
HAL Id: tel-01371515
https://theses.hal.science/tel-01371515

Submitted on 26 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feature selection for semi-supervised data analysis in
decisional information systems

Mohammed Hindawi

To cite this version:
Mohammed Hindawi. Feature selection for semi-supervised data analysis in decisional information
systems. Artificial Intelligence [cs.AI]. INSA de Lyon, 2013. English. �NNT : 2013ISAL0015�. �tel-
01371515�

https://theses.hal.science/tel-01371515
https://hal.archives-ouvertes.fr


INSTITUT NATIONAL DES SCIENCES APPLIQUÉES - LYON

ÉCOLE DOCTORALE INFOMATHS
INFORMATIQUE ET MATHEMATIQUES

T H È S E
présentée pour obtenir le grade de

DOCTEUR DE L’INSA DE LYON

Spécialité : INFORMATIQUE

par

Mohammed HINDAWI

Sélection de Variables pour l’Analyse
Semi-Supervisée des Données dans les
Systèmes d’Information Décisionnels

soutenue publiquement le 21, Février, 2013

devant le jury :

Président : Mohamed NADIF - Pr. Université Paris 5

Rapporteurs : Younès BENNANI - Pr. Université Paris 13

Yann GUERMEUR - DR. CNRS (LORIA - Nancy)

Examinateur : Yves LECHEVALLIER - DR. INRIA (Rocquencourt)

Directeurs : Khalid BENABDESLEM - MCF. Université Lyon 1

Alexandre AUSSEM - Pr. Université Lyon 1

Jean-François BOULICAUT - Pr. INSA de Lyon

2013ISAL0015

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



NATIONAL INSTITUTE OF APPLIED SCIENCES - LYON

DOCTORAL SCHOOL INFOMATHS
INFORMATIQUE ET MATHEMATIQUES

P H D T H E S I S
submitted in partial fulfillment for the degree of

Doctor of Philosophy

in the National Institute of Applied Sciences - Lyon

Specialty : COMPUTER SCIENCE

by

Mohammed HINDAWI

Feature Selection for Semi-Supervised Data
Analysis in Decisional Information Systems

defended on February 21, 2013

before the committee :

President : Mohamed NADIF - Prof. University of Paris 5

Reviewers : Younès BENNANI - Prof. University of Paris 13

Yann GUERMEUR - DR. CNRS (LORIA - Nancy)

Examiner : Yves LECHEVALLIER - DR. INRIA (Rocquencourt)

Advisors : Khalid BENABDESLEM - Assoc. Prof. University of Lyon 1

Alexandre AUSSEM - Prof. University of Lyon 1

Jean-François BOULICAUT - Prof. INSA of Lyon.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



 wy� - TyqybWt�� �wl`l� ¨nVw�� dh`m��

�A�wf�� ­�Cwt�d�� TFCd�
�AyRA§r��¤ Ty�A�wl`m��

­�Cwt� T�¤rV�

T�C Yl� �wO�l� 
�d�

Ty�A�wl`m�� TFdnh�� ¨� Cwt� 

�§dq�

©¤�dn¡ dm��

�A�Ayb�� �yl�� �dh� ��rJ� ¢bK� �Af}�wm�� CAyt��

C�rq�� ÐA��� �A�wl`� Tm\�� ¨�

: �� Tf�¥m�� Tn�l�� �A�� 2013 ªAbJ 21 �§CAt� ¾Anl� Ahn� �A�d�� ��

Tn�l�� Hy¶C - (5 H§CA� T`�A�) ¨`�A� ÐAtF� - �y\� dm�� dys��

���r� - (13 H§CA� T`�A�) ¨`�A� ÐAtF� - ¨�AÌn� H�w§ dys��

- (A§Cw� - Tyml`�� �w�bl� ¨nVw�� z�rm��) �A��� r§d� - Cw�Cw�  A§ dys��

���r�

Ttm�±�¤ Ty�A�wl`m�� �w�b� ¨nVw�� dh`m��) �A��� r§d� - ¢yy�A�wJw� �§� dys��

P�A� - (Cwk�w�¤C -

�rKm�� ÐAtF±� - (1  wy� T`�A�) d�As� ¨`�A� ÐAtF� - �®s�� db� �� d�A� dys��

d�Asm�� �rKm�� - (1  wy� T`�A�) ¨`�A� ÐAtF� - �F¤� Cdnsk�� dys��

- TyqybWt�� �wl`l� ¨nVw�� dh`m��) ¨`�A� ÐAtF� - wky�w� �ws��r�  A� dys��

d�Asm�� �rKm�� - ( wy�

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



To the honest rebels who are elminating the "noise" that had always affected

the performance of syrian people. . .

— Mohammed

To the “values” that were always “relevant”

And never “redundant” in my life. . .

My parents, my sisters, my wife and my children

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



Acknowledgements

First of all, I am grateful to The Almighty God for establishing me to complete

this work.

I wish to express my sincere thanks to the panel of expert examiners before

whom I defended this work for their questions and remarks that enriched the

work. In detail, I wish to thank Mr. Younès Bennani, Professor at University of

Paris 13 and Mr. Yann Guermeur, Research Director at CNRS-LORIA for their

reports that highlighted the ideas and contribution of this work. I also thank

Mr. Mohamed Nadif, Professor at University of Paris 5 for accepting to preside

the defense committee. Besides, I would like to thank Mr. Yves Lechevallier,

Research Director at INRIA-Rocquencourt for accepting to examine my work.

I would like to express my sincere gratitude to my advisors Mr. Alexandre

Aussem, Professor at University of Lyon 1, and Mr. Jean-François Boulicaut,

Professor at INSA de Lyon for their help especially at the first and last phases

of my PhD. Besides, I am deeply indebted to my supervisor, Mr. Khalid

Benabdeslem, Associate professor at University of Lyon 1 who has helped

me shape my research, and who has always been supportive and patient

throughout the whole period of my study until the very last day before defense.

I would like also to express my gratitude to Mr. Haytham Elghazel, associate

professor at University of Lyon 1 for his endless support and encouragement

since the very first day of my study. I would also like to thank all my colleagues

at LIRIS laboratory for creating such an enjoyable working environment.

I owe a debt of gratitude to Mr. Mazen Said, Professor at University of Aleppo,

for believing in me, for supporting me during the whole period of my studies,

iii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



Acknowledgements

and for cheering me up whenever I felt uneasy.

Finally, I am particularly indebted to my family, without whom I would never

have done anything. I would like to thank my parents and my sisters who

helped me fulfilling my dreams. Besides, I would like to thank my wife and my

children who helped my establishing new dreams

Villeurbanne, February 25, 2013 Mohammed Hindawi

iv

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



Résumé

La sélection de variables est une tâche primordiale en fouille de données et

apprentissage automatique. Il s’agit d’une problématique très bien connue

par les deux communautés dans les contextes, supervisé et non-supervisé. Le

contexte semi-supervisé est relativement récent et les travaux sont embryon-

naires. Récemment, l’apprentissage automatique a bien été développé à partir

des données partiellement labélisées. La sélection de variables est donc de-

venue plus importante dans le contexte semi-supervisé et plus adaptée aux

applications réelles, où l’étiquetage des données est devenu plus couteux et

difficile à obtenir.

Dans cette thèse, nous présentons une étude centrée sur l’état de l’art du

domaine de la sélection de variable en s’appuyant sur les méthodes qui opèrent

en mode semi-supervisé par rapport à celles des deux contextes, supervisé

et non-supervisé. Il s’agit de montrer le bon compromis entre la structure

géométrique de la partie non labélisée des données et l’information supervisée

de leur partie labélisée. Nous nous sommes particulièrement intéressés au

«small labeled-sample problem» où l’écart est très important entre les deux

parties qui constituent les données.

Pour la sélection de variables dans ce contexte semi-supervisé, nous proposons

deux familles d’approches en deux grandes parties. La première famille est

de type «Filtre» avec une série d’algorithmes qui évaluent la pertinence d’une

variable par une fonction de score. Dans notre cas, cette fonction est basée sur

la théorie spectrale de graphe et l’intégration de contraintes qui peuvent être

extraites à partir des données en question. La deuxième famille d’approches

est de type «Embedded» où la sélection de variable est intrinsèquement liée à

un modèle d’apprentissage. Pour ce faire, nous proposons des algorithmes à

base de pondération de variables dans un paradigme de classification automa-
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Résumé

tique sous contraintes. Deux visions sont développées à cet effet, (1) une vision

globale en se basant sur la satisfaction relaxée des contraintes intégrées direc-

tement dans la fonction objective du modèle proposé ; et (2) une deuxième

vision, qui est locale et basée sur le contrôle stricte de violation de ces dites

contraintes. Les deux approches évaluent la pertinence des variables par des

poids appris en cours de la construction du modèle de classification.

En outre de cette tâche principale de sélection de variables, nous nous intéres-

sons au traitement de la redondance. Pour traiter ce problème, nous proposons

une méthode originale combinant l’information mutuelle et un algorithme de

recherche d’arbre couvrant construit à partir de variables pertinentes en vue

de l’optimisation de leur nombre au final.

Finalement, toutes les approches développées dans le cadre de cette thèse sont

étudiées en termes de leur complexité algorithmique d’une part et sont validés

sur des données de très grande dimension face et des méthodes connues dans

la littérature d’autre part.

Mots clés : Sélection de variables, données semi-supervisées, contraintes, re-

dondance, réduction de dimension.
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Abstract

Feature selection is an important task in data mining and machine learning

processes. This task is well known in both supervised and unsupervised con-

texts. The semi-supervised feature selection is still under development and far

from being mature. In general, machine learning has been well developed in

order to deal with partially-labeled data. Thus, feature selection has obtained

special importance in the semi-supervised context. It became more adapted

with the real world applications where labeling process is costly to obtain.

In this thesis, we present a literature review on semi-supervised feature selec-

tion, with regard to supervised and unsupervised contexts. The goal is to show

the importance of compromising between the structure from unlabeled part of

data, and the background information from their labeled part. In particular,

we are interested in the so-called «small labeled-sample problem» where the

difference between both data parts is very important.

In order to deal with the problem of semi-supervised feature selection, we

propose two groups of approaches. The first group is of «Filter» type, in which,

we propose some algorithms which evaluate the relevance of features by a

scoring function. In our case, this function is based on spectral-graph theory

and the integration of pairwise constraints which can be extracted from the data

in hand. The second group of methods is of «Embedded» type, where feature

selection becomes an internal function integrated in the learning process. In

order to realize embedded feature selection, we propose algorithms based

on feature weighting. The proposed methods rely on constrained clustering.

In this sense, we propose two visions, (1) a global vision, based on relaxed

satisfaction of pairwise constraints. This is done by integrating the constraints

in the objective function of the proposed clustering model; and (2) a second

vision, which is local and based on strict control of constraint violation. Both

vii
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Abstract

approaches evaluate the relevance of features by weights which are learned

during the construction of the clustering model.

In addition to the main task which is feature selection, we are interested in

redundancy elimination. In order to tackle this problem, we propose a novel

algorithm based on combining the mutual information with maximum span-

ning tree-based algorithm. We construct this tree from the relevant features in

order to optimize the number of these selected features at the end.

Finally, all proposed methods in this thesis are analyzed and their complexities

are studied. Furthermore, they are validated on high-dimensional data versus

other representative methods in the literature.

Keywords: Feature selection, semi-supervised data, pairwise constraints, re-

dundancy, dimensionality reduction.
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1 General Introduction

1.1 Context and Motivations

In the various fields of engineering and nowadays applications, data acquisi-

tion tools have extensively proliferated, and decisional information systems

are then requiring more complex analysis of large amount of data (signals,

images, documents, etc.). However, while this accumulation of data is sure

to have useful information, the abundance of such data poses problems of

structuring and knowledge extraction. Indeed, databases are usually defined

by two-dimensional arrays corresponding to data instances and attributes

characterizing these data. The instances and/or attributes can be of very high

dimensionality, which can be a problem during storage, exploration and anal-

ysis of such data in several application domains. In addition, it is important

to develop specific tools for data processing that are efficient in extracting the

underlying knowledge. Knowledge extraction is carried out according to two

directions, 1) the categorization of data (Cluster analysis), and/or 2) dimen-

sionality reduction of the representation space which can help in improving

the performance of learning algorithms. Moreover, while clustering aims to

discover the intrinsic structure of a dataset by forming groups that share similar

characteristics, dimensionality reduction is considered as a crucial step in the

process of data pre-processing (filtering, cleaning, removal of outliers, etc..).

Indeed, for data belonging to a high-dimensional space, some attributes do

not provide any information or express noise and others might be redundant

1
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Chapter 1. General Introduction

or irrelevant. In general such useless dimensionality makes the algorithms

complex, inefficient, less general and difficult to interpret. The methods of

dimensionality reduction may be roughly divided into feature extraction and

feature selection approaches. Feature Extraction methods transform the prob-

lem into a lower dimensional space by proposing new features extracted from

the original ones, while feature selection measures the relevance of individual

features (or subsets of features). Feature selection depends largely on explicit

and/or implicit background knowledge about data.

With the plenty of acquired data, the labeling procedure performed by a human

expert can be tedious, costly in time and labor. This is why, for many real

world applications, it is usual that databases are composed of large amount of

unlabeled data, and few number of labeled instances. This learning context is

called "semi-supervised" because the analyst is supposed to use both labeled

and unlabeled data in the learning process.

The general problem of feature selection is well addressed in the literature

by data mining and machine learning communities. The goal of this task is

to remove both irrelevant and redundant features in order to decrease the

complexity and improve the interpretability and the performance of learn-

ing algorithms [Guan et al., 2011]. Feature selection is well studied in both

supervised and unsupervised contexts in several works [Guyon and Elisseeff,

2003, Dy and Brodley., 2004]. In the context of supervised feature selection,

the relevance of a feature is evaluated by its correlation with the class label.

The unsupervised feature selection is considered as a much harder problem,

because of the absence of class labels that could guide the search for relevant

information.

Recently, learning from both labeled and unlabeled data has been gaining a

considerable interest. Thus, the semi-supervised feature selection became

more important and more adapted to real-world applications whereas labeled

data are hardly and costly obtained. In addition, the task is more challenging

with the so called “small labeled-sample” problem in which the amount of data

that is unlabeled can be much larger than the amount of labeled data [Zhao

2
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and Liu, 2007a]. In order to deal with the aforementioned specification of semi-

supervised data, novel approaches were proposed instead of using the methods

from the neighboring paradigms (supervised and unsupervised). On the one

hand, supervised feature selection algorithms require a large amount of labeled

training data. As a result, such algorithms provide insufficient information

about the structure of the target concept, and thus could fail to identify the

relevant features that are discriminative to different classes. On the other

hand, unsupervised feature selection algorithms ignore label information, thus

may lead to performance deterioration. Therefore, semi-supervised feature

selection has now special interest as being a relatively recent domain, where

few of works exist in the literature.

Semi-supervised feature selection algorithms can be categorized as filter, wrap-

per and embedded methods. Filter model techniques examine intrinsic proper-

ties of the data to evaluate the features prior to the learning task, while Wrapper

approaches evaluate the features using the learning algorithm that will ulti-

mately be employed. They "wrap" the selection process around the learning

algorithm. Finally, embedded methods are locally specific to a model during

its construction.They aim to learn the feature relevance with the associated

learning algorithm. In other terms, they incorporate feature selection and

learning algorithm in the same objective function.

1.2 Contributions

The main motivation of this thesis is the semi-supervised feature selection

from high-dimensional data, we try to deal with this problem from different

viewpoints. Feature selection is known to be the process by which the irrelevant

and redundant features are identified. Therefore, we first tackle the problem of

relevant feature selection, and then the redundancy elimination.

In order to identify relevant features, we firstly propose a specific semi-super-

vised feature selection score that we call, Constrained Laplacian Score (CLS).

In this score, we assess the exploiting of the two parts of semi-supervised

dataset, i.e. labeled and unlabeled parts, with efficient and low computational-

3
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Chapter 1. General Introduction

complexity cost function. CLS uses information in the labeled part of data after

transforming it into pairwise constraints. The reason lying behind using these

constraints is their efficiency in improving the learning performance, and be-

cause they are more general than class labels. In fact, these constraints can be

generated from class labels but not the opposite. In addition, these constraints

are easier to be identified a priori than the class labels (e.g. similarity may

generate a constraint but not labels). The use of constraints in our score raises

some challenges. First of all, constraints are rather few in semi-supervised

data, this makes their quality a critical issue. In addition, it is practically proven

that constraints might have noise which can deteriorate performance and

mislead the learning process. Therefore, the paucity of constraints and the

probable noise in them were the main problem which we tried to handle in

new approaches.

In order to cope with these problems we propose the employment of a con-

straint selection process based on a utility measure. In this sense, we propose

a Constraint Selection-based Feature Selection (CSFS) framework, by which

we improve the feature relevance function in order to weigh certain situations

where there are some conflicts between the data structure and the labels (e.g. if

two data points are relatively near to each other but have different labels).

Furthermore, in order to treat the redundancy in the selected relevant fea-

tures, we propose a graph-based approach in order to eliminate the redundant

features. The extended method, called Constraint Selection-based Feature

Selection with Redundancy Elimination (CSFSR), has proven -as expected- to

improve the quality of features (hence the underlying learning process) after

redundancy elimination.

In the other part, we propose two embedded approaches for feature selection

that we integrate with the well-known clustering algorithm (k-means). The first

approach, called Weighted Constrained k-means (wCKM), uses a fuzzy version

of k-means with a soft integration of pairwise constraints. This integration is

done by modifying the objective function in order to calculate the penalty of

constraint violation. In the second approach, called Local-to-Global Feature

4
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selection (L2GFS), we present a hard version of k-means with a strict control

of constraint violation.

The common point between wCKM and L2GFS is that both methods are based

on a weighted metric model. Moreover, both approaches proceed by feature

weighting for semi-supervised feature selection based on constrained k-means.

However, an essential difference between them is that the former is a direct

global approach which selects relevant features over all clusters, while the latter

is a local to global approach, which does first, a local feature weighting in order

to choose the cluster-relevant features, then it produces a global selection by

local weight aggregation.

The results of all approaches are promising and very competitive to several

representative methods of feature selection from high-dimensional data.

1.3 Organization of the report

In the remainder of this thesis, we will describe several approaches of dimen-

sionality reduction, especially the semi-supervised feature selection algorithms

available in the literature. Then, we will present our proposals with both filter

and embedded paradigms, as well as our algorithm for redundancy elimina-

tion. This is achieved through the course of the remaining chapters, which are

structured as follows:

• In chapter 2, we will describe a variety of representative dimensional-

ity reduction approaches. This includes feature extraction and feature

selection techniques in both supervised and unsupervised domains. In

addition, we will focus on approaches that are currently available in the

literature of semi-supervised feature selection, and we will discuss their

limitations. Especially, we will highlight the limitations related to the

nature of semi-supervised domain that we placed earlier in this chapter.

• In chapter 3, we will start by presenting our filter approaches for semi-

supervised feature selection, where the feature selection in this case is

5
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considered as an independent step of the learning process. We will show

different ways to deal with domain requirements such as paucity of labels

and inutility in constraints. We will also discuss an original graph-based

approach for redundancy elimination, which can be viewed as the other

part of feature selection.

• In chapter 4, we will present our embedded approaches for semi-super-

vised feature selection, which are achieved by integrating feature selection

in the k-means algorithm. We will propose two variants which take into

account the pairwise constraints generated from labels.

In chapter 3 and 4, we will present an extensive empirical study for all

the proposed methods. The experiments are done on high dimensional

benchmarking datasets downloaded from well-known repositories. We

will present also a variety of strategies and scenarios during the compar-

isons, and in different contexts.

• Finally, chapter 5 will conclude this thesis, focusing on the contributions

and limitations of the algorithms that we have developed, and will outline

future works that can be carried out to extend and enhance the proposed

ideas.

6
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2 Semi-Supervised Feature Selection

for Dimensionality Reduction

2.1 Introduction

Dimensionality reduction is a significant task when dealing with high-dimen-

sional data. It can be applied to reduce the dimensionality of the original data

and improve learning performance. By removing the irrelevant and redundant

features, or by effectively combining original features to generate a smaller set

of them with more discriminant power, dimensionality reduction techniques

bring the immediate effects of speeding up data mining algorithms, improving

performance, and enhancing model comprehensibility [Zhao and Liu, 2012].

Dimensionality reduction can be performed by two categories of techniques:

Feature extraction or Feature selection.

2.2 Feature Extraction

Feature extraction reduces dimensionality by generating a small set of new

features via combining the original ones (Figure 2.1). According to the label

information availability, feature extraction methods can be categorized into

supervised and unsupervised approaches. Fisher Linear Discriminant (FLD)

[Fisher, 1936] is an example of supervised feature extraction, which can extract

the optimal discriminant vectors when class labels are available. It is a classifi-

cation method which projects high-dimensional data onto a line and performs

7
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Reduction

Figure 2.1: General framework of feature extraction

classification in this one-dimensional space. It finds the linear discriminant

function between the given classes by minimizing the errors in the least square

sense. In [Bar-Hillel et al., 2005], the authors proposed a semi-supervised ver-

sion of FLD, called (cFLD). The idea behind (cFLD) is the integration of one

type of pairwise constraints (positive constraints) in (FLD) for the objective of

dimensionality reduction. cFLD was proposed as an interim-step for Relevant

Component Analysis (RCA). However, cFLD has the singular problem when

constraints are limited.

For unsupervised feature extraction methods, the popular Principal Compo-

nent Analysis (PCA) [Jolliffe, 2002] tries to preserve the global covariance struc-

ture of data when class labels are not available. It is categorized as an eigen-

vector method designed to model linear variability in high dimensional data.

In PCA, the linear projections of greatest variance are computed from the top

eigenvectors of the data covariance matrix.

Other methods can be found in the literature dealing with feature extraction, for

example (LLE: Locally Linear Embedding) [Roweis and Saul, 2000] is an unsu-

pervised learning algorithm which computes low-dimensional, neighborhood-

preserving embeddings of high-dimensional inputs. LLE proposes to learn

the global structure of nonlinear manifolds, such as those generated by face

images or text documents. Another feature extraction method is (k-PCA: Kernal

PCA) [Schölkopf et al., 1998] that generalizes PCA to the case where principal

8
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components in the input space are not the main interest, but the principal com-

ponents of variables, or features, which are non-linearly related to the input

space. The authors in [He and Niyogi, 2004] propose (LPP: Locality preserving

Projection) which is a graph-based feature extraction method. It builds a graph

incorporating neighborhood information of the dataset. Using the notion of

the Laplacian of the graph, it then computes a transformation matrix which

maps the data points to a subspace. This linear transformation is attended

to preserve local neighborhood information in a certain sense. Furthermore,

the authors in [Belkin and Niyogi, 2002] present a geometrically motivated

feature extraction algorithm (LE: Laplacian Eigenmap) which has a few local

computations and one sparse eigenvalue problem. The method reflects the

intrinsic geometric structure of the manifold using the Laplacian operator in

providing an optimal embedding.

2.3 Feature Selection

Feature selection attains dimensionality reduction by selecting a small set of the

original features (Figure 2.2). To realize this goal, a feature evaluation criterion

Figure 2.2: General framework of feature selection

is used with a search strategy to identify the relevant features. Actually, feature

selection has become an essential task for high-dimensional data analysis

in machine learning and data mining tasks. It is one of the effective means

to identify relevant features for dimensionality reduction [Jain and Zongker,

9
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Figure 2.3: Filter feature selection

1997]. This task has led to improved performance for many benchmarking

datasets [Frank and Asuncion, 2010, Zhao et al., 2011] as well as for real-world

applications over data such as digital images, financial time series and gene

expression microarrays [Guyon and Elisseeff, 2003]. Generally, feature selection

methods can be classified in three types: filter, wrapper or embedded.

The filter model techniques examine intrinsic properties of the data to evaluate

the features prior to the learning tasks [Yu and Liu, 2003] (Figure 2.3). In fact, the

independence from learning system makes the filter methods applicable to a

large variety of learning algorithm, and more robust against learning overfitting.

Moreover, filter approaches have lower computational complexity than the

other approaches.

Figure 2.4: Wrapper feature selection
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2.3. Feature Selection

The wrapper based approaches evaluate the features using the learning algo-

rithm that will ultimately be employed [Kohavi and John, 1997]. Thus, they

"wrap" the selection process around the learning algorithm (Figure 2.4).

In fact, wrapper methods select the most relevant features using an induction

algorithm. However, wrapper approaches are very prone to overfitting and

suffer from the high computational complexity.

The embedded methods are locally specific to models during their construction.

They aim to assess the feature usefulness with the associated learning algorithm

[Roweis and Saul, 2000] (Figure 2.5). In general, embedded feature selection

methods are better than wrapper methods when the goal is the relevance of

features towards certain algorithm, this is because embedded methods are

less computationally expensive and less prone to overfitting than wrapper

methods [Saeys et al., 2007].

Feature selection is a well addressed in supervised and unsupervised domains

with several works [Guyon and Elisseeff, 2003, Dy and Brodley., 2004]. In the

supervised context, the relevance of a feature can be evaluated by its corre-

lation with the class label, Fisher score [Duda et al., 2000], for example, is a

supervised method which seeks features with best discriminant ability, it tries

to find a subset of features, such that in the data space spanned by the selected

Figure 2.5: Embedded feature selection
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features, the distances between data points in different classes are as large as

possible, while the distances between data points in the same class are as small

as possible [Gu et al., 2011]. In [Robnik-Šikonja and Kononenko, 2003], the

authors presented a theoretical and empirical analysis of Relief feature selec-

tion algorithms (Relief [Kira and Rendell, 1992], ReliefF [Kononenko, 1994] and

RReliefF [Kononenko et al., 1997]). A key idea of these methods is to estimate

the quality of features according to how well their values distinguish between

instances that are near to each other. The original Relief algorithm was limited

to classification problems with two classes, it was extended by ReliefF in order

to deal with multiclass problems. ReliefF algorithm is more robust and also

able to deal with incomplete and noisy data. Finally, RReliefF was proposed to

extend the former algorithm in order to be adapted for regression problems.

The authors in [Yu and Liu, 2004] proposed a Fast Correlation-Based Filter

method (FCBF) as a novel concept of predominant correlation and analyzing

feature redundancy. According to FCBF, a feature is "good" if it is predominant1

in predicting the class concept. The authors proposed three heuristics that

together can identify predominant features and remove redundant ones among

them.

The unsupervised feature selection is considered as a much harder problem,

due to the absence of class labels that would guide the search of relevant in-

formation. For example, Variance score [Bishop, 1995] computes the variance

along each feature in order to reflect its representative power. In [Dy and Brod-

ley., 2004], the authors introduced a wrapper framework for performing feature

subset selection for unsupervised learning. The method, called (FSSEM) for

"Feature Subset Selection and EM2 Clustering", searches through feature sub-

set space, and exploits EM clustering algorithm [Dempster et al., 1977] on each

candidate subset. Then, it evaluates the resulting clusters and feature subset

using "scatter separability" or "maximum likelihood" criteria. The whole pro-

cedure is repeated until finding the best feature subset with its corresponding

clusters based on a given feature evaluation criterion. Another feature selec-

1A feature is predominant if it does not have any approximate Markov blanket in its feature
set. More details can be found in [Yu and Liu, 2004].

2Expectation Maximization.
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tion approach is SPEC [Zhao and Liu, 2007b] which was proposed as a general

framework of spectral feature selection for both supervised and unsupervised

learning. In SPEC framework, the relevance of a feature is determined by its

consistency with the structure of the graph induced from the corresponding

similarity matrix S. This matrix can be constructed according to the geometric

structure of the data (unsupervised case) or the class affiliation (supervised

case). Its goal is to represent the relationships between instances. The SPEC

authors showed that ReliefF [Kononenko, 1994] and Laplacian score [He et al.,

2005] (which will be detailed later in section (2.7.1)) can be derived as special

cases from the SPEC framework. They also showed that novel spectral feature

selection algorithms can be derived from SPEC conveniently.

2.4 Redundancy Analysis

In feature selection, it has been recognized that the combinations of individ-

ually good features do not necessarily lead to good learning performance. In

other words, the h best features are not the best h ones. Indeed, redundant

features increase dimensionality unnecessarily and worsen learning perfor-

mance when facing shortage of data [Zhao et al., 2010]. Some researchers have

studied indirect or direct means to reduce the redundancy among features. For

example, the authors in [Ding and Peng, 2003, Peng et al., 2005] introduced a

method for reducing redundancy in feature selection based on pairwise feature

correlation which is measured by mutual information. Their method, called

(mRMR) for "minimum redundancy – maximum relevance", selects the fea-

tures such that they are maximally dissimilar regarding their mutuality. Then,

it selects the subset which best characterizes the statistical property of a target

classification variable. mRMR tries to ensure that the selected features are

mutually as dissimilar to each other as possible, but marginally as similar to the

classification variable as possible. The authors in [Weston et al., 2003] proposed

(AROM-SVM) stands for "Approximation of the zero-norm Minimization". The

method relies on an embedded model, which removes redundant features

by iteratively reducing the weights of features which are less important for a

Support Vector Machine (SVM) classifier [Vapnik, 1995]. In addition, (FCBF)
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which we summarized in the previous section performs a redundancy elimina-

tion. In fact, it approximates relevance and redundancy analysis by selecting

all predominant features and removing the rest ones. Then, it uses both C-

and F-correlations (stand for Feature/Class and Feature/Feature correlations

respectively) to assess the feature redundancy. Recently, the authors in [Zhao

et al., 2012] introduced a framework for Similarity Preserving Feature Selection,

named SPFS. The goal of this method is to select a subset of features, upon

which, the pairwised sample similarity specified by a predefined similarity

matrix is best preserved. The similarity matrix can be constructed either by

using the label information in supervised learning or using certain distance

metrics in unsupervised learning. By preserving the sample similarity specified

in the similarity matrix, SPFS is able to select a subset of features that can main-

tain or even improve the performance of learning models. In addition, SPFS

improves the similarity preservation by handling feature redundancy during

feature selection.

2.5 Semi-Supervised Feature Selection

As we pointed out earlier, feature selection can be done in three frameworks

according to class label information. The most addressed framework is the

supervised one, and the unsupervised feature selection is considered as a

much harder problem, due to the absence of labels. The problem becomes

more challenging when data contain labeled and unlabeled examples. It is

more adapted with real-world applications where labeled data are costly to

obtain. In this context, the effectiveness of semi-supervised learning has been

demonstrated [Chapelle et al., 2006]. In general, feature selection depends on

data structure (unsupervised), or information carried in labels (supervised).

Then the semi-supervised feature selection is expected to make profit from

both parts. Specifically, the labeled part presents important information about

the target concept. In addition, the unlabeled part reflects the data structure

which is probable to harmonize with label information (labeled instances

which belong to the same class are expected to be close to each other).
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2.6. Definitions and notations

In the following, we investigate into the literature of semi-supervised feature

selection. We start with some definitions, and then we list the key methods of

this domain.

2.6 Definitions and notations

Definition 1. (semi-supervised Data)

In semi-supervised learning, a dataset of n data points X = {xi}i=1..n consists

of two subsets depending on the label availability: XL = {x1, x2, . . . , xl}l 6=0 for

which the labels YL = {y1, y2, . . . , yl} are provided, and XU = {xl+1, xl+2, . . . ,

xl+u}u6=0 which are unlabeled. A data point (also called instance, example or

observation) xi is a vector with m dimensions (also called features, variables or

attributes), while a label yi ∈ {1, 2, . . . , C} (C is the number of different labels),

and l + u = n (n is the total number of instances). When l = 0, the whole data

points X are unlabeled and we are in the context of unsupervised learning.

When u = 0, the whole data points X are labeled and we are in the context of

supervised learning. In general, l << u in the case of semi-supervised learning,

which defines the “small labeled-sample” problem.

Definition 2. (Pairwise Constraints)

Pairwise constraints provide guidance about the desired partition and make it

possible for many unsupervised learning algorithms to increase their perfor-

mance [Davidson et al., 2006]. A pairwise constraint concerns two data points

and can be of following two types:

• Must-Link constraint (ML)(called also positive constraint): involving xi
and xj , specifies that they belong to the same class.

• Cannot-Link constraint (CL)(called also negative constraint): involving

xi and xj , specifies that they belong to different classes.

ML and CL constraints are then grouped in two defined subsets ΩML and ΩCL
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respectively. These constraints can be expanded, while taking into account the

transitive closure:

• (xi, xj) ∈ ΩML ∧ (xj, xk) ∈ ΩML =⇒ (xi, xk) ∈ ΩML.

• (xi, xj) ∈ ΩML ∧ (xj, xk) ∈ ΩCL =⇒ (xi, xk) ∈ ΩCL.

In semi-supervised learning, constraints represent background knowledge, and

add a better description of the target concept. They can be added directly to

data instances, this is particularly interesting in certain real-world tasks, e.g.

image retrieval [Bar-Hillel et al., 2005], because in such cases, the true labels

may be unknown a priori, while it can be easier for a user to specify whether

some pairs of examples belong to the same class or not, i.e. similar or dissimilar.

In addition, they can be automatically generated from the labeled part of data

as follows: For any pair of observations (xi, xj) in XL there is a constraint of

type ML if both observations have the same label, and the constraint type is

CL otherwise. Note that in the case of automatic constraint generation, there

is no need for transitive closure, since all possible constraints between data

points are already generated.

Note that pairwise constraints are not the only type of constraints that may

exist over data. There exist other types, like ε-constraints, δ-constraints [David-

son and Ravi, 2005], probabilistic constraints [Law et al., 2005], and complex

constraints [Law et al., 2004].

Definition 3. (semi-supervised Feature Selection)

Let F1, F2, . . . , Fm denote the m features of X and f1, f2, . . . , fm be the corre-

sponding feature vectors that record the feature value on each instance. semi-

supervised feature selection is the use of both XL and XU to identify the set of

most relevant features Fj1 , Fj2 , . . . , Fjh of the target concept, where h ≤ m and

jr ∈ {1, 2, . . . ,m} for r ∈ {1, 2, . . . , h}.

The methods that we illustrate in this section are based in large part on spectral

graph theory [Chung, 1997]. In the following, we present some definitions of

basic concepts from this framework.
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The spectral graph theory represents a solid theoretical framework which has

been the basis of many powerful existing feature selection methods such as

ReliefF [Robnik-Šikonja and Kononenko, 2003], Laplacian Score [He et al., 2005]

, sSelect [Zhao and Liu, 2007a], SPEC [Zhao and Liu, 2007b] and Constraint

score [Zhang et al., 2008]. All of these methods used the application of graph

eigenvalues in the objective of feature selection.

Definition 4. (Weighted Graph of Data)

Given a dataset X, let G(V,E) be the complete undirected graph constructed

from X, with V is its node set and E is its edge set. The ith node vi of G

corresponds to xi ∈ X. We associate with the graph G a weight function

w : V × V → R satisfying the following constraintsw(vi, vj) = w(vj, vi)

w(vi, vj) ≥ 0
(2.1)

Note that if {vi, vj} /∈ E(G) , then w(vi, vj) = 0. Unweighted graphs are just the

special case where all the weights are 0 or 1.

Definition 5. (Graph of Dissimilarity)

Given a dataset X, let G(V,E) be its weighted graph of data constructed from

X, where each edge’s weight is expressed by the Euclidean distance-based

Gaussian function wij = e−
‖xi−xj‖2

λ , which represents the dissimilarity between

data points xi and xj (where λ is a constant to be set, and ‖xi − xj‖2 denotes

the Euclidean distance between xi and xj). Then, G is said to be the graph of

dissimilarity for data X.

Definition 6. (Dissimilarity Matrix)

Given a dataset X , let G(V,E) be its dissimilarity graph with n nodes, a dissimi-

larity matrix S is an n× n matrix where

Sij = wij the dissimilarity between xi and xj (2.2)
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Definition 7. (Degree Matrix)

Given a dataset X, and S be its dissimilarity matrix of dimension n × n, the

degree matrix D is a diagonal (n× n) matrix defined by

Dii =
n∑
j=1

Sij

= diag(S1) , 1 = (1, . . . , 1)T (2.3)

Note that Dii represents the density of the node xi.

Definition 8. (Laplacian Matrix)

Given a dataset X with S and D be its dissimilarity and degree matrices respec-

tively. The Laplacian matrix L of X is defined by

L = D − S (2.4)

In fact, the definitions which we listed above are required for presenting the

literature methods later.

2.7 Filter-based approaches

A feature selection approach is called "Filter" if it is independent of the learning

algorithm. In general, a filter approach may be viewed as a prior learning step,

it removes the irrelevant features which may deteriorate the performance of the

later learning process. Thus, the whole feature selection is performed prior to

the execution of the learning algorithm. Moreover, the independence of feature

selection process from the learning algorithm gives the liberty of choosing

different models later to apply. Filter approaches select features according to

some structural properties in case of unsupervised learning, and according to

correlation with labeling information in case of supervised one. In the case

of semi-supervised feature selection, the filter approaches try to make use of

both labeled and unlabeled data. In the following sections we will illustrate
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in details various known filter score-based approaches which try to solve the

“small labeled-sample” problem.

2.7.1 Laplacian Score (LS)

Laplacian Score (LS) [He et al., 2005] belongs to spectral feature selection fam-

ily. This score was originally used for unsupervised feature selection with the

ability to deploy class labels in case of their availability. LS makes a further

step over variance score [Bishop, 1995], which uses the variance along certain

dimension to reflect its representative power, then the features with the max-

imum variance are selected. However, LS does not only favor those features

with larger variances, which have more representative power, but also tends

to select the features with stronger locality preserving ability. This method is

also generalized by the SPEC method [Zhao and Liu, 2007b] in the unsuper-

vised context. A key assumption in LS is that instances from the same class are

supposed to be close to each other.

Let LSr denotes the Laplacian Score of the rth feature Fr. Let fri denotes the ith

sample of this feature, where i = 1, . . . , n. The algorithm of Laplacian score can

be stated as follows:

1. Given G(V,E) the dissimilarity graph of data X, construct Gkn(V,Ekn)

which is a k-nearest neighborhood subgraph from G as follows :

• The nodes V in Gkn remains the same as in G (as they represent data

points)

• Ekn in the graph Gkn form a subset of the edges set E in the graph G.

The choice of an edge subset from E to be kept in Ekn, is based on

k-nearest neighborhood. This means that an edge {ei,j} is kept in

Ekn if xi is one of the k-nearest neighbors of xj (and vice-versa), or if

xi and xj share the same class labels (when they are available), thus

LS can take into consideration the case where labels are given.
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2. The Dissimilarity matrix S is then defined as :

Sij =


e−
‖xi−xj‖2

λ if there is an edge between xi and xj i.e. xi and xj

are neighbors or (xi, xj) ∈ ΩML

0 otherwise
(2.5)

3. Then, the following definitions are given:

• For each feature Fr, its vector fr = (fr1, ..., frn)T

• The diagonal matrix D according to eq.(2.3)

• The Laplacian matrix L according to eq.(2.4)

4. Laplacian Score of the rth feature is then computed as follows :

LSr =
f̃Tr Lf̃r
f̃Tr Df̃r

where f̃r = fr −
fTr D1
1TD1

1 (2.6)

The Authors in [He et al., 2005] proved That the above score is equivalent to the

minimization of the objective function:

LSr =

∑
i,j(fri − frj)2Sij∑
i(fri − µr)2Dii

(2.7)

where λ is a constant to be set and µr = 1
n

∑
i fri is the mean of feature vector

Fr. In addition, they provided a theoretical analysis of the connection between

LS algorithm and the canonical Fisher score [Duda et al., 2000]. The algorithm

of LS is detailed in Algorithm 1.

LS presents interesting results in the case of unsupervised learning, this is

because it investigates the variance of data in order to assess the locality pre-

serving ability of features. Then, a “good” feature for this score is the one where

two neighboring examples record close values. In addition, in semi-supervised

context, this score can process the labeled part of data which carry important

background information. Such information is provided to guide the learning

process and proved to have considerable effect on learning process. However,
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Algorithm 1 LS

Input: Dataset X, pairwise constraints set ΩML, degree of neighborhood k
and the constant λ
Output: the ranked features list
1: Build G the dissimilarity graph of data X
2: Calculate the dissimilarity matrix S, the diagonal matrix D and the Lapla-
cian matrix L = D − S
for j = 1 to m do

3: Calculate LSr, the score of Fj using eq.(2.6)
end for
4: Rank the features according to their scores in ascending order.

LS does not profit from the background information (the CL constraints in

particular), which are provided to guide the learning process. In addition, the

(k)-neighborhood parameter has significant effects on the results as it was

discussed by the authors, and its choice is not clearly defined.

2.7.2 Spectral Graph-based Semi-Supervised Feature Selec-

tion score (sSelect)

This method [Zhao and Liu, 2007a] introduced the first semi-supervised feature

selection algorithm based on spectral analysis. The algorithm exploits both

labeled and unlabeled data through a regularization framework, which provides

an effective way to address the “small labeled-sample” problem.

The idea of sSelect method is to transform a feature vector fr into a cluster

indicator gr, so each element fri where (i = 1, 2, . . . , n) of fr indicates the

affiliation of the corresponding instance xi . In order to calculate the cluster

indicator, the authors defined a “F − C transformation” as follows:

Let fr ∈ Rn and 1 = (1, . . . , 1)T , the F − C transformation θ is defined as:

gr = θ(fr) = fr −
fTr D1
1TD1

.1; (2.8)

where D is the degree matrix of data. The fitness of a cluster indicator gr is

then evaluated by two factors: (1) separability - whether the cluster structures
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formed are well separable; and (2) consistency - whether they are consistent

with the given label information.

The F − C transformation proceeds as follows: Given a cluster indicator gr,

labeled data XL and unlabeled data XU , the fitness should be evaluated by: 1)

whether the clusters formed by the indicator are well separable (renders a small

cut value), and 2) whether it is consistent with the label information. To do so,

the authors designed a regularization framework, which evaluates the fitness

of the cluster indicator using both labeled and unlabeled data. They defined it

as follows:

Let gr be the cluster indicator generated from a feature vector fr and ĝr =

sign(gr), the regularization framework is defined as:

sSelectr = η
gTr Lgr
gTr Dgr

+ (1− η)(1−NMI(ĝ, YL)) (2.9)

where YL are the available labels, L is the Laplacian matrix, D is the diagonal

matrix, η is a constant to be set, and NMI(ĝ, YL) is the normalized mutual

information between ĝ and YL [Press, 2007], which is used to measures the

consistency between the discretized cluster indicators and the labeled data,

and is defined as:

NMI(ĝ, YL) =
I(ĝ, YL)√
H(ĝ)H(YL)

(2.10)

where I(·) is the mutual information metric, and H(·) is the entropy metric.

Algorithm 2 sSelect

Input: Dataset X, η, k
Output: the ranked features list
1: Construct the k-nearest neighbors graph G from X
2: Build the dissimilarity matrix S, the degree matrix D and the Laplacian
matrix L from G
for r = 1 to m do

3: Construct the cluster indicators gr from Fr using eq.(2.8)
4: Calculate sSelectr, the score of the feature Fr using eq.(2.9)

end for
5: Rank the features according to their scores in descending order.
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The first term of eq.(2.9) calculates the cut-value of using gr as the cluster indi-

cator for data X. The second term estimates the corresponding classification

loss of ĝr according to the labeled data. The ideal case is that all labeled data in

each cluster come from the same class. The algorithm of sSelect is summarized

in Algorithm 2. Note that sSelect also relies on a good choice of the k-nearest

neighborhood parameter.

Later, the authors exploited intrinsic properties underlying supervised and

unsupervised feature selection algorithms, and proposed a unified framework

for feature selection based on spectral graph theory [Chung, 1997].

2.7.3 Semi-Supervised Dimensionality Reduction (SSDR)

The authors in [Zhang et al., 2007] proposed semi-supervised dimensionality re-

duction algorithm (SSDR), which can preserve the structure of the labeled and

unlabeled data in the projected low-dimensional space. The labeled data is ex-

pressed by the must-link and the cannot-link constraints. The SSDR algorithm

was proposed with different variants: SSDR-M, SSDR-CM and SSDR-CMU,

where M stands for Must-Link constraints, C for Cannot-Link constraints and

U stands for unlabeled data. Authors formulated their method as follows:

Given a set of data instances X = {x1, x2, . . . , xn} together with some pairwise

must-link constraints ΩML and cannot-link constraints ΩCL, the idea is to find a

set of projective vectors g = [g1, g2, . . . , gd] where d represents the dimension of

vectors (to be set), such that the transformed low-dimensional representations

(denoted by Y = {Y1, . . . ,Yd}where Yi = gTxi) can preserve the structure of the

original dataset as well as the pairwise constraints ΩML and ΩCL. To do that, the

authors define the objective function as maximizing J(g) w.r.t. gTg = 1, where

J(g) =
1

2n2

∑
i,j

(Yi − Yj)
2 +

α

2 |ΩCL|
∑

(yi,yj)∈ΩCL

(Yi − Yj)
2

− β

2 |ΩML|
∑

(xi,xj)∈ΩML

(Yi − Yj)
2
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=
1

2n2

∑
i,j

(gTxi − gTxj)2 +
α

2 |ΩCL|
∑

(xi,xj)∈ΩCL

(gTxi − gTxj)2

− β

2 |ΩML|
∑

(xi,xj)∈ΩML

(gTxi − gTxj)2 (2.11)

where α and β are scaling parameters to balance the contribution of the cor-

responding terms, since the distance between instances in the same class

is typically smaller than that in different classes. The idea behind the pro-

posed objective function is to let the average distance in the transformed low-

dimensional space between instances involved by the cannot-link set ΩCL as

large as possible, while distances between instances involved by the must-link

set ΩML as small as possible. Then, in order to propose the variant version of

the score, the authors proposed a concise from eq.(2.11):

J(g) =
1

2

∑
i,j

(Yi − Yj)
2Sij

=
1

2

∑
i,j

(gTxi − gTxj)2Sij
(2.12)

where

Sij =


1
n2 + α

|ΩCL|
if (xi, xj) ∈ ΩCL

1
n2 − β

|ΩML|
if (xi, xj) ∈ ΩML

1
n2 otherwise

(2.13)

Based on spectral graph theory, the Authors proved that the equation eq.(2.12)

can be rewritten as maximizing J(g) w.r.t gTg = 1, where:

J(g) = gTXLXTg (2.14)

where L is the Laplacian matrix, and the problem expressed by eq.(2.14) is

an eigen-problem, which can be solved by computing the eigenvectors of

L = XLXT corresponding to the largest eigenvalues.

This formulation with the weight matrix S allowed to have three variants of
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Algorithm 3 SSDR-CMU

Input: Dataset X, pairwise constraints sets ΩML and ΩCL, dimension of
projective vectors d
Output: the dimensionality-reduced data matrix
1: Build G the dissimilarity graph of data X
2: Calculate the dissimilarity matrix S using eq.(2.13)
3: Calculate L = XLXT in order to solve eq.(2.13)
4: Calculate the eigenvectors and eigenvalues of L
5: Sort the eigenvalues with the corresponding eigenvectors in descendant
order
6: Construct the g matrix corresponding the top d sorted eigenvectors
7: Calculate the new dimensionality-reduced data matrix Y = gTx

SSDR score, they are denoted as:

• SSDR-M: Using only the must-link constraints, with

Sij =

−
β

|ΩML|
if (xi, xj) ∈ ΩML

0 otherwise
(2.15)

• SSDR-CM: Using both the cannot-link and must-link constraints, with

Sij =


α
|ΩCL|

if (xi, xj) ∈ ΩCL

− β
|ΩML|

if (xi, xj) ∈ ΩML

0 otherwise

(2.16)

• SSDR-CMU: Using both the cannot-link and must-link constraints to-

gether with unlabeled data, with the weights S defined in eq.(2.13).

The algorithm of SSDR-CMU is detailed in Algorithm 3.

2.7.4 Constraint Score (CS)

The SSDR authors proposed a constraint score-based method (CS) which evalu-

ates the relevance of features according to constraints only [Zhang et al., 2008].
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Algorithm 4 CS

Input: Dataset X, pairwise constraints sets ΩML, ΩCL and ν (for Constraint
Score-2 only)
Output: The ranked features list
for r = 1 to m do

1: Calculate CSr, the score of Fr using eq.(2.17) for Constraint Score-1 or
eq.(2.18) for Constraint Score-2

end for
2: Rank the features according to their scores in ascending order.

They showed that using few labels of data, this score records better results

than Fisher score [Duda et al., 2000], which employs all labels in feature selec-

tion process. They defined two different Constraint scores for evaluating the

relevance of the rth feature Fr, which should be minimized, as follows :

CS1
r =

∑
(xi,xj)∈ΩML

(fri − frj)2∑
(xi,xj)∈ΩCL

(fri − frj)2
(2.17)

CS2
r =

∑
(xi,xj)∈ΩML

(fri − frj)2 − ν
∑

(xi,xj)∈ΩCL

(fri − frj)2 (2.18)

where ν is a regularization coefficient whose function is to balance the contri-

butions of the two terms in eq.(2.18). The Algorithm of CS is summarized in

Algorithm 4.

The authors presented a spectral graph formulation of their scores, to do this,

they construct two graphsGM andGC and both withnnodes, using the pairwise

constraints in ΩML and ΩCL respectively. In both graphs, the ith node corre-

sponds to the ith instance. The edges in both graphs represent the pairwise

constraints, i.e. an edge exist between node i and j in GM (or in GC) graph if

there is a must-link constraint (or a cannot-link constraint) between instances,

then they define their weight matrices, denoted by SM and SC , respectively, as:

SMij =

1 if(xi, xj) ∈ ΩMLor(xj, xi) ∈ ΩML

0 otherwise
(2.19)
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SCij =

1 if(xi, xj) ∈ ΩCLor(xj, xi) ∈ ΩCL

0 otherwise
(2.20)

After calculation of Diagonal and Laplacian matrices, they get:

CS1
r =

fTr LMfr
fTr LCfr

(2.21)

and

CS2
r = fTr LMfr − νfTr LCfr (2.22)

The method carries out with little supervision information in labeled data

ignoring the unlabeled data part even if it is very large.

2.7.5 Bagging Constraint Score (BCS)

The major drawback of the Constraint Score is that its performance is depen-

dent on a good choice of the composition and cardinality of constraint set,

which is very challenging in practice. Later, the same authors addressed the

problem by importing Bagging into Constraint Score and proposed a Bagging

Constraint Score (BCS) method [Sun and Zhang, 2010].

Instead of seeking one appropriate constraint set for single Constraint Score.

The authors of BCS performed multiple Constraint Scores (CS), each of which

uses a bootstrapped subset of original given constraint set. Diversity analysis on

instances of ensemble showed that resampling pairwise constraints is helpful

for simultaneously improving accuracy and diversity of instances.

The authors tackled the problem of feature selection with pairwise constraints

from the ensemble perspective with the goal of improving classification accu-

racy. Their method is based on bootstrapping and aggregating concepts.

The algorithm, called Bagging Constraints Score (BCS), constructs individ-

ual components using different constraint subsets generated by resampling
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Algorithm 5 BCS

Input: training Data XL = {xi}li=1,
Base learning algorithm Learner3,
Must-link constraint set ΩML,
Cannot-link constraint set ΩCL,
ν (for Constraint Score-2 only), number of selected features Nf , ensemble
size EL,
Class labels YL = {yi}li=1 corresponding to XL

Output: The final hypothesis
for b = 1 to EL do

1: Take a bootstrapped sample M b of the must-link constraints set ΩML

and a sample Cb of the cannot-link constraints set ΩCL;
for r = 1 to m do

2: Calculate CSr, the score of Fr using eq.(2.17) for Bagging Constraint
Score-1 or eq.(2.18) for Bagging Constraint Score-2

end for
3: Rank the features according to their scores in ascending order
4: Get the training dataset XT = {xti}ti=1 (where t is the size of the training
dataset) projected to subspace by selecting the nf highest-scoring features
only;
5: Call Learner, providing it with the training dataset XT ;
6: Get a hypothesis hb : XT → YL;

end for
7: The final hypothesis by combining the outputs of EL learners 4 as follows:
hf (X) = arg maxy∈Y,xt∈XT

∑
b:hb(xt)=y

1

pairwise constraints in the given constraint set (Algorithm 5).

However, the method is still depending entirely on the labeled part of data only,

which is generally small in the semi-supervised feature selection applications.

In addition, ignoring the unlabeled part of data which is usually huge in semi-

supervised learning may hide important information about the target concept,

and then misleading the learning process.

3In [Sun and Zhang, 2010], the authors chose the Nearest Neighborhood (1-NN) and Support
Vector Machine (SVM) classifiers as learners.

4The authors adopted majority vote.
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2.8. Wrapper approaches

2.7.6 Semi-Supervised Selection with Constraint score (SC4)

The authors in [Kalakech et al., 2011] proposed to solve the problem of semi-

supervised feature selection by a simple combination of scores computed on

labeled data and unlabeled data respectively. The method (called SC4) tries

to find a consensus between an unsupervised score (Laplacian Score) and a

supervised one (Constraint Score) by multiplying both scores. The proposed

score to be minimized is defined as:

SC4r = LSr.CSr (2.23)

The algorithm of SC4 is presented in Algorithm 6. The combination is simple,

Algorithm 6 SC4

Input: Dataset X, pairwise constraints sets ΩML, ΩCL and λ (for Laplacian
score)
Output: The ranked features
for r = 1 to m do

1: Calculate LSr, the Laplacian score of Fr using Algorithm 1
2: Calculate CSr, the Constraint score of Fr using Algorithm 4
3: Calculate SC4r, the score of Fr using eq.(2.23)

end for
4: Rank the features according to their scores in ascending order.

but can dramatically bias the selection for the features having best scores for

labeled part of data and bad scores for the unlabeled part and vice-versa.

2.8 Wrapper approaches

The Wrapper methods perform a search in the space of feature subsets, guided

by the outcome of the learning model. Typically, a criterion is firstly defined for

evaluating the quality of a candidate feature subset and wrapper approaches

aim to identify the best subset such that the learning algorithm can achieve the

optimal value of the predefined criterion.
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Chapter 2. Semi-Supervised Feature Selection for Dimensionality
Reduction

Algorithm 7 FW-SemiFS

Input: l, u, sizeFS, samplingRate, samplingT imes, maxIterations, startfn,
fnstep
Output: resultfs
1: Perform feature selection on l using SFFS, select startfn features form
the current feature subset currentfs;
2: ReducedL← l ∗ currentfs;
3: ReducedU ← u ∗ currentfs;
for iteration = 1 to maxIterations do

4: Predicted← classifier(ReducedL, ReducedU);
for rand = 1 to samplingT imes do

5: Randomly select samplingRate% of instances from Predicted, and add
it into l to form a new dataset NewDataset;
6: Perform feature selection on NewDataset using SFFS, select fnstep
features to form feature subset fs [rand];

end for
7: Count the frequency of every feature in fs, add the most frequent and
not in currentfs feature into currentfs;
8: ReducedL← l ∗ currentfs;
9: ReducedU ← u ∗ currentfs;
10: if SIZE(currentfs) == sizeFS then break;

end for
11: resultfs← currentfs;

2.8.1 Forward Semi-Supervised Feature Selection (FW-SemiFS)

The authors in [Ren et al., 2008] introduced a "wrapper-type" forward semi-

supervised feature selection framework (FW-SemiFS). They extended the Su-

pervised Sequential Forward Feature Selection (SFFS) [Pudil et al., 1994]. This

algorithm is an iterative process starting with an empty feature subset. In each

iteration, one feature is chosen among the remaining features. To determine

which feature to add, it tests the accuracy of a model built on the incremented

feature subset. Then, the feature that results in the highest accuracy is selected.

The process terminates when no additional features could result in an improve-

ment in accuracy or the feature subset already reaches a predefined size. This

method is supervised, i.e. it concerns labeled examples only, so the authors

proposed (FW-SemiFS) in order to extend it to take unlabeled data into account,

which makes it suitable to be used with semi-supervised data.

30

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



2.8. Wrapper approaches

(FW-SemiFS) uses SFFS as a wrapper model to select initial features startfn

to be used to train a given classifier 5. This learner is then used to predict

the labels of the unlabeled data. Then, a randomly selected unlabeled data

samplingRate% with predicted labels, is combined with labeled data to form

a new training set. Afterwards, the new obtained training dataset is used to

select a new feature subset fnstep based on SFFS and the learner. The above

processes repeat samplingT imes times, and then samplingT imes groups of

features are selected. The method counts the frequency of every feature in

the samplingT imes groups of features, and the one with the most frequency is

added to form a new feature subset. This process is repeating until the size of

the feature subset reaches a predefined number.

The detailed algorithm is presented in Algorithm 7, where:

• l and u are the sizes of labeled and unlabeled data respectively.

• sizeFS is the predefined number of selected features.

• samplingRate is the sampling rate according to the unlabeled data with

predicted labels.

• samplingT imes is the randomly sampling times.

• maxIterations is the maximal number of iterations.

• startfn is the start feature number.

• fnstep is the number of features selected in every step.

• resultfs is the output feature subset.

In this algorithm, “*” denotes the features reduction operator.

5In [Ren et al., 2008], the authors used NaiveBayes, NNge (the nearest neighbor like algo-
rithm using non-nested generalized instances), and k-NN classifiers.
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Reduction

2.8.2 Semi-Supervised Feature Importance evaluation (SSFI)

The authors in [Barkia et al., 2011] proposed a semi-supervised feature im-

portance evaluation method (SSFI), that combines ideas from co-training

[Blum and Mitchell, 1998] and random forests (RF) [Breiman, 2001] with a

new permutation-based out-of-bag feature importance measure. The algo-

rithm ranks features through an ensemble framework, in which a feature’s

relevance is evaluated by its predictive accuracy using both labeled and un-

labeled data. SSFI combines both data resampling (bagging ) and random

subspace strategies for generating an ensemble learner using a co-training

style algorithm. The authors claim that a combination of these two main strate-

gies for producing ensemble of classifiers leads to an exploration of distinct

views of inter-pattern relationships. Once each ensemble member is obtained,

an extension of the RF permutation importance measure [Breiman, 2001],

using the labeled and unlabeled data together, is proposed to measure the

feature relevance. A ranking of all features is finally obtained with respect to

their relevance in all obtained semi-supervised classifiers. Later, the same

authors proposed a new method called semi-supervised ensemble learning

guided feature ranking method (SEFR)[Bellal et al., 2012], the algorithm ranks

features through an ensemble framework, in which a feature relevance is eval-

uated by its predictive accuracy using both labeled and unlabeled data. The

proposed methods presented promising experimental results. However, the

computational complexity of such methods is still a critical issue especially

when data is high-dimensional.

2.9 Embedded approaches

Embedded feature selection methods are locally specific to a model during

its construction.They aim to learn the feature relevance with the associated

learning algorithm. In other terms, they incorporate feature selection and

learning algorithm in the same objective function. In the following, we will

discuss one of the semi-supervised embedded feature selection approaches.
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2.10. Conclusion

2.9.1 Semi-Supervised Feature Selection via Manifold Regu-

larization (FS-Manifold)

The authors in [Xu et al., 2009a] proposed a discriminative embedded and semi-

supervised feature selection method based on the manifold regularization

(FS-Manifold). The authors claimed that the regularization in the proposed

feature selection method assures that the decision function is smooth on the

manifold constructed by the selected features of the unlabeled data. This

exploits the underlying structural information of these data. The proposed

method selects features through maximizing the classification margin between

different classes and simultaneously exploiting the geometry of the probability

distribution of both unlabeled and labeled data. Moreover, the authors formu-

lated their semi-supervised feature selection method into a concave-convex

problem, where the saddle point corresponds to the optimal solution. Then,

they derived an extended level method [Xu et al., 2009b], a fairly recent opti-

mization method, to find the optimal solution of the concave-convex problem.

2.10 Conclusion

In this chapter we reviewed the literature of semi-supervised feature selection

as a dimensionality reduction tool. We started by a brief presentation of the

general domain of dimensionality reduction. Then, we distinguished between

feature extraction which transforms the problem from the original features

space into a reduced space with new features representing the original ones.

We briefly illustrated some well-known methods for feature extraction. Then,

we reviewed the other part of dimensionality reduction which is the feature se-

lection, in which the relevant features are selected, and the others are removed.

We illustrated the problem of feature selection in both domains: supervised

and unsupervised with citation of the representative methods in each domain.

After that, we focused on the semi-supervised feature selection, which is seen

as a challenging problem due to the presence of a small sample of labeled in-

stances, with a large amount of unlabeled ones. This domain is rather new, and

its “small labeled-sample” problem is still worth studying. From this domain,
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Reduction

we illustrated in details the main approaches that were proposed to deal with

both labeled and unlabeled instances (i.e. semi-supervised data). In the next

chapters, we present some algorithms which we propose to efficiently solve the

problem of semi-supervised feature selection.
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3 Constrained Laplacian Scores for

Semi-Supervised Feature Selection

3.1 Introduction

One important motivation to have a filter method for feature selection is the

specificity of the semi-supervised data. This is because, in this context, data

may be used in the service of both unsupervised and supervised learning. On

the one hand, semi-supervised data could be used in the goal of data clustering,

then using the labels to generate constraints which could, in turn, improve the

clustering task. In this sense, ”good” features are those which better describe

the geometric structure of data. On the other hand, semi-supervised data

could be used for supervised learning, i.e. classification or prediction of the

unlabeled examples, using a classifier constructed from the labeled ones. In this

context, "good" features are those which are better correlated with the labels.

Subsequently, the use of a filter method makes the feature selection process

independent from the further learning algorithm whether it is supervised or

unsupervised. This is important to eliminate the bias of feature selection in

both cases, i.e. ”good” features in this case would be those which compromise

between better description of data structure and better correlation with desired

labels.
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3.2 Discussion about Constraint and Laplacian

scores

The main advantage of Laplacian score [He et al., 2005] is its locality preserving

ability. However, its assumption that data from the same class are close to

each other, is not always true. In fact, there are several cases where the classes

overlap in some instances. Thus, two close instances can naturally have two

different labels and vice-versa. In the semi-supervised context, Laplacian score

takes into consideration the class labels if they exist (instances sharing the

same label are considered as neighbors). The authors claimed that it would

be suitable for the semi-supervised learning. In fact, having the same label

(which can generate ML pairwise constraints) adds an important information

over unlabeled data. However, other information can be obtained from the

instances which have different labels (i.e. which are linked by CL constraints).

This may be of high importance if instances from different classes are close to

each other (i.e. they are neighbors).

For Constraint score [Zhang et al., 2008], the principle is based entirely on the

constraint preserving ability. This method, with few labels, showed an interest-

ing performance comparing with Fisher score [Duda et al., 2000] which use all

labels. However, the score imposes that the exploited constraints are well cho-

sen. Hence, the results are biased of results towards the selected constraints.

For that reason, the same authors proposed to add more diversity to con-

straint choice by a bagging constraint score [Sun and Zhang, 2010]. Moreover,

Constraint score ignores the unlabeled part of data which carries important

information about the structure. The important issue in semi-supervised learn-

ing is that the labeled and unlabeled instances are sampled from the same

population, so the information included in the structure and the other sup-

plied by the background knowledge (labels) are expected to complementally

describe the target concept. Subsequently, we consider that the exploitation of

both labeled and unlabeled parts of data is very important for semi-supervised

feature selection. From this consideration we inspired our first semi-supervised

feature selection score CLS, that we describe in the next section.
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3.3 Constrained Laplacian Score (CLS)

The basis idea of CLS is the constraining of Laplacian score by the background

information extracted from the labeled data.

The goal of CLS is to assess the ability of features in preserving the local geo-

metric structure offered by unlabeled data, while respecting the constraints

offered by labeled data.

For a feature Fr, we define CLSr, which should be minimized, as follows:

CLSr =

∑
i,j(fri − frj)2Sij∑

i

∑
j|∃k,(xk,xj)∈ΩCL

(fri − αirj)2Dii

(3.1)

where :

Sij =

e
−‖xi−xj‖

2

λ if xi and xj are neighbors or (xi, xj) ∈ ΩML

0 otherwise
(3.2)

and:

αirj =

frj if (xi, xj) ∈ ΩCL

µr otherwise
(3.3)

Note that if there are no labels (l = 0 and X = XU ) then CLSr = LSr and when

(u = 0 and X = Xl), CLS represents an adjusted CSr, where the ML and CL

information would be weighted by Sij and Dii respectively in the formula.

With CLS, on the one hand, a relevant feature should be the one on which those

two instances (neighbors or related by an ML constraint) are close to each

other. On the other hand, the relevant feature should be the one with a larger

variance or on which those two instances (related by a CL constraint) are well

separated.
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3.3.1 Spectral graph based formulation of CLS

In this section, we give a spectral graph-based explanation for our proposed

score. A reasonable criterion to choose a relevant feature is to minimize

the object function represented by CLS. Thus, the problem is to minimize

the first term T1 =
∑

i,j(fri − frj)
2Sij and maximize the second one T2 =∑

i

∑
j|∃k,(xk,xj)∈ΩCL

(fri − αirj)2Dii. By resolving these two optimization prob-

lems, we prefer those features respecting their pre-defined graphs, respectively.

Thus, we construct a k-nearest neighborhood graph Gkn from X (dataset) and

ΩML (ML constraint set) and a second graph GCL from ΩCL (CL constraint set).

Given a dataset X, let G(V,E) be the complete undirected graph constructed

from X, with V is its node set and E is its edge set. The ith node vi of G corre-

sponds to xi ∈ X and there is an edge between each node pair (vi, vj), whose

weight wij = e−
‖xi−xj‖2

λ is the dissimilarity between xi and xj .

Gkn(V,Ekn) is a subgraph which could be constructed from G where Ekn is the

edge set {ei,j} from E such that ei,j ∈ Ekn if (xi, xj) ∈ ΩML or xi is one of the k-

nearest neighbors of xj . GCL(VCL, ECL) is a subgraph constructed from G with

VCL, its node set, and {ei,j}, its edge set, such that ei,j ∈ ECL if (xi, xj) ∈ ΩCL.

Once the graphs Gkn and GCL are constructed, their weight matrices, denoted

by Skn and SCL respectively, can be defined as:

Sknij =

wij if xi and xj are neighbors or (xi, xj) ∈ ΩML

0 otherwise
(3.4)

SCLij =

1 if(xi, xj) ∈ ΩCL

0 otherwise
(3.5)

Then, we can define :

• For each feature Fr, its vector fr = (fr1, ..., frn)T

• Diagonal matrices Dkn
ii =

∑
j Sknij and DCL

ii =
∑

j SCLij
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3.3. Constrained Laplacian Score (CLS)

• Laplacian matrices Lkn = Dkn − Skn and LCL = DCL − SCL

Following some simple algebraic steps, we see that:

T1 =
∑
i,j

(fri − frj)2Sknij

=
∑
i,j

(f 2
ri + f 2

rj − 2frifrj)Sknij

=
∑
i,j

f 2
riS

kn
ij +

∑
i,j

f 2
rjS

kn
ij − 2

∑
i,j

friSknij frj

= 2(
∑
i,j

f 2
riS

kn
ij −

∑
i,j

friSknij frj)

= 2(fTr Dknfr − fTr Sknfr)

= 2fTr Lknfr (3.6)

Note that satisfying the graph-structures is done according to αirj in the eq.(3.3).

Indeed, when ΩCL = ∅ then αirj = µr, we should maximize the variance of fr.

Recall that the variance of a random variable x can be written as follows:

V ar(x) =

∫
M

(x− µ)2dP (x), µ =

∫
M
xdP (x) (3.7)

whereM is the data manifold, µ is the expected value of x and dP is the proba-

bility measure. By spectral graph theory [Chung, 1997], dP can be estimated by

the diagonal matrix D on the sample points. Thus, the weighted data variance

can be estimated as follows:

V ar(fr) =
∑
i

(fri − µr)2Dkn
ii (3.8)

µr =
∑
i

(
fri

Dii∑
i Dii

)
=

1

(
∑

i Dii)

(∑
i

friDii

)
=
fTr D1
1TD1

(3.9)

To remove the mean from the samples, we define:

f̃r = fr −
fTr D1
1TD1

1 (3.10)
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Thus,

V ar(fr) =
∑
i

f̃ 2
riDii = f̃Tr Df̃r (3.11)

Also, it is easy to show that f̃Tr Df̃r = fTr Dfr [Kalakech et al., 2011]. In this case,

CLSr = Lr = fTr Lknfr
fTr Dknfr

.

Otherwise, αirj = frj we develop as above the second term (T2) as follows:

T2 =
∑
i,j

(fri − frj)2Dkn
ii

=
∑
i,j

(fri − frj)2SCLDkn
ii

=
∑
i,j

(f 2
ri + f 2

rj − 2frifrj)SCLDkn
ii

=
∑
i,j

f 2
riS

CLDkn
ii +

∑
i,j

frjSCLDkn
ii − 2

∑
i,j

friSCLDkn
ii frj

= 2(
∑
i,j

f 2
riS

CLDkn
ii −

∑
i,j

friSCLDkn
ii frj)

= 2(fTr DCLDknfr − fTr SCLDknfr)

= 2fTr LCLDknfr (3.12)

Subsequently,

CLSr =
fTr Lknfr

fTr LCLDknfr
(3.13)

In fact, eq.(3.13) seeks those features that respect both Gkn and GCL. The whole

procedure of the proposed CLS is summarized in Algorithm 8.

Lemma 1. Algorithm 8 is computed in time O(m×max(n2, Log m)).

Proof. The first step of the algorithm requires l2 operations. Steps 2-3 build

the graph matrices requiring n2 operations. Step 4 evaluates the m features
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3.3. Constrained Laplacian Score (CLS)

Algorithm 8 CLS

Input: Dataset X(n×m), the constant λ, the neighborhood degree k
1: Construct the constraint sets (ΩML and ΩCL) from YL
2: Construct the graphs Gkn and GCL from (X,ΩML) and ΩCL respectively.
3: Calculate the weight matrices Skn, SCL and their Laplacians Lkn, LCL re-
spectively.
for r = 1 to m do

4: Calculate CLSr according to eq.(3.13).
end for
5: Rank the features Fr according to their scores CLSr in ascending order.

requiring mn2 operations and the last step ranks features according to their

scores with mLog(m) operations.

Note that the “small labeled-sample” problem becomes an advantage for the

complexity of CLS, because it supposes that the number of extracted con-

straints is smaller since it depends on the number of labels, l. Thus, the cost of

the algorithm depends considerably on u, the size of unlabeled data XU .

To reduce this complexity, we propose to apply a clustering on XU . The idea

aims to substitute this huge part of data by a smaller one X ′U = (c1, ..., cK) by

preserving the geometric structure of XU , where K is the number of clusters.

We propose to use Self-Organizing Map (SOM) based clustering [Kohonen,

2001] that we briefly present in the next section.

Lemma 2. By clustering XU the complexity of Algorithm 8 is reduced to O(m×
max(u, Log m)).

Proof. The size of labeled data is very smaller than the one of unlabeled data,

l << u < n and the clustering of XU provides at most K =
√
u clusters. There-

fore, Algorithm 8 is applied over a dataset with size equal to
√
u+ l '

√
u. This

allows to decrease the complexity to O(m×max(u, Log m)).
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3.3.2 SOM’ algorithm

SOM is a very popular tool used for clustering high dimensional data spaces

[Kohonen, 2001]. It can be considered as undertaking vector quantization

and/or clustering while preserving the spatial ordering of the input data by

implementing an ordering of the codebook vectors (also called prototype vec-

tors, cluster centroids or reference vectors) in a one or two dimensional output

space. SOM consists of nodes organized on a regular low-dimensional grid,

called the map. More formally, the map is described by a graph (V,E). V is a

set of K interconnected nodes having a discrete topology defined by E. For

each pair of nodes (v, z) on the map, the distance ∆(v, z) is defined as the short-

est path between v and z on the graph (Figure 3.1). This distance imposes a

neighborhood relation between nodes.

Figure 3.1: SOM architecture - the path between v and z is ∆(v, z) = 4.

Each node v is represented by anm-dimensional reference vector cv = c1
v, ...., c

m
v

from M (the set of all map’s nodes), where m is equal to the dimension of

the input vectors xi ∈ XU (unlabeled dataset). The SOM training algorithm

resembles k-means. The important distinction is that in addition to the best

matching reference vector, its neighbors on the map are updated.

More formally, we define an assignment function γ from Rm (the input space)

toM (the output space), that associates each element xi of Rm to the node

whose reference vector is “closest” to xi. This function induces a partition
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3.3. Constrained Laplacian Score (CLS)

P = Pv; v = 1...K of the set of instances where each part Pv is defined by:

Pv = {xi ∈ XU ; γ(xi) = v}.

Next, an adaptation step is performed when the algorithm updates the refer-

ence vectors by minimizing a cost function, noted E(γ,M). This function has

to take into account the inertia of the partition P , while ensuring the topology

preserving property. To achieve these two goals, it is necessary to generalize

the inertia function of P by introducing the neighborhood notion attached to

the map. In the case of instances belonging to Rm, this minimization can be

done straightforwardly. Indeed, new reference vectors are calculated as:

ct+1
z =

∑c
i=1 τvz(t)xi∑c
i=1 τvz(t)

(3.14)

where v = argminz ‖xi − ctz‖, is the index of the best matching unit of the data

sample xi, ‖.‖ is the distance measure, typically the Euclidean distance, and t

denotes the time. τvz(t) is the neighborhood function around the winner unit

Figure 3.2: Semi-supervised feature selection framework of CLS.
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v. In practice, we often use τvz = e−
∆vz
2T2 where T represents the neighborhood

radius in the map. It is decreased from an initial value Tmax to a final value Tmin.

Subsequently, as explained above, SOM will be applied on the unsupervised

part of data (XU ) to obtain X ′U with a size equal to the number of SOM’ nodes

(K). Therefore, CLS will be performed on the new obtained dataset (XL ∪X ′U ).

Note that any other clustering method could be applied overXU , but here, SOM

is chosen for its ability to preserve the topological relationship of data well and

thus the geometric structure of their distribution. Finally, the feature selection

framework is represented in the Figure 3.2.

3.4 Constrained Selection-based Feature Selection

(CSFS)

In this section, we present a novel framework for semi-supervised feature

selection. In fact, a critical study of CLS concept reveals a number of interesting

potential avenues for improving its efficiency. For example, the choice of

neighborhood degree (k) might be interesting to be analyzed. Another possible

improvement might be to study the constraints utility before integrating them

for feature selection. In CLS, we used the maximum number of constraints

which can be generated from the labeled data ( l(l−1)
2

). This can have ill effects

over accuracy when constraints are incoherent or inconsistent (as we would

see later)[Davidson et al., 2006, Allab and Benabdeslem, 2011]. Thus, it would

have been more interesting to investigate in constraint selection process. This

led us to develop a more efficient semi-supervised feature selection score that

we call: CSFS.

Principally, CSFS framework is based on efficient selection of pairwise con-

straints. The proposal presents also a new developed score that combines the

power of the local geometric structure offered by unlabeled data, with the con-

straint preserving ability offered by labeled data. In the following, we present

an illustration about constraint selection, and the measure of constraint utility

which we adopt in this approach.
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3.4. Constrained Selection-based Feature Selection (CSFS)

3.4.1 Constraint selection

While it was expected that different constraints sets would contribute more or

less to improving accuracy of many constrained algorithms, it was found that

some constraint sets actually decrease the performance. It was observed that

constraints can have ill effects even when they are generated from the data la-

bels that are used to evaluate accuracy, so this behavior is not caused by noise or

errors in the constraints. Instead, it is a result of the interaction between a given

set of constraints and the algorithm being used. So it is more important to know

why do some constraint sets increase clustering accuracy while others have no

effect or even decrease accuracy. For that, the authors in [Davidson et al., 2006]

have defined two important measures, informativeness and coherence, that

capture relevant properties of constraint sets. These measures provide insight

into the effect a given constraint set has on a specific constrained clustering

algorithm. The informativeness measure refers to the amount of information

in the constraint set that the algorithm cannot determine on its own. In order

to calculate this measure, the learning algorithm is run without constraints.

Then, the results are checked to measure how much constraints are satisfied. If

all the constraints are satisfied (note that they were not used in learning), then

the constraint set has no informativeness towards the learning algorithm in

hand. However, if many constraints are not satisfied, the constraint set is said

to be very informative. Note that this measure is dependent to the learning

algorithm. In this framework, we opt using the coherence measure only, since

it is independent of any algorithm that could be used for learning, which is

specific to our paradigm dealing with a filter approach.

Coherence represents the amount of agreement between the constraints them-

selves, given a metric d that specifies the distance between points. One view

of an ML (or CL) constraint is that it imposes an attractive (or repulsive) force

within the feature space along the direction of a line formed by a pair of in-

stances (x1, x2), within the vicinity of x1 and x2. Two constraints, one an ML

constraint (ct1) and the other a CL constraint (ct2), are incoherent if they exert

contradictory forces in the same vicinity. Two constraints are perfectly coher-

ent if they are orthogonal to each other. To determine the coherence of two
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Figure 3.3: Projected overlap between a ML(ct1) and CL(ct2) constraints,
(overct2ct1) is not null. So, The coherence of the subset {ct1, ct2} is null.

constraints, ct1 and ct2, we compute the projected overlap of each constraint

on the other as follows.

The coherence of a given constraint set Ω is defined as a fraction of constraint

pairs that have zero projected overlap (Figure 3.3):

Cohd(Ω) =

∑
ctp∈ΩML,ctq∈ΩCL

δ(overctqctp = 0 ∧ overctpctq = 0)

|ΩML| |ΩCL|
(3.15)

where overctqctp represents the distance between the two projected points

linked by ctp over ctq. δ is the number of the overlapped projections.

From the equation (3.15), we can easily define a specific measure for each

constraint as follows:

Cohd(ctp) =

∑
ctq∈ΩCL

δ(overctqctp = 0)

|ΩCL|
(3.16)

Cohd(ctq) =

∑
ctp∈ΩML

δ(overctpctq = 0)

|ΩML|
(3.17)

We now show how to select the relevant constraints according to their coher-

ence.
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3.4. Constrained Selection-based Feature Selection (CSFS)

Algorithm 9 Constraint selection
Input: Constraint set Ω = {cti|i = 1..(l(l − 1)/2)}
Onput: Selected constraint set Ωs = Ω′ML ∪ Ω′CL

1: Initialize Ωs = ∅
2: for i = 1 to |Ω| do
3: if Cohd(cti) ≥ Cohd(Ω) then
4: Ωs = Ωs ∪ {cti}
5: end if
6: end for

To be selected, a constraint cti must have a coherence cohd(cti) greater than

the global coherence of all constraints in (Ω), i.e. it must have a minimum

overlap with the other constraints ctj (ctj ∈ ΩCL if cti ∈ ΩML and vice-versa

(Algorithm 9)).

From this algorithm we obtain Ωs, which is a set of coherent constraints of

ΩML and ΩCL in two subsets Ω′ML and Ω′CL respectively. The algorithm tests

the coherence of each constraint with all other constraints regardless of the

order. Then it supplies the same results (coherent constraints) for the same

input (constraint set). The complexity of this algorithm is linear to the number

of all a priori constraints in Ω: O(l(l − 1)/2).

3.4.2 Feature relevance

We have seen that the main advantage of CLS is its survey of the respect of data

structure and locality preserving ability. In addition, it exploits background

information which adds a constraint preserving ability. However, In CSFS we

propose an improvement of the score function which evaluates the feature rel-

evance. In fact, we propose a more efficient semi-supervised feature selection.

To do so, we define a new function score (ϕ), which should be minimized, as

follows:

ϕr =

∑
i,j (fri − frj)2(Sij + N ij)∑

i

(
fri − αirj

)2
Dii

(3.18)
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Where:

Sij =

e
−
‖xi−xj‖2

λ if xi and xj are neighbors

0 otherwise
(3.19)

And:

N ij =



−e−
‖xi−xj‖2

λ if xi and xj are neighbors and (xi, xj) ∈ Ω′ML

(
e−
‖xi−xj‖2

λ

)2 if xi and xj are neighbors and (xi, xj) ∈ Ω′CL

OR

if xi and xj are not neighbors and (xi, xj) ∈ Ω′ML

0 otherwise
(3.20)

And:

αirj =

{
frj if (xi, xj) ∈ Ω′CL

µr otherwise
(3.21)

Where λ is a constant to be tuned, and xi, xj are neighbors means that xi is

among the k-nearest neighbors of xj and µr = 1
n

∑
i fri is the mean of the

column r.

Note that if there are no labels (l = 0 andX = XU ) then ϕr becomes a Laplacian

score and when (u = 0 andX = XL), ϕr represents an adjusted constraint score,

where the ML and CL information would be weighted by (Sij + N ij) and Dii

respectively in the formula.

With CSFS, on the one hand, a relevant feature should be the one on which

those two instances (neighbors or related by an ML constraint) are close to
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each other. On the other hand, the relevant feature should be the one with a

larger variance or on which those two instances (related by a CL constraint) are

well separated.

To assess the previous concept, we use a weight N ij . The motivation of adding

N ij to our score (over the Laplacian score) is not only the integration of pairwise

constraints into the score, but also adding a sensibility dimension to the feature

score in the following cases:

When we have two instances related by a ML constraint but not neighbors

(Sij + N ij) =

(
e−
‖xi−xj‖2

λ

)2

and when two neighboring instances are related

by a CL constraint (Sij + N ij) =

(
e−
‖xi−xj‖2

λ

)2

+ e−
‖xi−xj‖2

λ . In both cases, the

weight

(
e−
‖xi−xj‖2

λ

)2

is used in order to more differentiate the features in the

both bad cases.

3.4.3 Spectral graph analysis

In this section we give a spectral graph-based explanation for the described

function score. A reasonable criterion for choosing a relevant feature is to

minimize the objective function represented by ϕ. Thus, the problem is to

minimize the first term T1 =
∑

i,j(fri−frj)2(Sij +N ij) and maximize the second

one T2 =
∑

i,j(fri − αirj)2Dii. By resolving these two optimization problems, we

prefer those features respecting their pre-defined graphs, respectively. Thus,

we construct a k-neighborhood graph Gkn from X (data set) and Ω′ML (Selected

ML constraint set) and a second graph GCL from Ω′CL (Selected CL constraint

set).

Given a data set X, let G(V,E) be the complete undirected graph constructed

from X, with V is its node set and E is its edge set. The ith node vi of G corre-

sponds to xi ∈ X and there is an edge between each nodes pair (vi, vj), whose

weight wij = e−
‖xi−xj‖2

λ is the dissimilarity between xi and xj .
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Gkn(V,Ekn) is a subgraph which could be constructed from G where Ekn is the

edge set {ei,j} from E such that ei,j ∈ Ekn if (xi, xj) ∈ Ω′ML or xi is one of the

k-nearest neighbors of xj. GCL(VCL, ECL) is a subgraph constructed from G

with VCL its node set and {ei,j} its edge set such that ei,j ∈ ECL if (xi, xj) ∈ Ω′CL.

Once the graphs Gkn and GCL are constructed, their weight matrices, denoted

by (Skn + N kn) and SCL respectively, can be defined as:

Sknij =

wij if xi and xj are neighbors

0 otherwise
(3.22)

and

N kn
ij =



−wij if xi and xj are neighbors and (xi, xj) ∈ Ω′ML

w2
ij if xi and xj are neighbors and (xi, xj) ∈ Ω′CL or

if xi and xj are not neighbors and (xi, xj) ∈ Ω′ML

0 otherwise

(3.23)

and

SCLij =

1 if(xi, xj) ∈ Ω′CL

0 otherwise
(3.24)

Then, we can define:

• For each feature Fr, its vector fr = (fr1, ..., frn)T .

• Diagonal matrices Dkn
ii =

∑
j Sknij , DN kn

ii =
∑

j N kn
ij and DCL

ii =
∑

j SCLij .

• Laplacian matrices Lkn = (Dkn+DN kn)−(Skn+N kn) and LCL = DCL−SCL.

We can easily develop the first term of ϕ as follows:

T1 =
∑
i,j

(fri − frj)2(Sknij + N kn
ij )

(3.25)
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3.4. Constrained Selection-based Feature Selection (CSFS)

=
∑
i,j

(f 2
ri + f 2

rj − 2frifrj)(Sknij + N kn
ij )

= 2(
∑
i,j

f 2
ri(Sknij + N kn

ij )−
∑
i,j

fri(Sknij + N kn
ij )frj)

= 2(fTr (Dkn + DN kn)fr − fTr (Skn + N kn)fr)

= 2fTr Lknfr (3.26)

Note that satisfying the graph structures is done according to αirj in eq.(3.3). In

fact, when Ω′CL = ∅, we should maximize the variance of fr which would be

estimated as:

V ar(fr) =
∑
i

(fri − µr)2Dkn
ii (3.27)

The optimization of eq.(3.27) can be done as in section (3.3.1). In this case,

ϕr = LSr = fTr Lknfr
fTr Dknfr

. Otherwise, we develop as above the second term (T2) and

obtain 2fTr LCLDknfr.

Subsequently,

ϕr =
fTr Lknfr

fTr LCLDknfr
(3.28)

seeks those features that respectGkn andGCL. The complete algorithm of CSFS

is summarized in Algorithm 10.

The step 3 of the Algorithm 10 is computed in time O (mn2). Note that -as

Algorithm 10 CSFS
Input: Dataset X(n×m), the constant λ
Output: Ranked features

1: Construct the constraint set (ΩML and ΩCL) from YL
2: Select the coherent set (Ω′ML and Ω′CL) from (ΩML and ΩCL) using Algo-

rithm.9
3: Construct the graphs Gkn and GCL from (X,Ω′ML) and Ω′CL respectively.
4: Calculate the weight matrices Skn, N kn and SCL and the Laplacians Lkn, LCL.

5: for r = 1 to m do
6: Calculate ϕr according to eq.(3.28)
7: end for
8: Rank the features Fr according to their scores ϕr in ascending order.
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in CLS- the small labeled-sample problem becomes an advantage for CSFS

complexity, because it supposes that the number of extracted constraints is

smaller since it depends on the number of labels l. Thus, the cost of the

algorithm depends considerably on the size of unlabeled data XU .

To reduce such complexity, we propose to apply a clustering on XU (with u

vectors). We apply the same SOM clustering which we applied in CLS score.

Note that SOM algorithm is used in order to group and code the unlabeled data

and not to select them. Note also that, by clustering XU the complexity of step

3 in Algorithm 10 is reduced to (mu).

Subsequently, SOM will be applied on the unsupervised part of data (XU ) for

obtaining (X ′U) with a size equal to the number of SOM’ nodes (K). Therefore,

ϕ will be performed on the new obtained dataset (XL ∪X ′U).

3.4.4 Adaptive k-neighborhood graph

Among the advantages of ϕ score is the assessment of locality preserving abil-

ity by features. Meanwhile, the principle of fixed k-nearest neighbors for all

instances may affect the locality preserving, because there is no certainty that

the k-nearest neighbors of an instance are "close" to it (Figure 3.4-a).

In this case, some "far" neighbors would be enrolled in the locality preserving

measurement for the example in hand. Hence, we advise using a similar-

ity based clustering approach to all the instances as it reveals their locality

Figure 3.4: (a) Fixed k-nearest neighborhood. (b) Adaptive k-nearest neighbor-
hood
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3.5. Redundancy analysis in selected features (CSFSR)

structures. The k-nearest neighborhood relationship between them will then

depend on the membership to the same cluster. Hence, the adaptive k would

be related to data structure and could be defined as follows: two instances are

neighbors if they belong to the same cluster. Consequently, each cluster has its

own k which is the number of its elements (less one).

In Figure 3.4-b, calculating the score of x1 does not need to look far, but is

calculated on the base of the instances belonging to its cluster. Accordingly,

the score is less biased and the locality is more preserved. In addition, a main

advantage of having such adaptive neighborhood, is reducing the number of

parameters of the feature selection algorithm.

To conclude, CSFS has three major advantages:

1. It incorporates the labeled and unlabeled instances in a competent and

flexible manner, so it can be utilized regardless of the percentage of the

labeled data.

2. It exploits a pairwise constraint selection, which results in a coherent

constraint subset extracted from the labeled data.

3. It surveys the structural neighborhood of data examples, which highlights

the efficient locality preserving properties of the selected features.

3.5 Redundancy analysis in selected features (CS-

FSR)

In this section we propose an extension to the original CSFS algorithm in order

to eliminate the redundancy in the selected features. We propose CSFSR for

semi-supervised feature selection with redundancy elimination.

Feature redundancy is naturally correlated to feature correlation. It is widely

accepted that two features are redundant to each other if their values are

completely correlated [Yu and Liu, 2004]. In this section, we will first introduce
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our choice of correlation measure, then we will describe our strategy to reduce

the redundancy of relevant features.

3.5.1 Correlation measures

The most known measure that can be used to calculate the relationship be-

tween two features Fr and Fc is linear correlation coefficient. It is defined as

follows:

ρ(Fr, Fc) =

∑
i(fri − fr)(fci − fc)√∑

i(fri − fr)2

√∑
i(fci − fc)2

(3.29)

where fr and fc are the means of the feature vectors fr and fc respectively.

However, linear correlation is not always adapted to real-world applications.

For that, other non-linear measures are better adapted1. We choose to de-

fine the mutual information between two features Fr and Fc in terms of their

probabilistic density functions p(Fr), p(Fc), p(Fr, Fc):

I(Fr, Fc) =

∫ ∫
p(Fr, Fc)log

p(Fr, Fc)

p(Fr)p(Fc)
dFrdFc (3.30)

Mutual information quantifies the dependence between the joint distribution

of Fr and Fc and what the joint distribution would be if Fr and Fc were inde-

pendent. Mutual information is a measure of dependence in the following

sense: I(Fr, Fc) = 0 if and only if Fr and Fc are independent random vari-

ables. This is easy to see in one direction: if Fr and Fc are independent, then

p(Fr, Fc) = p(Fr)p(Fc), and therefore log( p(Fr,Fc)
p(Fr)p(Fc)

) = 0.

Under the hypothesis that the joint distribution of Fr and Fc is multi-variate

distribution, the mutual information can be directly related to the correlation

coefficient ρ [Kullback, 1959]:

I(Fr, Fc) = −1

2
log(1− ρ2(Fr, Fc)) (3.31)

1In [Yu and Liu, 2004], the authors listed another correlation measure, the entropy, which
is a measure of the uncertainty of a random variable. However, the entropy is adapted to
categorical data.
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3.5.2 Maximum spanning tree based redundancy elimination

In this section, we show how to automatically detect the subset of features

which have a strong multiple correlation in a set of relevant features. We pro-

pose a strategy based on maximum spanning tree to eliminate the maximum

number of redundant features and keep the strong relevant ones.

Figure 3.5: Gh: Original Graph; G′h:Maximum spanning tree. Here h = 6 fea-
tures.

This technique requires a matrix of weights between vertices (features in our

case). Thus, we calculate a matrix of correlations based on mutual information

according to eq.(3.31). This matrix is of dimension: h × h such as h is the

number of the best first features ranked according to Algorithm 10.

Algorithm 11 Prim
Input: The graph of relevant features: Gh(Vh, Eh)
Onput: The maximum spanning tree G′h(V

′
h, E

′
h)

1: Initialize: V ′h = {F ∗}where F ∗ is the most relevant feature in Vh
E ′h = ∅

2: Repeat
Choose an edge (Fi, Fj) with maximum weight such thatFi ∈ V ′h andFj ∈ Vh
V ′h = V ′h ∪ {Fj}
E ′h = E ′h ∪ {(Fi, Fj)}

3: Until V ′h = Vh
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Algorithm 12 CSFSR
Input: Dataset X(n×m), the constant λ
Output: Selected features

1: Select the h best relevant features ranked according to Algorithm 10
2: Construct the graph Gh(Vh, Eh)
3: Find the maximum spanning tree G′h(V

′
h, E

′
h) from Gh using Algorithm 11

4: repeat
5: Select a relevant feature Fr from V ′h (in the order of step 1)
6: Remove all features Fj from V ′h such as (Fr, Fj) ∈ E ′h
7: until until no more relevant feature can be selected in V ′h

Let Gh(Vh, Eh) be a complete weighted graph, where Vh is the set of the h

relevant features (vertices) and Eh is the set of edges weighted according to

eq.(3.31).

A maximum spanning tree G′h is a connected and acyclic sub-graph of Gh, for

which the sum of edge weights is maximum (Figure. 3.5).

On the left side of Figure 3.5, Gh represents a complete graph where all the

edges are weighted using the mutual information values. On the right, we can

see the maximum spanning tree G′h obtained from Gh where the solid edges

represent the tree providing the highest multiple correlation in the considered

set of relevant features.

For constructing G′h we use the optimized algorithm of Prim [Cormen et al.,

2001]:

Let be V ′h and E ′h two empty sets. First, we affect to V ′h the most relevant feature

Figure 3.6: Selection of relevant and non redundant features.
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Figure 3.7: Feature selection framework of CSFSR

from Vh (i.e. the feature that has the minimum score). The goal is to find the

edge (Fi, Fj) ∈ V ′h × Vh having the maximum weight (Vh = (Vh − V ′h)) and to put

Fj in V ′h and (Fi, Fj) in E ′h. This procedure is repeated for (h− 1) iterations.

A simple implementation using an adjacency matrix graph representation

and searching an array of weights to find the minimum weight edge to add

requires O(h2) running time. Using a simple binary heap data structure and

an adjacency list representation, Prim’s algorithm can be shown to run in time
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O(|Eh|Log|Vh|). Using a more sophisticated Fibonacci heap, this can be brought

down toO(|Eh|+ |Vh|Log |Vh|) = O(h(h−1)
2

+hLog h) [Cormen et al., 2001], which

is asymptotically faster when the graph is dense enough (the case of Gh).

Our strategy for redundancy elimination consists of (1) selecting the h first

relevant features ranked according to Algorithm.10, (2) constructing a weighted

graph between these relevant features using the eq.(3.31), (3) finding the maxi-

mum spanning tree according to Algorithm.11, (4) selecting a relevant feature

(in the order of (1), (5) removing all features with which it has an edge in (3) ,

and (6) iterating steps (4) and (5) until no more relevant (and non redundant)

feature can be selected (Algorithm 12).

As an example, we present in Figure 3.6 six features selected as relevant ones

and ranked according to their ϕ values. We show how to eliminate redundant

relevant features with the help of the maximum spanning tree obtained in

Figure 3.5. F4 is the most relevant feature. In the first round, F4 is selected and

F1 and F3 are removed based on F4. In the second round, F2 is selected and F5

is removed based on F2. In the last round F6 is selected. Finally, we summarize

our feature selection framework in Figure 3.7.

3.6 Experimental results

In this section, we present the empirical results of our proposals, and compare

them with a variety of representative methods for dimensionality reduction.

Furthermore, we keep the same configurations for each parameter used in the

compared methods.

At first, we start by the results of CLS over high-dimensional datasets, down-

loaded from well-known repositories.

3.6.1 Datasets and methods

We present an empirical study on several datasets. From UCI: "Iris", "Wave",

"Ionosphere", "Sonar" and "Soybean"; Microarray datasets: "Leukemia" and
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"Colon cancer"; and Face-image datasets: "PIE10P" and "PIX10P". The whole

datasets information is detailed in Table 3.1.

These datasets are voluntarily chosen for evaluating the learning performance

of our proposal, CLS, and comparing it with other techniques that were ex-

perimented over them. The concerned methods are summarized and listed

below:

• Variance score, is only based on variance for feature selection [Bishop,

1995].

• Fisher score, is based on variance and all labels for feature selection [Duda

et al., 2000].

• ReliefF, estimates the significance of features according to how well their

values distinguish between the instances of the same and different labels

that are near to each other [Robnik-Šikonja and Kononenko, 2003].

• F2+r4 and F3+r (SPEC), are spectral feature selection methods [Zhao and

Liu, 2007b].

• Laplacian score [He et al., 2005] (described in Section 2.7.1).

• Constraint score [Zhang et al., 2008] (described in Section 2.7.4).

• SC4 [Kalakech et al., 2011] (described in Section 2.7.6).

The experimental results are presented on three folds. First, we test CLS algo-

rithm on datasets whose the relevant features are known. Second, we do some

comparisons with known powerful feature selection methods and finally, we

apply the algorithm on databases with huge number of features. In most exper-

iments, the λ value is set to 0.1 and k = 10 for building the neighborhood graph.

These parameters are initialized with the same values as the other competitive

methods. For the semi-supervised data, we choose the first labeled examples

for all datasets (with different labels). We do no selection neither on the level of

examples to be labeled, nor on the generated constraints.
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Table 3.1: Datasets

Datasets n m K Source
Iris 150 4 3 [Frank and Asuncion, 2010]

Wave 5000 40 3 [Frank and Asuncion, 2010]
Ionosphere 351 34 2 [Frank and Asuncion, 2010]

Sonar 208 60 2 [Frank and Asuncion, 2010]
Soybean 47 35 4 [Frank and Asuncion, 2010]

Leukemia 72 7129 2 [Golub et al., 1999]
Colon cancer 62 2000 2 [Alon et al., 1999]

PIE10P 210 2420 10 [Zhao et al., 2011]
PIX10P 100 10000 10 [Zhao et al., 2011]

For the construction of the SOM’ maps in the phase of unlabeled data clustering

(Algorithm 8), we use the Principal Component Analysis (PCA) based heuristic

proposed by Kohonen [Kohonen, 2001] to automatically provide the number of

the initial numbers of clusters and the dimensions of the maps2. The reference

vectors are initialized linearly along the greatest eigenvectors of the associated

data XU .

3.6.2 Validation of feature selection

In this section, we are particularly interested on the two first datasets ("Iris"

and "Wave") which are popularly used in machine learning and data mining

tasks. In fact, we present the results of our approaches over these two datasets

as a starting validation point, this is because we have the a priori information

about the noise and the relevant features in both datasets.

In "Iris", one class is linearly separable from the other two which are not linearly

separable from each other. Out of the four features it is known that the features

F3 (petal length) and F4 (petal width) are more important for the underlying

clusters than F1 (sepal length) and F2 (sepal width) Figure 3.8. The sub-figure

(c) shows the data projected on the subspace constructed by F3 and F4, whereas

the sub-figure (b) shows the data projected on the subspace of F1 and F2. In

2All experiments are performed on MATLAB. The SOM toolbox is used and can be found at
(http://www.cis.hut.fi/somtoolbox/).
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Figure 3.8: 2D-Visualization of "Iris".

[He et al., 2005], it was reported that by using variance score [Bishop, 1995],

the four features are sorted as (F3, F1, F4, F2). With k ≥ 15, Laplacian score

sorts these four features as (F3, F4, F1, F2). It sorts them as (F4, F3, F1, F2)

when 3 ≤ k < 15. By using CLS, the features are sorted as (F3, F4, F1, F2)

for any value of k (between 1 and 20). For explaining the difference between

the two scores, we chose for this dataset, l = 10 generating 45 constraints.

Two of CL-type constraints are constructed from the pairs (73th, 150th) and

(78th, 111th) according to the labels of the points Figure.3.8(a)3 (The concerned

points are represented by rounds). Since, the data points between brackets are

close, with the Laplacian score, the edges e73,150 and e78,111 are constructed in

the associated k-neighborhood graph and affect the feature selection process.

With our method, these edges never exist because of theCL constraint property

even if k is small. For that, the scores obtained by CLS are smaller than the ones

obtained by Laplacian score. We also observed an important gap on scores

3Figure.3.8(a) is obtained by PCA (Principal Component Analysis).
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between the relevant variables (CLS3 = 1.4× 10−3, CLS4 = 2.7× 10−3) and the

irrelevant ones (CLS1 = 1.07× 10−2, CLS2 = 1.77× 10−2). In fact, In the region

where the points belong to the two non-linearly separable classes, Laplacian

score is biased by the dissimilarity which could affect the ranking of features

for their selection, while CLS is able to control this problem with the help of

constraints.

Figure 3.9: "Wave" dataset.

The waveform of Breiman dataset "Wave" consists of 5000 instances divided

into 3 classes. This dataset is composed of 21 relevant features (the first ones)

and 19 noise features with mean 0 and variance 1. Each class is generated from

a combination of 2/3 "base" waves (Figure 3.9).

We tested our feature selection algorithm with l = 8 (28 constraints) and the

dimension of the map (26× 14) for SOM’ algorithm. We can see in Figure 3.10

that the features (21 to 40) have high values on CLS. The noise represented by

these features is then clearly detected.
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Figure 3.10: Results of CLS on features of "Wave" dataset.

3.6.3 Comparison of the feature selection quality

In order to compare CLS approach with other methods, the nearest neighbor-

hood (1-NN) classifier4 with Euclidean distance, is employed for classification

after feature selection. For each dataset, the classifier is learned in the first

half of instances from each class and tested on the remaining data. We tested

the accuracy behavior of the ranking feature function represented by CLS for

comparing it with those of other methods cited in [Zhang et al., 2008]. These ex-

periments were applied on three datasets [Frank and Asuncion, 2010], the first

one is "Ionosphere" which represents radar returns from the Ionosphere. In ad-

dition, we use "Sonar" dataset which contains patterns obtained by bouncing

sonar signals off a metal cylinder at various angles and under various con-

ditions. The third dataset is "Soybean" which represents Michalski’s famous

soybean disease database. In order to create a semi-supervised form of these

datasets, we keep randomly 5 labeled instances for each one (all classes are

represented),so 10 pairwise constraints were generated.

4 Other classifiers can be exploited like (Decision Tree, SVM, etc.) which will be utilized later
in this thesis.
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Figure 3.11 indicates that, in most cases, the performance of CLS is comparable

to Fisher Score [Duda et al., 2000] and significantly better than that of Variance,

Laplacian and Constraint scores. This verifies that merging supervision infor-

mation of labeled data with geometrical structure of unlabeled data is very

useful in learning feature scores. Table 3.2 compares the averaged accuracy

under different number of selected features. Here, the values after the symbol±
denote the standard deviation. From Table 3.2 and Figure 3.11 we can find that,

the performance of CLS is almostly better than that of Variance, Laplacian score

and Constraint score and is comparable with Fisher Score. More specifically,

CLS is superior to Fisher Score on "Soybean" and "Ionosphere" and is inferior

on "Sonar". Note that Fisher score uses all labels when CLS score uses just 5

labels for each dataset.

Table 3.2: Averaged accuracy of different algorithms on "Ionosphere", "Sonar"
and "Soybean"

Datasets Variance Laplacian Fisher CS CLS
Ionosphere 82.2±3.8 82.6±3.6 86.3±2.5 85.1±2.9 86.73±2.1

Sonar 79.3±6.3 79.5±7.2 86.4±6.9 80.7±7.8 83.3±1.7
Soybean 88.9±12.7 79.4±28.4 94.5±12.1 93.5±11.6 95.06±1.3

Then, we compare the performance of CLS with that of Fisher and constraint

scores when different levels of supervision are used. Figure 3.12 shows the plots

for accuracy under desired number of selected features vs. different numbers

of labeled data (for Fisher Score) or pairwise constraints (for CS and CLS) on the

three datasets ("Ionosphere", "Sonar" and "Soybean"). Here, the desired num-

ber of selected features is chosen as half of the original dimension of instances.

For all scores, the results are averaged over 100 runs. As shown in Figure 3.12,

except on "Sonar", CLS is much better than the other two algorithms especially

when only a few labeled data or constraints are used. On "Sonar", both CS

and CLS are inferior to Fisher Score when the number of labeled data (or con-

straints) is great; CLS is always better when this number is small. A closer study

on Figure 3.12 reveals that, generally, the accuracy of CLS increases steadily

and fast in the beginning (with few constraints) and slows down at the end

(with relatively more constraints). It implies that too many constraints won’t

help too much to further boost the accuracy, and only a few constraints are
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Figure 3.11: Accuracy vs different numbers of selected features.

required in CLS, which corresponds exactly to our initial problem concerning

“small labeled-sample” data. While Fisher Score typically requires relatively

more labeled data to obtain a satisfying accuracy.
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Figure 3.12: Accuracy vs. different numbers of labeled data (for Fisher Score)
or pairwise constraints (for CScore and CLS).
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3.6.4 Results on gene expression datasets

"Leukemia" and "Colon cancer" are gene expression databases with huge

number of features. The microarray Leukemia data is constituted of a set

of 72 individuals, corresponding to two types of Leukemia called ALL (Acute

Lymphocytic Leukemia) and AML (Acute Myelogenous Leukemia), with 47 ALL

and 25 AML. The dataset contains expressions for 7129 genes. While "Colon

cancer" is a dataset of 2000 genes measured on 62 tissues (40 tumors and 22

"normal").

We present our results on these datasets in comparison with Laplacian, Fisher,

SC4 and CS scores, and that in case of Accuracy vs. Selected features. The

results (Figure 3.13) show that CLS records a comparable performance with

other scores when the number of features is inferior to 2500 for "Leukemia"

dataset, and 500 for "Colon cancer" dataset, then the performance of CLS is

superior to other scores performance when increasing the number of features.

3.6.5 Results on face-image datasets

"PIE10P" and "PIX10P" are face-image datasets, each contains 10 persons. The

validation on these datasets is presented in comparison with Laplacian, ReliefF

scores on both datasets. In addition, results were compared with (F2+r4) score

on "PIX10P" dataset and with (F3+r) score on "PIE10P" dataset. We chose to

Figure 3.13: Accuracy vs. different numbers of selected features on gene
expression datasets.
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compare our results with (F3+r) and (F2+r4) because they achieved best results

over the other variant scores proposed by the authors in [Zhao and Liu, 2007b].

Figure 3.14: Accuracy vs. different numbers of selected features on face-image
datasets.

The results in Figure 3.14 show that CLS outperforms significantly the other

scores whatever the exploited number of features. Meanwhile, on "PIE10P"

dataset, CLS is higher than Laplacian and (F3+r) scores and inferior to ReliefF.

Nevertheless, it could be shown that CLS has an excellent accuracy on "PIX10P"

dataset and very good one on "PIE10P" dataset.

3.7 Results of CSFS

In this section, we present an empirical study of CSFS framework over some

datasets from Table 3.1 (“Iris”, “Ionosphere”, “Sonar”, “Soybean”, “Leukemia”

and “Colon Cancer”).

In order to compare our feature selection framework with other methods,

we initialize the common parameters with the same values used in CLS (see

Section 3.6.1). In addition, the parameters of CSFS are configured as follows:

In order to implement the adaptive k-nearest neighborhood, we cluster the

data (XL ∪X ′U) by an Ascendant Hierarchical Clustering (AHC) [Dash and Liu,

1997]. Then, an internal index, Davies Bouldin [Mali and Mitra, 2003], is used

for cutting the dendrogram resulting from AHC in order to obtain the optimal
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number of clusters. Note that with this strategy, we obtain several values of

k for each dataset. These values are not manually determined, but they are

automatically settled based on the structure of each dataset. In addition, we

deploy our constraint selection procedure in order to choose the most coherent

subset of the generated constraints.

We compare CSFS with a variety of feature selection and extraction methods.

In addition, we compare CSFS with CLS in order to verify the efficiency of the

concept proposed by CSFS over CLS.

3.7.1 Results on UCI datasets

In this section we assess the relative performance of CSFS over other dimen-

sionality reduction methods for classification. We choose the semi-supervised

version of Laplacian score (Section 2.7.1) as the baseline. We compare CSFS

results with CS and CLS methods. We also test the performance of the su-

pervised Fisher score, which uses the class labels of all the training data. As

mentioned before, after dimensionality reduction, the nearest neighborhood

(1-NN) classifier is employed for classification. In addition, the coherent con-

straints (selected by Algorithm 9) on datasets are: (8 for Iris, 13 for Ionosphere,

11 for Sonar and 7 for Soybean).

(Figure 3.15) shows that CSFS always achieves the highest accuracy on all

datasets. In particular, CSFS outperforms constraint and Laplacian score sig-

nificantly, while it outperforms or achieves similar accuracy to CLS. Note that

Fisher uses the full labels of the dataset while CSFS uses a subset of coherent

constraints generated originally from a small-labeled data part (25%). Note also

that CSFS achieves better results than its ancestor CLS. This validate the three

principal ideas which were proposed in CSFS: the adaptive k-neighborhood,

the improved scoring function, and finally the constraint selection process.

In fact, CSFS achieves such performance using fewer constraints than CLS

utilizes.
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Figure 3.15: Accuracy vs. different numbers of selected features.

It is remarkable too that CSFS provides good accuracy even with a small number

of selected features. These results verify that merging useful constraints ex-

tracted from supervision information with geometrical structure of unlabeled

70

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



3.7. Results of CSFS

data is beneficial in learning feature scores. Then, we compare the performance

of CSFS with that of PCA, cFLD and SSDR-CMU (Figure 3.16). This comparison

concerns the Accuracy vs. different number of constraints (we used 50% of

selected features)

Note that the authors in [Zhang et al., 2007] proposed the SSDR score with

different variants (SSDR-M, SSDR-CM and SSDR-CMU). We compared our

results with SSDR-CMU because it uses the two types of pairwise constraints in

addition to the unlabeled data, which means that it uses the same specifications

that we consider in our score function. In addition, SSDR-CMU recorded better

results than the other SSDR variants. The comparison of our framework with

the listed scores is presented under different levels of selected constraints.

Note also that CSFS deploys just the coherent constraints from the whole con-

straint set generated from the labeled data. This can explain that the maximum

number of selected constraints in (Figure 3.16) is much less than the maxi-

mum number of possible constraints. This figure shows that CSFS outperforms

the PCA and cFLD scores significantly, and it is comparable to SSDR-CMU

on Soybean, outperforms it in “Sonar” and “Ionosphere”, but inferior to it on

“Iris” when SSDR-CMU exploits the full constraints set. CSFS achieves a high

accuracy even when few coherent constraints are deployed.

Another important notice from (Figure 3.16) is that CSFS accuracy on “Sonar”

and “Ionosphere” datasets is higher than the other score accuracies even when

they deploy the full constraints set; this validates the practically proven fact

that the use of more incoherent constraints would have ill effects on learning

performance (or it would have no effects in the best cases).

3.7.2 Results on Leukemia and Colon Cancer datasets

In this section, we present our results on these datasets on comparison with

Laplacian, Fisher, SC4 and CS scores. This comparison is presented in the

form of Accuracy vs. the selected constraints (50% of the selected features

were deployed).The coherent constraints used for this comparison are: 7 for
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Figure 3.16: Accuracy vs. different numbers of selected constraints (coherent
constraints for CSFS).

“Colon Cancer” and 8 for “Leukemia”. The results of the classification (Fig-

ure 3.17) show that CSFS outperforms other scores when using the full coher-

ent constraint sets, and as on UCI datasets, the accuracy achieved by CSFS on

“Leukemia” dataset is not reached by other scores even when using the whole

possible constraints set.

Figure 3.17: Accuracy vs. different numbers of selected constraints.
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3.8 Results of CSFSR

In this section, we empirically evaluate the performance of the algorithm de-

rived by CSFSR framework (presented in Figure 3.7). The study is done in the

semi-supervised context with redundancy analysis.

3.8.1 Datasets and methods

In the experiments, we consider additional datasets "PCMAC", "RELATHE",

"TOX-171", "CLL-SUB-111", and "ORL10P", with "Wave" and "PIE10P". These

datasets are known to have redundant features. In addition, they were used by

several competitive methods in order to validate their redundancy elimination-

based approaches [Zhao et al., 2012]. The whole datasets information is de-

tailed in Table 3.3 in which the last column (S) represents the percentage of

supervision5. The datasets are high dimensional, with different number of

Table 3.3: Additional Datasets

Datasets n m K S
PCMAC 1943 3289 2 0.3%

RELATHE 1427 4322 2 0.4%
TOX-171 171 5748 4 7%

CLL-SUB-111 111 11340 3 8%
ORL10P 100 10000 10 30%

classes and few supervision; for evaluating the performance of CSFSR and

comparing it with other methods. We choose eight representative methods,

the first five of them are semi-supervised and mostly based on constraints, and

the other three ones represent algorithms that can handle feature redundancy.

All concerned methods are listed as follows:

• sSelect [Zhao and Liu, 2007a] (described in Section 2.7.2).

• SSDR [Zhang et al., 2007] (described in Section 2.7.3).

5 The source for all these datasets is [Zhao et al., 2011] and can be downloaded from
(http://featureselection.asu.edu/datasets.php).
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• SC4 [Kalakech et al., 2011] (described in Section 2.7.6).

• CLS [Benabdeslem and Hindawi, 2011] (described in Section 3.3).

• CSFS [Hindawi et al., 2011] (described in Section 3.4).

• AROM-SVM [Weston et al., 2003], mRMR [Peng et al., 2005] and SPSF

[Zhao et al., 2012] (all described in Section 2.4).

3.8.2 Experimental setting for CSFSR

To simulate the “small labeled-sample” context, we set l, the number of labeled

data, by randomly selecting 3 instances per class and the remaining instances

are used as unlabeled data. The portion of supervised information is very small

for each data set (see the last column (S = 3K
n

) in Table 3.3).

The parameter λ is always set to 0.1 in all our experiments. For the other

methods compared, we respect the same parameters taken by the associated

authors.

Each data set is split (in a stratified way) into a training partition with 50% of

the instances and a test partition with the remaining 50% of instances. After

feature selection, a linear SVM classifier [Vapnik, 1995] (using LIBSVM package

[Chang and Lin, 2011]) is employed for classification accuracy. The classifier is

tuned via 2-fold cross-validation to training data set by repeating the process

20 times on 20 different partitions of the data.

In addition, we evaluate the clustering accuracy by comparing the label ob-

tained from each instance with that provided by the data corpus. To do this,

we use Rand index [Rand, 1971] to measure the clustering quality. This index

measures the correspondence between two partitions P 1 and P 2 of a data set

X. In our case, P 1 is the correct partition produced by labels of predefined

classes and P 2 is the partition obtained from the clustering algorithm. Each

partition is regarded as a set of n(n− 1)/2 pairs of decisions. For each pair of

instances (xi, xj), P k assigns them to the same class or to two different classes.

Assuming c= is the number of decisions where xi belongs to the same class as xj
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in P 1 and P 2, and c 6= is the number of decisions where xi and xj do not belong

to the same class in P 1 and P 2. We then obtain (c= + c 6=) correct decisions and

the accuracy between P 1 and P 2 is:

Rand =
c= + c 6=

n(n− 1)/2
(3.32)

This external index is widely used to evaluate the clustering approaches. We

used it when comparing our approach with the best known approaches using

the same measure.

Finally, for redundancy analysis, we use the same measure used by [Zhao et al.,

2012]:

RED(F ) =
1

m(m− 1)

∑
Fi,Fj∈F,i>j

ρ(Fi, Fj) (3.33)

where F is the final set of selected features, ρi,j returns the Pearson correlation

between two features Fi and Fj. The measurement assesses the averaged

correlation among all feature pairs, and a large value indicates that many

selected features are strongly correlated, and thus redundancy is expected to

exist in F .

3.8.3 Validation on "Wave" dataset

In this section, we are particularly interested in the waveform of Breiman

"Wave" dataset (described in section 3.6.2).

After applying CSFSR, we obtain the results presented in Figure 3.18. In the top

side of the figure we present the inverse of feature scores from the dataset. Note

that a feature is relevant if its score is low according to our developed score

function, but here, we show the inverse of scores for an efficient visualization

of feature relevances with three colors. The red color represents the irrelevant

features, the blue color represents the relevant features and the green color
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represents the relevant and non-redundant ones. We can see that the features

(22 to 40) have low values on their inverse scores, so the noise represented by

these features is clearly detected.

In the bottom side of the figure, we show the classification accuracy vs. dif-

ferent number of selected features with four curves. The black curve plots

the accuracy using all features in the dataset, while the red one represents the
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Figure 3.18: Results on "Wave" dataset. Top: Relevance of features. Bottom:
Classification accuracy.
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accuracy with the irrelevant features detected by CSFSR. We can see that the

performance is very weak when the learning is done using noise features only.

The other two curves (blue and green) outperforms the black one. Both curves

increase steadily over the first twenty features whose the inverse scores are the

high ones in the top side of the figure. However, the green curve (accuracy with

non-redundant features) is better than the blue one, it increases more rapidly

and achieves good performance with few number of features.

3.8.4 Feature quality on high-dimensional data

In this section, we assess the performance of CSFSR framework and compare it

with the above cited methods on high-dimensional data. The comparison is

conducted by measuring both classification and clustering analysis. Indeed, in

the semi-supervised context, the aim could concern the supervised learning

according to the labeling of data; and the unsupervised learning according to

the geometrical structure of data.

Comparison on classification performance

In this first scenario, we compare the performance of the CSFSR framework with

and without redundancy elimination. In addition, we compare the approach

with other semi-supervised features selection methods. This comparison con-

cerns the classification accuracy results that we present in both Figure 3.19 and

Table 3.4.

Figure 3.19 shows the performance of CSFSR algorithm by classification ac-

curacy (SVM) versus a different number of selected features. For each data

set, two curves are plotted. The blue one represents the accuracy on the top

relevant features without redundancy analysis. The green curve represents the

accuracy with the top relevant and non-redundant features. We can see that

generally speaking, the green curves outperform the blue ones, especially in

the beginning, with a small number of selected features. This means that the

redundancy function applied over the relevant subset of features, is necessary

to optimize this subset by providing good learning performance.
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Table 3.4 compares the averaged accuracies under different number of selected

features of different algorithms on each data set. The measures are obtained by

averaging the best accuracies achieved by the SVM classifier using the top 200

features selected by each algorithm. The values after the symbol± denote the

standard deviation and those between brackets represent the optimal number

of selected features which provide the best learning performance. In this

table, we can observe that CSFSR outperforms the baseline algorithms. Indeed,

by calculating the differences in averaged accuracies among algorithms, we

can see that in terms of accuracy gains, CSFSR is 8.24% better than sSelect,

5.34% better than SC4, 5.96% better than CLS and 5.6% better than CSFS. This

observation suggests that the compromise between the label information and

the geometrical structure of data, is more adopted to semi-supervised feature

selection with our method than the others.

For example, in the ORL data set, the result obtained by CSFSR (96.67) is compa-

rable with that obtained by CLS (96.76). However, CSFSR achieves this accuracy

with a smaller number of selected features (76) than CLS (93). The results fur-

ther verify that our proposal can guarantee that the optimal size of the feature

subset not only achieves a higher degree of dimensionality reduction but also

gives better discriminability (classification).

Comparison on clustering performance

To show how the dimensionality of the projected space affects the locality

preserving ability, we compare the clustering accuracies with a fixed number

of selected features. Note that this number is automatically determined by

CSFSR and is different for each data set. Thus, we use the same number for

the other methods and report the clustering results (Rand index) in Table 3.5.

For the clustering, we perform k-means algorithm over the selected feature

subspaces. The process is repeated 20 times with different initializations and

the best result in terms of the objective function is recorded.

As can be noted, CSFSR is very competitive with the other algorithms. For

example, it performs much better than SSDR for dimensionality reduction,
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Figure 3.19: Classification accuracy vs. different number of selected features
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Table 3.5: Clustering Accuracy (Rand index in %: the higher the better).

Datasets sSelect SSDR SC4 CLS CSFS CSFSR
PCMAC 49.99±0.02 50.0±0.01 50.1±0.01 50.3±0.02 49.9±0.01 51.18±2.13

RELATHE 50.2±0.2 50.3±0.01 50.4±0.1 50.4±0.01 50.4±0.01 50.91±3.7
TOX-171 63.1±0.75 61.3±0.26 61.6±1.59 61.5±1.74 61.9±1.72 64.35±2.17

CLL-SUB-111 54.8±1.31 51.1±3.39 54.9±2.47 53.8±2.37 54.7±2.7 56.81±1.35
PIE10P 82.5±2.05 81.5±1.4 81.3±1.49 82.4±1.03 82.7±0.84 82.1±0.14
ORL10P 84.37±3.16 75.8±4.2 79.8±1.2 86.9±2.1 82.9±5.18 87.3±1.75

WIN 0 0 0 0 1 5

when the number of constraints is limited. This indicates that the semi-super-

vised feature selection achieved by CSFSR is capable of enhancing clustering

performance.

3.8.5 Redundancy rate

In Table 3.6, we present the redundancy rates of the top h features selected

by different algorithms, where h is the number of features, which is finally

selected by CSFSR. Note that this number is automatically determined from

the top 200 relevant features and does not exceed the number of instances (n)

for each data set used. Indeed, when h > n, any feature can be expressed by a

linear combination of the remaining ones, which will introduce unnecessary

redundancy in the evaluation [Zhao et al., 2012]. The comparisons are made

between the methods that handle redundancy and all these methods select

features in a supervised context. This means that they use the whole labels

while CSFSR deals with little supervision (Table 3.3). For SPSF, there are three

Table 3.6: Averaged redundancy rate (RED index in %: the lower the better).

Datasets AROM-SVM mRMR SPSF CSFSR
PCMAC 0.04 0.03 0.03 0.02

RELATHE 0.05 0.04 0.04 0.02
TOX-171 0.15 0.26 0.16 0.07

CLL-SUB-111 0.59 0.26 0.22 0.28
PIE10P 0.32 0.29 0.24 0.06
ORL10P 0.25 0.25 0.24 0.41

WIN 0 0 2 4
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variants (SPSF-SFS, SPSF-NES, SPSF-LAR). We report in the table the best result

between the three variants for each data set. We can see in Table 3.6 that

generally, CSFSR efficiently removes redundancy (with low values). For this

task, it outperforms AROM-SVM and mRMR and is comparable with SPSF.

3.9 Conclusion

In this chapter we proposed three algorithms to solve the problem of semi-

supervised feature selection. We presented the first approach, CLS, in which

we constrained the Laplacian score in order to take into consideration the

background information about data. We translated this information into pair-

wise constraints (Must-link and Cannot-link constraints). The scoring function

of CLS integrated both labeled and unlabeled parts of data. However, with a

review of literature of pairwise constraints, it was practically proven that these

constraints may have some noise and thus deteriorate the learning perfor-

mance. To overcome this problem, we proposed CSFS framework, in which

we exploited a constraint selection procedure based on a measure form the

literature. In addition, we reduced the number of parameters which were

needed from the ancestor method CLS. This parameter is the k-neighborhood,

that we proposed to automatically calculate depending on the structure of the

data. Moreover, in order to treat the redundancy in the selected features, we

proposed CSFSR, in which we extended CSFS by a graph-based approach to

eliminate the redundancy in selected features. Finally, we presented a variety

of empirical results over high-dimensional data, and compared our methods

to other competitive approaches with different scenarios. The results were

promising and proved the efficiency of the proposed approaches.
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4 Weighting-Based Semi-Supervised

Feature Selection

4.1 Introduction

Embedded feature selection methods are locally specific to a model during its

construction. They aim to learn the feature relevance with the associated learn-

ing algorithm. In other terms, they incorporate feature selection and learning

algorithm in the same objective function. In this chapter, we investigate in an

embedded semi-supervised feature selection using the well known k-means

clustering algorithm [MacQueen, 1967]. We do this in two scenarios, the first

one uses a fuzzy variant of k-means based on feature weighting and relaxed

integration of pairwise constraints. The second approach uses the traditional

form of k-means with a strict application of pairwise constraints. We start by

a brief recall about the k-means algorithm, and some approaches which pro-

posed a semi-supervised version of k-means. Then, we present two methods

for weighting-based semi-supervised feature selection.

4.2 k-means type clustering

k-means is a very well known partitioning based clustering algorithm [Mac-

Queen, 1967]. It is based on iterative relocation that partitions a dataset into

K clusters, locally minimizing the total squared Euclidean distance between

the data instances and the cluster centroids. k-means aims at building parti-
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tions on the basis of an objective function. The main design challenge lies in

formulating an objective function that is capable of reflecting the nature of the

problem such that minimizing this function reveals a meaningful structure in

the dataset.

Let X = {x1, x2, .., xn} be a set of n data instances. Each xi is characterized by

m features xi1, xi2, ..., xim. k-means’ algorithm searches for a partition of X into

K clusters c1, c2, ..., cK that minimizes the objective function γ0:

γ0(a, c) =
K∑
q=1

n∑
i=1

m∑
j=1

aiq(xij − cqj)2 (4.1)

subject to
K∑
q=1

aiq = 1, i = 1..n (4.2)

where aiq is the membership of xi to the cluster cq. In the basic k-means, the

assignment is done in a hard manner, where each instance xi belongs to the

cluster cq if aiq = 1. The same instance is excluded from the cluster if aiq = 0.

In other situations, the assignment can be done softly, when each instance

belongs to all clusters with different scores. In this case, we consider a fuzzy

partition in which the total membership degrees sum to one [Bezdek, 1981].

More formally, in the hard version of k-means aik ∈ {0, 1} and in the fuzzy

version aik ∈ [0, 1] with the same constraint in eq.(4.2) for both versions.

4.3 Semi-Supervised k-means clustering

The last decade has witnessed extensive works on semi-supervised clustering.

The early work in this area [Wagstaff and Cardie, 2000] has proposed a mod-

ified version of COBWEB [Fisher, 1987], called COP-COBWEB, which strictly

enforced pairwise constrains. It was followed by an enhanced version of the

widely used k-means algorithm which could also accommodate constraints,

called COP-Kmeans [Wagstaff et al., 2001]. The common representation for

background information pertaining to X is in the form of pairwise constraint

sets: must-link constraints (ΩML) and cannot-link constraints (ΩCL). The au-
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4.3. Semi-Supervised k-means clustering

thors in [Basu et al., 2002] proposed two variants of k-means algorithms: seeded

k-means, and constrained k-means. Both variants initialize the k-means algo-

rithm by assigning the instances with different labels to different clusters. The

difference is that Constrained k-means keep the same assignment for labeled

instances during algorithm execution, while seeded k-means does not do that.

In addition, the authors in [Bilenko. et al., 2004] proposed to incorporate this

information into traditional partitional clustering algorithms by adapting the

objective function to include penalties for violated constraints. They proposed

to minimize:

γ1(a, c) = γ0(a, c) + ϑML + ϑCL (4.3)

subject to the same constraint in eq.(4.2).

The second and third terms in eq.(4.3) represent the penalty costs of violation

constraints in ΩML and ΩCL respectively. These terms control the influence

given to external information during the assignment phase of the algorithm.

eq.(4.3) has been shown to have a probabilistic basis related to the assignment

of labels in Hidden Markov Random Fields [Bilenko. et al., 2004].

Furthermore, the constraints were also introduced into the complete linkage

algorithm [Klein et al., 2002], the EM of a Gaussian mixture model [Shental

et al., 2003] and more recently the hierarchical clustering [Gilpin and Davidson,

2011], and spectral clustering [Wang and Davidson, 2010].

4.3.1 A fuzzy approach for feature selection (wCKM)

The weighting-based feature selection has been an important research topic

in clustering analysis [Green et al., 1990, Makarenkov and Legendre, 2001,

Modha and Spangler, 2003, Huang et al., 2005]. The authors in aforementioned

works assumed that the main drawback of k-means algorithm is that it treats

all features equally when calculating the cluster-membership of instances.

Such treatment is undesirable when dealing with high dimensional data. In

the following, we present an approach that we call Weighted constrained k-

Means (termed wCKM as a shorthand). In this approach, we propose to follow
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the weighting strategy of fuzzy k-means version for semi-supervised feature

selection.

As defined before, in the context of semi-supervised learning, the dataset X

consists of two subsets depending on the label availability: {x1, ..., xl} for which

the labels {y1, ..., yl} are provided, and {xl+1, ..., xl+u}whose labels are not given.

Here, each label yi ∈ {1, 2, ..., C}where C is the number of different labels, and

l + u = n (the number of all instances).

Before describing the method, we perform the following initializations:

• We putK = C, so we do not have to inform the a priori number of clusters

as it is done in k-means type clustering algorithms. In fact, the choice

of the number of clusters K is a critical issue in k-means type clustering

algorithms, because it generally influences the whole clustering process.

In the semi-supervised clustering, it is considered that such information

is supplied in the labeled part which carries the background information

about the target concept. Strictly speaking, we consider that there is at

least one labeled instance in XL for each desired cluster.

• We construct the different constraints (ΩML and ΩCL) from the labeled

part of data. ΩML contains pairs of instances that have the same label and

ΩCL contains those having different labels. Consequently, the number of

all constraints is |ΩML ∪ ΩCL| = l(l−1)
2

.

The idea behind our proposal is to associate to each feature Fj a weight wj in a

new objective function γ2 to be minimized. The goal is to assign a higher weight

to a dimension along which the distance between instances and centroids is

smaller.

γ2(a, c, w) =
K∑
q=1

n∑
i=1

m∑
j=1

a2
iqw

β
j (xij − cqj)2 + ϑML + ϑCL (4.4)

subject to eq.(4.2), eq.(4.5) and eq.(4.6) :

m∑
j=1

wj = 1, wj ∈ ]0, 1[ (4.5)
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4.3. Semi-Supervised k-means clustering

aiq ∈ [0, 1]; i = 1..n and q = 1..K (4.6)

where β is a parameter for the feature weights and :

ϑML =
∑

(xi,xr)∈ΩML

K∑
p=1

K∑
(q=1,l 6=p)

aiparq (4.7)

and

ϑCL =
∑

(xi,xr)∈ΩCL

K∑
p=1

aiparp (4.8)

Note that β cannot be equal neither to zero nor to one. Indeed, if β = 0, the

weighting is removed and so the feature selection cannot be performed. If

β = 1, w would disappear because of the following derivations for solving the

problem. Thus, to solve the optimization problem under these assumptions for

β, we minimize eq.(4.4) by solving the following three minimization problems:

• Optimization: O1: Minimizing γ2(a, c, w) with respect to c for calculating

the centroids of clusters.

• Optimization: O2: Minimizing γ2(a, c, w) with respect to a for calculating

the cluster-membership values of instances.

• Optimization: O3: Minimizing γ2(a, c, w) with respect to w for measuring

the weights of features.

O1 represents the centroid updating procedure in the process and can be easily

solved, providing the solution:

cqj =

∑n
i=1 a

2
iqxij∑n

i=1 a
2
iq

; q = 1..K and j = 1..m (4.9)

O2 represents the assignment step in the process. We use Lagrange multipliers

for solving this problem as follows:

ζ(a, c, w, κ) = γ2(a, c, w)−
n∑
i=1

κi(
K∑
q=1

aiq − 1) (4.10)
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Chapter 4. Weighting-Based Semi-Supervised Feature Selection

With fixed centroids and weights, the pair (κi, aiq) is an extremum of the func-

tion to optimize when ∂ζ
∂κi

= 0 and ∂ζ
∂aiq

= 0. The derivations yield the following

formulas:
∂ζ

∂κi
=

K∑
q=1

aiq − 1 = 0; i = 1..n (4.11)

and

∂ζ

∂aiq
= 2aiq

m∑
j=1

wβj (xij − cqj)2 +
∑

(xi,xr)∈ΩML

K∑
(p=1,p6=q)

arp

+
∑

(xi,xr)∈ΩCL

arq − κi = 0 (4.12)

From eq.(4.12) we can obtain:

aiq =
κi −

∑
(xi,xr)∈ΩML

∑K
(p=1,p6=q) arp −

∑
(xi,xr)∈ΩCL

arq

2
∑m

j=1w
β
j (xij − cqj)2

(4.13)

Such that κi can be obtained using eq.(4.11) and eq.(4.13):

κi =
1∑K

t=1
1

2
∑m
j=1 w

β
j (xij−ctj)2

+

∑K
t=1

∑
(xi,xr)∈ΩML

∑K
(p=1,p6=t) arp+

∑
(xi,xr)∈ΩCL

art

2
∑m
j=1 w

β
j (xij−ctj)2∑K

t=1
1

2
∑m
j=1 w

β
j (xij−ctj)2

(4.14)

We can rewrite eq.(4.13) as:

aiq =

1∑m
j=1 w

β
j (xij−vqj)2∑K

t=1
1∑m

j=1 w
β
j (xij−ctj)2

+
1

2
∑m

j=1 w
β
j (xij − cqj)2

×


∑K

t=1

∑
(xi,xr)∈ΩML

∑K
(p=1,p6=t) arp+

∑
(xi,xr)∈ΩCL

art∑m
j=1 w

β
j (xij−ctj)2∑K

t=1
1∑m

j=1 w
β
j (xij−ctj)2

−
∑

(xi,xr)∈ΩML

K∑
(p=1,p6=q)

arp −
∑

(xi,xr)∈ΩCL

arq

 (4.15)
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4.3. Semi-Supervised k-means clustering

Note that the instance assignments represented by eq.(4.15) are done in a

soft manner where each instance has K membership values w.r.t eq.(4.2) and

eq.(4.6).

O3 represents the feature weighting procedure in the process. The solution

of this problem allows to update the relevance of features in an embedded

manner. We can rewrite eq.(4.4) as follows:

γ2(a, c, w) =
m∑
j=1

wβj

K∑
q=1

n∑
i=1

a2
iq(xij − cqj)2 + ϑML + ϑCL (4.16)

To solve this problem, we can consider the relaxed minimization via a Lagrange

multiplier by ignoring the constraint in eq.(4.5). Let % be the multiplier and ξ

be the Lagrangian:

ξ(a, c, w, %) = γ2(a, c, w)− %(
m∑
j=1

wj − 1) (4.17)

To minimize eq.(4.17) with respect to w and %, the gradient of the following two

variables must equal to zero:

∂ξ

∂%
=

m∑
j=1

wj − 1 = 0; j = 1..m (4.18)

and
∂ξ

∂wj
= βwβ−1

j

K∑
q=1

n∑
i=1

a2
iq(xij − cqj)2 − % = 0 (4.19)

From eq.(4.19), we obtain:

wj = (
%

β
∑K

q=1

∑n
i=1 a

2
iq(xij − cqj)2

)
1

β−1 ; j = 1..m (4.20)

By substituting eq.(4.20) into eq.(4.18), we obtain:

m∑
p=1

(
%

β
∑K

q=1

∑n
i=1 a

2
iq(xip − vqp)2

)
1

β−1 = 1 (4.21)

89

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



Chapter 4. Weighting-Based Semi-Supervised Feature Selection

From eq.(4.21), we have:

(%)
1

β−1 =
1∑m

p=1( 1

β
∑K
q=1

∑n
i=1 a

2
iq(xip−cqp)2

)
1

β−1

(4.22)

By substituting eq.(4.22) in eq.(4.20), we obtain in the final:

wj =
1∑m

p=1(
∑K
q=1

∑n
i=1 a

2
iq(xij−cqj)2∑K

q=1

∑n
i=1 a

2
iq(xip−vqp)2

)
1

β−1

(4.23)

From eq.(4.23), we find that the weight of a feature is dependent on the value

of β. Following, we discuss the impact of the different values of this parameter.

• if β < 0, a high value of
∑K

q=1

∑n
i=1 a

2
iq(xij − cqj)2 leads to a small value of

wj .

• if 0 < β < 1, a high value of
∑K

q=1

∑n
i=1 a

2
iq(xij − cqj)2 leads to a high value

of wj . This is paradoxical with the principle of feature weighting.

• if β > 1, a high value of
∑K

q=1

∑n
i=1 a

2
iq(xij − cqj)2 leads to a small value of

wj . So, the weight of the feature is then decreased.

Thus, in order to use the weights as measures for evaluating feature relevance,

the value of β must be either negative or greater than 1. Indeed, a relevant

feature should reduce the distance between instances and their centroids in

the associated cluster.

Note that the weights defined by eq.(4.23) depend on the labeling constraints

only indirectly through the cluster membership values. Thus, the semi-super-

vised feature selection represented by this equation combines implicitly the

geometrical structure from the unlabeled data with supervision information of

labeled data.

Subsequently, we can summarize all the above mathematical developments in

Algorithm 13.
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4.3. Semi-Supervised k-means clustering

Algorithm 13 wCKM
Input: Dataset X(n×m)
Output: Weighted and ranked features

1: Give the parameter β
2: Construct the constraint sets (ΩML and ΩCL) from labeled part of X
3: Give K as the number of labels in labeled part of X
4: Randomly choose initial centroids c1, c2, ..., cK from X
5: Randomly generate initial weights w1, w2, ..., wm (

∑m
j=1wj=1)

6: Calculate the memberships using eq.(4.15)
7: Update the centroids using eq.(4.9)
8: Update the feature weights using eq.(4.23)
9: Iterate between steps 6: and 8: until convergence

10: Rank the features {Fj} according to their weights {wj} in descending order.

Lemma 3. wCKM is computed in time O(m×max(ntK,Log m)), where t is the

number of iterations.

Proof. Step 2 of the algorithm requires l2 operations. Step 6 calculates the

cluster-membership values by nK operations. Step 7 updates the centroids

by mK operations and step 8 provides the feature weights after mnK opera-

tions. The last step ranks the features according to their weights with mLog(m)

operations.

4.3.2 A Local-to-Global Feature Selection (L2GFS)

In this section, we extend the approach proposed by [Huang et al., 2005], which

is basically global and unsupervised, to semi-supervised feature selection.

We propose a modification to the objective function of the constrained

version of k-means [Wagstaff et al., 2001]. We add a new unknown variable

to the function, the weights w, which would be used to weigh the features at

each iteration, and then reduce the effects of irrelevant ones. We propose a

local-to-global semi-supervised feature selection approach termed L2GFS as

a shorthand. In the following, we start with a detailed local semi-supervised

weighted extension to the objective function of k-means described in eq.(4.1).

In detail, we first weigh the variables regarding the clusters, this means that

each feature would have as much weights as the number of clusters. We
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Chapter 4. Weighting-Based Semi-Supervised Feature Selection

believe that this local feature weighting would help at mining the persistent

variables which best describe each cluster, instead of having the same features

rating over all the clusters. This method results in selecting a coherent feature

subset for each cluster (local feature selection). The cluster in its turn regroups

a homogeneous instances (instance selection). The application of such

technique (as in co-clustering) can help in studying the effects of important

factors (here features) that influences specific subset of population (instances).

However, the aim of this approach is to use the local feature selection

in the goal of having a better global selection. Finally, it is obvious that a

feature that well describe a given cluster might not well describe the other ones.

We propose to minimize the new following objective function:

min
a,c,w

Q(a, c, w) =
K∑
q=1

n∑
i=1

m∑
j=1

aiq w
β
qj(xij − cqj)2 (4.24)

subject to 

∑K
q=1 aiq = 1, 1 ≤ i ≤ n,

aiq ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ q ≤ K∑m
j=1wqj = 1, 0 ≤ wqj ≤ 1, 1 ≤ l ≤ K

ϑML = 0, ϑCL = 0.

(4.25)

Where ϑML, ϑCL are calculated according to eq.(4.7) and eq.(4.8) respectively.

Similarly to solving eq.(4.1), the eq.(4.24) assigns at iteration (t = 0) initial K

random weights to each feature then the unknown variables a, c and w are

optimized iteratively using the following equations:
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4.3. Semi-Supervised k-means clustering

a
(t)
iq =


1

if
∑m

j=1 w
β,(t−1)
qj (xij − c(t−1)

qj )2 ≤∑m
j=1w

β,(t−1)
sj (xij − c(t−1)

sj )2

for 1 ≤ s ≤ K

and
∑i−1

(b=1,(xi,xb)∈ΩCL) a
(t)
bq = 0 for i > 1

and
∏i−1

(p=1,(xi,xp)∈ΩML) a
(t)
pq = 1 for i > 1

0 otherwise

(4.26)

where (for any iteration t)

• For the first instance (i = 1), no assessment of constraint non-violation is

required since it is the first assignment at the current iteration. Thus, the

assignment is just driven by the distance to the cluster centroids.

• For the following instances (i > 1)

– {xb|1 ≤ b ≤ (i− 1)}means that in each assignment, the assessment

of constraints non-violation involves the so far assigned instances

only (b < i).

– (xi, xb) ∈ ΩCL( or ΩML) means that among the so far assigned in-

stances, the non-violation test concerns only the instances in which

the current instance xi is engaged by a CL (or ML) constraint.

– (
∑i−1

(b=1,(xi,xb)∈ΩCL) a
(t)
bq = 0) means that the instances {xb|1 ≤ b ≤

(i − 1)} which are already assigned at the current iteration t and

connected to the current instance xi via CL constraint. No one of

these instances must be already affected to the current cluster q, so

a
(t)
bq = 0 for all of them.

– (
∏i−1

(p=1,(xi,xp)∈ΩML) a
(t)
pq = 1) means that the instances {xp|1 ≤ p ≤

(i − 1)} which are already assigned at the current iteration t and

connected to the current instance xi via ML constraint. All these

instances must be already affected to the current cluster q, so a(t)
pq = 1

for all of them.

In general, the transitive closure is important to be applied to the original

constraints. For example, if we have three instances (x1, x2, x3) with (x1, x2) ∈
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Chapter 4. Weighting-Based Semi-Supervised Feature Selection

ΩML and (x1, x3) ∈ ΩCL, then it is obvious to add (x2, x3) to ΩCL. This issue is

implicitly done when the constraints are automatically generated from labeled

part of data.

The calculation of the new cluster centroids remains the same as in the standard

k-means version:

c
(t)
qj =

∑n
i=1 a

(t)
iq xij∑n

i=1 a
(t)
iq

for 1 ≤ q ≤ K and 1 ≤ j ≤ m (4.27)

Theorem 1. The calculation of the new local weights could be done by the

following equation:

wqj =


0 if

∑n
i=1 aiq (xij − cqj)2 = 0

1∑h
s=1

[∑n
i=1

aiq (xij−cqj)2∑n
i=1

aiq (xis−cqs)2

] 1
β−1

if
∑n

i=1 aiq (xij − cqj)2 6= 0 (4.28)

1 ≤ q ≤ K and 1 ≤ j ≤ m

where

h is the number of features where
∑n

i=1 aiq (xij − cqj)2 6= 0.

Proof. We rewrite the objective function eq.(4.24) as follows

Q(a, c, w) =
m∑
j=1

K∑
q=1

n∑
i=1

wβqjaiq (xij−cqj)2 =
m∑
j=1

K∑
q=1

wβqj

n∑
i=1

aiq (xij−cqj)2 (4.29)

where
∑n

i=1 aiq (xij−cqj)2 are constants for fixed a and c. If
∑n

i=1 aiq (xij−cqj)2 =

0, this means that the jth variable Fj has the same value for all instances in the

cluster q. This is a degenerate solution, so we assign wqj = 0 to any feature

where
∑n

i=1 aiq (xij − cqj)2 = 0. Note that a 0 weight to a feature in this case is
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4.3. Semi-Supervised k-means clustering

only related with certain cluster in which the variable have identical value for all

instances in this cluster. Moreover, wjq = 0 if the variable Fj has a unique value

for all instances in the cluster cl. In this case, we assign 0 to variable in order to

satisfy the third constraint in eq.(4.25). Then, at the end of the algorithm, we

check variables that have wjq = 0 (for all q). The variable is chosen if it has a

unique value in each cluster (different from its values in other ones), and it is

rejected if it has the same value in all clusters.

For the h(≤ m) feature weights where
∑n

i=1 aiq (xij − cqj)
2 6= 0 (we consider

the reasoning for one cluster for simplification purpose), we minimize the

function via the Lagrangian multiplier. Let ς be the multiplier and Γ(W, ς) be

the Lagrangian. By ignoring the constraint
∑m

j=1wqj = 1 we obtain:

Γ(w, ς) =
h∑
j=1

K∑
l=1

wβqj

n∑
i=1

aiq (xij − cqj)2 −
K∑
q=1

ςq

(
m∑
j=1

wqj − 1

)
(4.30)

The two sets of variable derivatives (w, ς) must vanish and then we would have

∂Γ

∂wqj
= βwβ−1

qj

n∑
i=1

aiq (xij − cqj)2 − ςq = 0 for 1 ≤ j ≤ h, 1 ≤ q ≤ K (4.31)

∂Γ

∂ςq
=

h∑
j=1

wqj − 1 = 0. (4.32)

From eq.(4.31) we obtain

wqj =

(
ςq

β
∑n

i=1 aiq (xij − cqj)2

) 1
β−1

for 1 ≤ j ≤ h, 1 ≤ q ≤ K (4.33)

Substituting eq.(4.33) into eq.(4.32), we have

h∑
s=1

(
ςq

β
∑n

i=1 aiq d(xis, cqs)

) 1
β−1

= 1. (4.34)
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Chapter 4. Weighting-Based Semi-Supervised Feature Selection

From eq.(4.34), we derive

(ςq)
1

β−1 =
1[∑h

s=1

(
1

β
∑n
i=1 aiq (xis−cqs)2

) 1
β−1

] . (4.35)

Substituting eq.(4.35) into eq.(4.33), we obtain

wqj =
1∑h

s=1

[∑n
i=1 aiq (xij−cqj)2∑n
i=1 aiq (xis−cqs)2

] 1
β−1

(4.36)

With eq.(4.36) the objective function eq.(4.24) is minimized locally over each

cluster, and then the features are ranked in each one by the local weights

wqj. These weights express the relevance of each feature Fj regarding each

corresponding cluster cq. The local ranking is suitable when searching the

features that best describe each cluster. In this approach, we are interested in a

global feature weighting. In order to achieve this goal, we aggregate the weights

of each variable over all clusters, to do so we write:

wj =
1

K

K∑
q=1

wqj (4.37)

The global weighting rank all variables and then the features are selected re-

garding to their global weights.

Subsequently, we can summarize all the above mathematical developments in

Algorithm 14.

Lemma 4. L2GFS converges to a local minimal solution in a finite number of

iterations.

Proof. Assume that the cluster-membership for all instances did not change be-

tween two different iterations t1 and t2 then a(t1) = a(t2). We note that given a cer-
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Algorithm 14 L2GFS
Input: Dataset X(n×m)
Output: Weighted and ranked features

1: Give the parameter β
2: Construct the constraint sets (ΩML and ΩCL) from labeled part of X
3: Give K as the number of labels in labeled part of X
4: Randomly choose initial centroids c1, c2, ..., cK from X
5: Randomly generate initial local weights for each variablewj1, wj2, ..., wjq 1 ≤
j ≤ m (

∑m
j=1wj,l=1)

6: Calculate the memberships using eq.(4.26)
7: Update the centroids using eq.(4.27)
8: Update the local variable weights using eq.(4.28)
9: Iterate between steps 6: and 8: until convergence

10: Calculate the global variable weights using eq.(4.37)
11: Rank the features {Fj} according to their weights {wj} in descending order.

tain value of the cluster-membership a(t), we can compute the cluster centroids

c(t) by eq.(4.26) which is independent of the variable weight w(t). For a(t1) and

a(t2), we have the centeroids c(t1) and c(t2), respectively. It is clear that c(t1) = c(t2)

since a(t1) = a(t2). Using a(t1) and c(t1), and u(t2) and c(t2), we can compute their

corresponding weights: w(t1) and w(t2), respectively (according to eq.(4.28)).

Again, as w(t1) = w(t2), therefore, Q1(a(t1), c(t1), w(t1)) = Q2(a(t2), c(t2), w(t2)).

4.4 Experimental results

In this section, we present empirical results of wCKM and L2GFS approaches.

In the first part, we introduce the results of wCKM versus different compet-

itive methods. In the second part, we compare L2GFS to wCKM in several

learning scenarios in order to validate both approaches. The experiments are

performed over several high-dimensional datasets, and show the comparison

of our proposals with other semi-supervised feature selection ones. In addition,

we compare them with some well-known semi-supervised clustering methods

since they rely on a clustering algorithm for embedded feature selection.
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Chapter 4. Weighting-Based Semi-Supervised Feature Selection

4.4.1 Datasets and methods

We use the following benchmarking datasets for the comparisons: "Wave",

"PCMAC", "RELATHE", "TOX-171", "CLL-SUB-111", "PIE10P" and "PIX10P".

The datasets are high dimensional, with different number of classes and few

supervision; for evaluating the performance of wCKM and comparing it with

other methods. All concerned methods are semi-supervised and most of them

are based on constraints:

• cFLD, is a dimensionality reduction method, using equivalence con-

straints in relevant component analysis (RCA) [Bar-Hillel et al., 2005].

• sSelect [Zhao and Liu, 2007a] (described in Section 2.7.2).

• SSDR [Zhang et al., 2007] (described in Section 2.7.3).

• SC4 [Kalakech et al., 2011] (described in Section 2.7.6).

• CLS [Benabdeslem and Hindawi, 2011] (described in Section 3.3).

• CSFS [Hindawi et al., 2011] (described in Section 3.4).

Since wCKM provides a partition with relaxed constraint satisfaction, other

methods are considered for comparison over constrained clustering. Theses

methods are :

• COP-KMeans, which performs hard constraint satisfaction in k-means

algorithm [Wagstaff et al., 2001].

• MPC-KMeans 1 , is a hybrid approach, performing both soft constraint

satisfaction and metric learning [Bilenko. et al., 2004].

4.4.2 Experimental setup for wCKM

To simulate the “small labeled-sample” context, we set l, the number of labeled

data, by randomly selecting 3 instances per class and the remaining instances

1 The code for this method can be found at (http://www.cs.utexas.edu/users/ml/risc/code/).
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4.4. Experimental results

are used as unlabeled data. The parameter β in wCKM is always set to −0.12.

The obtained feature weights are averaged over 10 runs with different initializa-

tions of centroids and ranked in a descendant order for selecting the relevant

ones. For the other compared methods we respect the same parameters taken

by the associated authors.

After feature selection, a linear SVM classifier (using LIBSVM package [Chang

and Lin, 2011]) is employed for classification accuracy. Each dataset is split (in

a stratified way) into a training partition with 50% of the instances and a test

partition with the remaining 50% of instances.

In addition, we evaluate the clustering accuracy by comparing the obtained

label of each instance with that provided by the data corpus. For that, we use

Rand index [Rand, 1971] to measure the clustering quality.

4.4.3 Validation of feature selection on "Wave" dataset

In this section, we present the result of applying wCKM over the "Wave" dataset.

These results are presented in Figure 4.1. We can see in Figure 4.1(a) that the

features (22 to 40) have low values on their weights, so the noise represented by

these features is clearly detected.

Figure 4.1(b) illustrates the convergence curve of wCKM’ algorithm. The hori-

zontal axis represents the number of iterations and the vertical axis represents

the number of changed cluster-membership values (u) during the clustering

process. We can see that the algorithm converges rapidly until a local minimal

value is reached. The final set of weights (w) is obtained after a few number of

iterations (t = 19).

In Figure 4.1(c), we show the curves of constraint violations (ML, CL and

ML+CL) during the process (vs. the number of iterations). The three curves de-

crease with the convergence of the algorithm. This means that the violation of

the constraints also decreases along the minimization of the objective function.

2This value of β is chosen after several experiments.
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Chapter 4. Weighting-Based Semi-Supervised Feature Selection

Figure 4.1: Results of wCKM on "Wave" dataset. (a) Feature weights. (b)
Convergence curve. (c) Constraint violation. (d) Classification accuracy.

In fact, the algorithm tends to find a compromise between the minimization of

the distance between instances and their cluster-centroids on one hand; and

the minimization of the constraint violation on the other hand. At the end,

both assignment and constraint satisfaction are made in a soft manner.

Figure 4.1(d) presents the classification accuracy vs. different number of se-

lected features. The curve increases steadily and rapidly over the first twenty

features whose weights are the high ones in Figure 4.1(a); and it stabilizes over

the remaining features that are irrelevant (with low weights). This means that

the method is robust to noise.
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4.4.4 Comparison of feature quality on high-dimensional

data

In this section, we assess the performance of wCKM and compare it with

the above cited methods. The comparison is conducted by measuring both

classification and clustering accuracies.

Figure 4.2 plots the curves of the whole algorithms (except cFLD and SSDR

which do not do feature selection) for classification accuracy vs. different

number of selected features. This figure indicates that in most cases wCKM

outperforms the other methods, especially for text datasets in which the noise

is important. It can be shown that in particular, the performances of SC4 is the

worst. The performance of SC4 is weak for small-labeled data and relatively

well for the high-labeled ones. We estimate that this is because SC4 naively

combines (by multiplying) two scores from both labeled and unlabeled data.

wCKM seems to combine more efficiently the labeled and unlabeled parts of

data than the other constraint based semi-supervised methods. This shows

that the combination is more efficient using an embedded approach than that

using a filter one, in which the relevance of features is independently measured.

However, wCKM does not perform very well for Face datasets, in which the

number of clusters and the number of generated constraints are both high. This

is because the algorithm tends to simultaneously optimize both the proximity

between instances and their closest centroids on one hand, and the violation

of constraints on the other hand. Moreover, It is worth mentioning that the

classification accuracy of wCKM generally increases at the beginning (with a

small number of features), but such increase lessens at the end.

Table 4.1 compares the averaged accuracy under different numbers of selected

features. From this table and Figure 4.2, we can find that, the performance of

wCKM is almost always better than that of sSelect, SC4 and CLS, and is compa-

rable with CSFS. More specifically, wCKM is superior to the other methods on

all datasets except those with high values of bothK and l (as in Image datasets).

In addition, from Table 4.1, we can calculate de differences of the averaged
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Chapter 4. Weighting-Based Semi-Supervised Feature Selection

Figure 4.2: Performance on classification accuracy vs. different number of
selected features
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accuracies among algorithms. We can see that in terms of accuracy gains,

wCKM is 10.26% better than sSelect, 8.59% better than SC4, 7.82% better than

CLS and 7.565% better than CSFS. This observation suggests that the label

information is more adopted for semi-supervised feature selection with our

method than the other ones. This is also consistent with our understanding

that the emdedded character of the method has an important role for feature

selection comparing to the filter based approaches.

Indeed, with wCKM, the label information is explicitly learned by the mini-

mization of constraint violation in the associated objective function. This mini-

mization is simultaneously performed with the minimization of the weighted

distance between data instances and their closest prototypes in the different

clusters. Both minimizations are required for providing both, relevant features

and an efficient constrained clustering.

Furthermore, we compare the performance between all methods when differ-

ent levels of supervision are used. Figure 4.3 shows the plots for accuracy under

desired number of selected features versus different number of constraints.

The desired number of selected features is fixed to 10. Here, cFLD and SSDR

are included in the comparisons as they represent dimensionality reduction

methods. A particular study on Figure 4.3 reveals that, generally, the accuracy

of wCKM increases steadily in the beginning when the number of constraints

is limited, and decreases at the end. It implies that only a limited supervision

is required for wCKM to provide high performance. This corresponds exactly

to our initial problem concerning “small labeled-sample” data. To show how

the dimensionality of the projected space affects the performance, we com-

Table 4.1: Classification Accuracy (in %).

Datasets sSelect SC4 CLS CSFS wCKM
PCMAC 56.3±3.75 53.68±2.41 55.26±3.71 60.55±7.45 75.9±4.96

RELATHE 58.26±2.52 54.77±0.51 53.79±1.19 55.02±0.47 66.46±3.05
TOX-171 53.16±5.87 53.99±7.73 51.78±5.91 51.78±5.91 65.90±7.25

CLL-SUB-111 52.03±4.66 59.44±8.55 64.44±6.97 64.9±6.01 69.61±5.4
PIE10P 76.43±17.35 81.53±14.06 82.55±8.80 77.10±10.74 77.04±19.85
PIX10P 89.8±3.63 92.56±2.95 92.76±2.5 92.77±2.6 92.6±1.11

WIN 0 0 1 1 4
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Chapter 4. Weighting-Based Semi-Supervised Feature Selection

Figure 4.3: Classification accuracy vs. different number of constraints.
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4.4. Experimental results

Table 4.2: Clustering Accuracy (Rand index in %) with the ten best selected
features.

Datasets cFLD sSelect SSDR SC4 CLS CSFS wCKM
PCMAC 48.8±0.03 49.9±0.02 50.0±0.01 50.1±0.01 50.3±0.02 49.9±0.01 52.05±0.24

RELATHE 48.9±0.02 50.2±0.2 50.3±0.01 50.4±0.1 50.4±0.01 50.4±0.01 52.2±2.1
TOX-171 60.0±0.3 63.1±0.75 61.3±0.26 61.6±1.59 61.5±1.74 61.9±1.72 66.4±1.36

CLL-SUB-111 50.9±1.4 54.8±1.31 51.1±3.39 54.9±2.47 53.8±2.37 54.7±2.7 57.08±0.1
PIE10P 80.6±1.2 82.5±2.05 81.5±1.4 81.3±1.49 82.4±1.03 82.7±0.84 81.6±0.93
PIX10P 84.2±1.36 91.1±2.92 84.6±1.3 90.5±2.71 92.1±3.19 95.3±3.31 95.3±2.19

WIN 0 0 0 0 0 2 4

Table 4.3: Performance of wCKM vs. two known constrained clustering algo-
rithms.

Datasets COP-Kmeans MPC-Kmeans wCKM
Unc / Con Unc / Con Unc / Con

PCMAC 49.98 50.04 49.97 49.98 49.98 51.38
RELATHE 50.40 50.68 50.32 50.39 50.41 51.66
TOX-171 63.38 64.75 64.02 65.04 63.39 65.9

CLL-SUB-111 52.60 55.32 54.46 55.79 55.32 56.34
PIE10P 70.12 79.90 78.40 81.62 70.93 80.39
PIX10P 87.80 90.14 88.48 92.20 90.54 94.63

pare the clustering accuracies with a fixed number of selected features (the

same as above). The percentage of supervision is the same as indicated in

Table 3.3. Since our proposal is based on k-means paradigm, we can obviously

calculate its clustering accuracy. For the other methods, we use their results

from Table 3.5, and for PIX10P dataset, we perform k-means algorithm in the

selected feature subspace. The clustering is repeated 20 times with different

initializations and the best result in terms of the objective function is recorded

in Table 4.2.

As can be noted, wCKM is very competitive with the other algorithms. For

example, it performs much better than cFLD or SSDR for dimensionality re-

duction, when the number of constraints is limited. This indicates that the

semi-supervised feature selection achieved by wCKM is capable of enhancing

clustering performance, which is provided by the same algorithm.
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Chapter 4. Weighting-Based Semi-Supervised Feature Selection

4.4.5 Results on constrained clustering

In this section, we present some comparisons of wCKM vs. two known con-

strained clustering algorithms, COP-Kmeans and MPC-Kmeans. These com-

parisons were done without feature selection, and are presented in Table 4.3.

We compare the results for each algorithm in terms of its unconstrained and

constrained performance, when provided with the constraints exacted from

the labeled part of data according to the last column of Table 3.3. We evaluated

these algorithms on the datasets with all their features, since the objective here

is not feature selection but to show the performance that can provide the pro-

posal on constrained clustering when the features are weighted as explained

previously. Table 4.3 shows the accuracy (Rand index) on the held-out test

sets which are subsets of data composed of instances that are not directly or

transitively affected by the constraints.

On the one hand, wCKM provides a clear improvement to clustering accuracy,

despite the violation of some constraints. On the other hand, the results ob-

tained by wCKM are similar and sometimes better than the other constrained

clustering methods. The most important remark is that with our proposal

the clustering performance increases significantly with a few number of con-

straints comparing to other ones. For example, in Table 4.3 , for "PIE10P",

wCKM (80.39%) is not better than MPC-Kmeans (81.62%) but wCKM yields an

improvement of 9.46% over the baseline while MPC-Kmeans achieves 3.22%

increase in accuracy.

4.5 Results of L2GFS

In this section, we present an experimental study for L2GFS against wCKM in

order to position each one regarding the other. By the end of this section, we

will present different ways of constraint integration in the proposed approach,

and we will show how they affect considerably the quality of selected features.

In these experiments, we use the same configurations as in the experiments of

wCKM. This includes: the same datasets, the same parameter values, and the
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4.5. Results of L2GFS

Figure 4.4: Classification accuracy vs. different number of selected features

same evaluation measures.

Figure 4.4 plots the curves of both algorithms for classification accuracy vs.
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Chapter 4. Weighting-Based Semi-Supervised Feature Selection

different number of selected features. This figure indicates that, in most cases,

L2GFS outperforms wCKM or achieves a similar performance. Although wCKM

was practically proven to effectively integrate the pairwise constraints into

feature selection. L2GFS seems to better benefit from information supplied

by these constraints. In addition, we showed how wCKM outperforms some

well-known semi-supervised feature selection methods, then it is expected that

L2GFS can achieve a similar (or even better) performance if compared with

them.

Table 4.4 compares the averaged accuracy under different numbers of selected

features. From this table and Figure 4.4, we can find that the performance of

L2GFS is almost always better than that of wCKM. This can be explained by

the fact that L2GFS drives the learning by the constraint preserving. These

constraints are generated from labeled data in our case. Therefore, the classifi-

cation ability in features selected by L2GFS might be better than those selected

by wCKM. Note that wCKM relies on locality preserving while trying to mini-

mize the violation of constraints.

Table 4.4: Classification Accuracy (in %).

Methods PCMAC RELATHE TOX-171 CLL-SUB-111 PIE10P PIX10P
wCKM 75.9±4.96 66.46±3.05 64.3±1.02 69.61±5.4 77.04±19.85 92.6±1.11
L2GFS 80.78±3.54 73.89±4.46 82.38±0.94 72.91±3.9 86.29±13.25 93.52±2.75

Furthermore, we compare the performance between the two methods when

different levels of supervision are used. Figure 4.5 shows the plots for accuracy

under desired number of selected features versus different number of con-

straints. The desired number of selected features is fixed to 10. A particular

study on Figure 4.5 reveals that, generally, the accuracy of L2GFS is more stable

while increasing the number of constraints. In fact, this is expected because

wCKM is flexible with constraint violation (though the goal of the method

is to minimize this violation). Such violation is susceptible to worsen when

increasing the number of constraints.

To show how the dimensionality of the projected space affects the performance,
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4.5. Results of L2GFS

Figure 4.5: Classification accuracy vs. different number of constraints.
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Chapter 4. Weighting-Based Semi-Supervised Feature Selection

we compare the clustering accuracies with a fixed number of selected features

(the same as above). The percentage of supervision is the same as indicated

in Table 3.3. Since wCKM and L2GFS are based on k-means paradigm, we can

obviously calculate their clustering accuracies. The clustering is repeated 10

times with different initializations and the best result in terms of the objective

function is recorded in Table 4.5.

Table 4.5: Clustering Accuracy (Rand index in %).

Methods PCMAC RELATHE TOX-171 CLL-SUB-111 PIE10P PIX10P
wCKM 52.05±0.24 52.2±2.1 66.4±1.36 57.08±0.1 81.6±0.93 95.3±2.19
L2GFS 49.98±0.00 50.34±0.13 57.81±2.13 62.91±3.9 81.73±1.46 90.02±1.55

As can be noted, in major cases, wCKM records better results than L2GFS. This

might be explained by the fact that wCKM can assess the locality preserving

ability of features better than L2GFS. In fact, the objective function of wCKM

prioritizes the data structure, while in L2GFS the constraint preservation is

prioritized. Therefore, we can specify that L2GFS is more suitable for feature

selection if constraints are guaranteed to be useful and noise-free (this might

be achieved by constraint selection or any other techniques). Typically, in semi-

supervised data, the size of labeled data is small and labels (or constraints) are

well selective. Hence, we believe that L2GFS might be more convenient than

wCKM in order to cope with the “small labeled-sample” problem. However,

wCKM might be more adequate in cases where labeling process (or constraints

acquisition) is not confident.

4.6 Conclusion

In this chapter, we proposed two weighting-based approaches for semi-super-

vised feature selection. Both approaches are integrated with the well-known

k-means algorithm, by adding the feature weighting principle to the objective

function. The first approach is wCKM, in which we utilized a "fuzzy" version

of k-means where the assignment of examples is done in soft manner (i.e. an

instance belongs to all clusters but with different scores). The other approach
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4.6. Conclusion

is L2GFS, in which we adopted the hard assignment (an instance belongs to

only one cluster). In wCKM, the constraints are added directly to the objective

function, and the algorithm is permitted to violate constraints with a penalty.

Thus, wCKM approach might be more robust towards labeling error. The ob-

jective in this case is to minimize this penalty by minimizing the constraint

violation. In L2GFS, the constraints are added indirectly as a condition to which

the objective function is subjected. As a result, all constraints are certain to

be preserved, and no violation is permitted. In addition, wCKM is a global

approach, where a feature has to be "good" in describing all clusters in order

to be selected. While L2GFS is a local-to-global approach, in which a feature

has more chance to be selected if it describes certain clusters but not all ones.

The empirical results over high-dimensional benchmarking datasets proved

the efficiency and effectiveness of the proposed approaches.
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5 Conclusion and Perspectives

In this thesis, we presented different approaches for handling the problems

of feature selection, which is one of dimensionality reduction strategies. In

special, we studied the problem in semi-supervised paradigm. We reviewed

the literature of dimensionality in general, which consists of feature extraction

and feature selection techniques. We illustrated some of key methods in both

domains. Being motivated in presenting feature selection, we focused more

on feature selection methods which could be roughly divided in supervised,

unsupervised and semi-supervised. We reviewed the representative supervised

methods which depend on correlation with class labels for determining

feature relevance. Then, we also illustrated the representative methods in

unsupervised feature selection which is considered as a much harder problem

due to the absence of labels, we viewed how methods in this domain try to

investigate in the intrinsic properties of data, and evaluate the relevance of a

feature regarding its ability in preserving certain locality properties.

In addition, we showed how the task of feature selection became more

challenging with the so-called “small labeled-sample” problem, in which

the amount of data that is unlabeled could be much larger than the amount

of labeled data. Indeed, for such problem the traditional supervised and

unsupervised feature selection methods are not convenient. On the one hand,

supervised feature selection algorithms require a large amount of labeled
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training data. On the other hand, unsupervised feature selection algorithms

ignore label information, thus may lead to performance deterioration. For all

these reasons, the usefulness of semi-supervised feature selection is more

adapted and its effectiveness has been demonstrated.

Moreover, we demonstrated how the supervision information offered by the

labeled part of data could be transformed into background knowledge to

be integrated into the feature selection process, along with the geometric

structure exploited from the unlabeled part of data. Such background

information is generally expressed by pairwise constraints, that specify if two

instances are to be in the same class when both have the same label (must-link

constraint), otherwise in different classes if not (cannot- link constraint). Then,

we reviewed the state-of-the-art of semi-supervised feature selection methods,

and we illustrated in details several recent works which have attempted to

exploit pairwise constraints or any other prior information in feature selection.

In order to tackle the problem of semi-supervised feature selection, we

presented several approaches in both filter and embedded forms. In filter

approaches, we first proposed CLS score in which we tried to compromise

between the information presented by labeled part of data, and structure

properties presented by the unlabeled part. Then the exploitation of both parts

helped in improving the performance over the other competitive methods.

This was expected because the importance of constraints is practically proven.

Nevertheless, and unlikely to what might be expected, some constraints can

decrease the learning performance.

To overcome the effects of noisy constraints, we tried to solve the problem by

the exploitation of a constraint selection procedure which resulted in more

useful constraint set to be presented to the data. Then, we proposed a more

specific framework (CSFS) which achieved a considerable performance over its

ancestor CLS.

113

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



Chapter 5. Conclusion and Perspectives

Another enhancement over feature relevance is the redundancy elimination.

In this sense we illustrated the existing approaches which treat redundancy in

feature selection, then we proposed a feature selection score with graph-based

redundancy elimination (CSFSR). The experimental results showed that

eliminating redundant features can considerably improve the learning process.

In addition to filter methods, we presented two embedded approaches for

feature selection (wCKM) and (L2GFS). Both methods modify the original

k-means objective function, and extend it for semi-supervised feature

selection. In wCKM, we integrated the pairwise constraints directly in the

objective function. The algorithm proceeds in a soft manner and penalizes

the constraint violation. In L2GFS, we applied a hard fashion of constraint

integration, and the execution of k-means algorithm is done while respecting

the non-violation of any constraint. In both methods, we developed a

weighting approach over constrained k-means. The difference between them

is that the former approach is global and selects the relevant features over all

data instances, while the latter first selects the relevant features to each cluster

locally, this gives more chance for features that best select certain clusters but

not all, then the global relevance of feature is calculated over the whole data

instances. Empirical results were presented in both methods which proved the

efficiency of the underlying algorithms.

Finally, the approaches presented in this thesis are not exempt from limitations.

In addition, the proposed approaches inspired us important avenues for future

works. These works include but are not limited to:

• Adapting the proposed methods for dealing with very high-dimensional

datasets (with hundred of thousands of features).

• The pairwise constraints are not the only type of constraints that might

exist, an interesting work might be the investigation of other constraint

types. In addition, the measure which we adopted is independent from

the learning algorithm. There exist other measures that could be adopted
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in order to evaluate the utility of the constraint set.

• The k-means algorithm is well known, we tried to review its semi-super-

vised versions (constrained k-means approaches). However, we believe

that the extension of these approaches to the self-organizing maps might

be an interesting work for semi-supervised feature selection.

• In CSFS, with constraint selection, we have coped with the problem of

inefficiency in pairwise constraints generated from data. Typically, in

semi-supervised data, labels are relatively few, so the number of gener-

ated constraints is rather small. This explains why the noise in these

constraints has an important effect over the quality of selected feature. In

CSFS, we tried to overcome this noise by constraint selection. A possible

avenue may be to tackle this problem by ensemble-based approach, then

the bagging of constraints can create a diversity, and thus improving the

constraint-based learning performance.

• An interesting direction is to investigate how our methods can be ex-

tended to deal with regression problems in which the classes contain

continuous values instead of categorical labels.

115

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0015/these.pdf 
© [M. Hindawi], [2015], INSA Lyon, tous droits réservés



A Appendix A: List of Publications

• Efficient Semi-supervised Feature Selection: Constraint, Relevance and

Redundancy (under peer reviewing).

• M. Hindawi, K. Benabdeslem. Une approche embedded pour la sélection

de variables en mode semi-supervisé. SFC12, pages 29-31, Marseille,

Octobre, 2012.

• M. Hindawi, K. Allab, and K. Benabdeslem. Constraint selection based

semi-supervised feature selection. In Proceedings of ICDM. IEEE Interna-

tional Conference on Data Mining, pages 1080–1085, 2011.

• K. Benabdeslem, M. Hindawi. Constrained Laplacian score for semi-

supervised feature selection, In the proceedings of ECML/PKDD, LNAI

6911, pages 204-218, 2011.

• M. Hindawi, K. Benabdeslem. Un score Laplacien sous contraintes pour

la sélection de variables en mode semi-supervisé. Journées "Fouille de

Données Complexes et de Grands Graphes (FDC - FGG)", pages 20-21,

Paris, Juin, 2011.

• M. Hindawi, L. Morel, R. Aubry, et J.-L. Sourrouille (2008). Description

and implementation of a UML style guide. In M. R. V. Chaudron (Ed.),

Volume 5421 of LNCS, pp. 291–302. Springer.

• Sourrouille J.-L., Hindawi M., Morel L., Aubry R., Specifying consistent
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subsets of UML, Educator symposium (co-located with Models’08), War-

saw University of Technology, Toulouse, France, Warsaw University of

Technology , pp. 26-38.
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