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INTRODUCTION 

Skin is the barrier that protects the body against infection and dehydration. After a skin injury, 

wound healing process rapidly occurs to restore the skin integrity. Healing requires a well-

orchestrated integration of biological events that lead to tissue repair. Wound healing is 

characterized by four overlapping phases: coagulation, inflammation, migration/proliferation 

and remodeling. In tissues with preexisting pathophysiological abnormalities such as chronic 

wounds, parts of the wound can be stuck in different phases as their progression does not 

occur in synchrony.1  

Cutaneous chronic wounds are characterized by the absence of healing six weeks after 

the injury. More than 6 million persons in the United States are affected by these pathologies; 

in France they are 1.5 million.2 The most prevalent cutaneous chronic wounds are venous, 

diabetic foot ulcers (Figure 1) and bedsores. The number of affected persons is expected to 

increase in the next years as the European population ages and more people develop diabetes 

related to overweight and obesity.3  

 

Figure 1. Diabetic foot ulcers are characterized by impaired wound healing of skin.  This 

sometimes leads to infection and leg amputation. It is a major complication of diabetes 

mellitus because they occur in 15% of all patients with diabetes. 

 

To correct impaired wound healing, it is necessary to treat the underlying disease. 

Meanwhile, the local treatment of the wound is crucial to prevent infection, to control the 

removal of exudates and to create the right environment to allow for skin wound healing. The 

classical treatment is the debridement of the wound bed to remove necrotic tissue.4 This 

procedure is followed by the wound compression with sterile gauze.5 Another technique is the 

negative wound pressure therapy. Sometimes, these techniques are not effective enough and 

require the application of a wound dressing.  
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Initially wound dressings had a passive and protective role in the healing process. 

Further on, bioactive dressings consisting of cellularized scaffolds were designed as skin 

substitutes. A typical example is the Apligraf® dressing, consisting of collagen matrices 

associated with living fibroblasts and keratinocytes (Figure 2).6 These cells produce a panel 

of growth factors that can promote tissue repair. Nowadays research orientation is towards 

medicated dressings based on the integration of active biomolecules within scaffolds in 

order to tune cell phenotype towards migration, differentiation or modulation of 

inflammation. First efforts in this direction were done using proteins as therapeutic 

molecules.7 However, despite the effort in the development of drug delivery systems, protein 

therapies suffer from high cost, rapid diffusion and degradation of biomolecules. Gene 

therapy represents a promising alternative as it overcomes the concerns about the protein 

stability and affords a sustained delivery of biomolecules.8 Gene delivery into cells makes 

them produce therapeutics molecules that can act locally, limiting possible side effects.9  

 

 

 

 

Figure 2: The Apligraf® skin substitute used in the treatment of diabetic foot ulcers associate 

a matrix, made of collagen with fibroblasts and keratinocytes cells.  
 

Success of gene delivery depends on the development of an efficient delivery vector 

that permits the penetration of genes into the cells as well as their protection against 

endosomal degradation. Viruses are the most efficient vectors to transfect cells but they suffer 

from safety concerns such as immunogenicity or oncogenicity.10 Among the non-viral 

vectors, polyethyleneimine (PEI) has attracted a lot of interest as it is able to compact large 

DNA sequences, permits DNA penetration into cells thanks to its positive charge and is able 

to escape from the endosome.11 However, as its transfection efficiency and cytotoxicity are 

strongly correlated, efforts have been made to explore the possibility of tuning PEI properties 

by chemical modification12 or complexation with nanoparticles13 to shield its positive charge.  
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In this context, silica nanoparticles (SiNPs) possess several attractive characteristics 

such as suitable cytocompatibility, large surface area, tunable size/shape and versatile 

bioconjugation chemistry14 making them ideal drug delivery vehicles15 and gene transfection 

agents.16 Nevertheless, bare SiNPs, being plain or mesoporous, cannot be used alone as gene 

carriers as they bear a negative charge near neutral pH and are unable to compact DNA, 

thereby preventing its internalization. Hence conjugation of these particles with PEI appears 

as a promising method to design nanoscale hybrid gene carriers.17 

In this context, the present work aimed at designing novel medicated dressings 

allowing for the production of biomolecules favoring cutaneous wound repair within 

collagen scaffolds. Our strategy has relied on the use of PEI-conjugated silica 

nanoparticles as gene carriers to transfect fibroblasts cells immobilized with the 

scaffolds (Figure 3).  

Figure 3: Schematic overview of the project 

 

In the following pages, we first provide a literature survey of the biomedical and 

biological contexts of our work, introduce the main concepts and strategies of gene therapy 

and give the reader an overview of the past and current developments related to silica 

nanoparticles as drug delivery systems (Chapter I). 

We then describe our study of PEI-coated silica particles as vectors of a model 

plasmid to transfect 3T3 fibroblast cells first in 2D cultures and then in various 3D 

configurations (Chapter II). 

The encouraging outcome of this study led to us to explore further the transfection 

properties of PEI-SiNPs systems, by modifying the conjugation mode of the polymer on the 

silica surface. The ability of these hybrid nanocarriers to transfect human primary fibroblast 

and keratinocytes was also studied (Chapter III). 

!"#$%
&'($)%
!*+,'-)%
./$/0*+112#$3%4560!#74%
8/--9%
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Finally, first attempts were made to use PEI-coated silica nanoparticles for the 

expression of the anti-inflammatory interleukin-10 protein by 3T3 cells and the inhibition of 

TNF-αa expression in macrophages (Chapter IV) 

A conclusion section gathers our main results, enlightening our contribution to the 

understanding of the mechanisms of gene transfection as mediated by silica nanoparticles, and 

provides some perspectives in the different fields relevant to this work.  
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CHAPITRE I 

Rappels bibliographiques 

 

Résumé 

Cette introduction bibliographique vise à rassembler l’état de l’art dans les trois grands 

domaines couverts par ce travail de thèse : les plaies chroniques de peau, la thérapie génique 

et les nanoparticules de silice comme vecteurs thérapeutiques. Dans une première partie, nous 

rappelons les évènements impliqués dans la cicatrisation des plaies cutanées et décrivons les 

phénomènes à l’origine des plaies chroniques. Le rôle particulier joué par les macrophages 

d’une part, et l’interleukin-10 (IL-10) d’autre part dans les processus de réparation cutanée est 

souligné. Les différents traitements actuellement utilisés ou à l’étude pour favoriser la 

cicatrisation sont ensuite présentés, mettant en lumière l’intérêt du développement actuel de 

pansements médicamenteux. Une deuxième partie est consacrée à la thérapie génique. Après 

une présentation des différentes formes de gènes thérapeutiques, la distinction entre vecteurs 

viraux et non-viraux est introduite et les défis rencontrés dans l’utilisation de ces derniers sont 

présentés. Le principe de matrices tri-dimensionnelles promouvant la transfection est enfin 

exposé. La dernière partie de ce chapitre offre un panorama des progrès réalisés ces dernières 

années dans la synthèse et la fonctionalisation de nanoparticules de silice à visée médicale, 

avec une attention particulière à leur application dans la délivrance de gène. La possibilité 

d’associer ces particules avec un polymère naturel biocompatible, le collagène, pour obtenir 

des biomatériaux nanocomposites est finalement présentée.  
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I-1. CHRONIC WOUNDS - A FAILURE TO HEAL 
I-1-1. Structure of human skin 

 

Figure I-1: Structure of the skin2 

The skin constitutes the largest organ in the body and possesses multiple functions in daily 

life. It not only acts as the barrier to hazardous substances but also plays indispensible roles in 

physical protection, temperature regulating, immune response, and sensory detection.  

Skin is composed with three layers: the epidermis, dermis and subcutaneous layer (Figure 

I-1). The epidermal barrier layer is ~ 0.1–0.2 mm in depth and tightly attached to the 

underlying dermis by a specialized basement membrane zone, consisting of several different 

types of collagen and laminin 5. This tissue is a stratified epithelium composed of several 

layers of keratinocytes (at least four). Some epidermal stem cells are present in the basal layer 

located on the basement membrane. They are responsible for the renewal of the epidermis by 

the generation of a differentiated cell and another stem cell. New cells continually move 

towards the surface while they are differentiating. They gradually die and become flattened 

and then die. Dead cells form the stratum corneum, an impermeable squamous epithelium. 

This layer gives properties of resistance against bacterial infection and prevents fluid and 

electrolyte loss.3 Other types of cells are found in the epidermis such as Langerhans cells or 

melanocytes. Langerhans cells belong to the immune system and act as antigen-presenting 

cells. Melanocytes synthesize melanin, molecule involved in the cutaneous photoprotection 

The dermis is a dense connective tissue which gives skin resistance and elasticity. This 

well-vascularized tissue feeds the epidermis by nutrient diffusion. Those blood vessels 

provide nourishment and waste removal for both dermal and epidermal cells. Some epidermal 

annexes are inserted dermis such as hair follicles, sweat glands and sebaceous glands. The 
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dermis also contains receptors for touch, temperature and pain. It varies in thickness 

depending on its site in the body (1-4 mm). The dermis consists of an extracellular matrix 

(ECM) in which several kinds of cells are encapsulated. Structural components of the 

extracellular matrix are collagen (type I, III and V), elastin, fibronectin, hyaluronic acid and 

proteoglycans. Furthermore, the ECM also mediates cell-matrix adhesion and transducer 

signals into cells.4 In addition, hair follicles, sweat glands, sebaceous glands, apocrine glands, 

lymphatic vessels and blood vessels are present in the dermis. Those blood vessels provide 

nourishment and waste removal for both dermal and epidermal cells. The dermis is composed 

of three major types of cells: fibroblasts, macrophages, and adipocytes (energy storing cells). 

Fibroblasts are the main type of cells of this tissue because they synthesize the whole 

macromolecules forming ECM and they continuously communicate with epidermis via 

soluble factors. Together with macrophages, they play important roles in wound healing, 

which will be described in detail in the following subsection.  

I-1-2. Process of wound healing 

I-1-2-1. Acute wounds 

Wound healing is a complex process that involves the simultaneous actuation of soluble 

mediators (i.e. growth factors and cytokines/chemokines), blood cells, ECM and parenchymal 

cells (Figure I-2). This process can be divided into several phases: homeostasis/inflammation, 

proliferation, and remodeling.6 These phases are not associated with specific period of time 

and may overlap:  

(i) Haemostasis and Inflammatory Phase (day 1-3) 

Immediately after an injury, the inflammatory and haemostasis phase occur to stop bleeding 

and combat the infection. First, a fibrin clot is formed around aggregated platelets in order to 

reestablish haemostasis (Figure I-2a). This clot serves as a temporary shield protecting the 

injured tissue and provides a matrix over and through which cells can migrate. Meanwhile, 

aggregated platelets secrete a wide range of mediators such as platelet-derived growth factor 

(PDGF) and TNF-β that recruit neutrophils and monocytes to the wound site, which then 

secrete proteinases and reactive oxygen species (ROS) to kill microorganism and clean up cell 

debris by phagocytosis. Other cells such as mastocytes migrate to the wound site, secrete 

histamine, thereby promoting inflammation. Two days after the injury neutrophils are 

progressively replaced by macrophages. These cells activated from monocytes, act as 
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biological bins as they digest cellular debris. They play a part in the early stage of wound 

healing by the expression of colony-stimulating factor (CSF), VEGF, TGF-β and PDGF. 

These mediators moderate the transition between the initial phase of inflammation and tissue 

repair. These cytokines play a role in cell migration, proliferation and ECM production. 

 

 

Figure I-2: The different phases of skin wound repair5 
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 (ii) Proliferation Phase (day 2-10) 

This phase consists of neoangiogenesis, granulation tissue formation, ECM deposition and re-

epithelialisation (Figure I-2b).139 After the destruction of the cutaneous tissue, the initial 

migration of keratinocytes operates from the wound borders and the hair follicles. They 

migrate on the fibrin clot made of fibrin and fibronectin and then proliferate, differentiate to 

form a novel epidermis.140 Re-epithelialization is favoured by the secretion of fibroblastic 

growth factors such as Keratinocyte Growth Factors (KGF) and Fibroblasts Growth Factor – 

10 (FGF-10).  

Fibroblasts begin to migrate into the wound by around day 3 after the injury, marking the 

start proliferation phase. The angiogenic factors, such as fibroblast growth factor (FGF), 

VEGF and PDGF induce angiogenesis by stimulating the production of basic fibroblast. The 

neovascularization arises in the wound by the end of the first week, and continue to grow until 

the wound is healed. In addition, growth factors released by platelets and secreted by 

macrophages during the first phase of healing have been sequestered in the provisional 

matrix. Thus these growth factors stimulate cells as they move into the wound. Fibroblasts 

start proliferating and secrete ECM macromolecules in the fibrin clot to form the granulation 

tissue. They mainly synthesize collagen III at this stage. After their migration, fibroblasts 

progressively differentiate into myofibroblasts. With this pro-fibrotic phenotype, they acquire 

contractile capabilities and biosynthetic activities with the aim of replacing the damaged 

tissue. At the end of the proliferative phase, the wound is closed thanks to the contraction by 

myofibroblasts. When the wound area is completely filled with new granulation tissue, 

angiogenesis stops and the apoptosis of many new vessels is then started.  

 (iii) Remodelling Phase  (several months) 

The last phase is characterized by the degradation of the previously formed granulation tissue 

and by dermis regeneration (Figure I-2c). Matrix formation requires the removal of 

granulation tissue with revascularization. A framework of collagen and elastin fibers replaces 

the granulation tissue. This framework is then saturated with proteoglycans and glycoproteins. 

This is followed by tissue remodeling involving the synthesis of new collagen mediated by 

TGF-β. Collagen remodeling during the transition from granulation tissue to scar is dependent 

on continued synthesis and catabolism of collagen. The degradation of collagen in the wound 

is controlled by several matrix metalloproteinases secreted by macrophages, epidermal cells, 

and endothelial cells, as well as fibroblasts. The final product of this phase is scar tissue. 
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Main sources and functions of cytokines and growth factors involved in wound healing are 

summarized in Table I-1. 

Name Sources Target Function 

EGF Platelets, Macrophages 
Fibroblasts Keratinocytes Re-epithelialization 

FGF-2 

Keratinocytes 
Mast Cells, Fibroblasts 
Endothelial cells 
Smooth muscle cells 
Chondrocytes 

Keratinocytes 
Fibroblasts 
Endothelial cell 

Granulation tissue formation 
Re-epithelialization 
Matrix formation and remodeling 

TGF-β 
Platelets, Keratinocytes 
Macrophages, Lymphocytes 
Fibroblasts 

Platelets, Keratinocytes 
Macrophages, Fibroblasts, 
Leukocytes,  
Endothelial cells, ECM 

Inflammation 
Granulation tissue formation 
Re-epithelialization 
Matrix formation and remodeling 

TNF-α Neutrophils 
Macrophages 

Epidermal, mesenchymal 
cells 

Inflammation 
Re-epithelialization 

PDGF 
Platelets, Keratinocytes 
Macrophages, Fibroblasts 
Endothelial cells 

Leukocytes, Macrophages, 
Fibroblasts 

Inflammation 
Granulation tissue formation 
Reepithelialization 
Matrix formation and remodeling 

VEGF 

Platelets, Neutrophils 
Macrophages, Fibroblast 
Endothelial cells 
Smooth muscle cells 

Endothelial cells, 
macrophages Granulation tissue formation 

IL-1 

Neutrophils 
Monocytes 
Macrophages 
Keratinocytes 

Endothelial cells, 
Macrophages, Leukocytes, 
Fibroblasts Keratinocytes, 

Inflammation 
Reepithelialization 

IL-6 Neutrophils 
Macrophages 

Endothelial cells, 
Macrophages, 
Kerotinocytes,Leukocytes 

Inflammation 
Reepithelialization 

IL-10 Leukocytes Leukocytes Anti-inflamamtion 

Table I-1: Cytokines and growth factors involved in wound healing7 

I-1-2-2. Chronic wounds 

Chronic skin ulcers are wounds that have failed to progress through the normal healing stages 

and enter a state of chronic and pathological inflammation.141 While acute wounds usually 

progress linearly through the different healing phases, chronic wounds do not follow this 

timeline, but are locked in one of the above-mentioned healing phases (Figure I-3)8.  

The most prevalent chronic wounds in the developed world are venous leg ulcers and 

diabetic foot ulcers. Venous leg ulcers (VLUs) result from hypertension or sustained 

ambulatory venous pressures as a consequence of a chronic venous insufficiency.142,143 

Hypertension leads to an infiltration of leukocytes into the dermis, which is responsible for 

inflammation.144 Diabetic foot ulcers are consequences of neuropathy or/and vascular disease 

related to diabetes.145 The major complications of chronic ulcers are microbiological 
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contamination and malignant transformation.146,147  In the case of FDUs, bacteriological 

infection can lead to gangrene and eventually leg amputation.148 Indeed, bacteria colonizing 

the wound produce a biofilm composed of a wide variety of polysaccharides, which is 

impervious to phagocytic cells and impermeable to antibiotics.10 Frustrated phagocytes 

release a plethora of proteases and toxic oxygen radials into the wound milieu making a bad 

situation worse as these agents destroy tissue cells, extracellular matrix, and growth factors in 

the wound. 

 

Figure 1-3: Acute wound and chronic wound undergoes different processes8 

 

The large amount of proteases and presence of reactive oxygen species, both produced 

by inflammatory cells is the main characteristic of chronic wounds. The presence of proteases 

in dermis leads to fibroblast senescence, poor vascularization and keratinocytes apoptosis. As 

a consequence, the protective barrier constituted by the epidermis is disrupted. As 

keratinocytes at the wound edge are unable to migrate into the wound bed, re-epithelialization 

is inhibited and wound closure impossible. Lastly, non-healing skin wounds are characterized 

by poor vascularization, with disturbance in blood vessel formation within the wound.149  Not 

surprisingly, such chronic wounds lack ingrowth of granulation tissue 
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I-1-3. Macrophages, target cells for chronic wounds treatment 

I-1-3-1. Role of macrophages in cutaneous wounds 

The macrophage is a prominent inflammatory cell in wounds, but its role in healing 

remains incompletely understood.11 Macrophages have various functions in wounds, 

including host defense, promotion/ resolution of inflammation, removal of apoptotic cells and 

necrotic tissues, support of cell proliferation and tissue restoration. The specific activities of 

macrophages concerning these functions in wound healing are summarized in Table 1-2.  

Although macrophages are beneficial for the repair of normal wounds, this pleotropic 

cell type may promote excessive inflammation or fibrosis under certain circumstances. 

Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis 

of non-healing and poorly healing wounds.12 Consequently, the macrophage is widely deemed 

as an attractive therapeutic target, both to reduce fibrosis and scarring, and to improve healing 

of chronic wounds. 
Wound healing process Activities of Macrophages  
Phagocytosis ROS, NO 
Debridement Collagenase, elastase 

Cell recruitment and activation 
Growth factors: PDGF, TGF, EGF, IGF 
Cytokines: TNF-α, IL-1, IL-6 
Fibronectin 

Matrix synthesis 

Growth factors: TGF, EGF, PDGF 
Cytokines: TNF-α, IL-1, IFN 
Enzymes: arginase, collagenase 
Prostaglandins 
NO 

Angiogenesis 
Growth factors: FGF, VEGF 
Cytokines: TNF 
NO 

Table I-2: Activities of macrophages in wound healing processes 

 

I-1-3-2. Recruitment and residence of macrophages 

Leukocytes (including monocytes, neutrophils, mast cells, etc) are present during each of the 

phases of wound repair, represented in Figure I-4, as haemostasis (yellow panel), early 

inflammation (light pink panel), late inflammation (dark pink panel) and resolution/ 

remodelling (blue panel). Specially, macrophages differentiated from monocytes, are first 

recruited by factors such as split products from coagulation cascade (e.g. degredaded ECM 

molecules), factors released from platelet degranulation and activated complement 

components. Later, much more macrophages infiltrate in response to chemotactic gradients in 
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the wound during inflammation phase.13 Finally, low numbers of resident macrophages are 

present during the lengthy remodeling phase whereas neutrophils and lymphocytes disappear. 

 

 

Figure I-4: Pattern of leukocyte infiltration into wounds11 

I-1-3-3. Plasticity of macrophages in wound healing 

Macrophages exist in different phenotypic states during wound healing process and can 

change their phenotype in response to environmental cues (Figure 1-5). Recent studies 

suggest the influence of these cells on each stage of repair varies with the specific phenotype. 

Macrophages are considered to have two phenotypes, namely M1 and M2 type. Recently, 

Mosser et al. came up a third phenotype- wound healing macrophages, which arise in 

response to IL-4.12  

(i) Classically activated macrophages (M1 type) arise in response to interferon-γ 

(IFNγ), which can be produced T helper 1 (TH1) cells, CD8+ T cells (not shown) and natural 

killer (NK) cells. In addition, TNF, produced by antigen-presenting cells (APCs) can also 

activate macrophages to M1. Moreover, in wound site, PDGF (released by platelets due to 

tissue damage) and bacteria (main component LPS shown in Figure 1-5B) will also lead to 

the transformation of tissue macrophages to M1 phenotype.150 
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Figure I-5: The macrophages activated by endogeneous factors (A) and exogeneous factors 

(B) 12 

(ii) Wound-healing (alternatively activated) macrophages arise in response to interleukin-4 

(IL-4) or interleukin-13 (IL-13), which can be produced during an adaptive immune response 

by TH2 cells or during an innate immune response by granulocytes. 

(iii) Regulatory macrophages (namely M2 type) are generated in response to various stimulis, 

including immune complexes, prostaglandins, G-protein coupled receptor (GPCR) 

ligands,glucocorticoids, apoptotic cells or IL-10. Their hallmark is the production of large 

quantities of IL-10, which inhibits the inflammatory hallmark is the production of large 

quantities of IL-10, which inhibits the inflammatory response. 

Each of these three populations has a distinct physiology. Classically activated macrophages 

have microbicidal activity, whereas regulatory macrophages produce high levels of IL-10 to 

suppress immune responses.  
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I-1-4. The IL-10 anti-inflammatory cytokine 

I-1-4-1. Production and function of IL-10 

As introduced above, macrophages play a key role in wound healing and they can be 

damaging if the response is excessive. Interleukin 10 (IL-10) is a cytokine that promotes 

macrophages toward an anti-inflammatory state (M2 phenotype) and therefore promotes 

wound healing.14 A good understanding in its molecular event about its production and 

functions will help better design of new strategies of wound treatment.  

IL-10 is produced by many cells of the innate and adaptive immune response, including 

macrophages, dendritic cells, B cells, and T cells.15 It plays a crucial role in preventing 

inflammatory and autoimmune pathologies. More specifically, it regulates and represses the 

expression of pro-inflammatory cytokines produced by innate cells such as macrophages and 

dendritic cells during the recovery phase of infections and reduces the tissue damage caused 

by these cytokines. Specially, IL-10 has multiple modulating effects on the macrophage 

population including the suppression of pro-inflammatory cytokines, and the promotion of 

macrophages towards the wound healing M2 phenotype. As demonstrated before, the shift in 

the balance from M1 to M2 populations is postulated to be essential since it occurs in tissues 

that undergo wound healing. 

IL-10 stimulation promotes arginase-1 expression in macrophages that suppresses pro-

inflammatory mediators by shunting metabolic pathways away from the production of nitric 

oxide (NO). Arginase-1 expressing macrophages have also been shown to suppress T-cell 

responses causing inflammation and fibrosis as well as producing components of the ECM. In 

addition to arginase-1 expression, M2 macrophages also express the mannose receptor, 

CD206, which has been used in conjunction with arginase-1 as a marker to identify M2 

macrophage subtypes. The mannose receptor facilitates phagocytosis of mannose N-linked 

glycoproteins that are found on a variety of microorganisms. Promoting IL-10 following 

tissue injury at strategically defined locations may therefore offer targeted therapeutic benefits 

by capitalizing on its inflammatory suppressing/ wound healing potential.  

I-1-4-2. IL-10 delivery as an anti-inflammation therapeutic strategy 

The bioactive half-life of IL-10 is dependent on the cellular microenvironment and ranges 

from minutes to hours in vivo. To date, investigations of IL-10 have been carried out using 

direct administration of the IL-10 protein or peptide fragmentswhich remains biologically 
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active for a restricted period of up to 2.5 h in vivo. Efforts have been devoted to extending the 

bioavailability and bioactivity of IL-10.  

One strategy is to immobilize IL-10 to polymeric scaffolds for sustained release to 

neighboring tissues. In some cases, IL-10 is covalent bonded to the matrix to manipulate a 

cell population towards a wound healing (M2) phenotype in spatially confined regions and 

therefore offer novel and practical therapeutic approaches to promote wound healing. 16 Gene 

therapy represents an alternative to protein therapy as “fresh IL-10” could be continuously 

produced via cell transfection. Studies combing gene delivery and polymeric scaffold to 

improve efficacy17 and achieve long-term release18 of IL-10 to modulate inflammation have 

also been recently reported. 

I-1-5. Cutaneous wound treatment 

I-1-5-1. Treatment strategies 

 

Figure I-7: Global cutaneous wound care market in 2013 (http://www.mediligence.com) 

The classical treatment of chronic skin ulcers consists at first in a surgical debridment to 

remove necrotic tissue and exudates followed by a bandaging method to compress the wound. 

As shown in Figure I-7, this type of treatment accounts for almost half of current wound care 

market (45.6%). When wound healing is unsuccessful, different strategies have been 

evaluated to enhance and speed up wound closure. Protein therapy based on growth factors 

such as PDGF (Platelet Derived Growth Factor) and TGF-β1 (Transforming Growth Factor) 

takes up only 3.4% due to their instability in vitro and short half-life in vivo. Cell therapy is 

another effective treatment, however, the preparation and storage are challenging to current 

technological conditions.  

New and recent alternatives to conventional dressings have been developed to guarantee 

an optimal wound environment. In the following part, these dressings are introduced as non-
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medicated dressing and medicated dressing. As impaired wound healing such as Diabetic 

Foot Ulcers (DFU) involves multiple biochemical deficiencies19, a singular treatment 

modality is unlikely to be effective. Combination of different strategies is thus urgent to 

address the complex underlying pathology. 

I-1-5-2. Protein therapy 

As introduced before, the process of wound healing is driven by numerous cellular mediators, 

including eicosanoids, cytokines, nitric oxide, and various growth factors. The field of 

biologic wound products aims to accelerate healing by modulating these inflammatory 

mediators. So far, Granulocyte/macrophage colony-stimulating factor (GM-SCF), PDGF-BB, 

VEGF and bFGF are the most extensively studied proteins for wound treatment, especially 

for non-healing wounds.20 

Cytokines include chemokines, lymphokines, monokines, interleukins, colony-

stimulating factors, and interferons. These molecules regulate inflammation by influencing 

hematopoietic cells. GM-CSF has been most extensively studied, which can stimulate 

neutrophils, macrophages, keratinocytes, and fibroblasts and increase VEGF production, 

rendering it a very promising molecule in wound healing. There have been encouraging 

results in a prospective randomized control study involving patients with venous ulcers21, as 

well as studies on diabetic-foot ulcers22. Interleukins are still in preliminary studies, yet they 

have displayed positive effects in wound healing. For example, IL-19 has been found to be 

effective for wound closure by increasing fibroblast keratinocyte growth factor expression23. 

IL-10 has been intensively studied as a strong general inhibitor of immune response and 

inflammation.14 

Growth factors stimulate mainly fibroblasts and keratinocytes via transmembrane 

glycoproteins and are so far the most intensive studied and applied protein product in wound 

treatment. They are divided into five superfamilies, the most known being PDGF. 

Recombinant PDGF was studied in a series of 118 patients with DFUs by Steed and co-

workers.24 Patients were treated with rhPDGF or placebo for up to 20 weeks in randomized 

double-blind study. The rhPDGF group showed a significantly higher percentage of patients 

that achieved wound healing, 48% versus 25%, as well as a greater reduction in wound size. 

This study has led to FDA approval of rhPDGF for diabetic ulcers, which is now known as 

becaplermin (Regranex®). Additional studies have confirmed increased odds of wound 
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healing and decreased rates of amputation in diabetic foot ulcers, as well as accelerated 

wound healing in abdominal wound separation and irradiated wounds.  

Despite the effort in the development of drug delivery systems, protein therapies suffer 

from high cost, rapid diffusion, and degradation. For example, after intravenous injection, the 

half-life of basic fibroblast growth factor (bFGF) is 3 min and that of vascular endothelial 

growth factor (VEGF) is 50min. Instabilities of these proteins may also lead to the formation 

of immunogenic degradation products.25 A more promising approach is based on the 

integration of the bioactive proteins within a scaffold for long-term delivery. Such medicated 

dressings are introduced in the next section.  

I-1-5-3. Wound dressings 

Wound dressings can be made from natural (chitosan, hyaluronic acid, cellulose, alginate, 

collagen, fibrin) or synthetic (PVA, PEG, PVP, PU, PHEMA, poly(esters)) materials and 

processed in the form of films, foams, hydrocolloids and hydrogels. In general, wound 

dressings should provide a moist microenvironment, offer protection from further infections, 

remove wound exudates and promote tissue regeneration. To have a better efficacy, it is 

promising to integrate of active biomolecules (e.g. antibiotics, growth factors, cytokines) 

within dressings to tune cell phenotype toward migration, differentiation, or modulation of 

inflammation. Recent studies and commercial products are summarized based on material 

resources in Table I-3. 

(i) Non-medicated dressing: 

Hydrocolloids: they are composed with a semi-permeable film (for water and oxygen) and a 

layer of hydrophilic particles that usually made of proteins or polysaccharides. Hydrocolloids 

can absorb wound exudates and provide a moisted environment. They can be applied to 

granulating, epithelializing, and necrotic wounds, but can’t be used in case of severe 

infections because of macerates.  

Hydrogels: they are composed with hydrated polymers (> 20 wt %) and water. Advantages of 

hydrogels lie in flexibility, non-antigenicity and permeability to water, oxygen and 

metabolites. Therefore, they can maintain high level of moisture and promote wound 

debridement. Poor mechanical behavior is the main drawback of hydrogel-based dressings. 

Foams: foams are highly absorbent, cushioning, and protective to the wound site. As they 

don’t promote tissue repair and can be only used in the first stages of wound healing. 
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Films: Films are durable, easy to manipulate, adhesive, semipermeable to oxygen and water 

and impermeable to liquid and bacterias. Therefore, they can only use as protective dressings 

when there are few exudates present. 

(ii) Medicated dressings 

Dressings loaded with antimicrobials/antibiotics (to challenge biofilm formation in the wound 

site), platelet-derived substances, growth factors and peptides act to balance the biochemical 

events of inflammation in the chronic wound and to improve healing. These medicated 

dressing have therapeutic effects on the wounds and therefore release profile should be well 

tuned to fit the application purposes. Stability and burst releases of bioactive molecules are the 

main obstacles and sustained release over one week is often desirable to avoid frequent 

administration. In some cases, novel drug delivery system at micro- or nano-scale, including 

liposomes, polymeric or inorganic nanoparticles are integrated into the dressing scaffold to 

improve drug stability and release kinetics.  

The release of antibiotics can be controlled by swelling or degradable properties of the 

scaffold and in many cases the drug is released by diffusion. This problem of burst release is 

often solved by hydrophobic coatings on the dressing surface to inhibit drug diffusion. Fine 

tuning the physical (e.g. mechanical strength, porosity, degradation rate) and chemical (e.g. 

polymer modification, cross-linking) properties are proved to achieve desired drug release. 

Interestingly, pH-responsive polymers offer possibility for intelligent release due to the basic 

microenvironment of serious infections. More recently, the incorporation of nanoparticles into 

the scaffold has also emerged as a solution for sustained drug release.  

As introduced before, direct injection of therapeutic proteins (growth factors, cytokines) 

suffers from short effective time in vivo. Sophisticated delivery systems allowing long-term 

stability, controlled release and even multiple deliveries of proteins with independent release 

profile have been developed to favor wound healing. Proteins can be covalent or non-covalent 

bonded to the scaffold for immobilization. Moreover, the incorporation of growth factors 

during scaffold fabrication was found to have more controlled delivery kinetics.  

Novel methods for more efficient delivery involve micro- or nanotechnology in materials 

design. Proteins can be loaded in micro- or nanoparticles to improve stability and modify 

protein release profile. The incorporated micro- or nanoparticles also have the potential to 

improve mechanical strength of the scaffold.  
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Undergoing research Polymers  

Matrix Bioactive components 

Commercial 

dressing 

Chitosan-PEO nanofiber mat Ciprofloxacin Hydrochloride 

Moxifloxacin hydrochloride26 

Chitosan nanofibers Honey27 

Chitosan-crosslinked collagen aFGF28 

Chitosan and 

derivatives 

 

Chitosan, alginate and poly(r-

glutamic acid) hydrogel 

No therapeutics added29 

Kytocel® Gelling 

fiber dressing  

HA nanocapsule Polyhexanide30 

HA scaffold Autologous fibroblasts31 

Crosslinked HA fibrous 

membrane 

No therapeutics added32 

Cross-linked high/low Mw of 

HA foam 

Arginine and EGF33 

Hyaluronic acid(HA) 

and derivative 

HA gel (Vulcamin) Mixture of amino acids34 

Bionect® 

Cellulose dressing Silver nanoparticles35 

Collagen-oxidized 

regenerated cellulose foam 

No therapeutics added36 

Cellulose and 

derivatives 

 

Microbial-derived cellulose 

hydrogel 

Polyhexamethylasebiguanide37 

Regranex®Gel 

Aquacel® 

 

Alginate hydrogel ZnCO3
38 

Alginate gel coated with 

chitosan 

rhodamine B39 

Alginate 

Alginate hydrogel Phenytoin40 

MediHoney® 

Sorbalgon® 

Koltostat® 

TegadermTM high 

gelling 

Gelatin microspheres bFGF41 

Geltin-PLGA scaffold EGF42 

Concentrated collagen Ampicillin43 

Collagen sponge Model plasmid encoding for 

luciferase44 

Collagen matrix Glucose oxidase45 

Collagen/Gelatin 

Collagen-gelatin foam bFGF46  

Unite®Biomatrix 

BGC Matrix® 

Promogran® 

Prisma®Dermocol

/AgTM 

Fibracol® 

Fibrin scaffold  VEGF/bFGF-loaded PLGA 

nanoparticles 47  

Fibrin  

PEGylated fibrin gel Chitosan microspheres loaded 

with silver48 

Tisseel® 
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 Fibrin gel CD 34+ cells49  

Fibroin film Aloe vera extract50 Silk fibroin 

Fibroin fiber Silver51 

 

Dextran fibers Thrombin or antibiotics52 Dextran 

Dextran hydrogel No therapeutics added53 

 

Elastin film silver54 

Elastin-like peptides gel KGF55 

Elastin 

Elatin-silk fibroin scaffold No therapeutics added56 

 

Aminated-PVA hydrogel NO57 PVA 

Aminophenylboronic acid 

with PVA 

Ciprofloxacin58 

 

PCL-PEG copolymer rhEGF59 

PEG-PCL nanofibers EGF and bFGF60 

PEGylated fibers Rha FGF61 

PEG 

PEG PEI-Plasmid encoding bFGF 62 

 

PVP fibers Indomethacin63 PVP 

Poly (Vinyl methyl ether co-

maleic anhydride) and PVP 

NO64 

 

PHEMA PHEMA hydrogel NO65  

PLGA  film TiO2 nanoparticles66 

PCL nanofibers Curcumin67 

PLGA nanoparticles rhEGF68 

Poly (α-esters) 

PLA fibers bFGF69 

 

Table 1-3: Wound dressings in lab research and in the market 

I-1-5-4. Cell therapies 

 

Figure 1-8: Current strategies of cell therapies for wound repair 
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Wound healing requires the integration of cell migration and proliferation as well as 

extracellular matrix deposition, angiogenesis, and remodeling. Therefore, cell therapies is also 

widely applied in wound treatment, particularly in cases where host cells, due to disease, age, 

or excessive trauma, are unable to repair the defect or deficiency alone. Direct injection and 

fusion cell suspension has been proved unsuccessful.61 Current bioengineered skin substitutes, 

both biosynthetic skin substitutes and cultured autologous engineered skin, are available to 

provide temporary or permanent coverage, with the advantages of availability in large 

quantities and negligible risk of infection or immunologic issues. The main limitation of these 

products is high expense and storage conditions to preserve cell viability (generally at -80oC 

in liquid nitrogen). 

Apligraf® is composed of an epidermal layer of allogeneic neonatal keratinocytes and 

fibroblasts from neonatal foreskin. The cells are deposed on bilayered type I bovine collagen 

that is used as an adjunct covering to autograft, providing accelerated healing times. It is also 

used alone in chronic wound ulcers, showing decreased healing times when compared to 

controls. However, the chance of successful skin repair is less than 50%. In addition, 

Apligraf® has several drawbacks such as low resistance against degradation by proteases and 

weak persistence of fibroblasts within the normal collagen hydrogels. Recent studies on 

engineered hydrogels mimicking the extracellular matrix have provided significant insights 

into the designs of cell delivery systems. The matrix environment should provide directional 

cues to the transplanted cells in terms of adhesive ligands, integrin specificity, and a carefully 

engineered growth factor microenvironment. Future research is heading for dynamic or 

triggered changes in bioactivity, as well as multiple growth factor delivery for synergistic 

effects in directing cell fate for successful tissue repair.70 

 

I-2. GENE THERAPY – AN ALTERNATIVE STRATEGY FOR TISSUE 

ENGINEERING  

I-2-1. Introduction 

Gene therapy is the intentional modulation of gene expression in specific cells to treat 

pathological conditions. The European Medicines Agency (EMA) defines that a gene therapy 

medicinal product is a biological product which fulfils the following two characteristics: (a) it 

contains an active substance which contains or consists of a recombinant nucleic acid used in 

or administered to human beings with a view to regulating, repairing, replacing, adding or 
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deleting a genetic sequence; (b) its therapeutic, prophylactic or diagnostic effect relates 

directly to the recombinant nucleic acid sequence it contains, or to the product of genetic 

expression of this sequence.  

 

Figure I-9: Graphical presentation of different indications that have been addressed by gene 

therapy in clinical trials (n=2145), 2015, The Journal of Gene Medicine, Wiley and Sons 

(http://www.abedia.com/wiley/index.html) 

Since the first gene therapy trials in 1970s, two decades has seen more than 1700 

approved clinical trials worldwide. Although gene therapy was first conceived for genetic 

disorders, it has found broader applications for the treatment of severe diseases, with cancers 

being the major interest (64.2%), followed by infectious diseases (8%) and monogenic 

diseases (9.2%) (Figure I-9). Generally, gene therapy can be categorized into two categories- 

germ line gene therapy and somatic gene therapy. The difference between these two 

approaches is that in somatic gene therapy genetic material is inserted in some target cells, but 

the change is not passed along to the next generation, whereas in germ line gene therapy the 

therapeutic or modified gene will be passed on to the next generation. This difference is of 

importance, since current legislation allows gene therapy only on somatic cells71, which will 

be also the focus of this section.  

I-2-2.Therapeutic genes 

The concept to use genes as drugs for the treatment of human diseases was fist conceived 

around 1970s, owing to the fast growing knowledge in gene function and advancement of 

technologies for DNA delivery into mammalian cells. Plasmid DNA is most commonly found 
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in bacteria as small (compared with chromosomal DNA), circular, double-stranded DNA 

molecules. When specific sequences encoding for therapeutic proteins (e.g. growth factors, 

cytokines) is inserted into the plasmid, this artificial plasmid can be used as vectors in 

molecular cloning, driving the expression of recombinant DNA sequences within host 

organisms. Progress in molecular biology has led to the availability of other therapeutic genes 

and shorter nucleic acid sequences, in particular anti-sense oligonucleotides (AS-ODN) and 

small interfering RNA (siRNA). Nevertheless, these molecules with relatively large size and 

negative charge can not penetrate the cell membrane efficiently and are also susceptible to 

degradation by nucleases, particularly the single stranded AS-ODN. Consequently, the 

delivery of these macromolecules should be mediated by carriers and vectors. DNA and 

oligonucleotides must be transported into the nucleus, while RNA (siRNA, miRNA and 

mRNA) act in the cytoplasm at the level of protein synthesis, as shown in Figure I-10. 

New generation of therapeutic genes provides more precise way to repair disease-

causing genes is needed.1 mRNA and DNA encoding gene editing systems including 

sequence-specific zinc-finger nuclease (ZFPs), TALEs (transcription activator-like effector 

nuclease) and CRISPR–Cas (clustered regularly interspaced short palindromic repeat) 

systems can carry out precise gene correction and insertion in genome. Therefore, this 

strategy offers great potential for personalized medicine. 

In brief, although substantial progress has been made in gene therapy over the past three 

decades (Table I-4), DNA-based drugs are faced with greater delivery and safety challenges 

than other nucleic acid therapeutics owing to their large molecular sizes, the difficulty 

crossing the nuclear barrier and the risk of mutagenesis. In this regard, further clinical 

progress is needed to bring insights into the key steps limiting effective delivery and 

structure–function relationships for vector design. Generally speaking, gene delivery vectors 

are classified into viral and non-viral vectors. Their applications in clinical trials are shown in 

Figure I-11 and introduced in details in the following subsections. 

 

 

 

 

 

 

Figure 1-10 : Gene delivery processes 
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Figure I-10. Overview of the gene delivery process ; Table I-4. Different categories of 
therapeutic genes 

 

 

 

Figure I-11: Graphical presentation of different vectors that have been addressed by gene 

therapy in clinical trials (n=2206), 2015, The Journal of Gene Medicine, Wiley and Sons 

(http://www.abedia.com/wiley/index.html) 

Types Characteristics Function site 
DNA  Double stranded, 

Several kbps, 
Upgrade target protein 
expression 

Nucleus  

mRNA Single-stranded, 
Alternative to DNA,  
Reduced immunogenicity 

Cytoplasm, 
Ribosome 

siRNA Double-stranded, 
Chemically synthesized, 
19–21 bp in length, Downgrade 
target protein expression 

Cytoplasm, 
RNA-induced 
silencing 
complex 

miRNA Similar to siRNA, 
Endogenously synthesized, 
18–25 nucleotides in length,  
Promote mRNA degradation 
and/or translational inhibition 

Cytoplasm, 
RNA-induced 
silencing 
complex 

AS- 
ODN 

single-stranded DNA molecules, 
13-25 nucleotides in length, 
Promote mRNA degradation 
and/or translational inhibition 

Cytoplasm 

Gene 
editing 
system 

mRNA or DNA encoding ZFPs, 
TALEs, CRISPR-Cas 

Nucleus 
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I-2-3. Viral vectors- a natural system 

Viral vectors are so far the most efficient vectors for gene delivery, adopted by 66.6% of 

current clinical trials for gene therapy (Figure 1-11). Adenoviral (AV), retroviral/lentiviral 

(RV/LV), and adeno-associated viral (AAV) vectors are the major ones used in gene therapy 

(Figure I-12). They are generally below 100 nm and AAV with the size of 20 nm is the 

smallest viral vector. Despite their remarkable transduction efficiency, both clinical trials and 

laboratory experiments have suggested that viral vectors have inherent shortcomings for gene 

therapy, including limited loading capacity, immunogenicity, genotoxicity, and failure to 

support long-term adequate transgenic expression. In order to learn the mechanisms of high 

transfection from the natural system, this subsection will only cover the intracellular process 

of viral vectors and strategies to overcome the disadvantages mentioned above. 

 

Figure I-12: Main viral vectors for gene delivery and their load capacity (liposome adopted 

here as typical non-viral vector for comparison) 72 

Viral vectors usually consist of viral capsids and viral genome. When considering for 

gene delivery, the virus have to undergo several modifications and meet some prerequisites.73 
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First, most genes encoding for viral proteins, especially pathogenic ones, should be removed 

from viral genome. Meanwhile, sequences of the viral genomes required for viral replication 

should be maintained. Expression of viral proteins required for viral replication within the 

virus-producing cells (called packaging cells) should also be kept. Finally, the therapeutic 

gene cassette could be inserted into the viral genome to replace the native genes by 

recombination or introduced into the viral vector as episomal genes. 

In general, viral vectors fall into one of the main categories: integrating vectors (e.g. 

gamma-RV, LV), which insert themselves into the recipient’s genome, while non-integrating 

vectors (e.g. AV, AAV) usually form an extra chromosomal genetic element. Integrating 

vectors, such as gamma-retroviral vectors and lentiviral vectors, are generally used to 

transfect actively dividing cells, as they are stably inherited. Non-integrating vectors, such as 

adenoviral vectors and adeno-associated virus (AAV) vectors, can be used to transfect 

quiescent or slowly dividing cells, but they are quickly lost from cells that divide rapidly. 

There are two mechanisms for cellular uptake of viral vectors. AV (binding with coxsackie 

and adenovirus receptor, CAR) and AAV (binding with heparansulphate proteoglycan, 

HSPG) can bind specific receptors on cell membrane and then enter the cellular cytoplasm via 

clathrin-mediated endocytosis. Genome is then transported to the nucleus through the nuclear 

pore, where the association of the AdV genome with nuclear matrix initiates the transcription. 

For RV/LV, membrane fusion is the main mechanism whereby enveloped viruses deliver 

their genomes into cells. 

 

Figure I-13: Viral vectors engineering to reduce toxicity and immunogenicity74 
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Many modification strategies have been implemented for all three vector types as shown 

in Figure above (Figure I-13) with the goal to reduce the side effect of viral system. To start 

with, viral vector with high transfection as well as high toxicity can be pseudotyped with an 

envelope protein (EP) from a different virus with lower toxicity (Figure I-13A). More 

sophisticated hybrid viral vectors have recently been developed and reviewed in details by 

Huang et al.75  

An alternative strategy relies on modification virus with target ligand. On the one hand, 

viral vectors can be coupled with a receptor-ligand fusion (Figure 1-13B). Adaptors are 

molecules with dual specificities: one end binds the viral attachment protein and the other 

binds the receptor on the target cell. The advantages of this approach are its great flexibility, 

as different adaptors can readily be coupled to the same vector, and the fact that it does not 

require changes in vector structure that could be detrimental to vector production or gene 

transfer. On the other hand, this could be achieved by genetic fusion of a targeting ligand 

(Figure 1-13C). Despite being more technically challenging than the use of adaptors, such 

single component systems provide homogenous retargeted vector particles, unlike adaptor-

based approaches. Muench and co-workers modified the capsid of AAV with ligands specific 

for Her2/neu, EpCAM or CD4 receptors that are expressed on tumor cells.76 Vector targeted 

to the tumour antigen Her2/neu was sufficient to track 75% of all tumour sites. CD4-targeted 

AAVs hit human CD4-positive cells present in spleen of a humanized mouse model, while 

other off-target organs remained unmodified. EpCAM-AAV detected single tumour cells in 

human blood opening the avenue for tumour stem cell tracking. Thus, ligand engineered viral 

vectors could deliver genes to target cell types of choice with high specificity. 

To end with, the virus are naturally optimized in essential processes for gene delivery, 

including targeting of specific receptors (e.g. CAR for AV, HSPG for AAV), internalization, 

delivering of nucleic acids to nucleus and, in some cases, permanent modification of the host 

cell genome. Imitating some of these features will contribute to progress in the field towards 

broader and more successful gene therapy. 

I-2-4. Non-viral vectors - learning from nature 

To overcome the limitations of viral systems, namely limited load capacity and toxicity, a 

variety of vectors have been developed to deliver therapeutic nucleic acids to their site of 

actions, including lipids and liposomes, polymers (linear and branched polymers, dendrimers 

and polysaccharides), polymersomes, cell-penetrating peptides77 and inorganic nanoparticles. 



 37 

These synthetic vectors have lower immunogenicity, higher load capacity and easy 

fabrications. Specifically, nucleic acids can be delivered through physical encapsulation or 

electrostatic attraction. Among the non-viral systems, cationic vectors occupy the 

overwhelming percentage, taking advantage of the high charge density to compact and protect 

therapeutic genes.  

I-2-4-1. Barriers to non-viral gene delivery 

 

Figure I-14: Extracellular and intracellular barriers for non-viral gene delivery 

 

(i) Stability 

The presence of endo-nucleases in physiological fluids and extracellular space pose threat on 

the stability of therapeutic genes (Figure I-14). Thus, the vectors should allow the nucleic 

acids from degradation and elimination by RES system. 

(ii) Cellular uptake 

Cell internalization of DNA complexes is generally size-dependent. For exemple, polyplexes 

be internalized by cells via multiple mechanisms, including clathrin-mediated endocytosis 

(CME, for endocytic vesicles with a size of ~100–150 nm), caveolae-mediated endocytosis 

(~50–80 nm), micropinocytosis (~90 nm) and macropinocytosis (~500–2000 nm). Surface 

charge and ligand conjugation are another two factors affecting cellular uptake. Positive 

charge can strengthen the affinity DNA complexes with cell membrane and therefore 
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facilitate internalization. Modificaiton with ligand that can bind specific receptors on cell 

membrane can also lead to higher cellular uptake. 

(iii) Endosomal escape 

When DNA complexes are internalized by phagocytosis or endocytosis, they will be 

sequestered in a membrane-bound vacuole, which is subsequently acidified and fused with a 

lysosome containing acid hydrolases. Therefore, some mechanism must be included to allow 

the nucleic acid to escape from the endosome before it is degraded. 

In case of lipoplexes, a model for local endosomal membrane destabilization was 

proposed for smooth escape from endosomes (Figure I-15, left panel). Specifically, 

electrostatic interactions between cationic lipids and endosomal membrane induce the 

replacement of anionic lipids from the cytoplasm–facing monolayer of the endosomal 

membrane, by means of the so-called flip-flop mechanism. The formation of a neutral ion pair 

between anionic lipids present in the endosomal membrane and the cationic lipids of the 

vector will then result in decomplexation of the DNA and its release into the cytoplasm. 

Moreover, the neutrally charged helper lipid will facilitate membrane fusion and help 

destabilize endosomal membrane. 

The most popular although challenged hypothesis for endosomal escapes of polyplexes 

is the so-called “proton sponge” effect78 (Figure 1-15, right panel). The core of this theory is 

that different amines on polymer chains can be further protonated inside endolysosomes, 

leading to an influx of counter ions (Cl−) and an increase of osmotic pressure inside so that 

the endolysosomes are finally burst. Recently, conjugation of endosome disruptive peptides to 

polyplexes79 and co-administration with week base (e.g. chloroquine) become other options 

for their capacity to induce endosomal escapes.  
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Figure I-15: Hypothesis of endosomal escape of lipoplexes and polyplexes gene delivery 

systems.80 

(iv) Vector unpacking 

This process is widely assumed to be indispensible for gene expression, but the extent and the 

timing effect on transfection efficiency remains unclear. In some studies, vectors have high 

capacity to complex DNA were found to have low transfection efficiency, indicating the 

unpacking is somewhere indispensible for gene expression. 

 

I-2-4-2. Lipid-based systems 

Lipid-based DNA vectors accounts for more than 1/3 of all non-viral vectors applied in 

clinical trials (Figure I-11). The concept of “lipofection” was advanced by Felgner et al.81 

Small liposomes, formed from DOPE and DOTMA (available as Lipofectamine®), were 

mixed with DNA and the resulting “lipoplexes” were able to condense the linear and plasmid 

DNA into a complex. Many other cationic lipids have been developed, including DOTAP, 

DOGS, DC-cholesterol (Figure I-16a). These lipids are usually mixed with a “helper” lipid, 

such as DOPE or cholesterol that improves their stability and overall transfection efficiency. 

The net positive charge of the complexes is probably responsible for their high toxicity and 

also promotes the adsorption of plasma protein that leads to their rapid elimination.  
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Figure 1-16. Chemical structures of cationic and neutral lipids (a) and selected polymeric 

vectors (b) that are commonly used in gene delivery studies and clinical trials. 
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The surface therefore is modified by the addition of anionic lipids or by the inclusion of 

PEGylated lipids. 

To increase the circulation half-life of liposomal nucleic acids, they should have a near-

neutral surface charge (Figure I-17) Two approaches have been used to achieve this: the 

formation of coated cationic liposomes (Figure D-F) and the use of ionizable lipids. Ligands 

are needed for specific binding and internalization (Figure G). Efficient endosomal release 

following internalization is needed for therapeutic activity, and this can be provided by 

ionizable cationic lipids with optimized bilayer destabilizing capacities and pKa. Lee and co-

workers have newly reported a PCR-based nanofactory mediated with neutral lipid as a 

potential gene delivery system (Figure H).82 Plasmid DNA can be amplified by PCR inside 

liposomes about 200 nm in diameter, and the quantity of loaded genes highly increased by 

more than 8.8-fold after PCR reation. Moreover, good biocompatibility was obtained owing 

to free of positive charge. Therefore, this novel system offers new possibility to address both 

efficiency and toxicity issues simultaneously. 

 

 

 

Figure I-17. Versatility of liposomes as drug/gene delivery carriers (A-G), symbols in 

different shapes and colours represent different therapeutics, e.g. drug, protein or nucleic 

acids. PCR-based nanofactory system mediated with neutral lipid (H). 
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I-2-4-3.  Cationic polymer-based systems 

Polymers are alternative competent candidates for gene delivery, largely due to the chemical 

diversity and functionality. They can be classified by surface charge at physiological pH 

(caitionic, neutral or ionic), or by resources (natural or synthetic). As cationic polymers play a 

predominant role in polymer-based gene delivery system, this subsection only covers their 

versatility as gene vectors. 

Cationic polymers can bind DNA molecules to form nanometer-sized complexes known 

as polyplexes. Parameters including the amount and type of amine groups, charge density and 

hydrophilic and hydrophobic contents have been found to direct impact on the transfection 

efficiency of polyplexes.78 Polyplexes have some advantages compared to lipoplexes such as 

small size, narrow distribution, etter protection against enzymatic degradation, higher 

stability, and easy control of the physical factors. However, like cationic lipid-based system, 

cationic vectors share the same challenge in balancing transfection efficiency and cytotoxicity 

due to the excessive positive charge. 

Poly(L-lysine) (PLL) and polyethylenimine (PEI) are among the oldest and most 

commonly used polymeric gene vectors. To improve safety and efficacy, numerous other 

polymers have been studied for gene delivery, including methacrylate-based polymers such as 

poly[(2-dimethylamino) ethyl methacrylate] (pDMAEMA), carbohydrate-based polymers 

such as chitosan and β-cyclodextrin-containing polycations, polyamidoamine (PAMAM) 

dendrimers and degradable poly(β-amino ester) polymers.     

(i) PLL (Poly-L-lysine)  

PLL is a homopolypeptide of the basic amino acid lysine, and its ability to condense DNA has 

been recognized since the 1960s. The biodegradable nature of PLL is advantageous for in 

vivo applications. Pioneering studies in the late 1980s indicated that PLL conjugated to the 

asialoorosomucoid glycoprotein could potentially be applied in non-viral liver-targeted gene 

delivery. In general, in the absence of a lysosomal disruption agent such as chloroquine, PLL 

has fairly poor transfection activity, presumably due to low capacity for endosomal buffering 

and lysis. Numerous modified variants of PLL with enhanced gene delivery properties have 

been reported. One example includes PLL covered with the hydrophilic polymer PEG, which 

is designed to minimize nonspecific interaction with serum components and thereby increase 

circulation time. The clinical potential of PEGylated PLL was investigated as a vector to treat 

cystic fibrosis.1 
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(ii) Polyethylenimine (PEI )  

PEI and its variants are among the most studied polymeric materials for gene delivery. PEI 

has a high charge density at a wide range of pH values with a nitrogen atom at every third 

position along the polymer chain. This attribute of PEI has been postulated to aid in 

condensation of DNA and endosomal escape. The ability of PEI to promote gene transfection 

in vitro and in vivo was first demonstrated in 1995.83 Soon after, it was shown that the 

transfection efficiency and cytotoxicity of PEI strongly depend on its structural properties, 

especially with respect to molecular weight and the linear versus branched forms. Higher 

molecular weight and branched structures generally result in high transfection as well as high 

cytotoxicity. Examples to balance efficiency and safety include PEGylation, degradable 

disulphide-crosslinking, alkylation and ligand conjugation of PEI.84 Adding low molecular 

weight PEIs onto biocompatible polymers (e.g. cyclodextrin, chistosan, dextrans) can 

significantly improve the biocompatibility of PEIs. Hydrophobic segments such as alkyl 

chains of fatty acids and cyclic hydrophobic molecules are also used for PEI modifications, 

based on the principles that acylation reduces the basicity and availability of free amine 

groups. 

(iii) Dendrimers 

They are three-dimensional polymers with spherical, highly branched structures. Frequently 

used dendrimers are polyamines, polyamides, or polyesters, among which polyamidoamine 

(PAMAM) is the most commonly used. The primary amine groups promote DNA cellular 

uptake because of their participation in DNA binding but the buried tertiary amino groups act 

as a proton-sponge break down the endosomes and facilitate the translocation of DNA into 

nucleus. Emanating from the core, dendrimer is constituted of repeat units having at least one 

branch junction, whose repetition is organized in a geometrical progression that results in a 

series of concentric layers called “generations”. It’s well defined that with the increase of 

generation number, transfection efficiency as well as toxicity increase in the same trend. 

Dendrimers displays a pH-dependant relase profile, and in low pH it adopts an extended 

conformation which facilitate the release of genes or drug.85 Moreover, the presence of 

numerous peripheral functional groups on hyperbranched dendrimers affords efficient 

conjugation of targeting ligands and biomarkers that can recognize and bind to receptors 

overexpressed on specific cells for active targeting. 
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(iv) More intelligent polymeric systems have been proposed. Surface shielding with PEG and 

other moieties often leads to a dilemma. It’s necessary for long circulating time and reduction 

of toxicity of cationic polymers wheras it often results in decreased transfecition. One 

possible solution will be PEGylation with different chain length, in which longer PEG chains 

are bonded with cleavable linkers (Figure I-18A). In this way, PEG detaches from polyplexes 

upon cellular uptake and polyplexes could maintain sponge effect for endosomal escape 

 

Figure 1-18: Schematic illustration showing the combined use of a targeting ligand and an 

endosome-disrupting component, providing dual functionality. (A) The system equipped with 

varying lengths of detachable poly(ethylene glycol) (PEG) chains with the detachability. (B) 

The system equipped with a protected endosome-disrupting component containing primary 

amines.86 

Alternatively, the introduction of targeting ligand molecules can be adopted to facilitate 

selective accumulation of polyplexes in the target tissue/cells. So far, a variety of ligand 

molecules have been introduced onto the surface of nanoparticles including polyplexes. For 

instance, asia loorosomucoid, lactose, galactose, and their derivatives have been utilized for 

targeting the liver, while transferrins (Tfs) and folate have been used for targeting cancer 

cells. Furthermore, peptides and antibodies have been utilized for targeting specific tissues. 

Moreover, fine-tuning of polycationic structures can substantially enhance their acidic 

pH sensitivity to induce endosome-selective destabilization without compromising cell 

viability and functions. Furthermore, degradable nature of polycations can reduce the 

cumulative toxicity of repeated transfection and also can allow the easier release of pDNA 

from polyplexes for effective transcription to mRNA in nucleus.  
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I-2-4-4. Solid nanoparticles-based system 

(i) Organic nanoparticles  

They are generally prepared from bio- (collagen, gelatin, elastin, fibronectin, silk, albumin, 

etc)87 or synthetic (PEG, PCL, PLGA, etc) polymers88. As they are neutrally charged at 

physiological conditions, they are generally applied as “non-condensing vector”. 

Consequently, therapeutic genes are generally incorporated in the polymer matrix by physical 

encapsulation, in which multiple genes could be loaded simultaneously. The as-formed 

particles can be further conjugated with moieties stimulating receptor-mediated endocytosis, 

the bioactivity of the encapsulated genes could be maintained by preventing digestion by 

nucleases. Synthetic polymers such as Poly (d,l-lactide-co-glycolide) (PLGA) have been 

extensively investigated for sustained and targeted/localized delivery plasmid DNA. Although 

this kind of system suffers from the low transfection efficiency and low encapsulation 

efficiency, higher transfection was observed in vivo compared with liposomes. Further, gene 

transfection was observed for up to 28 days, suggesting the application of nanoparticles for 

sustained gene expression.  

(ii) Inorganic nanoparticles and hybrid nanosystems 

Silica nanoparticles, carbon nanotubes (CNTs), magnetic nanoparticles, calcium phosphate 

nanoparticles, gold nanoparticles, and quantum dots (QDs) have been widely evaluated as 

gene delivery carriers. Compared with organic nanoparticles, they are not subjected to 

microbial attack and also show good storage stability. These nanoparticles possess many 

advantages in gene delivery such as facile fabrication and surface functionality. However, 

surface modification with cationic amine group is indispensible to compact the negatively 

charged nucleic acids. Consequently, a hybrid nano-system consisting both organic and 

inorganic moieties have emerged to maximize to advantages of the two components89. More 

specifically, the inorganic part in the core, with tunable size, shape, porosity, provides a 

variety of possibilities for gene loading. At the same time, organic part over the surface is 

responsible for charge tuning, biomolecules conjugating, surface shielding and targeting 

delivery. Specially, silica nanoparticles will be introduced in details in the following section 

as hybrid nanovectors for drug and gene delivery. 

 

I-2-5. Scaffold-based gene delivery systems for tissue engineering 
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Local strategies evolved from repair and replacement tissues and organs, then to sustained 

delivery of recombinant cytokines and now reached an epoch for sustained delivery of 

plasmid. Local plasmid-based gene transfer technology is known as gene activated matrix 

(GAM). Studies over the past two decades suggest that GAM may serve as a platform for 

local gene delivery in the wound bed of various tissues and organs, such as acutely injured 

tendon, ligament, bone, muscle, skin and nerve. Fast catabolism of DNA in the blood stream 

avoids systematic toxicities. Additional advantage includes that plasmid DNA is stable and 

flexible compared with protein, thus more likely to be compatible with established sustained 

delivery systems. 

 

Figure I-19: Schematic overview of protein expression in scaffold based gene delivery90 

 

An important assumption was that, following gene transfer, the recombinant cytokines will 

be expressed at more nearly physiological levels but for prolonged period of time by wound 

healing cells. As shown in the Figure I-19, nDNA (1) is released from the scaffold through 

either hydrolysis or cellular migration (2) and internalized into the endosome (3). The 

endosome matures changing its oxidation and acidity resulting in endosomal escape of nDNA 

(4 and 5). nDNA can enter the nucleus (7) to be unpacked (8) or be de-coupled in the cytosol 

(6) for nuclear entry (7), where transcription and translation occurs (9) for protein expression. 

Growth factors or other bioactive signals can be used to induce intracellular signaling 

pathways that prime cells for transfection (10).  

Although naked DNA has been reported to achieve therapeutic effects, the research interest 

now is focused on the delivery of compacted DNA (nDNA) with the help of either viral or 

non-viral (mainly cationic lipid, polymer and inorganic nanoparticles) vectors, due to greater 
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potential for high transfection efficiency.90 The release profile of vectors largely depends on 

the interactions between the matrix and DNA complexes. nDNA can be either encapsulated 

into the system either during matrix fabrication or deposited to the wall surface of the 

fabricated matrix by immersion in nDNA solutions or pipeting. The latter has the advantage 

to avoid the harsh preparation conditions and aggregation of DNA complexes. Yet, it may 

suffer from burst release due to the week interaction with the matrix. Consequently, covalent 

bonding is necessary to achieve stronger affinity and therefore more sustained release. 

As scaffold-based gene delivery involves complex participation of matrix and DNA 

vector and cells, there are therefore different classifications for scaffold-based delivery 

systems. Herein, the systems are classified into 3 types based on the nature of matrix 

(degradability, pore size, stiffness), the source of cells (encapsulated or infiltrated), the 

presence of biochemical molecules (growth factors, cytokines, peptides, etc). In all cases, 

nDNA can be incorporated in the matrix by all the method mentioned above. 

Type 1. Matrix-oriented delivery 

This type of system is characterized by controlled release of DNA to neighbouring cells or 

tissues, with the belief that sustained release of the transfection vector achieves prolonged 

transgene expression over burst-released vectors. The release of DNA generally relies on the 

degrability of the matrix, and therefore, biodegradable polymers such as PLGA, PEG and 

PCL, are of first choice for the system design.  

Type 2. Cells-oriented delivery 

In this case, cells play a central role for the gene delivery. Therapeutic genes are generally 

immobilized in the system and thus difficult to be released out of the matrix. Therefore, cell 

transfection could only happen when cells infiltrated and colonized in the matrix. Hydrogel 

scaffold such as fibrin, collagen, peptide crosslinked hyaluronic acid and peptide crosslinked 

PEG are often chosen for matrix design. 

Interestingly, this type of matrix can combine cell therapy and gene therapy for 

successful tissue engineering when cells encapsulated in the scaffold. On the one hand, the 

cells can act as bioreactors for the continuous production of therapeutic proteins. On the other 

hand, the cells introduced can help tissue regeneration when the host cells are unable to repair 

the defect or deficiency alone to disease, age, or excessive trauma. 

Type 3. Biochemical cues meditated delivery 
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This type of system is aimed to prime cells for transfection by encapsulation of biochemical 

cues such as ECM components (e.g. fibronectin, glycosaminoglycan), growth factors (e.g. 

FGF), peptide (e.g. RGD). The presence of biochemical cues can influence proliferation, 

migration, internalization, intracellular trafficking and gene expression. For example, 

glycosaminoglycans (GAGs) in the native ECM are known to play an important role in 

sequestering biomolecules within the matrix based on their degree of sulfatation and 

structural variations in their carbohydrate backbone. Biomaterials incorporating GAGs have 

increasingly been explored as a strategy to transiently regulate growth factor availability91.  

A potential problem of single gene therapy is that simply increasing the concentration 

may not promote all phases of wound healing. A single growth factor cannot counteract all 

the deficiencies of a burn wound, nor control the complexities of chronic wound healing. 

Lynch et al. demonstrated in a partial thickness wound healing model that the combination of 

PDGF and IGF-I was more effective than either growth factor alone, while Sprugel et al. 

found that a combination of PDGF and FGF-2 increased the DNA content of wounds in the 

rat better than any single growth factor. The efficacy of KGF nDNA in combination with 

IGF-I nDNA was compared to the same genes individually. Noticeably, this combination 

accelerated re-epithelization, increased proliferation, and decreased skin cell apoptosis 

compared to the single construct alone. The re-epithelialization in the burn model was over 

twice that of the untreated control with a significant improvement in cell survival. 

Transfection of multiple growth factor genes at strategic time points of wound healing 

(sequential growth factor therapy) is therefore the next logical step in augmenting wound 

healing. 

Slow-release matrices and gene-delivering gel matrices are used for prolonged 

transgenic expression. The concept of a genetic switch is another exciting development, 

where transgenic expression in target cells can be switched ‘on’ or ‘off’, depending on the 

presence of or absence of a stimulator such as tetracycline. Biotechnological refinements, 

such as wound chamber technique, may also improve the efficacy of gene delivery to wounds. 

These new techniques need further studies to define their efficacy and clinical applicability. 

More studies are also needed to define growth factor and cytokine levels in different phases of 

wound healing and to elucidate the timing of gene expression or down-regulation required for 

better wound healing. 
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I-3. SILICA NANOPARTICLES – VERSATILE DELIVERY PLATFORMS 

I-3-1. The chemistry of silica nanoparticles 

I-3-1-1. Non-porous silica nanoparticles  

Plain silica particles have been developed at the industrial scale for many years. They are 

currently used as additives in a wide range of applications, including pharmaceutical 

formulations, foodstuff and toothpaste.  

Three main methods exist for the preparation of silica nano- and microparticles 

(Figure I-20) 

(i) the aqueous route: 

This method uses water glass solutions. Water glass is obtained by the dissolution of siliceous 

sand in highly concentrated sodium (or potassium) hydroxide solutions. The resulting 

solutions have a MxSiyOz.nH2O general formula (M = Na, K). They consist of silicate 

oligomers in very alkaline solutions (pH > 12). To obtain silica particles, these solutions are 

dropped down in an aqueous acidic solution (usually H2SO4). The size of the particles is 

controlled by the concentrations of the two reagents as well as other processing parameters 

(addition rate, stirring rate, temperature, etc…) 

(ii) the sol-gel route: 

In 1968, Stöber and Fink reported a simple synthesis of monodisperse spherical silica 

particles by means of hydrolysis/condensation of a dilute solution of tetraethyl orthosilicate 

(TEOS) in ethanol in the presence of ammonium hydroxide.115 Uniform amorphous silica 

spheres whose sizes ranged from 10 nm to 2 µm were obtained simply by changing the 

concentrations of the reagents. This Stöber method was later improved by many others and 

appears to be the simplest and most effective route to monodispersed silica spheres. 

(iii) the microemulsion route: 

The emulsion route has been widely developed to design silica capsules for 

microencapsulation.116 These particles can be prepared by water-in-oil W/O or oil-in-water 

O/W processes, mainly depending on the hydrophilic or hydrophobic character of the 

molecule to encapsulate (Figure I-20). If the molecule is hydrophilic, it is first dissolved in 

the water phase in the presence of the hydrolyzed silicon alkoxide and a surfactant. This 

aqueous phase is then dispersed in the oil phase (W/O). If the molecule is lipophilic, it is 
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dissolved in an organic solvent together with the un-hydrolyzed alkoxide. This oily phase is 

dispersed in the surfactant-containing water solution. 

 

Figure I-20. Microemulsion route to doped silica particles: (left panel) water-in-oil W/O, 

(right panel) oil-in-water O/W.116 

 

It must be noticed that the obtained particles have some porosity in the micropore range 

(a few angströms in diameter). However, these pores are too small to serve as host cavities for 

the loading of molecules by impregnation routes. This is the reason why they are usually 

termed as plain or non-porous, in contrast to the mesoporous particles described in the next 

section.  

I-3-1-2. Mesoporous silica nanoparticles (MSN)  

Since their discovery in 1992, mesoporous materials have attracted extensive attention due to 

the unique physical and chemical features including large specific surface area and pore 

volume, ordered pore channels and great potentials across a wide variety of fields such as 

catalysis, biomedicine, optics and so on.117 The synthesis of MSNs is typically relying on co-

operative self-assembly of supramolecular surfactant assemblies, acting as structure directing 

agents, and oligomeric silica species (Figure I-21). Furthermore, controlled nucleation and 

growth allows for tailoring of particle size (10–1000 nm). By tuning the synthesis conditions 

and/or by variation of the reactants elongated MSNs with tunable aspect ratios can be 

synthesized, providing yet another method for optimization of the particle technology for 

biological applications. Mesoporous nanoparticles are obtained after removal of the structure-

directing agent leading to opening of the porosity. MSNs typically have a high specific 
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surface area (600–1000 m2.g-1) and a large pore volume (0.6–1.0 cm3.g-1) that allow for high 

levels of drug loadings to be achieved.  

Typical pore dimensions of MSNs are 2–4 nm, but recent advances have made it 

possible to synthesize MSNs with pore dimensions as large as 50 nm, which are generally 

referred as large-pore MSNs (LPMSN).118,119 Several synthetic methods have been proposed 

to enlarge the pore sizes of MSNs including post-enlargement by introducing a swelling agent 

(e.g., 1,3,5-trimethylbenzene) into the core part of micelles or using large molecular weight 

block copolymers (e.g., F127, P123, and PS-b-PEO) with long organic molecular chains as 

mesopore template. Although these approaches are effective in enlarging the pore sizes of 

MSNs, the obtained MSNs unfortunately usually suffer from the over large particle sizes 

(typically > 100–300 nm), irregular morphologies, and a severe tendency to aggregate. 

 

Figure I-21: Schematic illustration of the formation mechanism of ordered large-pore silica 

nanospheres. A. Pore structure tuning achieved by modifying surfactant concentration: (a) 

lamellar, (b) hexagonal and (c) cubic.118 B. Pore expansion with benzene derivatives.119 

For biomedical applications, precise control over particle size, shape, pore size, and pore 

geometry is very important. Totally, the pore size and its orientation are mainly determined 

by the nature of surfactant templates. The particle size and morphology can be controlled 

from sphere-, rod-, to wormlike structures by tailoring the molar ratio of silica precursors and 

surfactants, pH control using base catalysts, addition of co-solvents or organic swelling 

agents, and introduction of organoalkoxysilane precursors during the co-condensation 

reaction (Figure I-22). 
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Figure I-22. Versatile structures of silica nanoparticles: a-l92, m93, n. dendrimer-like120 and o. 

cone-shaped121 pores silica nanoparticles 

I-3-1-3. Surface functionalization 

Three methods can be used to modify the external and, for MSN, internal surface of silica 

particles: 

(i) Surface adsorption 

The isoelectric point of amorphous silica is around pH 2-3, which means that in the absence of 

specific ion adsorption, the silica surface is negatively charged under biologically conditions. 

Therefore, electrostatic adsorption of positively-charged species is an attractive technique for 

simple surface modification of silica particles. This approach has been largely explored for the 

coating of SiNPs with biopolymers.122 A major issue of this strategy is that the surface-sorbate 

interactions are highly dependent on the physico-chemical conditions of the medium (pH, ionic 

strength) 
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(ii) Post-grafting 

The surface of silica particles exhibits 3-5 silanol groups per nm2. This provides readily 

available moieties for surface modification via silanization reaction involving the 

condensation of trifunctional organosilanes (SiR’(OR)3) in an organic solvent (Figure I-23). 

The organic group R’ of the silane is usually selected so as to provide a reactive site for 

further interaction/binding with functional (bio)-molecules 

To restrict or bias the deposition to the exterior surface of the MSN, the modification can 

be performed prior to extracting the templating agent. The templating agent can then be 

removed, and the protected, unreacted silanol groups in the pore interiors can be further 

modified.  

 

Figure 1-23: Silanization of ceramic surfaces. (A) Organo-functional silane molecule basic 

structure: an organic hydrolyzable group (OR) and an organo-functional group (F). (B) 

Chemical structures of mostly used silane precursors for surface functionalization of ceramic 

materials.123 

 

(iii) Co-condensation 

The co-condensation method relies on the formation of the particles from a mixture of 

hydrolyzed alkoxysilanes with organosilanes, resulting in an hybrid network.  In this case, the 

amount of organic functions on the particle/pore surface should be the same as within the 

silica network. In order to favor the localization of these groups on the pore surface, it is 

possible to use amphiphilic organosilanes that serve as cosurfactants and are incorporated into 
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the templating micelle.124 Here again, the principle is to introduce organic groups that may 

further interact with functional molecules. 

I-3-2. Silica nanoparticles in drug delivery 

I-3-2-1. Overview 

There are two main methods by which drugs can be loaded in particles: encapsulation (i.e. 

incorporation of the drugs during particle synthesis) or adsorption/grafting on the 

external/internal surface. In the case of non-porous silica nanoparticles, only the two first 

methods are available. The microencapsulation method has been used successfully for the in 

situ incorporation of drugs.125 Recent results from our group concerning antibiotics 

encapsulation within Stöber nanoparticles have shown that this approach allowed to achieve 

significant drug loadings but that the amount of incorporated drugs was highly dependent on 

their interactions with the silica precursors.94 

When adsorption/grafting is considered, MSNs with high specific surface area are by far 

more advantageous. Consequently, the main research on drug delivery applications of silica 

nanoparticles are based on porous silica nanoparticles.126 In 2001, Vallet-Regí firstly reported 

the application of MSNs as a drug delivery system for ibuprofen release.127 Later, drugs of 

different hydrophobic/hydrophilic properties, molecule weights, and biomedical effects such 

as ibuprofen, doxorubicin, camptothecin, cisplatin have also been loaded in the mesopores to 

enhance high bioavailability or to balance efficacy and toxicity.128 Moreover, MSNs systems 

allow the delivery of protein drugs, which are fragile structures of large molecular weight.129 

MSNs can well protect these biomacromolecules from premature degradation, thanks to their 

porous structure and stable nature.  

More recently, Brinker and co-workers fused supported lipid bilayer onto MSNs to 

construct a “protocell”.130 The organic-inorganic nanocomposites can synergistically combine 

the advantage of MSNs with extraordinarily high drug loading capacity, and liposome with 

enhanced lateral bilayer fluidity. They enable targeted delivery and controlled release of high 

concentrations of multicomponent cargos within the cytosol of cancer cells. The hybrid 

nanocomposites were used to deliver drugs and drug cocktails, siRNA cocktails and protein 

toxins. The killing effect of protocells on multidrug resistant cells of was 106 times higher 

over that of liposomes when delivering a cocktail of DOX, 5-fluorouracil and cisplatin. Nano-

based drug co-delivery systems have been designed for targeting the ATP-dependent trans-
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porters concurrently delivering chemo-drugs for increasing intracellular drug concentration. It 

is also possible to co-deliver cytotoxic drugs and genes targeting non-pump resistant related 

molecules including Bcl-2, transcription factor NF-κB and hypoxia-inducible factor alpha 

(HIF-1α). 

“On-demand” release systems have also emerged as intelligent delivery platforms. They 

can respond to a range of endogenous or exogenous stimuli, including redox, pH or 

temperature, enzymes, competitive binding and photo-irradiation, thus more controllable 

release profiles can be achieved.95 This kind of system requires stimuli-responsive caps over 

the mesopores, ranging from polymers (e.g. PEI, β-CD) to nanoparticles (e.g. Au, tiO2)96. 

Moreover, multiple stimuli-responsive systems were also developed (one example is shown in 

Figure I-24). Nevertheless, very few studies of these systems are performed in vivo. 

 

  

Figure I-24: (Left panel) Release of guest molecules from the pores of DNA-capped MSPs 

upon a) heating and b) treatment with DNase I.95 (right panel) (A) Functionalization protocol 

of the MSN; (B) drugs loaded MEMSN under physiological condition; (C) removal of PASP 

protection layer in response to MMP at a tumor site; (D) cell uptake through RGD-mediated 

interaction; (E) glutathione-triggered drug release inside the cell; and (F) apoptosis of tumor 

cells.131 

The current trend is this area is to incorporate more and more functions within a single 

particle to obtain multifunctional platforms. In particular, the association of magnetic, 

fluorescent and photothermal properties allows simultaneous bioimaging and drug delivery 

for nanotheranostics (Figure I-25).132 
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Figure I-25: Cargo loading possibilities of silica nanoparticles.132 

 

I-3-2-2.Silica nanoparticles for gene delivery 

 

 

Figure I-26: The state-of-art of silica nanoparticle-based gene delivery system. Non-porous 

SiNP(a-c) and porous SiNP. Yellow layer represents fuctionalization of particle surface (d-e) 

and red dots indicate co-delivery with drugs (d). 

Nonporous silica nanoparticles were used for the first time as inorganic nonviral gene 

delivery carriers by Kneuer et al., in 200097. However, this study and most of the following 

ones focus on particle surface modification and adsorption of model plasmids by electrostatic 

interactions. Very recently, Paunescu et al., proposed a method for encapsulating DNA into 

amorphous silica spheres to mimic the protection of nucleic acids within ancient fossils98. 

DNA encapsulation was achieved by electrostatic adsorption and the following formation of 



 57 

silica shell. This interesting work may not only be applied in medical field such as gene 

therapy and gene storage, but also in products tagging and tracing in the market. 

 
Particle 
type 

Gene 
location 

Modification Gene 
type 

Results  

Outer 
surface 

AH-APTESa 
AE-APTESb 

pDNA SiNP:DNA(w/w) of 30 was 
sufficient for complexation; 
absorbed DNA was protected 
from enzymatic degradation by 
DNase I. 

101 NSN 

Interface 
between 
Core and 
shell 

TMAPSc DNA Loaded DNA high temperature 
and radical oxygen species;  
DNA can be further extracted 
intact 

98 

Outer 
surface 

APTES pDNA Optimal ratio for transfection is 
TEOS: APTES 1:10  

102 MSN 

Pores 
(3 nm) 

Outer surface 
with PEI cap 
and KALA 
peptide  

short 
salmon 
DNA 
and 
siRNA 

Successful downgrading of 
EGFP and VEGF in vitro; 
System loaded with VEGF-
siRNA inhibited the growth of 
tumor over a month 

103 

 Outer 
surface 

PEI, PEG and 
anti-HER2 
antibody 

siRNA HER2 protein levels reduced by 
60%; 
Multiple intravenous injections 
over 3 weeks significantly 
inhibits tumor growth 

104 

LPMSN Pores (20 
nm) 

APTES, PLL Oligo 
DNA-
Cy3 

PLL-modified MSN showed a 
higher reduction of cellular 
viability of cancer cells at 30% 

105 

 Pores (23 
nm) 

APTES siRNA 
targeting 
EGFP 
and 
VEGF 

GFP expression level decreased 
to 12% in vitro and 42% in 
vivo; tumor weight was 20% of 
control group 

106 

 Pores (20 
nm) 

PDMAEA siRNA Controlled release of siRNA 
mediated by self-catalyzed 
hydrolysis of PDMAEA 

107 

 Pores (inside 
6 nm, 
opening ~10 
nm) 

PEI and TAT 
peptide 
 

pDNA Nucleus targeting, 
High transfection (36.5%) was 
obtained, substantially higher 
than that by LPMSN-PEI 
(13.5%) and MSN–PEI-TAT 
(4.97%) 

121 

aN-(2-aminoethyl)-3-aminopropyltrimethoxysilane(AE-APTES) 
bN-(6-aminohexyl)-3-aminopropyltrimethoxysilane(AH-APTES) 
cN-trimethoxysilylpropyl-N,N,Ntrimethylammoniumchloride (TMAPS) 

Table I-5: Typical silica nanoparticles-based gene delivery systems 

Mesoporous silica nanoparticles (MSNs) have extensive potential in gene delivery due to 

the large surface area, versatile functionality and excellent biocompatibility. However, the 

loading of DNAs or RNAs inside the mesopores of MSNs seems a challenging mission and in 
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most reports therapeutic genes were only adsorbed on the outer surface mainly due to poor 

availability of the mesopores. Therefore, optimization of loading conditions99 and 

enlargement of mesopores were two most promising solutions to enhance the adsorption of 

genes inside the MSNs. 

Considering the large size of nucleic acids, more promising gene delivery system will be 

SiNP with large pore size (10-50 nm), which will provide better protection for instable 

therapeutic genes and more functionality, such as targeting and stimuli-responsive moieties, 

for more intelligent delivery and release. Wu et al. has newly reported a LPMSN based 

targeting delivery system for transport of the therapeutic genes into the nucleus, where 

nucleic acids can be exactly and efficiently expressed.100 High transfection was obtained due 

to the combined proton sponge effect of PEI grafted on the particle walls and the nuclear 

localization signal of TAT peptide on the surface. Small particle size (~30 nm) and large pore 

size (6-10 nm) was found to be responsible the readily uptaken and pDNA protection 

respectively. As summarized in Table I-5, positive charge generation is still the predominant 

strategy for the gene loading to SiNP. 

 

I-3-3. Silica-collagen nanocomposites 

I-3-3-1. Collagen 

Collagens are the most abundant proteins in the mammalian body, accounting for 20–30% of 

the total protein. Collagens form a large family of triple helical molecules with about 28 

different types described, with types I, II, III and IV being the most commons.133 All 

collagens share the same triple-helical structure where three parallel polypeptides, α-chains, 

coil around each other forming a right handed triple helix chain (collagen type I as an 

example, Figure I-27). In animals these collagen triple helices are known as tropocollagen 

and its hierarchical organization into more complex structures generates the fibers and 

networks in tissues such as bone, skin and tendons (Figure I-28). The primary functions of 

type I collagen are to provide mechanical support and to control cell adhesion and migration. 
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Figure 1-27: Chemical structure of collagen type I. (a) Primary amino acid sequence, (b) 

secondary left-handed helix and tertiary right-handed triple-helix structure and (c) staggered 

quaternary structure.134 

 

 

Figure I-28: Hierarchical structure of collagen type I leads to specific functions and 

characteristics across length scales.109 

 

The abundance, non-antigenicity, biodegradability, biocompatibility and plasticity make 

collagen a promising biopolymer for medical applications. Collagen scaffolds have been 

extensively used for soft tissue repair, vascular and dermal tissue engineering, bone repair and 

as a carrier for the delivery of drugs and biologically active molecules.135 Many of them are 

commercially available in diverse forms that include gels, pads, particles, pastes, powders, 

sheets or solutions. 
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Thanks to the above-mentioned characteristics, collagen is frequently used to prepare 

wound dressings. However, collagen-based materials suffer from uncontrolled degradation 

and low mechanical strength, which necessitate the chemical and physical modifications of 

the collagen. Composite collagen hydrogels obtained from introducing other natural (e.g. 

elastin, hyaluronan) or synthetic (e.g. PEG) polymers109 and particulates (e.g. calcium 

phosphate particles, silica nanoparticles) have been widely used to add strength and 

functionality to the system. Another efficient approach is through chemical (e.g. 

carbodiimides, glutaraldehde) and physical (e.g. UV light, gamma radiation) modification.  

Raftery et al. studied collagen-based scaffolds for localized gene delivery, where 

chitosan-DNA was loaded by surface adsorption.44 The scaffolds used in the study include a 

collagen scaffold and collagen-hydroxyapatite (CHA) scaffold for bone repair, and a 

collagen-hyaluronicacid (CHyA) with properties optimized for cartilage regeneration. 

Sustained gene expression from MSCs seeded on the scaffolds was maintained for up to 28 

days and interestingly the composition of the scaffold had an effect on transfection efficiency. 

These results demonstrate that by simply varying the scaffold composition and the gene 

chosen, the system has potential for a myriad of therapeutic applications. 

I-3-3-2. Silica-collagen nanocomposites 

 

Figure 1-29: Overview of silica–collagen materials. Starting components, conditions of 

composite formation, main characteristics and potential applications.110 
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The ease to prepare collagen hydrogel facilitates the incorporation of other ingredients 

(e.g. cell culture medium, bioactive proteins, drugs), which makes collagen-based materials 

appealing candidates for bioactive wound dressing fabrication. However, fast release of 

biomolecules and limited mechanical strength remains drawbacks of this system.136 In this 

context, it has been suggested that the combination of collagen hydrogels with silica could 

improve their performance.137 Various silica species have been reported for silicification of 

soluble collagen, fibrils, fibers, films, gels or scaffolds for different medical applications 

(Figure 1-29).110 Increasing studies are being carried out on silica-collagen hydrogels for 

tissue engineering, including nerve regeneration111, bone repair112, artificial cornea113 and 

wound healing114. Preliminary biocompatibility studies by subcutaneous implantation in rats 

showed the absence of significant inflammation, infiltration of fibroblast cells and initiation 

of vascularization.138 

Compared with other silicification approaches, the physical incorporation of silica 

nanoparticles within collagen hydrogel should allow to take full advantage of their drug 

delivery potential. By tuning particle size, surface chemistry and porosity, it may be possible 

to achieve controlled release kinetics. Whether this strategy can be applied to gene delivery 

systems is the central question that has motivated this work. 
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Résumé 

Nous avons développé des matériaux nanocomposites associant des complexes formés par 

l’association de nanoparticules de silice, de polyethylèneimine et d’ADN avec des hydrogels 

de collagène colonisés par des fibroblastes 3T3. Grâce à la modulation de la taille de la 

particule de silice et de la masse moléculaire du polymère, il a été possible de réaliser la 

transfection des fibroblastes au sein du gel, permettant l’expression génique pendant une 

semaine. Des configurations alternatives consistant en l’addition des particules à des gels 

cellularisés ou impliquant la culture des cellules sur la surface d’hydrogels contenant les 

complexes ont aussi été étudiées. Ces études montrent que l’encapsulation des particules 

limite la dissémination du plasmide et de la silice hors de l’hydrogel. Elles montrent aussi le 

rôle clé joué par la prolifération et la migration cellulaire sur l’efficacité de la transfection.  
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II-1. INTRODUCTION 

In this work, collagen-based nanocomposite hydrogels integrating plain silica nanoparticles 

were evaluated as gene delivery systems to favour tissue repair. We hypothesized that the 

integration of plasmid-PEI-SiNP complexes within collagen hydrogels would allow for a 

sustained gene release. We show here that PEI-coated silica nanoparticles with optimal size 

and polymer molecular weight are efficient plasmid vectors when they are entrapped within 

cellularized collagen networks, allowing for a prolonged gene expression. We demonstrate 

that the transfection efficiency depends on both particle diffusion and cell 

proliferation/migration within the hydrogel. The encapsulation of the vectors within the 

collagen scaffold also has the advantage to avoid rapid dissemination of the plasmids and the 

particles, providing a safe solution for the development of biofunctional medical dressings 

favouring tissue regeneration. 

 

II-2. EXPERIMENTAL SECTION 

II-2-1. Preparation and Functionalization of Silica Nanoparticles 

Silica nanoparticles (SiNP) with diameter d varying from 50 nm to 400 nm were synthesized 

by the Stöber method using ammonia, ethanol and tetraethylorthosilicate (TEOS) (Table II-1) 

Particle size d 
(nm) 

TEOS (mL) 25% NH4OH  

(mL) 

EthanoL 
(mL) 

H2O 

(mL) 

50 7.6 9.6 200 - 

100 7.4 7.3 200 5.7 

200 7.6 9.7 200 6.0 

400 7.0 16.0 200 11.0 

Table II-1. Conditions for preparation of SiNP with different particle sizes 

The as-synthesized particles were dialyzed against distilled water for 2 days, 

recovered by centrifugation and resuspended in 10 mM Phosphate Buffer Saline (PBS) (pH= 

7.4). For PEI-SiNP particle preparation, 200 mg of branched PEI with different molecular 

weights (1.8 kDa, 10 kDa, 25 kDa, Sigma-Aldrich) was dissolved in 20 mL of 10 mM PBS 

(pH 7.4). Silica nanoparticles suspension (20 mL) with the same concentration was then 
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added dropwise into the PEI solution under stirring. The mixtures were further stirred for 48 h 

after which particles were recovered by centrifugation, washed 3 times in 10 mM PBS and 

finally resuspended in the buffer solution. Particle sizes and zeta potential (ζ) were measured 

in 10 mM PBS solution using a ZetaSizer Nano (Malvern Instruments Ltd., Worcestershire, 

UK). Particles were also imaged using Transmission Electron Microscopy (TEM) on a JEOL 

1011 instrument. The amount of adsorbed PEI was determined by thermogravimetric analysis 

(TGA) and elemental analysis (C,H,O,N).  

II-2-2. pDNA-PEI and pDNA-PEI-SiNP Complexation 

 Reporter plasmid pCMV-GLuc (pGluc) encoding Gaussia Luciferase (New England 

BioLabs, Ipswich, MA) was used for transfection experiments. This plasmid was amplified by 

one shot® BL21(DE3) pLysS kit (InvitrogenTM, Life technologies), extracted by one 

PureLink® HiPure Plasmid kit (InvitrogenTM, Life technologies) and finally stored in Tris-

EDTA buffer at -20 oC. pDNA-PEI complexes were prepared at weight ratio of 1:2. pDNA-

PEI-SiNP complexes were prepared at various pDNA:PEI-SiNP weight ratios. Complexes 

formation was examined by agarose gel electrophoresis. Briefly, 1 µL of pDNA solution (0.1 

µg. µL-1) were mixed homogeneously with a total volume of 9 µL of PEI-SiNP suspension or 

PEI solution (PBS 1x) by vortexing in a microcentrifuge tube. The resulting mixtures were 

left at room temperature for 2 h to achieve complete complexation, before being loaded onto 

0.7% agarose gel with ethidium bromide (0.1 µg.mL-1) and running with TAE buffer at 100 V 

for 40 min. DNA retardation was observed by irradiation with ultraviolet light. 

II-2-3. Fibroblast Cell Culture 

3T3 mouse fibroblasts were cultured in complete cell culture medium (Dulbecco’s Modified 

Eagle’s Medium (DMEM) supplemented with 10% fetal serum, 100 U.mL-1 penicillin, 100 

µg.mL-1 streptomycin and 0.25 µg.mL-1 Fungizone). Tissue culture flasks (75 cm2) were kept 

at 37 °C in a 95 % air: 5 % CO2 atmosphere. Before confluence, fibroblasts were removed 

from culture flasks by treatment with 0.1% trypsin and 0.02 % EDTA. Cells were rinsed and 

resuspended in the above culture medium before use.  

II-2-4. Preparation of Collagen-Based Nanocomposites 

 Collagen type I was purified from rat tails and the concentration was estimated by 

hydroxyproline titration, as previously described.1 Tubes separately filled with collagen 

solution (2 mg.mL-1 in 17 mM acetic acid), whole cell culture medium, and 0.1 M NaOH 

were kept in ice bathes for 1 h before preparation to slow down the gelling kinetics of 
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collagen. Complexes were formed by adding 1 µg of pDNA to 25 µL of a solution containing 

PEI or PEI-SiNP in order to achieve the pDNA:PEI (or pDNA-PEI-SiNP) ratio obtained from 

gel electrophoresis. Three models were proposed in our study: particles on top of cellularized 

hydrogels (model 1), co-entrapped particles and cells (model 2), and cells beneath free-

floating nanocomposites (model 3) (Figure II-1). For model 1, 500 µL of collagen solution 

and 400 µL of culture medium were added to a 1.5 mL tube and vortexed vigorously. After 

addition of 30 µL of 0.1 M NaOH and strong vortexing, 125 µL of the cell suspension at a 

density of 106 cells.mL-1 was added and mixed homogenously. Then 0.9 mL was sampled 

from the mixture and deposited into a 24-well plate. The plate was then incubated at room 

temperature for 10 min for complete gelling of collagen. After this delay, 25 µL of the 

complexes solution was added onto the surface of the materials. For model 2, a similar 

procedure was followed except that the 25 µL of complexes was mixed with 100 µL of the 

cell suspension before gel formation. Model 3 was similar to model 2 except that the cell 

suspension was replaced by culture medium and the hydrogels were left free-floating in the 

culture medium of plate-seeded cells (5.103 cells.mL-1).  

 

 

Figure II-1. Schematic representation of the three models  

 

II-2-5. Cell Transfection and Cell Viability 

Transfection efficiency of pDNA-PEI and pDNA-PEI-SiNP were evaluated by luciferase 

expression of pGLuc by 3T3 fibroblast cells in cell culture medium. To perform cell 

transfection in 2D, 3T3 mouse fibroblasts were plated at a density of 5.104 per well in a 24-

well plate. pDNA-PEI or pDNA-PEI-SiNP complexes (25 µL, prepared as described above) 

were added to the cell culture medium. After 4 h, the supernatant was removed, the well was 

refreshed with 1 mL medium and the cells were then cultured for another 44 h in complete 
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medium for the expression of luciferase. To perform cell transfection in 3D, pDNA 

complexes were added on the top of the hydrogel (model 2) or mixed with the collagen 

solution (model 1 & 3). 1 mL of whole medium was then added in each well. At selected time 

points over a 1-week period, 0.5 mL of the culture medium was collected from the wells and 

replenished with equal volumes of fresh medium. For measurements of luciferase activity, a 

BioLux Gaussia Luciferase Assay Kit (New England Biolabs) was used and transgene 

expression of luciferase was reported as relative light units (RLU). Control groups were under 

the same culture conditions as the experiment groups except for the absence of DNA 

complexes. 

Internalization of nanoparticles in 3T3 mouse fibroblasts was studied using 

fluorescence microscopy. For cells cultured in 2D, the pDNA-particle complexes along with 

cell culture medium were removed after 24 h incubation, rinsed 3 times with PBS and fixed 

with 4% paraformaldehyde for 1 hour at RT. The cell nucleus was then stained with DAPI 

(4',6-diamidino-2-phenylindole dihydrochloride, Life technologies, 300 nM in PBS) for 10 

min and rinsed with PBS before observation. For cells immobilized in collagen hydrogels, 

gels were incubated for 48 h, rinsed 3 times with PBS and fixed with 4% paraformaldehyde 

overnight. Next, the fixed samples were dehydrated in ethanol and butanol and incorporated 

in paraffin to obtain 10 µm histological sections with a manual microtome. Before 

observation, the as-obtained samples were immersed in toluene, ethanol and then water for 

rehydration. The cell nucleus was stained with DAPI for 10 min and rinsed with PBS before 

observation. Model 2 was also studied by scanning electron microscopy (SEM). Collagen 

hydrogels were fixed using 3.63% glutaraldehyde in a cacodylate/saccharose buffer (0.05 

M/0.3 M, pH 7.4) for 1 hour at 4 °C. Following fixation, samples were washed three times in a 

cacodylate/saccharose buffer (0.05 M/0.3 M, pH 7.4) and dehydrated through successive 

increasing concentration ethanol baths from 70% to 100% alcohol. Thereafter, samples were 

dried in a critical point dryer and gold sputtered (20 nm) for analysis. Samples were observed 

with Hitachi S-3400N SEM operating at 10 kV. 

Cell viability was monitored using the Alamar Blue test. For the 2D model, cell 

culture medium was removed for luciferase activity test and 200 µL of the Alamar Blue 

solution (10% in cell culture medium) was added. The cells were then incubated at 37 °C with 

5 % CO2 for 4 h. The supernatant in each well was then collected, diluted with 800 µL water, 

and its absorbance was measured at λ = 570 nm and 600 nm. Cell viability was calculated and 
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reported as a percentage of the control group (n = 6). For the 3D model, cell viability was 

assessed in the same way except that the 800 µL water was first added to the collagen gel for 

0.5 h at room temperature to extract the Alamar blue solution trapped in the gel and then 

collected for the absorbance measurements. To further understand the proliferation of cells in 

the collagen gel (1 mg/mL) over one week, cell viability was evaluated with Alamar Blue test 

as described before after 2, 5 and 7 days and was calculated as the percentage of that of 2 

days. 

II-2-6. Statistical analysis 

Graphical results are presented as mean±SD (standard deviation). Statistical significance was 

assessed using one-way analysis of variance (ANOVA) followed by Tukey (compare all pairs 

of groups) or Dunnett (compare a control group with other groups) post-hoc test. The level of 

significance in all statistical analyses was set at a probability of P< 0.05.  

II-3. RESULTS AND DISCUSSION 

II-3-1 Silica particle characterization 

Plain silica nanoparticles SiNPd with diameters ranging from 50 nm to 400 nm were obtained 

using the Stöber reaction, as indicated by DLS measurements in water (Table II-2) and 

confirmed by TEM observation (Figure II-2). Zeta potential (ζ) values were constant over the 

particle size variation and significantly negative (-25/-35 mV), as expected for silica near 

neutral pH. After contact with PEI25, all particles have a positive ζ value in PBS, in agreement 

with the surface deposition of the polycation polymer. The amount of adsorbed PEI was 

maximum for SiNP50 and SiNP200 particles (ca. 15 w%) and lower for SiNP100 and SiNP400. 

DLS studies indicate that particles with intermediate sizes have a good stability in PBS 

whereas the smallest and largest ones show a tendency towards aggregation. 
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Figure II-2. TEM image of SiNP with different particle sizes 50 nm- 400 nm (×11,000) 

bare particles  after coating  

dH2O 

[nm] 

ζH2O 

[mV] 

 dPBS 

[nm] 

ζPBS 

[mV] 

PEI 

[wt%] 

50 ± 10 - 28 ± 12  140 ± 70 + 18 ± 8 15 

120 ± 20 - 27 ± 11  150 ± 40 + 19 ± 6 10 

210 ± 10 -26 ± 8  250 ± 40 + 19 ± 6 15 

390 ± 40 -35 ± 7  420 ± 150 + 20 ± 9 5  

Table II-2. Diameter (d) and zeta potential (ζ) and PEI amount for silica nanoparticles before 

and after coating with PEI-25kD 

 

II-3-2. Cell transfection properties of silica nanoparticles in 2D 
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In a first step, the complexation ability of the different PEI25-coated SiNPd was studied by 

electrophoretic mobility shift assays of pDNA (Figure II-3). The optimal plasmid :particle 

weight ratio ensuring full retention of pDNA by particles was 1:30 w/w% for SiNP400 and 

SiNP200 and 1:10 w/w% ratio for SiNP100 and SiNP50. 

 

Figure II-3. Agarose gel electrophoresis showing the particle size effect on pDNA 

complexation by PEI25SiNPd. A constant amount of DNA was complexed with silica particles 

at different weight ratios 1:10, 1:30 and 1:50. 

The cell transfection ability of these complexes was studied on 3T3 fibroblast cells 

seeded in 24-well plates (2D configuration). Luciferase expression, indicative of successful 

internalization and transport to the nucleus of the pDNA, was observed for all systems 

(Figure II-4).  
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Figure II-4. Transfection of 3T3 mouse fibroblasts after 4 h incubation with free and silica-

associated PEI25 expressed in Relative Light Units (RLU) (n=3). Variance of the luciferase 

expression among group PEI25-SiNP50, PEI25-SiNP100, PEI25-SiNP200 and group PEI25-SiNP400 

was determined by one-way ANOVA with Tukey post-hoc test (*P<0.05, ** P<0.01). 

Importantly, PEI25, pDNA and SiNPd alone gave no significant signal. The PEI25 

polymer alone was the most efficient transfecting agent whereas its adsorption on SiNP 

decreases its transfection ability by one order of magnitude regardless of the nanoparticle 

size. This may be attributed to the fact that a fraction of the positively-charged ammonium 

groups of PEI is interacting with the silica surface and is therefore no longer accessible for 

DNA complexation. Another explanation is related to the size of the complexes that can be 

less adequate for cell internalization by fibroblasts than PEI alone. Fibroblasts are able to 

internalize particles by endocytosis in a size dependent manner, with smaller particles being 

more rapidly engulfed by cells than larger ones. Noticeably, internalization of nanoparticles 

with a diameter larger than 500 nm is observed only in exceptional cases. PEI25 on its own has 

the best ability to compact DNA and generate 100 nm complexes suitable for cell uptake. In 

contrast, after PEI adsorption, SiNPs have diameters in the 150-420 nm range. This can 

explain why the largest PEI25-SiNP400 exhibited the lowest transfection efficiency.  

Considering the effect of particle size in more detail, it is worth pointing out that  

adsorption of cationic polyelectrolytes on silica surface is a complex phenomenon where 

transitions from flat to extended configurations are observed as a function of polymer 

concentration. The particle size also has a major influence on the adsorption process from 

different points of view: it controls the density of silanol groups, and therefore particle surface 
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charge; it dictates the available surface for adsorption per particle; it defines the maximum 

packing density of polymers via its radius of curvature. Here a reliable comparison must be 

made from the PEI density on the particle surface rather the amount of PEI sorption per g of 

silica. Such a density can be estimated by the product of PEI wt% by particle radius, leading 

to PEI density decreasing as SiNP200 > SiNP400 > SiNP100 > SiNP50. It illustrates the fact that 

the decrease in available surface per particle with increasing size is compensated by the 

increase in maximum PEI packing density. Interestingly, electrophoresis data indicates that 

PEI25-SiNP100 and PEI25-SiNP50 bind more DNA than PEI25-SiNP200 and PEI25-SiNP400. 

However higher transfection is obtained for PEI25-SiNP50 and PEI25-SiNP200. This strongly 

suggests that transfection efficiency is not directly related to PEI amount nor to particle size. 

A more relevant parameter is DNA compaction that depends on PEI conformation. Here 

SiNP50 and SiNP200 have similar transfection efficiency although SiNP50 has lower PEI 

density but binds more DNA than SiNP200. That is to say, the PEI chains on SiNP50 are more 

effective to bind DNA than the PEI chain on SiNP200. As mentioned above, this can be 

explained considering that for small radius of curvature (i.e. large particles), PEI can adopt a 

flat configuration that is not favorable for DNA compaction. As the radius of curvature 

increase (i.e. the particle size decrease), PEI chains can adopt a more compact configuration 

to optimize their packing on the surface, a situation that is more favorable for DNA 

compaction  

 

II.3.3 Effect of PEI Molecular Weight on Fibroblast Transfection in 2D 

Taking into account their limited tendency to aggregate and high PEI loading, the SiNP200 

particles were selected for the following investigations. For these SiNP200 particles, 

decreasing the PEI molecular weight from 25 kDa to 10 kDa led to an increase of particle size 

polydispersity and an increase in the amount of adsorbed polymer (Table II-3). For short PEI 

chains (MW = 1.8 kDa), submicronic aggregates were detected by DLS in PBS whereas the 

amount of adsorbed PEI was similar to that of PEI25. Large branched PEI chains are known to 

adopt compact conformation whose dimensions decrease with decreasing MW.2 This allows 

for a higher density of PEI molecules on the surface, explaining the higher rate of adsorption 

of PEI10 compared to PEI25. However, when decreasing further the polymer MW, short chains 

can adopt a more linear conformation and a flat configuration on the surface, leading to a 

lower density and therefore lower amount of adsorbed PEI. The observation of a significant 
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aggregation of the PEI1.8-SiNP200 confirms this hypothesis as flat PEI chains are less effective 

in improving colloidal stability via steric repulsion compared to extended conformations.3  

MW 

[kDa] 

dPBS 

[nm]a 

ζPBS 

[mV] 

PEI 

[wt%]b 

1.8 > 1000 + 20 ± 12 15 

10 310 ± 100 + 19 ± 8 25 

25 250 ± 40 + 19 ± 6 15 

 

Table II-3. Diameter (d) and zeta potential (ζ) and PEI amount for 200 nm-silica 

nanoparticles after coating with PEI of different molecular weight MW 

 

Agarose gel experiments performed on pDNA-complexed PEI-coated particles 

showed that the optimal plasmid:particle weight ratio was 1:30 w/w% independently of the 

PEI molecular weight, in agreement with the fact that a similar ζ value of + 20 mV was found 

for all PEI-SiNP200 particles (Figure II-5) 
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Figure II-5. Agarose gel electrophoresis showing the PEI molecular weight influence on PEI-

Si200/pDNA complexation. A constant amount of DNA was complexed with silica particles at 

different weight ratios 1:3, 1:5, 1:10, 1:30 and 1:50. 

Transfection assays in 2D revealed an interesting phenomenon (Figure II-6). When 

PEI polymers alone were used as complexation reagents, an increase in transfection efficiency 

with increasing molecular weight was observed, in agreement with the literature.4-6 When 

PEI-SiNP200 systems were used, the optimal transfection was achieved with PEI10. Moreover, 

the particles showed a higher transfection efficiency than the polymer alone. This beneficial 

influence of PEI adsorption was further evidenced at lower molecular weight since PEI1.8 

alone did not show any transfection capability whereas expression of luciferase was 

detectable for PEI1.8-SiNP200. 
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Figure II-6.  Transfection of 3T3 mouse fibroblasts after 4 h incubation with free and SiNP200 

coated with PEI of various molecular weights (n=6). Variance of the luciferase expression 

between group PEI10, PEI25-SiNP200, PEI1.8-SiNP200 and group PEI10-SiNP200 was determined 

by one-way ANOVA with Dunnett  post-hoc test (*** P<0.001). 

Whereas the higher amount of adsorbed PEI10 compared to PEI25 may, at least 

partially, account for the behavior of the corresponding particles, the observed improvement 

of transfection efficiency of shorter PEI upon coating suggests that another parameter should 

be considered. Importantly, the decrease in transfection efficiency of PEI chains with lower 

molecular weight was attributed to their decreased ability to compact DNA, a pre-requirement 

to its internalization. Thus, based on our observation of particle aggregation upon plasmid 

addition, it is possible to assume that several particles are conjointly involved in the 

compaction of one pDNA chain, allowing for its better compaction. Noticeably, such an 

aggregation process is known to be responsible for the transfection capabilities of cationic 

liposomal formulations (lipofection).7 

To clarify the transfection pathway of PEI-coated SiNPs, FITC-containing silica 

nanoparticles were prepared and their internalization after complexation with pDNA by 

fibroblasts cells was followed by fluorescence microscopy. As shown in Figure II-7, the 

presence of silica particles (green fluorescence) within the cells and accumulating near the 

nucleus (blue fluorescence) was ascertained. Noticeably, significant particle aggregation was 

observed for PEI1.8-Si200, in agreement with the DLS data. Bare SiNP200 nanoparticles put in 

contact with pDNA were also used as controls, showing a similar uptake as PEI-coated ones, 
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in agreement with the literature.8 Therefore it is not possible to determine whether internalized 

particles bear PEI and pDNA or not.  

 

Figure II-7. Fluorescence microscopy images showing internalization of (a) pDNA-SiNP200, 

(b) pDNA-PEI25-SiNP200, (c) pDNA-PEI10-SiNP200, (d) pDNA-PEI1.8-SiNP200 complexes by 

3T3 fibroblasts after 24 h of incubation. Green fluorescence corresponds to FITC-labeled 

particles and blue to DAPI nuclei staining (scale bar = 20 µm). 

However, solutions containing the pDNA-PEI-Si200 particles were regularly 

centrifuged and the absence of luciferase expression using the supernatant was checked. This 

evidences that transfection is not due to soluble pDNA-PEI complexes that may have been 

desorbed from the silica particle surface (Figure II-8). 

 

Figure II-8. Control transfection experiments with particle supernatant. Supernatant-P 

denotes the supernatant of PEI25-SiNP200 while Supernatant-P-DNA refers to the supernatant 

of DNA-PEI25-SiNP200 complexes..The former was further complexed with pDNA before 

transfection test. No luciferase expression was detected using neither of the supernatant as 

transfection reagent.  
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Altogether, these data indicate that PEI-coated silica nanoparticles ca. 200 nm in 

diameter are well-suited for plasmid delivery to fibroblast cells in 2D. Importantly, they 

reveal to be even more effective than PEI alone when using low molecular weight polymers. 

This is a very interesting result as the cytoxicity of PEI is know to increase with its molecular 

weight due to higher cationic charge. Here, for all experiments carried out, cells showed good 

viability even when PEI alone was used as the pDNA carrier (Figure II-9).  

 

 

 

 

 

 

 

 

 

 

 

Figure II-9. Cell viability in 2D as influenced by different sizes of SiNP and different 

molecular weight of PEI. Cell viability was assessed after 4 h of contact with Alamar Blue 

test and calculated in the percentage of control (n=6).  

This is probably due to the small amount of PEI (2 µg/mL) used in these experiments 

together with the fact that 3T3 mouse fibroblast is a robust cell line. To study this point 

further, the viability of fibroblasts after 4 h of contact with PEI and PEI-coated SiNP200 

particles as a function of dose (0-100 µg/mL) was studied (Figure II-10). PEI25 showed 

significant cytotoxicity (i.e. cell viability < 80 %) above a 10 µg/mL concentration. This toxic 

dose increased to 50 µg/mL for PEI10 while no significant cytotoxicity was observed for 
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PEI1.8 in the studied concentration range. Strikingly, PEI25-SiNP200 and PEI10-SiNP200 showed 

a very limited impact on cell viability (> 90 %) at all investigated doses. This clearly 

demonstrates the beneficial effect of PEI adsorption on the silica nanoparticle surface on its 

cytotoxicity. As indicated earlier, this can be attributed to the fact that the apparent positive 

charge of the PEI chain is decreased by interaction of some of the protonated amine groups 

with the silica surface. 

 

Figure II-10: Impact of PEI and PEI-coated SiNP200 nanoparticles after 4 h of contact 

as monitored by the Alamar Blue viability test. 

II-3-4. Cellularized collagen hydrogels as models for 3D transfection 

 Cellularized collagen hydrogels can be considered as good model of dermis to evaluate 

biomolecules effects in more physiologically-relevant 3D conditions. pDNA-PEI-SiNP200 

particles were placed onto hydrogels to assess their diffusion through the collagen network 

and their ability to transfect immobilized 3T3 fibroblasts, using pDNA-PEI polyplexes as 

controls (model 1). For PEI25-based polyplexes, an efficient transfection was detected from 

day 2 until the end of the experiment. In contrast, no luciferase expression was detected at day 

2 when PEI25 was absorbed onto SiNP200. The transfection became significant after day 5 only 

and was enhanced after day 7 but remained one order of magnitude lower than the pDNA-

PEI25 polyplexe alone. (Figure II-11) A similar trend was observed for PEI10 except that after 

day 7, the particles showed a level of luciferase expression similar to the polyplexes. In the 

case of PEI1.8, a weak transfection was detected at day 7 but only for particles. Overall, 

similar transfection efficiencies were obtained in these 3D models compared to 2D 
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configuration, except for a delay in luciferase expression. This is in good agreement with our 

recent study showing that silica nanoparticles with sizes ranging from 10 nm to 200 nm can 

diffuse through cellularized hydrogels, with the diffusion rate decreasing with increasing 

particle size.9 Moreover, these particles could be internalized by immobilized fibroblasts. 

Interestingly, these data also suggest that the particles aggregates that were suggested to be 

responsible for pDNA compaction are preserved during diffusion. 

 

Figure II-11. Transfection of 3T3 mouse fibroblasts immobilized in collagen hydrogels after 

2, 5 and 7 d of contact with diffused free and Si200-associated PEI of various molecular weight 

(model 1, n=6). Variances among the cumulative luciferase expression on 7 d of PEI10, PEI25-

SiNP200 and PEI10-SiNP200 were determined by one-way ANOVA with Tukey post-hoc test ( 

*P<0.05, ** P<0.01). 

II-3-5. Evaluation of Cellularized Nanocomposites as Cell Factories 

Two different configurations for the use of plasmid-loaded particles associated with collagen 

hydrogels can be envisioned. The first strategy relies on the implantation of cellularized 

scaffolds incorporating the functional nanoparticles (model 2, Figure II-12(a)). The 

advantage of this configuration is that DNA cargos can rapidly transfect cells encapsulated in 

the implant. Cells start to produce the biomolecules of interest in a short range of time. With 

this strategy, we can produce a cell factory to promote wound healing. In addition, the 

implantation of collagen hydrogels in the wound bed limits the risk of infection while 

preventing dehydration.10-11 However, in this situation, it is important to check that particle 
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internalization by the cells is still possible within the hydrogel. For this purpose, collagen 

hydrogels encapsulating both 3T3 fibroblasts and pDNA-PEI-Si200 were prepared. Using 

fluorescent carriers, it was possible to observe the accumulation of particles within 

immobilized cells (Figure II-12(b)-(d)).  

 

Figure II-12. (a) SEM image of nanocoposites, displaying SiNP and fibroblast immobilized 

in collagen scaffold. Fluorescence microscopy image showing internalization of (b) pDNA-

PEI25-Si200, (c) pDNA-PEI10-Si200, (d) pDNA-PEI1.8-Si200 complexes by 3T3 fibroblasts 

within collagen hydrogels after 48 h of incubation, in which green fluorescence corresponds 

to FITC-labeled particles and blue to DAPI nuclei staining  (scale bar = 20 µm). 

Transfection assays performed in collagen hydrogels encapsulating both 3T3 

fibroblasts and p-DNA-PEI or pDNA-PEI-Si200 also confirm internalization and gene 

expression (Figure II-13). The luciferase expression followed similar trends in terms of the 

effect of PEI chain length, both as such or associated with Si200 particles, compared to the 

complexes in solution. The main difference between the two systems lies on the lower 

expression rate for encapsulated complexes, suggesting that more vectors can enter in contact 

with the cells upon diffusion than after immobilization.  
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Figure II-13. Transfection of 3T3 mouse fibroblasts co-immobilized with free and Si200-

associated PEI of various molecular weight in collagen hydrogels after 2, 5 and 7 d of 

incubation (model 2, n=6). Variance among the cumulative luciferase expression on 7 d of 

PEI10, PEI25-SiNP200 and PEI10-SiNP200 was determined by one-way ANOVA with Tukey 

post-hoc test  ( *P<0.05, ** P<0.01). 

It was previously shown that silica nanoparticles entrapped within the fibrillar 

collagen network are in close interaction with protein fibrils.12 As a consequence, 

nanoparticles are expected to have a restricted mobility. The alternative possibility is that 

cells proliferate and migrate within the collagen network, meet complexes and internalize 

them.13-14 This assumption is supported by the measured proliferation of fibroblasts within the 

hydrogels (Figure II-14) The time needed for cell proliferation and migration can explain the 

observed delay in luciferase expression compared to the 2D situation. Nevertheless, the trends 

obtained for these nanocomposites as a function of PEI molecular weight and adsorption are 

in good agreement with that obtained for 2D transfection as well as for particle diffusion 

assays (model 1). This indicates that the pDNA-PEI-Si200 complexes preserve their integrity 

upon encapsulation. 
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Figure II-14. Proliferation of cells in a particle-free collagen gel (1 mg/mL) evaluated with 

Alamar Blue test and presented as cell viability, which is calculated in the percentage of 2d 

(n=3). Significant increase of viability was detected for 5d and 7d vs 2d determined by one-

way ANOVA with Tukey post-hoc test (*** P< 0.001). 

Importantly, no evidence for cytotoxicity was observed for model 1 (particle diffusion 

through cellularized gels) and model 2 (co-immobilized particles and cells) after 24 h of 

contact with PEI and PEI-coated particles during transfection experiments (Figure II-15). 

Increasing the dose to 50 µg/mL showed high cytotoxicity for PEI25 and PEI10 whereas coated 

silica nanoparticles had a limited impact on cell viability. 

(a) 
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(b) 

 

(c) 

 

Figure II-15. Cell viability as assessed with Alamar Blue test and calculated in the 

percentage of control (n=6). (a) model 1 and (b) model 2 configurations after 24 h of contact 

in the conditions of cell transfection. (c) model 2 after 24 h of contact with a 50 µg/mL dose. 

II-3-6.Evaluation of Nanocomposites as Gene Delivery Systems. 

We then studied a second situation where the collagen scaffolds incorporating functional 

nanoparticles could act as a medicated dressing to deliver genes to tissue cells at the site of 

implantation. To test this configuration, hydrogels containing p-DNA-PEI or pDNA-PEI-

Si200 were left free-floating in the culture medium covering 3T3 cell-seeded well plates 

(model 3). As shown in Figure II-16, significant level of luciferase expression was only 

observed for pDNA-PEI25 after 5 days, but this level remains one order of magnitude below 

the transfection efficiency achieved in model 2. This strongly support the hypothesis that 

entrapped vectors have a very limited mobility within the collagen hydrogels so that 

internalization is possible only if cells can migrate inside the protein network. One important 
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outcome of this study is that complexing DNA with PEI-SiNP provides an efficient method to 

confine gene expression within the scaffold and avoid plasmid and silica particles 

dissemination in the surrounding tissue, at least before colonization of the material by host 

cells. 

 

Figure II-16. Transfection of 3T3 mouse fibroblasts in contact with free-floating collagen 

hydrogels containing free and Si200-associated PEI of various molecular weight after 2, 5 and 

7 d of incubation (model 3, n=3). 

II-3-7. Implication in Gene Delivery and Tissue Engineering 

Coupling PEI with plain spherical SiNP seems to be a very interesting strategy for targeted 

cell transfection. The cytocompatibility of SiNPs has been widely studied and discussed in the 

literature.  Dissolution of silica nanoparticles into silicic acid has been demonstrated both in 

cells and in animals.9, 15 The spherical shape of SiNPs is also an important factor. Although 

needles or rods have the most appropriate shape to be engulfed by fibroblasts, they are more 

cytotoxic as they inflict mechanical damage when they penetrate biological membrane.4, 16-17 

Moreover spheres are more suitable to favour gene expression as they approach the nucleus 

more rapidly than elliptical particles.17 Noticeably, most previous attempts to use silica 

nanoparticles as gene carriers have been made using mesoporous nanoparticles (MSNs). 

Regular MSNs are not good carriers of plasmidic DNA because of their small pores (2 nm), 

that prevent internal plasmid diffusion and compaction.18 As a consequence, pDNA is stuck at 
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the surface and is not protected against cellular nucleases. To overcome this problem, MSN 

with ultra-large pores (23 nm) have been prepared.19-20 These particles were able to pack 

pDNA and succeeded in transfecting cells. Alternatively, MSNs loaded with an anticancer 

drug were coated with PEI allowing for DNA SiRNA conjugation and delivery.4 Our 

approach has the advantage of technical simplicity and short reaction time. Moreover, the 

possibility to encapsulate active drugs within Stöber particles has already been demonstrated 

so that combination of drug and gene delivery using such plain SiNPs appears feasible.12 

 Considering the applications of the here-described nanocomposites, it is first 

important to point out that tissue repair involves the formation of new healthy tissue in the 

wound site requires several phases well-orchestrated to guide the tissue formation. 

Inflammation is crucial for the debridement of necrotic tissue and to kill bacteria. In absence 

of modulation, a chronic inflammation can occur.21 The incorporation of a therapeutic gene 

modulating inflammation such as IL-10 within collagen nanocomposites could be useful to 

promote wound healing. In addition inflammatory cells that infiltrate the implant could be 

directed towards a wound healing phenotype instead of an inflammatory one. Synthetic 

matrices made from biodegradable polymers such as PLGA or Polycaprolactone were 

previously evaluated for gene delivery.22-23  DNA/PEI complexes are mixed with the polymer 

in solution before matrix synthesis. In this case, polyplexes are encapsulated within material 

walls. This allows for a controlled and sustained delivery of polyplexes but requires a large 

porosity for cell infiltration. Moreover, synthetic polymers are not the natural support of 

fibroblasts and are not remodelled by cells. Alternatively, several collagen based-materials 

have been developed.  Most of them are cross-linked collagen sponges rehydrated with a 

polyplexes solution (Transfecting reagent/pDNA). Polyplexes are therefore adhering to the 

sponge wall and easily detached under flow. As a consequence a rapid diffusion of polyplexes 

occurs preventing a precise spatio-temporal control of the gene delivery process.24 In this 

perspective, the silica-collagen materials combine several advantages. As demonstrated 

earlier, the stiffness of collagen hydrogels at 1 mg.mL-1 promote fibroblast proliferation over 

one week and favour cell infiltration thanks to a pore size of ca. 5 µm.1 This is highly 

beneficial to the target application as proliferating cells are more willing to be transfected 

than quiescent ones.25 The other major advantage of the nanocomposites approach is that the 

DNA-loaded particles cannot diffuse out of the hydrogel. Therefore, in the first period after 

implantation, the delivery of plasmids to the immobilized cells would allow for the 

production and release of proteins. In a second phase, silica-collagen hydrogels will be 
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colonized by inflammatory and connective cells.26 Our data suggest that cells from the host 

organism could also be transfected during implant infiltration. Overall, it should allow for a 

prolonged production and delivery of active proteins at the implantation site and in its 

surrounding, favoring neotissue formation. 

II.4 CONCLUSION 

We have demonstrated that PEI-coated plain silica nanoparticles are able to deliver 

therapeutic genes in a controlled and sustained manner within collagen hydrogels. The gene 

delivery properties of these particles were evidenced when they are transported through pre-

formed cellularized hydrogels or co-entrapped with fibroblasts, whereas no transfection was 

observed for cells external to the material. This offers various and safe options to combine 

silica and collagen to design gene delivery systems promoting wound healing.  

These results lead to two important questions. One of more fundamental nature is related to 

the mechanisms of the transfection process when silica particles are used as vectors. In fact 

we have observed that best transfection levels were obtained for free PEI25 and that the 

highest transfection efficiency for silica-based systems was at least one order below these 

values. One possible approach to address this important question is to modifiy the mode of 

association between the silica particles and PEI, which should impact on the intracellular 

process of plasmid delivery. The second point that needs to be addressed is related to the 

possible applications of these materials. Above-described results were obtained using 

immortalized mouse fibroblast cells, which constitute a robust and easy-to-work model. 

However, if medical applications are foreseen, the technology has to be transferred to human 

cells. Therefore it was of primary importance to study the transfection efficiency of the 

silica@PEI vectors in primary skin cells, both in 2D and 3D configurations. 
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CHAPITRE III 

Influence de la chimie des particules de silice et du type 

cellulaire sur l’efficacité de la transfection 

 

 

Résumé 

Dans ce chapitre, nous avons exploré plus avant les capacités de transfection des 

particules de silice. Nous avons tout d’abord tenté de moduler l’efficacité de transfection en 

changeant la nature de l’interaction silice-PEI. Pour cela, des groupements sulfonates et 

chlorure d’alkyle ont été introduits en surface. Les particules non modifiées ont montré une 

quantité maximale de PEI adsorbé et une efficacité de transfection optimale. La présence de 

sulfonates diminue ces deux paramètres malgré un ratio optimal particule:ADN similaire aux 

particules nues. La liaison covalente a un impact négatif sur l’ensemble des propriétés. Ces 

résultats indiquent que le renforcement des interactions silice-PEI peut être défavorable à la 

transfection. Ceci suggère que le détachement du complexe PEI:ADN de la particule dans les 

endosomes est une étape clé de ce processus. Dans un deuxième temps, nous avons étudié la 

transfection de cellules humaines primaires, en vue d’applications in vivo. Nous montrons 

que la transfection en 2D par des particules silice-PEI est possible avec des fibroblastes et des 

keratinocytes humains et en 3D avec les fibroblastes, mais avec des efficacités moindres que 

pour les cellules 3T3. Ceci est attribué au plus faible taux de prolifération des cellules 

primaires. 

 

En révision dans Langmuir 
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III-1. GENERAL INTRODUCTION 

Despite the success of our strategy based on collagen-based nanocomposite hydrogels, further 

steps were required before being able to propose a fully functional biomaterial. First, the 

performances of PEI-coated silica particles in terms of transfection efficiency were 

significantly smaller than PEI (25 kD) alone. We hypothesized that the modulation of the 

silica-PEI interactions may impact on the plasmid loading, complex internalization and/or 

transfer to the cell nucleus. As shown hereafter, varying the strength of interaction between 

the particle surface and the polymer indeed has a deep impact on the transfection efficiency. 

This study also provides interesting insights on the intracellular mechanism of transfection. 

The second point to be addressed was related to the extension of our approach from 

immortalized fibroblasts to human primary cells, a necessary step if cellularized dressings are 

targeted. The study illustrates the cell-dependent efficiency of the transfection, particularly 

emphasizing the relationship between the cell proliferation rate and the protein expression 

efficiency. 

 

III-2. IMPACT OF POLYETHYLENEIMINE CONJUGATION MODE ON 

CELL TRANSFECTION EFFICIENCY OF SILICA NANOPARTICLES  

III-2-1. Preparation and Functionalization of Silica Nanoparticles 

In order to study the influence of the conjugation mode of PEI on the transfection efficiency 

of the silica nanoparticles, we have prepared three different particles : naked particles SiO2, 

particles grafted with propylsulfonate moieties SiO2-SO3, both of which can adsorb PEI via 

electrostatic interactions, and particles grafted with propylchloride moieties, allowing for its 

covalent grafting. Naked silica nanoparticles SiO2 (200 nm) and PEI (25 kD)-coated 

SiO2@PEI were prepared following the procedure described in section II-2-1.  

For SiO2-SO3@PEI particle preparation,1 the SiNP was first functionalized with thiol 

groups by silylation with 3-mercaptopropyltrimethoxysilane (MPTMS). Typically, 1 g of 

silica was dispersed in a mixture of 100 ml ethanol and 2.2 ml ammonium hydroxide solution 

before addition of 1 ml MPTMS. The mixture was stirred for 40 min at room temperature. 

Subsequently, the reaction mixture was heated to 80 °C and the total volume was reduced by 

2/3 by distillation of ethanol and ammonia at ambient pressure. Then, the mixture was cooled 

back to room temperature, centrifuged, washed 3 times with ethanol and dried at 60 °C.  
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The amount of –SH was determined by Ellman test.2 For this test, a phosphate buffer 

(0.2 M, pH = 7.3) was prepared and labeled as solution A. Solution B (10 mM EDTA) was 

produced by dissolving 372 mg of EDTA in 100 mL of solution A, and solution C (6 mM 5-

(3-Carboxy-4-nitrophenyl)disulfanyl-2-nitrobenzoic acid -DTNB) was prepared by dissolving 

238 mg of DTNB in 100 mL of solution A. Several vials were filled with a mixture of 8 ml of 

solution A, 1 mL of solution B and 1 mL of solution C. A series of masses of SiO2-SH, less 

than 50 mg, were measured and then each dispersed into a vial mixture solution. 

Simultaneously, several known quantities of thiol (obtained from a solution of MPTMS) were 

also introduced in the same mixture solution to determine the molar extinction coefficient by 

linear regression. After 45 minutes of stirring, the particle dispersion is filtered through a 

syringe filter. The absorbance of the filtrate and standard MPTMS solutions are determined 

by spectrophotometry. The absorbance of the solutions MTPMS can be traced back to the 

value for the experience of the molar extinction coefficient of NTB2- by linear regression.  

Then 0.9 g of the thus-obtained SiO2-SH was suspended in 45 mL hydrogen peroxide 

(H2O2 35%, Acros Organics) under stirring at RT for 48 hours. The solid product was washed 

by centrifugation with distilled water before addition of 35 mL of concentrated sulfuric acid 

(H2SO4 95.0-98.0%, Sigma Aldrich) and stirred for 2 hours at RT. Finally the as-synthesized 

SiO2-SO3 particles were washed with water, suspended in PBS and coated with PEI as 

described above.  

For SiO2-Cl@PEI particle preparation, 400 mg of SiO2 nanoparticles was dispersed in 20 

mL of dried toluene, and 1.3 mL of chloropropyltriethoxysilane (Cl-PTES) was added to the 

suspension, that was further kept under reflux for 24 h. The product was washed thoroughly 

with toluene and ethanol, and dried at room temperature. Then, 200 mg SiO2-Cl was 

dispersed in 20 ml ethanol, and 0.8 g of PEI was added to the suspension. The suspension was 

refluxed for 24 h. The final solid product was recovered by washing with ethanol and dried at 

room temperature. The as-synthesized SiNP-Cl@PEI was suspended in 10 mM PBS (pH 7.4) 

before use. 

III-2-2. Particle characterization 

Silica nanoparticles SiO2 were synthesized by the Stöber method and obtained with a low 

size dispersity (210 ± 20 nm, from TEM with a polydispersity index PDI = 0.005) (Figure 

III-1).  
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Figure III-1. TEM images of SiO2, SiO2-SO3, SiO2-Cl before(A-C) and after (D-F) 

modification with PEI 25 kDa  

 d 

(nm) 

ζ 

(mV) 

Cl:Si 

(wt%) 

N:Si 

(wt%) 

PEI 

(wt%) 

silane/ 

particle 

amine/ 

particle 

SiO2 214 ± 17 -15 ± 6 - - - - - 

SiO2@PEI 188 ± 68 +20 ± 7 - 11.0 12.7 - 5106 

SiO2-SO3 233 ± 38 -21 ± 8 - - - 1.5104a - 

SiO2-SO3@PEI 221 ± 20 +21 ± 9 - 3.8 4.2 NDb 1.5106 

SiO2-Cl 518 ± 308 -13 ± 6 2.7 - - 1.7106  

SiO2-Cl@PEI 806 ± 642 +18 ± 9 1.1 3.1 3.4 NDb 106 

afrom Ellman titration; bND= not determined 

Table III-1. Hydrodynamic diameter (d), zeta potential ζ in PBS, elemental analysis and 

calculated composition of the particles 

 

After coating with PEI, the particle hydrodynamic diameter (d) in PBS was not 

significantly modified but the PDI significantly increased to 0.127. The zeta potential (ζ) 

value turned from negative to positive in PBS, in agreement with the deposition of a cationic 

polymer (Table III-1). In the case of sulfonated SiO2-SO3 particles, neither surface 
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functionalization nor PEI sorption significantly impacted on the colloidal size distribution. 

The mean ζ value of SiO2-SO3 particles was slightly more negative than for bare silica, due to 

the presence of acidic sulfonate moieties, but the ζ value after PEI coating was similar for 

both particles. The SiO2-Cl nanoparticles showed a high tendency to aggregate, as such and 

after PEI conjugation, with high PDIs in both situations. However, the ζ values were not 

significantly different from the two previous systems (Table III-1).  

Elemental analysis allowed for the quantification of grafted moieties and amount of surface 

PEI (Table III-1). From the Cl:Si weight ratio, it was possible to estimate grafting density per 

particle of ca. 1.5x106 silanes for SiO2-Cl. For SiO2-SO3, the S content was below 0.1 wt% so 

that the silane density was obtained by the Ellman test, yielding to a grafting density per 

particle of ca. 1.5x104 groups. The Cl:Si ratio decreased from 2.7:100 to 1.1:100 upon reaction 

with PEI, supporting the occurrence of a nucleophilic substitution reaction between the 

propylchloride moiety and some amine groups of the polymer. In parallel, the highest amount 

of bound PEI was obtained for SiO2@PEI (12 w%) while the two other systems had a 

significantly lower binding capacity (4 wt% for SiO2-SO3@PEI and 3 wt% for SiO2-Cl@PEI). 

Surface modified particles before PEI sorption were studied using 29Si solid-state magic 

angle spinning (MAS) NMR measurements. These experiments, and all other NMR studies 

reported hereafter, were performed by S. Masse and G. Laurent (LCMCP) on a Bruker Avance 

III 300 MHz equipment.   

 

Figure III-2. 29Si MAS NMR spectra of (blue line) SiO2-SO3 and (green line) SiO2-Cl. 

Experiments were carried out using a single-pulse technique and high power 1H decoupling 

(HPDEC) at a 5 kHz spinning rate with 30° pulses and a recycling delay of 60 s with 720 and 

840 scans, respectively  
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As seen on Figure III-2, three main peaks at ca. -110 ppm, -100 ppm and  -90 ppm are 

obtained for both SiO2-Cl and SiO2-SO3. These resonances correspond to Q4 (Si(OSi)4), Q3 

(Si(OSi)3OR) and Q2 (Si(OSi)2(OR)2) silicon atoms (where R can be an organic group or an 

hydrogen atom). The predominance of Q4 species indicates that the particles have a high 

degree of condensation. When SiO2-Cl and SiO2-SO3 are compared, the former has a higher 

relative amount of Q3 and Q2 compared to the latter, in agreement with the larger grafting 

density. 

More information about the grafting reaction was obtained using 29Si-{1H} cross-

polarization (CP) MAS experiment.3 This technique allows to enhance the signal of silicon 

species that are in close proximity to hydrogen atoms. As seen on Figure III-3, two additional 

signals of weak intensity are present of the spectra of SiO2-SO3 at ca. -65 ppm and -57 ppm. 

They are more clearly evidenced of the spectra of SiO2-Cl, together with another signal at - 48 

ppm. These signals correspond to T3 (SiR’(OSi)3), T2 (SiR’(OSi)2OR) and T1 

(SiR’(OSi)(OR)2) silicon species, respectively, where R’ is an organic group covalently bound 

to Si. Although these species have long been attributed to organosilanes that are individually 

attached to the silica surface by 1 to 3 Si-O-Si bonds, it is now well-accepted that silanization 

of silica particle surface leads to more complex situations where pre-condensed short chains of 

silanes are formed before grafting.4  

 

 

 

Figure III-3. 29Si-{1H} CP MAS NMR spectra of (blue line) SiO2-SO3 and (green line) SiO2-

Cl. Experiments were carried out with a recycling delay of 1 s, a 1 ms contact time with 4096 

scans for both samples  
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The surface composition of the particles was studied by X-Ray Photoelectron 

Spectroscopy in collaboration with C. Méthivier, Laboratoire de Réactivité de Surface. The 

surveys of uncoated and coated particles, together with pure PEI are shown in Figure III-4, 

together with the relative abundance (in atom %) of each element. Detailed spectra for each 

region are provided at the end of this chapter, except for N1S provided as Figure III-5. 

For PEI, carbon and nitrogen elements are identified in a C:N atomic ratio of 70:30, in 

fair agreement with the overall C2H5N formula of ethylene imine. The C1s data show an 

asymmetric peak in the 284-288 eV region, corresponding to the overlap of C-C (285 eV) and 

C-N (287 eV) signals.5 The N1s signal consists of a single peak centered à 399 eV that can be 

attributed to primary/secondary/tertiary amines. For SiO2, the typical peaks of amorphous 

silica are observed at 103 eV (Si2p) and 534 eV (O1s).6 A weak C1s signal is also obtained that 

can be attributed to carbon surface contamination as well as possible unhydrolyzed Si(OC2H5) 

moieties. 

The XPS spectrum of SiO2@PEI particles combines the Si, O and C peaks of SiO2 and PEI. 

However, the N1S data showed two populations at 399 eV and 401 eV in a 56:44 intensity ratio, 

the latter corresponding quartenary amines (Figure III-5).7 The presence of sulfonate groups 

could be ascertained by the presence of a S2s signal at 232 eV for SiO2-SO3.8 Compared to 

SiO2, the C1s region showed an additional signal near 289 eV that can be attributed to the C-S 

bond. PEI coating did not significantly modify the C, O, Si and S signals. At the N1s level, the 

399 eV and 401 eV peaks are again identified but with an intensity ratio of 64:36. For SiO2-Cl, 

the Cl2p peak near 200 eV confirms the successful grafting of Cl-PTES.9 Similarly to SiO2-

SO3, the C1s signal shows a high energy contribution corresponding to C-Cl bond. For SiO2-

Cl@PEI, the Cl2p signal was still clearly evidenced but a slight decrease of the Cl:Si ratio was 

found, in qualitative agreement with the elemental analysis results. The signal at the N1s level 

indicates a unprotonated:protonated amine ratio of 72:28, the highest value in this series. 
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Figure III-4. XPS  survey spectra of PEI (top image) and particles before (left hand column) 

and after (right hand column) reaction with PEI.  
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Figure III-5. XPS spectra at the N1s level and their deconvolution for pure PEI and PEI-

coated particles.  

 

Attempts were made to further characterize PEI immobilized on the particle surface using 
13C NMR. Although the main idea was to compare the 13C-{1H} CP-MAS NMR spectra of 

the polymer before and after sorption, the problem was faced that pure PEI is a liquid. 

Therefore the CP-MAS approach cannot be applied to this sample and the only spectra that 

could be recorded was the 13C High Power Decoupled (HPDec)-MAS spectra. This spectrum 

is shown on Figure III-6 and compared to the 13C-{1H} CP-MAS NMR spectra of 

SiO2@PEI. As expected, PEI in the liquid state shows well-defined narrow resonance peaks 

in the 35-60 ppm region. In contrast, adsorbed PEI shows two broad bands in the same region 

due to its low mobility. It is clear from this comparison that it is not possible to draw any 

conclusion on the chemical or structural modification of PEI after sorption from this 

technique.  
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Figure III-6 Blue line: 13C HPDec spectra of PEI (Recycle time: 3s@30°; NS: 280; 

rotation: 300 Hz); green line: 13C-{1H} CP-MAS NMR of SiO2@PEI (Recycle time: 1s; 

contact time: 1ms; NS: 4096; rot: 5 kHz) 

The possibility to focus on the grafted moieties rather than PEI itself was then studied. This 

allows for the comparison of these functions before and after PEI reaction in the solid state. 

The drawback is that, based on the chemical composition of the particles, the intensity of the 

resonances belonging to the grafted groups were expected to be smaller than that of PEI and 

that some overlap may exist between the peaks of the two systems. This happened to be the 

case for SiO2-SO3 that was not further studied. In contrast, for SiO2-Cl (that has a significantly 

higher amount of grafted moieties compared to SiO2-SO3), some resonances of high intensity 

could be observed outside the chemical shift region of PEI (Figure III-7). However, although 

a comparison between the two spectra shows some modifications of the relative intensities of 

the peaks, it is still difficult to draw any useful conclusion from these spectra. 
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Figure III-7 13C-{1H} CP-MAS NMR of (blue) SiO2-Cl and  (green) SiO2-Cl@PEI 

(Recycle time: 1s; contact time: 1ms; NS: 4096; ro: 5 kHz). 

 

It was then hypothesized that the covalent binding of the propylchloride chain to PEI may 

have an effect on the propyl chain mobility. To check this, an inversion recovery cross 

polarization (IRCP) approach was used.10 This technique allows for the discrimination of 

elements of different mobilities in a single system but also to compare the mobility of different 

systems. This mobility can be estimated from the inversion time ti at which a given NMR 

signal turns from positive to negative. The IRCP-MAS NMR spectra of SiO2-Cl is shown in 

the upper part of Figure III-8. Resonances at 10 ppm, 28 ppm and 48 ppm correspond to the 

propyl chain whereas the peaks at 17 ppm and 59 ppm correspond to unhydrolyzed ethoxy 

groups of TEOS. Focusing on the 48 ppm signal corresponding to the C atom in α position of 

the Cl atom, its inversion time lies in the 200-300 µs range. The lower part of Figure III-9 

shows the IRCP-MAS NMR spectra of SiO2-Cl@PEI. In this case, ti can be estimated in the 

50-70 µs range. Such a decrease in inversion time is correlated with an increase of the cross-

polarization rate and therefore a decrease in mobility of the Cα atom, supporting the 

occurrence of a strong interaction between the end of the propyl chains and PEI. 
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Figure III-8. 13C Inversion recovery cross polarization (IRCP)-MAS NMR spectra of (a) 

SiO2-Cl and (b) SiO2-Cl@PEI. Main acquisition parameters used for the IRCP exp.: Recycle 

time: 1s; contact time: 1ms; NS: 4096; ro: 5 kHz; inversion time ti (from top to bottom): 5, 10, 

20, 30, 50, 70, 100, 200, 300, 500, 700, 1.000, 3.000, 5.000, 10.000 µs.  
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III-2-3. Transfection experiments 

Protocols used in the following section were the same as those described in Chapter II, 

except for the additional use of primary normal human keratinocytes (NHK) that were 

cultured in keratinocytes growth medium 2 (Promocell) supplemented with CaCl2.   

In a first step, the optimal p-Gluc:particle ratio was determined by gel electrophoresis 

using the procedure described in section II-2-2 (Figure III-9). Full retention was achieved for 

pGLuc:SiO2@PEI and pGLuc:SiO2-SO3@PEI: weight ratios of 1:30 whereas a 1:50 ratio was 

optimal for pGLuc:SiO2-Cl@PEI. These ratios were used to evaluate the potential of 

particles@PEI systems to deliver G-Luc plasmids into 3T3 fibroblasts and human primary 

keratinocytes. 

 

 

 

Figure III-9. Agarose gel electrophoresis showing the influence of PEI conjugation mode on 

pGLuc complexation. A constant amount of pGLuc (1)g) was complexed with particles at 

1:3, 1:10, 1:30 and 1:50 weight ratios. 

 

Delivery of therapeutic genes from PEI-coated silica nanoparticles requires the particles 

uptake by cells. Particle internalization within mouse 3T3 fibroblasts was checked using 

fluorescent FITC-silica nanoparticles after 48 h of contact. Observations by fluorescence 

microscopy evidenced the accumulation of colloids near the cell nucleus for SiO2@PEI and 
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SiO2-Cl@PEI (Figure III-10A). Bleaching of the FITC probes during sulfonate particle 

preparation hindered their intracellular observation. Cytotoxicity of uncoated and PEI-coated 

particles was also studied on 3T3 fibroblasts. This study consisted in the measure of cell 

viability of fibroblasts incubated with increasing doses of particles (Figure III-11B). For 

particle@PEI systems, cell viability was always higher than 80 %, indicating the absence of 

significant cytotoxicity up to 50 µg.mL-1 in PEI. In contrast, PEI alone was detrimental to cell 

viability at a dose > 5 µg.mL-1. Uncoated particles were evaluated using the same silica 

weights, showing no visible cytotoxicity effect.  

 
            

Figure III-10. (A and B) Fluorescence microscopy image showing internalization of 

pGLuc:particle@PEI by 3T3 fibroblasts after 48 h of incubation (green: FITC-labeled 

particles, blue : DAPI nuclei staining, scale bar = 20 µm) ; (C) Impact of PEI, particles and 

particle@PEI systems on 3T3 cell viability at the end of transfection experiments as 

monitored by the Alamar Blue test. Bar: 50)m. 

The transfection efficiency of the particles was evaluated in 3T3 mouse fibroblasts and 

primary human keratinocytes using a plasmid encoding for Luciferase (pG-Luc) (Figure III-

11). Quantities of polymers used in this experiment were not toxic for cells with the aim of 

comparing the abilities of transfection of the different systems. The ability of transfection was 

first analyzed on immortalized 3T3 fibroblasts (Figure III-11A). Among particles, the 

highest bioluminescence level was obtained with SiO2@PEI, that was one order of magnitude 

below that of PEI alone. The efficiency of SiO2-SO3@PEI particles was ten times lower than 



 121 

that measured with SiO2@PEI. Last, a very weak luciferase activity was observed with the 

SiO2-Cl@PEI system.   

 

 
Figure III-11. Transfection of mouse 3T3 fibroblasts (A) and human primary keratinocytes 

(B) after a 4 h incubation period with pGLuc :particle@PEI systems. Variance of the 

luciferase expression among particle groups was determined by one-way ANOVA with 

Tukey posthoc test (*** P < 0.001) 

 

Indeed, the luciferase activity was only the double of the basal level quantified in controls 

samples (without pG-Luc). The potential of PEI@particles to delivery genes was also 

investigated on primary normal human keratinocytes (Figure III-11B). The bioluminescene 

levels measured after incubation with the different systems of particles revealed the same 

profiles of transfection as those observed in 3T3 cells. The best ability of transfection was 

obtained with SiO2@PEI. The transfection efficiency was three times lower with SiO2-

SO3@PEI particles and that measured with the SiO2-Cl@PEI system was very low. 

Compared with the performance of the different particles@PEI systems on 3T3 cells, the 

bioluminescence levels measured with keratinocytes were two times lower.  
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III-2-4. Discussion 

 

III-2-4-1. Influence of conjugation mode on PEI attachment 

These data indicate that the conjugation mode impacts on PEI content, charge and plasmid 

binding ability. For SiO2@PEI, using a particle radius of 100 nm and a silica density of 2 g.cm-

3, the total amount of amine groups per particle can be estimated to ca. 5.106 from elemental 

analysis (Table III-1). The ammonium/total amine ratio obtained by XPS is ca. 45 % (i.e. ca. 

2.2x106 ammonium per particle). As a comparison a 30 % value was reported for PEI in a 

buffer solution (pH 7.4), suggesting that partial PEI protonation occurred during the adsorption 

process.11 A density of 3-5 silanol per nm2 was reported for amorphous silica surfaces, i.e. 4-

6x105 SiOH for 200 nm particles, with 20 % of acidic (pKa = 4.5) and 80 % of basic (pKa = 

8.5) groups.12 The increase in PEI protonation may therefore arise from an acid-base reaction 

with the silanol groups. Comparing 5x105 SiOH with 2.2x106 N+ per particle, the 

silanol:ammonium ratio is 1:4-5 so that the positive charge of PEI is not balanced by the 

negative charge of silica, explaining the positive ζ value of these systems.  

For SiO2-SO3@PEI, the protonation degree of PEI is closer to the reported value in buffer 

(36 % vs. 30 %). Sulfonate groups are fully deprotonated at pH 7 so that proton exchange with 

PEI was not expected. The fact that the silanol groups do not significantly interact with the 

polymer suggests that PEI is kept apart from the silica surface. Interestingly, combined 

elemental analysis and XPS indicate that there are 5x105 ammonium groups per particle to be 

compared with 1.5x104 sulfonate groups. This observation can be compared with a recent 

study devoted to the sorption of collagen triple helices on the surface of silica particles.1 For 

bare particles, a large amount of collagen was readily adsorbed, suggesting that the protein 

adopts a flat configuration on the particle surface. In contrast, sulfonate-bearing particles could 

adsorb less collagen but the proteins had a more ordered organization. It was suggested that the 

sulfonate groups could act as anchoring points for the protein chains that protrude out of the 

surface rather than laying flat, so that the amount of sorbed collagen was limited by the steric 

constraints of the triple helices packing. A similar situation can be reasonable assumed for the 

present system (Figure III-12). Noticeably, naked particles have a lower initial negative 

charge, bind more PEI with a higher degree of protonation than sulfonated ones, so that it was 

expected that they exhibit a higher positive surface charge after coating. However the two 

systems show close ζ values. This can be explained considering that silanol groups of the 

surface can contribute to the overall particle charge for SiO2 whereas these moieties are 
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screened by the sulfonate/PEI layer, strengthening our model of a flat vs. compact organization 

of the polymer in the two systems.  

 

 
Figure III-12. Schematic representation of the different conjugation modes of 

polyethyleneimine (PEI) with silica particles and proposed PEI configuration: non-specific 

adsorption on silica particles (SiO2@PEI), strong electrostatic interactions with sulfonate-

modified silica particles (SiO2-SO3@PEI) and covalent bond with propylchloride-grafted 

silica particles (SiO2-Cl@PEI). 

 

For SiO2-Cl@PEI, the protonation degree of PEI is similar to its free form in buffer and the 

number of amines per particle is ca. 106. This value is in the same range as the initial density of 

propylchloride groups (1.5x106). Elemental analysis indicate that one half of the Cl atoms are 

no longer present after reaction with PEI. Taken together these data suggest that an important 

fraction of the PEI amine groups have reacted with the propylchloride moieties. It is therefore 

possible to assume that each PEI chain is bound to the particle surface by several anchoring 

points, decreasing its conformational flexibility and therefore its maximum packing density on 

the surface, resulting in a low PEI loading (Figure III-12). Noticeably, SiO2-Cl@PEI has a 

similar ζ value to SiO2@PEI, which can be explained considering that the less negative surface 

charge of the chlorinated surface compared to bare particles is compensated by lower PEI 

loading and lower PEI protonation. 

Considering the optimal plasmid:PEI ratio, it depends on the positive charge of PEI, as the 

PEI-plasmid system is a polyelectrolyte complex, as well as on the PEI flexibility, that 

determines its ability to wrap and compact DNA.13,14 The amount of PEI per particle must also 

be considered for the optimal plasmid:particle ratio. SiO2@PEI and SiO2-SO3@PEI particles 

have a similar optimal pGLuc:particle@PEI ratio although the former has a higher polymer 

loading with a larger proportion of ammonium groups than the latter. As pointed out earlier, 

the ζ value is not a suitable parameter to compare the complexing ability of the systems as it 

can include a contribution of the silica particle surface that is not involved in the DNA 
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wrapping process. Rather PEI conformation has to be considered (Figure III-8). For SiO2, the 

extended conformation of the polyelectrolyte is not favorable for DNA wrapping whereas the 

local anchoring of PEI on the surface of Si-SO3 should better preserve its structural flexibility. 

For SiO2-Cl, as mentioned earlier, its flexibility should be limited by the high density of 

covalent bonds, resulting in a low pG-Luc:particle@PEI ratio. 

 

III-2-4-2. Influence of conjugation mode on transfection efficiency 

Despite their extensive study, the exact mechanisms driving cell transfection by non-viral 

vectors are still controversial.15 Yet the main steps of the process have been identified. First, 

the DNA complex must be internalized by endocytosis, a process that depends on its size and 

charge. Here, the three particles exhibit similar positive charges compatible with 

internalization. SiO2@PEI and Si-SO3@PEI particles have similar dimensions (ca. 200 nm) in 

PBS whereas SiO2-Cl@PEI dispersions show a tendency to aggregate into larger species (ca. 

800 nm). Nevertheless fluorescence images suggest the successful internalization of a fraction 

of SiO2-Cl@PEI particles. This could be explained by the de-aggregation of SiO2-Cl@PEI, 

allowing the uptake of individual particles. A second hypothesis relies on the polydispersity 

of SiO2-Cl@PEI particles. According to the results obtained by DLS, a small fraction of 

particles possesses the appropriate size (less than 400 nm) to be engulfed by cells. Despite the 

fact that the uptake abilities are cell dependent, it is generally admitted that particles larger 

than 500 nm are not likely to be internalized by endocytosis in mammalian cells.16,17 This 

could explain the very low level of transfection. The question of the particle size, rather the 

covalent bonding seems to a crucial parameter for cellular uptake of SiO2-Cl@PEI. Several 

groups have functionalized PEI by covalent attachment on mesoporous silica nanoparticles or 

on hyaluronic acid chains. They obtained particles:DNA complexes with a limited 

aggregation (less than 350 nm), thereby permitting cellular uptake and transfection.18-20 In 

addition, some of these particles were functionalized with mannose facilitating the 

engulfment by receptor-mediated endocytosis.19 Last, the studied cells were macrophages that 

are cells with high efficiency of engulfment.  

In a second step, DNA must be released in the cytoplasm. This is possible via endosome 

acidification leading to endosomal membrane disruption. The plasmid carrier can play a role 

both in the destabilization of the endosome via the proton sponge effect and in the protection 

of DNA against acidic degradation. The first effect increases with the amount of PEI and 

should therefore be more favorable with SiO2. The protecting effect depends on the PEI 

quantity, its conformation and flexibility. The ratio PEI:DNA for SiO2@PEI , Si-SO3@PEI,  
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SiO2-Cl@PEI were 3.8, 1.2 and 1.7, respectively. According to the results of cell viability, 

these ratios were not associated with any cytotoxicity.  It is well-admitted that the transfection 

capabilities increase when the PEI:DNA ratio rises.21 Hence, the quantity of PEI on SiO2 

particles could explain in part its higher transfection ability because of its impact on DNA 

compaction and protection against nucleases. Nevertheless, the conformation of PEI at the 

surface also plays an important role and is expected to be optimal for the Si-SO3@PEI system.  

In a following step, the released plasmid must diffuse to the nucleus and enter, either during 

mitosis or via the nuclear import machinery. Importantly, the stage at which PEI and DNA are 

dissociated is still a matter of debate.15 However, focusing on the particle-PEI interactions, it 

is interesting to note that in the acidic conditions of the endosomes, an important fraction of 

the silanolate groups of the bare silica particles become protonated. This decreases the 

negative charge of the carrier, favoring PEI desorption. On the opposite, sulfonate functions 

should remain negatively-charged, preserving their attractive interactions with PEI. Finally, 

for SiO2-Cl, the existing covalent bonds are not expected to be cleaved, limiting the possibility 

for complexes to escape. These trends in PEI detachment from particles nicely follow the 

measured transfection efficiencies, suggesting that such a release is a relevant event in the 

plasmid delivery process.  

Surprisingly, the performance of PEI alone was not better than that of the SiO2@PEI 

system for keratinocytes, in contrast to the results obtained with 3T3 cells. The highest cell 

transfection observed with PEI compared to particles on immortalized cells could be 

explained by the particle size and the metabolic activity of 3T3 fibroblasts. PEI/DNA 

complexes measure about 100 nm in diameter.22 These complexes are rapidly uptaken by 

cells via the chlatrin-mediated endocytosis. In contrast, larger particles@PEI systems are 

more internalized by the caveolin-mediated endocytosis.23 Therefore the chlatrin pathway 

seems to be more efficient in 3T3 fibroblasts to engulf complexes. Second, 3T3 cells 

proliferate rapidly, facilitating plasmid transfer by disruption of the nuclear membrane during 

cell division. Thus it can be proposed that PEI complexes are rapidly uptaken, transported to 

the nucleus and that protein expression occurs at a very high rate thanks to fast proliferation. 

In contrast, the uptake of particles being less efficient, there is a delay required for sufficient 

plasmid accumulation before significant protein expression is achieved. In the case of primary 

cells such as keratinocytes, the cells proliferate at a lower rate. Therefore the overall protein 

expression rate is slower for both systems. Moreover, in these conditions, it is possible for 

silica particles to accumulate in a higher quantity between two cellular division event, so that   

the protein expression level becomes comparable to that of PEI.  



 126 

 

III.2.5 Conclusion 

One of the starting hypothesis of this study was that enhancing the interactions between the 

silica surface and PEI would allow to immobilize more polymer on the particle so as to 

complex more DNA and possibly enhance transfection efficiency. However, our study 

showed that the opposite situation occurs. The naked silica surface offers an open area of 

silanolate groups available for unspecific adsorption of extended PEI chains. The introduction 

of well-defined moieties provides a smaller number of binding sites leading to a decrease in 

the amount of immobilized PEI. Moreover, the persistence of significant interactions between 

the silica surface and PEI in the acidic conditions of the endosomes appears detrimental to the 

gene delivery. Yet data obtained with sulfonated particles suggest that this situation leads to a 

more favorable PEI conformation. Therefore it would be interesting to change the nature of 

the grafted moiety, for instance using carboxylate groups whose pKa is closer to endosomal 

pH, and also to achieve a better control of the grafting density. In parallel, our hypothesis 

concerning PEI:DNA detachment has to be supported by further experiments. In particular, 

the use of fluorescence resonance energy transfer (FRET)24 techniques would be particularly 

useful to monitor the fate of SiO2:PEI:DNA complexes in the intracellular media. 

 

III.3 IMPACT OF CELL TYPE ON THE TRANSFECTION EFFICIENCY OF 

POLYETHYLENEIMINE-COATED SILICA NANOPARTICLES  

III-3-1. Cell Culture and Experimental Conditions 

In this study, human primary dermal fibroblasts and epidermal keratinocytes were selected as 

they are relevant cells in the pathophysiology of cutaneous chronic wounds. Human primary 

fibroblasts culture was performed using the same protocol than that for 3T3 cells.  For 

keratinocytes, the protocol was also similar except for the culture medium as described in the 

section III-2-2. The protocols used for collagen-silica hydrogels preparation and transfection 

experiments in 2D and 3D were the same as those described in Chapter II, except when noted. 

 

III-3-2. Human Primary Dermal fibroblasts 

III-3-2-1. 2D experiments 
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Transfection studies were performed with dermal fibroblasts seeded in culture wells and bare 

silica nanoparticles 200 nm (SiNP) in diameter coated with PEI 25 kDa and 10 kDa.  Pure PEIs 

of same molecular weight were evaluated in parallel. As shown in Figure III-13, the 

transfection efficiency follows a similar trend as found for 3T3 cells (see Figure II-6 in 

previous chapter). When coated on silica nanoparticles, PEI10 exhibited a higher ability to 

deliver plasmidic DNA compared to its soluble form. Interestingly, silica nanoparticles coated 

with PEI10 and PEI25 showed the same performance of transfection. However some differences 

were found between immortalized and primary fibroblasts. First the RLU values for human 

primary fibroblasts are at least one order of magnitude below that of 3T3, the difference 

reaching two orders of magnitude for PEI25. Second, PEI10 is significantly less efficient than 

PEI25-coated particles for human cells.  

 

Figure III-13. Transfection of human fibroblasts after 4 h incubation with free and SiNP 

coated with PEI of various molecular weights (n=3).  

The cytotoxicity of the different systems towards human fibroblasts was also evaluated 

after 4 h of contact using the Alamar Blue test (Figure III-14), evidencing no significant 

impact on cell viability. 
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Figure III-14. Human fibroblast viability in 2D as influenced by different molecular weight 

of PEI without or with SiNP. Cell viability was assessed after 4 h of contact with Alamar 

Blue test and calculated in the percentage of control (n=3).   

III-3-2-2. 3D experiments 

These experiments were performed by co-encapsulation of human fibroblasts and plasmid-PEI 

or plasmid-SiNP@PEI complexes in 1 mg.mL-1 hydrogels. In order to optimize plasmid 

content, a first series of experiments was performed with PEI25 only with pGLuc content 

between 2 and 8 µg/gel and a pGLuc:PEI weight ratio of 1:2. As seen on Figure III-15, 

maximum transfection was observed over 7 days for the intermediate plasmid content (4 µg) 
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Figure III-15. Transfection of human fibroblasts co-immobilized with pGluc-PEI25 

complexes in collagen hydrogels after 3, 5 and 7 d of contact, using 2, 4 and 8 µg of plasmid 

/gel 

Viability tests performed over the same period showed that the system containing the 

highest plasmid content has a significant but limited cytotoxicity, that can correspond to the 

associated high concentration of PEI (Figure III-16). Hence the observation of an optimal 

value at 4 µg can be attributed to the achieved compromise between low plasmid content (2 

µg) and cytotoxicity of PEI (8 µg). 

 

Figure III-16. Cell viability of human fibroblasts co-immobilized with pGluc-PEI25 

complexes in collagen hydrogels after 7 days, using 2, 4 and 8 µg of plasmid /gel in collagen 

as evaluated with Alamar Blue test and calculated as the percentage of the control (n=3). 

 
Transfection experiments using co-immobilized PEI-coated silica nanoparticles were 

therefore performed with a 4 µg plasmid content per gel (1 mL each). In these conditions, it 

was observed that the transfection efficiency of particles was much lower than that of free 

PEIs (Figure III-17). However, compared to the control, significant bioluminescence levels 

could be observed from day 5 to 12 for the two PEI-coated systems. At day 12, the RLU 

values were two orders of magnitudes higher than that measured in the control samples 

(Figure II-13). Nevertheless, the luciferase expression obtained with dermal fibroblasts was 

one order of magnitude below the values obtained with 3T3 cells. Some differences were 

observed in terms of profile of transfection between the different conditions. For instance, 
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PEI-coated systems did not have the same performance of transfection compared to the free 

PEI 10 kDa.  

 
 

 

Figure III-17. Transfection of human fibroblasts co-immobilized with p-GLuc-PEIx and 

pGLuc-PEIx-SiNP complexes in collagen hydrogels after 3, 5, 7 and 12 days of contact, 4 µg 

of plasmid /gel. Bottom graph focuses on the silica particle systems (n =3).  

Viability tests indicated that these differences could not be attributed to cytotoxic 

effects of the plasmid carriers (Figure III-18) 
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Figure III-18. Cell viability of human fibroblasts co-immobilized with p-GLuc-PEIx and 

pGLuc-PEIx-SiNP complexes in collagen hydrogels after 7 days as evaluated with Alamar 

Blue test and calculated as the percentage of the control (n=3). 

 

III-3-3.  Human keratinocytes 

III-3-3-1. 2D experiments 

In a first step, transfection experiments were performed using a pGluc:PEIx-SiNP ratio of 

1:30, similar to previous studies. However, in these conditions, very low transfections 

efficiencies were obtained that could be correlated with high cytotoxicity. Lower 

plasmid:particle weight ratios (from 1:5 to 1:20 at constant plasmid content) were therefore 

evaluated. As shown on Figure III-19, the cytotoxicity of the particles could efficiently be 

lowered by decreasing their concentration. The ratios used in these experiments are lower 

than the optimal ones. Hence it is possible than a small quantity of pDNA has not been 

complexed.  
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Figure III-19. Human keratinocyte viability as influenced by different molecular weight of 

PEI and different plasmid:particle ratio. Cell viability was assessed after 4 h of contact with 

Alamar Blue test and calculated in the percentage of control (n=3).   

 

The transfection efficiency of these different systems was also studied (Figure III-20). 

Here again, the bioluminescence levels were lower than for 3T3 cells. This can be in part due 

to the lower plasmid:particle ratios used. Moreover PEI-coated particles had very similar 

efficiency to free PEI. The optimal conditions for particle systems resulted from a 

compromise between a low plasmid:carrier ratio that corresponds to a larger fraction of 

pGLuc interacting with the particles and therefore being able to be uptaken, and a high 

plasmid:carrier ratio that corresponds to a lower particle concentration and therefore lower 

cytotoxicity.  
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Figure III-20. Transfection of human keratinocytes after 4 h incubation as influenced by 

different molecular weight of PEI and different plasmid:particle ratio (n=3).  

 

III-3-3-2. 3D experiments 

Contrary to fibroblasts, keratinocytes do not survive within collagen hydrogels. Therefore a 

pseudo 3D model was used where the complexes, being pGLuc-PEI or pGLuc-SiNP@PEI, 

are immobilized in the collagen hydrogel and keratinocytes are seeded on its surface. 

In these conditions, only free PEI25 led to a bioluminescence level that was statistically 

different from the control (Figure III-21). Again these differences could not be attributed to 

toxicity effects (Figure III-22). These results are in good agreement with the data obtained 

for 3T3 cells (see Figure II-16) and suggest that only the pGLuc-PEI25 complex can migrate 

out of the hydrogel. 
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Figure III-21. Transfection of keratinocytes seeded on collagen hydrogels containing p-

GLuc-PEIx and pGLuc-PEIx-SiNP complexes after 3, 5 and 7 d of contact.  

 
Figure III-22. Cell viability of human keratinocytes seeded on collagen hydrogels containing 

p-GLuc-PEIx and pGLuc-PEIx-SiNP complexes after 7 days of contact as evaluated with 

Alamar Blue test and calculated as the percentage of the control (n=3). 
 

 

III-3-4. Discussion and conclusion 

The efficiency of transfection depends on the ability of cells to uptake polyplexes. In addition, 

gene delivery and transgene expression is facilitated when the cells have a high proliferative 

rate. When used in their soluble form, the performance of PEI 25 KDa and PEI 10 KDa, is 

much lower than that observed with 3T3 cells. To reach the same amplitude of transfection, it 
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was necessary to increase the quantity of DNA by 4. This can be explained by the doubling 

time of primary cells that is much longer than immortalized cells. Fontana et al have shown 

that several micrograms of polyplexes were required to efficiently transfect adipose stem cells 

encapsulated in HA/collagen microgels.25 However, the results obtained with primary cells 

are in agreement with the general scheme of cell transfection in 3D systems.  

Unlike 3T3 cells, free forms of PEI are always more effective on dermal fibroblasts 

than the PEI-coated systems. Primary dermal fibroblasts do not have the same ability of 

migration as 3T3 cells. When immobilized in a 3D collagen gel, fibroblasts stop migrating 

after a few days. Then, they differentiate into myofibroblasts and acquire contractile 

faculties.26,27 They contract the collagen network and their abilities to proliferate drastically 

decrease28. This weak proliferation could explain why gene delivery is less effective when the 

cells are encapsulated in a 3D collagen hydrogels compared to 2D conditions. Immortalized 

cells do not behave this way as they are unable to contract a 1 mg.mL-1 collagen gels and keep 

their migratory faculties. When they move they can be in contact with particles and uptake 

them. In the case of primary fibroblasts, this is not possible. Cells pull on collagen fibrils to 

bring them closer and contract the collagen network.26,27 This mechanism permits the 

interaction between the particles stuck on collagen fibrils and the cellular membrane. 

However, this mechanism is less effective to uptake particles compared to cell migration. This 

explains why the free forms of PEI are more effective to deliver genes because they can 

diffuse rapidly in the pores of the collagen network, encounter fibroblasts and transfect them. 

Transfection of collagen-entrapped complexes put in contact with keratinocytes also 

gave similar trends than 3T3 cells concerning the influence of PEI molecular weight and the 

influence of the silica particles. Only the free form of PEI is able to transfect keratinocytes 

seeded on the surface. This evidences one more time the confinement of PEI-coated silica 

nanoparticles within the collagen network.  

Noticeably, the viability of keratinocytes is more affected by the presence of silica 

particles than that of the primary fibroblasts. As a consequence, the ratios used in the 

experiments of transfections were lower. This result is surprising as the cytotoxicity of 

submicronic silica nanoparticles has not been described. Nabeshi et al have shown that 300 

nm SiNPs do not present any toxicity on keratinocytes until a1 mg.mL-1 dose is reached29. 

This dose is much higher than that used in this study.  However comparison between different 

sets of experiments is often difficult due to variations in particle size, structure, surface 

functionality, etc. Its understanding would require a much deeper study of the cellular 
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response to the silica particles. One particularly interesting observation is the difference in 

particle toxicity between keratinocytes and fibroblasts. As a matter of fact we could not find 

any explanation for this difference in the literature. Noticeably, such studies may be 

particularly valuable in the field of biomaterials for wound healing as one of the current 

material in the market, Apligraf®, combines these two kinds of cell associated with collagen 
30.  

 

III.4 CONCLUSION 

We have demonstrated that the mode of conjugation of PEI with the silica particle surface has a 

deep impact on the transfection efficiency of the inorganic carrier. Our data suggest that this 

impact is related to both PEI conformation and stability of the silica-PEI interface in the 

intracellular medium. We have also shown that silica-PEI particles have the ability to transfect 

human cells, although to a lower extent than immortalized fibroblasts. This difference in 

transfection efficiency was attributed to the lower proliferation rate of the primary cells. 

From a fundamental point of view, these studies have brought novel and important 

information about the mechanisms of gene delivery mediated by PEI-silica nanoparticles. 

From an application point of view, these results are rather disappointing as these carriers are 

significantly less effective than pure PEI25 in most situations. It is therefore important at this 

point to remind the advantages of the composite approach: (i) the SiO2@PEI particles are less 

cytotoxic than PEI alone at high doses, (ii) once immobilized within the collagen gels, they do 

not release complexed plasmids outside the material, (iii) silica particles may be loaded with 

an additional drug, allowing the design of medicated dressings delivering two bioactive 

molecules.  

On this basis, we decided to go a step further towards the design of a biofunctional 

nanocomposite material by evaluating the possibility to use silica-PEI particles as vectors for 

the delivery of a plasmid inducing the expression of IL-10, a protein relevant for our targeted 

application in chronic wound healing.   
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Résumé 

Dans ce dernier chapitre, nous avons exploré la capacité des nanocomposites à réguler 

l’inflammation en utilisant les particules de silice modifiées par le PEI comme vecteur d’un 

plasmide permettant l’expression de l’Interleukin-10 (IL-10). Dans un premier temps, la 

production d’IL-10 par des cellules 3T3 en culture 2D après transfection a été démontrée. Un 

modèle de macrophages activés par les LPS (lipopolysaccharides) a ensuite été mis au point. 

La réponse de ces cellules à l’IL-10 produites par les fibroblastes a été démontrée par la 

mesure par PCR quantitative de la décroissance du niveau d’expression du facteur TNF-α. 

Dans un deuxième temps, la production de l’IL-10 par les cellules 3T3 co-immobilisées avec 

les complexes au sein des hydrogels de collagène a été démontrée. Malgré les quantités 

élevées d’IL-10 produites au sein des nanocomposites, il n’a pas été possible d’observer 

l’impact de cette protéine sur les macrophages activés. Ce résultat nécessitera néanmoins 

d’être vérifié et l’expérience devra être étendue à des macrophages immobilisés dans les 

matrices de collagène.   
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IV-I INTRODUCTION  

Wound healing is a multi-cellular process which occurs after an injury, with the aim of 

restoring the integrity of skin. The phases of normal wound healing involve a range of growth 

factors and cytokines which act at different stages of tissue repair. Consequently, many of 

these bioactive proteins such as VEGF1, PDGF-BB2, TGF-β3 and IL-10 have been studied as 

therapeutic drugs to promote the healing process. Among them, IL-10 has received a 

particular attention as potent anti-inflammatory biomolecule. This cytokine can inhibit the 

action of NO and the synthesis of a variety of inflammatory cytokines including IL-1β and 

TNF-α. More generally, IL-10 allows for the repolarization of pro-inflammatory macrophages 

into regulatory macrophages. These cells have a crucial role in the modulation of 

inflammation, thereby promoting cutaneous wound healing. IL-10 is also a product of glia 

(astrocytes and microglia) and leukocytes such as macrophages and dendritic cells, which 

express IL-10 receptors. Therefore, IL-10 delivery have been widely investigated to treat 

inflammation in central nervous system4, lung (e.g. pneumonia5), joint (arthritis6), heart 

fibrosis, liver7, colon 8 and even cancer9.  

Several trials of protein therapy have been attempted by injection of cytokine in the 

cutaneous wound bed. Unfortunately, these strategies have failed because of the rapid 

diffusion and their short half-life due to their degradation19. Hence, gene therapy represents an 

interesting alternative. Current strategies for IL-10 gene delivery rely on the systematic 

delivery or the local injection. Moreover, this was predominantly achieved by viral vectors 

such as (adeno-associated virus) AAV5, 10, (adenovirus) AV11 and (lentivirus) LV12 . A few 

attempts have been carried out with non-viral vector such as dendrimer13, PEI, alginate 

nanoparticles6, PAGA14 and PLGA microparticles15. For example, Jain et al. have developed 

a gene delivery system for the treatment of rheumatoid arthritis. In this study, pDNA 

encoding for IL-10 (pIL-10) was immobilized within alginate nanoparticles. Subsequently, 

particles were modified with tufstin peptide in order to target macrophages.6 This targeting 

system was found to be capable of repolarizing macrophages from inflammatory M1 

phenotype to anti-inflammatory M2 phenotype. Moreover, animals treated with the particles 

retained their mobility as a result of IL-10 expression. 

Scaffold-based delivery systems create a space for tissue growth and provide a support 

for cell adhesion and migration. More importantly, spatio-temporal control over bioactive 

molecules release can achieve the optimal efficacy while averting side effects. Gower et al. 

loaded Lentivirus carrying pIL-10 in porous PLGA scaffold. The main advantage observed 
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was a decreased inflammation following the scaffold implant. IL-10 delivery was found to 

decrease leucocyte infiltration in the implanted scaffold by 50%. Thus, this system has the 

potential to improve the therapeutic effect with minimal inflammatory response. Combination 

of gene and cell delivery is a promising approach to achieve optimal therapeutic efficacy. On 

the one hand, implanted cells can replace the damaged tissues and produce growth factors to 

favor tissue repair. On the other hand, the transfected cells can act as bioreactors to produce 

therapeutic proteins to promote tissue regeneration. However, few attempts have been made 

for the co-delivery of cells and genes. Holladay et al co-delivered stem cells and plasmid IL-

10 (pIL-10) in collagen sponges for the treatment of myocardial infarction.13 The complexed 

plasmids were adsorbed within the pre-formed collagen scaffold and stem cells were seeded 

on top of the sponges. The produced IL-10 downregulated the inflammatory response, thereby 

improving the survival of the transplanted stem cells. 

As shown in Chapter II, silica-collagen nanocomposties co-encapsulated with 

fibroblasts and plasmidic DNA gave promise for the local and sustained release of proteins 

using pGluc as a gene model. Herein, we further explored the possibility for the delivery of 

plasmid encoding IL-10 and measured the anti-inflammatory effect of IL-10 on LPS activated 

macrophages. More specifically, we evaluated our model as gene delivery system to down-

regulate the expression of pro-inflammatory cytokines such as TNF-α.  

IV-2. MATERIALS AND METHODS 
IV-2-1. Production of plasmid encoding human IL-10 (phIL-10) 

The phIL-10 plasmid purchased from Origene (USA) is obtained from the pCMV6-XL5 

plasmid in which the ORF cDNA sequence encoding for Human Interleukin 10 has been 

inserted. This plasmid was amplified by one shot BL21(DE3) pLysS kit (Invitrogen, Life 

technologies), extracted by one PureLink HiPure Plasmid kit (Invitrogen, Life technologies), 

and finally stored in Tris-EDTA buffer at −20 °C. 

IV-2-2. phIL-10-PEI and phIL-10-PEI-SiNP Complexation. 

The phIL-10-PEI complexes were prepared at weight ratio of 1:2. Silica nanoparticles 200 nm 

in diameter and coated with PEI 25 kDa or 10 kDa were used as vectors. The phIL-10-SiNP 

complexes were prepared at various phIL-10:PEI-SiNP weight ratios. Complex formation was 

examined by agarose gel electrophoresis. Briefly, 2 µL of phIL-10 solution (0.1 µg.µL−1) was 

mixed homogeneously with a total volume of 8 µL of PEI-SiNP suspension or PEI solution 
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(PBS 1×) by vortexing in a microcentrifuge tube. The resulting mixtures were left at room 

temperature for 2 h to achieve complete complexation, before being loaded into a 0.7% 

agarose gel with ethidium bromide (0.1 µg.mL−1) and running with TAE 1X (Tris acetate 

EDTA) buffer at 100 V for 40 min. DNA retardation was observed by irradiation with 

ultraviolet light. 

IV-2-3. Mouse fibroblast and macrophage Cell Culture 

3T3 mouse fibroblasts were cultured in complete cell culture medium as previously described 

in Chapter II. The mouse macrophage cell line (RAW264.7 cells) was purchased from 

Sigma Aldrich. The cells were grown and maintained in the same medium as 3T3 cells. These 

cells were harvested by scratching, centrifugation and suspended in a fresh medium. Cell 

counts were measured using a standard trypan blue cell counting technique. 

IV-2-4. Preparation of Silica-Collagen Nanocomposites 

Complexes were formed by adding 5 µg of phIL-10 to 125 µL of a solution containing PEI or 

PEI-SiNP in order to achieve the optimal phIL-10:PEI (or phIL-10-PEI-SiNP) ratio identified 

gel electrophoresis. 500 µL of a type I collagen solution was mixed with 245 µL of culture 

medium and he complexes were added to the mixtures After addition of 30 µL of 0.1 M 

NaOH and vortexing, 100 µL of the cell suspension at a density of 1.5×106 cells.mL−1 was 

added and mixed homogeneously. Last 0.9 mL was sampled from the mixture and deposited 

onto a 24-well plate. The plate was then incubated at room temperature for 10 min for 

complete gelling of collagen.  

IV-2-5. Cell Transfection and Cell Viability 

Transfection efficiency of phIL-10-PEI and phIL-10-PEI-SiNP was evaluated by the titration 

of the protein hIL-10 secreted in the cell culture medium using an Elisa-kit for hIL-10 

(Novex, life technologies). 

To perform cell transfection in 2D, 3T3 mouse fibroblasts were plated at a density of 5 

× 104 per well in a 24-well plate. phIL-10-PEI or phIL-10-PEI-SiNP complexes (25 µL, 

prepared as described above) were added to the cell culture medium. After 4 h, the 

supernatant was removed, the well was refreshed with 1 mL medium, and the cells were then 

cultured for another 44 h in complete medium for the expression of hIL-10. Last media from 

each well were collected and frozen until analysis.  
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For 3D experiments, silica-collagen nanocomposites were incubated with 1 mL of 

fresh medium. The ability of nanocomposites to produce and secrete hIL-10 was analyzed 

over one week. At day 2, 5 and 7, 500 µL of the culture medium was collected from the wells, 

frozen and replaced with an equal volume of fresh medium. Control groups were under the 

same culture condition as the experiment groups except for the absence of DNA complexes.  

Cell viability was monitored using the Alamar Blue test. For the 2D model, cell 

culture medium was collected after 2 days and replaced by 200 µL of the Alamar Blue 

solution (10% in cell culture medium). Cell viability was calculated and reported as a 

percentage of the control group as described in Chapter II (n = 3). Cell viability was assessed 

at day 7 in the 3D models (using the same procedure, except that 800 µL water was first 

added to the collagen gel for 0.5 h at room temperature to extract the Alamar blue solution 

trapped in the gel and then collected for the absorbance measurements. 

IV-2-6. Macrophage activation with LPS 

Mouse macrophages RAW 264.7 were seeded at a density of 105 and cultured overnight 

before activation with LPS (Sigma). A volume of a LPS stock solution (100 µg/mL) in PBS 

was added to each well to reach the final concentration of 1µg/mL or 0.1 µg/mL. At different 

incubation time, 1 h, 3 h and 6 h, cells were treated with Trizol (Invitrogen, Carlsbad, CA, 

USA) and then stored at -80 oC before RNA extraction. 

IV-2-7. Total RNA extraction and RT-PCR 

All studies were carried out in a designated PCR clean area. RNAs were extracted using 

RNeasy mini-kit (Qiagen, France) according to the manufacturer’s recommendations. To 

eliminate the contamination with genomic DNA, a DNase digestion was performed for 15 

min. First-strand cDNA was synthesized at 37°C by M-MLV reverse transcriptase 

(Invitrogen, France). With the aim of testing the primers, PCR amplification reactions of 

TNF-α, 18S and GAPDH were carried out using a pool of cDNA (see the primers sequences 

below). Cycling conditions were: initial denaturation at 94°C for 5 min, followed by 50 cycles 

consisting of a 30 s denaturation at 94°C, a 30 s annealing at 59°C and a 45 s elongation at 

72◦C. PCR products were analyzed after migration in a 1% agarose gel with 0.01 µg/ml 

ethidium bromide using the Gel Doc analyzer (Biorad, France).  

 

TNF-α C1 (couple 1)  
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F1 : AAG CCT GTA GCC CAC GTC G TA GCA,  

R1: GCA GCC TTG TCC CTT GAA GAG AAC CT) 

TNF-α C2 (couple 2) 

F2: CGG GGT GAT CGG TCC CCA AAG 

R2: GGA GGG CGT TGG CGC GCT GG 

18S 

F: GTG GAG CGA TTT GTC TGG TTA,  

R: CGG ACA TCT AAG GGC ATCA 

GAPDH 

F: CTT CAC CAC CAT GGA GAA GGC 

R: GGC ATG GAC TGT GGT CAT GAG. 

IV-2-8. Measurement of gene expression by real time PCR (Q-PCR) 

Real-time quantitative PCR amplifications were carried out in a Light Cycler 480 detection 

system (Roche, France), using the Light Cycler Fast Start DNA Master plus SYBR Green I 

kit (Roche). The mRNA transcript level of TNF-α was normalized with the housekeeping 

gene GAPDH because its expression is not modified in our conditions. Gene expressions of 

TNF-α were quantified using the absolute quantification method (n= 4). Cycling conditions 

were: initial denaturation at 94 °C for 5 min, followed by 50 cycles consisting of a 10 s 

denaturation at 94 °C, a 15 s annealing at 59 °C and a 15 s elongation at 72 °C. Then, a 

melting curve was obtained for each sample by increasing the temperature from 59 °C to 97 

°C at a rate of 0.11 °C /s. The results were analyzed using the absolute quantification with 

arbitrary values. For this purpose, a standard curve was carried out for each target and 

reference gene. Primer efficiencies were calculated in each experiment from the standard 

curve carried out in the same plate as the quantified samples. For each sample, a ratio target 

gene/reference gene was calculated and compared with a calibrator point. This calibrator 

point was the cDNA obtained from the control samples at day 2 (without Il-10 treatment).  

The value 1 was given to the mean of ratios for the control samples (n= 4). Arbitrary values 

were then calculated for each condition by comparison with the value 1, using the ratios.  

 

IV-2-9. Effect of IL-10 on activated macrophages 
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IV-2-9-1. Dose and time dependent effect of IL-10 on mRNA levels of TNF-α  

IL-10 quantities produced by 3T3 fibroblasts during the 2D cell transfection experiments 

were diluted to a final IL-10 concentration of 0.1, 0.5 and 1.0 ng/mL in cell culture medium. 

Macrophages were seeded on plastic as introduced in IV-2-6. Control group was 

macrophages only treated with the LPS solutions at 0.1 or 1 µg.µL-1. The IL-10 solutions 

were added 1 h before or together with LPS. Then, TNF-α expression was quantified 1 h or 3 

h after LPS activation by real time PCR to determine the anti-inflammatory effect of IL-10.  

IV-2-9-2. Modulatory effect of IL-10 produced from nanocomposites on mRNA level of TNF-α 

Supernatants containing IL-10 produced from 3D nanocomposites (after cell transfection by 

free or SiNP associated PEI) were collected at day 2, 5 and 7. These supernatant were 

incubated with macrophages under the optimal condition determined in section IV-2-9-1. 

IV-2-10. Statistical Analysis. 

Results are presented as mean ± SD (standard deviation). Statistical significance was assessed 

using one way analysis of variance (ANOVA) followed by Tukey (compare all pairs of 

groups) or Dunnett (compare a control group with other groups) posthoc test. The level of 

significance in all statistical analyses was set at a probability of P < 0.05. Prism (Grahpad) 

software was used for all data analysis. 

IV-3 RESULTS AND DISCUSSION 
IV-3-1. Gel electrophoresis 

With a phIL-10:SiNP ratio  of 1:30 (w/w), full inhibition of the plasmid migration was 

achieved for both PEI25-SiNP and PEI10-SiNP (Figure IV-1) The phIL-10 complexation 

abilities of the particles were similar to those observed for pGLuc, as expected from the 

similarity of their size (ca. 5 Kbp). 
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Figure IV-1. Agarose gel electrophoresis of phIL-10 complexation by PEI25-SiNP and PEI10-

SiNP. A constant amount of DNA was complexed with silica particles at different weight 

ratios 1:10, 1:20, 1:30 and 1:50. 

IV-3-2. Production of hIL-10 by 3T3 fibroblasts transfected in 2D 

The quantification of hIL-10 in the culture media evidenced that the PEI-loaded silica 

nanoparticles complexed with phIL-10 were able to transfect 3T3 fibroblasts (Figure IV-2). 

These systems permitted a sustained expression of the phIL-10, the synthesis and the 

secretion of the associated cytokine. The profile of transfection resembled that observed for 

pGLuc, i.e. the free form of PEI25 exhibited the best abilities to induce IL-10 expression. 

However, compared to pGLuc, the variations between the different systems were smaller. The 

production of IL-10 after transfection with PEI10-SiNP represented 40 % of the quantity 

produced by 3T3 cells after transfection with free PEI25. However, such a comparison should 

be taken with care as luciferase quantification is based on the monitoring of its enzymatic 

activity via the generation of luminescent molecules. Since one enzyme can degrade several 

substrates, the resulting signal is amplified compared to the direct quantification of IL-10 

proteins. 
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Figure IV-2 Transfection of 3T3 mouse fibroblasts after 4 h incubation with free or PEIx-

SiNP complexed with phIL-10 (n = 3). Variance of the hIL-10 expression among groups 

PEI10, PEI25-SiNP, PEI10-SiNP was determined by one-way ANOVA with Tukey posthoc test 

(*P < 0.05, ** P < 0.01, ** P < 0.001). 

Therefore, the results obtained with phIL-10 provide a more realistic view of the 

transfection capabilities of the vectors. Interestingly, the IL-10 production obtained with 

PEI10-SiNP is 2 and 3 times higher than that with PEI25-SiNP and free PEI10, respectively. 

Once again the cell transfection and the biomolecule synthesis were not associated with any 

cytotoxicity (Figure IV-3). It has been shown in Chapter II that PEI25 was toxic for doses 

equal or higher than 5-10 µg.mL-1 on 3T3 cells. In contrast, PEI25 and PEI10 were not toxic at 

100 µg.mL-1 when they were associated with SiNPs. Hence, it should be possible to 

counterbalance the lower ability of PEI10-SiNP to produce IL-10 by using higher doses than 

PEI25 
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Figure IV-3 Cell viability of 3T3T mouse fibroblasts after 4 h incubation and 44 h 

transfection as evaluated with Alamar Blue test and calculated as the percentage of the control 

(n=3). 

IV-3-3.Production of hIL-10 from SiNP-Collagen Nanocomposites 

The ability of 3T3 cells to produce IL-10 was evaluated in a 3D context after cell 

encapsulation within a collagen hydrogel to form nanocomposites. Unlike the nanocomposites 

made with pGLuc, the synthesis of IL-10 was already detectable from day 2 regardless of the 

transfection system used (Figure IV-4). The cell transfection was not associated with any 

toxicity for the fibroblasts (Figure IV-5). The IL-10 synthesis reached a maximum at day 5 

with concentrations comparable to those obtained in 2D conditions. This delay of synthesis 

could be attributed to the time for 3T3 cells to migrate within the collagen network and 

encounter transfection systems. The slight decrease of IL-10 concentration at day 7 could be 

due to the IL -10 instability in culture medium 17. 

 

Figure IV-4. Production of hIL-10 by 3T3 mouse fibroblasts encapsulated within silica-

collagen nanocomposites (n = 3). Variance of the IL-10 expression among groups 

PEI25−SiNP, PEI10−SiNP was determined by one-way ANOVA with Tukey posthoc test (*P 

< 0.05, ** P < 0.01). 
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Figure IV-5. Cell viability of 3T3 fibroblasts co-immobilized with phIL-10 complexes in 

collagen hydrogels after 7 days, as evaluated with Alamar Blue test and calculated as the 

percentage of the control (n=3). 

 

IV-3-4. Test of Primers 

The electrophoresis of the PCR products revealed the presence of intense bands for all the 

couples of primers tested (Figure IV-6). The PCR products had the appropriate size 

evidencing the efficiency and the specificity of the reaction. However, this specificity will be 

checked with the melting curve at the end of the real time PCR. For the further experiments, 

we decided to select TNF-α C1 and GAPDH as housekeeping gene.   

 

 

Figure IV-6 Agarose gel electrophoresis for cDNA after reverse transcription for TNF-α C2, 

GAPDH, 18 S and TNF-α C1. 
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IV-3-5. Activation of macrophages by LPS 

The ability of LPS to activate macrophages was evaluated by measuring the expression level 

of TNF-α, a marker of inflammation. In contact with a component of the bacterial outer 

membrane (LPS), macrophages adopt a pro-inflammatory phenotype called M1. Irrespective 

of the dose of LPS used in this experiment, the macrophage activation was maximal one hour 

after LPS addition (Figure IV-7). Then, the TNF-α amount decreased to reach a level closed 

to the basal value of control samples (without activation by LPS) after 6 hours. The value 1 

(one) was given to control samples and the expression of TNF-α was calculated by 

comparison with this basal level.  

 

Figure IV-7 The mRNA level of TNF-α at different time points, determined by qPCR and 

showed in the ratio compared with that of control group (n=2). Variance of the TNF-α 

expression among 1, 3 and 6 h was determined by one-way ANOVA with Tukey posthoc test. 

*P<0.05 

IV-3-6. Anti-inflammatory effect of the synthesized IL-10 in 2D 

Several doses of hIL-10 and different conditions were tested to analyze the effect of this 

cytokine on the TNF-α expression. hIL-10 was used to modulate inflammation because its 

sequence is close to that of mouse IL-10. In addition, it has been shown hIL-10 had an 

activity on mouse cells. The pre-treatment of macrophages with hIL-10 one hour before the 
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addition of LPS clearly impacted the effect of the biomolecule (Figure IV-8). The highest 

degrees of TNF-α downregulation were reached with the hIL-10 pre-treatment. In addition, 

the downregulation was dose-dependent regardless of the delay after LPS activation (1 or 3 

hours). The best results were obtained with an analysis one hour after activation and with IL-

10 pretreatment. The concentration of IL-10 at 0.1 ng.mL-1 inhibited the expression of the 

TNF-α gene by 25%. This inhibition reached 75% when a concentration of 1 ng.mL-1 was 

used. Therefore we decided to select these conditions for the further experiments in 3D with 

nanocomposites; i.e the IL-10 pre-treatment, LPS activation and analysis after 1 h. 

 

 

Figure IV-8 The mRNA level of TNF-α at different time points, determined by qPCR and 

showed in the ratio compared with that of control group. The number before “+” indicates the 

time (0 or 1 h) for pretreatment with IL-10 while the number after indicates incubation time 

for IL-10+LPS (n=3). Variance of the TNF-α expression among all the groups was 

determined by one-way ANOVA with Tukey posthoc test (*P < 0.05, ** P < 0.01, ** P < 

0.001). 
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IV-3-7. Effect of IL-10 produced from silica-collagen nanocomposites on activated 

macrophages 

Supernatants collected from nanocomposites were tested on activated macrophages seeded on 

plastic. The control used in this experiment was the activated macrophages, with the aim of 

analyzing the modulation of their activation. Taking into account the doses of IL-10 released 

from nanocomposites, the downregulation of the TNF-α gene was expected in every 

condition. Indeed, the concentrations of IL-10 produced by nanocomposites were always 

higher than 0.1 ng.mL-1 regardless of the type of transfection systems and the time point 

considered (day 2, 5 and 7). Surprisingly, the inhibition of the TNF-α expression was only 

observed with the PEI10-SiNP systems (Figure IV-9).  

 

Figure IV-9. The mRNA level of TNF-α at different time points, determined by qPCR and 

showed in the ratio compared with that of control group. Variance of the TNF-α expression 

level between control and PEI10-SiNP on 2, 5 and 7 d was determined by non-paired two 

tailed t test, ***P<0.001. 

These results are not logical in regards with our previous data. For instance, the high 

quantity of IL-10 produced with the free form of PEI25 should have dramatically 

downregulated the expression of pro-inflammatory molecules such as TNF-α. This shades 
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serious doubt about the validity of these experiments that will need. These results may be 

explained by the weak activation of macrophages. To verify this point, unactivated 

macrophages should be used as negative controls. Another possibility would lie in the 

unstability of IL-10 in the culture medium. The apparent in vivo half-life of i.p. injected IL-10 

was approximately 2 h in mice.16 Kenis et al studied stability of IL-10 in human serum, and 

the degradation of IL-10 was found both concentration and temperature dependant17. The 

serum concentration of IL-10 samples at 40oC was decreased to 70 % after 1 day’s storage. 

Therefore this point will need to be studied further. 

 

IV-4 CONCLUSIONS AND PERSPECTIVES 

In this study we have shown that collagen-silica nanocomposites are able to produce effective 

doses of IL-10 which inhibit the synthesis of pro-inflammatory cytokines. The system in 

which PEI10-SiNP:DNA complexes are immobilized give the best performance. As the 

secretion of Il-10 increases until day 5, the modulation of inflammation is time lapse 

dependent. As a consequence, nanocomposites could act as spatio-temporal gene delivery 

systems. The nanocomposites could slightly modulate the inflammation to permit the wound 

debridement by macrophages during the first days after the injury. In a second time, the 

inhibition would be more effective to switch towards the proliferative phase of tissue repair. 

Beyond its anti-inflammatory, the delivery of IL-10 is crucial for wound healing as this 

cytokine as an effect on the organization of the extracellular matrix (ECM). Indeed it has been 

shown that transgenic mice exhibited impaired scaring with fragile ECM 18. 

One possible step further in this study would rely on the design of a more complex 

fully 3D in vitro model. As a model of a chronic wound environment, macrophages may be 

encapsulated within a collagen gel and activated by LPS. Collagen-based nanocomposites 

incorporating fibroblasts and phIL-10-PEI-SiNP complexes can be applied onto this gel and 

their effect analyzed over one week. After transfection, fibroblasts would work as a bioreactor 

for the production of IL-10, that can act on macrophages to downregulate the expression of 

pro-inflammatory cytokines. As a consequence, pro-inflammatory macrophages may be 

differentiated into wound healing macrophages (Figure IV-10). 
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Figure IV-10. Towards a fully 3D model to study the ability of silica-collagen 

nanocomposites to modulate inflammation in a model of chronic wound.  
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CONCLUSIONS AND PERSPECTIVES 
 

The objective of this thesis was to develop a wound dressing made of collagen type I 

hydrogel and achieve co-delivery of cells and therapeutic genes to promote healing processes 

in chronic wounds. 

To this end, we first developed a non-viral gene delivery system based on silica 

nanoparticles (SiNP) by optimizing particle size, PEI molecular weight as well as PEI 

conjugation method to achieve a high transfection efficiency while reducing the cytotoxicity 

of PEI. Then, by co-encapsulating mouse fibroblasts and pDNA-PEI-SiNP complexes during 

gelation of collagen hydrogel, a cell factory was constructed for the sustained and localized 

gene delivery over one week.  

By carrying out experiments both in 2D and 3D configurations, we obtained some 

interesting findings for gene delivery systems with or without scaffold: 

1. Surface modification plays a more important role than size variation for efficient gene 

delivery by silica nanoparticles  

Particle size is an important parameter for cellular uptake and generally the ease for cellular 

internalization decrease with the increase of particles size. However, PEI-coated silica 

particles with size from 50 nm to 200 nm showed no significant variation in terms of cell 

tranfection. Furthermore, when 200 nm SiNP were modified with PEI of different MWs, 

different transfection efficiencies were obtained. Surpringly, SiNP coated with intermediate 

size polymers (10 kDa) achieved the highest transfection efficiency Moreover, when we 

modified particles of same size with -SO3 or -Cl before the introduction of PEI, significant 

difference in cell transfection were also observed. More specifically, the transfection of SiO2-

SO3@PEI particles was on order lower than that of SiO2@PEI while no protein expression 

was observed with the SiO2-Cl@PEI system. 

2. Conjugation mode of PEI on silica surface has noticeable impact on cell transfection 

Three methods, i.e. direct adsorption, adsorption mediated by–SO3, and covalent bonding were 

adopted to graft PEI on silica nanoparticles. These particles showed differences in particle 

distribution, PEI content, PEI conformation while sharing similar surface charge and 

closeDNA binding capacity. More importantly, significantly different transfection efficiency 

was obtained in the trend of SiNP@PEI > SiNP–SO3@PEI > SiNP–SO3@PEI. We have 



 166 

proposed that the persistence of significant interactions between the silica surface and PEI in 

the acidic conditions of the endosomes can be detrimental to the intracellular trafficking of the 

plasmid, considering that PEI-DNA should be released from the particle for translocation into 

nucleus.  

3. Silica nanoparticles can alleviate cytotoxicity originating from PEI 

During this work, cytotoxicity studies were performed on mouse fibroblasts with different 

PEIs associated to several types of particles, in a wide range of doses. There is clear trend that 

cytotoxicity increases with the increase of PEI molecular weight, with PEI 25 kDa becoming 

detrimental at 10 µg/ml, PEI 10 kDa at 50 µg/ml while no toxic effect was found for PEI 1.8 

kDa even at 100 µg/ml. Meanwhile, pure particles and particles modified with –SO3 or –Cl 

exhibited no toxicity in the testing range. More interestingly, for all PEI-coated particles, cell 

viability was above 80% throughout all the tests. In conclusion, the association of PEI with 

silica nanoparticles can significantly reduce its cytotoxicity, allowing the increase of the doses 

that can be used for transfection experiments. 

4. Transfection efficiency and cytotoxicity differ among cell lines 

PEI-SiNP particles also showed the ability to transfect human cells, fibroblasts and 

keratinocytes, although to a lower extent than mouse fibroblasts. This difference in 

transfection efficiency was attributed to the lower proliferation rate of the primary cells. 

Furthermore, keratinocytes were more sensitive to PEI-coated particles, requiring to decrease 

the plasmid :particle weight ratio and therefore lowering the maximal transfection efficiency 

5. Silica-collagen nanocomposites can achieve localized and sustained gene delivery 

We have built three 3 D models to better understand the release mechanism from or within 

silica-collagen nanocomposites. Our results indicated that, once immobilized within the 

collagen gels, particles do not release complexed plasmids outside the material. Moreover, 

sustained gene delivery can also be achieved by adding complexes to pre-formed cellularized 

hydrogels. This illustrates that the method used to associate the complexes with the 3D matrix 

is a key factor for scaffold-based gene delivery system. In particular, the migration and 

proliferation of cells within the gel seem to be crucial to obtain an effective transfection. 

In addition, sustained expression of proteins from silica-collagen nanocomposites was 

detected for two plasmids, pGluc and phIL-10, over one week. Noticeably, in the case of 

pGluc, accumulative release of luciferase was presented as luciferase is a very stable protein 
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that can stand a relatively high temperature (37oC) over this period. For IL-10, only temporal 

concentration was shown as it undergoes rapid degradation in experimental conditions. 

6. Silica-collagen nanocomposites have the potential to co-deliver cells and therapeutic 

genes  

It was possible to achieve high levels of production of IL-10 by fibroblasts transfected by 

phIL-10-PEI-SiNP nanoparticles in 2D culture. The expressed protein showed a significant 

ability to reduce TNF-α mRNA levels in LPS-activated macrophages. The sustained release 

of IL-10 from the nanocomposites was also observed. Unfortunately our first evaluation of 

the anti-inflammatory effect of the released proteins was not conclusive and should be 

reproduced. In parallel, developing more realistic 3D models of wound tissues would allow to 

improve the relevance of our in vitro studies.    

Perspectives 

Although silica-nanocomposites exhibited desirable sustained gene delivery in preliminary 

studies, many challenges remain for clinical applications: First, a more efficient non-viral 

gene delivery system should be developed as our particles still exhibited lower transfection 

efficiency than free PEI 25 kDa. Therefore it would be interesting to change the nature of the 

grafted moiety, for instance introducing carboxylic acid groups, for more efficient cell 

transfection. Secondly, our hypothesis concerning PEI-DNA detachment from the particle 

surface has to be supported by further experiments. Mimicking the acidic environment of 

endosomes and neutral cytoplasm could allow to investigate the effect of pH variations on the 

intracellular fate of the vectors.  

From the point of view of applications, a more robust collagen hydrogel must be 

developed. In our study, the used collagen concentration was low, leading to materials that 

can be difficult to handle by surgeons. Increasing collagen concentration or introducing 

another biocompatible polymer could be further explored. However, it will be important to 

keep in mind that cellular proliferation and migration are key phenomena in the transfection 

process. As matrix stiffness is a stimulus for cell proliferation, designing dense matrices could 

favor the transfection 

Last but not least, the anti-inflammation properties of silica-collagen nanocomposites 

are still to be confirmed. The incorporation of other bioactive molecules, such as antibiotics, 

within the hydrogel and/or the silica particles may also be envisioned. This would allow to 

progress further towards a medicated dressing capable of delivering multiple therapeutical 
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agents, and therefore to address the many challenges currently faced to efficiently favor tissue 

repair. 
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Annex: List of abbreviations 

 

AAV Adeno-associated virus 
AV Adenovirus 
AS-ODN Anti-sense oligonucleotides 
Bcl-2 B cell lymphoma-2 
β-CD β-cyclodextrin 
CSF Colony-stimulating factor 
Cl-PTES Chloropropyltriethoxysilane  
CRISPR Clustered regularly interspaced short palindromic repeat 
DAPI 4’,6-diamidino-2-phenylindole dihydrochloride 
DC-cholesterol 3β-[N-(N',N'-dimethylaminoethane)-caramoyl] chelesterol 
DLS Dynamic light scattering 
DOGS Dioctadecylamidoglycylspermine 
DMEM Dulbecco’s Modified Eagle’s Medium 
DOPE Dioleoylphosphatidylethanolamine 
DOTAP 1,2-dioleoyl-3-trimethylammonium-propane 
DOTMA N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride 
DOX Doxorubicin 
ELISA Enzyme-linked immunosorbent assay 
ECM Extracellular matrix 
EGF Epidermal growth factor 
FGF Fibroblast growth factor 
FITC Fluorescein isothiocyanate 
GAM Gene activated matrix 
GM-CSF Granulocyte/macrophage colony-stimulating factor 
HIF-1α Hypoxia-inducible factor alpha 
IL Interleukin 
IGF-I Insulin-like growth factor-I 
KGF Keratinocyte growth factor 
LPS Lipopolysaccharides 
LPMSN Large pored mesoporous silica nanoparticle 
LV Lentivirus 
miRNA microRNA 
mRNA Messenger RNA 
MSN Mesoporous silica nanoparticle 
MPTMS 3-mercaptopropyltrimethoxysilane 
NF-κB Nuclear factor-κB 
NSN Nonporous silica nanoparticle 
nDNA Compacted DNA 
NMR Nuclear magnetic resonance 
NO Nitric oxide 
PAGA Poly [-(4-aminobutyl)-L-glycolic acid] 
PAMAM Polyamidoamine 
PCL Polycaprolactone 
PCR Polymerase chain reaction 
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PDGF Platelet-derived growth factor 
pDNA Plasmid DNA 
PEI Polyethylenimine 
PEG Polyethylene glycol 
PFA Paraformaldehyde 
pGluc Plasmid encoding secreted Gaussia luciferase 
PHEMA Poly(2-hydroxyethyl methacrylate) 
phIL-10 Plasmid encoding human interleukin-10 
PLGA poly(lactic-co-glycolic acid) 
PLL Poly-L-lysine 
PU Polyurethane 
PVA Poly(vinyl alcohol) 
PVP Polyvinylpyrrolidone 
rhPDGF Recombinant human platelet-derived growth factor 
RLU Relative lighte unit 
ROS Reactive oxygen species 
RV Retroviral 
SEM Scanning electron microscopy 
SiNP Silica nanoparticle 
siRNA Small interfering RNA 
TALEs Transcription activator-like effector nuclease 
TEM Transmission electron microscopy 
TEOS Tetraethyl orthosilicate  
TGA Thermogravimetric analysis 
TNF Tumor necrosis factor 
Tris-HCl Tris(hydroxymethyl)aminomethane hydrochloride 
VEGF Vascular endothelial growth factor 
XPS X-ray photoelectron spectroscopy 
ZFN Zinc-finger nuclease 
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Résumé. Ce travail concerne l’évaluation de nanoparticules de silice associées à la poly-
ethylèneimine (PEI) comme vecteurs de délivrance de gène pour le traitement des plaies 
chroniques de la peau. Des matériaux nanocomposites associant des complexes formés par 
l’association de ces particules hybrides et d’ADN avec des hydrogels de collagène colonisés 
par des fibroblastes 3T3 ont été élaborés. Grâce à la modulation de la taille de la particule et 
de la masse moléculaire du polymère, il a été possible de réaliser la transfection des 
fibroblastes au sein du gel, permettant l’expression génique pendant une semaine. Ces études 
montrent le rôle clé joué par la prolifération et la migration cellulaire sur l’efficacité de la 
transfection. L’efficacité de la transfection a ensuite été modulée en modifiant les interactions 
silice-PEI. Les résultats obtenus suggèrent que le détachement du complexe de la particule 
dans les endosomes est une étape clé de ce processus. La transfection de cellules humaines 
primaires  a aussi été étudiée en vue d’applications in vivo. La transfection a été observée 
avec des fibroblastes et des keratinocytes humains en culture et avec les fibroblastes au sein 
des gels, mais avec des efficacités moindres que pour les cellules 3T3. Ceci est attribué au 
plus faible taux de prolifération des cellules primaires. Enfin la capacité des nanocomposites à 
moduler l’inflammation a été testée sur des macrophages humains activés. Ces systèmes 
permettent la synthèse soutenue d’IL-10 par les fibroblastes et l’inhibition de l’expression de 
TNF-alpha chez les macrophages. 
 

Abstract. This work is devoted to the evaluation of silica nanoparticles associated to poly-
ethyleneimine (PEI) as vectors for gene therapy in the context of skin chronic wounds repair. 
Nanocomposite materials associating complexes formed by the association of these hybrid 
particles and DNA with collagen hydrogels cellularized with 3T3 fibroblasts have been 
prepared. Thank sto the modulation of particle size and polymer molecular weight, it has been 
possible to achieve fibroblast transfection within the gel, allowing for sustained protein 
expression over one week. These studies evidence the key role of cell proliferation and 
migration on transfection efficiency. The transfection process has been further modulated by 
modification of the silica-PEI interactions. The results suggest that the complex detachment 
from the particles within the endosomes is a key step in this process. The transfection of 
human primary cells has also been studied foreseeing in vivo applications. Human fibroblasts 
and keratinocytes have been successfully transfected in culture and, in the case of fibroblasts, 
within collagen hydrogels, but with lower efficiency than with 3T3 cells. This has been 
attributed to the lower proliferation rate of primary cells. Finally the ability of 
nanocomposites to modulate inflammation has been evaluated on activated human 
macrophages. These systems have allowed for the sustained production of IL-10 by 
fibroblasts and the inhibition of TNF-alpha expression by macrophages. 

 

 


