incomparability: two alternatives cannot be compared because their eval-
uations are very contrasted.

2.1.5 Families of methodologies

MCDA methods are generally classified in two families. The first family en-
compasses methods based on multi-attribute value theory (MAVT) (Keeney and
Raiffa, 1976) while the second includes methods based on outranking relations
(Roy, 1991). We give some details about these methods below.

Multi-attribute value theory methods

The aim of MAVT methods is to assign a score to each alternative and to compare
the alternatives with each other or against a threshold based on their score. The
score of an alternative is built by summing up its weighted scores on the set
of criteria on which it is evaluated, possibly after transforming them. A simple
example of MAVT method is the weighted sum. MAVT methods include all
decision methods that have been developed based on the MAVT, for instance
AHP (analytic hierarchy process), UTA (utilités additives), etc.

Outranking methods

This family of methods has been developed by Roy in order to address problems
for which MAVT methods were not well adapted (Bouyssou, 2009). Roy (1968)
developed the ELECTRE (élimination et choix traduisant la réalité) method to
deal with choice problems. Roy and Bertier (1973) developed ELECTRE II which
allows to deal with ranking problems. Later, Yu (1992); Roy and Bouyssou (1993)
developed ELECTRE TRI which allows to deal with sorting problems.

In outranking methods, a preference relation, called outranking relation is
built between pairs of alternatives evaluated on multiple criteria. An outranking
relation as defined by Roy (1991) is a binary relation on the set of alternatives A
denoted by <. An alternative a outranks another one, b, i.e. a < b, if there are
strong enough arguments to declare that a is at least as good as b and if there is no
essential reason to refute that statement. Outranking methods include methods
like ELECTRE, PROMETHEE and RUBIS.

Choice of the multiple-criteria decision analysis method

When confronted to a decision problem, an analyst may wonder which MCDA
method he/she should use in order to help the DM in the best possible way.
The choice of the method depends on multiple factors including the nature of
the decision problem, the knowledge of the DM, the properties of the MCDA



12 Chapter 2. State of the art

method, etc. This question is treated in papers such as for instance De Montis
et al. (2005); Ouerdane (2011); Cinelli et al. (2014).

2.2 Two families of multiple-criteria decision analysis
sorting methods

The focus of this thesis is on sorting problems. We consider only sorting problems
in which the categories are predefined. Note that clustering addresses problems
in which the categories are not not predefined (see e.g. De Smet et al., 2012;
Meyer and Olteanu, 2013).

Several MCDA methods have been developed in order to deal with sorting
problems. We recall here two MCDA methods dedicated to the sorting problems
which are used in this thesis: the ELECTRE TRI model (and two of its variants)
and the additive value function sorting model.

2.2.1 ELECTRE TRI

ELECTRE TRI is an outranking sorting procedure proposed by Yu (1992). The
method aims at assigning each alternative of a set to a category selected among a
set of pre-defined and ordered categories. Each alternative in the set is evaluated
on a set of monotone criteria. The category in which an alternative is assigned
to is chosen by comparing the alternative performances to the performances of
profiles delimiting the categories.

Compared to other outranking methods, like ELECTRE II used in ranking
problems, ELECTRE TRI does not require to compare every pair of alternatives.
This has an importance in terms of computing time. Consider a problem involving
100 alternatives. If we want to rank these alternatives, we have to compare them
in pairs. It involves 4950 (100×99

2 ) comparisons. To sort 100 alternatives in p
categories with ELECTRE TRI, one has to compare these alternatives to (p− 1)
profiles delimiting the p categories. It leads at most to 100× (p−1) comparisons,
i.e. 99

2(p−1) times less comparisons. For large data sets, using ELECTRE TRI
saves a lot of computing time compared to ELECTRE II.

Another advantage of ELECTRE TRI is that it directly provides a sorting
of the alternatives in ordered classes while the outcome of a ranking method as
ELECTRE II is usually not a complete ranking of the alternatives. The out-
ranking relation of ELECTRE II does not guarantee the transitivity and the
completeness. ELECTRE TRI allows to obtain a complete ranking of the alter-
natives by assigning them in classes.

Formally we denote by A the set of alternatives that have to be assigned
to a category selected among p ordered categories, Cp ≻ Cp−1 ≻ . . . ≻ C1.
Alternatives in the set are evaluated on multiple attributes which are known to
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have a monotone preference scale, i.e. the higher the value of an alternative on
criterion j the better it is or the contrary. The set of criteria is denoted by
N = {1, . . . , n} and j denotes one of the criteria in the set N . To know in which
category an alternative should be assigned, its performances are compared to the
ones of the p− 1 profiles delimiting the p categories. We denote by bh the profile
delimiting the category Ch from Ch+1. H = {1, . . . , p − 1} denotes the set of
profile indices. Figure 2.1 illustrates the profiles and categories of an ELECTRE
TRI model.

C1

C2

C3

Cp

Cp−1

Cp−2

crit1 crit2 crit3 crit4 crit5

b0

b1

b2
b3

bp−3

bp−2

bp−1
bp

Figure 2.1: Criteria, profiles and categories of an ELECTRE Tri model.

Alternatives are compared to the profiles delimiting the categories. In ELEC-
TRE TRI, an alternative a is considered better than or equal to a profile bh if
the credibility index of the assertion “a is at least as good as bh”, denoted by
σ(a, bh), is greater than or equal to a cut threshold, λ. The credibility index is
the aggregation of two indices, called concordance and non-discordance degrees.

The concordance degree values the strength of the criteria coalition supporting
the assertion “a is at least as good as bh”, denoted by a < bh. This index
corresponds to the aggregation of partial concordance indices computed for each
criterion j, which represent the degree to which an alternative a is considered
at least as good as the profile bh on criterion j. The computation of partial
concordance index, denoted by Cj(a, bh) is done by comparing on criterion j,
the alternative performance aj to the profile performance, denoted by bhj . Two
thresholds are involved in the computation of Cj(a, bh):

• an indifference threshold, denoted by qhj , such that qhj ≥ 0 which corre-
sponds to the minimal difference between aj and bhj from which the asser-
tion a < b becomes completely true on criterion j;
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• a preference threshold, denoted by phj , such that phj ≥ qhj , which represents
the minimal difference between aj and bhj , from which the assertion a < bh

becomes partially true on criterion j.

Note that indifference and preference thresholds may vary depending on the cri-
terion value. We consider here fixed thresholds in order to simplify the notations.
Finally, the value of Cj(a, bh) is obtained as follows:

Cj(a, bh) =















0 if aj ≤ bhj − phj ,

1 if aj ≥ bhj − qhj ,
aj−bhj +ph

j

ph
j −qhj

otherwise.

(2.1)

The concordance degree, denoted C(a, bh) is finally computed by weighting and
aggregating the partial concordance indices as follows:

C(a, bh) =
n
∑

j=1

wj · Cj(a, bh). (2.2)

For convenience, the criteria weights are usually normalized, i.e.
∑n

j=1 wj = 1.
The discordance degree values the strength of the criteria coalition rejecting

the assertion a < bh. The non-discordance degree is the complement of this
value. We denote the non-discordance degree by ND(a, bh). To compute the
non-discordance degree, the performances of the alternative are compared to
these of the profiles and a partial discordance index, Dj(a, b

h) is computed for
each criterion. The determination of Dj(a, b

h) involves two thresholds:

• the preference threshold, phj ;

• the veto threshold, vhj , which represents the maximal difference between bhj
and aj tolerated before rejecting the assertion a < bh.

The value of Dj(a, b
h) is computed as follows:

Dj(a, b
h) =















1 if aj ≤ bhj − vhj ,

0 if aj ≥ bhj − phj ,
bhj −ph

j −aj

vh
j −ph

j

otherwise.

The non-discordance index is computed by aggregating the partial discordance
degrees and the concordance degree as follows:

ND(a, bh) =
∏

j∈N :Dj(a,bh)>C(a,bh)

1−Dj(a, b
h)

1− C(a, bh) . (2.3)
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The credibility degree σ(a, bh) of the assertion a < bh is finally determined
by multiplying the concordance degree by the non-discordance degree as given in
the following equation.

σ(a, bh) = C(a, bh) · ND(a, bh). (2.4)

Finally, an alternative a outranks a profile bh if its credibility threshold σ(a, bh)
is greater than a threshold value λ fixed usually in the interval ]0.5, 1]. Formally,
we have:

a < bh ⇐⇒ σ(a, bh) ≥ λ. (2.5)

We define two fictive profiles b0 and bp which correspond respectively to the
worst and best possible possible performances on all the criteria. In ELECTRE
TRI, alternatives are assigned to a category by using one of the two following
assignment procedures.

Pessimistic procedure It consists in comparing each alternative a successively
to bp−1, . . . , b1, b0. With l being the first index such that a < bl, a is assigned
to Cl+1.

Optimistic procedure It consists in comparing each alternative a successively
to b1, b2, . . . , bp. With l being the first index such that bl < a and not
a < bl, a is assigned to Cl.

2.2.2 Majority rule sorting model

In this subsection, we begin by presenting the drawbacks of ELECTRE TRI. Then
we describe the majority rule sorting (MR-Sort) model, a simplified version of
ELECTRE TRI.

Drawbacks of ELECTRE TRI

ELECTRE TRI presents some drawbacks from our point of view. In this para-
graph we present some of them.

The first one is the number of parameters of the model. ELECTRE TRI
requires to elicit n weights, p−1 profiles evaluated on the set of criteria, one ma-
jority threshold as well as at least n indifference, preference and veto thresholds.
In total it makes 4np−3n+1 parameters to be determined1. As stated previously,
a DM often has difficulties to elicit directly the parameters of a MCDA model. It
is all the more true that the number of parameters increases. In case of indirect

1If we consider a different threshold for each profile then it adds 3np parameters to be
determined.
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elicitation, the high number of parameters has an impact on the computing time
of the solution.

ELECTRE TRI can be subject to small compensatory effects when the perfor-
mances of an alternative a are such that a is not strictly preferred to a profile bh

on several criteria, i.e. the performance of aj is such that bhj − phj < aj < bhj − qhj
on several criteria. A weak performance on one criterion can be compensated
by a stronger one on another criterion. Indeed, consider a profile bh and two
alternatives, a and b, having the same credibility index with respect to profile
bh. Assume that the performances of a and b are equal on all the criteria of the
model, except on criteria 1 and 2. On both criteria the performances of a and
b are located in the interval [bh − phj , b

h − qhj ]. Since the credibility indices of a
and b are equal and their performances are equal on all the criteria j ∈ N\{1, 2},
the contributions of partial concordance indices on criteria 1 and 2 to the global
concordance index are equal. Therefore the following equality holds:

w1 · C1(a, bh) + w2 · C2(a, bh) = w1 · C1(b, bh) + w2 · C2(b, bh).

The ratio w2

w1
can be expressed as follows:

w2

w1
=

C1(b, bh)− C1(a, bh)
C2(a, bh)− C2(b, bh)

. (2.6)

The partial concordance indices of a(1) and a(2) on criteria 1 and 2 are equal to:

C1(a, bh) =
a1 − bh1 + ph1

ph1 − qh1
,

C2(a, bh) =
a2 − bh2 + ph2

ph2 − qh2
,

C1(b, bh) =
b1 − bh1 + ph1

ph1 − qh1
,

C2(b, bh) =
b2 − bh2 + ph2

ph2 − qh2
.

By substituting these values in Equation (2.6), we obtain:

w2

w1
= −ph2 − qh2

ph1 − qh1
· a1 − b1
a2 − b2

.

In this Equation, we observe that a difference of a1 − b1 on criterion 1 is com-
pensated by a difference of a2 − b2 on criterion 2. As ELECTRE methods are
well-known for their ability to reduce compensatory effects, it is difficult to legit-
imate assignments obtained with ELECTRE TRI if compensatory effects occur
between criteria.



2.2. Two families of MCDA sorting methods 17

We also remark that the concordance degree evolves as a linear function when
the difference between the performance of the alternative a and the profile bh is
in the interval [qhj , phj ] on a criterion j. The same remark holds for the partial
discordance index when the difference between a and bh on j is in the interval
[qhj , p

h
j ]. This linearity is debatable. Indeed the preference function could be

concave or convex instead of linear in the interval [qhj , p
h
j ].

In ELECTRE TRI, the discordance index leads to a non-linearity of the credi-
bility index. The non-linearity of this index increases the complexity of the model
and makes it more difficult to explain. In MCDA, parameters of the model are
used to legitimate the output of a method. Due to the complexity of the credibil-
ity index, it is difficult to explain the output of the method to a DM. Moreover,
this index needs to be linearized when using standard linear programming tools
in order to infer the parameters of the method (e.g. Mousseau and Dias, 2003).

Majority rule sorting model

Bouyssou and Marchant (2007a,b) presented an axiomatic characterization of the
so called non-compensatory sorting (NCS) models. Their papers propose strong
theoretical justifications for such a type of model. A link between this type of
model and the pessimistic version of ELECTRE TRI is outlined according to
Bouyssou and Marchant (2007a,b). The outranking rule can be formulated as
follows: An alternative a outranks a profile bh if the following two conditions are
satisfied:

1. a has better performances than bh on a sufficiently large coalition of criteria;

2. a is not significantly worse than bh on any criterion j ∈ N .

MR-Sort is a further simplification of the NCS model. With MR-Sort we assume
that “sufficiently large coalitions of criteria” can be determined by a weight wj

associated with each criterion and a majority threshold λ. A coalition of criteria
J is “sufficiently large” if

∑

j∈J wj ≥ λ. Formally, the outranking relation of
MR-Sort (2.5) reads:

a < bh ⇐⇒
∑

j:aj≥bhj

wj ≥ λ and ∄j ∈ N : aj < bhj − vhj . (2.7)

The axioms given in Bouyssou and Marchant (2007a,b) are described for the
pessimistic assignment procedure. Therefore, we use MR-Sort exclusively with
this assignment procedure. Using Equation (2.7) as outranking rule, the pes-
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simistic assignment rule reads:

a ∈ Ch ⇐⇒







∑

j:aj≥bh−1
j

wj ≥ λ and ∄j ∈ N : aj < bh−1
j − vh−1

j







and





∑

j:aj≥bhj

wj < λ or ∃j ∈ N : aj < bhj − vhj



 . (2.8)

In this thesis, we mainly use MR-Sort without veto, therefore the assignment rule
given in Equation (2.8) can be simplified as follows:

a ∈ Ch ⇐⇒
∑

j:aj≥bh−1
j

wj ≥ λ and
∑

j:aj≥bhj

wj < λ. (2.9)

Compared with ELECTRE TRI, MR-Sort is not subject to compensatory
effects, which better complies with the aim of outranking methods. Moreover
MR-Sort assignment rules are easier to explain to a DM. Indeed the method
involves less parameters and the outranking rule does not involve indifference
and preference thresholds.

Such a model contrasts with additive value functions models such as UTADIS
(Jacquet-Lagrèze and Siskos, 1982; Doumpos and Zopounidis, 2002). It belongs
to a class of decision models referred to as non-compensatory in the literature
(Fishburn, 1976; Bouyssou, 1986), because it just takes into account whether or
not an evaluation is above the profile value, not by how much it passes or misses
this profile value. These methods are well suited to criteria assessed on ordinal
scales.

2.2.3 Non-compensatory sorting model

The MR-Sort model is a particular case of the definition of non-compensatory
sorting models axiomatized by Bouyssou and Marchant (2007a,b). MR-Sort is
only able to deal with decision problems in which there is no interaction between
criteria. The NCS model proposed by Bouyssou and Marchant (2007a,b) is more
general and can handle criteria interactions. In this model, the strength of a
coalition of criteria is not just the sum of the weights associated to individual
criteria. We first show the limitations of MR-Sort on a fictive decision problem.
Then we describe a mathematical formulation of the model.

Limitation of MR-Sort

Before describing the NCS model, we show the limits of MR-Sort on an example.
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Table 2.1: Evaluation of students and their acceptance/refusal status.

Math Physics Chemistry History A/R

James 11 11 9 9 A
Robert 9 9 11 11 A
John 11 9 9 11 R
Pierre 9 11 11 9 R

Example 4. Consider an application in which a committee for a higher educa-
tion program has to decide the admission of students based on their evaluations
in 4 courses: math, physics, chemistry and history. To be accepted in the pro-
gram, the committee considers that a student should have a sufficient majority
of evaluations above 10/20. From the committee point of view, courses (criteria)
coalitions don’t have the same importance. The strength of a coalition of courses
varies as a function of the courses belonging to the coalition. The committee
stated that the following subsets are the minimal coalitions of courses in which
the evaluation should be above 10/20 in order to be accepted: {math, physics},
{math, chemistry} and {chemistry, history}. To illustrate this rule, Table 2.1
shows evaluations of several students and, for each student, whether he/she is
accepted or refused.

Representing the assignments given in Table 2.1 by using a MR-Sort model
with profiles fixed at 10/20 in each course is impossible. There are no additive
weights allowing to model such rules. On the one hand, the acceptance of James
and Robert lead to the following constraints:

{

w1 + w2 ≥ λ,

w3 + w4 ≥ λ.

By summing these inequalities, we have:

w1 + w2 + w3 + w4 ≥ 2λ. (2.10)

On the other hand, the refusal of John and Pierre lead to the following constraints:
{

w1 + w4 < λ,

w2 + w3 < λ.

After summing these inequalities, we obtain:

w1 + w2 + w3 + w4 < 2λ. (2.11)

Constraints (2.10) and (2.11) can’t be satisfied both at the same time. It is
therefore not possible to use simple additive weights to model these assignment
rules.
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The example given above showed that MR-Sort is not adapted to handle such
type of problems since it does not allow to model attribute interactions. It limits
the capacity of the model to represent some situations.

Notion of capacity

The model described hereafter uses capacities. Therefore we introduce the defi-
nition of a capacity.

Definition 4. A capacity is a function µ : 2N → [0, 1] such that:

• µ(K) ≥ µ(J), for all J ⊆ K ⊆ N (monotonicity) ;

• µ(∅) = 0 and µ(N) = 1 (normalization).

The Möbius transform allows to express the capacity in another form:

µ(J) =
∑

K⊆J

m(K) ∀J ⊆ N with m(K) =
∑

L⊆K

(−1)|K|−|L|µ(L). (2.12)

The value m(K) can be interpreted as the weight that is exclusively allocated
to K as a whole. A capacity can be defined directly by its Möbius transform
also called Möbius interaction. A Möbius interaction or Möbius mass m is a set
function m : 2N → [−1, 1] satisfying the following conditions:

∑

K⊆J∪{j}

m(K) ≥ 0 ∀j ∈ N, J ⊆ N\{j} and
∑

K⊆N

m(K) = 1. (2.13)

If m is a Möbius interaction, the set function defined by µ(J) =
∑

K⊆J m(K) is
a capacity. Conditions (2.13) guarantee that µ is monotone (Chateauneuf and
Jaffray, 1986).

Non-compensatory sorting model

Using a capacity to express the strength of a criteria coalition in favor of an
object, we transform the outranking rule (2.7) as follows:

a < bh ⇔ µ(J) ≥ λ and ∄j ∈ N : aj < bhj − vhj (2.14)

with J = {j ∈ N : aj ≥ bhj } and µ(J) =
∑

K⊆J m(K). Computing the value

of µ(J) with the Möbius transform requires the evaluation of 2|J| parameters.
In a model involving n criteria, it involves the elicitation of 2n parameters, with
µ(∅) = 0 and µ(N) = 1. To reduce the number of parameters to be elicited, we
generally use 2-additive capacities in which all the interactions involving more
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than 2 criteria are equal to zero. Inferring a 2-additive capacity for a model
having n criteria requires the determination of n(n+1)

2 − 1 parameters.
In this thesis, we use the NCS model without veto. Equation (2.14) can then

be simplified as follows:

a < bh ⇔ µ(J) ≥ λ. (2.15)

Finally, the condition for an object a ∈ X to be assigned to category Ch can
be expressed as follows:

µ(Na≥bh−1) ≥ λ and µ(Na≥bh) < λ (2.16)

with Na≥bh−1 = {j ∈ N : aj ≥ bh−1
j } and Na≥bh = {j ∈ N : aj ≥ bhj }.

This model fits with the definition of a NCS model given in Bouyssou and
Marchant (2007a,b). We note that MR-Sort is a special case of a NCS model in
which a simple additive capacity is used.

2.2.4 Additive value function sorting model

Additive value function sorting (AVF-Sort) models belong to the family of MAVT
methods. In such type of model, a numeric score is attributed to each alternative.
Additive value function models are based on the theory of multi-attribute value
functions (Keeney and Raiffa, 1976).

In an additive value function model, a value function uj is associated to each
criterion j ∈ N of the decision problem. Each value function aims at modeling the
preference of the decision maker on one criterion. These value functions, called
marginals, are monotone, i.e. the slope of the curve remains either positive or
negative on the criterion domain. The slope is positive if the preference increases
when the criterion value increases and negative if the preference decreases when
the criterion value decreases. An example of a marginal is shown in Figure 2.2.
The marginal value associated to an alternative a on a criterion j is denoted
by uj(aj). We denote by aj (resp. aj) the worst (resp. best) performance on
criterion j. One may assume that 0 ≤ uj(aj) ≤ 1 and uj(aj) = 0, uj(aj) = 1.

In order to obtain a global value reflecting the score of an alternative a,
marginal values, uj(aj), are summed up into a global value U(a):

U(a) =

n
∑

j=1

wj · uj(aj). (2.17)

Each marginal value function is given a weight wj which represents the impor-
tance of the criterion from the DM’s point of view. Weights are determined such
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uj

uj(aj) = 0

uj(aj) = 1

aj aj

uj(aj)

aj

Figure 2.2: Example of marginal value function for criterion j.

that
∑n

j=1 wj = 1. To simplify the notation, we directly integrate the weights in
the marginal value functions as follows:

u∗
j (aj) = wj · uj(aj).

Hence, Equation (2.17) can then be reformulated as follows:

U(a) =

n
∑

j=1

u∗
j (aj). (2.18)

A particular but often used shape for marginal value functions is to assume
they are piecewise linear. Such functions can approximate any shape of marginal
value function. The marginal value functions are often defined as piecewise linear
functions. Breakpoints of the value function uj are placed on the criterion domain
[aj , aj ] such that it is split in ηj equal parts, with g0j = aj , g

ηj

j = aj and glj = g0j +
l
nj

· (gηj

j − g0j ). Utility functions are constructed such that the worst performance

on criterion j has a value equal to 0, uj(g
0
j ) = 0, and the best one has a value

equal to 1, uj(g
nj

j ) = 1. This is for the case of increasing marginals. The
case of marginals decreasing with the value of the criterion can be described
symmetrically.

When using piecewise linear functions, the marginal value uj(aj) of an al-
ternative a can be expressed as follows (for a criterion to be maximized). Let
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uj

u0
j = 0

aj

u1
j

g1j

u2
j

g2j

u3
j

g3j

u4
j = 1

aj

Figure 2.3: Approximation of a marginal value function for a criterion j (to be
maximized) through a piecewise linear function.

gLj , with l = {1, . . . , nj}, be the first breakpoint for an alternative a such that
aj ≤ gLj , the value of uj(aj) is given by:

uj(aj) = uj(g
L−1
j ) +

(

aj − gL−1
j

gLj − gL−1
j

)

(

uj(g
L
j )− uj(g

L−1
j )

)

. (2.19)

In such a model, it is easy to compare alternatives based on their value U(a).
One can say that an alternative a is preferred to another b if the value of a, U(a),
is greater than the value of b, U(b). Similarly an alternative a is indifferent to
another b if the value of a is equal to the value of b. Formally it reads:

a ≻ b ⇐⇒ U(a) > U(b), and

a ∼ b ⇐⇒ U(a) = U(b).

These comparisons are used to establish a ranking of the alternatives.
In the sorting context, additive value function values are compared to thresh-

olds delimiting the ordered categories. For a model involving p categories, p+ 1
thresholds are required to fix the boundaries of the categories. We denote them
by Uh, with h = {0, . . . , p}. We have U0 = 0 and Up = 1 + ǫ, with ǫ a small
constant strictly greater than 0. Each category Ch is delimited by a lower and
an upper threshold, respectively Uh−1 and Uh. Using this model, an alternative
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a is assigned to a category Ch if the following two conditions are fulfilled:

a ∈ Ch ⇐⇒
{

U(a) ≥ Uh−1, and (2.20a)

U(a) < Uh. (2.20b)

2.3 Other multiple-criteria decision analysis sorting
methods

In this section, we give an overview of other MCDA sorting methods. A complete
review of MCDA sorting methods has been done in Zopounidis and Doumpos
(2002).

2.3.1 Trichotomic segmentation

Trichotomic segmentation procedure was introduced by Moscarola and Roy (1977).
The aim of the method is to sort each alternative of a set in one of the three fol-
lowing categories: “accepted”, “rejected” or “need additional examination”. We
denote these categories respectively by CA, CR and C?.

Each action is evaluated on n criteria by q experts. Each expert k is invited to
evaluate the importance of the n criteria by assigning a weight wk

j to each crite-
rion. Then he/she has to define two profiles evaluated on n criteria. The first one
A discriminates acceptable projects from others. A second one R discriminates
rejected projects from others. The profiles defined by the experts are denoted
respectively by bA,k and bR,k. Each profile is a vector of performances on the n
criteria. The value of profile bA,k (resp. bR,k) on criterion j is denoted by bA,k

j

(resp. bR,k
j ). Each expert k is asked to assess the value of a veto threshold vh,kj

on each criterion j with respect to each profile bh,k, h ∈ {A,R}.
As in ELECTRE methods, concordance and non-discordance indices have to

be calculated for each alternative and each profile. These indices have the same
formulation as in ELECTRE TRI (Equations (2.2) and (2.3)). They only differ
in the definition of the partial concordance and discordance indices. Formally
the concordance index of an alternative a against a profile bh,k, h ∈ {A,R}, for
the expert k reads:

Ck(a, bh,k) =

n
∑

j=1

wk
j · Ck

j (a, b
h,k) with Ck

j (a, b
h,k) =

{

1 if aj ≥ bh,kj ,

0 if aj < bh,kj ,

and the non-discordance index reads:

NDk(a, bh,k) =
∏

j∈N :Dk
j (a,b

h,k)>Ck(a,bh,k)

1−Dk
j (a, b

h,k)

1− Ck(a, bh,k)
,
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Figure 2.4: Trichotomic decision tree.

with

Dk
j (a, b

h,k) =











1 if aj ≤ bh,kj − vj ,

0.5 if aj = bh,kj − vj ,

0 if aj ≥ bh,kj − vj .

Finally a credibility index of the relation a < bh,k is computed as in ELECTRE
TRI:

σk(a, bh,k) = C(a, bh,k) · ND(a, bh,k)

The value σk(bh,k, a) can be computed similarly by permuting a and bh,k in the
equations above. For each expert k, four indices are computed: σk(a, bA,k),
σk(bA,k, a), σk(a, bR,k) and σk(bR,k, a).

Unlike in classical ELECTRE methods, this procedure considers several ex-
perts. To determine the assignment of an alternative a to a category, the decision
tree given in Figure 2.4 is used. In the tree, A+, A−, R+ and R− represent re-
spectively the number of experts for which the indices σk(a, bA,k) σk(bA,k, a),
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σk(a, bR,k) and σk(bR,k, a) exceed a pre-defined threshold λ. An alternative a is
assigned to category CA if A+ > 0, A+ ≥ A− and R− = 0. a is assigned to
category CR if A+ = 0, R+ > 0 and R− > R+. In all other cases a is assigned
to C?.

2.3.2 nTOMIC

Massaglia and Ostanello (1991) developed an interactive system called nTOMIC
which is designed to support all stages of a segmentation process.

The method consists in computing two marginal indices for each alternative
on each criterion. These marginals are called respectively “goodness” and “bad-
ness” credibility index. We denote them Gj(a, b

+) and Bj(a, b
−). Building these

marginals involves the determination of two levels on each criterion: b+j and b−j .
The value b+j corresponds to what is considered as a “good” score while b−j corre-
sponds to what is considered as a “bad” score. An indifference threshold q+j (resp.
q−j ) and a discrimination threshold s+j (resp. s−j ) are associated with each level
b+j (resp. b−j ). These thresholds are chosen such that 0 ≤ q+j ≤ s+j , 0 ≤ q−j ≤ s−j
and b+j + s+j ≤ b−j − s−j . The performance of an alternative aj is qualified as “cer-
tainly good”, “not good” or “fairly good” respectively if aj ≥ b+j −q+j , aj ≤ b+j −s+j
or b+j − q+j > aj > b+j − s+j . Similarly, a performance aj is qualified as “certainly
bad”, “not bad” or “fairly bad” respectively if aj ≤ b−j + q−j , aj ≥ b−j + s−j or
b−j + q−j < aj < b−j + s−j . The two marginal indices are then computed similarly
to the concordance and discordance indices in ELECTRE TRI. Formally, it reads:

Gj(a, b
+
j ) =















0 if aj ≤ b+j − s+j ,

1 if aj ≥ b+j − q+j ,
b+j −s+j −aj

s+j −q+j
otherwise,

and

Bj(a, b
−
j ) =















0 if aj ≥ b−j + s−j ,

1 if aj ≤ b−j + q−j ,
aj−b−j +s−j

s−j −q−j
otherwise.

The marginal indices are then aggregated in two credibility indices: a credi-
bility of “goodness”, denoted by G(a, b+j ) and a credibility of “badness”, denoted
by B(a, b−j ). It is done as follows. A weight wj is associated with each criterion
j. Then “goodness” and “badness” credibility indices are defined as follows:

G(a, b+) =
n
∑

j=1

wj · Gj(a, b
+
j ) and B(a, b−) =

n
∑

j=1

wj · Bj(a, b
+
j ).
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Figure 2.5: nTOMIC: example of partition of the aggregation space.

The two indices above do not take compensations between good and bad scores
into account. In order to take compensations into account, Massaglia and Os-
tanello (1991) introduce a credibility of “goodness” and a credibility of “badness”.
The credibility of “goodness” is computed as follows:

G∗(a, b+) = G(a, b+)
∏

j∈N :B(a,b+j )>G(a,b+j )

1− B(a, b+j )
1− G(a, b+j )

.

The credibility of “badness” is computed as follows:

B∗(a, b−) = B(a, b−)
∏

j∈N :G(a,b−j )>B(a,b−j )

1− G(a, b−j )
1− B(a, b−j )

.

We observe that these indices are computed in a similar way as the credibility
index in ELECTRE TRI.

After computing the credibility indices, the procedure consists of defining
the number of classes in which the alternatives have to be classified. Classes
are separated by thresholds which are defined by the DM. Figure 2.5 shows an
example of a classification rule assuming a non-compensatory logic with two
thresholds for each credibility index. In the figure, the separation thresholds are
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denoted by α, α′, β and β′. Several classification rules can be defined depending
on the DM’s attitude.

2.3.3 PROAFTN

This outranking approach has been conceived by Belacel (2000). The method
builds fuzzy indices indicating to what extent an alternative belongs to a category.
The fuzzy index is based on the concordance and non-discordance principle used
in ELECTRE methods.

The method uses class prototypes, i.e. alternatives representing a category.
The set of prototypes associated to a class Ch is denoted by Bh = {bh,1, . . . , bh,Lh}
with bh,k the kth prototype and Lh the number of prototypes. Each prototype bh,k

corresponds to a performance vector on all the criteria involved in the decision
problem.

In PROAFTN, a global indifference index is computed for each alternative
against each prototype by aggregating a set of partial indifference indices. In
the sequel, we denote the indifference relation between an alternative a and a
prototype bh,k by a ∼ bh,k. The method computes partial indifference relations as
follows. An interval [∆−(bh,kj ),∆+(bh,kj )] is associated to each profile bh,kj where

∆−(bh,kj ) ≤ bh,kj ≤ ∆+(bh,kj ). An alternative a is said indifferent to prototype

bh,k on criterion j if ∆−(bh,kj ) ≤ aj ≤ ∆+(bh,kj ). Two thresholds p−(bh,kj ) and

p+(bh,kj ) are introduced. They define the limit from which an alternative is not

indifferent anymore to prototype bh,k. If ∆−(bh,kj ) − p−(bh,kj ) ≤ aj ≤ ∆−(bh,kj )

or ∆+(bh,kj ) ≤ aj ≤ ∆+(bh,kj )+ p+(bh,kj ) then the alternative is said to be weakly
indifferent to the prototype bh,k on the criterion j. Finally, if the performance of a
on criterion j doesn’t respect both conditions then a is said to be “not indifferent”
to bh,k on criterion j. The degree of indifference of an alternative a with respect
to a prototype bh,j is computed through a partial indifference degree Ij(a, bhj )
which is defined as follows:

Ij(a, bh,k) = min {I−
j (a, bh,k), I+

j (a, bh,k)},

where I−
j (a, bh,k) and I+

j (a, bh,kj ) are computed as follows:

I−
j (a, bh,k) =















0 if aj ≤ ∆−(bh,kj )− p−(bh,kj ),

1 if aj ≥ ∆−(bh,kj ),
aj−∆−(bh,k

j )+p−(bh,k
j )

p−(bh,k
j )

otherwise,
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I+
j (a, bh,k) =















0 if aj ≥ ∆+(bh,kj ) + p+(bh,kj ),

1 if aj ≤ ∆+(bh,kj ),
∆+(bh,k

j )+p+(bh,k
j )−aj

p+(bh,k
j )

otherwise.

The partial indifference relations are then aggregated in a comprehensive indif-
ference relation as follows:

I(a, bh,k) =
n
∑

j=1

wh
j · Cj(a, bh,k),

where wh
j ∈ [0, 1] represents the relevance of criterion j for the assignment of an

alternative in Ch; a value of 1 means strong relevance of the criterion j and 0,
the contrary. These weights are without loss of generality normalized between 0
and 1 so that their sum is equal to 1.

As in other ELECTRE methods, PROAFTN uses a discordance index. Two
veto thresholds v−(bh,kj ) and v+(bh,kj ) are defined for each prototype bh,kj . These

satisfy v−(bh,kj ) ≥ p−(bh,kj ) and v+(bh,kj ) ≥ p+(bh,kj ). Then partial discordance in-
dices Dj(a, b

h,k) are computed as in ELECTRE. The discordance index D(a, bh,k)
is aggregated from a set of partial discordance indices Dj(a, b

h,k). The value of
Dj(a, b

h,k) is finally obtained as follows:

Dj(a, b
h,k) = max {D−

j (a, b
h,k),D+

j (a, b
h,k)},

where D−
j (a, b

h,k) and D+
j (a, b

h,k
j ) are computed as follows:

D−
j (a, b

h,k) =















0 if aj ≥ ∆−(bh,kj )− pj(b
h,k),

1 if aj ≤ ∆−(bh,kj )− vj(b
h,k),

∆−(bh,k
j )−p−(bh,k

j )−aj

p−(bh,k
j )−v−(bh,k

j )
otherwise,

D+
j (a, b

h,k) =















0 if aj ≤ ∆+(bh,kj ) + pj(b
h,k),

1 if aj ≥ ∆+(bh,kj ) + vj(b
h,k),

aj−∆+(bh,k
j )−p+(bh,k

j )

v+(bh,k
j )−p+(bh,k

j )
otherwise.

The value of the non-discordance index is derived from it as follows:

ND(a, bh,k) = 1−
n
∏

j=1

(

1−Dj(a, b
h,k)

)wh
j .

The indifference and discordance indices are aggregated into an index σ(a, bh,k)
representing the credibility of the relation a ∼ bh,k. The credibility index is com-
puted as follows:

σ(a, bh,k) = I(a, bh,k) · ND(a, bh,k).
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Finally, a fuzzy degree indicating the degree to which an alternative a belongs
to a category Ch is obtained by taking the maximal value of σ(a, bh,k) among all
the prototypes bh,k associated to a category Ch, i.e.,

σ(a ∈ Ch) = max {σ(a, bh,k) : k = {1, . . . , Lh}}.

An alternative a is assigned to the category Ch for which the fuzzy degree
σ(a, bh,k) is the largest:

a ∈ Ch ⇐⇒ σ(a ∈ Ch) = max {σ(a ∈ Cl) : l = {1, . . . , p}}.

The relationship with other outranking approaches is clear. PROAFTN uses a
concordance and discordance relation as in ELECTRE III and ELECTRE TRI.
However PROAFTN assigns an alternative to a category using an indifference
relation with respect to this category. In PROAFTN, the categories are not
necessary ordinal.

2.3.4 ELECTRE TRI-C and ELECTRE TRI-nC

ELECTRE TRI-C is a variant of ELECTRE TRI which uses central profiles
in order to characterize categories. ELECTRE TRI-C has been proposed by
Almeida-Dias et al. (2011). In this model, a reference profile is associated to
each category going from C1 to Cp with Cp ≻ Cp−1 ≻ . . . ≻ C1. The reference
profile denoted by b̃h is the action which is the most representative of a category
Ch. Two fictitious profiles b̃0 and b̃p+1 are added to the list of profiles, with b̃0j the

worst possible performance on criterion j and b̃p+1
j the best possible performance

on criterion j. The method uses a credibility index as in ELECTRE TRI. An in-
difference (qj), a preference (pj) and possibly a veto threshold (vj) are associated
to each criterion j ∈ N .

In ELECTRE TRI-C it is supposed that the profiles strictly dominate one
another as in ELECTRE TRI. This condition is however not sufficient. Indeed,
consider two consecutive profiles b̃h and b̃h+1, if the performances of these pro-
files are such that 0 ≤ b̃h+1

1 − b̃hj ≤ qj for each criterion j ∈ N , then we have

σ(b̃h, b̃h+1) = 1 which means that the two profiles are not distinct. Accord-
ing to the value taken by σ(b̃h, b̃h+1), Almeida-Dias et al. (2011) define weak
(σ(b̃h, b̃h+1) < 1), strict (σ(b̃h, b̃h+1) < 0.5) and hyper-strict (σ(b̃h, b̃h+1) = 0)
separability conditions.

ELECTRE TRI-C requires the definition of a selection function denoted by
ρ(a, b̃h). This selection function allows to select between two consecutive cate-
gories the one to which a should be assigned. The value of ρ(a, b̃h) should de-
pend on the values of σ(a, b̃h) and σ(b̃h, a). For instance, one can use ρ(a, b̃h) =
min {σ(a, bh), σ(bh, a)} as selection function.
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To assign an alternative a to a category Ch, ELECTRE TRI-C proposes two
joint assignment rules, one descending and one ascending. We describe these
rules below.

Descending rule Compare alternative a successively to b̃p, b̃p−1, . . . , b̃1, b̃0 until
the first value h such that σ(a, b̃h) ≥ λ:

(a) For h = p, select Cp as a possible category to assign a

(b) For 0 < h < p, if ρ(a, bh) > ρ(a, bh+1), then select Ch as a possible
category to assign a; otherwise select Ch+1.

(c) For h = 0, select C1 as a possible category to assign a.

Ascending rule Compare alternative a successively to b̃0, b̃1, . . . , b̃p−1, b̃p until
the first value h such that σ(b̃h, a) ≥ λ:

(a) For h = 1, select C1 as a possible category to assign a.

(b) For 1 < h < p+1, if ρ(a, bh) > ρ(a, bh−1), then select Ch as a possible
category to assign a, otherwise, select Ch−1.

(c) For h = p+ 1, select Ch as a possible category to assign a.

The two assignment procedures are used jointly, meaning that if an alternative a
is assigned to two different categories, Ck by the descending rule and Cl by the
ascending rule, then a is assigned to an interval of categories delimited by Ck

and Cl.
Bouyssou and Marchant (2015) showed that the relationships between ELEC-

TRE TRI-C and ELECTRE TRI are complex: some assignments obtained with
one method can not be obtained by the other and vice-versa. They propose to
search for a method working with central profiles which is closer to ELECTRE
TRI.

ELECTRE TRI-nC is a variant of ELECTRE TRI-C in which a category is
characterized by several reference actions. More information about this method
can be found in Almeida-Dias et al. (2012).

2.3.5 FlowSort

FlowSort is a sorting model that is based on PROMETHEE, an outranking
method proposed by Brans et al. (1984) that handles ranking problems. The
PROMETHEE method has been adapted in order to handle sorting problems by
Nemery and Lamboray (2008). In FlowSort, categories are either separated by
limiting profiles or characterized by central profiles.

Consider an alternative a that has to be assigned to a category. Categories
are defined by central or limiting profiles denoted by R. We denote by Ra the
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set containing the profiles and the alternative a, i.e., Ra = R∪{a}. In FlowSort,
two types of flows are computed:

1. a positive outranking flow which represents to what extent the alternative
a outranks the profiles R;

2. a negative outranking flow which represents to what extent the alternative
a is outranked by the profiles R.

The positive and negative flows of an alternative x ∈ Ra are computed with the
following formula:

φ+
Ra

(x) =
1

|Ra| − 1

∑

y∈Ra

π(x, y),

φ−
Ra

(x) =
1

|Ra| − 1

∑

y∈Ra

π(y, x),

in which π(x, y) (resp. π(y, x)) is a preference degree function which evaluates
the preference strength of an alternative x (resp. y) over another one y (resp.
x). We refer the reader to Brans and Vincke (1985) for further details on the
definition of π(x, y).

As in ELECTRE TRI, categories can be separated by limiting profiles. We
denote by bh the profile delimiting the category Ch−1 from Ch. In case of limiting
profiles, there exist two assignment rules:

a ∈ Ch if φ+
Ra

(bh) ≥ φ+
Ra

(a) > φ+
Ra

(bh−1),

a ∈ Ch if φ−
Ra

(bh) < φ−
Ra

(a) ≤ φ−
Ra

(bh−1).

The procedure can lead to two different assignments for an alternative a. It is also
possible to combine positive and negative flows so that an alternative is imposed
to exactly one category. The combination of both flows gives the net flow:

φRa
(x) = φ+

Ra
(x)− φ−

Ra
(x). (2.21)

Using the net flow, the assignment rule becomes:

a ∈ Ch if φRa
(bh) ≥ φRa

(a) > φRa
(bh−1).

Like ELECTRE TRI-C and ELECTRE TRI-nC, FlowSort is able to work
with central profiles characterizing the categories. We denote by b̃h the profile
characterizing the category Ch. Using such type of profiles, the assignment rules



2.3. Other MCDA sorting methods 33

become:

a ∈ Ch if
φ+
Ra

(b̃h) + φ+
Ra

(b̃h−1)

2
< φ+

Ra
(a) ≤

φ+
Ra

(b̃h) + φ+
Ra

(b̃h+1)

2
,

a ∈ Ch if
φ−
Ra

(b̃h) + φ−
Ra

(b̃h−1)

2
≥ φ−

Ra
(a) >

φ−
Ra

(b̃h) + φ−
Ra

(b̃h+1)

2
.

Again, an alternative a can be assigned to two different categories by the two
rules given above. By using the net flow given in Equation (2.21), it is possible
to assign an alternative to a single category:

a ∈ Ch if
φRa

(b̃h) + φRa
(b̃h−1)

2
< φRa

(a) ≤ φRa
(b̃h) + φRa

(b̃h+1)

2
.

2.3.6 TOMASO

Marichal et al. (2005) proposed a new method for sorting alternatives into cate-
gories. It is called TOMASO (tool for ordinal multi-attribute sorting and order-
ing). The method works in two steps. The first one consists in computing a score
for each alternative on each criterion. The second step consists in aggregating
these scores with a Choquet integral.

Consider a set of m alternatives A evaluated on n criteria. We denote by Xj

the list of possible alternative evaluations on criterion j. The set Xj composed

of nj values is totally ordered, we have Xj =
{

x
(nj)
j ≻ x

(nj−1)
j ≻ . . . ≻ x

(1)
j

}

.

Two approaches are considered to compute the score of an alternative a on a
criterion j. It is up to the analyst to decide which one to use. The first approach
builds the score of an alternative based on all the alternatives of the set A:

Scj(a) =
Ωj(a) + (m− 1)

2 · (m− 1)
,

where Ωj(a) is the number of alternatives that a is preferred to on criterion
j minus the number of alternatives which are preferred to a, i.e., Ωj(a) =
|{x ∈ A : aj ≻ xj}| − |{x ∈ A : xj ≻ aj}|. The second approach builds the score
of an alternative independently from the other alternatives. It is defined as:

Scj(a) =
r − 1

nj − 1
,

with r such that aj = x
(r)
j .

A Choquet integral is then used to aggregate all the scores of each alternative
a. Consider a capacity µ, i.e. a monotone function µ : 2N → [0, 1] fulfilling
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µ(∅) = 0 and µ(N) = 1. The Choquet integral is defined as follows:

Cµ(a) =

n
∑

j=1

Scτ(j)(a) ·
[

µ(Nτ(j))− µ(Nτ(j+1))
]

,

where τ is a permutation of the indices {1, . . . , n} such that 0 ≤ Scτ(1)(a) ≤
. . . ≤ Scτ(n)(a) and N(j) = {j, . . . , n}. µ(Nτ(j)) denotes the capacity of the
subset of criteria Nτ(j) ⊆ N . The assignment of an alternative is then obtained
by comparing the fuzzy measure Cµ(a) to thresholds delimiting the categories.

2.3.7 Summary

In this section we gave an overview of MCDA methods for sorting alternatives in
categories. The methods can be distinguished along several dimensions.

Except AVF-Sort methods, all the sorting methods presented up to now be-
long to the family of outranking methods.

We can discriminate the methods by the type of profiles that are used. In
ELECTRE TRI, MR-Sort, NCS, UTADIS, trichotomic segmentation, nTOMIC
and TOMASO the categories are separated by limiting profiles. Each profile is
a boundary between two consecutive categories. ELECTRE TRI-C, ELECTRE
TRI-nC and PROAFTN use central profiles. Each central profile represents a
typical example of the category. FlowSort is a method that works either with
central or limiting profiles.

Most methods presented in this section are based on the concordance and dis-
cordance principles. It is the case for ELECTRE TRI, MR-Sort, NCS, ELECTRE
TRI-C, ELECTRE TRI-nC and PROAFTN. In these methods, the assignment
of an alternative is obtained by comparing it successively to each profile. In
FlowSort the assignment of an alternative is done by using flows as scores as in
UTADIS.

TOMASO is the only sorting method presented here that proposes the use of
capacities instead of additive weights.

2.4 Learning the parameters of multiple-criteria decision
analysis models

In this section, we first describe direct and indirect methods for the elicitation
of MCDA models parameters. Then a large part of the section describes some
indirect elicitation methods for sorting models. After that, one part of the section
describes how the robustness of the model outcome is assessed and guaranteed
in MCDA. Finally the last part of the section describes how inconsistencies are
handled in MCDA.
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2.4.1 Direct and indirect parameters elicitation

In the literature, we distinguish direct and indirect methods for the elicitation of
model parameters.

Direct methods consist in eliciting the parameters of the method by interact-
ing with the decision maker. For instance, the analyst asks the DM for a per-
centage corresponding to the importance given by the DM to each criterion. The
main difference between direct and indirect methods is that in indirect methods,
the parameters of the model are inferred from a set of preference and indifference
judgments.

Eliciting directly the method parameters is not easy. That is why indirect
elicitation techniques have been developed. For instance, Simos (1990); Simos
and Maystre (1990) proposed a simple procedure that allows to determine indi-
rectly the weights of ELECTRE methods by using a set of cards. An improve-
ment of the procedure has been proposed by Figueira and Roy (2002). Recently
some robustness concerns about these methods have been outlined by Siskos and
Tsotsolas (2015). Another example of indirect elicitation is the method of indif-
ference judgments used to elicit an additive value function asks the DM to assess
the value of a criterion that equilibrates the comparison of two alternatives. The
marginal value functions are elicited through such judgments, that may deal with
alternatives. The parameters of the method do not appear explicitly.

Among indirect elicitation techniques, some allow to learn all the model pa-
rameters and some others are dedicated to learn only a subset of the method
parameters. As an example, in recent years, several papers have been dedicated
to the parameters inference for ELECTRE TRI. Mousseau and Słowiński (1998)
proposed a nonlinear program in order to determine all the parameters of the
method based on assignment examples. In Ngo The and Mousseau (2002) only
the profiles of an ELECTRE TRI model are learned on the basis of assignment
examples.

2.4.2 Learning the parameters of ELECTRE TRI and
MR-Sort

In recent years, several papers dealt with the learning of ELECTRE TRI and
MR-Sort parameters.

The first paper devoted to the learning of ELECTRE TRI parameters has
been proposed by Mousseau and Słowiński (1998). The learning algorithm takes
as input a set of assignment examples and their associated vector of performances
with respect to the problem criteria. The paper shows the difficulties to learn
the parameters of ELECTRE TRI without veto. The main difficulty is the non-
linearity of the partial concordance indices. Indeed, it makes the concordance
index not differentiable which prevents the use of gradient optimization algo-
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Cj(a, b
h)

bhj0

1

aj aj + qhj aj + phj

Figure 2.6: Partial concordance function approximated by a sigmoid.

rithms. In order to tackle this difficulty, Mousseau and Słowiński (1998) propose
to approximate the partial concordance indices by sigmoid functions as shown in
Figure 2.6.

Learning all the parameters of an ELECTRE TRI model involves the deter-
mination of a lot of parameters. It requires a lot of cognitive effort from the user.
Mousseau et al. (2001) consider the subproblem of finding the weights and the
cutting threshold of an ELECTRE TRI model with fixed profiles and indiffer-
ence and preference thresholds. In the paper, a linear program (LP) is proposed
and some experiments are conducted. It shows that learning only a subpart of
the ELECTRE TRI model simplifies the problem. Less assignment examples are
required to obtain good results.

Ngo The and Mousseau (2002) proposed a mixed integer program (MIP) in
order to infer the profiles of an ELECTRE TRI model with fixed weights and
thresholds. The MIP presented in the paper finds the partial concordance indices
in a first step. The second steps consists in deducing the values of the profiles from
the partial concordance indices. They propose to use this MIP in combination
with the LP of Mousseau et al. (2001) in order to determine the whole set of
parameters of an ELECTRE TRI model.

Mousseau and Słowiński (1998), Mousseau et al. (2001) and Ngo The and
Mousseau (2002) consider only ELECTRE TRI models without vetoes. Dias and
Mousseau (2006) present a manner to learn vetoes of an ELECTRE TRI model
with fixed profiles, thresholds and weights. In the paper, two subproblems are
treated. The first one considers the inference of veto parameters for a single
criterion. The second considers the inference of all veto parameters for multiple
criteria at the same time.

Doumpos et al. (2009) proposed a metaheuristic in order to learn all the
parameters of an ELECTRE TRI model, including the veto thresholds. They de-
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veloped a genetic algorithm in order to learn all the parameters of an ELECTRE
TRI model at the same time. The interest of this approach is that it allows to
deal with larger data sets than MIP based algorithms.

As shown in Section 2.2.1, ELECTRE TRI presents some drawbacks, one of
them being the large number of parameters to determine. MR-Sort is a simplified
version of ELECTRE TRI which keeps the philosophy of ELECTRE TRI with the
advantage of using less parameters. Leroy et al. (2011) propose a MIP in order
to learn the parameters of such a model based on assignment examples. The
experimental results presented in the paper show that the MIP is able to find
MR-Sort models which perform well in generalization. However, the experiments
show the limitation of such an algorithm in terms of computing time. For a small
problem involving 5 categories and 3 criteria, more than 100 seconds are required
to restore all the parameters of a MR-Sort model on the basis of 100 assignment
examples.

Damart et al. (2007) are the first to consider the problem of learning the pa-
rameters of an ELECTRE TRI model in the context of multiple decision makers.
They propose an approach that aims at determining a set of fictitious alternatives
that contain enough information to obtain a model that is satisfactory for all the
DMs. The procedure is applied to an illustrative example.

Later, Cailloux et al. (2012) developed two MIPs in order to learn the param-
eters of a MR-Sort model in the context of multiple DMs. The first MIP aims at
finding a set of profiles that is common to all the decision makers. The second
MIP learns a set of weights compatible with the preferences of each DM. The
paper presents experimental results on real and fictitious applications.

2.4.3 Learning the parameters of additive value function
models

Learning the parameters of an additive value function model has been covered in
several papers. In this subsection, we recall the main papers that are devoted to
the inference of parameters of an additive value function model. We first recall
the inference procedures that have been developed for ranking problems, then we
cover sorting problems.

Ranking problems

Jacquet-Lagrèze and Siskos (1982) are the first to propose a disaggregation pro-
cedure in order to infer the parameters of a set of additive value functions. They
proposed a LP in order to infer the additive value functions from a given ranking.
They called the method UTA (utilités additives). We recall here the principle of
this approach as we use it later in this thesis.
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Consider a ranking of m alternatives from the best to the worst. This set
of alternatives constitutes the learning set and is denoted by A∗. Given two
consecutive alternatives a and b in the ranking, the preference relation between
a and b is either “a is preferred to b” or “a is indifferent to b”. Let P be the
set containing all the pairs (a, b) such that a is preferred to b and I the set
containing all the pairs (a, b) such that a is indifferent to b. To translate the
ranking into a linear program, Jacquet-Lagrèze and Siskos (1982) introduce one
error variable per alternative, such that the biased value of an alternative a, U ′(a),
is expressed as U ′(a) = U(a) + σ(a). For each pair of alternatives (a, b) ∈ P,
we have U ′(a) − U ′(b) > 0 and each pair (a, b) ∈ I, we have U ′(a) − U ′(b) = 0.
Finally, the UTA linear program can be expressed as follows. The LP minimizes
the following objective function:

min
u∗
j

∑

a∈A∗

σ(a), (2.22)

such that:































U(a)− U(b) + σ(a)− σ(b) ≥ ε ∀(a, b) ∈ P,
U(a)− U(b) + σ(a)− σ(b) = 0 ∀(a, b) ∈ I,

∑n
j=1 u

∗
j (aj) = 1,

u∗
j (aj) = 0 ∀j ∈ N,

σ(a) ≥ 0 ∀a ∈ A∗,
u∗
j monotonic ∀j ∈ N,

(2.23)

with ε a small positive value.

The third and fourth constraints given in Equation (2.23) ensure the nor-
malisation of the value functions. The constraints can be easily formulated in
a linear programming solver when piecewise linear marginal value functions are
used (see Figure 2.3 for an example of such a function). Indeed, it is easy to
ensure monotonicity of a piecewise linear function u∗

j by ensuring that for each

breakpoint glj , with l = {1, . . . , ηj}, we have u∗
j (g

l
j) ≥ uj(g

l−1
j ).

UTA is at the origin of several other disaggregation procedures. An improve-
ment of UTA, called UTASTAR, has been proposed by Siskos and Yanacopoulos
(1985). This variant of UTA replaces the error variable associated to an alterna-
tive a, σ(a), by two positive error variables σ+(a) and σ−(a). The UTASTAR
LP minimizes the following objective:

min
u∗
j

∑

a∈A∗

(

σ+(a) + σ−(a)
)

(2.24)
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such that:







































U(a)− U(b) + σ+(a)− σ−(a)
−σ+(b) + σ−(b) ≥ ε ∀(a, b) ∈ P,

U(a)− U(b) + σ+(a)− σ−(a)
−σ+(b) + σ−(b) = 0 ∀(a, b) ∈ I,

∑n
j=1

∑ηj

l=1 u
∗
j (g

l
j) = 1,

σ+(a), σ−(a) ≥ 0 ∀a ∈ A∗,
u∗
j (g

l
j) ≥ 0 l = {1, . . . , ηj}, j = {1, . . . , n},

(2.25)

with ε a small positive value.
In UTASTAR, the existence of near optimal solutions is tested by running

for each criterion j the above LP with another objective maximizing the value
function j and with a constraints ensuring that the sum of slack variables is
bounded by the optimal value found previously with the original LP. All the value
functions found for a criterion j are then aggregated in order to obtain a mean
value function. Such a method allows to obtain a central solution. This variant of
UTA allows to reduce the number of ranking errors as shown experimentally by
Siskos and Yanacopoulos (1985). Note that ACUTA (Bous et al., 2010) is another
method that returns a central solution. We refer the reader to Jacquet-Lagrèze
and Siskos (2001) for a review of UTA variants developed up to 2001.

In recent years, other UTA based methods have been developed. Słowiński
et al. (2005) developed UTAGMS which considers all possible additive value func-
tions compatible with the DM’s preferences. It aims at obtaining a robust model.
It consists in computing the analytic center of the polyhedron formed by the set
of constraints deduced from the sets P and I.

Sorting problems

It is easy to transpose the inference of an additive value function model to sorting
problems. We recall here the principles of UTADIS (utilités additives discrimi-
nantes) and its variants.

The UTADIS method (Devaud et al., 1980; Jacquet-Lagrèze and Siskos, 1982)
aims at finding an additive value functions that restores as good as possible the
preferences of a DM. The method takes as input a set of assignment examples
and gives an AVF-Sort model as output. The inference of model parameters
from assignment examples is achieved with a LP. As in UTASTAR, the method
associates a positive and negative error, σ+(a) and σ−(a), to each alternative
a of the learning set A∗. Consider a model involving p categories such that
Cp ≻ Cp−1 ≻ . . . ≻ C1. Each pair of consecutive categories Ch and Ch+1 is
separated by a threshold denoted by Uh, with h = {1, . . . , p− 1}. We denote by
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A∗h, the set of alternatives of the learning set A∗ that are assigned to category
Ch. The objective function of the UTADIS linear program is given by:

min
u∗
j

∑

a∈A

(

σ+(a) + σ−(a)
)

(2.26)

such that:
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U(a) + σ+(a) ≥ Uh−1 ∀a ∈ A∗h, h = {2, . . . , p},
U(a)− σ−(a) ≤ Uh − ε ∀a ∈ A∗h, h = {1, . . . , p− 1},

Uh ≥ Uh−1 h = {2, . . . , p− 1},
∑n

j=1 u
∗
j (aj) = 1,

u∗
j (aj) = 0,

Uh ∈ [0, 1] h = {2, . . . , p− 1},
σ+(a) ≥ 0 ∀a ∈ A∗,
σ−(a) ≥ 0 ∀a ∈ A∗,

u∗
j monotonic ∀j ∈ N,

(2.27)

with ε a small positive value.
As in UTA and UTASTAR, the monotonicity of u∗

j is ensured by using

piecewise linear functions and by guarantying that u∗
j (g

l
j) ≥ u∗

j (g
l−1
j ) for l =

{1, . . . , ηj} and j = {1, . . . , n}.
Zopounidis and Doumpos (2000) recall some extensions of UTADIS proposed

in the past. One consists in transforming the LP into a MIP in which the objective
is modified in order to minimize the misclassification errors. Another MIP variant
introduces a cost for each misclassification. In this thesis, we use the UTADIS
formulation given by Equation (2.26) and Equation (2.27).

2.4.4 Learning algorithms for other sorting models

This part of the section describes more in depth algorithms that are used for
learning the parameters of sorting models. Some of these models have been
presented in Section 2.3.

M.H.DIS

Multi-group hierarchical discrimination method (M.H.DIS) has been proposed by
Zopounidis and Doumpos (2000). Compared to other MCDA inference methods,
it separates progressively the best alternatives from all the others. M.H.DIS uses
additive value functions having the following form:

Uh(a) =

n
∑

j=1

u∗h
j (aj),
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where Uh(a) denotes the global value of classifying a in category Ch and uh
j (aj)

denotes the marginal value function of classifying a in Ch on criterion j. Marginal
value uh

j (aj) is an increasing or decreasing function on the criterion scale. Sim-
ilarly, the additive value function U∼h is defined as the value function of not
classifying a in category Ch. The decision to classify an alternative a in a cate-
gory Ch is made based on these two values:

a ∈ Ch ⇐⇒ Uh(a) > U∼h(a), and

a /∈ Ch ⇐⇒ Uh(a) < U∼h(a).

The case Uh(a) = U∼h(a) is considered as a misclassification.
In a model involving p categories, the M.H.DIS procedure requires the elic-

itation of 2(p − 1) value functions. The elicitation of these functions is done
through mathematical programming based on a set of assignment examples. The
method uses two LP and one MIP. As in UTA and UTADIS, the marginals are
piece-wise linear functions. However, their breakpoints are not equally spaced on
the criterion domain as in UTA and UTADIS. The positions of the breakpoints
correspond to the evaluations of the alternatives that have to be sorted. We
refer the reader to Zopounidis and Doumpos (2000) for more details about the
mathematical programs.

To determine the assignment of an alternative a, a hierarchical process is
applied. First, the value of Up(a) and U∼p(a) are computed. If Up(a) > U∼p(a),
then a is assigned to Cp and the procedure stops. Otherwise, if Up(a) < U∼p(a),
then the values of a for the category p − 1 are computed and the same rule is
applied. The procedure continues as long as there is no category h such that
Uh(a) > U∼h(a).

Interactive procedure for selecting acceptable alternatives in the
presence of multiple criteria

Ulu and Köksalan (2001) proposed a procedure partitioning alternatives into two
classes: accepted or refused. This interactive algorithm aims at reducing the
number of questions a DM has to answer.

The algorithm tries to discriminate the alternatives in the two categories
on the basis of previous DM’s preferences and dominance relationships. The
dominance relationship is exploited as follows. Consider two performance vectors
a = (a1, . . . , an) and b = (b1, . . . , bn) evaluated on the n criteria. We denote by
aT (resp. bT) the transpose of vector a (resp. b). The following statements holds:

• If a is known to be accepted and is dominated by b on all criteria, then b is
also accepted;
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• If a is known to be refused and dominates b on all criteria, then b is also
refused;

• If a is known to be accepted, b does not dominate a on all the criteria and
if it is not possible to find a set of positive weights w = (w1, . . . , wn) such
that w · aT > w · bT then b is also accepted;

• If a is known to be refused, b is not dominated by a on all the criteria and
if it is not possible to find a set of positive weights w = (w1, . . . , wn) such
that w · bT > w · aT then b is also refused.

The last two tests can be done through linear programming. These four relations
allow to identify accepted and refused alternatives without having to ask the
DM. Based on these information, an algorithm is built in order to split the set
of alternatives in a set containing the accepted ones and another containing the
rejected ones.

Outranking approach based on reference profiles

Köksalan et al. (2009) propose an outranking approach similar to ELECTRE
TRI. They consider that it is difficult for a DM to determine category limits
and easier for him to provide examples of alternatives that belong to a category.
They propose a new outranking approach that does not require the elicitation of
category profiles.

The first step in the algorithm consists in asking the DM to classify a subset
of alternatives in the different categories involved in the MCDA problem. We
denote by A the set of alternatives that have to be assigned and A∗ denotes
the subset of alternatives that have been assigned by the DM. They advocate
the assignment of equal numbers of alternatives in each category. Then a LP is
used in order to identify and eliminate incompatible assignments. An example of
incompatible assignment occurs when two alternatives assigned to two different
categories outrank each other.

The second step of the process consists in assigning each alternative of A in
a category. It is done based on the reference assignments given by the DM using
a MIP. The MIP tries to find model parameters such that an alternative of a
higher category outranks an alternative of a lower category. The objective of the
MIP is to minimize the violation of these constraints.

In the paper, they also propose to consider assigning alternatives to a range
of categories. It is done by modifying the constraints in the MIP.
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ORCLASS

Larichev and Moshkovich (1997) developed ORCLASS (ordinal classification), a
MCDA method which does not use parameters. Decision maker’s preferences
are described through decision rules. ORCLASS is described as a verbal deci-
sion analysis method (Moshkovich et al., 2005) based on cognitive psychology
principles.

The method consists of first identifying the criteria and the list of possible
values on these criteria. Criteria values are sorted in ascending order from the
worst value to the best. The decision maker preferences are then used to deter-
mine a classification rule. As an example, consider a decision problem involving
two criteria, N = {1, 2}, and two classes C1 and C2, such that C2 ≻ C1. Let
X = X1 ×X2 be the Cartesian product of criteria scales. We suppose that each
criterion has three possible values: X1 = {x1

1, x
2
1, x

3
1} and X2 = {x1

2, x
2
2, x

3
2}. Val-

ues of X1 (resp. X2) are ordered such that x1
1 < x2

1 < x3
1 (resp. x1

2 < x2
2 < x3

2).
We consider without loss of generality that the criteria values have to be maxi-
mized. Given this, one can assume that an alternative characterized by the vector
of performances (x3

1, x
3
2) is classified in the category C2 while an alternative char-

acterized by the vector of performances (x1
1, x

1
2) is classified in C1. To determine

the boundaries of the categories, performance vectors are presented to the decision
maker and the classification rule is determined by applying dominance relations.
As an example, consider that the decision maker specified that (x1

1, x
2
2) belongs

to class C2. From this statement, one can deduce that (x1
1, x

3
2), (x

2
1, x

2
2), (x

3
1, x

2
2)

and (x2
1, x

3
2) are classified in C2 through dominance relations. On the contrary,

if the DM chooses to assign the performance vector (x1
1, x

2
2) to the category C1,

no other assignment can be deducted. Classification tables similar to the one
presented in Table 2.2 are constructed. Each cell of the table corresponds to a
particular vector of performance. Each cell contains two numbers, the left one
corresponds to the number of assignments that can be deduced if the associated
performance vector is classified in C1 and the right one corresponds to the num-
ber of assignments that can be deduced if the performance vector is classified in
C2. In the case of the example above, knowing that (x1

1, x
2
2) belongs to C1 has no

further consequence while, assigning it to C2 yields four consequences. Hence we
write 1|5 in the corresponding cell of the board. ORCLASS limits the number of
questions the DM has to answer by considering primarily the vectors that allow
to deduce the more information. Table 2.2 is updated after each DM statement
about a given performance vector. It is necessary to check the consistency of the
DM to avoid inconsistencies. If an inconsistency is discovered, it has to be solved
in accordance with the DM.

One of the advantage of ORCLASS is that it does not require the elicitation
of parameters. The DM doesn’t have to understand how the sorting model works
and is directly confronted to his preferences. A second advantage of such a type
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Table 2.2: Example of classification board used in the ORCLASS method.

x1
1 x2

1 x3
1

x1
2 C1 1 | 5 2 | 2

x2
2 1 | 5 4 | 4 5 | 1

x3
2 2 | 2 5 | 1 C2

of model is that incompatibilities are directly detected. Unfortunately, when
the number of classes, criteria or criteria values increases, the classification rules
become complex and the number of questions to ask the DM heavily increases.

Dominance rough set approach

Rough sets (Pawlak, 1982) have been adapted and introduced in MCDA by Greco
et al. (2001) under the name “dominance rough set approach (DRSA)”. This
approach characterizes the membership to categories using a collection of upwards
and downwards unions of categories.

Consider a set of objects A, evaluated on a set of n criteria N = {1, . . . , n}.
Each object a ∈ A is classified in a category Ch selected among a set of p
categories. Categories are ordered, such that Cp ≻ Cp−1 ≻ . . . ≻ C1. We denote
by A≥h the set of alternatives in A assigned to a category better than or equal
to Ch. Similarly, A≤h denotes the set of alternatives in A assigned to a category
worse than or equal to Ch.

We define the dominance relation as follows. Let P ⊆ N be a subset of
criteria. An alternative a ∈ A dominates an other b ∈ A with respect to criteria
in P if a is better than b on each criterion j ∈ P , i.e. aj ≥ bj . Formally it reads:

a <P b ⇐⇒ aj ≥ bj , ∀j ∈ P.

We denote by D+
P (a) = {b ∈ A : b <P a} the subset of alternatives in A that

dominate a. The set D−
P (a) = {b ∈ A : a <P b} denotes the subset of alternatives

in A that are dominated by a.
The dominance relation defined above is used to determine the P -lower and

P -upper approximations of upward and downward unions of dominated sets. For
a set A≥h these downwards and upwards sets are denoted respectively by P (A≥h)
and P (A≥h) and defined as:

P (A≥h) = {a ∈ A : D+
P (a) ⊆ A≥h},

P (A≥h) = {a ∈ A : D−
P (a) ∩A≥h 6= ∅}.
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Similarly, P (A≤h) and P (A≤h) are defined as:

P (A≤h) = {a ∈ A : D+
P (a) ⊆ A≤h},

P (A≤h) = {a ∈ A : D−
P (a) ∩A≤h 6= ∅}.

After having determined the lower and upper category approximations, a set
of rules can be deduced. By using this set of rules, one can predict the category
of an alternative.

This technique has the advantage to provide a set of rules directly to the
DM. There is no need to explain a model to the DM. Indeed, the assignment
of an alternative can be simply explained by reading the rules defining category
boundaries. Rules that are deduced are for instance of the type “a is assigned
to category C2 if its performance is greater than 0.5 on criterion 1 and if its
performance is greater than 0.7 on criterion 2”. However, when the number of
rules increases, it becomes difficult to read them and to understand the reason
why an alternative has been assigned to a given category.

2.4.5 Robustness of the models

In MCDA, the robustness of the elicited model has always been an important
issue. The concept of robustness has been introduced by Roy (1998). Later,
Vincke (1999) formalized this concept. In MCDA, the robustness of the entire
procedure is considered. Indeed, robustness can be handled at different levels
since there are several sources of uncertainties in the decision process. Stewart
(2005) identifies two potential sources of uncertainties in MCDA:

1. external uncertainties: they correspond to the uncertainty of the conse-
quences for a particular choice: for instance the decision to build an airport
at a certain place may create new job opportunities in this area;

2. internal uncertainties: they reflect the lack of knowledge and the instability
of the DM which are reflected in the judgement that he/she provides.

All these uncertainties can be treated through a sensitivity analysis after applying
a given MCDA methodology.

In recent years, robust ordinal regression (ROR) has gained interest in MCDA.
Greco et al. (2010b) developed the concept ROR for disaggregation procedures.
Usually disaggregation procedures provide only the parameters of one model that
is compatible with the preferences of the DM provided as input. However there
is in general more than one set of parameters that allow to model the preferences
of the DM. ROR aims at using all the sets of parameters that are compatible
with the DM’s preferences in order to produce robust recommendations. The
methodology has been applied to several MCDA methods.
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ROR was first applied to UTA methods by Greco et al. (2008). The method
has been called UTAGMS. Unlike UTA, which considers only one set of additive
value functions compatible with DM’s preferences, UTAGMS provides the set of
additive value functions that are compatible with the preferences of the DM.
As in UTA, UTAGMS takes as input a set of pairwise comparisons of a set of
reference alternatives A∗ ⊆ X and uses linear programming. The outcome of the
UTAGMS procedure are two rankings of the alternatives A, namely a necessary
and a possible ranking. For any pair a, b ∈ A:

1. in the necessary ranking, a is ranked at least as good as b if U(a) ≥ U(b)
for all value functions compatible with the preferences of the DM;

2. in the possible ranking, a is ranked at least as good as b if U(a) ≥ U(b) for
at least one value function compatible with the preferences of the DM.

An extension of UTAGMS called generalized regression with intensities of prefer-
ence (GRIP) has been proposed later by Figueira et al. (2009).

ROR has been further extended to sorting problems by Greco et al. (2010a).
They created a new method called UTADISGMS derived from UTADIS. In this
method, it is supposed that the DM provides imprecise assignments in the form
of intervals. For instance, the DM says that an alternative a is assigned between
category C1 and C3. UTADISGMS uses linear programming in order to compute
a set of additive value functions compatible with the preferences of the DM. The
method computes for each alternative a ∈ A two sets of assignments:

1. the set of possible assignments which corresponds to the list of categories
to which a is assigned by at least one of the value functions;

2. the set of necessary assignments which corresponds to the list of categories
to which a is assigned by all the value functions.

Angilella et al. (2010) introduced non-additive robust ordinal regression. This
variant takes criteria interactions into account by using the Choquet integral.
Later Greco et al. (2011) applied ROR in the context of outranking relations.
Recently, the concept of ROR has also been brought to the machine learning
field by Corrente et al. (2013). It has been extended to DRSA by Słowiński et al.
(2014).

2.4.6 Handling inconsistencies

When a model is learned based on assignment examples, it may happen that the
model is incompatible with some preference statements of the decision maker.
Inconsistencies can be due to several reasons.
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One of the possible root cause of incompatible assignments is that the model
is not well-suited to the problem. In that case, the model chosen to represent
the DM’s preferences has to be reconsidered. Some research papers deal with the
selection of the MCDA model (see e.g. Ozernoy, 1987, 1992).

Another case causing inconsistencies occurs when the DM’s preferences are not
firmly established in his/her mind. This results in inconsistencies in preference
statements. For instance, in the case of a sorting problem, these inconsistencies
arise when the DM classifies an alternative a dominated by another one b in
a better category than b. In MCDA, some works have been dedicated to the
detection of inconsistencies with respect to a specific model. Some methods
designed to fix these inconsistencies have been proposed, e.g. MACBETH (Bana
e Costa and Vansnick, 1994).

Mousseau et al. (2003) proposed two different methods to cope with incon-
sistencies with respect to a MCDA model. They assume that the information
provided by the DM are imprecise and represented as constraints on the param-
eters of a MCDA model. An interactive process is considered in which the DM
starts the first iteration with very limited information and adds successively new
constraints to the model. The process stops when the DM is satisfied with the
model that has been learned. During the process, it can happen that the addition
of a constraint reduces the space of solutions to the empty set. At this moment,
it is interesting to identify the subsets of constraints that make the problem in-
feasible. That is the purpose of the two methods proposed by Mousseau et al.
(2003). They consist respectively in a MIP and a LP that identify the list of
minimal subsets of constraints that induce inconsistencies with respect to the
model. In the paper, the algorithms are tested in the context of the elicitation
of the parameters of an ELECTRE TRI model.

An extension of the algorithms proposed by Mousseau et al. (2003) has been
developed by Mousseau et al. (2006). Instead of removing constraints, the ap-
proach proposed by Mousseau et al. (2006) consists in relaxing the constraints.
In practice, when learning the parameters of a sorting problem, it amounts to
enlarging the list of possible assignments for an alternative.

2.5 Preference learning

In this section, we present the main concepts in preference learning (PL). We
recall the type of problems treated in PL and the indicators that allow to assess
the quality of a solution obtained with a PL algorithm.
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2.5.1 Purpose of preference learning

Preference learning is a subfield of machine learning (ML). In PL, predictive
models are learned on the basis of observed preference information. Preference
learning algorithms are conceived in order to handle large data sets. The problems
treated in this field might involve several hundreds of instances. The methods
and algorithms used in PL usually rely on strong statistical foundations.

There exist various types of preference learning problems. Fürnkranz and
Hüllermeier (2010) differentiate problems along several dimensions. We describe
these dimension below.

Representation of the preferences Preferences can be represented in differ-
ent ways. One can split these preferences in two families: absolute and
relative preferences. The former consists in assessing alternatives while the
latter consists in comparing alternatives with each other. Two kinds of
absolute preferences are distinguished:

• binary preference: an alternative is considered either as “good” or
“bad”;

• value function: a score is assigned to each alternative, representing its
degree of preference; the score can be either numeric or ordinal.

Different types of relative preference exist. One distinguishes two classes:

• total order: an object can be compared to any other alternative of the
set;

• partial order: some objects are incomparable.

Type of objects The type of alternatives that are treated in preference learning
can be presented in different forms: identifier, feature vector, structured
objects, . . .

Type of training input The training input can be constituted of relative or
absolute preferences. As an example, the training input can be a total
order. Moreover the training input can be complete or incomplete. For
instance some feature vectors might be incomplete.

2.5.2 Supervised learning problems with distinguished input
and output spaces

Hüllermeier (2014) distinguishes supervised learning problems in which the in-
put and output spaces are clearly distinguished from the others. In this type
of problems, the input instances are mapped to preference models. The input
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space of the problem usually consists of a set of instances associated to a feature
vector. We denote it by X and x = (x1, x2, . . . , xm) ∈ X represents a vector of
features. In these problems, the output space is usually complex and structured.
The output space can be, for instance, a set of permutations of labels, a set
of combinations of labels. We describe in the next paragraphs some supervised
learning problems as a function of the representation of the output space.

Multi-label classification

Multi-label classification has been introduced by Tsoumakas and Katakis (2007).
Consider a set of labels denoted by L = {θ1, θ2, . . . , θk}. There exists no natural
order of the labels. Multi-label classification aims at assigning a subset of relevant
labels Lx ⊆ L to each instance x ∈ X. The output space SL consists in the power
set of the labels. The training instances given as input to the algorithm is usually
of the form (x,Lx), where x is a feature vector and Lx represents a subset of labels
associated with the instance x.

Example 5. As an example of a multi-label classification problem, consider a
set of labels L representing different types of activities: hiking, tennis, football
and basket. The input space consists of a set of students who have to select a
list of sports they like. The set of students constitutes the input space X of the
problem. For a student x, a possible subset of activities that he/she likes Lx

might be [football, basket]. The multi-label classification algorithm takes as input
a list of tuples constituted of a student and the list of sports he/she likes, e.g.
{(John, [football, basket]); (Marc, [hiking]); (Peter, [tennis, basket])}.

Multi-label ranking

Multi-label ranking is a variation on multi-label classification. The training input
given to the algorithm remains the same as for multi-label classification. In this
type of problems, the predicted output of the algorithm is a ranking of the labels
for an instance x denoted by πx. The output space SL of the learned function
consists of the set of permutations of all the labels.

Example 6. Applied to Example 5 introduced above, a multi-label classification
algorithm will compute a ranking over the labels for each alternative. For in-
stance, a possible prediction of the algorithm for a student x is football ≻ basket ≻
tennis ≻ hiking.

Graded multi-label classification

Graded multi-label classification has been introduced by Cheng et al. (2010b).
This variant of multi-label classification consists of assigning a grade to each
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label. The grade represents the degree of membership of the label. A high grade
corresponds to a strong membership of the label to the subset Lx. The degree
of membership of a label θ in a set Lx is denoted by Lx(θ). Graded multi-label
classification algorithms learn a function fx that assigns a grade to each label in
Lx for each instance x ∈ X.

Example 7. Applied to Example 5 introduced in the paragraph about multi-label
classification, it consists of assigning a grade to each label of the set L. If the score
is a number, ranging between 1 and 3, a possible output for a student x can be
fx(football) = 2, fx(basket) = 3, fx(tennis) = 1, fx(hiking) = 2. This implies that
he/she prefers basket over football and hiking which are tied in his preferences.
Tennis is the least preferred sport for this student.

Graded multi-label ranking

This slight variation of graded multi-label classification consists of predicting a
ranking over the labels for each instance x ∈ X. The difference lies in the input
given to the algorithm. In multi-label ranking, a subset of labels is associated to
each instance. In graded multi-label ranking a score is associated to each label
for each instance. The output remains the same as in multi-label ranking.

Label ranking

This family of problems has been introduced by Hüllermeier et al. (2008). Label
ranking problems take as input a set of training instances which are usually
represented by a feature vector. A set of labels L is defined. Each learning
instance is associated to a set of pairwise preferences among the labels. For an
instance x, the pairwise preferences are of the form θ(i) ≻x θ(j), with θ(i), θ(j) ∈ L.
Preferences over labels are expressed in a relative way. For an instance x, all pairs
of labels are not necessarily compared. A label ranking algorithm tries to learn
a function that maps each instance of the set X to a ranking ≻x of L.

2.5.3 Other learning problems

Other learning problems include problems in which there is no clear distinction
between the input and output spaces. We describe these type of problems in the
next paragraphs.

Instance ranking

Instance ranking consists in assigning a label θ(i) ∈ L to an instance x ∈ X. The
labels in L have a natural order such that θ(k) ≻ θ(k−1) ≻ . . . ≻ θ(2) ≻ θ(1).
The training input given to the algorithm consists in a set of instances coupled
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to a label, i.e. pairs (x, θ(i)). The goal is to learn a function predicting the score
of an alternative based on its performances on the different attributes. Instance
ranking problems are identical to sorting problems in MCDA.

Object ranking

Object ranking consists in finding a ranking function f that allows to rank a finite
set of objects A. A typical ranking function associates a score to each alternative
and then sorts the alternatives by score. Algorithms in this field take as input a
set of pairwise preferences on the objects in the form a ≻ b, with a, b ∈ A∗, with
A∗ ⊆ X. The performances of objects a, b ∈ A∗ are usually also given as input
to the algorithm. A ranking function is learned based on this information and
then used to predict the ranking of other objects. Object ranking problems are
similar to ranking problems in MCDA.

Collaborative filtering

Collaborative filtering consists of using the information provided by a group of
users over a finite set of objects in order to determine the preferences of other
users for these objects. This family of problems has been introduced by Goldberg
et al. (1992). The training instances given to the algorithm consists in incomplete
score vectors over a set of objects. Collaborative filtering algorithms try to predict
the scores that are not known for an object.

Dyadic prediction

Dyadic prediction has been introduced by Menon and Elkan (2010). It is a more
general form of collaborative filtering. In such type of problems, the input given
to the algorithm consists in pairs, called dyads, associated to a label. Each
instance in the pair is evaluated on a set of attributes which are not necessarily
the same for both instances. The goal of the algorithm is to predict a label for
other pairs.

2.5.4 Loss functions and model evaluation methods

In this part, we review the list of loss functions used to assess assignments ob-
tained using sorting models.

We consider a set of m alternatives A evaluated on n criteria. These alter-
natives are naturally assigned to one of the categories selected among a set of p
ordered categories C going from C1 to Cp, such that Cp ≻ Cp−1 ≻ . . . ≻ C1. Let
sM : A → C. We denote by sM (a) the assignment of the alternative a obtained
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with model M . Similarly, let sM ′ : A → C, we denote by sM ′(a) the assignment
of the alternative a obtained through model M ′.

Usually, the assignment obtained with a model M ′ is compared to the “ground
truth” represented by model M . It is the case in the measures defined below.

Classification accuracy, error rate

The classification accuracy (CA) indicates the proportion of alternatives that are
correctly assigned by model M . Formally, it is defined as:

CA =
|a ∈ A : sM (a) = sM ′(a)|

|a ∈ A| . (2.28)

The error rate indicates the ratio of alternatives that are incorrectly assigned
by the model M . It corresponds to the complement of the CA and it is defined
as:

ER = 1− CA =
|a ∈ A : sM (a) 6= sM ′(a)|

|a ∈ A| . (2.29)

This quality index is the most used when assessing the quality of a classifier.
However it does not give a good indication about the discriminating power of the
classifier. We illustrate this through an example.

Example 8. For instance, consider a set of alternatives assigned either to cate-
gory C1 or C2. In this set, 99% of the alternatives are assigned to C1 according
to the model M . If a model M ′ assigns all the alternatives to C1, then CA is
equal to 99%. This value can be misleading since the classifier aims to be efficient
while it is not since it cannot discriminate the 99% alternatives that belong to C1

from the ones that belong to C2.

Confusion matrix

A confusion matrix is a table in which each row contains the number of alter-
natives that are actually assigned to a given class according to the ground truth
and each column contains the number of alternatives that are assigned by the
model to a given class.

The schema of a confusion table for a problem involving two classes C2 ≻ C1

is given in Table 2.3. The class C1 is considered as the “negative” class while C2

is considered as the “positive” class. The notion of confusion matrix can easily
be extended to problems involving more than 2 categories.

The first cell in the table contains the number of true negative instances,
i.e. the number of instances that have been correctly classified in C1 by the
model. Similarly the bottom right cell shows the number of alternatives correctly
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Table 2.3: Confusion matrix.

Predicted class

G
ro

un
d

tr
ut

h C1 C2

C1 True
negative

False
positive

C2 False
negative

True
positive

classified in C2 by the model. The top right and bottom left respectively indicate
the number of alternatives that have been wrongly assigned by the model to C2

and C1.
Tables of confusion allow to observe the efficiency of the classifier to discrim-

inate alternatives from different classes. It shows whether the classifier makes
big errors, i.e. classifies alternatives far from their ground truth category. This is
even clearer when the number of categories p is large, in particular larger than 2.
The table also indicates if the classifier is neutral, pessimistic or optimistic, i.e.
if incorrect assignments are fairly spread between categories or if the algorithm
assigns more likely to worse or better categories.

From a confusion matrix it is possible to compute several indices reflecting
the precision and efficiency of a classifier. The formula to compute some of these
indices are given below:

True positive rate =
True positive

True positive + False negative
, (2.30)

False positive rate =
False positive

False positive + True negative
, (2.31)

Precision =
True positive

True positive + False positive
. (2.32)

Confusion tables offer a lot of information. However it requires some analysis
in order to be able to assess the efficiency of a classifier since it does not deliver
a single index contrary to CA.

Receiving operating characteristic

The receiving operating characteristic (ROC) curve (Fawcett, 2006) provides a
measure of the efficiency of a binary classifier to discriminate alternatives.

An example of ROC graph is displayed in Figure 2.7. The abscissa and
ordinate values correspond respectively to the false positive rate (Equation (2.31))
and to the true positive rate (Equation (2.30)). Each classifier corresponds to
a point in this graph. The more to the North West of the graph the point is
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located, the more efficient the classifier is at discriminating alternatives from the
lower and upper classes. For instance, in Figure 2.7, the classifier M ′ is more
efficient than M since its true positive rate is better. It reports also less false
positive.

True positive rate

False positive rate0
0

1

1

(1, 1)

M ′

M

Figure 2.7: Receiving operating characteristic (ROC) curve.

When the classifier computes a score and uses a threshold to discriminate
alternatives between two classes (e.g. logistic regression, see below), it is possible
to plot a curve as shown on Figure 2.7 by varying the threshold value. Fawcett
(2006) proposes an efficient method to plot the ROC curve of a classifier. First
it consists in sorting the alternatives by descending value of their score. As the
score of an alternative does not change, the assignment of this alternative remains
monotone. Indeed, an alternative cannot be assigned to a worse category if the
threshold decreases. Then the value of the threshold is increased progressively
and the true positive and false positive rates are updated accordingly.

We remark that the ROC curve shows the performance of a classifier indepen-
dently of the distribution in classes. Indeed, a variation of the number of positive
instances does not affect the ROC curve since it is respectively the true positive
and false positive rate that are taken into account.

Area under the curve

The area under the curve (AUC) corresponds to the area under a ROC curve. It
represents the probability that a classifier will rank a randomly chosen positive
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instance higher than a randomly chosen negative one. The value of the AUC is
comprised between 0 and 1.

The value of the AUC can be computed through different estimators. Faraggi
and Reiser (2002) made an empirical study of these estimators. In our exper-
iments, we use the Mann-Whitney approach which provides an unbiased non-
parametric estimator for computing the AUC. For a binary classifier, sorting
alternatives in two classes C2 and C1, with C2 ≻ C1, the AUC can be expressed
as follows:

AUC =
1

|A1| · |A2|
∑

ai∈A2

∑

ak∈A1

If(ai)>f(ak) (2.33)

where A1 (resp. A2) denotes the set of alternatives classified in C1 (resp. C2)
according to the ground truth, f is a classifier function and If(ai)>f(ak) is an
indicator function that is equal to 1 when f(ai) > f(ak) is true and equal to 0
otherwise.

Waegeman et al. (2008) generalized this formulation of the AUC for p cat-
egories, with Cp ≻ Cp−1 ≻ . . . ≻ C1. The approach proceeds by dichotomy.
It consists in building successively a set of twofold partitions, (C≤h, C>h) for h
going from 1 to p − 1. In each twofold partition, the first set C≤h denotes the
set of categories below and including Ch. The second set C>h denotes the set of
categories above Ch. Waegeman et al. (2008) compute an AUC for each twofold
partition, this AUC is denoted by AUC h and is computed as follows:

AUC h =
1

|A≤h| · |A>h|
∑

ai∈A>h

∑

ak∈A≤h

If(ai)>f(ak)

where A≤h (resp. A>h) denotes the set of alternatives classified below and in Ch

(resp. above Ch) according to the ground truth, f is a classifier function and
If(ai)>f(ak) is an indicator function that is equal to 1 when f(ai) > f(ak) is true
and equal to 0 otherwise. The global AUC value is computed by averaging the
p− 1 AUC h values as follows:

AUC =
1

p− 1

p−1
∑

h=1

AUC h. (2.34)

2.6 Monotone learning in a sorting context

In this thesis, we focus mainly on sorting problems in which the monotonicity of
attributes is guaranteed. In this part of the chapter, we describe some algorithms
dedicated to sorting problems.
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Figure 2.8: Logistic function.

2.6.1 Logistic regression

Logistic regression (Cox, 1958) is used in statistics to determine the probability of
an outcome based on input variables, also called predictive variables. The input
variables are either continuous or binary. Depending on the output variable,
logistic regression can be binomial, ordinal or multinomial. In binomial or binary
logistic regression, the output variable has only two possible values (e.g. “win”
or “loss”). In multinomial logistic regression, the output variable can have more
than 2 values that are not ordered (e.g. “car”, “bus” or “train”). In ordinal logistic
regression, the output variables are ordered (e.g. “good”, “medium” or “bad”).
Binary ordinal logistic regression is a particular case of ordinal regression where
the output is binary.

Below we recall what a logistic function is and then we describe how the
logistic regression is used in classification.

Logistic function

Logistic regression models are using logistic functions. A logistic function can
take any real value as input and always outputs a value between 0 and 1. The
logistic function z(t) is the function having the following form:

z(t) =
1

1 + e−t
(2.35)

where variable t is usually expressed as a linear function of a linear combination
of explanatory variables x1, x2, . . . , xn:

t = θ0 + θ1x1 + θ2x2 + . . .+ θnxn. (2.36)

An example of such a function is displayed in Figure (2.8). By replacing t in
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Equation (2.35), one can express the logistic function as follows:

hθ(x) =
1

1 + e−θ0−θ1x1−θ2x2−...−θnxn
.

The value of this function can be interpreted as the probability of an outcome y
for a given value of the input variables x1, x2, . . . , xn. We denote by P (y = 1|x)
the probability of having y = 1 associated to the input vector x. The probability
of having y equal to zero is denoted by P (y = 0|x) and is the complement of
P (y = 1|x), i.e. P (y = 0|x) = 1− P (y = 1|x).

Using logistic regression for classification

The logistic regression is used in the context of preference learning where the
monotonicity of the attributes is guaranteed. One way to use this model is
to consider that an alternative x is classified in class y = 1 if the probability
P (y = 1|x) is greater than 0.5, otherwise it is classified in y = 0.

In such a model, the parameters that have to be determined are the values
of θ0 to θn. Learning these parameters can be done based on a learning set
composed of pairs (x, y) in which x is a vector of performances and y the binary
output value associated to x. Inferring the values of θ0, θ1, . . . , θn implies the
definition of a cost function. In logistic regression, the cost function used is given
in the following equation:

Cost(hθ(x), y) = −y · log(hθ(x))− (1− y) · log(1− hθ(x)).

The value of the cost function is equal to − log(hθ(x)) when the value of y is equal
to 1. Otherwise, if y = 0, the value of Cost(hθ(x), y) is equal to log(1 − hθ(x)).
It means that the cost is huge when the value of y = 1 (resp. y = 0) if the
value of hθ(x) is close to 0 (resp. 1). On the contrary, the cost value is small
for y = 1 (resp. y = 0) if hθ(x) is close to 1 (resp. 0). This cost function is
convex which means that a standard gradient descent method can be applied for
finding θ0, θ1, . . . , θn. For a learning set composed of m pairs (x(i), y(i)), with
i = 1, . . . ,m, the objective is:

min
θ

− 1

m

m
∑

i=1

y(i) log(hθ(x
(i)))− (1− y(i)) log(1− hθ(x

(i))). (2.37)

For problems in which more than two classes are involved, a logistic regression
is applied for each class. Finally, the alternative is assigned to the class in which
the value of the associated logistic function has the highest value.
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2.6.2 Choquistic regression

In logistic regression, the logistic function (2.35) does not take attribute interac-
tions into account. Tehrani et al. (2012) proposed to modify the logistic function
in order to take attribute interactions into account. To do so, they advocate
the use of the Choquet integral through a new model called “Choquistic model”.
Before, the Choquet integral has been widely studied in the domain of multiple-
criteria decision analysis (Grabisch and Roubens, 2000; Grabisch and Labreuche,
2010) but not in machine learning.

The Choquistic model consists in replacing the linear function given in Equa-
tion (2.36) by a Choquet integral. The Choquet integral of a vector x = (x1, . . . , xn) ∈
Rn is defined as:

Cµ(x) =

n
∑

j=1

[xτ(j) − xτ(j−1)] · µ({τ(i), . . . , τ(n)}), (2.38)

where τ is a permutation of the indices {1, . . . , n} such that 0 ≤ xτ(1) ≤ xτ(2) ≤
. . . ≤ xτ(n) and µ({τ(i), . . . , τ(n)}) is the capacity of the subset of criteria
{τ(i), . . . , τ(n)} as described in Definition 4.

In the Choquistic regression, the variable t in logistic function (2.35) is re-
placed as follows:

hCµ
(x) =

1

1 + e−γ(Cµ(x)−β)
, (2.39)

where γ, β ∈ R are two constants. The value of β defines the threshold separating
the two categories of the model. If the value of Cµ(x) is greater than β then the
alternative is classified in the “good” category, otherwise it is classified in the
“bad” category.

Tehrani et al. (2012) propose a manner to elicit the parameters of this model
through the standard gradient-based optimization methods with constraints. This
paper deals with problems in which only two categories are considered. Tehrani
et al. (2011) also developed the Choquistic regression for problems involving more
than two categories.

2.6.3 Decision tree based algorithms for ordinal classification

Potharst and Bioch (1999) developed an algorithm which generates a binary
decision tree that enables to classify alternatives in ordered categories. In a
binary decision tree, the data set is split in two disjoint sets at each node by
testing one of the attributes against a threshold value. The test done at each
node on each alternative a ∈ A∗ has the following form: aj ≤ β for some β ∈ Xj .

An example of a binary decision tree is shown in Figure 2.9. In this tree,
three criteria and three categories, with C3 ≻ C2 ≻ C1, are involved. We
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Figure 2.9: Binary decision tree.

describe briefly the assignment procedure. The first node splits the alternatives
space in two disjoint subsets on the basis of the value on the first criterion: the
first subset (node 2) contains alternatives of X that have a score lower than 0.5
on criterion 1 and the second subset (node 3) is the complement. In node 2,
the alternatives space is split again in two disjoint subsets: the first one contains
alternatives that have a score smaller than or equal to 0.1, the second one contains
the alternatives having a score greater than 0.1. Alternatives of the first subset
are then assigned to category C1 and the ones in the second subset are assigned to
C2. Similarly node 3 and node 4 split the space by discriminating the alternatives
on, respectively, the third and fourth criteria.

An advantage of decision trees over some other preference learning algorithms
is that it is easy to interpret the assignment rule resulting from the decision tree.
Indeed, the assignment rule of a decision tree can be described as a disjunction
of conjunctions. For instance, for the tree shown on Figure 2.9, an alternative a
is assigned to category C1 if the following condition is fulfilled:

a ∈ C1 ⇐⇒ [(a1 ≤ 0.5) ∧ (a2 ≤ 0.2)] ∨ [(a1 > 0.5) ∧ (a3 ≤ 0.1)].

Potharst and Bioch (1999) described an algorithm that allows to induce such
a binary decision tree based on an input data set. The data set A∗ that is given
as input to the algorithm has to be monotone, i.e. for all a, b ∈ A∗ such that
aj ≥ bj for every j ∈ N we have C(a) ≥ C(b). The algorithm splits recursively
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the input data sets A∗ and ensures that the monotonicity of the assignment rules
holds. Algorithm 1 shows the structure of the algorithm.

Algorithm 1 Decision tree algorithm for ordinal classification.
function GenerateTree(T,A∗)

Update(T,A∗)
if Stop(T ) then

AssignCategory(T )
else

(Tl, Tr) = Split(T,A∗)
GenerateTree(Tl, A

∗)
GenerateTree(Tr, A

∗)
end if

end function

Let x, y be two instance vectors of X, we have x ≤ y if and only if xj ≤ yj
for all j ∈ N . Similarly, we have x < y if and only if xj ≤ yj for all j ∈ N
and xj < yj on a least one j ∈ N . In Algorithm 1, T represents a subset of the
alternatives space X: T = {x ∈ X : t− < x ≤ t+}, with t− and t+, two instance
vectors of X such that t−j ≤ t+j for all j ∈ N . The algorithm is composed of 4
main parts:

1. The update function which ensures the monotonicity. It consists in adding
the worst possible and the best possible instance vectors of T in the data
set if it is not already in it.

2. The stopping rule which determines when to stop splitting the alternatives
space. The splitting stops once the worst and the best instances of T are
assigned to the same category.

3. The assignment rule which assigns a category to a leaf.

4. The split rule which divides the data set in two disjoint subsets based on
the score on one criterion j.

Later, Potharst and Feelders (2002) proposed a variant of the algorithm which
is able to handle non-monotone data sets.

van de Kamp et al. (2009) presented a new algorithm learning monotone
binary decision trees. The algorithm proposed in this paper can be combined
with any standard classification tree algorithm. It takes as input a tree and
returns a monotone decision tree as output. In order to ensure the monotonicity
of the tree, the algorithm uses antitonic regression. It was shown that the isotonic
classification tree algorithm performs better than standard trees on real data sets.
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Giove et al. (2002) proposed another type of binary decision tree. Instead
of assigning the object to a particular class, the method consists in assigning
the object to a lower or upper class range with a probability. At each node a
test of the type aj ≥ β, with β a constant, is made on an attribute j. The
first subnode contains the alternatives passing the test and the second the other
ones. In the first subnode, the alternatives that do not pass the test are assigned
with a probability index to all the downward unions of categories, i.e. C≤h, with
h = {1, . . . , p}. Similarly, the alternatives of the second node are assigned with a
probability index to all the unions of upward categories C≥h, with h = {1, . . . , p}.
The advantage of this algorithm is that it does not require any hypothesis on the
input data set, i.e. the attributes should be necessarily monotone.

2.7 Links and differences between multiple-criteria
decision analysis and preference learning

This section describes major links and differences between preference learning
and multiple-criteria decision analysis. A list of these differences and links has
been emphasized in Hüllermeier (2014) and in Corrente et al. (2013).

2.7.1 Size of the problems

Problems in PL often involve several hundreds of alternatives both in the learning
and test sets. For instance, the data sets used in Duivesteijn and Feelders (2008)
contain from 200 to about 1000 alternatives. In monotone learning, a subfield
of PL, this size of problem is also common. Other papers deal with applications
based on data sets containing several thousands of alternatives (Cheng et al.,
2009, 2010a) or even with several millions of alternatives (Bache and Lichman,
2013).

In MCDA, the decision problems are generally small. Datasets studied in this
field usually contain few alternatives. As an example, in Norese and Carbone
(2014), ELECTRE TRI has been used to assess the marginal and overall acti-
vation of 21 Italian airports in reaction to a crisis. Another example is Figueira
et al. (2011) who used ELECTRE TRI-C in the context of assisted reproduction.
In this application, the data sets consisted of 51 couples.

Problems in PL usually involve a lot of attributes. For instance in Hüllermeier
et al. (2008), more than 20 attributes were used in the context of label ranking. In
MCDA, the number of criteria is usually more limited, but much more engineered,
i.e. the semantic of the criteria is very well known and the definition of the criteria
is better established than in PL. For instance in Metchebon Takougang (2010),
the criteria chosen to study the deterioration of the landscape in the Loulouka
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watershed have been studied in depth and chosen in accordance with the nature
of the decision problem.

In PL, the lack of interpretability of the models is usually balanced by the
data set size. The inferred models rely on a larger set of information than in
MCDA.

2.7.2 Interpretability and accuracy

In PL, the objective is to determine the parameters of an estimator that reflects
as well as possible the ground truth, no matter the complexity of the underlying
model. There are weak assumptions about the models used. The emphasis is
put on the performances of the algorithm. In sorting algorithms, the emphasis
is put on the outcome of the algorithm in terms of classification accuracy, area
under the curve, etc. For instance, in Daniels and Kamp (1999); Duivesteijn and
Feelders (2008) the emphasis is put on the performance of the algorithms in terms
of error rate.

Usually, in PL, less importance is given to the parameters of the estimator
than in MCDA. Indeed, the aim of PL algorithms is to maximize an objective
function that is clearly defined, not to find a model that can be explained to a
DM. The models learned in PL are generally more difficult to interpret. However
it is not always the case. For instance Potharst and Bioch (1999) developed an
algorithm that infers a decision tree. Such a type of model is easily interpretable
by a DM.

In MCDA, the emphasis is put on the interpretability of the model. It is
usually preferred to have a model that is understandable and interpretable than
one that is better in terms of classification accuracy but difficult to interpret.
When an inference procedure is used to learn the parameters of a MCDA model,
generally, the learned parameters are presented to the DM. The model is also
explained to the DM and, if needed, the analyst asks more questions to the DM
in order to refine or modify the learned model. Such a type of approach is used
in the algorithms presented in Mousseau et al. (2001, 2003). It works as follows.
The DM defines some assignment examples, linear programming techniques are
then used to learn the parameters of the MCDA model. The parameters learned
by the algorithm are then presented to the DM and he/she decides whether or
not some assignment examples have to be modified or if other constraints should
be added. Then, if needed, the LP or MIP is run again until the DM is satisfied
with the model.

In MCDA, the models used are well-founded. These models have strong inter-
pretation skills and the type of preferences that can be represented by a model
are well-known and studied. For instance, Bouyssou and Marchant (2007a,b)
studied the type of preferences that can be represented by a NCS model. Other
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papers deal with the type of preferences that can be represented more generally
with outranking methods (Bouyssou and Pirlot, 2005, 2007).

2.7.3 Monotonicity of the attributes

In PL it is not always assumed that attributes are monotonic. Most algorithms in
PL have been developed without any assumption about the monotonicity of the
attributes (see e.g. Chandrasekaran et al., 2005). This makes these algorithms
more flexible, i.e. able to deal with more data sets but it also makes them generally
less interpretable and convincing if the attribute scale of the problem is monotone.

In MCDA, attributes are generally used as criteria. By definition it implies
the monotonicity of the preference scale.

In PL, the field regrouping algorithms dealing with monotonic data sets is
called Monotone Learning. In the last years, some papers gave more importance
to this particular field in PL, see e.g. Potharst and Bioch (1999); Tehrani et al.
(2011).

2.7.4 Learning methods

Algorithms designed to learn the parameters of MCDA models are not always
conceived in order to deal with large data sets. In MCDA, a majority of the
learning procedure relies on linear programming or mixed integer programming
(see e.g. Zopounidis and Doumpos, 2000). Some MCDA learning algorithms
become inefficient when the size of the problems increases. For instance in Leroy
et al. (2011), a MIP has been proposed in order to infer the parameters of a
MR-Sort model. The program becomes inefficient when the size of the model
grows (number of criteria and categories) or when a lot of examples are given in
input to the algorithm. However, in the last years, some efforts have been made
in order to be able to handle larger problems.

In PL, the algorithms are usually based on non-linear and statistical methods.
For instance in Tehrani et al. (2012), quadratic programming is used to determine
the parameters of a model. These methods performs better than MIP for large
problems.

2.7.5 Interaction with the decision maker

In MCDA, there is usually a strong interaction with the decision maker during
the learning process. The inference of the model occurs by doing multiple iter-
ations in interaction with one or several DMs. The determination of the model
parameters is either done by eliciting them directly with the DM (direct elici-
tation) or by inferring the parameters from preference statements expressed by
the DM (indirect elicitation). An example of simple indirect elicitation is given
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in Simos (1990) where a procedure allowing to elicit the weights of a model by
interacting with a DM has been presented. The procedure consists in asking the
DM to rank a set of cards representing the criteria in order to determine empiri-
cally the weights of the criteria. Note that an improvement of this procedure has
been proposed in Figueira and Roy (2002). In indirect elicitation procedures, the
DM is often a participant in the elicitation procedure. If the learned model is not
consistent or is incompatible with some DM’s statements then he/she can revise
some of the assignments he/she gave as input. Such a type of procedure is used
for instance in Ngo The and Mousseau (2002). Another example is the interactive
approach proposed in Dias et al. (2002) in order to obtain robust conclusions in
interaction with a decision maker.

In PL, the preference information found in the data sets is considered as a
ground truth. Even if inconsistencies are identified in the data sets, the informa-
tion is not corrected in an interaction with a DM. The data sets are used as they
are without any interaction with a DM. In PL, the efficiency of the algorithms are
assessed by comparing the assignments, ranking, etc. to the ones of the learning
data sets which are considered one of the ground truth.

2.7.6 Robustness

Since the early days of MCDA and up to now, importance has been granted to
the robustness of the solutions found by the disaggregation algorithms (Vincke,
1999; Roy, 2010). In Greco et al. (2010b), robust ordinal regression has been
introduced in order to provide the DM with a list of all the possible and necessary
consequences derived from the DM’s preference statements (and assuming a given
model, for instance, an additive value function). This approach allows to have
an idea of how the model is constrained by the DM’s preference statements and
gives the opportunity to propose several models as output.

In PL, less focus is put on the robustness of the model. PL algorithms gener-
ally provide only one solution to the problem and usually no sensitivity analysis is
performed. However, note that ROR has been recently introduced in the machine
learning field by Corrente et al. (2013).
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Learning a majority rule sorting

model from large data sets

In this chapter, we present a metaheuristic designed for learning the parame-
ters of a majority rule sorting (MR-Sort) model on the basis of large sets of
assignment examples. The first part of the chapter describes the purpose of the
metaheuristic and the strategy adopted in order to learn efficiently the parame-
ters of a MR-Sort model. The second part of the chapter details the components
of the metaheuristic and the different strategies considered for each component.
Finally, the end of this chapter is devoted to experimental tests with artificial
and real data sets.

3.1 Purpose of the metaheuristic

Learning the parameters of a MR-Sort model can be achieved in different ways.
In this section, we describe why we chose to learn the parameters with a meta-
heuristic.

3.1.1 Handling large data sets

The aim of the metaheuristic described here is to learn the whole set of parameters
of a MR-Sort model without veto on the basis of assignment examples. Examples
given as input to the metaheuristic are vectors of performances for which an
assignment is known. The metaheuristic should be able to handle large data sets
similar to the ones used in the field of preference learning (PL). As mentioned in
Chapter 2, PL data sets can involve several hundreds of examples.

Up to now, there is no algorithm that allows to learn the parameters of a
MR-Sort model when large data sets are involved. In Chapter 2 we reminded

65



66 Chapter 3. Learning a MR-Sort model from large data sets

some algorithms devoted to learn globally or partially the parameters of such a
model. None of them is able to deal efficiently with large data sets.

In Leroy et al. (2011), a linear program involving binary variables was used to
learn the parameters of a MR-Sort model (without veto). The program tries to
minimize the 0/1 loss, i.e. it searches for a model that is compatible with as many
examples as possible. Learning the parameters of a MR-Sort model with linear
programming requires the use of binary variables. The mixed integer program
(MIP) proposed by Leroy et al. (2011) involves m(2n+1) binary variables, where
m is the size of the learning set and n the number of attributes. Experimental
results showed that learning the parameters of a model for data sets involving a
large number of assignment examples, criteria or categories, requires huge com-
puting times with the MIP (using the IBM ILOG CPLEX solver). With barely
100 alternatives, 5 criteria and 3 categories (i.e. 1100 binary variables in the
MIP), more than 100 seconds are needed to learn the parameters of a MR-Sort
model1. Due to these long computing times, the MIP is not able to deal with
problems involving large data sets.

3.1.2 Interpretability of the model

To our knowledge, none of the sorting algorithms used in the domain of preference
learning are based on ELECTRE models. This type of models provides the
advantage to be easily interpretable. The assignment obtained in output can be
more easily explained with the value of the model parameters. As we explained in
the previous chapter, this is an advantage when the output of preference learning
algorithm has to be justified. For instance, in the medical sector, doctors may
ask for justification for the assignment of a patient in a given category. With
MR-Sort, the assignment of an alternative to a category can be explained with
compact and intuitive rules.

3.2 Past researches and strategy for the elaboration of
the metaheuristic

In Chapter 2, we presented past researches dedicated to the global or partial
inference of MR-Sort parameters. Due to the long computing time required for
learning the parameters of a MR-Sort with the MIP developed in Leroy et al.
(2011), using this algorithm is not a feasible approach for the type of problems
we want to handle, i.e. problems involving large data sets. An option to over-
come the computing time issue is to use relaxation techniques that allow the
obtainment of approximate solutions (Wolsey, 1998; Minoux, 2008). Instead of

1System used: Core 2 Duo P8700, running Gentoo Linux and CPLEX 12.5



3.3. Description of the metaheuristic 67

exploring this path (which certainly deserves attention) we developed a new so-
phisticated - population based - metaheuristic which exploits as much as possible
the specificities of the problem.

A metaheuristic presented by Doumpos et al. (2009) learns the parameters of
an ELECTRE TRI model. Since MR-Sort is a light version of ELECTRE TRI
which involves less parameters, it is possible to adapt this metaheuristic in order
to learn the parameters of a MR-Sort model. However, the genetic algorithm
described by Doumpos et al. (2009) uses standard mutation, cross-over and se-
lection operators. In operation research, it is well-known that a metaheuristic
adapted to the structure of the problem performs better (Pirlot, 1996).

In order to have an efficient algorithm which exploits as much as possible the
structure of the problem, we try to take advantage of past research. Mousseau
et al. (2001) showed that it was easy to learn the weights and majority threshold
of a MR-Sort model with linear programming technique. It does not involve the
use of integer variables, therefore the problem can be solved efficiently with the
simplex algorithm. On the contrary, past studies have shown that learning the
profiles of a MR-Sort model is not so easy. The MIP presented by Ngo The and
Mousseau (2002) involves the use of binary variables in order to learn the profiles.
It implies that the computing time becomes quickly prohibitive when the size of
the problem increases.

In summary, we extract two pieces of information from past research:

• Given a set of profiles, learning the weights and the majority threshold of
a MR-Sort model can easily be achieved using a linear program without
binary variables.

• In contrast, given a set of weights and a majority threshold, learning the
profiles values by means of linear programming requires using binary (0/1)
variables.

Based on these two pieces of information, we develop a metaheuristic which is
described in depth in the next section.

3.3 Description of the metaheuristic

In this section, we detail in depth the metaheuristic and its variants. We be-
gin with the description of the overall structure of the metaheuristic. Then we
describe its components in detail.
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3.3.1 The metaheuristic

To properly take the structure of the problem into account, i.e. the ease of learning
the weights and the majority threshold with a linear program and the difficulty
to do the same for the profiles, we separate the algorithm in three components:

1. A heuristic which initializes a set of profiles;

2. A linear program learning the weights and the majority threshold of the
model based on fixed profiles;

3. A heuristic adjusting the profiles to improve the quality of the model, while
keeping the weights and majority threshold fixed.

The objective of the algorithm is to find a model restoring as many examples
as possible. To assess the quality of the models, we use two indicators. The
first is the classification accuracy (CA) criterion, which is defined by equation
(2.28). The higher the value of the classification accuracy, the better the quality
of the model. The second indicator is the area under the curve (AUC) defined by
Equation (2.33), which quantifies the discriminating power of the algorithm to
separate alternatives in different classes. Obviously, by optimizing successively
the weights and threshold, then the profiles, again the weights and threshold and
so on, instead of optimizing all parameters simultaneously, there is no guarantee
that a very good solution will be reached, even though the process is iterated. In
order to enhance the chances to converge towards a very good solution, we adopt
an evolutionary approach evolving a population of Nmod MR-Sort models.

The general architecture of our algorithm is described as Algorithm 2. It
shows how the three components are combined to find a MR-Sort model that
restores as well as possible the assignment examples in the learning set.

Algorithm 2 Metaheuristic to learn all the parameters of a MR-Sort model
Generate a population of Nmod models with profiles set by an initializing heuris-
tic
repeat

for all model M of the set do
Learn the weights and majority threshold with a linear program, using

the current profiles
Adjust the profiles with a heuristic, using the current weights and

threshold; repeat Nit times.
end for
Reinitialize the

⌊

Nmod

2

⌋

models giving the bottom values of CA or AUC.
until Stopping criterion is met
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First a population of Nmod MR-Sort model is generated and, for each model,
the set of profiles are initialized by a specific heuristic. After the initialization
phase, for each model M , the algorithm solves a linear program to find the
weights and the majority threshold with fixed profiles (obtained in the initializa-
tion step). Then, for each model M , on the basis of the weights and majority
threshold learned in the previous step, the metaheuristic adjusts the profiles with
a randomized heuristic in order to maximize the number of examples compatible
with the model. The randomized heuristic alters the profiles Nit times for each
model M , after which the set of profiles restoring the largest number of assign-
ment examples is selected. This process results in a new population of Nmod

models. These are ordered by decreasing order quality. The top half of the mod-
els are retained while the bottom half (precisely

⌊

Nmod

2

⌋

models) are reset using
the initializing heuristic.

The algorithm stops either after having run a given number of times, denoted
by No (fixed a priori), or when it has found at least one model that restores
correctly all the assignment examples. If no model restores correctly all the
assignment examples, the best model is returned.

During our researches, we used two variants of this metaheuristic. Both are
described in the next paragraphs.

Variant 1: maximization of the CA

The first variant of the metaheuristic consists in using the classification accuracy
as quality criterion of a model M . It means that the selection of the models to
reinitialize is done by comparing their CA. A model M is in that case considered
better than another one M ′ if the CA of M is superior to the CA of M ′. The
best model returned by the metaheuristic is the one which has the highest CA.

Variant 2: maximization of the AUC

The second variant of the metaheuristic consists in using the AUC as quality
criterion for a model M . In that case, the selection process is done by comparing
the models with each other on the basis of their AUC. A model M is in that case
considered better than another one M ′ if the AUC of M is superior to the AUC
of M ′. The model returned by the metaheuristic is the one having the highest
AUC.

3.3.2 Profiles initialization

The first step of the algorithm consists in the initialization of a set of profiles
for each of the Nmod models in the population. The general idea of the heuristic
designed to set the value bhj of the profile bh on criterion j is the following. This
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value is chosen in order to maximize the discriminating power of each criterion,
relatively to the alternatives in the learning set A. More precisely, we set bhj in
such a way that alternatives ranked in the category above bh (i.e. Ch+1) typically
have an evaluation greater than bhj on criterion j and those ranked in the category
below bh (i.e. Ch) typically have an evaluation smaller than bhj .

In setting the initial profile values, we paid attention to the following aspects.
Firstly, to guarantee an equal treatment to all profiles, we chose to consider only
Ch and Ch+1 to determine bh. The reason for this option is to balance the
number of categories above and below the profiles that are taken into account
for determining this profile. For profiles b1 and bp−1, the only way to satisfy this
requirement is to consider only one category above and one category below the
profile.

The second issue is relative to the way the different categories are represented
in the learning set. Consider the subsets A∗h and A∗h+1 of alternatives in the
learning set A that are assigned, respectively, to categories Ch and Ch+1. These
subsets may be of quite different sizes. We weight the alternatives by using
the relative frequencies of A∗h and A∗h+1 in order to control the influence of
categories that are under- or over-represented in the learning set.

The initializing heuristic is implemented as follows:

1. For each category Ch, compute the frequency πh with which alternatives

in the learning set are assigned to category Ch, i.e., πh = |A∗h|
|A∗| .

2. For each criterion and each profile bh, a set of candidate profile values are
selected. They correspond to the performances of alternatives in A assigned
to categories Ch and Ch+1. The value of the profile, bhj , is chosen randomly
among the candidate values with some probability. The probability of each
candidate value is proportional to its likelihood to classify correctly alter-
natives of categories Ch and Ch+1 based on their performance on the sole
criterion j. In order to balance the influence of A∗h and A∗h+1, which
may be of quite different sizes, the examples are assigned a weight that is
inversely proportional to the size of the class they belong to.

3. The profiles are computed in descending order, enforcing the constraint that
values of the profiles on each criterion are ordered, i.e., we have bh+1

j ≥ bhj ,
for all criterion j and profile h.

3.3.3 Learning the weights and the majority threshold

Assuming that the profiles are given, learning the weights (wj , for all j ∈ N)
and the majority threshold (λ) of a MR-Sort model from assignment examples is
done by means of solving a linear program. The MR-Sort model postulates that
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the profiles dominate each other, i.e. bh+1
j ≥ bhj for all h and j, and the inequality

is strict for at least one j. The constraints derived from the assignments of the
alternatives in the learning set are expressed as follows:



































∑

j:aj≥bh−1
j

wj − xa + x′
a = λ ∀a ∈ A∗h, h = {2, . . . , p},

∑

j:aj≥bhj
wj + ya − y′a = λ− ε ∀a ∈ A∗h, h = {1, . . . , p− 1},

∑n
j=1 wj = 1,

wj ∈ [0; 1] j = 1, . . . , n,
λ ∈ [0.5; 1],

xa, ya, x
′
a, y

′
a ∈ R+

0 ∀a ∈ A∗.

(3.1)

The small positive number ε is used for transforming strict inequalities into non
strict ones. There are as many 4-tuples of variables xa, ya, x

′
a, y

′
a as there are

alternatives in the learning set A. The value of xa−x′
a (resp. ya− y′a) represents

the difference between the sum of the weights of the criteria belonging to the
coalition in favor of a ∈ A∗h with regard to bh−1 (resp. bh) and the majority
threshold. If both xa − x′

a and ya − y′a are positive, then the alternative a is
assigned to the right category. In order to try to maximize the number of exam-
ples correctly assigned by the model, the objective function of the linear program
minimizes the sum of x′

a and y′a, i.e. the objective function is min
∑

a∈A(x
′
a + y′a).

Note however that such an objective function does not guarantee that the maxi-
mal number of examples are correctly assigned. Failing to meet this goal may be
due to possible compensatory effects between constraints, i.e., the program may
favor a solution involving many small positive values of x′

a and y′a over a solution
involving large positive values of a few of these variables. Such a compensatory
behavior could be avoided, but at the cost of introducing binary variables in-
dicating each violation of the assignment constraints. We do not consider such
formulations in order to keep computing times within reasonable limits.

3.3.4 Learning the profiles

Learning the profiles by using a mathematical programming formulation requires
binary variables (Ngo The and Mousseau, 2002), leading to a MIP. In order to
deal with problems involving large learning sets (e.g. 300 assignment examples,
10 criteria and 5 categories), MIP is not an option, as discussed in Section 3.1.1.
Therefore we opt for a randomized heuristic algorithm. We describe two variants
of the heuristic.

For illustrative purposes, consider a model involving 3 categories and 5 cri-
teria. Figure 3.1 represents the profiles and criteria as well as four alternatives
respectively denoted as a⋆, a⊲, a⋄ and a◦. Criteria weights have been set equal
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(wj = 0.2 for j = 1, . . . , 5) and the majority threshold λ is set to 80%. Hence,
an alternative is considered superior to a profile if it is at least as good as the
profile on either four or five criteria.

Assume that the first three alternatives are misclassified by this model. The
first alternative, a⋆, is assigned to category C1 according to the decision maker
(DM) and to C2 by the model. The second one, a⊲, is assigned to category C2

according to the DM and to C1 by the model and the third one, a⋄, is assigned
to category C1 by the DM and to C3 by the model. Assuming fixed weights and
majority threshold, this means that the profiles delimiting the categories, are set
either too high or too low on one or several criteria. Assume also that alternative
a◦ is assigned to category C1 both by the DM and the model.

C1

C2

C3

crit. 1 crit. 2 crit. 3 crit. 4 crit. 5

b1

b2

a⋆

a⊲

a⋄

a◦

δa
⋆

1

δa
⊲

2

δa
⊲

4

δa
⋄

3

δa
◦

5

w1 = 0.2

w2 = 0.2

w3 = 0.2

w4 = 0.2

w5 = 0.2

λ = 0.8

Figure 3.1: Alternatives wrongly assigned because of profiles set too low or too
high

The idea implemented in the algorithm is to move up or down the profile
value on some criterion in order to improve classification accuracy. We evaluate
all possible moves of the profile on each attribute and select one likely to improve
classification accuracy.

Variant 1

Consider only two categories, C1 and C2, in the model presented in Figure 3.1
and an alternative a. We denote by aj , the evaluation of a on the criterion j.
Regarding the position of a on criterion j, the assignment of a and a move of the
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profile b1 by +δ or −δ, we can distinguish 8 cases (see Figure 3.2). We denote by
A∗h

l the subset of alternatives of the learning set that are assigned to the category
Ch by the decision maker but assigned in category Cl by the model.

(a) gj
b0j b1j b2j

aj

−δ

a ∈ A∗1
2

(b) gj
b0j b1j b2j

aj

+δ

(c) gj
b0j b1j b2j

aj

−δ

a ∈ A∗2
1

(d) gj
b0j b1j b2j

aj

+δ

(e) gj
b0j b1j b2j

aj

−δ

a ∈ A∗1
1

(f) gj
b0j b1j b2j

aj

+δ

(g) gj
b0j b1j b2j

aj

−δ

a ∈ A∗2
2

(h) gj
b0j b1j b2j

aj

+δ

Figure 3.2: Given the evaluation of an alternative a and of the profile b1 on
a criterion j, 8 possible cases regarding the alternative assignment, the current
profile value on j and a move of +δ or −δ.

In the 8 cases represented in Figure 3.2, we see that a move of b1 by +δ or
−δ on criterion j can have a positive (cases b, c, f, g) or a negative (cases a, d,
e, h) influence on the classification. We identify different subsets:

W+δ
1,j (resp. W−δ

1,j ) : the set of alternatives wrongly assigned by the model and
for which moving the profile b1 by +δ (resp. −δ) is in favor of the correct
assignment. It is for instance the case of a⊲ if the profile is moved by δa

⊲

2

on criterion 2.

R+δ
1,j (resp. R−δ

1,j) : the set of alternatives for which moving the profile b1 by +δ
(resp. −δ) on j does not favor the assignment to the correct class. It is for
instance the case of a◦ if the profile is moved by δa

◦

5 on criterion 5.
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Formally, the subsets read:

W+δ
1,j =

{

a ∈ A∗1
2 : b1j + δ > aj ≥ b1j

}

W−δ
1,j =

{

a ∈ A∗2
1 : b1j − δ ≤ aj < b1j

}

R+δ
1,j =

{

a ∈ A∗2
1 : b1j + δ > aj ≥ b1j

}

∪
{

a ∈ A∗2
2 : b1j + δ > aj ≥ b1j

}

R−δ
1,j =

{

a ∈ A∗1
2 : b1j − δ ≤ aj < b1j

}

∪
{

a ∈ A∗1
1 : b1j − δ ≤ aj < b1j

}

In order to assess the advantages of the different possible moves of the profile
level, the space between the profiles levels b1j and b0j on criterion j is split into k

sub-intervals by means of k subdivision points denoted by b1j − δl for l = 1, . . . , k.
The same is done between b1j and b2j by means of k subdivision points denoted by
b1j +δl for l = 1, . . . , k. We consider these 2k subdivision points scattered on both
sides of b1j as the candidate moves for the profile level b1j . Then, histograms similar
to those shown in Figure 3.3 are constructed for each criterion j. We denote by
W±δl

1,j (resp. R±δl
1,j ) the union of W+δl

1,j (resp. R+δl
1,j ) and W−δl

1,j (resp. R−δl
1,j ). The

bars lengths in the first histogram represent the number of alternatives in the
set W±δl

1,j (resp. R±δl
1,j ). In the last histogram, the bars lengths represent what is

formally a desirability index P defined by:

P (b1j ± δl) =

∣

∣

∣W
±δl
1,j

∣

∣

∣

∣

∣

∣W
±δl
1,j

∣

∣

∣+
∣

∣

∣R
±δl
1,j

∣

∣

∣

(3.2)

If we move the profile level b1j to b1j ± δl, the number |W±δl
1,j | will decrease by

|W±δl
1,j | − |R±δl

1,j | and the number |R±δl
1,j | will increase by the same quantity. If

the quantity |W±δl
1,j | − |R±δl

1,j | is positive, the number of correctly assigned alter-
natives with their evaluation on the right side of the profile will tend to increase
while the profile level is moved to b1j + δl. Of course, the number of correctly

assigned alternatives will not mechanically increase by |W±δl
1,j | − |R±δl

1,j | since the
corresponding change in the profile level only concerns criterion j. We use the
probabilities P (b1j ± δl) as indicators of the potential gain in correct classifica-
tion that can be expected from a move of the profile level on some criteria. The
probabilities associated with profile b1 on criterion j are computed and the value
L ∈ {−k, . . . ,−1, 1, . . . , k} for which the probability of b1j ± ∆ is maximal is
recorded. Then a random number r is drawn from the uniform distribution on
[0, 1]. If the value of r is smaller than P (b1j ± ∆), then the profile is moved to
b1j±∆, otherwise the profile is not moved at all. The same operation is performed
for each criterion.

One loop of the heuristic moving the profiles in the case of a model with 2
categories can be summarized by Algorithm 3.
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Figure 3.3: Histogram of the evaluations of misclassified alternatives on criterion
j

When more than two categories are involved, a similar algorithm is applied
to each profile. The desirability index (Equation (3.2)) is adapted as follows:

P (bhj ± δl) =

∣

∣

∣W
±δl
h,j

∣

∣

∣

∣

∣

∣W
±δl
h,j

∣

∣

∣+
∣

∣

∣R
±δl
h,j

∣

∣

∣
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Algorithm 3 Heuristic moving the profile of a MR-Sort model
for all j ∈ {1, . . . , n} do

Compute P (b1j ± δl), ∀l.
Find L such that P (b1j ±∆) = maxl P (b1j ± δl).
Draw a random number r from the uniform distribution [0, 1].
if r < P (b1j ±∆) then

Move b1j to the position corresponding to b1j ±∆.
Update the alternatives assignment.

end if
end for

with:

W+δ
h,j =

{

a ∈ A∗h
h+1 : bhj + δ > aj ≥ bhj

}

W−δ
h,j =

{

a ∈ A∗h+1
h : bhj − δ ≤ aj < bhj

}

R+δ
h,j =

{

a ∈ A∗h+1
h : bhj + δ > aj ≥ bhj

}

∪
{

a ∈ A∗h+1
h+1 : bhj + δ > aj ≥ bhj

}

R−δ
h,j =

{

a ∈ A∗h
h+1 : bhj − δ ≤ aj < bhj

}

∪
{

a ∈ A∗h
h : bhj − δ ≤ aj < bhj

}

Variant 2

The second variant of the heuristic uses the value of the concordance index stating
that an alternative a is as good as a profile bh in the computation of the desirability
index. To be more precise, let us define several subsets of alternatives for each
criterion j and each profile h and any positive value δ, which represents the size
of a move:

V +δ
h,j (resp. V −δ

h,j ) : the sets of alternatives misclassified in Ch+1 instead of Ch

(resp. Ch instead of Ch+1), for which moving the profile bh by +δ (resp.
−δ) on j results in a correct assignment. For instance, a⊲ belongs to the
set V −δ

1,2 on criterion 2 for δ ≥ δa
⊲

2 .

W+δ
h,j (resp. W−δ

h,j ) : the sets of alternatives misclassified in Ch+1 instead of Ch

(resp. Ch instead of Ch+1), for which moving the profile bh by +δ (resp. −δ)
on j strengthens the criteria coalition in favor of the correct classification
but will not by itself result in a correct assignment. For instance, a⋆ belongs
to the set W+δ

1,1 on criterion 1 for δ > δa
⋆

1 .

Q+δ
h,j (resp. Q−δ

h,j) : the sets of alternatives correctly classified in Ch+1 (resp.
Ch) for which moving the profile bh by +δ (resp. −δ) on j results in a
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misclassification. For instance, a◦ belongs to the set Q−δ
1,5 on criterion 5 for

δ > δa
◦

5 .

R+δ
h,j (resp. R−δ

h,j) : the sets of alternatives misclassified in Ch instead of Ch+1

(resp. Ch+1 instead of Ch), for which moving the profile bh by +δ (resp.
−δ) on j still strengthens the criteria coalition in favor of the incorrect
classification. For instance, a⊲ belongs to the set R+δ

1,4 on criterion 4 for

δ > δa
⊲

4 .

T+δ
h,j (resp. T−δ

h,j ) : the sets of alternatives assigned by the model to Ch+1 or
higher (resp. Ch or lower) but classified by the DM in a category below Ch

(resp. to a category above Ch+1), for which moving the profile by +δ (resp.
−δ) on j strengthens the criteria coalition in favor of a classification that
comes closer to the correct one. For instance a⋄ belongs to the set T+δ

2,3 on

criterion 3 for δ > δa
⋄

3 .

In the above, subsets of type V and W contain alternatives that will tend
to be better classified if we perform a given profile move. On the contrary, the
assignment of alternatives in subsets of type Q will be worsened by the move;
the (wrong) classification of alternatives in subsets of type R and T will not be
altered by the move, but the latter goes “in the wrong direction” with regard
to a correct classification of these alternatives. In order to formally define these
sets we introduce the following notation. A∗h

l denotes the subset of misclassified
alternatives that are assigned to category Cl by the model while the ground
truth states that they are assigned to category Ch. A∗<h

>l denotes the subset of
misclassified alternatives that are assigned to a category above Cl by the model
while the ground truth states that they are assigned to a category below Ch.
And conversely for A∗>h

<l . Finally, σ(a, bh) =
∑

j:aj≥bhj
wj . We have, for any h, j
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and positive δ:

V +δ
h,j =

{

a ∈ A∗h
h+1 : bhj + δ > aj ≥ bhj and σ(a, bh)− wj < λ

}

V −δ
h,j =

{

a ∈ A∗h+1
h : bhj − δ < aj < bhj and σ(a, bh) + wj ≥ λ

}

W+δ
h,j =

{

a ∈ A∗h
h+1 : bhj + δ > aj ≥ bhj and σ(a, bh)− wj ≥ λ

}

W−δ
h,j =

{

a ∈ A∗h+1
h : bhj − δ < aj < bhj and σ(a, bh) + wj < λ

}

Q+δ
h,j =

{

a ∈ A∗h+1
h+1 : bhj + δ > aj ≥ bhj and σ(a, bh)− wj < λ

}

Q−δ
h,j =

{

a ∈ A∗h
h : bhj − δ < aj < bhj and σ(a, bh) + wj ≥ λ

}

R+δ
h,j =

{

a ∈ A∗h+1
h : bhj + δ > aj ≥ bhj

}

R−δ
h,j =

{

a ∈ A∗h
h+1 : bhj − δ ≤ aj < bhj

}

T+δ
h,j =

{

a ∈ A∗<h
>h : bhj + δ > aj ≥ bhj

}

T−δ
h,j =

{

a ∈ A∗>h+1
<h+1 : bhj − δ < aj ≤ bhj

}

The choice of a profile move is as follows. First, to avoid violations of the
dominance rule between the profiles, the value of +δ or −δ is restricted to vary
in the interval [bh−1

j , bh+1
j ]. We then compute a desirability index P (bhj + δ) for

each possible value +δ of a move of profile bhj . This index balances the alternatives
that will be better off after the move and those on which the move will have a
negative impact. The index is computed according to the following formula:

P (bhj + δ) =
kV |V +δ

h,j |+kW |W+δ
h,j|+kT |T+δ

h,j|+kQ|Q+δ
h,j|+kR|R+δ

h,j|
dV |V +δ

h,j |+dW |W+δ
h,j|+dT |T+δ

h,j|+dQ|Q+δ
h,j|+dR|R+δ

h,j|

where kV , kW , kT , kQ, kR, dV , dW , dT , dQ and dR are fixed constants. We define
similarly P (bhj −δ). In the definition of P (bhj +δ) (resp. P (bhj −δ)), the coefficients
weighting the number of elements in the sets in the numerator are chosen so as
to emphasize the arguments in favor of moving the value bhj of profile bh to bhj + δ
(resp. −δ), while the coefficients in the denominator emphasize the arguments
against such a move. The values of the coefficients were empirically set as follows:
kV = 2, kW = 1, kT = 0.1, kQ = kR = 0, dV = dW = dT = 1, dQ = 5, dR = 1.

The value bhj of profile bh on criterion j will possibly be moved to the value aj

of one of the alternatives a contained in V +δ
h,j , V −δ

h,j , W+δ
h,j or W−δ

h,j . More precisely,
it will be set to aj or a value slightly above aj . The exact new position of the
profile is chosen so as to favor a correct assignment for a, taking into account
the assignment rule (2.9). For instance, with regard to the situation illustrated
in Figure 3.1, the new value b11 + δ could be chosen just above the value of a⋆1 so
that criterion 1 would no longer belong to the coalition of criteria on which a⋆

is at least as good as b1. Such a move would result in correctly assigning a⋆ to
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category C1. If the move was driven by the position of alternative a⊲ on criterion
2, then the new profile value b12 + δ would be set equal to the performance, a⊲2, of
the alternative a⊲ on criterion 2. Such a move would result in correctly assigning
a⊲ to C2.

All such values aj are located in the interval [bh−1
j , bh+1

j ]. A subset of such
values is chosen in a randomized way as follows. Among the set of values aj ,
a value, denoted by b′hj , is chosen randomly. We denote by dhj the difference

|b′hj − bhj |. All values aj located in [bh−1
j , bhj − dhj ] and [bhj + dhj , b

h
j ] constitute a

subset of candidate moves. The candidate move corresponds to the value aj in
the selected subset for which P (bhj + ∆) is maximal, ∆ being equal to aj − bhj
(i.e. a positive or negative quantity). To decide whether to make the candidate
move, a random number r is drawn uniformly in the interval [0, 1] and the value
bhj of profile bh is changed if P (bhj +∆) ≥ r.

This procedure is executed for all criteria and all profiles. Criteria are treated
in random order and profiles in ascending order.

Algorithm 4 summarizes how this randomized heuristic operates.

Algorithm 4 Randomized heuristic used for improving the profiles

for all profile bh do
for all criterion j chosen in random order do

Choose, in a randomized manner, a sub-interval of [bh−1
j , bh+1

j ].
Select a position in this sub-interval for which P (bhj +∆) is maximal.
Draw uniformly a random number r from the interval [0, 1].
if r ≤ P (bhj +∆) then

Move bhj to the position corresponding to bhj +∆.
Update the alternatives assignment.

end if
end for

end for

3.4 Experimental results with artificial data sets

We performed several tests with the metaheuristic in order to understand how it
behaves when the input settings and its parameters vary. The first tests consist in
studying each component of the metaheuristic. It is done by generating artificial
data sets and by modifying the parameters of the model and the ones of the
algorithm. We assess the computing time, the model retrieval and the tolerance
for error. The aim of these tests is to determine whether or not the strategy is
appropriate for learning the parameters of a MR-Sort model.
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After testing the components of the algorithm, we test the metaheuristic itself.
The tests are done with artificial data sets. As for the test of its components, we
observe how the algorithm behaves by varying the parameters of the model and
the ones of the metaheuristic.

Finally, we perform experiments with the metaheuristic with real data sets
and we compare the metaheuristic with other sorting algorithms.

3.4.1 Experimental setup

In order to assess the algorithm and its components, we setup an experimental
framework. The experimental framework aims at assessing the algorithm in terms
of computing time, model retrieval and tolerance for errors.

Computing time

The aim of our algorithm is to learn a model on the basis of large data sets in
a reasonable amount of time. The computing time varies with the size of the
problem. In order to assess the algorithm in terms of computing time, we use the
following test procedure:

1. A MR-Sort model M is generated randomly. The weights are uniformly
generated as described in Butler et al. (1997). It consists in drawing uni-
formly n− 1 random numbers from the interval [0, 1] and ranked such that
rn = 1 > rn−1 ≥ . . . ≥ r1 > 0 = r0. Then weights are defined as follows:
wj = rj − rj−1, with j = 1, . . . , n. The majority threshold λ is uniformly
drawn from the interval [1/2, 1]. For the profiles evaluations, on each crite-
rion p−1 random numbers are uniformly drawn from the interval [0, 1] and
ordered such that r′p−1 ≥ . . . ≥ r′1. Profiles evaluations are determined by
bh,j = r′h, h = 1, . . . , p− 1. Using model M as described by Equation (2.9),
each alternative can be assigned to a category. The resulting assignment
rule is referred to as sM .

2. A set of m alternatives with random performances on the n criteria is
generated. The performances are uniformly and independently drawn from
the [0, 1] interval. The set of generated alternatives is denoted by A∗. The
alternatives in A∗ are assigned using the rule sM . The resulting assignments
and the performances of the alternatives in the set A∗ are given as input
to the algorithm. They constitute the learning set.

3. On the basis of the assignments and the performances of the alternatives
in A∗, the algorithm learns a MR-Sort model which maximizes the classifi-
cation accuracy. The model learned by the metaheuristic is denoted by M ′

and the corresponding assignment rule, sM ′ .



3.4. Experimental results with artificial data sets 81

The computing time is assessed by measuring the CPU time required to per-
form the step 3.

Convergence of the algorithm

To assess the convergence of the algorithm, we compare the assignments obtained
with models M and M ′ and compute the classification accuracy. In our first
experimentations, we consider only the classification accuracy as quality index of
the model. Formally, the following step is added to the test procedure:

4. The alternatives of the learning set A∗ are assigned using the rule sM ′ . The
assignments resulting from this step are compared to the ones obtained at
step 2 and the classification accuracy is computed according to Equation
(2.28) in which A is replaced by A∗. We denote it by CA∗(sM , sM ′).

The experimentation is done for learning sets of different sizes. Then the
value CA∗(, sM , sM ′) shows the ratio of examples that are restored.

Model retrieval

Testing model retrieval aims at determining how many examples are needed to be
able to find the parameters of a MR-Sort model that reflects as well as possible
the preferences of a DM. In other words, this experiment aims at answering
the following question: How many assignment examples are required to obtain
the parameters of a model restoring correctly a large proportion of assignment
examples? To answer this question we add a step to the test procedure described
above:

5. A set of 10000 random alternatives, A, is generated in a similar way as in
step 2. We call this set the generalization set. Alternatives of the set A
are assigned by models M and M ′. Finally the assignments obtained by
models M and M ′ are compared and the classification accuracy is computed
according to Equation (2.28). We denote it by CA(sM , sM ′).

The value of CA(sM , sM ′) shows how the algorithm behaves in generalization.

Tolerance for errors

To test the behavior of the algorithm when the learning set is not fully compatible
with a MR-Sort model, a step is added in the test procedure after generating the
assignment examples:

2’ A proportion of errors is added in the assignments obtained using the model
M . For each alternative of the learning set, its assignment is altered with
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probability P , the altered category assigned to an example is uniformly
drawn among the other categories. We denote by s̃M the rule producing
the assignments with errors.

The next three steps are then applied as previously but the rule sM is substituted
by s̃M .

3.4.2 Experiments on the components of the algorithm

In the text above we exposed the test procedure that has been used in order to
test the metaheuristic. We recall that the metaheuristic is composed of three
main components that have been described in Section 3.3. In this subsection,
we present the results obtained with regard to the computing time, model re-
trieval and tolerance for error of the linear program used to learn the weights
and majority threshold and the heuristic improving the profiles.

Linear program learning the weights and majority threshold

We show here how the linear program (LP) used to learn the weights and majority
threshold of a MR-Sort model behaves with regard to computing time, model
retrieval and tolerance for errors.

Computing time We assess the ability of the linear program to restore a set
of weights and majority threshold in a reasonable amount of time. To proceed,
we follow the experimental procedure described in Section 3.4.1.

To see how much time is needed to learn the weights and the majority thresh-
old, the linear program, described in Section 3.3.3 is tested for models with 3
categories and 5, 7, 10 or 20 criteria with 1000 to 10000 assignment examples.
The profiles that are used are the correct ones, i.e. those used in the rule sM that
assigns the alternatives in the learning set. The experiment has been repeated
10 times, each time with a different learning set A∗ and model M .

Solving large continuous variables linear programs using a solver like CPLEX
can be done very efficiently. However, a pre-treatment of the linear constraints is
required in order to reduce the computing time needed to encode the constraints
into the solver. The pre-processing consists in filtering the constraints of the LP
given in Equation (3.1) in order to eliminate the redundant ones.

Figure 3.4 shows the average computing time required when learning the
parameters of a MR-Sort model composed of 3 categories and 5 to 20 criteria
on the basis of a learning set containing 1000 to 10000 assignment examples.
We observe that less than 1 second is needed to learn the parameters of a model
having 3 categories and 10 criteria, even when the learning set is as large as 10000
alternatives. However we see that the computing time increases with the number
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Figure 3.4: Average computing time needed to learn the weights and the majority
threshold of a MR-Sort model involving 3 categories and 5, 7, 10 or 20 criteria
with the LP described in Section 3.3.3. The learning set contains from 1000 to
10000 alternatives.

of criteria. This is due to the fact that the number of non-redundant constraints
quickly grows when the number of criteria is increased.

Model retrieval Model retrieval aims at finding the number of alternatives
that are required in order to infer the parameters of a model composed of p
categories and n criteria such that it restores as well as possible the preferences
of a DM.

The algorithm is tested on 3 categories and 10 criteria models with learning
sets involving 100 to 1000 assignment examples. The inferred model (sM ′) is
used in generalization to assign 10000 randomly generated alternatives. These
assignments are compared with those made by the original rule (sM ), yielding an
assessment of the classification accuracy. This experiment has been repeated 10
times, each time with a different learning set A∗, model M and test set A. The
evolution of the classification accuracy is shown in Figure 3.5.

As we can see from the plot, the linear program returns weights and a thresh-
old that allow to assign the alternatives in a similar way as the original model
even for relatively small learning sets. The classification accuracy is above 95 %
for 200 assignment examples; it quickly reaches a classification accuracy close to
100 % when the number of alternatives increases. This indicates that the original
model has been well approximated.
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Figure 3.5: Average, minimum and maximum CA of the test set containing 10000
alternatives. The learning set contains from 100 to 1000 assignment examples.
The weights and the majority threshold of the MR-Sort model involving 3 cate-
gories and 10 criteria are learned with the LP described in Section 3.3.3.

Tolerance for errors The tolerance for error of the LP is assessed by adding
errors in the learning set as described in Section 3.4.1.

The algorithm for learning the weights and a threshold is tested on 3 categories
and 10 criteria models when a proportion of 5 to 40 % of assignment errors are
introduced in the learning sets composed of 1000 assignment examples. Once the
parameters have been learned, we compare the original model and the learned
one on the manner they assign the alternatives in the test set. This experiment
has been repeated 10 times, each time with a different learning set A∗, model M
and test set A.

Figure 3.6 shows the average, minimal and maximal values of the classification
accuracy obtained for learning sets containing 5 to 40 % of erroneous assignments.
Since the number of assignment errors made by the learned model is usually
smaller than the number of assignment errors introduced in the learning set, we
conclude that the algorithm selects weights and a threshold in such a way that
some of the errors introduced in the learning set are corrected, thus obtaining a
classification accuracy CA(sM , sM ′) that is generally better than 100 % minus
the assignment error rate in the learning set.

A further issue is the following. Are the alternatives wrongly assigned by the
learned model mostly alternatives that have been erroneously reassigned to intro-
duce errors in the learning set? Or, on the opposite, does the learned model create
many new assignment errors? In the set of alternatives wrongly assigned with
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Figure 3.6: Average, minimum and maximum CA of the test set containing 10000
alternatives. The learning set contains 1000 assignment examples with 0 to 40%
of erroneous assignments. The weights and majority threshold of the MR-Sort
model involving 3 categories and 10 criteria are learned with the LP described in
Section 3.3.3.

the learned weights and majority threshold, what’s the percentage of alternatives
that were degraded in this set? By looking at the set of alternatives incorrectly
assigned by the function sM ′ , we see that these alternatives are mainly ones that
were not errors. For instance, in a case in which the learning set is composed
of 1000 alternatives, erroneously assigned for 10% of them, among the 5% of
errors obtained by assigning the alternatives of the learning set by means of M ′,
only 0.5% correspond to errors introduced in the learning set. We conclude that
the algorithm is able to correct introduced assignment errors, but will in general
create other errors.

Heuristic for improving the profiles

As for the linear program inferring the weights and majority threshold, we per-
formed the same experiments on the heuristic improving the profiles. In this
subsection we study how the heuristic adjusting the profiles behaves. First we
observe how it converges over the iterations. Then we test computing time, model
retrieval and tolerance for errors.

Convergence of the algorithm We compare the two variants of the heuristic
algorithm presented in Section 3.3.4. This experiment was repeated 10 times,
each time with a different learning set A∗ and model M .
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Figure 3.7: Evolution of the average CA over the iterations with a learning set
containing 10000 assignment examples. The learned model involves from 2 to 5
categories and 10 criteria. The plot shows the evolution of the CA of the learning
set for the two variants of the heuristic described in Section 3.3.4.

Figure 3.7 shows the evolution of the average classification accuracy of the
learning set when learning a MR-Sort composed of 3 categories and 10 criteria on
the basis of a learning set composed of 10000 assignment examples. We observe
that the second variant of the heuristic is more efficient than the first one. Indeed,
after 100 iterations, the algorithm reaches a CA equal to 100%. Therefore, we
opt for the second variant of the heuristic in the sequel.

Computing time As for the LP inferring the weights and majority threshold,
we test the rapidity of the metaheuristic to restore the profiles of the model.

Figure 3.8 shows that less than 10 seconds are needed to learn a model com-
posed of 10 criteria and 3 categories on the basis of a learning set composed
of 1000 alternatives. With 10000 examples of assignments, the computing time
remains reasonable: it takes on average 35 seconds to restore the profiles.

Model retrieval We test the model retrieval on a model composed of 3 cat-
egories and 10 criteria. Figure 3.9 shows the average, minimum and maximum
classification accuracy of the test set composed of 10000 alternatives. The re-
sults show that the learned model is able to restore on average more than 95%
of the assignments when the learning set is composed of 200 examples. With 500
alternatives in the learning set, the classification accuracy increases to 97%.
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Figure 3.8: Average computing time needed to learn the profiles of a MR-Sort
model involving 3 categories and 5, 7 or 10 criteria with the heuristic described
in Section 3.3.4. The learning set contains from 1000 to 10000 alternatives.

These results show that the algorithm is able to restore a “good” model, i.e.
one that restore a large number of assignments of the test set, with relatively few
examples of assignments.

Tolerance for errors The tolerance for errors is tested on a MR-Sort model
composed of 10 criteria and 3 categories with a learning set containing 1000
assignment examples. The probability of errors in the learning set varies from 0
to 40%.

Figure 3.10 shows the evolution of the classification accuracy in generaliza-
tion. We observe that the algorithm is not perturbed too much by the errors in
the learning set. Indeed, when the learning set is composed of 40% of altered
assignments, the average classification accuracy remains close to 90%. How-
ever, we observe that the distance between the minimal and maximal value of
CA(A, s̃M , sM ′) grows. Nevertheless it remains smaller than the error rate of the
learning set. We conclude that the algorithm is capable of identifying the noise
introduced in the learning set.

3.4.3 Experiments with the metaheuristic

Experiments on the components of the metaheuristic showed that they are able
to handle errors and to restore the preference of a DM with a relatively small
amount of assignment examples. We now perform the same type of tests with
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Figure 3.9: Average, minimum and maximum CA of the test set containing 10000
alternatives. The learning set contains from 100 to 1000 assignment examples.
The profiles of the MR-Sort model involving 3 categories and 10 criteria are
learned with the heuristic described in Section 3.3.4.
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Figure 3.10: Average, minimum and maximum CA of the test set containing
10000 alternatives. The learning set contains 1000 assignment examples with 0
to 40% of erroneous assignments. The profiles of the MR-Sort model involving
3 categories and 10 criteria are learned with the heuristic described in Section
3.3.4.
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Figure 3.11: Evolution of the average CA over the iterations with a learning set
involving 10000 assignment examples. The learned model involves 3 categories
and 10 criteria. The plot shows the evolution of the CA of the learning set with
the model learned by the metaheuristic described in Section 3.3.1.

the complete metaheuristic. We used the variant 1 of the metaheuristic which
consists of maximizing the classification accuracy of the learning set. All the
experiments have been done with the following parameters: Nmod = 10, No = 30
and Nit = 20.

Convergence of the algorithm

To test the convergence of the metaheuristic, we treat decision problems involving
10 criteria and 2 to 5 categories. This is the typical size of problems we want to
be able to handle with the metaheuristic.

In Figure 3.11, the average value of CA(sM , sM ′) obtained after repeating
10 times the experiment presented in Section 3.4.1 is shown. When the number
of categories increases, we observe that the algorithm needs more iterations to
converge to a model restoring correctly all assignment examples. This experiment
shows that it is possible to find a model restoring 99% of the assignment examples
in a reasonable computing time. On average two minutes are required to find the
parameters of a model having 10 criteria and 5 categories with Nmod = 10,
No = 30 and Nit = 20.
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Figure 3.12: Average, minimum and maximum CA of the test set containing 10000
alternatives. The learning set contains from 100 to 1000 assignment examples.
The parameters of the MR-Sort model involving 3 categories and 10 criteria are
learned with the metaheuristic described in Section 3.3.1.

Model retrieval

Figures 3.12 and 3.13 show the average, min and max CA(sM , sM ′) of the gen-
eralization set after learning the parameters of models having 10 criteria and 3
or 5 categories based on 100 to 1000 assignment examples. Figure 3.12 shows
that 400 examples are sufficient to restore on average 95 % of the assignments for
models having 3 categories, 10 criteria while 800 examples are needed for ones
having 5 categories, 10 criteria (see Figure 3.13). As expected, the higher the
cardinality of the learning set, the higher CA(sM , sM ′) in generalization.

Tolerance for errors

Tolerance for errors is tested by learning the parameters of a MR-Sort model
having 5 categories and 10 criteria on the basis of 1000 assignment examples
generated using s̃M . In Figure 3.14, the average classification accuracy of the
learning set is shown for 10 test instances with 10 to 40 % of errors in the learning
set. We observe that CA(s̃M , sM ′) converges to 1 − P when there are errors in
the learning set. Among the assignment examples badly assigned by the model,
a majority corresponds to altered examples. To see to what extent the errors
affect the algorithm, we generate a test set that is assigned both by the rule sM
and sM ′ .

The resulting sets are compared and CA(sM , sM ′) is computed. In Figure
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Figure 3.13: Average, minimum and maximum CA of the test set containing 10000
alternatives. The learning set contains from 100 to 1000 assignment examples.
The parameters of the MR-Sort model involving 5 categories and 10 criteria are
learned with the metaheuristic described in Section 3.3.1.

3.15, average, minimal and maximal CA(sM , sM ′) are shown for 10 test instances.
We observe that for small numbers of errors, i.e. less than 20 %, the algorithm
tends to modify the model such that CA(sM , sM ′) is altered on average by the
same percentage of error in generalization. When there are more than 20% of
errors in the learning set, the algorithm is able to find a model giving a smaller
proportion of assignment errors in generalization.

Idiosyncratic behavior

This experiment aims at checking if a MR-Sort model is able to represent as-
signments that have been obtained by another sorting rule based on an additive
value function.

We use an additive value function sorting (AVF-Sort) model as described in
Section 2.2.4. In such a model, a marginal value function uj is associated to
each criterion. In this experiment, the marginal value functions uj are piecewise
linear. Each function is composed of k segments.

We study the ability of our metaheuristic to learn a MR-Sort model from a
learning set generated with an AVF-Sort model. To do so, we replace step 1 by:

1. A sorting model M based on an additive value function is randomly gener-
ated. To generate the weights, the same rule as for the MR-Sort model is
used. For each value function, k− 1 random numbers are uniformly drawn



92 Chapter 3. Learning a MR-Sort model from large data sets

0 2 4 6 8 10

20

40

60

80

Number of iterations

C
A
(s̃

M
,s

M
′
)
(i
n
%
)

10 % of errors

20 % of errors

30 % of errors

40 % of errors

Figure 3.14: Evolution of the average CA of the learning set composed of 1000 al-
ternatives. The learning set contains from 100 to 1000 assignment examples with
0 to 40% of erroneous assignments. The models learned with the metaheuristic
described in Section 3.3.1 involve 5 categories and 10 criteria.
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Figure 3.15: Average, minimum and maximum CA of the test set composed
of 10000 alternatives. The learning set contains from 100 to 1000 assignment
examples with 0 to 40% of erroneous assignments. The models learned with the
metaheuristic described in Section 3.3.1 involve 5 categories and 10 criteria.
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Figure 3.16: Average, minimum and maximum CA of the learning set containing
1000 assignment examples obtained with an AVF-Sort model involving 10 criteria
and 2 to 10 categories. The MR-Sort model is learned with the metaheuristic
described in Section 3.3.1.

from the interval [0, 1] and ordered such that rk = 1 ≥ rk−1 ≥ . . . ≥ r1 ≥
0 = r0, then end points are assigned as follows uj(x

l
j) = rl, with l = 0, . . . , k.

For the category limits Uh, p−1 random numbers are uniformly drawn from
the interval [0, 1] and then ordered such that rp−1 ≥ . . . ≥ r1. Category
limits are given by Uh = rh, h = 1, . . . , p − 1. The assignment rule is
denoted by s∗M .

Once the model has been generated, the alternatives are assigned by the model
M and the metaheuristic tries to learn a MR-Sort model from the assignments
obtained by M .

To assess the ability of the heuristic to find a MR-Sort model restoring the
maximum number of examples, we test it with 1000 assignment examples, on
models composed of 10 criteria and 2 to 10 categories. We choose to use an AVF-
Sort model in which each additive value function is composed of 3 segments. This
experiment is repeated 10 times.

Figure 3.16 presents the average, minimum and maximum CA(s∗M , sM ′) of
the learning set. The plot shows that the MR-Sort model is able to represent on
average 80% of the assignment examples obtained with an AVF-Sort model when
there are no more than 5 categories.

We perform a generalization by assigning 10000 alternatives through the AVF-
Sort model, M and through the learned MR-Sort model, M ′. Figure 3.17 shows
the average, minimum and maximum classification accuracy of the generalization
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Figure 3.17: Average, minimum and maximum CA of the test set containing 10000
assignment examples obtained with an AVF-Sort model involving 10 criteria and 2
to 10 categories. The MR-Sort model is learned with the metaheuristic described
in Section 3.3.1.

set. These results confirm the behavior observed with the learning set. The ability
to represent assignments obtained by an AVF-Sort model with a MR-Sort model
is limited, even more when the number of categories increases.

3.5 Experimental results with real data sets

In this section, we study the performance of the metaheuristic with real data
sets. We observe to what extent the metaheuristic is able to restore a model
representing as well as possible the preference information in the data sets. For
these experiments we used the second variant of the metaheuristic maximizing
the AUC criterion.

3.5.1 Data sets and experimental design

For comparison purposes, we use the data sets that were considered by Tehrani
et al. (2012) for testing the performance of a binary classifier based on the Cho-
quet integral. These data sets were taken from two sources: the UCI machine
learning repository and the WEKA repository. In addition, we consider also
the ASA data set which was compiled and studied by Lazouni et al. (2013b)
(available at http://olivier.sobrie.be). The characteristics of all data sets

http://olivier.sobrie.be
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are displayed in Table 3.1. All the attributes in these data sets are treated as
monotone attributes.

Table 3.1: Data sets

Data set #instances #attributes #categories

DBS 120 8 2
CPU 209 6 4
BCC 286 7 2
MPG 392 7 36
ESL 488 4 9
MMG 961 5 2
ERA 1000 4 4
LEV 1000 4 5
CEV 1728 6 4
ASA 898 16 4

The tests are conducted as follows. Each data set is randomly split in two
disjoint parts. The first part is used as learning set and the second part as test
set. The following ratios between the size of the learning set and the size of the
test set are considered: 20/80, 50/50, 80/20. For each data set and each ratio,
a random drawing of the learning set from the whole data set is repeated 100
times, yielding 100 instances of a partition of the data set in a learning set and
a test set.

For each learning set instance, the algorithm finds a model that minimizes the
0/1 loss, i.e. that is compatible with as many examples as possible. Afterwards,
the alternatives in the test set are assigned by the learned model and the resulting
assignments are compared to the original ones. This procedure is thus repeated
100 times for each data set and each relative size of the learning set.

Two indicators are computed to assess the quality of the learned models: the
0/1 loss and the AUC.

The performance of our heuristic algorithm is not only compared with the
results obtained by Tehrani et al. (2012), but also with the exact solution of the
MIP formulation (whenever it can be obtained) and with another previously men-
tioned multiple-criteria decision analysis (MCDA) method, UTADIS (see Section
2.4.3 in Chapter 2).

During all the experimentation, the MR-Sort metaheuristic is run with a
population of 10 models (Nmod = 10) and the maximal number of iterations is
fixed to 10 (No = 10). The outer loop of the metaheuristic, which adjusts the
profiles and recomputes weights, is repeated 20 times (Nit = 20).
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3.5.2 Binary classification

The algorithm developed by Tehrani et al. (2012) is designed for monotone sorting
in two categories. In order to compare the performance of our algorithm with
theirs, the assignments in the data sets presented in Table 3.1 are binarized by
thresholding at the median, in the same way these authors did. From these data
sets, the parameters of a MR-Sort model are learned by using 20, 50 or 80 percent
of the records as learning alternatives and the rest as test alternatives.

Our experimentation has two objectives. The first is to compare the quality
of the MR-Sort models found by our metaheuristic with the ones obtained by an
exact optimization method. Therefore, we solve the mixed integer programming
formulation studied in Leroy et al. (2011) which minimizes the 0/1 loss of the
model. Whenever the MIP solver is able to find a solution in the computing time
allowed, we assess the learned models by comparing their average 0/1 loss on the
test set.

Our second objective is to compare the performance of the proposed meta-
heuristic with that of other MCDA and machine learning algorithms, UTADIS
(Jacquet-Lagrèze and Siskos, 1982; Doumpos and Zopounidis, 2002), a well-
known MCDA method described in Section 2.4.3 in Chapter 2, and the Choquistic
regression (CR) (Tehrani et al., 2012), a method recently developed in the field
of preference learning. To assess our metaheuristic, we use the average 0/1 loss
and AUC computed on the test sets.

The general definition of AUC has been reminded in Section 2.5.4. The AUC
of a MR-Sort model with two categories C1, C2 is computed by comparing the
concordance indices of the alternatives with regard to the profiles. The value of
the MR-Sort AUC is given by the following equation:

AUC =
1

|A1| · |A2|
∑

ai∈A2

∑

ak∈A1

τ(ai, ak) (3.3)

with A1 (resp. A2), the set of input alternatives classified in C1 (resp. C2). In
the case of MR-Sort, we define τ(a(i), a(k)) as follows:

τ(ai, ak) =















0 if
∑

j:a
(i)
j ≥b1j

wj <
∑

j:a
(k)
j ≥b1j

wj ,

0.5 if
∑

j:a
(i)
j ≥b1j

wj =
∑

j:a
(k)
j ≥b1j

wj ,

1 if
∑

j:a
(i)
j ≥b1j

wj >
∑

j:a
(k)
j ≥b1j

wj .

In the case of UTADIS, the value of AUC is also computed through formula (3.3)
but τ(a(i), a(k)) is defined differently: it compares the values of the alternatives,
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i.e.

τ(ai, ak) =











0 if u(a(i)) < u(a(k)),

0.5 if u(a(i)) = u(a(k)),

1 if u(a(i)) > u(a(k)).

Results

Table 3.2 shows the average 0/1 loss obtained on the test sets with the learned
models. Table 3.3 shows the average value of the AUC. Each entry in these
tables records the average value and standard deviation for 100 random splits of
the data sets into learning and test sets.

In these tables, column “Size” displays the percentage of alternatives of the
data set used by the algorithms as learning set. Column “META" shows the
results obtained with the metaheuristic described in this chapter. Column “MIP"
contains the results obtained with the MIP described in Leroy et al. (2011).
Column “UTADIS” displays the results obtained with UTADIS and column “CR"
contains the results obtained with the CR (Tehrani et al., 2012) on all the data
sets, except ASA (not available).

In column “MIP”, some cells are empty because the solver was not able to find
a solution for one test instance in less than one hour. As compared to solving the
MIP formulation, for the largest data set, i.e. the CEV data set, the metaheuristic
uses 50 seconds on average to find a model when the learning set consists of 80%
of all the examples in the data set.

To assess the ability of the algorithm to find models restoring the assignment
of a large number of examples, we compare the average 0/1 loss and AUC obtained
with the MIP and the metaheuristic for the test sets. Note that the MIP finds a
MR-Sort model that is compatible with the largest possible number of examples
from the learning set. There is no other MR-Sort model restoring correctly more
assignment examples.

Table 3.2 shows that the 0/1 loss obtained by the exact algorithm is on average
1% smaller than by the metaheuristic. This is due to the fact that the MIP finds
models restoring an optimal number of assignment examples (from the learning
set) while the metaheuristic can remain stuck in local minima. However this
better performance does not hold for all data sets when applied to the test set.
For instance, the MIP returns results slightly worse than the metaheuristic for
the DBS and ESL data sets. This is probably due to an overfitting effect on the
learning set.

We observe in Table 3.3 that the average AUC of the metaheuristic is close
to the one of the MIP. This indicates that the quality of the classifiers obtained
with the MIP and the metaheuristic are similar.
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Table 3.2: Average and standard deviation of the 0/1 loss (in percent) of the test
set for learning sets of different sizes.

Size Data set META MIP UTADIS CR

20 %

DBS 18.97± 4.23 19.77± 4.81 20.08± 5.33 17.13± 4.24
CPU 9.94± 3.23 9.00± 3.45 6.52± 3.62 8.11± 1.03
BCC 28.24± 2.73 26.78± 2.76 29.15± 3.07 27.75± 3.35
MPG 20.25± 3.56 20.80± 3.26 22.25± 3.18 7.09± 1.93
ESL 10.42± 1.71 10.75± 1.58 8.89± 1.60 6.82± 1.29
MMG 16.97± 0.87 17.16± 1.40 18.40± 1.84 17.25± 1.20
ERA 21.36± 2.05 20.93± 1.74 23.68± 1.87 28.89± 2.73
LEV 16.74± 1.87 16.08± 1.73 16.54± 1.60 14.99± 1.22
CEV 9.37± 1.12 - 7.94± 0.59 4.48± 0.89
ASA 2.29± 1.09 - 3.69± 1.41 -

50 %

DBS 16.23± 4.69 16.27± 4.26 14.80± 4.21 15.72± 4.16
CPU 6.75± 2.37 6.40± 2.39 2.30± 2.38 4.64± 2.81
BCC 27.50± 3.17 - 28.54± 2.46 26.87± 2.82
MPG 17.81± 2.37 - 20.90± 2.36 5.77± 2.51
ESL 10.04± 1.86 10.18± 1.55 7.83± 1.63 6.01± 1.26
MMG 17.32± 1.51 - 17.58± 1.52 16.67± 1.44
ERA 20.56± 1.73 19.58± 1.37 23.42± 1.71 28.44± 3.06
LEV 15.92± 1.22 14.22± 1.54 15.56± 1.32 13.72± 1.25
CEV 9.36± 1.19 - 7.99± 0.91 3.76± 0.59
ASA 1.38± 0.61 - 2.47± 0.82 -

80 %

DBS 15.92± 6.98 14.80± 8.11 12.80± 5.01 14.16± 6.81
CPU 6.40± 3.04 5.98± 3.15 1.52± 2.14 2.12± 3.01
BCC 26.77± 5.47 - 29.13± 5.10 24.96± 4.85
MPG 16.86± 3.69 - 20.80± 3.88 5.51± 1.60
ESL 10.01± 2.97 10.08± 2.47 7.44± 2.35 5.42± 2.18
MMG 16.98± 2.79 - 17.34± 2.65 15.84± 2.51
ERA 20.31± 2.50 18.56± 2.60 23.56± 2.92 28.13± 2.80
LEV 16.16± 2.22 13.59± 1.85 15.72± 2.22 13.14± 1.76
CEV 9.66± 1.74 - 7.99± 1.32 2.73± 0.89
ASA 1.16± 1.74 - 2.11± 1.02 -
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Table 3.3: Average and standard deviation of the AUC (in percent) of the test
set for learning sets of different sizes.

Size Data set META MIP UTADIS CR

20 %

DBS 87.61± 4.62 86.37± 4.63 88.86± 4.96 92.90± 3.22
CPU 95.31± 2.47 94.97± 2.62 97.89± 2.83 98.22± 1.21
BCC 68.10± 4.58 71.55± 3.65 66.50± 5.27 64.00± 6.41
MPG 83.37± 2.91 82.15± 3.68 81.62± 3.35 97.88± 1.60
ESL 95.69± 1.14 95.10± 1.66 97.04± 0.95 96.70± 0.74
MMG 88.28± 1.29 88.77± 1.51 86.50± 2.94 88.67± 1.23
ERA 72.56± 2.38 71.82± 3.28 74.09± 1.75 76.69± 3.34
LEV 85.30± 2.58 84.24± 2.91 87.07± 1.46 89.71± 0.98
CEV 76.13± 3.69 - 83.29± 2.47 98.25± 0.80
ASA 98.11± 1.25 - 98.73± 0.90 -

50 %

DBS 90.74± 3.66 89.98± 3.36 93.25± 3.45 93.41± 2.28
CPU 97.01± 1.40 96.45± 1.94 99.40± 1.31 99.20± 0.73
BCC 69.29± 3.98 - 66.50± 52.7 69.12± 4.69
MPG 83.37± 2.31 - 82.72± 2.43 98.18± 0.75
ESL 96.40± 0.99 95.63± 1.14 97.47± 1.16 97.20± 0.84
MMG 88.62± 1.38 - 86.67± 3.85 90.03± 1.32
ERA 73.66± 2.33 71.67± 2.74 74.37± 2.11 77.05± 3.10
LEV 87.21± 1.47 85.11± 2.19 87.46± 1.37 90.98± 1.03
CEV 75.72± 2.82 - 84.50± 1.92 99.12± 0.24
ASA 99.21± 0.72 - 99.48± 0.34 -

80 %

DBS 90.19± 6.06 90.80± 6.73 94.76± 4.01 94.27± 4.43
CPU 97.21± 2.19 96.56± 2.37 99.89± 0.30 99.71± 0.63
BCC 70.56± 8.64 - 66.51± 6.59 73.49± 6.92
MPG 86.13± 3.41 - 82.10± 4.34 98.55± 1.08
ESL 96.13± 1.70 95.68± 1.65 97.78± 1.17 97.66± 1.50
MMG 88.60± 2.65 - 86.82± 4.70 91.35± 2.33
ERA 73.79± 3.51 72.42± 4.77 74.97± 4.02 76.70± 2.90
LEV 86.63± 2.65 84.99± 3.32 87.41± 2.17 91.22± 2.02
CEV 75.74± 3.91 - 85.00± 2.46 99.59± 0.27
ASA 99.55± 0.64 - 99.64± 0.34 -
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In order to see whether the algorithm proposed in this paper can be useful
in the context of preference learning problems, we compare our results with two
other methodologies: UTADIS (Jacquet-Lagrèze and Siskos, 1982; Doumpos and
Zopounidis, 2002) and CR (Tehrani et al., 2012).

The performance of MR-Sort algorithms is close to the performance of UTADIS
and CR for the DBS, CPU, BCC, MMG, LEV and CEV data sets. The 0/1 losses
observed on the test set differ by at most 4% on average. For the MPG data set,
CR clearly returns better average results (more than 10% better in terms of 0/1
loss) than the MR-Sort algorithms and UTADIS. This may be due to the ca-
pability of the Choquet integral to represent interactions between criteria (see
e.g. Grabisch and Roubens, 2000). The assignments in the MPG data set might
require this type of modeling feature.

In contrast, for the ERA data set, the MR-Sort algorithms and UTADIS
are definitely better than CR. Their advantage regarding the average 0/1 loss
amounts to almost 8%.

As compared with UTADIS and CR, the average AUC value of the MR-
Sort algorithms are worse. The difference is about 5% for DBS, CPU, BCC,
ESL, MMG and ERA data sets. For the MPG and CEV data sets, there is a
marked advantage of CR over the other algorithms. We have seen that CR is
also definitely better regarding 0/1 loss for the MPG data set, which suggests
that the model underlying CR is better suited for representing the MPG data.

On the contrary, the average AUC of the ERA data set, for which the MR-
Sort MIP and metaheuristic did better than CR in term of 0/1 loss, is worse with
the MR-Sort MIP and metaheuristic than with CR. UTADIS does even better
than MR-Sort algorithms in terms of AUC for this data set.

In order to better understand the latter results, the confusion matrices for
the MR-Sort algorithms and UTADIS and all learning set sizes are displayed in
Table 3.4 for the ERA data set. The confusion matrices relative to the other
data sets can be found in Appendix A. These show the average distribution of
the alternatives in the test sets in actual (C1, C2) versus predicted classes (Ĉ1,
Ĉ2). As compared with UTADIS, the MR-Sort algorithms classify correctly,
on average, a higher number of instances from class C1 and a lower number
of instances from class C2. We also notice that there are, on average, more
alternatives belonging to class C2 than to class C1. Alternatives misclassified
by the MR-Sort algorithms mostly belong to category C2. It is likely that the
concordance index of some of these alternatives is equal or lower than the one of
some alternatives which are correctly classified in C1. The contribution of these
alternatives to the AUC index is therefore equal to 0.5 or 0, which decreases the
value of the AUC.

It should be noted that the MR-Sort algorithms are designed in order to
minimize the 0/1 loss. They do not include specific mechanisms taking into
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Table 3.4: Confusion matrices of the test set for the (binarized) ERA data set.
Actual class in rows, predicted class in columns.

(a) META - ERA 20 %

Ĉ1 Ĉ2

C1 68.83
±3.11

5.67
±3.21

C2 15.69
±2.39

9.81
±2.16

(b) MIP - ERA 20 %

Ĉ1 Ĉ2

C1 69.38
±2.41

5.12
±2.47

C2 15.81
±1.74

9.70
±1.54

(c) UTADIS - ERA 20 %

Ĉ1 Ĉ2

C1 63.98
±2.67

10.54
±2.96

C2 13.14
±1.56

12.34
±1.25

(d) META - ERA 50 %

Ĉ1 Ĉ2

C1 69.26
±2.61

5.10
±2.55

C2 15.46
±2.16

10.17
±1.73

(e) MIP - ERA 50 %

Ĉ1 Ĉ2

C1 71.23
±2.01

3.34
±1.74

C2 16.24
±1.41

9.18
±1.11

(f) UTADIS - ERA 50 %

Ĉ1 Ĉ2

C1 64.36
±2.12

9.98
±2.62

C2 13.43
±1.75

12.22
±1.32

(g) META - ERA 80 %

Ĉ1 Ĉ2

C1 69.60
±3.42

5.03
±2.38

C2 15.28
±2.89

10.09
±2.26

(h) MIP - ERA 80 %

Ĉ1 Ĉ2

C1 72.59
±2.57

2.29
±1.00

C2 16.27
±2.36

8.86
±1.77

(i) UTADIS - ERA 80 %

Ĉ1 Ĉ2

C1 63.90
±3.17

10.21
±2.85

C2 13.35
±2.58

12.55
±2.32

account possible imbalance of classes in the learning set, which has an impact on
AUC.

Comments

Computing time becomes quickly an issue with the MIP when the size of the
learning set increases. It is therefore not an option to use it to deal with large
data sets, which, in contrast, can easily be handled by the metaheuristic.

The metaheuristic we developed performs better than UTADIS and CR for
at least one data set (ERA). The same observation holds for the MIP. Regarding
the 0/1 loss, we note that the MR-Sort model seems particularly well adapted
for the ASA data set. This shows that for some types of data sets, a model-based
approach like MR-Sort is well suited.
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3.5.3 More than two categories

Some of the data sets involving more than two categories, namely CPU, ERA,
LEV and CEV, were binarized to allow for comparison with the CR algorithm
in the previous section. In this section we use these data sets with their original
number of categories. All these data sets have 4 categories, except LEV which
involves 5 categories.

Experimental setup

The same testing procedure as for the binary classification is applied. A model is
learned on the basis of a subset of assignment examples, the learning set, and the
alternatives in the test set are assigned by means of the learned model. These
assignments are compared to the original classification.

When more than two categories are involved, formula (3.3) is no longer suited
for computing the AUC. To obtain an AUC value for models with more than
two categories, we proceed similarly as in Doumpos et al. (2009) and Waegeman
et al. (2008). We denote by A≤h (resp. A>h), the subset of alternatives that are
assigned to a category below or equal to (resp. above) Ch. The value AUCh is
computed for h = 1, . . . , p− 1, as follows:

AUC h =
1

|A≤h| · |A>h|
∑

ai∈A>h

∑

ak∈A≤h

τh(a
(i), a(k)), (3.4)

with

τh(a
i, ak) =















0 if
∑

j:a
(i)
j ≥bhj

wj <
∑

j:a
(k)
j ≥bhj

wj

0.5 if
∑

j:a
(i)
j ≥bhj

wj =
∑

j:a
(k)
j ≥bhj

wj

1 if
∑

j:a
(i)
j ≥bhj

wj >
∑

j:a
(k)
j ≥bhj

wj .

The value of AUC is computed as the average value of the AUC h for h = 1, . . . , p−
1.

Results

For each data set, the average 0/1 loss of the test set is displayed in Table 3.5
and the AUC in Table 3.6. Note that for more than 2 categories the MIP version
of the MR-Sort algorithm cannot be solved in a reasonable time and therefore,
it does not appear in the tables. We observe that the average 0/1 loss is higher
than in the binary case, both for the MR-Sort metaheuristic and UTADIS when
there are more than two categories. This is not surprising since on the one hand,
the data are more complex and, on the other hand, we chose to use a single
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Table 3.5: Average and standard deviation of the 0/1 loss (in percent) on the test
set for different sizes of the learning set with the original number of categories.

Size Data set META UTADIS

20 %

CPU 24.57± 4.79 13.21± 4.88
ERA 49.15± 1.76 51.44± 1.69
LEV 46.52± 3.14 42.25± 1.75
CEV 23.92± 1.73 22.81± 1.53
ASA 7.12± 1.91 9.23± 1.57

50 %

CPU 19.61± 3.54 6.60± 2.66
ERA 48.77± 2.33 51.67± 1.71
LEV 43.48± 2.58 41.11± 1.58
CEV 23.36± 1.93 22.86± 1.58
ASA 4.82± 1.28 7.13± 1.15

80 %

CPU 20.76± 6.06 4.88± 3.51
ERA 48.25± 3.74 51.76± 3.32
LEV 43.17± 4.12 40.67± 3.05
CEV 22.76± 2.52 22.83± 2.59
ASA 4.32± 1.71 7.09± 1.61

set of weights for all categories. An alternative option would indeed consist in
learning a series of binary classifiers that restore the classification in more than
two categories. In such a case, each binary classifier would use its own set of
weights. Such a model would certainly lead to smaller 0/1 loss values but the
number of parameters would be larger and the interpretability of the model would
be impoverished.

In terms of 0/1 loss, UTADIS performs better than the MR-Sort metaheuristic
for the CPU and LEV data sets while it is the opposite for the two other data
sets, ERA and CEV. Table 3.6 shows better AUC values obtained by UTADIS
than by MR-Sort for all data sets.

We observe in Table 3.5 that the error rate on the ERA data set was smaller
with the MR-Sort metaheuristic than with UTADIS and, inversely, that the AUC
was better with UTADIS. The confusion matrices in Table 3.7 show us that
the MR-Sort algorithm, on average, classifies correctly more alternatives of the
categories C1 and C2 than UTADIS while it is the contrary for alternatives of
categories C3 and C4.

The confusion matrices for all data sets are available in Appendix A. They
show that the assignments obtained with the MR-Sort metaheuristic tend to be
more pessimistic than those obtained with UTADIS. In the confusion matrices,
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Table 3.6: Average and standard deviation of the AUC (in percent) on the test
set for different sizes of the learning set with the original number of categories.

Size Data set META UTADIS

20 %

CPU 96.49± 1.50 98.36± 2.75
ERA 76.44± 2.05 79.86± 0.90
LEV 84.00± 1.81 87.91± 0.85
CEV 87.16± 1.39 91.25± 1.09
ASA 97.89± 0.65 98.64± 0.48

50 %

CPU 97.47± 0.83 99.48± 1.34
ERA 77.21± 1.97 80.27± 1.32
LEV 85.46± 1.59 87.98± 1.31
CEV 87.32± 0.98 91.19± 1.10
ASA 98.54± 0.56 99.14± 0.39

80 %

CPU 97.39± 1.26 99.88± 0.20
ERA 76.90± 3.07 80.76± 2.44
LEV 85.81± 2.40 88.31± 2.78
CEV 87.23± 1.58 91.42± 1.45
ASA 98.78± 0.61 99.32± 0.35

we see that the MR-Sort model makes less errors of more than one category than
UTADIS for the learning alternatives belonging to the classes C1 and C2. In the
set of alternatives misclassified by the MR-Sort algorithm, more examples are
assigned to lower categories and less are assigned to higher categories than when
using UTADIS. We note that MR-Sort uses the pessimistic assignment rule of
ELECTRE TRI which may explain that behavior.

3.6 Chapter conclusion

In this chapter we have presented a metaheuristic dedicated to the inference of the
parameters of a MR-Sort model. We described two variants of the metaheuristic:
one that maximizes the classification accuracy of the learning set and another
that maximizes the area under the curve of the learning set.

Each component of the metaheuristic has been tested with artificial data
sets. We tested the model retrieval, the tolerance for errors and we measured the
computing time required to learn the parameters.

Experiments have shown that the computing time does not become prohibitive
when the size of the learning set increases. The metaheuristic is therefore able
to deal with large data sets similar to the ones found in the preference learning
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Table 3.7: Confusion matrices for the test set of the ERA data set.

(a) META - ERA 20 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 29.16
±3.92

10.09
±4.01

1.91
±1.36

0.39
±0.42

C2 13.47
±4.34

14.55
±4.21

4.44
±2.84

0.49
±0.69

C3 5.91
±1.66

8.05
±2.53

5.11
±2.19

1.55
±1.17

C4 0.32
±0.19

0.83
±0.49

1.71
±0.80

2.03
±0.63

(b) UTADIS - ERA 20 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 28.35
±1.84

8.11
±2.41

4.45
±1.43

0.54
±0.38

C2 13.51
±2.28

9.75
±2.59

8.97
±2.47

0.81
±0.72

C3 5.84
±1.00

4.66
±1.56

7.89
±1.63

2.23
±1.15

C4 0.21
±0.12

0.36
±0.21

1.82
±0.69

2.50
±0.58

(c) META - ERA 50 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 29.76
±4.29

9.82
±4.58

1.60
±1.07

0.23
±0.34

C2 14.32
±5.30

14.26
±5.00

4.14
±2.22

0.24
±0.54

C3 6.22
±1.99

7.97
±2.78

5.34
±2.13

1.23
±1.21

C4 0.31
±0.26

0.74
±0.43

1.96
±0.84

1.87
±0.56

(d) UTADIS - ERA 50 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 27.81
±1.51

9.02
±1.55

4.24
±0.97

0.42
±0.23

C2 13.33
±2.04

10.08
±1.68

9.07
±1.71

0.61
±0.34

C3 5.84
±1.03

4.40
±1.17

8.20
±1.16

2.10
±0.96

C4 0.17
±0.15

0.42
±0.25

1.79
±0.73

2.52
±0.68

(e) META - ERA 80 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 29.36
±4.43

10.24
±4.44

1.44
±1.15

0.21
±0.38

C2 13.70
±5.52

15.04
±5.53

4.52
±2.96

0.14
±0.44

C3 5.99
±2.24

7.94
±2.82

5.62
±2.52

1.08
±1.38

C4 0.27
±0.37

0.85
±0.61

1.90
±1.03

1.74
±0.88

(f) UTADIS - ERA 80 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 28.18
±2.65

8.96
±1.96

4.06
±1.42

0.38
±0.40

C2 13.71
±2.55

9.95
±2.43

9.05
±2.42

0.61
±0.59

C3 6.05
±1.59

4.14
±1.34

8.38
±1.96

1.95
±1.15

C4 0.09
±0.19

0.41
±0.39

1.88
±1.04

2.25
±0.94
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field.
Testing the model retrieval of each component amounts to determine the

number of examples that are needed to find the parameters of a MR-Sort model
reflecting as well as possible the preferences of a DM. The results of the exper-
iments with artificial data sets showed that 400 assignment examples enable to
restore 95% of the assignments of a test set composed of 10000 alternatives for a
model composed of 3 categories and 10 criteria.

Testing the tolerance for errors aims at determining how the algorithm be-
haves when there are errors in the data sets. The results showed that the meta-
heuristic was able to restore a large number of examples even in the presence of
errors. We observed that the classification accuracy of the learning set was con-
verging to 1− P , with P being the proportion of errors in the learning set. The
alternatives that were wrongly restored by the metaheuristic are mainly altered
examples.

We also tested the idiosyncratic behavior of the metaheuristic, i.e. its ability to
find a model restoring the assignments obtained with another sorting model. To
test the idiosyncratic behavior, an AVF-Sort model has been used. We observed
that the metaheuristic was able to restore on average more than 90% of the
assignments when the learning set is composed of 1000 examples assigned with
an AVF-Sort model.

Finally, we assessed the metaheuristic with real data sets issued from the pref-
erence learning field. We compared the results obtained with the metaheuristic
to the results obtained with an exact formulation of the problem with a MIP.
We also compared the results to the ones obtained with other PL and MCDA
algorithms. The first observation is that our heuristic provides good approxi-
mations of the MR-Sort model that can be learned by an exact method (MIP),
whenever the latter can be computed in a reasonable amount of time. For most
data sets, the classification performance of our algorithm is close to the best re-
sults obtained by state-of-the-art algorithms. It is definitely better for one of the
data sets. Since the MR-Sort model relies on a specific form of regularity in the
assignments, it is not surprising that some data sets can be better approximated
using our algorithm than some others. What is worth noticing, actually, is that
our heuristic behaves competitively on the whole benchmark.

A remarkable feature of the model and of the algorithm is related to its
ability to yield multi-category assignments in one step. It allows to dispense with
learning a series of binary classifiers in order to restore a classification in more
than two categories.

Another positive feature of the MR-Sort model stems from the fact that the
computed classifications can be explained to the user as the application of a com-
pact and intuitive rule. This is linked with the origins of the model which has
been initially used in preference modeling and decision aiding. In those domains,
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preferences are modeled by engaging into interactions with a decision maker (in-
stead of being learned automatically on the basis of examples). Therefore, the
preference models rely on intuitive concepts (e.g. limit profile, weights, majority
threshold), which are used in the preference elicitation process. The resulting
rules for comparing or sorting objects can be formulated in terms of the same
concepts, which allows to explain their consequences to the DM. Understanding
the model issued from an algorithm is likely to increase the trust of the user in
the obtained classifier. Explainability is important e.g. in medical applications
but also in management and engineering applications.





Chapter 4

Case study: preoperative patient

classification

In this chapter, we present a medical application in the field of anesthesia. The
application consists in determining automatically the score reflecting the health
of a patient based on patient’s characteristics on several attributes. Then the
patient score is used in conjunction with other criteria to determine whether or
not he/she is accepted for surgery. We use the metaheuristic described in Chapter
3 in order to find the parameters of a majority rule sorting (MR-Sort) model that
enables to predict the health score of a patient and whether or not he/she should
be accepted for surgery. We compare the results with other machine learning
(ML) algorithms. Finally we describe the parameters of one MR-Sort model and
show that it is easily interpretable by doctors.

4.1 Context

In recent years, the principal challenges related to the field of anesthesia and
intensive care consists in reducing both anesthetic risks and mortality rate, as
well as providing better and more efficient assistance to doctors specialized in
anesthesia (DSA).

With regards to anesthesiology, assessing the patient’s physical health state is
a crucial step before deciding whether or not he/she can be accepted for surgery.
This information allows DSA to identify the anesthesia type and determine the
ease of the tracheal intubation. The American society of anesthesiologists (ASA)
proposed a commonly used system to determine the patient’s health state which is
called ASA physical status classification system. It consists of classifying patients
in one of the six categories going from “healthy person” to “brain-dead person

109
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whose organs are being removed for donor purposes”. The scale is composed of
the following categories:

ASA 1 : Healthy person,

ASA 2 : Mild systemic disease,

ASA 3 : Severe systemic disease,

ASA 4 : Severe systemic disease that is a constant threat to life.

ASA 5 : A moribund person who is not expected to survive without the surgery.

ASA 6 : A declared brain-dead person whose organs are being removed for
donor purposes.

Up to now, the classification of a patient does not rely on a well-established
and objective method but on the subjective advice of one or several doctors.
That’s why we propose here to use a multiple-criteria decision analysis (MCDA)
method in order to determine the ASA score and acceptance or refusal of the
patient for surgery.

In medicine, MCDA methods can be used for various applications going from
cancer diagnosis to health care settings. Among medicine applications based
on decision aid methods, we observe that many of them are using the AHP
(analytic hierarchy process) method (Liberatore and Nydick, 2008). Few of them
are using other families of MCDA methods like outranking ones or methods based
on additive value function.

In anesthesiology scientific literature, very few works related to preoperative
patient classification were carried out. In Lazouni et al. (2013a,b), this issue was
dealt with by using several machine learning algorithms. A drawback of such
algorithms is that they are not easily interpretable by doctors. Indeed, as said in
Section 2.7, these algorithms are used as blackboxes and are difficult to interpret.
It is sometimes difficult to understand the patient classification by referring to
the algorithm parameters. For instance, with a neural network algorithm like the
multilayer perceptron, it is difficult to understand the classification by looking at
synapses values and activation functions, even more if the model involves many
variables.

As far as we know and according to our exploration of the existing literature,
there is no work dealing with multiple criteria decision analysis and ASA physical
status classification.

In this chapter, we propose to use the MR-Sort MCDA procedure to determine
the ASA score of a patient evaluated on several attributes. We suggest to learn
the parameters of MR-Sort models on the basis of a large database containing
information about 898 patients evaluated on multiple criteria and who have been
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classified in one of the six ASA classes. The idea behind is to obtain a set
of models that can be easily interpreted by doctors. Note that our database
contains only four of the six ASA score classes, given that ASA scores 5 and 6
have not been collected because the hospitals from which we collected our data
are not included within the ones donating organ.

4.2 Literature review

In this section, we give an overview of existing works involving MCDA in medicine.
Then we list a set of the decision support systems that have been developed in
anesthesiology.

4.2.1 Multiple criteria decision analysis in medicine

In medicine, the decision aid methods are used for various applications going from
cancer diagnosis and treatment (West et al., 2005; Carter et al., 1999), to the
selection of technologies in health care settings (Chatburn and Primiano, 2001).
Many medical applications are based on AHP. Liberatore and Nydick (2008)
presented an overview of existing applications using AHP methods. However,
few articles are dealing with other MCDA methods like the ELECTRE methods.
Figueira et al. (2011) used the ELECTRE TRI-C sorting procedure in the context
of assisted reproduction. Couples are assigned to categories which correspond to
the number of embryos that have to be transferred back to the uterus of the
woman in order to obtain a single pregnancy. To the best of our knowledge,
there are no works dealing with the multiple criteria decision analysis and ASA
score determination by using the above mentioned method while the ASA score
is widely used by all DSA during their pre-anesthetic examinations.

Since in medicine it is preferred to use well-know methods that allow to explain
a choice (Goodman and Ahn, 1999), we advocate the use of an outranking model,
based on MR-Sort, and the use of an additive value function model.

4.2.2 Decision support systems for anesthesia

Glance et al. (2012) proposed a probabilistic model to evaluate the surgical mor-
tality. The objective of this work is to predict the patient’s mortality after a
non-cardiac surgery, in order to diminish the operation risks. This system calcu-
lates the risk score in an empirical way by using three descriptors, which are the
ASA score, the type of surgery either of high or intermediate risk and whether
or not the surgery is urgent. A huge database composed of 298,772 patients
has been gathered from different hospitals between 2005 and 2007, resulting as
follows:
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• patients with a risk score under 5 had a mortality risk under 0.5%;

• patients with a risk score between 5 and 6 had a mortality risk between
1.5% and 4%;

• patients with a risk score over 6 had a mortality risk of more than 10%.

An automatic system capable of predicting the operation anesthetic risk has
been developed by Karpagavalli et al. (2009). This system assesses three classifi-
cations techniques based on supervised learning. The assessment has been done
by using the WEKA software for the three following classification techniques:
classification and regression trees, neural networks and Bayesian naïve classifica-
tion. The database used contained 362 patients evaluated on 37 descriptors.

Lutz (2008) developed an automatic system classifying patients in different
anesthetic risk levels. A modified version of the method has been presented by
Hussmann and Russel (1997). One of the descriptors used to predict the patient’s
risk level is the ASA score of the patient.

Donati et al. (2004) developed a new model in order to predict the operative
risk for the patients. The objective of this work was to predict the mortality
and the morbidity of patients on the basis of the ASA classification. A database
composed of 1936 patients built on the input of two hospitals had been used
to predict the operative risks by means of a machine learning algorithm, called
logistic regression.

Several machine learning algorithms have been used by Lazouni et al. (2013a)
in order to predict patients’ ASA score. Lazouni et al. (2013b) used five super-
vised machine learning techniques: support vector machine (SVM), radial basis
function (RBF), C4.5 decision tree classifier, k-nearest neighbor (KNN) and mul-
tilayer perceptron (MLP). The comparison of the supervised machine learning
algorithms done by Lazouni et al. (2013b) shows that the C4.5 decision tree clas-
sifier gives the best results for ASA score prediction. An additional algorithm
used in this work is majority voting which consists of assigning the patient to
the category to which it has been assigned by a majority of the 5 other machine
learning algorithms. This last algorithm allows to obtain even better results than
with the C4.5 decision tree classifier. A database containing 898 patients evalu-
ated on multiple attributes has been used to evaluate the classifiers. The paper
first deals with the determination of the ASA score of each patient. The second
concern consisted of determining whether or not the patients are accepted for
surgery. The third one was the selection of the type of anesthetic method either
general or local. The last one consisted of determining whether the patient’s
tracheal intubation is easy or hard. For each algorithm and each concern, cross
validation was performed.
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4.2.3 Performance of machine learning algorithms for the
determination of the ASA score

In the present work, we are interested in the determination of the ASA score and
patient acceptance or refusal for surgery. We remind the main results of Lazouni
et al. (2013a) regarding these two cases. The attributes taken into account in
order to learn a model predicting the ASA score are listed in Table 4.1. The table
describes the domain of each attribute and whether they should be maximized
and/or minimized. For the determination of patient acceptance or refusal for
surgery, 3 attributes, given in Table 4.2, are taken into account.

Table 4.1: List of attributes taken into account for the prediction of the ASA
score in Lazouni et al. (2013a).

Attribute Domain (Unit) Direction

Age [0-105] (year) min.
Diabetic {0,1} min.
Hypertension {0,1} min.
Respiratory failure {0,1} min.
Heart failure {0,1} min.
Heart rate [55-123] (bpm) max. min.
Heart rate steadiness {0,1} max.
Pacemaker {0,1} min.
Atrioventricular block {0,1} min.
Left ventricular hypertrophy {0,1} min.
Oxygen saturation [43-100] (%) max.
Blood glucose level [0.5-3.8] (g/l) max. min.
Systolic blood pressure [9-20.5] (cm Hg) min.
Diastolic blood pressure [5-13] (cm Hg) min.

Table 4.3 shows the average classification accuracy of the test set for the
prediction of the ASA score and acceptation or refusal of patient for surgery

Table 4.2: List of attributes taken into account for the prediction of acceptance
or refusal of a patient for surgery in Lazouni et al. (2013a).

Attribute Domain (Unit) Direction

ASA score [0-4] min.
Cerebrovascular accident [0-2] min.
Myocardial infarction [0-2] min.
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when 70 % of the data set is used as learning set. The method returning the best
results for both cases is majority voting. It restores 93.59% of the assignments
for ASA score prediction and 94.07% of the assignments for acceptance or refusal
for surgery.

Table 4.3: Average classification accuracy of the test set when 70% of the exam-
ples in the data set are used as learning set for the prediction of ASA score and
acceptance/refusal for surgery.

Learning algorithm ASA score Acceptance/Refusal

SVM 0.8752 0.9142
C4.5 0.9154 0.9012
KNN 0.8468 0.9085
MLP 0.8927 0.9292
RBF 0.8333 0.8981
Majority voting 0.9259 0.9407

4.3 Using the majority rule sorting model for the
prediction of the ASA score and patient acceptance
or refusal for surgery

Compared to other machine learning algorithms, the MR-Sort rule can be more
easily interpreted. It is possible to describe the model as a set of simple rules. In
this chapter, we use the MR-Sort metaheuristic presented in Chapter 3 to learn
the parameters of MR-Sort models predicting the ASA score of a patient and
whether or not he/she is accepted for surgery. To address the two cases, we reuse
the data set of Lazouni et al. (2013a) which involves 898 patients. Table 4.4 gives
the distribution of the patients in the data set among the first four ASA classes.
No patient has an ASA score above 4 and a majority of them has an ASA score
below 3.

The ASA score of a patient is determined based on the 14 attributes in Ta-
ble 4.1. The acceptance or refusal for surgery is determined on the basis of 3
attributes (see Table 4.2) including patient’s ASA score.

As using a MR-Sort model requires attributes which are monotone, it implies
that some attributes of Table 4.1 have to be modified in order to have a monotonic
scale. Indeed, attributes “Heart rate” and “Blood glucose level” are not monotone.
The preference for these attributes increases and then decreases as a function of
the attribute value. As an example, a person with a heart rate of 70 beats per
minutes (bpm) is preferred to someone who has a heart rate of 50 bpm and to
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Table 4.4: Number of patients per ASA score.

ASA score Number of instances
(proportion in percents)

ASA 1 211 (23 %)
ASA 2 396 (44 %)
ASA 3 239 (27 %)
ASA 4 52 (6 %)

Table 4.5: Number of patients accepted and refused.

Patient status Number of instances
(proportion in percents)

Accepted 762 (85 %)
Refused 136 (15 %)

Table 4.6: Attributes split in two in order to determine the ASA score with a
MR-Sort model.

Attribute Domain (Unit) Direction

Heart rate

{

Bradycardia
Tachycardia

[50-70] (bpm) max.
[70-123] (bpm) min.

Blood glucose level

{

Hypoglycemia
Hyperglycemia

[0.5-0.92] (g/l) max.
[0.92-3.8] (g/l) min.

someone with a heart rate of 100 bpm. In order to have criteria for which the
preference either increases or decreases as a function of its value, the attributes
are split in four sub-attributes: “Bradycardia”, “Tachycardia”, “Hypoglycemia”
and “Hyperglycemia”. Table 4.6 lists the four criteria and whether it should be
maximized or minimized.

Attributes used to determine the acceptance or refusal of a patient for surgery
(Table 4.2) are all monotone. There is no need to transform any of them.

4.4 Quality of ASA score and acceptance prediction using
the majority rule sorting model

To assess whether or not MR-Sort gives better results than other machine learning
algorithms, we perform a cross validation on the data set and compare our results
to the ones obtained by Lazouni et al. (2013a). The cross validation is done by



116 Chapter 4. Case study: preoperative patient classification

using successively 30%, 50%, 70% of the database as learning set and the rest as
test set. The split between learning and test alternatives is done at random. For
a given size of learning and test sets, the cross validation is repeated 100 times,
each time with different learning and test sets.

The comparison of the machine learning algorithms with the MR-Sort meta-
heuristic is done by measuring two indices:

1. classification accuracy (classification accuracy (CA)), see Equation (2.28);

2. area under the curve (area under the curve (AUC)), see Equation (3.3).

First, we assess the ability of the MR-Sort metaheuristic to return a model
that is compatible with the highest number of examples. The results are given
in Table 4.7. Compared to the results obtained with other machine learning
algorithms (see Table 4.3), we observe that the classification accuracy with MR-
Sort is significantly better. Indeed, the classification accuracy is improved by
almost 4% with MR-Sort compared to the majority voting algorithm used in
Lazouni et al. (2013a). We also note that the value of the area under the curve
is high which means that the model can efficiently discriminate alternatives from
different classes.

Table 4.7: Prediction of the ASA score: average classification accuracy of the
learning and test sets for different size of learning set (30%, 50%, 70% of the data
set).

Learning set Test set

CA

30% 0.9862± 0.0064 0.9469± 0.0124
50% 0.9829± 0.0053 0.9553± 0.0101
70% 0.9810± 0.0045 0.9615± 0.0129

AUC

30% 0.9958± 0.0029 0.9830± 0.0067
50% 0.9950± 0.0022 0.9858± 0.0053
70% 0.9943± 0.0021 0.9878± 0.0053

The same experiment is performed for the prediction of the patient acceptance
or refusal for surgery. Table 4.8 shows the results obtained with the MR-Sort
metaheuristic. We observe that the model is able to restore 92% of the examples.
Compared to the majority voting algorithm used in Lazouni et al. (2013a), it is
about 2% less efficient. Regarding the area under the curve, we note that the
algorithm is less efficient than for the prediction of the ASA score.

In order to improve the efficiency of MR-Sort for the prediction of patient
acceptance or refusal for surgery, we consider replacing the attribute ASA by
the list of 14 attributes used to determine the ASA score of a patient. The
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Table 4.8: Prediction of Patient Acceptance/Refusal for Surgery using three at-
tributes for different sizes (30%, 50%, 70%) of the data set.

Learning set Test set

CA

30% 0.9268± 0.0121 0.9207± 0.0097
50% 0.9252± 0.0084 0.9241± 0.0092
70% 0.9259± 0.0055 0.9235± 0.0129

AUC

30% 0.7604± 0.0377 0.7509± 0.0162
50% 0.7521± 0.0235 0.7513± 0.0246
70% 0.7536± 0.0148 0.7507± 0.0346

experimental results are displayed in Table 4.9. We observe that the CA and
AUC are substantially improved by replacing the ASA criterion by the 14 criteria
used to determine it. The model gives a CA that is up to 3 percents better when
the learning set grows. But the main difference lies in the value of the AUC
which increases from 75% with 3 criteria to 91% with 16 criteria. Compared to
the best results obtained with the machine learning algorithms in Lazouni et al.
(2013b), we consistently observe a gain of more than one percent with MR-Sort.

It demonstrates that using more criteria helps to improve the quality of the
model. Using the sole ASA attribute results in a descriptive loss which results in
worse performances.

Table 4.9: Prediction of patient acceptance/refusal for surgery using 18 attributes
for different sizes (30%, 50%, 70%) of the data set.

Learning set Test set

CA

30% 0.9794± 0.0086 0.9347± 0.0156
50% 0.9701± 0.0063 0.9475± 0.0113
70% 0.9668± 0.0049 0.9525± 0.0133

AUC

30% 0.9672± 0.0272 0.9129± 0.0338
50% 0.9486± 0.0267 0.9188± 0.0277
70% 0.9281± 0.0277 0.9085± 0.0377

4.5 Explaining predictions and interpretability

Machine learning algorithms often operate as blackboxes. It is difficult for the
user to interpret the resulting models. Compared to ML algorithms, MR-Sort is
a model whose parameters can be interpreted in order to explain the assignments.
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In this subsection, we use the full ASA data set as learning set for the MR-Sort
metaheuristic in order to learn models restoring as many examples as possible.
We select one of the models learned with the metaheuristic and describe it.

4.5.1 Reduction of the number of attributes

To simplify the model as much as possible, we identify attributes having the least
influence in the model. Therefore, we initialize 100 instances of the metaheuristic.
Each instance is initialized at random with a population of 20 MR-Sort models.
The metaheuristic is configured to run 20 times the heuristic improving the pro-
files and 20 times the heuristic adjusting the profiles. For each instance of the
metaheuristic, we keep the model restoring the highest number of assignments.
After running 100 instances of the metaheuristic, we obtain a list of 100 models.
We observe that several criteria are not used in the models found by the meta-
heuristic. The histogram given in Figure 4.1 shows the number of times each
criterion has been discarded among the 100 MR-Sort models. With 16 criteria,
we observe that “Bradycardia”, “Tachycardia” and “Hyperglycemia” are three at-
tributes that are discarded in more than 75% of the models. It shows that some
criteria do not add a lot of information for the determination of the ASA score.

To simplify the model, we apply a leave-one-out procedure to remove some
attributes from the model. It consists in repeating the experiment by removing
one attribute at a time from the data set. For a data set involving 16 attributes,
we thus repeat the experiment 16 times, each time with another subset of 15
attributes. After applying the leave-one-out procedure, we compute the average
classification accuracy of the models for the different subsets. Finally, we remove
the attribute decreasing the least the classification accuracy. The same procedure
is repeated for the 15 criteria and so on. We take care to keep attributes that are
considered important by doctors for the determination of the ASA score. As an
example, “Oxygen saturation” is not often used in the models but we choose to
keep this criterion because doctors consider that it is an important parameter in
the determination of the ASA score.

Figure 4.2 shows the evolution of the average classification accuracy (CA) and
area under the curve (AUC) when using from 16 to 5 attributes in the model.

We observe that the classification accuracy and area under the curve slightly
decrease when attributes are removed. The drop is more important when the
model goes from 8 to 7 attributes and the classification accuracy declines with
more than one percent. The area under the curve remains stable up to 7 criteria.
It decreases with more than one percent when the number of attributes goes from
7 to 6. Going from 6 to 5 criteria results in a decrease of more than 3 percents
of the AUC.
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Figure 4.1: Number of times each criterion was discarded among the 100 best
models corresponding to the 100 instances of the metaheuristic.

4.5.2 Interpretability of the model parameters

In general, a majority rule can be represented by different sets of additive weights
and majority thresholds.

For instance, consider the set of additive weights and the majority thresholds
in Table 4.10. Using these weights in a MR-Sort model composed of 2 categories
C1 and C2, with C2 > C1, an alternative is assigned to category C2 if it is
at as good as the profile on two of the three criteria. Indeed, for each of these
coalitions, we have:

• w1 + w2 > λ;

• w1 + w3 > λ;
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Figure 4.2: Evolution of the classification accuracy (CA) and area under the
curve (AUC) when decreasing the number of attributes from 16 to 5.
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Table 4.10: Example of a set of weights and majority threshold of a MR-Sort
model. The weights are denoted by wj with j = {1, 2, 3} and the majority
threshold is denoted by λ.

w1 w2 w3 λ

0.49 0.11 0.40 0.50

• w2 + w3 > λ.

These criteria coalitions are called “winning coalitions” and we denote them by
{w1, w2}, {w1, w3} and {w2, w3}.

It is not easy to interpret the impact of each criterion by reading the weights
and majority threshold given in Table 4.10. Actually, all criteria have the same
decision power. The differences in the weights of the various criteria seem arbi-
trary. We conclude that these weights do not clearly show the relative importance
of each criterion.

With a model involving 3 criteria, it is not difficult to identify the winning
coalitions by enumerating all the possible coalitions of criteria and by verifying
whether these coalitions fulfill the condition

∑3
j=1 wj ≥ λ. It makes in total 23

(8) criteria coalitions to check. However when the number of criteria increases,
the number of coalitions to check quickly grows. For 7 criteria, it makes 27 (128)
coalitions of criteria to check.

In order to get a set of weights that are more easily interpretable by a decision
maker (DM), we use a post-treatment after learning the parameters of the MR-
Sort model. The post-treatment consists in first identifying the winning coalitions
and then running a mixed integer program (MIP) in order to obtain a set of
weights that is compatible with the original rule and that reflects the power of
each criterion.

Identifying the winning coalition is done by verifying the inequality
∑n

j=1 wj ≥
λ for each possible coalition. We denote by G the set of winning coalitions, i.e.
the ones fulfilling the condition

∑n
j=1 wj ≥ λ. Similarly B denotes the set of

losing coalitions, i.e. the ones that are not fulfilling the above condition. These
coalitions are then given to the MIP which infers a set of weights that is more
easily interpretable by a DM. The MIP tries to maximize the slack between the
majority threshold and winning and losing coalitions. It infers integer weights
and majority threshold. The weights sum up to a pre-defined integer value. The
MIP formulation is the following:

max
wj ,λ

α
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such that:






∑

j∈C wj − α ≥ λ ∀C ∈ G,
∑

j∈C wj + α ≤ λ− ǫ ∀C ∈ B,
∑n

j=1 wj = W,

with:
{

λ ∈ [0,W ] (integer),
wj ∈ [0,W ] (integer) ∀j ∈ N,

and ǫ a small positive value (e.g. 10−5), W an integer value defined a priori.
After using the MIP with the rules defined by weights and majority threshold

given in Table 4.10, we obtain the weights and majority threshold given in Table
4.11. We fixed the value of W to 100 so that the weights sum up to 100. The
weights obtained with the MIP represent more equitably the importance of each
criterion in the model. Indeed each criterion has an importance which is equal
to more or less one third of the weight sum which means an equal importance of
each criterion. The majority threshold is also chosen so that it is easy to state
whether or not a coalition of criteria is better than the threshold or not.

Table 4.11: Weights and majority threshold obtained with the MIP finding a set
of representative weights and majority threshold. The value of W was fixed to
100.

w1 w2 w3 λ

34 33 33 51

The post-treatment presented in this subsection has been used on all the
models found by the metaheuristic in the context of the case study presented in
this chapter. By default, the value of W was fixed to 100. However, sometimes
the MIP was not able to return a set of integer weights that sum up to 100 and
fulfills the rules of the model. In that case, we multiply the value of W by ten and
run the program again. We perform this operation as long as the MIP restores
a set of weights that is compatible with the rules implied by the original set of
weights and majority threshold.

Finding a set of additive weights and a majority threshold which represents
the importance of the criteria in a model is something that deserves attention in
our view. Indeed, we think that the cognitive effort of a DM to understand the
model can be reduced if the parameters of the model are chosen appropriately.
This question was debated during the 71st meeting of the European working
group (EWG) on MCDA and deserves more attention.
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4.5.3 Majority rule sorting model for the prediction of the
ASA score

In agreement with doctors, we choose to keep a model using 7 attributes in order
to predict the ASA score of a patient. The attributes taken into account are “Age”,
“Diabetic”, “Hypertension”, “Oxygen saturation”, “Hyperglycemia”, “Systole” and
“Diastole”. The metaheuristic instances provide several models having similar
classification accuracy and area under the curve. Some of these models are given
in appendix B.

Among the 100 best MR-Sort models obtained, we keep the one represented
in Figure 4.3. This model can restore the ASA score of 96,21% of the patients in
the learning set, with an AUC equal to 98.48%. The confusion matrix is given in
Table 4.12.
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Figure 4.3: MR-Sort model for the prediction of the ASA score. Values between
parentheses below the axis are the weights of the criteria.

Using MR-Sort, patient performances are compared to the profiles delimiting
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Table 4.12: Prediction of patient ASA score: confusion matrix.

ÂSA 1 ÂSA 2 ÂSA 3 ÂSA 4
ASA 1 202 9 0 0
ASA 2 11 382 3 0
ASA 3 6 5 228 0
ASA 4 0 0 0 52

the categories in ascending order, i.e. the comparison begins with the profile
delimiting the worst category. To be assigned to a category, a patient should be
at least as good as the lower profile of this category and not as good as its upper
profile. In the model illustrated in Figure 4.3, a patient is as good as the profile
if his/her performances are at least equal to those of the profile on each criterion
of one of these four criteria coalitions:

1. {Age, Diabetic, Hypertension};

2. {Age, Diabetic, Hyperglycemia, Oxygen saturation, Systole, Diastole};

3. {Age, Hypertension, Hyperglycemia, Oxygen saturation, Systole, Diastole};

4. {Diabetic, Hypertension, Hyperglycemia, Oxygen saturation, Systole, Di-
astole}.

A patient is assigned to a category above ASA 4 if his/her performances are as
good as the performances of the profile delimiting the category ASA 3 from ASA
4. In other words, a patient has always a score better than 4 if he/she satisfies
the three following conditions:

1. he/she is 105 years old or younger;

2. he/she is not diabetic;

3. he/she doesn’t suffer from hypertension.

The ASA score of a patient is also better than 4 if he/she satisfies two of these
conditions in conjunction with a level of oxygen saturation equal or above 93%.
On the contrary, a patient who does not satisfy two of the three conditions listed
above is always assigned to category ASA 4. A patient is assigned to a category
better than 3 if he/she satisfies the three following conditions:

1. he/she is 82 years old or younger;

2. he/she is not diabetic;
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3. he/she doesn’t suffer from hypertension.

The ASA score of a patient is also better than 3 if he/she satisfies two of the
above conditions in conjunction with:

1. an oxygen saturation level equal or greater than 93%;

2. a small hyperglycemia characterized by a blood glucose level equal or smaller
than 1.10 g/l;

3. a systole level equal or smaller than 15 cm Hg;

4. a diastole level equal or smaller than 8.5 cm Hg.

Finally, a patient is always classified in category ASA 1 if the following three
conditions are met:

1. he/she is 73 years old or younger;

2. he/she is not diabetic;

3. he/she doesn’t suffer from hypertension.

A patient is also assigned to ASA 1 if he/she satisfies two of these conditions in
conjunction with:

1. an oxygen saturation level equal or greater than 97%;

2. No hyperglycemia, characterized by a blood glucose level equal or smaller
than 0.92 g/l;

3. a systole level equal or smaller than 9.4 cm Hg;

4. a diastole level equal or smaller than 5.4 cm Hg.

4.5.4 Majority rule sorting model for the prediction of patient
acceptance/refusal for surgery

The acceptance or refusal of a patient for surgery is made on the basis of his/her
performance on the three criteria listed in Table 4.2. As for the prediction of
the ASA score, we use the full data set as learning set to obtain a MR-Sort
model interpretable by doctors. We run the metaheuristic a hundred times to
obtain a set of models. By using the 898 patients of the database as learning set,
we obtain an average classification accuracy equal to 0.9254 and an AUC equal
to 0.7537. Among the 100 best models given by the metaheuristic instances, a
large majority of them are identical. We show one of these models in Figure 4.4.
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Figure 4.4: MR-Sort model for the prediction of the patient acceptance or refusal
for surgery. Values in parentheses below the axis are the weights of the criteria.

Using this model, a patient is accepted for surgery if he/she has at least as good
performance as the limiting profile on all the criteria since λ = 100.

Following this model, a patient is accepted for surgery if he/she fulfills the
two following conditions:

1. his/her ASA score is better than 4;

2. he/she hasn’t been subject to a cerebro-vascular accident or myocardial
infarction.

The confusion matrix is given in Table 4.13. We note that the method is opti-
mistic. All patients that should be accepted for surgery are correctly classified
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by the model. However, the model accepts a large proportion of patients that
should be refused for surgery. In the determination of patient acceptance or re-
fusal for surgery, the use of a MR-Sort model seems to be less relevant than for
the prediction of the ASA score.

Table 4.13: Prediction of patient acceptance/refusal for surgery: confusion ma-
trix.

̂Accepted R̂efused
Accepted 762 0
Refused 67 69

4.6 Chapter conclusion

The development of the medical computer-aided diagnosis systems is becoming
nowadays a very motivating research field. Numerous researchers working in the
field of artificial intelligence are trying to build interpretable intelligent automatic
systems able to help doctors in their routine clinical work.

In this chapter we have introduced a MCDA sorting method in a medical
application. This system, which consists in the prediction of the ASA score and
use it to decide whether the patient is accepted or refused for surgery, is designed
mainly for doctors specialized in anesthesia and ease a great part of their pre-
anesthetic examination.

The results obtained with MR-Sort showed an improvement of the classifica-
tion accuracy compared to machine learning algorithms. The experiments showed
that the accuracy was improved by more than 5 percents for the determination
of the ASA score. For the prediction of patient acceptance or refusal for surgery,
we observed that MR-Sort is not better than the ML algorithms when using the
ASA score as an attribute. However, MR-Sort performs better when the ASA
score is replaced by the sixteen attributes that are used to determine it.

As mentioned in Chapter 3, a MR-Sort model is easy to interpret compared to
other ML algorithms. In this chapter we showed that the model can be described
by a set of simple rules.

We conclude that the proposed methods can be practically used in pre-
anesthetic examinations to help doctors specialized in anesthesia assess the risks
for the patients. In our future work, we intend to enrich the database by adding
patients that are not often represented in it (e.g. newborn children, patients with
a pacemaker, etc.).

To simplify the model as much as possible and ease its interpretation, we
reduced the number of attributes required to determine the ASA score. For the
prediction of the patient acceptance or refusal for surgery we noticed that the
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results were better if all the attributes involved in the prediction of the ASA score
were used. Note that we can proceed as for the ASA score prediction to reduce
the number of attributes and simplify the model.



Chapter 5

Learning the parameters of a

non-compensatory sorting model

With a majority rule sorting (MR-Sort) model, the assignment of an alternative
to a category is done by comparing its performances to the performances of the
profiles delimiting the categories. In this method, an alternative is considered as
good as a profile if it has at least equal performances as the profile on a weighted
majority of criteria. The coalition of criteria in favor of an alternative against a
profile is represented by the sum of weights of the criteria on which the alternative
is better than the profile. This model does not handle criteria interactions since
criteria weights are just summed up. In order to improve the expressiveness
of the model, we substitute additive weights by capacities in order to represent
the power of coalitions of criteria. In this chapter, we describe two manners to
learn the parameters of such a model. The first one is based on mixed integer
programming and the second one is an extension of the metaheuristic presented
in Chapter 3. We perform experimental tests on the same data sets as in Chapter
3 and compare the results.

5.1 Motivations

In this chapter, we consider a sorting model that satisfies the requirements of
the non-compensatory sorting model described in Section 2.2.3 and characterized
by Bouyssou and Marchant (2007a,b). The model is a generalization of MR-Sort
presented in Section 2.2.2. In MR-Sort, categories are separated by profiles which
are vectors of performances on the different criteria. Each criterion of the model
is associated a weight representing its importance or its voting power. Using this
model, without veto, we assign an alternative to a category if it is considered at
least as good as the category lower profile and not at least as good as the category

129
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upper profile. An alternative is considered as good as a profile if its performances
are at least as good as the profile performances on a weighted majority of criteria.
In MR-Sort, the weighted majority of criteria is reached if the sum of weights of
the criteria on which the alternative is at least as good as the profile is greater
than a threshold.

Consider a MR-Sort model involving 4 criteria (c1, c2, c3 and c4) and 2 ordered
categories (C2 > C1), separated by a profile b1. Using this model, an alternative
is assigned to the “good” category (C2) iff its performances are as good as the
profile b1 on at least one of the four following minimal criteria coalitions: c1 ∧ c2,
c3∧c4, c1∧c4 and c2∧c4. A coalition of criteria is said to be minimal if removing
any criterion is enough to reject the assertion “alternative a is as good as profile
b”. With an MR-Sort model, this can be achieved by selecting, for instance, the
following weights and majority threshold: w1 = 0.3, w2 = 0.2, w3 = 0.1, w4 = 0.4
and λ = 0.5. It leads to the four following constraints:















w1 + w2 = λ,
w3 + w4 = λ,
w1 + w4 > λ,
w2 + w4 > λ.

All the other coalitions of criteria, which are not supersets of the four minimal
coalitions listed above, are not sufficient to be considered as good as b1 (e.g.
w1 + w3 < λ).

Assume now that we want a model for which the two minimal sufficient criteria
coalitions are: c1 ∧ c2 and c3 ∧ c4. Modeling this classification rule with an MR-
Sort model is impossible. To model these rules, we have to choose weights wj , j =
1, . . . , 4, summing up to 1, such that w1+w2 ≥ λ and w3+w4 ≥ λ. Summing these
two inequalities yields 1 ≥ 2λ. If we want these coalitions to be the only minimal
sufficient ones, we must also have : w1 +w3 < λ, w1 +w4 < λ, w2 +w3 < λ and
w2 + w4 < λ. Summing these four inequalities yields 2 < 4λ. Hence, there exist
no weights and majority threshold for which the 2 above coalitions are the only
two minimal sufficient coalitions. In order to be able to represent such a type
of rule, we consider in this paper an extension of MR-Sort allowing to model
interactions between criteria. This formulation expresses the majority rule of
MR-Sort by using a capacity like in the Choquet integral (Grabisch, 1996). This
model is called the non-compensatory sorting model (non-compensatory sorting
(NCS) model). It was introduced and characterized by Bouyssou and Marchant
(2007a,b).

In this chapter, we aim at studying the additional descriptive ability of the
NCS model as compared to MR-Sort. We present two manner to infer the pa-
rameters of such a model on the basis of assignment examples. We assess this
experimentally on real data sets.
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5.2 Mixed integer program for learning the parameters of
a non-compensatory sorting model

In this section we propose a mixed integer program (MIP) that has been de-
veloped in order to learn the parameters of a NCS model on the basis of a set
of assignment examples and their associated vectors of performances. We first
remind how the parameters of a MR-Sort model can be learned through linear
programming (see Leroy et al., 2011). Then we modify the MIP in order to learn
the parameters of a NCS model.

5.2.1 Mixed integer program for learning the parameters of a
majority rule sorting model

Leroy et al. (2011) developed a mixed integer program taking a set of assignment
examples and their vector of performances as input and finding the parameters of
a MR-Sort model such that the largest possible number of examples are restored
by the inferred model. We recall the main steps to obtain the MIP formulation.

We denote by A∗ the set of examples given as input to the learning algorithm.
The condition for an object a to be assigned to category Ch (Equation (2.9)) can
be written as follows:

a ∈ Ch ⇐⇒























∑n
j=1 c

h−1
a,j ≥ λ with ch−1

a,j =

{

wj if aj ≥ bh−1
j ,

0 otherwise,

∑n
j=1 c

h
a,j < λ with cha,j =

{

wj if aj ≥ bhj ,

0 otherwise.

In order to make these constraints linear, we introduce for each variable cla,j , with
l = {h− 1, h}, a binary variable δla,j that is equal to 1 when the performance of
the object a is at least as good as or better than the performance of the profile bl
on criterion j and 0 otherwise. To obtain the value of δla,j , we add the following
constraints, where M is an arbitrary large positive constant (M should be chosen
greater than aj − aj):

M(δla,j − 1) ≤ aj − blj < M · δla,j . (5.1)

By using the value δla,j , the values of cla,j are obtained as follows:



















cla,j ≥ 0,

cla,j ≤ wj ,

cla,j ≤ δla,j ,

cla,j ≥ δla,j − 1 + wj .
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The objective function of the MIP consists in maximizing the number of ex-
amples compatible with the learned model, i.e. minimizing the 0/1 loss function.
In order to model this, new binary variables, γa for all a ∈ A∗, are introduced.
The value of γa is equal to 1 if object a is assigned to the expected category, i.e.
the category it is assigned to in the learning set, and equal to 0 otherwise. To
obtain the correct value of the γa variables, two additional constraints are added:

{

∑n
j=1 c

h−1
a,j ≥ λ+M(γa − 1),

∑n
j=1 c

h
a,j < λ−M(γa − 1).

The objective function of the MIP is then to maximize the sum of γa.
Finally, the combination of the objective with all the constraints leads to the

following MIP:

max
wj ,λ,bhj

∑

a∈A∗

γa,

such that:






























































































n
∑

j=1

ch−1
a,j ≥ λ+M(γa − 1) ∀a ∈ A∗h, h = {2, . . . , p},

n
∑

j=1

cha,j < λ−M(γa − 1) ∀a ∈ A∗h, h = {1, . . . , p− 1},

aj − blj < M · δla,j ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},
aj − blj ≥ M(δla,j − 1) ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},

cla,j ≤ δla,j ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},
cla,j ≤ wj ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},
cla,j ≥ δla,j − 1 + wj ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},
bhj ≥ bh−1

j ∀j ∈ N, h = {2, . . . , p− 1},
n
∑

j=1

wj = 1,

with:






























δla,j ∈ {0, 1} ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},
cla,j ∈ [0, 1] ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},
bhj ∈ R ∀j ∈ N, ∀h ∈ H,
γa ∈ {0, 1} ∀a ∈ A∗

wj ∈ [0, 1] ∀j ∈ N,
λ ∈ [0.5, 1].
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5.2.2 Formulation of the mixed integer program for learning a
non-compensatory model

As compared to a MR-Sort model, a NCS model involves more parameters. In a
standard MR-Sort model, a weight is associated to each criterion, which makes
overall n parameters to elicit. With a NCS model limited to two-additive ca-
pacities, the computation of the strength of a coalition of criteria involves the
weights of the criteria in the coalition and the pairwise interactions (Möbius co-
efficients) between these criteria. Overall there are n(n+1)

2 − 1 coefficients. In
the two-additive case, let us denote by mj the weight of criterion j and by mj,k

the Möbius interactions between criteria j and k. The capacity µ(J) of a subset
of criteria J is obtained as: µ(J) =

∑

j∈J mj +
∑

{j,k}⊆J mj,k. The constraints
(2.13) on the interaction read:

mj +
∑

k∈J

mj,k ≥ 0 ∀j ∈ N, ∀J ⊆ N\{j} (5.2)

and
∑

j∈N mj +
∑

{j,k}⊆N mj,k = 1.
The number of monotonicity constraints (5.2) evolves exponentially as a func-

tion of the number of criteria, n. In Hüllermeier and Tehrani (2013), two other
formulations are proposed in order to reduce significantly the number of con-
straints ensuring the monotonicity of the capacities. The first formulation reduces
the number of constraints to 2n2 but leads to a non linear program. The second
formulation reduces the number of constraints to n2+1 without introducing non
linearities but adds n2 extra variables.

With a 2-additive MR-Sort model, the constraints for an alternative a to be
assigned to a category h (Equation (2.16)) can also be expressed as follows:

{

∑n
j=1 c

h−1
a,j +

∑n
j=1

∑j
k=1 c

h−1
a,j,k ≥ λ+M(γa − 1),

∑n
j=1 c

h
a,j +

∑n
j=1

∑j
k=1 c

h
a,j,k < λ−M(γa − 1),

(5.3)

with:

• ch−1
a,j (resp. cha,j) equals mj if the performance of alternative a is at least

as good as the performance of profile bh−1 (resp. bh) on criterion j, and
equals 0 otherwise;

• ch−1
a,j,k (resp. cha,j,k) equals mj,k if the performance of alternative a is at least

as good as the performance of profile bh−1 (resp. bh) on criteria j and k,
and equals 0 otherwise.

For all a ∈ A∗, j ∈ N and l ∈ H, constraints (5.2) imply that cla,j ≥ 0 and that

cla,j,k ∈ [−1, 1]. The values of ch−1
a,j and cha,j are obtained in a similar way as it is
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done for learning the parameters of a standard MR-Sort model by replacing the
weights with the corresponding Möbius coefficients (5.4).



















cla,j ≥ 0,

cla,j ≤ mj ,

cla,j ≤ δla,j ,

cla,j ≥ δla,j − 1 +mj .

(5.4)

However it is not the case for the variables ch−1
a,j,k and cha,j,k, because they involve

two criteria. To linearize the formulation, we introduce new binary variables,
∆l

a,j,k equal to 1 if alternative a has better performances than profile bl on criteria
j and k and equal to 0 otherwise. We obtain the value of ∆l

a,j,k thanks to the
conjunction of constraints given in (5.1) and the following constraints:

2∆l
a,j,k ≤ δla,j + δla,k ≤ ∆l

a,j,k + 1.

In order to obtain the value of cla,j,k, which can be either positive or negative,
for all l ∈ H, we decompose the variable in two parts, αl

a,j,k and βl
a,j,k such that

cla,j,k = αl
a,j,k − βl

a,j,k with αl
a,j,k ≥ 0 and βl

a,j,k ≥ 0. The same is done for mj,k

which is decomposed as follows: mj,k = m+
j,k −m−

j,k with m+
j,k ≥ 0 and m−

j,k ≥ 0.
The values of αl

a,j,k and βl
a,j,k are obtained thanks to the following constraints:







































αl
a,j,k ≤ ∆l

a,j,k,

αl
a,j,k ≤ m+

j,k,

αl
a,j,k ≥ ∆l

a,j,k − 1 +m+
j,k,

βl
a,j,k ≤ ∆l

a,j,k,

βl
a,j,k ≤ m−

j,k,

βl
a,j,k ≥ ∆l

a,j,k − 1 +m−
j,k.

Finally, we obtain the following MIP:

max
mj ,m

+
j,k

,m−
j,k

,λ,bhj

∑

a∈A∗

γa,
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n
∑

j=1

(

ch−1
a,j +

j
∑

k=1

αh−1
a,j,k −

j
∑

k=1

βh−1
a,j,k

)

≥ λ+M(γa − 1)

∀a ∈ A∗h, h = {2, . . . , p},
n
∑

j=1

(

cha,j +

j
∑

k=1

αh
a,j,k −

j
∑

k=1

βh
a,j,k

)

< λ−M(γa − 1)

∀a ∈ A∗h, h = {1, · · · , p− 1},
mj +

∑

k∈J

(m+
j,k −m−

j,k) ≥ 0

∀j ∈ N, ∀J ⊆ N\{j},
n
∑

j=1

mj +

n
∑

j=1

j
∑

k=1

(m+
j,k −m−

j,k) = 1,

bhj ≥ bh−1
j ∀j ∈ N, h = {2, . . . , p},

cla,j ≤ δla,j ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},
cla,j ≤ mj ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},

cla,j −mj ≥ δla,j − 1 ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},
aj − blj < M · δla,j ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},
aj − blj ≥ M(δla,j − 1) ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},

δla,j + δla,k ≥ 2∆l
a,j,k ∀{j, k} ∈ N : k < j, ∀a ∈ A∗h, ∀h ∈ H,

l = {h− 1, h},
δla,j + δla,k ≤ ∆l

a,j,k + 1 ∀{j, k} ∈ N : k < j, ∀a ∈ A∗h, ∀h ∈ H,
l = {h− 1, h},

αl
a,j,k ≤ ∆l

a,j,k ∀{j, k} ∈ N : k < j, ∀a ∈ A∗h, ∀h ∈ H,
l = {h− 1, h},

αl
a,j,k ≤ m+

j,k ∀{j, k} ∈ N : k < j, ∀a ∈ A∗h, ∀h ∈ H,

l = {h− 1, h},
αl
a,j,k +m+

j,k ≥ ∆l
a,j,k − 1 ∀{j, k} ∈ N : k < j, ∀a ∈ A∗h, ∀h ∈ H,

l = {h− 1, h},
βl
a,j,k ≤ ∆l

a,j,k ∀{j, k} ∈ N : k < j, ∀a ∈ A∗h, ∀h ∈ H,
l = {h− 1, h},

βl
a,j,k ≤ m−

j,k ∀{j, k} ∈ N : k < j, ∀a ∈ A∗h, ∀h ∈ H,

l = {h− 1, h},
βl
a,j,k −m−

j,k ≥ ∆l
a,j,k − 1 ∀{j, k} ∈ N : k < j, ∀a ∈ A∗h, ∀h ∈ H,

l = {h− 1, h},
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cla,j ∈ [0, 1] ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},
δla,j ∈ {0, 1} ∀j ∈ N, ∀a ∈ A∗h, ∀h ∈ H, l = {h− 1, h},

αl
a,j,k, β

l
a,j,k ∈ [0, 1] ∀{j, k} ∈ N : k < j, ∀a ∈ A∗h, ∀h ∈ H,

l = {h− 1, h},
∆l

a,j,k ∈ {0, 1} ∀{j, k} ∈ N : k < j, ∀a ∈ A∗h, ∀h ∈ H,
l = {h− 1, h},

mj ∈ [0, 1] ∀j ∈ N,
m+

j,k,m
−
j,k ∈ [0, 1] ∀j ∈ N, ∀k ∈ N, k < j,

bhj ∈ R ∀j ∈ N, ∀h ∈ H,
γa ∈ {0, 1} ∀a ∈ A∗,
λ ∈ [0, 1].

5.3 Metaheuristic for learning the parameters of a
non-compensatory sorting model

The MIP described in the previous section requires a lot of binary variables and
is therefore not well-suited for large problems. In the present section, we describe
an adaptation of the metaheuristic described in Chapter 3 in order to learn the
parameters of a NCS model. Like for the MIP in the previous section, we limit
the model to 2-additive capacities in order to reduce the number of coefficients
as compared to a model with a general capacity.

One of the components that needs to be adapted in the metaheuristic in order
to be able to learn a 2-additive NCS model is the linear program that infers the
weights and the majority threshold (3.1). Like in the MIP described in the
previous section, we use the Möbius transform to express capacities. In order to
infer Möbius coefficients, mj and mj,k, ∀j, ∀k with k < j, we modify the linear
program as shown in the following equation:

min
mj ,mj,k,λ

∑

a∈A∗

(x′
a + y′a)
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n
∑

j:aj≥bh−1
j



mj +

j
∑

k:ak≥bh−1
k

mj,k



− xa + x′
a = λ ∀a ∈ A∗h,

h = {2, . . . , p},
n
∑

j:aj≥bhj



mj +

j
∑

k:ak≥bh
k

mj,k



+ ya − y′a + ε = λ ∀a ∈ A∗h,

h = {1, . . . , p− 1},
n
∑

j=1

mj +

n
∑

j=1

j
∑

k=1

mj,k = 1,

mj +
∑

k∈J

mj,k ≥ 0 ∀j ∈ N, ∀J ⊆ N\{j},
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λ ∈ [0.5; 1]
mj ∈ [0, 1] ∀j ∈ N

mj,k ∈ [−1, 1] ∀j ∈ N, ∀k ∈ N, k < j
xa, ya, x

′
a, y

′
a ∈ R+

0 a ∈ A∗

ε a small positive number.

The value of xa − x′
a (resp. ya − y′a) represents the difference between the

capacity of the criteria belonging to the coalition in favor of a ∈ A∗h with regard
to bh−1 (resp. bh) and the majority threshold. If both xa − x′

a and ya − y′a are
positive, then object a is assigned to the correct category. In order to try to
maximize the number of examples correctly assigned by the model, the objective
function of the linear program minimizes the sum of x′

a and y′a, i.e. the objective
function is min

∑

a∈A∗(x′
a + y′a).

The metaheuristic adjusting the profile also needs some adaptations in order
to take capacities into account. More precisely, the formal definition of the sets in
which objects are classified for computing the candidate move evaluation should
be adapted. The semantics of the sets, given in Section 3.3.4 remains identical.
The formal definitions of these sets have to be adapted as follows to take into
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account the capacity:

V +δ
h,j =

{

a ∈ A∗h
h+1 : bhj + δ > aj ≥ bhj and µ(Na≥bh\{j}) < λ

}

,

V −δ
h,j =

{

a ∈ A∗h+1
h : bhj − δ < aj < bhj and µ(Na≥bh ∪ {j}) ≥ λ

}

,

W+δ
h,j =

{

a ∈ A∗h
h+1 : bhj + δ > aj ≥ bhj and µ(Na≥bh\{j}) ≥ λ

}

,

W−δ
h,j =

{

a ∈ A∗h+1
h : bhj − δ < aj < bhj and µ(Na≥bh ∪ {j}) < λ

}

,

Q+δ
h,j =

{

a ∈ A∗h+1
h+1 : bhj + δ > aj ≥ bhj and µ(Na≥bh\{j}) < λ

}

,

Q−δ
h,j =

{

a ∈ A∗h
h : bhj − δ < aj < bhj and µ(Na≥bh ∪ {j}) ≥ λ

}

.

The formal definitions of the sets R+δ
h,j , R−δ

h,j , T+δ
h,j remain the same as for the

simple additive MR-Sort model as well as the function computing the evaluations
taking into account the size of the sets.

The rest of the metaheuristic remains unchanged.

5.4 Experiments

The use of the MIP for learning a NCS model is limited because of the large num-
ber of binary variables involved. It contains more binary variables than the MIP
learning the parameters of a simple additive MR-Sort model. Experiments re-
ported in Leroy et al. (2011) have demonstrated that the computing time required
to learn the parameters of a standard MR-Sort model having a small number of
criteria and categories from a small set of assignment examples becomes quickly
prohibitive. Therefore we cannot expect to be able to treat large problems using
the MIP for learning NCS models.

To assess the performance of the metaheuristic designed for learning the pa-
rameters of a NCS model, we use it to learn NCS models from the real data sets
used in Chapter 3.

In our first experiment, we use 50% of the alternatives in the data sets as
learning set and the rest as test set. We learn MR-Sort and NCS models using
both metaheuristics. We repeat this procedure for 100 random splits of the data
sets in learning and test sets. We observe from Table 5.1 that the classification
accuracy obtained with the NCS metaheuristic is on average comparable to the
one obtained with the MR-Sort metaheuristic. The use of a more expressive
model does not help much to improve the classification accuracy of the test set.

In a second experiment, we check the ability of MR-Sort and NCS to restore
the whole data set. To do so, we run both metaheuristics 100 times. The average
classification accuracy and standard deviation of the learning set are given in
Table 5.2. The NCS metaheuristic does not always give better results than the
MR-Sort one in restoring the learning set examples. Except for the MPG data



5.4. Experiments 139

Table 5.1: Average and standard deviation of the classification accuracy of the
test set when using 50 % of the examples as learning set and the rest as test set.

Data set Metaheuristic MR-Sort Metaheuristic NCS

DBS 0.8377± 0.0469 0.8312± 0.0502
CPU 0.9325± 0.0237 0.9313± 0.0272
BCC 0.7250± 0.0379 0.7328± 0.0345
MPG 0.8219± 0.0237 0.8180± 0.0247
ESL 0.8996± 0.0185 0.8970± 0.0173
MMG 0.8268± 0.0151 0.8335± 0.0138
ERA 0.7944± 0.0173 0.7944± 0.0156
LEV 0.8408± 0.0122 0.8508± 0.0188
CEV 0.9064± 0.0119 0.9118± 0.0263

Table 5.2: Average and standard deviation of the classification accuracy of the
learning set when using the MR-Sort and NCS models learned on the whole data
set.

Data set #attributes Metaheuristic MR-Sort Metaheuristic NCS

DBS 8 0.9268± 0.0096 0.9326± 0.0087
CPU 6 0.9643± 0.0048 0.9703± 0.0091
BCC 7 0.7605± 0.0147 0.7761± 0.0085
MPG 7 0.8419± 0.0099 0.8389± 0.0069
ESL 4 0.9164± 0.0033 0.9168± 0.0042
MMG 5 0.8419± 0.0099 0.8409± 0.0091
ERA 4 0.8035± 0.0052 0.8027± 0.0053
LEV 4 0.8501± 0.0082 0.8643± 0.0038
CEV 6 0.9005± 0.0141 0.9172± 0.0101

set, we observe a slight advantage (of the order of one standard deviation) in favor
of NCS when the number of attributes is at least 6. There is almost no difference
for the data sets described by 4 or 5 attributes and for MPG (7 attributes).

Average computing times of the results in Table 5.2 are displayed in Table
5.3. Learning a NCS model can take up to almost 3 times as much as learning a
simple MR-Sort model.

The above experiments on benchmark data sets available in the literature
failed to show a clear advantage at using NCS rather than MR-Sort. This raises
the following question. Which type of data set would reveal a gain of expressivity
provided by NCS over MR-Sort? We investigate this question in the next section.
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Table 5.3: Average computing time (in seconds) required to find a solution with
MR-Sort and NCS metaheuristics when using all the examples as learning set.

Data set Metaheuristic MR-Sort Metaheuristic NCS

DBS 3.0508 6.9547
CPU 3.1646 5.2069
BCC 3.3700 7.7545
MPG 4.4136 9.9294
ESL 3.8466 7.2495
MMG 6.1481 13.4848
ERA 5.9689 14.4875
LEV 5.8986 13.2356
CEV 11.1122 31.7042

5.5 Gain in descriptive power with the non-compensatory
sorting model

As the results obtained with NCS models are inconclusive, we try to find a reason
to this by quantifying the gain in descriptive power when passing from additive
weights to capacities.

5.5.1 Notion of minimal sufficient coalition

We remind the definition of a sufficient coalition of criteria1.

Definition 5. In a NCS model, a subset of criteria J is said to be a sufficient
coalition (SC) if its capacity is greater than the majority threshold λ, i.e. when
the condition µ(J) ≥ λ is fulfilled (see Equation (2.15)).

Proposition 1. Any family of sufficient coalitions can be represented as the set
of subsets J ⊆ {1, . . . , n} verifying

µ(J) ≥ λ,

for some capacity µ and threshold λ ≥ 0. Conversely, if µ is a capacity and λ is
a nonnegative number, the set of subsets J satisfying the inequality µ(J) ≥ λ is
a family of sufficient coalitions.

Proof. A family of sufficient coalitions is a family of subsets such that any subset
containing a subset of the family is itself in the family. Define a nonnegative set

1Also called “winning coalition of criteria”
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Table 5.4: Known values of the Dedekind numbers D(n).

n D(n)

0 2
1 3
2 6
3 20
4 168
5 7 581
6 7 828 354
7 2 414 682 040 998
8 56 130 437 228 687 557 907 788

function µ letting µ(J) = 1 if J is a sufficient coalition and 0 otherwise. One
can see that µ is monotone, and therefore a capacity, due to the characteristic
properties of the families of sufficient coalitions. It is also normalized. Define the
threshold λ = 0.5. Clearly µ(J) ≥ 0.5 iff J is a sufficient coalition. The proof of
the converse is also straightforward.

The set of SC may be large (typically exponential in n), but one can avoid
listing all its elements.

Definition 6. A minimal sufficient coalition (MSC) is a SC which is not properly
included in another SC. Knowing the set of MSC allows to determine all SC since
a coalition is sufficient as soon as it contains a MSC.

A family of MSC is any collection of subsets of {1, . . . , n} such that none of
them is included in another. In other words, a set of MSC is an antichain in
the set of subsets of {1, . . . , n} (partially) ordered by inclusion. It is well-known
that the number of antichains in the power set of {1, . . . , n} is D(n), the nth
Dedekind number (The OEIS Foundation Inc. (2009), sequence A000372). These
numbers grow extremely rapidly with n and no exact closed form is known for
them. These numbers have been computed up to n = 8; their values appear in
Table 5.4.

The Dedekind numbers are also the number of monotone (more precisely, posi-
tive (Crama and Hammer, 2011)) Boolean functions (BFs) in n variables. Clearly,
the set of sufficient coalitions can be represented as the set of n-dimensional
Boolean vectors which give the value 1 to a monotone Boolean function (MBF),
and conversely. Another application of the Dedekind numbers is in game theory.
They are the numbers of simple games with n players in minimal winning form
(von Neumann and Morgenstern, 1972; Kurz and Tautenhahn, 2013).
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Table 5.5: Number of inequivalent families of sufficient coalitions of n criteria.

n R(n)

0 2
1 3
2 5
3 10
4 30
5 210
6 16 353
7 490 013 148

One way of simplifying the study of the families of sufficient coalitions consists
in keeping only one representative of each class of equivalent families of SC. Two
families will be considered as equivalent, or isomorphic, if they can be transformed
one into the other just by permuting the labels of the criteria. For instance,
consider the following family of minimal SC for n = 4: {2, 4}, {2, 3}, {1, 3, 4}. It
consists of 2 subsets of 2 criteria and one of 3 criteria. There are 12 equivalent
families that can be obtained from this one, by permuting the criteria labels
(the criterion which does not show up in the set of 3 criteria can be chosen in 4
different ways and the two criteria which distinguish the two pairs can be chosen
in 3 different ways). The number R(n) of inequivalent families of SC is known
for n = 0 to n = 7 (The OEIS Foundation Inc. (2009), sequence A003182). R(7)
was only recently computed by Stephen and Yusun (2014). Table 5.5 lists the
known values of R(n).

Finally we recall Sperner’s theorem (Caspard et al., 2012, p. 116-118), a result
that will be useful in the process of generating all possible families of SC. The
maximal size of an antichain in the power set of a set of n elements is

(

n
⌊n/2⌋

)

.
Hence the latter is the maximal number of sets in a family of minimal SC.

5.5.2 Listing the families of minimal sufficient coalitions

For generating all families of MSC and selecting a representative of each class of
equivalent families, we follow a strategy similar to the one used by Stephen and
Yusun (2014). We describe it briefly. The families of MSC can be partitioned
according to their type (called “profile” by Stephen and Yusun (2014)). The
type of a family of MSC is an integer vector (k1, k2, . . . , kn), where ki represents
the number of coalitions of i criteria in the family. For instance, the family
{2, 4}, {2, 3}, {1, 3, 4}, for n = 4, is of the type (0, 2, 1, 0), since it involves two
coalitions of 2 criteria and one of 3 criteria. For any feasible type,

∑n
i=1 ki ≤
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Table 5.6: Number of inequivalent families of minimal sufficient coalitions.

Type Representative # equivalent

(1, 0, 0) {{1}} 3
(2, 0, 0) {{1}, {2}} 3
(3, 0, 0) {{1}, {2}, {3}} 1
(0, 1, 0) {{1, 2}} 3
(1, 1, 0) {{1}, {2, 3}} 3
(0, 2, 0) {{1, 3}, {2, 3}} 3
(0, 3, 0) {{1, 2}, {1, 3}, {2, 3}} 1
(0, 0, 1) {{1, 2, 3}} 1

Total 8 18

(

n
⌊n/2⌋

)

, due to Sperner’s theorem.
The listing algorithm roughly proceeds as follows:

1. generate all type vectors (k1, k2, . . . , kn) in lexicographic increasing order;

2. for each type, generate all families of subsets of {1, . . . , n} having the right
type and eliminate those that are not antichains, i.e. those involving a
subset that is included in another subset;

3. for each type and for each family of this type, the list of remaining families
is screened for detecting families that are equivalent, counting them and
eliminating them from the list of families of the type considered.

This algorithm outputs a list containing a representative of each class of equiva-
lent families of MSC for each type.

Example 9. For n = 3, the inequivalent families of MSC, with their number of
equivalent versions, are displayed in Table 5.6.

Some remarks:

1. there exist two additional families which do not appear in Table 5.6:

• the empty family, corresponding to the case in which no coalition is
sufficient, which means, for a sorting procedure, that all objects are
assigned to the “bad” category;

• the family of which the sole element is the empty set; this means that
all coalitions are sufficient, even the empty one, and consequently, all
objects are sorted in the “good” category.
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Adding these two extreme cases to the counts in the last line of Table 5.6
yields values that are consistent with Tables 5.5 and 5.4.

2. for n = 3, every possible class type has a single representative. For larger
values of n, this is no longer the case. For instance, for n = 4, we have 3
inequivalent representatives for type (0, 3, 0, 0):

Type Representative # equivalent

(0, 3, 0, 0) {{1, 3}, {1, 2}, {3, 4}} 12
(0, 3, 0, 0) {{2, 4}, {1, 2}, {1, 4}} 4
(0, 3, 0, 0) {{2, 4}, {3, 4}, {1, 4}} 4

These three inequivalent families are the three sorts of non-isomorphic 3-
edge graphs on 4 vertices.

3. in the sequel, in the absence of ambiguity, we shall drop the brackets around
the coalitions and the commas separating the elements of a coalition in
order to simplify the description of a family of SC; for instance, the first
family of type (0,3,0,0) above will be denoted by: {13, 12, 34} instead of
{{1, 3}, {1, 2}, {3, 4}}.

The algorithm sketched above can be made more efficient by implementing
the following properties (see Stephen and Yusun, 2014, lemma 2.4 for a proof),
linking the families of MSC:

1. There is a one-to-one correspondence between families consisting exclu-
sively of ki MSC of cardinality i and families consisting exclusively of
(

n
i

)

− ki MSC of cardinality i. In other terms, there is a bijection be-
tween the families of the type (0, . . . , 0, ki, 0, . . . , 0) and these of the type
(0, . . . , 0,

(

n
i

)

− ki, 0, . . . , 0). For instance, in Table 5.6, generating family
{12} of type (0,1,0), automatically yields family {13, 23} of type (0,2,0).
The number of representatives in both types are identical (three, in the
latter example).

2. If a family of MSC on n criteria contains at least one singleton, then the
remaining MSC of the family do not involve this criterion and hence belong
to a type of family of MSC on n − 1 criteria. In the example of n = 3,
knowing the families of MSC on 2 criteria allows to generate the families
on three criteria for which one criterion alone is a sufficient coalition. For
instance, if criterion 1 alone is sufficient, one can build all families in which
1 is a MSC by putting together with 1 each family of MSC on criteria 2
and 3, i.e.: {}, {2},{3},{2, 3} and {23}. This, however, will not allow to
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directly compute the number of representatives of each type, since some
families, involving more than one singleton as MSC, can be generated in
several ways. For instance, {1, 2} will be obtained both when starting from
the singleton 1 as a MSC and completing this family by MSC included in
{2, 3}, and, starting from the singleton 2 and completing this family by
MSC extracted from {1, 3}.

3. There is a one-to-one correspondence between families of MSC belong-
ing to type (k1, k2, . . . , kn−1, 0) and these belonging to the “reverse” type
(kn−1, . . . , k2, k1, 0). For instance, starting from the family {1, 2} belonging
to type (2,0,0) and taking the complement of each MSC, one obtains the
family {23, 13}, which belongs to (0,2,0). This correspondence allows to
halve the computations for D(n) and R(n).

Using this algorithm on a cluster of computers, we have computed the list of
all inequivalent families of MSC for n = 2 to n = 6. The results, grouped by
type, are available at http://olivier.sobrie.be. For illustrative purposes, the
case n = 4 is given in Appendix C.1.

5.5.3 Representation of coalitions with k-additive capacities

Our main goal in this section is to partition the set of families of MSC, for fixed
n, in categories Ck, which are defined as follows.

Verifying the representability of a rule by a k-additive capacity

Definition 7. A family of sufficient coalitions belongs to class Ck if

1. it is the set of all subsets J of {1, . . . , n} satisfying an inequality of the type:
µ(A) ≥ λ, where µ is a normalized k-additive capacity and λ a non-negative
real number;

2. k is the smallest integer for which such an inequality is valid.

It is clear that all equivalent families of MSC belong to the same class Ck.
Hence it is sufficient to check for one representative of each class of equivalent
families of MSC whether or not it belongs to Ck.

The checking strategy is the following. For each inequivalent family of MSC
(listed as explained in Section 5.5.2), we iteratively check whether it belongs to
class Ck, starting from k = 1 and incrementing k until the test is positive. We
know, by Proposition 1, that this will occur at the latest for k = n. The test can
be formulated as a linear program. Basically, we have to write constraints impos-
ing that µ(A) ≥ λ for each sufficient coalition J and that the same inequality is
not satisfied for all other coalitions, which will be called insufficient coalitions. It

http://olivier.sobrie.be
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is enough to write these sorts of constraints only for the minimal sufficient coali-
tions and for the maximal insufficient coalitions. The set of minimal sufficient
(resp. maximal insufficient) coalitions will be denoted by SCMin (resp. ICMax ).

To formulate the problem as a linear program, we use formula (2.12), which
expresses the value of the capacity µ as a linear combination of its associated
Möbius function m. This enables to control the parameter k which fixes the k-
additivity of the capacity. When checking whether a family of MSC belongs to
class Ck, we set the values of the variables m(K) to 0 for all sets K of cardinality
superior to k; the remaining values of the interaction function are the main
variables in the linear program. The following constitutes the general scheme of
the linear programs used for each class Ck:

maxλ, (5.5)
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µ(J) ≥ λ ∀J ∈ SCMin,
µ(J) ≤ λ− ε ∀J ∈ ICMax ,

µ(J) =
∑

K⊆J

m(K) ∀J ∈ SCMin ∪ ICMax

∑

K:i∈K⊆J

m(K) ≥ 0, ∀i ∈ N, ∀J ⊆ N,

∑

K⊆N

m(K) = 1,

m(K) ≥ 0 ∀K ⊆ N : |K| = 1,

(5.6)

with:
{

m(K) ∈ R ∀K ⊆ N,
λ ≥ 0,

(5.7)

and ε a small positive value.

Results

For n = 1 to 6 and for each family in the list of inequivalent families of MSC, we
checked whether this family belongs to Ck, starting with k = 1 and incrementing
its value until the check is positive. The results are presented in Table 5.7 for
the number and proportion of inequivalent families in classes C2 and C3. The
families that are not in these classes belong to class C1. Up to n = 6, inclusively,
there are no families in classes C4 or above, which means that all families can
be represented using a 3-additive capacity (in the worst case). Up to n = 5,
inclusively, 2-additive capacities are sufficient. Table 5.8 represents a similar
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Table 5.7: Number and proportion of inequivalent families of MSC that are
representable by a 2- or 3-additive capacity.

n R(n) C2 C3
0 2 0 (00.00 %) 0 (00.00 %)
1 3 0 (00.00 %) 0 (00.00 %)
2 5 0 (00.00 %) 0 (00.00 %)
3 10 0 (00.00 %) 0 (00.00 %)
4 30 3 (10.00 %) 0 (00.00 %)
5 210 91 (43.33 %) 0 (00.00 %)
6 16 353 15 240 (93.19 %) 338 (02.07 %)

Table 5.8: Number and proportion of all families of MSC that are representable
by a 2- or 3-additive capacity.

n D(n) C2 C3
0 2 0 (00.00 %) 0 (00.00 %)
1 3 0 (00.00 %) 0 (00.00 %)
2 6 0 (00.00 %) 0 (00.00 %)
3 20 0 (00.00 %) 0 (00.00 %)
4 168 18 (10.71 %) 0 (00.00 %)
5 7 581 4 294 (56.64 %) 0 (00.00 %)
6 7 828 354 7 584 196 (96.88 %) 145 502 (01.86 %)

information but each family in the list of inequivalent families is weighted by the
size of the equivalence class it represents. In other words, this is the result that
would have been obtained by checking all families of MSC for belonging to class
C1, C2 or C3.

The information displayed in Table 5.7 (resp. 5.8) is represented in graphical
form in Figure 5.1 (resp. 5.2). The cases of 0, 1 and 2 criteria are not represented
since all families can be represented by a 1-additive capacity. These figures clearly
show that the proportion of families that can be represented by means of a
1-additive capacity, i.e., by additive weights, decreases quite rapidly with the
number of criteria. In contrast, the proportion of families that can be represented
by a 2-additive capacity grows up to more than 93% from n = 3 to n = 6. The
proportions slightly differ depending on whether only inequivalent families or all
families are taken into account. One can observe that the proportion of families
in class C2 is a bit larger when considering all families (Table 5.8 and Figure 5.2).

As a matter of illustration, we describe a few examples for n = 4 and n = 6.



148 Chapter 5. Learning the parameters of a NCS model

0 20 40 60 80 100

3

4

5

6 2

10

43

91

100

90

57

7

Proportion of inequivalent families of MSC (in %)

N
u
m
b
er

of
cr
it
er
ia

1-additive 2-additive 3-additive

Figure 5.1: Proportion of inequivalent families of MSC in classes C1, C2, C3.
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Figure 5.2: Proportion of all families of MSC in classes C1, C2, C3.
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The list of all inequivalent MSC for n = 5, which are not representable by a 1-
additive capacity, is in Appendix C.2. The categorization in classes Ck is available
at http://olivier.sobrie.be for n = 4, 5, 6.

Example 10. Here are the three families of MSC on 4 criteria that cannot be
represented using a 1-additive capacity (they can be by a 2-additive capacity).

Type Representative # equivalent

(0, 2, 0, 0) {23, 14} 3
(0, 3, 0, 0) {13, 12, 34} 12
(0, 4, 0, 0) {13, 14, 23, 24} 3

These three inequivalent families yield, by permutations of the criteria labels,
a total of 18 families that can only be represented using a 2-additive capacity.

The first inequivalent family is precisely the example that we used in Section
5.1 to show that not all families of SC can be represented by a 1-additive capacity.
In contrast, it can be represented, for instance, by setting m1 = m2 = m3 =
m4 = 0 and m12 = m34 = 5/10, while the other pairwise interactions m13,
m14, m23 and m24 are set to 0. Setting the threshold λ to 5/10 (or any value
greater than 0) allows to separate the sufficient coalitions from the insufficient.
This representation is by no means unique. We construct another capacity by
setting m1 = m2 = m3 = m4 = 1/3, m13 = m14 = m23 = m24 = −1/12
and m12 = m34 = 0. We have: µ(13) = µ(14) = µ(23) = µ(24) = 7/12 while
µ(12) = µ(34) = 2/3. Setting the threshold λ to a value greater than 7/12 also
separates the sufficient from the insufficient coalitions.

Note that the first and the last example are complementary in the sense of
the first property allowing to speed up the enumeration of the families of MSC
described at the end of Section 5.5.2. Both these families are composed of pairs
of criteria; the two pairs in the first family are disjoint from the four in the third
family and all pairs are either in one or the other family. In such a situation, it
is clear that both families belong to the same class Ck.

Example 11. Here are two examples of inequivalent families of MSC on 6 cri-
teria that are not representable by a 2-additive capacity but require a 3-additive
capacity. There are 338 such inequivalent families which yield, through permuta-
tions, a total of 145 502 families2. A simple example is of the type (0, 0, 4, 0, 0, 0).
The MSC are {136, 234, 125, 456}. There are 30 equivalent families that can be
derived from this family by permutation. Another, much more complex example

2If all permutations of the criteria labels were yielding different families, the total number
of families would be 338× 720 = 243 360

http://olivier.sobrie.be
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is of the type (0, 1, 7, 1, 0, 0). The MSC are

{135, 256, 345, 36, 234, 456, 1245, 146, 123}.

There are 360 families that are equivalent to this one through permutations.
In the 338 families, no MSC consists of a single criterion; none of them

involves 5 criteria. The largest number of MSC in a family is 16, the maximal
cardinality of a family of MSC on 6 criteria being the Sperner number 20.

5.5.4 Comparison between the majority rule sorting model
and the non-compensatory sorting model

Among NCS assignment rules, some can be exactly represented by additive
weights and a threshold (the MR-Sort rules), while the others require a non-
additive capacity and a threshold. We call the latter non-additive NCS rules.
These are not MR-Sort rules but they can be approximated by a MR-Sort model.
The experiment described below aims at assessing how well a non-additive NCS
rule can be approximated by a MR-Sort rule.

Consider a NCS model assigning alternatives to two categories, C1 and C2.
For a given profile, the set of all possible alternatives can be partitioned in 2n

subsets, where n is the number of criteria. Each of these subsets is characterized
by one of the 2n relative positions of an alternative with regard to the profile. On
each criterion, the performance of an alternative is either at least as good as the
profile or worse. Due to the ordinal nature of the NCS rule, all alternatives that
share the same relative position with regard to the profile (i.e. all alternatives in
the same class of the partition in 2n subsets) are assigned to the same category.
If we assume that the evaluations of the alternatives on all criteria range in the
[0, 1] interval, we can set the profile values to 0.5 on all criteria. The set of n-
dimensional Boolean vectors is composed of exactly one example of each possible
relative position with regard to the profile.

Our experiments are conducted as follows.

1. We modify the MIP described in Section 5.2.1 to learn only the weights and
the majority threshold of a MR-Sort model on the basis of fixed profiles
and assignment examples. The objective function of the MIP remains the
minimization of the 0/1 loss.

2. We generate all possible NCS rules for n = 4, 5, 6 criteria. For more detail
about how this can be done, see Ersek Uyanık et al. (2014); the list of
all non-equivalent NCS rules is available at http://olivier.sobrie.be.
Each non-additive NCS rule, is used to assign the set of n-dimensional
Boolean vectors to one of the two categories (using the 0.5 constant profile).
These sets of representative alternatives constitute our learning sets.

http://olivier.sobrie.be


5.5. Gain in descriptive power with the NCS model 151

Table 5.9: Average, minimum and maximum 0/1 loss of the learning sets after
learning additive weights and the majority threshold of a MR-Sort model.

n % non-additive MR-Sort
min. max. avg.

4 11 % 6.2 % 6.2 % 6.2 %
5 57 % 3.1 % 9.4 % 3.9 %
6 97 % 1.6 % 12.5 % 4.8 %

3. The modified MIP is used to learn the weights and majority threshold of
a MR-Sort model, which restores as well as possible the assignments made
by the non-additive NCS rule.

The results of the experimentation are displayed in Table 5.9. Each row of the
table contains the results for a given number of criteria, n = 4, 5, 6. The second
column shows the percentage of non-additive NCS rules among all possible rules
for each given number of criteria. The last three columns contain the min, max
and average percentage of the 2n examples assigned by non-additive rules that
cannot be restored by a simple additive model.

We observe that a MR-Sort model on 4 criteria is, in the worst case, not able
to restore 6.2% of the examples in the learning set (1 example out of 16). With 5
and 6 criteria, the maximum 0/1 loss increases respectively to 9.4% (3 examples
out of 32) and 12.5% (8 examples out of 64).

Note that these proportions were obtained using learning sets in which each
type of relative position with regard to the profile is represented exactly once.
Therefore these conclusions should be valid for learning sets in which all types
of relative positions are approximately equally represented. On a test set, the
difference in classification performance between a non-additive NCS rule and its
approximation by a MR-Sort rule can be amplified, or, on the contrary, can fade,
depending on the proportion of the test alternatives belonging to the various
types of relative positions with regard to the profile.

Table 5.9 reveals another important information. The proportion of non-
additive NCS rules among all NCS rules quickly grows with the number of at-
tributes: from 11% of 2-additive NCS rules for n = 4 to 97% for n = 6. It hence
becomes more and more likely that a NCS rule is not a MR-Sort one when n
grows.

The results in Table 5.9 could help to better understand the relatively poor
gains observed in the previous section when comparing the metaheuristic algo-
rithm for learning a 2-additive NCS model and a MR-Sort model. We noticed
that the classification accuracy of the learned NCS rule tended to be slightly
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better for the data sets involving at least 6 attributes. The lack of an advan-
tage for data sets involving 4 attributes might be due to the relative scarcity of
non-additive NCS rules for n = 4 (11%). When a gain is obtained, it is tiny,
which might result from the fact that the approximation of a non-additive NCS
rule by a MR-Sort rule is relatively good, at least up to n = 6. Investigating the
NCS for n ≥ 7 model in a systematic way, using the same method as we did in
our last experiments, is almost impossible due to the extremely fast growth of
the number of possible NCS rules (see Ersek Uyanık et al. (2014)). It is however
arguable that non-additive NCS rules could be at an advantage, as compared to
MR-Sort rules, when the number of attributes is at least as large as 6.

5.6 Chapter conclusion

In this chapter we have introduced two algorithms that enable to learn the param-
eters of a NCS model. The first algorithm, a MIP, enables to obtain an optimal
solution which maximizes the compatibility of the learning set with the model.
The MIP is unfortunately not suitable for large data sets since it uses many bi-
nary variables. That’s why we proposed a modified version of the metaheuristic
presented in Chapter 3 in order to learn a NCS model. With this metaheuristic
it is possible to handle large data sets. However it is not guaranteed that the
solution obtained with the metaheuristic is optimal.

We tested the metaheuristic for learning a NCS model on real data sets issued
from the preference learning field. The results have been compared with the ones
obtained with the metaheuristic of Chapter 3. It showed that using a NCS model
on these data sets does not help a lot. Indeed, the average classification accuracy
and area under the curve are close to the values obtained with the MR-Sort
metaheuristic.

In view of the results obtained with the NCS metaheuristic, we tried to find
the reasons why performances are not that much improved when passing from
a model using additive weights to a model using capacities. We have shown
that a capacity is a particular representation of monotone Boolean function. In
other words, there is a monotone Boolean function associated to each capacity.
Capacities can be represented by a list of MSC. Listing the monotone Boolean
functions amounts to list all possible monotone Boolean functions. In this thesis,
we listed all the MSC for a number of criteria up to 6. We observed that the
proportion of MSC that are representable with a 1-additive capacity decreases
when the number of criteria increases. For 6 criteria, we noticed that almost
all the families of MSC are representable with 2-additive capacities and all are
representable with a 3-additive capacity.

The analysis showed that it is interesting to use 2-additive and 3-additive
capacities to increase the descriptive power of the model. However it does not
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explain why the gain is small when passing from additive weights to capacities.





Chapter 6

New veto rule for outranking

models

Outranking methods are based on the principles of concordance and non-discordance:
an alternative a is considered “at least as good as” another alternative if a majority
of criteria supports this statement (concordance) and if no criterion strongly dis-
agrees with it (non-discordance). In the literature, multiple strategies have been
adopted in order to model the concordance and non-discordance principles. Up
to now in this thesis, we never considered non-discordance relation, i.e. veto, nei-
ther in the majority rule sorting (MR-Sort) model nor in the non-compensatory
sorting (NCS) model. In the NCS model defined by Bouyssou and Marchant
(2007a,b), the veto applies for the assertion “a is preferred to profile bh” when
the score of the alternative a “much worse than” the profile bh on any criterion
j, i.e. if a is below the profile bh minus a veto threshold value vj on any criterion
j. A veto threshold vj is possibly associated to each criterion j. In this chapter,
we consider a new veto rule applying when the performances of an alternative a
is “much worse than” the profile bh on a subset of criteria. We begin this chap-
ter with an introductory example in order to describe the concept of “coalitional
veto”. Then we give an overview of the types of veto found in the literature.
After that we describe formally the new veto rule we introduce. Afterwards, we
present a mixed integer formulation designed for learning the parameters of a
MR-Sort model using coalitional veto. Finally, we propose a strategy in order to
extend the metaheuristic described in Chapter 3 for learning the parameters of a
MR-Sort model using coalitional veto.

6.1 Introductory example

.
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As an introductory example, consider a decision maker (DM) who is respon-
sible for deciding whether or not a set of 100 students succeeded their academic
year. The students are assessed in 10 courses: mathematics, physics, chemistry,
biology, finance, law, management, computer, sociology and marketing. Each
student receives a score ranging between 0 and 20 in each course. Consider a
subset of 5 students, James, John, Michael, Robert and David who obtained the
ratings given in Table 6.1.

Table 6.1: Grades of the students in the five courses.
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James 8 17 15 18 17 15 19 18 14 15
John 16 13 17 16 18 18 14 16 18 8

Michael 17 18 14 17 8 14 17 18 16 8
Robert 18 17 19 8 8 15 15 19 19 8
David 19 18 17 8 13 8 19 17 15 8

In the european credit transfer and accumulation system (ECTS), each course
is associated to a number of credits. In this example, we consider that all courses
have the same number of credits. A student obtains the credits associated to a
course if he/she has an evaluation greater than or equal to 10/20 in this course.
The DM established that a student succeeds his year if he/she gets a score greater
than or equal to 10/20 on at least 7 out of the 10 courses and if the list of courses
in which he/she got an evaluation lower than 9/20 is not too important.

The DM, who decides whether a student is accepted, issues the following
judgments for the 5 students. Given the scores of James, the DM considers
that he should be refused because of his bad rating in mathematics, which is a
course that matters very much for the next school year. On the contrary, the
DM considers that John, who got a bad evaluations in marketing, should be
accepted. He/She considers that marketing is not a significant course for being
rejected and that the score of John should not be a veto for him to pass to the next
year. Following the DM, Michael, who got bad results in marketing and finance,
should be accepted. The DM states that a student as Robert having ratings
below 9/20 in chemistry, marketing and finance should be refused. However, the
DM judges that David can pass to the next year, even with the three bad ratings
in biology, finance and marketing.

Modelling the preferences of the DM with a classical MR-Sort model without
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veto is not possible. We remind that all the courses, i.e. criteria, have the same
importance, i.e. number of ECTS credits. In MR-Sort, we model this by choosing
equal weights (0.1) for all the criteria. As stated by the DM, a necessary condition
to accept a student is that his/her evaluations are at least better than or equal to
10/20 in 7 courses. To model this requirement with a MR-Sort model, we define
a profile having performances equal to 10/20 on all the criteria and the majority
threshold is set to 0.7. Using the model as such, i.e. without veto, enables to
restore the assignments of John, Michael and David. On the contrary, James and
Robert are not correctly assigned since they are accepted disregard the contrary
opinion of the DM.

In order to correct the assignments of James and Robert, we introduce the
binary veto as defined by Bouyssou and Marchant (2007a,b) for the NCS model.
We remind that a binary veto is effective for the assertion “a is at least as good as
bh” when the performance of an alternative a is worse than the profile bh minus
a veto threshold vj on any criterion j. Correcting the assignment of James is
done by setting a veto threshold at 9/20 in mathematics. Only Robert remains
assigned in the wrong category, i.e. he is still accepted to pass to the next year
with this model. In order to correct the assignment of Robert, one can consider
setting a veto threshold at 9/20 either in biology, finance or marketing. However,
if a veto threshold is set on any of these three courses, then the assignments
of other students become incorrect. If a binary veto threshold is set to 9/20
in biology, then David is refused. If a binary veto threshold is set to 9/20 in
finance, then Robert is refused. Finally, if a binary veto threshold is set to 9/20
in marketing, then Michael and John are also refused. This example shows that
it is not possible to represent DM’s acceptance rule with a standard binary veto.
We understand the need for a more general veto rule.

In this example, all the courses have the same importance. However, when
a student has bad ratings, i.e. ratings below 10/20, the DM considers that the
courses do not have the same importance, e.g. mathematics is more important
than marketing. Moreover, he/she also considers that coalitions of criteria on
which a student has bad ratings do not have the same importance, e.g. the coali-
tion [biology, finance, marketing] is more important than the coalition [biology,
law, marketing]. We propose therefore a new veto rule which enables to differen-
tiate coalitions of criteria.

6.2 Literature review

ELECTRE methods (Roy, 1968; Roy and Bouyssou, 1993) are based on the
concordance and non-discordance principles. In these methods, an alternative a
is preferred to another one b if two conditions are fulfilled:
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1. There is a sufficient coalition of criteria on which a has at least as good
performances as b;

2. The alternative a is not much worse than b on one or several attributes.

When the second condition does not hold, we say that there is “veto” for the
assertion “a is preferred to b”.

In ELECTRE I and ELECTRE II, veto applies for the assertion “a is preferred
to b” if the difference between a and b, in favor of b, on any criterion j is greater
than a veto threshold vj , i.e. bj−aj ≥ vj . In ELECTRE III and ELECTRE TRI,
the assertion “a is preferred to b” is valued with a fuzzy index called credibility
threshold. This credibility index has been reminded in Chapter 2, Equation (2.4).
In these methods, the veto doesn’t always apply in an “all or nothing” way, instead
it weakens the credibility index as a non linear function of the difference between
the performances of the two alternatives and the concordance threshold. Roy
and Bouyssou (1993) show that choosing veto thresholds close to the preference
thresholds in conjunction with a credibility threshold close to 1 increases the con-
junctive or disjunctive character of the ELECTRE TRI procedure. Bouyssou and
Pirlot (2009) present several axiom of outranking relations based on concordance
and non-discordance principles as in ELECTRE I and ELECTRE II.

Using ELECTRE III and ELECTRE TRI requires the elicitation of addi-
tional thresholds (indifference and preference thresholds) in order to compute
the concordance and non-discordance indices. While they think that outranking
methods are well adapted for environmental problems, Rogers and Bruen (1998)
note that the use of ELECTRE methods might be seen as unconvincing if the
values of these thresholds are too subjective. They propose a new approach to de-
termine the indifference, preference and veto thresholds which takes uncertainty
and human aspect into account. Similarly, Maciej (2004) notes that a DM can
only evaluate the performances of alternatives in a probabilistic way. He proposes
a procedure based on stochastic dominance to compute a credibility index in a
similar way as for ELECTRE III.

To avoid to determine explicitly the veto thresholds in ELECTRE III and
ELECTRE TRI, Dias and Mousseau (2006) proposed to learn the veto parameters
through mathematical programming from statements provided by the DM. In the
paper, they consider both learning the veto parameters criterion per criterion or
all the veto parameters simultaneously.

Perny and Roy (1992) introduced fuzzy outranking relations in order to handle
uncertain knowledge and conflicting preferences. The proposed model allows to
compare pair of alternatives. In another paper, Perny (1998) proposes a method
based on the fuzzy outranking relation in order to assign alternatives in pre-
defined and possibly ordered categories.
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Roy and Słowiński (2008) proposed two new credibility indices for ELECTRE
III and ELECTRE TRI allowing to take two new effects into account. The first
effect called “reinforced preference” increases the value of the credibility index
when an alternative a is judged “very strongly preferred” to another alternative
b. It is achieved by increasing the value of the partial concordance index (2.1) on
criteria which are strongly in favor of the alternative a. The second effect, called
“counter-veto” aims at reducing the veto effect for criteria on which the difference
between the evaluations of a and b is greater than a value called counter-veto
threshold.

In order to take conflicting information into account in preference state-
ments, i.e. arguments in favour or in disfavour of a proposition a is preferred to
b, Fortemps and Słowiński (2002) extend quadrivalent logic introduced by Bel-
nap (1977). Quadrivalent logic consists in considering four states of knowledge
with regard to a proposition: ignorance, truthfulness, falsity and contradiction.
Fortemps and Słowiński (2002) propose to extend quadrivalent logic to handle the
relevance of preference information in the context of ranking problems. For an as-
sertion of the type “a is preferred to b”, they propose to compute four outranking
relations corresponding to the ignorance, truthfulness, falsity and contradiction
of the assertion.

6.3 Veto rules

In this section, we recall the traditional binary veto rule as defined by Bouyssou
and Marchant (2007a,b). Then we introduce a new veto rule which enables to
take coalition of criteria into account.

6.3.1 Binary veto

In a MR-Sort model with binary veto, an alternative a is “at least as good as” a
profile bh if it has at least equal to or better performances than bh on a weighted
majority of criteria and if it is not strongly worse than the profile on any criterion.
Formally, it is described in Chapter 2 by Equation (2.7). This equation can be
expressed as follows:

a < bh ⇐⇒
∑

j:aj≥bhj

wj ≥ λ and not aV bh,

with:

aV bh ⇐⇒ ∃j ∈ N : aj ≤ bhj − vhj ,

where vhj denotes the veto threshold associated to the profile bh on the criterion j.
We remind that a profile bh delimits the category Ch from Ch+1, with Ch+1 ≻ Ch.
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With binary veto, the MR-Sort assignment rule corresponds to Equation (2.8)
given in Chapter 2. We define the concept of veto profile:

Definition 8. A veto profile vh associated to a profile bh is a vector of perfor-
mances in which the performance on each criterion is equal to bhj − vhj .

We remark that a MR-Sort model with more than 2 categories remains con-
sistent only if veto profiles do not overlap. Otherwise, an alternative might be
on one hand in veto against a profile bh which prevents it to be assigned in Ch+1

and on the other hand not in veto against bh+1 which do not prevent it to be
assigned in Ch+2. It leads to the following proposition.

Proposition 2. In MR-Sort, the binary veto rule remains consistent if the veto
parameters vhj are chosen such that bhj − vhj ≥ bkj − vkj for all {h, k} ∈ J with
h > k.

Proof. Assume vhj and vkj such that bhj − vhj < bkj − vkj with h > k. Consider
an alternative a such that

∑

aj≥bhj
wj ≥ λ which has worse performance than bh

on any criterion j such that bhj − vhj < aj < bkj − vkj . Since a is below the veto
profile vk, we have aV bk which means that it cannot be assigned to category
Ck+1. However, since a is above the veto profile vh on j, it can be assigned in
Ch+1. This assignment is inconsistent since Ch+1 ≻ Ck+1. On the contrary, if
vhj and vkj are such that bhj − vhj ≥ bkj − vkj and the performance of a on criterion
j is such that bhj − vhj ≥ aj ≥ bkj − vkj , then we have either aV bh and aV bk if
aj = bhj − vhj = bkj − vkj or aV bh and not aV bk if bhj − vhj ≥ aj > bkj − vkj .

6.3.2 Coalitional veto

We introduce a new veto rule which considers coalitions of criteria. We call it
“coalitional veto”. With this rule, the veto applies for the assertion “a is preferred
to bh” when the performance of an alternative a is worse than bhj−vhj on a weighted
majority of criteria.

As in the binary veto, a veto threshold vhj is associated to each criterion j and
each profile bh. Coalitional veto involves other parameters. Firstly, it involves a
set of veto weights denoted by zj , for all j ∈ N . Without loss of generality, the
sum of zj is set to 1. Secondly, it involves a veto cut thresholds Λ determining
whether a coalition of criteria is sufficient to impose a veto. Formally, we express
the coalitional veto rule aV bh, as follows:

aV bh ⇐⇒
∑

j:aj≤bhj −vh
j

zj ≥ Λ. (6.1)
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Using coalitional veto, the outranking relation of MR-Sort (2.7) is modified as
follows:

a < bh ⇐⇒
∑

j:aj≥bhj

wj ≥ λ and
∑

j:aj≤bhj −vh
j

zj < Λ. (6.2)

Using coalitional veto in MR-Sort modifies the assignment rule as follows:

a ∈ Ch ⇐⇒







∑

j:aj≥bh−1
j

wj ≥ λ and
∑

j:aj≤bh−1
j −vh−1

j

zj < Λ







and





∑

j:aj≥bhj

wj < λ or
∑

j:aj≤bhj −vh
j

zj < Λ



 (6.3)

In MR-Sort, the veto can be interpreted as a combination of performances pre-
venting the assignment of an alternative to a category.

This new veto rule enables to obtain a model that is capable to restore the
classification rule described in the example of Section 6.1. We call this new model,
MR-Sort model with coalitional veto (MR-Sort-CV).

In the sorting context, the following propositions hold.

Proposition 3. If there is veto for the assertion “a is preferred to bh”, then
there is also veto for the assertion “a is preferred to bk” for any k > h, with
bhj − vhj ≥ bkj − vkj for all j ∈ N .

Proof. We have aV bh if a has worse performance than the veto profile vh on a
weighted majority of criteria. Proposition 2 ensures a dominance relation between
the veto profiles. Therefore, alternative a which has worse performances than vh

on a majority of criteria will also have worse performances than the veto profile
vk with k > h on at least an as large majority of criteria.

Proposition 4. If there is veto for the assertion “a is preferred to bh”, then the
veto also applies for the assertion “a′ is preferred to bh” if a′ is weaker than a on
all the criteria.

Proof. Alternative a is in veto condition against bh because it is worse than the
veto profile a subset of criteria K such that

∑

j∈K zj ≥ Λ. As the alternative a′

has worse performances than a on all the criteria, the subset of criteria K ′ on
which a is worse than vh includes the subset K. Therefore we have

∑

j∈K′ zj ≥
∑

j∈K zj ≥ Λ.
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Proposition 5. There is never veto for the assertion “a is preferred to bh” if
a has at least as good performances as bh on a subset of criteria K such that
∑

j∈K zj > 1− Λ.

Proof. Consider an alternative a better than a profile bh on a subset of criteria
K such that

∑

j∈K zj > 1−Λ. It implies that
∑

j∈N\K zj < Λ and therefore the

veto never applies for the assertion “a is preferred to bh”.

Proposition 6. A subset of criteria K such that
∑

j∈K wj ≥ λ has no influence
in the veto rule of a MR-Sort model in which λ > 0.5.

Proof. Consider an alternative a having worse performances than a profile bh on
a subset of K criteria such that

∑

j∈K wj ≥ λ. By definition of the MR-Sort
model, we have

∑

j∈N\K wj = 1−∑j∈K wj ≤ 1− λ < λ, as λ > 0.5. Therefore

a does not outrank bh no matter the veto rule.

6.3.3 Links between binary veto and coalitional veto

The coalitional veto rule given in Equation (6.2) is a generalization of the binary
rule. Indeed, if the veto cut thresholds Λ is equal to 1

n , with n being the number
of criteria, and each veto weight zj is equal to 1

n , then the veto rule defined in
Equation (6.1) works as a binary veto.

6.3.4 Coalitional veto with same concordance and veto weights

Using coalitional veto in the outranking relation (6.2) implies the definition of
n(p − 1) + n + 1 extra parameters. In total, 2(np + 1) parameters have to be
determined in a MR-Sort model using coalitional veto. In order to reduce the
number of parameters, one can use the same weights for the veto and concordance
profiles. It reduces the number of parameters to 2(np + 1) − n. However it also
limits the flexibility of the model (e.g. the introductory example cannot be solved
by using this simplified version). Formally, it amounts to impose zj = wj for all
j ∈ N . The outranking rule (6.2) then reads:

a < bh ⇐⇒
∑

j:aj≥bhj

wj ≥ λ and
∑

j:aj≤bhj −vh
j

wj < Λ.

Proposition 7. In a MR-Sort model with coalitional veto using equal veto weights,
the veto rule has influence only if the veto threshold should be chosen such that
Λ ≤ 1− λ.
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Proof. Assume that
∑

j∈K wj ≥ λ when K = {j : aj ≥ bhj }. Then
∑

j∈N\K wj =

1−∑j∈K wj ≤ 1− λ. Hence if 1− λ < Λ, then the coalitional veto can never be
triggered. Thus 1− λ ≥ Λ.

Note that the above theorem gives a necessary but not sufficient condition: Λ
should be chosen such that Λ ≤ 1−min

∑

j∈K wj with K :
∑

j∈K wj ≥ λ.

6.4 Mixed integer program for learning the parameters of
a majority rule sorting model using coalitional veto

In this section, we describe a mixed integer program (MIP) for learning the
parameters of a MR-Sort model using coalitional veto. First we describe the MIP
for learning the parameters of a MR-Sort model using coalitional veto. Then we
describe a variant of the mixed integer program in which the veto weights are the
same as the one used for the concordance.

6.4.1 MR-Sort-CV model using independent weights

Learning the parameters of a MR-Sort model without veto using mixed integer
programming has been already studied in Leroy et al. (2011). In this section,
we propose a linear program designed for learning the parameters of a MR-Sort
model with coalitional veto.

The assignment of an alternative into category Ch holds if conditions of Equa-
tion (6.3) are satisfied. We express these conditions as follows:

a ∈ Ch ⇐⇒
{
∑

j:aj≥bh−1
j

wj ≥ λ and
∑

j:aj≤bh−1
j −vh−1

j
zj < Λ,

∑

j:aj≥bhj
wj < λ or

∑

j:aj≤bhj −vh
j
zj ≥ Λ.

In order to model this using linear constraints, we rewrite these conditions as
follows:

a ∈ Ch ⇐⇒
{

∑n
j=1 c

h−1
a,j ≥ λ and

∑n
j=1 µ

h−1
a,j < Λ,

∑n
j=1 c

h
a,j < λ or

∑n
j=1 µ

h
a,j ≥ Λ.

(6.4)

with cla,j and µl
a,j for l = {h− 1, h} such that:

cla,j =

{

wj if aj ≥ blj ,

0 if aj < blj ,

and

µl
a,j =

{

zj if aj ≤ blj − vlj ,

0 if aj > blj − vlj .
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In order to make these constraints linear, two binary variables are introduced:

δla,j =

{

1 if aj ≥ blj ,

0 if aj < blj ,

and

νla,j =

{

1 if aj ≤ blj − vlj ,

0 if aj > blj − vlj .

The value δla,j and νla,j are obtained thanks to the following constraints:



















aj − blj < Mδla,j ,

aj − blj ≥ M(δla,j − 1),

aj − blj + vlj > −Mνla,j ,

aj − blj + vlj ≤ M(1− νla,j).

Finally the value of cla,j and µl
a,j are obtained as follows:







































cla,j ≤ δla,j ,

cla,j ≤ wj ,

cla,j ≥ δla,j − 1 + wj ,

µl
a,j ≤ νla,j ,

µl
a,j ≤ zj ,

µl
a,j ≥ δla,j − 1 + zj .

Using the values of cla,j and µl
a,j , it is possible to determine the concordance and

coalitional veto.
We define two objectives for the mathematical program:

1. The first objective consists in maximizing the compatibility of the model
with the learning set, i.e. restoring the assignments of a maximum number
of examples with the learned model.

2. The second objective consists in minimizing the number of veto. The pro-
gram tries to learn a model in which the veto applies to as few examples as
possible.

The two objectives are used in a lexicographic order. The priority is given to
the first objective which maximizes the compatibility of the learning set with the
learned model.
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To achieve the first objective, it is needed to add a binary variable for each
alternative of the learning set that indicates whether the alternative is assigned
in the correct category. The variable is denoted by γa and is such that:

γa =

{

1 if a is assigned in the correct category,

0 if a is assigned in an incorrect category.

In a model without veto, the value of γa is obtained by modifying the left part
of the constraints given at Equation (6.4) as follows:

a ∈ Ch ⇐⇒
{

∑n
j=1 c

h−1
a,j ≥ λ+M(γa − 1),

∑n
j=1 c

h
a,j < λ−M(γa − 1).

(6.5)

To take the veto into account, two binary variables are introduced for each exam-
ple of the learning set. The binary variables associated to each example indicate
whether veto effect applies regarding the upper and lower profiles of the cat-
egory in which the example is assigned. The variable is denoted by ωl

a, with
l = {h− 1, h}. It takes the following value:

ωl
a =

{

1 if veto applies for alternative a against profile l,

0 otherwise.

Formally, we have:

ωl
a =

{

1 if
∑n

j=1 µ
l
a,j ≥ Λ,

0 if
∑n

j=1 µ
l
a,j < Λ.

The value of ωl
a is obtained thanks to the following constraints:

{

∑n
j=1 µa,j − Λ ≥ M(ωh

a − 1),
∑n

j=1 µa,j − Λ < Mωh
a .

In order to take the veto effect into account, variables ωh−1
a and ωh

a are added in
constraints given in Equation (6.5):

a ∈ Ch ⇐⇒
{

∑n
j=1 c

h−1
a,j − ωh−1

a ≥ λ+M(γa − 1),
∑n

j=1 c
h
a,j − ωh

a < λ−M(γa − 1).

Recall that we want to maximize the compatibility of the learning set with
the learned model and minimize the veto effect. To satisfy these requirements,
we use the following objective function:

max
wj ,λ,b

h
j

zj ,Λ,vh
j

∑

a∈A

γa −
1

2 |a ∈ A\A1|
∑

a∈A\A1

ωh−1
a − 1

2 |a ∈ A\Ap|
∑

a∈A\Ap

ωh
a
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where A1 (resp. Ap) denotes the set of alternatives assigned in C1 (resp. Cp).
The first part of the objective function maximizes the sum of γa in order to
maximize the compatibility of the model with the largest possible number of
alternatives. The second part of the objective function minimizes the sum of ωl

a

with l = {h− 1, h} in order to minimize the number of veto effects. We remark
the component of the second part of the objective function are weighted such
that the MIP will give priority to the maximization of the model compatibility
with the learning set.
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The objective function coupled to the constraints listed above lead to the
following mixed integer program:

max
wj ,λ,b

h
j

zj ,Λ,vh
j

∑

a∈A

γa −
1

2 |a ∈ A\A1|
∑

a∈A\A1

ωh−1
a − 1

2 |a ∈ A\Ap|
∑

a∈A\Ap

ωh
a ,

such that:







































































































































































































































∑n
j=1 c

h−1
a,j − ωh−1

a ≥ λ+M(γa − 1) ∀a ∈ Ah, ∀h ∈ H,
∑n

j=1 c
h
a,j − ωh

a < λ−M(γa − 1) ∀a ∈ Ah, ∀h ∈ H

aj − blj < Mδla,j ∀a ∈ Ah, ∀h ∈ H,
l = {h− 1, h} \ {0, p} , ∀j ∈ N,

aj − blj ≥ M(δla,j − 1) ∀a ∈ Ah, ∀h ∈ H,
l = {h− 1, h} \ {0, p} , ∀j ∈ N,

aj − blj + vlj > −Mνla,j ∀a ∈ Ah, ∀h ∈ H,
l = {h− 1, h} \ {0, p} , ∀j ∈ N,

aj − blj + vlj ≤ M(1− νla,j) ∀a ∈ Ah, ∀h ∈ H,
l = {h− 1, h} \ {0, p} , ∀j ∈ N,

cla,j ≤ δla,j ∀a ∈ Ah, ∀h ∈ H,
l = {h− 1, h} \ {0, p} , ∀j ∈ N,

cla,j ≤ wj ∀a ∈ Ah, ∀h ∈ H,
l = {h− 1, h} \ {0, p} , ∀j ∈ N,

cla,j ≥ δla,j − 1 + wj ∀a ∈ Ah, ∀h ∈ H,
l = {h− 1, h} \ {0, p} , ∀j ∈ N,

µl
a,j ≤ νla,j ∀a ∈ Ah, ∀h ∈ H,

l = {h− 1, h} \ {0, p} , ∀j ∈ N,
µl
a,j ≤ zj ∀a ∈ Ah, ∀h ∈ H,

l = {h− 1, h} \ {0, p} , ∀j ∈ N,
µl
a,j ≥ νla,j − 1 + zj ∀a ∈ Ah, ∀h ∈ H,

l = {h− 1, h} \ {0, p} , ∀j ∈ N,
∑n

j=1 µ
l
a,j − Λ ≥ M(ωl

a − 1) ∀a ∈ Ah, ∀h ∈ H,

l = {h− 1, h} \ {0, p} ,
∑n

j=1 µ
l
a,j − Λ < Mωl

a ∀a ∈ Ah, ∀h ∈ H,

l = {h− 1, h} \ {0, p} ,
∑n

j=1 wj = 1,
∑n

j=1 zj = 1,

bhj ≥ bh−1
j h = {2, . . . , p− 1} , ∀j ∈ J,

bhj − vhj ≥ bh−1
j − vh−1

j h = {2, . . . , p− 1} , ∀j ∈ J,



168 Chapter 6. New veto rule for outranking models

with:






































































wj ∈ [0, 1] ∀j ∈ N,
zj ∈ [0, 1] ∀j ∈ N,

cla,j ∈ [0, 1] ∀a ∈ Ah, ∀h ∈ H, l = {h− 1, h} \ {0, p} , ∀j ∈ N,
µh
a,j ∈ [0, 1] ∀a ∈ Ah, ∀h ∈ H, l = {h− 1, h} \ {0, p} , ∀j ∈ N,
δha,j = {0, 1} ∀a ∈ Ah, ∀h ∈ H, l = {h− 1, h} \ {0, p} , ∀j ∈ N,
γa = {0, 1} ∀a ∈ A,

νha,j = {0, 1} ∀a ∈ Ah, ∀h ∈ H, l = {h− 1, h} \ {0, p} , ∀j ∈ N,
ωl
a = {0, 1} ∀a ∈ Ah, ∀h ∈ H, l = {h− 1, h} \ {0, p} , ∀j ∈ N,
λ ∈ [0.5, 1] ,
Λ ∈ [0, 1],
bhj ∈ R ∀h ∈ H, ∀j ∈ N.

6.4.2 MR-Sort-CV model with veto profiles on concordance
profiles

A particular case of the model consists in choosing veto profiles having perfor-
mances equal to the performances of lower concordance profiles, i.e. vhj = bhj − blj
for any l < h. In this particular case, no veto profile is associated to the profile
delimiting the worst category from the others, i.e. b1 which delimits C1 from
C2 (with C2 ≻ C1). In order to obtain such a model, we modify the MIP pre-
sented above as follows. We introduce h− 1 binary variable ρh,l,j for each profile
performance bhj . It takes the following value:

ρh,l,j =

{

1 if vhj = bhj − blj for any l < h,

0 if vhj 6= bhj − blj for any l < h.

We impose
∑h−1

l=1 ρh,l,j ≤ 1. Finally, the value of vhj is obtained by adding the
following constraints to the MIP of Section 6.4.1:







































bhj − vhj ≤ blj +M(1− ρh,l,j) h = {2, . . . , p− 1},
l = {1, . . . , h− 1}, ∀j ∈ N,

bhj − vhj ≥ blj −M(1− ρh,l,j) h = {2, . . . , p− 1},
l = {1, . . . , h− 1}, ∀j ∈ N,

b1j − v1j = aj ∀j ∈ N,
∑h−1

l=1 ρh,l,j ≤ 1 h = {2, . . . , p− 1}, ∀j ∈ N,
ρh,l,j ∈ {0, 1} ∀h, l = {0, . . . , h− 1}, ∀j ∈ N.

Note that adding these constraints does not simplify the formulation of the MIP
described above since it adds new binary variables in the program.
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6.4.3 Example

In this subsection, we illustrate how the MIP described in Section 6.4.1 works
on a small example. To test this inference program, we build a MR-Sort model
which will be used to determine whether a student is accepted or refused for
next year based on his/her ratings in five courses evaluated on a scale ranging
between 0 and 20. The DM states that a student is accepted if the following two
conditions are fulfilled:

1. The student has a score greater than or equal to 10/20 on at least 3 out of
the 5 courses;

2. His/Her scores are not lower than or equal to 8/20 on more than one course.

If one of these two conditions is not fulfilled, then the student is refused.
To model the DM preference, we define a profile b1 delimiting the category

accepted from the category refused. This profile divides the domain of each cri-
terion in two parts, such that b1j = 10 for j = {1, . . . , 5}. The DM considers that
all the courses have the same importance. We model this by choosing the weights
such that wj = 1

5 for j = {1, . . . , 5}. The majority threshold λ is set to 3
5 such

that a student should have ratings greater than or equal to the profile b1 on at
least 3 out of the 5 criteria to be potentially accepted.

To model the second condition, a veto threshold is added on every profile such
that v1j = 2 for j = {1, . . . , 5}. Veto weights are chosen equal to the concordance
weights. The threshold Λ is chosen equal to 2

5 so that a student is refused if
he/she has a score smaller than or equal to 8/20 on more than one course.

To show that the MIP described in the previous section works as expected,
we first generate a set of 30 (= 25 − 2) example students that allows to learn the
concordance relation. The scores of the students are chosen just above and below
10/20 such that all the possible coalitions are represented. Students with scores
overall above or below 10/20 are not necessary in the learning set because we
know whether the concordance is satisfied or not for them. In order to learn the
veto threshold, we define a second set of students representing all the possible
veto coalitions. Table 6.2 contains the scores of the 30 students and the category
they are assigned in. The scores and their associated assignments are given as
input to the MIP.

Table 6.2: Students evaluations and assignments.

Student c1 c2 c3 c4 c5 Category

a(1) 9 9 9 9 11 refused
a(2) 9 9 9 11 9 refused

Continued on next page
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Table 6.2 – Continued from previous page

Student c1 c2 c3 c4 c5 Category

a(3) 9 9 9 11 11 refused
a(4) 9 9 11 9 9 refused
a(5) 9 9 11 9 11 refused
a(6) 9 9 11 11 9 refused
a(7) 9 9 11 11 11 accepted
a(8) 9 11 9 9 9 refused
a(9) 9 11 9 9 11 refused
a(10) 9 11 9 11 9 refused
a(11) 9 11 9 11 11 accepted
a(12) 9 11 11 9 9 refused
a(13) 9 11 11 9 11 accepted
a(14) 9 11 11 11 9 accepted
a(15) 9 11 11 11 11 accepted
a(16) 11 9 9 9 9 refused
a(17) 11 9 9 9 11 refused
a(18) 11 9 9 11 9 refused
a(19) 11 9 9 11 11 accepted
a(20) 11 9 11 9 9 refused
a(21) 11 9 11 9 11 accepted
a(22) 11 9 11 11 9 accepted
a(23) 11 9 11 11 11 accepted
a(24) 11 11 9 9 9 refused
a(25) 11 11 9 9 11 accepted
a(26) 11 11 9 11 9 accepted
a(27) 11 11 9 11 11 accepted
a(28) 11 11 11 9 9 accepted
a(29) 11 11 11 9 11 accepted
a(30) 11 11 11 11 9 accepted
a(31) 11 11 11 11 7 accepted
a(32) 11 11 11 7 11 accepted
a(33) 11 11 7 11 11 accepted
a(34) 11 7 11 11 11 accepted
a(35) 7 11 11 11 11 accepted
a(36) 11 11 11 7 7 refused
a(37) 11 11 7 11 7 refused
a(38) 11 7 11 11 7 refused

Continued on next page
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Table 6.2 – Continued from previous page

Student c1 c2 c3 c4 c5 Category

a(39) 7 11 11 11 7 refused
a(40) 11 11 7 7 11 refused
a(41) 11 7 11 7 11 refused
a(42) 7 11 11 7 11 refused
a(43) 11 7 7 11 11 refused
a(44) 7 11 7 11 11 refused
a(45) 7 7 11 11 11 refused

The MIP infers model parameters based on the assignment examples given in
Table 6.2. The parameters of the MR-Sort model found by the linear program are
given in Table 6.3. This model enables to restore all the assignments examples
given as input.

Table 6.3: Parameters of the model found by the MR-Sort-CV MIP.

c1 c2 c3 c4 c5

b1 9.0001 9.0001 9.0001 9.0001 9.0001
v1 0.0002 0.0002 0.0002 0.0002 0.0002
wj 0.2 0.2 0.2 0.2 0.2

λ 0.6
Λ 0.4

We ran the MIP presented in Leroy et al. (2011) to see how many examples
can be restored with a MR-Sort model without veto. The parameters of the
MR-Sort model returned by the MIP are given in Table 6.4. With this model,
it is possible to restore 39 out of the 45 assignment examples, i.e. 86% of the
examples. This illustrative example shows that the MR-Sort-CV increases the
expressivity of a classical MR-Sort model.

Table 6.4: Parameters of the model found by the MR-Sort MIP.

c1 c2 c3 c4 c5

b1 9.0001 9.0001 9.0001 9.0001 7.0001
w 0.249975 0.249975 0.249975 0.249975 0.0001

λ 0.750025
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6.5 Metaheuristic for learning the parameters of a
MR-Sort-CV model

We know that inferring the parameters of a MR-Sort model with a MIP takes a
lot of computing time and can therefore be only considered for small problems
(Leroy et al., 2011). A MR-Sort-CV involves more parameters than a MR-Sort
model. The formulation of the MIP described in Section 6.4 includes even more
variables and constraints than the MIP for learning a MR-Sort model without
veto (Leroy et al., 2011). Consequently, the computing time needed to infer the
parameters of a MR-Sort-CV model will be at least as large as for learning the
parameters of a MR-Sort model without veto.

In this section we describe a new strategy in order to integrate the inference
of veto parameters in the algorithm designed for learning a MR-Sort model from
large set of examples which has been described in Chapter 3 (Algorithm 2).
Algorithm 5 gives a global overview of the proposed strategy for integrating the
inference of the coalitional veto in this algorithm.

Algorithm 5 Metaheuristic to learn all the parameters of an MR-Sort-CV model.
Generate a population of Nmodel models with profiles initialized with a heuristic
repeat

for all model M of the set do
Learn the weights and majority threshold with a linear program, using

the current profiles
Adjust the profiles with an heuristic Nit times, using the current

weights and threshold.
Alternatives subject to veto are identified
A set of veto weights and majority threshold are learned with a linear

program.
A set of veto profiles are computed

end for
Reinitialize the

⌊

Nmodel

2

⌋

models giving the worst CA

until Stopping criterion is met

After running the heuristic adjusting the profiles, veto parameters are identi-
fied with a heuristic algorithm which works as follows:

1. For each profile bh, all the alternatives of the learning set that should be
assigned to Ch assigned by the current model to a category better than Ch

are identified. We denote this set of alternatives by A∗h
>h. For instance, in

a model involving three categories (C3 ≻ C2 ≻ C1), it consists of identi-
fying the alternatives belonging to the sets A∗1

2 , A∗1
3 and A∗2

3 . Note that
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all the alternatives identified at this step are not necessarily wrongly clas-
sified because of a missing veto. Indeed some of the alternatives might be
wrongly assigned because the profile is too low on some criteria or because
its assignment is altered.

2. Similarly, for each category Ch, we identify all the alternatives that are
correctly assigned by the model to Ch having at least one performance
below the lower profile of Ch, i.e. bh−1. We denote this set of alternatives
by A∗h

h⊳. The assignments of these alternatives should not be altered by a
veto.

3. The alternatives of the sets A∗h
>h and A∗h

h⊳ are used as input of a modi-
fied version of the linear program (LP) described in Section 3.3.3. The
constraints of this LP are modified as follows:










































∑

j:aj<bhj
zj − xa + x′

a = Λ ∀a ∈ A∗h
>h, h = {1, . . . , p− 1},

∑

j:aj≥bh−1
j

zj + ya − y′a = Λ− ε ∀a ∈ A∗h
h⊳, h = {2, . . . , p},

∑n
j=1 zj = 1,

zj ∈ [0; 1] j = 1, . . . , n,
Λ ∈ [0.5; 1],

xa, x
′
a ∈ R+

0 a ∈ A∗h
>h,

ya, y
′
a ∈ R+

0 a ∈ A∗h
h⊳.

The objective function of the LP remains the same as the one of the LP
described in Section 3.3.3, i.e. minimizing the sum of slack variables x′

a and
y′a.

4. Once a set of veto weights and a veto cut threshold have been learned, a
veto profile is computed for each profile bh with h = {1, . . . , p − 1}. Of
course the dominance constraints between veto profiles are respected. To
compute the veto profile, we use a modified version of the heuristic used in
Chapter 3 to compute the concordance profiles.

Note that this is a simple draft of the algorithm. More things have to be
precised in order to obtain a full implementation. It is for instance needed to
modify the linear program that infer the weights and majority threshold and the
heuristic that modifies the profiles in order to take the veto into account.

Another approach consists in proceeding as in Section 6.4.2, i.e. using the same
performances as lower concordance profiles for the veto profile. This approach
reduces the space of solutions but simplifies the problem. For instance, the veto
profile associated to the profile b2 can take only two values on each criterion j:
either b2j − v2j = b1j or b2j − v2j = aj . One can also consider using same veto and
concordance weights in order to simplify the problem.



174 Chapter 6. New veto rule for outranking models

6.6 Chapter conclusion

In this chapter, we presented a new type of veto rule. We called it “coalitional
veto”. It amounts to consider that an alternative is in veto against a profile if
it is worse than a veto profile on a subset of criteria. A mixed integer program
designed for the inference of the parameters of a MR-Sort model using coalitional
veto has been proposed. The MIP is able to deal with small data sets as illustrated
in this chapter. The outline of an extension of the metaheuristic dedicated to
learn the parameters of a MR-Sort-CV model has been also presented in this
chapter.

We see two directions for further research. The first one consists of charac-
terizing axiomatically this new veto type in order to understand it better. The
second direction of research consists of finding new techniques in order to learn
all the parameters of a MR-Sort-CV model at the same time without involving
too much computing time.



Chapter 7

UTA-poly and UTA-splines:

additive value functions with

polynomial marginals

In Chapter 2, we presented the additive value function (AVF) model (Section
2.2.4). In such a model, a numerical value is associated to each alternative in-
volved in the decision problem. It is computed by aggregating the scores of the
alternatives on the different criteria. The score of an alternative on a criterion is
determined by a marginal value function that evolves monotonically as a function
of the performance of the alternative on this criterion. Determining the shape of
those marginals is not easy for a decision maker (DM). It is easier for him/her to
make statements such as “alternative a is preferred over alternative b”. In order to
help the DM, UTA disaggregation procedures use linear programming to approx-
imate the marginals by piecewise linear functions based only on such statements.
In this chapter, we propose to infer polynomials and splines instead of piecewise
linear functions for the marginals. In this aim, we use semidefinite programming
(SDP) instead of linear programming. We illustrate this new elicitation method
and present some experimental results with artificial and real data sets.

7.1 UTA-poly: additive value functions with polynomial
marginals

In this section we present a new way to elicit marginal value functions using
semidefinite programming. We first give the motivations for using this new
method. Then we describe it.

175
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7.1.1 Motivation

UTA methods use piecewise linear functions to model the marginal value func-
tions. Opting for such functions shapes allows to use the linear programs pre-
sented in Chapter 2, Section 2.4.3, and linear programming solvers to infer an
additive value ranking or sorting model. However by considering piecewise linear
marginals with breakpoints at predefined places, original UTA methods have two
important drawbacks: these options limit the interpretability and the flexibility
of the additive value model.

Interpretability

There is a longstanding tradition in Economics, especially in the classical the-
ory of consumer behavior (see e.g. Silberberg and Suen (2001)), which assumes
that utility (or value) functions are differentiable and interpret their first and
second (partial) derivatives in relation with the preferences and behavior of the
customer. Multiple criteria decision analysis, based on value functions, stems
from the same tradition. Trade-offs or marginal rates of substitution are gener-
ally thought of as changing smoothly (see e.g. Keeney and Raiffa (1976), p. 83 :
“Throughout we assume that we are in a well-behaved world where all functions
have smooth second derivatives”). Although piecewise linear marginals can pro-
vide good approximations for the value of any derivable function, they are not
fully satisfactory as an explanatory model. This is especially the case when the
breakpoints are fixed arbitrarily (e.g. equally spaced in the criterion domains).
Such a choice may well fail to correctly reflect the DM’s feelings about where
the marginal rate of substitution starts to grow more quickly (resp. to diminish)
or shows an inflexion. In other words, the qualitative behavior of the first and
second derivatives of the “true” marginal value function might be poorly approxi-
mated by resorting to piecewise linear models, while this behavior might have an
intuitive meaning for the DM. Therefore, considering piecewise linear marginals
might lead to final models that fail to convince the DM even though they fit the
learning set accurately.

Flexibility

Restricting the shape of the marginals to piecewise linear functions may hamper
the expressivity of the additive value function model. This is especially detri-
mental when large learning sets are available as is the case in machine learning
(ML) applications1.

1It is seldom so in multiple-criteria decision analysis (MCDA) applications where the size
of the learning set rarely exceeds a few dozens of records.
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The following ad hoc case aims to illustrate the loss in flexibility incurred
due to the piecewise linear hypothesis. Consider a ranking problem in which
alternatives are assessed on two criteria. The DM states that the top-ranked
alternatives are a, b, which are tied (rank 1), followed by c (rank 2) while d is
strictly less preferred than the others (rank 3). The evaluations and ranks of
these alternatives are displayed in Table 7.1.

Table 7.1: Example of an alternatives ranking that is not representable with a
UTA model (one linear piece per marginal).

alternative criterion 1 criterion 2 rank

a 100 0 1
b 0 100 1
c 25 75 2
d 75 25 3

Assume that we plan to use a UTA model with marginals involving a single
linear piece (i.e. a weighted sum). Such an UTA model cannot at the same time
distinguish c and d and express that a and b are tied. The fact that a and b are
tied indeed implies that the criteria weights are equal (we can set them to 0.5
without loss of generality). The value on each marginal varies from 0 to 0.5. The
worst value (0) corresponds to the worst performance (0) and the best value (0.5)
to the best performance (100) on each criterion (see the marginal value functions
represented by dashed lines in Figure 7.1). Using these marginals, the scores
of the four alternatives are obtained through linear interpolation and displayed
in Table 7.2. We observe that all alternatives receive the same value 0.5. It is
therefore not possible to discriminate alternatives c and d.

Table 7.2: UTA and UTA-poly scores of the alternatives described in Table 7.1
with the UTA and UTA-poly marginals represented in Figure 7.1.

a b c d

UTA score 0.5 0.5 0.5 0.5
UTA-poly score 0.5 0.5 0.46 0.33

In case polynomials are allowed for, instead of piecewise linear functions, to
model the marginals, the DM’s preferences can be accurately represented. Figure
7.1 shows the case of polynomials of degree 3 used as marginals (plain line). The
scores of the alternatives computed with these marginals are displayed in Table
7.2. They comply with the DM’s preferences.
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u1

0

0.50

0 10025 50 75

0.10

0.26

u2

0

0.50

0 10025 50 75

0.07

0.36

Figure 7.1: Example of UTA and UTA-poly value functions. The dashed lines
correspond to the UTA piecewise linear function and the plain lines correspond
to polynomials of degree 3.

Obviously it would have been possible to reproduce the DM’s ranking using
more than one linear piece marginals in an UTA model. However, when the
breakpoints are fixed in advance, it is easy to construct an example, similar to
the above one, in which the DM’s ranking cannot be reproduced using a linear
function between successive breakpoints while a polynomial (spline) will do.

The two methods introduced below, UTA-poly in the rest of this section and
UTA-splines in Section 7.2, replace the piecewise linear marginals of UTA by
polynomials and polynomial splines, respectively.

7.1.2 Basic facts about non-negative polynomials

In the last few years, significant improvements have been made in formulating
and solving optimization problems in which constraints are expressed in the form
of polynomial (in)equalities and with a polynomial objective function; see, e.g.,
Henrion and Lasserre (2003); Henrion et al. (2009). These new techniques are
useful for various applications; see Lasserre (2009) and the references therein. A
problem arising in many applications, including the present one, is to guaran-
tee the non-negativity of functions of several variables. In our case, we have to
make sure not only that marginals are non negative but also that they are non-
decreasing, i.e. that their derivative is non-negative. Testing the non-negativity
of a polynomial of several variables and of a degree equal to or greater than 4 is
NP-hard (Murty and Kabadi, 1987). Parrilo (2003) proposed an approach based
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on convex optimization techniques in order to find an approximate solution to
this problem.

The approach proposed by Parrilo (2003) is based on the following theorem
about non-negative polynomials.

Theorem 1 (Hilbert). A polynomial F : Rn → R is non-negative if it is possible
to decompose it as a sum of squares (SOS):

F (z) =
∑

s

f2
s (z) with z ∈ Rn. (7.1)

The condition given above is sufficient but not necessary, there exist non-
negative polynomials that cannot be decomposed as a sum of squares (Blekher-
man, 2006). However, it has been proved by Hilbert that a non-negative polyno-
mial of one variable is always a sum of squares (Parrilo, 2003). We give the proof
here because it is remarkably simple and elegant.

Theorem 2 (Hilbert). A non-negative polynomial in one variable is always a
SOS.

Proof. Consider a polynomial of degree D, p(x) = p0 + p1x+ p2x
2 + . . .+ pDxD.

Since p(x) is non-negative, D must be even. The value of pD should be greater
than 0, otherwise limx→∞ p(x) = −∞. As every polynomial of degree D admits
D roots, one can write p(x) as follows:

p(x) = pD

m
∏

i=1

(x− zi)(x− z̄i)

n
∏

j=1

(x− tj)
αj

in which zi and z̄i for i = {1, . . . ,m} are pairs of conjugate complex numbers and
tj for j = {1, . . . , n} are distinct real numbers where D = 2m +

∑n
j=1 αj . All

the values of the exponents αj are even. Indeed, consider a subset of k indices,
{∆1, . . . ,∆k}, such that α∆1

, . . . , α∆k
are odd. Let τ be a permutation of these

indices such that tτ(∆1) < . . . < tτ(∆k). For x ∈
]

tτ(∆k−1), tτ(∆k)

[

, we would have
∏n

j=1(x−tj)
αj < 0, a contradiction. As all the values αj are even, we can rewrite

p(x) as follows:

p(x) =

(

√
pD

l
∏

i=1

(x− zi)

)(

√
pD

l
∏

i=1

(x− z̄i)

)

in which some pairs (zi, z̄i) have no imaginary part. Let
(√

pD
∏l

i=1(x− zi)
)

=

q(x) + ir(x) and
(√

pD
∏l

i=1(x− z̄i)
)

= q(x) − ir(x) where i is the imaginary

part of the complex number and q(x), r(x), two polynomials with real coefficients.
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Finally, the product of these two terms gives a sum of two squares: p(x) =

[q(x)]
2
+ [r(x)]

2.

Let us consider the problem of determining a non-negative polynomial p of
one variable x and degree D. We use the following canonical form to represent
this polynomial:

p(x) = p0 + p1x+ p2x
2 + . . .+ pDxD (7.2)

=

D
∑

i=0

pi · xi.

To guarantee the non-negativity of this polynomial, we have to ensure that it
can be represented as a sum of squares like in Equation (7.1). Note that a
non-negative polynomial will always have an even degree since either the limit
at positive or negative infinity of a polynomial of odd degree is negative. Let
d = D

2 , the polynomial p(x) reads:

p(x) =
∑

s

q2s(x) =
∑

s

[

d
∑

i=0

bisx
i

]2

.

Defining bTs =
(

b0s b1s . . . bds
)

and x
T =

(

1 x . . . xd
)

(where T stands for
the matrix transposition operation), we can express p(x) as follows:

p(x) =
∑

s

(

bTsx
)2

=
∑

s

x
Tbsb

T

sx = x
T

[

∑

s

bsb
T

s

]

x = x
TQx

=











1
x
...
xd











T









q0,0 q0,1 · · · q0,d
q1,0 q1,1 · · · q1,d
...

...
. . .

...
qd,0 qd,1 · · · qd,d





















1
x
...
xd











.

Note that the matrix Q =
∑

s bsb
T

s is symmetric and positive semidefinite (PSD),

which we denote Q � 0, since x
TQx =

∑

s

(

bTsx
)2 ≥ 0 for all x ∈ Rd+1. There-

fore, to ensure that p(x) is non-negative, it is necessary to find a matrix Q of
dimension (d+1)× (d+1) such that p(x) = x

TQx and Q � 0. It turns out that
this condition is also sufficient. This follows from the following lemma.

Lemma 3. Q � 0 ⇐⇒ ∃H : Q = H ·HT.

The above decomposition is called the Cholesky decomposition of matrix Q
(see Appendix E). To summarize, a polynomial p(x) in one variable is non-
negative if and only if there exists Q � 0 such that p(x) = x

TQx.
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The coefficients of the polynomial expressed in its canonical form (7.2) are
obtained by summing the off-diagonal entries of the matrix Q, as follows:











































p0 = q0,0,

p1 = q1,0 + q0,1,

p2 = q2,0 + q1,1 + q0,2,
...

p2d−1 = qd,d−1 + qd−1,d,

p2d = qd,d.

We can express the value of the coefficients of the polynomial as follows:

pi =

{

∑i
g=0 qg,i−g i = {0, . . . , d},

∑d
g=i−d qg,i−g i = {d, . . . , 2d}. (7.3)

The value of pd can be computed with both expressions. Finding a non-negative
univariate polynomial consists in finding a semidefinite positive matrix Q. Sum-
ming the off-diagonal entries of this matrix allows to control the coefficients of
the polynomial.

In some applications, it is not necessary to ensure the non-negativity of the
polynomial on R but only in an interval [v1, v2]. If the non-negativity constraint
has to be guaranteed only in a given interval [v1, v2] for a polynomial p(x), then
the following theorem is useful.

Theorem 4 (Hilbert). A polynomial p(x) in one variable x is non-negative in
the interval [v1, v2], if and only if p(x) = (x − v1) · q(x) + (v2 − x) · r(x) where
q(x) and r(x) are SOS.

Given the above theorem, if we want to ensure the non-negativity of the
polynomial p(x) of degree D on the interval [v1, v2], we have to find two matrices
Q and R of size d + 1, with d =

⌊

D
2

⌋

(⌊·⌋ being the nearest integer down), that
are PSD. We denote these matrices and their indices as follows:

Q =











q0,0 q0,1 · · · q0,d
q1,0 q1,1 · · · q1,d
...

...
. . .

...
qd,0 qd,1 · · · qd,d











, R =











r0,0 r0,1 · · · r0,d
r1,0 r1,1 · · · r1,d
...

...
. . .

...
rd,0 rd,1 · · · rd,d











.

Since Q and R are two PSD matrices, the products aj
TQaj and aj

TRaj, with
aj

T =
(

1 aj . . . adj
)

, are always non-negative.
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To obtain a polynomial p(x) that is non-negative in the interval [v1, v2], its
coefficients have to be chosen such that:







































































p0 = v2 · r0,0 − v1 · q0,0,
p1 = q0,0 − r0,0 + v2 · (r1,0 + r0,1)− v1 · (q1,0 − q0,1),

p2 = (q1,0 + q0,1)− (r1,0 + r0,1) + v2 · (r2,0 + r1,1 + r0,2)

−v1 · (q2,0 + q1,1 + q0,2),
...

p2d−1 = (qd,d−2 + qd−1,d−1 + qd−2,d)− (rd,d−2 + rd−1,d−1 + rd−2,d)

+v2 · (rd,d−1 + rd−1,d)− v1 · (qd,d−1 + qd−1,d),

p2d = (qd,d−1 + qd−1,d)− (rd,d−1 + rd−1,d) + v2 · rd,d − v1 · qd,d,
p2d+1 = qd,d − rd,d.

If the degree D of the polynomial p(x) is even then the value of p2d+1 is equal to
0. The values pi can be expressed in the following more compact form:

pi =







































v2 · r0,0 − v1 · q0,0 i = 0,
∑i−1

g=0(qg,i−1−g − rg,i−1−g)

+
∑i

g=0(v2 · rg,i−g − v1 · qg,i−g) i = {1, . . . , d},
∑d

g=i−d−1(qg,i−1−g − rg,i−1−g)

+
∑d

g=i−d(v2 · rg,i−g − v1 · qg,i−g) i = {d+ 1, . . . , 2d},
qd,d − rd,d i = 2d+ 1.

7.1.3 Semidefinite programming applied to UTA methods

In the perspective of building more natural marginal value functions, we use SDP
to learn polynomial marginals instead of piecewise linear ones. SDP has become
a standard tool in convex optimization, being a generalization of linear program-
ming and second-order cone programming. It allows to optimize linear functions
over an affine subspace of the set of PSD matrices; see, e.g., Vandenberghe and
Boyd (1996) and the references therein.

There are two variants of the new UTA-poly method. Firstly, we describe
the approach that consists in using polynomials that are overall monotone, i.e.
monotone on the set of all real numbers. Then we describe the second approach
considering polynomials that are monotone only on a given interval.
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Enforcing monotonicity of the marginals on the set of real numbers

In the new proposed model, we define the value function on each criterion j as a
polynomial of degree Dj :

u∗
j (aj) =

Dj
∑

i=0

pj,i · aij . (7.4)

To be compliant with the requirements of the theory of additive value functions,
the polynomials used as marginals should be non-negative and monotone over the
criteria domains. To ensure monotonicity, the derivative of the marginal value
function has to be non-negative, hence we impose that the derivative of each
value function is a sum of squares. The degree of the derivative is therefore even
which implies that Dj is odd. This requirement reads:

u∗
j
′ = pj,1 + 2pj,2 · aj + 3pj,3 · a2j + . . .+Djpj,Dj

· aDj−1
j

= aj
TQjaj,

with Qj a PSD matrix of dimension (dj +1)× (dj +1), aj a vector of size (dj +1)

with dj =
Dj−1

2 :

Qj =











qj,0,0 qj,0,1 · · · qj,0,dj

qj,1,0 qj,1,1 · · · qj,1,dj

...
...

. . .
...

qj,dj ,0 qj,dj ,1 · · · qj,dj ,dj











, aj =











1
aj
...

a
dj

j











.

By using SDP, we impose the matrix Q to be semidefinite positive and we set
the following constraints on the pj,i values, for i ≥ 1:











































pj,1 = qj,0,0,

2pj,2 = qj,1,0 + qj,0,1,

3pj,3 = qj,2,0 + qj,1,1 + qj,0,2,
...

(2dj)pj,2dj
= qj,dj ,dj−1 + qj,dj−1,dj

,

(2dj + 1)pj,2dj+1 = qj,dj ,dj
.

In UTA-poly, the marginal value functions and monotonicity conditions on
marginals given in Equation (2.23) and (2.27) are replaced by the following con-
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straints:



















U(a) =
∑n

j=0

∑Dj

i=0 pj,i · aij ∀a ∈ A,

Qj PSD ∀j ∈ N,

(i+ 1)pj,i+1 =
∑i

g=0 qj,g,i−g i = {0, . . . , dj}, ∀j ∈ N,

(i+ 1)pj,i+1 =
∑dj

g=i−dj
qj,g,i−g i = {dj + 1, . . . , 2dj}, ∀j ∈ N.

(7.5)

The optimization program composed of the objective given in Equation (2.22)
and the set of constraints given in Equations (2.23) and (7.5) can be solved using
convex programming, more precisely, semidefinite programming (Parrilo, 2003).
We refer to this new mathematical program as to UTA-poly. An explicit UTA-
poly formulation for a simple problem involving 2 criteria and 3 alternatives is
provided in Appendix D for illustrative purposes.

Enforcing monotonicity of the marginals on the criteria domains

Ensuring the monotonicity of each marginal on the domain of each criterion
(instead of the whole real line) is sufficient to satisfy the requirements of the
additive value function model. To do so, we use Theorem 4 and only impose the
non-negativity of the marginal derivative on the domain [aj , aj ] of each criterion.
This results in the following condition on the derivative u∗

j
′ of the polynomial u∗

j ,
for all j:

u∗
j
′ = pj,1 + 2pj,2 · aj + 3pj,3 · a2j + . . .+Djpj,Dj

· aDj−1
j

= (aj − aj)aj
TQjaj + (aj − aj)aj

TRjaj.

In the above equation, Qj and Rj are two PSD matrices of size (dj +1)× (dj +1)

and aj a vector of size dj + 1, where dj =
⌊

Dj−1
2

⌋

:

Qj =











qj,0,0 qj,0,1 · · · qj,0,dj

qj,1,0 qj,1,1 · · · qj,1,dj

...
...

. . .
...

qj,dj ,0 qj,dj ,1 · · · qj,dj ,dj











, Rj =











rj,0,0 rj,0,1 · · · rj,0,dj

rj,1,0 rj,1,1 · · · rj,1,dj

...
...

. . .
...

rj,dj ,0 rj,dj ,1 · · · rj,dj ,dj











.
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The value pj,i for i ≥ 1 are obtained as follows:



























































































pj,1 = aj · rj,0,0 − aj · qj,0,0,
2pj,2 = qj,0,0 − rj,0,0 + aj · (rj,1,0 + rj,0,1)− aj · (qj,1,0 + qj,0,1),

3pj,3 = (qj,1,0 + qj,0,1)− (rj,1,0 + rj,0,1) + aj · (rj,2,0 + rj,1,1 + rj,0,2)

−aj · (qj,2,0 + qj,1,1 + qj,0,2)
...

(2dj)pj,2dj
= (qj,dj ,dj−2 + qj,dj−1,dj−1 + qj,dj−2,dj

)

−(rj,dj ,dj−2 + rj,dj−1,dj−1 + rj,dj−2,dj
)

+aj · (rj,dj ,dj−1 + rdj−1,dj
)− aj · (qj,dj ,dj−1 + qj,dj−1,dj

),

(2dj + 1)pj,2dj+1 = (qj,dj ,dj−1 + qj,dj−1,dj
)− (rj,dj ,dj−1 + rj,dj−1,dj

)

+aj · rj,dj ,dj
− aj · qj,dj ,dj

,

(2dj + 2)pj,2dj+2 = qj,dj ,dj
− rj,dj ,dj

.

If the degree Dj is odd, then we have pj,2dj+2 = 0 since 2dj + 2 > Dj .
In convex programming, in order to have polynomial marginals that are mono-

tone on an interval, the monotonicity constraints in UTA have to be replaced by
the following ones:







































































U(a) =
∑n

j=0

∑Dj

i=0 pj,ia
i
j ∀a ∈ A,

Qj , Rj PSD ∀j ∈ N,
pj,1 = aj · rj,0,0 − aj · qj,0,0,

(i+ 1)pj,i+1 =
∑i−1

g=0(qj,g,i−g − rj,g,i−g)

+
∑i

g=0(aj · rj,g,i−1−g − aj · qj,g,i−1−g)

i = {0, . . . , dj}, ∀j ∈ N,

(i+ 1)pj,i+1 =
∑dj

g=i−dj−1(qj,g,i−1−g − rj,g,i−1−g)

+
∑dj

g=i−dj
(aj · rj,g,i−g − ajqj,g,i−g)

i = {dj + 1, . . . , 2dj}, ∀j ∈ N,
(2dj + 2)pj,2dj+2 = qdj ,dj

− rdj ,dj
∀j ∈ N.

(7.6)

The optimization program composed of the objective given in Equation (2.22)
and the set of constraints given in Equation (2.23) and (7.5) can be solved using
semidefinite programming.

Similarly, it is possible to use monotonicity constraints given in Equation (7.5)
in conjunction with Equation (2.26) and (2.27) in order to learn an additive value
function sorting model. We call this inference program UTADIS-poly.
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7.2 UTA-splines: additive value functions with splines
marginals

In this section we describe a variant of UTA-poly which consists of using several
polynomials for each value function. We first recall some theory about splines.
Then we describe the new method called UTA-splines.

7.2.1 Splines

We recall here the definition of a spline. We detail the ones that are the most
commonly used.

Definition

A spline of degree Ds is a function Sp that interpolates the set of points (xi, yi)
for i = 0, . . . , q, with x0 < x1 < . . . < xq such that:

• Sp(xi) = yi for i = 0, . . . , q;

• Sp is a set of polynomials of degree equal to or smaller than Ds, on each
interval [xi, xi+1[ (at least one of the polynomials has a degree equal to Ds);

• the derivative of Sp are continuous up to a given degree Dc on [x0, xq].

The degree of a spline corresponds to its highest polynomial degree. If all the
polynomials have the same degree, the spline is said to be uniform.

The continuity of the spline at the connection points is ensured up to a given
derivative. Usually, the continuity of the spline is guaranteed up to the second
derivative (Dc = 2). It ensures the continuity of the slope and concavity at the
connection points.

Cubic splines

The most common uniform splines are the ones of degree 3 (Ds = 3), also called
cubic splines. A cubic spline consists of a set of third degree polynomials which
are continuous up to the second derivative at their connection points.

We denote by si the ith polynomial of the spline going from connection point
xi to connection point xi+1. Formally, each polynomial si of the spline has the
following form:

si(x) = si,0 + si,1x+ si,2x
2 + si,3x

3.

The use of cubic splines requires the determination of four parameters: si,0, si,1,
si,2 and si,3. If the spline interpolates q points, there are overall 4 · (q − 1)
parameters to determine.
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Imposing the equality up to the second derivative at the connection points
amounts to enforce the following constraints:















si(xi) = yi i = {0, . . . , q − 1},
si(xi+1) = yi+1 i = {0, . . . , q − 1},
s′i(xi+1) = s′i+1(xi+1) i = {0, . . . , q − 2},
s′′i (xi+1) = s′′i+1(xi+1) i = {0, . . . , q − 2}.

(7.7)

Since there are 4q − 2 constraints and 4q parameters, two degrees of freedom re-
main. They can be set in different ways. For instance, one can impose s′′0(x0) = 0
and s′′q−1(xq) = 0. This corresponds to imposing zero curvature at both endpoints
of the spline.

7.2.2 UTA-splines: using splines as marginals

We give some detail on how using splines to model marginal value functions of an
additive value function model. We formulate a semidefinite program that learns
the parameters of such a model.

Overview

Using splines continuous up to either the first or the second derivative instead
of piecewise linear functions for the marginal value functions aims at obtaining
more natural functions around the breakpoints.

With UTA-poly, the flexibility of the model is improved by using polynomials
of higher degrees. In order to further improve the flexibility of the model, we
propose now to hybridize the original UTA method which splits the criterion
domain into k equal parts with the UTA-poly approach which uses polynomials to
model the marginal value functions. We call this new disaggregation procedures
UTA-splines. The UTA-splines method combines the use of piecewise functions
for the marginals (as in UTA) and the use polynomials (as in UTA-poly) for each
piece of the function.

Compared to UTA, in UTA-splines the continuity of the marginal can be
ensured up to the any derivative at the connection points. It enables to obtain
more natural marginals which have a continuous curvature.

Description of UTA-splines

In UTA-splines, we model marginals as uniform splines of degree Ds. Formally
the marginal of criterion j reads:

u∗
j (aj) = Sp

Ds,k
j (aj)
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where SpDs

j denotes a uniform spline of degree Ds composed of k pieces. Each

piece of the spline Sp
Ds,k
j (aj) is a polynomial of degree Ds denoted by sj,l(aj),

l = {1, . . . , k}. Formally it reads:

sj,l(aj) = sj,l,0 + sj,l,1aj + sj,l,2a
2
j + . . .+ sj,l,Ds

aDs

j .

The pairs (gl−1
j , ul−1

j ) and (glj , u
l
j) denote respectively the coordinates of the

initial and final points of the piece l of the spline. The points glj for l = 1 to
k − 1 partition the criterion domain [aj , aj ] in subintervals. We set aj = g0j and

aj = gkj . Hence the piece sj,l of the spline is defined on the interval [gl−1
j , glj ].

The spline sj,l takes the value ul−1
j (resp. ul

j) on gl−1
j (resp. glj). The continuity

of the spline at the connection points is ensured by imposing the two following
constraints:

{

sj,l(g
l−1
j ) = ul−1

j l = {1, . . . , k},
sj,l(g

l
j) = ul

j l = {1, . . . , k}.

Usually, the continuity of the marginals is ensured up to the second derivative so
that slope and concavity at the connection points remain continuous. To ensure
the continuity of the first derivative, the following constraints are added:

s′j,l(g
l
j) = s′j,l+1(g

l
j) l = {1, . . . , k − 1}.

Similarly, the following constraints are added to ensure the continuity of the
second derivative:

s′′j,l(g
l
j) = s′′j,l+1(g

l
j) l = {1, . . . , k − 1}.

Of course, it is possible to ensure the continuity of the second derivative only if
the marginal polynomials have a degree equal to or higher than 3. More generally,
it is possible to ensure the continuity of the polynomials up to the ith derivative
only if the polynomials have a degree equal to or higher than i+ 1.

As in UTA-poly, the main difficulty in UTA-splines is to find polynomials
which ensure the monotonicity of the marginals. To achieve this, we use the
results set out in Section 7.1.2. Recall that the non-negativity of an univariate
polynomial is ensured if it can be expressed as a sum of squares. The monotonicity
of the marginals is therefore ensured by imposing the non-negativity of their
derivatives on an interval. Formally, for the piece l of the spline associated to
criterion j, it reads:

s′j,l(aj) = sj,l,1 + 2sj,l,2aj + . . .+Dssj,l,Ds
aDs−1
j ≥ 0.
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We impose s′j,l(aj) to be a sum of two SOS as specified in Theorem 4. Formally
it reads:

s′j,l(aj) = (x− gl−1
j ) · qj,l(aj) + (glj − x) · rj,l(aj),

with qj,l(aj) and rj,l(aj) two polynomials that can be expressed as sums of
squares.

Using SDP, we impose two square matrices Qj,l and Rj,l of size d =
⌈

Ds−1
2

⌉

+1
to be PSD. Hence, qj,l(aj) = aj

TQj,laj and rj,l(aj) = aj
TRj,laj, with aj

T =
(

1 aj . . . adj
)

, are two non-negative polynomials.
The value of the polynomial coefficients sj,l,0, . . . , sj,l,Ds

are obtained by com-
bining the off-diagonal terms of the matrices.

As for UTA-poly, it is possible to proceed similarly to learn an additive value
function sorting model by using the monotonicity constraints described in this
section in conjunction with Equations (2.26) and (2.27). We call such an inference
procedure UTADIS-splines.

Link between UTA-splines, UTA-poly and UTA

We note that UTA-splines is a generalization of UTA. Indeed, UTA is a particular
case of UTA-splines in which splines of the first degree are used.

A similar link exists between UTA-splines and UTA-poly. Indeed, if UTA-
splines is used to learn marginals composed of exactly one piece then it is equiv-
alent to the UTA-poly formulation.

7.3 Illustrative example

In this section, we illustrate UTA-poly and UTA-splines on an small instance of
a ranking problem. In the first subsection we briefly present the context of the
problem. Then we infer the parameters of UTA-poly models and compare the
marginals obtained with UTA-poly to the original ones. Finally we perform the
same experiment with UTA-splines. To formulate and solve the SDP we used
CVX, a Matlab software for disciplined convex programming (Grant and Boyd,
2014). The source code of UTA-poly and UTA-splines is available at the following
address: http://olivier.sobrie.be.

7.3.1 Context of the problem

A family plans to spend a one week holiday in France. They use a search engine
which returns a list of 1000 possible accommodations. To avoid reviewing the
whole list and save time, the family calls a MCDA analyst. The first task of the
analyst consists of determining which criteria matter to the family. They identify
the following three criteria:

http://olivier.sobrie.be
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Figure 7.2: True marginal value functions modeling the family’s preferences.

• Price: the price of the renting in euros, which should be minimized;

• Distance: the distance from home in kilometers, which should be minimized;

• Size: the size of the accommodation in square meters, which should be
maximized.

The family cannot evaluate the importance of the criteria and doesn’t want to
enter into a formal elicitation procedure. In contrast, they are ready to make
some overall statements that could be used by a model learning method.

Let us assume that the preferences of the family can be represented by an
additive value function and that the marginals are displayed in Figure 7.2. These
functions are polynomials of degree 2 (u1 and u3) and 15 (u2).

7.3.2 UTA-poly

In order to learn the marginals given in Figure 7.2, the family ranks a subset of
50 alternatives chosen randomly in the list according to the unveiled marginal
functions displayed in Figure 7.2.

The 49 informative pairwise comparisons are used to learn, using UTA-poly,
an additive value function model with polynomials of degree one to ten. The
inferred value function yields a ranking of the 50 alternatives. Hence, we can
observe the similarity of the initial and inferred rankings. The evolution of the
Spearman distance and Kendall Tau of these rankings is given in Figure 7.3. We
observe that increasing the degree of the polynomial increases the accuracy of
the model. Indeed, the values of the Spearman distance and Kendall Tau grow
as a function of the degree of the marginals.

In a second step, the analyst asks the family to include 50 other alternatives in
the ranking. The analyst provides a set of 99 pairwise comparisons to UTA-poly.
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Figure 7.3: Evolution of the Spearman distance and Kendall Tau of the learning
set as a function of the degree of the marginal polynomials for learning sets
composed of 50 and 100 examples.

As in the first step, polynomials of degree one to ten are learned. We observe
in Figure 7.3 that the accuracy of the model is improved with more pairwise
comparisons when the marginals have a small degree (smaller than 8). With
more examples we see that the Spearman distance and Kendall Tau are slightly
better when marginals degree is small and slightly worse when marginals degree
is superior to 9.

For illustrative purpose we show in Figure 7.4 the marginals learned on the
basis of 100 examples with polynomials of degree 2, 6 and 10. We see that the
marginals u1 and u3 are well approximated with polynomials of degree 2 to 10.
The major difference is observed for u2. Using a polynomial of degree 2 approx-
imates roughly the curve. The two “steps” of u2 cannot be better approximated
by a polynomial of the second degree since there is no inflexion point with such
a polynomial. The real marginal has at least two inflexions where the steps are
located. With a polynomial of degree 6 we see that the approximation of this
curve is improved but it does not perfectly fit the real marginal. Indeed the slope
is less steep between the inflexion points. With a polynomial of degree 10 the
learned marginal almost perfectly fits the real marginal. The inflexion of the
curve happens at the same places and the slopes are similar.
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Figure 7.4: Value functions learned by UTA-poly on the basis of a learning set
composed of 100 examples with polynomials of degree D = 2, 6 and 10.
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Figure 7.5: Evolution of the Spearman distance and Kendall Tau of the learning
set as a function of the degree of the marginal polynomials for learning sets
composed of 100 examples with 1 to 5 polynomials per marginal.

7.3.3 UTA-splines

As for UTA-poly, we perform some experimentations with UTA-splines on the
application described above. We vary the number of pieces and the polynomial
degrees of UTA-splines and observe the variation in accuracy. We also study the
impact of the continuity degree on the splines.

Figure 7.5 shows the evolution of the average Spearman distance and Kendall
Tau on the learning set. We note that increasing the number of pieces usually
has a positive influence on the way UTA-splines succeeds in restoring the original
ranking. UTA-splines is able to restore the original ranking with smaller polyno-
mial degrees when the number of pieces increases. However it is not always the
case. For instance, when using polynomials of degree 1, a UTA model composed
of 4 pieces performs better than one using 5 pieces. With polynomials of degree
greater than 1, UTA-splines always performs better when the number of pieces
is larger.

For illustrative purpose, we show in Figure 7.6 the marginals obtained with
splines of degree D = 1 to 3. The continuity of the splines at the breakpoints
(Dc) is enforced up to D− 1. With polynomials of degree 3, we observe that the
learned marginals tightly fit the real marginals.
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Figure 7.6: Value functions learned by UTA-splines on the basis of a learning set
composed of 100 examples with polynomials of degree D = 1 to 3 and marginals
composed of 5 polynomials (k = 5). The continuity of the spline (Dc) is enforced
up to D − 1.
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7.4 Experiments with artificial data sets

So as to understand the behavior of UTA-poly and UTA-splines, we performed
experiments with artificial data sets. These experiments aim at studying the
ability of the methods to retrieve a ranking from a set of pairwise comparisons
and the computing time. In the experiments, we vary different parameters of
UTA-poly and UTA-splines: degree of the polynomials (D), number of pieces
(k), the continuity at breakpoints (Dc) and the number of alternatives in the
learning set (m). As in the previous Section, we formulate and solve the SDP
we used CVX, a Matlab software for disciplined convex programming (see Grant
and Boyd, 2014).

7.4.1 Experimental setup

Our experimental strategy is the following. We start from an hypothetical addi-
tive value model denoted M , and generate a set of alternatives (called learning
set). Then we simulate the behavior of a DM ranking these alternatives, while
having the model M in mind. Hence, we build a ranking on the learning set.

We compute an additive value model using UTA-poly and UTA-splines com-
patible with the ranking of the learning set. We then compare the inferred models
with the model M . To do so, we randomly generate another set of alternatives
(test set), and we compute the ranking of this test set obtained by the model M
and by the inferred model. We then compute the Spearman distance (Spearman,
1904) and the Kendall Tau (Kendall, 1938) to evaluate how close the inferred
rankings are to the original ones.

We considered 8 different models M , chosen to represent a wide variety of
value functions (structure and forms of the marginals). Four of these models
are composed of 3 criteria (Figure 7.7), while the four others involve 5 criteria
(Figure 7.8). As shown in Figures 7.7 and 7.8, the marginals are of different types:
piecewise linear functions, sigmoids, exponentials and polynomials of degree 2, 3
and 15.

For a given model M and a seed s, the experimental procedure is the following:

1. The random generator is initialized with the seed s.

2. A set of m performances vectors (alternatives) is generated. It constitutes
the learning set A∗. Each component aj of a performances vector a =
(a1, a2, . . . , an) ∈ A∗ is generated by drawing n random numbers uniformly
in [0, 1].

3. The score U(a) is computed for each vector of performances a ∈ A∗ using
the value model M . A pre-order on these alternatives is derived from their
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Figure 7.7: Four additive value function models composed of 3 criteria.

scores. Given a ranking π∗ of the alternatives in A∗, we denote by π∗
i the

alternative ranked in the ith position. We have π∗
1 < π∗

2 < . . . < π∗
m−1.

4. A list of m− 1 pairwise comparisons is induced from the complete ranking
π∗. It is done by comparing each pair of consecutive alternatives in the
ranking. In a ranking π∗, it consists in comparing π∗

i to π∗
i+1, either by an

indifference (π∗
i ∼ π∗

i+1) or a preference (π∗
i ≻ π∗

i+1). We denote by P∗ the
set containing the pairs of alternatives (a, b) such that a ≻ b. I∗ denotes
the set containing the pairs (a, b) such that a ∼ b.

5. The sets A∗, P∗ and I∗ are given as input to UTA-splines/UTA-poly.
The algorithm learns an additive value function model M ′ in which the
marginals are composed of k polynomials of degree D. The breakpoints of
the polynomials are equally spaced on the criterion domain. The continuity
is guaranteed up to the Dth

c derivative at the breakpoints.

6. A test set of 1000 alternatives A is generated similarly as for the learning
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Figure 7.8: Four additive value function models composed of 5 criteria.

set. The alternatives in A are ranked with models M and M ′. The obtained
ranking π and π̂ are then compared by computing the Spearman distance
SD(π, π̂) (see Spearman, 1904) and the Kendall Tau KT (π, π̂) (see Kendall,
1938).

7.4.2 Model retrieval

We tested UTA-poly and UTA-splines with the models shown in Figures 7.7 and
7.8. Results provided in this Section are mean values over the 8 different models
tested. We varied the degree of the polynomials (D), the number of pieces (k),
the continuity at the breakpoints (Dc). We varied the size of the learning set (m)
between 10 and 100 alternatives. The test set was composed of 1000 alternatives.
For each setting, we ran the test procedure described above with 10 random seeds.

This experiment shows how the number of comparisons impacts the ability to
elicit the parameters of a model M composed of n criteria. The experiment also
shows the impact of the number of pieces per marginal and of the degree of the



198 Chapter 7. UTA-poly and UTA-splines

polynomial.

UTA-poly

The first test consists in testing UTA-poly with only one piece per marginal
(k = 1). We show in Figure 7.9 the average Spearman distance and Kendall
Tau of the test set of the models composed of 3 criteria when the degree of the
learned marginals (D) varies from 1 (which corresponds to a weighted sum) to 4.
The values of the Spearman distance and Kendall Tau increase as a function of
the number of alternatives in the learning set. For the same number of examples
in the learning set, the quality of the ranking is improved as the degree of the
polynomial increases. We observe the same behavior with models involving 5
criteria (Figure 7.10). Detailed results per model are available in Appendix F.

UTA-splines

In the second test, we varied the number of pieces per marginals (k) from 1 to 5
and used polynomials of degree 3. The continuity at the breakpoints is ensured
up to the second derivative. Figure 7.11 shows the average Spearman distance
and Kendall Tau of the test set for the models composed of 3 criteria. We
observe that increasing the number of pieces helps to increase the accuracy of the
model. With models composed of 5 criteria (see Figure 7.12), we observe the same
behavior. It depicts a general trend for the model presented in Figures 7.7 and
7.8. Nevertheless one has to be cautious to overfitting effects when the number
of pieces increases and to the position of the breakpoints. Indeed increasing
the number of pieces increases the number of parameters of the model and its
flexibility which may lead to overfitting. In Appendix F we present the detailed
results for each model of Figure 7.7 and 7.8.

7.4.3 Computing time

The computing time strongly depends on the number of constraints and variables
that are involved. The number of constraints and variables are expressed by the
following equations:

#constraints = m+ n+ 2nk + nkD + (1 +Dc)n(k − 1),

#variables = nk(D + 1) + 2nk

⌈

D

2

⌉2

+ 2m.

We give in Table 7.3 the number of constraints and variables for different problem
sizes.
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Figure 7.9: Average Spearman distance and Kendall Tau of the test set with the
models involving 3 criteria learned by UTA-poly when the degree of the marginals
vary between 1 and 4.
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Figure 7.10: Average Spearman distance and Kendall Tau of the test set with the
models involving 5 criteria learned by UTA-poly when the degree of the marginals
vary between 1 and 4.
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Figure 7.11: Average Spearman distance and Kendall Tau of the test set with the
models involving 3 criteria learned by UTA-splines with marginals composed of
polynomials of the third degree. The continuity at the breakpoints is ensured up
to the second derivative.
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Figure 7.12: Average Spearman distance and Kendall Tau of the test set with the
models involving 5 criteria learned by UTA-splines with marginals composed of
polynomials of the third degree. The continuity at the breakpoints is ensured up
to the second derivative.
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Table 7.3: Number of constraints and variables for different problem sizes and
average computing time with standard deviation.

m n k D Dc #const. #var. computing time (sec.)

10 3 1 1 0 22 32 0.48± 0.15
10 3 5 1 0 70 80 1.02± 0.34
10 3 1 4 0 31 59 0.86± 0.19
10 3 5 4 2 139 215 1.96± 0.29
10 5 5 4 2 225 345 2.99± 0.36

100 3 1 1 0 112 212 1.96± 0.14
100 3 5 1 0 160 260 2.58± 0.14
100 3 1 4 0 121 239 2.96± 0.14
100 3 5 4 2 229 395 3.92± 0.20
100 5 5 4 2 315 525 5.90± 0.35

We observe that the computing time evolves linearly with the number of
examples that are given as input to the algorithm. For the inference of a UTA-
poly model, the higher the degree of the polynomials, the higher the computing
time; however the difference is not substantial. Compared to an UTA model,
learning a UTA-poly model using polynomials of the 4th degree increases the
computing time of a few dozen of milliseconds. The behavior is similar when
passing from one to several pieces per marginal. When the number of criteria
increases, we observe that the computing time increases too.

Lastly, it should be emphasized that computing times for all instances solved
in this section are reasonably short (less than 6 sec.), and compatible with an
iterative and interactive use with a DM.

7.5 Experiments with real data sets

In this section we describe the experiments we have performed with 5 real data
sets in the sorting context. We studied the impact of the degree of the polynomials
and the number of pieces for the learning and testing performances.

To proceed, we used UTADIS-poly and UTADIS-splines which are respec-
tively an adaptation of UTA-poly and UTA-splines for learning an additive value
function sorting (AVF-Sort) model. We recall that the objective function and the
constraints for learning such a model are given in Equations (2.26) and (2.27).
In order to guarantee, the monotonicity of the marginals, the same type of con-
straints are used as for UTA-poly and UTA-splines.
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7.5.1 Data sets and experimental design

The characteristics of the data sets that have been used to test UTADIS-poly
and UTADIS-splines are presented in Table 7.4. Note that some of these data
sets have been already used in Chapter 3 to test the metaheuristic learning a
majority rule sorting (MR-Sort) model.

Table 7.4: Datasets used to test UTADIS-splines.

Dataset # instance # attributes # categories

CEV 1728 6 4
CPU 209 6 4
JRA 172 5 4
LEV 1000 4 5
SWD 1000 10 4

The data sets contain from 172 to 1728 alternatives. The number of attributes
varies between 4 and 10 and the number of categories varies between 4 and 5.
The values on each attribute have been normalized between 0 and 1. For the
experiments, we split the data sets in a twofold partition. The first class of the
partition contains the alternatives that are given as input to UTADIS-poly or
UTADIS-splines. The second class of the partition contains the alternatives that
are used as test set. This test set is used to assess the quality of the model
returned by the semidefinite program. As quality index, we use the classification
accuracy (see Equation (2.28)).

The following ratios between the size of the learning set and the size of the
test set are considered: 30/70, 50/50, 70/30. Similarly to what has been done
in Section 3.5, a random drawing of the learning set from the whole data set
is repeated 100 times, yielding 100 instances of a partition of the data set in a
learning set and test set.

7.5.2 Results

We present the results that we obtained with UTADIS, UTADIS-poly and UTADIS-
splines. We varied the degree of the polynomials used for the marginals, the
number of pieces per marginal and the continuity degree of the polynomials at
the breakpoints.

7.5.3 Variation of the degree of the polynomials

We first tested UTADIS-poly and varied the degree of the polynomials used for
the marginals. Tests have been done with polynomials of degree 1, 2 and 3. Note
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Table 7.5: Average and standard deviation of the classification accuracy of the
learning set which is composed of 30, 50 or 70% of the alternatives of the data
set. The first column corresponds to the ratio of alternatives that are used as
learning set. The tuple k-D-Dc in first row corresponds to the number of pieces
per marginal k, the degree of the polynomials D and the continuity degree Dc at
the breakpoints.

Size Data set 1-1-0 1-2-0 1-3-0

30 %

CEV 0.7558± 0.0242 0.7760± 0.0245 0.7609± 0.0239
CPU 0.9967± 0.0124 0.9990± 0.0054 0.9995± 0.0048
JRA 0.7196± 0.0720 0.7123± 0.0792 0.7452± 0.0722
LEV 0.6128± 0.0285 0.6201± 0.0260 0.6167± 0.0307
SWD 0.5738± 0.0318 0.5870± 0.0386 0.5923± 0.0342

50 %

CEV 0.7533± 0.0181 0.7756± 0.0176 0.7597± 0.0172
CPU 0.9918± 0.0157 0.9956± 0.0121 0.9974± 0.0098
JRA 0.7030± 0.0600 0.6963± 0.0573 0.7242± 0.0574
LEV 0.6088± 0.0252 0.6135± 0.0254 0.6081± 0.0244
SWD 0.5681± 0.0252 0.5808± 0.0288 0.5778± 0.0277

70 %

CEV 0.7508± 0.0150 0.7735± 0.0144 0.7555± 0.0161
CPU 0.9869± 0.0178 0.9897± 0.0163 0.9950± 0.0115
JRA 0.6941± 0.0475 0.6904± 0.0500 0.7111± 0.0413
LEV 0.6058± 0.0185 0.6108± 0.0177 0.6049± 0.0198
SWD 0.5656± 0.0228 0.5735± 0.0259 0.5742± 0.0264

that using polynomials of degree 1 for the marginals amounts to use a weighted
sum for determining the score of an alternative. It is also equivalent to the
Logistic regression in preference learning (PL).

Table 7.5 shows the classification accuracy of the learning set when the de-
gree of the polynomials of a UTADIS-poly model varies between 1 and 3 with
a learning set composed of 30%, 50% and 70% of the data set. For a majority
of the data sets, the AVF-Sort model using the polynomials of the highest de-
gree returns the best results. However this is not always the case. Sometimes
polynomials of the second degree perform better. It can be due to the objective
function which does not maximize the classification accuracy but minimizes slack
variables which may lead to compensatory effects. Indeed, the solver may adapt
the marginals so that the slack of a majority of wrongly assigned alternatives is
reduced at the cost of some other misclassification.

We illustrate the potential compensatory effects with an example. Consider
that we want to discriminate a set of alternatives in two categories C1 and C2,
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with C2 < C1, on the basis of their performances on one criterion. In this aim,
we try to find a threshold on this criterion so that alternatives that have a perfor-
mance better than or equal to the threshold are assigned to C2 and the others are
assigned to C1. As learning set, we have a set of alternatives which are assigned
to one of the two categories together with their performances on the criterion.
Table 7.6 shows the performances and assignments of these alternatives. Assign-
ments of alternatives a(6) and a(7) are such that it is impossible to restore all the
examples because both alternatives are assigned to C1 while their performances
are greater than the one of alternatives assigned in C2. To maximize the num-
ber of correctly assigned alternatives, it is obvious that the threshold delimiting
C1 from C2 should be set to 0.5 so that 5 of the 7 examples are correctly re-
stored. However, if the constraints and objective function of UTADIS are used
(see Equations (2.26) and (2.27)), only 4 of the 7 examples will be correctly as-
signed. Indeed, with a threshold set to 0.5, the objective function of UTADIS
would be equal to 0.8 because the distance of alternatives a(6) and a(7) to the
threshold is equal to 0.4. With a threshold fixed to 0.6, the objective function is
equal to 0.7: the distance of the alternative a(5) to the threshold is equal to 0.1
and the distance between a(6) and a(7) is equal to 0.3. The best solution is not
the one restoring the highest number of examples when the objective function of
UTADIS is used.

Table 7.6: Performances and assignments of a set of alternatives incompatible
with an AVF-Sort model.

alternative category performance

a(1) C1 0.4
a(2) C1 0.4
a(3) C2 0.6
a(4) C2 0.6
a(5) C2 0.5
a(6) C1 0.9
a(7) C1 0.9

Table 7.7 shows the classification accuracy of the test set for different sizes
of the learning set and marginals using polynomials of degree 1 to 3. We don’t
observe the same trend as for the learning set. The classification accuracy is not
better when the degree of the polynomials increases. Indeed, for CPU and LEV
the better classification accuracy is obtained with a weighted sum. With CEV
and SWD, the better classification accuracy is obtained with polynomials of the
second degree. UTADIS-poly achieves better results with higher degree polyno-
mials only for the JRA data set. These results tend to indicate an overfitting
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Table 7.7: Average and standard deviation of the classification accuracy of the
test set with a learning set composed of 30, 50 or 70 percents of the alternatives
of the data set and a test set composed of the disjoint part. The first column
corresponds to the ratio of alternatives that are used as learning set. The tuple
k-D-Dc in first row corresponds to the number of pieces per marginal k, the
degree of the polynomials D and the continuity degree Dc at the breakpoints.

Size Data set 1-1-0 1-2-0 1-3-0

30 %

CEV 0.7449± 0.0110 0.7662± 0.0099 0.7487± 0.0109
CPU 0.9195± 0.0350 0.9119± 0.0319 0.9050± 0.0315
JRA 0.5950± 0.0537 0.6084± 0.0540 0.6248± 0.0399
LEV 0.5935± 0.0134 0.5902± 0.0146 0.5768± 0.0164
SWD 0.5408± 0.0174 0.5439± 0.0201 0.5395± 0.0186

50 %

CEV 0.7463± 0.0115 0.7668± 0.0130 0.7502± 0.0133
CPU 0.9365± 0.0261 0.9275± 0.0272 0.9166± 0.0279
JRA 0.6134± 0.0467 0.6177± 0.0487 0.6342± 0.0376
LEV 0.5961± 0.0145 0.5933± 0.0159 0.5810± 0.0169
SWD 0.5481± 0.0164 0.5495± 0.0186 0.5436± 0.0195

70 %

CEV 0.7444± 0.0141 0.7657± 0.0136 0.7473± 0.0139
CPU 0.9408± 0.0235 0.9308± 0.0242 0.9234± 0.0285
JRA 0.6309± 0.0476 0.6315± 0.0502 0.6405± 0.0414
LEV 0.5982± 0.0189 0.5938± 0.0188 0.5859± 0.0197
SWD 0.5479± 0.0183 0.5506± 0.0196 0.5470± 0.0162

effect of UTADIS-poly.

7.5.4 Variation of the number of pieces

We study the influence of the number of pieces on the quality of the solution. In
this aim, we use polynomials of the third degree. We don’t impose the continuity
of any derivative at the breakpoints. As for the previous experiment, the data
sets are split in a twofold partition: a learning set and a test set.

Table 7.8 shows the average classification accuracy of the learning set and
its standard deviation for different sizes of learning set and different numbers of
pieces per marginal. We observe that the best results are in general obtained
with marginals using more than one piece.

For the data set JRA we observe a benefit of using more than one piece
per marginal. With a learning set composed of 70 percents of the data set, the
classification is improved by 1 percent when using 2 pieces per marginal instead
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Table 7.8: Average and standard deviation of the classification accuracy of the
learning set which is composed of 30, 50 or 70% of the alternatives of the data
set. The first column corresponds to the ratio of alternatives that are used as
learning set. The tuple k-D-Dc in first row corresponds to the number of pieces
per marginal k, the degree of the polynomials D and the continuity degree Dc at
the breakpoints.

Size Data set 1-3-0 2-3-0 3-3-0

30 %

CEV 0.7609± 0.0239 0.7722± 0.0180 0.7729± 0.0201
CPU 0.9995± 0.0048 1.0000± 0.0000 1.0000± 0.0000
JRA 0.7452± 0.0722 0.7608± 0.0675 0.7692± 0.0765
LEV 0.6167± 0.0307 0.6222± 0.0328 0.6211± 0.0298
SWD 0.5923± 0.0342 0.5952± 0.0351 0.5864± 0.0358

50 %

CEV 0.7597± 0.0172 0.7686± 0.0164 0.7700± 0.0157
CPU 0.9974± 0.0098 0.9995± 0.0039 1.0000± 0.0000
JRA 0.7242± 0.0574 0.7371± 0.0577 0.7488± 0.0578
LEV 0.6081± 0.0244 0.6126± 0.0263 0.6132± 0.0252
SWD 0.5778± 0.0277 0.5792± 0.0268 0.5771± 0.0256

70 %

CEV 0.7555± 0.0161 0.7677± 0.0159 0.7674± 0.0147
CPU 0.9950± 0.0115 0.9978± 0.0072 0.9997± 0.0027
JRA 0.7111± 0.0413 0.7229± 0.0428 0.7368± 0.0451
LEV 0.6049± 0.0198 0.6097± 0.0197 0.6095± 0.0194
SWD 0.5742± 0.0264 0.5733± 0.0229 0.5731± 0.0242

of one. Using 3 pieces allows to increase the classification accuracy by one more
percent.

For the other data sets, the gain is not so important. We also observe a
loss in classification accuracy for some data sets. This loss is due to several
reason. One of them is the objective function which does not explicitly maximize
the classification accuracy as said in the previous section. Numerical errors also
degrade the solution. With large data sets, we observe more errors than with
small ones. The worst performances are obtained with CEV, LEV and SWD data
sets which contain more than 1000 alternatives. Numerical errors are more likely
when the degree of the polynomials increases since small numbers are added and
subtracted to big ones and the contrary. We did not investigate further numerical
issues in this thesis.

Table 7.9 shows the average and standard deviation of the classification ac-
curacy of the test set for different sizes of learning set and numbers of pieces per
marginals. The best results are obtained with marginals composed of one piece.
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Table 7.9: Average and standard deviation of the classification accuracy of the
test set with a learning set composed of 30, 50 or 70% of the alternatives of the
data set and a test set composed of the disjoint part. The first column corresponds
to the ratio of alternatives that are used as learning set. The tuple k-D-Dc in
first row corresponds to the number of pieces per marginal k, the degree of the
polynomials D and the continuity degree Dc at the breakpoints.

Size Data set 1-3-0 2-3-0 3-3-0

30 %

CEV 0.7487± 0.0109 0.7586± 0.0112 0.7589± 0.0113
CPU 0.9050± 0.0315 0.9014± 0.0294 0.8955± 0.0310
JRA 0.6248± 0.0399 0.6187± 0.0438 0.6151± 0.0569
LEV 0.5768± 0.0164 0.5731± 0.0168 0.5742± 0.0177
SWD 0.5395± 0.0186 0.5383± 0.0183 0.5364± 0.0189

50 %

CEV 0.7502± 0.0133 0.7594± 0.0095 0.7619± 0.0113
CPU 0.9166± 0.0279 0.9157± 0.0304 0.9112± 0.0318
JRA 0.6342± 0.0376 0.6331± 0.0407 0.6351± 0.0409
LEV 0.5810± 0.0169 0.5783± 0.0166 0.5793± 0.0169
SWD 0.5436± 0.0195 0.5435± 0.0188 0.5422± 0.0184

70 %

CEV 0.7473± 0.0139 0.7585± 0.0121 0.7592± 0.0132
CPU 0.9234± 0.0285 0.9215± 0.0294 0.9223± 0.0292
JRA 0.6405± 0.0414 0.6425± 0.0445 0.6460± 0.0433
LEV 0.5859± 0.0197 0.5828± 0.0195 0.5818± 0.0201
SWD 0.5470± 0.0162 0.5441± 0.0184 0.5443± 0.0180

It shows a trend to overfitting effects when the number of degrees of freedom
increases.

7.5.5 Variation of the degree of continuity

In this subsection we study the impact of the continuity degree on the classi-
fication accuracy. Table 7.10 shows the average and standard deviation of the
classification accuracy of the learning set for different sizes of learning set and
different continuity degrees at the breakpoints. The marginals are composed of
3 polynomials of the third degree.

We observe that the best results are generally obtained when there is no
continuity of the derivative at the breakpoints. It is no wonder since the number
of degree of freedom is higher when there is no constraint on the derivative at
the breakpoints. Nevertheless, there are no big differences between models in
which the continuity of the derivative at the breakpoints is not guaranteed. For
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Table 7.10: Average and standard deviation of the classification accuracy of the
learning set which is composed of 30, 50 or 70% of the alternatives of the data
set. The first column corresponds to the ratio of alternatives that are used as
learning set. The tuple k-D-Dc in first row corresponds to the number of pieces
per marginal k, the degree of the polynomials D and the continuity degree Dc at
the breakpoints.

Size Data set 3-3-0 3-3-1 3-3-2

30 %

CEV 0.7729± 0.0201 0.7735± 0.0194 0.7744± 0.0215
CPU 1.0000± 0.0000 1.0000± 0.0000 1.0000± 0.0000
JRA 0.7692± 0.0765 0.7662± 0.0690 0.7620± 0.0677
LEV 0.6211± 0.0298 0.6220± 0.0321 0.6198± 0.0312
SWD 0.5864± 0.0358 0.5879± 0.0345 0.5912± 0.0325

50 %

CEV 0.7700± 0.0157 0.7706± 0.0149 0.7719± 0.0160
CPU 1.0000± 0.0000 0.9997± 0.0029 0.9990± 0.0056
JRA 0.7488± 0.0578 0.7412± 0.0555 0.7396± 0.0578
LEV 0.6132± 0.0252 0.6119± 0.0274 0.6125± 0.0251
SWD 0.5771± 0.0256 0.5781± 0.0255 0.5773± 0.0255

70 %

CEV 0.7674± 0.0147 0.7694± 0.0134 0.7698± 0.0141
CPU 0.9997± 0.0027 0.9993± 0.0039 0.9976± 0.0071
JRA 0.7368± 0.0451 0.7279± 0.0426 0.7258± 0.0443
LEV 0.6095± 0.0194 0.6068± 0.0192 0.6067± 0.0213
SWD 0.5731± 0.0242 0.5733± 0.0239 0.5725± 0.0248

some data set, we observe that the algorithm performs slightly better when the
continuity of the second derivative is guaranteed at the breakpoints (e.g. SWD
and CEV). We believe that this behavior is due to numerical errors.
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Table 7.11 shows the average classification accuracy and standard deviation
of the test set. Adding constraints to ensure the continuity of the first and
second derivative increases the classification accuracy of the test set. It reduces
the overfitting effect that happens when the continuity of the derivatives is not
guaranteed. Moreover it enables to limit discontinuities at the breakpoints.

Table 7.11: Average and standard deviation of the classification accuracy of the
test set with a learning set composed of 30, 50 or 70% of the alternatives of the
data set and a test set composed of the disjoint part. The first column corresponds
to the ratio of alternatives that are used as learning set. The tuple k-D-Dc in
first row corresponds to the number of pieces per marginal k, the degree of the
polynomials D and the continuity degree Dc at the breakpoints.

Size Data set 3-3-0 3-3-1 3-3-2

30 %

CEV 0.7589± 0.0113 0.7582± 0.0111 0.7603± 0.0115
CPU 0.8955± 0.0310 0.8962± 0.0315 0.8988± 0.0296
JRA 0.6151± 0.0569 0.6158± 0.0477 0.6197± 0.0478
LEV 0.5742± 0.0177 0.5738± 0.0191 0.5738± 0.0180
SWD 0.5364± 0.0189 0.5375± 0.0188 0.5380± 0.0191

50 %

CEV 0.7619± 0.0113 0.7609± 0.0105 0.7626± 0.0105
CPU 0.9112± 0.0318 0.9103± 0.0325 0.9116± 0.0305
JRA 0.6351± 0.0409 0.6361± 0.0423 0.6385± 0.0461
LEV 0.5793± 0.0169 0.5790± 0.0152 0.5780± 0.0166
SWD 0.5422± 0.0184 0.5428± 0.0189 0.5424± 0.0187

70 %

CEV 0.7592± 0.0132 0.7604± 0.0124 0.7597± 0.0139
CPU 0.9223± 0.0292 0.9208± 0.0291 0.9208± 0.0273
JRA 0.6460± 0.0433 0.6420± 0.0428 0.6482± 0.0451
LEV 0.5818± 0.0201 0.5820± 0.0187 0.5815± 0.0178
SWD 0.5443± 0.0180 0.5447± 0.0186 0.5445± 0.0171

7.6 Conclusion

In this chapter, we proposed a new method to learn an additive value functions
model from a set of statements provided by the DM. Learning piecewise linear
value functions from preference statements is standard in the literature (UTA
methods, e.g. Jacquet-Lagrèze and Siskos (1982), Jacquet-Lagrèze and Siskos
(2001)). Instead of piecewise linear marginals, we generalize this standard repre-
sentation by considering more general forms for marginals. UTA-poly considers
marginal value functions which are monotone polynomials, while in UTA-splines
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marginals are composed of several pieces of monotone polynomials. UTA-splines
generalizes the preference representation used in the standard UTA methods,
while UTA-poly is a particular UTA-splines model where a single polynomial is
used to represent each marginal.

The inference of such an additive value function with polynomial marginals is
performed using a semidefinite programming formulation. From a computational
point of view, the resolution of instances corresponding to real data sets is limited
to several seconds, and thus compatible with an interactive use with DMs.

We provide an illustrative example showing that the inference program is able
to restore value functions that are “close” to the original ones. A specific feature of
the methods is that the inferred value function is composed of “smooth” marginals
which avoids brutal changes in the slopes of these marginals, thus improving
interpretability.

The computational experiments show the ability of the methods to better
match the preference statements as the degree of the polynomials involved in the
marginals increases.

We extended the method to sorting problems and studied the behavior of the
algorithm on real data sets. It showed that the extra degrees of freedom given
to the algorithm don’t always help to find better solutions. To avoid overfitting
effects, the number of pieces and degree of the polynomials have to be chosen
carefully.

An innovative aspect of this work is related to the new optimization technique
allowing to deal with polynomial and piecewise polynomial marginals instead of
piecewise linear marginals. The semidefinite programming approach used here
for UTA opens new perspectives for eliciting other preference models based on
additive or partly additive value structures, such as additive differences models,
e.g. MACBETH (Bana e Costa and Vansnick, 1994; Bana e Costa et al., 2005),
and GAI networks (Gonzales et al., 2011).

Similarly as for UTA models, the solution of our new models might not be
unique. It would be interesting to try to characterize these situations and pick
a solution that is most suited for the DM. Note that, for this work, we used
interior-point methods to solve the semidefinite programs. These methods return
the so-called analytic center of the set of optimal solutions, that is, it returns a
solution ‘in the middle’ of the set of optimal solutions, similarly as UTASTAR
and ACUTA would do for UTA models.
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Conclusion and perspectives

In this thesis we mainly focused on sorting problems, i.e. problems in which each
alternative of a set has to be classified in a category selected among a set of pre-
defined and ordered categories. We developed multiple-criteria decision analysis
(MCDA) learning methods that are able to deal with large data sets as the ones
found in the preference learning (PL) field. We validated these algorithms by
using similar validation techniques as in the PL field.

In Chapter 3 we developed a metaheuristic designed to learn a MCDA sorting
model called the majority rule sorting (MR-Sort) model. The metaheuristic was
validated with artificial and real data sets. Experiments have shown that we
were able to compete with PL algorithms and that the approximated solutions
obtained with the metaheuristic were close to the optimal ones obtained by a
mixed integer program (MIP) inferring a MR-Sort model with the same objective
function.

For further research, we advocate an analysis of the complexity of the MR-
Sort model. To do so, one can consider analysing the MR-Sort model in terms of
the VC dimension (Vapnik, 1998) which measures statistically the capacity of a
classification algorithm. It allows to predict a probabilistic upper bound on the
test error of a classification model. This approach is often used in the context of
PL (see e.g. Tehrani et al., 2012).

The use of metaheuristic is not a common practice in the PL field. During our
research, our attention has been drawn to convex relaxation techniques. In recent
years, some advances in this field have been done in order to solve problems in
which the objective function is not convex (see e.g. Zhang, 2010). Using such
techniques with MR-Sort deserves to be studied in further research.

MR-Sort presents the advantage of being easy to interpret. It can be explained
to a decision maker (DM) as the application of compact and intuitive rules. This
characteristic is useful for some applications. In Chapter 4 we have shown that the
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MR-Sort metaheuristic was adapted to deal with a medical application in which
doctors prefer to have models that are interpretable and easy to understand.
The application consisted in determining the ASA score of patients and then to
determine whether they can be accepted for surgery. The metaheuristic has been
able to find a MR-Sort model that performs better than other preference learning
algorithms in a reasonable amount of time. We described the rules induced by
one of the MR-Sort model for the prediction of the ASA score. These rules are
easily interpretable by users who are not familiar with MCDA methods such as
doctors.

However, when dealing with the application of Chapter 4, we identified a weak-
ness of the MR-Sort model inferred by the metaheuristic: the value of the weights
and the majority threshold of the model returned by the inference procedure in-
volve a substantial amount of arbitrariness. The weights may not adequately
represent the importance of the criteria. Two criteria having the same decision
power in a coalition may have very different weights. Depending on the value
of the weights, the model can be more easy or difficult to understand. That’s
the reason why we proposed a post-treatment process for the weights and the
majority threshold. After the metaheuristic found a model, the post-processing
consists in running a MIP in order to find a set of weights representing as well as
possible the importance of each criterion. We obtained satisfactory results with
this post-treatment process. After running it on the inferred model, the MIP re-
turned weights and majority threshold that were better reflecting the importance
of each criterion in the model. Nevertheless, the question of finding representa-
tive weights and majority threshold deserves further research, in particular, in
the aim of defining precisely what can be called “representative weights”.

In Chapter 5, we worked with the non-compensatory sorting (NCS) model
which is an extension of MR-Sort. Compared to MR-Sort, this model enables to
take criteria interactions into account. We proposed two formulations in order
to infer the parameters of such a model. The first one is a MIP and the second
one is an extension of the metaheuristic presented in Chapter 3. The MIP is
not adapted to deal with large problems as the ones found in the PL field be-
cause of the required computing time. We were therefore not able to use it on
the PL data sets considered in Chapter 5 since the computing time required to
obtain a solution is prohibitive. However we were able to use the metaheuristic
with these data sets. We observed that the metaheuristic for learning a NCS
model does not perform better than the one inferring the parameters of a MR-
Sort model. Following these observations, the following question arose: “By how
much the expressivity of a NCS model is improved as compared to a MR-Sort
model?”. We answered this question for models involving up to 6 criteria. Fur-
thermore, we computed the list of minimal sufficient coalitions (MSCs) for n
criteria, with 1 ≤ n ≤ 6. Among these coalitions we verified successively which
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ones were representable with 1-additive, 2-additive or 3-additive capacities and
a threshold. We observed that all the sufficient coalitions are representable with
2-additive capacities for n ≤ 5. For n = 6 only 2% of the sufficient coalitions
are not representable by 2-additive capacities but all of them are representable
with 3-additive capacities. Approximating the proportion of sufficient coalitions
representable with k-additive weights and a threshold for n = 7 is one direction
that deserves to be studied. We also wonder how a single additive set of weights
can approximate separating functions that are not 1-additive for n = 7.

In Chapter 6, we proposed a new type of veto rule for the MR-Sort model.
This new rule enriches the expressivity of the model. The rule enables the veto
effect when the alternative goes below a threshold on a subset of criteria. It is a
more general form of the standard binary veto. A mixed integer program designed
for learning the parameters of a MR-Sort model with coalitional veto (MR-Sort
model with coalitional veto (MR-Sort-CV) model) has been proposed and tested
on a fictive application. This MIP is not suitable for large data sets since the
computing time becomes quickly prohibitive even for small data sets. That’s why
we outlined a strategy based on the metaheuristic presented in Chapter 3 in order
to learn a MR-Sort model with coalitional veto. As for MR-Sort, one can consider
using relaxation techniques in order to learn the parameters of a MR-Sort-CV
model. This direction deserves further research. The axiomatic characterization
of the coalitional veto rule also deserves further research.

In Chapter 7, we addressed the problem of learning additive value functions.
Additive value function models can be used to deal with ranking and sorting prob-
lems. UTA and UTADIS are two linear programming methods that are designed
for learning the parameters of an additive value function model respectively for
ranking and sorting problems. The additive value functions learned by these pro-
cedures are piecewise linear. We proposed in Chapter 7 the use of semidefinite
programming (SDP) in order to learn polynomial functions instead of piecewise
linear ones for the marginal value functions. Four new algorithms have been
developed. UTA-poly and UTADIS-poly learn additive value functions models
using one polynomial per marginal. UTA-splines and UTADIS-splines learn addi-
tive value functions models using multiple polynomials per marginal, i.e. splines.
We made experiments on artificial and real data sets. The results of these ex-
periments have shown that learning the parameters of a UTA-splines model does
not require more computing time than learning the parameters of a UTA model.
We have seen that models built with UTA-poly and UTA-splines are more easily
interpretable than models built with UTA since there is no discontinuity of the
marginal value function at the breakpoints1. However, experimental results on
real data sets have shown that using UTA-splines may lead to overfitting since

1 Whereas the continuity at the breakpoints in ensured up to the second derivative for
UTA-splines.
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it adds more freedom degrees to the model. It is therefore important to choose
accordingly the parameters of the model. This direction deserves to be studied
more in depth. Another weakness of UTA and UTADIS formulations is their ob-
jective function which consists in minimizing a slack. This objective function can
lead to compensatory effects which means that the solution found by the solver
may not maximize the compatibility of the learning set with the inferred model
if there is noise in the data set. Using an objective function as in ACUTA is also
a direction that deserves to be exploited. Finally, the semidefinite programming
approach used in Chapter 7 opens new perspectives for eliciting other preference
models based on additive or partly additive value structures, e.g. MACBETH
(Bana e Costa and Vansnick, 1994; Bana e Costa et al., 2005), and GAI networks
(Gonzales et al., 2011).

In this thesis, we showed some links between PL and MCDA. The different
chapters showed that multiple criteria decision analysis can benefit from pref-
erence learning elicitation techniques. We demonstrated this in the context of
sorting and ranking problems. Our research can be extended to other MCDA
methods. Recently multiple initiatives have emerged in order to use MCDA
methods in the context of PL (see e.g. Gurrieri, 2015; Liu, 2016). In this thesis
we also opened up several research avenues: the use of semi-definite programming
in the context of MCDA and PL, the improvement of the interpretability of the
MR-Sort model and the concept of coalitional veto in outranking models.

The list of our contributions is available in Appendix G.



Appendix A

MR-Sort metaheuristic: additional

confusion matrices

A.1 Confusion matrices of binary data sets

In this section, we give the confusion matrices for all the binarized data sets that
have been used in Chapter 3.
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Table A.1: Confusion matrices of the test set for the (binarized) DBS data set.
Actual class in rows, predicted class in columns.

(a) META - DBS 20 %

Ĉ1 Ĉ2

C1 41.64
±4.52

8.77
±4.57

C2 10.20
±5.72

39.40
±5.63

(b) MIP - DBS 20 %

Ĉ1 Ĉ2

C1 42.21
±4.56

8.18
±4.48

C2 11.59
±6.28

38.02
±5.75

(c) UTADIS - DBS 20 %

Ĉ1 Ĉ2

C1 41.94
±5.23

8.45
±5.28

C2 11.64
±5.67

37.98
±5.40

(d) META - DBS 50 %

Ĉ1 Ĉ2

C1 42.07
±4.58

8.57
±4.29

C2 7.67
±5.04

41.70
±4.59

(e) MIP - DBS 50 %

Ĉ1 Ĉ2

C1 43.73
±4.71

6.67
±3.69

C2 10.20
±5.21

39.40
±5.50

(f) UTADIS - DBS 50 %

Ĉ1 Ĉ2

C1 44.35
±4.70

6.05
±3.53

C2 8.77
±4.42

40.83
±5.19

(g) META - DBS 80 %

Ĉ1 Ĉ2

C1 42.21
±9.13

8.25
±5.30

C2 7.67
±6.06

41.88
±9.35

(h) MIP - DBS 80 %

Ĉ1 Ĉ2

C1 41.75
±8.37

6.88
±5.69

C2 7.92
±6.31

43.46
±8.51

(i) UTADIS - DBS 80 %

Ĉ1 Ĉ2

C1 42.92
±8.30

5.71
±4.13

C2 7.08
±4.79

44.29
±7.74
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Table A.2: Confusion matrices of the test set for the (binarized) CPU data set.
Actual class in rows, predicted class in columns.

(a) META - CPU 20 %

Ĉ1 Ĉ2

C1 44.77
±3.71

4.15
±3.19

C2 5.74
±3.46

44.96
±3.68

(b) MIP - CPU 20 %

Ĉ1 Ĉ2

C1 45.65
±3.35

3.55
±3.10

C2 5.45
±2.88

45.35
±3.04

(c) UTADIS - CPU 20 %

Ĉ1 Ĉ2

C1 47.09
±2.85

2.11
±2.39

C2 4.40
±3.54

46.39
±3.69

(d) META - CPU 50 %

Ĉ1 Ĉ2

C1 46.47
±4.26

2.50
±2.21

C2 4.12
±2.17

46.30
±4.52

(e) MIP - CPU 50 %

Ĉ1 Ĉ2

C1 46.65
±3.75

2.54
±2.14

C2 3.86
±2.07

46.95
±3.56

(f) UTADIS - CPU 50 %

Ĉ1 Ĉ2

C1 48.31
±3.14

0.88
±1.25

C2 1.42
±1.76

49.39
±3.61

(g) META - CPU 80 %

Ĉ1 Ĉ2

C1 47.81
±7.06

2.02
±2.69

C2 4.43
±2.83

45.74
±7.02

(h) MIP - CPU 80 %

Ĉ1 Ĉ2

C1 46.33
±6.86

2.45
±2.92

C2 3.52
±2.86

47.69
±6.93

(i) UTADIS - CPU 80 %

Ĉ1 Ĉ2

C1 48.29
±7.06

0.50
±1.03

C2 1.02
±1.98

50.19
±6.77
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Table A.3: Confusion matrices of the test set for the (binarized) BCC data set.
Actual class in rows, predicted class in columns.

(a) META - BCC 20 %

Ĉ1 Ĉ2

C1 59.91
±4.47

10.55
±4.93

C2 17.69
±4.32

11.85
±3.80

(b) MIP - BCC 20 %

Ĉ1 Ĉ2

C1 61.10
±4.32

9.36
±4.65

C2 17.43
±3.74

12.11
±3.07

(c) UTADIS - BCC 20 %

Ĉ1 Ĉ2

C1 59.48
±5.44

11.18
±6.01

C2 17.97
±4.96

11.37
±4.26

(d) META - BCC 50 %

Ĉ1 Ĉ2

C1 60.53
±4.52

10.28
±4.86

C2 17.22
±4.27

11.96
±3.19

(e) MIP - BCC 50 %

Not available

(f) UTADIS - BCC 50 %

Ĉ1 Ĉ2

C1 60.01
±4.12

10.72
±4.32

C2 17.82
±4.71

11.45
±3.89

(g) META - BCC 80 %

Ĉ1 Ĉ2

C1 45.05
±4.96

8.47
±2.84

C2 8.39
±3.21

38.09
±4.71

(h) MIP - BCC 80 %

Not available

(i) UTADIS - BCC 80 %

Ĉ1 Ĉ2

C1 58.79
±6.64

11.77
±5.39

C2 17.36
±5.74

12.09
±4.99
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Table A.4: Confusion matrices of the test set for the (binarized) MPG data set.
Actual class in rows, predicted class in columns.

(a) META - MPG 20 %

Ĉ1 Ĉ2

C1 43.91
±3.08

9.86
±3.34

C2 10.39
±4.50

35.84
±4.13

(b) MIP - MPG 20 %

Ĉ1 Ĉ2

C1 44.79
±2.86

8.93
±3.27

C2 11.87
±5.00

34.40
±4.49

(c) UTADIS - MPG 20 %

Ĉ1 Ĉ2

C1 42.79
±3.26

10.93
±3.47

C2 11.30
±3.85

34.97
±3.52

(d) META - MPG 50 %

Ĉ1 Ĉ2

C1 44.28
±2.64

9.18
±2.31

C2 8.63
±2.29

37.91
±2.8

(e) MIP - MPG 50 %

Not available

(f) UTADIS - MPG 50 %

Ĉ1 Ĉ2

C1 42.46
±2.65

11.18
±2.49

C2 9.70
±2.45

36.66
±2.85

(g) META - MPG 80 %

Ĉ1 Ĉ2

C1 61.48
±6.49

9.98
±6.13

C2 16.79
±6.02

11.75
±4.38

(h) MIP - MPG 80 %

Not available

(i) UTADIS - MPG 80 %

Ĉ1 Ĉ2

C1 42.34
±4.70

11.27
±3.49

C2 9.53
±3.62

36.86
±5.24
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Table A.5: Confusion matrices of the test set for the (binarized) ESL data set.
Actual class in rows, predicted class in columns.

(a) META - ESL 20 %

Ĉ1 Ĉ2

C1 49.28
±2.16

5.49
±2.21

C2 4.93
±2.72

40.30
±2.58

(b) MIP - ESL 20 %

Ĉ1 Ĉ2

C1 49.35
±2.14

5.61
±2.33

C2 5.14
±2.54

39.91
±2.27

(c) UTADIS - ESL 20 %

Ĉ1 Ĉ2

C1 50.30
±2.02

4.66
±1.99

C2 4.23
±1.93

40.82
±1.81

(d) META - ESL 50 %

Ĉ1 Ĉ2

C1 48.61
±3.02

5.97
±2.38

C2 4.07
±2.40

41.35
±2.74

(e) MIP - ESL 50 %

Ĉ1 Ĉ2

C1 48.82
±2.97

5.82
±2.44

C2 4.35
±2.54

41.01
±2.80

(f) UTADIS - ESL 50 %

Ĉ1 Ĉ2

C1 50.31
±2.32

4.34
±1.86

C2 3.50
±2.02

41.86
±2.39

(g) META - ESL 80 %

Ĉ1 Ĉ2

C1 48.96
±5.51

6.09
±3.20

C2 3.92
±2.57

41.03
±5.02

(h) MIP - ESL 80 %

Ĉ1 Ĉ2

C1 48.89
±4.37

5.89
±2.73

C2 4.18
±2.44

41.04
±4.02

(i) UTADIS - ESL 80 %

Ĉ1 Ĉ2

C1 50.59
±4.46

4.18
±2.52

C2 3.26
±2.30

41.97
±3.83
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Table A.6: Confusion matrices of the test set for the (binarized) MMG data set.
Actual class in rows, predicted class in columns.

(a) META - MMG 20 %

Ĉ1 Ĉ2

C1 49.28
±2.16

5.49
±2.21

C2 4.93
±2.72

40.30
±2.58

(b) MIP - MMG 20 %

Ĉ1 Ĉ2

C1 43.32
±2.68

8.03
±2.86

C2 9.13
±2.26

39.52
±2.11

(c) UTADIS - MMG 20 %

Ĉ1 Ĉ2

C1 43.14
±3.39

8.21
±3.64

C2 10.19
±2.90

38.46
±2.64

(d) META - MMG 50 %

Ĉ1 Ĉ2

C1 48.61
±3.02

5.97
±2.38

C2 4.07
±2.40

41.35
±2.74

(e) MIP - MMG 50 %

Not available

(f) UTADIS - MMG 50 %

Ĉ1 Ĉ2

C1 44.14
±2.76

7.32
±2.98

C2 10.26
±3.14

38.28
±2.83

(g) META - MMG 80 %

Ĉ1 Ĉ2

C1 48.96
±5.51

6.09
±3.20

C2 3.92
±2.57

41.03
±5.02

(h) MIP - MMG 80 %

Not available

(i) UTADIS - MMG 80 %

Ĉ1 Ĉ2

C1 44.34
±3.70

7.43
±2.98

C2 9.92
±3.96

38.32
±4.07
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Table A.7: Confusion matrices of the test set for the (binarized) LEV data set.
Actual class in rows, predicted class in columns.

(a) META - LEV 20 %

Ĉ1 Ĉ2

C1 70.45
±2.94

7.21
±3.07

C2 9.53
±2.65

12.81
±2.49

(b) MIP - LEV 20 %

Ĉ1 Ĉ2

C1 71.65
±2.36

6.01
±2.53

C2 10.07
±2.49

12.27
±2.20

(c) UTADIS - LEV 20 %

Ĉ1 Ĉ2

C1 69.47
±2.11

8.01
±2.16

C2 8.53
±1.56

13.99
±1.40

(d) META - LEV 50 %

Ĉ1 Ĉ2

C1 71.14
±2.34

6.57
±2.51

C2 9.35
±2.26

12.94
±1.90

(e) MIP - LEV 50 %

Ĉ1 Ĉ2

C1 72.84
±1.62

4.87
±1.31

C2 9.35
±1.48

12.93
±1.41

(f) UTADIS - LEV 50 %

Ĉ1 Ĉ2

C1 70.06
±1.71

7.25
±1.47

C2 8.30
±1.23

14.39
±1.3

(g) META - LEV 80 %

Ĉ1 Ĉ2

C1 71.79
±3.15

6.40
±2.46

C2 9.76
±2.37

12.06
±2.41

(h) MIP - LEV 80 %

Ĉ1 Ĉ2

C1 73.52
±2.65

4.66
±1.49

C2 8.93
±1.72

12.90
±2.25

(i) UTADIS - LEV 80 %

Ĉ1 Ĉ2

C1 70.11
±2.98

7.19
±2.10

C2 8.53
±2.05

14.18
±2.35
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Table A.8: Confusion matrices of the test set for the (binarized) CEV data set.
Actual class in rows, predicted class in columns.

(a) META - CEV 20 %

Ĉ1 Ĉ2

C1 89.24
±3.95

2.75
±1.69

C2 6.61
±0.81

1.02
±0.62

(b) MIP - CEV 20 %

Not available

(c) UTADIS - CEV 20 %

Ĉ1 Ĉ2

C1 91.96
±0.88

0.25
±0.81

C2 7.69
±0.43

0.10
±0.33

(d) META - CEV 50 %

Ĉ1 Ĉ2

C1 89.13
±5.59

2.64
±1.68

C2 6.64
±0.94

1.00
±0.62

(e) MIP - CEV 50 %

Not available

(f) UTADIS - CEV 50 %

Ĉ1 Ĉ2

C1 91.91
±1.15

0.26
±0.90

C2 7.72
±0.72

0.11
±0.32

(g) META - CEV 80 %

Ĉ1 Ĉ2

C1 89.2
±2.20

3.28
±1.92

C2 6.39
±1.32

1.14
±0.79

(h) MIP - CEV 80 %

Not available

(i) UTADIS - CEV 80 %

Ĉ1 Ĉ2

C1 91.98
±1.34

0.08
±0.26

C2 7.92
±1.30

0.03
±0.12
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Table A.9: Confusion matrices of the test set for the (binarized) ASA data set.
Actual class in rows, predicted class in columns.

(a) META - ASA 20 %

Ĉ1 Ĉ2

C1 30.99
±0.98

1.43
±0.92

C2 0.86
±0.69

66.72
±0.92

(b) MIP - ASA 20 %

Not available

(c) UTADIS - ASA 20 %

Ĉ1 Ĉ2

C1 30.22
±1.07

2.20
±1.05

C2 1.40
±0.76

66.18
±0.90

(d) META - ASA 50 %

Ĉ1 Ĉ2

C1 31.63
±1.59

0.82
±0.55

C2 0.56
±0.48

67.00
±1.61

(e) MIP - ASA 50 %

Not available

(f) UTADIS - ASA 50 %

Ĉ1 Ĉ2

C1 30.96
±1.61

1.48
±0.70

C2 1.17
±0.59

66.38
±1.62

(g) META - ASA 80 %

Ĉ1 Ĉ2

C1 31.62
±3.20

0.69
±0.72

C2 0.47
±0.49

67.22
±3.30

(h) MIP - ASA 80 %

Not available

(i) UTADIS - ASA 80 %

Ĉ1 Ĉ2

C1 31.09
±3.25

1.22
±0.86

C2 1.22
±0.79

66.47
±3.44
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A.2 Confusion matrices of data sets with more than 2
categories

In this section, we give the confusion matrices for all the multi-class data sets
that have been used in Chapter 3.
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Table A.10: Confusion matrices for the test set of the CPU data set.

(a) META - CPU 20 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 18.95
±3.43

5.04
±3.55

0.12
±0.41

0.00
±0.00

C2 4.04
±2.78

17.71
±3.76

3.23
±2.58

0.03
±0.16

C3 0.24
±0.51

5.48
±3.50

16.93
±3.54

2.70
±2.23

C4 0.08
±0.31

0.49
±0.67

3.12
±2.54

21.85
±2.69

(b) UTADIS - CPU 20 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 21.95
±2.14

1.77
±1.92

0.00
±0.00

0.30
±0.96

C2 2.49
±2.29

21.10
±3.23

1.46
±2.12

0.12
±0.56

C3 0.00
±0.00

2.43
±2.30

21.59
±2.63

1.29
±1.87

C4 0.04
±0.20

0.14
±0.40

3.11
±2.83

22.20
±3.02

(c) META - CPU 50 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 21.06
±3.33

3.27
±2.32

0.00
±0.00

0.00
±0.00

C2 4.15
±2.49

17.69
±3.35

3.07
±2.47

0.00
±0.00

C3 0.07
±0.24

4.08
±2.42

19.05
±3.29

1.98
±1.75

C4 0.01
±0.10

0.52
±0.89

2.47
±1.85

22.6
±3.12

(d) UTADIS - CPU 50 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 22.62
±2.99

1.32
±1.30

0.00
±0.00

0.08
±0.54

C2 1.22
±1.46

23.28
±2.69

0.60
±0.95

0.08
±0.26

C3 0.00
±0.00

0.81
±1.18

23.10
±3.08

0.90
±1.27

C4 0.00
±0.00

0.02
±0.19

1.58
±1.76

24.40
±3.20

(e) META - CPU 80 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 20.50
±6.27

3.40
±3.41

0.00
±0.00

0.00
±0.00

C2 5.00
±4.07

18.19
±5.76

2.79
±3.40

0.00
±0.00

C3 0.21
±0.68

4.45
±3.28

18.88
±4.97

1.83
±2.16

C4 0.00
±0.00

0.93
±1.55

2.14
±2.31

21.67
±5.38

(f) UTADIS - CPU 80 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 22.48
±5.35

1.19
±1.84

0.00
±0.00

0.00
±0.00

C2 0.62
±1.29

24.00
±5.72

0.50
±1.23

0.00
±0.00

C3 0.00
±0.00

0.57
±1.13

23.38
±6.39

0.83
±1.67

C4 0.00
±0.00

0.00
±0.00

1.17
±1.90

25.26
±5.74
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Table A.11: Confusion matrices of the test set of the CEV data set.

(a) META - CEV 20 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 61.15
±3.10

7.30
±3.28

0.46
±0.65

1.24
±0.57

C2 4.72
±2.85

12.78
±3.35

1.30
±1.75

3.39
±1.60

C3 0.90
±0.57

2.63
±0.76

0.32
±0.44

0.09
±0.18

C4 0.09
±0.24

1.78
±0.81

0.03
±0.14

1.83
±0.75

(b) UTADIS - CEV 20 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 63.06
±1.55

5.73
±1.69

1.15
±0.56

0.12
±0.38

C2 4.84
±1.80

13.81
±2.21

3.22
±1.55

0.32
±1.02

C3 0.70
±0.46

3.24
±0.50

0.07
±0.13

0.00
±0.02

C4 0.00
±0.04

1.77
±0.80

1.77
±0.79

0.18
±0.57

(c) META - CEV 50 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 61.91
±2.85

6.67
±2.87

0.33
±0.61

1.15
±0.60

C2 5.33
±2.04

12.75
±2.70

0.95
±1.67

3.23
±1.55

C3 1.04
±0.46

2.66
±0.71

0.22
±0.43

0.03
±0.10

C4 0.03
±0.14

1.89
±0.92

0.07
±0.34

1.76
±0.82

(d) UTADIS - CEV 50 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 63.32
±1.96

5.40
±1.56

1.17
±0.58

0.09
±0.33

C2 5.18
±1.64

13.55
±1.95

3.25
±1.58

0.28
±0.86

C3 0.78
±0.45

3.18
±0.56

0.06
±0.12

0.00
±0.02

C4 0.00
±0.00

1.78
±0.90

1.79
±0.83

0.14
±0.43

(e) META - CEV 80 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 62.74
±2.89

5.92
±1.88

0.26
±0.55

1.14
±0.75

C2 5.83
±1.58

12.71
±2.77

0.76
±1.60

3.11
±1.85

C3 1.17
±0.56

2.57
±0.88

0.17
±0.39

0.02
±0.12

C4 0.00
±0.03

1.94
±1.04

0.04
±0.24

1.62
±0.99

(f) UTADIS - CEV 80 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 63.04
±3.00

5.59
±1.85

1.01
±0.71

0.03
±0.15

C2 5.31
±2.10

14.03
±2.65

2.94
±1.90

0.07
±0.27

C3 0.89
±0.61

3.08
±0.90

0.10
±0.23

0.00
±0.00

C4 0.00
±0.00

2.16
±1.08

1.73
±1.10

0.02
±0.10
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Table A.12: Confusion matrices of the test set of the LEV data set.

(a) META - LEV 20 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5

C1 4.26
±1.26

3.71
±1.40

1.07
±0.46

0.29
±0.18

0.02
±0.06

C2 3.54
±2.02

15.31
±3.06

8.16
±2.82

0.79
±0.57

0.25
±0.24

C3 1.07
±0.95

8.71
±3.01

24.62
±3.44

4.93
±2.69

0.93
±1.01

C4 0.26
±0.34

1.22
±0.76

7.07
±2.22

8.40
±2.76

2.73
±1.80

C5 0.06
±0.12

0.13
±0.14

0.36
±0.24

1.22
±0.58

0.88
±0.43

(b) UTADIS - LEV 20 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5

C1 5.42
±0.80

2.67
±0.88

1.08
±0.27

0.15
±0.11

0.00
±0.02

C2 3.29
±1.40

16.69
±1.93

6.94
±1.67

0.99
±0.36

0.04
±0.07

C3 0.22
±0.20

7.64
±1.49

24.94
±1.85

7.27
±1.78

0.21
±0.17

C4 0.00
±0.00

0.56
±0.26

7.43
±1.54

10.05
±1.54

1.71
±1.12

C5 0.00
±0.00

0.15
±0.11

0.44
±0.17

1.41
±0.40

0.73
±0.29

(c) META - LEV 50 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5

C1 4.28
±1.34

3.80
±1.63

1.04
±0.38

0.26
±0.20

0.01
±0.04

C2 3.54
±1.98

15.74
±2.69

8.03
±2.17

0.65
±0.40

0.21
±0.19

C3 0.94
±0.80

7.81
±1.90

26.38
±2.56

4.49
±2.04

0.53
±0.71

C4 0.20
±0.29

1.12
±0.54

6.97
±1.68

9.28
±1.86

2.05
±1.33

C5 0.06
±0.13

0.13
±0.14

0.31
±0.22

1.33
±0.56

0.83
±0.39

(d) UTADIS - LEV 50 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5

C1 5.51
±0.77

2.60
±0.79

1.00
±0.35

0.12
±0.12

0.00
±0.00

C2 3.25
±1.14

16.98
±1.44

6.68
±1.30

1.01
±0.35

0.01
±0.04

C3 0.17
±0.19

7.45
±1.37

25.02
±1.60

7.43
±1.44

0.15
±0.11

C4 0.00
±0.00

0.45
±0.26

7.44
±1.49

10.44
±1.43

1.57
±1.04

C5 0.00
±0.00

0.20
±0.14

0.44
±0.22

1.41
±0.50

0.67
±0.27
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(e) META - LEV 80 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5

C1 3.98
±1.46

4.01
±1.82

0.95
±0.60

0.26
±0.33

0.00
±0.00

C2 3.53
±2.17

16.65
±3.42

7.48
±2.24

0.68
±0.59

0.26
±0.35

C3 0.95
±0.81

7.78
±2.05

26.85
±3.57

4.21
±2.14

0.63
±0.88

C4 0.18
±0.30

1.12
±0.69

7.34
±2.87

8.52
±2.43

2.00
±1.56

C5 0.06
±0.19

0.11
±0.22

0.30
±0.34

1.38
±0.76

0.84
±0.68

(f) UTADIS - LEV 80 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5

C1 5.56
±1.63

2.40
±1.11

1.00
±0.64

0.09
±0.20

0.00
±0.00

C2 3.28
±1.27

16.82
±2.46

6.73
±1.83

1.09
±0.66

0.00
±0.00

C3 0.14
±0.25

7.21
±1.86

25.40
±2.85

7.57
±1.94

0.16
±0.23

C4 0.00
±0.00

0.37
±0.41

7.19
±1.80

10.80
±2.03

1.46
±0.97

C5 0.00
±0.00

0.21
±0.28

0.40
±0.44

1.44
±0.75

0.74
±0.50

Table A.13: Confusion matrices of the test set of the ASA data set.

(a) META - ASA 20 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 4.93
±0.73

0.86
±0.74

0.04
±0.09

0.00
±0.00

C2 0.32
±0.53

24.67
±1.30

1.27
±1.12

0.34
±0.32

C3 0.10
±0.24

0.98
±0.85

41.11
±1.57

1.83
±1.07

C4 0.00
±0.01

0.03
±0.06

1.35
±0.79

22.18
±0.89

(b) UTADIS - ASA 20 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 5.02
±0.78

0.81
±0.74

0.00
±0.03

0.00
±0.00

C2 0.57
±0.69

23.57
±1.18

2.39
±0.94

0.07
±0.13

C3 0.03
±0.11

1.86
±0.93

40.06
±1.26

2.06
±1.05

C4 0.03
±0.20

0.06
±0.07

1.37
±0.83

22.1
±0.85

(c) META - ASA 50 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 5.33
±0.88

0.49
±0.48

0.05
±0.13

0.00
±0.00

C2 0.12
±0.23

25.41
±1.57

0.76
±0.77

0.30
±0.37

C3 0.03
±0.09

0.66
±0.62

41.97
±1.78

1.30
±0.84

C4 0.00
±0.00

0.05
±0.10

1.06
±0.50

22.48
±1.48

(d) UTADIS - ASA 50 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 5.40
±0.92

0.46
±0.44

0.00
±0.00

0.00
±0.00

C2 0.27
±0.33

24.4
±1.47

1.89
±0.70

0.02
±0.06

C3 0.00
±0.00

1.45
±0.62

40.64
±1.52

1.89
±0.79

C4 0.00
±0.00

0.05
±0.09

1.06
±0.58

22.48
±1.45
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(e) META - ASA 80 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 5.63
±1.58

0.34
±0.50

0.03
±0.12

0.00
±0.00

C2 0.17
±0.38

25.33
±2.96

0.50
±0.72

0.31
±0.50

C3 0.02
±0.10

0.67
±0.67

42.33
±3.38

1.07
±1.02

C4 0.00
±0.00

0.09
±0.22

1.13
±0.72

22.39
±2.97

(f) UTADIS - ASA 80 %

Ĉ1 Ĉ2 Ĉ3 Ĉ4

C1 5.64
±1.55

0.36
±0.48

0.00
±0.00

0.00
±0.00

C2 0.19
±0.30

24.4
±2.89

1.71
±1.10

0.01
±0.08

C3 0.00
±0.00

1.48
±0.89

40.39
±3.47

2.21
±1.16

C4 0.00
±0.00

0.01
±0.06

1.03
±0.69

22.57
±2.91



Appendix B

Additional MR-Sort models for

ASA classification

In this appendix, we present 10 majority rule sorting (MR-Sort) models learned
with the metaheuristic based on the ASA dataset. Each model allows to deter-
mine the ASA score of a patient based on his/her performances on the criteria
which have an influence on the ASA score.
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B.1 MR-Sort model #1

B.1.1 Model parameters

ASA1

ASA2

ASA3

ASA4

A
ge

(26)

0

73.0

82.0

101.0

105

D
ia
b
et
ic

(25)

0

1

H
y
p
er
te
n
si
on

(25)

0

1

O
x
y
ge
n
sa
tu
ra
ti
on

(6)

100

97.0

93.093.0

43

H
y
p
er
gl
y
ce
m
ia

(6)

0.92

1.1

3.8
S
y
st
ol
e

(6)

9

15.0

20.5

D
ia
st
ol
e

(6)

5

8.5

13

λ = 72

B.1.2 Performances

Classification accuracy: 0.9621
Area under the curve: 0.9843

B.1.3 Minimal winning coalitions

1 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
2 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
3 [ Age , Diabet ic , Hypertension ]
4 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.2 MR-Sort model #2

B.2.1 Model parameters
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13

λ = 81

B.2.2 Performances

Classification accuracy: 0.9610
Area under the curve: 0.9847

B.2.3 Minimal winning coalitions

1 [ Age , Diabet ic , Hypertension , Oxygen saturat ion , Systo le , D ia s t o l e ]
2 [ Age , Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia ]
3 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
4 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
5 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.3 MR-Sort model #3

B.3.1 Model parameters
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λ = 79

B.3.2 Performances

Classification accuracy: 0.9621
Area under the curve: 0.9870

B.3.3 Minimal winning coalitions

1 [ Age , Diabet ic , Hypertension , Hyperglycemia ]
2 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
3 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
4 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.4 MR-Sort model #4

B.4.1 Model parameters
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ASA4
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λ = 79

B.4.2 Performances

Classification accuracy: 0.9644
Area under the curve: 0.9882

B.4.3 Minimal winning coalitions

1 [ Age , Diabet ic , Hypertension , Sy s to l e ]
2 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
3 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
4 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.5 MR-Sort model #5

B.5.1 Model parameters
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A
ge

(16)

0

73.0

82.0

101.0

105

D
ia
b
et
ic

(15)

0

1

H
y
p
er
te
n
si
on

(15)

0

1

O
x
y
ge
n
sa
tu
ra
ti
on

(23)

100

93.093.093.0

43

H
y
p
er
gl
y
ce
m
ia

(15)

0.92

1.11.1
1.22

3.8
S
y
st
ol
e

(8)

9

15.015.0

20.5

D
ia
st
ol
e

(8)

5

8.58.5

13

λ = 81

B.5.2 Performances

Classification accuracy: 0.9610
Area under the curve: 0.9878

B.5.3 Minimal winning coalitions

1 [ Age , Diabet ic , Hypertension , Oxygen saturat ion , Systo le , D ia s t o l e ]
2 [ Age , Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia ]
3 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
4 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
5 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.6 MR-Sort model #6

B.6.1 Model parameters
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λ = 79

B.6.2 Performances

Classification accuracy: 0.9610
Area under the curve: 0.9855

B.6.3 Minimal winning coalitions

1 [ Age , Diabet ic , Hypertension , Oxygen sa tu ra t i on ]
2 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
3 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
4 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
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B.7 MR-Sort model #7

B.7.1 Model parameters
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λ = 77

B.7.2 Performances

Classification accuracy: 0.9621
Area under the curve: 0.9884

B.7.3 Minimal winning coalitions

1 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
2 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
3 [ Age , Diabet ic , Hypertension , D ia s to l e ]
4 [ Age , Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Sy s to l e ]
5 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.8 MR-Sort model #8

B.8.1 Model parameters
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λ = 71

B.8.2 Performances

Classification accuracy: 0.9477
Area under the curve: 0.9791

B.8.3 Minimal winning coalitions

1 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Sy s to l e ]
2 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Sy s to l e ]
3 [ Age , Diabet ic , Hypertension ]
4 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Sy s to l e ]
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B.9 MR-Sort model #9

B.9.1 Model parameters
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λ = 72

B.9.2 Performances

Classification accuracy: 0.9465
Area under the curve: 0.9671

B.9.3 Minimal winning coalitions

1 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Sy s to l e ]
2 [ Age , Diabet ic , Hypertension ]
3 [ Diabet ic , Hypertension , Oxygen saturat ion , Systo le , D ia s t o l e ]
4 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
5 [ Diabet ic , Hypertension , Hyperglycemia , Systo le , D ia s t o l e ]
6 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]
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B.10 MR-Sort model #10

B.10.1 Model parameters
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λ = 72

B.10.2 Performances

Classification accuracy: 0.9621
Area under the curve: 0.9851

B.10.3 Minimal winning coalitions

1 [ Age , Diabet ic , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
2 [ Diabet ic , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s to l e ]
3 [ Age , Diabet ic , Hypertension ]
4 [ Age , Hypertension , Oxygen saturat ion , Hyperglycemia , Systo le , D ia s t o l e ]





Appendix C

List of inequivalent families of

monotone sufficient coalitions

C.1 List of inequivalent families of monotone sufficient
coalitions for n = 4

The families are grouped by type. There are 25 possible types, 29 inequivalent
families of minimal sufficient coalition (MSC) (plus the trivial case in which all
coalitions are sufficient) and 167 families of MSC (plus the same trivial case).
Each inequivalent family in the list is associated the size of its equivalence class.
All inequivalent families, except three of them, can be represented by a 1-additive
capacity. The three other families can be represented by a 2-additive capacity.
They are marked in the last column by C2.
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Table C.1: List of inequivalent MSC of n = 4 and number of equivalence for
each class. Inequivalent MSC that are not representable by a 1-additive capacity
(weighted sum) are pointed out in the last column.

Type Family of MSC # eq. Ck
(0,0,0,0) {} 1
(0,0,0,1) {1234} 1
(0,0,1,0) {124} 4
(0,0,2,0) {234, 124} 6
(0,0,3,0) {134, 123, 124} 4
(0,0,4,0) {134, 123, 234, 124} 1
(0,1,0,0) {24} 6
(0,1,1,0) {14, 123} 12
(0,1,2,0) {24, 134, 123} 6
(0,2,0,0) {12, 23} 12

{23, 14} 3 C2
(0,2,1,0) {24, 134, 23} 12
(0,3,0,0) {13, 12, 34} 12 C2

{24, 12, 14} 4
{24, 34, 14} 4

(0,3,1,0) {13, 34, 23, 124} 4
(0,4,0,0) {24, 12, 13, 34} 3 C2

{24, 12, 14, 23} 12
(0,5,0,0) {24, 12, 14, 13, 34} 6
(0,6,0,0) {24, 12, 14, 34, 23, 13} 1
(1,0,0,0) {1} 4
(1,0,1,0) {234, 1} 4
(1,1,0,0) {14, 2} 12
(1,2,0,0) {13, 34, 2} 12
(1,3,0,0) {24, 34, 23, 1} 4
(2,0,0,0) {4, 3} 6
(2,1,0,0) {4, 23, 1} 6
(3,0,0,0) {4, 2, 1} 4
(4,0,0,0) {4, 2, 3, 1} 1
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C.2 List of inequivalent families of monotone sufficient
coalitions for class C2 for n = 5

We list below the 91 inequivalent families of MSC that cannot be represented by a
1-additive capacity. They can all be represented using a 2-additive capacity. The
families are grouped by type. Each inequivalent family in the list is associated
the size of its equivalence class.

Table C.2: List of inequivalent families of MSC of class C2 for n = 5
and number of equivalence for each class.

Type Family of MSC # eq.

(0,0,2,0,0) {135, 234} 15
(0,0,2,1,0) {234, 125, 1345} 15
(0,0,3,0,0) {145, 123, 345} 30

{235, 234, 125} 60
(0,0,3,1,0) {134, 135, 2345, 124} 60
(0,0,4,0,0) {145, 234, 345, 124} 15

{135, 245, 234, 125} 60
{235, 145, 135, 123} 60
{134, 345, 234, 125} 10

(0,0,4,1,0) {245, 123, 234, 125, 1345} 15
(0,0,5,0,0) {235, 134, 135, 345, 125} 60

{235, 134, 135, 245, 124} 12
{235, 145, 134, 245, 124} 60
{145, 134, 123, 234, 125} 60

(0,0,6,0,0) {135, 235, 234, 125, 145, 123} 15
{135, 345, 234, 125, 245, 123} 10
{345, 235, 234, 125, 124, 134} 60
{135, 345, 235, 125, 124, 145} 60

(0,0,7,0,0) {345, 234, 125, 145, 134, 245, 123} 30
{135, 235, 125, 124, 145, 134, 245} 60

(0,0,8,0,0) {135, 345, 234, 125, 124, 145, 245, 123} 15
(0,1,1,0,0) {123, 45} 10
(0,1,2,0,0) {15, 123, 345} 60

{12, 134, 345} 60
(0,1,3,0,0) {235, 14, 123, 125} 60

{13, 235, 145, 124} 60
{235, 14, 123, 245} 60
{24, 134, 135, 123} 30

(0,1,4,0,0) {235, 15, 245, 123, 234} 120

Continued on next page
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Table C.2 – Continued from previous page

Type Family of MSC # eq.

{135, 123, 25, 345, 124} 60
{235, 34, 145, 125, 124} 60
{24, 235, 135, 123, 125} 20

(0,1,5,0,0) {345, 235, 15, 234, 134, 123} 30
{235, 125, 124, 145, 34, 123} 60
{24, 135, 345, 235, 125, 123} 60

(0,1,6,0,0) {24, 135, 345, 235, 145, 134, 123} 60
(0,2,0,0,0) {34, 15} 15
(0,2,1,0,0) {12, 35, 234} 60

{145, 23, 25} 60
(0,2,2,0,0) {24, 13, 125, 345} 30

{24, 12, 135, 345} 30
{134, 23, 35, 124} 60
{13, 12, 245, 234} 120
{12, 245, 35, 234} 60

(0,2,3,0,0) {15, 23, 134, 345, 124} 60
{45, 134, 135, 234, 25} 120
{135, 123, 45, 125, 14} 60
{24, 235, 14, 345, 135} 30
{24, 34, 135, 123, 125} 60

(0,2,4,0,0) {135, 235, 14, 234, 123, 45} 60
{14, 35, 234, 125, 245, 123} 15
{24, 135, 235, 125, 34, 123} 30

(0,3,0,0,0) {12, 14, 45} 60
{12, 34, 45} 30

(0,3,1,0,0) {24, 145, 23, 25} 60
{34, 14, 35, 125} 60
{34, 245, 23, 14} 120
{34, 14, 123, 25} 60

(0,3,2,0,0) {15, 14, 123, 25, 345} 60
{24, 12, 134, 35, 145} 30
{13, 23, 245, 125, 14} 120
{15, 45, 123, 234, 25} 60

(0,3,3,0,0) {24, 135, 145, 134, 23, 25} 20
{12, 35, 234, 145, 13, 245} 60

(0,4,0,0,0) {34, 15, 14, 35} 15
{24, 15, 23, 25} 60
{24, 34, 15, 23} 10

Continued on next page
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Table C.2 – Continued from previous page

Type Family of MSC # eq.

{24, 34, 15, 35} 60
(0,4,1,0,0) {13, 34, 35, 25, 145} 60

{24, 13, 15, 25, 345} 60
{13, 15, 23, 25, 345} 30
{34, 14, 45, 125, 23} 60

(0,4,2,0,0) {24, 12, 35, 145, 134, 23} 60
{24, 35, 145, 34, 25, 123} 15

(0,5,0,0,0) {24, 13, 15, 23, 14} 60
{24, 12, 15, 35, 25} 60
{24, 12, 15, 35, 34} 12
{12, 15, 34, 25, 45} 60

(0,5,1,0,0) {135, 12, 14, 34, 23, 25} 60
{15, 35, 124, 23, 13, 45} 60

(0,6,0,0,0) {24, 12, 23, 25, 13, 45} 15
{24, 12, 35, 34, 25, 13} 10
{24, 12, 34, 23, 13, 45} 60
{15, 14, 34, 23, 25, 45} 60

(0,6,1,0,0) {24, 12, 35, 145, 34, 25, 13} 10
(0,7,0,0,0) {12, 14, 34, 23, 25, 13, 45} 30

{24, 12, 15, 14, 35, 34, 45} 60
(0,8,0,0,0) {24, 12, 15, 34, 23, 25, 13, 45} 15
(1,2,0,0,0) {34, 15, 2} 15
(1,3,0,0,0) {24, 15, 3, 25} 60
(1,4,0,0,0) {13, 2, 14, 35, 45} 15





Appendix D

Example of a semi-definite program

We consider a ranking problem involving 2 criteria x and y and three alternatives,
a1, a2 and a3. The performances of these alternatives are given in Table D.1.
The criterion values vary between 0 and 10.

Table D.1: Performances of alternatives a1, a2 and a3 on criteria x and y.

x y

a1 10 7
a2 6 8
a3 7 5

A decision maker states that the following ranking holds: a1 ≻ a2 ≻ a3. We
use the objective and the set of constraints given in Equation (2.27) in order
to find a model restoring this ranking. We use semi-definite programming to
learn polynomial marginal value functions. We denote by u∗

1 and u∗
2 the polyno-

mial functions associated respectively with criteria 1 and 2. The degree of the
polynomials of the marginal value functions is fixed to 3.

To ensure the monotonicity of functions u∗
1 and u∗

2, we impose the non-
negativity of their derivative. Formally, we define u∗

1 and u∗
2 as follows:

u∗
1(x) = px,0 + px,1 · x+ px,2 · x2 + px,3 · x3,

u∗
2(y) = py,0 + py,1 · y + py,2 · y2 + py,3 · y3.

The derivative of u∗
1(x) and u∗

2(y) are respectively equal to:

du∗
1

dx
= px,1+2px,2 ·x+3px,3 ·x2 and

du∗
2

dy
= py,1+2py,2 ·y+3py,3 ·y2.
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The monotonicity of a polynomial marginal is ensured if its derivative is a sum
of squares. Formally, it reads:

du∗
1

dx
= xTQx

=

(

1
x

)T(

q0,0 q0,1
q1,0 q1,1

)(

1
x

)

= q0,0 + (q0,1 + q0,1)x+ q1,1x
2,

du∗
2

dy
= yTRy

= r0,0 + (r0,1 + r1,0) y + r1,1y
2.

To ensure the non-negativity of the derivative, we impose the matrices Q and R
to be semi-definite positive in conjunction with the following constraints:











px,1 = q0,0,

2px,2 = q0,1 + q1,0,

3px,3 = q1,1,

and











py,1 = r0,0,

2py,2 = r0,1 + r1,0,

3py,3 = r1,1.

The values of a1, a2 and a3 read:

U(a1) = px,0 + 10px,1 + 100px,2 + 1000px,3 + py,0 + 7py,1 + 49py,2

+ 343py,3,

U(a2) = px,0 + 6px,1 + 36px,2 + 324px,3 + py,0 + 8py,1 + 64py,2

+ 512py,3,

U(a3) = px,0 + 7px,1 + 49px,2 + 343px,3 + py,0 + 5py,1 + 25py,2

+ 125py,3.

To find a model reflecting the ranking given as input, i.e. a1 ≻ a2 ≻ a3, we
have to fulfil two conditions: a1 ≻ a2 and a2 ≻ a3. This is done by adding the
following constraints:

{

U(a1)− U(a2) + σ+(a1)− σ−(a1)− σ+(a2) + σ−(a2) > 0,
U(a2)− U(a3) + σ+(a2)− σ−(a2)− σ+(a1) + σ−(a1) > 0.

After substituting U(a1), U(a2) and U(a3) by their value we obtain the two
following constraints:















4px,1 + 64px,2 + 776px,3 − py,1 − 15py,2 − 231py,3
+σ+(a1)− σ−(a1)− σ+(a2) + σ−(a2) > 0,

−px,1 − 13px,2 − 19px,3 + 3py,1 + 39py,2 + 387py,3
+σ+(a2)− σ−(a2)− σ+(a3) + σ−(a3) > 0.
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Given that criteria domains are comprised between 0 and 10, the following con-
straints hold:







px,0 = 0,
py,0 = 0,

10px,1 + 100px,2 + 1000px,3 + 10py,1 + 100py,2 + 1000py,3 = 1.

Finally, by assembling the objective function and the constraints, we obtain the
following semi-definite program:

minσ+(a1) + σ−(a1) + σ+(a2) + σ−(a2) + σ+(a3)− σ−(a3)

such that:






















































































4px,1 + 64px,2 + 776px,3 − py,1 − 15py,2 − 231py,3
+σ+(a1)− σ−(a1)− σ+(a2) + σ−(a2) > 0,

−px,1 − 13px,2 − 19px,3 + 3py,1 + 39py,2 + 387py,3
+σ+(a2)− σ−(a2)− σ+(a3) + σ−(a3) > 0,

px,0 = 0,
py,0 = 0,

10px,1 + 100px,2 + 1000px,3 + 10py,1 + 100py,2 + 1000py,3 = 1,
px,1 = q0,0,

2px,2 = q0,1 + q1,0,
3px,3 = q1,1,
py,1 = r0,0,

2py,2 = r0,1 + r1,0,
3py,3 = r1,1,

with:
{

Q,R PSD,
σ+(a1), σ−(a1), σ+(a2), σ−(a2), σ+(a3), σ−(a3), ≥ 0.
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Cholesky factorization

The factorization of Cholesky consists in decomposing a positive semi-definite
matrix M into the product of a lower triangular matrix L and its transpose LT.
Formally it reads:

M = LLT. (E.1)

The decomposition works as follows. For a matrix a of size d × d, Equation
(E.1) reads:

M =















m1,1 m1,2 m1,3 · · · m1,d

m2,1 m2,2 m2,3 · · · m2,d

m3,1 m3,2 m3,3 · · · m3,d

...
...

...
. . .

...
md,1 md,2 md,3 · · · md,d















=

















l1,1 0 0 · · · 0
l2,1 l2,2 0 · · · 0
l3,1 l3,2 l3,3 · · · 0
...

...
...

. . .
...

ld,1 ld,2 ld,3
... ld,d

















·















l1,1 l2,1 l3,1 · · · ld,1
0 l2,2 l3,2 · · · ld,2
0 0 l3,3 · · · ld,3
...

...
...

. . .
...

0 0 0 · · · ld,d















.

The multiplication of the two matrices leads to:

M =











l21,1 (symmetric)
l2,1l1,1 l22,1 + l22,2

...
...

. . .

l1,1ld,1 l2,1ld,1 + l2,2ld,2 · · · ∑d
i=1 l

2
d,i











.
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The value mi,i and mi,j can be expressed as follows:

mi,i =

i
∑

k=1

l2i,k and mi,j =

j
∑

k=1

li,klj,k

The value of the variables li,i and li,j are then given by

li,i =

√

√

√

√mi,i −
i−1
∑

k=1

l2i,k and li,j =
1

mi,i

(

mi,j −
j−1
∑

k=1

li,klj,k

)



Appendix F

UTA-Splines: detailed results of the

experiments

Figure F.1 and F.2 show the average Spearman distance and Kendall Tau of the
test set after running the experiment described in Section 7.4 with UTA-poly.

Figure F.3 shows the average Spearman distance and Kendall Tau obtained
with UTA-splines for the four models composed of 3 criteria presented in Figure
7.7. The learned models are composed of polynomials of the third degree which
are continuous up to the second derivative at the connection points. The number
of pieces per value function varies between 1 and 5. Similarly, Figure F.4 shows
the average Spearman distance and Kendall Tau obtained with the four models
composed of 5 criteria (Figure 7.8).
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Figure F.1: Average Spearman distance and Kendall Tau of the test set of models
1 to 4 learned by UTA-poly when the degree of the marginals varies between 1
and 4.
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Figure F.2: Average Spearman distance and Kendall Tau of the test set of models
5 to 8 learned by UTA-poly when the degree of the marginals varies between 1
and 4.
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Figure F.3: Average Spearman distance and Kendall Tau of the test set of models
1 to 4 learned by UTA-splines with marginals composed of polynomials of the
third degree. The continuity at the breakpoints is ensured up to the second
derivative.
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Figure F.4: Average Spearman distance and Kendall Tau of the test set of models
5 to 8 learned by UTA-splines with marginals composed of polynomials of the
third degree. The continuity at the breakpoints is ensured up to the second
derivative.
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List of contributions

We list in this appendix the list of our contributions. It includes articles in
scientific journals, conference proceedings and talks.

G.1 Articles

G.1.1 Published

• O. Sobrie, M. Pirlot, and F. Joerin. Intégration de la méthode d’aide à
la décision ELECTRE TRI dans un système d’Information Géographique
Open Source. Revue Internationale de Géomatique, 23(1):13–38, 2013e

• O. Sobrie and M. Pirlot. Implementation of ELECTRE TRI in an Open
Source GIS. EWG/MCDA Newsletter, pages 15–18, 2012

G.1.2 Submitted

• O. Sobrie, N. Gillis, V. Mousseau, and M. Pirlot. UTA-poly and UTA-
splines: additive value functions with polynomial marginals. Submitted,
2016a

• O. Sobrie, M. E. A. Lazouni, S. Mahmoudi, V. Mousseau, and M. Pirlot. A
new decision support model for preanesthetic evaluation. Submitted, 2016b

• E. Ersek Uyanık, O. Sobrie, V. Mousseau, and M. Pirlot. Families of suf-
ficient coalitions of criteria involved in ordered classification procedures.
Submitted, 2016
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G.2 Refereed conference proceedings

• O. Sobrie, V. Mousseau, and M. Pirlot. Learning the parameters of a non
compensatory sorting model. In T. Walsh, editor, Algorithmic Decision
Theory, Lecture Notes in Artificial Intelligence, pages 153–170, Lexington,
KY, USA, 2015b. Springer

• E. Ersek Uyanık, O. Sobrie, V. Mousseau, and M. Pirlot. Listing the fam-
ilies of sufficient coalitions of criteria involved in sorting procedures. In
DA2PL 2014 Workshop From Multiple Criteria Decision Aid to Preference
Learning, pages 60–70, 2014. Paris, France

• O. Sobrie, V. Mousseau, and M. Pirlot. Learning the parameters of a
majority rule sorting model taking attribute interactions into account. In
DA2PL 2014 Workshop From Multiple Criteria Decision Aid to Preference
Learning, pages 22–30, 2014d. Paris, France

• O. Sobrie, V. Mousseau, and M. Pirlot. Learning a majority rule model from
large sets of assignment examples. In P. Perny, M. Pirlot, and A. Tsoukiás,
editors, Algorithmic Decision Theory, Lecture Notes in Artificial Intelli-
gence, pages 336–350, Brussels, Belgium, 2013d. Springer

• O. Sobrie, V. Mousseau, and M. Pirlot. Learning the parameters of a
multiple criteria sorting method from large sets of assignment examples. In
DA2PL 2012 Workshop From Multiple Criteria Decision Aid to Preference
Learning, pages 21–31, 2012. Mons, Belgique

G.3 Talks

• O. Sobrie, V. Mousseau, and M. Pirlot. Using polynomial marginal util-
ity functions in UTADIS. In 27th European Conference on Operational
Research, Glasgow, Scotland, July 2015a

• O. Sobrie, V. Mousseau, and M. Pirlot. New veto rules for sorting models.
In 20th Conference of the International Federation of Operational Research
Societies, Barcelona, Spain, July 2014c

• O. Sobrie, V. Mousseau, and M. Pirlot. Learning the parameters of a
multiple criteria sorting method from large sets of assignment examples. In
Séminaire ”Modélisation des préférences et aide multicritère à la décision”,
Lamsade, Paris, France, April 2014b

• O. Sobrie, V. Mousseau, and M. Pirlot. Learning the parameters of a
multiple criteria sorting method from large sets of assignment examples. In
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28th annual conference of the Belgian Operational Research Society, Mons,
Belgium, January 2014a

• O. Sobrie, V. Mousseau, and M. Pirlot. Learning the parameters of a
multiple criteria sorting method from large sets of assignment examples.
In 26th European Conference on Operational Research, Roma, Italy, July
2013c

• O. Sobrie, V. Mousseau, and M. Pirlot. Learning the parameters of a
multiple criteria sorting method from large sets of assignment examples.
In 22nd International Conference on Multiple Criteria Decision Making,
Malaga, Spain, June 2013b

• O. Sobrie, V. Mousseau, and M. Pirlot. Learning the parameters of a
multiple criteria sorting method from large sets of assignment examples.
In 77th meeting of the EWG on MCDA, Rouen, France, April 2013a
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